
Handbook  
of Mathematical 
Geosciences

B. S. Daya Sagar · Qiuming Cheng  
Frits Agterberg Editors

Fifty Years of  IAMG



Handbook of Mathematical Geosciences



B. S. Daya Sagar • Qiuming Cheng
Frits Agterberg
Editors

Handbook of Mathematical
Geosciences
Fifty Years of IAMG



Editors
B. S. Daya Sagar
Systems Science and Informatics Unit
Indian Statistical Institute–Bangalore
Centre

Bengaluru
India

Qiuming Cheng
State Key Lab of Geological Processes
and Mineral Resources

China University of Geosciences
Beijing
China

Frits Agterberg
Geological Survey of Canada
Ottawa, ON
Canada

ISBN 978-3-319-78998-9 ISBN 978-3-319-78999-6 (eBook)
https://doi.org/10.1007/978-3-319-78999-6

Library of Congress Control Number: 2018937688

© The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons license and indicate if
changes were made.
The images or other third party material in this book are included in the book’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publi-
cation does not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Cover illustration: Presidents of the International Association for Mathematical Geosciences (IAMG).
From Left to Right and Top to Bottom: First Row: IAMG Logo, William Christian Krumbein (First Past
President), Andrei B. Vistelius (1968–1972), Richard A. Reyment (1972–1976), Daniel F. Merriam
(1976–1980), Second Row: E. H. Timothy Whitten (1980–1984), John C. Davis (1984–1989),
Richard B. McCammon (1989–1992), Michael Ed. Hohn (1992–1996), Ricardo A. Olea (1996–2000),
Third Row: Graeme Bonham-Carter (2000–2004), Frits P. Agterberg (2004–2008), Vera Pawlowsky-
Glahn (2008–2012), Qiuming Cheng (2012–2016), Jennifer McKinley (2016–2020).

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Dedicated to
Daniel F. Merriam and Richard A. Reyment
(Fathers of the IAMG)



Foreword

The International Association for Mathematical Geosciences (IAMG) was founded
during the 23rd International Geological Congress in Prague, August 1968. Within
the Earth Sciences, the IAMG has played a prominent role during the past 50 years
by living up to its mandate to promote, worldwide, the advancement of mathe-
matics, statistics, and informatics in the geosciences. Under its auspices there have
been and continue to be important developments in applications of mathematics,
statistics and computer science in the Earth Sciences. To give two examples: IAMG
members Georges Matheron and Jean Serra developed geostatistics and mathe-
matical morphology resulting in methods that are now widely applied in other
branches of science and engineering; John Aitchison invented methods to cir-
cumvent the problem of spurious correlations that often arise in compositional data
analysis of petrological and geochemical data. IAMG members later followed up on
developing this topic now used in other fields of science and in the social sciences
as well. During the first 30 years of its existence, IAMG stood as the abbreviation of
International Association for Mathematical Geology, but its current name was
adopted to widen its scope and provide a home to scientists who are not only
geologists but who perform research in other fields of science and engineering.
From the beginning, prominent mathematical statisticians including John Tukey,
Geoffrey Watson, and Franklin Graybill played a prominent part within the IAMG
by providing advice and collaborating in research projects.

In addition to organizing or co-sponsoring international conferences, workshops,
and lecture series, the IAMG established three successful scientific journals:
Mathematical Geosciences, Computers & Geosciences, and Natural Resources
Research (formerly: Nonrenewable Resources). In total, five types of IAMG awards
were created to honor William Christian Krumbein (1902–1979), Andrew
Borisovich Vistelius (1915–1995), John Cedric Griffiths (1912–1992), Felix
Chayes (1916–1993), and Georges Matheron (1930–2000), who were pioneers in
mathematical geology. The book in front of us “Handbook of Mathematical
Geosciences: Fifty Years of IAMG” published to celebrate the Golden Anniversary
of the IAMG contains 45 chapters prepared by IAMG award winners, founding
members, and distinguished lecturers. It covers new theoretical developments,
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applications, reviews of subfields of the mathematical geosciences, and historical
information on the IAMG, especially in its early years.

Bill Krumbein, as a geologist, first started using a digital computer in 1958, and
gradually more mathematical geologists began working with digital computers in
the 1960s. This involved the development of computer programs written in
FORTRAN or ALGOL to use existing statistical techniques such as analysis of
variance, multiple regression, multivariate statistical techniques, and time series
analysis that had been developed during the first half of the twentieth century. Also,
new methods including trend surface analysis and geostatistical ore reserve esti-
mation techniques were developed specifically for solving geoscience problems.
Dan Merriam established the “Kansas Geological Survey Computer Contributions.”
In this series, 50 computer programs were published between 1966 and 1970.
During this time period, Dick Reyment worked closely with Dan to establish the
IAMG.

Computers brought about further important changes that were rapidly adopted
by mathematical geologists including geographic information systems (GIS),
exploratory data analysis, the fast Fourier transform, mathematical morphology,
fractals, and nonlinear models. Even more recently, our world has entered the “Big
Data” era, with the production of data with unprecedented speed and in large
quantities. The new knowledge obtained through digital analysis and the novel
methods of data mining are greatly benefitting human decision making. People’s
life, working, and thinking are being subjected to drastic changes. “Big Data”
resulted in the emergence of “Data Science” which, to some extent, is affecting all
fields of science both in how scientific research is being conducted using digital
data and by facilitating the use of scientific methods to study the digital data.

Nowadays, geosciences and geological research are mainly characterized by
the following words: “Systematic,” “Comprehensive,” “Quantitative,” “Three-
dimensional,” “New-model,” “Green,” “Intelligent,” and “Beneficial to People.” In
this regard, Mathematical Geosciences and the IAMG play an increasingly
important role, prompting the advancement of the geosciences in the future. Earth
science and geological studies are data-intensive. If we want to solve geological
problems and use the results in a meaningful way, we have to obtain and work with
many different kinds of data obtained by using sound geological concepts and
methods borrowed from physics, chemistry, and remote sensing. Geoscience
experts in the latter fields of science make invaluable contributions to our under-
standing of the Earth and the geological processes that took place millions of year
ago. In all these endeavors, mathematics plays a significant role. This is where the
IAMG is exceedingly helpful. Geology is characterized by the four “Deeps”: Its
data and processes are deep in the Earth, deep under the sea, deep in outer space,
and deep in time. It is not easy to obtain comprehensive geological data sets in
practice. Data collection can be very expensive. Much attention is to be paid to
costs and benefits.

Earth scientists should always do their best to define target populations from
which truly representative samples are to be drawn. Geological samples almost
never fully comprise the entire population of study because of differences in space
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and time. There is no “overall data completeness” or “comprehensive data” in
geological science and practice. Other methods of data collection have to be
developed and used in order to make the random samples fit the target populations
as closely as possible so that information loss because of spatial restrictions is
minimized.

The ultimate purpose of Earth Science is to promote progress and development
of human society: The products of the Earth’s evolution over millions of years are
to be used to our advantage, and we have to guard against the negative effects of the
different types of disasters that can be associated with geological processes.
Geological data have particular characteristic features that reflect time and cause of
origin, spatial environments, and genesis. They can manifest different outcomes
reflecting spatial and temporal conditions. When faced with geological data, one
should not only know the “What?” but also the “Why?” and the “How?” for the
data: What they truly mean and how they are to be used. One should not only
establish “correlations” but also “causality” and spatiotemporal relations. Geology
differs from most other areas in the Big Data era in that the focus is on the “What?”
only and on correlations without causality and the “Why.”

The laws of physics and chemistry have not changed through geologic time. This
fact underlies the principle of actualism already understood by geologists in the
nineteenth century. Some early geologists already surmised that the ice ages of
which the effects can be clearly seen on the surface of the Earth were caused by
minor systematic fluctuations in amount of radiation received from the sun. A full
explanation of this periodicity was provided in the theory of Milankovitch. This
theory currently is used to estimate ages of stage boundaries in the geologic
timescale during the past 65 million years with a precision that is better than
precisions provided by geochronological dating methods.

The age of the Earth is about 4.5 billion years, and it is in its middle age. Taking
90 years as expectation of human age, for example, this means that one year in our
life is approximately equivalent to 50 million years in the past of the Earth. Thus,
the factor of difference is about 4,500,000,000/90 = 50,000,000. The following
examples illustrate the change of perspective needed to understand geological
processes. Earthquakes with a magnitude greater than 8.0 earthquakes on the
Gutenberg–Richter scale occur about once a year. Consequently, about 50 million
such earthquakes probably have occurred over the last 50 million years. The speed
of tectonic plates is of the order of 1–10 cm/year. Thus, plates have moved 500–
5000 km per 50 million years. It explains why oceans are opening and closing over
geologic time.

Early in the nineteenth century, it became known that most coal deposits orig-
inated during the Carboniferous. More recently, Earth scientists have developed
theories about the genesis of ore and hydrocarbon deposits that help to make new
discoveries. Recognition of importance of bio-factors has aided in the under-
standing of various geological processes including ore and hydrocarbon formation,
as well as distribution of pollutants in the ecosystem. Increasingly, mathematics and
statistics are fruitfully employed in the discovery process as abundantly exemplified
in many of the chapters in this Handbook. All of the preceding considerations

Foreword ix



illustrate the complexity and particularities of geological data as well as their
usefulness and importance. Fully comprehensive geological data collection, their
effective computer-based treatment, rational analysis, and translation into digital
knowledge, all depend on the guidance provided by powerful theory based on
mathematics with applications of efficient methods.

Initially, most IAMG members were located within the USA or Europe. These
regions continue to have relatively many members, but China and other Asian
countries now also constitute a large regional group. In 1990, a workshop was
organized at the China University of Geosciences in Wuhan at which the partici-
pants included Richard McCammon, IAMG President at the time as well as four
future IAMG Presidents. Now, the IAMG’s China Section holds annual meetings
attended by hundreds of mathematical geoscientists. Increasingly, it became felt
that mathematical geoscience is making an indispensable contribution in China to
aid in the prediction of occurrences of mineral resources, especially in the
non-traditional regions such as deep Earth and in covered regions and the assess-
ment of hazards such as earthquakes and landslides. As society develops from its
industrialization to post-industrialization stage, environmental and ecological
applications become increasingly important to establish and reduce the effects of
regional patterns of pollution. Other anticipated areas of applications are urban
space utilization and agricultural products under the new concepts of green and
low-carbon development.

Beijing, China Pengda Zhao
Academician of the Chinese Academy of Sciences,

China University of Geosciences
Ottawa, Canada
February 2018

Frits Agterberg
Geological Survey of Canada
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Preface

The International Association of Mathematical Geosciences (IAMG) was formed in
1968, and the year 2018 is marked as its Golden Anniversary. The “Handbook of
Mathematical Geosciences: Fifty Years of IAMG” released during the IAMG
Conference held at Olomouc and Prague (Czech Republic), September 2–8, 2018,
motivates readers including professional geomathematicians, and undergraduate
and postgraduate students to learn about the fifty years of contributions by
award-winning mathematical geoscientists. This book that showcases the success
of the IAMG celebrating its fifty years of existence is a compilation of 45 chapters.
Compiled by academics, scientists, and engineers who are the recipients of IAMG’s
accolades such as the Krumbein Medal/Chayes Prize/Vistelius Award/Griffiths
Award/Matheron Lectureship/Distinguished Lectureship/Honorary Membership as
well as IAMG Founding Members, this Handbook covers 45 chapters on topics
such as mathematical geosciences, mathematical morphology, geostatistics, fractals
and multifractals, spatial statistics, multipoint geostatistics, compositional data
analysis, informatics, geocomputation, numerical methods, and chaos theory in the
geosciences categorized broadly into theory, general applications, exploration and
resource estimation, reviews, and reminiscences. Unique features of this book
include the following:

• Contributions by award-winning mathematical geoscientists of interest to
academics/researchers/students engaged in applications of mathematics, statis-
tics, computers, and informatics.

• A unique fusion of geology, hydrology, mining engineering, geoengineering,
and applications of quantitative techniques and methodology in the aforemen-
tioned fields.

• Historical perspectives on how the IAMG evolved during the past fifty years.
• Past, present, and future demands for mathematical geosciences in academics,

industry, and the professions.
• Pathbreaking mathematical frameworks/approaches/methodologies/algorithms

to deal with varied aspects usually encountered by geoscientists.
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The first ten chapters are categorized as theoretical, followed by seven chapters
(from 11 to 17) in the general applications part. Chapters 18–26 and 27–35 are,
respectively, categorized as exploration and resources estimation, and reviews. The
last ten chapters (from 36 to 45) are categorized as reminiscences. What follows
includes a brief summary for each of the chapters of the Handbook.

Chapter 1 by Dubrule reviews relationships between Bayesian methods, geo-
statistics, and ensemble Kalman filtering which are well discussed and reviewed.
The author rightly mentions that (i) inversion techniques are not discussed and
(ii) fast-growing machine learning algorithms are challenging the geostatistical and
Bayesian formalisms.

In Chap. 2, Baddeley compares and contrasts various statistical methods–such as
logistic regression, Poisson point process models, maximum entropy, monotone
regression, nonparametric survey estimates, recursive partitioning, and receiver
operating characteristic curves–for predicting the occurrence of mineral deposits.

Chapter 3 by Schaeben is concerned with testing joint conditional independence
of categorical random variables with a newly proposed standard likelihood ratio
test. How it resolves limitations obvious with “omnibus” and “new omnibus” tests
is explained with a strong theoretical basis invoking the Hammersley–Clifford
theorem.

The sample space approach for modeling compositional data is explained in
Chap. 4 by Egozcue and Pawlowsky-Glahn. Interestingly, perturbation between
elements and its opposite, i.e., difference perturbation, appear to be Matheron–
Serra’s morphological dilations and erosions or Minkowski additions and sub-
tractions. Repeated perturbations and their inverted versions (difference perturba-
tions) seem to be multiscale morphological dilations and erosions.

Possible methods required to refocus and streamline expert geological judgment
inputs along with analytical methods are reviewed by Kaufman in Chap. 5.

Remotely sensed satellite data acquisition via various sensing mechanisms pose
challenges particularly in developing filters meant for feature extraction or retrieval.
Many developed filters yield promising results, but could not be generalized due to
varied complexities involved in sensing mechanisms leading to the acquisition of
different types of satellite images. For instance, filters that work fine for satellite
images acquired via optical sensing mechanisms would not yield appropriate results
for those images acquired via microwave sensing mechanisms. Besides, satellite
images now available are with a large number of channels at high spatial/temporal/
spectral resolutions making the ability to map features with high degree of precision
more challenging. However, due to availability of filters that cannot be generalized
for images acquired by different mechanisms, there is a need for the development of
filters with strong theoretical basis. Cressie contributes rich content in Chap. 6, and
the ideas provided in this chapter are of fundamental importance.

Deutsch in his Chap. 7 provides convincing arguments/discussions that are
logical and powerful on why the ensemble of realizations needs to be considered
instead of one single realization for proper planning, decision making, and uncer-
tainty assessment.
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In the past forty years, how criteria and arguments are employed in comparing
binary coefficients in multivariate statistical analysis is reviewed in Chap. 8 by
Hohn.

Armstrong, Mondaini, and Camargo provide a sociological study based on
Google retrievals in Chap. 9. How research in geosciences diffuses within academia
and into industry is studied in this chapter, whereby the research idea employed is
plurigaussian simulation invented in France. This study is someway related to
“scientometrics.” The obvious choice to carry out this type of study is complex
network based analysis, small-world network analysis (due to Duncan Watts and
Steven Strogatz). Such ideas in social network analysis were predominantly
developed by Barabasi and his group.

In the first part of Chap. 10, Cheng gave an excellent overview chronologically
on how mathematical geosciences or geomathematics evolved in the last fifty years
by also providing (i) historical connections between the mathematics and the
geosciences, and (ii) a new definition of mathematical geosciences. An introduction
to fractal density and singularity analysis and related subjects to solve geological
problems discussing geological principles with case studies related to earthquakes is
provided in the second part of this chapter. Cheng demonstrated the application of
his original concept of fractal density and the local singularity to model the clus-
tering frequency of earthquakes of the Pacific subduction zones. Much stronger
singularity is discovered via the clustering frequency of earthquakes in the colder
and older western boundaries of Pacific plates than that of the hotter and younger
eastern boundaries of the Pacific plates.

Use of electrofacies in reservoir characterization is provided with demonstration
on a giant clastic oil reservoir, the Amal field of Libya, in Chap. 11 by Davis.

In Chap. 12, morphological medians and weighted morphological medians are
employed by Serra in a new elegant approach demonstrated on shoreline extrap-
olations. Quench stripe generation, based on these novel two types of medians
provides the main basis in predicting the locations of the shorelines.

A comprehensive review of geostatistical methods to analyze remote-sensing
data is presented in Chap. 13 by Militino, Ugarte, and P´erez-Goya. This review
highlights the importance of geostatistics in processing and analysis of remotely
sensed satellite data available in multiple spatial/temporal/spectral resolutions
acquired via a host of different sensing mechanisms.

Chapter 14 by Goovaerts contains an interesting first application of space–time
geostatistics to assess lead levels recorded in drinking water of public distribution
system in Flint, Michigan.

Statistical Parametric Mapping (SPM)—popular in medical imaging science to
evaluate differences between individual pairs of images or average images—applied
on examples drawn from environmental and geoscience contexts is reviewed in
Chap. 15 by McKenna. Extending the application of SPM to the hundreds of
channels of hyperspectral remotely sensed satellite data would provide new insights
into remote-sensing scientists.
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In the interesting Chap. 16, Buccianti shows how compositional data analysis
has a role in dealing with water chemistry. The author puts Illya Prigogine’s ideas
and concepts (including dissipative structures, dynamical systems, open and closed
systems that respectively draw energy from external sources and from within,
self-organized criticality, universal power laws, time irreversibility) into a new
perspective. It reminds the reader of the popular book on Chaos: Man’s New
Dialogue with Nature by Illya Prigogine and Isabelle Stengers.

Chapter 17 by Grunsky, Drew, and Smith is the outcome of a major project
concerned with soil geochemical analyses in the USA via principal component
analysis and compositional framework approach. The material is presented with
many maps, tabular data, and supplementary information.

Work carried out across three decades by Dowd and his group on the quan-
tification of uncertainty in mineral/energy/environmental applications via various
approaches is reviewed with a focus on mineral and energy resources, and envi-
ronmental applications in Chap. 18.

Olea in Chap. 19 explains uncertainty, geostatistics, and kriging methods on the
basis of a coal seam example. Three ad hoc methods, namely distance analysis,
kriging, and stochastic simulation, are employed for evaluation of their usage for
predicting changes in uncertainty due to changes in spatially correlated samples.
Also included is a demonstration of the efficacy of these methods on real data for
the Anderson coal bed. It is inferred that the stochastic simulation-based approach
outperforms distance and kriging-based methods.

The topic in relation to predicting molybdenum deposit growth as a function of
cutoff grade via a nonlinear model constructed by using data from several deposits
is addressed in Chap. 20 by Schuenemeyer, Drew, and Bliss. Predicting molyb-
denum deposit growth cutoff grades is decided on the basis of a prior model derived
by plotting cutoff grade as a function of deposit grade.

Chapter 21 by Pan provides a discussion with focus on several aspects of mineral
resources, mineral resource estimation, and associated features with more
information on how/why details provided in this chapter are of fundamental
importance.

Mineral resource assessment problems and involved three types of errors are
discussed in Chap. 22 by Singer. Also presented in this chapter are possible ways to
avoid these errors. The chapter is written in a way that can be understood by
non-mathematicians or non-statisticians.

In Chap. 23 by Bonham-Carter and Grunsky, two exploratory multivariate
methods, namely proximity regression and residual principal component analysis,
are applied to analyze geochemical survey data. The first method is useful in
making predictions of spatial proximity to geological features, whereas the second
method is a recommended way for partitioning geochemical elements into clusters.

Chapter 24 by Doveton is concerned with an approach to compositional data
analysis that is significantly different from the Aitchison/Pawlowsky-Glahn/
Egozcue approach to CoData problem-solving.
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Two parts of Chap. 25 by Soares and Azevedo, respectively, provide the
(i) state of the art in recent geostatistical seismic inversion methods and their
applications to evaluate reservoir properties, and (ii) seismic inversion-based
methodology to assess uncertainty and risks at early stage of exploration.

In Chap. 26, Agterberg provides rich information-related studies to understand
the differences in the degree of heterogeneities in the spatial distribution of metal
deposits between the regional level and global level. It is interesting to see that de
Wijs’ work formed the basis for this new version of the model that provides a
framework for explaining difference between regional and worldwide distributions.
The de Wijs model has also been used elsewhere in the iterated bisection process to
compute multifractal spectra that provide a host of dimensions such as topological
dimension, capacity dimension, and information dimension. A host of such
dimensions is of immense use to understand not only spatial but also temporal
distribution patterns.

Chapter 27 by Caers provides views on why philosophical principles are
required to be translated into workable practices.

Various approaches involving spatial statistics, geological variables, geometry
and topology of geological objects to develop coherent Earth models are well
documented as an excellent review in Chap. 28 by Caumon.

Origins of kriging, its success, and its new application domains across the last
five decades, and the role of IAMG journals popularizing this technique by pub-
lishing in English are explained in Chap. 29 by Chilès and Desassis.

Recent advances in Multiple-Point Statistics (MPS)—that is important and
significant in handling complex and realistic phenomena of relevance to the Earth
sciences—are thoroughly reviewed in Chap. 30 by Tahmasebi.

Mariethoz provides interesting views on the conceptual differences between the
concurrent approaches of Minimum Point Statistics and Covariance-Based
Geostatistics in Chap. 31 with an illustrated example.

Srivastava provides information on the origin of Multiple-Point Statistics
(MPS) algorithms along with many personal reminiscences in Chap. 32.

Chapter 33 by van den Boogaart and Tolosana-Delgado contains useful new
proposals. This chapter provides state of the art and mathematical building blocks
for solutions in predictive geometallurgy—i.e., the understanding of geometallurgy.
The chapter further explores possible links between geometallurgical problems and
relevant techniques taken from mathematical geosciences. From the insights pro-
vided into this chapter, the next generation of mathematical geoscientists and
experts in geoinformatics would surely benefit.

Chapter 34 by Ma provides possible links between mathematical geosciences
and Data Science. Many learning techniques such as artificial intelligence, active
learning, machine learning and intelligence, and deep learning approaches together
now play a much bigger role in pattern discovery from massive data sets—pre-
dictive geosciences. The journey from toy models developed by nonlinear physi-
cists to predictive models has posed several newer challenges. Data Science would
bring under one umbrella the powerful theories, algorithms available under different
names in different disciplines.
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Daya Sagar reviews potential applications of nonlinear mathematical morpho-
logical transformations to deal with a host of challenges encountered in geosciences
and Geographical Information Science (GISci) with a large number of excellent
case studies shown illustratively in Chap. 35.

Many recollections by IAMG members from the old days are provided in
Chap. 36 by Cubitt and Henley, with contributions provided by T. Victor
(Vic) Loudon, EHT (Tim) Whitten, John Gower, Daniel (Dan) Merriam, Thomas
(Tom) Jones, and Hannes Thiergärtner. Also provided in this chapter is information
on those pioneering scientists who were instrumental in forming and shaping the
IAMG. The chapter is immensely useful for young generation mathematical geo-
scientists in order to know and appreciate the hard work of peers and scientists of
earlier generations.

How the applications of forward and inverse models in particular in Earth
science-related problems evolved over a period of 70 years is lucidly explained in
simplest possible language by Whitten in Chap. 37. Besides this, how other
approaches in particular applications of scaling theories or fractal geometry and
theory of chaos, in other words nonlinear approaches—that have already shown
significant success in modeling and characterization of various phenomena and
processes of relevance to the Earth sciences—can be foreseen in the next 50 years
to give a scope for further research.

Václav Němec’s professional and personal reminiscences are chronologically
provided in Chap. 38 by Němec, along with details on the IAMG’s formation and
personal early development.

Chap. 39 by Henley provides a rounded view of the life and works, and a
glimpse of the legacy of Andrey Vistelius, first President of the IAMG.

Many theoretical sound techniques, algorithms, and software tools developed
have shown promising results in certain application-specific domains but with
limited utility in terms of generalization. Thiergärtner’s interesting and genuine
views, opinions, and recommendations in Chap. 40 are thought provoking.

Application of kriging, inverse distance methods, and the variogram in multi-
variate data analysis, spatial estimation, and in texture-based classification are
shown with simple illustrations by Carr in Chap. 41.

Full in Chap. 42 provides a review of the development and applications of a
linear unmixing method fairly extensively used by geologists during the past 50
years.

Chapter 43 on Pearce Element Ratios provides insight into the evolution of melts
in volcanic systems along with many personal memories and (from the point of
view of compositional data analysis) a somewhat antiquated method of approach.
An excellent review with extensive Skaergaard applications is provided in this
chapter by Nicholls.

Myers in Chap. 44 gives a helpful set of reflections by a mathematician who
adopted geostatistics as a principal field of research and has made many important
contributions to the field along with personal reminiscences on IAMG and the
Journal of Mathematical Geosciences.
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Agterberg in his Chap. 45 provides a holistic view on the beginnings of IAMG
and about the academics/scientists/engineers who were instrumental in shaping the
IAMG and making it a most successful association promoting worldwide the
advancement of mathematics, statistics, and informatics in the geosciences. This
chapter enlightens and motivates the young generation mathematical geoscientists.

Bangalore, India B. S. Daya Sagar
Beijing, China Qiuming Cheng
Ottawa, Canada Frits Agterberg
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Chapter 1
Kriging, Splines, Conditional
Simulation, Bayesian Inversion
and Ensemble Kalman Filtering

Olivier Dubrule

Abstract This chapter discusses, from a theoretical point of view, how the geo-
statistical approach relates to other commonly-used models for inversion or data
assimilation in the petroleum industry. The formal relationship between point
Kriging and splines or radial basis functions is first presented. The generalizations
of Kriging to the estimation of average values or values affected by measurement
errors are also addressed. Two algorithms are often used for conditional simulation:
the “rough plus smooth” approach consists of adding a smooth correction to a
non-conditional simulation, whilst sequential Gaussian simulation allows the
point-by-point construction of the realizations. As with Kriging, conditional sim-
ulation can be applied to average values or to data affected by measurement errors.
Geostatistical inversion generates high-resolution realizations of vertical impedance
traces constrained by seismic amplitudes. If the relationship between impedance
and amplitude data is linearized, geostatistical inversion is a particular case of
Bayesian inversion. Because of the non-linearity of production data vis-à-vis the
variables of the earth model, their assimilation is harder than that of seismic data.
Ensemble Kalman filtering, if considered from a geostatistical viewpoint, consists
of using a large number—or ensemble—of realizations to calculate empirical
covariances between the dynamic data and the parameters of the geostatistical
model. These covariances are then used in the equations for interpolating the
mismatch between simulated and new production data using a coKriging-like
formalism. Interestingly, most of these techniques can be expressed using the same
generic equation by which an initial model not honouring some newly arrived data
is made conditional to these data by adding a (co-)Kriged interpolation of the data
mismatches to the initial model. In spite of their similar equations, Bayesian
inversion, geostatistics and ensemble Kalman filtering have a different approach to
the inference of the covariance models used by these equations.
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1.1 Introduction

Fifty years ago, when geostatistics was pioneered by Matheron (1971), its main
applications were Kriging and the change of support for mining applications. At the
time, geostatistics was presented as a new discipline, without much reference to its
relationships with other mathematical interpolation and modeling techniques. This
has now changed as the relationships between geostatistics and such techniques as
splines, regularization, Bayesian inversion, or ensemble Kalman filtering have
become clearer. This convergence is fascinating and has led to many significant
developments allowing the integration of multi-disciplinary data into 3-D geosta-
tistical earth models.

This chapter discusses approaches for generating 2-D or 3-D subsurface models
constrained by geological (wells), seismic or dynamic data. In spite of the wealth of
data available, the uncertainty on the 3-D earth model remains high in most cases.
Approaches that are designed to generate one unique “deterministic” model often
pick the smoothest one. This is not realistic in situations where the Earth Model is
used for flow simulation, as the results are biased if the model heterogeneities are
not representative of that of the actual reservoir. More generally, non-linear oper-
ations, such as the application of cut-offs, may give biased results when applied to
deterministic smooth models such as those produced by Kriging.

The multi-realization approach is now routinely applied to subsurface parameters
inversion. Looking at the mean provides much less information than looking at a
movie of realizations. …By construction, each of the realizations captures the
essential random fluctuations of the actual field from which the data were extracted
(Tarantola 2005). This is a fundamental change. The traditional inversion approach
could be formulated as “How to find an estimate of the spatial parameters which is
as close as possible to the first guess values of these parameters and which provides,
through forward modeling, an output which is as close as possible to the available
data” (modified from Evensen 2007). These first guess values are usually a smooth
(Kriging-like) spatial model of these parameters. Now the question has changed to
“Find the probability density function (pdf) of 3-D models constrained by all the
existing data, and provide techniques for sampling realizations from this pdf”.

This chapter, written from a geostatistical perspective, discusses the convergence
between the existing techniques.

Deterministic approaches such as Kriging, splines, regularization- or
energy-based methods generate a single model of the subsurface, which usually
minimizes or maximizes an optimisation criterion. These approaches are closely
related and their formal relationships are discussed.

Geostatistical simulation is then revisited, and two key simulation algorithms are
discussed; The first one is sequential Gaussian simulation and the second one is the
“rough plus smooth” combination of an unconditional simulation plus a smooth
correction term. These two algorithms have helped bridge the gap between geo-
statistics and inversion.
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Two successful approaches are then discussed for integrating seismic and
dynamic data into the earth model. Rather than using an approach merely based on
statistical correlations between data and model parameters, it is assumed that there
exists a deterministic relationship (or forward model) between model parameters
and data, possibly including a random error.

The first approach, geostatistical inversion, produces reservoir-scale models of
acoustic or elastic parameters constrained by single- or multi-offset seismic
amplitude data. The value of using sequential Gaussian simulation to calculate
seismically-constrained realizations is discussed. In situations where the forward
model is linear, geostatistical inversion can be formulated as a particular case of
Bayesian seismic inversion.

The second approach, ensemble Kalman filtering, consists of sequentially
updating an “ensemble” of geostatistical realizations using dynamic data as they are
acquired in time. The key idea here is to statistically derive the covariance terms of
the equation used in Bayesian inversion from an ensemble of realizations rather
than from a theoretical covariance model. The formal relationship between
ensemble Kalman filtering and co-Kriging is discussed.

Most of the above techniques can be shown to use the same kind of formalism,
where the mismatch between newly arrived data and the current model is inter-
polated and used to update this model.

One of the conclusions of this chapter is that the equations of Bayes, geostatistics
or ensemble Kalman filtering are closely related. However, this relationship is
mostly formal as the three techniques differ in their approach to the covariances
used in the equations. Geostatisticians first fit a model to the data, whilst Bayesians
start from a model based on general “prior” information. Only later in the process
do they introduce the well data. And ensemble Kalman filtering directly uses the
experimental covariances calculated from the realizations of the ensemble.

The topic of joint inversion of seismic and dynamic data is not discussed here, in
spite of the interesting on-going developments in 4-D seismic data inversion. This
is because the objective of this chapter is to address formal relationships between
the different formalisms rather than discuss specific applications.

1.2 Deterministic Aspects of Geostatistics

1.2.1 Simple Stationary Kriging

The basic model used by geostatistics is that of stationary random functions of order
2: a spatial property z xð Þ at location x is represented by a random function Z xð Þ,
which is assumed to follow a trend m xð Þ and a stationary covariance C hð Þ
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mðxÞ=E Z xð Þð Þ ð1:1aÞ

C hð Þ=E Z xð ÞZ x+hð Þð Þ−E Z xð Þð ÞE Z x+hð Þð Þ ð1:1bÞ

At each unsampled location x, the value of Z xð Þ is estimated by a linear com-
bination Zk xð Þ of the values Zi =Z xið Þ at the n data points xið Þi=1, ..., n. Kriging is the
best linear unbiased estimator, in the sense that it is unbiased and that it minimizes
the estimation variance. If the trend m xð Þ is known at each location x, the simple
Kriging (Chilès and Delfiner 2012, p. 151) system of equations is obtained

Zk xð Þ−m xð Þ= ∑
n

i=1
λi Zi −m xið Þð Þ ð1:2aÞ

with ∑
n

i=1
λiC xi − xj
� �

=C x− xj
� �

for j∈ 1, . . . , nð Þ ð1:2bÞ

1.2.2 Kriging with Intrinsic Random Functions of Order k

Matheron (1973) generalized the above model to that of Intrinsic Random Func-
tions of Order k (IRF-k), where the definition of the variogram as a generalized
covariance of order zero and of generalized covariances of order k leads to a model
based on the stationarity of generalized increments of order k.

With k-IRFs, the model only considers linear combinations of Z xð Þ that filter
polynomials of order k (such polynomials being likely to represent a trend). Simple
Kriging is not applicable any more. For instance, if k = 1 in two dimensions, and if
K hð Þ designates the generalized covariance of order k (GC-k), the kriging system
becomes

ZkðxÞ= ∑
n

i=1
λiZi ð1:3aÞ

with ∑
n

i=1
λiK xi − xj
� �

+ μ0 + μ1xj1 + μ2xj2 =K x− xj
� �

for j∈ 1, . . . , nð Þ

and ∑
n

i=1
λi =1 ∑

n

i=1
λixi1 = x1 ∑

n

i=1
λixi2 = x2

ð1:3bÞ

where the coordinates of each point x of the plane are written as x= x1, x2ð Þ.
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1.2.3 Kriging Extensions

The goal here is not to discuss the details of Kriging, as there are plenty of excellent
textbooks for this (Chilès and Delfiner 2012, p. 150). However, two features of
Kriging deserve to be discussed, as they facilitate the understanding of the rela-
tionship between Kriging, splines and Bayesian approaches.

1.2.3.1 Generalization of Kriging to the Interpolation
of Average Values

Kriging is a linear interpolator. The data used by Kriging do not have to be point
values, but they can be any linear function of the parameters of interest; Hansen
et al. (2006) call these “volume support data”. In particular, Kriging can be used to
estimate the average value of a parameter ZðvxÞ at a location x by a linear com-
bination volume of support data ZðvxiÞ (Chilès and Delfiner 2012, p. 198)

Zk vxð Þ= ∑
n

i=1
λiZðvxiÞ ð1:4Þ

This property of Kriging, extensively used in mining applications, is of signif-
icant interest in the context of linear inversion of volume support data (Hansen et al.
2006). The Kriging equations associated with Eq. 1.4 are not given here, as they are
a bit heavy, but conceptually simple thanks to the linear property of Kriging.

1.2.3.2 Error CoKriging

Error coKriging (Dubrule 2003) is a generalization of Kriging to the situation where
measurements Yi of the parameter Zi at data points xi are affected by an unbiased
random error

Yi = Zi + εi withE εið Þ=0 andVar εið Þ=Cεi ð1:5Þ

In this situation, error coKriging allows the estimation of Z xð Þ at any unsampled
location x from a linear combination of values Yi (the random measurement error
attached to each data can be zero or not) (Dubrule 2003; Hansen et al. 2006; Chilès
and Delfiner 2012, p. 216)

Zk xð Þ= ∑
n

i=1
λiYi ð1:6Þ
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1.2.3.3 Dual Kriging

If a global neighborhood is used, that is if all the available data are used to estimate
Z xð Þ at every single location x, the Kriging equations (Eq. 1.3) can be inverted to
obtain the dual Kriging system (for interpolation in the case of Kriging and
smoothing in the case of error coKriging). For example, in two dimensions for a
k-IRF of order 1

zk xð Þ= zk x1, x2ð Þ= a0 + a1x1 + a2x2 + ∑
n

i=1
biK x− xið Þ ð1:7Þ

where the conditions on the coefficients ða0, a1, a2, b1, . . . , bnÞ are different for
Kriging and error coKriging (Dubrule 1983)

Kriging: ∑
n

i=1
bi = ∑

n

i=1
bixi1 = ∑

n

i=1
bixi2 = 0 and zk xi1, xi2ð Þ= zi ð1:8Þ

Error coKriging: ∑
n

i=1
bi = ∑

n

i=1
bixi1 = ∑

n

i=1
bixi2 = 0 and zk xi1, xi2ð Þ+ biCεi = yi

ð1:9Þ

1.2.4 Kriging and Splines

1.2.4.1 Interpolating Splines

Splines are a popular method for deterministic interpolation and approximation
(Micula and Micula 1999). In 2-D, interpolating splines calculate a function
honouring the data and minimizing an energy functional. Harmonic splines mini-
mize the stretching energy of a membrane while biharmonic splines minimize the
bending energy of an elastic plate. The biharmonic spline function can be written
using a similar expression as Eq. 1.7 (Duchon 1975), but with a specific model for
the generalized covariance function

K x− xið Þ= x1 − xi1ð Þ2 + x2 − xi2ð Þ2
� �

Log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − xi1ð Þ2 + x2 − xi2ð Þ2

q� �
ð1:10Þ

Splines and Kriging are a particular case of a more general class of interpolators,
called radial basis functions (Billings et al. 2002a, b). With splines, the polynomial
in Eq. 1.7 belongs to the kernel of the operator T that is minimized by the spline
function (T is the gradient for harmonic splines and the laplacian for biharmonic
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splines), whilst the function K hð Þ is the Green function associated with the operator
T 0T , where T 0 is the transposed operator of T (Matheron 1981a)

T 0TK hð Þ= δ ð1:11Þ

where δ is the Dirac Function. Choosing the energy functional minimized by
splines is equivalent to fixing the degree of the trend function and the generalized
covariance model for Kriging. For harmonic splines, these are respectively a con-
stant and the De Wijs variogram in Logh (Chilès and Delfiner 2012, p. 94).

The consequence of Eq. 1.11 on the spectral density of the generalized
covariance K hð Þ is straightforward. For example, the spectral densities associated
with the harmonic and biharmonic splines are power laws, representing fractal
models. Szeliski and Terzopoulos (1989) and Micula and Micula (1999) discuss
this relationship between Splines and fractals.

1.2.4.2 Smoothing Splines

Smoothing splines are used in situations where measurements at data points are
affected by a random error (Eq. 1.5). In two dimensions, they compute a function
f x1, x2ð Þ minimizing the sum of a spline energy functional plus a weighted distance
to the n data

Tfk k2 + θ ∑
n

i=1

f xi1, xi2ð Þ− yið Þ2
Cεi

ð1:12Þ

The smoothing biharmonic spline function has the same expression as that of
Kriging and error coKriging (Eq. 1.7) but with the following relationships

∑
n

i=1
bi = ∑

n

i=1
bixi1 = ∑

n

i=1
bixi2 = 0 and f x1i, xi2ð Þ+ bi

Cεi

θ
= yi ð1:13Þ

Smoothing biharmonic splines are identical to error Cokriging as long as the
generalized covariance used by error Cokriging is the function θK x− xið Þ, where
K x− xið Þ is given by Eq. 1.10 (Matheron 1981a; Dubrule 2003). This is a general
relationship between smoothing splines and coKriging, which are formally equiv-
alent if the generalized covariance K hð Þ is that satisfying Eq. 1.11, with the
coefficient of K hð Þ equal to the smoothing parameter θ of Eq. 1.12.
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1.2.4.3 Kriging and Regularization—The Discrete Case

The discrete case is the situation where interpolation is performed at the nodes of a
regular grid and each data point is located at one of the nodes of this grid. If p is the
total number of grid nodes, the number n of data points is such that n< p.

In the discrete case, Matheron (1981b) also demonstrated the equivalence
between splines and Kriging, and between smoothing splines and error coKriging.
Both the Kriged and spline values zu minimize

∑
p

u, v=1
zuBuvzv + ∑

n

i=1

zi − yið Þ2
Cεi

ð1:14Þ

where the u and v indices designate all the p grid points where the interpolation
takes place, whilst i indices designate the n data points. The minimization of
Eq. 1.14 is performed according to the unknown values zu at all grid nodes (in-
cluding those unknown values zi where a data point with measured value yi is
present). The first term of Eq. 1.14 can be interpreted as a quadratic energy function
traditionally used in inverse problems. In the regularization context, the choice of
this quadratic form is driven by smoothing considerations, often using Briggs’ finite
difference Laplacian (or spline) “roughening” operator (Briggs 1974; Bolondi et al.
1976). Seen from the geostatistical perspective, Buv is the inverse of the covariance
matrix in the stationary case and a pseudo-inverse of the generalized covariance
matrix in the k-IRF case (Matheron 1981b). Equation 1.14 confirms the clear
relationship between the inverse of the (generalized) covariance and the spline
differential operator.

Kriging can thus be formalized in the frame of energy-based estimation tech-
niques such as splines. This comes from the relationship between the inverse of the
covariance function and the roughening filter implicit in the quadratic regularization
term. It will be shown below that the regularization term can also be regarded, in the
Bayesian inversion context, as an expression of the prior knowledge about the
variable under study.

1.2.5 Kriging and Bayesian Inversion

1.2.5.1 Bayesian Linear Inversion

Here it may be useful to recall the general expression of the posterior mean and
covariance in the case of Bayesian linear inversion of a multigaussian function.
A very good reference for this is Tarantola (2005).

In the discrete case, consider a stationary multigaussian random vector z of
dimension p containing the grid values zu over a two or three-dimensional regular
grid of size p. Assume also that a vector y contains the n data yi. It is assumed again
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that the data are affected by an error vector ε of dimension n, and also that these
data are a linear function of the p values of z over the grid

y=Fz+ ε ð1:15Þ

where the vector ε has mean zero and covariance matrix Cε and F is a matrix of
dimension n× p. In the multigaussian case, thanks to the Bayes formula relating the
posterior pdf fpost zð Þ to the prior pdf fprio zð Þ and the likelihood function g y zjð Þ, the
prior mean vector m (dimension p) and covariance matrix C (dimension p× p) of z
are updated using the information brought by the data vector y

fpost zð Þ∝fprio zð Þg y ̸zð Þ∝ exp z−mð Þ′C − 1 z−mð Þ
h i

× exp y−Fzð Þ′C − 1
ε y−Fzð Þ

h i
ð1:16Þ

fpost zð Þ is a multigaussian function with the mean vector

mpost =m+C F′ FCF′ +Cε

� �− 1
y−F mð Þ ð1:17Þ

and the covariance matrix

Cpost =C−CF′ FCF′ +Cε

� �− 1
FC ð1:18Þ

1.2.5.2 Kriging and Bayesian Inversion

Equation 1.17 can also be written

mpost =m+Λ y−Fmð Þ= ðI −ΛFÞm+Λy ð1:19Þ

with

Λ=C F′ FCF′ +Cε

� �− 1 ð1:20Þ

In can be checked that Λ is also the p× n matrix giving at each line u the n
simple Kriging (or error coKriging) weights associated with the Kriging of the
value zu at node u. Comparing the first part of Eq. 1.19 with Eq. 1.2 shows that, in
the multigaussian case, mpost is equal to simple Kriging and that the matrix Cpost

contains the variances and covariances of simple Kriging at each node u of the
regular grid.
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1.2.6 Energy-Based Versus Probabilistic Estimates

The minimization of Eq. 1.14 leads to either Kriging or splines if the (inverse of)
the covariance (Kriging) and the differential operator (splines) are properly chosen.
Minimizing the expression in Eq. 1.14 is equivalent to maximizing

exp − ∑
p

u, v=1
zuBuvzv + ∑

n

i=1

zi − yið Þ2
Cεi

 ! !
ð1:21Þ

This is also the expression (up to a multiplicative constant) of the conditional
multivariate distribution in the multigaussian case, as given by Bayes theorem
(Eq. 1.16), in the case where m=0, where the matrix Cε is diagonal and where the
data are point values. The first term represents the prior pdf and the second the
likelihood function. Kriging which is equal to the mean of the posterior pdf, also
maximizes this pdf in the multigaussian case.

Expression (1.21) relates the world of energy functionals (such as splines) with
that of probability functions (such as Kriging). More generally regularization and
maximum a posteriori Bayesian estimates are identical if the prior covariance used
in Bayesian inversion is properly chosen. The equivalence between an energy
function and a probability distribution is also used in statistical mechanics, as the
probability of a particular configuration is inversely related to its energy. Suppose
that the vector z minimizes an energy functional E zð Þ. Using the results of Geman
and Geman (1984), Szeliski and Terzopoulos (1989) associate a probability to this
energy through the Boltzmann (or Gibbs) distribution p zð Þ defined as

p zð Þ= 1
Z
exp −

E zð Þ
T

� �
ð1:22Þ

where Z and T are positive constants. If Bayes’ theorem is applied to the above
prior pdf p zð Þ and the posterior pdf is maximized, the formalism of splines is
obtained.

1.2.7 Conclusion on Kriging

Three different ways of calculating a Kriging interpolator have been discussed

• using the basic approach where Kriging is calculated at each location as a linear
combination of the data (Eq. 1.2)

• using Eq. 1.7, where the expression of dual Kriging, or more generally of radial
basis functions, is used
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• minimizing Eq. 1.14 in the discrete case, where Kriging values are calculated on
a discrete grid by a minimization incorporating a regularization and a distance to
the data term.

Kriging, although derived using a probabilistic formalism, is still a deterministic
technique, in the sense that one unique or “best” model is produced, In most cases,
Kriging provides a representation that is very smooth. As a result the application of
non- linear operators to Kriged models will provide biased results (Dubrule 2003).
This is one of the reasons for the success of conditional simulation.

1.3 Stochastic Aspects of Geostatistics:
Conditional Simulation

With conditional simulation, the approach is stochastic. A large number of realiza-
tions are generated, which match the data (if the simulation is conditional) and share
the first (mean) and second order (stationary covariance or generalized covariance)
moments of the modeled random function. The main benefit of conditional simulation
is that it produces realizations that behave away from the well data the same way as
the well data themselves (Dubrule 2003). This is not true with Kriging, which pro-
duces a model that is smoother away from the wells than it is at the wells.

Conditional simulation can also be regarded as a technique for generating
realizations of the conditional multigaussian pdf fully characterized by Eqs. 1.17
and 1.18. In other words, the realizations “vibrate” around their Kriging mean with
a variance at each location equal to the Kriging variance.

A number of conditional simulation algorithms have been developed (Chilès and
Delfiner 2012, p. 478). Among them, two are routinely used in the petroleum
industry and are particularly interesting in relation with the inversion of seismic and
production data.

1.3.1 Method 1: “Smooth Plus Rough” or
“Rough Plus Smooth” Algorithm

Z xð Þ can be simply written as the sum of Kriging plus the Kriging error

Z xð Þ= Zk xð Þ+ Z xð Þ−Zk xð Þð Þ ð1:23Þ

The “smooth plus rough” (Oliver 1996) simulation method writes a conditional
simulation Zcs xð Þ as the sum of Kriging plus a simulation of the Kriging error.
A non-conditional simulation Zncs xð Þ of Z xð Þ is generated first, which honors the
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mean and the covariance of Z xð Þ, then the conditional simulation Zcs xð Þ is calcu-
lated as

Zcs xð Þ= Zk xð Þ+ Zncs xð Þ−Zncsk xð Þð Þ ð1:24Þ

where Zncsk xð Þ designates Kriging of Zncs xð Þ using as data the values Zncs xið Þ of the
non-conditional simulation at the conditioning data locations. Thus to the smooth
term Zk xð Þ is added the rough term Zncs xð Þ− Zncsk xð Þð Þ. Chilès and Delfiner (2012,
p. 495) show that Zcs xð Þ honors the data and has the same (generalized) covariance
as Zncs xð Þ (and hence as Z xð Þ).

Equation 1.24 can also be expressed in the form of a “rough plus smooth”
equation

Zcs xð Þ= Zncs xð Þ+ Zk xð Þ−Zncsk xð Þð Þ ð1:25Þ

Using Eq. 1.17, Eq. 1.25 can be written in the discrete case, assuming that the
data are average values of the gridded values and are affected by a measurement
error. At location u of the discrete grid

zucs = zuncs +CF′ FCF′ +Cε

� �− 1
y−Fzuncsð Þ ð1:26Þ

Equation 1.26 shows that conditional simulation is obtained by adding to a
non-conditional simulation a Kriging of the mismatch y − Fzuncsð Þ between the
data and the unconditional simulation at the data location. This formalism will
appear to be quite general and will facilitate the understanding of the relationship
between conditional simulation and Kalman Filtering.

1.3.2 Method 2: Sequential Gaussian Simulation (SGS)

SGS (Deutsch and Journel 1998) is probably the most popular and flexible con-
ditional simulation technique used in applications. SGS works under the multi-
gaussian assumption and sequentially draws random locations within the simulated
grid. At each new random location, the value is first Kriged from the previously
simulated values and the well data. Then, a random value is sampled from the
Gaussian pdf with mean equal to the Kriged value and variance equal to the Kriging
variance (SGS uses the property that, in the multivariate normal case, univariate
conditional distributions are also Gaussian). Then the sampled value is merged with
the rest of the dataset, and a new random location is chosen within the simulated
grid. The grid points where a data point is present are treated the same way as grid
points with no data if the error ε affecting the data is different from zero. If all the
data are exact, then the grid nodes with data points are left unchanged. The result is
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a Gaussian realization constrained by the data values and satisfying the input
statistics (mean and covariance function).

The main difference between “rough plus smooth” and SGS is that SGS works
sequentially, grid point by grid point. The sequential nature of SGS is well suited to
the geostatistical inversion of seismic data. Indeed, at each grid node, the sequential
approach can make sure that the sampled value is compatible with both the pre-
viously generated points and the seismic data at the same location, thus combining
the advantage of single trace inversion with that of spatial coupling. This will be
discussed in Sect. 1.4.

1.3.3 Spectrum and Conditional Simulation

Since the frequency spectrum is the Fourier transform of the covariance (Chilès and
Delfiner 2012, p. 66), the spectrum of a conditional simulation is the same as that of
the data. Conditional simulation addresses the following statement from Claerbout
(2002) about seismic data interpolation: Of all the assumptions we could make to fill
empty bins, one that people usually find easiest to agree with is that the spectrum
should be the same in the empty-bin regions as where bins are filled.

Claerbout (2002) also defines the Prediction Error Filter (PEF) as the linear
operator T that transforms the data into a white noise. In other words, T 0T is the
inverse of the covariance. Based on Eq. 1.11, this also means that T is the spline
operator associated with the covariance of the data. Claerbout (2002) shows that
unconditional simulations can be generated by applying T − 1 to a white noise. This
is the same technique as that used by Oliver (1988) and Oliver (1995) who applies
what he calls the square root of the covariance function to a white noise.

1.4 Geostatistical Inversion of Seismic Data

1.4.1 Deterministic Seismic Inversion

Until the mid-nineties or so, most seismic inversion studies were deterministic, in
the sense that they generated a single “best” model, usually at the same resolution
as the seismic data. Often, regularization-based or Bayesian methods were used,
which led to the generation of one “maximum posterior” or “optimal for a given
norm (often L2)” 3-D acoustic impedance model (Tarantola 2005).

If the seismic inversion problem is linearized as with Fatti et al.’s (1994) model,
the reflection coefficient r θð Þ at seismic time t for a seismic block of offset θ can be
written
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r θð Þ= a1 θð Þ ∂LogIp tð Þ
∂t

+ a2 θð Þ ∂LogIs tð Þ
∂t

ð1:27aÞ

and y θð Þ=w θð Þ*r θð Þ+ ε θð Þ ð1:27bÞ

where Ip tð Þ and Is tð Þ are the compressive and shear impedances at time t, a1 θð Þ and
a2 θð Þ are offset-related parameters, w θð Þ is the seismic wavelet for offset θ and ε θð Þ
is noise. This model is linear in the logarithm of Ip tð Þ and Is tð Þ. Thus, as long as the
logarithms of impedances are inverted, the seismic amplitudes can we written as in
Eq. 1.15 as a linear function of the logarithms of impedances, and the posterior
mean obtained by multigaussian Bayesian seismic inversion (Eqs. 1.17 and 1.18) is
identical to Kriging. The solution can also be regarded as a regularization-based
solution, where the norm controlling the smoothness is derived from the inverse of
the covariance.

At the time when only deterministic inversion was used, geostatisticians often
treated seismic data as “soft” information, making use only of statistical correlations
between seismic and reservoir parameters in order to constrain the earth models.
This “soft” approach to seismic data allowed the development of some interesting
interpolation techniques such as external drift or collocated coKriging (Dubrule
2003). However it also led to reservoir models not fully compatible with the seismic
data as, if a seismic forward model such as that of Eq. 1.27 was applied to them, the
actual seismic data was not recovered.

The above approaches proved sufficient until the late eighties or so, as seismic
data were used at rather large scale. Thanks to the development of 3-D earth
modeling at the reservoir scale in the early nineties, it became necessary to work
with models at higher resolution than seismic data, and hence to quantify the
uncertainty attached to these models. Then the availability of 4D seismic data also
called for new technology to better constrain the earth models. Geostatistical
inversion, described below, was developed with these issues in mind.

1.4.2 Geostatistical Inversion (GI)

The original GI algorithm (Bortoli et al. 1992; Haas and Dubrule 1994) used SGS
to simulate high-resolution acoustic impedance traces constrained by seismic data.
SGS starts by picking a random cell within a regular two-dimensional grid. At this
cell, a large number of possible acoustic impedance vertical traces are generated by
SGS, then the trace that best matches the actual seismic trace at this location is
selected. Then SGS moves to another random location of the two-dimensional grid,
etc. until the whole model is filled with high-resolution impedance traces. Ini-
tially SGS appeared to be well suited to this application, as it allowed the use of any
kind of forward model—linear or not—relating the acoustic impedance trace gen-
erated by SGS to the seismic amplitude trace at the same location. The acoustic
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impedance vertical traces simulated by SGS typically have higher frequency con-
tent than the seismic amplitudes, which makes them non-unique. This uncertainty
can be quantified by generating multiple conditional simulations. Unfortunately the
use of SGS proved to take too much computer time for large seismic datasets.

By revisiting the above GI algorithm in a Bayesian framework and in the linear
context of Fatti’s model (Eq. 1.27), authors such as Buland and Omre (2003) or
Escobar et al. (2006) not only clarified the GI formalism but also provided a
straightforward conditional simulation algorithm based on Eqs. 1.17 and 1.18
which was more efficient then SGS for sampling acoustic impedance traces com-
patible with seismic amplitudes. Whilst Bayesian inversion provided an expression
of the posterior mean and covariance of the impedances multiGaussian pdf, GI
allowed the sampling of reservoir-scale impedance realizations from this pdf.

As convincingly shown by Francis (2006a, b) or Escobar et al. (2006), cut-off
operations such as those used to translate acoustic impedance into facies can be
applied to GI realizations, thus avoiding statistical bias if these cut-offs were applied
to Kriging.

1.5 Kalman Filtering and Ensemble Kalman Filtering

1.5.1 Kalman Filtering (KF)

Suppose that a Gaussian random vector Zt− 1 has evolved until time t− 1ð Þ and that
Zt− 1 is an unbiased estimate of the unknown true state vector zt− 1 at time t− 1ð Þ

Zt− 1 = zt− 1 +Rt− 1 withE Rt− 1ð Þ=0 andVar Zt− 1ð Þ=Var Rt− 1ð Þ=Ct− 1 ð1:28Þ

If the model error is neglected, the forward model relating the true state vector at
time t− 1ð Þ with the state vector at time t is assumed to be a linear function Lt

z1 = Ltzt− 1 ð1:29Þ

At time step t, the unknown true state of the system has evolved according to
Eq. 1.29 and a vector dt of n new data may also be available. Assume that these
data are linear functions of the state vector zt, and can be expressed as in Eq. 1.15

dt =Ftzt + εt ð1:30Þ

where the error vector εt has mean zero and covariance matrix Cεt .
KF (Kalman 1960) aims to combine the information provided about zt by the

forward model Lt applied to the estimate Zt− 1 (Eq. 1.29) with the information
provided by the data dt (Eq. 1.30). Bayes can be used for this, LtZt− 1 playing the
role of the prior distribution. It is easy to verify that the covariance of the random
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vector LtZt− 1 is Ct =LtCt− 1L
0
t. Hence, under Gaussian assumptions the best esti-

mate is (from Eq. 1.19)

Zt = LtZt− 1 +Λt dt −FtLtZt− 1ð Þ ð1:31Þ

where the kriging weights matrix Λt (as in Eq. 1.20) is now called the Kalman gain

Λt =CtF′

t FtCtF′

t +Cεt

� �− 1 ð1:32Þ

Zt− 1 as defined in Eq. 1.28 can represent any kind of unbiased estimate based on
all the information available at time t− 1ð Þ. Kriging and conditional simulation are
both unbiased estimates of zt, only their variance is different and is of course
minimum if Zt− 1 is Kriging and larger if Zt− 1 is simulation. Chilès and Delfiner
(2012) (p. 497) show that the variance of the difference between a random function
and its conditional simulation is twice the Kriging variance. In case Zt− 1 is sim-
ulation, Eq. 1.31 looks like the “rough plus smooth” method (Eq. 1.26) with LtZt− 1

playing the role of the non conditional simulation. Equation 1.31 makes the esti-
mate LtZt− 1 conditional to the new data dt by adding an interpolation of the
mismatch between FtLtZt− 1 and the data.

In standard geostatistical applications, the observations are often spatial and
hence assimilated simultaneously, while KF processes information sequentially,
time step after time step. Tarantola (2005) (in Appendix 6.18) shows that, if in a
linear least-squares problem the dataset can be divided into subsets with zero
covariance between them, then solving one global inverse problem is equivalent to
solving a series of smaller problems using the posterior state and covariance matrix
of each partial problem as prior information for the next. Oliver et al. (2008) also
show (in Chap. 11) that, under the same assumptions as Tarantola (2005), the step
by step computation of KF provides (in the multigaussian case) the same result as
would be obtained by integrating all the data in one single step. In the case where Lt
is the identity function, these two results also imply that simple Kriging would
provide the same result if data were incorporated sequentially into the Kriging
system, or in one single batch (under the assumptions that each batch of data has
zero covariance with the others).

1.5.2 Constraining Reservoir Models by Production Data

Fluid flow models are strongly non-linear, and linear approximations such as those
already discussed for seismic modeling or KF cannot be used.

A distinction must be made between “history-matching”, where a single reser-
voir model is modified until the flow simulation matches the production data, and
“constraining reservoir models by production data”, where reservoir model
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realizations compatible with production data are generated. Here the discussion
focuses on the second objective rather than the first one. Some techniques to
address this objective are based on rigorous approaches such as Markov-Chain
Monte Carlo (MCMC) or Genetic Algorithms (GA) (Oliver et al. 2008). But these
are very time-consuming and often unpractical. Ensemble Kalman filtering appears
to be a more practical approach for incorporating production data into the reservoir
model.

1.5.3 Ensemble Kalman Filtering (EnKF)
Versus Conditional Simulation

EnKF (Evensen 2007; Oliver et al. 2008) starts with an ensemble of initial real-
izations that are not constrained by production data. Typically the state vector zt at
time t contains permeabilities, porosities, saturations, pressures, and thermody-
namic variables at the simulator grid nodes followed by a vector of predicted
production data at each well i at time t.

The following notation is used for a given state vector zt

zt = z1ut, z
2
ut , . . . z

k
ut , q

1*
it , . . . .q

l*
it

� � ð1:33Þ

It is assumed that there are k gridded variables in zt, that the simulator grid is
composed of p cells u, and that there are n wells i each with l new production data at
time t. The total size of the state vector zt is kp+ nl. The predicted data vector d*t is
the vector of size nl

d*t = q1*1t , . . . .q
1*
nt , q

2*
1t , . . . .q

2*
nt , . . . , q

l*
1t, . . . .q

l*
nt

� � ð1:34Þ

The relation between state vector and predicted data is

d*t =Pzt withP= ðOnlxkp, InlxnlÞ ð1:35Þ

P is a nl× kp+ nlð Þ matrix. The function ft, which represents the flow simulator,
is non-linear. If the model errors are neglected

zt = ft zt− 1ð Þ ð1:36Þ

does not modify the rock properties (unless they are affected by changes in pressure
and saturation), but replaces the pressure, saturation, and simulated data with new
values at time t.
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The problem is now to calculate the best estimate of the state vector zt com-
bining the information provided by the flow simulation forward model ft zt− 1ð Þ and
that provided by the new data dt.

If ft is a linear function, this is the standard KF domain of application and
Eq. 1.31 applies, Lt playing the role of ft. But now ft is non-linear. It would still be
convenient to update the state vector through a generalization of Eq. 1.31

zt = ft zt− 1ð Þ+Λt dt −Pft zt− 1ð Þð Þ ð1:37Þ

where the Kalman gain Λt is obtained using Eq. 1.32. Assuming that there is no
error associated with the data, Eq. 1.32 can be simplified into

Λt =CtP′ PCtP′
� �− 1 ð1:38Þ

Equation 1.38 requires the knowledge of the covariance Ct of ft zt− 1ð Þ, in other
words the covariance of the image of the state vector after application of the flow
simulation model ft. ft is non-linear and this covariance cannot be simply calculated
—as in the linear case—from the covariance at the previous step. EnKF addresses
this issue by statistically deriving this covariance using the information from the
multiple realizations, typically about a hundred of them. This is the key idea behind
EnKF.

There are of course a number of issues resulting from the fact that the covari-
ances are calculated from a finite number of realizations of the ensemble. The first
one is spurious correlation, because the ensemble members are not independent
except in the starting ensemble. The second one is that if the number of realizations
in the ensemble is not large enough, then the covariances are poorly estimated.
Standard geostatistics addresses this by fitting mathematical models to the experi-
mental covariances, in order to smooth the spurious correlations.

1.5.4 Ensemble Kalman Filtering and Its Relationship
with CoKriging

In Eq. 1.37, focus now on the rock properties in the state vector. ft zt− 1ð Þ leaves the
rock properties unchanged, as only the time-dependent state vectors in the simulator
grid are calculated by one time-step of the flow simulator, whilst Λt dt −Pft zt− 1ð Þð Þ
is a linear combination of the differences between observed and predicted pro-
duction data at each well. Thus EnKF interpolates between the wells by calculating
a linear combination of these differences across the field, then adds these interpo-
lated difference to the rock properties model. Is it possible to reformulate EnKF as a
well by well geostatistical approach?

The term Λt in Eq. 1.37 is the Kalman gain as given by Eq. 1.38. In the case
where there is no error affecting the data, Eqs. 1.37 and 1.38 can be written
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zt − ft zt− 1ð Þ=CtP′ PCtP′
� �− 1

dt −Pft zt− 1ð Þð Þ ð1:39Þ

The left-hand side is the update calculated by EnKF for the property of interest
as the time step evolves from t− 1ð Þ to t. The Kalman gain coefficients of the
right-hand side are nothing else than the simple coKriging weights (see for instance
Chilès and Delfiner 2012, p. 303).

Thus, each estimate of a 3-D spatial parameter such as porosity or permeability
at time t− 1ð Þ is updated at time t by a linear combination of all the inconsistencies
generated by this parameter at the data points. Since, in the case of flow simulations,
many parameters are involved in the production profiles prediction, all the indi-
vidual parameters’ 3-D models must be corrected in a consistent way, which is why
multivariate coKriging—and not univariate Kriging applies here.

1.6 Beyond the Formal Relationship Between Geostatistics
and Bayes

1.6.1 Two Identical Formalisms but Different Assumptions

The above developments show that techniques such as conditional simulation,
Bayesian inversion, geostatistical inversion and ensemble Kalman filtering follow a
similar mathematical formalism.

However, their philosophy of application differs in the way the covariance is
approached. This can be understood by looking again as Bayes rule as presented in
Eq. 1.16

fpost zð Þ∝fprio zð Þg y ̸zð Þ ð1:40Þ

With geostatistics, the experimental (generalized) covariance calculated on the
data y is fitted by a model which becomes the covariance of the unconditional
distribution fprio zð Þ. Then the data y are used a second time through the simulation
conditioning process of Eq. 1.26.

With Bayes, the covariance model associated with fprio zð Þ is a prior based on
local or analog knowledge, but not on the data themselves (Tarantola 2005). This
prior is transformed into a posterior covariance through the conditioning process of
Eq. 1.40.

With geostatistics, the aim of conditional simulation is to generate realizations
that match the data and satisfy the input covariance; the SGS and rough plus smooth
algorithms work only if the data themselves satisfy this input covariance. But the
random function Zcs xð Þ of Eqs. 1.24 and 1.25 is not an ergodic or even a stationary
random function; its variance at each location x is equal to the Kriging variance and
changes with x, as it is zero at the data points. In other words, the covariance of the
random function Z xð Þ is different from that of Zcs xð Þ conditionally to the data
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(Chilès and Delfiner 2012, p. 497). But the covariance calculated on a single
conditional realization does not “see” any difference between the grid cells asso-
ciated with data points and those not associated with data points. It is only as the
realizations change, leaving the data unchanged, that the covariance across real-
izations appears non-stationary and hence non-ergodic.

On the other hand, Bayes combines a prior covariance—usually different from
that of the data—with a data-based likelihood, resulting into a posterior pdf that sits
somewhere between the prior and the likelihood. Bayes updates prior covariances
based on new data whilst conditional simulation anchors the realizations against the
hard data (Escobar, personal communication).

1.6.2 Model Falsifiability

Tarantola (2006) challenges the geostatistical and Bayes formalisms if models are
to be falsifiable or have a scientific meaning: I suggest that the setting, in principle,
for an inverse problem should be as follows: use all available prior information to
sequentially create models of the system, potentially an infinite number of them. For
each model, solve the forward modeling problem, compare the predictions to the
actual observations and use some criterion to decide if the fit is acceptable or
unacceptable, given the uncertainties in the observations and, perhaps, in the
physical theory being used. The unacceptable models have been falsified, and must
be dropped. The collection of all the models that have not been falsified represent
the solution of the inverse problem. Thus, Tarantola (2006) offers to keep all the
prior realizations that are compatible with the data. Thus the data are used to
validate or reject the prior realizations, rather than update the prior pdf into the
posterior.

1.6.3 Looking Ahead: Machine Learning and Falsifiability

The fast growth in machine learning algorithms (Goodfellow et al. 2016) is chal-
lenging the geostatistical and Bayesian formalisms in situations where data are
plenty. Thanks to this large number of data, the approach used to falsify a con-
volutional neural network model (for instance) relating input parameters to data is
often to test whether the convolutional model works as well on a training (or
calibration) dataset as on a test dataset not used for training. The prior model itself
is completely data-driven, which contradicts Tarantola (2006) but the validation
step is along the lines of his above recommendations! This topic is likely to gen-
erate interesting discussions in the future.
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1.7 Conclusion

The objective of this chapter was to discuss the convergence observed over the last
fifty years between geostatistics and other modelling and inversion techniques.

A formal convergence exists between the main techniques used to constrain
reservoir models by multi-disciplinary data. Kriging, splines, conditional simula-
tion, geostatistical inversion and ensemble Kalman filtering can be interpreted using
either the geostatistical formalism or Bayes.

Most of these techniques amount to the same approach where an initial model is
updated by using a linear combination of the mismatches between the new data and
their prediction from the initial model (Eqs. 1.19, 1.26, 1.31 and 1.39).

However the methods above have a different philosophy towards the inference
of the covariances used in these calculations. Bayes uses the data to update a prior
pdf which is independent of the data. Geostatistics generate realizations of condi-
tional simulations that reproduce the modeled covariance—or the spectrum—of the
data. EnKF does not model a covariance but directly uses the empirical covariances
derived from the ensemble realizations and their flow simulations.
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Chapter 2
A Statistical Commentary on Mineral
Prospectivity Analysis

Adrian Baddeley

Abstract We compare and contrast several statistical methods for predicting the

occurrence of mineral deposits on a regional scale. Methods include logistic regres-

sion, Poisson point process modelling, maximum entropy, monotone regression,

nonparametric curve estimation, recursive partitioning, and ROC (Receiver Oper-

ating Characteristic) curves. We discuss the use and interpretation of these methods,

the relationships between them, their strengths and weaknesses from a statistical

standpoint, and fallacies about them. Potential improvements and extensions include

models with a flexible functional form; techniques which take account of sampling

effort, deposit endowment and spatial association between deposits; conditional sim-

ulation and prediction; and diagnostics for validating the analysis.

2.1 Introduction

The pioneering work of Agterberg (1974) developed a statistical strategy for predict-

ing the likely occurrence of mineral deposits. In essence, the observed association

between known deposits and other known geostructural or geochemical information

is used to predict the spatially-varying abundance of unknown deposits. The associ-

ation between predictors and deposits is modelled by logistic regression.

This general approach to prospectivity analysis has been extended and adopted

across a wide range of applications, for predicting mineral deposits (Chung and

Agterberg 1980; Bonham-Carter 1995), archaeological finds (Scholtz 1981; Kvamme

1983), landslides (Chung and Fabbri 1999; Gorsevski et al. 2006), animal and plant

species (Franklin 2009) and other features which can be treated as points at the scale

of interest. Extensions and modifications include logistic regression for sampled

data, maximum entropy, and weights-of-evidence modelling.

However, the scientific literature contains many conflicting statements about the

interpretation of these methods. For example, there are different understandings of
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the fundamental scope and validity of logistic regression, about the degree of flexi-

bility inherent in the assumptions, and about the interpretation of the results. This is

a concern, because misunderstanding of a statistical technique poses the obvious risk

that it may be mis-applied, its results misinterpreted, or its performance incorrectly

evaluated.

In statistical science the understanding of these techniques has also changed dra-

matically over the last four decades. The modern synthesis of statistical modelling

permits a new and deeper appreciation of prospectivity methods. New tools from

statistical science may enable exploration geologists to perform a more searching

analysis of their survey data.

Accordingly, this article offers a commentary and critique of prospectivity anal-

ysis from the standpoint of modern statistical methodology. We begin by exam-

ining the fundamentals of logistic regression, explaining the interpretation of the

results, and discussing its strengths and weaknesses. We explain the close relation-

ship between logistic regression, point process modelling, and maximum entropy

methods. We canvas some alternative methods which are less well known, includ-

ing monotone regression, nonparametric regression, recursive partitioning models,

and ROC curves. (The popular weights-of-evidence method is not discussed here,

but will be treated in detail in another article.) New tools include robust estimation,

model selection and variable selection, conditional prediction and model diagnos-

tics. Several unanswered questions in prospectivity analysis are identified as topics

for future research in statistical methodology.

2.2 Example Data

For the sake of demonstration and discussion, we shall use a vastly oversimplified

example. The Murchison geological survey data shown in Fig. 2.1 record the spatial

locations of gold deposits and associated geological features in the Murchison area

of Western Australia. They are extracted from a regional survey (scale 1:500,000) of

the Murchison area made by the Geological Survey of Western Australia (Watkins

and Hickman 1990). The features shown in the Figure are the known locations of

gold deposits, the known or inferred locations of geological faults, and greenstone

outcrop. The study region is contained in a 330 × 400 km rectangle. At this scale,

gold deposits are point-like, i.e. their spatial extent is negligible. These data were

previously analysed in Foxall and Baddeley (2002), Brown et al. (2002); see also

Groves et al. (2000), Knox-Robinson and Groves (1997). Data were kindly provided

by Dr. Carl Knox-Robinson, and permission granted by Dr. Tim Griffin, Geological

Survey of Western Australia and by Dr. Knox-Robinson.
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Fig. 2.1 Murchison

geological survey data.

Known gold deposits (blue

crosses), major geological

faults (red lines) and

greenstone outcrop (green

shading) in a survey region

about 200 by 300 km across

Evidently, both the geological fault pattern and the greenstone outcrop have “pre-

dictive” value for gold prospectivity, because gold deposits are strongly associated

with proximity to both features. For the purposes of analysis in this article, we require

predictors to be spatial variables. A predictor Z should be a function Z(u) defined

at any spatial location u. For a map of rock type such as the greenstone outcrop, the

simplest choice for the predictor value Z(u) at location u is the “indicator” equal to 1

if the location u falls inside the greenstone, and 0 if it falls outside. For a map of lin-

ear features such as geological faults, a common choice for the predictor value Z(u)
is the distance from u to the nearest fault. Figure 2.2 shows contours of this distance

function for the Murchison data.

It is important to note that our choice of spatial predictor Z(u) will affect the

results of the analysis: the results would usually be different if we replace the distance

function in Fig. 2.2 by the squared distance or the square root of distance, etc. Several

other choices of spatial predictor derived from geological fault data are canvassed

in Berman and Turner (1992). Likewise for the greenstone outcrop we could have

chosen another predictor, such as the distance function of the greenstone. The choice

of predictor can be revisited after the analysis, as discussed in Sect. 2.4.6.
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Fig. 2.2 Contours of

distance to the nearest fault

in the Murchison survey
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2.3 Logistic Regression

Here we recapitulate and re-examine some details of the logistic regression tech-

nique, for the purposes of discussion.

2.3.1 Basics of Logistic Regression

Logistic regression is a general statistical technique for modelling the relationship

between a binary response variable and a numerical explanatory variable

(Berkson 1955; McCullagh and Nelder 1989; Dobson and Barnett 2008; Hosmer

and Lemeshow 2000). The use of logistic regression to predict the presence/absence

of point events was pioneered in geology by Agterberg (1974, 1980), apparently

on the suggestion of the statistician Tukey (1972): see Agterberg (2001). The study

region is divided into pixels; in each pixel the presence or absence of any deposits is

recorded; then logistic regression is used to predict the probability of the presence

of a deposit as a function of predictor variables. This was later independently redis-

covered in archaeology (Scholtz 1981; Hasenstab 1983; Kvamme 1983, 1995) and
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is now a standard technique in GIS applications (Bonham-Carter 1995) including

spatial ecology (Franklin 2009).

The study region is divided into pixels of equal area. For each pixel, we record

whether mineral deposits are present or absent. We then fit the logistic regression
relationship

log
p

1 − p
= 𝛼 + 𝛽z (2.1)

where p is the probability of presence of a deposit (or deposits) in a given pixel, and

z is the corresponding value of the predictor variable.

Here 𝛼 and 𝛽 are model parameters which are estimated from the data. Some

writers state that the interpretation of 𝛼 and 𝛽 is “obscure” (Wheatley and Gillings

2002, p. 175), perhaps because of the unfamiliar form of the left hand side of (2.1).

The quantity p∕(1 − p) is the odds of presence against absence, that is, the probability

p of presence of a deposit, divided by the probability 1 − p of absence. The left hand

side of (2.1) is the logarithm of the odds of presence. (In this paper ‘log’ always refers

to the natural logarithm, with base e.) The logistic regression relationship (2.1) states

that the log odds of presence is a linear function of the predictor z. The straight line

has slope 𝛽 and intercept 𝛼. The transformation log(p∕(1 − p)) ensures that

p = e𝛼+𝛽z

1 + e𝛼+𝛽z (2.2)

is a well-defined probability value (between 0 and 1) for any possible values of 𝛼, 𝛽

and z. The log odds is the “canonical” choice of transformation in order to satisfy

some desirable statistical properties (McCullagh and Nelder 1989), and arises natu-

rally in many applications. Bookmakers often quote gambling odds that are equally

spaced on a logarithmic scale, such as the sequence 2:1, 4:1, 8:1, 16:1. Since logis-

tic regression is widely used in medical and public health research, standard statis-

tical textbooks contain many useful ways to interpret and explain these quantities

(Hosmer and Lemeshow 2000).

Once the parameters 𝛼, 𝛽 have been estimated from data (as detailed in Sect. 2.3.3),

the predicted probabilities pj can be computed using (2.2) and displayed as colours

or greyscales in a pixel image, as shown in Fig. 2.3. Qualitative interpretation of the

map seems to be adequate for many purposes, while many writers recommend using

only the sign of the slope parameter 𝛽 (Gorsevski et al. 2006, pp. 405–407). However,

much more can be done with the fitted logistic regression, as we discuss below.

The general appearance of Fig. 2.3 is very similar to the contour plot of distance

to nearest fault in Fig. 2.2. This is a foreseeable consequence of the simple model

(2.1) which implies that contours of probability are contours of distance to nearest

fault. This is not true of more complicated models involving several predictors.
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Fig. 2.3 Fitted probability of a gold deposit in each 10-km-square pixel in the Murchison survey,

estimated by logistic regression. Pixel values are probabilities (between 0 and 1)

2.3.2 Flexibility and Validity

Some writers describe logistic regression as a ‘nonparametric’ technique (Kvamme

2006, p. 24), which would suggest that it is able to detect and respond to any kind of

relationship, not specified in advance, between the predictor z and the presence prob-

ability p. On the contrary, logistic regression is a parametric model of a very simple

kind. The relationship z and p is rigidly defined by Eqs. (2.1) and (2.2): the relation-
ship is linear on the scale of the log odds. The position of the line is determined

by the two parameters 𝛼 and 𝛽. Logistic regression could be false for a particular

application: that is, the model assumptions could be incorrect.

Logistic regression is an example of a “generalised linear model” (McCullagh

and Nelder 1989; Dobson and Barnett 2008), essentially a linear regression of the

transformed probabilities against the predictor. In the analysis of the Murchison data

shown here, if we replace the distance function Z(u) by its square Z(u)2, or square

root
√

Z(u), etc. in the logistic regression, we obtain a different model, which is

incompatible with the original model. If the log odds are a linear function of squared

distance, then they are not a linear function of distance. Consequently, the choice of

predictor variable is very important, and it involves an implicit model assumption
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about the relationship between presence probability p and predictor z. Even the sign

of the fitted slope parameter 𝛽 could be misleading if the predictor was chosen incor-

rectly.

Such freedom as does exist in the logistic regression model is the freedom to

choose the predictor or predictors Z(u). Once the predictor is chosen, the model

becomes rigid. If there is concern about the form of relationship between p and Z,

one simple strategy is to fit a polynomial, instead of linear, relationship between the

log odds and the predictor variable.

Statistical science has developed an armory of techniques for “validating” a

regression analysis (Harrell 2001; Hosmer and Lemeshow 2000). These include

diagnostics for checking the validity of the logistic regression relationship (2.1),

measures of sensitivity of the fitted model to the data, techniques for selecting

the most important variables and the most informative models, and measures of

goodness-of-fit. As far as the author is aware, these techniques are rarely used in

geoscience. This presents the risk of failing to detect situations where logistic regres-

sion analysis is not appropriate. Model validation is a kind of “due diligence” for data

analysts.

A weakness of all parametric modelling is that, because of its “low degrees

of freedom”, the model predictions at a given location are heavily influenced by

the entire dataset, including data observed under very different conditions. In the

Murchison example, the predicted probability of presence of a gold deposit declines

dramatically between distances 0, 1 and 2 km from the nearest fault. This is not nec-

essarily a reflection of the observed frequency of occurrence of gold deposits at these

distances: rather, it is a consequence of the large negative value of the estimated slope

parameter 𝛽, which arises because of the scarcity of gold deposits at much larger dis-

tances.

Extension of the logistic regression technique to account for characteristics of the

mineral deposits, such as total endowment of gold, would be problematic because it

would effectively require a model for the probability distribution of the endowment

(and this might also be spatially-varying). However, it is straightforward to apply

logistic regression to different subsets of the deposits, for example to predict the

occurrence of deposits with endowment exceeding a specified threshold.

The logistic regression technique described here assumes that the relationship

(2.1) holds throughout the study region, with the same parameter values 𝛼, 𝛽 through-

out. This assumption can be avoided using geographically-weighted logistic regres-

sion (Lloyd 2011) or local likelihood estimation (Loader 1999; Baddeley 2017)

which allow the parameters to be spatially-varying.

2.3.3 Fitting Procedure and Implicit Assumptions

For the discussion it will be important to know a few details about the procedure that

is used to fit the logistic regression relationship.
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Fig. 2.4 Illustrative

example of binary responses

y (filled circles) and fitted

probabilities (solid curve)

plotted against predictor

value z

z

y
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Suppose there are N pixels, with covariate values z1,… , zN respectively, and pixel

presence/absence indicators y1,… , yN respectively, where yj = 1 if the j-th pixel con-

tains a mineral deposit, and yj = 0 if not. The goal is to fit a relationship of the form

(2.2). This is not a simple matter of curve-fitting, because the data (zj, yj) do not lie

“along” or “near” the curve in any sense. See Fig. 2.4. Instead, it is necessary to spec-

ify a measure of closeness or agreement between the curve and the observed data:

the model is fitted by choosing the parameter values 𝛼, 𝛽 which make this agreement

as close as possible.

The classical fitting method is maximum likelihood. Given the data y1,… , yN and

z1,… , zN , define the likelihood L(𝛼, 𝛽) to be the theoretical probability of obtaining

the observed pattern of outcomes (y1,… , yN), as a function of the unknown param-

eter values 𝛼 and 𝛽. The likelihood is a measure of agreement between the logistic

regression curve and the observed data.

To find the likelihood, first consider a single pixel j where j = 1, 2,… ,N. The

probability of obtaining a presence (yj = 1) in this pixel is

pj =
e𝛼+𝛽zj

1 + e𝛼+𝛽zj
(2.3)

and the probability of an absence (yj = 0) is 1 − pj. The likelihood for pixel j is the

probability of obtaining the observed outcome yj,

Lj = ℙ{Yj = yj} =
{

pj if yj = 1
1 − pj if yj = 0

or more compactly

Lj = pyj

j (1 − pj)1−yj =
( pj

1 − pj

)yj

(1 − pj)

which is a function Lj = Lj(𝛼, 𝛽) of the unknown values of the parameters. Then the

full likelihood is the predicted probability of the entire observed pattern of presences

and absences (y1,… , yN),
L = L1L2 …LN , (2.4)
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and is a function L = L(𝛼, 𝛽) of the unknown parameter values 𝛼, 𝛽. Equation (2.4)

assumes that the outcomes in different pixels are statistically independent of each

other, because the likelihood is obtained by multiplying likelihood contributions

from each pixel. That is, the logistic regression technique, as it is commonly applied

to presence/absence data, makes two assumptions:

1. the probability of presence p is related to the predictor variable z by a logistic

regression relationship (2.1);

2. presence/absence outcomes in different pixels are statistically independent of

each other.

The (parametric) maximum likelihood fitting rule is to choose the values of the

parameters 𝛼, 𝛽 which maximise the likelihood L(𝛼, 𝛽). This is a standard procedure

in classical statistics, carrying with it many useful additional tools such as standard

errors, confidence intervals, and significance tests (Hogg and Craig 1970; Freedman

et al. 2007).

Ignoring some pathological cases (e.g. where no deposits are observed), the like-

lihood is maximised by setting its partial derivatives to zero. Equivalently we may

work with the derivatives of logL. This yields the score equations for logistic regres-

sion

N∑

j=1
pj =

N∑

j=1
yj (2.5)

N∑

j=1
pjzj =

N∑

j=1
yjzj (2.6)

obtained by setting 𝜕 log L∕𝜕𝛼 = 0 and 𝜕 logL∕𝜕𝛽 = 0 respectively. Typically the

score equations have a unique solution in (𝛼, 𝛽), giving the maximum likelihood

estimates 𝛼, 𝛽 of the parameters. There are no explicit formulae for 𝛼, 𝛽 and the score

equations must be solved numerically.

The score equations (2.5)–(2.6) have a commonsense interpretation in their own

right. In (2.5) the right hand side is the observed number of deposits, while the left

hand side is the expected (mean) number of deposits according to the model. In

(2.6) the right hand side is the sum of the predictor values at the observed deposits,

while the left hand side is the expected (mean) value of this sum according to the

model. In this case maximum likelihood is equivalent to the “method of moments”

in which parameters are estimated by equating the observed value of a statistic to its

theoretical mean value.

Logistic regression is a simple two-parameter model, equivalent to linear regres-

sion on a transformed scale. The parameters are estimated using the entire dataset, as

shown by Eq. (2.4) or (2.5)–(2.6). Consequently, the presence probability predicted

by logistic regression, for a pixel with predictor value z, is influenced by data where

the predictor value is very different from z, as discussed above.
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It is not obligatory to use maximum likelihood estimation to fit the logistic

regression model. Although maximum likelihood is theoretically optimal if the

logistic regression model is true, it may fail if the model is false (“non-robust to

mis-specification”) and it is sensitive to anomalies in the data (“non-robust against

outliers”). Robustness against outliers can be improved using penalised likelihood in

which the likelihood L is multiplied by a term b(𝛼, 𝛽) which penalises large param-

eter values.

2.3.4 Pixel Size and Model Consistency

Dependence on Pixel Size

The results of a logistic regression analysis clearly depend on the size of the pixels

used. Table 2.1 shows estimates of the parameters 𝛼 and 𝛽 in the logistic regression of

gold deposits against distance from the nearest fault, in the Murchison data, obtained

using different pixel grid sizes. Estimates of the slope parameter 𝛽 are roughly con-

sistent between different grids. The estimate of the intercept parameter 𝛼 becomes

lower (more negative) as the pixels become smaller, so that the predicted presence

probabilities also become smaller: this is intuitively reasonable, since a smaller pixel

must have a smaller chance of containing a deposit.

The score equations help to explain Table 2.1. If the pixel grid is subdivided into

a finer grid, the right-hand sides of (2.5) and (2.6) are unchanged, so the left-hand

sides must also be unchanged. Since the number of pixels N has been increased by

the subdivision, the predicted probabilities pj must decrease by the same proportion

f , the ratio of pixel areas in the two grids. Using log(p∕(1 − p)) ≈ log p for small p,

the estimate of 𝛼 must decrease by approximately log f .

In order to make the results approximately consistent between different pixel

sizes, the logistic regression (2.1) could be modified to

log
p

1 − p
= logA + 𝛼 + 𝛽z (2.7)

Table 2.1 Fitted logistic regression parameters for Murchison data

Pixel size (km) 𝛼 𝛽

10 −0.260 −0.243

5 −1.321 −0.282

2 −2.947 −0.261

1 −4.303 −0.266

0.5 −5.681 −0.270
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Table 2.2 Fitted logistic regression parameters for Murchison data, adjusted for pixel area

Pixel size (km) 𝛼 𝛽

10 −4.844 −0.243

5 −4.532 −0.282

2 −4.332 −0.261

1 −4.302 −0.266

0.5 −4.293 −0.270

where A is the pixel area used. In the language of statistical modelling, the constant

logA plays the role of an offset in the model formula. The resulting, adjusted esti-

mates for the parameters 𝛼, 𝛽 from the Murchison data are shown in Table 2.2, and

they are indeed approximately consistent across different pixel sizes. They could have

been obtained from the results in Table 2.1 by subtracting logA from the estimates

of 𝛼.

For reasons explained below, slightly better consistency is achieved by replacing

logistic regression (2.1) by complementary log–log regression

log(− log(1 − p)) = logA + 𝛼 + 𝛽z. (2.8)

Large Pixels

Large pixel sizes are preferred by some researchers. A common justification is that

predictions are desired for large spatial regions, for example, the probability that the

entire exploration lease contains at least one deposit. Some researchers also feel that

small pixel sizes are inappropriate because they lead to tiny probability values, which

may be considered physically unrealistic.

However, large pixels are not needed in order to predict the probability of a deposit

in a large spatial region R. Suppose that a logistic regression model has been fitted

using a fine grid of pixels. If the region R is decomposed into pixels, the probability

p(R) of presence of at least one deposit in R satisfies

1 − p(R) =
∏

j∈R
(1 − pj), (2.9)

where
∏

j∈R denotes the product over all pixels in R. The left hand side is the proba-

bility that there are no deposits in R. On the right hand side, (1 − pj) is the probability

that there are no deposits in pixel j, and since pixel outcomes are assumed to be inde-

pendent, these pixel absence probabilities should be multiplied together. Hence, p(R)
can be calculated using presence probabilities for a fine pixel grid.

Moreover, the use of large pixels in logistic regression causes difficulties, related

to the aggregation of points into geographical areas (Elliott et al. 2000; Waller and

Gotway 2004; Wakefield 2007, 2004). The most important of these is the statisti-

cal bias due to aggregation (‘ecological bias’, Wakefield (2004, 2007) or ‘aggre-



36 A. Baddeley

gation bias’, Dean and Balshaw (1997), Alt et al. (2001)). The ‘ecological fallacy’

(Robinson 1950) is the incorrect belief that a model fitted to aggregated data will

apply equally to the original un-aggregated data. The ‘modifiable area unit problem’

(Openshaw 1984) or ‘change-of-support’ (Gotway and Young 2002; Banerjee and

Gelfand 2002; Cressie 1996) is the problem of reconciling models that were fitted

using different pixel sizes or aggregation levels.

Our analysis in Baddeley et al. (2010) shows that aggregation bias is highly

dependent on the smoothness of the predictor as a function of spatial location. The

distance-to-nearest-fault predictor in the Murchison example, and indeed the dis-

tance transform of any spatial feature, is a Lipschitz-continuous function of spa-

tial location, which leads to relatively small aggregation bias. This is illustrated by

Table 2.2. However, a predictor which indicates a classification, such as rock type,

may have very substantial bias due to aggregation, persisting even at small pixel sizes

(Baddeley et al. 2010).

Strictly speaking it can be impossible to reconcile two spatial logistic regression

models fitted to the same spatial point pattern data using different pixel grids. Two

such models are often logically incompatible (Baddeley et al. 2010), because the

product rule (2.9) is incompatible with the logistic relation (2.1). It may help to

recall that the pixels are artificial. A logistic regression model, using pixels of a

particular size, makes an implicit assumption about the spatial random process of

points in continuous space. For different pixel sizes, the corresponding assumptions

are different, and generally incompatible. There is no random process in continuous

space which satisfies a logistic regression model when it is discretised on every pixel

grid. Two research teams who apply spatial logistic regression to the same data, but

using different pixel sizes, may obtain results that cannot be reconciled exactly. This

incompatibility can be eliminated by using complementary log–log regression (2.8)

instead of logistic regression.

Small Pixels

Mathematical theory suggests that pixels should be as small as possible, in order to

reduce the unwanted effects of aggregation (Baddeley et al. 2010). However, if this is

taken literally, several practical problems arise. Small pixel size implies a large num-

ber of pixels. Software for logistic regression may suffer from numerical overflow. In

a fine pixellation, the overwhelming majority of pixels do not contain a data point, so

the overwhelming majority of response values yj are zero. This may cause numerical

instability and algorithm failure. The standard algorithm for fitting logistic regres-

sion, Iteratively-Reweighted Least Squares (McCullagh and Nelder 1989), relies on

second-order Taylor approximation of the log likelihood: the algorithm itself may

fail when it encounters a numerically singular matrix, or the associated statistical

tools may behave incorrectly due to the Hauck-Donner effect (Hauck and Donner

1977).

One valid strategy for avoiding these problems is to take only a random sample

of the absence-pixels (the pixels with yj = 0), and to apply logistic regression to the

subsampled data, using an additional offset to adjust for the sampling (Baddeley et al.

2015, Sect. 9.10).

A more natural and comprehensive solution is described in the next section.
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2.4 Poisson Point Process Models

Pixels are artificial, so it is reasonable to ask whether logistic regression for pixel

data has a well-defined meaning in continuous space, without reference to the pixel

grid and pixel size. The appropriate meaning is that of the Poisson point process,

studied below.

2.4.1 Logistic Regression with Infinitesimal Pixels

Logistic regressions fitted using different pixel sizes may be logically incompatible,

except when the pixel size is very small. Accordingly, the only consistent interpre-

tation of logistic regression is obtained by making the pixels infinitesimal.
Infinitesimal pixel size is a mathematical rather than a physical concept; it is com-

parable to the use of infinitesimal increments dx in differential and integral calculus.

The practical user will not be required to “construct” infinitesimal pixels; they will

exist only in the mathematical theory. Real physical measurements will be expressed

as integrals over these infinitesimal pixels.

The presence probability p in an infinitesimal pixel will be infinitesimal. A more

tangible quantity is the intensity or rate 𝜆, loosely defined as the expected number

of deposit points per unit area. In a pixel of very small area A, at most one deposit

point will be present, so the expected number of points is equal to the probability of

presence, and we have 𝜆 ≈ p∕A.

Logistic regression with infinitesimal pixels can be derived heuristically by letting

the pixel size tend to zero. A rigorous argument is laid out in Baddeley et al. (2010),

Warton and Shepherd (2010a, b). Assume that, for a small enough pixel size, logistic

regression holds in the adjusted form (2.7), and that pixel outcomes are independent.

Since p is small, log(p∕(1 − p)) ≈ log p, so that the logistic regression implies

log p = logA + 𝛼 + 𝛽z

or equivalently

log 𝜆 = 𝛼 + 𝛽z.

This gives a consistent limit as pixel area tends to zero. In the limit, the intensity 𝜆(u)
at a spatial location u is a loglinear function of the predictor,

𝜆(u) = exp(𝛼 + 𝛽Z(u)) (2.10)

where Z(u) is the predictor value at location u.

Contrary to the claim that logistic regression is a flexible “nonparametric” model,

we conclude that logistic regression is tantamount to assuming a loglinear (exponen-

tial) relationship between the density of deposits per unit area 𝜆 and the predictor

variable Z.



38 A. Baddeley

2.4.2 Poisson Point Process

Logistic regression, as commonly applied to presence/absence data, implicitly

assumes that pixel outcomes are independent of each other. If independence holds

for sufficiently small pixel size then, invoking the classical Poisson limit theorem,

the random number of deposits falling in any spatial region R must follow a Poisson

distribution.

Definition 1 A random variable K taking nonnegative integer values has a Poisson

distribution with mean 𝜇 if

ℙ{K = k} = e−𝜇
𝜇

k

k!
(2.11)

for any k = 0, 1, 2,….

Consequently (Warton and Shepherd 2010a, b; Baddeley et al. 2010; Renner et al.

2015)

Theorem 1 If logistic regression holds in the adjusted form (2.7) for sufficiently
small pixels, then the random spatial pattern of deposit points must follow a Poisson

point process with intensity of the form (2.10).

Definition 2 The spatial Poisson point process with intensity function 𝜆(u), u ∈ ℝ2

is characterised by the following properties:

(PP1) Poisson counts: the number n(𝐗 ∩ B) of points falling in any region B has

a Poisson distribution;

(PP2) intensity: the number n(𝐗 ∩ B) of points falling in a region B has expected

value

𝜇(B) = 𝔼[n(𝐗 ∩ B)] = ∫
B

𝜆(u) du; (2.12)

(PP3) independence: if B1,B2,… are disjoint regions of space then n(𝐗 ∩ B1),
n(𝐗 ∩ B2),… are independent random variables;

(PP4) conditional property: given that n(𝐗 ∩ B) = n, the n points are independent

and identically distributed, with common probability density

f (u) = 𝜆(u)
I

(2.13)

where I = ∫B 𝜆(u) du.

The intensity function 𝜆(u) completely determines the Poisson point process

model. It encapsulates both the abundance of points (by Eq. (2.12)) and the spatial

distribution of individual point locations (by Eq. (2.13)). Values of intensity have

dimension length
−2

.
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The properties listed above can be used directly to simulate random realisations

of the Poisson process. See Daley and Vere-Jones (2003, 2008) for an authoritative

treatise on point processes, or (Baddeley et al. 2015, Chaps. 5, 9) for an introduc-

tion, and Kutoyants (1998), Møller and Waagepetersen (2004) for further details of

statistical theory for point processes.

Theorem 1 establishes a logically consistent, physical meaning in continuous

space for the logistic regression model fitted to pixel presence/absence data. Whereas

logistic regression models can be somewhat difficult to interpret in practical terms,

the infinitesimal-pixel limit of logistic regression is a very simple model, a Poisson

point process whose intensity 𝜆(u) depends exponentially (log-linearly) on the pre-

dictor Z(u) through (2.10). This model is well-studied, and permits highly detailed

predictions to be made about various quantities, such as the expected number of

points in a target region (using PP2), the probability of exactly k points in a target

region (using PP1), and the probability distribution of distance from a fixed starting

location to the nearest random point.

The conclusion of Theorem 1 remains true in the more general case where

the pixel outcomes are weakly dependent on each other (Baddeley et al. 2010,

Theorem 3).

From a statistical perspective, the Poisson point process is the fundamental model,

while logistic regression is a practical technique for fitting this model approximately

on a discretised grid. The connection between them is not a surprise: indeed it is

strongly suggested by the standard ‘infinitesimal’ description of the Poisson point

process (Breiman 1968). It is inconceivable that Tukey (1972) was unaware of this

connection.

2.4.3 Fitting a Poisson Point Process Model

Fitting Procedures

We emphasise the distinction between a statistical model and the procedure used to

fit the model. The statistical model is a description of both the systematic tenden-

cies and the random variability in the observations, and allows us to make predic-

tions. The model must first be fitted to the observed data. The fitting procedure is

not uniquely determined by the model (unless we choose to follow a rule such as

maximum likelihood) and there may be several possible choices of procedure, each

with its own merits.

The Poisson point process, with loglinear intensity (2.10), has been identified as

the relevant model for spatial point pattern data in continuous space. We shall now

mention several possible fitting procedures for this model.

First we consider maximum likelihood. Suppose that the observed deposit loca-

tions are x1,… , xn in study region W. Then the log likelihood of the Poisson point

process with intensity function 𝜆(u) is
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logL =
∑

i=1
log 𝜆(xi) + ∫

W

(1 − 𝜆(u)) du. (2.14)

This can be derived either from the characteristic properties (PP1)–(PP4) of the

Poisson process, or by taking the limit of the logistic regression likelihood (2.4),

with appropriate rescaling, as pixel size tends to zero. See Baddeley et al. (2010),

Warton and Shepherd (2010a, b), Baddeley et al. (2015, Sect. 9.7).

For the loglinear intensity model (2.10), the score equations are obtained by set-

ting the partial derivatives of (2.14) to zero, giving

∫
W

𝜆(u) du = n (2.15)

∫
W

Z(u)𝜆(u) du =
n∑

i=1
Z(xi) (2.16)

and these are also the infinitesimal-pixel limits of the logistic regression score equa-

tions (2.5)–(2.6). The score equations have the same “method-of-moments” inter-

pretation as in the discrete case: namely the left hand side of each equation is the

theoretical mean value, under the model, of the statistic that is evaluated for the

observed data on the right hand side.

The main practical challenge in fitting the model is the fact that Eqs. (2.14) or

(2.15)–(2.16) involve an integral over the study region. Unless this integral can be

simplified using calculus, it must be approximated numerically.

An important case where the integral can be simplified is where Z(u) takes only

the values 0 and 1. This predictor might represent a particular rock type such as the

greenstone in the Murchison example. If this is the only predictor, then the integrals

in (2.14)–(2.16) can be evaluated exactly, given only the area of the greenstone and

non-greenstone regions, because the integrands are constant in each region. Then the

model can be fitted exactly. This case is a rare exception.

Pixel Regression

The simplest approximation of an integral is the midpoint rule, using the sum of

values of the integrand at a regular grid of sample points. This leads to the logis-

tic regression technique of Sect. 2.3. The observed spatial locations x1,… , xn of the

deposits are discretised into pixel presence-absence indicators y1,… , yN . The pre-

dictor Z is evaluated at the pixel centres cj to give predictor values zj = Z(cj), and

logistic regression of y against z is performed.

Procedures of this type are well-established in statistical science. Lewis (1972)

and Tukey’s former student Brillinger (Brillinger 1978; Brillinger and Segundo

1979; Brillinger and Preisler 1986) showed that the likelihood of a general point

process in one-dimensional time, or a Poisson point process in higher dimensions,

can be usefully approximated by the likelihood of logistic regression for the dis-

cretised process. Asymptotic equivalence was established in Besag et al. (1982).
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This makes it practicable to fit spatial Poisson point process models of general form

to point pattern data (Berman and Turner 1992; Clyde and Strauss 1991; Baddeley

and Turner 2000, 2005) by enlisting efficient and reliable software already developed

for generalized linear models. Approximation of a stochastic process by a general-

ized linear model is now commonplace in applied statistics (Lindsey 1992, 1995,

1997; Lindsey and Mersch 1992).

Complementary log–log regression is more appropriate than logistic regression in

this context. A Poisson random variable K with mean 𝜇 has probability ℙ{K = 0} =
e−𝜇 of taking the value zero, by (2.11), and has probability p = 1 − e−𝜇 of taking a

positive value. In a Poisson point process with intensity function 𝜆(u), the presence

probability of at least one deposit in a given region B is therefore

p(B) = 1 − e−𝜇(B) = 1 − exp(−∫
B

𝜆(u) du).

Inverting this relationship, the expected number of points in B is

∫
B

𝜆(u) du = − log(1 − p(B))

If B is a small pixel of area A, and the intensity has the loglinear form (2.10), then

the relationship between presence probability and the predictor variable is

log(− log(1 − p)) = logA + 𝛼 + 𝛽z,

which follows the complementary log–log regression relationship (2.8) rather than

the logistic regression (2.1). However, the discrepancy is small in many cases, and

the logistic function log(p∕(1 − p)) has slightly better numerical and computational

properties, because it is the theoretically “canonical” link function (McCullagh and

Nelder 1989).

Berman-Turner Device

In numerical analysis, an integral can often be approximated more accurately using a

quadrature rule, based on a small number of well-chosen sample points, rather than

a dense grid of sample points. Berman and Turner (1992) applied this principle to the

Poisson point process likelihood (2.14) and developed an efficient fitting procedure

based on a relatively small number of sample points.

In the Berman-Turner scheme, the sample points u1,… , um consist of the observed

deposit locations x1,… , xn together with a complementary set of “dummy” points

un+1,… , um. The integral of any function f is approximated using the quadrature rule

∫
W

f (u) du ≈
∑

k
wkf (uk),
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where w1,… ,wm are numerical weights chosen appropriately. For example, the

weights wk may be the areas of the tiles of the Dirichlet-Voronoï tessellation (Okabe

et al. 1992) of W associated with the quadrature points u1,… , um. The Poisson pro-

cess log likelihood (2.14) is then approximated by

logBTL =
∑

i=1
log 𝜆(xi) +

∑

k
wk(1 − 𝜆(uk))

=
∑

k
(Ik log 𝜆(uk) + wk(1 − 𝜆(uk))) (2.17)

where Ik = 1 if the quadrature point uk is a data point, and Ik = 0 if it is a dummy

point. The approximate log likelihood (2.17) has the same form as the (weighted)

log likelihood of a Poisson regression model, and can be fitted reliably using existing

statistical software (Berman and Turner 1992). The Berman-Turner technique is the

main algorithm for point process modelling in the software package spatstat
(Baddeley et al. 2015, Chap. 9).

If the predictor variables are smooth functions of spatial location, then the

Berman-Turner device is extremely efficient, because of the properties of numeri-

cal quadrature (Berman and Turner 1992; Baddeley and Turner 2000). This applies,

for example, to the distance function of the geological faults in the Murchison exam-

ple. The approximation is less accurate when the predictor is discontinuous, such as

an indicator of rock type.

Conditional Logistic Regression

An alternative fitting method involves placing the “dummy” sample points at ran-

dom. This is the equivalent of the procedure, already described for pixel pres-

ence/absence data, of randomly selecting a subset of the pixels where no deposit

is present.

Suppose the dummy point pattern is randomly generated according to a Poisson

point process with known intensity 𝛿 > 0. Combine the two point patterns, data 𝐱
and dummy 𝐝, into a single pattern 𝐯 = 𝐱 ∪ 𝐝; this is a realisation of a random point

process with intensity 𝜅(u) = 𝜆(u) + 𝛿. Given 𝐯 = {v1,… , vJ}, that is, given only

the locations of the combined pattern of data and dummy points, let s1,… , sJ be

indicators such that sj = 1 if the point vj is a data point, and sj = 0 if it is a dummy

point. The probability qj = ℙ{sj = 1} that a given random point vj is actually a data

point, equals

qj =
𝜆(vj)

𝜆(vj) + 𝛿

,

the ratio of the intensity of 𝐱 to the intensity of 𝐯. Hence

log
qj

1 − qj
= log 𝜆(vj) − log 𝛿 = 𝛼 + 𝛽Z(vj) − log 𝛿. (2.18)
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The data/dummy status sj of each point vj is independent of other points. It follows

that the conditional likelihood of the data/dummy status of the points of 𝐯, given their

locations, is the likelihood of logistic regression in the form (2.18). The Poisson point

process model with loglinear intensity (2.10) could be fitted by logistic regression

of sj on zj = Z(vj) given 𝐯.

This technique relies on the independence properties of the Poisson point pro-

cess, and is a counterpart of the well-known relationship between logistic regression

and loglinear Poisson models in contingency tables (Dobson and Barnett 2008;

McCullagh and Nelder 1989).

Several versions of this technique have been used for point pattern data in contin-

uous space (Diggle and Rowlingson 1994; Baddeley et al. 2014). By using random

sample points, the technique avoids bias which may occur in numerical quadrature,

while potentially increasing variability due to random sampling. The variance con-

tribution due to randomisation can be estimated, and appears to be acceptable in

many cases (Baddeley et al. 2014).

Maximum Entropy

The principle of maximum entropy (Dutta 1966) is often used in ecology, for exam-

ple, to study the influence of habitat variables on the spatial distribution of animals

or plants (Dudík et al. 2007; Elith et al. 2011; Phillips et al. 2006). Conceptually

this method considers all possible spatial distributions, and finds the spatial distri-

bution which maximises a quantity called entropy, subject to constraints implied by

the observed data. The constraints are equivalent to the score equations (2.15)–(2.16)

or (2.5)–(2.6). The maximum entropy solution is a probability distribution which is

a loglinear function of the predictors. It was shown in Renner and Warton (2013)

that this solution is equivalent to fitting a loglinear Poisson point process, or equiv-

alent to logistic regression on a fine pixel grid. An analogy could be drawn with the

stretching of a string: a string may take on any shape, but if we demand that the

string be stretched as tight as possible, it will take up a straight line. Thus, this anal-

ysis principle is equivalent to fitting a Poisson point process model with loglinear

intensity.

2.4.4 Murchison Example

Here we give a worked example of Poisson point process modelling for the Murchi-

son data of Fig. 2.1. The gold deposit locations are assumed to follow a Poisson pro-

cess with intensity 𝜆(u) assumed to be a loglinear function of distance to the nearest

fault,

𝜆(u) = exp(𝛼 + 𝛽d(u)), (2.19)

where 𝛼, 𝛽 are parameters and d(u) is the distance from location u to the nearest geo-

logical fault. Contours of d(u) are shown in Fig. 2.2. The model (2.19) corresponds
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Fig. 2.5 Fitted intensity of gold deposits in the Murchison survey according to the loglinear Pois-

son point process model. Pixel values are intensities (number of deposits per square kilometre).

to logistic regression of pixel presence/absence indicators against distance to nearest

fault.

We used the Berman-Turner device as implemented in the spatstat package

(Baddeley et al. 2015) in the function ppm. The fitted parameters are 𝛼 = −4.34
and 𝛽 = −0.26 km

−1
. These values are quite similar to the estimates in Table 2.2, as

expected. The fitted intensity function,

𝜆(u) = exp(−4.34 − 0.26 d(u)), (2.20)

is displayed as a greyscale image in Fig. 2.5. Note that the spatial resolution of

Fig. 2.5 is finer than the spacing of sample points used to fit the model; indeed 𝜆(u)
can be evaluated at any location u in continuous space, using (2.20).

The fitted intensity relationship (2.20) can be interpreted directly. The estimated

intensity of gold deposits in the immediate vicinity of a geological fault is about

exp(−4.34) = 0.013 deposits per square kilometre or 1.3 deposits per 100 km
2
. This

intensity decreases by a factor of exp(−0.26) = 0.77 for every additional kilome-

tre away from a fault. At a distance of 10 km, the intensity has fallen by a factor

of exp(10 × (−0.26)) = 0.074 to exp(−4.34 + 10 × (−0.26)) = 0.001 deposits per

square kilometre or 0.1 deposits per 100 km
2
. Figure 2.6 shows the effect of the
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Fig. 2.6 Fitted intensity of Murchison gold deposits as a function of distance to the nearest fault,

assuming it is a loglinear function of distance. Solid line: maximum likelihood estimate. Shading:

pointwise 95% confidence interval
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Fig. 2.7 Perspective view of fitted intensity surface of loglinear Poisson point process model of

Murchison gold deposits against distance from nearest fault

distance covariate on the intensity function, according to the fitted loglinear Poisson

model.

Figure 2.7 shows a perspective view of the fitted intensity function, treated as a

surface in three dimensions. Note that, fortuitously, the southern edge of the perspec-

tive plot in Fig. 2.7 shows the shape of the fitted intensity curve in Fig. 2.6.
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We caution again that this analysis has not fitted a highly flexible model in which

the abundance of gold deposits depends, in some unspecified way, on the distance

to the nearest fault. Rather, the very specific loglinear relationship (2.19) has been

fitted. The flexible part of this analysis is the freedom to choose another predictor

variable or variables to replace the distance function d(u). Once the predictors are

chosen, the analysis becomes rigidly parametric.

2.4.5 Statistical Inference

The Poisson point process model with loglinear intensity (2.10) belongs to the class

of “exponential family” models (McCullagh and Nelder 1989). Statistical inference

has been studied in detail for this class (Barndorff-Nielsen 1978) and for the Poisson

process in particular (Kutoyants 1998; Rathbun and Cressie 1994).

A full set of standard tools is available for statistical inference. These include

standard errors and confidence intervals for the parameter estimates, hypothesis tests

(likelihood ratio test, score test), and variable selection and model selection (analysis

of deviance, Akaike information criterion). See Baddeley et al. (2015, Chap. 9) for

a full implementation.

Table 2.3 shows the estimated standard errors and 95% confidence intervals for the

parameters in the loglinear model fitted to the Murchison data. These are asymptotic

standard errors based on the Fisher information matrix.

Analysis of variance, or in this case, analysis of deviance (McCullagh and Nelder

1989; Hosmer and Lemeshow 2000; Dobson and Barnett 2008) supports a formal

hypothesis test of statistical significance for the dependence on a predictor variable.

For example the likelihood ratio test of the null hypothesis 𝛽 = 0 against the alterna-

tive 𝛽 ≠ 0 indicates very strong evidence that gold deposit abundance is dependent

on the distance to the nearest fault.

Recently-developed tools for model selection in point process models include Suf-

ficient Dimension Reduction (Guan and Wang 2010).

Table 2.3 Standard errors and confidence intervals for parameters in loglinear Poisson model of

Murchison data

Estimate SE 95% CI

𝛼 −4.30 0.09 [−4.47,−4.13]
𝛽 −0.27 0.02 [−0.31,−0.23]
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2.4.6 Diagnostics

A fitted model is not like a fitted shoe. A shoe must approximately match the shape

of the wearer’s foot before we call it fitted. On the contrary, statistical software “fits”

a model to data on the assumption that the model is true, and does not check that the

model describes the data at all.

Diagnostic quantities and diagnostic plots for a fitted model should be used to

check the model assumptions. For linear regression and linear models, diagnostics

are highly developed in statistical theory and applied statistical practice (Atkinson

1985). For logistic regression in a general context, diagnostics are also available

(Landwehr et al. 1984; Dobson and Barnett 2008) and these extend to the “exponen-

tial family” class of models, at least in theory.

Diagnostics for the Poisson point process model, corresponding to the well-known

diagnostics for logistic regression, were developed in Baddeley et al. (2013a, b). Two

of these are shown here for the Murchison data.

The influence measure ei is the effect on the fitted log likelihood of deleting the

ith deposit point xi (Baddeley et al. 2013a). Figure 2.8 shows circles of diameter

proportional to ei centred at the deposit locations xi. The geological fault pattern is

also shown. In this Figure, large circles represent observations which had a large

effect on the resulting fitted model. There is one very large circle at middle left of

the Figure, and we notice that there are no geological faults near this deposit. That is,

Fig. 2.8 Influence

diagnostic for the loglinear

Poisson model of gold

deposits against distance to

nearest fault. Circle

diameters are proportional to

the influence of each deposit.

Grey lines are geological

faults
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Fig. 2.9 Partial residual

plot for loglinear Poisson

model of Murchison gold

deposits as a function of

distance to the nearest fault.

Solid line: smoothed partial

residual. Shading: pointwise

95% confidence interval.

Dot-dash line: fitted model
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the influence diagnostic identifies this deposit as anomalous, perhaps an “outlier”,

with respect to the fitted model in which deposits are most likely to occur close to a

geological fault. This is an entirely data-driven diagnostic, and tells us only that this

observation is anomalous with respect to the model. It is unable to tell us whether

the deposit is truly anomalous in geological terms, or whether the survey perhaps

failed to detect an existing geological fault near this location.

Strategies for dealing with anomalous data include outlier detection and removal,

and robust model-fitting which is resistant to the effects of outliers. Robust parameter

estimation for Poisson point process models was developed in Assunção and Guttorp

(1999).

Figure 2.9 shows a partial residual plot (Baddeley et al. 2013b) for the Murchison

gold deposits against distance to nearest fault. Assuming that the loglinear model

(2.19) is approximately true, say log 𝜆(u) = 𝛼 + 𝛽d(u) + H(d(u)) where the error

H(d) is small, this procedure forms an estimate Ĥ(d) of the error term, adds it to

the fitted linear term, and plots 𝛼 + 𝛽d + Ĥ(d) against values of distance d. If the

model is correct, this plot should be a straight line. Departures from the straight line

can be interpreted as suggesting the correct form of dependence. Figure 2.9 suggests

there is a minor departure from the loglinear model.

An alternative way to explore non-linearity is to fit a polynomial or spline func-

tion in place of the linear function on the right hand side of (2.1) or (2.19). In

order to avoid over-fitting and numerical instability, the model should be fitted by

penalised maximum likelihood, in which the log likelihood (2.14) is augmented

by a penalty term that discourages extreme values of the parameters which might

produce a wildly-oscillating polynomial. Figure 2.10 shows a penalised maximum



2 A Statistical Commentary on Mineral Prospectivity Analysis 49

Fig. 2.10 Fitted intensity

of Murchison gold deposits

assuming the log intensity is

a fifth-order B-spline

function of distance to

nearest fault
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likelihood fit of a model in which the log intensity is a fifth-order B-spline function

of distance to the nearest fault. The model was fitted in the spatstat package

using code for Generalised Additive Models (GAM) (Hastie and Tibshirani 1990).

This fit also suggests minor departure from the loglinear model.

2.4.7 Rationale for Prediction

Up to this point, our commentary on prospectivity analysis applies equally well to the

analysis of archaeological finds, plant species distribution, etc., using logistic regres-

sion and related tools. However, the key goal of prospectivity analysis is the predic-
tion of previously-unknown deposits, and this sets it apart from other applications.

This prediction problem deserves more attention from the statistical community, and

we shall identify several topics for research.

The rationale for predicting “new” mineral deposits is clearest when we extrapo-

late from a fully-explored region to an unexplored region. We might extrapolate from

a previous, fully-explored mining lease to a newly-granted exploration lease which is

geologically analogous. We fit a model to the fully-explored region, obtaining esti-

mates of the model parameters 𝛼, 𝛽, which we believe can be extrapolated to the

unexplored region. Applying the fitted model relationship to the predictor variables

for the new region, we obtain explicit predictions for the mineral deposits in the new

region. These predictions may include expected numbers of deposits, probability of

no deposits, probability distribution of distance to the nearest deposit, and so on.

These predictions are valid calculations even if the geological structure in the two
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regions was formed at the same epoch, because of the assumption of independence

between deposits. Essentially the fully-explored region is used to obtain estimates

of the parameters of the “laws” which apply to both regions, and these laws are then

applied to the new region.

The statistical reasoning is far more complicated when we wish to predict hitherto-

undiscovered mineral deposits from known deposits in the same region. It would be

futile to assume that the region has been fully explored, since this would imply there

are no deposits remaining to be discovered. Instead our statistical model must now

recognise two categories of deposits, known and unknown. The methods described

above can be re-deployed if we assume that the true spatial pattern of all deposits

(whether known or unknown) is a Poisson point process with intensity function 𝜅(u),
say, and that a deposit existing at a location u will be detected with probability P(u),
independently of other deposits. Then, by the “thinning” property of the Poisson

process, the pattern of detected deposits is also a Poisson process, with intensity

𝜆(u) = P(u)𝜅(u); the pattern of undetected deposits is a Poisson process with inten-

sity 𝜉(u) = (1 − P(u))𝜅(u); and the detected and undetected deposits are independent

of each other. Fitting a Poisson point process model to the observed mineral deposits

allows us to estimate 𝜆(u) only. If the detection probability P(u) is known, then it

becomes feasible to back-calculate 𝜅(u) = 𝜆(u)∕P(u) and

𝜉(u) = 1 − P(u)
P(u)

𝜆(u). (2.21)

It is then possible to make predictions or conditional simulations of the undetected

deposits. The independence property of the Poisson process implies that the pre-

diction or conditional simulation depends only on the fitted model parameters, and

does not otherwise depend on the observed deposits. The conditional simulation is a

realisation of the Poisson process of the assumed loglinear form with the parameter

values fitted from the data: the simulated realisation is independent of the observed

deposits, given the fitted model parameters.

This argument is an instance of the prediction approach to survey sampling infer-

ence (Royall 1988). The difficulty is that the detection probability P(u) will depend

on the detection method, the spatially-varying amount of survey effort, and other fac-

tors. If P(u) can be estimated from data, perhaps by comparing the results of succes-

sive surveys of the same region, then the form of (2.21) suggests that the appropriate

model is a logistic regression for P(u) on explanatory variables. If no information is

available about P(u), we could make the simplifying assumption that P(u) ≡ P is

constant; then 𝜉(u) is a constant multiple of 𝜆(u), so that at least the relative prospec-

tivity of different locations u can be assessed from a plot of 𝜆(u).
Other, non-Poisson point processes can also serve as models of mineral deposits

(Baddeley et al. 2015, Chaps. 12 and 13) and support prediction and conditional

simulation. In such models, the presence of a point affects the probability of presence

of a point at nearby locations. In this case the conditional simulation does depend

on the observed deposit locations (Møller and Waagepetersen 2004; Baddeley et al.

2015).
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A more realistic model of the detection process would envisage that the discovery

of a new deposit will encourage the exploration geologist to survey the surround-

ing areas more intensively, increasing the detection probability in these surrounding

areas. This destroys the independence structure: the pattern of observed deposits is

no longer a Poisson point process, and is spatially clustered. Non-Poisson point pro-

cess models would be needed to describe the spatial pattern of observed deposits,

and even if the spatial pattern of all deposits is assumed to be Poisson, the pattern of

undiscovered deposits is both non-Poisson and dependent on the observed deposits.

A full analysis of the prediction problem would require the deployment of Missing

Data principles (Little and Rubin 2002).

In prospectivity analysis it may or may not be desirable to fit any explicit rela-

tionship between deposit abundance and predictors such as distance to the nearest

fault. Often the objective is simply to select a distance threshold, so as to delimit the

area which is considered highly prospective (high predicted intensity) for the min-

eral. The ROC curve (Sect. 2.7) is more relevant to this exercise. However, if credible

models can be fitted, they contain much more valuable predictive information.

2.5 Monotone Regression

The remainder of this article describes three alternative analysis techniques, gen-

uinely different from logistic regression, which do not seem to be widely used in

prospectivity analysis. These techniques are genuinely “non-parametric” in the sense

that they assume only that the intensity or rate of mineral deposits 𝜆(u) is a function

of the predictor variable Z(u) at the same location u,

𝜆(u) = 𝜌(Z(u)) (2.22)

where 𝜌(z) is a function to be estimated. We do not assume that 𝜌(z) has any particular

functional form.

The assumption (2.22) is encountered frequently. In geological applications where

the points are the locations of mineral deposits, 𝜌 is an index of the prospectivity

(Bonham-Carter 1995) or predicted frequency of deposits as a function of geological

and geochemical covariates z. In ecological applications where the points are the

locations of individual organisms, 𝜌 is a “resource selection function” (Manly et al.

1993) reflecting preference for particular environmental conditions z.

In monotone regression, we assume that 𝜌(z) is a monotone function of z, either

monotone increasing (non-decreasing):

z1 < z2 implies 𝜌(z1) ≤ 𝜌(z2)

or monotone decreasing (non-increasing):

z1 < z2 implies 𝜌(z1) ≥ 𝜌(z2).
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Sager (1982) considered the log-likelihood of the Poisson point process with inten-

sity (2.22),

logL =
∑

i
log 𝜌(Z(xi)) − ∫

W

𝜌(Z(u)) du, (2.23)

and showed that the log-likelihood can be maximised over the class of all monotone

functions 𝜌. The optimal function 𝜌(z) is the nonparametric maximum likelihood esti-

mate of 𝜌(z) under the monotonicity constraint, or simply the monotone regression
estimate.

To simplify the discussion, assume that 𝜌(z) is monotone decreasing, and that the

values of Z(u) are real numbers greater than or equal to zero. Sager (1982) showed

that the monotone regression estimate 𝜌(z) is piecewise constant, with jumps occur-

ring only at the observed values zi = Z(xi) of the predictor at the deposit point loca-

tions. For any z let

A(z) = |{u ∈ W ∶ Z(u) ≤ z}| (2.24)

be the area of the subset of the survey region where the covariate value is less than

or equal to z. Also let N(z) =
∑

i 𝟏{zi ≤ z} be the number of data points for which

the covariate value is less than or equal to z. In the Murchison example, A(z) is the

area lying closer than z kilometres from the nearest fault, and N(z) is the number

of deposits lying in this region. Then the monotone regression estimate 𝜌(z) is the

maximum of simple functions

𝜌(z) = max
i

𝜌i(z) (2.25)

where

𝜌i(z) =

{
N(zi)
A(zi)

if z < zi

0 if z ≥ zi.
(2.26)

The monotone regression estimate 𝜌(z) can be computed rapidly using the Pool Adja-

cent Violators algorithm (Barlow et al. 1972) or the following Maximum Upper Sets

algorithm (Sager 1982):

1. Sort the data values as z1 ≤ z2 ≤ ⋯ ≤ zn.

2. Initialise K = 0 and zK = 0. These represent the largest data value whose

status has been resolved so far.

3. For each i > K consider the interval [zK , zi], evaluate the empirical intensity

𝜌i,K = (N(zi) − N(zK)∕(A(zi) − A(zK)), and find the value i∗ which max-

imises 𝜌i,K .

4. For all z lying in the interval [zK , zi∗ ], set 𝜌(z) = 𝜌i∗,K .

5. If i∗ = n, exit. Otherwise, set K = i∗ and go to step 3.
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Fig. 2.11 Fitted intensity of

gold deposits as a function of

distance to the nearest fault,

using monotone regression
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Figure 2.11 shows the monotone regression estimate of the intensity of gold

deposits as a function of distance to nearest fault in the Murchison data. The curve

has the same overall shape as the exponential curve implied by the loglinear Poisson

point process model or logistic regression (Fig. 2.6), except for a prominent plateau

between z = 2 and z = 6 km.

Note also that the monotone regression estimate of intensity at small distances z
is higher (Fig. 2.11) than in the loglinear Poisson model (Fig. 2.6). This is expected,

since the estimate 𝜌(z) depends primarily on the part of the survey where Z(u) ≤ z.

This is more satisfactory than the behaviour of the loglinear Poisson model for which

the fitted curve depends on the entire dataset. If, for example, we were to restrict the

study area to the region lying at most 20 km from the nearest fault, the estimates of

the parameters 𝛼, 𝛽 in the loglinear Poisson model could change markedly, while the

monotone regression in Fig. 2.11 would be unchanged.

Figure 2.12 shows a perspective plot of the predicted intensity implied by the

monotone regression. Compared with Fig. 2.7, this shows qualitatively the same

effect of a dense concentration close to the geological faults, but with a different

profile (again fortuitously displayed at the southern edge of the plot).

Sager (1982) shows that this method extends to multiple predictor variables. The

author believes it can also be extended to allow points to have weights determined

by the mineral endowment of the deposit, or a similar characteristic.
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Fig. 2.12 Perspective view of fitted intensity using monotone regression

2.6 Nonparametric Curve Estimation

A second alternative to logistic regression is nonparametric curve estimation, in

which we assume that the intensity is a smooth function of the predictor, 𝜆(u) =
𝜌(Z(u)), and estimate the function 𝜌(z) by nonparametric smoothing. This was devel-

oped in Baddeley et al. (2012), Guan (2008).

Assume that Eq. (2.22) holds, and that 𝜌(z) is a continuous function of z, and that

Z(u) is at least a continuous function of location u, without further constraints. Non-

parametric estimation of 𝜌 is closely connected to estimation of a probability density

from biased sample data (Jones 1991; El Barmi and Simonoff 2000) and to the esti-

mation of relative densities (Handcock and Morris 1999). Under the smoothness

assumptions, 𝜌 is proportional to the ratio of two probability densities, the numera-

tor being the density of covariate values at the points of the point process, while the

denominator is the density of covariate values at random locations in space. Kernel

smoothing can be used to estimate the function 𝜌 as a relative density (Baddeley et al.

2012; Guan 2008).

Define the spatial distribution function (Lahiri 1999; Lahiri et al. 1999) as the

cumulative distribution function of the covariate value Z(U) at a random point U
uniformly distributed in W:

G(z) = 1
|W| ∫W

𝟏{Z(u) ≤ z} du. (2.27)

Here we use the ‘indicator’ notation: 𝟏{…} equals 1 if the statement ‘…’ is true, and

0 if the statement is false. Equivalently G(z) = A(z)∕A(∞) = A(z)∕|W| where A(z),
defined in (2.24), is the area of the set of all locations in W where the covariate value
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is less than or equal to z. In practice G(z) would often be estimated by evaluating the

covariate at a fine grid of pixel locations, and forming the cumulative distribution

function

G(z) =
#{pixels u ∶ Z(u) ≤ z}

#pixels
. (2.28)

Three estimators of 𝜌 proposed in Baddeley et al. (2012) are

𝜌
R
(z) = 1

|W|G′(z)
∑

i
𝜅(Z(xi) − z) (2.29)

𝜌
W
(z) =

∑

i

1
|W|G′(Z(xi))

𝜅(Z(xi) − z) (2.30)

𝜌T (z) =
1

|W|

∑

i
𝜅(G(Z(xi)) − G(z)) (2.31)

where x1,… , xn are the data points, Z(xi) are the observed values of the covari-

ate Z at the data points, |W| is the area of the observation window W, and 𝜅 is a

one-dimensional smoothing kernel—smoothing is conducted on the observed values

Z(xi) rather than in the window W. The derivative G′(z) is usually approximated by

differentiating a smoothed estimate of G. The estimators (2.29)–(2.31) were devel-

oped in Baddeley et al. (2012) by adapting estimators from kernel smoothing (Jones

1991; El Barmi and Simonoff 2000). An estimator similar to (2.29) was proposed in

Guan (2008).

Figure 2.13 shows the fitted estimate of intensity for the Murchison gold deposits

as a function of distance to the nearest fault. The plot shows the ratio estimator 𝜌R(z)
against z, equation (2.29), together with the pointwise 95% confidence interval for

𝜌(z) based on asymptotic theory assuming a Poisson process (Baddeley et al. 2012).

Tickmarks on the horizontal axis show the observed distance values zi = Z(xi) at the

deposits.

The overall shape of Fig. 2.13 is consistent with Figs. 2.6 and 2.11. A plateau of

intensity is visible between z = 2.5 and z = 5.5 km, consistent with the plateau seen

in Fig. 2.11. The peak of intensity in Fig. 2.13 occurs at about z = 1 km, rather than

at distance z = 0, but this may be an artefact of the smoothing procedure, as it is not

seen in the other two estimates (2.30) and (2.31).

Figure 2.14 shows a perspective view of the predicted intensity using nonpara-

metric curve estimation. This is quite similar to the surface obtained by monotone

regression, shown in Fig. 2.12.

The nonparametric curve estimate has the attractive property that 𝜌(z) depends

only on the survey information from locations where the predictor value is approx-

imately equal to z. In the Murchison example, the estimated intensity 𝜌(z) of gold

deposits at a distance z from the nearest fault, is estimated using only the deposits and

non-deposit locations which lie approximately z km from the nearest fault. Although

smoothing artefacts may be present, this property means that the nonparametric
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Fig. 2.13 Fitted intensity of gold deposits as a function of distance to the nearest fault, using

kernel-based estimator
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Fig. 2.14 Perspective view of fitted intensity using nonparametric curve estimate of 𝜌

curve estimate can be treated as an estimate of the true relationship between intensity

and predictor.

The estimators (2.29)–(2.31) can be modified to incorporate numerical weights,

for example, representing the endowment of each deposit. Then 𝜌(z) has the inter-

pretation of the expected total endowment per unit area, of deposits at a distance z
from the nearest fault.
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Fig. 2.15 Fitted intensity

of Murchison gold deposits

as a function of distance to

the nearest fault, estimated

by three different methods:

monotone regression (solid

lines), kernel smoothing

(dashed lines) and logistic

regression (dotted lines)
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Figure 2.15 shows the three estimates of 𝜌(z) together. Logistic regression, log-

linear Poisson point process modelling, and maximum entropy methods effectively

assume that prospectivity is an exponential function 𝜌(z) = ABz = exp(𝛼 + 𝛽z), while

monotone regression assumes 𝜌(z) is a decreasing function of z, and kernel estima-

tion assumes 𝜌(z) is a smooth function of z without further restriction.

This analysis assumes that the intensity at a location u depends only on the covari-

ate value Z(u). To validate the assumption (2.22) we can compare the predicted inten-

sity �̂�(Z(u)) assuming (2.22) with a (spatial) kernel estimate �̂�(u) which does not

assume (2.22). If the assumption is not true, 𝜌(z) is still meaningful: it is effectively

an estimate of the average intensity 𝜆(u) over all locations u where Z(u) = z.

2.7 ROC Curves

Suppose we agree that the ultimate goal of prospectivity analysis is to decide which

parts of an exploration area are most likely to contain a valuable deposit. Then the

essential task is to classify different parts of the exploration area into areas of high and

low prospectivity, rather than necessarily needing to model the degree of prospec-

tivity at every location.

The Receiver Operating Characteristic (ROC) curve (Krzanowski and Hand

2009) is a summary of the performance of a classifier. It is often applied to medical

diagnostic tests (Nam and D’Agostino 2002) when the test is based on thresholding a

quantitative assay. Suppose for example that a medical test returns a “positive” result

(predicting a high risk of disease) if the patient’s blood cholesterol level exceeds a
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threshold t. For a given choice of threshold t, the “true positive rate” TP(t) is the

fraction of patients with the disease who return a correct, positive test result. The

“false positive rate” FP(t) is the fraction of patients who do not have the disease but

who return an incorrect, positive test result. The ROC curve is a plot of true positive

rate TP(t) against false positive rate FP(t) for all thresholds t. A good classifier has

a large true positive rate in comparison to the false positive rate, so the ROC curve

of a good classifier will lie well above the diagonal line on the graph.

The same technique can be applied to prospectivity analysis (Rakshit et al. 2017),

taking the mineral deposits as the “disease”, and using either a spatial predictor

Z(u) or a fitted model intensity 𝜆(u) to classify pixels into high or low prospectivity

classes. Suppose that Z(u) is a real-valued spatial predictor. Calculate the empirical

cumulative distribution function of Z at the observed deposit locations,

F̂𝐱(t) =
1

n(𝐱)
∑

i
𝟏{Z(xi) ≤ t}

and the empirical “spatial distribution function” of Z(u) over all locations u in W,

FW (t) = 1
|W| ∫W

𝟏{Z(u) ≤ t} du.

Then the ROC plot is a graph of 1 − F̂𝐱(t) against 1 − FW (t) for all t. Equivalently it is

a plot of R+(p) = 1 − F𝐱(F−1
W (1 − p)) against p. Applied statisticians would recognise

this as a form of the classical P–P plot.

The formulae above assume that larger values of Z are more prospective. If

smaller values of Z are more prospective, then the appropriate ROC plot is a graph

of F𝐱(t) against Fw(t) for all t, or equivalently a graph of R−(p) = F𝐱(F−1
W (p)) against

p. This is the P–P plot of F𝐱 against FW .

Figure 2.16 shows the ROC curve for the Murchison gold deposits against dis-

tance from nearest fault, assuming smaller distances are more prospective. The hor-

izontal axis shows the fraction of area in the survey region which lies less than t
km away from a fault, and the vertical axis shows the fraction of deposits which lie

less than t km from a fault. For example, we may read off the plot that 60% of all

known deposits lie in a region occupying 10% of the survey area defined by a distance

threshold. This has a useful practical interpretation. The threshold itself is not shown

on the ROC plot but could be obtained from the spatial cumulative distribution func-

tion. The ROC curve depends on the choice of the study region (Jiménez-Valverde

2012).

The interpretation of ROC curves in spatial analysis is controversial. Some writers

suggest (Fielding and Bell 1997) that the ROC can be used to evaluate the goodness-

of-fit of a species distribution model, or equivalently the goodness-of-fit of a prospec-

tivity analysis. Others disagree (Lobo et al. 2007, p. 146) and argue that the ROC

is an indicator of predictive power—the ability to segregate pixels reliably into two

classes of high and low prospectivity.
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Fig. 2.16 Empirical ROC

curve for gold deposits

against distance from the

nearest fault in the

Murchison survey rectangle
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The ROC can be based either on a real-valued predictor variable Z(u) or on a fitted

model intensity 𝜆(u). In the latter case it is tempting to regard the ROC as a summary

of the predictive power of the fitted model (Lobo et al. 2007; Austin 2007; Thuiller

et al. 2003). However, if the model is logistic regression, or a loglinear Poisson point

process, or if the intensity is estimated using monotone regression, then the fitted

intensity 𝜆(u) is a monotone function of the predictor Z(u). Thresholding 𝜆(u) is

equivalent to thresholding Z(u), so that the ROC curves derived from any of these

models are identical. For example, the ROC cannot be used to compare the predictive

power of logistic regression against that of monotone regression. It would be more

appropriate to regard the ROC as a summary of the inherent predictive power of the

predictor variable Z(u) itself (Rakshit et al. 2017).

The ROC does have a connection with the other techniques described in this

article. Suppose that the point process intensity 𝜆(u) depends on the predictor Z(u)
through a function 𝜌(z) as in (2.22). Then we show in (Rakshit et al. 2017) that the

slope of the ROC curve is closely related to 𝜌. If large values of the predictor are

more prospective, the slope of the ROC curve is

d
dp

R+(p) =
d
dp

[
1 − F𝐱(F−1

W (1 − p))
]
= 1

𝜅

𝜌(F−1
W (1 − p))

while if small values of the predictor are prospective, the slope is

d
dp

R−(p) =
d
dp

[
F𝐱(F−1

W (p))
]
= 1

𝜅

𝜌(F−1
W (p))
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where 𝜅 is the average intensity over the study region. Analysis using the ROC

curve is not fundamentally different from fitting a point process model or pixel pres-

ence/absence regression model, but may be a more practically useful presentation of

the same information.

2.8 Recursive Partitioning

Classification and Regression Tree (CART) (Breiman et al. 1984) or Recursive Par-

titioning methods offer another alternative approach. Given one or many predictor

variables, these methods predict the response by thresholding the predictors. The

result is a prediction rule, organised as a logical tree, in which each fork of the tree

is a threshold operation on one of the predictors. This kind of rule would appear to

be well-suited to the practical needs of prospectivity analysis.

For a single predictor variable, the result of recursive partitioning is a piecewise-

constant function 𝜌(z) which is not constrained to be monotone. Figure 2.17 shows

the estimated intensity of the Murchison gold deposits as a function of distance to

the nearest fault only, using recursive partitioning. Any number of predictor variables

can be included in the analysis.

Software and Data

All analyses in this chapter were performed using the spatstat library

(Baddeley et al. 2015) which is a contributed extension package for the R statisti-

cal software system (R Development Core Team 2011). Both R and spatstat can

be downloaded from https://cran.r-project.org. The Murchison data are included in

Fig. 2.17 Intensity of

Murchison gold deposits as a

function of distance from the

nearest fault, estimated by

recursive partitioning
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spatstat. Software scripts for the analyses in this chapter are available at www.

spatstat.org.
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Chapter 3
Testing Joint Conditional Independence
of Categorical Random Variables
with a Standard Log-Likelihood
Ratio Test

Helmut Schaeben

Abstract While tests for pairwise conditional independence of random variables

have been devised, testing joint conditional independence of several random vari-

ables seems to be a challenge in general. Restriction to categorical random vari-

ables implies in particular that their common distribution may initially be thought of

as contingency table, and then in terms of a log-linear model. Thus, Hammersley–

Clifford theorem applies, and provides insight in the factorization of the log-linear

model corresponding to assumptions of independence or conditional independence.

Such assumptions simplify the full joint log-linear model, and in turn any conditional

distribution. If the joint log-linear model corresponding to the assumption of joint

conditional independence given the conditioning variable is not sufficiently large to

explain some data according to a standard log-likelihood test, its null–hypothesis

of joint conditional independence may be rejected with respect to some significance

level. Enlarging the log-linear model by some product terms of variables and running

the log-likelihood test on different models may provide insight which variables are

lacking conditional independence. Since the joint distribution determines any con-

ditional distribution, the series of tests eventually provides insight which variables

and product terms a proper logistic regression model should comprise.

3.1 Introduction

Conditional independence is a probabilistic approach to causality (Suppes 1970;

Dawid 1979, 2004, 2007; Spohn 1980, 1994; Pearl 2009; Chalak and White 2012)

while for instance correlation is obviously not as it is a symmetric relationship. Fea-

tures of conditional independence are
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∙ Conditionally independent random variables are conditionally uncorrelated.

∙ Conditionally independent random variables may be significantly correlated or

not.

∙ Independence does not imply conditional independence and vice versa.

∙ Pairwise conditional independence does not imply joint conditional independence.

Statistical tests for pairwise conditional independence of random variables have

been devised, e.g., Bergsma (2004), Su and White (2007), Su and White (2008),

Song (2009), Bergsma (2010), Huang (2010), Zhang et al. (2011), Bouezmarni et al.

(2012), Györfi and Walk (2012), Doran et al. (2014), Ramsey (2014), Huang et al.

(2016), testing joint conditional independence of several random variables seems

to be a challenge in general. For the special case of dichotomous variables, the

“omnibus test” (Bonham-Carter 1994) and the “new omnibus test” (Agterberg and

Cheng 2002) have been suggested.

Weak conditional independence of random variables was introduced in Wong and

Butz (1999), and elaborated on in Butz and Sanscartier (2002). Extended conditional

independence has recently been introduced in Constantinou and Dawid (2015). The

definition of weak conditional independence given in Cheng (2015) refers to condi-

tional independent random events, and rephrases conditional independence in terms

of ratios of conditional probabilities rather than conditional probabilities to avoid

the distinction of conditional independence given a conditioning event or its com-

plement. This definition becomes irrelevant when proceeding from elementary prob-

ability of events to probability of random variables, and to the general definition of

conditionally independent random variables.

Conditional independence is an issue in a Bayesian approach to estimate poste-

rior (conditional) probabilities of a dichotomous random target variable in terms of

weights-of-evidence (Good 1950, 1960, 1985). In turn, conditional independence

is the major mathematical assumption of potential modeling with weights of evi-

dence, cf. (Bonham-Carter et al. 1989; Agterberg and Cheng 2002; Schaeben 2014b),

e.g., applied to prospectivity modeling of mineral deposits. The method requires a

training dataset laid out in regular cells (pixels, voxels) of equal physical size rep-

resenting the support of probabilities. The sum of posterior probabilities over all

cells equals the sum of the target variable over all cells. Deviations indicate a viola-

tion of the assumption of conditional independence, and are used as statistic of a test

(Agterberg and Cheng 2002) which involves a normality assumption. Funny enough,

ArcSDM calculates so-called normalized probabilities, i.e., posterior probabilities

rescaled so that the overall measure of conditional independence is satisfied (ESRI

2018); of course, the trick does not fix any problem. Violation of the assumption of

conditional independence does not only corrupt the posterior (conditional) probabil-

ities estimated with weights of evidence, but also their ranks, cf. (Schaeben 2014b),

which is worse. Thus, the method of weights-of-evidence requires the mathematical

modeling assumption of conditional independence to yield reasonable predictions.

However, conditional independence is an issue with respect to logistic regression,

too.
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3.2 From Contingency Tables to Log-Linear Models

A comprehensive exposure of log-linear models is Christensen (1997). Let Z
be a random vector of categorical random variables 𝖹𝓁 ,𝓁 = 0,… ,m, i.e., Z =
(𝖹0,𝖹1,… ,𝖹m)𝖳. It is completely characterized by its distribution

p
𝜅

= PZ(s𝜅) = P(Z = s
𝜅

) = P
((
𝖹0,… ,𝖹m) = (sk0 ,… , skm

))

with the multi-index 𝜅 = (k0,… , km), where sk𝓁 with k𝓁 = 1,… ,K𝓁 denotes all pos-

sible categories of the categorical random variable 𝖹𝓁 ,𝓁 = 0,… ,m. Since it is

assumed that there is a total of K𝓁 different categories with PZ𝓁 (sk𝓁 ) > 0, there is

a total of
∏m

𝓁=0 K𝓁 different categorical states for Z =
⨂m

𝓁=0 𝖹𝓁 .

The distribution of a categorical random vector may initially be thought of as

being provided by contingency tables. More conveniently, the distribution of a cat-

egorical random vector Z can generally be written in terms of a log-linear model

as

log p
𝜅

=
∑

𝜅

w
𝜅

f 𝜅Z (z)

with

w
𝜅

= log p
𝜅

,

f 𝜅Z (z) = 1I{s
𝜅

}(z) = 1I{sk0 ,…,skm}
(z0,… , zm).

3.3 Independence, Conditional Independence of Random
Variables

If the random variables 𝖹𝓁 ,𝓁 = 1,… ,m, are independent, then the joint probabil-

ity of any subset of random variables 𝖹𝓁 can be factorized into the product of the

individual probabilities, i.e.,

P⨂
𝓁∈M Z𝓁 =

⨂

𝓁∈M
P𝖹𝓁

.

where M denotes any non-empty subset of the set {1,… ,m}. In particular

PZ = P⨂m
𝓁=1 𝖹𝓁

=
m⨂

𝓁=1
P𝖹𝓁

.

If the random variables 𝖹𝓁 ,𝓁 = 1,… ,m, are conditionally independent given 𝖹0,

then the joint conditional probability of any subset of random variables 𝖹𝓁 given 𝖹0
can be factorized into the product of the individual conditional probabilities, i.e.,
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P⨂
𝓁∈M 𝖹𝓁 ∣𝖹0

=
⨂

𝓁∈M
P𝖹𝓁 ∣𝖹0

, (3.1)

and in particular

P⨂m
𝓁=1 𝖹𝓁 ∣𝖹0

=
m⨂

𝓁=1
P𝖹𝓁 ∣𝖹0

.

3.4 Logistic Regression, and Its Special Case
of Weights-of-Evidence

Conditional expectation of a dichotomous random target variable 𝖹0 given a m–

variate random predictor vector Z = (𝖹1,… ,𝖹m)𝖳 is equal to a conditional prob-

ability, i.e.,

E(𝖹0 ∣ Z) = P(𝖹0 = 1 ∣ Z).

Then the ordinary logistic regression model (without interaction terms) neglecting

the error term yields

logitP(𝖹0 = 1 ∣ Z) = 𝛽0 + 𝜷𝖳Z, 𝛽0 ∈ ℝ,𝜷 ∈ ℝm
.

Omitting the error term it can be rewritten in terms of a probability as

P
(
𝖹0 = 1 ∣ Z

)
= 𝛬

(
𝛽0 + 𝜷𝖳Z

)
,

where 𝛬 denotes the logistic function. The logistic regression model with interaction

terms reads in terms of a logit transformed probability

logitP(𝖹0 = 1 ∣ Z) = 𝛽0 +
∑

𝓁

𝛽𝓁𝖹𝓁 +
∑

𝓁i,…,𝓁j

𝛽𝓁i,…,𝓁j
𝖹𝓁i

…𝖹𝓁j

)
, (3.2)

and in terms of a probability

P
(
𝖹0 = 1 ∣ Z

)
= 𝛬

⎛
⎜
⎜
⎝
𝛽0 +

∑

𝓁

𝛽𝓁𝖹𝓁 +
∑

𝓁i,…,𝓁j

𝛽𝓁i,…,𝓁j
𝖹𝓁i

…𝖹𝓁j

)⎞⎟
⎟
⎠
.

If all predictor variables are dichotomous variables and conditionally independent

given the target variable then the parameters of the ordinary logistic regression model

simplify to

𝛽0 = logitP(𝖹0 = 1) +W (0)
, 𝛽𝓁 = C𝓁 , 𝓁 = 1,… ,m,
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with contrasts

C𝓁 = W (1)
𝓁 −W (0)

𝓁 , 𝓁 = 1,… ,m,

defined as differences of weights of evidence

W (1)
𝓁 = ln

P(𝖹𝓁 = 1 ∣ 𝖹0 = 1)
P(𝖹𝓁 = 1 ∣ 𝖹0 = 0)

, W (0)
𝓁 = ln

P(𝖹𝓁 = 0 ∣ 𝖹0 = 1)
P(𝖹𝓁 = 0 ∣ 𝖹0 = 0)

,

and with W (0) =
∑m

𝓁=1 W
(0)
𝓁 provided all conditional probabilities are different from

0 (Schaeben 2014b). Obviously the model parameters become independent of one

another, and can be estimated by mere counting. This special case of a logistic regres-

sion model is usually referred to as the method of “weights-of-evidence”. In turn, the

canonical generalization of Bayesian weights-of-evidence is logistic regression.

That weights of evidence W𝓁 agree with the logistic regression parameters 𝛽𝓁 in

case of joint conditional independence becomes obvious when recalling

C𝓁 = W (1
𝓁 ) −W (0)

𝓁

= ln
P(𝖹𝓁 = 1 ∣ 𝖹0 = 1)
P(𝖹𝓁 = 1 ∣ 𝖹0 = 0)

− ln
P(𝖹𝓁 = 0 ∣ 𝖹0 = 1)
P(𝖹𝓁 = 0 ∣ 𝖹0 = 0)

= ln
(O(𝖹0 = 1 ∣ 𝖹𝓁 = 1)
O(𝖹0 = 1 ∣ 𝖹𝓁 = 0)

)
= 𝛽𝓁 ,

which is the log odds ratio, the usual interpretation of 𝛽𝓁 (Hosmer and Lemeshow

2000).

If Z comprises m dichotomous predictor variables 𝖹𝓁 ,𝓁 = 1,… ,m, there are 2m
possible different realizations zk, k = 1,… , 2m, of Z. Then

n∑

i=1

̂P
(
𝖹0 = 1 ∣ Z = z (i)

)
=

2m∑

k=1

̂P(𝖹0 = 1 ∣ Z = zk) H(Z = zk)

=
2m∑

k=1

̂P(𝖹0 = 1 ∣ Z = zk) n ̂P(Z = zk)

= n̂P(𝖹0 = 1) =
n∑

i=1
z0(i),

where the last equation is an application of the formula of total probability. It is a con-

stitutive equation to estimate the parameters of a logistic regression model and holds

always for fitted logistic regression models. With respect to weights-of-evidence,

the test statistic of the so-called “new omnibus test” of conditional independence

(Agterberg and Cheng 2002) is
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t =
n∑

i=1

(
̂P
(
𝖹0 = 1 ∣ Z = z (i)

)
− z0(i)

)

and should not be too large for conditional independence to be reasonably assumed.

3.5 Hammersley–Clifford Theorem

Rephrasing the proper statement (Lauritzen 1996) casually, the Hammersley–Clifford

Theorem states that a probability distribution with a positive density satisfies one of

the Markov properties with respect to an undirected graph G if and only if its density

can be factorized over the cliques of the graph. Since the distribution of a categori-

cal random vector can be represented in terms of a log-linear model, Hammersley–

Clifford theorem applies. Given (m + 1) random variables 𝖹0,… ,𝖹m, there is a total

of
(m+1
𝓁+1

)
different product terms each involving (𝓁 + 1) variables, 𝓁 = 0,… ,m, sum-

ming to a total of
∑m

𝓁=0
(m+1
𝓁+1

)
= 2m+1 − 1 different terms. Thus there is a total of

(m + 1) single variable terms, and a total of 2m+1 − (m + 2) multi variable terms.

The full log-linear model encompasses all terms and reads

log p
𝜅

=
m∑

𝓁=0

∑

𝛼∈Cm+1
𝓁+1

∑

𝜅(𝛼)
𝜙
𝜅(𝛼) 1Is

𝜅(𝛼)
(z

𝜅(𝛼)) (3.3)

where 𝛼 ∈ Cm+1
𝓁+1 denotes an (𝓁 + 1)-combination of the set {1,… ,m + 1} ⊂ ℕ, and

𝜅(𝛼) = (ki1 ,… , ki𝓁+1 ) denotes a multi-index with (𝓁 + 1) entries ki𝓁 = 1,… ,Ki𝓁 , for

𝓁 = 0,… ,m. The random vector Z
𝜅(𝛼) is the product of any tuple of (𝓁 + 1) compo-

nents of Z, the total number of which is
(m+1
𝓁+1

)
.

Assumptions of independence or conditional independence simplify the distri-

bution of Z, i.e., its full log-linear model, considerably. Assuming independence

for all its components 𝖹𝓁 ,𝓁 = 0,… ,m, the log-linear model simplifies according

to Eq. (3.1) to

log p
𝜅

=
m∑

𝓁=0
log pk𝓁 =

m∑

𝓁=0

K𝓁∑

k𝓁=1
𝜙k𝓁 1I{sk𝓁 }(z𝓁), (3.4)

where 𝜙k𝓁 = log pk𝓁 .

Assuming joint conditional independence of all components 𝖹𝓁 ,𝓁 = 1,… ,m,

given 𝖹0, the log-linear model, Eq. (3.3), simplifies according to Eq. (3.1) to

log p
𝜅

=
m∑

𝓁=0

K𝓁∑

k𝓁=1
𝜙k𝓁 1I{sk𝓁 }(z𝓁) +

m∑

𝓁=1

∑

𝛼∈{0,𝓁}

∑

𝜅(𝛼)
𝜙
𝜅(𝛼) 1I{s

𝜅(𝛼)}(z𝜅(𝛼)). (3.5)
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Thus the latter model, Eq. (3.5), assuming conditional independence differs from

the model for independence, Eq. (3.4), in the additional product terms 𝖹0 ⊗ 𝖹𝓁 ,𝓁 =
1,… ,m.

Any violation of joint conditional independence given 𝖹0 results in additional

cliques of the graph and in additional product terms. Assuming that conditional inde-

pendence given 𝖹0 does not hold for a particular subset 𝖹𝓁1
,… ,Z𝓁k

of variables 𝖹𝓁
results in an enlarging of the log-linear model of Eq. (3.5) by additional terms refer-

ring to 𝖹0 ⊗
⨂k

𝓁=1
⨂

𝓁i∈Ck
𝓁
𝖹𝓁i

and
⨂k

𝓁=1
⨂

𝓁i∈Ck
𝓁
𝖹𝓁i

, respectively.

3.6 Testing Joint Conditional Independence of Categorical
Random Variables

The statistic of the likelihood ratio test (Neyman and Pearson 1933; Casella and

Berger 2001) is the ratio of the maximized likelihood of a restricted model and the

maximized likelihood of the full model. The assumption of the likelihood ratio test

concerns the choice of the model family of distributions.

The null-hypothesis is that a given log-linear model is sufficiently large to repre-

sent the joint distribution. If the random variables are categorical, the full log-linear

model is always sufficiently large as was explicitly shown above. More interesting

are tests whether a smaller log-linear model is sufficiently large. Testing the null-

hypothesis whether a log-linear model encompassing one-variable and two-variable

terms, all of which involve 𝖹0, is sufficiently large provides a test of conditional

independence of all 𝖹𝓁 ,𝓁 = 1,… ,m, given 𝖹0 because this log-linear model is suf-

ficiently large in case of conditional independence given𝖹0. Thus, a reasonable rejec-

tion of the initial null-hypothesis implies a reasonable rejection of the assumption of

conditional independence given 𝖹0.

3.7 Conditional Distribution, Logistic Regression

Since the joint distribution implies all marginal and conditional distribution, respec-

tively, the conditional distribution

P𝖹0∣
⨂m

𝓁=1 𝖹𝓁
=

P⨂m
𝓁=0 𝖹𝓁

P⨂m
𝓁=1 𝖹𝓁

(3.6)

is explicitly given here by

P⨂m
𝓁=0 𝖹𝓁

(sk0 ,… , sk𝓁 )
P⨂m

𝓁=1 𝖹𝓁
(sk1 ,… , sk𝓁 )

=
P⨂m

𝓁=0 𝖹𝓁
(sk0 ,… , sk𝓁 )

∑K0
k0=1

P⨂m
𝓁=0 𝖹𝓁

(sk0 , sk1 ,… , sk𝓁 )
.
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Assuming independence, Eq. (3.6) immediately reveals

P𝖹0∣
⨂m

𝓁=1 𝖹𝓁
= P𝖹0

.

Assuming conditional independence of all 𝖹𝓁 ,𝓁 = 1,… ,m, given 𝖹0 and further

that 𝖹0 is dichotomous, then

P𝖹0∣
⨂m

𝓁=1 𝖹𝓁
(1 ∣ sk1 ,… , sk𝓁 ) =

P⨂m
𝓁=0 𝖹𝓁

(1, sk1 ,… , sk𝓁 )
∑1

i=0 P⨂m
𝓁=0 𝖹𝓁

(i, sk1 ,… , sk𝓁 )
(3.7)

with

P⨂m
𝓁=0 𝖹𝓁

(1, sk1 ,… , sk𝓁 ) = exp

(

𝜙1 +
m∑

𝓁=1
𝜙k𝓁 +

m∑

𝓁=1

K𝓁∑

k𝓁=1
𝜙1,k𝓁

)

and

1∑

i=0
P⨂m

𝓁=0 𝖹𝓁
(i, sk1 ,… , sk𝓁 ) =

1∑

i=0
exp

(

𝜙i +
m∑

𝓁=1
𝜙k𝓁 +

m∑

𝓁=1

K𝓁∑

k𝓁=1
𝜙i,k𝓁

)

Thus,

P⨂m
𝓁=0 𝖹𝓁

(1, sk1 ,… , sk𝓁 )
∑1

s=0 P⨂m
𝓁=0 𝖹𝓁

(s, sk1 ,… , sk𝓁 )

=
exp

(
𝜙11I{1}(𝟣) +

∑m
𝓁=1 𝜙1,k𝓁1I{1,sk𝓁 }(𝟣,𝖹𝓁)

)

∑1
s=0 exp

(
𝜙s1I{s}(𝟣) +

∑m
𝓁=1 𝜙k𝓁1I{s,sk𝓁 }(𝟣,𝖹𝓁)

)

=
exp

(
𝜙1 +

∑m
𝓁=1 𝜙1,sk𝓁

1I{sk𝓁 }(𝖹𝓁)
)

1 + exp
(
𝜙1 +

∑m
𝓁=1 𝜙1,k𝓁1I{sk𝓁 }(𝖹𝓁)

)

= 𝛬

(
𝜙1 +

m∑

𝓁=1
𝜙1,k𝓁1I{sk𝓁 }(𝖹𝓁)

)
.

Finally,

P𝖹0∣
⨂m

𝓁=1 𝖹𝓁
= 𝛬

(
𝛽0 +

m∑

𝓁=1
𝛽𝓁𝖹𝓁

)
,

which is obviously logistic regression

logitP𝖹0∣
⨂m

𝓁=1 𝖹𝓁
= 𝛽0 +

m∑

𝓁=1
𝛽𝓁𝖹𝓁 . (3.8)
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It should be noted that additional product terms in the joint probability P⨂m
𝓁=0 𝖹𝓁

on

the right hand side of Eq. (3.7) of the form
⨂k

𝓁=1
⨂

𝓁i∈Ck
𝓁
𝖹𝓁i

including 𝖹𝓁 ,𝓁 =
1,… ,m, only, i.e., not including 𝖹0, would not effect the form of the conditional

probability, Eq. (3.8). Additional product terms of the form 𝖹0 ⊗
⨂k

𝓁=1
⨂

𝓁i∈Ck
𝓁
𝖹𝓁i

,

i.e., including 𝖹0, result in a logistic regression model with interaction terms,

Eq. (3.2).

Ordinary logistic regression is optimum, if the joint probability of the (dichoto-

mous) target variable and the predictor variables is of log-linear form and all pre-

dictor variables are jointly conditionally independent given the target variable; in

particular, it is optimum if the predictor variables are categorical and jointly condi-

tionally independent given the target variable (Schaeben 2014a). Logistic regression

with interaction terms is optimum, if the joint probability of the (dichotomous) target

variable and the predictor variables is of log-linear form and the interaction terms

correspond to lacking conditionally independence given the target variable; for cat-

egorical predictor variables, interaction terms can compensate for any lack of condi-

tional independence exactly. Logistic regression with interaction terms is optimum

in case of lacking conditional independence (Schaeben 2014a).

3.8 Practical Applications

The practical application of the log-likelihood ratio test of joint conditional indepen-

dence generally includes the following steps

∙ test the null-hypothesis that the full log-linear model is sufficiently large to repre-

sent the joint probability of all predictor variables and the target variables;

∙ if the first null-hypothesis is not reasonably rejected, test the null-hypotheses that

smaller log-linear models are sufficiently large; in particular;

∙ test the null hypothesis that the log-linear model without any interaction term is

sufficiently large;

∙ if the final null-hypothesis is rejected, then the predictor variables must not be

assumed to be jointly conditionally independent given the target variable.

3.8.1 Practical Application with Fabricated Indicator Data

3.8.1.1 The Data Set BRY

The data set BRY is derived from the https://en.wikipedia.org/wiki/Conditional_

independence. Initially it comprises three random events B, R, Y , denoting the sub-

sets of the set of all 49 pixels which are blue, red or yellow with given probabili-

ties P(B) = 18
49

= 0.367,P(R) = 16
49

= 0.326,P(Y) = 12
49

= 0.244. The random events

https://en.wikipedia.org/wiki/Conditional_independence
https://en.wikipedia.org/wiki/Conditional_independence
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Fig. 3.1 Map images of random events B,R,Y .

B,R,Y are distinguished from their corresponding random indicator variables 𝖡,𝖱,𝖸
defined as usually, e.g.,

𝖡(𝜔) = 1IB(𝜔), 𝜔 ∈ 𝛺,

where 1I denotes the indicator variable. They are assigned to pixels of a 7 × 7 digital

map image, Fig. 3.1.

It should be noted that in this example any spatial references are solely owed to

the purpose of visualization as map images, and that the test itself does not take any

spatial references or spatially induced dependences into account.

Checking independence according to its definition in reference to random events,

the figures

P(B ∩ R) = 0.122, P(B) P(R) = 0.119

indicate that the random events B and R are not independent. However, the deviation

is small.

Next, conditional independence is checked in terms of its definition referring to

random events. Since conditional independence of the random events B and R given

Y does not imply conditional independence of the random events B and R given the

complement ∁Y , two checks are required. The results are

P(B ∩ R ∣ Y) = 1
6
= P(B ∣ Y) P(R ∣ Y)

P(B ∩ R ∣ ∁Y) = 4
37

≠

(12
37

)2
= P(B ∣ ∁Y) P(R ∣ ∁Y),

and indicate that the random events B and R are conditionally independent given the

random event Y , but that they are not conditionally independent given the comple-

ment ∁Y . It should be noted that the deviation of the joint conditional probability and

the product of the two individual conditional probabilities in terms of their ratio is

1.027. In fact, the events B and R are conditionally independent given either Y or ∁Y
if one white pixel, e.g. pixel (1,7) with 𝖡 = 𝖱 = 𝖸 = 0, is omitted.
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Generalizing the view to random variables 𝖡,𝖱,𝖸 and their unique joint real-

ization as shown in Fig. 3.1, Pearson’s 𝜒

2
test with Yates’ continuity correction

of the null-hypothesis of independence of the random variables 𝖡 and 𝖱 given the

data returns a p-value of 1 indicating that the null-hypothesis cannot reasonably be

rejected.

The likelihood ratio test is applied with respect to the log-linear distribution corre-

sponding to the null-hypothesis of conditional independence and results in a p-value

of 0.996 indicating that the null-hypothesis cannot reasonably be rejected.

Thus, given the data the tests suggest to infer that the random variables 𝖡 and 𝖱
are independent and conditionally independent given the random variable 𝖸.

3.8.1.2 The Data Set SCCI

The next data set SCCI comprises three random events B1,B2,T with given proba-

bilities P(B1) = P(B2) = P(T) = 7
49

= 7
49

= 0.142. They are assigned to pixels of a

7 × 7 digital map image, Fig. 3.2.

Checking independence according to its definition for random events, the figures

P(B1 ∩ B2) = 0.102, P(B1) P(B2) = 0.020

indicate that the random events B1 and B2 are not independent.

Next, conditional independence is checked in terms of its definition referring to

random events. Since conditional independence of the random events B1 and B2
given T does not imply conditional independence of the random events B1 and B2
given ∁T , two checks are required. The results are

P(B1 ∩ B2 ∣ T) = 0.714 ≠ 0.734 = P(B1 ∣ T) P(B2 ∣ T)
P(B1 ∩ B2 ∣ ∁T) = 0 ≠ 0.0005 = P(B1 ∣ ∁T) P(B2 ∣ ∁T),
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Fig. 3.2 Map images of random events B1,B2,T with P(B1) = P(B2) = P(T) = 7
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= 0.142.
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and indicate that the random events B1 and B2 are neither conditionally independent

given the random event T nor given the complement ∁T .

Testing the null-hypothesis of independence of the random variables 𝖡1 and 𝖡2
with Pearson’s 𝜒

2
test with Yates’ continuity correction given the data returns a p-

value of practically equal to 0 indicating that the null-hypothesis should be rejected.

The likelihood ratio test is applied with respect to the log-linear distribution corre-

sponding to the null-hypothesis of conditional independence and results in a p-value

of 0.825 indicating that the null-hypothesis cannot reasonably be rejected.

Thus, given the data the tests imply that the random variables 𝖡1 and 𝖡2 are not

independent but conditionally independent given the random variable 𝖳.

3.9 Discussion and Conclusions

Since pairwise conditional independence does not imply joint conditional indepen-

dence, the 𝜒

2
-test (Bonham-Carter 1994) of independence given 𝖹0 = 1 does not

apply to checking the modeling assumption of weights-of-evidence. The disadvan-

tage of both the “omnibus” test (Bonham-Carter 1994) and the “new omnibus” test

(Agterberg and Cheng 2002) is twofold. First, it involves an assumption of normal

distribution which itself should be subject to a test. Second, weights-of-evidence has

to be applied to calculate the test statistic which is the sum of all predicted conditional

probabilities within the training data set. If the test actually suggests rejection of the

null-hypothesis of conditional independence, the user learns that the application of

weights-of-evidence was not mathematically authorized to predict the conditional

probabilities. The standard likelihood ratio test suggested here resolves both short-

comings.
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Chapter 4
Modelling Compositional Data.
The Sample Space Approach

Juan José Egozcue and Vera Pawlowsky-Glahn

Abstract Compositions describe parts of a whole and carry relative information.

Compositional data appear in all fields of science, and their analysis requires pay-

ing attention to the appropriate sample space. The log-ratio approach proposes the

simplex, endowed with the Aitchison geometry, as an appropriate representation of

the sample space. The main characteristics of the Aitchison geometry are presented,

which open the door to statistical analysis addressed to extract the relative, not abso-

lute, information. As a consequence, compositions can be represented in Cartesian

coordinates by using an isometric log-ratio transformation. Standard statistical tech-

niques can be used with these coordinates.

Keywords Compositional data analysis ⋅ Aitchison geometry

Simplex ⋅ Variation matrix ⋅ Biplot ⋅ Balance dendrogram ⋅ ilr ⋅ clr

AMS Subjet classifications 62-07 ⋅ 62-02

4.1 Introduction

The difficulties when dealing with compositional data have been known for more

than a century. Indirectly, Pearson (1897) described some of these problems and

coined the term spurious correlation. They are easily illustrated using the early

characterizations of compositional data, which relay on the constant sum constraint

(CSC). For instance, Chayes (1960, 1962) and Connor and Mosimann (1969) based
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their analysis on the fact that a vector of proportions 𝐱 = (x1, x2,… , xD) satisfies the

CSC,
D∑

i=1
xi = 𝜅 > 0 , xi > 0 , i = 1, 2,… ,D . (4.1)

It defines the 𝜅-simplex of D components or parts. Here the simplex is denoted 𝕊D
,

with no reference to the positive constant 𝜅. Data fulfilling the CSC were called

constrained or closed data. In the eighties, promoted by J. Aitchison, this kind of

data were recognized as compositional data (Aitchison and Shen 1980; Aitchison

1982, 1986). In the last reference, additional conditions were added to the original

CSC characterisation, leading to the formulation of some principles for composi-

tional data analysis. They were the starting point on which the log-ratio approach

to compositional data is based. These principles have been reformulated several

times in order to depurate and to clarify them for users (Aitchison and Egozcue

2005; Egozcue 2009; Egozcue and Pawlowsky-Glahn 2011a; Pawlowsky-Glahn

et al. 2015). Nonetheless, they have been contested from different points of view (e.g.

Scealy and Welsh 2014), arguing that they match the conditions for the application

of log-ratio methods. But not all data satisfying the CSC (4.1), for instance admitting

that some parts can be zero, are automatically adequate for a log-ratio analysis. In the

last decade, in which the log-ratio approach has shown to be useful in a large number

of applications, it also became clear that it can be rigorously applied to problems in

which the CSC is not fulfilled, or where the components do not represent propor-

tions. The key point for this change of the paradigm represented by the CSC, is the

conception of compositions as equivalence classes of vectors which positive com-

ponents are proportional (Barceló-Vidal et al. 2001; Martín-Fernández et al. 2003;

Pawlowsky-Glahn et al. 2015; Barceló-Vidal and Martín-Fernández 2016), and the

related idea that the simplex is just a representation of the sample space of com-

positions. This fact is a direct consequence of the scale invariance of compositions

(Aitchison 1986) but, up to now, its implications have not been completely recog-

nised.

This contribution aims at a reformulation of the principles of compositional data

analysis in their log-ratio version, presenting them as a practical and natural need in

many situations of data analysis. Section 4.2 discusses scale invariance and composi-

tional equivalence and Sect. 4.3 presents the simplex as an appropriate sample space

for compositional data. Perturbation, the group operation between compositions, is

shown to be a natural operation in Sect. 4.4. The Aitchison distance and the require-

ments on it are discussed in Sect. 4.5. The consequence of the previous sections is the

Euclidean space structure of the simplex, which has been termed Aitchison geometry

(Pawlowsky-Glahn and Egozcue 2001). The Aichison geometry has been shown to

be useful for the modelling and analysis of compositions, centring the interest in the

relative information contained in the data. Some of these elements are commented

in Sect. 4.6.
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4.2 Scale Invariance, Key Principle of Compositions

When somebody records the composition of a product, material, shares of a market,

species in an ecosystem or a kitchen recipe, he or she implicitly recognizes that the

total amount is irrelevant for the description of the product, material, shares, species

or recipe. This does not mean that the size or the amount is not informative, it only

tells us that, whichever is the size, the elements of the total are distributed accord-

ing to the specified composition. Essential are the ratios between the components of

the described system. One can say that for any system that can be decomposed into

parts its description has, at least, two types of information: one that is referred to as

size, and another one that concerns the relations between the parts irrespective of

the size. This latter one is called compositional information and, when the system

is a geometric object, it is called shape. Beyond size (total amount) and composi-

tion (shape), there may be other properties of the system which can be quantified

(color, sound, complexity, strength, . . . ) and again these additional properties may

be decomposed into size and composition. Here, attention is paid to systems which

are formed by parts, while their size or total amount is either analysed in another way

or is irrelevant. For a discussion of a possible approach to a problem where interest

lies in the relative information and in the total, see Pawlowsky-Glahn et al. (2015),

Olea et al. (2016), Ferrer-Rossell et al. (2016).

Think about the map of a region; even changing the scale of the map, the same

region is identified. If the distance between two mountain peaks was 12 cm, and a

lake between the two was 4 cm broad, halving the scale new lengths of 6 and 2 cm

will be obtained. The distance between the two peaks and the width of the lake can

be identified as equal in the two maps, as the ratio is in both cases 12∕4 = 6∕2 = 3.

Only when the maps are to be transformed into an actual region, the size becomes

relevant and it is revealed taking into account the scale of the maps. Note that in

the case of the peaks and the lake, the considered parts, the distance between peaks

and the width of the lake, are not disjoint, as the first includes the second. In fact,

the previous comments did not imply that the parts of the system had to be non-

overlapping or disjoint.

The irrelevance of the total led J. Aitchison (1986) to introduce the principle of

scale invariance for compositions. A composition is assumed to be represented by

an array of positive numbers which quantitatively represent the parts of the system.

Let 𝐱 = (x1, x2,… , xD), xi > 0 for i = 1, 2,… ,D, be such a composition. Consider

any positive constant c > 0. The scale invariance principle can be stated as: 𝐱 and c𝐱
contain the same compositional information. From this point of view, compositional
equivalence can be defined (Aitchison 1997; Barceló-Vidal et al. 2001; Barceló-Vidal

and Martín-Fernández 2016; Pawlowsky-Glahn et al. 2015).

Definition 4.2.1 (Compositional equivalence) Let 𝐱 = (x1, x2,… , xD) and

𝐲 = (y1, y2,… , yD) be two arrays of D positive components. They are composition-

ally equivalent if there exists a positive constant c such that, for i = 1, 2,… ,D,

yi = cxi.
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Two equivalent arrays 𝐱, 𝐲 represent the same composition. Both the equivalence

class generated and its representative are called compositions.

Figure 4.1 shows some artificial, arbitrary data of Ca and Mg in mg/l from a ficti-

tious water analysis (circles). Each pair (Ca,Mg) can be considered as a two part com-

position. A line from the origin through each data point consists of compositionally

equivalent points, thus visualising a composition, strictly speaking an equivalence

class. Any point on these rays can be chosen as a representative of the composition.

Particularly, they can be selected so that the sums of the two components add to 100,

which correspond to the triangles on the 2-part simplex (full line). This means that

compositions are equivalence classes of compositionally equivalent arrays. Equiva-

lence classes are handled by selecting a representative of each class and operating

with these representatives. The selection of representative of a class is arbitrary, but

imposes a condition on any further analysis. This condition is the principle of scale

invariance formulated in Aitchison (1986).

Principle 4.2.1 (Scale invariant analysis) Any analysis or operation with composi-
tions must be expressed by scale invariant functions of the components. Scale invari-
ant functions are identified with real, 0-degree homogeneous functions, that is, satis-
fying the condition f (𝐱) = f (c𝐱) for any positive constant c and for any composition
𝐱.

Consequently, for any composition given by the array 𝐱 it is possible to choose

another compositionally equivalent array, denoted 𝐱, such that it is in the simplex,

that is, it fulfills the CSC (4.1). To this end, the constant in CSC (4.1) 𝜅 = 1 is chosen,

thus yielding

𝐱 =

(
x1

∑D
i=1 xi

,

x2
∑D

i=1 xi
,… ,

xD
∑D

i=1 xi

)
.

Fig. 4.1 Some

two-component data points

with positive components

(circles), are compositionally

equivalent to all points on

the dashed lines from the

origin through the data

points. Triangles are the

representatives of each

equivalence class on the

2-part simplex in which

components add to 100
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The symbol  is called closure operator. It assigns a representative in the simplex

(closed form of 𝐱, satisfying the CSC) to the equivalence class where 𝐱 is included.

Due to the scale invariance analysis principle, any analysis on the elements in the

simplex (closed) must lead to identical results as that performed using the non-closed

representatives.

The scale invariance principle is familiar to any scientist. For instance, an array

of probabilities as (0.1, 0.3, 0.2), originally expressed as values between 0 and 1, can

be expressed in percentages as (10, 30, 20) without any confusion; a set of concen-

trations given in percentages of mass can be translated into ppm (parts per million of

mass) just multiplying by 10, 000 and the geologist does not get confused provided

that he/she is informed about which units are in use.

Despite the intuitive character of the scale invariance principle, in practice it is

frequently violated. For instance, when performing a cluster analysis of geochemical

samples given in ppm using the Euclidean distance between the samples. In fact,

assume that we have two samples 𝐱 and 𝐲, and the square distance between them

is taken as the square-Euclidean distance d2(𝐱, 𝐲) = ∑D
i=1(xi − yi)2. Imagine that 𝐲

is now expressed in ppb (parts per billion). This is a valid operation as 𝐲 in ppm

and in ppb are compositionally equivalent, but d2(𝐱, 𝐲) changes dramatically as the

square-differences (xi − yi)2 become (xi − 1000 ⋅ yi)2 which constitutes a violation

of the scale invariance principle.

Similarly, given a set of geochemical samples in ppm, 𝐱1, 𝐱2, . . . , 𝐱n, the Pearson

correlation coefficient between two components also violates the principle of scale

invariance. This coefficient between x⋅1 and x⋅2 is

r12 =
∑n

j=1(xj1 − x̄1)(xj2 − x̄2)
√∑n

j=1(xj1 − x̄1)2
∑n

j=1(xj2 − x̄2)2
, (4.2)

where x̄k is the average of the k-th component along the sample. Now suppose that the

first sample 𝐱1 is expressed in ppb. This should not change the analysis as preconized

by the scale invariance principle. However, everything changes: the average values

x̄k = (1∕n)
∑n

j=1 xjk are now dominated by the first term 1000 ⋅ x1k which replaced

the initial term x1k. The global effect is evident after a simple inspection of Eq. (4.2).

When the change of closure affects all the samples, the effect is the spurious correla-
tion studied by Chayes (1960), although without any successful solution. Nowadays,

after J. Aitchison’s work, spurious correlation just corresponds to a violation of the

scale invariance principle. Or, in other words, if a data set is assumed scale invariant,

covariance or Pearson correlation are meaningless and spurious, and should not be

used.
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4.3 The Simplex as Sample Space of Compositions

In any data analysis, the first modeling step is to establish an appropriate sample

space. In general, this step conditions all subsequent steps, and may affect dramati-

cally the conclusions. Dealing with compositional data is not an exception. However,

the choice and structure of the sample space is usually not explicit, and its conse-

quences remain hidden in practice. Even the analyst is frequently not aware of the

choice he or she has made when taking a decision on which methodology to apply.

The sample space of an observation (variable, vector, function or, in general,

object) is a set where all the possible outcomes can be represented. However, the

sample space may contain elements which do not correspond to any possible obser-

vation. When the considered object is a random one, the sample space must con-

tain subsets, called events, which can be assigned a probability. Technically, if  is

the sample space, a 𝜎-field in  (e.g. Ash 1972; Feller 1968) needs to be defined.

This is the minimum structure of a sample space for a random object. There are

many qualitatively different random objects in practice. Multivariate real random d-

vectors may be thought of as taking values in real space ℝd
; a discrete time, real

valued stochastic process, can be represented in the space 𝓁∞
of all real, bilaterally

bounded sequences; if the observation is a random set on a plane, like paint stains on

the floor, the sample space can be the set of compact sets in the plane; there are many

more examples. It should be noted that the sample space is a choice of the analyst and

it must be selected according to the stated questions from the beginning of the anal-

ysis. Commonly, beyond probability statements, the data analysis requires perform-

ing operations (sums, differences, averages, scaling), metric computations (distances

or divergences, projections, approximations), or computing functionals (averages of

components, extraction of extremes). All these procedures must be defined on the

sample space. Consequently, the structure of the sample space is richer than that

provided by the 𝜎-field of events.

When dealing withD-part compositional data, the simplex𝕊D
as the sample space

is a valid choice, given that any composition can be assigned a representative in it.

However, there are many alternatives. Figure 4.1 suggests that any curve intersecting

once, and only once, all rays from the origin in the positive orthant might be taken

as sample space. For instance, for two dimensional data points like those shown in

Fig. 4.1, a possible choice is a quarter of a circumference, or two segments complet-

ing a square with the axes, as shown in Fig. 4.2. In the case of compositional data,

the analyst is mainly interested in proportions and ratios, thus suggesting the choice

of the simplex as an appropriate and intuitive representation. However, a key point

for the choice of an adequate sample space is the decision on which is a translation

or shift relevant for the analysis.
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Fig. 4.2 Some

two-component data points

with positive components

(blue circles), are

compositionally equivalent

to all points on the dashed

lines from the origin through

the data points. Red triangles

are the representatives of

each equivalence class on the

2-part simplex in which

components add to 100.

Violet circles are

representatives of these data

points on a quarter of

circumference. Green

squares are representatives

on the 100-square

4.4 Perturbation, a Natural Shift Operation
on Compositions

Perturbation, as operation in the simplex, was introduced by Aitchison (1986) on an

intuitive basis. It can be stated as follows.

Definition 4.4.1 (perturbation) Let 𝐱, 𝐲 be two elements in the D-part simplex 𝕊D
,

𝐱 = (x1, x2,… , xD), 𝐲 = (y1, y2,… , yD). The perturbation between them is

𝐱⊕ 𝐲 = (x1y1, x2y2,… , xDyD) . (4.3)

Some properties of perturbation are quite immediate. They can be summarized

as that perturbation is a commutative group operation in 𝕊D
(Aitchison 1997). The

neutral element is the composition with equal components 𝐧 = (1, 1,… , 1). The

opposite to 𝐱 is

⊖𝐱 = ((1∕x1), (1∕x2),… , (1∕xD)),

where each component is inverted.

Repeated perturbation, like 𝐱⊕ 𝐱⊕ 𝐱, suggests the definition of a multiplication

by a real scalar, so that 𝐱⊕ 𝐱⊕ 𝐱 = 3⊙ 𝐱. Following this idea, multiplication by

real scalars, called powering, is defined as follows.

Definition 4.4.2 (powering) Let 𝐱 = (x1, x2,… , xD) be an element in the D-part

simplex 𝕊D
and let 𝛼 be a real scalar. The powering of 𝐱 by 𝛼 is

𝛼 ⊙ 𝐱 = (x𝛼1 , x
𝛼

2 ,… , x𝛼D) . (4.4)
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These definitions present perturbation and powering as operations on elements of

the simplex. However, as the simplex can be taken as the sample space of compo-

sitions and its elements are representatives of compositions, perturbation and pow-

ering are also operations on compositions. The simplex, endowed with perturbation

and powering is a (D − 1)-dimensional vector space. Perturbation plays the role of

the sum in real space, and powering is multiplication by a real scalar. Perturbing a

composition 𝐱 by another composition 𝐲 is thus a shift of 𝐱 in the direction of 𝐲.

Despite the mathematical aspect of Definition 4.4.1, perturbation is a common

place in real life and scientific activity. To begin with, imagine a water filtering

device which is fed with an inflow with disolved matter characterised by the con-

centrations (mg/l) of the major ions specified in Table 4.1, first row. Suppose that the

filtering device has been designed to filter out sulphur, SO4, iron, Fe, and phospho-

rus, P; SO4 is ideally reduced by 75%, Fe by 10%, and P by 5%, meanwhile other

ions remain unaltered. In order to compute the outflow concentrations, the filter fac-

tor or transfer function (4th row) is computed as 1 − (10∕100) = 0.9 in the case of

Fe. Then, the filter factor multiplies the inflow concentrations to obtain the outflow

concentrations in mg/l. Notably, when the inflow concentrations are represented in

closed form, as percentages (second row), then, once multiplied by the filter factor,

the same outflow concentrations in percent are obtained. In fact, the outflow concen-

trations in mg/l, when closed to 100, are those in the last row of the table. The closed

form of the filter factor, labelled filter perturbation, can be used to obtain the same

outflow concentrations. That is the filter factor is a composition. Although elemen-

tary, this example shows that inflow and outflow concentrations and the filter factor

can be represented by different, but compositionally equivalent, arrays; and that the

traditional form of expressing change of concentrations by percentages is nothing

else than a way of expressing a perturbation. Also, one may be confronted with the

estimation of the filter factor (perturbation) from the inflow and outflow concentra-

tions. From the example, it is clear that a ratio of outflow over inflow concentrations

gives a factor compositionally equivalent to the filter perturbation. This suggests the

Table 4.1 Inflow concentrations of some ions disolved in water are filtered reducing Fe, SO4 and P

by a given percentage. Outflow concentrations are obtained by multiplication of inflow concentra-

tion by the filter factor (closed or not). Inflow, outflow concentrations and filter factor are presented

also in closed form as they are treated as compositions

Ca Fe K Mg Na P SO4

Inflow (mg/l) 0.760 0.225 5.30 1.54 2.00 0.079 2.40

Inflow (closed to 100) 6.177 1.829 43.08 12.52 16.25 0.642 19.51

Filter effect (%) 0 −10 0 0 0 −5 −75

Filter factor 1 0.9 1 1 1 0.95 0.25

Filter perturbation 0.164 0.148 0.164 0.164 0.164 0.156 0.041

Outflow (mg/l) 0.760 0.203 5.30 1.54 2.00 0.075 0.60

Outflow (closed to 100) 7.254 1.933 50.58 14.70 19.09 0.716 5.73



4 Modelling Compositional Data. The Sample Space Approach 89

definition of the difference-perturbation, the opposite operation to perturbation, as

𝐲⊖ 𝐱 = 

(
y1
x1
,

y2
x2
,… ,

yD
xD

)
,

which is the natural difference for perturbation as a group operation.

In the context of probability theory, arrays of probabilities can be considered

as compositions. Consider a family of non overlapping events Ai, i = 1, 2,… ,D,
which are assigned probabilities pi = P[Ai]. Observing the result R of an experi-

ment, the conditional probabilities qi = P[R|Ai] allow to update the probabilities pi
—according to the information obtained from the observation R— using Bayes’ for-

mula

P[Ai|R] =
P[Ai] ⋅ P[R|Ai]

∑D
j=1 P[Aj] ⋅ P[R|Aj]

=  (𝐩⊕ 𝐪) ,

where 𝐩 = (p1, p2,… , pD) and 𝐪 = (q1, q2,… , qD). Bayes’ formula states that the

final probabilities, conditioned to the result R, are the perturbation of the initial or

prior probabilities 𝐩 and the probabilities of the result given the events Ai, denoted qi,
also known as the likelihood of R. In this way perturbation becomes a very natural

way of operating vectors of probabilities and likelihood, as it is the paradigm of

incorporating information from observations. This interpretation of perturbation was

proposed in Aitchison (1986, 1997) and developed in other contexts (Egozcue and

Pawlowsky-Glahn 2011b; Egozcue et al. 2013).

Perturbation also appears as a natural operation on compositions when changing

units. For instance, consider a grain size distribution for different sieve diameters. It

may be expressed as proportions of volume corresponding to each sieve or as pro-

portions of mass assigned to the same sieves. Both distributions can be considered as

compositions. Transforming volume to mass consists of multiplication by the den-

sity of the material in each sieve, possibly different from one sieve to the other. This

componentwise multiplication is a perturbation (Parent et al. 2012). Also, changing

the concentrations of chemical elements from mg/kg to molar concentration consists

of dividing each component by its molar mass, thus performing a perturbation. In all

these examples, the secondary role of the closure and the CSC is remarkable: closure

might only be necessary to facilitate interpretation.

Exponential decay of mass is frequent in nature. The typical example is the

decay of mass of radioactive isotopes in time. These type of processes describe

straight lines in the simplex (Egozcue et al. 2003; Pawlowsky-Glahn et al. 2015;

Tolosana-Delgado 2012). This supports that perturbation is a natural operation in

the simplex and between compositions. To sketch the argument, consider the masses

ofD = 3 fictitious radioactive isotopes 𝐱(t) = (x1(t), x2(t), x3(t)), which decay rates in

time are 𝜆1 = 3, 𝜆2 = 0.5, 𝜆3 = 0.1, respectively. Initially, at t = 0, there are masses

𝐱(0) = (0.9, 0.04, 0.01) which disintegrate into other non considered isotopes. The

total mass decreases in time, and the mass of each isotope changes as
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Fig. 4.3 Evolution of masses (left panel) and proportions (right panel) of three isotopes which

disintegrate at rates 3, 0.5, 0.1 in time, respectively. Initial masses are 0.9, 0.04, 0.01

Fig. 4.4 Evolution of

proportions in time of three

isotopes which disintegrate

at rates 3, 0.5, 0.1,

respectively, represented in a

ternary diagram. The initial

masses are 0.9, 0.04, 0.01,

and they change as a

function of time

xi(t) = xi(0) ⋅ exp[−𝜆i t] , i = 1, 2, 3 . (4.5)

This evolution of mass is shown in Fig. 4.3, left panel, where the decreasing mass is

clearly observed. Figure 4.3, right panel, shows the evolution of proportions of the

isotopes after the closure, which corresponds to

𝐱(t) =  (𝐱(0)⊕ (−t ⊙ exp[𝝀])) , (4.6)

where exp[𝝀] = (exp(𝜆1), exp(𝜆2), exp(𝜆3)). Figure 4.4 shows the evolution of the

isotopes in a ternary diagram. The main fact on this exponential decay of isotopes

is that it is naturally expressed using perturbation and powering, as in Eq. (4.6). In

the simplex, this compositional evolution is a linear one. If proportions are thought

as real variables, as they are shown in Fig. 4.3 (right panel), or in Fig. 4.4, then they

are taken as non-linear thus ignoring their simplicity as compositional evolution.
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The fact that perturbation is easily interpreted on vectors of proportions supports

the idea that the simplex is a suitable sample space for compositions. Think, for

instance, how perturbation could be interpreted when taking representatives of com-

positions as projections on the positive orthant of a hypersphere, or on the surface of

a unit hypercube. It is not intuitive at all. Obviously, if the operation that is considered

relevant for the stated problem is a rotation, the representation on the hypersphere

may be a sensible choice of sample space.

4.5 Conditions on Metrics for Compositions

In many applications a distance between data points is a central issue. Cluster anal-

ysis is a typical example of this. Other metric concepts are crucial, like the size of a

vector, the norm, or the possibility of performing orthogonal projections. Note that

all these metric concepts are used in the omnipresent regression analysis. Compo-

sitional data analysis has the same need of introducing metrics, distances, norms

and orthogonality. From the early developments by J. Aitchison (1983), a distance

between compositions was introduced and developed (Aitchison 1992; Aitchison

et al. 2000). Nowadays, that distance between compositions is called Aitchison dis-

tance, and the corresponding Euclidean geometry is named Aitchison geometry

(Pawlowsky-Glahn and Egozcue 2001).

The need of a distance between compositions can be motivated from the most

basic statistics. For instance, concepts as elementary as mean and variance are based

on a choice of a distance in the sample space. Following Fréchet (1948) (see also

Pawlowsky-Glahn et al. 2015, Chap. 6), mean and variance of a sample can be intro-

duced in a metric space (sample space endowed with a distance). Consider a com-

positional sample 𝐱i, i = 1, 2,… , n, represented in the D-part simplex 𝕊D
. The data

matrix 𝐗 has the compositions 𝐱i as rows. Suppose that a distance in 𝕊D
is da(⋅, ⋅)

(this notation corresponds to the Aitchison distance, although here it is used in a

generic sense). A first step is to define variability of the sample with respect to a

given composition 𝐳 as

Var[𝐗, 𝐳] = 1
n

n∑

i=1
d2a(𝐱i, 𝐳) , 𝐳 ∈ 𝕊D

. (4.7)

The sample mean, called center for compositions, and the total variance are then

defined as

Cen[𝐗] = argmin
𝐳∈𝕊D

{Var[𝐗, 𝐳]} , (4.8)

totVar[𝐗] = min
𝐳∈𝕊D

{Var[𝐗, 𝐳]} = Var[𝐗,Cen[𝐗]] . (4.9)
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Equations (4.7), (4.8) and (4.9) show that elementary statistics like mean and vari-

ance depend critically on the distance used in the sample space.

The Aitchison distance can be defined in different ways (see Pawlowsky-Glahn

et al. 2015). One of them is

d2a(𝐱, 𝐲) =
1
2D

D∑

j=1

D∑

k=1

(
ln

xj
xk

− ln
yj
yk

)2

, (4.10)

where it is worth to realize that ln(xk∕xk) = 0. The distance has been subscripted as da
to emphasize that it is the Aitchison distance. The first observation on the Aitchison

distance is that it is scale invariant, as required by Principle 4.2.1. In fact, any multi-

plicative constant in 𝐱 or 𝐲 cancels out in the log-ratios in Eq. (4.10). After accepting

the Aitchison distance as a proper one for compositions, a simple but tedious com-

putation drives us to the expression of the sample center

Cen[𝐗] = 1
n
⊙

n⨁

i=1
𝐱i ,

where
⨁

stands for repeated perturbation, similar to a summation for real addition.

At a first glance, just dropping the circles in the signs ⊕ and ⊙, this expression is

an average where the traditional sum has been changed to perturbation. Thus, the

computation of Cen[𝐗] consists of computing the geometric mean of the columns

of 𝐗 and closing the resulting vector if a representation on the simplex is desired.

An interesting question is which are desirable and intuitive properties of a met-

ric (distance, norm, inner product) for compositions. Our geometric intuition comes

from our experience in the Euclidean space ℝ3
and we try to translate these obser-

vations to a geometry of the simplex. In this way, if we have a rigid object on the

table and we move this to another position, for instance on the floor, we expect that

distances between points of the object are equal to those observed previous to the

movement. Also, we observe that projecting a segment on the floor (ℝ2
), perhaps the

edge of a roof, produces a segment with length shorter than the original one. If the

points delimiting the segment are expressed in Cartesian coordinates, x and y, on the

floor, and z vertical or orthogonal to the floor, the projection of the points consists in

suppressing the z-coordinate. That is, our experience tells us that suppressing coor-

dinates makes the resulting projected distances shorter than or equal to the original

ones. Being a little bit more subtle, we realize that suppressing the z-coordinate is a

special projection (orthogonal projection), but there are other kinds of projections.

For instance, the shadow projected by the edge of the roof on the floor may be larger

than the length of the edge depending on the position of the sun. This is because the

shadow is not an orthogonal projection unless the floor is tilted orthogonal to the

sun rays. These daily experiences with Euclidean geometry may inspire the follow-

ing properties of the geometry in the simplex that we take as requirements.
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A. Equidistance on shift: The distance between two compositions 𝐱1 and 𝐱2 in 𝕊D

is equal to their distance after a shift 𝐳, that is

da(𝐱1 ⊕ 𝐳, 𝐱2 ⊕ 𝐳) = da(𝐱1, 𝐱2) ; (4.11)

B. Dominance on subcompositions: From the composition 𝐱k = (xk1, xk2,… ,

xkD), a subcomposition 𝐱subk is extracted by suppressing some components, for

instance, 𝐱subk = (xk1, xk2,… , xkd), with D > d > 1. Then, for k = 1, 2, composi-

tional distance should satisfy da(𝐱1, 𝐱2) ≥ da(𝐱sub1 , 𝐱sub2 );
C. Subcomposition as orthogonal projection: The geometry on the simplex is an

Euclidean geometry, that is, there is an inner product from which the norm and

distance derive. Particularly, geometry on subcompositions in 𝕊d
, D > d > 1, is

equivalent to that of the orthogonal projection of 𝕊D
onto 𝕊d

.

Point A is essential for defining sensible elementary statistics as shown in Eqs. (4.8)

and (4.9). To show the importance of this property a subset of water analyses in

Bangladesh has been selected. It comes from a survey conducted in the 1990s

as a joint effort by the British Geological Survey and the Department of Public

Health Engineering of Bangladesh (British Geological Survey 2001a, b). The sub-

set, called hereafter Northern Bangladesh data, includes 13 disolved ions in Northern

Bangladesh (latitude greater than 26
◦
N) and has been selected with the only purpose

to serve as illustration. This data set was also used in several studies (see Pawlowsky-

Glahn et al. 2015 and references therein). Concentrations of As, Fe and P (mg/l) are

shown in a ternary diagram (Fig. 4.5). In the left panel they appear close to the bor-

der Fe-P due to the small concentrations of As relative to Fe and P. Right panel of

Fig. 4.5 shows the same data set after centering it, that is 𝐗⊖ Cen[𝐗]. Now details

are made visible; for instance, the rounding of As to 1 𝜇g/l is now visible in form of

straight bands extending from the Fe vertex. Although the aspect of the data points

is more disperse in the left panel than the right one, the total variance is equal in

the two representations, as perturbation does not change the total variance; that is,

totVar[𝐗] = totVar[(𝐗⊖ Cen[𝐗])]. This points out the inconvenience of using the

visual distance (Euclidean distance) in the ternary diagram.

Requirement B is a consequence of point C, and is to be discussed at the end

of this section. Requirement C is a bit technical but is again inspired by the real

multivariate geometry. Suppose that a sample of d real variables has been observed

and the corresponding data set is arranged in an (n, d) matrix. One may be interested

in a multiple scatter-plot of each couple of variables, similar to that shown in Fig. 4.6.

The fact that the axes of such plots are perpendicular does not surprise anybody. The

assumption is that adding a real variable to a previous set is naturally represented by

adding a new coordinate on an axis orthogonal to the previous ones.

Requirement C is implicitly claiming for an orthogonality relation, usually given

by an inner product between compositions, namely ⟨𝐱, 𝐲⟩a, where 𝐱 and 𝐲 are

compositions represented in the same simplex, say 𝕊D
. From this inner product two
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Fig. 4.5 Disolved As, Fe, P data set. Left panel, data expressed in mg/l. Right panel, same data

after centering

Fig. 4.6 Disolved As, Fe, P

data set represented in

orthonormal coordinates.

Triangles: original data;

Circles: centered data. The

arrow indicates the centering

perturbation and it is

anchored in the sample mean

of coordinates

compositions are orthogonal if they satisfy ⟨𝐱, 𝐲⟩a = 0. All metric elements can be

derived from the inner product. The square-norm (square size) is ‖𝐱‖2a = ⟨𝐱, 𝐱⟩a;

and square-distance is d2a(𝐱, 𝐲) = ‖𝐱⊖ 𝐲‖2a. A general property of Euclidean spaces

(Queysanne 1973) is that there exists an orthonormal basis constituted byD − 1 com-

positions 𝐞1, 𝐞2,… , 𝐞D−1. Orthonormal coordinates are then computed as

𝜙k(x1, x2,… , xD) = ⟨𝐱, 𝐞k⟩a , k = 1, 2,… ,D − 1 ,

and, consequently,

‖𝐱‖2a =
D−1∑

k=1
𝜙

2
k(x1, x2,… , xD) .

The question is which form can the coordinates 𝜙k take, so that they satisfy require-

ments A, B, C, and so that they are compatible with perturbation and powering.

These latter conditions lead to the following additional requirement.
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D. The coordinates in 𝕊D
, 𝜙k, k = 1, 2,… ,D − 1 satisfy

𝜙k(𝐱⊕ (𝛼 ⊙ 𝐲)) = 𝜙k(𝐱) + 𝛼 ⋅ 𝜙k(𝐲) , (4.12)

for any compositions 𝐱, 𝐲, and any real constant 𝛼.

From requirements A and D, the 𝜙k can be deduced. Consider first a two part

subcomposition of 𝐱, denoted 𝐱(2). These subcompositions constitute a Euclidean

space of dimension 1, and two part compositions can be represented by a single

coordinate 𝜙1 = 𝜙1(x
(2)
1 , x(2)2 ). This function must be scale invariant and such that

it can take all real values. A simple log-ratio, 𝜙1 = a1 ln(x
(2)
1 ∕x(2)2 ), where a1 is a

real constant to be determined, is a possible choice. The ratio argument within the

logarithm guarantees scale invariance, and the logarithm allows 𝜙1 to range over

all real numbers. The superscripts denoting the number of parts of the subcompo-

sition are superfluous due to the scale invariance property and, from now on, it is

assumed that x(k)i = xi, being the latter the value of the i-th component in the large

composition 𝐱.

Consider now a 3-part subcomposition 𝐱(3) = (x1, x2, x3) in a 2-dimensional sub-

space which includes subcompositions 𝐱(2), that is (x(3)1 , x(3)2 ) = (x1, x2). The addi-

tional dimension corresponds to a new coordinate 𝜙2 in an orthogonal direction to

that 𝜙1 as proposed by requirement C. Again this coordinate needs to be scale invari-

ant and taking any real value. A simple choice can be 𝜙2 = a2 ln(x3∕gm(𝐱(2))) where

gm denotes geometric mean of the arguments. Iterating the reasoning for increasing

number of parts of the subcomposition the k-th coordinate takes the form

𝜙k = ak ln
xk+1

gm(𝐱(k))
, k = 1, 2,… ,D − 1 .

These expressions for the coordinates fulfill conditions A–D.

The inner product in a Euclidean space can be expressed using Cartesian coordi-

nates as

⟨𝐱, 𝐲⟩a =
D−1∑

k=1
𝜙k𝜓k , (4.13)

where 𝜙k and 𝜓k are the coordinates of the D-part compositions 𝐱, 𝐲 respectively.

A tedious exercise consists of substituting the expression of the coordinates in

Eq. (4.13) and carrying out the sum for values of ak such that all components of

𝐱, 𝐲 appear in a symmetric way. Up to a multiplicative constant, the result is

⟨𝐱, 𝐲⟩a =
D∑

j=1
ln

xj
gm(𝐱)

ln
yj

gm(𝐲)
, aj =

√
j

j + 1
,
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where the ajs appear as normalizing constants homogenizing the scale of the different

axes. The inner product ⟨𝐱, 𝐲⟩a is the ordinary inner product of the ℝD
vectors clr(𝐱)

and clr(𝐲), which are

clr(𝐱) =
(
ln

x1
gm(𝐱)

, ln
x2

gm(𝐱)
,… , ln

xD
gm(𝐱)

)
,

and analogously for clr(𝐲).
The square Aitchison distance expressed in coordinates is the ordinary Euclidean

distance in ℝD−1
, which can be compared to the expression using the clr coefficients

in ℝD
:

d2a(𝐱, 𝐲) =
D−1∑

k=1
(𝜙k − 𝜓k)2 =

D∑

j=1
(clr j(𝐱) − clr j(𝐲))2 . (4.14)

Requirement B on dominance of distance of a subcomposition is now evident. From

the expression of the distance in coordinates (Eq. 4.14, central term), computing dis-

tances within a subcomposition consists of removing some positive terms from the

sum.

Apparently, there are many possible choices for the form of coordinates 𝜙k, but

most of them are discarded by requirements A and D on compatibility with pertur-

bation (Eqs. 4.11, 4.14). For instance, 𝜙k = ln(xk+1∕(x1 + x2 + · · · + xk)), implicitly

proposed in Aitchison (1986), Sect. 10.3, does not lead to a distance and coordinate

expressions satisfying A and D. The critical point is that amalgamation or sum of

compositional parts is not a linear operation for compositions.

Figure 4.6 shows the sample of disolved As, Fe, P previously represented in

Fig. 4.5 in ilr-coordinates. These coordinates are the balances

𝜙1 =
√

2
3
ln As

(Fe ⋅ P)(1∕2)
, 𝜙2 =

√
1
2
ln Fe

P
.

The visual distances between the data points are now the Aitchison distances. The

triangles correspond to the original data set. Its center, expressed in coordinates, is

the point where the arrow is anchored. A shift (perturbation) is applied in order to

center the data set (circles), so that the new center is the origin of coordinates (end of

the arrow). Importantly, the distances between data points after shifting (requirement

A) are equal to the previous ones. The fact that the axes are drawn orthogonally,

exactly corresponds to the fact that these coordinates are orthogonal in the Aitchison

geometry for compositional data.

The historical way of defining the centered log-ratio transformation of 𝐱 and the

whole structure was the reverse of the one here presented. The definitions of pertur-

bation, powering and clr can be found in Aitchison (1986), although the Aitchison

distance was already introduced in Aitchison (1983) and discussed in Aitchison et al.

(2000). The inner product as such, and the corresponding Euclidean space struc-

ture (Aitchison geometry), was introduced independently in Pawlowsky-Glahn and
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Egozcue (2001), and in Billheimer et al. (2001), although there is a previous defini-

tion of orthogonal log-contrasts in Aitchison (1986). Orthogonal coordinates were

introduced in Egozcue et al. (2003), and in Egozcue and Pawlowsky-Glahn (2005).

4.6 Consequences of the Aitchison Geometry in the Sample
Space of Compositional Data

The consequences of the Euclidean character of the Aitchison geometry for com-

positional data are multiple and relevant. Once the principles and requirements on

the sample space are assumed, they appear as a guidance in most, if not all, sta-

tistical models. The main idea is that compositions are advantageously represented

as vectors in coordinates, better than as proportions. Standard operations, sum and

multiplication, on appropriate coordinates are equivalent to perturbation and pow-

ering on compositions in the simplex. The fact that Aitchison distances, norms and

orthogonal projections are transformed into the ordinary Euclidean distances, norms

and orthogonal projections opens the door to use on ilr coordinates all mathematical

and statistical methods designed for real variables. The recommendation of work-

ing on coordinates has been formulated as the principle of working on coordinates
(Mateu-Figueras et al. 2011). The specific exploratory tools for compositional data

are examples of the usefulness of ilr coordinates.

Principal component analysis for compositional data (CoDa-PCA) and its graph-

ical representation, the CoDa-biplot, were studied before ilr-coordinates were avail-

able (Aitchison 1983; Aitchison and Greenacre 2002), but they are a wonderful

example of their usefulness. A D-part compositional data set, 𝐗 in a (n,D)-matrix, is

clr-transformed and centered; then, the singular value decomposition is carried out.

This can be summarized as

clr(𝐗c) = clr(𝐗⊖ 𝟏nCen[𝐗]) = 𝐔𝚲𝐕⊤

, (4.15)

where clr is applied to each composition (row) of the centered matrix, and 𝟏n is a col-

umn vector of n ones. The diagonal matrix 𝚲 contains D − 1 singular values ordered

from the largest one to the smallest. The D-th singular value is always null, since the

rows of clr(𝐗c) add to zero, and can be removed. The (D,D − 1)-matrix 𝐕 (loadings

matrix), once the last column corresponding to the null singular value is removed,

is orthogonal and satisfies 𝐕⊤𝐕 = 𝐈D−1, 𝐕𝐕⊤ = 𝐈D − (1∕D)𝟏D𝟏D⊤

. Therefore, it is a

contrast matrix like that used to compute ilr-coordinates of a composition 𝐱 (column

vector) (Egozcue et al. 2011)

𝐳 = ilr(𝐱) = 𝐕⊤clr(𝐱) , 𝐱 = c ⋅ exp[𝐕𝐳] .

This means that the rows of the (n,D − 1)-matrix 𝐔𝚲 are ilr-coordinates of the cen-

tered compositional data set. A form biplot represents simultaneously the rows of
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Fig. 4.7 Biplots of Northern Bangladesh data set, representing 13 disolved ions. Left: form biplot

showing that the projection is mainly dominated by the clr coefficients of As, Mn, and SO4; up to

the projection (65.2% of total variance), Aitchison distances between data points are approximately

those visualized. Right: covariance biplot adequate for interpretation. Up to the projection, length

of links between vertices of rays are proportional to the standard deviation of the corresponding

logratio. The length of the rays are approximately proportional to the standard deviation of the

corresponding clr-coefficients. Variability is largely dominated by the log ratios of SO4 over As,

Fe and Mn

𝐔𝚲 (coordinates of the compositions) and the columns of 𝐕 (clrunitary vectors of

the ilr-basis) in an optimal bi-dimensional projection for visualization.

Figure 4.7 shows the form biplot of the Northern Bangladesh data set. Form

biplots (Fig. 4.7, left) and scatter-plots of coordinates (Fig. 4.6) can replace plots on

ternary diagrams, as distances between compositions are not distorted in an uncon-

troled manner. They are only affected by the orthogonal projections.

The ilr coordinates are real variables and their exploratory analysis relies on

standard exploratory analysis tools (mean, standard deviation, quantiles, correla-

tions). However, interpretable coordinates are desirable. They can be designed by

the analyst to get insight in some aspects of the data he/she may be interested in.

Other times a data driven technique may be used to design suitable coordinates

(Pawlowsky-Glahn et al. 2011; Martín-Fernández et al. 2017). In these cases, the

CoDa-dendrogram (Pawlowsky-Glahn and Egozcue 2011) can be useful to sum-

marize properties of the coordinate sample jointly with an interpretable description

of the coordinates used. The definition of the coordinates is based on a sequential

binary partition (SBP) of the parts of the composition (Egozcue and Pawlowsky-

Glahn 2005, 2006). Each coordinate is associated with a partition of a group of

parts into two new groups. For instance, Table 4.2 shows this kind of partitions for

the Northern Bangladesh data set. The second row of Table 4.2, indicates the sepa-

ration of As (+1) from the group constituted by Fe, Mn and P (−1). This separation

is associated with the second ilr coordinate
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Table 4.2 Sign code for a SBP of the 13 disolved ions, obtained by clustering variables of the

Northern Bangladesh data set

As Ba Ca Fe K Mg Mn Na P Si SO4 Sr Zn

+1 −1 −1 +1 −1 −1 +1 −1 +1 −1 −1 −1 −1
+1 0 0 −1 0 0 −1 0 −1 0 0 0 0
0 0 0 −1 0 0 +1 0 −1 0 0 0 0
0 0 0 +1 0 0 0 0 −1 0 0 0 0
0 −1 −1 0 −1 −1 0 −1 0 −1 +1 −1 −1
0 0 0 0 0 0 0 +1 0 −1 0 +1 −1
0 0 0 0 0 0 0 +1 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 +1 0 0 −1
0 −1 −1 0 −1 −1 0 +1 0 +1 0 +1 +1
0 −1 −1 0 +1 −1 0 0 0 0 0 0 0
0 +1 −1 0 0 −1 0 0 0 0 0 0 0
0 0 +1 0 0 −1 0 0 0 0 0 0 0

z2 =
√

3
4
ln As

(Fe ⋅Mn ⋅ P)1∕3
.

These kinds of coordinates are called balances between two groups of parts (Egozcue

and Pawlowsky-Glahn 2005) as they are logratios of the geometric mean of the ele-

ments in each group; the coefficient in front of the logarithm is a normalization

coefficient which takes into account the number of elements in each group of parts.

Figure 4.8 shows the CoDa-dendrogram for the Northern Bangladesh data set. The

tree-dendrogram itself follows the partition in Table 4.2. The length of the lines per-

pendicular to the labels, say vertical lines, are proportional to the variance of the

balance separating the groups of elements at left and right hand sides. These verti-

cal lines are anchored to horizontal segments joining the two groups of parts. All

these segments are scaled in such a way that the zero value is placed in the center

of the segment, and the length represents the same length in all cases. The fulcrum

of the vertical line is placed at the average value of the balance; it can be compared

to the median indicated in the box-plot under the horizontal line. In this way, the

CoDa-dendrogram combines the interpretation of the balance-coordinates given by

the SBP and their mean, variance and quantiles (box-plots).

In Fig. 4.8, the variances within the subcomposition (Zn, Si, Sr, Na, SO4) are small

compared to other variances, thus pointing out a possible compositional association

between these elements; it suggests that these elements change proportionally along

the considered sample. At the same time, most of the total variance is driven by As,

Fe, Mn and P, as indicated by longer vertical lines.

The explanatory power of the CoDa-biplot and the CoDa-dendrogram relies on

the fact that they are based on Cartesian coordinates for plotting data-points and that

the represented variables are orthonormal in a geometric sense. The key in interpret-
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Fig. 4.8 CoDa-dendrogram following the sign code in Table 4.2 obtained by clustering variables

of the Northern Bangladesh data set. Vertical bars describe the decomposition of the total variance

given in Eq. (4.16). Anchoring points of vertical bars indicate the mean value of the corresponding

coordinate

ing the results is the decomposition of the total variance of the data set into variances

of the ilr-coordinates (Egozcue and Pawlowsky-Glahn 2011a)

totVar[𝐗] =
D−1∑

k=1
Var[𝜙k] . (4.16)

4.7 Conclusions

The first step in any data modelling is to establish a sample space able to give answers

to the questions stated by the analyst. If these questions involve probabilistic state-

ments, the sample space needs a sigma field of events for which probabilities can

be defined. However, most analysts search for statements implying operations, dis-

tances, projections between data points or variables. All these concepts need to be

defined in the sample space for useful computations and interpretations. These def-

initions are not intrinsic, but are adapted to the questions stated by the analyst in

a subjective way. Therefore, the choice of a sample space has always a subjective

character, which is only validated by the ability in giving useful answers to sound

questions.

Compositional data require defining a sample space with a rich structure. The

log-ratio approach to the analysis of compositional data is based on a set of princi-

ples and conditions. The approach here presented is a modification of the standard
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principles introduced by J. Aitchison in the eighties and reformulated afterwards.

Scale invariance and compositional equivalence are maintained exactly as they were

introduced, but additional conditions are to be discussed in relation to perturbation,

which is assumed to be the main operation between compositions. The Euclidean

structure of compositional data represented in the simplex, called Aitchison geom-

etry, is here motivated using the idea that reduction to a subcomposition should be

an orthogonal projection.

The Aitchison geometry is thought as a powerful mathematical tool which con-

sistently completes the previous Aitchisonian ideas on the log-ratio approach. The

main points are the conception of compositions as equivalence classes (Barceló-

Vidal and Martín-Fernández 2016) thus overcoming the early definitions based on

the constant sum constraint; and the introduction of coordinates in the Aitchison

geometry (Pawlowsky-Glahn and Egozcue 2001; Egozcue et al. 2003; Egozcue and

Pawlowsky-Glahn 2005) thus overcoming the idea that taking log-ratios is just a

transformation which circumvents the constant sum constraint.
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Chapter 5
Properties of Sums of Geological
Random Variables

G. M. Kaufman

“All models are wrong. Some are useful” George E. P. Box.

Abstract In the absence of empirical data that allows resolution of the vexing
problem of how to address probabilistic dependencies among and between elements
of large sets of geologic random variables data we need methods that refocus and
streamline expert geological judgment inputs along with analytical methods for
modeling dependencies that go beyond pairwise correlation and its cousins. Some
possibilities are reviewed.

5.1 Introduction

Suppose that you are given the marginal distribution of each of a set of n random
variables but no other information. What can be said about the behavior of their
sum? This is an old problem, extensively studied by probability theorists and
statisticians (Hoeffding 1940; Frèchet 1951). There is a rich probabilistic finance
and actuarial risk analysis literature devoted to calculation of bounds on sums of
random variables. This question motivates our review of state of the art methods
designed to reduce geologists’ cognitive load when asked to assign judgmental
probabilities to uncertain geologic variables.

In a wide range of settings geologists are asked to provide personal probability
judgments about a collection of uncertain quantities and, in particular, about sums
of them. Probabilistic assessments of oil and gas in unexplored petroleum plays and
basins are recurring examples. In the absence of hard data they deal rather well with
the cognitive task of providing personal judgments about marginal distributions of
geologic attributes; i.e. their assessments are, in the large, reasonably well cali-
brated. Geologists’ personal judgments about dependencies among uncertain geo-
logic quantities are more problematic.
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It is worthwhile to distinguish micro-assessments—assessment of dependencies
among individual reservoir attributes for example—from macro-assessments—
assessment of dependencies among assessment units, each of which may be a
collection of anomalies, reservoirs and fields. Measurable data bearing directly on
probabilistic dependencies at the micro-assessment level is often available but
precise measurable data bearing on dependencies among elements in a
macro-assessment is seldom available. Chen et al. (2012) point out that

Although efforts have been made to address variable dependence in both methodology and
tool development, the greatest emphasis and attention have been given to resource
aggregation. Until now, the impact of interdependencies among variables in volumetric
resource calculations has been mostly ignored, and the implementation of variable
dependency remains a challenge to petroleum resource appraisal. In practice, inadequate
data commonly exist to either specify a standard multivariate distribution with an appro-
priate correlation structure or to quantify the resource aggregation correlation matrices.
However, variable correlations are so common among geologic variables that ignoring their
interdependence may lead to serious bias, affecting both the resulting resource potential
estimation.

Most geologists with some training and experience in probability assessment can
provide reasonable responses to questions about marginal distributions of indi-
vidual attributes of a target entity. Few if any are well equipped to provide sharp
coherent judgments about possible dependencies among them. Some progress has
been made in understanding how to elicit sensible, coherent judgements about
second order co-variability of petroleum assessment units—the recent USGS study
of CO2 sequestration in depleted oil and gas reservoirs is an example. However,
specification of marginal distributions along with second order moments is not
sufficient for identification of a joint distribution of a set of uncertain quantities.
This matters when interest centers on the right tail of a sum of magnitudes of
petroleum in assessment units. Excepting special cases—joint lognormality for
example—the right tail of a sum of jointly dependent uncertain quantities can, both
in principle and in practice differ meaningfully from the right tail of an approxi-
mation based on marginal distributions and second moment properties alone.
Lillestøl and Sinding-Larsen’s (2017) study of giant field probabilities based on 182
North Sea discoveries highlights the importance of accurate modeling of tail
probabilities. For economists, bureaucrats and politicians right tail probabilities are
often the most interesting feature of a probabilistic oil and gas assessment. What,
for example, is the probability of finding at least one more giant field in a given
mature petroleum province? Objectives here are first, to outline how methods
currently used by geologists to impute probabilistic dependencies among uncertain
geologic quantities fit (or don’t fit) into a conceptual framework developed by
probabilists to answer the question posed at the outset and second, to review how
the probability distribution of a sum of such quantities can be bounded given
knowledge of marginal distributions alone assuming they are governed by a type of
functional dependency called co-monotonicity. Co-monotonicity and cupolas are
conceptual twins.
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Section 5.2 lays out necessary theory and definitions and calls attention to
co-monotonic upper bounds on sums of random variables and lower bounds
expressed in terms of conditional expectations. Section 5.3 addresses geologic case
studies in two of which geologists compute a probability distribution of a sum of
random geologic magnitudes in three steps: first, specify marginal distributions of
each magnitude, second, elicit judgmental appraisals of pairwise correlations
among magnitudes and third, combine the two using Monte Carlo simulation to
arrive at a distribution of the sum. This approach might be labelled “incomplete
specification” (not to be confused with the econometric definitions of just-, over-
and under-specification.). Iman and Conover’s (1982) ingenious method for
imputing dependencies among a set of random variables requiring only pairwise
correlations among elements of that set and marginal distributions is deployed in
the CO2 sequestration study cited above (Sect. 5.3.2). Chen et al. (2012) use of
cupolas to capture probabilistic dependencies in geologic micro-assessments is
reviewed in Sect. 5.3.3. Brief concluding remarks appear in Sect. 5.4. Blondes et al.
(2013a, b) offer a sensible rationale for careful attention to dependencies:

In the Circum-Arctic aggregation of the 48 AUs, the 90-percent uncertainty interval for
recoverable gas is 1,471, 2,009, or 3,515 tcf for assumptions of independence, assessor
specified dependency (correlation), or total dependence respectively. Clearly, decision
makers who rely on assessment results need accurate interval projections. Too broad an
interval provides little information; too narrow an interval gives a false sense of precision.

Spatial modeling provides important insights into the structure of probabilistic
dependencies among petroleum play attributes and deserves careful attention in
parallel with methods and models discussed here. It is a topic for another day.

5.2 Preliminaries

Define FX to be the distribution function of a random vector X= ðX1, . . . ,XnÞt
with domain Rn and marginal distributions Fi, i=1, . . . , n. Set FXðxÞ=
ProbfX1 ≤ x1, . . . ,Xn ≤ xng. Assume that each Fi is continuous and possesses a one
to one inverse. Define the pth fractile of Xi as the value in the domain of Xi such that
ProbfXi ≤ xpg= p and its inverse as F − 1

i ðpÞ= xiðpÞ. In turn the pth fractile of the
sum Sn =X1 +⋯+Xn is sp such that ProbfSn ≤ spg= p or F − 1

Sn ðpÞ= sp.
What conditions guarantee that fractiles are strictly additive? That is that for all

p∈ ð0, 1Þsp = x1ðpÞ+⋯+ xnðpÞ? Imposition of functional dependencies among
X1, . . . ,Xn is one route to sufficient conditions for this to be true. To divide difficulties
suppose that X1, . . . ,Xn share a common domain DX and consider n continuous
invertible functions hi, each with domainDX . Suppose that xi = hiðx1Þ for all xi ∈DX ,
i=2, .., n. Then ProbfSn < sg=ProbfX1 + h2ðX1Þ+⋯+ hnðX1Þ< sg. The omnibus
function gðx1Þ= x1 + h2ðx1Þ+⋯+ hnðx1Þ , x1 ∈DX is continuous and invertible so
ProbfgðX1Þ< sg=ProbfX1 < g− 1ðsÞg. The pth fractile of Sn is sp such that
ProbfgðX1Þ< spg= p or ProbfX1 < g− 1ðspÞg= p leading to x1ðpÞ= g− 1ðspÞ.
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Equivalently gðx1ðpÞÞ= sp. Functional dependencies of this type are too strong to
survive the rigors of modeling most real world data. In the absence of complete
knowledge of a joint distribution co-monotonicity is a more flexible approach to
modeling joint behavior of dependent random variables.

Definition The random vector X= ðX1, . . . ,XnÞt is co-monotonic if and only if
ðX1, . . . ,XnÞ= dðF − 1

1 ðUÞ, . . . ,F − 1
n ðUÞÞ,U a uniform random variable with domain

(0, 1).
Here = d means agreement in distribution. Intuitively each element of a

co-monotonic random vector is a functional of a single random variable U so all
elements of X exhibit strong positive dependency. McNeil et al. (2005) provide a
more general definition: X is co-monotonic if and only if it agrees in distribution
with a random vector, each of whose components is a non-decreasing function of a
single random variable. If elements of X are co-monotonic increasing one element
of X increases all others. Goovaerts et al. (2000) provide a clear readable account of
properties of sums of co-monotonic random variables in an actuarial context.
Deelstra et al. (2009) offer a literature review of co-monotonicity in financial
economics.

Foreshadowing a possible critique by geologists that in their setting, some ele-
ments of X may be independent or possibly negatively dependent (rather rare),
co-monotonicity and its consequences provide upper and lower bounds on a sum of
random variables with specified marginal distributions that embrace a wide range of
dependence structures. When these bounds are judged to be tight enough, reasonable
projections of probability distributions of aggregates can be made using marginal
distributions along with specification of certain conditional expectations. (See 5.1,
5.5). They provide useful information about projections made based on information
elicited from geologists about dependencies and police reasonableness of geologic
probabilistic projections of uncertain geologic resources made using other methods.

5.2.1 Bounds

A random variable X precedes a random variable Y in convex order, denoted by
X ≥ cxY if and only if EðgðXÞÞ≥EðgðYÞÞ for all real convex functions g for which
expectations are finite. Kaas et al. (2009) use convex order to show that fractiles of
co-monotonic random variables can be added in the following sense: for any ran-
dom vector X= ðX1, . . . ,XnÞ possessing marginal cumulative distribution functions
F1, . . . ,Fn and U a uniform (0, 1) random variable

ðX1 +⋯+XnÞ≤ cxSu ≡F − 1
1 ðUÞ+⋯+F − 1

n ðUÞ. ð5:1Þ
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If Su = dF − 1
1 ðUÞ+⋯+F − 1

n ðUÞ it follows immediately that the pth fractile of Su
is F − 1

Su ðpÞ=F − 1
1 ðpÞ+⋯+F − 1

n ðpÞ, for all p∈ ð0, 1Þ. They point out that (5.1) is a
supremum in terms of convex order and is a best bound for marginal distributions in
a Fréchet space. It is well known that if a random vector X with marginal distri-
butions F1, . . . ,Fn belong to a Fréchet space 𝖥n the joint cumulative distribution
function ProbfX1 ≤ x1, . . . ,Xn ≤ xng of X is bounded from above by
Mn ≡minfF1ðx1Þ, . . . ,FnðxnÞg. Goovarts et al. note that Mn is reachable in 𝖥n.

For sums of elements of X introduction of a random variable Z such that dis-
tribution functions of each Xi given Z are known with certainty leads to refined
upper and lower bounds. In a geologic context Z is interpretable as a latent
(background) variable describing gross geologic characteristics of, for example, a
petroleum assessment unit. The conditioning variable Z might be regression
dependent on geologic attributes of an assessment unit and need not be scalar.
These authors define F − 1

Xi Zj ðUÞ to be a random variable fiðU, ZÞ that for

ðU, ZÞ= ðu, zÞ assumes value F − 1
Xi zj ðuÞ and prove that for U uniform ð0, 1Þ and Z

independent of U

ðX1 +⋯+XnÞ≤ cxS*u ≡F − 1
X1 Zj ðUÞ+⋯+F − 1

Xn Zj ðUÞ. ð5:2Þ

Jensen’s inequality leads to a lower bound

EðX1 ZÞ+⋯+EðXn ZÞjj ≤ cxðX1 +⋯+XnÞ. ð5:3Þ

Kaas et al. (2009) point out that (a) the random vector EðX1 ZÞ+⋯+EðXn ZÞjj
will not in general have marginal distributions F1, ..,Fn (b) If EðX1 ZÞ, . . . ,EðXn ZÞjj
are either jointly non-increasing or non-decreasing functions of Z the LHS in (5.3)
is a sum of co-monotonous random variables and (c) VarðEðXi Zj ÞÞ<VarðXiÞ
unless VarðEðXi Zj ÞÞ=0. In order to create a path to direct computation of the cdf of
the LHS of (5.4) suppose that (b) obtains and that each of the random variables
EðX1 ZÞ, . . . ,EðXn ZÞjj are non-decreasing functions of increasing Z = z. Write
the lower bound as EðX1 ZÞ+⋯+EðXn ZÞjj =EðS ZÞj and define FEðXi ZÞj ðxÞ=
ProbfEðXi ZÞ≤ xgj . They show that, provided that the cdf of EðXi ZÞj is continuous
and increasing

F − 1
EðX1 ZÞj ðFEðS ZÞj ðxÞÞ+⋯+F − 1

EðXn ZÞj ðFEðS ZÞj ðxÞÞ= x, ð5:4Þ

a prescription for calculating a lower bound. The quality of the lower bound (5.3)
depends of course on the choice of a model for Z. Kaas et al. (2002) and Goovarts
et al. (2000) demonstrate that upper and lower bounds (5.1) and (5.3) provide
reasonable bounds on the cumulative distribution function of certain sums of dis-
counted cash flows as well as for the cumulative distribution function of sums of
dependent lognormal random variables. Lux and Papantoleon (2017) show that
upper and lower Fréchet–Hoeffding bounds such as those described above can be
tightened. They demonstrate that other types of information, knowledge of
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functionals of lower dimensional marginals of an n-dimensional cupola for exam-
ple, also lead to improvements. The tradeoff is that the improved bounds are
quasi-cupolas but not cupolas.

Comparison of predictive distributions of undiscovered mineral resources
derived by conventional methods currently in use with co-monotonic bounds on
them is a promising avenue of research.

5.3 Thumbnail Case Studies

Thumbnail sketches of three case studies serve as a template for discussion of
probabilistic dependence issues discussed above: examples of the USGS approach
to probabilistic dependencies among oil and gas assessment units, the USGS
probabilistic assessment of CO2 sequestration in mature oil and gas reservoirs in the
United States and a Canadian Geological Survey study of use of cupolas to capture
probabilistic dependencies among accumulations in individual oil and gas plays.

5.3.1 USGS Oil and Gas Resource Projections

The USGS developed an assessment system in the 1980s with the acronym FASP
(fast appraisal system for petroleum resources). FASP incorporated perfect positive
correlation between micro-level reservoir attributes but allowed specification of any
positive correlation in the course of aggregating play resources. However, the
USGS 2000 World Petroleum Assessment aggregates undiscovered resource vol-
umes from assessment unit level to regional level using perfect correlation as the
argument for adding assessment unit fractiles to arrive at regional level aggregates.
Recognizing that at the global level dependencies among large regional aggregates
of resources are unlikely to be perfectly correlated they adopt pairwise correlation
of 0.5 between pairs of eight regions (Klett et al. 2000). No sensitivity analysis of
how aggregate projections vary with these particular choices is provided.

Many USGS assessment studies present tables of fractiles of individual assess-
ment units and then add them to arrive at a fractile assessment of total resources.
Addition is qualified by the statement that “Fractiles are additive under assumption
of perfect positive correlation” allowing avoidance of direct assessment of depen-
dencies among units. Table 2 in “Assessment of Undiscovered Continuous Oil and
Gas Resources in the Monterey Formation, San Joaquin Basin Province, California”
USGS Fact Sheet 2015-3058 September 2015 and Table 2 in USGS Fact Sheet
2014–3082 “Assessment of Potential Shale-Oil and Shale-Gas Resources in
Silurian shales of Jordan” September 2014 are examples. Chen et al. (2012) cite
additional examples (Klett et al. 2000, 2005; Klett 2004). It is easy to show that
“perfect correlation” is not robust to variations in specification of the functional
form of marginal distributions elicited from geologists. Worse, addition of fractiles
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without careful attention to properties of the joint distribution of a set of uncertain
quantities can lead to incoherence. On the other hand mutual independence allows
specification of arbitrary marginal probability distributions without doing violence
to coherence but often leads to an unacceptably narrow probability projection of
sums of oil and gas magnitudes.

A salient feature of Pearson’s correlation coefficient is that random variables
X and Y possess correlation 1.0 or − 1.0 only if X and Y are linearly dependent. As
Denuit and Dehaene (2003) point out, a limiting case is a bivariate normal pair of
random variables for which the variance of one member of the pair is zero. If
X and Y are jointly lognormal and logX is a linear function of log Y the Pearson
correlation of logX and log Y is either 1.0 or −1.0. However, the Pearson corre-
lation of X and Y is then less than 1.0. Denuit and Dehaene provide a more nuanced
treatment. Suppose F1 andF2 are marginal cumulative distribution functions of
X and Y respectively, each concentrated on ð0,∞Þ and U is a uniform random
variable independent of X and Y . Using super-modularity these authors prove that if
F1 andF2 lie in a Fréchet space the Pearson correlation coefficient rðX,YÞ of
X and Y is bounded by

CovðF − 1
1 ðUÞ,F − 1

2 ð1−UÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðYÞp ≤ rðX, YÞ≤ CovðF − 1
1 ðUÞ,F − 1

2 ðUÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðYÞp . ð5:5Þ

In this setting perfect correlation is not achievable. They also prove that it is
possible for a pair of co-monotonic lognormal random variables to have pairwise
correlation close to zero, contradicting the intuitive notion that small correlation
implies weak dependence. Denuit and Dehane call attention to Shih and Huang
(1992) and Schechtman and Yitzhaki’s (1999) observation that, for any two random
variables, the achievable range of Pearson’s correlation coefficient is (−1, 1) only if
the functional form of the two marginal distributions differ solely in values of
location and/or scale parameters. If not, the range of Pearson’s r is narrower than
(−1, 1) and depends on the shape of the two marginal distributions.

These authors document several important features of Kendall’s τ and Spear-
man’s ρ. (Spearman’s ρ is at the center of the Iman and Conover method deployed
in the USGS (2013) study of CO2 sequestration to compute predictive probability
distributions of aggregates). First, both are invariant with respect to strictly
monotone transformations. Second, when one variable is a non-decreasing
(non-increasing) transformation of the other they equal 1 (or −1) at the Fréchet
upper (resp. lower) bound. They note that at a value of 1.0 or −1.0 Kendall’s τ and
Spearman’s ρ achieve Fréchet bounds. According to them Kendall’s τ and Spear-
man’s ρ are more desirable measures of association for non-normal multivariate
distributions than Pearson’s r because the latter does not share Kendall and
Spearman’s correlation invariance properties. These invariance properties come
into play in Iman and Conover’s method discussed below. Denuit and Dehane
prove the non-obvious fact that if positively or negatively quadrant dependent
random couples are jointly uncorrelated they are mutually independent.
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All of this emphasizes that “perfect correlation” as an omnibus argument for
adding fractiles has many pitfalls. Co-monotonic bounds on random sums are a
conceptually satisfactory alternative that deserves much future study.

5.3.2 USGS Probabilistic Assessment of CO2 Storage
Capacity

A recent USGS probabilistic assessment of CO2 sequestration in mature petroleum
reservoirs (Blondes et al. 2013a, b) is based on both micro- and macro-assessments
by geologists. Their macro-assessment aggregates storage assessment units (SAUs)
at basin, regional and national levels. An objective was to provide probabilistic
assessments that take into account dependencies among assessment units arising
from “overlap of geologic analogs, assessment methods and assessors” using
individual SAU marginal probability distributions and “…a correlation matrix
obtained by expert elicitation describing interdependencies between pairs of
SAUs”. The correlation matrix dimension is 192× 192. Because a menagerie of
marginal distributions—Beta-PERT, lognormal, truncated lognormal—were
deployed at the micro-level use of standard multivariate distribution theory is not
appropriate. Dependencies among storage capacity magnitudes are induced using
an innovative distribution free method developed by Iman and Conover (1982) that
allows marginal distribution shapes to be estimated from data sets distinct from data
sets used to estimate dependency structure. Their method is designed to provide
rank correlations that match assessed correlations and to translate the match into a
predictive probability distributions for individual assessment units and larger
aggregates. (See Blondes et al. 2013a for informative examples).

How to aggregate from basin, to region and then to a national scale is an issue.
Should this be done in a single stage using the correlation matrix for all SAUs in the
study or successively aggregate subsets of SAUs in multiple stages? Blondes et al.
(2013b) conclude that

Although the single-stage approach requires determination of significantly more correlation
coefficients, it captures geologic dependencies among similar units in different basins and it
is less sensitive to fluctuations in low correlation coefficients than the multiple stage
approach. Thus, subsets of one single-stage correlation matrix are used to aggregate to
basin, regional, and national scales.

Successive aggregation in multiple stages drastically reduces the number of
pairwise correlations that must be elicited from geologists at the expense of
requiring each assessor to appraise pairwise correlations of sums of assessment unit
magnitudes. Although there are no studies comparing how well geologists’
assessments calibrate when asked to appraise dependencies among sums of SAU
magnitudes relative to appraisal of dependencies among individual SAUs it is
reasonable to conjecture that individual SAU appraisals are much more likely to be
well calibrated. Properties of single and multi-stage appraisal methods are studied in
Kaufman et al. (2018).
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5.3.3 Cupolas and Oil and Gas Resource Assessment

Chen et al. (2012) emphasize that at an assessment micro-level, reservoir attributes
such as porosity, permeability, pressure and temperature are often decisively
dependent and that empirical data suggest dependencies are present among more
aggregate assessment units in mature provinces—among fields in a mature play or
basin for example. Their argument is that a basin’s tectonic framework exerts
“strong geographic control” over many geological features and leads to geographic
and spatial dependencies and that because plays in a given basin share “…petro-
leum system elements, such as source rocks, regional top seal, migration fairways,
timing, regional tectonics for trap formation, and accumulation preservation fac-
tors” a probabilistic model of pools or fields in a play in a given basin should
incorporate probabilistic dependencies among these attributes as well as between
plays. They are the first to use copulas in this setting.

Sklar (1959) proved that, subject to mild restrictions a multivariate cumulative
distribution can be mapped into a joint cumulative distribution of uniform random
variables called a cupola. As with Iman and Conover’s method, adoption of a
cupola model allows marginal distribution shapes to be estimated from data sets
distinct from those used to estimate dependency structure.

Suppose as in Sect. 5.2 above that FX is the distribution function of a random
vector X= ðX1, . . . ,XnÞt with domain Rn and marginal cumulative distributions
Fi, i=1, . . . , n. Let Un = ðU1, . . . ,UnÞ be a vector of independent uniform ð0, 1Þ
random variables and un = ðu1, . . . , unÞ be a realization of Un. Then with
ui =FiðxiÞ , i=1, . . . n ProbfX1 ≤ x1, . . . ,Xn ≤ xng=ProbfU1 ≤ u1, . . . ,Un ≤ ung.
Definition Cðu1, . . . , unÞ=ProbfU1 ≤ u1, . . . ,Un ≤ unÞg is the cupola of FX .

Set dFi = fi , i=1, . . . , n and dCðu1, . . . , unÞ= cðu1, . . . , unÞdu1 . . . dun. The
joint density of X can be written as cðu1, . . . , unÞ× f1ðx1Þ× . . . × fnðxnÞ. The term c
in the joint density captures the dependency structure of elements of X. Because
ProbfX1 ≤ x1, . . . ,Xn ≤ xng=ProbfU1 ≤ u1, . . . ,Un ≤ ung a procedure for gener-
ating samples from C produces samples of X by inversion of ui =FiðxiÞ , i=1, . . . n.

Computation requires choice of a cupola functional form. Among a variety of
choices Chen et al. chose the bivariate normal cupola, a popular choice closely tied
to standard multivariate normal distribution theory.

Their regional resource assessment of the Canadian Arctic’s Beaufort-McKenzie
Basin is based on analysis of 48 “significant” oil and gas discoveries containing 53
distinct accumulations. Empirical data is sufficiently detailed to allow study and
estimation of pairwise correlations among reservoir attributes—area, porosity, oil
saturation, net pay—for plays in the three major petroleum systems. The authors
treat geologic risk factors as probabilistically independent because the data is not
sufficient to allow empirical estimation of them and restrict their study of depen-
dencies to reservoir volume attributes within each play and through them to the
impact of probabilistic dependencies on the distribution of total resource volumes.
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Four plays, Ivik, Taglu, Kugmallit (East) and Kugmallit (West) are used to
illustrate how to incorporate dependencies among individual play resources.
Although no systematic method for eliciting geologists’ judgments about between
play dependencies are discussed the authors motivate their choice of a rather large
correlations between plays (0.6) and perfect correlation (1.0) by noting that all four
plays share the same source rock and petroleum system: “The resource richness of
each play is basically a function of both the oil charge and the preservation of
accumulations that are mostly controlled by common petroleum system elements…
we infer that the resources in the four plays are highly correlated, although the pool
size distributions among the four plays vary considerably.” Pairwise correlations
between area, net pay, porosity and oil saturation vary from a low of 0.20 to a high
of 0.86. The authors call attention to the substantial difference between total ulti-
mate oil resource medians under the assumption of independence and under the
assumption of within and between play correlations: the latter is 1.6 times the
former.

Principal messages are that to be realistic, probabilistic appraisal of oil and gas
resources in unexplored and partially explored regions must account for multiple
sources of dependencies and that cupolas are useful for doing so.

5.4 Concluding Remarks

In the absence of empirical data that allows resolution of the vexing problem of how
to address probabilistic dependencies among and between elements of large sets of
geologic random variables we need methods that refocus and streamline expert
geological judgment inputs as well as analytical methods for modeling dependen-
cies that go beyond pairwise correlation and its cousins. One promising avenue is
the theory of vines proposed by Bradford and (2002). Their theory broadens the
range of allowable dependency structures beyond Bayesian belief networks and
exploits properties of rank correlations in a fashion that leads to efficient
computation.
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Chapter 6
A Statistical Analysis of the Jacobian
in Retrievals of Satellite Data

Noel Cressie

Abstract Remote sensing has become an essential component of the geosciences

(the study of Earth and its system components). Remote sensing measurements are

almost always energies measured in selected parts of the electro-magnetic spectrum.

That is, the geophysical variable of interest is only observed indirectly; a forward

model relates the energies to the variable(s) of interest and other elements of the

state. The first derivative of that forward model with respect to the state is known

as the Jacobian. In this chapter, we review the importance of the Jacobian to infer-

ring the state, and we use it to diagnose which state elements may be difficult to

estimate. We develop the Statistical Significance Filter and flag those state elements

that consistently fail to get through the filter.

6.1 Introduction

Remote sensing of the environment is a fundamentally important part of humans’

quest to understand the Earth system and how the different components interact (e.g.,

climate, water, carbon). In the future, this knowledge may be critical to our survival.

Satellite and aircraft campaigns allow a “bird’s-eye view” of large parts of Earth,

but not all campaigns are alike. For example, polar-orbiting satellites allow global

coverage, passive instruments rely on the sun’s reflected light and do not take mea-

surements when there are clouds or when it is night, and programs such as NASA’s

ASCENDS will measure day or night, anywhere on the orbit track.

In this chapter, a passive instrument on a polar-orbiting satellite, namely Japan’s

Greenhouse Gases Observing Satellite (GOSAT), will be used as a leading example.

However, the idea behind what I shall present is general and could apply to many

remote sensing inversion problems involving a non-linear forward model. In such
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problems, the goal is to infer a hidden state from energies detected by an instrument

sensitive to certain known bands of the electro-magnetic spectrum.

Section 6.2 of this chapter gives a statistical framework behind the problem

of uncertainty quantification of retrieved states. Section 6.3 calls out the Jacobian

matrix as an important component of the retrieval algorithm and defines a unit-free

Jacobian for subsequent statistical analysis. That analysis is described in Sect. 6.4,

where a Statistical Significance Filter is defined. In Sect. 6.5, this methodology is

applied to a number of retrievals taken over Australia, where certain state elements

are flagged as being potentially difficult to estimate. The last section, Sect. 6.6, fin-

ishes with a discussion of the results obtained.

6.2 A Statistical Framework for Satellite Retrievals

The biases, variances, and mean squared prediction errors of retrievals need to be

calculated in the general setting of a nonlinear forward model. The book by Rodgers

(2000) has a section on error analysis, but it approaches the problem mostly from

a numerical-sensitivity viewpoint. The strongly statistical viewpoint given here cal-

culates the first two moments of a retrieval and the distribution of elements of the

associated Jacobian matrix (defined below as K). In the case where relationships

are non-linear, the well known “delta method” (based on Taylor-series expansions;

e.g., Meyer 1975, Chap. 10) gives approximate (to leading orders) biases and mean

squared prediction errors of the estimators (Cressie and Wang 2013).

The n
𝜀
-dimensional radiances Y are related to the n

𝛼
-dimensional state X through

a non-linear forward model,

Y = F(X) + 𝜺, (6.1)

where the state vectorX includes volume mixing ratios of CO2 at prespecified geopo-

tential heights, the error vector 𝜺 ∼ Gau(0,S
𝜀
), and X and 𝜺 are statistically indepen-

dent. Further, there is an a priori assumption that

X = X
𝛼
+ 𝜶, (6.2)

where 𝜶 ∼ Gau(0,S
𝛼
). Notice that if there is consistent bias present in the retrieval,

this can be accounted for by adding it to X
𝛼
, leaving the assumption, 𝜶 ∼ Gau(0,S

𝛼
),

intact. Define the matrices,

K(x) ≡ 𝜕F(x)
𝜕x

≡

(
𝜕Fi(x)
𝜕xj

∶ i = 1,… , n
𝜀
; j = 1,… , n

𝛼

)
(6.3)

G(x) ≡ {S−1
𝛼

+K(x)′S−1
𝜀
K(x)}−1K(x)′S−1

𝜀
(6.4)

A(x) ≡ G(x)K(x) , (6.5)

where x is any atmospheric state. (Recall that the true state is denoted as X.)



6 A Statistical Analysis of the Jacobian in Retrievals of Satellite Data 119

The n
𝜀
× n

𝛼
matrix K(⋅) is called the Jacobian. Partial derivatives of K(⋅) repre-

sent the degree of non-linearity in the forward model. In the case of a linear forward

model, K is constant, and any partial derivatives of it are zero.

An estimate of X, sometimes called a retrieval, is often obtained by choosing an

̂X that allows F( ̂X) to be “close to” Y, subject to smoothness conditions on ̂X. This

regularisation is usually defined as follows: Minimise

(Y − F(X))′S−1
𝜀
(Y − F(X)) + (X − X

𝛼
)′S−1

𝛼
(X − X

𝛼
) (6.6)

with respect to X, which results in the retrieval ̂X.

The n
𝛼
× n

𝜀
matrix G(⋅) represents a type of “gain” matrix in the relationship

between retrieval ̂X and data Y; that is,

̂X = X
𝛼
+G( ̂X)(Y − F(X

𝛼
) −K( ̂X)X

𝛼
) + “remainder”.

In the linear case, G is constant and the “remainder” term is zero.

The n
𝛼
× n

𝛼
matrixA(⋅) yields the averaging kernel matrix in the relation between

retrieval and true state; that is,

̂X = X
𝛼
+ A( ̂X)(X − X

𝛼
) + “remainder”.

In the linear case, A is constant, the “remainder” term is G𝜺, and recall that 𝜺 is

independent of X.

In this section, I discuss the bias vector and the mean-squared-prediction-error

(MSPE) matrix of the retrieval, ̂X. The bias vector is defined as:

E( ̂X − X) = E( ̂X) − E(X) = E( ̂X) − X
𝛼
,

where recall that X
𝛼

is the prior mean of the state vector X.

The MSPE matrix is defined as:

E(( ̂X − X)( ̂X − X)′) = var( ̂X − X) + (E( ̂X) − X
𝛼
)(E( ̂X) − X

𝛼
)′ ,

where var( ̂X − X) is the covariance matrix of the retrieval error, ̂X − X. The MSPE

matrix can be a more appropriate statistical measure of uncertainty than the covari-

ance matrix of retrieval error when there is bias present. When the bias is zero, the

two measures of uncertainty are the same.

When the forward model is linear, it is easily seen (e.g., Rodgers 2000) that the

bias vector,

E( ̂X − X) = 0 . (6.7)
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That is, in the linear case, ̂X is unbiased. Further, in the linear case, the MSPE matrix

can be derived exactly and written in a number of equivalent ways. From Connor et al.

(2008), Cressie and Wang (2013),

E(( ̂X − X)( ̂X − X)′) = E(var(X|Y)) ≡ ̂S , (6.8)

where the MSPE matrix is given by

̂S = {S−1
𝛼

+K′S−1
𝜀
K}−1 = (A − I)S

𝛼
(A − I)′ +GS

𝜀
G′

. (6.9)

When the forward model is nonlinear, the bias of ̂X is nonzero, and the equalities in

(6.9) are no longer true. However, from the “delta method,” Cressie et al. (2016) show

that (6.7) and (6.9) hold, to leading order. In what follows, a leading-order analysis is

carried out. This amounts to assuming the forward model to be locally linear, which is

a weaker assumption than assuming global linearity, namelyY = c +KX + 𝜺, across

the whole state space defined by all possible values of X.

The locally linear forward model is derived using a Taylor-series expansion:

Y = F(X) + 𝜺

= F(X0) +
𝜕F(x)
𝜕x

||||x=X0

× (X − X0) + 𝝀

≡ c(X0) +K(X0)X + 𝝀 ,

where 𝝀 models the lack of fit of the local linear model (about the linearisation point

x = X0) to F(X). The linearisation point X0 is often chosen to be the prior mean X
𝛼
,

but I want to emphasise here that it need not be.

6.3 The Jacobian Matrix and its Unit-Free Version

The Jacobian matrix is the first derivative of the n
𝜀
-dimensional forward function

vector, F(x), with respect to the n
𝛼
-dimensional state x. From the definition given in

(6.3), it is an n
𝜀
× n

𝛼
matrix. Write the matrix as (Kij), and note that the units of Kij

are radiance (energy) per unit of state-space element j.
Define the vectors,

(𝜎2
𝜀,1,… , 𝜎

2
𝜀,n

𝜀

)′ ≡ diag(S
𝜀
)

(𝜎2
𝛼,1,… , 𝜎

2
𝛼,n

𝛼

)′ ≡ diag(S
𝛼
) ,

where diag(⋅) is a matrix operator that extracts a vector made up of the matrix’s

diagonal elements. Then the unit-free Jacobian is defined as follows:
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𝜙ij ≡ Kij𝜎𝛼,j∕𝜎𝜀,i ; i = 1,… , n
𝜀
, j = 1,… , n

𝛼
. (6.10)

During the retrieval, the most difficult and time-consuming part is to minimise (6.6);

for example, using a Levenberg-Marquardt algorithm requires evaluation of the Jaco-

bian matrix at each iteration of the minimisation. Let K̂ij be a generic Jacobian ele-

ment used during the retrieval. Then define the corresponding unit-free version as,

�̂�ij ≡ K̂ij𝜎𝛼,j∕𝜎𝜀,i , (6.11)

and denote ̂𝚽 ≡ (�̂�ij) as the n
𝜀
× n

𝛼
unit-free Jacobian matrix.

For satellite retrievals, the data vector Y can often be partitioned as

Y = (Y′
1,… ,Y′

K)
′
,

where

Yk ≡ (Yi ∶ i ∈ bandk)′ , (6.12)

and band1,… , bandK are mutually exclusive index sets that represent a grouping of

radiances according to which bands of the electro-magnetic spectrum they belong.

For example, Japan’s GOSAT and NASA’s Orbiting Carbon Observatory-2 (OCO-2)

instruments have K = 3 bands, corresponding to the oxygen A band (OA), the weak

carbon dioxide band (WC), and the strong carbon dioxide band (SC); our analysis

in Sect. 6.5 uses data from GOSAT’s three bands. Another example is from NASA’s

Atmospheric Infrared Sounder (AIRS) instrument flying on the Aqua satellite, which

has K = 4 bands, corresponding to four geophysical variables, namely temperature,

water vapour, ozone, and carbon dioxide.

In what follows, we abbreviate “bandk” to “bk.” Because the unit-free Jacobian

has elements that are potentially comparable, we can partition it and analyse it in

comparable ways. Recall that the index j corresponds to a given element of the state

vector, for example, a water-vapour scale factor or a near-surface carbon-dioxide

volume mixing ratio. Then fix the state element j, and consider the behaviour of the

jth column as row i varies within individual bands. That is, for a fixed j, consider

{�̂�ij ∶ i ∈ bk} (6.13)

to be a random sample from a distribution indexed by k, for bands k = 1,… ,K.

Consequently, instead of thinking about n
𝜀
⋅ n

𝛼
entries in the Jacobian, attention

turns to n
𝛼
⋅ K distributions. For example, for the retrievals from GOSAT data that

are being considered here, n
𝜀
= 2240, n

𝛼
= 112, and K = 3. Hence, the pair (j, k)

indexes one of 336 possible distributions, whose mean, 𝜇jk, is of primary interest. For

j a fixed element of the state vector, if 𝜇j1 = 𝜇j2 = ⋯ = 𝜇jK = 0, then that element is

poorly determined by the data alone; see Sect. 6.4. This is a flag that says the (prior)
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mean and precision of the jth state element need to be specified very carefully in the

second term of (6.6) in order to obtain an acceptably precise retrieval X̂j.

6.4 Statistical Significance Filter

To leading order, the forward model (6.1) can be written as,

Y = c +K1X1 +⋯ +Kn
𝛼

Xn
𝛼

+ 𝜺, (6.14)

which is a multiple-regression model with known, typically different, intercepts

given by the elements of c; known covariates K1,… ,Kn
𝛼

(the n
𝛼

columns of K); and

unknown regression coefficients X1,… ,Xn
𝛼

. Clearly, if Kj is zero, then Xj will not

be estimable. Further, if for a given j, {|Kij| ∶ i = 1,… , n
𝜀
} are uniformly “small,”

then the uncertainty associated with the estimate of Xj will be large.

In the previous section, we noted that for remote sensing retrievals, the n
𝜀

ele-

ments in Y can be partitioned into K bands, Y1,… ,YK . Then write (6.14) equiva-

lently as K equations. In obvious notation that respects the partitioning,

Yk = ck +K1kX1 +⋯ +Kn
𝛼
kXn

𝛼

+ 𝜺k ; k = 1,… ,K , (6.15)

where {Kjk ∶ j = 1,… , n
𝛼
} are the n

𝛼
vectors corresponding to the kth band.

Clearly, if Kjk = 0, then its unit-free version, 𝚽jk, is also 0. Hence, the problem

of whether Xj is poorly determined in the forward model (6.1) can be addressed in a

statistical manner by considering the retrieval’s unit-free Jacobian entries {�̂�ij ∶ i =
1,… , n

𝜀
} as K arrays of random variables, {�̂�ij ∶ i ∈ bk}, for k = 1,… ,K. If, for a

fixed j, the means 𝜇j1,… , 𝜇jk of these K arrays are all zero, then Xj will be difficult

to estimate.

6.4.1 Hypothesis Tests

Consider (6.13) and make the following assumption: For a given retrieval, a given

state element j, and a given band k,

{�̂�ij ∶ i ∈ bk}
iid∼ Dist(𝜇jk),

where “iid” denotes “independent and identically distributed,” and “Dist(𝜇)” denotes

a probability distribution with mean 𝜇. For this retrieval, the idea is to flag those state

elements and bands for which the null hypothesis, H0,jk ∶ 𝜇jk = 0, is not rejected. In

particular, failure to reject the composite hypothesis,
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H0,j ∶ 𝜇j1 = 𝜇j2 = ⋯ = 𝜇jK = 0 , (6.16)

implies that the jth state element will be difficult to estimate in the given retrieval.

Since the elements of {�̂�ij ∶ i ∈ bk} are considered to be a sample from a distri-

bution with mean 𝜇jk, I shall construct a test statistic from these unit-free Jacobian

values. A considerable amount of exploratory data analysis showed the common dis-

tributional assumption within the partitioned arrays to be largely correct, with occa-

sional gross outliers that would challenge many statistical testing procedures. Those

were controlled by transforming each �̂�ij to |�̂�ij|1∕2, and the robust test statistic,

�̃�jk ≡ med{|�̂�ij|1∕2 ∶ i ∈ bk} , (6.17)

was used to test H0,jk ∶ 𝜇jk = 0. The composite hypothesis test {H0,j ∶ j = 1,… , n
𝛼
},

where H0,j is given by (6.16), is then carried out using a Bonferroni adjustment

(Sect. 6.4.3).

6.4.2 Distribution Theory for the Robust Test Statistic

Consider generic iid random variables W1,… ,Wm distributed according to a Gaus-

sian distribution with mean 𝜇W and variance 𝜎
2
W , which is written as Gau(𝜇W , 𝜎

2
W ).

To test

H0 ∶ 𝜇W = 0 versus H1 ∶ 𝜇W ≠ 0 , (6.18)

consider the robust test statistic,

X̃ ≡ med{|Wi|1∕2 ∶ i = 1,… ,m}. (6.19)

I now obtain distribution theory for X̃ under the null hypothesis in order to carry out

a significance test.

If Y ∼ Gau(0, 1), then E(|Y|1∕2) = 0.82216 and var(|Y|1∕2) = 0.12192, which

was derived by Cressie and Hawkins (1980). Then under H0 ∶ 𝜇W = 0, |Wi|1∕2 ⋅∼
Gau(0.82216 ⋅ 𝜎1∕2

W , 0.12192 ⋅ 𝜎W ), where “
⋅∼” denotes “is approximately distributed

as,” and the approximation is established by Cressie and Hawkins (1980). Now the

distribution of the median X̃ from a random sample X1,… ,Xm of Gaussian random

variables can be approximated as Gaussian with mean E(X̃) = E(X1), and variance

var(X̃) = 𝜋var(X1)∕2m. If all these results are combined, then under the null hypoth-

esis H0 in (6.18),

X̃ ⋅∼ Gau(0.82216 ⋅ 𝜎1∕2
W , 0.12192 ⋅ 𝜋𝜎W∕2m) .
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Clearly, the alternative hypothesis H1 in (6.18) is accepted if the test statistic X̃ is

large. At significance level 𝛼, H1 is accepted if

X̃ > 0.82216 ⋅ 𝜎1∕2
W + Φ−1(1 − 𝛼)(0.12192 ⋅ 𝜋𝜎W∕2m)1∕2 , (6.20)

where Φ−1(⋅) is the inverse cumulative distribution function of a Gau(0, 1) random

variable. In practice, an estimate of 𝜎W will be needed.

Continuing with the same approach as above, an asymptotically unbiased, robust

estimator of 𝜎W is used. Now, 𝜎W = var(|Wi|1∕2)∕0.12192, and hence var(|Wi|1∕2)
can be estimated using the median absolute deviation (MAD):

MAD ≡ med{||Wi|1∕2 − X̃| ∶ i = 1,… ,m} .

Then an asymptotically unbiased estimator of var(|Wi|1∕2) is

̂var(|Wi|1∕2) = (1.4826 ⋅ MAD)2 ,

from which the estimator

�̃�W ≡ (1.4826 ⋅ MAD)2∕0.12192 (6.21)

is obtained and substituted into (6.20).

My approach to constructing this robust statistic to test whether a mean is zero,

using data that may contain large, unpredictable outliers, is somewhat unusual, but

it is statistically advantageous. First, the data {W1,… ,Wm} are made resistant by

transforming to the square-root scale where variability is dampened. Then the trans-

formed data {|W1|1∕2,… , |Wm|1∕2} are used to define a robust test statistic, given

here by the median; see (6.19). Finally, the null distribution is derived, resulting in

a critical region given by (6.20) with the robust estimator (6.21) substituted in. In

the next subsection, the distribution theory derived in this subsection is used in the

context of multiple hypothesis testing, resulting in the Statistical Significance Filter.

6.4.3 Multiple Hypothesis Tests Define the Statistical
Significance Filter

The elements of the unit-free Jacobian are considered as replicates within bands,

which results in n
𝛼

(number of state elements) times K (number of bands) hypothe-

sis tests of {H0jk ∶ 𝜇jk = 0, for j = 1,… , n
𝛼

and k = 1,… ,K}. To test H0j given by

(6.16), jointly for j = 1,… , n
𝛼
, I use a family-wise error rate of 1% and conserva-

tive Bonferroni adjustments to obtain a level of significance, 𝛼 = .01∕(n
𝛼
⋅ K), that

is used in each individual hypothesis test of the null hypotheses, {H0jk}.
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The Statistical Significance Filter only allows estimates {�̃�jk} to get through the

filter if {H0jk} are rejected, respectively. A given state element, j say, is flagged as

problematic in a given retrieval if, simultaneously, the hypotheses H0j1,… ,H0jK are

not rejected. If it consistently happens that under similar (or different) geophysical

conditions, the jth element’s bands fail to get through the Statistical Significance Fil-

ter, that element Xj is flagged as being weakly sensitive to the radiance measurements

Y. Hence, estimation of Xj would be difficult if a very disperse prior distribution in

(6.2) were chosen for it.

In the next section, I apply the Statistical Significance Filter to 30 retrievals from

Japan’s GOSAT instrument that measures atmospheric carbon dioxide, here over

central Australia.

6.5 ACOS Retrievals of the Atmospheric State from
Japan’s GOSAT Satellite

Shown in Fig. 6.1 are 30 locations of retrievals from Japan’s GOSAT satellite, where

the ACOS (Atmospheric CO2 Observations from Space) retrieval algorithm was

used. Specifically, ACOS Version B2.8 was used here, for which n
𝛼
= 112 state ele-

ments were retrieved from n
𝜀
= 2240 radiances spread roughly equally between the

K = 3 bands, namely the OA band, the WC band, and the SC band; see Sect. 6.3.

The soundings are over an arid part of Australia with uniformly high albedo, during

the period from 5 June 2009–26 July 2009 (Source: CIRA, Colorado State Univer-

sity). The methodology and inference is illustrated on the retrieval at one of those

locations, hereafter referred to as Location 1. Results from the other 29 retrievals are

summarised at the end of this section.

A number of the state elements in B2.8 are functions of geopotential height, here

labelled as 1 (top of atmosphere) down to 20 (surface of Earth). Figure 6.2 shows

unit-free ice-cloud Jacobian values in a column of the atmosphere for Location 1;

only those values that got through the Statistical Significance Filter are shown. It

can be seen that for the ice-cloud variable, Jacobian values in the OA band are not

statistically significant at higher altitudes in the atmospheric column, and hence they

are potentially difficult to estimate. Figure 6.3 shows that the Statistical Significance

Filter applied to water vapour (H2O) in the column results in a similar set of plots.

Contrast these to Fig. 6.4, which is for the all-important carbon-dioxide (CO2) vari-

able; only values in the SC band get through the Statistical Significance Filter.

The analysis of the retrieval for Location 1 yields non-significant Jacobian entries

(i.e., forward-model derivatives near zero) in all three bands for the following state

elements:
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1, 2, 3 CO2values near the top of the atmosphere

21 H2O scale factor

23 Temperature offset

105, 107, 109 Albedo slope for the three bands

110, 111, 112 Spectral dispersion offset for the three bands

This behavior is visualised in Fig. 6.5; there, a light (green) stripe in a given band

for a given state element indicates that the corresponding mean is not significantly

different from zero. A light stripe in every band for the given state element indicates

that extra care will be needed when specifying a prior for that element. Each of the

11 elements listed above have a light stripe in every band.

The analysis was carried out on all 30 retrievals, and eight elements of the 112-

dimensional state vector emerged as always having non-significant Jacobian values

in all three bands for all 30 retrievals. They were:

Fig. 6.1 Locations of 30 retrievals from GOSAT using the ACOS Version B2.8 retrieval: 5 June

2009–26 July 2009
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Fig. 6.2 Unit-free Jacobian ice-cloud values that pass through the statistical significance filter in

the OA, WC, and SC bands. Values that did not pass through the filter are not plotted. Location 1

(out of 30 locations)
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Fig. 6.3 Unit-free Jacobian H2O values that pass through the statistical significance filter in the

OA, WC, and SC bands. Values that did not pass through the filter are not plotted. Location 1 (out

of 30 locations)
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Fig. 6.4 Unit-free Jacobian CO2 values that pass through the statistical significance filter in the

OA, WC, and SC bands. Values that did not through pass the filter are not plotted. Location 1 (out

of 30 locations)

location1

20 40 60 80 100

OA

WC

SC

Fig. 6.5 A graphic showing which of the 112 elements of the state vector (horizontal axis) pass

through the statistical significance filter (dark, red colour) and which do not (light, green colour),

for “band” = OA, WC, and SC. Location 1 (out of 30 locations)
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21 H2O scale factor

23 Temperature offset

105, 107, 109 Albedo slope for the three bands

110, 111, 112 Spectral dispersion offset for the three bands

The results indicate a lack of sensitivity of these eight elements in the forward

equation F given in (6.1), for the dry, bright, flat-terrain conditions found over cen-

tral Australia. Different land surfaces and atmospheric states would almost certainly

result in different elements being identified.

6.6 Discussion

The Jacobian matrix K is the first derivative of a vector-valued function F(x) of a

state vector x. Consistently small elements in the jth column of K indicate that the

jth element will be difficult to estimate (predict) based on data, Y, alone.

If prior information, as well as the data, is used to predict the state vector, this

research indicates that acceptable precision for estimating this jth element may

require the prior variance to be tightly constrained. For example, the element that

is the H2O scale factor is tightly constrained physically in the prior. Thus, a retrieval

of that element may cause no problem, even though its column in K fails to get

through the Statistical Significance Filter. Regarding the 20 CO2 elements that make

up the CO2 profile in the atmospheric column, the retrievals analysed here show the

importance of the strong CO2 band (SC) to its estimation. The best result would be

if all 20 ⋅ 3 = 60 hypothesis tests were rejected; at Location 1, only 17, all in the SC

band, were rejected (Fig. 6.4).

Current versions of ACOS-like retrievals have between 40–50 state elements. The

research presented here, on the statistical properties of the Jacobian, would allow a

comparison of different versions through the behaviour of their unit-free Jacobian

values. Common to all of these versions is 20 CO2 elements, and the respective

estimates of the means in each of the three bands (OA, WC, SC) can be compared

across versions.
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Chapter 7
All Realizations All the Time

Clayton V. Deutsch

Abstract Geostatistical simulation of mineral deposits is becoming commonplace.
The methodology and software are well established and professionals have access
to the training and checking steps required for reliable application. Managing
multiple realizations, however, remains daunting and unclear for many: (1) the
non-uniqueness of multiple realizations is disturbing; (2) many calculations
including mine planning algorithms are aimed at a single block model; and (3) there
are concerns of excessive computational requirements. The correct approach to
managing multiple realizations is reviewed: consider all realizations all the time and
base decisions on the appropriate expected value. The principles of simulation and
decision making are reviewed for resource management.

7.1 Introduction

In the context of modern geostatistics, Monte Carlo Simulation (MCS) or simply
simulation can be summarized by (1) the formulation of a problem with input
variables, a transfer function and response variables, (2) the simulation of realiza-
tions of the input variables, (3) the application of the transfer function to compute
the response variables of interest, and (4) the assembly of the simulated response
variables into a probability distribution. The distribution of response variables can
be used to understand uncertainty and, perhaps, for decision making.

The input variables could be the rock type and grade on a suitable grid, the
transfer function could be the calculation of resources and the response variables
could be the resources or reserves expressed as tonnages, grade and quantity of
metal. A comprehensive simulation study could expand the input variables to
include modeling parameters, price, costs and other economic and engineering
parameters. The transfer function could be a model of the entire mine planning and
economic forecasting process. The response variables could be key performance
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indicators such as net present value. The probability distributions of the input
variables must be established prior to simulation; typically by a mathematical model
such as the multivariate Gaussian model. The transfer function must be known to
process realizations of the input variables to response variables of interest.

The key operation in simulation is the drawing of realizations from a specified
probability distribution. This is done in a fair manner for unbiased results. Pseu-
dorandom number generators generate numbers that have properties very close to
random numbers, but are indexed to a seed. These numbers are uniform between 0
and 1, yet our input distributions are rarely uniform so the corresponding quantile is
drawn from the distribution we are simulating from, z = F−1(r) where F(•) is the
cumulative distribution, z is the simulated value and r is the random number.

Consider a simple example of three dice. The input variables are the three
numbers showing on the faces of three fair cubic dice. The cumulative distribution
of each input variable has six equal steps. The transfer function is the summation
operator. The response is the sum. As illustrated on Fig. 7.1, one realization is
generated by three random numbers, e.g., 0.69, 0.062 and 0.78 leading to a real-
ization of 5, 1 and 5. Simulation is repeated for multiple realizations. The response
distribution shown is the result for 100 realizations. There are many points that
could be reinforced from this small example. The distribution of the input variables
must be known prior to simulation; simulation is primarily transferring input
variable uncertainty through a transfer function to response variable uncertainty.
The space of uncertainty in this example is only 63 = 216, which is a very small
number, but the space of uncertainty is practically infinite in geological modeling
where there are many variables at many locations. Categorical variables require an
arbitrary ordering. Finally, it would be wrong to focus on one realization; in this
example we should not conclude that the first and third dice are likely high numbers
and the second die is a low number. We only understand the result of simulation by
considering an ensemble of realizations. This is a critical point.

Although many theoreticians and practitioners understand this point, it is not
emphasized enough. Most software is aimed at processing one block model at a
time. Resources are often presented as a single value instead of a distribution.

Fig. 7.1 Simulation of the outcome on three dice (left). Histogram of the sum of the outcomes on
three dice (right). One hundred realizations are shown
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There are many examples of experimental mathematics in history. The scientists
on the Manhattan Project are credited with the formulation and popularization of
Monte Carlo simulation (MCS) or simply simulation. There are interesting his-
torical references and internet resources. The framework of transferring input
uncertainty to response variable uncertainty is often referred to as simulation.
Adjectives such as Monte Carlo, stochastic or conditional are sometimes added.
The outcomes of simulating are called simulations or realizations.

The pioneers of simulation suspected where we would take the method. The
closing paragraph in Hammersley and Handscomb (1964) is telling: Usually there
are many nodes and possible paths, so many that a complete enumeration of the
situation is impossible. This suggests a fruitful field for sampling and search
procedures, but as yet little Monte Carlo work has been done here. There are
challenging problems here for research into Monte Carlo techniques on multi-
variable problems. They knew we had to sample a reasonable set of realizations
from the practically infinite space of uncertainty. They knew we would be chal-
lenged by multiple dependent variables. They did not know that 50 years later
many practitioners would still struggle managing an ensemble of realizations.

This chapter is organized into five main sections supporting a case to use all
realizations all the time. First, some principles of simulation are presented to set the
context. Second, principles of decision making in presence of uncertainty are dis-
cussed to establish that earth scientists are not alone. Thirdly, some details of
geostatistical simulation are presented to highlight important differences from
simulation of independent variables. Fourthly, some details of resource decision
making are presented to highlight important differences from the general principles
including the information effect. Finally, some possible alternatives to using all
realizations all the time are reviewed. A case is made to consider the correct
approach, that is, consider all realizations all the time and base decisions on the
appropriate expected value when required.

7.2 Simulation

In the early days of simulation there was a particular concern related to the pseu-
dorandom numbers applied in the simulation. A large part of early texts on simu-
lation is devoted to the generation of pseudorandom numbers. This concern has
largely been addressed and there is little practical concern with the pseudorandom
number generators used in most software.

Another concern is in replacing the reality with a numerical model. Many early
applications of Monte Carlo simulation were directed at solving integration and
other equations where the transfer function is a very close representation of the
physical situation. Examples of well represented physical systems are the study of
radiation shielding and reactor criticality. The simulation tracks simulated particles
through collisions where the particles are absorbed, scattered or split according to
physical principles. There were few concerns about this simulation due to the close
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correspondence between the numerical setup and the physical reality. Increasingly,
complex non-linear systems are modeled with empirical statistical models causing
more concern.

It is impossible to model the details of the natural geological processes that led to
the deposit under study. Empirical statistical models are required. Geostatistical
models do not represent the original depositional and diagenetic processes.
Although all models are wrong (Box and Draper 1987) they can be useful if
assembled carefully with established workflows and appropriate checking.

The premise of simulation is to construct many realizations that are equally
likely to be drawn. Realizations and responses more probable than others will be
drawn more often. A fundamental principle of simulation is to consider many
realizations. One hundred realizations may not be enough. The average of the one
hundred realizations on Fig. 7.1 was 9.6, yet the true expected response for that
particular process is 10.5. This suggests that the number of realizations should be
quite large. Indeed, early practitioners of simulation considered that thousands of
realizations were required unless some form of stratified or directed sampling could
be implemented. Of course, the problems considered early on were small compared
to the complexity of modern geological modeling where 10s of variables at 10s of
millions of locations are considered. In many cases, the professional and compu-
tational effort of generating more than 100s of realizations would be better spent
improving the model. This claim is supported by two observations: (1) the vari-
ability at multiple locations partially cancels out, and (2) there is too much
uncertainty in the model to expend resources on thousands of realizations.

Another fundamental principle of simulation is that all realizations are consid-
ered in downstream calculations. One application is to pass all realizations through
the transfer function to construct a distribution of responses, for example, resource
estimates. The realizations could be passed through a decision tree structure to help
support a decision. Finally, the realizations could all be used in the optimization of
decision variables. Incorrect or suboptimal decisions could be taken if too few
realizations are considered.

The concept or ranking and choosing a few realizations is motivated by the large
computational cost running realizations through a complex full physics transfer
function. The processing the realizations through a simplified transfer function
could rank the realizations and permit choosing a smaller number for the complex
full physics transfer function. Decision making and optimization applied with one
or a few realizations leads to over fitting to those realizations.

In some cases, the transfer function and decision variables are known. For
example, calculating the recoverable reserves above a specified economic cutoff. In
other cases, aspects of the decision must be optimized. For example, deciding the
ultimate pit limits, choosing drill hole locations or deciding on the destination of
mined material. If the transfer function and decision variables are known, then a
probability distribution of each critical response variable is assembled from the
realizations where the result of each realization is equally weighted. This distri-
bution provides a direct understanding of uncertainty. There are many ways of
summarizing the uncertainty. Considering the 0.1, 0.5 and 0.9 quantiles is common
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in petroleum applications, but considering the probability to be within 15% of
expected is a reasonable measure of uncertainty.

If aspects of the decision are not finalized, then decision making and opti-
mization must be considered before calculating a distribution of the critical
response variables.

7.3 Decision Making

Decision making in presence of uncertainty has long been studied (Bernoulli 1954;
Kochenderfer 2015). The general framework of decision making could be sum-
marized by (1) define clearly stated objectives within a value system, that is, a
measure of utility (often profit), (2) enumerate the alternative decisions that could
be taken—perhaps in a decision tree, (3) compute the expected utility for all
alternatives, and (4) choose the alternative that maximizes expected utility. This
framework becomes confounded with large one-time decisions or significant
unknown unknowns that defy straightforward quantification. Grade control and
mine planning decisions are made repeatedly within a clear economic framework.

Consider a recently loaded truck. The expected profit of the material if the truck
goes to the mill would be computed by the average over all realizations, say $6.75
per tonne. The expected profit if the material goes to the waste dump is the average
of a similar calculation over all realizations, say −$2.00 per tonne. With no other
information, the truck should be sent to the mill. There are complicating factors
including sequencing, stockpiling, limited milling capacity, but the principle stands.
Decisions should be based on expected values as late as possible.

Decisions are based on the average over all realizations and not on one particular
realization. The realizations are simply a means to represent uncertainty. One
realization should not be chosen for decision making because that would mean
ignoring other equally likely possibilities; the expectation is the only way to resolve
the ambiguity of multiple realizations. The decision is also made as late as possible.
Calling a block of material in a long term resource model ore may be convenient as
an interim decision for planning purposes, but this decision would certainly be
revisited with production sampling at the time of grade control.
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There is another aspect to taking the expected value as late as possible. The
expected value is calculated with the last numbers considered: utility or profit. The
expected value should not be taken earlier. The correct decision would not always
be found if the grades were averaged and the decision based on the utility computed
from the expected grade. Many calculations are non-linear and the utility computed
on the average of realizations is not the average (expected) utility computed on the
realizations.

The distributions of payoff/utility for each possible decision are evaluated to
determine the best decision. Some decisions may be completely dominated by
others, that is, the best possible payoff of a dominated decision is less than the worst
payoff of an alternative. All dominated decisions should be rejected. Some decisions
are stochastically dominated by others (Levy 2016). That is, each quantile on the
payoff distribution is less than the same quantile on an alternative. Decision makers
should also reject all stochastically dominated decisions. The expected utility would
be considered when multiple decisions remain to establish the optimal one.

A challenge in many geological resource application problems is that the deci-
sion involves many different options. The precise sequence of extraction or the
position of all production wells is combinatorial and all options cannot be con-
sidered. Optimization algorithms are implemented where the objective function is
the appropriate expected value of profit or utility over all realizations. The distri-
bution of uncertainty in utility is only known once optimization is complete.

The utility function quantifies our position on risk; however, it is not simple to
establish the utility function in practice. One approach based on the idea of the
efficient frontier could be considered (Francis, and Dongcheol 2013; Hanoch and
Levy 1969). Decisions are optimized based on maximum expected profit and
minimum risk. The ones that are not dominated are retained as the efficient frontier.
Judgement could be used to evaluate the differences between these decisions and to
choose a path forward.

7.4 Geostatistical Simulation

The simulation of mineral deposits has evolved significantly over the last twenty
years. The simulation is often hierarchical and multivariate with unequally sampled
data and parameter uncertainty. A variety of techniques are used to create
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realizations that reproduce all available data and represent the variability that may
influence the planning and decision making process (Caers 2011; Chilès and
Delfiner 2012).

The scope of this chapter is not to present details of geostatistical simulation
(Deutsch and Journel 1998; Goovaerts 1997). The main steps in managing the
results will be reviewed. The transfer functions of greatest interest are resources and
reserves within reasonably large volumes, uncertainty versus data spacing, uncer-
tainty and variability in mine planning and sometimes optimization of blending and
other engineering designs. Parameter uncertainty is important for the resources
within large volumes. Data uncertainty is important with unequally sampled vari-
ables (common with geometallurgical and geomechanical variables). The steps in
geostatistical simulation could be divided into five unit operations.

• Model Setup involves the formulation of the modeling workflow. A hierarchi-
cal modeling of the deposit limits, rock types and multiple grades is specified.
The grid node spacing relative to production volumes of interest must be cho-
sen. The model setup defines the software algorithms and input parameters for
each step. The number of realizations is chosen at the start to ensure that there is
one realization of parameters for each realization of data for each realization of
the deposit. 100 or 200 realizations is common.

• Parameter Uncertainty amounts to simulating realizations of all of the mod-
eling parameters identified in the Model Setup including those for gross volume
uncertainty, rock type proportion uncertainty, histogram uncertainty, variogram
uncertainty and multivariate relationship uncertainty. The multivariate spatial
bootstrap is widely used. The uncertainty in some global parameters may be
specified by experience.

• Data Uncertainty involves two main aspects. The first is sampling realizations
of the available data if the uncertainty in the data is considered important. For
example, there may be a 10% relative error in the data based on the data
collection and processing. A spatial bootstrap could be considered to get the
uncertainty in the mean error, then realizations of the data would be assembled.
The second aspect, if required, is to fill missing data (data imputation) and
downscale data with a larger support than the rest of the data (Barnett and
Deutsch 2015).

• Simulate Realizations is the operation where deposit models of all variables are
assembled. These would follow the steps identified in the Model Setup. There
would be one realization for every data and parameter realization. These are
constructed hierarchically and with the correct dependencies by rock-type and
between all variables. These realizations have to be checked to the greatest
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extent possible. The process of conditioning the realizations will update the
prior uncertainty quantified in the second step. A schematic illustration of the
realizations is shown below.

• Process in Transfer Function involves evaluating every realization for all cal-
culations of interest. Local uncertainty can be computed for any block size.
Resources can be computed for the entire deposit, within a mine plan or for
different elevations. An ultimate pit could be computed for every realization. The
economic performance of each realization could be evaluated. The uncertainty in
each response variable is known non-parametrically through the distribution of
responses. The expected response can be computed as an average of the responses.

The uncertainty is directly observed. It is common to assess sensitivity by
indexing each realization by summary input parameters, for example, the gross rock
volume, proportions of rock types, average grades, variogram ranges, and corre-
lation coefficients. Then, the relationship between the input parameters and the
response variables can be fit by a response surface and the sensitivity evaluated and
presented by tornado charts. Further post processing is discussed below.

7.5 Resource Decision Making

All realizations should be used all the time. Anything that can be computed on one
block model can be computed on one hundred, then the distribution of the response
variable of interest can be assembled and summarized by expected value and other
statistics. If a decision must be made, then the decision variable (economic value for
ore, leach, dump…) can be computed on all realizations (Da Cruz 2000; Tversky
and Kahneman 1992). The expected response determines the optimal decision.

When a mine plan is specified, then it is straightforward to evaluate all real-
izations through the plan and observe the uncertainty in key response variables due
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to the present state of incomplete knowledge. Sometimes the plan is not fixed and
the realizations are to be used for planning and optimization. In principle this is not
difficult. The objective function is the expected performance over all realizations.
Some realizations may perform poorly with a particular plan and some better, but it
is the expected value of the performance over all realizations that is the function to
optimize (Pyrcz and Deutsch 2014). Considering the concept of the efficient
frontier, the risk may be penalized to consider decisions that more reasonably suit
the organizations position on risk.

Fixing a production plan and running multiple realizations through the plan can
be somewhat pessimistic since this assumes the plan cannot change in the future. In
fact, more data becomes available as mining proceeds and the plan can adapt to the
new knowledge.

Additional drilling is done to improve delineation ahead of production (Dam-
sleth et al. 1992). Production sampling improves short-term mine planning and
leads to a better understanding of the deposit. Uncertainty will resolve itself as
production takes place and the mineral deposit is exposed for our greater under-
standing. The life-of-mine plan is updated on a regular basis (often yearly). A base
case long term plan can be established with the current uncertainty and different
options explored. The value of future information could be determined by simu-
lating the additional data; this was the idea of the Simulated Learning Model (Cuba
et al. 2014). There is flexibility for the plan to adapt to the future, but not change the
past.

Flexibility is reduced as mining takes place. There is value in future flexibility
(Stirling 2012). A slightly poorer decision, based on currently expected perfor-
mance, with greater future flexibility may be better than a slightly better decision
with less flexibility. The simultaneous optimization over multiple realizations
should consider this flexibility.

Optimizing over all realizations simultaneously and considering all realizations
through all engineering designs is correct, but difficult for some practitioners to
accept (Bratvold et al. 2003; Guyaguler and Horne 2001; Wang et al. 2012). The
computational challenges are exaggerated. The computers now are more than 100
times faster than they were about 10 years ago. Also, the ability to use multiple
cores and GPUs means that we do not need to compromise much on the complexity
of our calculations to consider all realizations all the time. The attraction of a single
numerical geological model is undeniable. Most software does not permit easy
visualization of multiple realizations. Although the ensemble of realizations should
be managed together, the non-uniqueness of multiple realizations is disturbing. The
simplest alternative is to use a kriged model for planning and all reporting purposes;
the simulated realizations are reserved for uncertainty statements and an under-
standing of variability.
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7.6 Alternatives to All Realizations

Some simple summary models are useful. The probability to meet an economic
threshold is useful; high probability is good. The local probability to exceed, say,
the global 0.75 quantile is also useful to identify the areas that are surely high: if
this probability is high (say over 0.9), then the area is surely high. The local
probability to be below, say, the global 0.25 quantile is useful to identify areas that
are surely low: if this probability is high (say over 0.9), then the area is surely low.
The local variance or the probability to be within 15% of expected are also useful
summary measures.

Another approach is to collapse uncertainty into a few summary measures and
base planning on them. For example, multiple realizations could be summarized by
proportions of ore and waste over multiple realizations within reasonable planning
volumes. One could even consider that each block has a proportion of ore and a
proportion of waste. The block will be found to be all ore or all waste in the future;
the proportions are simply used to collapse uncertainty.

Summarizing multiple realizations is useful. The summaries make use of the
multiple realizations. Plans optimized on a summary are never as good as plans
optimized over all realizations simultaneously (primarily due to the complexity and
non-linearity of most planning operations); however, it may be the only practical
approach offered by the available software.

The realizations are equally probable; there is no right one and there is no P50
one and we have no idea if one is closer to the truth than the others. A dangerous
practice emerged in the early days of simulation: run the realizations through a
quick to calculate transfer function, rank the realizations by the quick-to-calculate
response, then consider only selected realizations (say, the P10, P50 and P90) in the
“real” more complicated transfer function.

In general, individual realizations should never be singled out for calculations.
There is much about a single realization that depends on the random number
generator and that is not real. Any one realization could be misleading. There are
some specific calculations that could be done with one realization because the
variability at specific locations (that we do not trust) averages out over multiple
realizations. Blending studies and drilling spacing studies are two examples. It may
be enough to run one or a few realizations through a simulation of the homoge-
nization steps to understand the probability of plant upsets and undesirable cir-
cumstances. The variability at multiple locations reflects the overall variability and
the specific location/time is not critical.

In almost all cases, the simplest and most robust approach is to consider all
realizations and take expected values at the end to report a single result.
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7.7 Concluding Remarks

Monte Carlo Simulation is a well-established experimental mathematical approach
to transfer uncertainty in input geological and engineering variables through to
response variables. The primary aim of this chapter was to point out the danger of
using one realization instead of an ensemble of realizations. One realization may
fall near the middle based on a quick-to-calculate response variable and yet it could
be unusually high in some places and low in others. Planning on one realization
could be misleading. The nonlinearity and complexity of many real response
variables requires the ensemble of realizations to be considered for proper planning
and uncertainty assessment. All realizations all the time – anything less will not
give correct results.
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Chapter 8
Binary Coefficients Redux

Michael E. Hohn

Abstract Paleoecologists and paleogeographers still make use of binary coeffi-
cients in multivariate analysis decades after being introduced to the geosciences.
Among the main groups, similarity, matching and association, selecting a particular
coefficient remains a confusing and sometimes empirical process. Coefficients
within groups tend to correlate highly when applied to datasets. With increasing
interest in a probabilistic approach to grouping taxa or faunal lists, the Raup-Crick
measure of association is closely related in purpose and empirically to coefficients
of association and works well in cluster analysis and ordination. A reasonable
strategy is to compare dendrograms and ordinations calculated with several coef-
ficients, care being taken to select coefficients with different performance charac-
teristics. Above all, the practitioner should understand the purpose of each
coefficient.

8.1 Introduction

Founding of the International Association for Mathematical Geology resulted in
part from the increased use of quantitative methods in the geosciences and simul-
taneously with developments in computer hardware and availability. This is no less
true for paleontology and paleoecology, fields of endeavor characterized by
observing, describing, and synthesizing. With the 1960s and 70s came the devel-
opment of large databases of fossil occurrences from which researchers could
formally infer periods of rapid evolution and episodes of major extinction. Patterns
of extinction through time could be simulated with random number generators.
Paleoecologists studied whether fossil communities persisted through time and the
structure of these communities.

This was a period of synthesis. The Treatise on Invertebrate Paleontology
(Moore et al. 1953–2015) provided a need for stable taxonomies, a confidence that
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such a classification could be created, and the motivation for explaining trends in
evolution.

Multivariate statistical methods developed in other fields became tools for
reducing large datasets to manageable size while providing some degree of
objectivity in the analysis. Cluster analysis, multidimensional scaling, factor anal-
ysis, and related eigenvector methods became familiar tools to the quantitatively-
inclined geologist.

All methods required a measure of similarity, correlation, distance, dissimilarity,
or association expressed as a coefficient. Eigenvector-based methods such as factor
analysis and principal components analysis (PCA) by definition utilize covariance
or correlation among variables (R-mode) and implicitly Euclidean distance in
displays of sample coordinates (Q-mode). In contrast, cluster analysis, multidi-
mensional scaling, and principal coordinates analysis (Gower 1971) allow use of a
wide range of coefficients, but also require the user to decide which coefficient to
use.

Multivariate statistical methods introduced to paleontologists in the 1960s and
70s continue to be used for studying the distribution of fossils in space and through
time. With the existence of large databases of fossil occurrences, binary coefficients
remain important for comparing collections made over many decades by many
individuals.

It still remains to the practitioner to select one coefficient out of the many
proposed over the course of more than a century now. Given no clear criterion,
some elect to use several coefficients to see whether they affect results.

There is certainly a rich and extensive literature related to the purpose and
performance of coefficients, both within the paleoecology literature and in the
scientific and engineering literature at large as new applications are found for these
coefficients. Surveys of existing measures range in approach, from considerations of
the conceptual basis for each, to how well they satisfy the purpose, how they
behave relative to each other, to how well they behave relative to a goal set by the
author, whether or not they achieve a clear criterion such as satisfying metric
properties (Gower and Legendre 1986), which seem to give similar results with
each other or are correlated; and above all, whether coefficients include mutual
absences. That last criterion might appear to be a small detail compared to the other
comparisons but it introduces a fundamental question about the role that chance
plays in the distribution of fossils in the collection under study.

This chapter reviews the criteria and arguments used in the past four decades in
comparing binary coefficients. In this chapter, I will first group coefficients into
three families based on shared formulations and behavior; discuss how such factors
as abundance of taxa or poor sampling can affect coefficients; consider metric
properties of coefficients; look at probability-based coefficients; apply several
coefficients to paleoecological data; and sum up where we are today compared to
four decades ago.

I will introduce coefficients as I go along, using what has become standard
notation for binary coefficients. Assume we have sampled taxa from N locations.
Then for a given pair of taxa:
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a = number of co-occurrences
b = number of locations where taxon 1 occurs and taxon 2 does not
c = number of locations where taxon 2 occurs and taxon 1 does not
d = number of locations where neither taxon is observed
N = a+ b+ c+ d.

8.2 Empirical Comparisons and a Taxonomy

As the use of cluster analysis has expanded beyond the biological and geological
sciences, papers have appeared in the literature that try to get a handle on the
multitude of coefficients by comparing the way they behave relative to each other or
to a criterion based on an application. Although outside the field of paleoecology,
these publications often cast a wide net in gathering coefficients and present surveys
purely empirical in nature. In the general area of pattern recognition, Choi et al.
(2009) compute correlation coefficients among 76 binary coefficients for several
types of random or structured datasets, observing that pairwise correlations between
coefficients can be very high, depending in part on the pattern and number of
presences.

In a companion paper, Choi et al. (2010) created random binary datasets,
computed values for each coefficient, averaged the trials to create a dendrogram of
the 76 coefficients. They identify eleven clusters, some with only a single coeffi-
cient, several with two to six members, and two large clusters with over twenty
members. The second largest includes such frequently-used coefficients as the
Jaccard, Otsuka, Dice, and the Bray and Curtis, where:

CJaccard = a ̸ a+ b+ cð Þ
COtsuka = a ̸

p
a+ bð Þ a+ cð Þ½ �

CDice = 2a ̸ 2a+ b+ cð Þ
CBray&Curtis = b+ cð Þ ̸ 2a+ b+ cð Þ

That these coefficients are correlated highly in an absolute sense should come as
no surprise given the algebraic relationships between several. For example:

CDice = 1 −CBray andCurtis

converting a dissimilarity coefficient (Bray and Curtis) into a coefficient expressing
similarity. The difference between the Dice and Jaccard coefficients is in weighting
the mutual occurrences. Remember that many coefficients were defined as measures
of similarity, dissimilarity, or association rather than as input to clustering and
ordination routines. Their creators had specific reasons for selecting and weighting
the terms—a, b, c, or d—in the context of a study and according to some research
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goal. In many cases they might have been fully aware that their coefficient was
similar to one in the literature, but their coefficient measured what they wanted to
measure.

The largest group of coefficients includes a subset with among others the Simple
Matching (called the Sokol and Michener in their paper), Rogers and Tanimoto, and
Hamann coefficients, where:

CSimpleMatching = a+ dð Þ ̸ a+ b+ c+ dð Þ
CRogers and Tanimoto = a + dð Þ ̸ a+ 2 b+ cð Þ + d½ �

CHamann = a+ dð Þ− b+ cð Þ½ � ̸ a+ b+ c+ dð Þ

Notice that these coefficient include the term d for mutual absence. The Rogers
and Tanimoto coefficient is the same as the Simple Matching but for increased
weighting for mismatches in the denominator and the Hamann can be expressed in
terms of the Simple Matching by substituting N − (a + d) for (b + c).

A third, small group includes three similar coefficients, two derived from the
familiar χ2 statistic, including the Phi coefficient:

CPhi = ad− bcð Þ ̸
p

a+ bð Þ a+ cð Þ b+ dð Þ c+ dð Þ½ �=p
χ2 ̸N
� �

These coefficients express correlation; in fact CPhi is the correlation coefficient
for binary data and can be calculated in the same way as a correlation coefficient for
non-binary data.

Related to these coefficients is a large cluster characterized by a numerator
containing the term (ad – bc) or ad or (a + d). Examples are the Yule’s Q (or simply
Yule), Ochiai 2, and Gower:

CYule = ad− bcð Þ ̸ ad+ bcð Þ
COchiai2 = ad ̸

p
a+ bð Þ a+ cð Þ b+ dð Þ c+ dð Þ½ �

CGower = a+ dð Þ ̸
p

a+ bð Þ a+ cð Þ b+ dð Þ c+ dð Þ½ �

Similar to the matching coefficients, these and the Phi express agreement
between two entities based on mutual presence and absence, but adjusted for rel-
ative abundance of the entities, analogous to the centering and scaling in calculating
the correlation coefficient and Phi.

These four groups account for most of the binary coefficients one is likely to
encounter in the geosciences, including ones discussed below. If we lump the last
two clusters, a simple taxonomy of coefficients has as groups:

1. Similarity coefficients, computed by the number of mutual occurrences, scaled
by the total number of features occurring in one or the other entities. In pale-
oecology, entities can be taxa and features can be locations. Some coefficients
can express similarity by calculating b + c rather than a, but the coefficient can
be converted to similarity by subtracting from 1.
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2. Matching coefficients, generally expressing agreement by including both
mutual occurrences and mutual absences d. Generally these are scaled to yield
values between 0 and 1, but not always. For instance, the City Block or
Hamming coefficient, b + c is not scaled. These are sometimes called distances
(e.g. Hohn 1976) but as they are not Euclidean, this is not strictly correct.
Although expressing disagreement, coefficients such as the City Block can be
converted to matching coefficients.

3. Coefficients of association, expressing how entities tend to vary together,
adjusted for abundance or rarity.

This taxonomy agrees with that in Hohn (1976) except I am using a more
rigorous definition of a distance coefficient by not including the City Block metric
in that group. However, √(b + c) is a distance.

Even when two coefficients are not mathematically equivalent, they can be
related monotonically (Gower and Legendre 1986) and give virtually the same
results when used in cluster analysis or nonmetric multidimensional scaling. In lieu
of selecting a single best coefficient, many researchers perform multiple cluster
analyses or ordinations to observe whether results change with choice of coefficient.
In such an exercise, one wants to make sure to select coefficients with different
properties or behaviors.

8.3 Effects of Rare and Endemic Taxa

In an empirical study of eight similarity coefficients, Jackson et al. (1989) used a
dataset comprised of 25 species of fish observed in 52 lakes in south-central
Ontario, Canada. One feature that distinguishes this dataset is that species range
from very common to rare, from as many as 47 lakes to as few as 2. The eight
coefficients are the Jaccard, Dice, Simple Matching, Rogers and Tanimoto, Otsuka
(“Ochiai” in their paper), Phi, Yule, and the Russell and Rao:

CRussell and Rao = a ̸ a+ b+ c+ dð Þ

Unsurprisingly, the Jaccard and Dice gave nearly identical results in a cluster
analysis. The same held for the Simple Matching and Rogers and Tanimoto
coefficients. Results for the Otsuka were close to the Jaccard and Dice. The den-
drogram for Russell and Rao coefficient shows almost no clusters although the
general ordering of the species was very similar to the Jaccard, Dice, Simple
Matching, Rogers and Tanimoto, and Otsuka.

They also performed principal coordinates analysis for each of the eight coef-
ficients. They observed that the order of species on the first axis correlated highly
with the number of lakes in which each occurred for all but the Otsuka, Phi, and
Yule coefficients. Some of the correlations are very high, over 0.99 for the Simple
Matching and Rogers and Tanimoto. In other words, the first axis corresponded to
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the frequency of each species, a general “size” factor in their words. Species
abundance correlated poorly with the two major principal coordinates axes for the
two coefficients of association, the Phi and Yule. The Otsuka showed some effect of
species frequency. Nonmetric Multidimensional Scaling gave similar results. The
order of species in dendrograms from cluster analysis also showed this frequency
effect for the similarity coefficients; not so for the two coefficients of association.

They concluded that similarity coefficients—what they term co-occurrence
coefficients—are heavily influenced by frequency, whereas the implicit centering
that takes place in calculating the Phi and Yule mitigate this effect. They also
conclude that the Otsuka formulation does a centering that partially eliminates the
frequency effect.

8.4 Adjusting for Poor Sampling

In the context of Q-mode analysis—that is, the comparison of samples rather than
the R-mode comparison of taxa—Alroy (2015a, b) looks at the effect of uneven
sampling and consequent uneven sample size on four binary coefficients: the
Forbes, a modified Forbes coefficient, Simpson’s coefficient, and the Dice, where
the Forbes coefficient is:

CForbes = aN ̸ a+ bð Þ a+ cð Þ½ �

and the Simpson:

CSimpson = a ̸ min a+ bð Þ, a+ cð Þ½ �

Alroy modifies the Forbes coefficient in two ways. First, he argues against
including mutual absences and therefore substitutes n for N where n = a + b +
c. Secondly, he adds constants to correct for an upward bias in the coefficient:

CForbesMod = a n+
p
nð Þ ̸ a+ bð Þ a+ cð Þ + a

p
n+1 ̸2 bc½ Þ�

Although there is no theoretical basis for these constants, the resulting coefficient
does accomplish what he sets out to do. In several analyses of real and simulated
datasets, he shows that both versions of the Forbes coefficient and the Simpson far
outperform the Dice. This is consistent with results obtained by Jackson et al.
(1989) in which coefficients such as the Dice are influenced very much by species
frequency in R-mode analysis.

Alroy clearly favors the modified Forbes over Simpson’s coefficient. However
results for both in cluster analysis and principal components analysis are very
similar and would probably lead to the same conclusions based on the relative
positions of samples on dendrograms and principal coordinates axes. This is no
surprise given that the Simpson was formulated to account for uneven sample size.
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Although Alroy dismisses probabilistic coefficients and coefficients of associa-
tion in part for including mutual absences, it would be interesting to compare them
with the two Forbes and the Simpson coefficients with his datasets.

These papers address the problem of working with datasets of mixed, perhaps
unknown sampling regimen. The difference between otherwise identical faunal lists
might be the time or skill in observation. This is perhaps less of an issue when a
dataset comes from a single sampling campaign, but in these days of large data-
bases compiled from many studies this is a problem to be taken seriously. Alroy’s
results argue for careful selection of a coefficient and suggest that analysis with
multiple coefficients might be beneficial if sampling issues are suspected.

Alroy points out that the Forbes coefficient has fallen out of use over time.
However, since the publication of his papers, Halliday et al. (2017) used his
modified form of the Forbes coefficient in cluster analysis of Late Cretaceous
vertebrates across India. Although the papers by Alroy and by Halliday et al.
describe ordination and cluster analysis of localities, the same problem of uneven
sampling exists in analysis of taxa and their arguments and findings should have
application in R-mode analysis as well.

8.5 Metric? Euclidean?

Some attention has been paid in the past with the question whether a dissimilarity
coefficient is metric, Euclidean, or neither. A coefficient is metric if for every triplet
(i, j, k) the following inequality holds:

Dij +Dik ≥Djk

On the face of it, methods such as principal coordinates analysis require a
dissimilarity that is Euclidean. In actuality, Gower and Legendre (1986) and others
have observed that departures from strict Euclidean geometry for many coefficients
are generally small. Adding a constant to a distance can sometimes take care of this
problem. It sometimes works to use the square root of the distance. They include a
table showing that many familiar similarity coefficients, C, are metric but not
Euclidean if converted to a dissimilarity coefficient 1 – C and even more are metric
and many Euclidean if √(1 – C) is calculated. They consider most of the binary
coefficients listed above with the notable exception of Yule’s coefficient.

Zhang and Srihari (2003) discuss the properties and behavior of similarity,
matching, and coefficients of association, including metric properties, equivalent
measures of similarity and dissimilarity, discriminatory capability of the coeffi-
cients, and the effect of weighting mutual absences. Like many authors they prefer
metric coefficients. A large proportion of papers in the geosciences utilize non-
metric multidimensional scaling or cluster analysis with no requirement for the
coefficient to be Euclidean or even metric. Reasons for selecting a method for
multivariate analysis no doubt vary among authors, ranging from convenience or
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familiarity, available methods in a statistical package, to wanting to avoid the
stronger requirements of eigenvector-based methods. However as Gower and
Legendre (1986) point out, proportionally small deviations from geometric
assumptions of an eigenvector method affects the results very little.

8.6 From Expected Values to Null Association

We can look at the diversity of coefficients along a spectrum from similarity
coefficients at one end to coefficients of association at the other. In comparing
faunal lists, for instance, similarity coefficients count the number of species in
common between two locations normalized by the number of species found in one
or the other. In other words, they can be said to measure overlap in faunal lists in a
Q-mode analysis or geographic overlap of two taxa in an R-mode analysis.

Midway along the spectrum are coefficients that compare an observed value with
the expected value. As described by Alroy (2015a), the chance of a species appearing
in the faunal list at one site is (a + b)/N, the chance at a second site (a + c)/N, and the
chance of being found in both is [(a+ b) (a+ c)]/N2. Therefore, the number of species
expected to be found in both is [(a+ b) (a+ c)]/N and the ratio of the observed number
a to the expected number is aN/[(a + b)(a + c)].

Hohn (1976), Raup and Crick (1979) and others have argued that cluster analysis
or ordination should consider whether observed overlaps in faunal lists in paleo-
geographic studies or occurrence of taxa in paleoecological studies represent any-
thing more than a random distribution of taxa through space. Of course there is no
denying that species respond to environmental and geographic variables, but the
question is how to separate similar distributions that arose by chance from those
that represent nonrandom processes.

Within a biological context, Hubálek (1982) surveyed forty-three coefficients,
eliminated about half based on algebraic equivalence, mere difference in scale, or
failure to meet several criteria, and compared the rest through product-moment
correlation and cluster analyses. Although one of these criteria is monotonicity with
√(χ2), Hubálek stops short of recommending a coefficient such as Phi that is related
directly to a test of significance in association.

In contrast, I proposed (Hohn 1976) that we should pay more attention to the Phi
coefficient. Raup and Crick (1979) derive the formula for exact probabilities equal
to Fisher’s Exact Test for independence in 2 by 2 tables, an alternative to the usual
χ2 test. They modified what is essentially a Phi coefficient in comparing faunal lists
by using a Monte Carlo method to weight taxa according by abundance. The result
is a coefficient that like Phi and similar coefficients includes mutual absences, but
represents a further refinement by taking relative abundance of taxa into account.

Winrow and Sutton (2014) calculated five coefficients—Raup-Crick, Simpson,
Jaccard, Dice, and Otsuka (Ochiai)—in a paleogeographic study of lingulate
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brachiopods during the Early Paleozoic. Unable to determine a single best coeffi-
cient, they opted to calculate and compare several. Unsurprisingly, the Jaccard,
Dice, and Otsuka gave very similar results. Raup-Crick and Simpson coefficients
showed different patterns among pairs of faunal lists representing different paleo-
continents. They do not explain why coefficients would give different results other
than attributing several anomalously-high values of the Simpson to small sample
sizes.

Zhang and Srihari (2003) survey binary dissimilarity coefficients in the context
of character recognition; some of their results are instructive. In their look at nine
familiar coefficients they define relative discriminatory power in terms of entropy,
itself proportional to the variance of dissimilarities in multivariate space. They
consider coefficients with a wide range of values to have potentially greater dis-
criminatory power, finding that the Russell and Rao coefficient had the poorest
discriminatory power and the Jaccard and related coefficients moderate power.
Highest discriminatory power was shared by the correlation coefficient, Yule and
Rogers and Tanimoto. In the study by Winrow and Sutton, the similarity coeffi-
cients had a narrow range of values compared with the Raup-Crick and Simpson.

8.7 Illustrative Example

Both R-mode and Q-mode analysis were performed on presence-absence data
collected from five outcrops of the Middle Devonian Hamilton Group in New York
State, although only ordinations of taxa will be shown here for reasons of space.
Lithology of the interval sampled included thin limestones, mudstones, silty
mudstones, and calcareous siltstones. The data matrix comprises 43 samples and 32
taxa identified to species when possible (Hohn 1975).

Cluster analysis, principal components analysis, and principal coordinates
analysis were carried out; results of principal coordinates analysis best illustrate
similarities and differences among the coefficients used. The statistical package
PAST (Hammer et al. 2001) offers a wide range of multivariate methods and
coefficients including similarity, matching, and association. I looked at results for
the Phi (Correlation Coefficient in PAST) and Raup-Crick coefficients to observe
their near-equivalence; the Jaccard as representative of similarity coefficients;
Simpson’s coefficient as an unusual asymmetric coefficient used with some fre-
quency; and to represent matching coefficients, the Hamming normalized to lie
between 0 and 1:

CHamming = b+ cð Þ ̸N

In signal processing and information theory, Richard Hamming is known for the
Hamming distance and Hamming window in addition to other contributions. Note
the simple relationship between the normalized Hamming and Simple Matching
coefficients:
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CSimpleMatching = 1 −CHamming

Looking at plots of the first two principal coordinate axes (Figs. 8.1, 8.2, 8.3, 8.4
and 8.5), one might be struck by the how similar they appear. However, most of us
would probably consider the results from the Hamming (Simple Matching) coef-
ficient in Fig. 8.1 difficult to interpret. The Jaccard is a great improvement
(Fig. 8.2) as indeed is Simpson’s coefficient (Fig. 8.3). The Phi coefficients of
association and Raup-Crick probabilistic measure give almost identical results with
each other (Figs. 8.4 and 8.5).

The biggest differences among the five plots are positions of the most abundant
taxa such as the brachiopod Tropidoleptus and bivalve Paleoneilo. They occur in a
large proportion of samples (Table 8.1) and provide little discriminatory power
among assemblages. Relatively abundant taxa score highly in an absolute sense on
the second principal coordinate axis (vertical axis) for the Hamming and Jaccard
coefficients, less so for the Raup-Crick and Phi. There is a clear correlation between
principal coordinate scores on this axis with taxon count for the Hamming and
Jaccard coefficients (Fig. 8.6). This observation agrees with the findings of Jackson
et al. (1989).

Fig. 8.1 Principal coordinates analysis with Hamming coefficient of dissimilarity
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Based on percent of variance explained by the first three principal coordinate
axes (Table 8.2), the Hamming coefficient would appear to perform best. Similar
results were obtained from nonmetric multidimensional scaling of each coefficient
matrix (Table 8.3). But we already know that a portion of the variance correlates
with taxon abundance. This observation suggests that selecting a coefficient based
by variance explained has limited value if the coefficient measures the wrong thing.

Q-mode analyses showed similar correlation of abundance with principal
coordinate scores calculated from Hemming and Jaccard coefficients. The rela-
tionship is not as strong because no sample contained more than 26% of the taxa,
whereas Tropidoleptus in the R-mode analysis occurred in 84% of samples.

Note that the Raup-Crick procedure does not yield a binary coefficient in the
sense of all the others, but rather accomplishes through Monte Carlo sampling, a
similar measure as the correlation coefficient. Practitioners use the Raup-Crick
measure in the same way as any of the other binary coefficients for cluster analysis
and ordination. However there is no guarantee that it has strictly metric properties,
and indeed, principal coordinates analysis with the Raup-Crick statistic yielded a
large proportion of negative eigenvalues.

Fig. 8.2 Principal coordinates analysis with Jaccard coefficient
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8.8 Discussion and Conclusions

Studies published over the past decade give a taste of the application of binary
coefficients of all types.

Brayard et al. (2007) used distances 1 – SDice in Q-mode cluster analysis and
ordination of Early Triassic ammonoid faunas, citing the double weight given to
mutual presences, thus downweighting the influence of unique species occurrences
and not giving any weight to mutual absences. They used the square root of the
dissimilarity matrix so that the resulting distances would be metric and Euclidean
(Gower and Legendre 1986).

In studies of faunal lists of bivalves from around the globe, Schmachtenberg
(2008) compared four coefficients: Jaccard, Simpson, Raup-Crick, and a measure of
endemism. He did not do any cluster analyses or ordinations, but rather regressed
value of each coefficient on geographic distance. The Simpson, Raup-Crick, and
natural log of the Jaccard coefficient performed almost equally well.

Huang et al. (2012) considered the performance of five coefficients—Jaccard,
Dice, Cosine, Yule’s Y, and Raup-Crick—in cluster analysis and nonmetric mul-
tidimensional scaling of Silurian brachiopod assemblages representing time after
the Late Ordovician extinction events. They preferred the Raup-Crick coefficient for

Fig. 8.3 Principal coordinates analysis with Simpson’s coefficient
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ordination because it yielded the lowest stress value. On the other hand, they
primarily used Yule’s Y in their cluster analyses, where:

CYuleY =
p
ad−

p
bcð Þ ̸

p
ad+

p
bcð Þ

In a paleoecological and paleogeographical analysis of Late Ordovician cepha-
lopods, Kröger and Ebbestad (2013) used the Raup-Crick and Bray and Curtis
coefficients in cluster analysis of assemblages and concluded that the Raup-Crick
dissimilarity index gave better-resolved groups.

Balseiro (2016) studied changes in composition and diversity of brachiopods and
bivalves in western Argentina during the main Carboniferous glacial event. The
author observed few differences among results from several types of ordination and
choice of coefficients, including the modified Forbes coefficient of Alroy (2015b)
and Bray and Curtis dissimilarity.

Many reviewers of binary coefficients note the controversy that surrounds the
question whether mutual absences should be included in a coefficient. Some authors
categorically reject coefficients that include d (e.g. Shi 1993). Reasons cited
include: mutual absences do not contain information; we can never know the total
number of taxa N in a paleogeographic study; we can inflate differences through

Fig. 8.4 Principal coordinates analysis with Raup-Crick Coefficient
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inappropriate inclusion of taxa or samples; or sampling effort or success is uneven
and therefore the appropriate N is unknown. There are counterarguments for each
one of these objections and the user is left to decide for his or herself. For instance,
knowledge of mutual absences is necessary to evaluate the probability of an
observed pattern of occurrences, and therefore it conveys information. While we
cannot know N exactly, we have ways to access completeness of sampling, and
after all, any statistic is based on samples and N is no exception.

In contrast to the other objections to the use of mutual absences, uneven sam-
pling among locations appears to be a real problem and the effect on even proba-
bilistic measures of association is not well understood. Simpson’s coefficient and
modified Forbes coefficient of Alroy (2015a, b) attempt to correct for this problem.
Neither coefficient conveys any probabilistic information. This is the price one pays
when sampling is less than optimal. To draw strong conclusions sampling methods
are all-important.

Fig. 8.5 Principal coordinates analysis with correlation (Phi) coefficient
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8.9 Summary

1. A review of the literature in recent years shows that binary coefficients are still
very much used, even given the advantages of abundance information.

2. Choice of coefficient remains a confusing and sometimes empirical process,
often leading practitioners to examine results from several coefficients.

3. If a large contrast exists in abundance of taxa or length of faunal lists, one should
use care in using similarity coefficients. Comparing dendrograms or ordinations

Table 8.1 Number of
sample occurrences by taxon

Taxon Count

Tropidoleptus carinatus 27
Paleoneilo constricta 24
Mucruspirifer mucronatus 22
Greenops boothi 20
Nuculites triqueter 19
Grammysioidea cf. arcuata 15
Retispira leda 13
Pholadella radiata 11
Cypricardella tenuistriata 11
Goniophora cf. hamiltonensis 11
Pterinopecten vertumnus 10
“Stictopora” 10

Rhipidomella vanuxemi 10
“Chonetes” sp. 9
Grammysia bisulcata 8
Schizodus apressus 8
Nuculites oblongatus 8
Modiomorpha mytiloides 8
Spinocyrtia granulosa 8
Phacops cf. rana 8
Devonochonetes coronatus 7
Pseudaviculopecten princeps 6
Lingula sp. 5
Paleaeozygopleura delphicola 5
Ptychopteria boydi 5
Platyceras erectum 5
Modiomorpha concentrica 5
Actinodesma erectum 4
“Fenestella” 4
Cypricardella bellistriata 4
Orthonota undulata 2
Alanella tullius 2
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Fig. 8.6 Bivariate plots of number of samples in which each of the 32 taxa occurred (horizontal
axes) and scores on principal coordinate axes (vertical axes). Only scores on the second axis are
shown for Hamming, Jaccard, Correlation coefficient (Phi), and Raup-Crick coefficients

Table 8.2 Percent of total
variance explained by each
axis in principal coordinates
analyses by coefficient

Coefficient Percent of variance Total First 3
AxesAxis

1
Axis
2

Axis
3

Hamming 26.4 21.1 10.3 57.8
Jaccard 19.7 9.5 8.8 38.0
Raup-Crick 15.6 5.7 3.8 25.1
Correlation 24.8 10.9 9.2 44.9
Simpson 20.6 9.9 9.0 39.5

Table 8.3 Variance along
each axis and stress for
nonmetric multidimensional
scaling

Coefficient R2

Axis 1 Axis 2 Axis 3 Stress

Hamming 0.38 0.12 0.53 0.1315
Jaccard 0.32 0.12 0.14 0.2729
Raup-Crick 0.47 0.04 0.05 0.2613
Correlation 0.45 0.05 0.06 0.2679
Simpson 0.30 0.07 0.12 0.3072
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obtained using more than one coefficient could help the practitioner partition out
the least informative occurrences.

4. The problem of uneven sampling has not been fully addressed in the literature.
5. There continues to be interest—perhaps growing—in evaluating occurrence data

in a probabilistic context.
6. In addition to theoretical considerations, some authors have found empirically

that coefficients of association and the related Raup-Crick coefficient work well
in clustering and ordination.

In conclusion, it remains a reasonable strategy to compare dendrograms and
ordinations calculated with several coefficients. Care should be taken to select
coefficients with different performance characteristics. Finally, the practitioner
should understand the purpose of each coefficient.
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Chapter 9
Tracking Plurigaussian Simulations

M. Armstrong, A. Mondaini and S. Camargo

Abstract The mathematical method called Plurigaussian Simulations was invented
in France in the 1990s for simulating the internal architecture of oil reservoirs. It
rapidly proved useful in other domains in the earth sciences: mining, hydrology and
history matching. In this chapter we use complex dynamic networks first developed
in statistical mechanics to track the diffusion of the method within academia, using
citation data from Google Scholar. Since governments and funding agencies want
to know whether ideas developed in research projects have a positive effect on the
economy, we also studied how plurigaussian simulations diffused from academia to
industry. The literature on innovation usually focusses on patents but as there were
few on plurigaussian simulations, we needed criteria for deciding whether an
innovation had been adopted by industry. Three criteria were identified:

• Repeat co-authorship. Many published papers were co-authored by mining or oil
companies, or by consulting firms. While this demonstrates interest from
industry, in some cases it seemed to be “window-shopping” but companies that
continued to publish on this topic (i.e. “repeat co-authors”) had clearly adopted
the method.

• Specialized training. Companies that wanted to build-up inhouse competency,
sent their personnel for postgraduate training or to specialized short courses.

• Bringing in consultants. Rather than investing the time and effort in building up
competency in-house, other companies got studies carried out by consulting
firms.
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The second criterion revealed how important master’s level courses are in training
geoscientists in the latest techniques. Their role in transferring knowledge to
industry is undervalued in current procedures for evaluating university departments.

Keywords Complex dynamic networks ⋅ University-industry interaction
Technology diffusion ⋅ Google Scholar citations

9.1 Introduction

In August 2015 Fundacao Getulio Vargas (FGV)1 organized a 3 day seminar on
applied research and invited Jane Tinkler from the London School of Economics to
give a plenary lecture on how to assess the impact of research in the social sciences
on policy decisions. She stressed the fact that it often takes 15–20 years to see the
effects of academic research in the real world. Her talk inspired the lead author to
ask how research in the geosciences diffuses within academia and from there, into
industry. Why is it important to understand how ideas are adopted by industry?
Because in the future, in addition to publishing in top journals, academics will
probably need to demonstrate that their research is generating innovations to fuel
national economies. For example, the Australian government has been funding a
national survey since 2001 to collect data on the commercialization of the results of
publicly funded research, especially their impact on intellectual property.

Since the pioneering work of Schumpeter in the 1940s, economists have agreed
that a large component of modern economic growth has been driven by “innova-
tion”, that is, the arrival of new ideas. Nowadays, most papers on the relationship
between scientific research and innovation use citation data to measure the pro-
duction of new ideas in science and patent data to measure the creation of new
potentially successful commercial ideas. Patents have become particularly impor-
tant in this context for three reasons (Agrawal and Henderson 2002):

• The patenting process requires that inventors’ names, dates, assignee institu-
tions, locations and detailed descriptions of the invention’s claims be recorded.
Innovation-related details are rarely recorded systematically outside of patent
records.

• Innovations that are patented are expected to be commercially useful.
• Patenting data has recently become available in machine-readable form.

This approach has proved very fruitful in fields where the technology is evolving
rapidly and where patents protect their inventors, for example, pharmacy and
biotechnology, nanotechnologies, and wind and solar power generation. But it is

1FGV is a private university and think tank located in Rio de Janeiro, that has internationally
recognized research groups in economics, law, public administration, and management, and more
recently an energy group and an applied maths department.
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not pertinent in sectors where patents are less common and where the transfer of
new ideas from academia to industry follows different channels (Zellner 2003;
Martin and Tang 2007; Moser 2012; Maietta 2015). Geosciences is one such
domain.

In order to discover how ideas diffuse within academia and from there into
industry, we chose to focus on a specific new method (plurigaussian simulations)
which was invented in France in the 1990s for simulating the internal architecture
of oil reservoirs (Galli et al. 1994; Armstrong et al. 2011). It rapidly proved useful
in other domains in the earth sciences: mining, hydrology and history matching. In
the first part of this chapter, after collecting citation data from Google Scholar, we
use complex dynamic networks first developed in statistical mechanics to track the
diffusion of the method in the academic world. In the second half of the chapter we
study how this method moved into industry.

The chapter is divided into five sections. The next one (Sect. 9.2) is a literature
review on complex dynamic networks, especially citation networks. In Sect. 9.3
this technique is applied to our citation network for plurigaussian simulations. As
only 9 out of the 550 citations were patents, these were not the vector in transferring
the method into industry. In Sect. 9.4 we identify three key indicators showing how
this innovation was incorporated in industry. Our conclusions follow in Sect. 9.5.

9.2 Review of Complex Networks

Over the past 30 years the methods developed by physicists for studying networks
in statistical mechanics have been adapted to analyzing other types of networks
including the world-wide web (Broder et al. 2000; Albert 1999, 2000), power grids
(Watts and Strogatz 1998), telephone call grids (Abello et al. 1998) and airline
timetables (Amaral et al. 2000). Newman (2001) and Barabasi et al. (2002) both
studied citation networks in which the authors were the nodes in the network and a
link was formed between two authors when they co-authored a paper. Newman
(2001) studied four such collaboration networks:

1. Los Alamos e-print Archive: a database of unrefereed preprints in physics
submitted by the authors from 1992 to 2000;

2. Medline: a database of articles on biomedical research published in refereed
journals from 1961 to 2000. The entries are submitted by maintainers, rather
than the papers authors, giving it a greater coverage;

3. Stanford Public Information Retrieval System (SPIRES): a database of preprints
and published papers in high-energy physics;

4. Networked Computer Science Technical Reference Library (NCSTRL): a
database of preprints in computer science, submitted by participating institutions
and stretching back about 10 years from 2000.
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Although the databases went back earlier Newman limited his study to the
window from 1995 to 1999 in order to obtain a good static photo of the conditions
at that time. In contrast Barabasi et al. (2002) studied the evolution over time of
patterns of collaboration in two specific fields: mathematics and neuro-science, over
the period from 1991 to 1998, using databases consisting of 70,975 different
authors and 70,901 papers for mathematics and 209,293 authors 210,750 papers for
neuroscience.

By 2000, theoretical and empirical studies had uncovered three important
results: firstly, most networks have the so-called small-world property which means
that the average separation between nodes is rather small; secondly, real networks
display a higher degree of clustering than expected for purely random networks and
finally, the degree distribution follows a scale-free power-law form (Barabasi et al.
2002). Initially it had been expected that the Web would be a random network like
those characterized by Erdos and Renyi (1959). In that case the probability of any
two nodes being connected is constant, and most nodes have a degree (number of
connections) that is close to the average and the degree distribution is exponential.
Albert et al. (1999) showed that the distribution for the Web is a power-law, which
means that a few nodes are highly connected while the vast majority have a smaller
degree than average.

By computing the statistics of the number of authors per paper, the number of
papers per author and the number of collaborators per author in various fields,
Newman (2001) confirmed that their distributions follow a power-law form. All the
networks contain a giant component of scientists, any two of whom can be con-
nected by a shortest path of intermediate collaborators.

9.3 Network Analysis of Google Citations of Plurigaussian
Simulations

The first step in our study consisted of collecting all the publications up to
December 2015, found by Google Scholar for the term “Plurigaussian simulations”.
A total of 555 references were obtained. Google Scholar had ordered them from the
most relevant to the least (as determined by its algorithm). They include journal
articles, working papers, doctoral and master’s theses, final year projects, patents
and the two books on Plurigaussian Simulations together with chapters from the
books which are sold separately by the publishers. These citations can be split into
four groups:

(1) Pertinent documents which develop the theory, or report case studies;
(2) Papers which mention that plurigaussian simulations could be used to model

the internal architecture of reservoirs or orebodies but which prefer to use
another method (usually multipoint geostatistics);

(3) Papers which mention plurigaussian simulations briefly. For example, Laigle
et al. (2013) commented in their concluding paragraph that “Another use would
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be to constrain geostatistical simulations by the model results, e.g., training
maps for multipoint or plurigaussian methods”.

(4) Papers which do not mention plurigaussian simulations at all.

Of the original 555 references, 307 fell into the first category, 166 into either the
second or third while 82 fell into the fourth category. The last group were elimi-
nated from further study. For the 473 references in the first 3 categories, we noted
the information listed in Table 9.1. Table 9.2 summarises the statistics of appli-
cations in the four main domains.

• Most papers were written by teams of authors (more than 3 per paper on
average, up to 10 for some oil papers). Papers by single authors were usually
dissertations. This confirms the finding by Wuchty et al. (2007) that papers are
now being produced by teams of authors; solo papers are getting rarer.

• International cooperation was a common feature: 28% of papers on oil, 21% for
mining and 17% for water and history matching.

• Many papers had authors from companies or consulting firms (57.8% for oil;
35.2% for mining; 23.8% for history matching) but far fewer for water (only
9.2%), probably because water is a public good whereas mining and oil com-
panies are designed to make a profit.

Table 9.1 Information noted
for each of the 473 documents

Year of publication

Type of application (oil, mining, water resources, history
matching, theory)
Number of authors
Whether the document is a patent
Whether any of the authors works for a company and if so the
company’s name
Whether any of the authors works for a consulting group or a
software vendor, and if so, the consultant’s name
Country of the lead author
Whether the authors came from more than 1 country
Whether the paper is directly relevant; that is, belongs to
category (1)

Table 9.2 Results for the four main applied fields

Oil Mining Water resources History matching

Total N° 116 71 65 101
Patents 5 0 0 4
Company 41 11 2 16
Consultant 26 14 4 8
International 26 20 11 17

Irrelevant 24 25 31 35
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• Countries with strong mining and petroleum industries were well-represented
amongst the papers.

• Migration by scientists was a factor that accounted for the excellence of some
countries.

• Surprisingly only 9 of the documents were patents and these were all in the
petroleum sector (either oil or history matching).

9.3.1 Building a Citation Network

In contrast to Newman (2001) and Barabasi (2002) who built their citation network
by considering authors as nodes and linking those who had joint papers, we con-
structed the plurigaussian network by considering each publication as a node with
an edge between two of them when one publication cites the other one, producing a
directed network. Our network (Fig. 9.1) is displayed with different colours for the
different fields of application: black for oil, mauve for mining, blue for water, red
for history matching, green for agriculture, mustard for soil science and white for
others. As expected, publications in the same field tend to be clustered together in
the network.

Fig. 9.1 The citation network for plurigaussian simulations, with different colours indicating the
different fields of application: black for oil, mauve for mining, blue for water, red for history
matching, green for agriculture, mustard for soil science and white for others. The size of the nodes
are proportional to their rank according to PageRank and Betweenness centrality
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As the network is composed of about 500 publications, it is interesting to know
which nodes are the most important, and centrality measures are a good way to
provide such answers based on the topology of the network. Here we used two
measures: PageRank and Betweenness centrality. PageRank (Page et al. 1999)
evaluates the importance of a node based on how many edges point to it,
Betweenness centrality (Freeman 1977) estimates whether a node is likely to be
placed between other pairs of vertices. Figure 9.1 shows the network of pluri-
gaussian simulations when the node size is proportional to PageRank centrality (left
panel) and Betweenness centrality (right panel). At first glance the figures look very
similar but there are differences in the importance of some of the nodes as can be
seen in Table 9.3 which lists the ten most important publications according to these
two centrality measures.

Table 9.3 Rank of publications according centrality measures, namely Pagerank and
Betweenness

Rank PageRank Betweenness

1 Stochastic Modeling and Geostatistics:
Principles, Methods, and Case Studies,
Vol. II, AAPG Computer Applications
in Geology 5

Multivariate geostatistics

2 Multivariate geostatistics Basic linear geostatistics
3 Truncated plurigaussian method:

theoretical and practical points of view
Dealing with spatial heterogeneity

4 Geostatistics Wollongong &96. 1 (1997) Advance supply of emergency
contraception: effect on use and usual
contraception—a randomized trial

5 Gradual deformation and iterative
calibration of Gaussian-related
stochastic models

Critical evaluation of the ensemble
Kalman filter on history matching of
geologic facies

6 Error propagation in environmental
modelling with GIS

Gradual deformation and iterative
calibration of Gaussian-related stochastic
models

7 Basic linear geostatistics Error propagation in environmental
modelling with GIS

8 Advance supply of emergency
contraception: effect on use and usual
contraception—a randomized trial

Geostatistics for seismic data integration
in Earth models: 2003 Distinguished
Instructor Short Course

9 The FFT moving average (FFT-MA)
generator: An efficient numerical method
for generating and conditioning
Gaussian simulations

Achievements and challenges in
petroleum geostatistics

10 Gaussian Markov random fields: theory
and applications

Real-time reservoir model updating
using ensemble Kalman filter

9 Tracking Plurigaussian Simulations 167



9.4 Diffusion of the New Method into Industry

In our analysis of the citation network we had been surprised to find so few patents
(only 9 out of 550). Moreover these only started in 2006 (i.e. 10 years after the
invention of the method). This was because software could not be patented software
before then (See Appendix 9.1 for more detail on this). As patent data could not be
used to determine when the method actually reached industry, we need some other
criteria. Based on Tijssen et al. (2009), we used the following:

• One of the authors comes from a mining or an oil company, or
• One of the authors comes from a software vendor or a consulting group

It is important to distinguish between the two. Resource companies like Shell or
Chevron, or Rio Tinto or Anglo-American are “end-users” whereas consultants and
software vendors transfer the idea to end-users, so their business plans are quite
different.

The citations came from four main applied fields2 (oil, mining, water resources
and history matching). Looking back at Table 9.2, very few papers in water
resources had an author from a company or a consulting firm (only 9.2%) compared
to 57.8% for oil, 35.2% for mining and 23.8% for history matching. This is probably
because water is a public good that generates relatively small profits compared to
the oil industry or mining.

9.4.1 Co-authors and Repeat Co-authors from Industry

Although having a co-author from a company or a consulting group shows that the
company is interested in the new technique, it does not tell us whether they have
effectively adopted it. In some cases, co-authoring a paper with an academic is
rather like “window-shopping”. It allows the company to test a new method on a
case-study but adopting it as a standard procedure requires more time and effort
(Martin and Tang 2007). Table 9.4 lists the companies and consultants which had
co-authored more than 1 paper together with the number of papers, for each type of
application. In applications to oil, seven companies and consulting groups had
co-authored two or more papers, compared to 11 which had contributed to only 1;
similarly five mining companies had co-authored two or more papers, compared to
8 which contributed to only 1 paper. It would be interesting to know what happened
to the 11 oil companies that only participated in 1 paper, and likewise for the 8
mining companies. Did they lose interest in the method after an initial test study?
Or did they decide to train their personnel or to outsource studies to consultants?

2Among the other papers, some were theoretical; a few were applications to precision agriculture
or soil science. Plurigaussian simulations were even used to map the soil layers in archeological
sites in ancient Rome (Folle 2009; Raspa 2000).
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9.4.2 Surveys of Academics and Consultants

The last part of the study consisted of a survey to find out (a) which companies had
started training their personnel by sending them to short courses or to postgraduate
and masters courses, and (b) which were outsourcing studies. While there are clear
limitations to what can be obtained from voluntary declarations because people tend
to bias their answers and while our survey was far from exhaustive, the results give
us some ideas about what has happened.

Three groups (the IFP at Rueil-Malmaison, the CG at Fontainebleau and Jeffrey
Yarus and Rich Chambers, in the USA) ran extensive programs of short courses.
Table 9.5 lists the short courses on truncated gaussian and plurigaussian simula-
tions given by Christian Ravenne3 and Brigitte Doligez, both of the IFP. The Centre
de Géostatistique was also active in giving short courses, often as pre-conference
courses or in-house for oil companies, and the consulting and software company,
Geovariances, regularly gives a 5 day course on conditional simulations applied to
mining and has a 3 day course on advanced geostatistics for reservoir characteri-
zation. Both have modules on plurigaussian simulations. From 2000 to 2006, Jef-
frey Yarus and Rich Chambers gave 4–5 courses per year through the Nautilus
Training Organization and two more per year in Abu Dhabi for Schlumberger. After
joining Landmark, they continued giving courses in Houston and London each
year.

Most postgraduate geostatistics courses have modules on simulation. Some
students choose this topic for their project/thesis. The Ecole des Mines de Paris has

Table 9.4 Companies and
consultants which had
co-authored more than 1
paper together with the
number of papers, for each
type of applications

Oil Mining

Beicip-Franlab 5 Areva 2
Geovariances 3 De Beers 2
Halliburton 7 Geovariances 4
Petrobras 2 QG (Aust) 2
Statoil 4 Rio Tinto 2
Sonangol 2
Total Oil Co 7
Only 1 Paper 11 Only 1 Paper 8
Water History matching

Colenco 3 Shell 2
Geovariances 2 Statoil 2

Total Oil Co 4

Only 1 Paper 1 Only 1 Paper 12

3The list is available in his HDR thesis (Ravenne 2001). At the time he was Directeur Associé de
Recherche at the IFP. He subsequently retired in 2008.
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been running a 9 month postgraduate geostatistics course called the CFSG4 since
1980. The last 3 months are devoted to a personal project on a real case-study,
usually provided by the company sponsoring the student. Similarly, final year
undergraduates and masters students have carried out studies on plurigaussian
simulations at the University of Chile, at Edith Cowan University (Western Aus-
tralia), at the University of Adelaide (South Australia), at the federal university

Table 9.5 Short Courses on the truncated gaussian method and on plurigaussian simulations by
Christian Ravenne who was a geologist at the IFPEN before his retirement, and more recently by
Brigitte Doligez, who is also a geologist at the IFPEN

Year Teacher Institute Time Company Place

1989 Ravenne IFP 12 h ARCO,
Exxon,
Conoco

USA

1990 Ravenne IFP 4 h SAGA Norway
Ravenne IFP 3 h Schlumberger Norway

1991 Ravenne IFP 4 h Petrofina Belgium
Ravenne IFP 6 h JNOC Japan
Ravenne IFP 8 h Statoil Norway
Ravenne IFP 6 h Agip Norway

1992 Ravenne IFP 3 h Maersk Denmark
1993 Ravenne IFP 5 h Petrofina Belgium

Ravenne IFP 8 h + 4 days Aramco Saudi-Arabia
Ravenne IFP 8 h Petrobras Brazil
Ravenne IFP 2 h Intervep Venezuela

1994 Ravenne IFP 3 days China
1995 Ravenne IFP 2 h Mobil USA

Ravenne IFP 2 h Amoco USA
1996 Ravenne IFP 4 h Anadarko USA

Ravenne IFP 3 days Chevron
(Nigeria)

CG, France

1997 Ravenne IFP 2 h PDVSA Venezuela
1998 Ravenne IFP 3 h Banoco Bahrein
2011 Ravenne IFP PDVSA Venezuela
2012 Ravenne IFP PDVSA Venezuela
2013 Ravenne IFP PDVSA Venezuela
2000 Doligez IFP 20 h PDVSA Venezuela

Doligez IFP 12 h Chevron Nigeria
2006 Doligez IFP 35 h PDVSA Venezuela
2011 Doligez IFP 30 h PDVSA Venezuela

Doligez IFP 20 h × 2 PUT Iran

4CFSG = Cycle de Formation Spécialisée en Géostatistique.

170 M. Armstrong et al.



Table 9.6 List of the titles of confidential reports on plurigaussian simulations by students at
various universities

Date Student’s Name Country Title of Project

CFSG, Mines-Paristech, Fontainebleau, France

2002 A.S. Wain Canada Plurigaussian lithofacies modelling of Sparky Member,
lower cretaceous Mannville Group, Saskatchewan

2011 E.M. Muller Brazil Simulation of orebody domains using the truncated
plurigaussian method in a copper deposit

2012 C. Goncalves
Monteiro Filho

Brazil Modelling complex lithology indicators in the presence
of border effects (Conceicao iron mine)

2015 S. Petiteau France Review of the procedure for pluri-gaussian simulations
for roll-front uranium deposits, and updating an
existing study

2015 Alan Rojas Kari Stochastic Geological Modeling and Multivariate
Recoverable Resources Evaluation in a Lateritic Nickel
Deposit

C.C. Bohorquez
Urdaneta

Venezuela Plurigaussian study of an oil reservoir

University of Chile, Santiago, Chile

2006 Karina
Gonzalez

Chile Modelamiento probabilístico de unidades geológicas y
su aplicación a la evaluación de recursos minerals
(Master’s Mining) Data from Codelco-radomiro Tomic

2008 Alvaro de la
Quintana

Chile Simulación de unidades litológicas en el yacimiento
Mansa Mina. (Undergraduate, Mining)Data from
Codelco-Ministro Hales

2008 Daniel Silva Chile Control geológico en la simulación geoestadística de
leyes. (Masters Mining) Data from Codelco-Andina

2010 Alejandro
Caceres

Chile Simulación conjunta de unidades geológicas y leyes de
cobre en el sector Sur-Sur del depósito Río Blanco –

Los Bronces; (Masters Geology) Codelco-Andina
2014 Ignacio

Moscoso
Chile Simulación Gaussiana truncada con incertidumbre en

proporciones; (Undergraduate, Mining) Data from
Codelco-Andina

2014 Giovanni
Pernigotti

Chile Simulación plurigaussiana usando proporciones
locales; (Undegraduate, Mining) Data from
Codelco-Andina

2015 Pia Leyton Chile Simulación Gaussiana truncada utilizando información
de proporciones locales; (Undergraduate, Mining)
Codelco-Ministro Hales

2015 Nadia Mery Chile Modelamiento y cosimulación de leyes en un
yacimiento ferrífero; (Undergraduate Mining) Data
from Vale

Edith Cowan University, Perth, Australia

2011 Robin Dunn Australia Plurigaussian Simulation of Rock Types Using Data
from a Gold Mine in Western Australia, (Masters
Mathematics) Big Bell Mine

University of Tehran, Iran

2013 Hassan Talebi Iran Separation of Rock Units and Alteration zones in
Sungun poryphyry copper deposit using Plurigaussian
Simulations
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UFRGS (Rio Grande do Sul, Brazil), to mention just a few. As most of these are
confidential, Google Scholar cannot find these. Table 9.6 lists the titles of projects
that involved plurigaussian simulations and were carried out at various universities.
One interesting feature is the number of studies that used data from the South
American mining companies, Codelco and Vale, which were absent from the list of
“repeat co-authors”.

Lastly, the consulting arm of the IFPEN, Beicip-Franlab, kindly provided us
with a list of the consulting projects involving plurigaussian simulations that they
have carried out for clients (Table 9.7). The range of companies involved is
striking. Almost all of them are national oil companies, many located in the Middle
East.

Looking through these three tables, it is clear that the publications found by
Google Scholar are really only the tip of the iceberg. Underneath, there are many
unpublished dissertations and project reports carried out by final year and masters
level students which remain confidential—in contrast to PhD theses which are
usually available on the internet. Most of these final year and masters dissertations
were carried out on company data by a student who had been given time off work to
study. We believe that these studies are a key step in getting new methods into to
regular use in industry. This suggests that university assessments should take
account of final year projects and master’s level dissertations, which is not the case
at present in most countries, because this is one of the key channels for transferring
new innovations into industry—at least as far as the earth sciences are concerned.

9.5 Conclusions and Perspectives for Future Work

Plurigaussian simulations were developed in France in the mid-1990s for simu-
lating the internal architecture of oil reservoir in order to better predict oil and gas
production. Although they were originally designed for the petroleum industry, they
rapidly found applications in mining and hydrology and then for history matching

Table 9.7 Consulting
studies involving
plurigaussian simulations
carried out by the consulting
arm of the IFPEN,
Beicip-Franlab, from 2000

From To Company Country

2000 2015 PDVSA Venezuela
2002 2007 Sonatrach Algeria
2004 2015 Petrobras Brazil
2005 2005 Pemex Mexico
2005 2005 Agoco Libya
2008 2008 Foxtrot Ivory Coast
2012 2014 KOC Kuwait
2014 2014 ADCO Abu Dhabi
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in the oil industry. From France the technique diffused to other European countries,
then to countries like the USA, Brazil and Chile.

This chapter uses complex dynamic networks to describe how the method dif-
fused within the academic community. Citations found using Google scholar cor-
responding to the term “plurigaussian simulations” were used to track its diffusion
within academia. In contrast to most citation networks where the nodes are the
authors of papers and the link corresponds to co-authoring, in our network the
papers themselves are the nodes which are linked when one paper cites another.

Papers were split according to the domain of the application: oil, mining, water
or history matching. As expected, we found that

• Most papers were written by teams of authors (more than 3 per paper on
average). Papers by single authors were usually dissertations.

• International cooperation was a common feature: 28% of papers on oil, 21% for
mining and 17% for water and history matching.

• Many papers had authors from companies or consulting firms (57.8% for oil;
35.2% for mining; 23.8% for history matching) but far fewer for water (only
9.2%), probably because water is a public good whereas mining and oil com-
panies are designed to make a profit.

• Countries with strong mining and petroleum industries were well-represented
amongst the papers.

• Migration by scientists was a factor that accounted for the excellence of some
countries.

To our surprise there were few patents (only 9 out of 550) and these only started
in 2006 (i.e. 10 years after the initial discovery). It turned out that software could
not be patented software before then. Studies on innovation consider that the
presence of an author from industry demonstrates that company’s interest in the
innovation under study. In the earth sciences, companies often co-author papers in
order to test new methods on their own data.

One of the main contributions of our chapter is to identify this “window-shop-
ping effect”. We consider that co-authoring a single paper does not necessarily mean
that the company has really adopted the method. More effort is required to absorb
new methods. Instead, we postulate that co-authoring a second paper indicates a
more serious interest: we call this “repeat co-authoring”. We found that seven oil
companies and consulting groups had co-authored two or more papers compared to
11 which had contributed to only 1; similarly five mining companies had
co-authored two or more papers compared to 8 which contributed to only 1 paper. It
was surprising not to see South American mining companies such Codelco and
Vale among the mining companies. We were also curious to find out whether the 11
oil companies and 8 mining that only co-authored 1 paper had lost interest in the
method or had trained staff to carry out studies for them or had commissioned
consultants to do them.
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To find out what happened we carried out a survey of academics, end-users in
companies and consultants. Clearly there are limitations to what can be obtained
from voluntary declarations; people may bias their answers but the survey gave us
some ideas about what had happened. The key results were:

• Companies like Codelco and Vale had been active in providing data for final
year and master’s level projects, but had not shown up as “repeat co-authors”.

• A wide range of oil companies that had not published papers had chosen to
provide in-house courses for personnel or had commissioned studies from
Beicip-Franlab, the Consulting division of the IFP.

9.5.1 What Lessons Can Be Learned from the Study
for Policy-Makers

Firstly, while studies on patents can be very effective for assessing the industrial
impact of new discoveries in some fields, they would have completely missed the
target in this field, for two reasons: it was not possible to patent software devel-
opments until after 2005, and secondly even after that date, the new developments
in mining software for these simulations were not patented.

Citation networks proved to be more effective than patents in this field. They
allowed us to track the development of plurigaussian simulations within four dif-
ferent but inter-related academic domains and to industrial partners who publish in
journals with academics. But even citations do not really allow us to get past the
superficial “window-shopping” aspect of publications. Studying “repeat
co-authoring” provides more in-depth insights; surveys of users give a clearer
picture of whether companies are actually implementing new methods.

As Martin and Tang (2007) noted, firms and other users need to expend con-
siderable effort to exploit scientific knowledge. In order to develop the in-house
capability to carry out plurigaussian simulations, they need to acquire software and
to train personnel. This study highlights the importance postgraduate training and
masters’ theses in transferring know-how and implicit knowledge to industry. The
role of these courses in technology transfer to industry is undervalued in the current
procedures for evaluating university departments.
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Appendix 9.1

When analyzing the citations we had been surprised that only 9 of the documents
were patents (Table 9.8). Moreover these were all in the petroleum sector (either oil
or history matching) and were lodged more than a decade after initial discovery of
the method (1996). Why so few patents and why so late? One possible reason for
this is that after the method had been published, the tacit knowledge was partly
encapsulated in software and partly in knowing how to use the software. Firms of
consultants who had acquired this knowledge, made a living carrying out
case-studies for oil companies. Research universities which are also repositories of
this knowledge, transmit it to students via postgraduate diploma courses, or masters
or doctoral programs.

But the main reason for the lack of patents before 2006 (10 years after the initial
discovery) is that oil companies and service providers only started patenting pro-
grams then. Until the late 1960s, computer programs were not considered paten-
table (Bender 1968); they could only be protected by copyright law. By the 1990s,
it had become critical in the information economy to be able to protect IP on
computer programs (Thurlow 1997). Ten years later the problem had been resolved.
Merges (2007) commented: the legal system is integrating software into the fabric
of patent law, and software firms are integrating patents into the competitive fabric
of the industry. So this explains why patents only started to appear so late.

Table 9.8 Patents

Date Field Inventors Assigned to

2007 Oil Gunning, Glinsky and White BHP Billiton
2007 Oil Nivlet and Lucet Nivlet and

Lucet
2009 Oil Le Ravalec-Dupin, Hu and Roggero IFP
2010 History Tillier, Enchery, Gervais-Couplet and Le Ravalec IFP
2012 Oil Maucec and Cullick Landmark
2014 Oil Biver, Henrion, D’or and Allard Total SA
2014 History Da Veiga and Le Ravalec-Dupin IFPEN
2014 History Tillier, Enchery and Gervais-Couplet IFP
2015 Oil Da Veiga and Le Ravalec-Dupin IFPEN
2015 History Heidari, Gervais-Couplet, Le Ravalec-Dupin and

Wackernagel
IFPEN
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Chapter 10
Mathematical Geosciences: Local
Singularity Analysis of Nonlinear Earth
Processes and Extreme Geo-Events

Qiuming Cheng

Abstract In the first part of the chapter, the status of the discipline of mathematical
geosciences (MG) is reviewed and a new definition of MG as an interdisciplinary
field of science is suggested. Similar to other disciplines such as geochemistry and
geophysics, mathematical geosciences or geomathematics is the science of studying
mathematical properties and processes of the Earth (and other planets) with predic-
tion of its resources and changing environments. In the second part of the chapter,
original research results are presented. The new concepts of fractal density and local
singularity are introduced. In the context of fractal density and singularity a new
power-law model is proposed to associate differential stress with depth increments at
the phase transition zone in the Earth’s lithosphere. A case study is utilized to
demonstrate the application of local singularity analysis for modeling the clustering
frequency—depth distribution of earthquakes from the Pacific subduction zones.
Datasets of earthquakes with magnitudes of at least 3 were selected from the Ring of
Fire, subduction zones of Pacific plates. The results show that datasets from the
Pacific subduction zones except from northeastern zones depict a profound frequency
—depth cluster around the Moho. Further it is demonstrated that the clusters of
frequency—depth distributions of earthquakes in the colder and older southwestern
boundaries of the Pacific plates generally depict stronger singularity than those
obtained from the earthquakes in their hotter and younger eastern boundaries.

10.1 Introduction

When this handbook is published, the International Association for Mathematical
Geosciences (IAMG) is celebrating its 50th anniversary. Mathematical geosciences
as a scientific discipline has become mature after half a century of development
since the IAMG was established in 1968 at the 23rd International Geological
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Congress (IGC) in Prague. It had grown from mathematical geology to mathe-
matical geosciences by the time its name was changed at the 32th IGC held in Oslo
in 2008. Not only has the subject been accepted widely within the geoscience
community but the association has also been recognized for its reputation and
significant influence on the earth sciences in general. IAMG has affiliations with
several major geoscience organizations including the International Union of Geo-
logical Sciences (IUGS), International Statistical Institute (ISI), and the Interna-
tional Union of Geodesy and Geophysics (IUGG). Diverse earth science topics
have been published in IAMG conference proceedings and the IAMG journals
(Mathematical Geosciences, Computers & Geosciences and Natural Resources
Research). However, we have to realize that as a relatively young discipline, MG
still has not been very widely accepted and is often ignored by main stream geo-
scientists. While several definitions and terminologies were proposed to describe
mathematical geology, there have been few attempts to define mathematical geo-
sciences. For example, mathematical geosciences have often simply been referred
as applications of mathematical and statistical methods for the analysis of geo-
logical (earth science) data and the development of quantitative predictive models
(Howarth 2017). The mission of the IAMG as shown on the IAMG website was
defined as promoting the development and application of mathematics, statistics
and informatics in the geosciences. Whether MG should be defined as a formal
discipline of science or simply as applications of mathematics in the geosciences is
a fundamental question with critical impact on the development of the subject. In
this chapter, I will review the status of the discipline and suggests a new definition
for MG followed by examples to demonstrate what contributions of MG have been
made to earth science and what the current developments in the field are. For the
first part I will elaborate on MG on the basis of literature review and for the second
on my own research in nonlinear MG as an example of a new field of MG.

10.2 What Is Mathematical Geosciences
or Geomathematics?

One of the original definitions of mathematical geology was given by Vistelius
(1962) and used in the name of the association: International Association for
Mathematical Geology (IAMG) when it was first established in 1968. Geostatistics
is one of the successful fields of IAMG, which originally was developed by MG
scientists within the IAMG community. It has been used not only in the geosciences
but later in many other fields of science as well. Geostatistics focuses on application
of statistical methods in the earth sciences (e.g. Merriam 1970; McCammon 1975a,
b) and still appears to be used by many in that sense. The term geomathematics was
also used by several authors including Agterberg (1974) who used the term as the
title of his two books (Agterberg 1974, 2014). After the name of the association was
changed from mathematical geology to mathematical geosciences in 2008, the term
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mathematical geosciences more often appears in the literature of the IAMG and also
in the titles of conferences, as well as in the name of its journal Mathematical
Geosciences. When the author of the current chapter served as president of IAMG
(2012–2016), dedication to IAMG was given by promoting the discipline of
mathematical geosciences. Several notes on this were published in the President’s
Forums in IAMG newsletters (Issues 76–79th). The distinction between mathe-
matical geology and mathematical geosciences is not simply in terminology but
also in the scope of the discipline. While mathematical geology refers to a branch of
geology, mathematical geosciences must be a subdiscipline of the geosciences
which includes geology as one of its subfields. Other relevant subjects covered in
the geosciences include but are not limited to geochemistry, geophysics, geobiol-
ogy, and hydrology. Mathematical geosciences should be a discipline parallel to
other subdisciplines in the geosciences such as geochemistry, geophysics and
geobiology rather than a branch of geology. In the author’s personal view this
distinction is critical for the development of the discipline. Under the concept of
mathematical geology, the subject is limited to the application of mathematics in
geology but as mathematical geosciences just like geochemistry and geophysics, it
serves the entire earth science. So, what should be the definition of mathematical
geosciences or geomathematics and what are the roles mathematical geosciences
should play in the family of geosciences? Here I will briefly elaborate on these
questions and introduce several major contributions of MG to earth science. In
order to provide a proper definition of mathematical geosciences, we should look at
the definitions of other relevant disciplines such as geochemistry, geophysics and
geobiology:

• Geophysics as a science of “the study of the earth’s physical properties and of
the physical processes acting upon, above, and within the earth.” (Collins
English Dictionary)

• Geochemistry as a science that deals with the chemical composition of and
chemical changes in the solid matter of the earth or a celestial body (Unab-
ridged dictionary).

• Biogeosciences as an interdisciplinary field of study integrating geoscience and
biological science: the study of the interaction of biological and geological
processes (Unabridged dictionary).

The definitions of the preceding relevant disciplines share the common concept
of an interdisciplinary geoscience field. A similar definition was proposed by the
author in 2014 with consultation of the IAMG Executive Committee Members and
published in the President’s Forum of IAMG newsletter (Issue No. 79).

• As an interdisciplinary field merging mathematics, computer science and geo-
sciences, MG is the science of studying mathematical properties and processes
of the Earth (and other planets) with prediction and assessment of its resources
and environments
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The ultimate question arising from this definition is what are the mathematical
properties and processes of the Earth, with prediction and assessment of its
resources and environments which have to be dealt with by mathematical geo-
science for integration with other geoscience subdisciplines. Similar to other
interdisciplinary fields including geochemistry and geophysics, mathematical sub-
jects such as geometry, calculus, functional analysis, morphology, probability and
mathematical statistics provide essential theory and methods for quantitative study
of the Earth ranging from geometry and dynamics of the Earth, uncertainties of
measurements, and observations for the prediction of Earth events.

10.3 What Contributions Has MG Made
to the Geosciences?

There are many examples demonstrating that MG has made indispensable contri-
butions to the geosciences. For example, the mathematical model of the Earth’s
shape (e.g. Clark ellipsoid, and Hayford ellipsoid) which serves as the foundation of
geodesy, navigation systems (e.g. GPS), remote sensing technology (RS) and
geographical information systems (GIS), and the fast growing field of geomatics;
the mathematical model of mantle convection and models for plate motions
(McKenzie and Parker 1967) serve as foundation of plate tectonics, the most
notable development of earth science in the last century; mathematical symmetry
and symmetry operations as principles of crystallography and optical mineralogy
(e.g. in 1830, Hessel proved the existence of the 32 groups of crystal symmetry)
which constitute a foundation of solid earth science; the mathematical topological
model as foundation of geographical information systems (e.g. as basis of spatial
data modeling in ArcGIS), one of the most useful technologies in geoscience;
mathematical and statistical theories providing foundations for describing the
spatial distribution and correlation of elements, uncertainty and error bars in geo-
chemistry including isotope geochemistry and geochronology as are also used for
the geological time scale; mathematical modeling and uncertainty of prediction of
climate change, a pressing issue of the geosciences; probability theory and
stochastic models for prediction of energy and mineral resources, highly demanded
by many nations for economic and societal development; geo-complexity theory
such as fractals, multifractals, chaos and self-organized criticality for modeling and
predicting singular events and extreme phenomenal issues; and information
extraction (big data mining, machine learning, geo-intelligence) in the geosciences,
just to name a few.

As the International Association for Mathematical Geosciences, IAMG has
earned its reputation by promoting and fostering its members to make contributions
to science. Original and significant studies have been published in IAMG journals,
books and conference proceedings. However, a large amount of work is docu-
mented elsewhere in publications which cover almost every mathematical subject
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and aspects of geosciences ranging from statistical data analysis, geometrical
modeling, dynamics and processes simulation, to prediction and assessment of
Earth system. MG theories and methods have been applied not only in tackling
conventional solid earth issues such as assessment of mineral and energy resources,
but also in other fields including hydrology, climate change, water resources,
alternative energy resources and environmental issues. While the importance of MG
in the geosciences has been increasingly demonstrated, the discipline of MG has not
yet been fully recognized and, to some extent, buried in oblivion. There is hardly
any hiring of highly qualified personal (HQP) in academic institutions or industry
with as job title Mathematical Geoscientist or Geomathematician. As a matter of
fact, most of our IAMG members are employed with job titles such as geologists,
geophysicists, geochemists, geodesists, computer scientists, mathematicians and
geoinformatical specialists instead of MG or GM. University students who are
talented in mathematics and geosciences wanting to pursue mathematical geo-
science have to enroll in geophysics or other fields simply because MG does not
exist as such in university programs, at least in most of the programs in developed
nations. There are very few interdisciplinary university programs except actuarial
science, mathematical physics and mathematics for business, which have mathe-
matics as integral part of their subject. A common misconception is that learning
mathematics either can only result in kinds of two jobs: pure mathematician or
mathematics teacher, or as a prerequisite for other careers in engineering, science or
business. This might be one of the reasons there are not so many students wanting
to pursue mathematics related subjects in their choice of career. Thus, MG faces
significant challenges when promoting MG as a discipline and for facilitating
training and education of future generations. This presents the bottleneck for the
IAMG to grow further and to become a more successful and influential association.

The International Year of Mathematics of Planet Earth (MPE) celebrated in 2013
generated a much needed publicity of mathematics in geoscience. Mathematical
courses are offered in all schools from primary to high school to university. Earth
science is also a common choice of topic in essays by students. Integration of math
and earth subjects must provide proper and interesting topics for students’ math or
science projects. The mathematical and geoinformatical techniques learned by
students early on are already powerful tools for exploring the Earth. An excellent
example is the work headlined in the media with publication by a high school
student Alice R. Zhai who has analyzed 73 tropical cyclones that made landfall in
US and used multivariate regression to examine the dependence of hurricane
economic loss on maximum wind speed and storm size. This study (Zhai and Jiang
2014) not only proposes a new model by which hurricane damage might be pre-
dicted but also provides new evidence showing the area-density power law property
of extreme events which, as is to be introduced in the remainder of this chapter, has
deep origins in nonlinear dynamics.

The development of modern information technology enables everyone to easily
retrieve big data to support their studies via internet and web services in a cloud
environment. To access and process huge amounts of data is no longer only for paid
professionals. More and more specialized software packages and multi-media
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teaching and training materials or online courses available in the public domain
with Twitter, Facebook and You Tube, provide new ways for self-learning. Online
communication, discussion and consultation through the internet in and out of the
classroom have become common for students. It should encourage middle school,
high school and university students to develop their curiosity in, passion for, and
dedication to mathematical geosciences.

10.4 Frontiers of Earth Science and Opportunities of MG

IAMG has been rapidly expanding its scope from traditional geostatistics or statis-
tical geology to more comprehensive interdisciplinary sciences for mathematically
studying properties and processes of the Earth with prediction and assessment of its
resources and environments. What are the current trends of MG and how are they
associated with the Earth Science frontiers? It is impossible to create an accurate list
of frontiers for MG. Of course, there exist several previous publications by IAMG
members that have discussed past, current and future trends for the IAMG (Agterberg
2003). Here I will just share some thoughts based on my personal observations of
several recent events and activities. Several international organizations have devel-
oped and published white papers illustrating prospective review on trends of scien-
tific research within their organizations and strategic plans for the next 5–10 years;
for example, the International Council for Science Union (ICSU) published its
strategic research agenda for Future Earth 2025 Vision (http://www.futureearth.org/
sites/default/files/future-earth_10-year-vision_web.pdf); the International Union of
Geological Sciences (IUGS) is jointly with UNESCO offering the International
Geological Correlation Program (IGCP) in addition to various other big science
programs and new initiatives such as the Resourcing Future Generations (RFG), an
international collaborative program (http://iugs.org/uploads/RFG.pdf); the US
National Science Foundation (NSF) has published a strategic plan for 2014–2018
(https://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf14043); the Ameri-
can Geophysics Union (AGU) produced a scientific trends report (https://about.agu.
org/trends-earth-space-science/); the American Natural Science Foundation pub-
lished its strategic plan for tectonics (https://docgo.net/national-science-foundation-
nsf-strategic-plan-fy-2006-2011-nsf-06-48); a white paper resulting from NSF
sponsored workshops on “mathematics in geosciences” was published by a group of
geoscientists in 2012 (https://cpb-us-e1.wpmucdn.com/sites.northwestern.edu/dist/
8/1676/files/2017/10/agenda-xwphux.pdf), just to name a few. Relevant publications
resulting from international conferences such as the International Geological Con-
gress (IGCs), AGU, EGU, GSA as well as special articles in several journals such as
Nature and Science have also been concerned with these issues. The following
summary of key topics can be extracted from the preceding sources of information to
reflect current trends and frontiers of the earth sciences. These key topics include but
are not limited to data science, data analysis, big data and geo-intelligence,
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computation, inter-/multi-/cross-/transdisciplinary science, integrated models,
uncertainty relative to observations and predictions, properties and dynamics of the
planet, climate change, disruptive processes such as earthquakes and storms, and
special studies of the Arctic, Antarctic and Tibet Plateau. The fundamental issues are
for understanding Earth and environmental systems and their interactions with
human activities, and for developing reliable monitoring systems, models, and
information technologies for predictions and early warnings of large-scale and rapid
change. The current challenges facing earth scientists are understanding and mod-
eling the geo-complexity of the Earth and environmental systems with their inter-
actions, chaotic nature and predictability of geo-processes, Earth singularity and
human mitigation and adaptation to extreme events, plus observation and monitoring
multiple-scale mixing nonlinear processes. Although most organizations neither
recognize nor explicitly mention this, the majority of these frontiers are fundamen-
tally related to MG. A long period of incremental advances of new mathematical
theories and models in conjunction with modern technologies for solving these earth
science problems may lead to creative leaps of innovation. MG has huge challenges
and responsibilities facing the earth science frontiers. MG scientists are indeed at the
frontier of earth science tackling fundamental problems of the Earth as can be evi-
denced by the recent advancements reflected in the topics of plenary presentations at
IAMG conferences and in the best papers published in IAMG journals; for example,
on multi-point geostatistics—a new field of spatial-temporal modeling (Mariethoz
and Caers 2014); compositional data analysis—a new way to explore the composites
of the Earth (Pawlowsky-Glahn et al. 2015); singularity analysis and singularity
physics—new theory and methods of studying geodynamics and geo-complexity
(Cheng 2007, 2017a; Agterberg 2017); big data visual analytics for exploratory data
analysis; semantic web technology for geoinformation; uncertainty in ecosystem
mapping by remote sensing; integrating structural geological data into inverse
modeling frameworks; stationary and isotropic vector random fields on spheres; and
mathematical morphology modeling, just to name a few.

10.5 Fractal Density and Singularity Analysis
of Nonlinear Geo-Processes and Extreme Geo-Events

For the past several decades nonlinear theory and geocomplexity marked an era of
new geoscience that deals with nonlinear processes and extreme phenomena which
occurred in the evolution of earth systems. Irregular geometry was not popularized
in the past until the term “fractal” was coined by Mandelbrot in the 1970s. Fractal
geometry rapidly became a new field of mathematics dealing with roughness and
irregularity of geometries. For example, fractals have been used for modeling
complex and self-similar patterns generated by nonlinear processes (Mandelbrot
1972; Feder 1988). The concept of fractals and fractal dimension was further
extended to multifractals involving self-similar measures defined on support which
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can be fractal itself (Mandelbrot 1972; Meakin 1987; Schertzer and Lovejoy 1987).
Multifractal measures have been further extended to fractal density in local sin-
gularity analysis (Cheng 1999a, 2001). In the following sections the concept of
fractal density will be introduced and followed by discussion and application of
new methods for fractal differential operation and fractal integration (Cheng 2017a).

10.5.1 Fractal Density

Since the principle of density was discovered by the Greek scientist Archimedes
approximately 2000 years ago, the well-known physical concept of density has
become a fundamental property of mass or energy with a variety of applications.
The density, or volumetric mass density, of a substance is its mass per unit volume.
Density thus is a scale-independent property of material or energy treated as rep-
resenting a fundamental physical parameter and variable in many physical models
with applications in nearly all fields of study, ranging from physics to engineering,
economics and the social sciences. Density often is characterized as unit of mass
over volume (e.g., g/cm3, kg/m3) or energy over volume (J/cm3, w/L3). For
example, the density of pure gold is 19.32 g/cm3, which is approximately 19 times
as much as for an equal volume of water. The density of quartz is 2.65 g/cm3, which
is much less than the density of gold. Therefore, the density of gold-mineralized
quartz veins in hydrothermal mineral deposits is variable depending upon the
concentration and distribution of gold in the quartz veins. Similarly, continental
crust, which consists mostly of granitic rock, has a density of about 2.7 g/cm3 and
the Earth’s mantle of ultramafic rock has a density of about 3.3 g/cm3. The density
of seawater varies with temperature and salinity of the water. Although the density
of seawater varies at different points in the ocean, a good estimate of its density at
the ocean’s surface is 1025 kg/m3 or 1.025 g/cm3. Density of air is a temperature
and pressure dependent parameter. For given temperature and pressure the density
of air is independent of the volume of air. For a pure substance the density is
independent of the volume of substance. However, for a heterogeneous substance
density usually assumes different values depending upon purity and packaging. For
example, rocks consisting of minerals with different densities have variable den-
sities depending upon the proportions of the minerals. For a quartz vein with pure
SiO2 the density of the vein should be equal to the density of quartz, 2.65 g/cm3.
However, if the quartz vein involves gold mineralization, then the density of the
quartz will be different from that of pure quartz relating to how the gold is dis-
tributed in the vein. At a location of higher concentration where a cluster of gold
occurs in the quartz vein, the density of the vein is higher than that of pure quartz.
From a fractal point of view, the structure of these types of gold distribution can be
very irregular and then has to be described by using a non-integer or fractal
dimension. Accordingly, the value of “volume” of the substance is lost. Instead the
size of fractal is measurable only if it is measured in fractal dimensional space or as
Hausdorff measure (Cheng 2017a). This means the ratio of mass over volume does
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not converge; and the density does not exist according to the ordinary density
definition. In the following section it will be demonstrated that the concept of
ordinary density of substance is only valid for substances with regular or ordinary
structure. For substances packaged in a fractal manner, a new form of density is
needed and the concept of ordinary density has to be generalized to a new form
capable for quantifying the density of complex objects. It will also be demonstrated
that the end products for many types of singular processes possess fractal mass
density or energy density. The concepts of fractal density and local singularity
analysis have been utilized in several dynamic models involving extreme processes
(Cheng 2012, 2016, 2017b; Cheng and Agterberg 2009; Cheng and Sun 2017).

10.5.2 Density-Scale Power-Law Model and Singularity

According to the concept of ordinary density, the mass density of an object (ρ) can
be calculated by the following equation:

ρ=
mðvÞ
v

, ð10:1Þ

where m(v) represents the mass contained in a volume (v) and ρ is the average
density of an object. If the object is homogenous then the density calculated in
Eq. (10.1) becomes independent of volume. The unit of the density is determined
by the ratio of the mass and volume; for example, g/cm3. However, if the object has
heterogeneous properties, the density may vary from place to place and the average
density in Eq. (10.1) varies with different size of v, then a localized density must be
calculated using the derivative of the mass over volume:

ρ=
dmðvÞ
dv

= lim
v→ 0

mðvÞ
v

. ð10:2Þ

The density in Eq. (10.2) exists only if the limit converges when the volume
becomes infinitesimal. If the limit does not converge, then the density doesn’t exist.
As a generalization of Eq. (10.2), the following new Eq. (10.3) was introduced
(Cheng 1999b, 2001) in which there exists a parameter α (with positive value) so
that the limit converges:

ρα = lim
v→ 0

mðvÞ
v
α
3

. ð10:3Þ

The value of ρα can be considered as a generalized density because the ordinary
density defined in Eq. (10.2) becomes a special case of Eq. (10.3) when α = 3, the
normal dimension of volume. This new density was named fractal density since it is
defined as mass or energy per unit of “fractal set” (Cheng 1999b, 2001). The fractal
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density defined in Eq. (10.3) has as unit the ratio of mass to a fractal set of α
dimensions; for example, g/cmα or kg/mα. Similarly, the units of fractal energy
density can be J/cmα or w/Lα. Combining Eqs. (10.2) and (10.3) yields the fol-
lowing relationship between ordinary density and fractal density:

ρðvÞ= ραv
− ½1− α ̸3�. ð10:4Þ

The notation of fractal density used in Eqs. (10.3) and (10.4) can be replaced by
the following general model associating the fractal density with the ratio of mass
and scale (ε—linear size of an E-dimensional set):

ρðεÞ= ραε
− ½E−α�. ð10:5Þ

This power-law relation between the ordinary density and scale is determined by
two parameters: the fractal density ρα which is independent of scale and the
exponent–singularity index α (fractal dimension), or Δα = E − α; the latter is also
known as the co-dimension of fractal density. The singularity index (Δα) measures
the deviation of the fractal dimension from the dimension of normal density. These
two parameters (ρα and Δα) can be estimated from observed data by measuring the
intercept and slope of a straight line on the log-log plot of m against ε (Cheng
1999b, 2007).

10.5.3 Multifractal Density

If fractals refer to geometry with irregular shapes and self-similar geometrical
properties, multifractals refer to self-similar measures defined on support which can
be fractal (Mandelbrot 1983). Multifractals are defined as spatially intertwined
fractals with variable fractal dimensions (e.g., Mandelbrot 1972; Cheng 1997).
According to the distribution of measures (similar to the mother functions of sets)
the support can be grouped into subsets which can be fractal with specific fractal
dimension. Accordingly, there are two types of multifractal measures: continuous
and discrete multifractals, the former refers to multifractals corresponding to an
infinite number of intertwined fractals with continuous fractal dimension spectrum,
whereas the latter refers to the limit number of intertwined fractals with discrete
fractal dimensions (Cheng 1997). Multifractal measures are self-similar measures
with multiple scale singularities which can be characterized by the Hőlder exponent
(Mandelbrot 1989). In the multifractal paradigm the measure defined on a support
can be expressed as

⟨μðεÞ⟩∝ εα, ð10:6Þ
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where μ(ε) represents the measure defined on a set of linear scale ε, ∝ stands for
‘‘proportional to’’ when cell size ε approaches to zero, and α is the singularity index
also known the Hőlder exponent (Mandelbrot 1989). This power law exists usually
in a statistical sense and is represented as expectation <>. According to the dis-
tribution of α values, the entire support can be classified into subsets or fractals each
with different singularity and accordingly different fractal dimensions. This is why
it has been termed “multifractal”. The distribution of singularity α in the mapped
area can be described by the fractal dimension spectrum function f(α). The values of
singularity and multifractal spectra can be estimated by several methods including
box-counting and gliding-box based moment methods, and the wavelet method
(Cheng 1999b). Singularity property has been commonly observed in geochemical
and geophysical quantities (Cheng et al. 1994; Cheng 1999b, 2007). Since the
common moment-based multifractal models are implemented according to partition
functions of measures with additive property, most literature about multifractals
focuses on the power law relations of multifractal measures and self-similarity of
multifractal measures and few have neither emphasized the physical meaning nor
the property of density of the multifractal measure. A density—area fractal model
was proposed (Cheng et al. 1994) to associate the concentration with area of
multifractal measure as

A ≥Cð Þ∝C − β, ð10:7Þ

where the area (A) is a function of element concentration above the threshold C.
The model has also been applied to characterize other types of “concentration” such
as density of faults per area (Agterberg et al. 1996), density of mineral deposits per
area (Cheng and Agterberg 1996), stream density per drainage area (Cheng et al.
2001), and digital number of remote sensing images (Cheng and Li 2002), just to
name a few. Further utilizing the idea of C-A model locally, the following power
law relation was introduced to associate the density of multifractal measures with
scale (Cheng 1999b)

ρ ε, xð Þ= c xð Þε− E− a xð Þ½ �, ð10:8Þ

where E is the Euclidean dimension of the support (e.g., E = 1 for line, 2 for area
and 3 for volume), x indicates the location, and c(x) and α(x) are constants with
respect to scale ε but varying with location. The values of α(x) and c(x) can be
estimated from the values ρ ε, xð Þ calculated for different sizes ε around the location x
by means of least squares using log-log paper. Both values can be mapped
for visualization and interpretation. For convenience without loss of generality, in
the rest of the paper the notation of x will be dropped from the formulation and the
equation is assumed to hold locally. The singularity index α and constant c have the
following properties (Cheng 1999b): if α = E, then ρ εð Þ = constant, independent of
vicinity (scale) size ε; if α > E then ρ εð Þ is a decreasing function of ε which implies
the convex property of ρ εð Þ; and α < E then ρ εð Þ is an increasing function of εwhich
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implies the concave property of ρ εð Þ. Thus, the ordinary density obeys a power-law
relationship with scale which has the following properties (Cheng 1999b, 2007):

lim
ε→ 0

ρ=
0, if α>E,
∞, if α<E,
c, if α=E.

8<
: ð10:9Þ

In accordance with these properties, ordinary density becomes volume depen-
dent when α ≠ E and it tends to either zero or infinity when the scale ε becomes
infinitesimal. The constant c in Eq. (10.8) can be expressed in the following form:

c= lim
ε→ 0

ρ εð ÞεE− α = lim
ε→ 0

μ εð Þ
εα

, ð10:10Þ

The constant c indeed is a convergent value of the ratio of measure (μ) over scale
(ε) with fractal dimension. This quantity is usually termed scaling factor but it can
be termed as a fractal density or Hausdorff density in analogy to the mass density
which corresponds to ratio of measure over ordinary geometry with integer
dimension (Cheng 2015). Therefore, while a unit of ordinary density is g/mE, the
unit of fractal density becomes g/mα.

10.5.4 Fractal Density Structure and Clustering
Distribution

The terminology of fractal density has been explained in several papers with dif-
ferent emphases, but the meanings of the concepts used are variable. For example,
the term “fractal density” has been used to refer the number of fractals per area (Hou
and Wu 1989) which does not mean the same as the concept introduced in the
current paper. Tatekawa and Maeda (2001) analyzed time evolution of fractal
density perturbations in the Einstein-de Sitter universe, in which the emphasis is on
how the perturbation evolves and what kind of nonlinear structure will come out.
Similarly, Federrath et al. (2009) has used fractal density structure in supersonic
isothermal turbulence when referring to density structure. Gromov et al. (2001)
used fractal density to describe fractal galaxy distribution. Carpinteri et al. (2009)
used the term to describe the mean fractal density of microcrack barycenters. Pope
and Mackenzie (1988) introduced the concept of fractal density for describing the
morphology of fractal growth model in the evolution of gels from solution. They
define the fractal density ρ which follows the relation

F =
ρ

ρ0
=

r0
r

� �3−D
, ð10:11Þ
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where D is the fractal dimension of fractal growth, the F is the relative fractal
density at radius r (r ≥ r0), with r0 and ρ0 being the core radius and core density,
respectively. The core acts mathematically as a reference point for calculating the
decrease in density as the fractal increases in size. A similar clustering fractal
growth density function was used to describe tumor growth in fractal space-time
with temporal density (Paramanathan and Uthayakumar 2011).

From the preceding publications we can see that in earlier studies by other
authors the term of fractal density was introduced mainly for description of mor-
phology and patterns of fractals and fractal growth modeling. The current research
introduces the fractal density as a generalization of ordinary density of substance or
energy to represent a fundamental new parameter or variable involved in dynamic
systems.

10.6 Fractal Integral and Fractal Differential Operations
of Nonlinear Functions

As mentioned in Eq. (10.2) for heterogenetic matter or substances, the derivative of
mass over scale can be used for defining localized density of substance. Accord-
ingly, the mass or volume of a heterogenetic substance can be calculated using
integration. Obviously, integration and differentiation are two fundamental opera-
tions in calculus and used for many mathematical and physical subjects. The tra-
ditional integral and differential operations are defined on the basis of additive
property of Lebesgue measure. When the measure no longer possesses additive
property, then the classical integral and differential may not exist. Therefore, the
ordinary integral and differential operations are not applicable to fractal density with
singularity. The author has proposed the following fractal integral and differential
(Cheng 2017a)

f ′α x0ð Þ= df ðxÞ
dxα

= lim
Δx→ 0

Δf ðxÞ
Δxð Þα = lim

x→ x0

f ðxÞ− f x0ð Þ
x− x0ð Þα , ð10:12Þ

where Δf(x) and Δx represent the increments of a function f(x) for an increment
of x. The convergence of the limit in Eq. (10.12) can be defined as the α-fractal
derivative of the function f(x). Similarly, we can define the fractal integral of the
function f(x) as follows

Z
f ðxÞdxα = lim

Δx→ 0
∑ f ðxiÞðΔxÞα, ð10:13Þ

where f(xi) is the magnitude of the function f(x) over the small range [xi, xi + Δx].
If the limit of Eq. (10.13) converges, then it can be named the α-fractal integral of
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the function f(x). It must be kept in mind that the fractal derivative defined in this
paper is different from the fractional derivative (fractional order) known in the
literature as f (v)(x), where v can be a non-integer order. The fractional derivative
assumes that the normal integer order derivative f (n)(x) does exist. The fractal
derivative is based on fractal dimension of the measure whereas the fractional
derivative is based on fractional order of derivative defined on normal measure. As
an example, let us take a power-law function to demonstrate the fractal derivative.
Assume a power law function, f(x) = c(x − x0)

b, with ordinary derivative of the
function f′(x) = cb(x − x0)

b−1, which does not exist at x = x0 if 0 < b < 1. The
integral of the function then is

R
f ðx) dx = c ̸ðb+ 1Þðx − x0Þb+ 1, which does not

converge if b < −1 at x = x0. According to Eq. (10.12), the fractal derivative at
x = x0 exists and fα′(x) = c, if α = b, or fα′(x) = 0, if α < b and fα′(x) = ∞ if
α > b.

A new concept of Hausdorff derivative underlying the Hausdorff dimension of
metric space/time was proposed by Chen (2006) who introduced the systematic
mathematical operation of Hausdorff derivative with applications to derive a linear
anomalous transport–diffusion equation underlying an anomalous diffusion process.
The Hausdorff derivative operation proposed by Chen (2006) is expressed as
follows

∂f ðxÞ
∂xα

= lim
x→ x0

f xð Þ− f x0ð Þ
xα − xα0

=
∂f x ̂ð Þ
∂x ̂

, ð10:14Þ

This formalism was termed the Hausdorff derivative of a function f(x) with
respect to fractal measure xα.

It has to be pointed out that the fractal derivation defined in Eq. (10.12) is
different from that defined in Eq. (10.14) considering that, in general, if x0 ≠ 0,
then

ðΔxαÞ= x− x0ð Þα ≠Δxα = xα − xα0. ð10:15Þ

The two sides in Eq. (10.15) become equal only if x0 = 0. Otherwise, according
to Taylor expansion, we can obtain Δxα = xα − xα0 = αxα− 1

0 Δx+ o Δxð Þ, so substi-
tution into Eq. (10.14) gives

∂f x ̂ð Þ
∂x ̂

= lim
x→ x0

f xð Þ− f x0ð Þ
xα − xα0

=
1

αxα− 1
0

∂f xð Þ
∂x

, ð10:16Þ

which implies that the derivative of f(x) defined in Eq. (10.14) is indeed corre-
sponding to the ordinary derivative except for the factor 1

αxα− 1
0

. Reconsidering the

example used previously with f(x) = c(x − x0)
b, the derivative of Eq. (10.14) at

x = x0 does not exist if b < 1.
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10.7 Earth Dynamic Processes and Extreme Events

In the remainder of this chapter I demonstrate that fractal density (Δα ≠ 0)
characterizes anomalous mass accumulation or energy release caused by extreme
geo-processes, which occurred in the Earth’s lithosphere originated from cascade
earth dynamics (plumes, mantle convection and plate tectonics) and self-organized
criticality involved in phase transitions (avalanches of slab breakoffs, faults, and
volcanic eruptions).

Mantle convection at high Rayleigh number generates thermal plumes episod-
ically which upon arrival in the crust could cause major flood basalt events, igneous
provinces as well as spreading of continents and mid ocean ridges (Richards et al.
1989; White and McKenzie 1989). On a larger scale, Wilson cycles (Wilson 1966)
corresponding to the periodic fragmentation and reformation of supercontinents
could be linked to temporal variability in plate tectonics. Numerous studies have
revealed that mantle convections can induce exchange of mass between upper and
lower mantle across the endothermic phase transition zone at about 660 km. The
cold downwelling material penetrates into the lower layer and, simultaneously, the
hot upwelling fluid is pushed into the upper layer. The exchange of mass between
the upper and lower mantle layers can occur in short bursts (often described with
superlatives such as “catastrophic”, overturn, “avalanche” subduction, or “super-
plumes”) (Zhong and Gurnis 1994). The quick injection of lower mantle hot fluid
into the upper mantle can cause not only mantle heterogeneity but also anomalous
thermal distribution near the surface (Le Bars and Davaille 2004). This has been
considered to be the first order cause of vigorous magmatism. Deep subductions of
continental crust into the deep earth interior and rebounded back to the surface of
the Earth have been ascertained by the discoveries of regional metamorphic coesite
(Chopin 1984; Smith 1984), and subsequently by unusual ultrahigh pressure
(UHP) terranes (Hacker and Gerya 2013).

Within the lithosphere there are various types of “catastrophic” events occurring
during plate subduction. Formation of magmatic arc can be caused by subduction in
which the subducting or subducted oceanic crust material releases volatiles (e.g.
H2O and CO2) which cause partial melting of the mantle and form magma at depth
under the overriding plate. Earthquakes occur at certain depths at the edges of three
types of plate boundaries: convergent (subductions and collisions), divergent, and
transformative.

10.7.1 Phase Transition

From mathematical and physical points of view, the mechanisms that have been
proved to exist correspond to the generation of power-law distributions including
but not limited to phase transition (PT), self-organized criticality (SOC) and mul-
tiplicative cascade processes (MCP) (Newman 2005; Lovejoy et al. 2009). I will
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elaborate on each of these mechanisms in relation to mantle convections, plumes
and lithosphere rheology induced tectonic events. The phase of a thermodynamic
system and the state of matter in a normal system have uniform physical properties.
Common phases include liquid phase, solid phase and vapor phase of chemical
components which exist under certain pressure and temperature (P-T) conditions.
Materials in different phases have their distinct properties such as liquid usually
having higher density and smaller specific volume in comparison with gas. How-
ever, in phase transition conditions, multiple phases coexist within the same system
such as liquid and vapor in magma and hydrothermal systems under proper P-T
conditions. At a critical condition (critical point on phase diagram) liquid and vapor
become indistinguishable and beyond this point the fluid and gas become so-called
supercritical fluid, representing a special phase of matter which can effuse through
solids like a gas, and dissolve materials like a liquid (McMillan and Stanley 2010).
The critical point for water occurs at temperature (374 °C) and pressure (22 MPa).
It has been found that the critical point is so peculiar that close to it, small changes
in pressure or temperature result in large changes in density and other density
related properties such as viscosity, relative permittivity, heat capacity and solu-
bility. The special critical point phenomena can be expressed by the following
empirical power law functions (Sengers and Levelt Sengers 1968, 1986):

Δρ= cðΔPÞ1 ̸3, Δρ= cðΔTÞ1 ̸2, ð10:17Þ

where Δρ, ΔP, and ΔT represent the changes of density, pressure and temperature,
respectively along the coexistence curve. These power-law relations hold for small
changes of temperature or pressure from the condition at the critical point of the
system. Although the two functions of Eq. (10.17) show continuity at zero incre-
ment with Δρ = 0, ΔP = 0, and ΔT = 0, the first order derivatives of density
versus either temperature or pressure (change rate of density difference) do not exist
or show singularity at ΔP = 0 and ΔT = 0 as shown in the following forms

Δρ
ΔT

= cΔT − 1 ̸2,
Δρ
ΔP

= cΔP− 2 ̸3 ð10:18Þ

These properties describe the phenomena of property change such as fractal
density (density jump) at the phase transition zone. In addition, the ratio of incre-

ments of temperature and pressure depict power-law relations ΔP
ΔT = cΔP− 1 ̸3. Such

power-law relation implies that the Clapeyron slope could become infinity or a
singularity when approaching the coexistence curve. Clapeyron slope and density
jump are critical parameters in numerical simulation of mantle convection; for
example, Korenaga (2004) developed a numerical model to simulate mantle mixing
and continental breakup magmatism by assigning a Clapeyron slope of −2 MPa/K
and a density jump of 10% for the endothermic phase transition at 660 km depth. The
episodicity of convection induced by the endothermic phase changes strongly
depends on plate length, rheology, and Clapeyron slope (Zhong and Gurnis 1994).
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Ogawa and Yanagisawa (2014) have developed models with small Clapeyron
slope −0.2 to −1 MPa/K for simulating convections from punctuated layered con-
vection to whole-mantle convection in modeling mantle evolution on Venus due to
magmatism and phase transitions. Their models indicate that the earlier stage layered
mantle convection is punctuated by repeated bursts of hot material from the deep
mantle to the surface. Other phenomena of phase transition may occur at the
boundary of deeply subducted slabs. Due to subduction of oceanic lithosphere
underneath the continental lithosphere, solid phase lithosphere can be partially
melted to facilitate formation of magma. During the progress of subduction, H2O and
other volatile components contained in the rocks are progressively released from the
slab at different depths. Fluids or melts released at greater depths will be in super-
critical fluid phase which hydrates the mantle and causes partial mantle melting. This
eventually leads to deeply rooted magma which provides the source for magmatic
and volcanic arcs located above the subduction zones. Partial melting in lower crust
and mantle also causes strain rate change of the lithosphere which facilitates for-
mation of intermediate and deep earthquakes (Dimanov et al. 2000). The processes of
fluid release and migration are complex and, to a large extent, their details still remain
unknown. Due to the great depth of subduction the fluid released may be in super-
critical condition with, as mentioned earlier, fractal density with strong solvent
strength facilitating the hydration and metasomatism of mantle rocks. When the
pressure and temperature are reduced to around the critical point, the system goes
through a great reduction of gradient of density, accordingly increasing the specific
volume which further enlarges porous space and fractures rocks thus in turn facili-
tating the formation of magma and earthquakes through positive feedback processes.

10.7.2 Self-organized Criticality

The phenomena associated with continuous phase transitions are called critical
phenomena, and these are often related to so-called self-organized criticality (SOC).
SOC is commonly illustrated conceptually with avalanches resulting from piles of
sand which generate a power-law number-size distribution of avalanche magnitudes
(Bak et al. 1987). At the criticality point in a SOC phenomenon a small continuous
input to the system can cause sudden and discontinuous outputs or avalanches. For
example, a fault occurs in broken brittle rock strata when an extra stress is added to
change the system at the criticality point. The size and number of faults generated
may follow a power law distribution with a small number of large faults and a large
number of small faults. SOC is similar to critical point phase transition since both
processes involve anomalous state change caused by a minor continuous input pulse
at the critical condition point. Numerous studies have also pointed out the effect of
the 660-km endothermic phase transition on convection. This could actually gen-
erate the periodic occurrence of abrupt changes in convective mode (660-km
layered/whole mantle), consecutive with the sudden flushing of oceanic plates
previously accumulated above the transition zone (e.g., Le Bars and Davaille 2004).
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Many numerical simulations have demonstrated multiple scale and sizeable whole
mantle convection, and sublithospheric convection can bring up dense fertile mantle
materials from the lower mantle to the upper mantle (Korenaga 2004). Cold
downwellings are temporarily stopped by the 660 km endothermic phase change but
sink rapidly into the lower mantle (Tackley et al. 1993). The intermittence of lay-
ering reflects accumulation and release of negative buoyancy above the endothermic
phase boundary (Machetel and Weber 1991; Tackley et al. 1993). The exchange of
mass between upper and lower layers can occur in short bursts (Zhong and Gurnis
1994). Although these types of avalanching behaviors are not as easy to test as those
of sand piles, one might reasonably assume that these types of processes with SOC
nature can generate end products with power law distributions. As a matter of fact,
SOC phenomena have been commonly considered to describe extreme geo-events in
plate tectonics. Such examples may include but are not limited to earthquakes
(Gutenberg and Richter 1944; Turcotte 1997), volcanic eruption durations (Cannavò
and Nunnari 2016), plate sizes (Sornette and Pisarenko 2003), slab breakoff (Condie
1998), areal size of magmatism (Pelletier 1999), mineral deposits (Agterberg 1995;
Cheng 1999b; Maier and Groves 2011), heat flow over mid-ocean ridges (Cheng
2016), episodic evolution of supercontinents and crustal growth (Cheng 2017b), and
energy—probability of earthquakes (Cheng and Sun 2017). Other examples can be
found in the book authored by Sornette (2004). The processes involved in response
to the preceding extreme events create end products which can be described by
frequency—size or frequency—time power law relations. Based on the above rea-
soning, we may expect lithospheric root detachments and slab breakoffs that
occurred during subduction are of difference sizes which follow power-law distri-
butions. Some of these small-sized events may not be noticeable on the surface due
to small impact on the global system, but the large detachments and slab breakoffs
can cause significant impact on syn- to post-collisional magmatism and metamor-
phism. The size—frequency distribution of these types of events can be modelled by
the following general power-law relation

Nð>AÞ= cA− b, ð10:19Þ

where A represents the size of event and N(>A) the cumulative number of events
with size greater than the threshold A. This power-law function involves two con-
stant values: c and b. For example, the well-known Gutenberg-Richter power-law
distribution relates the number of large earthquakes to their sizes (Gutenberg and
Richter 1944; Turcotte 1997). The exponent, b-value, has been commonly used for
predictive purposes. The exponential b-value was found to be internally related to
singularity in terms of fractal probability density (Cheng and Sun 2017) with

Eð<PÞ=E0P
− 1

β, ð10:20Þ
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where E(<P) represents the minimum energy released by large earthquakes, with
occurrence probability less than P. This equation indicates that the minimum energy
released by large earthquakes follows a power-law relation ðβ= 2

3 bÞ for probability
of earthquake occurrence with energy greater than E. This model implies that the
smaller the probability (P) of a large earthquake, the larger its energy release (E).

10.7.3 Multiplicative Cascade Processes

Multiplicative cascade processes (MCP) are iterative multiplicative processes across
multiple scales, which involve positive or negative feedback to generate extreme
values that follow multifractal power-law distributions (power-law distributions with
multiple exponents) with self-similarities and singularities (Meakin 1987; Scherzter
and Lovejoy 1987; Agterberg 2007; Cheng 2014). Examples of MCP are common in
the study of geocomplexity such as formation of clouds, severe weather and storms
(Scherzter and Lovejoy 1987; Malamud et al. 1996; Turcotte 1997; Veneziano and
Furcolo 2002), to just name a few. In terms of mantle convection, the convection
processes can be viewed as multiplicative cascade processes that create hetero-
geneity of the mantle by recycling the materials from upper crust to mantle. On a
large scale, Wilson cycle cascade evolution involves the opening and closing of an
individual oceanic basin, plate drift, plate subduction and plate collision, involving
the recycling of lithosphere material and causing extreme events at the interface of
phase transition zones or zones around plate boundaries. Depending on the prop-
erties of subduction and other factors, plate subduction may cause slab deformation,
erosion and breakoff, deep subduction, and collision of continents. These events are
responsible for formation of extreme events such as magmatism and earthquakes.
During such processes changes of pressure and temperature as well as water content
often provides a positive feedback effect on causes of melting or partial melting of
lithosphere and the generation of magma reservoirs and seismicity. In the context of
multiplicative cascade processes, the mass and energy distribution resulting from
these processes often are proved to have self-similarity and singularity which can be
modelled by multifractal distributions (Meakin 1987; Schertzer and Lovejoy 1987;
Cheng and Agterberg 2009).

The aforementioned mechanisms (PT, SOC and MCP) can coexist in the evo-
lution of earth dynamics systems which cause cascade effects for anomalous dif-
fusion and strain rate originating earthquakes or magmatism creating flare up
formation of magmatic activity or cluster frequency-depth distribution of earth-
quakes. Based on possible mechanisms (PT, SOC and MCP) corresponding to
power-law distributions, the fractal density (power-law density) and the singularity
analysis method can be used to characterize the causational relations between
extreme events such as magmatic activities and earthquakes and the aforementioned
nonlinear mechanisms. In the following section a case study of earthquakes will be
used to demonstrate the effect of phase transition on formation and distribution of
earthquakes that occur along Pacific plate subduction zones.
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10.8 Fractal Density of Lithosphere Rheology in Phase
Transition Zones and Association with Earthquakes

10.8.1 Rheology Constitutive Equation

In the study of earth tectonics, rheology is an important concept describing rock
properties with respect to flow behavior which can be characterized through the
following empirical constitutive equation associating stress and strain rate (e.g.,
Dimanov et al. 1998).

ε ̇=Aσnd −mf rH2Oe
− Q+PV

RT , ð10:21Þ

where ε ̇ represents the strain rate, σ—the stress, n—the stress exponent; d represents
the grain size, m is the grain-size exponent, fH2O—the water fugacity, and r—the
fugacity exponent, Q—the activation energy, P—the pressure, V—the activation
volume, T—the absolute temperature, while R is the molar gas constant, and A—a
material constant. The constitutive Eq. (10.21) is often utilized in the literature for
describing rheology of ductile crust and since it is so well-known it often is provided
without citation and reference. Several authors have investigated this equation by
various methods such as by physical experiments (Pharr and Ashby 1983; Dimanov
et al. 1998). The parameters involved in the equation can be estimated using a
log-linear model except for the last combined term

log ε ̇ð Þ= logA+ nlog σð Þ−mlog dð Þ+ rlog fH2Oð Þ− Q+PV
RT

. ð10:22Þ

Effects of some of the parameters have been summarized by several authors
(e.g., Bürgmann and Dresen 2008). For example, diffusion-controlled deformation
is linear in stress with n = 1. Different inverse dependencies on grain size have
been predicted for lattice diffusion– and grain boundary diffusion–controlled creep
with m = 2 and m = 3, respectively. Creep of fine-grained materials involves grain
boundary sliding, which may be controlled by grain boundary diffusion (n = 1) or
by dislocation motion (n = 2). For climb-controlled dislocation creep, deformation
is commonly assumed to be grainsize insensitive (m = 0) with a stress exponent of
n = 3–6 (e.g., Bürgmann and Dresen 2008). Materials for which strain rate is
proportional to stress raised to a power n > 1 are referred to as having a power-law
rheology, whose effective viscosity (μ= σ ̸ε ̇∝ σ1− n) decreases when stress
increases. The significant effects of melt distribution on the rheology of rocks have
been reported by many authors (e.g., Dimanov et al. 1998, 2000). In general, the
strain rate is proportional to the water fugacity. The general bivariate relations
between the strain rate and other factors considered in the equation are valid and
can be applied to characterize the general associations of factors considered in the
system (Wang 2016; Dimanov et al. 2000). However, the equation is valid for
normal media that generally do not possess singularity for non-zero values of the
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factors. It is neither possible to use this equation to describe the singular behaviors
of constitutive equation in phase transition nor to directly use it to delineate zones
of phase transition. Variable depth-frequency distribution of crustal earthquakes and
lithological compositions are often integrated to characterize crust deformation in
relation to variations of tectonic styles (Mouthereau and Petit 2003). In the fol-
lowing section my attempt is to derive a proper equation to characterize the rhe-
ology in phase transition zones.

10.8.2 Rheology and Phase Transition

In order to explain the phase transition zones in the lithosphere associating the effect
of phase transition with origin of seismicity and magmatism, one needs to link the
rheology to depth of lithosphere. It has been generally accepted that in the brittle
crust, frictional strength increases linearly with depth. Phase transitions separate
regions into groups of rocks dominated by quartz, feldspar and olivine, respec-
tively; and these regions are characterized by brittle or plastic properties of litho-
sphere (e.g., Jackson 2002; Bürgmann and Dresen 2008). It was suggested by
Sibson (1974) that brittle strength in the crust can be approximated by the Sibson’s
formulation in which the coefficients of friction and cohesion for pre-fractured rocks
are equal to internal friction and cohesion for intact samples:

σ = σ1 − σ3 = βρgz 1− λð Þ, ð10:23Þ

where σ = σ1 − σ3 represents differential stress, z is depth, ρ is average density of
the overburden, g is acceleration of gravity, β is a coefficient which depends on the
type of faulting, and λ represents the pore fluid ratio. Under hydrostatic pressure, λ
is 0.36, and it is 0 and 0.7 for dry and wet conditions, respectively (Mouthereau and
Petit 2003). In order to discuss the behavior of rheology around phase transition, let
us define depth at the center of the phase transition zone as z0, which will serve as
reference of coordinate for further comparison. Let us also denote a small distance
increment (in depth) around the phase transition zone as Δz = abs(z − z0), and the
corresponding increment of differential stress around the phase transition zone as
Δσ = absfðσ1 − σ3ÞðzÞ− ðσ1 − σ3Þðz0Þg. When Δz is very small around the phase
transition center z0, then we can derive the following approximation assuming
changes of depth z, β and λ are neglectable:

Δσ ∝Δρ, ð10:24Þ

According to the phase transition property of density and temperature or pressure
similar to Eq. (10.17) we can assume the mass density of lithosphere around the
phase transition center to be
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Δρ∝ ΔTð Þb. ð10:25Þ

Further assuming that the temperature and depth increments are linearly asso-
ciated when the depth increment is very small, we obtain

Δρ∝ ΔTð Þb ∝ Δzð Þb, ð10:26Þ

Therefore, the derivative of Eq. (10.26) satisfies

Δρ
Δz

∝ Δzð Þb− 1, ð10:27Þ

This result implies that change rate (ΔρΔz) of density with depth follows a
power-law relation with the increment of depth (Δz). If the exponent b is less than
1, the change rate approaches infinity when Δz → 0, which implies that the change
rate of differential stress, according to Eqs. (10.27) and (10.24), can become infi-
nitely large. Assuming the other factors to be negligibly small in Eq. (10.21) when
Δz is very small, we obtain

Δε ̇
Δz

∝ Δzð Þb− 1, ð10:28Þ

If the exponent b is less than 1, then the change of strain rate per increment of
depth approaches infinity when Δz → 0. It must be reminded that the derivation of
the new Eqs. (10.24–10.28) is based on several assumptions involving first order
approximations of factors which may need further theoretical justification (detailed
discussion will be published elsewhere). Nevertheless, the results obtained here
might be the first power-law model providing possible quantitative description of
the singularities of differential stress at the phase transition as indicated in the
schematic diagram (Fig. 10.1).

10.8.3 Frequency—Depth Fractal Density Distribution
and Singularity Analysis of Earthquakes

In order to demonstrate the effect of differential stress caused by phase transition on
formation and distribution of earthquakes, several datasets of earthquakes with
magnitudes three or above were selected for several small regions along the Ring of
Fire, the Pacific plate boundaries. Data were downloaded from the USGS website
under the section of USGS Earthquake Hazards Program (https://earthquake.usgs.
gov/earthquakes/map/). The locations of the 30 small areas selected from Aleutian
Islands, Kuril Islands, Mariana, Tonga Trench, Mexico, northern Chile and southern
Chile are shown in Fig. 10.2. Several hundreds to thousands of earthquakes are
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selected in each area. These areas were chosen within a short range from the plate
boundaries to ensure they contain enough large earthquakes which occurred along
subduction zones with similar properties.

The main purpose of the case study here is to validate whether earthquakes that
occurred in the subduction zones possess clustering with fractal density; therefore, we
choose earthquakes in the depth around the Moho ranging from 30 to 100 km.
Considering the issue of depth of shallow earthquakes being set a “normal” depth of
33 km or default depths of 5 or 10 kmwhen depths are poorly constrained by available
seismic data, we only analyze the earthquakes with occurring depth ranging 34 to 100
km. The numbers of earthquakes in each dataset were grouped on the basis of 10-km
depth frequency bins. A profound peak of frequency distributions can be observed
around 33 km in all datasets except for western California. To reduce the effect of the
“default peak” at depth 33 km, further analysis of the frequency data will be based on
earthquakes with depth from 34 kmdownward. As an example, the frequency—depth
distribution of 1263 earthquakes with magnitude greater or equal to 3 and depths
between 34 to 100 km from the Tonga region are shown in Fig. 10.3a with the data
grouped in a bin of 10 km (frequency—depth distributions for other datasets are not
shown here). This graph shows a profound frequency peak at 34–44 km. By eye
examination one can see the frequency around the peak within 60 km (from 34 to 94
km) decaying rapidly from the location of the peak at 34 km downward. To validate
the fractal density of frequency clustering distribution, the following local
number-depth density of earthquakes around the peak z0 was constructed
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Fig. 10.1 Strength envelopes of differential stress versus depth for a general lithospheric
condition to illustrate the potential effects of phase transition. The equations are about increment
rate of differential stress around the depth of phase transition zone. Notations and discussions
about the equations are given in the text
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ρ Δzð Þ= total number of earthquakes in depth range z0 +Δz
Δz

= cΔz− b, ð10:29Þ

where Δz is the window size from z0, c and b are two parameters to be estimated
using the local singularity analysis method (LSA) with windows of multiple sizes:
Δz = 10, 20, …, 60 km. The results are calculated for all 30 datasets. Several
selected examples are shown in Fig. 10.3b–h. There is no significant peak at 33 km
in the datasets from the areas of western California. The decay curves in Fig. 10.3
are least squares fittings to the data with power-law functions. The results estimated
from the six datasets give b = 0.90 (E13), 0.44 (E7), 0.27 (E2), 0.49 (N2), 0.55
(N5), 0.69 (W4) and 0.74 (W11) respectively. Coefficients of determination for the
least squares fittings to all six datasets are high with R2 > 0.98 (student
t-value > 14), indicating statistically significant power-law models fitted to the
data.

The results obtained by local singularity analysis of all 30 datasets (except E1,
E3, E8) demonstrate that the frequency—depth distributions for large earthquakes
(M ≥ 3) are not uniformly distributed but show clustering which can be modelled
by using the local fractal density model of Eq. (10.29). The datasets E1, E3 and E8
show linear decay instead of power-law decay. Moreover, the results (shown as
yellow dots in Fig. 10.2) demonstrate that the frequency—depth density distribu-
tions of earthquakes from the southwestern boundaries of the Pacific plates depict
stronger singularities than those of earthquakes from the southeastern boundaries of

Fig. 10.2 Study areas located along the Pacific plate boundaries. Data containing earthquakes
with magnitudes M ≥ 3, and their depths were downloaded from the USGS website. The yellow
dots represent the location of study area and the size of the dot represent level of singularity
calculated using the model introduced in the current paper
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Fig. 10.3 Distribution of frequency density of earthquakes with magnitudes equal to or greater
than 3 from around Moho at 34 km downward. a Frequency—depth distribution of earthquakes
from Tonga region; b–h Distribution of decay of frequency density of earthquakes (#/km) with
depths from around peak at 34 km downward; Power-law functions were fitted to the observed
data by least squares
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the Pacific Plates except the earthquakes in conjugation regions of three plate
boundaries (e.g., N4, N5, W4, W5, W9-W11, E4, E13, E14) that depict stronger
singularity. This finding might be significant for understanding the different
mechanisms causing earthquakes between the eastern and western Pacific plate
boundaries. As reported in the literature, the western boundaries of the Pacific plates
are generally colder and older in comparison with the eastern boundaries (Kong
et al. 2016; Okazakl and Hirth 2016). Low slab temperatures resulting from faster
subduction cause deeper earthquakes (Wei et al. 2017). Omori et al. (2004) have
studied association of the distribution of dehydration events with earthquakes and
found non-linear correlation between maximum depth of earthquake and temper-
ature of the slab, with lack of deep earthquakes in young subduction-zones. Their
work showed that deeper earthquakes (> 300 km) are mostly located in the selected
areas along the western subduction zones of Pacific plates whereas fewer deep
earthquakes occurred at the eastern boundaries of Pacific plates. The results of the
current research may provide supplementary information about singularity of
frequency-depth distribution of shallow earthquakes around Moho in the subduc-
tions zones of the Pacific plates. The local singularity analysis may provide a new
tool for characterization and distinguishing between earthquakes from a fractal and
self-similarity point of view. Further work will extend the analysis to cover more
areas and other depths of earthquakes. Other sizes of earthquakes will also be
considered.

10.9 Discussion and Conclusions

In the first part of the chapter, the purpose of including suggestions about mathe-
matical geosciences or geomathematics as a discipline and introduction to examples
of significant contributions of mathematical geoscience scientists to science was to
appeal to the public and geoscientists to appreciate the indispensable role that MG
can play in the family of geosciences. In the second part of the chapter, the fractal
density model was introduced and used for characterizing the power-law rheology
of phase transition, and singularity analysis of earthquakes from subduction zones
of Pacific plates was demonstrated to be a new and promising nonlinear MG
method for modeling extreme and “avalanche” geo-events. Examples of application
of singularity analysis not only include earthquakes as introduced in the current
chapter but also other types of extreme events such as magmatic flare ups (Cheng
2017a), mid ocean ridge anomalous heat flow (Cheng 2016), flooding caused by
tropic storms (Cheng 2008), and mineral deposits as well as ore-caused anomalies
in surface media (Cheng 2007). Further comprehensive analysis of earthquakes
from other regions and clustering depths will be published in separate papers.
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Chapter 11
Electrofacies in Reservoir
Characterization

John C. Davis

Abstract Electrofacies are numerical combinations of petrophysical log responses
that reflect specific physical and compositional characteristics of a rock interval;
they are determined by multivariate procedures that include principal components
analysis, cluster analysis, and discriminant analysis. As a demonstration, electro-
facies were used to characterize the Amal Formation, the clastic reservoir interval in
a giant oil field in Sirte Basin, Libya. Five electrofacies distinguish categories of
Amal reservoir rocks, reflecting differences in grain size and intergranular cement.
Electrofacies analysis guided the distribution of properties throughout the reservoir
model, in spite of the difficulty of characterizing stratigraphic relationships by
conventional means.

11.1 Introduction

The primary responsibility for reservoir modeling is in the hands of petroleum
engineers, but the most successful reservoir modeling projects have included
quantitative input from geologists and geophysicists. However, geologists with the
necessary mathematical and computer skills are scarce, so there has been a tendency
to rely instead on commercial software that runs factory-set defaults to perform
geological and petrophysical modeling, even though statistical software can readily
be adapted to perform many of the operations that are useful for geological reservoir
modeling. These include statistical analyses of properties derived from well logs,
cores and downhole measurements and investigations to determine the best geo-
statistical parameters for static modeling, evaluating relative effectiveness of seis-
mic attributes, and estimating reservoir fluid properties such as hydraulic flow units.
As an example, we will consider the calculation and use of electrofacies in the
characterization of a giant clastic reservoir, the Amal field of Libya.
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11.2 The Amal Field of Libya

The first commercial discoveries of oil in the Sirte Basin of Libya were made in
1958, and in 1959 the first giant field in Libya was found in the Sirte Basin. Five
more giant fields were discovered in the same year, including the Amal field
discussed here. By the end of the 1960s, the Sirte Basin was established as one of
the premier oil provinces of the world (Hallett 2002).

Most reservoirs in the major fields of the Sirte Basin have been in production for
50 years or more and are now nearing depletion. In an effort to extend the lives of
fields, the Libyan National Oil Company (NOC) has authorized numerous reservoir
studies in the hope that they will disclose previously untapped reserves or suggest
improved production strategies. Fortunately, seismic, well, and production infor-
mation is available for many fields, which permits detailed modeling of reservoirs
and the investigation of production alternatives.

The Amal field is located on a wedge-shaped tilted fault block called the Rakb
High, one of a series of elongated, subparallel horsts and grabens in the eastern part
of the Sirte Basin. The primary reservoir interval is the Amal Formation, a typical
transgressive clastic sediment composed of weathered material derived from the
underlying basement. Most of the formation is a “tight, hard, quartzose, irregularly
feldspathic sandstone” (Roberts 1970). Radiometric studies date the Amal For-
mation as Cambro-Ordovician to Permian, although a few Triassic fossils have been
recovered from lacustrine shales within the formation. Elsewhere in Libya similar
transgressive basal sandstones overlying the Hercynian unconformity are called the
“Nubian Sandstone” and assigned a Lower Cretaceous age (El-Hawat et al. 1996).
The Amal clastics were deposited in continental environments, with some small
irregular intervals of possibly lacustrine and shallow marine origin. Thin volcanic
sills and flows of Permian age also occur sporadically in the formation, as do local
unconformities. The Amal is present everywhere on the Rakb High except at the
south end of the uplift where it has been removed by erosion.

11.3 Electrofacies Analysis

“Electrofacies” are unique combinations of petrophysical log responses that reflect
specific physical and compositional characteristics of a rock interval cut by a
borehole. The term “electrofacies” was coined by Serra and Abbot (1980), who
considered electrofacies to be proxies for lithofacies. An important advantage of
electrofacies over alternative types of facies classifications of rocks in the subsur-
face is that electrofacies can be defined solely on the basis of well log responses,
without reliance on cores, cuttings or outcrops. Although electrofacies are empir-
ical, they are also objective; no subjective interpretations of sediment genesis or
inferences about depositional environments are required.
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There is no specific procedure for defining electrofacies. The general require-
ments are that they be determined from a consistent set of petrophysical log
measurements; that the similarities between down-hole intervals are expressed
quantitatively from the log responses; that the intervals are consistently divided into
subsets that have similar responses; and that the distinctions between subsets are
expressed as mathematical functions. Because of the enormous amount of data
contained in the log suites from a collection of wells, it is necessary that electro-
facies be determined by computer (Kiaei et al. 2015). This introduces the practical
requirement that electrofacies be defined by a programmable algorithm.

Many procedures for determining electrofacies have been proposed in the lit-
erature (Berteig et al. 1985; Busch et al. 1987; Delfiner et al. 1987; Tetzlaff et al.
1989; Anxionnaz et al. 1990; Hernandez–Martinez et al. 2013; Euzen and Power
2014) and most commercial software packages for subsurface modeling have
electrofacies functions. Unfortunately, details about how these functions perform
are seldom revealed, and the procedures operate as “black boxes.” (Exceptions are
the description of Schlumberger’s FACIOLOG procedure given by Wolff and
Pelissier-Combescure 1982, and the software provided by Lee et al. 2002). Almost
all commercial implementations consist of a combination of principal components
analysis, cluster analysis, and discriminant analysis. These underlying methodolo-
gies can be duplicated using a multivariate statistical package, which has the
advantages of flexibility and transparency, although perhaps less convenient for
routine electrofacies calculations. Dubois et al. (2007) provide a comparison of
alternative statistical methodologies for electrofacies analyses. Perez et al. (2005)
have demonstrated that electrofacies are superior to other types of reservoir char-
acterizations such as lithofacies or hydraulic flow units (HFU).

The general definition of “facies” is “the aspect, appearance, and characteristics
of a rock unit, usually reflecting the conditions of its origin; especially as differ-
entiating the unit from adjacent or associated units” (Neuendorf et al. 2005). The
definition continues to more specialized varieties of facies, noting that “sedimentary
facies” consist of a restricted part of a lithostratigraphic body with a unique
lithology or fossil content, or a certain environment or mode of origin such as
“red-bed facies.” A “petrographic facies” is a body of rock of a distinctive lithol-
ogy, while a “biofacies” contains a unique assemblage of fossil organisms.
“Environmental facies” consist of a body of rock formed in a specific environ-
mental setting, such as a “fluvial facies” or a “near-shore facies.” The term “facies”
may also refer to rocks defined on a paleogeographic or paleotectonic basis, such as
a “geosynclinal facies” or a “continental margin facies.”

Note that all of these definitions require either information that can only be
obtained from direct observation of the rocks themselves (lithologies, fossils), or
subjective interpretations about the origins or depositional environments in which
the rocks were formed. In contrast, electrofacies are based solely on the “…aspect,
appearance, and characteristics…” of petrophysical logs, and not of the rocks which
the logs represent. The basic assumption in electrofacies interpretation is that a
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unique combination of log properties represents a rock that exhibits a unique
combination of physical properties—in other words, the rock is unique in terms of
its composition and fluid content.

11.3.1 Choice of Log Traces for Electrofacies Calculation

Ideally, there will be a large suite of logs available for calculating electrofacies and
the tool responses to be used can be chosen based on resolution and response to
properties of primary interest. In practice, especially in areas where drilling and
logging has taken place over many years, finding a common set of logs that is
available in all (or most) wells severely limits the choice. In the electrofacies study
discussed here, only the DT, GR and ILD logs were common to all wells in the
field. However, by removing a small number of wells from consideration, the suite
of logs could be expanded to include the SN and SP logs.

11.3.2 Standardization of Log Traces

It is essential that the log measurements used in electrofacies calculations be
consistent throughout the stratigraphic section in the well being analyzed, and from
one well to another. This can be done in a variety of ways. Some commercial
programs such as Schlumberger’s Petrel do this by converting the data into prin-
cipal component scores and then computing electrofacies from scores rather than
from the log data itself. Although principal components were calculated here for
display purposes, we prefer to compute electrofacies directly from the original log
variables after appropriate transformations.

Log standardization consists of subtracting the mean log response over an
interval of interest from every log reading in the interval and dividing the remainder
by the standard deviation of the response in the interval. This converts the reading
into dimensionless units of standard deviation, most of which will range in value
from –3 to +3 (Davis 2002). Each log trace is standardized independently of all
other log traces in a well, and the traces in each well are standardized independently
of all other wells. This (1) removes any effects caused by differences in measure-
ment units (ohm-meters, millivolts, microseconds/ft, etc.). It also insures (2) that all
logs used in the analysis equally influence the classification of the electrofacies
because all the logs have the same average value (their means are all 0.0) and their
spreads in values are approximately the same (their standard deviations are all equal
to 1.0). Furthermore, (3) any differences between wells caused by different hole
conditions or different logging parameters are removed. In petrophysical terms,
standardization of the log tracks for individual wells can be regarded as an ultimate
form of well log normalization.
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We can regard the transformed well log data as consisting of a matrix or flat file
whose columns contain the standardized well log traces and whose rows are
measured depths or elevations in specific wells. Further computations are done
treating the row vectors as individual multivariate “objects” to be classified.

11.3.3 Estimating the Number of Distinct Electrofacies

Because electrofacies are defined empirically, the number of different electrofacies
is somewhat arbitrary. The number of useful electrofacies is partly dependent on the
number of log properties used in their calculation and the joint nature of the
statistical distributions of the log measurements. It also reflects the purpose of
electrofacies classification and the manner in which the final classification will be
evaluated and used. A simple distinction between reservoir and non-reservoir rock
may be made with an electrofacies classification of only two classes, while a study
for environmental interpretation may require a dozen or more classes.

Because there is a limited number of well logs that measure different physical
properties in the example used here, we anticipate that an effective electrofacies
interpretation will not involve many facies classes. Determining the appropriate
number requires trial-and-error, starting with many classes and reducing the number
to eliminate trivial categories that include only a few rare observations, or to
combine ill-defined classes that have very similar properties. The same
trial-and-error process can be used to evaluate alternative procedures such as dif-
ferent clustering algorithms.

Figure 11.1 is a cross-plot of the first and second principal components of log
responses from the Amal Formation. The scatter diagram represents 12,535 well log
observations classified into seven electrofacies; each electrofacies category is
indicated by a color (1 = red; 2 = green; 3 = blue; 4 = orange; 5 = light blue; 6 =
purple; 7 = yellow). Categories 3 and 4 are relatively small and consist of scattered
observations located on the periphery of the main cloud of observations; a classi-
fication with fewer categories might be better. The classification procedure was
repeated with six categories, then with five, and finally with only four. Five elec-
trofacies seemed to be an optimal compromise in which the facies are general
enough to include significant thicknesses of intervals, but not so detailed that they
defy interpretation (Fig. 11.2). The distribution of observations among the five
classes is shown in a principal component scatter plot in Fig. 11.3.

11.3.4 Assigning Well Log Intervals to Electrofacies

There are two basic approaches to the assignment of log intervals to electrofacies,
referred to generally as supervised and unsupervised classification. The first
requires prior definition of the facies categories, which is usually done by
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identifying unique lithologies in cores. The log traces for the corresponding
intervals are then used as a training set for discriminant analysis or another clas-
sification procedure that yields equations used to discriminate between the facies in
uncored intervals. Although this approach has the advantage that interpreting the
“meaning” of the electrofacies categories is obvious, it has a severe disadvantage in
that cores or other training materials are required. An example of a supervised
electrofacies classification is given by Barthelmy (2000), who classified 360,000
feet of log from the Smackover Formation in 364 North American wells, using
47,000 feet of core as training material. In the Amal field, very few cores have been
taken and not all the rock types in the Amal Formation have been sampled in a
representative manner.

If adequate training materials are not available, the analyst must resort to
unsupervised classification. This involves subdividing the set of log measurements
into subsets that are as unique as possible in their log characteristics, and as distinct
as possible from other subsets. There are many procedures that attempt to achieve
this objective—their effectiveness depends on the statistical distributions of the
petrophysical logs that are used.

The classification procedure used in this study is k-means clustering, which
assigns each observation (a row vector in the data set) to the “nearest” cluster based
on the multidimensional distance between the observation and the cluster centroid.
The multivariate Euclidian distance, dij, between an observation and a cluster
centroid is

Fig. 11.1 Cross plot of first two principal component scores of GR, DT, ILD, SN and SP log
responses from Amal Formation in 15 wells of the Amal field, Libya. Points are color coded to
represent seven electrofacies calculated by k-means cluster analysis
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dij =
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where zip is the standardized response of log track p at a well depth i and Z ̄jp is the
average response of log p in cluster j. There are q different standardized log traces
per observation.

The k-means method first selects a set of k points called cluster seeds as a first
guess at the means of the clusters. Each observation is assigned to the nearest seed
to form a set of temporary clusters. The seeds are then replaced by the cluster
means, the points are reassigned, and the process continues until no further changes
occur in the clusters. The k-means approach is a special case of a general approach
called the EM algorithm (Dempster et al. 1977), where E stands for Expectation
(the cluster means in this implementation) and the M stands for maximization,
which is the assignment of observations to the closest clusters in this implemen-
tation. The algorithm will produce maximum likelihood estimates of the probability
that a log reading belongs to a specific electrofacies. The procedure is widely
used in computer vision and portfolio management, in addition to electrofacies

Fig. 11.2 Histograms of the number of log readings in each electrofacies class in 15 wells of the
Amal field, Libya. a Categorized into seven electrofacies classes. b Categorized into five
electrofacies classes
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classification. Fifty-one iterations were required by the k-means algorithm to con-
verge on a stable five-cluster configuration of the 12,535 log responses used here.

11.3.5 Converting the Electrofacies Classification
into a Prediction Function

Although the k-means clustering algorithm can successfully classify a collection of
log responses into an arbitrary number of electrofacies, it does not produce a
posterior classifier. That is, it does not create a classification rule or mathematical
function that can be used to assign additional log readings to the electrofacies
categories it has found. An additional step is necessary.

Canonical discriminant analysis can be used to find a set of linear functions that
will separate all possible pairs of electrofacies clusters—in effect, dividing up
multivariate space so only one electrofacies occupies each partitioned cell. The
computations involve dividing the variance-covariance matrix of the five log
properties into components that represent the variation of each observation around
the grand mean, the variation of each observation around its electrofacies group
mean, and the variation of the electrofacies means around the grand mean. Com-
putational details are given in Davis (2002). Mulhern et al. (1986) discuss the
application of discriminant functions to electrofacies determination.

Fig. 11.3 Cross plot of first two principal component scores of log responses from Amal
Formation in 15 wells of the Amal field, Libya. Points are color coded to represent five
electrofacies calculated by k-means cluster analysis
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In discriminant analysis, the distance from a log reading to the multivariate mean
of the i-th electrofacies group is the Mahalanobis distance, D2, and is computed as

D2 = z− Zīð Þ′S− 1 z− Zīð Þ= z′S− 1z− 2z′S− 1Zī + Z ̄′iS
− 1Zī

where S is the covariance matrix. The distance is divided into a portion, dist[0], that
does not vary across groups and a portion that is the Mahalanobis distance of an
observation from the centroid of the i-th electrofacies, dist[i]:

dist 0½ �= z′S− 1

dist i½ �= dist 0½ �− 2z′S− 1Zī + Z ̄′i

Assuming that each group follows a multivariate normal distribution, the pos-
terior probability that a well log interval belongs to the ith electrofacies is

Pr i½ �= exp dist i½ �
Pr 0½ �

where

Pr 0½ �= ∑ e− 0.5dist i½ �

The distances from every log observation to each electrofacies centroid is first
calculated, then turned into probabilities. Each observation is then assigned to the
electrofacies to which its probability of membership is the highest. Observations
from other wells can also be assigned electrofacies by entering their standardized
measurements into the distance and probability equations.

The assignment of individual well log observations to electrofacies by canonical
discriminant analysis is not perfect, primarily because of overlapping of the original
clusters. This can be evaluated by comparing the original electrofacies assignments
from clustering to the results of discrimination. Figure 11.4 shows the first two
principal components for 12,535 log readings in the Amal Formation in 15 wells.
The points have been color-coded according to the maximum probability assign-
ment of electrofacies by the canonical discriminant function. Compare this illus-
tration to the original electrofacies assignments in Fig. 11.3. Contingency analysis
shows that the overall correct classification rate is approximately 89%. Correct
classification rates for individual electrofacies groups ranges from a low of 93.1% to
a high of 97.9%.

However, the primary motivation for introducing a discrimination step in elec-
trofacies analysis is to create numerical expressions that can be used to classify
intervals in wells that were not included in the original clustering. This may be
necessary if it is not possible to cluster all observations (that is, all depth intervals of
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interest in all wells) because of computer or software limitations. (A large oil field
may include millions of log measurements, so such limitations may significantly
constrain an electrofacies study.) Fortunately, in the Amal study it was possible to
perform cluster analyses using all of the data of interest, so a discrimination step
could be avoided. This not only simplifies the procedure, but also results in a slight
but significant improvement in electrofacies classification.

11.4 What Do Amal Electrofacies Mean?

An empirical interpretation of Amal electrofacies has been made by comparing the
electrofacies classifications to core descriptions for a set of wells in which extensive
sets of cores were taken. The interpretations are necessarily somewhat ambiguous
because of the circumstance mentioned in the preceding paragraph, and because the
core descriptions were written by different geologists who may have emphasized
different aspects of the rock or who used different definitions of their descriptive
terms. The following lithologic descriptions represent an amalgam of the written
words assigned to numerous intervals in different wells where the Amal has been
given the same electrofacies classification. The lithologic distinction between Amal

Fig. 11.4 Cross plot of first two principal component scores of standardized log responses from
Amal Formation in 15 wells of the Amal field, Libya. Points are color coded to represent
maximum probability assignment into five electrofacies classes
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electrofacies is especially difficult because almost all of the formation is composed
of sandstones and conglomerates of varying grain size but similar composition.

11.4.1 Lithologic Description of Amal Electrofacies

Electrofacies 1 = Quartz sandstone with abundant kaolinite cement, traces of
chlorite, mica and/or feldspar, very fine to medium grain size, subangular, medium
to well sorted.
Electrofacies 2 = Quartz sandstone with kaolinite cement, common biotite, very
thin bedded and/or crossbedded, silt to fine grain size, subangular, medium sorted.
Electrofacies 3 = Quartz conglomerate with kaolinite and/or anhydrite cement, very
fine to very coarse grain size with large (>1 inch) rounded quartz pebbles, round to
subround grains, unsorted. Also, quartz sandstone with silica cement, common
biotite and/or hematite, silt to coarse grained, alternating sorted and unsorted layers,
round to subround, no visible porosity, hard.
Electrofacies 4 = Quartz sandstone with minor kaolinite cement, traces of chlorite,
mica and/or feldspar, silt to medium grain size, subangular to subround, medium
sorted.
Electrofacies 5 = Igneous rock, weathered, microcrystalline to acicular, with
muscovite mica and/or feldspar phenocrysts.

The lithologies corresponding to Amal electrofacies perhaps can best be
understood in terms of two-way variation (Fig. 11.5). Along one axis, the elec-
trofacies represent differences in grain size and sorting; along the other axis the
electrofacies reflect the nature of the intergranular cement in the sandstone, which
tends to be either kaolinite (occasionally calcite or anhydrite) or silica. Kaolinite
probably has resulted from the decay of feldspar grains in what was originally an
arkosic sandstone. Silica cement probably is the result of pressure solution of quartz
grains and redeposition.

11.5 Conclusions

Electrofacies have proved to be a useful procedure for identifying and distin-
guishing intervals with similar petrophysical log responses and approximately
equivalent lithologies within a formation that is nearly homogeneous in composi-
tion and devoid of biostratigraphic indicators or marker beds. Because the Amal
Formation was mostly deposited in a terrestrial environment, facies change rapidly
both laterally and vertically and conventional lithostratigraphic correlations cannot
be made. Electrofacies analysis provides a framework for modeling that can guide
the distribution of reservoir properties throughout the model, in spite of the
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difficulty of characterizing stratigraphic relationships by conventional means. This
is one example of the type of contributions that can be made to reservoir modeling
by geoscientists using a quantitative approach.
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Chapter 12
Shoreline Extrapolations

Jean Serra

Abstract A morphological approach for studying coast lines time variations is pro-

posed. It is based on interpolations and forecasts by means of weighted median

sets, which allow to average the shorelines at different times. After a first transla-

tion invariant method, two variants are proposed. The first one enhances the space

contrasts by multiplying the quench function, the other introduces homotopic con-

straints for preserving the topology of the shore (gulfs, islands).

Keywords Median sets ⋅ Binary interpolation ⋅ Hausdorff distances ⋅ Shoreline

Time forecasting

12.1 Three Problems, One Theoretical Tool

The following study holds on lagoon inlets movements. It extends and develops an

experimental study made by N.V. Thao and X. Chen about Thuan An Inlet Area

(Thao and Chen 2005). The predictions proposed by these authors were obtained by

averaging over the time the successive positions of a complex shoreline, including

lagoon inlets, which results in a prediction of the coast line. J. Chaussard showed, in

Chaussard (2006), that this prediction correctly fits with ulterior data from Google

Earth (see Fig. 12.1).

In Thao and Chen (2005), the authors used a popular way to estimate accretions

(Srivastava et al. 2005). Figure 12.2 depicts this semi-manual approach: the shore-

line has been discretized into segments which are shifted upwards according a given

accretion law (here the linear law y = ax + b, where x stands for the time). Indeed,

this is nothing but a sampled version of the dilation the shoreline by the disc of radius

ax + b. Such a circular dilation of a shoreline turns out to be the simplest expression

of its evolution under an accretion process, since it is uniform everywhere and does

not take the previous stages of the shoreline into account. As a matter of fact, the
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Fig. 12.1 Left: Lagoon Inlets forecast by N.V. Thao and X. Chen; right: Current Google earth

view of the same area

Fig. 12.2 Classical semi-manual technique of extrapolation

notion of a set extrapolation is not straightforward, and depends considerably on the

features one wishes to preserve or to emphasize.

1. If, by comparing the shorelines at years n and n − 1, there appear zones of ero-

sion
1

and zones of accretion, we may require a forecast of the shoreline, at year

n + 1, to pursue erosions and accretions, but always in the same zones as previ-

ously; moreover, we must be able to express several laws for this time evolution

(for example, in Thao and Chen 2005, a linear and a logarithmic laws are dis-

cussed);

2. if we know the movements of the shore during the last ten years, with one map

per year, we can average these ten sets independently of their dates and base the

extrapolation on this average only, or we can alternatively emphasize the more

recent maps, considering that the last one, or the last two ones, carry most of the

information;

1
The shoreline context, the two words of “erosion” and “accretion” refer to the two types of changes

depicted in Fig. 12.3. The word “erosion” also appears in the context of mathematical morphology,

for naming the operation ⊖ involved in Eq. 12.1. It is pure coincidence.
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3. if the shore exhibits small gulfs, islands and lagoon lakes, we may require from

the extrapolation to preserve their homotopy, i.e. neither to create new islands

(new gulfs, new lakes) nor to suppress the existing ones.

The first two questions can be treated within the framework of the median set the-

ory, and the third one reduces to a small variant. Though median elements were thor-

oughly studied for interpolation problems, by M. Iwanowski in particular Iwanowski

and Serra (2000) no attention was paid to their potentialities for generating averages

and extrapolations. We believe nevertheless median sets turn out to be convenient

tools for shorelines forecast, which in addition extend directly to numerical func-

tions (however, we shall not treat the numerical extension here, and restrict ourself

to the binary approach).

What follows is an attempt in this direction. After a presentation of the median

set, that we adapt to shorelines in Sect. 12.2, we analyze in Sect. 12.3 a series of

derived notions, such as weighted median set, quench function and quench stripe,

and averages. The heart of the matter is treated in Sect. 12.4, where various laws are

proposed for the dynamics of the coast movements. A short section on homotopy

preservation precedes the conclusion. All images of coasts which are used below are

simulations, and have the same digital size of 512 × 320 pixels.

12.2 Median Set

In literature, median set appears as an interpolation algorithm in Casas (1996) and in

Meyer (1996), and was extended to partitions in Beucher (1998). Its formal definition

and its basic properties were given in Serra (1998). Since, the approach has been

developed by several authors (Angulo and Meyer 2009; Charpiat et al. 2006). In

what follows, the geographical space is modelled by the Euclidean plane, but the

approach applies as well to any metric space, including the digital ones. The model

of Euclidean median sets does not concern the lines of the shores, but the whole
landsets, whose the shorelines are the boundaries. These landsets, denoted below by

A1, A2, etc., are depicted for example in Fig. 12.3 left, whereas the only shorelines

boundaries, in another example, are depicted in Fig. 12.5 left. The basic results we

need to start with are the Definition 1 of a median set, and the two properties 2 and

3, drawn from Serra (1998).

Hausdorff distance 𝜌 concerns the class K ′
of the noncompact sets of Rn

(here

of R2
). It is the mapping 𝜌 ∶ K ′ ×K ′ → R+

𝜌(X, Y) = inf{𝜆 ∶ X ⊆ Y ⊕ 𝜆B ;Y ⊆ X ⊕ 𝜆B} (12.1)

where B designates the unit disc centered at the origin, and where ⊕ and ⊖ designate

Minkowski addition (or dilation) and substraction (or erosion) respectively.
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Consider now an ordered pair of closed sets {X, Y}, with X ⊆ Y , and such that

the numerical value 𝜌(X, Y), as given by Eq. (12.1), is finite. Their median element

is defined as follows:

Definition 1 The median element between the two ordered sets X,Y∈ K ′
, with

X ⊆ Y , is the compact set M(X, Y), comprised between X and Y and whose boundary

points are equidistant from X and Yc
.

In other words, the boundary 𝜕M of M is nothing but the skeleton by zone of influ-

ence, or skiz, between X and Yc
.

Proposition 1 The median set between X and Y is obtained by taking the union

M(X, Y) = ∪{(X ⊕ 𝜆B) ∩ (Y ⊖ 𝜆B) 𝜆 ≥ 0} (12.2)

where the 𝜆 can be limited to the values smaller or equal to

𝜇 = inf{𝜆 ∶ 𝜆 ≥ 0, X ⊕ 𝜆B ⊇ Y ⊖ 𝜆B} (12.3)

and where the equality is reached for at least one point of 𝜕M.

Proof A point m at a distance ≤ 𝜆 from X and ≥ 𝜆 from Yc
belongs to set (X ⊕ 𝜆B) ∩

(Y ⊖ 𝜆B), hence to set of Eq. (12.1). Conversely, as every point m ∈ M belongs to at

least one term of the union, there exists a 𝜆 ≥ 0 with d(m, X) ≤ 𝜆 and d(m, Yc) ≥ 𝜆,

which results in Eq. (12.1). As for Eq. (12.2), we observe that for 𝜆 large enough

we have (X ⊕ 𝜆B) ∪ (Yc ⊕ 𝜆B) = R2
because set Y is bounded. These 𝜆 bring no

contribution to set M(X, Y), since X ⊕ 𝜆B ⊇ Y ⊖ 𝜆B. Finally, for 𝜆 = 𝜇, we obtain

a point of the boundary 𝜕M because X and Y are closed, which achieves the proof.

Here is now an instructive property which shows how both Hausdorff distances by

dilation and by erosion
2

are involved in the median M(X, Y) (Serra 1998).

Proposition 2 Given X, Y ∈ K ′(Rn), the median element M(X,Y) is at Hausdorff
dilation distance 𝜇 from X and from the closing X ∙ 𝜇B = (X ⊕ 𝜇B)⊖ 𝜇B, and at
Hausdorff erosion distance 𝜇 from Y and from the opening Yo𝜇B = (Y ⊖ 𝜇B)⊕ 𝜇B.

2
Hausdorff distance 𝜎 for erosion, introduced in by the relation

𝜎(X, Y) = inf{𝜆 ∶ X ⊖ B𝜆 ⊆ Y ; Y ⊖ B𝜆 ⊆ X}

concerns the subclass A of K ′(E) of the regular compact sets, i.e. such that Xo = X. It is indeed a

distance on A ×A . If 𝜎(X, Y) = 0, then we have

Y ⊇
⋃

𝜆>0
X ⊖ B𝜆 = Xo ⇒ Y ⊇ Xo = X X, Y ∈ A

and similarly X ⊇ Y , henceX = Y (the other two axioms are proved as for distance 𝜌) (Serra 1998).
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Fig. 12.3 Left: two simulated shore images A1 and A2. The older is supposed to be A1 (the white

one).The zones of accretion from A1 to A2 are in light grey, those of erosion in dark grey; right: the

boundary of the median set M between A1 and A2

The Hausdorff distance applies to non empty compact sets. But clearly, the landsets

under study are not empty, and the above assumption that 𝜌(X,Y) < ∞ comes back

to say that all involved distances are bounded.

12.3 Median and Average for Non Ordered Sets

Non ordered sets In general, two successive shores A1 and A2 are not ordered, i.e.

their change comprises both erosions and accretion areas. If so, the previous results

do not apply to two A1 and A2 directly, but to their intersection X = A1 ∩ A2 and their

union Y = A1 ∪ A2 which are ordered since X ⊆ Y . Equation (12.1) of the median

element becomes

M(A1, A2) =
⋃

𝜆≥0
[A1 ∩ A2)⊕ 𝜆B] ∩ [(A1 ∪ A2)⊖ 𝜆B] (12.4)

Figures 12.3 depicts an example of median set M. One observes that 𝜕M goes

through all points where the two coastlines intersect. The property is general, since

these points belong to both A1 ∩ A2 and A1 ∪ A2.

Weightedmedian Set M is said to be median because each point of 𝜕M is equidistant

from X and Yc
, which is a consequence of the same weight given to dilation and

erosion in Eq. (12.2). By changing this weight, i.e. by replacing M by

M𝛼(X, Y) =
⋃

𝜆

{(X ⊕ 𝛼𝜆B) ∩ (Y ⊖ (1 − 𝛼)𝜆B)} (12.5)

for a 𝛼 ∈ [0, 1], we generate another interpolation, and by making 𝛼 vary, a series of

progressive interpolations from X to Y (Huttenlocher 1995), all the closer to set Y
since 𝛼 is high. One will notice that when the two shores A1 and A2 are not nested

in each other, then one takes for the two operands of Eq. (12.5) X = A1 ∩ A2 and
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Y = A1 ∪ A2. This provides interpolators such as those of Fig. 12.4. Unfortunately,

these interpolators are closer to the highest or to the lowest line, no matter these

lines are portions of 𝜕A1 or of 𝜕A2. For correcting this drawback, one must take the

interpolator M𝛼 in the zones where A1 is larger than A2 (for example), and M1−𝛼 in

the other ones. Denoting by N(A1, A2) the correct weighted interpolator, we now

have

N𝛼(A1, A2) = M1−𝛼(A1, A2) when A1∖A2 ≠ ∅ (12.6)

= M𝛼(A1, A2)when A2∖A1 ≠ ∅

Figure 12.5 depicts such corrected interpolators.

The physical equation of the phenomenon Physically speaking, the accretion/

erosion process evolves at each instant from the stage it has reached before. It takes

some M𝛼(X, Y), with 𝛼 ∈ [0, 1], as starting point and moves to M𝛽[M𝛼

(X, Y), Y], for some value 𝛽 ∈ [0, 1]. The weighted medians M𝛼 do model this evolu-

tion because they form a semi-group. By calculating firstly the set M𝛼(X, Y) median

between X and Y , and then the set M𝛽[M𝛼(X, Y), Y] between M𝛼(X, Y) and Y , we

obtain indeed the same result as by calculating directly M𝛾 (X, Y) for the weight

𝛾 = 𝛼 + (1 − 𝛼)𝛽 = 𝛼 + 𝛽 − 𝛼𝛽, i.e.

Fig. 12.4 Raw weighted median lines

Fig. 12.5 Left: two shores A1 and A2, of boundaries 𝜕A1 and 𝜕A2, and their median line of boundary

𝜕M0.5; right: the same, plus two additional weighted median lines according to Eq. (12.5)
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M𝛽[M𝛼(X, Y), Y] = M𝛼+𝛽−𝛼𝛽(X, Y) (12.7)

For example, in Fig. 12.5 right, the three median sets correspond to 𝛼 = 0.75, 0.5,

and 0.25, and the weighted median M0.75 is also the median element between M0.5
and A1 ∪ A2.

Proposition 3 Given X, Y ∈ K ′(Rn), the family {M𝛼(X, Y), 0 ≤ 𝛼 ≤ 1} of median
elements form an additive semi-group for the addition 𝛼 ⊗ 𝛽 = 𝛼 + 𝛽 − 𝛼𝛽.

Proof Clearly, 𝛼 ⊗ 𝛽 ∈ [0, 1], thus Eq. (12.7) defines a commutative semi-group.
The operation 𝛼 ⊗ 𝛽 is also associative, since

𝛾 ⊗ (𝛼 + 𝛽 − 𝛼𝛽) = 𝛾 + 𝛼 + 𝛽 − 𝛼𝛽 − 𝛾𝛼 − 𝛾𝛽 + 𝛾𝛼𝛽

is symmetrical in 𝛼, 𝛽, 𝛾, therefore 𝛼 ⊗ 𝛽 is an algebraic addition.

Quench function and quench stripe As a matter of fact, the median operator pro-

vides two outputs, since we have on the one hand the (weighted or not) median set M,

whose contour 𝜕M is the dark middle line in Fig. 12.5 left, or Fig. 12.6 left, and the

quench function q, defined on 𝜕M and which gives at each the radius of the minimum

disc hitting the two contours 𝜕A1 and 𝜕A2.

q(z) = inf{r ∶ Bz(r) ∩ 𝜕A1 ≠ ∅ and Bz(r) ∩ 𝜕A2 ≠ ∅} (12.8)

A few of such discs, for the two inputs A1 and A2 of Fig. 12.3 left, are depicted in

Fig. 12.6 left, and their union for the whole quench function gives the quench stripe
w, i.e. the dark grey stripe W around the black line 𝜕M in Fig. 12.6 right, with

W = ∪{Bz(q(z)), z ∈ M(A1, A2)} (12.9)

Note hat this dark grey stripe does not reach the edges of input sets A1 and A2, but

an open version of their union, and a closed version of their intersection.

Fig. 12.6 Left: a few maximum discs centered on the median line; right: the dark grey stripe is

the union of all maximum discs, or “quench stripe”
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Fig. 12.7 Left: four shores; right in dark, their median line

Averages The structure of Eq. (12.7) suggests a technique for extending the median

element to more than two input sets. Starting for example from the triplet {A1, A2, A3},

we can calculate M0.5(A1, A2) in a first stage, and then M0.33[M0.5(A1, A2), A3]. The

resulting median element averages the three inputs, in a median sense. Figure 12.7

depicts an example of such an average for the four inputs {A1, ..A4} shown in

Fig. 12.7 left (two of them are the sets involved in Fig. 12.5 left). The initial stage

consists in calculating M0.5(A1, A2) and M0.5(A3, A4), and the final one in calculating

M0.5[M0.5(A1, A2), M0.5(A3, A4)], a set whose contour is drawn in black in Fig. 12.7

right. This final result is independent of the choice of the sets in the initial stage, and

we could start as well from M0.5(A1, A3) and M0.5(A2, A4).
The averages obtained this way blur the structural features of the shores. Imagine

for example that A2, An are shifted versions of A1 in the horizontal direction. As n
increases, the median average contour tends towards an horizontal line: all features,

gulfs, capes, etc. are lost. We meet here the same trouble as in interpolating moving

objects, with translation and rotation. In case of shore movements, the translations

are probably less intense, but the problem still remains. Remark also that this draw-

back is the counterpart of the advantage of preserving accretion and erosion zones.

12.4 Extrapolations via the Quench Function

In this section and the next one, we focus on the extrapolation of two shores at most,

A1 and A2 say. If we dispose of a chronological sequence of the coast movements, A1
and A2 stand for the last two observations, A2 being the more recent. The principle

of the extrapolation consists in two possible changes:

1. that of the quench function according to a given law, which models the dynamics

of the movement, and which results in a new quench stripe W;

2. that of the respective importances of A1 and A2. If we take the median M0.5(A1, A2),
then both shores are given the same weight, but if we consider that A2, more

recent, is two times more significant than A1, then we can take N0.66(A1, A2).
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Fig. 12.8 Two extrapolations of the shoreline of Fig. 12.3; both are centered on 𝜕M0.5(A1, A2); the

quench function is multiplied by 2 in the left image and by 3 in the right one

Fig. 12.8 depicts two extrapolations where the median element equals M0.5(A1, A2),
hence where the two input shores are given the same importance, but where the

quench stripe W of Eq. (12.9) is replaced by

W = ∪{Bz(kq(z)), z ∈ M0.5(A1, A2)}

The radius of the disc centered at each point of M0.5(A1, A2) is quench value multi-

plied by factor k, with k = 2 for Fig. 12.8 left and k = 3 for Fig. 12.8 right. We see

that, as k increases, both accretion and erosion zones are developed. We can also

notice that the shape of the cape provokes a bizarre inflation in Fig. 12.8 right.

This swelling may be due to the great distance from the median line to extremity

of the cape, as shown in Fig. 12.6 right, so that we can try to avoid it by making

the median line closer to contour 𝜕A2 which delineates the cape. Replace then the

median set M0.5(A1, A2) by N𝛼(A1, A2), in the sense of Eq. (12.6), with 𝛼 = 0.75, so

that the quench stripe becomes

W = ∪{Bz(kq(z)), z ∈ N0.75(A1, A2)}.

The resulting changes are depicted in Fig. 12.9, left for k = 3, and right for k = 4.

By comparing Figs. 12.8 right and 12.9 left where the quench function is multiplied

by the same value k = 3, we see that the cape inflates less, but in compensation the

erosion zone vanished. The erosion can reappear by taking k = 4 (Fig. 12.9 right),

but again the cape inflates as strongly as in the previous extrapolation of Fig. 12.8

right.

In fact, transforming a quench function according to pure magnification is prob-

ably too poor. One can easily imagine more sophisticated laws such as the two fol-

lowing ones:

1. the median line is slightly moved toward the second contour, by taking N0.66
(A1, A2), and the quench stripe W is obtained by dilating each point z of the

median line by the disc of radius 2q(z) and by the segment L𝛼(2q(z)) of length

2q(z) in the main direction 𝛼 of the cape, which gives
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Fig. 12.9 Two other extrapolations of the shoreline of Fig. 12.3; both are centered on

𝜕N0.75(A1, A2); the quench function is multiplied by 3 in the left image and by 4 in the right one

Fig. 12.10 Two extrapolations of the shoreline of Fig. 12.3, by emphazising the new capes in the

left image, and by introducing an east-west trend in the right one

W = ∪{[Bz(2q(z)⊕ L𝛼(2q(z))], z ∈ N0.66(A1, A2)}

and which is depicted in Fig. 12.10 left. The accretion around the cape turns out

to be now more realistic, but the erosion zone has disappeared.

2. The median set N0.66(A1, A2) is left unchanged, and a supplementary trend in the

horizontal direction is introduced by a dilating points z by the horizontal segment

L0(3q(z)). For avoiding too fast changes, the parameters of the two other dila-

tions are divided by 2. The shifting effect of the trend operation appears clearly

in Fig. 12.10 right, where the accretion forms a deposit at the east of the cape.

Similarly, the directional effect of the erosion holds for west oriented regions.

Unlike the previous models, which all are invariant under rotation of the map,

these last two laws, which model marine currents, depend on the North direction

(see Fig. 12.10).
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12.5 Accretion and Homotopy

It may happen that, for some reasons, one wishes to preserve the homotopy of the

shore, which excludes the creation, or the suppression, of lakes and islands. Now,

by dilating enough the shore of Fig. 12.10, we risk to close the gulf on the left and

to generate in internal island. An easy way to protect the gulf as such consists in

replacing the dilation w.r.t. the unit disc by a cycle of elementary homotopic thick-

enings in the eight directions of the square grid, or the six ones in the hexagonal

case (Serra 1982). The circular dilation of size n becomes the series of n thickening

cycles. One can see in Figure ll, left and right, the results of two thickenings of sizes

25 and 33 respectively (for a 512 × 320 digital image). The gulf is preserved by a

narrow channel, which could be enlarged by modifying the homotopy preservation

algorithm. This conceptually simple method is not the only possible one. In Vidal

et al. (2005) the authors propose a median set based interpolation that preserves par-

ticles by marking them by a homotopic thinning, and translating them during the

interpolation process.

12.6 Conclusion

Our purpose was to demonstrate the physical sense of the median set approach and

its flexibility. In the first section, we indicated three features to be respected by inter-

polations. According to the first one, an accretion (resp. erosion) zone must continue

to evolve by accretion (resp. erosion). This basic modality is fulfilled by all models

of Sect. 12.4. The laws proposed in this section are far from being the only possible

ones. In particular, each of the six examples of the section is given a same law for

accretion and erosion, which is not at all an obligation. The second feature holds

for the role of the past. In the approach of Sect. 12.4, this past reduces to the last

two stages: they suffice to determine the starting shoreline, the “gradient”, and the

location of accretion/erosion (Fig. 12.11).

Fig. 12.11 Two extrapolations of the shoreline of Fig. 12.3 by homotopic thickenings of sizes 25

(left) and 33 (right)
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The third feature was the subject of Sect. 12.5, where a thickening is substituted

for the dilation in the extrapolator, in order to preserve homotopy. Indeed, all extrap-

olation equations, from sections two to four, can be rewritten by replacing the unit

disc erosion and dilation by unit cycles of thinnings and thickenings, and the lin-

ear dilations by unidirectional thickenings. It would result in a series of algorithms

where increasingness is lost (non direct extension to numerical functions) but where

topological features are preserved.

Finally, as the weighted median of Eq. (12.4) is an increasing function of its two

operands, it extends to numerical functions by means of their subgraphs, and allows

to process colour images (Daya Sagar 2007).
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Chapter 13
An Introduction to the Spatio-Temporal
Analysis of Satellite Remote Sensing Data
for Geostatisticians

A. F. Militino, M. D. Ugarte and U. Pérez-Goya

Abstract Satellite remote sensing data have become available in meteorology, a-

griculture, forestry, geology, regional planning, hydrology or natural environment

sciences since several decades ago, because satellites provide routinely high qual-

ity images with different temporal and spatial resolutions. Joining, combining or

smoothing these images for a better quality of information is a challenge not al-

ways properly solved. In this regard, geostatistics, as the spatio-temporal stochastic

techniques of geo-referenced data, is a very helpful and powerful tool not enough

explored in this area yet. Here, we analyze the current use of some of the geostatis-

tical tools in satellite image analysis, and provide an introduction to this subject for

potential researchers.

13.1 Introduction

The spatio-temporal analysis of satellite remote sensing data using geostatistical

tools is still scarce when comparing with other kinds of analyses. In this chapter we

provide an introduction to this field for geostatisticians, empathising the importance

of using the spatio-temporal stochastic methods in satellite imagery and providing
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a review of some applications (Sagar and Serra 2010). We explain how to proceed

for accessing remote sensing data, and which are the common tools for download-

ing, pre-processing, analysing, interpolating, smoothing and modeling these data.

The chapter encloses six additional sections where a short explanation of the state

of the art in the analysis of remote sensing data using free statistical software is giv-

en. Particular attention is devoted to the use of geostatistical tools in this subject.

Section 13.2 explains the profile and the main features of the most popular satel-

lites. It also encompasses Sect. 13.2.1 for describing some R packages for importing,

analysing, and managing satellite images. Section 13.3 explains how to retrieve two

derived variables, the normalized difference vegetation index (NDVI) and the land

surface temperature (LST). In Sect. 13.4 some common methods of pre-processing

data after downloading satellite images are reviewed. Section 13.5 explains the im-

portance of the spatial interpolation in remote sensing data and reviews the most pop-

ular interpolation methods. The actual scenario of the spatio-temporal geostatistics

is reviewed in Sect. 13.6, where an additional subsection describes some R packages

for using spatial and spatio-temporal geostatistics techniques with satellite images.

The paper ends up with some conclusions in Sect. 13.7.

13.2 Satellite Images

Satellite images are available since more than four decades ago, and since then there

has been a notable improvement in quality, quantity, and accessibility of these im-

ages, making it easier to extract huge amounts of data from all over the Earth. We

can retrieve data from the land or the ocean, from the coast or the mountains, and

also from the atmosphere where advanced sensors give the opportunity of monitor-

ing meteorological variables that are crucial for the study of the climatic change, the

phenology trend, the changes in vegetation or many other environmental processes.

Remote sensing refers to the process of acquiring information from the Earth or

the atmosphere using sensors or space shuttles platforms. Therefore, remote sensing

is born as a crucial necessity when using satellite images for analyzing and convert-

ing them into different frames of data that can be managed with specific software.

Nowadays, Landsat, Modis, Sentinel or Noaa are some of the most popular satellite

missions among researchers and practitioners of remote sensing data because of the

free accessibility. Next, we summarize the main characteristics of these missions:

1. LANDSAT, meaning Land+Satellite, represents the world’s longest continuous-

ly acquired collection of space-based moderate-resolution land remote sensing

data. See GLCF (2017) for details. It is available since 1972 from six satel-

lites in the Landsat series. These satellites have been a major component of

NASA’s Earth observation program, with three primary sensors evolving over

thirty years: MSS (Multi-spectral Scanner), TM (Thematic Mapper), and ETM+
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(Enhanced Thematic Mapper Plus). Landsat supplies high resolution visible and

infrared imagery, with thermal imagery, and a panchromatic image also available

from the ETM+ sensor. Landsat also provides land cover facility to complement

overall project goals of distributing a global, multi-temporal, multi-spectral and

multi-resolution range of imagery appropriate for land cover analysis.

2. The SENTINEL satellites were launched from 2013 onwards and include radar,

spectrometers, sounders, and super-spectral imaging instruments for land, ocean

and atmospheric applications (Aschbacher and Milagro-Pérez 2012). In partic-

ular, the multispectral instrument on-board Sentinel-2 aims at measuring the

Earth reflected radiance through the atmosphere in 13 spectral bands spanning

from the Visible and Near Infra-Red to the Short Wave Infra-Red. The main goal

of this satellite is the monitoring of rapid changes such as vegetation character-

istics during growing seasons with improved change detection techniques.

3. NOAA is the acronym of National Oceanic and Atmospheric Administration.

The satellite observations of the atmosphere on a global scale began more than

40 years ago. In the URL (NOAA 2017), it is said that over 150 data variables

from satellites, weather models, climate models, and analyses are available to

map, interact with, and download using NOAA View’s Global Data Explorer.

NOAA generates more than 20 terabytes of daily data from satellites, buoys,

radars, models, and many other sources. All of that data are archived and dis-

tributed by the National Centers for Environmental Information.

4. Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument

aboard the TERRA and AQUA satellites. See the URL (MODIS 2017) for de-

tails. TERRA’s orbit around the Earth is timed so that it passes from north to

south across the equator in the morning, while AQUA passes south to north

over the equator in the afternoon, providing a high temporal resolution of im-

ages all over the world. TERRA MODIS and AQUA MODIS are viewing the

entire Earth’s surface every 1 to 2 days, acquiring data in 36 spectral bands, or

groups of wavelengths. These data facilitate the global dynamics and processes

occurring on the land, in the oceans, and in the lower atmosphere.

Remote sensing data of some of these missions can be accessed via the free sta-

tistical software R, publicly accessible in R Core Team (2017).

13.2.1 Access and Analysis of Satellite Images with R

This subsection provides a summary of some R packages that can be used for down-

loading, importing, accessing, processing, and smoothing remote sensing data from

satellite images.

1. dtwSat (Maus et al. 2016) implements the Time-Weighted Dynamic Time Warp-

ing (TWDTW) method for land use and land cover mapping using satellite image

time series. TWDTW is based on the Dynamic Time Warping technique and it
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has achieved high accuracy for land use and land cover classification using satel-

lite data.

2. gapfill (Gerber et al. 2016) fills missing values in satellite data and develops

new gap-fill algorithms. The methods are tailored to images observed at equally-

spaced points in time.

3. gdalUtils (R Core Team 2017) gives wrappers for the geospatial data abstraction

library (GDAL) utilities.

4. gimms (R Core Team 2017) provides a set of functions to retrieve information

about GIMMS NDVI3g files

5. landsat (Goslee 2011) includes relative normalization, image-based radiometric

correction, and topographic correction options.

6. landsat8 (Survey 2015) provides functions for converted Landsat 8 multispectral

satellite imagery rescaled to the top of atmosphere (TOA) reflectance, radiance

and/or at satellite brightness temperature using radiometric rescaling coefficients

provided in the metadata file (MTL file).

7. mod09nrt (R Core Team 2017) processes and downloads MODIS Surface re-

flectance Product HDF files. Specifically, MOD09 surface reflectance product

files, and the associated MOD03 geo-location files (for MODIS-TERRA).

8. MODIS (R Core Team 2017) allows for downloading and processing function-

alities for the Moderate Resolution Imaging Spectroradiometer (MODIS)

9. modiscloud (Nicholas J. Matzke 2013) is designed for processing downloaded

MODIS cloud product HDF files and derived files

10. raster (R Core Team 2017) is a very powerful library for the geographic data

analysis and modeling

11. rgdal (R Core Team 2017) provides bindings for the geospatial data abstraction

library.

12. satellite (Nauss et al. 2015) provides a variety of functions which are useful for

handling, manipulating, and visualizing remote sensing data.

13.3 Derived Variables from Remote Sensing Data

When a satellite image is accessed, an assorted number of bands are provided. The

combination of these bands can facilitate different types of remote sensing data.

For example, extracting the Normalized Difference Vegetation Index (NDVI) can

be done by a simple combination of bands. NDVI is an important index that reflects

vegetation growth and it is closely related to the amount of photosynthetically ab-

sorbed active radiation as indicated by Slayback et al. (2003) and Tucker et al. (2005).

It is calculated using the radiometric information obtained for the red (R) and near-

infrared (NIR) wavelengths of the electromagnetic spectrum in the following way:

NDVI = ((NIR) − R)∕((NIR) + R) (Rouse Jr et al. 1974). As mentioned in Sobrino

and Julien (2011), this parameter is sensitive to the blueness of the observed area,
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Fig. 13.1 (Left) NDVI Sentinel image of Funes village in Navarra, and (Right) NDVI for the whole

Navarra (Spain)

which is closely related to the presence of vegetation. Although numerical limits of

NDVI can vary for the vegetation classification, it is widely accepted that negative

NDVI values correspond to water or snow. NDVI values close to zero could corre-

spond to bare soils, yet these soils can show a high variability. Values between 0.2

and 0.5 (approximately) to sparse vegetation, and values between 0.6 and 1.0 con-

form to dense vegetation such as that found in temperate and tropical forests or crops

at their peak growth stage. Therefore, NDVI provides a very valuable instrument for

monitoring crops, vegetation, and forestry, and it is directly calculated in specific

images by the aforementioned satellites missions. On the left of Fig. 13.1 a Sentinel

NDVI satellite image of Funes, a village of Navarra (Spain) is shown, and on the

right of the same Figure, the NDVI for the whole region of Navarra.

Another important variable derived with satellite images is the land surface tem-

perature (LST), that can be retrieved with different algorithmic procedures. As an

example Sobrino et al. (2004) compare three methods to retrieve the LST from ther-

mal infrared data supplied by band 6 of the Thematic Mapper (TM) sensor onboard

the Landsat 5 satellite. The first is based on the radiative transfer equation using in

situ radiosounding data. The others are the mono-window algorithm developed by

Qin et al. (2001) and the single-channel algorithm developed by Jiménez-Muñoz and

Sobrino (2003). Many satellites platforms provide specific images of LST all over

the Earth, because it is also a very outstanding variable for many environmental pro-

cess. Figure 13.2 shows the daily land surface temperature in Navarra (Spain) the

13th of July 2015 from TERRA satellite.
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Fig. 13.2 Land Surface Temperature of Navarra the 13th of July 2015

13.4 Pre-processing

The atmosphere is between the satellite and the Earth, and its effects over the elec-

tromagnetic radiation caused by the satellite can distort, blur or degrade the images.

These effects must be corrected before the image processing. The correction con-

sists of composing several images into a new single one. Different algorithms have

been developed in the literature according to the derived variable. The most com-

mon method with NDVI is the maximum value composite (MVC) procedure (Hol-

ben 1986) that assigns the maximum value of the time-series of pixels across the

composite period. Alternative techniques include using a bidirectional reflectance

distribution function (BRDF-C) to select observations and the constraint view angle

maximum value composite (CV-MVC) (MODIS 2017). For LST day/night it is com-

mon to average the cloud-free pixels over the compositing period (Vancutsem et al.

2010). Nowadays, many composite images can be directly downloaded with different

spatial and temporal resolutions. For example, raw daily images can be downloaded

from AQUA or TERRA satellites all over the world, but usually composite images

are at least of weekly or bi-weekly temporal resolution.
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Spatial and temporal resolutions are also different from the same or different satel-

lites. High temporal resolution can be useful when tracking seasonal changes in veg-

etation on continental and global scales, but when downscaling to small regions, a

higher spatial resolution is needed, and frequently with lower temporal resolution. At

this step, numerical, physical or mechanical analyses solve the image pre-processing.

Later, removing the effect of clouds or other atmospheric effects is also required, oth-

erwise remote sensing data can be inaccurate. Sometimes, the highest presence of

clouds determine the dropout of several images, but if they are only partially cloud-

ed, different approaches for eliminating these effects can be used. Noise reduction

in image time series is neither simple nor straightforward. Many alternatives have

been provided. For example R.HANTS macro of GRASS, SPIRITS, BISE, TIME-

SAT, GAPFILL or the CACAO methods are very well spread. R.HANTS performs

an harmonic analysis of time series in order to estimate missing values and identi-

fy outliers (Roerink et al. 2000). SPIRITS is a software that processes time series

of images (Eerens et al. 2014). It was developed by PROBA-V data provider and

gives four smoothing options, including MEAN (Interpolate missing values & apply

Running Mean Filter RMF) and BISE (Best Index Slope Extraction), (Viovy et al.

1992). TIMESAT uses numerical procedures based on Fourier analysis, Gauss, dou-

ble logistic or SavitzkyGolay filters (Jönsson and Eklundh 2004). GAPFILL uses

quantile regression to produce smoothed images where the effect of the clouds have

been reduced. Usually, every software has different requirements with regard to the

number of images necessary for smoothing (Atkinson et al. 2012). Finally, CACAO

software (Verger et al. 2013) provides smoothing, gap filling, and characterizing sea-

sonal anomalies in satellite time series.

All these procedures give composite images that are smoothed versions of the

raw images, but very often they are not completely free of noise. Many of the at-

tributes that can be extracted from the combination of satellite image bands are still

vulnerable to many atmospheric or electronic accidents. For example, highly reflec-

tive surfaces, including snow and clouds, and sun-glint over water bodies may sat-

urate the reflective wavelength bands, with saturation varying spectrally and with

the illumination geometry (Roy et al. 2016). Land surface temperature or normal-

ized vegetation index are examples of attributes where these type of errors can be

present. Therefore, after pre-processing is done, interpolation and smoothing meth-

ods can be very useful for drawing or detecting trend changes, clustering or many

other processes on remote sensing data.

13.5 Spatial Interpolation

Likely, interpolation and classification are among the most used tools with remote

sensing data. Classification of satellite images in supervised or unsupervised ver-

sions are important research areas not only with satellite images but also with big

data and data mining where there are a great number of algorithmic procedures (Benz
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et al. 2004). Here, we are more interested in interpolation as it is more closely related

to geostatistics.

Interpolation has been widely used in environmental sciences. Li and Heap (2011)

revise more than 50 different spatial interpolation methods that can be summarized in

three categories: non-geostatistical methods, geostatistical methods, and combined

methods. All of them can be represented as weighted averages of sampled data. A-

mong the non-geostatistical methods the authors find: nearest neighbours, inverse

distance weighting, regression models, trend surface analysis, splines and local trend

surfaces, thin plate splines, classification, and regression trees. The different versions

of simple, ordinary, disjunctive or model-based kriging are among the geostatistical

methods. The combined methods include: trend surface analysis combined with k-

riging, linear mixed models, regression trees combined with kriging or regression

kriging.

Recently, Jin and Heap (2014) present an excellent review of spatial interpolation

methods in environmental sciences introducing 10 methods from the machine learn-

ing field. These methods include support vector machines (SVM), random forest-

s (RF), neural networks, neuro-fuzzy networks, boosted decision trees (BDT), the

combination of SVM with inverse distance weighting (IDW) or ordinary kriging

(OK), the combination of RF with IDW or OK (RFIDW, RFOK), general regression

neural network (GRNN), the combination of GRNN with IDW or OK, and the com-

bination of BDT with IDW or OK. Although all these methods were not developed

specifically for remote sensing data, nowadays the majority of them have been im-

plemented in different packages of the free statistical software R, and can be used

with satellite images. Many of these methods are ready to use and interpret, but the

family of kriging methods as the core of geostatistics, are preferred and widely used.

13.6 Spatio-Temporal Interpolation

Since the publication of the seminal book Spatial Autocorrelation (Cliff and Ord

1973), and at latter date Spatial Statistics (Ripley 1981), Statistics for Spatial Data
(Cressie and Wikle 2015), and Multivarate Geostatistics (Wackernagel 1995) books,

there has been a rapid growth of spatial geostatistical methods, as they are essential

tools for interpolating meteorological, physical, agricultural or environmental vari-

ables in locations where these variables are not observed.

The use of spatial geostatistics with remote sensing data is also very well

widespread, and its procedures are present in many specific softwares of satellite

image analysis (Stein et al. 1999). Geostatistics techniques can help to explore and

describe the spatial variability, to design optimum sampling schemes, and to increase

the accuracy estimation of the variables of interest. These models can be enriched

with auxiliary information coming from classified land cover or historical informa-

tion (Curran and Atkinson 1998). Kriging is the most popular geostatistical method

with several versions such as block kriging, universal kriging, ordinary kriging, re-

gression kriging or indicator kriging. It provides the spatial interpolation of different
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spatial variables through the use of spatial stochastic models, and it is the best lin-

ear unbiased predictor under normality assumptions when using spatially dependent

data.

However, the extension to the spatio-temporal geostatistics methods is more com-

plicated. Time series models typically assume a regularly sampling over time, but the

temporal lag operator cannot be easily generalized to the spatial domain, where data

are likely irregularly sampled (Phaedon and André 1999). Scales of time and space

are different, therefore defining joint spatio-temporal covariance functions is not a

trivial task (De Iaco et al. 2002). Recently, Cressie and Wikle (2015) show the state

of the art in this area and explain the difficulties of inverting covariance matrices in

spatio-temporal kriging, because it becomes problematic without some form of sep-

arable models or dimension reduction. Modelling the spatio-temporal dependence is

frequently case-specific. Therefore, yet the presence of the spatio-temporal keyword

is abundant in many satellite imagery papers, the use of spatio-temporal stochastic

models is scarce. Very often, spate-time refers only to descriptive analyses of time

series of satellite images where every image is analyzed as a set of separate pixels,

i.e., when estimating trends, or trend changes, statistical methods of univariate time

series are used for every pixel. For example, when completing, reconstructing or

predicting the spatial and temporal dynamics of the future NDVI distribution many

papers use a time series of images (Forkel et al. 2013; Tüshaus et al. 2014; Klisch

and Atzberger 2016; Wang et al. 2016; Liu et al. 2015; Maselli et al. 2014). These

studies include temporal correlation of individual pixels at different resolutions but

ignoring spatial dependence among them.

Spatio-temporal stochastic models use the spatial or temporal dependence to esti-

mate optimally local values from sampled data. In satellite images, sampled data can

be a huge amount of spatially and temporally dependent pixels, if a sequence of im-

ages is involved. We briefly review in what follows some stochastic spatio-temporal

models that can be used when analysing remote sensing data.

1. Spatio-temporal kriging (Gasch et al. 2015). This paper uses spatio-temporal R
packages for fitting some of the following spatio-temporal covariance functions:

separable, product-sum, metric and sum-metric classesin a spatio-temporal krig-

ing model, and a random forest algorithm for modeling dynamic soil properties

in 3-dimensions.

2. State-space models (Cameletti et al. 2011). The authors apply a family of state-

space models with different hierarchical structure and different spatio-temporal

covariance function for modelling particular matter in Piemonte (Italy).

3. Hierarchical spatio-temporal model (Cameletti et al. 2013). The paper intro-

duces a hierarchical spatio-temporal model for particulate matter (PM) concen-

tration in the North-Italian region Piemonte. The authors use stat-space models

involving a Gaussian Field (GF), affected by a measurement error, and a state

process characterized by a first order autoregressive dynamic model and spa-

tially correlated innovations. The estimation is based on Bayesian methods and
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consists of representing a GF with Matérn covariance function as a Gaussian

Markov Random Field (GMRF) through the Stochastic Partial Differential E-

quations (SPDE) approach. Then, the Integrated Nested Laplace Approximation

(INLA) algorithm is proposed as an alternative to MCMC methods, giving rise

to additional computational advantages (Rue et al. 2009).

4. Spatio-temporal data-fusion (STDF) methodology (Nguyen et al 2014). This

method is based on reduced-dimensional Kalman smoothing. The STDF is able

to combine the complementary GOSAT and AIRS datasets to optimally estimate

lower-atmospheric CO2 mole fraction over the whole globe.

5. Hierarchical statistical model (Kang et al. 2010). This model includes a spatio-

temporal random effects (STRE) model as a dynamical component, and a tem-

porally independent spatial component for the fine-scale variation. This article

demonstrates that spatio-temporal statistical models can be made operational

and provide a way to estimate level-3 values over the whole grid and attach to

each value a measure of its uncertainty. Specifically, a hierarchical statistical

model is presented, including a spatio-temporal random effects (STRE) mod-

el as a dynamical component and a temporally independent spatial component

for the fine-scale variation. Optimal spatio-temporal predictions and their mean

squared prediction errors are derived in terms of a fixed-dimensional Kalman

filter.

6. Three-stage spatio-temporal hierarchical model (Fassò and Cameletti 2009).

This work gives a three-stage spatio-temporal hierarchical model including

spatio-temporal covariates. It is estimated through an EM algorithm and boot-

strap techniques. This approach has been used by (Militino et al. 2015) for in-

terpolating daily rainfall data, and for estimating spatio-temporal trend changes

in NDVI with satellite images of Spain from 2011-2013 (Militino et al. 2017).

7. Space-varying regression model (Bolin et al. 2009). In this space-varying regres-

sion model the regression coefficients for the spatial locations are dependent. A

second order intrinsic Gaussian Markov Random Field prior is used to specify

the spatial covariance structure. Model parameters are estimated using the Ex-

pectation Maximisation (EM) algorithm, which allows for feasible computation

times for relatively large data sets. Results are illustrated with simulated data

sets and real vegetation data from the Sahel area in northern Africa.

13.6.1 Geostatistical R Packages

In this section we briefly describe some of the most useful R packages for geostatisti-

cal analysis, including spatial and spatio-temporal interpolation in satellite imagery.

1. FRK (Cressie and Johannesson 2008) means fixed rank kriging and it is a tool

for spatial/spatio-temporal modelling and prediction with large datasets.
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2. geoR (Ribeiro Jr et al. 2001) offers classical geostatistics techniques for

analysing spatial data. The extension to generalized linear models was made

in geoRglm package (Christensen and Ribeiro 2002).

3. georob (R Core Team 2017) fits linear models with spatially correlated errors to

geostatistical data that are possibly contaminated by outliers.

4. geospt (Melo et al. 2012) estimates the variogram through trimmed mean and

does summary statistics from cross-validation, pocket plot, and design of opti-

mal sampling networks through sequential and simultaneous points methods.

5. geostatsp (Brown 2015) provides geostatistical modelling facilities using raster.

Non-Gaussian models are fitted using INLA, and Gaussian geostatistical models

use maximum likelihood estimation.

6. gstat (Pebesma 2004) does spatio-temporal kriging, sequential Gaussian or in-

dicator (co)simulation, variogram and variogram map plotting utility functions.

7. RandomFields (Schlather et al. 2015) provides methods for the inference on and

the simulation of Gaussian fields.

8. spacetime (Pebesma et al. 2012) gives methods for representations of spatio-

temporal sensor data, and results from predicting (spatial and/or temporal in-

terpolation or smoothing), aggregating, or sub-setting them, and to represent

trajectories.

9. spatial (Venables and Ripley 2002) provides functions for kriging and point pat-

tern analysis.

10. spatialEco (Evans 2016) does spatial smoothing, multivariate separability, point

process model for creating pseudo- absences and sub-sampling, polygon and

point-distance landscape metrics, auto-logistic model, sampling models, cluster

optimization and statistical exploratory tools. It works with raster data.

11. SpatialTools (R Core Team 2017) contains tools for spatial data analysis with

emphasis on kriging. It provides functions for prediction and simulation.

12. spBayes (Finley et al. 2007) fits univariate and multivariate spatio-temporal ran-

dom effects models for point-referenced data using Markov chain Monte Carlo

(MCMC).

13.7 Conclusions

The multitemporal Earth observation satellites have been very well developed s-

ince the seventies, and along with the free availability of millions of satellite im-

ages, the number of publications of remote sensing data with geostatistical tech-

niques has been rapidly increased. But unfortunately, not all published papers deriv-

ing, analysing or monitoring spatio-temporal evolutions, spatio-temporal trends or

spatio-temporal changes are necessarily geostatistical papers, because they do not

really use spatio-temporal stochastic models. These models are still scarce in remote

sensing data because many of these models are computationally very intensive, or

because they are not so broadly applicable as the spatial models are. The solutions

found in the literature are very well fitted to specific problems, but we cannot always
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plug-in to other applications. The use of time series analysis in remote sensing opens

a great window of opportunities for monitoring, smoothing, and detecting changes

in large series of satellite images, but there are still many remote sensing papers

ignoring the spatial dependence when analysing time series of images (Ban 2016).

Instead, a huge discretization of the problem is presented where time-series of pixels

are treated as spatially independent.

Nowadays, the upcoming opportunities for geostatisticians in remote sensing data

are not based on the use of spatial models and time series separately, but on the

use of spatial, temporal, or spatio-temporal stochastic models embedding both types

of dependencies when necessary. Moreover, a single free statistical software like R
is a powerful tool for downloading, importing, accessing, exploring, analysing and

running advanced statistical modelling with remote sensing data in a row.
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Chapter 14
Flint Drinking Water Crisis: A First
Attempt to Model Geostatistically
the Space-Time Distribution of Water
Lead Levels

Pierre Goovaerts

Abstract The drinking water contamination crisis in Flint, Michigan has attracted
national attention since extreme levels of lead were recorded following a switch in
water supply that resulted in water with high chloride and no corrosion inhibitor
flowing through the aging Flint water distribution system. Since Flint returned to its
original source of drinking water on October 16, 2015, the State has conducted
eleven bi-weekly sampling rounds, resulting in the collection of 4,120 water
samples at 819 “sentinel” sites. This chapter describes the first geostatistical anal-
ysis of these data and illustrates the multiple challenges associated with modeling
the space-time distribution of water lead levels across the city. Issues include
sampling bias and the large nugget effect and short range of spatial autocorrelation
displayed by the semivariogram. Temporal trends were modeled using linear
regression with service line material, house age, poverty level, and their interaction
with census tracts as independent variables. Residuals were then interpolated using
kriging with three types of non-separable space-time covariance models.
Cross-validation demonstrated the limited benefit of accounting for secondary
information in trend models and the poor quality of predictions at unsampled sites
caused by substantial fluctuations over a few hundred meters. The main benefit is to
fill gaps in sampled time series for which the generalized product-sum and
sum-metric models outperformed the metric model that ignores the greater variation
across space relative to time (zonal anisotropy). Future research should incorporate
the large database assembled through voluntary sampling as close to 20,000 data,
albeit collected under non-uniform conditions, are available at a much greater
sampling density.
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14.1 Introduction

The drinking water contamination crisis in Flint, Michigan has attracted national
attention since extreme levels of lead were recorded in local water supplies and the
percentage of children with elevated blood lead levels (BLL) increased in neigh-
borhoods with the highest water lead levels (WLL). Problems started when the City
of Flint, Michigan adopted the cost-saving decision of drawing and treating water
from the Flint River instead of relying on the Detroit Water and Sewerage
Department’s system (DWSD) for its public water supply. A few months later, in
December 2014, water samples showed elevated levels of trihaloethanes (THMs) a
disinfection byproduct of chlorine, as well as high levels of lead and copper.
A public health emergency was declared and residents were told to avoid drinking
the water until it was tested or approved water filters were installed. In July 2015,
public concerns were raised that lead and copper were being leached from corrosion
(chlorine-induced) in the underground lead service lines and home plumbing fix-
tures as a result of not using corrosion control treatment (CCT). In August and
September 2015, 16.6% of the 271 water samples collected by a Virginia Tech’s
team were found to exceed the EPA action level of 15 μg/L (ATSDR 2010). In
September and October 2015, elevated childhood blood lead levels were confirmed
and an emergency response was initiated (Hanna-Attisha et al. 2016), leading the
city to switch back to the DWSD water supply on October 16, 2015.

Starting in February 2016, samples were collected bi-weekly at more than 600
sentinel sites chosen by the EPA and MDEQ (Michigan Department of Environ-
mental Quality) across the city to determine the general health of the distribution
system and to track changes in lead concentrations over time (Flint Safe Drinking
Water Task Force 2016). After five rounds of sentinel sampling, a new sentinel
program called “Extended Sentinel Site Program” started in June 2016, targeting
specifically sites with high WLL during previous rounds or located in the
highest-risk areas. Six additional sampling rounds were conducted for this smaller
network including fewer than 200 sites. Overall these 11 sampling rounds resulted
in the collection of 4,120 data at 819 different sites over a 40-week time period.
This State-controlled monitoring program was supplemented by a voluntary or
homeowner-driven sampling whereby concerned citizens received a testing kit and
conducted sampling on their own (Goovaerts 2017a, b). Despite the larger size of
this database (18,760 samples collected over 53 weeks at 10,341 sites), its
heterogeneity and lack of systematic sampling across time prohibited its use in the
present space-time analysis.

Except for a few graphs and location maps, the database assembled by the City
of Flint and made available online has not undergone any rigorous statistical
treatment by State employees and only a few studies have been published so far.
Using a data-driven approach Abernethy et al. (2016) developed an ensemble of
predictive models (e.g., random forest, logistic regression, linear discriminant
analysis) to assess the risk of lead contamination in individual homes and neigh-
borhoods in Flint. They trained these models using a wide range of data sources,
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including residential water tests, historical records, and city infrastructure data.
Their analysis however ignored the spatial correlation among data and did not
include a temporal component. A time trend analysis was conducted by Goovaerts
(2017a) who used joinpoint regression to model time series of lead levels collected
by the state-controlled and voluntary sampling programs. This analysis carried out
at the city and ward levels still ignored the spatial correlation among data and did
not provide any tax parcel-based prediction. A space-time analysis of these data
should however provide important information to identify residences where high
levels of lead are expected. It would also support any assessment of past and current
lead exposures among the population at risk, particularly pregnant women and
children.

Geostatistical techniques have been routinely used to analyze and map the
spatial variability of soil and sediment lead concentrations (Goovaerts et al. 1997;
Cattle et al. 2002; Solt et al. 2015), yet their application to lead in drinking water is
far less common and mainly concerns groundwater quality (Siddique et al. 2012).
A recent study (Wang et al. 2014) applied geographic information systems
(GIS) and a hydraulic model of distribution systems to test the influences of pipe
material, pipe age, water age, and other water quality parameters on lead/copper
leaching in Raleigh (NC). In Symanski et al. (2004), mixed effect models were used
to assess spatial fluctuations, temporal variability, and errors due to sampling and
analysis for levels of disinfection by-products in water samples collected in
households within the same distribution system. To the author’s knowledge, the
present study is however the first application of geostatistics to lead in drinking
water within a distribution system.

This chapter describes a new methodology to predict lead level in tap water,
accounting for WLL measurements collected in neighboring houses, housing
characteristics (e.g., age of the house or presence of lead pipes), and temporal trends
(e.g., decline since return to pre-crisis source of drinking water). Linear regression
was used to model temporal trends at sentinel sites, accounting for the composition
of service line (SL), construction year, poverty level, and census tracts as covari-
ates. Cross-validation analysis allowed one to assess the benefit of this approach
and compare the results obtained using three different types of space-time covari-
ance models. Both the cases of predicting unsampled times at monitored locations
(i.e., filling gaps in time series) and making predictions at unsampled locations were
investigated.

14.2 Materials and Methods

14.2.1 Datasets

4,150 WLL measurements recorded over the period 2/20/2016-11/20/2016 were
downloaded from http://www.michigan.gov/flintwater (residential testing results).
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Data were then allocated to an individual tax parcel unit on the basis of their postal
address. Data with incomplete address (two samples) or duplicates (e.g., samples
taken from two different faucets on the same day in the same house) were discarded,
leading to a total of 4,120 samples collected at 819 different sites; see Table 14.1.
Because of their strongly positively skewed distribution (concentrations range from
0 to 5,986 μg/L) and large proportion of zero values (34.6%), data were trans-
formed using the following formula Log10ðz+1Þ.

Sentinel sites were initially selected from a pool of 1,951 volunteer sites iden-
tified during door-to-door water distribution; in particular it included all 156 sites
with lead or lead combination service lines according to City records. Other sites
were added according to several criteria: (i) spatial distribution to ensure coverage
of all nine City wards, (ii) measurements of high blood levels (Hanna-Attisha et al.
2016), and (iii) environmental justice considerations (e.g. presence of houses with
lead-based paint, minority population, and lower socio-economic households). This

Table 14.1 Datasets available for the space-time analysis: 4,120 water lead levels measured over
11 sampling rounds. Statistics include the number of data available, the sampling period, the
percentage of WLL above 15 μg/L, the mean of logtransformed concentrations, and the
composition of service line that was recorded for each sentinel site (three main categories besides
plastic, unknown, and other)

Sampling
round

Data
(n)

Sampling
period

%WLL >
15 μg/L

Mean
Log10 (μg/
L)

Composition of SL
Lead Galvanized Copper

Round S1 610 2/16/2016–2/
29/2016

9.51 0.487 5.90 20.66 68.20

Round S2 606 2/24/2016–3/
13/2016

8.42 0.465 8.91 19.97 67.00

Round S3 654 3/15/2016–3/
24/2016

8.26 0.480 11.62 19.57 63.91

Round S4 644 3/29/2016–4/
5/2016

7.14 0.457 13.66 17.39 64.29

Round S5 622 4/13/2016–4/
15/2016

6.43 0.427 14.31 15.27 65.43

Round X1 170 5/23/2016–6/
7/2016

7.06 0.604 45.88 9.41 44.71

Round X2 178 6/14/2016–6/
30/2016

8.99 0.638 49.44 7.87 42.70

Round X3 167 7/19/2016–7/
22/2016

6.59 0.557 46.11 8.38 45.51

Round X4 162 8/18/2016–8/
22/2016

9.88 0.579 45.06 9.26 45.68

Round X5 158 9/19/2016–9/
27/2016

6.33 0.522 45.57 9.49 44.94

Round X6 149 11/17/2016–
11/23/2016

6.71 0.532 45.64 9.40 44.97
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initial set evolved between sampling rounds as some residents stopped participat-
ing, while others asked to be included in the network (Goovaerts 2017b), which
explains the fluctuation in the number of sampled sites during the first five rounds
S1-S5: 607–621 (Table 14.1). Fewer sites (149–178) were then part of the
“Extended Sentinel Site Program”. Table 14.2 indicates that only 41 sites were
sampled in all 11 rounds, while 80% of time series included five observations or
less.

Each house selected to be part of the sentinel network was visited by a licensed
plumber who classified the material of the service line coming into the home (i.e.,
customer-side service line) into six categories: lead, galvanized, copper, plastic,
other, and unknown. Galvanized refers to iron pipe with a protective “galvanized”
surface coating composed of zinc, lead, and cadmium, and therefore can be a
long-term source of lead (Clark et al. 2015). The term “unknown” was used
whenever the SL material could not be confirmed because, for example, the line
was behind a wall or way back in a crawl space.

City records were the only source of service line data available for the majority
of 56,039 tax parcels which were not part of the sentinel sampling program. These
records are however inaccurate and lead to the over-identification of lead SLs,
likely because old records were not updated as these lines were being replaced
(Goovaerts 2017c). The same author found that construction year was a good
predictor of service line material: galvanized lines were mostly found in pre-1934
houses, while the frequency of lead service lines (LSLs) peaked for houses built
around World War II. This information was combined with field inspection data

Table 14.2 Statistics computed for time series of different lengths: number of sentinel sites,
percentage of WLL above 15 μg/L, the mean of logtransformed concentrations, and the
composition of service line

Length Sites %WLL > 15 μg/L Mean Log10
(μg/L)

Composition of SL
Lead Galvanized Copper

1 80 7.50 0.413 6.25 22.50 66.25
2 33 6.06 0.475 12.12 18.18 63.64
3 36 6.48 0.433 22.22 25.00 46.30
4 95 4.74 0.411 5.26 18.95 70.53
5 409 3.52 0.358 2.93 17.85 73.59
6 41 8.54 0.530 21.95 4.88 73.17
7 19 9.77 0.651 89.47 5.26 5.26
8 10 11.25 0.705 68.75 7.50 23.75
9 23 11.59 0.693 84.54 4.35 11.11
10 32 18.75 0.750 38.75 15.63 45.63
11 41 19.82 0.793 33.92 20.26 45.81
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and city records to predict by indicator kriging the likelihood that a home has lead
or galvanized SL (Goovaerts 2017c).

Besides service lines, lead in drinking water mainly comes from lead-based
solder and lead-containing plumbing fixtures (Lee et al. 1989; Cartier et al. 2011).
Plumbing material is usually related to the installation year of a plumbing system,
which can be approximated by the year of construction. For example, most faucets
purchased prior to 1997 were made of brass or chrome-plated brass containing up to
8 percent lead (Rabin 2008). Construction year was retrieved from the 2016
Parcels GIS layer. The attribute “Year_built” was missing for 20,372 parcels and
was estimated by ordinary kriging (Goovaerts 1997) with a mean absolute error of
prediction of 6.43 years. Based on its relationship to water lead levels (Goovaerts
2017a), construction year was discretized into three classes: pre-1940, 1940–1959,
and post-1959.

Poor workmanship as well as lack of regular maintenance can also lead to more
corrosion and leaching, and the presence of lead particulates, such as disintegrating
brass or detaching pieces of old solder (Wang et al. 2014). Socio-economic status
was here assessed using 2015 ACS (American Community Survey) 5-year esti-
mates of the percentage of the block group population living in households where
the income is less than or equal to twice the federal “poverty level”.

There are many other variables known to influence lead in drinking water. For
example, longer water age (i.e., water travel time between the treatment plant and
home plumbing system) can decrease the effectiveness of corrosion control;
increasing leaching and water lead levels (US EPA 2002; Wang et al. 2014). This
information was however unavailable for this study.

14.2.2 Space-Time Kriging and Covariance Models

Let z(uα;t) denote the water lead level recorded on time t at sentinel site α geo-
referenced by the geographical coordinates uα = (xα,yα) of the corresponding tax
parcel centroid. Prediction of z-value at unsampled time t0 and location u0 was
conducted using the following kriging estimator:

Z* u0; t0ð Þ= ∑
t0 +Δt

t= t0 −Δt
∑
nðtÞ

α=1
λαt × z uα; tð Þ ð14:1Þ

n(t) is the number of observations recorded at time t, within the time window 2Δt,
that were retained for estimation. The weights λαt are solution of the following
space-time (ST) kriging system:
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∑
t0 +Δt

t= t0 −Δt
∑
nðtÞ

α=1
λαtC uα − uβ; t− t′

� �
+ μ=C u0 − uβ; t0 − t′

� �
β=1,⋯, n t′

� �

∑
t0 +Δt

t= t0 −Δt
∑
nðtÞ

α=1
λαt =1 t′ = t0 −Δt,⋯, t0 +Δt

ð14:2Þ

The parameter μ is a Lagrange multiplier accounting for the constraint on the
weights. The term C uα − uβ; t− t′

� �
is the ST covariance between any two obser-

vations recorded at locations uα and uβ at times t and t′, respectively. Euclidian
distances were used here since most lead in drinking water comes from premise
plumbing materials and service lines instead of being transported through water
mains (Del Toral et al. 2013; EET Inc. 2015).

One challenge associated with the application of ST kriging is the choice of a ST
covariance model within the ever growing class of models (Montero et al. 2015).
The following three non-separable ST covariance models were compared in the
present study:

• The generalized product-sum model (De Iaco et al. 2002):

Cðh, τÞ= k1CsðhÞ+ k2CtðτÞ+ k3CsðhÞCtðτÞ ð14:3Þ

where k1, k2, and k3 are non-negative (strictly positive for k3) coefficients
estimated from the sills of the spatial, temporal, and spatio-temporal semivar-
iograms (De Cesare et al. 2002).

• The metric model (Dimitrakopoulos and Luo 1994):

Cðh, τÞ=Cst

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
as

� �2

+
τ

at

� �2
s0

@

1

A ð14:4Þ

where a normalized space-time distance measure is created by rescaling the
spatial and temporal lags, h and τ, by the ranges of the spatial and temporal
semivariograms, as and at (case of geometric anisotropy).

• The sum-metric model (Heuvelink and Griffith 2010):

Cðh, τÞ=CsðhÞ+CtðτÞ+Cst

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
as

� �2

+
τ

at

� �2
s0

@

1

A ð14:5Þ

This model combines characteristics of the two previous models: (i) sum of
spatial and temporal covariances allowing for the presence of zonal anisotropies
(i.e., semivariogram sills are not the same in all directions), and (ii) a metric ST
model for the residual variability (geometric anisotropy).
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Two other classes of non-separable ST covariance models, Cressie-Huang model
(Cressie and Huang 1999) and Gneiting models (Gneiting 2002), were not con-
sidered because: (1) the fitting of these models needs a complex iterative parameter
optimization technique (De Iaco 2010), whereas the three selected models can be
fitted using straightforward techniques similar to those already used for spatial-only
and temporal-only semivariograms, and (2) recent studies (Guo et al. 2015) indicate
that these two more complex models provide similar fits to experimental ST
semivariograms and comparable prediction accuracy as the product-sum model,
confirming previous findings (De Iaco 2010).

The main difficulty in the practical implementation of the product-sum and
sum-metric models is the inference of the sill of the ST semivariogram model,
Cstð0Þ, which is most often estimated visually from the 3D plot of the experimental
ST semivariogram γŝtðh, τÞ (e.g., De Cesare et al. 2002; Heuvelink and Griffith
2010). In order to make the fitting procedure more user-friendly, the space-time sill
Cstð0Þ was here computed as the following weighted average of experimental
space-time semivariogram values:

Cstð0Þ= 1
∑h ∑τ wh, τ

∑
h
∑
τ
wh, τγ ŝtðh, τÞ if γ ŝtðh, τÞ≥ gc ð14:6Þ

where the weight wh, τ is the number of data pairs falling into the class of spatial and
temporal lags ðh, τÞ. Only the classes where the ST semivariogram values exceed a
critical sill gc, defined as the maximum of the spatial and temporal sills, were used.

14.2.3 Accounting for Secondary Information

Lead service lines are widely considered the main source of lead in drinking water
(Lee et al. 1989; Clark et al. 2015). Another culprit is lead fixtures and pipes present
within old houses (premises plumbing), and poverty can compound the problems
through the lack of maintenance. Goovaerts (2017a) also found that temporal trends
can vary greatly across the city. This secondary information was here incorporated
in the definition of a stochastic trend model Mðu; tÞ, leading to the following
decomposition of the space-time random function (RF) (Kyriakidis and Journel
1999):

Zðu; tÞ=Mðu; tÞ+Rðu; tÞ ð14:7Þ

where Mðu; tÞ is a nonstationary spatiotemporal RF modeling the space-time dis-
tribution of the mean process, with E Mðu; tÞ½ �=mðu; tÞ and Rðu; tÞ is a zero mean
stationary spatiotemporal RF modeling space-time fluctuations around Mðu; tÞ.

The trend component at each sentinel site uα was fitted using a linear model
including six fixed factors: presence/absence of LSL, presence/absence of galva-
nized service line (GSL), time since first sample was collected (TIME), poverty
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level (POV), house age (AGE), and census tract (CT). The model takes the fol-
lowing form:

Mðu; tÞ=LSLðuÞ× TIME +CTðuÞ× TIME+ LSLðuÞ×CTðuÞ
+GSLðuÞ×CTðuÞ+AGEðuÞ×CTðuÞ
+POVðuÞ×CTðuÞ

ð14:8Þ

This model naturally handles uneven spacing of repeated measurements within
each time series, as well as their correlation which was modeled using a spherical
variance-covariance structure. Once the trend model was fitted, regression residuals
were interpolated using space-time simple kriging and the ST covariance models
introduced in Sect. 14.2.2.

14.2.4 Cross-Validation

The accuracy of the predictive models created by the different approaches (e.g.,
three types of ST covariance models, univariate vs incorporation of secondary
information) was assessed by cross-validation whereby each observation or time
series (i.e., all data collected at the same site) was removed at a time and
re-estimated using data collected at neighboring sentinel sites. The following per-
formance criteria were then computed from n kriging estimates:

• the mean error (ME) of prediction as:

ME=
1
n
∑
T

t=1
∑
nðtÞ

α=1
z* ua; tð Þ− z ua; tð Þ� � ð14:9Þ

• the mean absolute error (MAE) of prediction as:

MAE=
1
n
∑
T

t=1
∑
nðtÞ

α=1
z* ua; tð Þ− z ua; tð Þ�� �� ð14:10Þ

• the mean square standardized residual (MSSR) as:

MSSR=
1
n
∑
T

t=1
∑
nðtÞ

α=1

z* ua; tð Þ− z ua; tð Þð Þ2
σ2K ua; tð Þ ð14:11Þ

where σ2K ua; tð Þ is the kriging variance.

A mean error close to zero indicates a lack of bias, while the mean absolute error
should be as small as possible. If the actual estimation error is equal, on average, to
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the error predicted by the model, the MSSR statistic should be about one (Wack-
ernagel 1998, p. 91).

One application of the predictive models is to prioritize any further sampling or
intervention by ranking tax parcels from highly hazardous to less hazardous on the
basis of kriging estimates. The ability of this ranking to identify successfully sites
where WLL is greater or equal to the EPA action level of 15 μg/L was assessed
using Receiver Operating Characteristics (ROC) curves which plot the probability
of false positive versus the probability of detection (Swets 1988; Fawcett 2006;
Goovaerts et al. 2016). The accuracy of the classification was quantified using the
relative area under the ROC curve (AUC statistic), which ranges from 0 (worst
case) to 1 (best case). The AUC is equivalent to the probability that the classifier
will rank a randomly chosen positive instance (e.g., zc ≥ 15 μg ̸L) higher than a
randomly chosen negative instance (e.g., zc <15 μg ̸L).

14.3 Results and Discussion

14.3.1 Spatial Distribution

Figure 14.1a shows the location of all 819 sentinel sites within the nine wards in the
city of Flint. Site-specific statistics such as number of observations and average log
concentrations recorded for each time series, as well as composition of service line
(GSL vs. LSL), were aggregated at the census tract level for better visualization.
Geographical clusters of sentinel sites can be distinguished in several census tracts
(e.g. border of wards 2 and 6, wards 7 and 9) which tend to be the tracts with the
largest WLLs (Fig. 14.1c) and percentages of sampled LSLs (Fig. 14.1d). There is
also a clear spatial trend with fewer lead service lines (e.g., none in Ward 1) and
shorter time series (Fig. 14.1b) sampled in the Northern part of the city. Ward 5
includes the oldest neighborhood where GSLs are prevalent (Fig. 14.1e), while
LSLs appear as small clusters, in particular in wards 6, 7 and 9 (Goovaerts 2017c).

14.3.2 Temporal Trend Modeling

Temporal trends for the three major types of service line were visualized by
aggregating observations within non-overlapping 14-day windows, which corre-
sponds to the average time interval between sampling rounds during the first phase
(Round S) of the sentinel monitoring program (Table 14.1). Except for LSLs water
lead levels do not appear to have declined over the 40-week sampling period;
actually they seem to have slightly increased for GSLs (Fig. 14.2a). These results
are however a direct artifact of the sampling strategy whereby 80% of sentinel sites
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were not sampled beyond week 16, while sampling continued at sites where the risk
of exceeding the EPA action level of 15 μg/L was the greatest (Table 14.2).

After elimination of all sites where fewer than six observations were collected,
the averaged time series display the expected decline (Fig. 14.2b). The impact is
minimal for LSLs since most of these sites are considered at risk and were sampled
during both the initial and extended sentinel sampling programs (Rounds S and X).

Fig. 14.1 a Location of sentinel sites in each of the nine wards, and several census tract-level
statistics: b percentages of time series (TS) including more than five observations, c average water
lead levels, d percentage of sites with lead service lines, e percentage of sites with galvanized
service lines. Shaded polygons indicate census tracts that do not include any sentinel site (missing
values)
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The selection bias is stronger for copper and galvanized lines, which explains the
larger water lead levels recorded during the first 16 weeks relative to LSLs.

This sampling bias complicated greatly the modeling of temporal trends by
regression. Indeed using all the data would underestimate the weekly rate of decline
of water lead levels, whereas subsetting the dataset (e.g., using only time series
including more than five data points as in Fig. 14.2b) will result in overestimating
the concentrations at a majority of sites. In addition, the time series length cannot be
used as covariate in the model to allow its application at unmonitored locations.
Two modeling strategies were considered in this chapter. First, because of its

Fig. 14.2 Time series of observed (solid line) and predicted by regression (dashed line) water lead
levels computed on average for the three major types of service line: lead, galvanized, and copper.
Results (log transformed concentrations) are calculated from: a all sites, and b subset of sites
where at least six observations were recorded
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relationship with time series length (Fig. 14.1) census tract was used as covariate in
the regression model (Eq. 14.8). The second more complicated approach was to
allow the intercept to fluctuate among sentinel sites, even when located within the
same tract; i.e., use a mixed model where the intercept is modeled as a random
effect. The trade-off cost for this added flexibility was the need to estimate the
intercept at unmonitored locations, which was accomplished using ordinary kriging.
Despite providing a better fit than the first alternative, the mixed model did not lead
to more accurate kriging estimates, hence only the first option is discussed hereafter.

All six interaction terms in the trend model (Eq. 14.8) were highly significant
(α = 0.01). The correlation between predicted and observed WLL is however rather
weak (r = 0.47), which illustrates the challenge of predicting spatial and temporal
variations in lead for drinking water (Bailey and Russell 1981; Del Toral et al.
2013). While the output of the regression model provides a reasonable fit to the
SL-specific time series computed using all the data (Fig. 14.2a), it underestimates
water lead levels for LSL and GSL when using only time series including more than
five data points (Fig. 14.2b).

14.3.3 Variography

Semivariograms helped quantifying the scale and magnitude of the space-time
variability displayed by the maps and time series of Figs. 14.1 and 14.2. The spatial
semivariogram (Fig. 14.3a) shows three nested scales of spatial variability: (1) a
long range (2.35 km) caused by the neighborhood effect since houses in the same
neighborhood tend to be built at the same time (i.e., similar plumbing system) and
have similar water age, (2) a short range (200 m) corresponding to variability
between adjacent houses, and (3) a nugget effect or discontinuity at the origin which
represents the variability among samples taken within the same tax parcel (i.e.
different apartments and/or measurement error for samples taken within the same
residence). The substantial short-range variability (71% of total sill) likely reflects
the heterogeneity in housing conditions (e.g., renovated houses) as well as the lack
of uniformity of sampling conducted by homeowners since even with simple
instructions it is difficult to ensure strict adherence to any sampling protocol (Del
Toral et al. 2013). This interpretation is confirmed by the similar short-range
variability displayed by the semivariogram of regression residuals (Fig. 14.3a,
lower blue curve) since the regression model (Eq. 14.8) does not account for
sampling characteristics. It is noteworthy that the longer range of 2.35 km is still
fairly small relative to the size of the city (see legend of Fig. 14.1a), while the
average separation distance between each sentinel site and the closest neighbor
(293 m) exceeds the shortest range (200 m) that encapsulates 71% of the total
spatial variability.

The temporal semivariogram (Fig. 14.3b) also displays three nested scales of
variability although the longer range structure (110 days) represents here 53% of
the total variability. Another difference with the spatial case is the overlap of
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temporal semivariograms for WLLs and regression residuals, illustrating the
inability of the trend model (Eq. 14.8) to capture purely temporal changes. This
result is in agreement with the small magnitude of changes displayed by the time
series of predicted values in Fig. 14.2 (dashed line). Comparison of the total sills of
spatial and temporal semivariograms (Fig. 14.3a–b) indicates that the variability
observed across space is greater than the temporal variability. Such zonal aniso-
tropy is in conflict with the assumption underlying the metric ST covariance model
(Eq. 14.4).

Figure 14.3c–d show the semivariograms computed using a normalized
space-time distance (metric model). Because the spatial and temporal lags were
rescaled using different constants for the WLL and residual semivariograms, these
two curves are plotted separately. The vertical axis is however comparable and
illustrates the smaller variability of residuals (i.e., lower sill for the semivariogram
of Fig. 14.3d). Once again, both semivariograms display substantial short-range
variability. The last two semivariograms (Fig. 14.3e–f) represent the metric
space-time model that captures the residual variability in the sum-metric model
(Eq. 14.5).

14.3.4 Cross-Validation Analysis

The semivariogram models of Fig. 14.3 were used to conduct a cross-validation
analysis whereby one observation (LOO approach) or one time series (LTO
approach) was removed at a time and re-estimated using data collected at neigh-
boring sentinel sites. Based on a sensitivity analysis using ST ordinary kriging and
MAE criterion, 48 observations with a maximum of three data points per site were
retained for the estimation by univariate and residual ST kriging. Results obtained
for predictions by the time trend model were also included as reference in
Table 14.3.

The first three rows in Table 14.3 indicate that all algorithms give unbiased
predictions (ME close to zero). As expected, the best prediction scores (i.e., lower
MAE and higher AUC) are obtained when using data from the same time series
(LOO approach) instead of relying solely on non-colocated data (LTO approach).
Except for MSSR the product-sum model performs best, with the sum-metric model
being a close second. The metric model underperforms the other two models
because the combination of both spatial and temporal dimensions through a nor-
malized space-time distance leads one to underestimate the correlation among
observations of the same time series. In other words, the assumption underlying the

◀Fig. 14.3 Experimental semivariograms with the model fitted that were used to form the three
types of ST covariance models (Eqs. 14.3–14.5) a spatial semivariogram (lower curve is for
residuals), b temporal semivariogram, c metric semivariogram for WLLs, d metric semivariogram
for regression residuals, e metric residual semivariogram (sum-metric model) for WLLs, f metric
residual semivariogram for regression residuals
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metric model is incompatible with the zonal anisotropy detected on Fig. 14.3.
Accounting for secondary information through residual kriging slightly improves
the prediction relative to ST ordinary kriging; both kriging algorithms outperformed
the trend model.

These results however apply only to the narrow situation where exposure to lead
in drinking water is reconstructed at the sole sentinel sites. For prediction at sites
where no data was collected, LTO results indicate that differences between ST
covariance models are much smaller as purely temporal correlations are not used in
the kriging system. Nevertheless, the product-sum model still performs best.
The LTO approach also emphasizes the benefit of using trend models that account
for secondary information (i.e., larger differences between residual kriging and
ordinary kriging). Yet, prediction performances actually deteriorate when kriged
residuals are added to the trend model: the sole trend model gives better prediction
than residual kriging. It is however noteworthy that the trend model was not
cross-validated, hence the observation being predicted was used to create the
model.

Table 14.3 Results of cross-validation analysis conducted by leaving one observation out
(LOO) or one time series out (LTO) at a time. The four performance criteria described in
Sect. 14.2.4 were computed for three types of space-time covariance models (generalized
product-sum, metric, and sum-metric) and three space-time interpolation algorithms (ST ordinary
kriging, trend model fitted by linear regression with and without interpolation by ST residual
kriging)

Algorithm Performance criteria
Product-sum
model

Metric model Sum-metric model

LOO LTO LOO LTO LOO LTO

Mean error of prediction (ME)
ST ordinary kriging −0.001 0.009 0.003 0.007 −0.001 0.008
ST residual kriging 0.0 0.008 0.003 0.005 0.001 0.008
Trend modela 0.0
Mean absolute error of prediction (MAE)
ST ordinary kriging 0.257 0.375 0.336 0.384 0.263 0.378
ST residual kriging 0.251 0.337 0.318 0.346 0.254 0.343
Trend modela 0.331
Mean square standardized residual (MSSR)
ST ordinary kriging 1.326 0.954 1.026 1.208 1.190 1.111
ST residual kriging 1.119 0.912 0.957 1.086 1.015 1.086
Trend modela 74.9
Area under the ROC curve for 15 μg/L (AUC)
ST ordinary kriging 0.832 0.615 0.743 0.598 0.829 0.613
ST residual kriging 0.839 0.707 0.768 0.692 0.836 0.697
Trend modela 0.713
avalue for trend model is the same for all six combinations
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Fig. 14.4 Impact of the size of kriging search window on several statistics computed by the leave
one time series out (LTO) approach: a mean absolute error of prediction, and b area under the
ROC curve. Horizontal dashed lines represent the values obtained for the time trend model created
by linear regression. c percentages of search windows that include at least one observation when
centered on sampled sentinel sites or tax parcels
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Because of the substantial short-scale spatial variability retaining increasingly
distant data is expected to add more and more noise to the kriging estimate. This
was investigated by changing the search strategy and selecting only sentinel sites
located within a given distance of the site being predicted. If no data was located
within the search radius, the kriged residual was zero and the residual kriging
estimate was simply the value of the trend model. Figure 14.4 shows results of this
sensitivity analysis conducted for the product-sum model over distances ranging
from 50 m to 1 km. For the mean error of prediction the little benefit of residual
kriging vanishes as soon as data beyond 100 m are used in the estimation
(Fig. 14.4a), while this distance is 200 m for the area under the ROC curve
(Fig. 14.4b). Figure 14.4c indicates that 42% of sentinel sites have another sentinel
site within 100 m, while this percentage is only 4.6% for tax parcels (Fig. 14.4c). In
other words, there is little benefit in applying geostatistics to model the space-time
distribution of WLL over the 56,039 tax parcels in Flint using the data collected at
sentinel sites.

14.4 Conclusions

This chapter presented the first application of space-time geostatistics to lead levels
recorded in drinking water of a public distribution system. The methodology was
illustrated using 4,120 water samples that were collected at 819 “sentinel” sites over
a 40-week period in the city of Flint. Despite a sizable database assembled by the
State of Michigan, the geostatistical analysis was hampered by a temporal sampling
bias and the existence of substantial variability over a few hundred meters. Unlike
other countries such as Canada or France, sampling is not conducted by a trained
technician in the US. Instead, homeowners are expected to collect water samples
after a minimum of 6 h. of stagnation (e.g., overnight stagnation) following specific
instructions (US EPA 2016), which can cause substantial variability among
households. Other sources of fluctuation include heterogeneity in the plumbing
system (e.g., renovation, installation of a new meter), location of sampled faucets
(e.g., bathroom vs. kitchen), or water temperature (e.g., lead solubility increases
with water temperature), to name a few.

In the present case-study, space-time kriging proved beneficial only in the sit-
uation where observations had been collected at the site being predicted; i.e., to fill
the gaps in time series. The generalized product-sum and sum-metric space-time
covariance models then outperformed the metric model that ignores the greater
variation across space relative to time (zonal anisotropy). Sentinel sites represent
however only 1.5% of tax parcels in the city of Flint. At unsampled sites the kriging
prediction was no better than the temporal trend estimated by linear regression and
it turned out to become less accurate if no data was collected within 100 meters.
Although the regression model included site-specific characteristics, such as con-
struction year and composition of service lines, it was unable to explain the
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short-range variability, leaving 78% of the total variance unaccounted for
(R2 = 22%).

In the future, several approaches will be investigated to tackle the impact of
short-range variability on prediction. First, the data analyzed in this chapter rep-
resent less than 20% of the water samples available for the city of Flint. The
majority of samples were collected by voluntary sampling whereby concerned
citizens received a testing kit and conducted sampling on their own (Goovaerts
2017a, b). Despite the lack of periodic sampling in time and existence of temporal
bias (e.g., houses with low lead levels were less likely to be tested again) the greater
spatial coverage (i.e., more than 18% of tax parcels sampled) will reduce sub-
stantially the average distance between a tax parcel and the closest observation.
However, spatial heterogeneity will likely still be present over short distances,
leading one to question our ability to make prediction at the tax parcel level. More
appropriate spatial supports for prediction could be census block groups which are
statistical divisions of census tracts and are generally defined to contain between
600 and 3,000 people. The city of Flint includes 132 block groups and 40 census
tracts. Such spatial aggregation or upscaling would be a way to filter
between-household fluctuations which appears to be mainly noise. As more US
cities are facing similar drinking water crisis, reliable techniques for sampling and
modeling spatial and temporal changes in water lead levels will be sorely needed.
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Chapter 15
Statistical Parametric Mapping
for Geoscience Applications

Sean A. McKenna

Abstract Spatial fields represent a common representation of continuous
geoscience and environmental variables. Examples include permeability, porosity,
mineral content, contaminant levels, seismic impedance, elevation, and reflectance/
absorption in satellite imagery. Identifying differences between spatial fields is
often of interest as those differences may represent key indicators of change.
Defining a significant difference is often problem specific, but generally includes
some measure of both the magnitude and the spatial extent of the difference. This
chapter demonstrates a set of techniques available for the detection of anomalies in
difference maps represented as multivariate spatial fields. The multiGaussian model
is used as a model of spatially distributed error and several techniques based on the
Euler characteristic are employed to define the significance of the number and size
of excursion sets in the truncated multiGaussian field. This review draws heavily on
developments made in the field of functional magnetic resonance imaging (fMRI)
and applies them to several examples motivated by environmental and geoscience
problems.

15.1 Introduction

A general problem in geological and environmental investigations is rapid and
accurate identification of anomalous measurements from one, two or
three-dimensional data. Example applications include cluster identification in spa-
tial point processes (e.g., Byers and Raftery 1998; Cressie and Collins 2001)
detection of anomalies in remotely sensed imagery (e.g., Stein et al. 2002) and
identification of anomalous clusters in lattice data (e.g. Goovaerts 2009).
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The problem of anomaly detection is complicated when the data set is composed of
more than a handful of variables (multi-variate) and becomes even more complex
when the multiple variables comprise a random field exhibiting spatial correlation.

The temporal and/or spatial correlation of the data rules out the application of
standard statistical tests for change detection and has also limited the development
of hypothesis testing techniques for correlated data (Gilbert 1987). For applications
with correlated data, simulation techniques can often be used to develop the null
distribution, but development of closed form hypothesis tests for analysis of the
spatial random fields associated with geostatistics has remained sparse.

One approach to detection of anomalies in spatially correlated data are Local
Indicators of Spatial Association (LISA) statistics (Anselin 1995; Goovaerts et al.
2005; Goovaerts 2009). These tests focus on the local relationships between
adjacent cells and explore combinations of cells defined with an adjacency matrix
and or a moving window visiting all cells in a lattice. A very different approach is to
model the difference between images as a continuous random field and use prop-
erties of an underlying random field model to identify anomalies.

Change detection in spatial-temporal data sets has received considerable atten-
tion over the past 15–20 years within the medical imaging research community
(Brett et al. 2003; Friston et al. 1994, 1995; Worsley et al. 1992, 1996) and a
significant development of this research has been Statistical Parametric Mapping
(SPM).

The practice of statistical parametric mapping has been developed in the field of
medical imaging, particularly in brain imaging, and in the practice of functional
magnetic resonance imaging (fMRI) of the brain while the subject is performing
various tasks (functions). Friston et al. (1995, p. 190) provide a concise definition of
SPM: “one proceeds by analyzing each voxel using any (univariate) statistical
parametric test. The resulting statistics are assembled into an image, that is then
interpreted as a spatially extended statistical process”. In other words, at each pixel
(voxel) in an image, a univariate statistical test (e.g., t-test) is applied and the
resulting values of the test statistic at each pixel are then displayed as a map. The
underlying spatial correlation of the map is used in creating a multivariate statistical
model that describes that map and this model can be used for inference. Typically,
the resulting map is analyzed using theory that underlies stationary Gaussian fields
and techniques developed for excursion sets of these fields. Properties of truncated
Gaussian fields (e.g., Adler and Hasofer 1976; Adler 1981; Adler and Taylor 2007;
Adler et al. 2009) serve as the basis of the SPM techniques.

To date, the SPM approach has not been applied outside of medical imaging, but
it appears to be a technique that could be successfully applied in a number of areas
of interest in the earth and environmental sciences. The goals of this work are to
both describe the basis of SPM and then apply SPM to example problems.
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15.2 Anomaly Detection with Statistical Parametric
Mapping

Anomaly detection is defined here as the identification of a region in time and/or
space that is anomalous in its shape, size (duration) and/or values within the region
(intensity). Two modes to anomaly detection in spatial-temporal data sets can be
defined: (1) Anomaly detection in an online mode where prior data are used to
predict future values of the measured variable and anomalies occur in areas and/or
times where the predictions are inconsistent with the corresponding measurements;
(2) Anomaly detection as the difference between two classes of data where dif-
ferences in some treatment or external forcing condition is suspected to cause a
difference in the measured variable. The anomalies in this case are significant
differences in measured variables observed with and without activation of the
external condition. This latter case is the focus of the work in this chapter.

Specifically, an ensemble of geologic models can be created in 1, 2 or 3
dimensions where each member of the ensemble is associated with a specific
“treatment” or “result” that can be used to group ensemble members into separate
classes. As examples:

• An ensemble of 3D geostatistical realizations of porosity can be created con-
ditioned to a single set of observations where two different variogram models,
both of which fit the available data equally well, are used. The different vari-
ogram models constitute a “treatment” and the question arises as to whether or
not the treatments create significant differences (anomalies) in the resulting
realizations and where, spatially, those differences occur.

• Petrophysical logs from different wells intersecting the same reservoir constitute
an ensemble of 1-D measurements. When split into groups based on the result of
which wells produced a threshold amount of petroleum and which did not, the
question arises as to whether or not the petrophysical log profiles are signifi-
cantly different between the groups? If they are, what portions of the log create
this significant difference?

Two measures of anomaly detection can be employed: omnibus and localized
(Worsley et al. 1992). Omnibus detection uses a set of calculations to determine if
the current curve, map or volume, taken as a whole, is anomalous. Localized
detection determines the specific location(s) within the study domain where the
anomaly occurs and are the focus of this work.

Anomaly detection is not done directly on the observed generated or observed
ensemble members, but on a difference between groups of members as defined
through the treatment or result. Here, the differences are calculated as the differ-
ences of two average values. The averages are calculated at each point, pixel or
voxel within the domain using standard univariate statistical tests (e.g., t-test). Each
pixel-wise average is calculated over a set of ensemble members created under a
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specific condition (treatment) or generating a specific result. For example, in studies
of the human brain, images are often collected under “resting” and “stimulated”
conditions and the average image from each condition is then used to create a
difference map.

SPM was developed to directly address the problem of spatial correlation in
statistical testing. Direct application of most statistical tests requires independence
of the observations, but for many problems, including those studied here, correla-
tion between adjacent observations is the norm. Therefore, the results of the sta-
tistical tests for adjacent, or even nearby, pixels cannot be effectively evaluated
using standard techniques. SPM considers a single map comprised of the results of
all local (pixel-wise) statistical tests and provides several measures for comparison
of the values in the map to critical threshold levels.

15.2.1 MultiGaussian Fields

The basis of the SPM approach is the analysis of the number, size and degree of
excursions from a multiGaussian (mG) random field. For a concise, statistical
description of mG fields, see Adler et al. (2009, p. 27). Stationary multiGaussian
fields are fully defined by a mean and covariance matrix. In a practical sense, values
at each pixel are defined with a Gaussian distribution. The correlation between
those multiple distributions is defined by the covariance. Spatial correlation can be
added to an uncorrelated field through the convolution of a smoothing kernel with
an uncorrelated (white noise) field. As an example, the 2D Gaussian kernel is
defined as

G(x, y) =
1

2π Σj j1 ̸2 exp −
1
2
dΣ− 1dT

� �

where d is the distance vector containing distances dx and dy from any location (x, y)
to the origin of the Gaussian function x0, y0 (here (0, 0) for the standard normal
distribution). In this work, the covariance matrix, Σ = σ2I, (I = identity matrix) is
diagonal for the specific case of the kernel being aligned with the grid axes.

An often-used measure of the spatial bandwidth of a smoothing kernel in the
image processing literature is the “full width at half maximum” (FWHM). For the
Gaussian kernel above, the FWHM is:

FWHM = σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8lnð2Þ

p
If the mG field is not created, but is obtained from some type of imagery or other

analyses, then there is no known underlying kernel and it is necessary to estimate
the FWHM directly from the image. Estimation can be done using the covariance
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matrix of the partial derivatives of the image values, T, with respect to the dis-
cretization of the image. In 2D, the covariance matrix is:

Λ=
Var ∂T

∂x

� �
Cov ∂T

∂x ,
∂T
∂y

� �
Cov ∂T

∂x ,
∂T
∂y

� �
Var ∂T

∂y

� �
2
4

3
5

This covariance matrix can be interpreted as a measure of the roughness/
smoothness of the image.

Estimation of Λ can be achieved through several approaches and here the simple
relationship defined by Worsley et al. (1992) between the FWHM values in each of
the principal directions and Λ is utilized. The derivatives in the covariance matrix of
an image can be approximated numerically in each spatial dimension with differ-
ences between adjacent pixels are calculated as:

Zxiðx, yÞ= Ti x+ δx, yð Þ−Tiðx, yÞf g ̸δx
Zyiðx, yÞ= Ti x, y+ δyð Þ−Tiðx, yÞf g ̸δy

where δx and δy are the dimensions of the image pixels in the x and y directions.
The variances and covariances of the differences are then used to approximate the
variances and covariances of the derivatives:

Vxx = ∑
i, x, y, z

Zxiðx, y, zÞ2 ̸Nðn− 1Þ
Vyy = ∑

i, x, y, z
Zyiðx, y, zÞ2 ̸Nðn− 1Þ

Vxy = ∑
i, x, y, z

Zxiðx, y, zÞ+ Zxi x, y+ δy, z
� �	 


Zxiðx, y, zÞ+ Zxi x+ δx, y, zð Þf g ̸4Nðn− 1Þ

These variance and covariance estimates are used to estimate Λ:

Λ=
Vxx Vxy

Vxy Vyy

� �

Finally, the FWHM in the X and Y directions are calculated as:

FWHMx =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 lnð2Þ
Vxx

s

FWHMy =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4lnð2Þ
Vyy

s
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15.2.2 Calculating the SPM

The Statistical Parametric Map is the difference image between individual pairs of
images or average images, which is typically transformed from a map of t-statistics
to a map of Gaussian Z-score values. The different methods used in this study for
calculating the SPM are described in this section.

15.2.2.1 Conditional Differences

The t-test and t-statistic are used exclusively in this chapter for the conditional
differences between two ensembles and a review of the t-statistic is provided in the
Appendix. It is noted that other statistical tests and their resulting test-statistics, e.g.,
χ, Z, f, as well as measures of correlation can also be used as the basis of an SPM.
For the t-tests employed here, a location (pixel)-specific calculation of the standard
deviation is used. Another approach is to calculate the pooled standard deviation
across the image (image-based) and arguments for using the image-based standard
deviation are given by Worsley et al. (1992). In typical applications, the number of
observations under each condition is small, near a dozen, and therefore the effective
degrees of freedom for T(x, y) is generally small and needs to be used in the
transformation of the t-field to a standard normal Gaussian Z-field.

The cumulative probability of a t-statistic is found from the t-distribution
function with the appropriate degrees of freedom. This probability is then used with
the inverse of the Gaussian distribution function to get the z-score value:

PðY ≤ yÞ= Tðy; vÞ
z=G− 1 PðY ≤ yÞð Þ

The resulting fields are now multiGaussian SPM’s and the anomaly detection
algorithms developed for SPM analysis can be applied.

15.2.2.2 Isolated Regions of Activation

Anomaly detection here is focused on the number, size and location of regions
within an SPM that is a curve/image/volume that exceed a given threshold level,
u. These regions are known as “regions of activation”, “regions of exceedance” or
“excursions”. The numbers, sizes and locations of these excursions are then com-
pared against a reference model of the expected expression of such regions.
Truncation of a Gaussian field at a threshold u defines the u-level excursion set:
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Xu = x∈RD: YðxÞ≥ u
	 


A large body of literature on the properties of excursion sets (regions of
exceedence) in Gaussian random fields is available (e.g., Adler et al. 2009; Friston
et al. 1994; Lantuejoul 2002). Friston et al. (1994) characterize three related
properties of excursion sets in truncated Gaussian random fields:

N the number of pixels above the truncation threshold, u,
m the number of distinct regions (inclusions) above the threshold, and
n the number of pixels in each region,

with expectation relationship E[N] = E[m]E[n]. For threshold value, u, the number
of cells above that threshold, N, is provided by the Gaussian cdf and the size of the
domain, S:

E½N�= S
Z ∞

u
ð2πÞ− 1 ̸2e− z2 ̸2dz

A measure of the number of isolated regions above the threshold can be obtained
from the Euler Characteristic, EC. In two dimensions, the EC represents the number
of connected excursion sets in the domain minus the total number of holes within
those sets. Therefore, EC goes to 0.0 at u = 0 and EC becomes negative when
u < 0.0 as the truncated field represents a single domain-spanning set containing a
large number of holes. In 2D, and at relatively high truncation thresholds, EC is
equivalent to the number of regions above the threshold, E[m].

E½m�=EC = ð2πÞ− ððD− 1ÞÞ ̸2W −DSuðD− 1Þeu
2 ̸2

 
where D is the dimension of the domain and W is an alternative measure of the
spatial correlation of the mG field defined as a fraction of the FWHM:

W=FWHM ̸
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4lnð2Þ

p
For a given threshold, u. the average area of the individual regions is found from

the expectation relationship:

E[n] = E[N] ̸E[m] =E[N] ̸½EC]

Figure 15.1 compares a direct calculation of EC on a multiGaussian field using
the Matlab Image Processing toolbox (Matlab 2009) with estimates made using the
Euler characteristic equation above across a range of u values increasing from left to
right. Deviations between the calculated and estimated number of excursions
indicate deviations from the definition of a multiGaussian field. The corresponding
binary fields (500 × 500 cells) are also shown for several representative threshold
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values. Note, that typically the extreme ends of the graph corresponding to u values
(truncation thresholds) with absolute values of 2.5 or greater are of interest.

15.2.3 Localized Anomaly Detection

Further analysis of the excursion sets is focused on the size and location of the
detected anomalies. The excursion set maps themselves can be examined to
determine the location of where the excursions are occurring. An extremely
localized, yet very strong anomaly will be of interest. An anomaly with a much
lower amplitude but greater spatial extent may also be of interest. The definition of
spatial extent (size) of any anomaly is defined relative to the spatial correlation
length of the field in which it is detected. The size of the anomaly is expressed
through truncation of the field at a threshold value and defining the size of the
excursion regions above that threshold.

In general, the significance of any anomaly in a spatial field is a function of its
amplitude (intensity or strength) and its spatial extent (size). The observed SPM is
compared against a specified multivariate spatial random field with a defined cor-
relation length that serves as the model of the null hypothesis for the differences
between two ensembles of spatial fields. Truncation of the observed SPM at a given
threshold level creates regions of excursions above that threshold and the signifi-
cance of the number and size of these excursions relative to the model of the null
hypothesis is calculated. As in classical statistical hypothesis testing, the p-value
defines the chance that the observed anomaly would occur under the null

Fig. 15.1 Observed (calculated) and estimated Euler characteristic for a mG field as a function of
the truncation threshold, u. The excursion sets for u > 0 are black regions in the binary fields at the
top of the image (after McKenna et al. 2011)

284 S. A. McKenna



hypothesis. Here, the focus is on identifying the largest region of excursion for a
specified threshold and calculating the chances of that anomaly occurring under the
null hypothesis.

The pre-processing steps and the approach used for application of statistical
parametric mapping to detection of significant excursion sets is outlined here and
these steps are then applied to an example problem. The focus is on the approach
used for calculation of the probability that one or more regions of activation of a
certain area, or larger, could have occurred by chance under the constructed mG
model. The full development of this approach for medical imaging is provided by
Friston (1994) and Worsley et al. (1996). Additionally, Adler (2000) and Taylor
and Adler (2003) provide further development of level crossing in random fields
and the relationship to the Euler characteristic.

Steps:

(1) Create an SPM through pixel by pixel application of 1-D (pixelwise) univariate
statistical tests. The test statistic values resulting from this test at every point
may be distributed as χ2, t, F, or other and can be transformed into a Gaussian
Z-score to create a Gaussian SPM.

(2) Smooth the resulting SPM using a Gaussian kernel. The resulting SPM created
in step 1 may be coarse and noisy. A small amount of smoothing using a
Gaussian filter is enough to create a smoothed SPM.

(3) Reinflate the variance. The smoothing process in Step 2 decreases the variance
of the SPM and a reinflation process is used here to transform the SPM to a unit
variance (1.0) for easier interpretation of results. Here, the empirical probability
distribution function of the SPM after Step 2 is fit with a Gaussian Mixture
Model (GMM) having three components. A quantile-preserving transform is
used to transform the empirical cumulative distribution as modeled with the
GMM to a cumulative Gaussian distribution. Use of the GMM better preserves
the original shape of the distribution relative to simpler transforms such as the
normal-score. No translation, or recentering, of the resulting Gaussian distri-
bution is done.

(4) Calculate the characteristics of the SPM, and choose an exceedance threshold to
identify regions of exceedance.

a. Calculate the FWHM of the smoothed and transformed SPM created in
Steps 1–3. The FWHM is derived from the variances and covariances of the
spatial derivatives of the SPM. The resulting FWHM values are typically 5–
15 times the size of the smoothing kernel used in Step 2.

b. Identify pixels that are above/below the ± threshold value.
c. Employ a flood-fill algorithm to determine the sizes of the separate regions

of connected pixels, or regions of exceedance and label each region for both
positive and negative excursions.

(5) Apply a hypothesis test to determine the probability of a particular result having
occurred under the null hypothesis of the mG model. Here, a test of the chance
of obtaining the size of the of largest region of exceedance (excursion) under
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the null hypothesis of a Gaussian SPM with calculated FWHM is calculated.
The significance of the maximum excursion size is calculated using the
methods of Friston et al (1994):

a. The three main features of an SPM are: (1) the number of pixels, N,
exceeding a threshold, u. Or the number of pixels in the excursion set;
(2) the number, m, of regions above the threshold—the number of con-
nected subsets of the excursion set; (3) the number, n, of pixels in each of
the m subsets. The expectations of these three features are related as: E{N} =
E{n} • E{m}.

b. Eq. 14 of Friston et al. (1994) gives the probability of at least one excursion
region having a size ≥ k pixels:

P nmax ≥ kð Þ= ∑
∞

i=1
Pðm= iÞ ⋅ 1−Pðn< kÞi� �

=1− e−E½m� ⋅P n≥ kð Þ

=1− expð−E½m� ⋅ e− βk2 ̸D

where β = [Γ(D/2 +1) • E[m]/E[N]]2/D and D is the dimension of the
domain.

Calculations of P(nmax ≥ k) within the (k, u) parameter space for spatial fields
with two different correlation lengths (FWHM) are shown in Fig. 15.2. The role of
the correlation length of the null hypothesis model is clear from Fig. 15.2 where the
probability of an excursion region of 60 pixels or more is approximately 0.001 for a
field with a FWHM of 9.0, but is essentially zero (∼ 10 × 10−12) for a field with a
FWHM of 3.0.

P(nmax >= k), FWHM =  3.00, Size = 250000

Size of Max Excursion, k
20 40 60 80 100 120 20 40 60 80 100 120

T
hr

es
ho

ld
, u

2.5

3

3.5

4

4.5

5 -12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

P(nmax >= k), FWHM =  9.00, Size = 250000

Size of Max Excursion, k

T
hr

es
ho

ld
, u

2.5

3

3.5

4

4.5

5 -12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

Fig. 15.2 P(nmax ≥ k) as a function of size of the excursion region, k, and the truncation
threshold, u, for fields of size 500 × 500 with an isotropic FWHM of 3.0 pixels (left) and 9.0
pixels (right). The color scale is log10(P(nmax ≥ k))
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15.3 Example Problems

Two example problems are used here to demonstrate the calculations and appli-
cation of SPM to detecting anomalies in spatial random fields. Both example
problems are two-dimensional, but the same approaches are applicable to anomaly
detection in 1-D and 3-D domains.

15.3.1 Anomaly Detection in Images

A simple simulation study designed to mimic the detection of anomalous regions in
either remote sensing or geophysical imagery is used here to test a few of the SPM
calculations. The focus is on identifying the largest anomaly above a specified
threshold and the significance of that anomaly.

A multiGaussian field is created through geostatistical simulation. The field is
comprised of square, 5 × 5 m pixels, and has an isotropic Gaussian variogram with
a range of 150 pixels. The field is created in standard normal space, N(0, 1) and the
simulated values serve as the observed image. Measurement noise is added to the
image by considering the simulated realization value, z(x) to be the mean value of a
local Gaussian distribution at every pixel. The standard deviation of the Gaussian at
every pixel, σz(x), is set to 2.0 and a Gaussian random deviate is drawn and added
to z(x) to create the final image. This measurement noise is added independently at
every pixel (i.i.d.) and then smoothed prior to adding to the observed image. The
amount of spatial smoothing of the noise term is varied and the impact on anomaly
detection is examined.

Anomalies are added to the observed image within a circular region having a
radius of 90 pixels and centered at the center of the image. Background values
within the anomaly region are multiplied by 1.5 creating stronger negative and
positive values within the region depending on the sign of the original observed
values. The area of the anomaly region is 5027 pixels.

Figure 15.3 shows background images (left column) at two levels of noise
smoothing and the background images with the anomalies added (right column). As
would occur in any image capture process, the noise values added to each image are
drawn randomly and independently from any other image prior to smoothing. This
creates subtle differences between the images in each row of Fig. 15.3 even without
the addition of anomalies. Detection of the presence of the anomalies through visual
comparison of the left and right images in each row of Fig. 15.3 is not obvious,
even when the location of the anomaly is known.

The SPM’s are calculated through a pixelwise t-test for comparing two means
(Appendix) between the image with and without the anomalies. These t-statistic
maps are transformed to Gaussian Z maps that are the SPM (Fig. 15.4). The large
anomalies in the center of the image are readily seen along with the dramatic
changes in the results due to the increased spatial correlation of the noise
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Fig. 15.3 Background fields without (left column) and with (right column) added anomalies with
a smoothing kernel size σ = 1.5 pixels (top row) and σ = 7.5 pixels (bottom row). Color scale units
are arbitrary in this example
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component with increased smoothing. Additional SPM’s are created at intermediate
levels of smoothing but are not shown here. Results from all levels of noise
smoothing are shown in Table 15.1.

A threshold of ±2.5 standard deviations is applied to the SPM’s and the
excursion regions for the two extreme levels of noise smoothing are shown in
Fig. 15.5. There are over 200 positive and 200 negative excursions for the smallest
amount of noise smoothing and only 1 positive and 1 negative excursion at the
largest amount of smoothing. The size of the excursions that are due to the added
anomalies clearly stands out in the left image of Fig. 15.5. Table 15.1 also shows
how the maximum and minimum images in the SPM decrease with increased levels
of noise smoothing.

With increased smoothing of the noise, the FWHM of the image increases from
5.0 to ∼ 72 pixels (Table 15.1). While the size of the largest positive and negative
excursions remains approximately constant near 2000 and 3600 pixels, respec-
tively, the p-value for excursions of that size occurring in the image changes
dramatically. At the lowest level of smoothing, the chances of getting excursions of
size 2061 or 3640 pixels under the Gaussian random field model with a FWHM of
5.0 are essentially zero (< 1.0 × 10−16). However, getting excursion regions of a
similar size occurring under greater smoothing of the noise and a FWHM of 71.6
pixels is relatively common at 40 and 20%, respectively. These results demonstrate
the strong dependence of P(nmax >= k) on the spatial correlation of the field.

15.3.2 Ground Water Pumping

A general problem in a number of geoscience disciplines is the case where an
ensemble of inputs is used in a calculation to provide a probabilistic result to a
particular question. The calculation can be relatively simple or complex, but acts as
a transfer function to transfer uncertainty in spatially distributed physical properties
to uncertainty in an outcome of interest. Examples include groundwater models

Table 15.1 Results of SPM analysis for four levels of noise smoothing

Bandwidth of smoothing filter (pixels) 1.5 3.5 5.5 7.5

FWHM 5.0 23.5 45.0 71.6
Size Max Positive (pixels) 2061 2886 1878 2075
P(nmax > k) Positive <1.0 × 10−16 1.3 × 10−06 0.237 0.405
Size Max Negative (pixels) 3640 3664 3772 3417
P(nmax > k) Negative <1.0 × 10−16 1.5 × 10−08 0.015 0.200
# regions >+ threshold 238 5 5 1
# regions <− threshold 212 5 2 1
Max SPM value (standard deviations) 8.28 6.45 5.25 4.55
Min SPM value (standard deviations) −7.83 −6.23 −5.43 −4.58
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transferring uncertainty in hydraulic conductivity and recharge into radionuclide
transport times; reservoir simulators transferring uncertainty in permeability and
porosity into estimated recoverable oil; and simple spatial integration to transfer
uncertainty in soil nutrient levels into estimating total crop yield for an agricultural
field.

Here, a ground water example problem is used with the SPM approach to detect
significant differences between two groups of an ensemble of spatial random fields
of transmissivity. The ensemble is split into groups that create high results and all
others. The SPM approach is used here to identify statistically significant features
within the ensemble of input fields responsible for the specific results. This
approach can be considered identification of the significant features in the random
fields responsible for a specific result of a process that integrates across the entire
field.
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Fig. 15.5 Regions of excursion below a threshold of −2.5 (left column) and above 2.5 (right
column) for images with noise smoothed using a filter of σ = 1.5 (top row) and σ = 7.5 (bottom
row)
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15.3.2.1 Problem Setup

The ground water problem is motivated by the regulatory issue of impacts on a
nearby wetland due to pumping from a planned water supply well. Well test criteria
dictate that the pressure drop (drawdown) at a location 353 m to the northwest of
the pumping well must be <2.00 m after pumping at a rate of 250 m3/h for 48 h. To
simulate the aquifer test, a 12 × 12 km square domain, with zero-flux boundaries
on the north and south and constant-head boundaries on the east and west is
defined. Prior to pumping, the fixed head boundaries create steady state flow across
the domain. A constant transmissivity, T, of 10.0 m2/h is assumed across the
majority of the domain. This constant value is replaced by a heterogeneous T field
within the center of the domain. The heterogeneous field is 3500 × 3500 m with
5 × 5 m cells. A large pumping well is set in the center of the domain.

The aquifer is confined in this area and the mean and spatial co-variance of the
transmissivity can be estimated from other studies in aquifers of similar age and
depositional history. The log10 values of transmissivity within the heterogeneous
domain are simulated as a multiGaussian field with an isotropic Gaussian variogram
with range 250 m and nugget of 5% of the sill. Transmissivity at the well location is
considered known and provides the only conditioning point within the domain.
A total of 200 realizations are created, and the 2D, confined, transient ground water
flow equation is solved using finite differences on each realization:

∂hðx, yÞ
∂t

=
1

Sðx, yÞ ⋅
∂

∂x
Tðx, yÞ ∂h

∂x

� �
+

∂

∂y
Tðx, yÞ ∂h

∂y

� �
±Qðx, yÞ

where (x, y) indicates the spatial location, h (L) is the head (pressure), t is time and
Q (L3/T) are sources or sinks—here the pumping rate at the well. Transmissivity,
T (L2/T), is spatially heterogeneous within the central domain and for the calcu-
lations here, storativity, S (−) is set to a single value of 1.0 × 10−05 across all
locations in the aquifer. The initial conditions for the transient simulation are taken
from a steady state head solution using the same input T field. Three example
transmissivity realizations and maps of the resulting drawdowns after 48 h of
pumping are shown in Fig. 15.6. Figure 15.6 demonstrates that the heterogeneous
T field strongly impacts the resulting pressure response in a non-linear manner.

15.3.2.2 Results

For each ground water simulation, the drawdown at the test location (353 m NW of
the pumping well) at 48 h is recorded and compared to the regulatory limit, R, of
2.00 m. The T realization is placed into one of two classes: those that meet the
pressure drop limit, drawdown <= R, and those that exceed the limit. After 200
ground water simulations, the pixelwise mean and standard deviation within each
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class are calculated (Fig. 15.7). These four maps provide the input to a two-sample
t-test to determine the difference between two means. The resulting map of
t-statistics is the SPM. Here the t-statistics are smoothed with Gaussian kernel and
transformed to Z-statistics and the Z-score SPM is shown in Fig. 15.8.
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Fig. 15.6 Three example transmissivity fields (left column) and the corresponding ground water
drawdown levels after 48 h of pumping (right column). The color scales define log10 T in m2/h
and log10 drawdown in meters
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Fig. 15.8 SPM for the difference between realizations. Full field is shown on the left and a
zoomed in view of the central field on the right. Color scale is in standard deviations away from the
mean of zero
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The SPM is calculated at every pixel as the mean T value of the fields that
created drawdowns exceeding the regulatory threshold, R, minus those that resulted
in drawdowns less than or equal to the threshold: T>R − T≤R. This convention
creates a positive value in the SPM in an area where higher T values are associated
with realizations that created exceedance of R and negative values where higher
T values created drawdowns ≤R. Figure 15.8 shows regions of positive and
negative values, but the dominant anomaly is a high SPM value between the
pumping well and the observation point to the northwest. For this example, 155
realizations (77.5%) created drawdowns ≤ R and 45 (22.5%) created drawdowns
that exceeded R.

The SPM is truncated at a threshold of ±2.5σ and the excursion regions are
defined (Fig. 15.9). The size of the largest excursions and the probability of them
occurring under the mG model are shown in Table 15.2. The SPM has a FWHM of
111.5 m (22.3 pixels). The large positive excursion between the pumping well and
the monitoring point is significant with a p-value near 1.0 × 10−04 while the largest
negative excursion is not.

Here the SPM approach also serves as a means of determining the regions of
increased sensitivity of drawdown to the T values. As expected, when viewed from
the perspective of influencing extreme drawdown values, the T values in the area
between the pumping well and the monitoring point are significantly more
important than other values in the T field. The remaining regions of excursion do
not have any readily discernible connection to the ground water flow dynamics and
are consistent with expected excursions in a mG field with this amount of
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Fig. 15.9 Regions of excursion below a threshold of −2.5 (left) and above 2.5 (right)

Table 15.2 Largest positive
and negative excursions in
ground water example SPM

FWHM (m) 111.5
Excursions Positive Negative

Largest excursion (pixels) 2369 713

P(nmax > k) ∼1.0E−04 0.198
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correlation. In practice, the large positive excursion region in the SPM can be used
to focus resources for additional data collection, e.g., geophysical survey and/or
additional wells.

15.4 Summary

There is a large amount of work reported in the functional MRI literature on the
detection of anomalies in spatially correlated fields using SPM. Apart from some
work in astrophysics, this SPM work has generally been restricted to medical
imaging. The body of knowledge around SPM and the statistical approaches
developed for fMRI can be readily applied to problems in the earth and environ-
mental sciences. This chapter reviews some of the major developments from the
fMRI literature and demonstrates their application with an image anomaly detection
problem and a ground water modelling problem. A strong advantage of SPM is that
it directly addresses the challenge of enabling hypothesis testing, including calcu-
lation of the significance of the results, in spatially correlated fields.

The example problems chosen here emphasized defining the significance of the
largest, positive and negative, anomaly in each SPM. The SPM framework also
supports hypothesis testing on non-localized, “omnibus”, features such as the
maximum/minimum value of the SPM, the number pixels exceeding the threshold
and the number of excursion regions within the SPM. Additionally, hypothesis
testing of localized, “focal”, features is also supported including hypothesis testing
of the occurrence of any size excursion.

The example problems used here relied on the underlying images being real-
izations of mG fields, but that is not a requirement. It is the map of the test statistic
values defining the differences between fields that is modelled as a mG field, and
that flexibility makes SPM applicable to a very general set of problems as the mG
model is a standard for differences between images. For example the same approach
could be used to compare geologic models with discrete features. Future work will
consider the application of other statistical tests within the SPM framework.

Appendix: Conditional Differences

The t-test is a traditional measure of the difference between two means (e.g.,
Walpole and Myers 1989). Quite simply, the t-statistic is the difference between two
values, at least one of which is a population or sample mean, normalized by the
standard error of the mean:
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t=
X − μ

se
=

X − μ

s
ffiffiffiffiffiffiffiffi
1 ̸n

p

where X is a sample mean, μ is a population mean, se is the standard error of the
mean which is the standard deviation of the observations, s, that make up the data
vector X multiplied by the square root of 1 over the number of samples within
X. The cumulative probabilities for any value of t are available from the Student’s
t distribution and require knowledge of the degrees of freedom, ν, within the test.
For the analyses done here, ν is generally n − 1.

In the case of comparing two sample means to each other at each location, i.e., A
(x, y) and B(x, y), instead of comparing a sample mean to a theoretical population
mean, the value of se must be calculated from both sample sets as:

Se = Sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1

+
1
n2

r

where n1 and n2 are the number of images that were used in calculating the average
maps A and B and sp is the average pooled standard deviation:

Spðx, yÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 − 1ð Þs21ðx, yÞ+ n2 − 1ð Þs22ðx, yÞ

n1 + n2 − 2

s

Here we are assuming that n1 and n2 are constant for all locations and therefore
not a function of (x, y). The t-statistic image (map), based on the pooled standard
deviation, is:

tðx, yÞ= Δðx, yÞ
Spðx, yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1
+ 1

n2

q
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Chapter 16
Water Chemistry: Are New Challenges
Possible from CoDA (Compositional
Data Analysis) Point of View?

Antonella Buccianti

Abstract John Aitchison died in December 2016 leaving behind an important
inheritance: to continue to explore the fascinating world of compositional data.
However, notwithstanding the progress that we have made in this field of inves-
tigation and the diffusion of the CoDA theory in different researches, a lot of work
has still to be done, particularly in geochemistry. In fact most of the papers pub-
lished in international journals that manage compositional data ignore their nature
and their consequent peculiar statistical properties. On the other hand, when CoDA
principles are applied, several efforts are often made to continue to consider the
log-ratio transformed variables, for example the centered log-ratio ones, as the
original ones, demonstrating a sort of resistance to thinking in relative terms. This
appears to be a very strange behavior since geochemists are used to ratios and their
analysis is the base of the experimental calibration when standards are evolved to
set the instruments. In this chapter some challenges are presented by exploring
water chemistry data with the aim to invite people to capture the essence of thinking
in a relative and multivariate way since this is the path to obtain a description of
natural processes as complete as possible.

16.1 Water Chemistry Data as Compositional Data

When geochemical data are analysed by using statistical methods, several units can
be used to express concentrations and a first discussion of their compositional
nature is reported in Buccianti and Pawlowsky-Glahn (2005). The usual units of
measurement include milligrams per liter (mg/L), parts per million by weight
(ppm), parts per billion by weight (ppb), millimole per liter (mmol/L), and
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milliequivalent per liter (meq/L). The ppm and mg/L units are numerically equal if
the density of the water sample is 1 g/cm3, as in pure water. Samples can be
converted from mg/L to ppm by multiplying each component by the density of
water. The term mmol/L indicates the number of ions or molecules in the water
when multiplied by Avogadro’s number (the number of molecules in a mole of
material, 6.023 × 1023). The measure mg/L is converted to mmol/L by dividing by
the atomic or molecular weight. To express concentration by meq/L (electrical
charges are considered), mmol/L is multiplied by the charge of the ions. In each
case the base of the calculus is given by the content of some chemical species
referred to a given weight or volume then multiplied by a constant (atomic or
molecular weight, electrical charges).

These types of data describe parts of some whole and even if proportions are
expressed as real numbers, they cannot be interpreted, or even analysed, as real
data. It is well known that this practice can lead to paradoxes and/or misinterpre-
tations (e.g. intervals covering negative proportions, spurious correlations) already
discussed a century ago (Pearson 1897), but mostly forgotten and neglected over
the years (Chayes 1960).

No other ways are possible to compare different samples from dissimilar sites
and times, as is usually required. Thus the compositional nature of the experimental
data is an intrinsic property related to their origin (e.g. instrument calibration) and to
the necessity of making comparisons to investigate the genesis of environmental
variability. As directional (circular) observations (Fisher 1995) compositional data
move in a constrained sample space called simplex (Aitchison 1986):

SD = x= x1, x2, . . . , xD½ �jxif g, > 0, i=1, 2, . . . ,D; ∑
D

i=1
xi = κ ð16:1Þ

where the D components of the vector SD are called parts (variables) of the com-
position. The value of κ depends of the units of the measurement or rescaling
procedure, and usual values are 1 (proportions), 100 (%), 106 (ppm) or similar. Note
that it is not necessary to have ∑D

i=1 xi = κ (closed data) to obtain compositional
observations. In fact, a (row) vector x= x1, x2, . . . , xD½ � is a D-part composition
when all its components are strictly positive real numbers and carry only relative
information. This means that the message about what is occurring is mainly con-
tained in the ratios between the parts since the numerical value of each variable by
itself is not relevant. A recent thorough analysis of the “compositional problem” can
be found in Pawlowsky-Glahn and Buccianti (2011) and Pawlowsky-Glahn et al.
(2015). On the other hand interesting applications on water chemistry can be found
in literature (e.g. Engle and Rowan 2013, 2014; Engle and Blondes 2014; Buccianti
and Zuo 2016; Owen et al. 2016; Buccianti et al. 2018; Shelton et al. 2018) where
the different potentialities of the family of the log-ratio transformations are differ-
ently exploited posing at the central point of the analysis the relativity of the values
and the multivariate vision. The cited papers are not exhaustive but have been
chosen since they successfully focus on the use of the isometric log-ratio trans-
formation as a way to describe the dynamics of geochemical processes.
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16.2 Isometric-Log Ratio Transformation: Is This the Key
to Decipher the Dynamics of Geochemical Systems?

16.2.1 Coordinates as Balances

Water present below the land surface and running above it tells the history of the
environment with which it has been in contact. Rainfall and snowmelt interact with
the rock of the Earth surface and percolate through the soil zone where chemical
reactions with gases, minerals and organic compounds take place. Chemical reac-
tions occur because the composition of the water is not in equilibrium with the solid
phases or the gaseous component (Kleidon 2010). Thus disequilibrium drives the
reactions and solutes in the water are derived from the dissolution or leaching of the
solid phases and from the dissolution of gases from the air or from the oxidation of
organic matter. Most of the natural systems are open and according with Nicolis
and Prigogine (1989) they are characterized by dissipative structures and presence
of irreversible processes. Dissipative structures contain subsystems, which perma-
nently fluctuate until the fluctuation becomes so strong that it breaks the original
system to generate a new condition, more complex and characterized by a higher
level of order. The dynamics of systems being far from equilibrium requires a
continuous self-organization and to maintain this condition the energy flux from the
environment is higher than required for the initial state and irreversible processes
can be a source of order rather than chaos. Most of the geological systems are open
and dynamic, characterized by a great number of components and develop in a
nonlinear way far from equilibrium (Shvartsev 2009). Particularly interesting from
this point of view is the water-rock system where also synergetic properties can be
found, with respect to the thermodynamical equilibrium where elements (mole-
cules) behave independently of one another (Shvartsev 2013).

The use of the isometric log-ratio coordinates (Egozcue et al. 2003) not only
allows us to manage compositional data with classical statistical tools, but also
could offer a powerful tool to probe the level of self-organization of a geochemical
system as a whole. When coordinates are obtained by using the sequential binary
partition method (Egozcue and Pawlowsky-Glahn 2005), guided by a geochemical
criterion, the analysis of their frequency distribution may represent an interesting
way to understand the laws governing randomness and variability. By taking into
account this consideration, an improvement of the balance dendrogram
(Pawlowsky-Glahn and Egozcue 2001) is here presented with the aim to investigate
the behavior of aqueous systems.

The sample space of D-part compositional data, the simplex, being a subset of
the real space RD, has a real Euclidean vector space structure (Billheimer et al.
2001; Pawlowsky-Glahn and Egozcue 2001; Buccianti and Magli 2011). This
situation allows the representation of data in coordinates with respect to an
orthonormal basis, for example following the Gram-Schmidt orthonormalization
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process or a Singular Value Decomposition (Egozcue et al. 2003). Since these
methods often reveal coordinates not easy to interpret, balances, a specific type of
orthonormal coordinates associated with groups of parts, have been proposed
(Egozcue and Pawlowsky-Glahn 2005). This method is based on a sequential
binary partition of a D-part composition into non-overlapping groups and when the
procedure is geochemically guided it leads to coordinates easy to interpret.
Moreover, it allows understanding of how the total variance is decomposed into
marginal variances, thus pointing out the relationship between intra-group and
inter-group compositional parts variability. For the i-th order of partition, the bal-
ance is

bi =
ffiffiffiffiffiffiffiffiffiffiffi

ri ⋅ si
ri + si

r

log
∏xj∈Gi1

xj
� �1 ̸ri

∏xl∈Gi2
xl

� �1 ̸si
ð16:2Þ

where ri and si are the number of parts in the groups of numerator (Gi1) and
denominator (Gi2), respectively. As we can see, the balance is defined as the natural
logarithm of the ratio of geometric means of the parts in each group, normalized by
the coefficient needed to obtain unit length of the vectors of the basis.

16.2.2 Behavior of Self-organizing Systems and CoDA
Phylosophy

A general characteristic of self-organizing systems is robustness and resilience
(Dakos et al. 2014; Dai et al. 2015). This means that they are relatively insensitive
to perturbations or errors, and can show a strong capacity to restore themselves after
changes (Scheffer et al. 2009, 2012). One reason for this fault-tolerance is the
redundant, distributed organization so that the non-damaged regions can usually
make up for the damaged ones. Within certain limits, another reason for the
intrinsic robustness is that self-organization is facilitated by randomness, fluctua-
tions or “noise” while the stabilizing effect of feedback loops guarantee resilience.
The presence of feedback mechanisms generates systems that can be responsible for
their own maintenance, and thus largely independent from the environment.
Although in general there will still be exchange of matter and energy between
systems and surroundings, the organization is determined purely internally. Thus
the system is thermodynamically open, but organizationally closed. Organizational
closure turns a collection of interacting elements into an individual, coherent whole.
This whole has properties that arise out of its organization that can be described by
the probability laws that govern the relative behaviour of its elements (van Rooij
2013). From this point of view CoDA theory appears to capture the philosophy of
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this condition and the analysis of the shape of the frequency distribution of iso-
metric coordinates should be the adequate tool (Allegre and Lewin 1995; Seely
et al. 2012; Holden and Rajaraman 2012; Buccianti and Zuo 2016).

As reported in Scheffer et al. (2012) the probability density distribution of some
variables describing the state of a system can be used to estimate how the potential
landscape is reflecting its stability properties. The shape of the probability density
function indicates where the data are more aggregated and which laws are gov-
erning the variability, giving us fundamental information about the genesis of
randomness (Agterberg 2014). In our case it will be the shape of the frequency
distribution of isometric log-ratio coordinates representing some geochemical
process that will inform us about dynamic properties of the system. In Fig. 16.1
some examples of a non-equilibrium dynamics are reported (Scheffer et al. 2009).
Conditions represented in (a) are far from a bifurcation point. The pothole in the
potential line corresponds to an area where data tend to aggregate in the density
probability distribution function. Here resilience is large since the basin of attraction
is wide and the rate of recovery from perturbations is relatively high. If the system
is stochastically forced, the resulting dynamics will be characterised by low cor-
relation between states at subsequent time intervals. In (b) the system is closer to the
transition point and resilience decreases due to the shrinking of the attraction basin
and the low rate of recovery from small perturbations. Here the slight depression
could be related to presence of bimodality indicating presence of alternative states.
In this case the system in a stochastic environment will have a long memory for
perturbations and its dynamics will be governed by high variance and stronger
correlations between subsequent states.

Fig. 16.1 Example of non-equilibrium dynamics (from Scheffer et al. 2009, modified). The
pothole in the potential line of diagram a corresponds to an area where data tend to aggregate in the
density probability distribution function. The slight depression in b could be related to presence of
bimodality indicating presence of alternative states (Scheffer et al. 2012)
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16.3 Improving CoDA-Dendrogram: Checking
for Variability, Resilience and Stability

The chemical composition of groundwaters from the Arezzo basin aquifer
(Tuscany, central Italy) was analysed, as an application example, to obtain infor-
mation about the dynamics of the aqueous geochemical system. The Arezzo Basin
(Fig. 16.2), formed since Upper Pliocene, is a structural depression bordered to the
North and to the East by the Pratomagno and Chianti belts, respectively, and to the
South and to the East by two tectonic lineaments (Val d’Arbia-Val Marecchia
transversal and Chitignano normal faults). Along these tectonic discontinuities
CO2-rich manifestations either seep out or are exploited by private companies down
to the depth of 1000 m. Three main aquifers are recognized: (i) a relatively deep
aquifer hosted in Tertiary sandstone formations; (ii) an intermediate aquifer hosted
in Quaternary fluvio-lacustrine sediments and (iii) a shallow aquifer in recent
alluvial sediments. The available geochemical data-base consists of about 500
samples that were collected in different dry and rainy seasons in recent years from
80 wells diffused in all the basin area. Depth of the sampling is, unfortunately, not
always known and few differences can be related to seasonal changes. Physical
parameters (temperature and electrical conductivity), major, minor and trace dis-
solved species (pH, Ca, Mg, Na, K, NH4, HCO3, SO4, NO3, NO

2, Cl, Br, F and
heavy metals), oxygen and hydrogen isotopes in the water molecules and dissolved
gases (including 13C-CO2) were analyzed. On the basis of Total Dissolved Solids
(TDS) the waters from Arezzo aquifer can be considered mainly oligomineral and
medium-mineral, whereas mineral waters are almost exclusively associated with

Fig. 16.2 The hydrographic system of the Arezzo basin (Tuscany, central Italy) (http://sit.comune.
arezzo.it/normativa/index.php?normativa=_ps&mappa=ps_b11a)
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CO2-rich wells. From a classification point of view, Ca(Mg)-HCO3 is by far the
most representative geochemical facies, followed by Na(K)-HCO3, Ca(Mg)-SO4

and Na(K)-Cl types. It is noteworthy to point out here that the Na(K)-HCO3 waters,
whose origin is related to the presence of CO2-rich waters that favor cation
exchange processes with clay minerals contained in the sedimentary formations, are
aligned along the Val d’Arbia-Val Marecchia transversal tectonic system.

In Table 16.1 the sequential binary partition process to construct the isometric
log-ratio coordinates is reported. The first coordinate could represent the balance
between the most important chemical reactions involving carbonatic and silicatic
rocks (Ca2+, Mg2+, Na+, K+, HCO3

− and H+) versus elements and chemical
species whose sources could be different, including pollution (Cl−, SO4

−, NO3
−).

The second coordinate is an analysis inside the carbonatic and silicatic cycle,
balancing cations and anions. The third compares the behaviour of the involved
bivalent versus monovalent elements while the fourth and the fifth compare their
relative behaviour. The sixth coordinate analyses the anions giving us information
about the pH water conditions. Finally, the remaining coordinates investigate the
behaviour of variables whose source may be related to pollution. Considering Cl−

in absence of atmospheric cyclic salts and evaporates about 30% of its amount is
related to pollution, 54% in case of SO4

2−, while for nitrate the most important
anthropogenic sources are septic tanks, application of nitrogen-rich fertilizers to turf
grass, and intensive agricultural processes (Berner and Berner 1996; Liu et al. 2011;
Menció et al. 2016).

As we can see variance is higher for the first balance comparing natural and
anthropic processes, and the last one, comparing SO4

2− and NO3
− whose ratio

variability is a further witness of the presence of numerous sources/fluctuations.
A first result here reveals that when elements are more related to natural weathering
processes their balance variability appears to be reduced, probably indicating that
the same processes have been working through time in a similar way. By taking
into account the previous discussion about the dynamics of geochemical systems
more information should be obtained by the analysis of the frequency distribution
of the balances.

To achieve this aim in Fig. 16.3 an improved version of the balance dendrogram
is reported where the original boxplots (Pawlowsky-Glahn and Egozcue 2011) are
associated with the frequency distribution of the coordinates. Histograms have the
same horizontal and vertical scale so they are comparable. Red line is related to the
Gaussian distribution, black treated line to the Kernel density estimation.

Application of several normality tests indicates that under no circumstances the
Normal distribution can be considered as model for the log-ratio coordinates; the
consequence is that the log-normal model cannot be used to describe ratios between
parts or group of parts. In most of the cases it appears to be due to some bimodality
or to the presence of a heavy tail in the right-hand part of the distribution. The
presence of power laws is associated with complex systems composed of processes
that interact to self-organize their behavior across multiple temporal and/or spatial
scales. Both fractals and multifractals are commonly associated with local
self-similarity or scale-independence, generally leading to power-law relations
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(Agterberg 2014). On the other hand the lognormal shape represents a special
condition in which the interdependencies among processes are minimized or absent
and repeated fragmentation (or dilution) dominates. As we can see in Fig. 16.3 the
presence of heavy tails characterizes coordinates that mainly balance weathering of
silicate and carbonates (K+, Na+, Mg2+, Ca2+, H+, HCO3

−) versus other envi-
ronmental processes (NO3

−, SO4
−, Cl−). Moreover, considering the internal par-

tition of the previous balances, K+/Na+, Mg2+/Ca2+ and, in particular, NO3
−/SO4

−

ratios repeat this type of behavior.
The use of the complementary distribution function reveals the presence of

power laws more clearly. In this plot, reported in Fig. 16.4, if X has a power law
distribution the behavior of the Prob[X ≥ x] will be a straight line (Mitzenmacher
2004). As we can see, linear models can well describe several portions of curves for
all the coordinates. This condition asks for multifractality perhaps associated to
the space-time heterogeneity of the aquifer structure. Here a sudden change in the
number of data with given concentration values is expected, particularly for pol-
lution processes (Agterberg 2014). The fractal dimension of the phenomena, related
to the slope of the straight lines, indicates how much more often there are low
differences between the data rather then high differences.

On the whole the aquifer system appears to be governed by an interaction-
dominant dynamics but it does not present a clear multimodality (or bimodality)
that could be associated to different states. By considering Fig. 16.1 and the
information deduced by the shape of the frequency distribution (Figs. 16.3 and
16.4) the aquifer could be associated with a sufficient resilience and recovery state
(Scheffer et al. 2009, 2012). Of notice here is that the most important contribution
to variability appears to be related to chemicals such as NO3

− and SO4
− suggesting

the weight and the intermittency of the anthropic pressure. The multifractality
revealed in Fig. 16.4 could indicate that in the dynamical system the energy

Fig. 16.3 Balance dendrogram (Thió-Henestrosa et al. 2008) with associated histograms. Red line
corresponds to the Gaussian model, black treated line to the Kernel density estimation. The length
of the vertical bar represents the proportion of the sample total variance
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dissipation cannot be neglected and that extended areas (intervals) of low fluctua-
tions intermittent with small areas of extremely large fluctuations are to be
expected. Moreover, the system as a whole is undergoing a non-linear dissipation
with the energy interchange on different scales.

16.4 Conclusions

Starting from Garrels and Christ (1965) equilibrium in the water-rock system is
usually analysed through the application of thermodynamic methods. In this context
the statistical analysis of water concentrations, opportunely transformed into iso-
metric logratio coordinates, could be an effective approach to understand where the
randomness in nature comes from (Agterberg 2014) and if equilibrium conditions
are really encountered.

The frequency distribution of the ratio of the compositional parts of Arezzo
aquifer chemistry exhibits an overlapping between log-normal and power-law
probability distributions when silicate and carbonate weathering (K+, Na+, Mg2+,
Ca2+, H+, HCO3

−) is balanced versus other environmental processes (NO3
−, SO4

−,
Cl−). Similar results are obtained when the partition to generate new balances is
applied to the previous group of parts (NO3

− versus SO4
−, K+ versus Na+ or Mg2+

versus Ca2+). The result indicates a system subjected to nonlinear compositional
changes due to presence of feedback effects attributable in a porous medium to
change in porosity causing a remarkable change in permeability, in the pore-fluid
flow and in the chemical-species concentration (Zhao 2014). Since thermodynamic
equilibrium represents a homogeneous distribution of the parts, the obtained results
indicate that the system is able to create and maintain a given amount of gradient,

Fig. 16.4 Complementary distribution function to reveals the presence of power laws. If X has a
power law distribution the behavior of the Prob[X ≥ x] will be a straight line (Mitzenmacher
2004)
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generating heterogeneity. However no clear multimodality is present and for the
span of time here analysed different steady states (basins of attraction for concen-
tration values) have not yet clearly emerged. Thus, from a compositional point of
view, the system could be characterised by sufficient resilience and recovery rate
from disturbances since the dissipative behaviour appears to be able to adsorb
fluctuations. New progress would be made in this direction by exploiting the
capacity of CoDA to capture the interdependence of concentration values, thus
describing the water system and the surrounding as a whole, as in reality.
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Chapter 17
Analysis of the United States Portion
of the North American Soil Geochemical
Landscapes Project—A Compositional
Framework Approach

E. C. Grunsky, L. J. Drew and D. B. Smith

Abstract A multi-element soil geochemical survey was conducted over the con-
terminous United States from 2007–2010 in which 4,857 sites were sampled rep-
resenting a density of 1 site per approximately 1,600 km2. Following adjustments
for censoring and dropping highly censored elements, a total of 41 elements were
retained. A logcentred transform was applied to the data followed by the application
of a principal component analysis. Using the 10 most dominant principal compo-
nents for each layer (surface soil, A-horizon, C-horizon) the application of random
forest classification analysis reveals continental-scale spatial features that reflect
bedrock source variability. Classification accuracies range from near zero to greater
than 74% for 17 surface lithologies that have been mapped across the conterminous
United States. The differences of classification accuracy between the Surface Layer,
A- and C-Horizons do not vary significantly. This approach confirms that the soil
geochemistry across the conterminous United States retains the characteristics of
the underlying geology regardless of the position in the soil profile.
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17.1 Introduction

A continental-scale soil geochemical survey was conducted over the conterminous
United States from 2007 to 2010 by the U.S. Geological Survey (Smith et al. 2011,
2012, 2013, 2014). The survey collected samples at 4857 sites (Fig. 17.1), repre-
senting a density of 1 site per approximately 1600 km2. The sampling protocol
included, at each site, a sample from a depth of 0–5 cm (referred to as the surface
soil for the remainder of this paper), a composite of the soil A horizon (the
uppermost mineral soil), and a sample from the soil C horizon (generally the
partially weathered parent material). If the top of the C horizon was at a depth
greater than 1 m, a sample over a 20 cm interval was collected at a depth of
approximately 1 m.

Studies on the geochemistry of two transects (east-west and north-south) across
the United States and Canada, conducted as pilot studies in preparation for the
continental-scale survey (Smith 2009; Smith et al. 2009) showed variability of soil
geochemistry and mineralogy along both directions (Garrett 2009; Eberl and Smith
2009; Woodruff et al. 2009). As well, Drew et al. (2010) studied the two transects
and demonstrated that the geochemical variability of soil is also closely associated
with ecoregions (CEC 1997), which reflect continental scale features such as soil,
landform, major vegetation types and climate. These studies indicate that the soil
geochemistry is useful for mapping both geological and ecological domains.

Soil geochemistry, from a geological context, reflects a range of mineralogy, as a
function of weathering of different parent materials, along with organic content due
to biological activity. Ideally, soil geochemistry will represent underlying parent
material and processes associated with the modification of those parent materials
through comminution, weathering, ground water activity and biogenic processes.
Grunsky et al. (2012, 2014) smf Mueller and Grunsky (2016) demonstrated that the

Fig. 17.1 Soil sample sites over the conterminous United States. Samples were taken at the (0–5)
cm layer, the A- and C-horizons
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geochemistry of lake sediment and glacial till in northern Canada can be used to
predict the underlying lithologies. As part of the North American Soil Geochem-
istry Landscape Project (Smith et al. 2009), Grunsky et al. (2013) used soil geo-
chemistry collected over the Maritime Provinces of Canada and the northeast
United States to demonstrate that A-, B- and C-horizon soils geochemistry is useful
for mapping the underlying lithologies. More recently, Grunsky et al. (2017) have
shown that geochemistry of surficial soils can identify and classify underlying
crustal blocks across the Australian continent, even after extended periods of
weathering, transport and reworking.

The approach is based on the use of training sets of representative lithologies.
Unfortunately, there are no continental-scale lithologic maps or representative
training sets which can be used for predictive bedrock lithologic mapping in Canada
or the United States. Sayre et al. (2009) classified the land surface of the conter-
minous United States according to surficial materials lithology, terrestrial ecosys-
tems and isobioclimate. Isobioclimatic zones were subdivided into thermotypes,
(temperature) and ombrotypes (moisture). It follows that soil geochemistry is a
proxy for processes controlled by climatic factors. A key question that arises from
this is can any of these processes be identified uniquely in the soil geochemistry
and, if so, how can these processes be identified in terms of spatial continuity and
distinctive chemistry? Drew et al. (2010) studied two transects across the US and
demonstrated that the soil geochemistry is closely tied to zones that define the
terrestrial ecosystems intersected by these transects. The objective of the current
study is to address this question through the use of multivariate statistical analysis
and Bayesian-based classification in conjunction with geostatistical methods that
accurately describe processes in terms of distinctive geochemistry and spatial
continuity.

17.2 Methods

17.2.1 Sampling and Analysis

The soil samples were analysed for geochemistry and mineralogy as described by
Smith et al. (2011, 2012, 2013, 2014). The samples were air-dried and sieved
to <2 mm after which the material was crushed in a ceramic mill prior to chemical
analysis. Concentrations of Ag, Al, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga,
In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Sb, Sc, Sn, Sr, Te, Th, Ti, Tl, U,
V, W, Y, Zn in all the soil samples (14,434) were determined using a near-total
digestion using HCl-HNO3-HClO4-HF followed by inductively coupled
plasma-mass spectrometry and inductively coupled plasma-atomic emission spec-
trometry. Mercury values were obtained using cold-vapor atomic absorption spec-
trometry following dissolution in a mixture of HCl and HNO3 and Se was
determined by hydride-generation atomic absorption spectrometry (HGAAS)
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following dissolution in a mixture of HNO3, HF, and HClO4. Arsenic was also
determined by HGAAS following fusion in a mixture of sodium peroxide and
sodium hydroxide at 750 °C. Total carbon was determined by combustion. Smith
et al. (2013) provides details on the analytical methods and quality control protocols.
Silicon was not determined.

All A-horizon and C-horizon samples (9575) were analysed by X-ray diffraction,
and the percentages of major mineral phases were calculated using a Rietveld
refinement method. Splits of the <2 mm fraction were used for analysis. Complete
details of the technique and quality control protocols are provided in Smith et al.
(2013).

17.2.2 Data Screening and the Compositional Nature
of Geochemical Data

Geochemical analyses require screening and adjustment prior to any application of
statistical methods and interpretation. A generalized sequence of data screening and
adjustment strategies is documented in Grunsky (2010). The data were evaluated
and analysed using the R programming and statistical environment (R Core Team
2013).

Major element concentrations, reported as percentages, were converted to ppm,
by multiplying the values by a factor 10,000. Summary statistics for the data are
given in Smith et al. (2013). The data were screened to determine the number of
values that were reported at less than the lower limit of detection. Data that are
reported at less than the lower limit of detection are termed as “censored”. Censored
data, when used in the application of statistical procedures, can influence estimates
of mean and variance and therefore a replacement value that accurately reflects an
estimate of the true mean is preferred. Furthermore, geochemical data are, by defi-
nition, compositions and as such the issue of closure becomes important (Aitchison
1986). Egozcue et al. (2003) describe various transformations that assist in evalu-
ating data that are constrained by the effect of closure. For censored geochemical
data, replacement values can be determined using the several methods based on
maximum likelihood estimates of replacements values (Palarea-Albaladejo et al.
2014). Elements in which >80% of the values were censored were dropped from
further evaluation, which included Ag, Cs and Te.

The data were also screened for sample sites where a large number of elements
were reported at less than the lower limit of detection (<LLD). In the surface soil, 8
sites were found to have more than 25 elements reported at <LLD (3 from Florida).
For the A horizon, 2 sites, all from Florida, were found to have more than 25
elements reported at <LLD. For the C horizon, 3 sample sites, in Florida, were
found to more that have more than 25 elements reported at <LLD. These sites were
dropped from further evaluation.
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Summary statistics for the elements are provided by Smith et al. (2013, 2014).
The remaining 43 elements: Al, As, Ba, Be, Bi, total C, Ca, Cd, Ce, Co, Cr, Cs, Cu,
Fe, Ga, Hg, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Sb, Sc, Se, Sn, Sr,
Th, Ti, Tl, U, V, W, Y, Zn were then evaluated for the estimate of replacement
values for those results that were reported at less than the lower limit of detection.
The method of nearest neighbour replacement estimates (R package: zComposi-
tions, function lrEM) was used on the censored data (Palarea-Albaladejo et al.
2014). The adjusted data were then used for subsequent multivariate statistical
analysis.

17.2.3 Integration of Land Surface Parameters with Soil
Geochemistry

Land surface maps of the conterminous United States (Sayre et al. 2009) were used
to test the effectiveness of the soil geochemistry for revealing information on
surficial materials lithology, terrestrial ecosystems and isobioclimate. Isobioclimatic
zones were subdivided into thermotypes, (temperature) and ombrotypes (moisture).
In this study, only the surface lithologies were studied in further detail. The results
of the evaluation of the soil geochemistry in the context of terrestrial ecosystems,
thermotypes and ombrotypes will be provided at a later time.

The maps were obtained as raster images with a pixel resolution of 1 km and a
geodetic projection of decimal degrees using the North American Datum of 1983
(NAD83). These images were re-projected to the Lambert Conformal Conic pro-
jection using the following parameters (Spheroid—GRS 1980; Central Meridian:
96° West; Standard Parallels of 32° and 44°; Latitude of Origin: 38°; False Eastings
and Northings of 0 m). This projection was used throughout the study.

The Quantum Geographic Information Systems (QGIS) (QGIS Development
Team 2016) was used for the integration of various data sources and the geospatial
rendering of the results. Within QGIS, two procedures were used from the
Geospatial Data Abstraction Library (GDAL) procedure, “warp (reprojection)”
and “point sampling tool”. The map images were initially re-projected to the
Lambert Conformal Conic (lcc) projection listed above using the “warp” proce-
dure. The point dataset of the geochemical sampling sites were also reprojected
from latitude/longitude coordinates to the lcc projection. The lcc image of the
surface lithology was then sampled at the geochemical site coordinates using the
“point sampling tool” and the surface lithology value was integrated into the
geochemical database. This methodology was carried out for the other land surface
maps (terrestrial ecosystems, surface lithologies, thermotypes and ombrotypes). The
values of these features were integrated into the soil geochemistry dataset for
further evaluation. It should be noted that the maps produced by Sayre et al. (2009)
are generalizations and expressed at a resolution of 30 m (landforms, topographic
moisture), 1 km (biogeographic regions) and 15 km for the surface lithology. It is
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possible that the class defined at any given point on the maps produced by Sayre
does not correspond with the surface lithology, biogeographic, landform or topo-
graphic classes that were encountered during the soil survey sampling program.

For geospatial rendering purposes (interpolation), the Level 1 Ecology map of
the conterminous United States was used to create a grid with a cell size of 40 km
× 40 km.

Interpolation of principal component scores, posterior probabilities and measures
of typicality were carried out using a geostatistical framework. The gstat package
(Pebesma 2004) was used to generate and model semi-variograms with sufficient
parameters to generate interpolated images through kriging. The cell size used for
image interpolation was chosen as 40 km, the approximate spacing of the site
sampling locations.

17.2.4 Process Discovery—Empirical Investigation of Soil
Geochemistry

After screening the data for detection limit issues and missing values, the geo-
chemical data were then subjected to an empirical investigation in which the
assumptions about the data are minimal. To deal with the effect of closure, the data
for 41 elements (Al As Ba Be Bi Ca Cd Ce Co Cr Cu Fe Ga Hg In K La Li Mg Mn
Mo Na Nb Ni P Pb Rb S Sb Sc Se Sn Sr Th Ti Tl U V W Y Zn) were log-centred
transformed after which a principal component analysis (PCA) was carried out
using the methodology of Zhou et al. (1983) and Grunsky (2001). PCA was carried
out on the entire set of multi-element data for the surface soil, the A and C horizons
combined. PCA was also carried out on the multi-element data individually for the
surface soil, A and C horizons. The rationale for this is based on enhancement of
the multi-element signature for each layer rather than a principal component sig-
nature derived from the combined layers. The principal component biplots and
corresponding maps of the component scores were subsequently generated for the
surface soil, the A- and C-horizons independently. The biplots and interpolated
maps provide insight into the orthogonal linear relationships that can reflect
dominant geochemical processes that are influenced by mineral stoichiometry. The
three soil layers were evaluated together in order to show any possible relationships
between the two soil horizons (A and C) and the surface soil layer. To assist with
insight into processes that influence the relationship of the elements and patterns of
the scores of the observations, the loadings of the elements were coloured according
to the classification of Goldschmidt (1937) into lithophile. siderophile or chal-
cophile affinity Elements associated with the atmophile affinity were not considered
in this study.
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17.2.5 Process Validation—Modelled Investigation of Soil
Geochemistry

Using the classified information derived from the land surface maps of Sayre et al.
(2009), the geochemical data were used to establish the ability to predict these
classifications using a cross-validation approach in which the data are repeatedly
sub-sampled as part of the classification process.

Previous studies (Grunsky et al. 2012, 2014) demonstrated that the use of
multivariate statistical methods was able to classify bedrock lithologies based on
lake sediment and glacial till geochemical data using discriminant analysis. The
methodology employed the results of principal component analysis (described
above), followed by an analysis of variance and the application of linear discrim-
inant analysis (Venables and Ripley 2002) to determine which principal compo-
nents were best at classifying and predicting the bedrock lithologies. This approach
relies on having a sufficient number of degrees of freedom and homogeneity of
covariance between the classes of the training sets. An alternative to linear dis-
criminant analysis is quadratic discriminant analysis (Venables and Ripley 2002),
which compensates for the classes where the condition of homogeneity of
covariance cannot be met. The results of applying these methods includes measures
of posterior probability in which each site is assigned a measure of probability of
belonging to each of the classes and the class with the highest posterior probability
is assigned to that site. Posterior probabilities are also compositions, as the sum of
the probabilities for all of the classes for each site must sum to 1.0 and are,
therefore, compositional in nature.

Both methods were tested for discriminating between the surface lithologies in
this study. However, a comparison of results between linear discriminant and
quadratic discriminant analysis showed little difference in the results and some
classes had to be omitted because of an insufficient number of training sites.

To overcome some of the problems of applying classification methods in pre-
vious studies, we employed the statistical method, Random Forests (Breiman 2001)
as employed by Harris and Grunsky (2015) and used as part of a remote predictive
mapping strategy (Harris et al. 2008). The Random Forest method is based on the
construction of classification trees (Venables and Ripley 2002, Chap. 9) in which
nodes (splits in classes) are based on continuous variables from which a series of
branches in the tree will correctly classify (categorical variables) all of the data. The
Random Forest method “grows” many trees and each tree provides a classification.
Each classification is termed a vote and a classification is assigned to the forest with
the most votes. A useful description of the methodology is provided in Breiman and
Cutler (2016). The function “randomForest”, herein referred to as “RF”, from the
package randomForest (Breiman and Cutler 2016) was used for the analysis.

For each tree that is created, a training set of approximately one-third of the data
is drawn, with replacement and are left out of the sample population. This is known
as the out-of-bag (oob) data and is used to get a running unbiased estimate of the
classification error, as trees are added to the forest. Variable importance is also
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determined from the out-of-bag data. For each tree, all of the data are applied to the
tree and “proximities” are determined for each pair of cases. If two cases occur at
the same node, then the proximity of that pair is increased by one. When all of the
trees have been estimated, the proximities are normalized by dividing by the
number of trees. These proximities can be used for replacing missing data, iden-
tifying outliers and creating lower dimensional views of the data. Each tree is
constructed from bootstrapping the original sample population and about one third
of the data are left out from each bootstrap sample and not used in tree construction
but are then classified from the tree created from the other two thirds of the sample
population. An unbiased estimate of the classification error is determined from each
case that is oob and did not classify correctly. Variable importance is determined by
comparing oob classification results and the non-oob classification results after
random permutations of each of the variables. Another measure of variable
importance is determined by the Gini measure that is determined by the number of
splits that are made for a given variable over all of the trees in the forest. Variables
do not need to be pre-selected using techniques such as analysis of variance as the
RF procedure determines which variables are the best classifiers.

Maps of the normalized votes, which are equivalent to posterior probabilities,
can be created using geostatistical methods such as kriging. However, since the
posterior probabilities are compositions and sum to 1.0, these values must be
logratio transformed, followed by subsequent co-kriging, and then back trans-
formed for subsequent geographic rendering (Pawlowsky-Glahn and Egozcue
2015; Mueller and Grunsky 2016). Instead, maps of the posterior probabilities for
each of the classes were created by posting the sample sites with points and colours.
An alternative to this would be to consider the un-normalized (raw) votes as
independent and carry out kriging on these estimations. The results of these
interpolations are provided in the Supplementary Annex.

17.3 Results

17.3.1 Process Discovery—Principal Component Analysis

A logcentred transform was applied to the adjusted data after which a principal
component analysis was carried out. An examination of an ordered plot of eigen-
values in the form of a screeplot (Jolliffe 2002) are shown in Fig. 17.2a–d for (a) all
of the data, (b) Surface Soil, (c) A horizon only and (d) C horizon only. Fig-
ure 17.2a–d display two important inflection points; at PCs 3 and 9. The first three
eigenvalues define the dominant structure in the data and the next 5 display lesser
but significant structure also. This is also expressed numerically in Table 17.1
where the first 10 eigenvalues are listed along with the associated cumulative
contribution to the structure in the data. As shown in the screeplots of Fig. 17.2, a
comparison of the first four successive eigenvalues between the C-horizon,
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A-horizon and Surface Soil is slightly greater for the C-horizon. This implies that
the linear combinations of the elements are stronger for the C-horizon than for the
other two. Eigenvalues with values less than 1 and are interpreted to represent
under-sampled processes or random effects (noise).

The largest eigenvalues signify that the linear combinations of the elements for
these components are significant and defines “structure” in the data. This structure
can be interpreted as the influence of stoichiometric control of mineralogy.

Fig. 17.2 a—Screeplot of eigenvalues of the soil geochemistry for the combined Surface Soil
(0–5) cm layer, the A- and C- horizons, from the application of a principal component analysis to
logcentred transformed data. b—Screeplot of eigenvalues of the soil geochemistry for the Surface
Soil (0–5) cm layer from the application of a principal component analysis to logcentred
transformed data for the top layer only. c—Screeplot of eigenvalues of the soil geochemistry for
the A-horizon from the application of a principal component analysis to logcentred transformed
data for the A-horizon only. d—Screeplot of eigenvalues of the soil geochemistry for the
C-horizon from the application of a principal component analysis to logcentred transformed data
for the C-horizon only
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17.3.2 PCA of the Combined Surface Soil, A-Horizon,
C-Horizon

Figures 17.3a, and 17.4a shows biplots (PC1-PC2 and PC2-PC3) for the principal
component scores and loadings for the combined data from the surface soil, A- and
C-horizons Table 17.1 shows that the first three principal components for the
combined data (All Layers) account for 50.6% of the overall variation in the data.

Figure 17.3a shows the mass of data points defined by two vertices:
(1) Cr-V-Ni-Co-Fe-Sc-Mn-P-Zn; (2) Hg-In-Ti-Se-Mo-As-Sb-Sn-Bi (chalcophile)
and a trend of element associations: Mg-Ca-Na-Sr-Ba-K-Be-Rb-Tl that are inver-
sely associated with the vertex defined by (2) above. The chalcophile elements are
grouped along the +PC1 axis. Siderophile elements are associated with the +PC2
axis and the lithophile elements are distributed around the ±PC1/−PC2 axes and the
−PC1/+PC2 axes.

Figure 17.4a shows the three sets of data (Surface Layer, A- and C-horizon)
combined onto a biplot of PC2–PC3. The PC scores along the PC2 axis define a
contrast between mafic (+ scores) and felsic (−scores) source material. Siderophile
(Fe, Co, Ni), lithophile (Cr, V, Sc, Ti) and chalcophile elements (Cu, In) are
associated along the +PC2 axis and lithophile elements (Rb, K, Tl, Ba, Th, La, Be,
Ce) are concentrated along the −PC2 axis.

Table 17.1 Principal Component Analysis results for logcentred transformed soil geochemistry

RQPCA [clr] All layers

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
λ 8.13 6.87 5.76 2.39 2.08 1.88 1.50 1.15 0.92 0.89
λ% 19.83 16.76 14.05 5.83 5.07 4.59 3.66 2.80 2.24 2.17
Σλ% 19.83 36.59 50.63 56.46 61.54 66.12 69.78 72.59 74.83 77.00
RQPCA [clr] surface soil

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
λ 8.70 7.01 4.93 2.41 1.96 1.89 1.53 1.21 0.98 0.90
λ% 21.19 17.08 12.01 5.87 4.77 4.60 3.73 2.95 2.39 2.19
Σλ% 21.19 38.27 50.28 56.15 60.93 65.53 69.26 72.20 74.59 76.78
RQPCA [clr] A horizon

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
λ 8.73 7.00 4.97 2.47 2.07 1.88 1.45 1.22 1.00 0.90
λ% 21.29 17.07 12.12 6.02 5.05 4.59 3.54 2.98 2.44 2.20
Σλ% 21.29 38.37 50.49 56.51 61.56 66.15 69.68 72.66 75.10 77.29
RQPCA [clr] C horizon

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
λ 9.45 7.22 5.12 2.29 1.84 1.50 1.36 1.17 0.89 0.82
λ% 23.02 17.59 12.47 5.58 4.48 3.65 3.31 2.85 2.17 2.00
Σλ% 23.02 40.61 53.08 58.66 63.14 66.80 70.11 72.96 75.13 77.13
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An association of chalcophile elements (Cd, S, Sb, As, Hg, Pb) occurs along the
+PC3 axis with a corresponding concentration of sample sites associated with the
surface layer and A-horizon, most likely representing complexing with organic rich
soils. PC scores for the C-horizon are concentrated along the ±PC2 axis, which may
represent a range of source material from mineral soils that are low in organic
material (−PC3) to soils that are rich in organic material or derived from shales/
weathered materials (+PC3).

Fig. 17.3 a—Biplot of principal components 1 and 2 for the soil geochemistry for the combined
Surface Layer, A, and C horizon soil geochemical data based on a log centred transform. The
colours and symbols represent the surface soil and the soil A and C horizons. b—Biplot of
principal components 1 and 2 for the Surface Soil geochemistry data based on a log centred
transform. c—Biplot of principal components 1 and 2 for the A-horizon soil geochemistry data
based on a log centred transform. d—Biplot of principal components 1 and 2 for the C-horizon soil
geochemistry data based on a log centred transform
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17.3.3 PCA of the Surface Soil, A-Horizon, C-Horizon

The biplots of Fig. 17.3a–c for all of the data, the surface soil data and the
A-horizon data, show similar patterns in terms of the relationships of the elements
with each other and the shape of the data cloud for the projection of the principal
component scores onto the PC1 and PC2 axes. The biplots exhibit a range of
lithophile loadings that define materials derived from mafic, feldspathic, carbonate
and REE-enriched sources within the quadrants described previously. Similarly, the
chalcophile element association is concentrated along the +PC1 axis for both

Fig. 17.4 a—Biplot of principal components 2 and 3 for the soil geochemistry for the combined
Surface Soil, A, and C horizon soil geochemical data based on a log centred transform. The
colours and symbols represent the surface soil and the soil A and C horizons as shown in
Fig. 17.3a. b—Biplot of principal components 2 and 3 for the top layer soil geochemistry data
based on a log centred transform. c—Biplot of principal components 2 and 3 for the A-horizon soil
geochemistry data based on a log centred transform. d—Biplot of principal components 2 and 3
for the C-horizon soil geochemistry data based on a log centred transform
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Fig. 17.3b, c, likely representing weathered and organic-rich material, which adsorb
chalcophile elements.

The biplot of Fig. 17.3d (C-horizon) displays a different pattern in comparisonwith
Fig. 17.3a–c. The +PC1 axis shows an association of lithophile elements
(Ca-Mg-Na-Sr-P) and chalcophile elements (S-Cd), possibly representing a mix of
feldspathic and/or carbonate source material. Along the PC1 axis and on the +PC2
domain, there is a contrast between (Ca-Na-Mg-S-Ba-K) and (Th-Ce-U-La-Nb-Al-Li)
thatmay reflect a feldspathic/carbonate source environment from an environmentwith
relative enrichment in heavy minerals.

Figure 17.4a shows a pattern and association of elements that displays a contrast
of the C-horizon data with the surface soil and A-horizon data. Figure 17.4a shows
a siderophile and mafic lithophile pattern of Cr-Ni-Cu-V-Co-Fe-Sc along the +PC2
axis. Along the −PC2 axis of Fig. 17.4a there is a lithophile association of
Rb-K-Ti_Ba-Ce-La-Tl. The +PC3 axis in Fig. 17.4a shows a chalcophile/lithophile
association of Cd-S-Sb-Ca-P-Se-Hg-As-Mo-Pb-Sr-Zn. This region of the plot is
dominated by surface soil and A-horizon data although some C-horizon data are
also present. A similar pattern is observed in Figs. 17.4b, c although the groups of
the elements are at opposite ends of PC3 (a sign switch). In Fig. 17.4b, c, transi-
tional between the siderophile/lithophile elements (Fe-Sc-Co-Cr-Ni) and the
lithophile elements (Rb-Tl-K-Ba) is the grouping of Al-Ga-Nb-Y-Ce-La-Th-U that
represents feldspars, clays and heavy minerals. As in Figs. 17.3d and 17.4d, rep-
resenting the C-horizon data, shows the chalcophile enrichment trend along the
+PC3 axis and a siderophile/lithophile trend along the PC2 axis. Transitional
between the trend along the PC2 axis is an association of Al-Ga, likely representing
feldspars and clays.

17.3.4 Mapping the Components

The first three principal components for the surface soil, the A- and the C-horizons
were interpolated using the geostatistical package, gstat (Pebesma 2004). Experi-
mental semi-variograms were generated followed by variogram model fitting with
subsequent kriging. The images for the three principal components are shown in
Figs. 17.5a–c, 17.6a–c and 17.7a–c.

Principal Component 1
Geospatially these patterns are observed in Figs. 17.5, 17.6 and 17.7. Figure 17.5a–c
show interpolated images based on kriging of the first principal component for the
surface soil, A- and C-horizons respectively. The patterns observed in Fig. 17.5a and
b are consistent with the patterns observed in Fig. 17.3b and c. The +PC1 axis in
Fig. 17.3b and c show relative enrichment of the previously identified chalcophile
elements and relative enrichment of the mafic lithophile and siderophile elements
along the −PC1 axis. In Fig. 17.5a and b, the positive scores of PC1 appear to
correspond with the region in the southeast US and the negative scores of PC1
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Fig. 17.5 a–c Map of kriged principal component 1 for the Surface Soil, A- and C-horizon data.
Figures 17.4b–d provide the context for relative element enrichment/depletion associated with
each of the layers
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Fig. 17.6 a–c Map of kriged principal component 2 for the Surface Soil, A- and C-horizon data.
Figures 17.4b–d provide the context for relative element enrichment/depletion associated with
each of the layers
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Fig. 17.7 a–c Map of kriged principal component 3 for the Surface Soil, A- and C-horizon data.
Figures 17.4b–d provide the context for relative element enrichment/depletion associated with
each of the layers
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appear to occur in the northwest US and west of Lake Superior. All three figures
show a pattern that coincides with the banks of the Mississippi River. Negative PC1
scores for the surface layer and A-horizon correspond to relative enrichment in
Na-Sr-Al-Ca-Mg-K-Ba element associated with feldspars and/or carbonate source
material.

The image of PC1 for the C-horizon data (Fig. 17.5c) shows a strong negative
region in the southeast US that corresponds to the chalcophile group of elements
along the negative portion of PC1 in the biplot of Fig. 17.3d. The positive portion
of PC1 in Fig. 17.3d corresponds to the dominantly lithophile and siderophile
groups of elements and is displayed as a large region throughout the US, with the
exception of the southeast US. The same “corridor” pattern along the Mississippi
River is observed in Fig. 17.5c, for the C-horizon results and represent the same
relative concentration of lithophile elements observed in the surface layer and
A-horizon.

Figure 17.5c shows the kriged image for the first principal component derived
from the C-horizon data. In this case, the negative scores are restricted to the eastern
US and reflect the chalcophile and rare earth elements indicative of detrital heavy
minerals corresponding to the region of quartz enrichment accompanied with
weathered and detrital materials within the erosional and weathering domain of the
eastern US. Positive PC1 scores reflect a lithophile association of Ca-Na-Sr-Cd-Mg-
Ba-K-Mn (Fig. 17.3d) and suggest an environment that is likely dominated by
Ca-Na-K-Ba-Sr feldspars and Mg-Ca bearing ferromagnesian minerals.

An important consideration in the interpretation of the biplots is the significance
of the associations of the elements. An initial interpretation of the biplots of
Fig. 17.3a–d was that the associations of the chalcophile groups indicated relative
enrichment of these elements (Hg-Se-As-Sb-Sn-Bi-Pb-S-In) that represent weath-
ered materials along with the accumulation of detrital minerals within the erosional
and weathering domain of the southeastern US. In fact, these elements do not reflect
relative enrichment but rather relative depletion with respect to the other groups of
elements, notably the siderophile and lithophile elements. Geospatially, the chal-
cophile association of these elements corresponds to the region of a high quartz
content in the soil (Smith et al. 2014) and has been termed the “quartz dilution
effect”. This effect in the soil geochemistry and the subsequent multi-element
associations would likely be significantly different had Si been included in the
analysis. A test was carried out in which the Si content of the data was simulated as
the difference from the potential total (1,000,000 ppm) from the summed content of
the compositions. This simulated Si value was then included in the composition and
a PCA was carried out. The first component identified the relative Si enrichment as
occurring in the southeast US. The simulated value of Si was not included in this
study because other elements should also be considered in a total composition,
including oxygen and nitrogen.

Principal Component 2
As shown in Fig. 17.3b, c, the multi-element signature of tpc2 is nearly the same for
the surface soil and A-horizon. The patterns in both figures show two trends, one
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with relative enrichment in Cr-Ni-Co-Cu-V-Fe-Sc (siderophile/lithophile + Cu-Zn)
and the other with relative enrichment in Hg-Se-As-Sn-Sb-Pb-Bi-In-S. (chalcophile)
These two multi-element associations reflect the chemistry of mafic minerals and
elements that are associated with weathering and organic complexing. This is
reflected in the maps of Fig. 17.6a, b in which high PC2 values are noted in the
eastern and south eastern US and the western US. The negative PC scores for the
surface soil and A-horizon show relative enrichment in Rb-K-Tl-Ba-Be-Na-
Sr-Al-Ga and, as shown in Fig. 17.6a, b are geospatially concentrated in the cen-
tral US corresponding to the location of the Sand Hills of Nebraska, (∼105° W/
42° N), which is comprised of sand-sized particles of quartz and feldspar (Smith
et al. 2014). There are also areas of negative PC2 scores, most likely representing
feldspars associated with granitoid rocks in southern Nevada, California, Arizona,
Texas, New Hampshire and Maine (Smith et al. 2014).

The map of PC2 (Fig. 17.6c) for the C-horizon data shows positive scores
associated with the mafic volcanic rocks of the northwest US and corresponds to the
relative enrichment of siderophile (Fe-Ni-Co), lithophile (Cr-V-Sc), chalcophile
(Cu-Zn) elements as shown in Figs. 17.3d and 17.4d. The negative scores for PC2
show a similar pattern to those of the surface soil and A-horizon; relative enrich-
ment in alkali lithophile elements (Rb-K-Ba-Be-Na-Sr) with Al-Ga representing
feldspars and REE lithophile elements (U-Th-La-Ce-Ng-Tl) that represents heavy
minerals and quartz (as explained previously). The geochemical expression of these
minerals in PC2, which are resistant to weathering, are reflected in both horizons
and the surface soil.

Principal Component 3
The positive scores for the PC3 show relative enrichment of siderophile, mafic
lithophile, and light REE elements for both the surface soil and A-horizon; whereas
this pattern is represented by negative scores for the C-horizon. As shown in
Fig. 17.4b–d, for all three layers, there is a continual transition from relative
enrichment in alkali lithophile and REE elements, including Al and Ga, representing
feldspars and minerals associated with felsic domains to relative enrichment in
Cr-Ni-V-Cu-C-Fe-Sc-Ti-In-Zn that represents minerals associated with mafic
domains. Figures 17.7a–c show the kriged images for the third principal component.
The negative scores show relative enrichment of Cd-S-Ca-Sr-Sb-P-As, which may
reflect the processes of organic complexing and sulphates. Negative scores noted in
Utah, Nevada, west Texas, the Mississippi delta and south Florida may have a
greater component of S. Negative scores that occur in Minnesota, Michigan, Indiana
and the coast of New England may reflect the presence of shales, clays and organic
accumulations. The negative PC3 scores of Fig. 17.4b exhibit a bimodal pattern of
relative enrichment of Fe-Sc-In-Ti and Ga-Al-Y-Nb-Ce-La. The Fe-rich pattern is
associated with the mafic volcanic rocks in the northwest and southwest US and the
Ga-rich pattern occurs in the eastern US and reflects the presence of feldspars in the
weathering of granitoid rocks in the southern Appalachians.

As seen in Fig. 17.4c, and nearly identical to that the of surface soil, the positive
scores of PC3 exhibit a bimodal pattern for the A-horizon and indicate relative
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enrichment of Ti-Sc-Fe-In-V and Ga-Al-Th-La-Nb-Ce. These two groups reflect
both a mafic and feldspathic/heavy mineral rich environment. Figure 17.7b shows
the mafic association (Ti-Sc-Fe-In-V) in the northwest US. The positive scores in
the eastern, southern, and in particular, the southeast US reflect elements associated
with feldspars and heavy minerals, which reflects the concentration of minerals
through the weathering process, which may be due more to gravitational effects
than chemical breakdown. As in Fig. 17.7a, the negative scores of PC3 in the
A-horizon demonstrate the same patterns and processes.

The C-horizon map shows two distinct geospatial patterns. The positive scores of
Fig. 17.4d show relative enrichment in the chalcophile group, Sb-As-S-Mo-Se-B-
Cd-Hg-U-Li-W and occur primarily in the southeast US. This pattern likely reflects
both the quartz dilution effect and the presence of chalcophile elements relative to
other areas throughout the US. The negative scores, which show relative enrich-
ment of the lithophile elements Al-Ga-Na-Y-K-Be-Ba-Mn-Ti-Fe-Sc-Co, reflect a
combination of mafic minerals and feldspars. These patterns are observed in the
western US, Minnesota-Wisconsin, central Appalachia and the northeast US. Pat-
terns associated with the elements that reflect mafic domains are the northwest US
and Wisconsin-Minnesota. Patterns that reflect the feldspathic domains are
Nebraska-Colorado, central Appalachia and the northeast US.

Evaluation of the soil geochemistry for the surface soil, the soil A horizon and
the soil C horizon using a principal component approach reveals that there are
continental-scale geochemical patterns that appear to be associated with the com-
position of the underlying soil parent material, climate, and weathering. At the scale
of evaluation, details on specific lithologies are difficult to resolve, but the patterns
are consistent with those mineralogical patterns delineated by Smith et al. (2014).

Process Validation Predictive Mapping of Surface Lithologies
The lithology of surficial materials by Sayre et al. (2009) is represented by 18
classes plus unknowns and listed in Table 17.2. A total of 17 classes were selected
for further study. The classes “unknown” and “water” were not used as they were
not considered suitable for classification.

Figure 17.8 shows a map of the sampling sites with the surface materials
lithology from Sayre et al. (2009). The patterns of surface materials on the map
show some similarities with the patterns observed from the first three principal
components for the surface soil, A- and C-horizons. Figure 17.9 shows a biplot of
the first two principal components that are coded according to the surface litholo-
gies. The pattern of the mafic lithophile elements (Cr-Ni-Cu-V-Co-Fe-Sc) in
Fig. 17.9a, b are dominated by silica-rich residual soils (SilRes), whereas the
chalcophile enrichment pattern (Hg-Se-Mo-Sn-Bi-Pb-Sb-As-Ti-S-In) appears to be
associated mostly with alluvium (Alluv) and coastal zone sediments (CZS). The
lithophile element grouping in the negative portion of the PC2 shows a mix of
several lithologies. The results of the PCA suggest that the linear combinations of
elements from the PCA are related to the patterns observed in Surface Materials
Lithologies of Fig. 17.8.
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From the application of the random forest classification, the Gini Index (sig-
nificance of the variables) for the surface soil, A- and C-horizons are listed in
Table 17.3 and shown graphically in Fig. 17.10. The significance uses the Gini
Index, which is a measure of purity based on the success of a variable in distin-
guishing between classes. Table 17.3 shows that generally, PC’s 4, 5, 1, 2, 3 and 6
are the best variables for classification of the surface lithologies for the surface soil,
A- and C-horizons. Maps of the normalized votes in point form and interpolated
(kriged) maps of the raw votes are shown in the Supplementary Annex (Supple-
mentary Figs. 1–15).

Table 17.2 List of surface lithologies across the conterminous United States

Mnemonic Class description Surface
layer

A-horizon C-horizon Total

AlkInt Alkaline intrusive/volcanic
rocks

6 7 6 19

Alluv Alluvium and fine-textured
coastal Zone sediment

994 989 984 2967

CaRes Carbonate residual material 265 263 260 788
Colluv Colluvial sediment 379 379 366 1124
CZS Coastal zone sediment,

coarse-textured
44 45 43 132

EolDune Eolian sediment,
coarse-textured (Sand
Dunes)

152 151 151 454

EolLoess Eolian sediment,
fine-textured (Glacial
Loess)

156 155 155 466

ExtVR Extrusive volcanic Rock 50 51 51 152
GlLs Glacial lake sediment,

fine-textured
89 85 86 260

GlOut Glacial outwash and Glacial
lake sediment,
coarse-textured

221 220 221 662

GTCg Glacial till, coarse-textured 114 111 111 336
GTClay Glacial till, Clayey 61 61 61 183
GTLoam Glacial till, Loamy 529 528 526 1583
HyPM Hydrick peat muck 25 25 26 76
NCaRes Non-carbonate residual

material
1188 1174 1170 3532

SalLS Saline lake sediment 78 82 79 239
SilRes Silicic residual material 457 456 452 1365
Watera 22 21 21 64
Unknowna 6 6 6 18
Total 4836 4809 4775 14420
aNot Used
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Table 17.4 shows the accuracy of prediction for each of the surface lithologies
based on the Random Forest out-of-bag classification methodology for each of the
surface soil, A- and C-Horizons. The table has been ordered from the highest to the
lowest prediction accuracies based on the surface soil. It is worth noting that the
depth of soil has only a minor influence in the prediction accuracies, suggesting that
the geochemical signature of the underlying material persists throughout the soil
column. Non-carbonate residual soils (NCaRes) (∼74%), loam associated with
glacial till (GTLoam) (66–72%), siliceous residual soils (SilRes) (48–56%), alluvium
(Alluv) (∼50%) and coastal zone sediments (CZS) (45–48%) have the highest pre-
diction accuracies, whereas the lowest accuracies are associated with hydric peat and
muck (HyPM) (0%), alkalic intrusions (AlkInt) (0%), glacial lake sediments (GlLs)

Fig. 17.8 Map of soil sample sites coded by the Surface Lithology classification. This map
represents the actual classification based on the maps of Sayre et al. (2009). Colours used in this
figure are the same colours used in Sayre’s maps. See text for details on how the sites were selected

Fig. 17.9 a–c Principal component biplot of the surface layer (a), A-horizon (b) and C-horizon
(c) scores that are coded and coloured according to the surface lithologies
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Table 17.3 List of variable importance for the surface layer, A- and C-horizons as determined
from Random Forest classification of the principal component results applied to the
clr-transformed data. Colours reflect the most significant PCs (red) to least significant PCs (blue)

Surface Layer Importance A Horizon Importance C Horizon Importance
PC PC PC

4 198.35 4 185.34 2 165.83
5 180.88 5 172.04 4 156.36
1 163.70 1 170.09 1 154.76
2 155.81 3 150.05 3 152.11
3 152.73 2 148.14 6 131.94
9 129.17 9 127.18 16 128.21

12 109.74 6 126.50 5 115.55
6 108.61 20 119.91 11 113.04

32 106.28 29 110.74 8 109.54
23 102.15 13 102.50 7 109.05
30 100.84 12 100.25 10 106.46

8 98.87 11 98.07 14 101.91
20 98.77 8 96.86 13 96.87
40 98.19 23 94.89 12 96.57
10 96.90 10 94.48 28 95.32
21 95.83 7 93.99 9 94.97
11 93.68 16 92.35 18 93.88
15 91.76 18 92.21 17 92.57
24 91.73 19 91.46 31 92.53
13 91.49 21 89.23 34 92.34

Fig. 17.10 Plot of the significance of the principal components used in the random forest
classification based on the Gini Index for the Surface Layer, A- and C-horizons. See the text for a
detailed explanation
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(0–1%) and extrusive volcanics (ExtVR) (0–6%). The prediction accuracy is sen-
sitive to the initial representation of each class in the dataset. This sensitivity is partly
due to the masking and swamping effect that a large population of sites for one type
of surface lithology over another (i.e. Alluvium vs. Hydric Peat and Muck).

Supplementary Tables 2, 3 and 4 provide a complete summary of the prediction
accuracies for the surface soil, A- and C-horizons, respectively. The diagonal of
each upper table (Tables 2a, 3a, 4a) indicates how many sample sites were clas-
sified correctly. Each row of the off-diagonal elements indicates the misclassifica-
tion of the sites for each of the classes. The lower tables in Tables 2b, 3b, 4b show
the classification accuracies as expressed in percentages. The overall classification
accuracy is shown at the bottom of each table. Scanning the columns of Tables 2a,
3a, and 4a reveals that many classes are confused with alluvium (Alluv), siliceous
residual material (SilRes), loam derived from glacial till (GTLoam) and
non-carbonate residual material (NCaRes). Alluvium and non-carbonate residual
material appear to overlap with almost all of the classes. The overall prediction
accuracies for the surface soil, A- and C-Horizons are 50%, 49% and 49%,
respectively.

The R package “randomForests” produces raw and normalized votes for each
of the classes. Votes are a record of the number of times a site is correctly classified.
As described above, normalized votes are the equivalent of a posterior probability

Table 17.4 Measures of ordered predictive accuracy for the surface lithologies for the surface
layer, the A- and C-horizons based on a Random Forest classification of the principal component
results applied to the clr-transformed data

Surface Layer A-Horizon C-Horizon
NCaRes 74.82 73.66 74.51

GTLoam 71.61 68.90 65.74
SilRes 52.02 47.97 55.92
Alluv 50.38 50.63 49.77

CZS 44.90 48.34 48.26
Colluv 37.14 38.20 32.73
GlOut 28.41 32.63 29.32

GTClay 27.54 37.32 42.23
GTCg 22.65 21.47 20.57

EolDune 22.25 22.40 16.47
EolLoess 21.05 26.97 30.19

CaRes 19.19 15.16 9.58
SalLS 15.22 15.69 1.25

ExtVR 1.96 5.78 0.00
GlLs 1.11 0.00 0.00

AlkInt 0.00 0.00 0.00
HyPM 0.00 0.00 0.00

Overall 
Accuarcy 49.92 49.37 48.61
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and are therefore compositions. Classes such as AlkInt, HyPM and other classes
that have low abundance in the data create problems in the creation of
co-regionalization that is required for co-kriging. Examples of the spatial distri-
bution of the normalized and raw votes are shown below. The Supplementary
Annex provides predictive maps for all of the surface lithologies, based on the
normalized votes, for the surface soil, A- and C-horizons. Predictive maps for
AlkInt and HyPM are not shown because the normalized votes for these two surface
lithologies were very low and do not show any geospatial patterns. The prediction
accuracies for the three media from Table 17.4 are: 49.9%, 49.4% and 48.6%
respectively. Supplementary Tables 2, 3 and 4 provide details on the overlap of
predictions for each surface lithology. In most cases, overlap is associated with
non-carbonate residual soils, glacial till derived loam and alluvium. These three
classes have the broadest range of compositional variation and occupy a significant
amount of area across the conterminous US.

Figure 17.11 shows a map of normalized votes of Non-carbonate residual soils
(NCaRes) derived from the random forest classification. Normalized votes >0.3
occur throughout the Midwest states from the Canadian border in the north to the
Gulf of Mexico in the south. From Table 17.4, the overall classification accuracy is
approximately 75% for the surface soil and the two soil horizons. Supplementary
Tables 2, 3 and 4 show that compositional overlap occurs primarily with alluvium,
which is also shown in the maps of Fig. 17.11 where a large number of sample sites
show low normalized votes (∼0.2–0.3). Supplementary Fig. 13a, b show the nor-
malized and raw vote maps of the NCaRes prediction.

Figure 17.12 shows a map of normalized votes for loam derived from Glacial
Till (GTLoam). The overall classification accuracy ranges from 65.7 to 71.6% over
the three soil layers. Supplementary Tables 2, 3 and 4 show the overlap of the
GTLoam composition is associated with non-carbonate residual material (NCaRes)
and alluvium (Alluv) for the surface soil, A- and C-horizons (Supplementary
Tables 2, 3, 4). The pattern of elevated normalized votes coincides with the region
described by Sayre et al. (2009) that is located in the north central US and south of
the Great Lakes. The pattern of elevated GTLoam follows the course of the Mis-
sissippi River, which highlights the erosional path of this material. Supplementary
Figs. 12a, b show the normalized and raw vote maps of the GTLoam prediction.

Normalized votes for the prediction of alluvium (Alluv) are shown in Fig. 17.13
(Supplementary Fig. 1). The overall prediction accuracy is ∼50% (Table 17.4) and
compositional overlap is observed with the surface lithology non-carbonate residual
soil (NCaRes) (Supplementary Tables 2, 3, 4). High predictions of alluvium are
located in Nevada, western Texas and the southeast US states. The dispersed
prediction of 0.2–0.3 represents the regions of compositional overlap with NCaRes,
which can be seen on the map of Fig. 8. Supplementary Figs. 1a, b show the
normalized and raw vote maps of the Alluv prediction and supplementary
Figs. 13a, b show the normalized and raw votes of the NCaRes prediction.

Figure 17.14 shows prediction based on the normalized votes for the Eolian
Dunes (EolDune) of Nebraska, southward into Texas. The patterns are the same for
the surface soil, A- and C-horizon maps. The highest values of normalized votes
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Fig. 17.11 Map of normalized votes for the surface lithology class, non-calcium residual soil
(NCaRes). Sites with a normalized vote of less than 0.2 are omitted
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Fig. 17.12 Map of normalized votes for the surface lithology class, loam derived from glacial till
(GTLoam). Sites with a normalized vote of less than 0.2 are omitted
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Fig. 17.13 Map of normalized votes for the surface lithology class, alluvium (Alluv). Sites with a
normalized vote of less than 0.2 are omitted
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Fig. 17.14 Map of normalized votes for the surface lithology class, eolian dunes (EolDune). Sites
with a normalized vote of less than 0.2 are omitted
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occur in Nebraska and west-central Texas. The map of Sayre et al. (2009) shows
EolDune in northern Texas and the Oklahoma Panhandle, although these two
regions are not predicted in the surface soil, A- or C-Horizon results. Table 17.4
shows predictive accuracies of 22.3, 22.4 and 16.5% for the surface soil, A- and
C-horizons, respectively. Supplementary Tables 2, 3 and 4 show that compositional
overlap occurs with alluvium (Alluv) and non-carbonate residual soil (NCaRes).
Supplementary Figs. 5a, b show the normalized and raw vote maps of the EolDune
prediction.

The effects of erosion and subsequent re-deposition along the banks of the
Mississippi River is observed for several of the surficial lithologies. NCaRes,
CaRes and Colluv exhibit an erosional pattern along the Mississippi River, while
EolLoess, GlLS, GlOut and GTLoam exhibit depositional patterns. This suggests
that the recent deposition of the sediments along the banks of the Mississippi River
has modified the composition of the upper layers of the soil. These classes (Eol-
Loess, GlLS, GlOut, GTLoam—Supplementary Figs. 6a, b, 8a, b, 9a, b, 12a, b)
show a distinct compositional presence down the length of Mississippi River
starting from the northern Midwest states and reflecting continued transport of these
materials at a continental scale.

A brief description of the maps for the surface soil, A and C-horizon data that are
displayed in the Supplementary Annex are discussed in the section, Supplementary
Material.

17.4 Discussion

Examination of the principal component biplots (Figs. 17.3 and 17.4) show that the
multi-element patterns are very similar for the surface soil and A-horizon data. The
C-horizon biplots show similar multi-element groupings, but the shape of the point
patterns (Figs. 17.3d and 17.4d) are different from those of the surface soil and
A-horizon (Figs. 17.3b, c and 17.4 b, c). As described previously, the element
groupings for the three sampling layers are:

(1) Group 1: Tl-Rb-Be-Ba-K-Ga-Al-Sr-Na-Ca-Mg [felsic and mafic lithophile
elements (silicates)]

(2) Group 2: Ni-Cr-V-Fe-Sc-Co-Cu-Zn-Mn [Ferromagnesian silicates and clays]
(3) Group3: Hg-Se-Mo-Sn-Bi-Pb-Sb-As-Ti-S-In. [Shales and organic material with

adsorbed elements]

These associations are slight variants on Goldschmidt’s classification of ele-
ments; lithophile (Group 1), siderophile (Group 2) and chalcophile (Group 3).

The principal component biplots, along with the maps of the dominant principal
components (Figs. 17.5, 17.6 and 17.7), indicate that there is strong stoichiometric
and geospatial control on the patterns that are observed. These patterns, both in the
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biplots and the kriged map images, provide the justification to use the soil geo-
chemical data to predictively map (validate) the surface lithology classification of
Sayre et al. (2009). It should be noted that Sayre’s map of surface lithologies does
not distinguish lithologies with different mineralogies, and, hence there is consid-
erable overlap between some of the classes defined by Sayre.

The results of the random forest classification show that for most of the surface
lithology classes, the accuracy of prediction and spatial coherence of the predicted
sites is variable, as shown in Table 17.4 and Figs. 17.11, 17.12, 17.13 and 17.14
and the Supplementary Tables and Figures. The surface lithologies with the lowest
predictions are: Hydric Peat and Muck (HyPM), Alkalic Intrusives (AlkInt), Glacial
Lake Sediments (GlLS), Extrusive Volcanic Rocks (ExtVR) and Saline Lake
Sediments (SalLS). Two factors influence the classification accuracy. The first is the
areal extent that a given class occupies. The compositional range of a class of small
spatial extent may be swamped or masked by the compositional range of a class that
is geographically adjacent to it and has a much larger areal extent. Surface
lithologies such as AlkInt, HyPM ExtVr, SalLS and GlLS have limited geospatial
extent and the compositions of these lithologies are similar to several other
lithologies, including Alluv GTLoam and NCaRes. The second factor that influ-
ences the prediction accuracy is the common compositions of several of the surface
lithology classes namely, alluvium (Alluv), non-carbonate residual soil (NCaRes),
and silica-rich residual soil (SilRes). These surface lithologies are comprised of
similar mineralogies and are, therefore, compositionally similar and result in
compositional overlap in the statistically based prediction process.

Silicate mineralogy, including quartz, is under-represented in the data used for
this study. As discussed previously, the quartz dilution effect has an influence on
how the various relationships of the elements are observed, particularly in the
methods that are part of the “Process Discovery” component of this study. The
absence of silicon in the geochemical analysis in terms of the classifications may
have some effect on the ability to distinguish between the different surface
lithologies, but the exact effect is unknown at this time and further studies where Si
is included and subsequently excluded in process discovery studies are warranted.

The validation of surface lithologies using soil geochemistry highlights some of
the limitations on predicting distinct surface lithologies that have similar geo-
chemical compositions but represent different processes. Despite this confusion of
compositions between surface lithology classes, the predictive maps render a close
representation of the maps of Sayre et al. (2009).

17.5 Concluding Remarks

The multi-element soil geochemistry over the conterminous United States contains
a rich set of information that reflects the original source material and subsequent
modification through weathering, mass transport, climate and biological activities.
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As a result, continental-scale geochemistry may represent many processes. In this
study, we have focused on the evaluation and interpretation of the multi-element
soil geochemistry from the surface soil, A- and C-horizons in the context of pre-
dicting the surface lithologies.

Process discovery makes use of multivariate methods such as principal com-
ponent analysis, which creates orthogonal linear combinations of the elements that
often reflect processes controlled by mineral stoichiometry that comprise the parent
material. This parent material may be bedrock (igneous, metamorphic, sedimen-
tary), glacial deposits, loess or fluvial deposits. Ideally, soil geochemistry can be
used to predict the composition of the underlying soil parent material. As
demonstrated in this study, multivariate methods such as principal component
analysis cannot decouple all of these processes. Processes such as igneous and
metamorphic mineral reactions share similar mineral stoichiometry, making them
indistinguishable from a geochemical perspective. Many distinct sedimentary
assemblages are comprised of similar lithologies with similar mineralogy, and are
thus difficult to distinguish solely on a geochemical basis.

With the exception of the surface lithology map of Sayre et al. (2009), a
continental-scale map of lithology does not exist, which creates difficulty in an
attempt to predictively map at large scales. However, the availability of the maps by
Sayre et al. (2009) that include terrestrial ecosystems, thermoclimate, soil moisture
and surface lithologies provides an opportunity to test the capacity of soil geo-
chemistry to uniquely define these features. Although not presented here, the soil
geochemistry has the ability to uniquely define terrestrial ecosystems and regional
climate indicators. We intend to publish the results of using soil geochemistry to
uniquely identify the terrestrial ecosystems, thermoclimatic zones and soil moisture
(ombrotype) as defined by Sayre et al. (2009).

With few exceptions, there are only minor differences between the geochemical
compositions of the surface soil and the A-horizon. The geochemistry of the
C-horizon displays a distinct geochemical difference between the surface soil and
A-horizon as it has not undergone the degree of weathering as the near-surface soils
and contains less organic material.

The overall predictive accuracies for the predicting the surface lithologies for the
surface soil, A- and C-horizons are 49.9%, 49.4% and 48.6%, respectively. As
described above, the reasons for these low accuracies are due to the overlap of
many of the lithologies with Alluvium, Non-carbonate residual soils, Siliceous
soils, Eolian Dunes, Eolian Loess and materials deposited from glaciation. How-
ever, the spatial continuity of the posterior probabilities confirm the distinctiveness
of these lithologies and demonstrate the effectiveness of soil geochemistry in rec-
ognizing the differences between the classes.

The geochemistry of soils represents modification of the initial parent material
through weathering in response to varying precipitation and temperature, ground-
water effects, meteoric water effects, biologic activity and geologic complexity.
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Thus, geochemistry is a rich source of information that can be used in many ways to
describe, monitor and predict processes derived from natural and anthropogenic
events (Grunsky et al. 2013).

The results from the statistical evaluation of the geochemical data in the context
of predicting surface lithologies across the conterminous US indicates that soil
geochemistry reflects a number of physical processes. Further studies of the soil
geochemistry across the US will evaluate the ability to predict terrestrial ecosystems
and indicators of climate.
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Part III
Exploration and Resource Estimation



Chapter 18
Quantifying the Impacts of Uncertainty

Peter Dowd

Abstract This chapter reviews the general concepts of uncertainty and proba-
bilistic risk analysis with a focus on the sources of epistemic and aleatory uncer-
tainty in natural resource and environmental applications together with examples of
quantifying both types of uncertainty. The initial uncertainty in these applications
arises from the in-situ spatial variability of variables and the relatively sparse data
available to model this variability. Subsequent uncertainty arises from processes
applied either to extract the in-situ variables or to subject them to some form of flow
and/or transport. Various approaches to quantifying the impacts of these uncer-
tainties are reviewed and several practical mining and environmental examples are
given.

18.1 Introduction

This chapter provides an overview of the quantification of uncertainty with a focus
on mineral and energy resources and environmental applications drawing on the
work of the author and his co-authors over the past 30 years. Rarely in mining
applications do initial estimates reconcile with production—there is almost always
some reverse calibration or model revision to achieve an operationally acceptable
agreement. This feedback approach can be a useful means of model calibration but
the production ‘reality’ is an outcome conditional on the model and data used to
make the production decision and may be biased. The resort to post hoc empirical
calibration is due partly to insufficient data and partly to inadequate accounting for
all sources of uncertainty. This situation will worsen as, increasingly, mineral
resources will be extracted from deeper and/or lower grade deposits, which will
require new technologies and new types of indirect sampling. In applications such
as hydrocarbon extraction, the feedback reconciliation approach is essential because
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the in-situ variables can never be directly observed; Caers (2011) gives a com-
prehensive account of uncertainty quantification for these types of application.

The focus here is on geological applications in which the purpose is to extract
material, store material or monitor the flow of fluids or contaminants. In these
applications, uncertainty arises from two sources of variability: the in-situ vari-
ability of the geology and associated quantitative variables and the variability that is
generated by applying processes to the in-situ resource. The basic approach is to
combine data with a model to make predictions. Such predictions are meaningless
unless accompanied by quantitative measures of the uncertainty of the prediction.

The general focus, particularly in mining applications, has been on the uncer-
tainty arising from sparse data and not on uncertainty arising from the model, even
though the model is inferred, and its parameters are estimated, from the sparse data.
Variability arising from processes applied to the in-situ resource is either quantified
in an overly simplistic manner or is ignored. The additional aspect in these and
most spatial applications is that variability (and, therefore, uncertainty) is
scale-dependent and may be relevant on multiple scales depending on the
application.

18.2 Sources of In-Situ Uncertainty

In the field of uncertainty and probabilistic risk analysis two types of uncertainty are
identified: aleatory and epistemic uncertainty (or irreducible and reducible uncer-
tainty). In the generally accepted definitions (e.g., Bedford and Cooke 2001),
aleatory uncertainty arises from the inherent variability of a phenomenon and
cannot be reduced; epistemic uncertainty arises from incomplete knowledge of the
phenomenon and can be reduced by more data, analysis or research. As both types
of uncertainty are expressed in terms of probabilities, some authors question the
necessity to distinguish between them. Others (e.g. Hora 1996; Winkler 1996)
prefer sources of uncertainty rather than types, “the distinction between uncer-
tainties is a matter of choice of scale and is, therefore, mutable.” In the geostatistics
context, Matheron (1975, 1976, 1978), notes that the empirical basis of uncertainty
is the same in both cases and there is no objective criterion to distinguish them.
Journel (1994) gives guidelines for modelling uncertainty on which Srivastava
(1994) provides critical comment. However, as Winkler (1996) noted “uncertainty
is uncertainty but the distinctions are related to very important practical aspects of
modelling and obtaining information”. This is especially so in the applications
given here.

A fundamental difference between geological applications and many others is
that each occurrence (orebody, karst system) is unique and, apart from measurement
error, once a physical sample is taken at a location and the required variable is
measured directly from the sample, there is no longer any uncertainty about the
value of the variable at that location. The general geostatistical model includes
stationarity, which allows for repeated sampling of the same random variable at
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different locations. In principle (but not in practice), all locations in an orebody
could be sampled and aleatory uncertainty would be eliminated. Thus, in these
applications aleatory uncertainty is entirely a function of the amount and quality of
data. Epistemic uncertainty arises from the assumed or inferred geological model
(e.g., type, or style, of mineralisation). In mining applications, at least in terms of a
general model, there may be significant epistemic uncertainty during early stages of
proving a deposit when geological models are inferred from sparse data. Model
uncertainty may persist in later stages in terms of the specific characteristics or
parameters of the model.

In some natural resource applications, the variables that define the resource can
never be directly observed. For example, in hot dry rock (HDR) enhanced
geothermal systems, the variable of interest is the combination of natural and
stimulated fractures that form connected networks to extract heat. These fractures,
at depths of up to 4.5 km, can never be directly observed or measured; their
locations, extents and characteristics can only be inferred from micro-seismic
events generated by fracture movement, stimulation and propagation (e.g., Xu and
Dowd 2014). In these applications, the detailed model can never be known irre-
spective of the amount of data available. As mineral resources are extracted from
increasingly deeper deposits there will be a move from physical samples, from
which variables are directly measured, to sensed proxy variables and a move from
traditional mining methods to in-situ recovery. For indirectly sensed variables, the
aleatory uncertainty of the required variable (e.g., porosity) is largely due to the
quality of the relationship with the directly sensed proxy variable (e.g., acoustic
impedance), which could be classified as measurement, or interpretation, error.

Thus, although both sources of in-situ uncertainty in these applications are
functions of the amount of data, it is useful to distinguish between them in quan-
tifying uncertainty. Hereafter, epistemic uncertainty is used to mean conceptual or
descriptive geological models as well as quantitative parametric models that
describe spatial variability and in which parameter values are calculated or inferred
from data.

Although epistemic uncertainty is recognised, it is largely ignored in practice.
Once a model is assumed or inferred and/or its parameters are inferred or estimated
from the available data, all measures of uncertainty are based on the data; in most
applications, the model of spatial variability is implicitly assumed to be known with
certainty. In other fields, there has been a longstanding recognition of the impor-
tance of identifying and quantifying both sources of uncertainty and of propagating
them into a complete systems model (e.g., Bedford and Cooke 2001; Helton et al.
2004; Oberkampf et al. 2002, 2004). In natural resource applications, particularly
mining, the emphasis has largely been on aleatory uncertainty with implicit
acceptance that epistemic uncertainty is negligible. Geostatistical simulation is
widely used to quantify the effects of limited data on resource modelling and
estimation (aleatory uncertainty) but the model (e.g., variogram, spatial pattern) is
generally assumed to be perfectly known (no, or negligible, epistemic uncertainty).
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18.3 Transfer Uncertainty

A further complication in mineral and energy resources is that there are additional
significant sources of uncertainty in extraction and processing to produce a final
product. To borrow a petroleum industry term these might be called transfer, or
process, functions and the associated uncertainties, transfer or process uncertainty.
A general approach to integrating this source of uncertainty is to quantify all
sources of in-situ uncertainties and propagate them into simulated transfer processes
(e.g., blasting, selective loading, transport, mineral processing).

In resource extraction applications, it is useful to distinguish two broad types of
process (or transfer) uncertainty:

(1) The uncertainty associated with in-situ variables that is propagated into pro-
cesses applied to them. This might be termed passive in the sense that it does
not change spatial variability. An example is the impact of grade uncertainty on
mine design, which could be assessed by applying the same design process
(e.g., optimal open-pit) to a range of simulated realisations of grades.

(2) The uncertainty transferred, or propagated, to in-situ variables by applying
processes to them. This might be termed active as the process changes spatial
variability. Changes in spatial variability can be predicted by modelling the
process. An example is blasting a block of ground from which ore is selected.

18.4 Consequences of In-Situ Uncertainty

There are broadly two aspects of a geological model used in mineral resource
applications: the generic type (e.g., stratiform silver/lead/zinc orebody) and the
unique aspects that distinguish a specific orebody within the type (e.g., faulting,
folding, degree of spatial continuity and of regularity of orebody boundaries). In
general, for mineral deposits the first of these is known with near certainty at a
relatively early stage but the distinguishing aspects and the relevant scales on which
these aspects occur may not be known until much later. In these applications, the
two types of in-situ uncertainty are not independent. The sampling scale (e.g.,
drilling grid) is determined, or at least significantly informed by, the geological
model; the sampling scale determines the data, the spatial variability of which is the
aleatory uncertainty; the parameters of the model are estimated by the data.

The Stekenjokk mine in Sweden provides a striking example of the consequences
of epistemic uncertainty. Boliden Mineral AB mined this massive copper-zinc-silver
orebody from 1976 to 1988 and processed a total of 8 M tonnes of ore. Prior to mine
development the drilling grid was 20 m × 20 m and, in places, 20 m × 10 m.
Figure 18.1 is an idealised, but typical, vertical cross-section through the orebody
showing the drill-hole intersections with the ore. Drilling data were combined with
the assumed geological model to generate the estimated orebody boundaries.
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Figure 18.1 shows the complex, multi-directional folding of ore zones encountered
in mining. The practical consequences of these predictions were significant (Hoppe
1978):

• Inappropriate choice of mining methods and mining equipment.
• Increased ore dilution, mining costs, development and processing provisions.
• Complications of highly mechanised equipment purchased for a simpler mine.

In principle, the problem could have been resolved by more appropriate sam-
pling but the “appropriateness” of sampling was determined by the assumed geo-
logical model. In addition, sampling is constrained by cost (relative to the value of
the mined product) and the cost of a drilling grid capable of capturing the folding
may well have been prohibitive.

Geological models are only as good as the quality and interpretation of the data
and the appropriateness of the scale on which the data are collected. Stekenjokk is
an extreme (but not unique) example of epistemic uncertainty that could only be

Wave length 14m
Amplitude     20m
True ore thickness 5m

Ore intersec on in drill hole

Ore boundaries projected from 
surface drill holes

Actual ore folding

20m

60

20m

Dh Dh Dh Dh Dh 

14m

Fig. 18.1 Interpolation of ore continuity from surface drilling data prior to mine development;
adapted from Hoppe (1978)
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reduced to an acceptable level by more data. However, this observation is some-
what circular: the geological model depends on the amount of data/information
available but the data type and collection are informed by the assumed model.

18.4.1 Scale and Variability Example: Hilton Orebodies
Australia

This example is from a study of a complex group of three silver/lead/zinc orebodies
at what, at the time, was known as the Hilton mine in north-western Queensland,
Australia. The full study is given in Dowd and Scott (1984) with a later study in
Dowd et al. (1989).

The Hilton orebodies are 22 km north of Mt Isa, one of the world’s largest
stratiform base metal deposits. The Hilton orebodies have a similar diagenesis to the
Mt Isa orebodies with mineralisation occurring in the same dolomitic shale. The
study was undertaken at the pre-feasibility stage and all original drilling, sampling
and interpretation were influenced by 50 year’s mining experience at Mt Isa.
Although the Mt Isa and Hilton styles of mineralisation are similar, the Hilton
orebodies are structurally more complex and less continuous.

Two test areas were extensively drilled to provide detailed information for a
geostatistical study to determine optimal drilling densities for mine planning pur-
poses. The holes were drilled from access drives as fans on cross-sections spaced 10
and 20 m apart. One such cross-section is shown in Fig. 18.2 in which the holes
intersect the main 2 orebody footwall lens (2 O/B FW) at approximately 5 m
centres. The dark blue outlines in Fig. 18.2 are the orebody boundaries estimated
from the drill-hole data on the cross-section and on the cross-sections on either side.
In the feasibility stage cost would prohibit such a drilling density over the entire
orebody. Given the density of the drilling these estimated boundaries could be
regarded as reality on all practical scales.

The effects of other drilling densities were assessed by removing drill data to
create new datasets; e.g., removing every second drill-hole on a cross-section yields
a 10 m spacing. Datasets for 5, 10, 20 and 40 m drill spacing were used in the
study. Orebody boundaries were estimated for each drilling density and the results
were given to mining engineers to design stopes. As an example, the estimated
orebody boundaries for 20 m drill spacing is shown in Fig. 18.3. As expected, these
boundaries are much smoother (less variable, more continuous) than the “reality”
represented by the boundaries estimated from the 5 m spacing dataset. The vari-
ability of the boundaries is critical in the choice of mining method: the variability of
boundaries and their exact delineation are less critical if a bulk mining method is
adopted than if more selective methods are used. The original mining method was
cut and fill followed later by sub-level open stoping and bench mining.

Figure 18.4 shows the 5 m interpolation overlaid on the 20 m interpolation.
Taking the 5 m interpolated boundaries as reality, all visible light blue areas
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represent ore dilution arising from planning and extraction based on the 20 m
interpolated boundaries.

Figure 18.5 shows the 20 m interpolation overlaid on the 5 m interpolation.
Again, taking the 5 m boundaries as reality, all visible dark blue areas represent the
ore loss arising from planning and extraction based on the 20 m interpolated

Fig. 18.2 Cross-sectional interpretation based on 5 m drill spacing

1 O/B 2 O/B H/W 2 O/B F/W 3 O/B

Fig. 18.3 Cross-sectional interpretation based on 20 m drill spacing
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boundaries. Of course, the perfect selection and the adherence to estimated
boundaries during production implied by this exercise are not entirely realistic.
However, the impact on the choice of mining method, on the predicted grades and
tonnages, and on economic outcomes is real.

1 O/B 2O/B H/W 2 O/B F/W 3 O/B

Fig. 18.4 Overlay of 5 m interpolation on 20 m interpolation

1 O/B 2 O/B H/W 2 O/B F/W 3 O/B

Fig. 18.5 Overlay of 20 m interpolation on 5 m interpolation. Based on 20 m model, all visible
dark blue areas represent ore loss
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The outputs from the stope design exercise are summarised in Fig. 18.6 for 5, 10
and 20 m drill spacing. Orebodies 1 and 2 H/W (hanging wall) are mined in a single
stope and orebodies 2F/W and 3 are mined in separate stopes. Grades were esti-
mated by kriging and are in metal equivalents of lead (weighted sum of lead, zinc
and silver grades); intervals are ±2σK where σK is the square root of the kriging
variance and is used as an index of uncertainty rather than a confidence interval.
Taking the 5 m designs as actual boundaries, the stope designs based on 10 and
20 m drilling show the effects of decreasing amounts of data on planned tonnage
and average grade.

5m drill spacing 10m drill spacing

152,000 t 58,500 t 78,500 t
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13.0 0.4
Pb Eq

2800 RL

2750 RL

2800 RL

2750 RL

23
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148,000 t 71,000 t 64,000 t

12.9 0.4
Pb Eq

20m drill spacing

Fig. 18.6 Stope designs with contained tonnages and grades for 5, 10 and 20 m drill spacing for
orebodies 1 and 2 HW (left); 2 FW (centre) and 3 (right)
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The stope designs are based on the data and interpretations from the respective
drilling densities but the grades and tonnages are estimated using all data (5 m drill
spacing). Assuming the data from the 5 m drill spacing gives the closest possible
quantification of reality on all practical scales then the grade and tonnage of the 10
and 20 m stope designs estimated from all data can be regarded as sufficiently close
to the real tonnage and grade that could be recovered from the designs.

The effects of data density on grades and tonnages are summarised in
Table 18.1. As an example, using the 20 m drill spacing data to design stope 2 (the
high-grade orebody 2 footwall) would increase tonnage by 21.4% and reduce grade
by 9.6%. There would an increase in metal tonnage of 9.7% but this would at the
cost of mining, hauling and processing the additional ore tonnage.

Whilst the effects of data on a specific type of mining are of interest, the more
important issue is the effect of the assumed geological model on the choice of
mining method. The initial geological model was influenced by the knowledge
accumulated over a long period of mining in the neighbouring Mt Isa orebodies.
The detailed analysis described here enabled the effects of the greater complexity
and less continuity of the Hilton orebodies to be systematically quantified, thereby
significantly reducing the impact of epistemic uncertainty and contributing to the
selection of the most appropriate mining method and mine design.

18.5 Quantifying Epistemic Uncertainty

In the Hilton example, geological model uncertainty was addressed at the signifi-
cant cost of more samples—effectively eliminating the epistemic uncertainty on the
operational scale through more data and analysis. With the hindsight of the addi-
tional data and analysis, and on the assumption that the test volume is sufficiently
representative of the remainder of the orebodies, the epistemic uncertainty associ-
ated with various drilling grids could be quantified. This would allow assessment of
the value of additional information against the cost of collecting it and/or the
operational cost of not collecting it. Stekenjokk is an example of the practical
consequences of proceeding with an unacceptable level of epistemic uncertainty.

Table 18.1 Differences in tonnes and grades of stopes compared with 5 m designs

Stope Drill spacing
(m)

Change in ore
tonnes (%)

Change in grade
(%)

Change in metal
tonnes (%)

1 10 −10.2 +4.2 −6.4
20 −3.0 +3.6 −0.5

2 10 +14.5 −5.9 +7.8
20 +21.4 −9.6 +9.7

3 10 −15.9 +5.0 −11.8
20 −18.5 +5.5 −14.0
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There is an extensive literature on using Bayesian probability to quantify epis-
temic uncertainty particularly to combine sources of uncertainty (e.g., Winkler
1981; Sankararaman and Mahadevan 2011) and to incorporate expert knowledge
and informed guesses in the form of subjective probabilities. It can be argued that
subjective probabilities are used implicitly throughout geostatistical analysis,
modelling, estimation and simulation irrespective of the amount of data. Expert
knowledge/judgment guides variogram calculation and interpretation, choice of
training images, domaining, sample differentiation, choice of estimation or simu-
lation method and validity of outputs. There is, however, a distinction between the
explicit subjective probability of informed guesses and possible geological models
and the implicit subjectivity in inferring model parameters from quantitative data.

In the remainder of this chapter, a distinction is made between model uncertainty
and uncertainty of the parameters of a specific model. Many authors do this
although in some cases the former may be a case of the latter e.g., it might be
argued (with some difficulty) that Stekenjokk was a matter of incorrect structural
parameters (degree of folding). A more convincing argument could be made for the
Hilton case—the initial assumed model was a Mt Isa type stratiform orebody and
the final agreed version was a more complex and less continuous version of the
latter.

In addition to Bayesian approaches, others include evidence theory: Shafer
(1976) and Dempster (1968); fuzzy sets: (Zadeh 1965); and possibility theory:
Zadeh (1978) and Dubois and Prade (2001). These and other approaches are
extensively used to quantify uncertainty in risk analysis and a good coverage of
probabilistic risk analysis is given in Bedford and Cooke (2001).

Over the past 30 years, all these approaches have been used to incorporate
model uncertainty in geostatistical estimation and simulation and the following list
is intended as representative rather than exhaustive. Omre (1987) used Bayesian
kriging to include qualified guesses when few data are available; the weight
assigned to the guess increases as the amount of data decreases.

Fuzzy kriging has been proposed as a means of including aleatory uncertainty (in
the sense of inaccurate or imprecise measurements) and epistemic uncertainty
(imprecise variogram parameters) in estimation. Uncertain data will, of course, lead
to an uncertain variogram but certain (accurate, error-free) data will not necessarily
lead to a certain variogram. Diamond (1989) proposed fuzzy kriging to deal with
uncertain or imprecise data. Bardossy et al. (1988, 1990a, b) proposed fuzzy kriging
for dealing with both sources of uncertainty but the computational cost hindered its
use. More recently, Loquin and Dubois (2010a, b) have developed these approaches
in computationally feasible forms. Bandemar and Gebhardt (2000) combine fuzzy
kriging with Bayesian incorporation of prior knowledge. Bardossy and Fodor
(2004) provide a comprehensive coverage of the use fuzzy set theory to quantify
geological uncertainty and consequent risk.

Srivastava (2005) used probabilistic modelling of ore lenses to account for
uncertainty in the boundaries of geological domains that constrain grade occur-
rence. Dowd (1986, 1994) and Dowd et al. (1989) used deterministic and proba-
bilistic methods for the same purpose in estimating and simulating grades.

18 Quantifying the Impacts of Uncertainty 359



Verly et al. (2008) quantified geological model uncertainty in a porphyry copper
deposit by simulating the four principal characteristics of porphyry models: faults
defining fault blocks; faulted rock types within fault blocks; un-faulted intrusive
and breccia bodies and alteration and copper grade shells.

Maximum likelihood estimation of spatial model parameters has been widely
reported in geostatistical applications: Mardia and Marshall (1984), Kitanidis and
Lane (1985), Zimmerman (1989), Dietrich and Osborne (1991) among others.
Pardo-Igúzquiza and Dowd (1997a, b, c, 2003, 2013), Dowd and Pardo-Igúzquiza
(2002) and Pardo-Igúzquiza et al. (2013) used maximum likelihood estimates of
variogram parameters and associated uncertainties to incorporate the effects of
model uncertainty in simulation and estimation.

For categorical variables, such as geological shapes and surfaces, multiple point
statistics simulation provides a means of specifying possible geological scenarios in
the form of alternative training images. Caers (2011) uses different training images
to introduce geological model uncertainty into the simulation of oil reservoirs. Park
et al. (2013) use history matching to quantify the uncertainty of facies models in the
form of alternative training images. Hermans et al. (2014) choose among several
geological scenarios in the form of possible training images using geophysical data
and Bayes rule to compute the conditional probabilities of the alternative training
images given the geophysical data.

With a few notable exceptions, in most mining applications the geological
(model) uncertainty from the feasibility stage onwards can be limited to uncertainty
in model parameters rather than uncertainty about the general model (e.g., strati-
form, vein, disseminated). However, for cases where fundamental (and a priori,
unverifiable) assumptions are/must be made about the general model, as in oil and
gas applications or applications in which physical processes give rise to the vari-
ables (e.g., HDR fracture occurrence and propagation), it is essential to test the
sensitivity of these assumptions by reconciling the consistency of outputs (e.g., heat
production from a geothermal reservoir) with predicted responses to inputs (e.g.,
fluid flow through fracture networks). The fundamental difference between these
cases and mining applications is that ultimately the latter can be directly observed.

On the assumption that the most important characteristics of the underlying
model can be captured in several parameters of a broad model, the uncertainty in the
parameter estimates can be quantified by generating a set of parameter values using
an appropriate set of rules; simulating the spatial random variable(s) using these
parameter values; and repeating this process a sufficiently large number of times.
Methods for sampling parameter values include Maximum Likelihood, Bootstrap
methods (Olea et al. 2015), Bayesian analysis (Kitanidis 1986) and, in multiple point
statistics simulations, Bayesian selection of alternative templates or training images
(Park et al. 2013; Hermans et al. 2014) and clustering combined with system
responses (Caers 2011).

The following two examples illustrate the use of maximum likelihood in model
selection and parameter inference and the propagation of the associated uncer-
tainties into geostatistical simulation for environmental and mining applications.
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18.5.1 Example: Transmissivity Uncertainty

This example is taken from Dowd and Pardo-Igúzquiza (2002). The data are from
Gotway (1994) and comprise 41 transmissivity measurements in the Culebra
Dolomite formation in New Mexico. The original application was for nuclear waste
site assessment, where uncertainty in the groundwater travel time of a particle is
assessed through its probability density function, which is estimated by running
groundwater flow and transport programs with different transmissivity field inputs.
These inputs are generated by conditional simulations of transmissivity.

The data are the logarithms of transmissivity in m2 s−1 and the data locations are
shown in Fig. 18.7 together with a histogram of the log-transmissivity data.

Maximum Likelihood was used to estimate the parameters of an exponential
covariance model of the residuals for drift orders 0, 1 and 2. Although drift is a
deterministic component of the universal model, in practice the coefficients are
estimated from the available data and are thus random variables with the means and
standard errors given in Table 18.2 for the optimal (determined by the Akaike
information criterion) drift model of order 1: drift (x, y) = β0 + β1 x + β2 y. The
estimated covariance parameters for k = 1 are given in Table 18.3 and the vari-
ogram is shown in Fig. 18.8.

In this case, as there is no nugget variance, the range and sill are estimated
independently. The correlation between range and sill is thus zero and any com-
bination of values of the two parameters inside their respective intervals is inside
the 95% confidence region as shown in Fig. 18.9a. The drift coefficients are also
independent of the sill and the range. As the estimated drift coefficients are cor-
related, not every combination of the three parameter values is equally reliable, i.e.
values inside the 95% confidence interval of the parameters taken together may not
be inside the 95% confidence interval for each individual parameter. The confidence
interval is an ellipsoid. Figure 18.9b shows the 95% confidence region for (β1, β2)
when the third coefficient the model is set to the estimated value given in
Table 18.3.
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Fig. 18.7 Data locations (distances in km) and histogram of log transmissivity data
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The effects of model uncertainty on simulation outputs are illustrated by gen-
erating six simulations for each pair of values A, B, C, D and E in Fig. 18.9; each
set of simulations was started with the same random number seed. The simulations
are shown in Fig. 18.10. The differences between corresponding simulations (e.g.,
first simulation in each of A, B, C, D and E) for the five sets of parameters reflect
the model uncertainty, which could be quantified further by simulating flow and
transport through the simulated transmissivity realisations.

18.5.2 Example: Coal Resource Risk Assessment

One of the most significant contributors to the total risk in the evaluation of
coal-mining projects is the uncertainty of the resource tonnage and quality char-
acteristics, often called the resource risk. This example is from the As Pontes
deposit in Galicia, Spain (Pardo-Igúzquiza et al. 2013). The most significant vari-
able in the assessment of resource uncertainty is the thickness of the coal seam.
Figure 18.11 shows the data locations at which seam thickness is measured together
with the estimated variogram values and the manually fitted (isotropic) variogram
model.

Table 18.2 Maximum
likelihood estimates of drift
coefficients

Parameter Estimate Stand. error

β0 −1.6062 0.8653
β1 −0.2245 0.0426
β2 −0.0141 0.0323

Table 18.3 ML estimates of
range and sill: exponential
covariance

Sill Stand. error Range Stand. error

1.28 0.284 1.99 0.667

6      2 4 8 10
Distance (lag)

12    14    16    18

1.6

1.4

1.0

1.2

0.8

0.6

0.4

0.0

0.2

Se
m

i-v
ar

io
gr

am
Fig. 18.8 Semi-variogram of
the residuals for k = 1 and
maximum likelihood model
fitted: sill 1.28, range 1.99 km
(effective range ∼6 km)
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Fig. 18.10 Outputs from six simulations using the variance and range parameters denoted by the
mean values A and the extreme values B, C, D and E in Fig. 18.9
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Spherical model variograms for seam thickness:

• Manual fitting: a=4128m,C0 = 3m2 andC=25m2.
• MaximumLikelihood: a=4460m,C0 = 4m2 and C=23m2.

Although the maximum likelihood estimates of the parameters are very similar
to those estimated by visual fitting, maximum likelihood has the advantage of
providing estimates of the uncertainty of the parameters. For illustrative purposes,
resources were computed as tonnage from panels with thickness above a threshold
defined by the 25th percentile of the sample data and equal to a thickness of 8.65 m.
The kriged resource volume is 1.97 × 108 m3.

Sequential Gaussian simulation was used to generate realisations of the thickness
of the seam. To quantify the uncertainty in the estimated resource, a total of 870
simulations were generated using the ‘certain’ variogram (maximum likelihood

Fig. 18.11 (Left) drill-hole locations and boundary of the study area. (Right) Variogram and
manually fitted model for seam thickness

Fig. 18.12 Conditionally
simulated realisation of coal
seam thickness
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parameters) and the total resource was calculated for each simulation. The his-
togram of the 870 simulated resources quantifies the uncertainty of the estimated
resources. An example simulation is shown in Fig. 18.12.

The parameter space {r0, a, σ
2} comprising respectively the nugget/variance

ratio, range and variance, is used to quantify the uncertainty in the model. The
parameter values were divided into discrete steps of 0.05 for r0 in the interval [0, 1];
700 m for a in the interval [1,000, 15,000] and 0.1 for σ2 in the interval [0.6, 2.6].
There are 268 models of triplets r0, a, σ2

� �
that lie inside the 75% confidence

region. As these models are not equally probable, the probabilities are normalised
so that they sum to 1.0 and each model is included as many times as indicated by its
normalised probability (i.e., probability sampling in which, for example, a model
with a normalised probability of 0.35 comprises 35% of the total simulated triplets).
A total of 870 simulations were used.

Histograms of the total resources for the 870 simulations, with and without the
uncertainty of the variogram model parameters, are given in Fig. 18.13. There is no
significant difference in mean resource values for the certain and uncertain values.

The 95% confidence interval for the total resource assuming the variogram is
known with certainty is [1.88 × 108, 2.19 × 108] m3 and [1.90 × 108, 2.23 ×
108] m3, when the uncertainty of the variogram model is included. The latter is
slightly higher than the same interval calculated under the assumption that the
variogram is known with certainty. However, the probability that the total resource
will be greater than 2.0 × 108 m3, is 0.59 when the uncertainty of the variogram
parameters is ignored and 0.75 when the uncertainty of the variogram parameters is
propagated into the simulated realisations. In other words, whilst there is no sig-
nificant difference in the mean resource for the two sets of simulations, the dif-
ference in the two distributions (because of different variances) is sufficient to
generate significantly different resource estimates above selected cut-offs.

Fig. 18.13 Histograms of total resources calculated by geostatistical simulation assuming the
variogram model parameters are known with certainty (solid line) and including the uncertainty of
the semi-variogram model parameters (dashed line)
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In this case, the differences in the total volume of resources, with and without
quantification of semi-variogram uncertainty, are small but the consequence of
selecting from the distribution of possible resources is significant. This illustrates a
general principle: the estimated total resource and the mean simulated resource,
with and without semi-variogram uncertainty, may not differ significantly but the
distributions of the two simulations will differ because of the different variances.
Similarly, selecting panel values above a threshold from the set of estimated panel
thicknesses or from a set of simulated panel thicknesses will yield different results.

In general, the outcome from the simulations with and without semi-variogram
uncertainty depends on the deposit and the amount of data available. Evaluation of
model uncertainty is critical in resource risk assessment even if it is ultimately
found that there is no practical difference between resource estimates obtained by
ignoring or including semi-variogram uncertainty. This example also has important
implications for compliance with resource and reserve reporting codes, most of
which use terms such as, or equivalent to, the amount of error [associated with an
estimate], the level of accuracy [of an estimate], the level of confidence [in a reserve
statement], and levels of geological confidence (words in italics are quoted from
JORC 2012). Whilst all reporting codes currently use these terms qualitatively they
all have specific quantitative meanings in statistics, probability and risk assessment
and are increasingly being referred to explicitly in reporting codes.

18.6 Quantifying the Effects of Transfer Uncertainty

An example of passive transfer uncertainty is the variation in open-pit size and
shape as a function of grade uncertainty as shown in Fig. 18.14 taken from a study
of a small gold orebody (Dowd 1995, 1997). The impacts of these types of
uncertainty can be quantified by standard applications of geostatistical simulation.
Dimitrakopoulos and co-workers have made significant contributions to the inte-
gration of in-situ grade and geological uncertainty into optimization algorithms
(e.g., Dimitrakopoulos et al. 2002; Goodfellow and Dimitrakopoulos 2013).

More challenging is the impact of propagating in-situ uncertainty through the
mining (extraction) process. The critical component of most metalliferous open-pit
mining operations is ore selection, i.e. the minimisation of ore loss and ore dilution
during extraction. In general, extraction comprises drilling, blasting and loading, all
of which are planned and designed on uncertain models of local geology and grade.
The conversion of the in-situ block model resource to a realistically recoverable
reserve may, in many instances, be the most significant source of uncertainty in
reserve estimation. The usual assessment of recoverable reserves, for example, is
limited to a simple volumetric exercise in which ore recovery is assessed as a
function of applying a range of selection volumes to a simulated orebody or an even
simpler volume-based adjustment of the variance of estimated block values. These
simplistic approaches ignore the practicalities of the mining, selection and loading
processes—blast design, behaviour and performance; equipment type, size and
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operation; ore displacement during blasting and loading; and ability to identify ore
zones within a blast muck pile. In many applications, the uncertainties introduced
by these technical processes are at least as significant as those that derive from the
in-situ spatial characteristics of grades and geology.

An approach to quantifying transfer process uncertainty for blasting and loading
comprises:

• generation of an in-situ model of the orebody comprising the grade, geology,
geomechanical properties and grade control variables within small volumes
determined by the smallest selectable volume within a blast muck-pile;

• definition of a blast volume comprising a large number of in-situ model vol-
umes, and subjecting it to a blast simulator, which effectively moves each
component model volume to its final resting place in the blast muck-pile; and

• application of simulated selective loading processes to the simulated blast
muck-pile to determine the selectivity that can be achieved by various sizes of
loader and types of loading and to quantify ore dilution and ore loss.

The in-situ model, representing perfect knowledge at all relevant scales, is
obtained by geostatistical simulation. An in-situ model that represents the reality of
knowing only the data and information that are available from specific grade control
drilling and sampling grids can be obtained by sampling the geostatistically sim-
ulated model on a specified grid. The volumes comprising the in-situ model are then
populated by estimates based only on the data corresponding to the specified

Fig. 18.14 Optimal open pits generated from 100 simulations of a small gold orebody. Top:
maximum volume; centre: median volume; bottom: minimum volume
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grade-control drilling and sampling grids. Different drilling and sampling grids can
be used to generate different models, each reflecting the levels of data and infor-
mation available. Selectivity can then be assessed as a function of the drilling and
sampling grids as well as the size and type of loader. Performance is assessed
against the ideal selectivity that can be achieved on the perfect knowledge model,
comprising the simulated values of each component volume. Applying costs, prices
and financial criteria enables an optimal selection of the grade control drilling grid,
size of loader, type of loading and even blast design.

The following case study (Dowd and Dare-Bryan 2004) is based on the Minas de
Rio Tinto SAL open-pit copper mine at Rio Tinto, southern Spain, which is typical
of a low-grade operation in the later stages of its life. Ore/waste delineation for
selective mining is difficult because the head grades are near the economic cut-off
grade and there are no clear geological controls on the mineralisation.

Sequential Gaussian simulation, with the blast-hole grades as conditioning data,
was used to generate realisations of each mining bench on a block grid of 0.5 m ×
0.5 m × 0.5 m, the grid determined based on blast and selection criteria.

0.00             % Cu 2.00

(a) (b)

(c) (d)

Fig. 18.15 a simulated copper grades in a bench: three horizontal sections; b four vertical
sections; c blast profile resulting from simulated blast applied to simulated grades; d predicted
composition of blast profile from simulated blast applied to in-situ grades estimated from samples
taken from blast-holes on 8 m spacing
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The first aspect of predicting recovery is the in-situ heterogeneity of the ore and
the extent to which it forms contiguous ‘parcels’ of a size relative to the selection
size (capacity and size of loading equipment). The second aspect is the hetero-
geneity of the ore after it has been subjected to blasting (i.e., the in-situ geological
spatial variability and the post-transfer in-situ blast-pile spatial variability).

Figure 18.15 shows horizontal and vertical cross-sections through a simulated
bench of dimensions 80 m × 40 m × 12 m (height) simulated copper grades on
horizontal planes at the top and bottom of a 12 m bench height and a 6 m
mid-plane. The vertical cross-sections of the bench are extremities (0 and 80 m) and
intermediate planes at 28 m intervals.

Figure 18.16 shows the assumed contiguous parcels of ore in the blast pile based
on estimated in-situ grade values together with the actual (simulated) parcels of ore.
A comparison of the two sets of ore volumes in Fig. 18.16 would quantify ore loss
and ore dilution. Blast movement sensors, inserted in drill holes and detected in the
blast-pile, are widely used to identify post-blast ore parcels. In such cases, this
process would quantify the uncertainty associated with the initial placement of
sensors based on estimated in-situ ore locations and a grade continuity model.

Among other examples, Goodfellow and Dimitrakopoulos (2017) describe an
approach that integrates sources of uncertainties arising from the combined pro-
duction of several mines. The in-situ orebody uncertainties are integrated with
process uncertainties from extraction to processing to marketing as the basis of
modelling and stochastically optimising the value chain of a mining complex.

18.7 Conclusion

There is a growing requirement for integrated frameworks for uncertainty quan-
tification in all geologically based applications. Quantified uncertainty and geo-
statistical methods are increasingly being referenced explicitly in mineral resource
and reserve codes. This does not require rewriting the reporting codes but it does

Fig. 18.16 (Left) selected ore volumes based on estimates (Right) actual ore volumes
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mean that there is a need to establish a general accepted framework for the quan-
tification of all sources of uncertainty.

Quantified risk assessments for environmental applications are now required in
many jurisdictions for applications such as waste burial and the treatment, storage
and disposal of radioactive material. These assessments are required to cover time
periods that range from around 200 years for household wastes to thousands of
years for the underground storage or disposal of radioactive wastes.

The management of groundwater resources, especially karst systems in envi-
ronmentally vulnerable coastal areas, requires the integration of flow, extraction,
seawater intrusion, contamination from agriculture and other activities.

In these and all such applications the identification and quantification of all
sources of uncertainty is critical to ensuring reliable estimation, planning, design
and, for resource extraction, production and to managing associated risks. As
summarised here, many methods and approaches have been developed by many
authors but most are limited to aleatory uncertainty.

The work summarised here provides examples of methods that have been suc-
cessfully applied to identify and quantify all sources of uncertainty in mineral
resource and environmental applications. They provide a contribution to the need,
and the increasing requirement, to develop integrated frameworks for uncertainty
quantification in all geologically based applications.
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Chapter 19
Advances in Sensitivity Analysis
of Uncertainty to Changes in Sampling
Density When Modeling Spatially
Correlated Attributes

Ricardo A. Olea

Abstract A comparative analysis of distance methods, kriging and stochastic
simulation is conducted for evaluating their capabilities for predicting fluctuations
in uncertainty due to changes in spatially correlated samples. It is concluded that
distance methods lack the most basic capabilities to assess reliability despite their
wide acceptance. In contrast, kriging and stochastic simulation offer significant
improvements by considering probabilistic formulations that provide a basis on
which uncertainty can be estimated in a way consistent with practices widely
accepted in risk analysis. Additionally, using real thickness data of a coal bed, it is
confirmed once more that stochastic simulation outperforms kriging.

19.1 Introduction

In any form of sampling, there is always significant interest in establishing the
reliability that may be placed on any conclusions extracted from a sample of certain
size. In the earth sciences and engineering, such conclusions can be the extension of
a contamination plume or the in situ resources of a mineral commodity. Increases in
sample size result in monotonic improvements with diminishing returns: up to
measuring the entire population, the benefits increase with the number of obser-
vations. In the classical statistics of independent random variables, the number of
observations is all that counts. In spatial statistics, however, the locations of the data
are also important.

Early on in spatial sampling, it was recognized that sampling distance was a
factor in determining the reliability of estimations. However, insurmountable dif-
ficulties of incorporating other factors led to the reliability of spatial samplings
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being determined solely by geographical distance, particularly for the public dis-
closure of mineral resources (e.g., USBM and USGS 1976).

Significant advances in the determination of spatial uncertainty did not take
place until the advent of digital computers and the formulation of geostatistics (e.g.,
Matheron 1965). Geostatistics introduced the concept of kriging variance, which
was a significant improvement over the relatively simplistic distance criteria for
determining reliability. The third generation of methods to determine reliability of
spatial sampling came with the development of spatial stochastic simulation shortly
after the formulation of kriging (Journel 1974).

Although there are several reports in the literature about applications of distance
methods (e.g., USGS 1980; Wood et al. 1983; Rendu 2006) and kriging (e.g., Olea
1984; Bhat et al. 2015), the mere fact that distance methods are still being used
indicates that the merits of the geostatistical methods remain unappreciated. This
chapter is an application of the three families of methods for conducting sensitivity
analyses on the reliability of the assessment of geologic resources due to variations
in sample spacing. The simulation formulation given here is novel as it is an
illustrative example used for comparing all three approaches.

19.2 Data

The data in Fig. 19.1 and Table 19.1 of the Appendix will be used to anchor the
presentation. They are thickness measurements for the Anderson coal bed in a
central part of the Gillette coal field of Wyoming taken from a more extensive study
(Olea and Luppens 2014). A conversion factor could have been used to transform

Fig. 19.1 Measurements of thickness for the Anderson coal bed in a central part of the Gillette
coal field, Wyoming, USA: a posting of values; b histogram
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all the thickness values to tonnage, but it was decided to perform the analysis in
terms of the attribute actually measured. The reader may want to know, however,
that a density of 1,770 short tons per acre-foot for subbituminous coal is a good
average value to estimate tonnage values and that the cell size used here is 400 ft by
400 ft.

With resources of more than 200 billion short tons of coal in place, the Gillette
coal field is one of the largest coal deposits in the United States (Luppens et al.
2008). There are eleven beds of importance in the field. The Anderson coal bed, in
the Paleocene Tongue River Member of the Fort Union Formation, is the thickest
and most laterally continuous of the six most economically significant beds. This
low sulfur, subbituminous coal has a field average thickness of 45 ft. Hence, it is the
main mining target.

19.3 Traditional Uncertainty Assessment

For a long time, the prevailing practice has been the determination of uncertainty in
mining assessments based on distance between drill holes. Figure 19.2 shows an
example following U.S. Geological Survey Circular 891 (Wood et al. 1983),
hereafter referred to as Circular 891. This example uses the drill holes in Fig. 19.1a
after eliminating the holes along the diagonal. Circular 891 classifies resources into
four categories according to the distance from the estimation location to the closest
drill hole:

• 0 to ¼ mi: measured
• ¼ to ¾ mi: indicated
• ¾ to 3 mi: inferred
• More than 3 mi: hypothetical

Fig. 19.2 Classification of
in situ resources according to
Circular 891 for the data in
Fig. 19.1a after eliminating
the drill holes along the
diagonal
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Classification schemes like this are fairly simple and gained popularity prior to
the advent of computers. Evaluating the degree of uncertainty of a magnitude or an
event is the domain of statistics (e.g., Caers 2011). The standard approach for
analyzing uncertainty consists of listing all possible values or events and then
assigning a relative frequency of occurrence. A simple example is the tossing of a
coin, where the outcomes are head and tail. For a fair coin, these two events occur
with the same frequency, which is called probability when normalized to vary from
0 to 1. The same concept can be applied to any event or attribute, including coal bed
thickness. For example, the outcome at a site not yet drilled could be modeled as the
following random variable:

• 5–10 ft, probability 0.3
• 10–15 ft, probability 0.4
• 15–21 ft, probability 0.2
• 21–28 ft, probability 0.1

Note that the sum of the probabilities of all possible outcomes is 1.0. Random
variables rigorously allow answering multiple questions about unknown magni-
tudes, in this case, the likely thickness to penetrate. A sample of just three assertions
would be: (a) coal will certainly be intersected because the value zero is not listed
among the possibilities; (b) it is more likely that the intersected thickness will be
less than 15 ft than greater than 15 ft; and (c) odds are 6 to 4 that the thickness will
be between 10 and 21 ft, or to put it differently, the 11 ft interval between 10 and 21
ft has a probability of 0.6 of containing the true thickness. These are the standard
concepts and tools used universally in statistics to characterize uncertainty.

The classification system established by Circular 891 does not use probabilities
and lacks the predictive power of a random variable approach. In particular,

• The classification uses an ordinal scale (e.g., Urdan 2017), supposedly ranked,
but the classification does not indicate how much more uncertain one category is
relative to another. In practice, it has been found that errors may not be sig-
nificantly different among categories (Olea et al. 2011).

• The results of a distance classification are difficult to validate. The tonnage in a
class denotes an accumulated magnitude over an extensive volume of the
deposit. The entire portion of the deposit comprising a class would have to be
mined in order to determine the exact margin of error in the classification for
such a class. In practical terms, the classification is not falsifiable, thus it is
unscientific (Popper 2000). Moreover, there is little value in determining the
reliability of a prediction post mining.

• The classification fails to consider the effect of geologic complexity. Coal
deposits ordinarily contain several geologically different beds that may be
penetrated drilling a single hole. When all beds are penetrated by the same
vertical drill holes, the drilling pattern is the same for all beds. Using the
Circular 891 classification method, the areal extension of each category is the
same for the resources of each coal bed separately and for the accumulated
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resources considering all coal beds, while logic indicates that the extension of
true reliability classes should be all different.

• For similar reasons, in a multi-seam deposit, increasing the drilling density
results in the same reduction in uncertainty for all coalbeds, which is also
unrealistic.

• The number of methods for estimating resources is continuously growing,
hopefully for the better. Considering that not all methods are equally powerful,
independently of the data, different methods offer varying degrees of reliability.
The uncertainty denoted by the Circular 891 classification is insensitive to the
methods used in the calculation of the tonnage. For example, inferred resources
remain as inferred resources independently of the nature and quality of the
methods used in the assessment.

Despite these drawbacks and the formulation of the superior alternatives below,
Circular 891 and similar approaches remain the prevailing methods worldwide for
the public disclosure of uncertainty in the assessment of mineral resources and
reserves (JORC 2012; CRIRSCO 2013).

19.4 Kriging

Kriging is a family of spatial statistics methods formulated for the improvement in
the reporting of uncertainty and in the estimation of the attributes of interest
themselves. Although it is possible to establish links between kriging and other
older estimation methods in various disciplines, mining was the driving force
behind the initial developments of kriging and other related methods collectively
known today as geostatistics (Cressie 1990).

Kriging is basically a generalization of minimum mean square error estimation
taking into account spatial correlation. Kriging provides two numbers per location
ðsoÞ conditioned to some sample of the attribute ðzðsiÞ, i=1, 2, . . . ,NÞ: an estimate
of the unknown value ðz*ðsoÞÞ and a standard error ðσðsoÞÞ. The exact expression
for these results depends on the form of kriging. For ordinary kriging, the most
commonly applied form and the one used here, the equations are:

z*ðsoÞ= ∑
n

i=1
λi ⋅ zðsiÞ ð19:1Þ

σ2ðsoÞ= ∑
n

i=1
λi ⋅ γ so, sið Þ

� �
− μ ð19:2Þ

where:

n≤N is a subset of the sample consisting of the observations closest to so;
γðdÞ is the semivariogram, a function of the distance d between two locations;
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λi is a weight determined by solving a system of linear equations comprising
semivariogram terms; and

μ is a Lagrange multiplier, also determined by solving the same system of
equations.

The method presumes knowledge of the function characterizing the spatial
correlation between any two points, which is never the case. A structural analysis
must be conducted before running kriging to estimate this function: a covariance or
semivariogram. The semivariogram can be regarded as a scaled distance function.
The weights and the Lagrange multiplier depend on the semivariogram for multiple
drill-hole to drill-hole distances and estimation location to drill-hole distances. For
details, see for example Olea (1999).

The two terms, z*ðsoÞ and σ2ðsoÞ, are the mean and the variance of the random
variable modeling the uncertainty of the true value of the attribute zðsoÞ, terms that
are compatible with all that is known about the attribute through the sample of size
N. Variance is a measure of dispersion, in this case, dispersion of possible values
around the estimate, which is the most likely value. Hence, changing the sample, a
sensitivity analysis of kriging variance is a sensitivity analysis of variations in
uncertainty due to changes in the sampling scheme. From Eq. 19.2, the kriging
variance does not depend directly on the observations. The dependence is only
indirect through the semivariogram, which is based on the data. Considering that
there is one true semivariogram per attribute, changes in adequate sampling should
not result in significant changes in the estimated semivariogram, which is kept
constant. This independence between data and standard error facilitates the appli-
cation of kriging to the sensitivity analysis in the reliability of an assessment due to
changes in sampling strategy because mathematically actual measurements are not
necessary to calculate standard errors; the modeler only has to specify the semi-
variogram and the sampling locations.

Figure 19.3 shows the set of estimated semivariogram values obtained using the
sample in Fig. 19.1 plus a model fitting the points for the purpose of having valid
semivariogram values for any distance. In this case, the fitted curve is called a
spherical model with a nugget of 20 sq ft, sill of 595 sq ft and a spatial correlation
range of 88,920 ft. Geologically, the nugget is related to the variance of short scale
fluctuations; the sill is of the same order of magnitude as the sample variance, and
the correlation range is equal to half the average geographical size of the anomalies.
For details on structural analysis, see for example Olea (2006).

Figure 19.4 shows the results of applying ordinary kriging to the sample in
Fig. 19.1a and Table 19.1 in the Appendix. As expected, the standard error is zero at
the drill holes because there is no uncertainty where measurements have been taken.

Although kriging can analyze any configuration, Fig. 19.5 only relates to
additions or eliminations to the basic sample in Fig. 19.1a. Values along the
diagonal were used only for modeling the semivariogram and producing Fig. 19.4.
Figure 19.5a also has every other row and column eliminated. Estimates could be
produced for the first two configurations because thickness is known at each drill
hole. The other maps were produced by interpolating locations in the sample with
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Fig. 19.4 Ordinary kriging maps for the Anderson coal bed in a central part of the Gillette coal
field (Wyoming) using the sample in Fig. 19.1: a thickness; b standard error

Fig. 19.3 Semivariogram for the Anderson coal bed thickness. The crosses denote estimated
values and the curve is a model fitting the values
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Fig. 19.5 Ordinary kriging standard error for the same configuration in Fig. 19.2 for several
average spacings: a 6 mi; b 3 mi; c 1.5 mi; d 3/4 mi; e 3/8 mi
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the next largest spacing; it is only possible to produce the standard error map for
Fig. 19.5c–e.

The similarity between Figs. 19.2 and 19.5b may lead to incorrect conclusions.
Although the location and extension of similar colors are approximately the same,
what is important is the meaning of the colors. Figure 19.2 does not provide any
numerical information that can be associated with the accuracy and the precision of
the estimated values. In Fig. 19.5b the numbers are standard errors, a direct mea-
surement of estimation reliability. In other more irregular configurations, there will
not be similarity in color patterns no matter how the colors are selected. For
example, by expanding the boundary of the study area, Fig. 19.6 shows how the
Circular 891 classification is totally insensitive to the fact that, along the periphery,
there is an increase in uncertainty because the data are now to one side, not sur-
rounding the estimation locations. Instead, kriging accounts for the fact that
extrapolation is always a more uncertain operation than interpolation, an important
capability when accounting for boundary effects.

Kriging is able to provide random variables for the statistical characterization of
uncertainty if the modeler is willing to introduce a distributional assumption. z*ðsoÞ
and σ2ðsoÞ are the mean and the variance of the distribution of the random variable
providing the likely values for zðsoÞ. These parameters are necessary but not suf-
ficient to fully characterize any distribution. However, this indetermination can be
eliminated by assuming a distribution that is fully determined with these two
parameters. Ordinarily, the distribution of choice is the normal distribution, fol-
lowed by the lognormal. The form of the distribution does not change by sub-
tracting zðsoÞ from all estimates. As the difference z*ðsoÞ− zðsoÞ is the estimation
error, the distributional assumption also allows characterizing the distribution for
the error at so.

Fig. 19.6 Comparison of results when expanding the boundaries of the study area: a Circular 891
classification; b ordinary kriging standard error
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Kriging with a distribution for the errors overcomes all the disadvantages of the
distance methods listed in the previous section:

• It is possible to calculate the probability that the true value of the attribute lies in
any number of intervals. Probabilities are a form of a ratio variable, for which
zero denotes an impossible event and, say, a 0.2 probability denotes twice the
likelihood of occurrence of an event than 0.1.

• Validation is modular. An adequate theory assures that, on average, z*ðsoÞ and
σ2ðsoÞ are good estimates of reality. Yet, as illustrated by an example in the last
Section, if going ahead with validation of the uncertainty modeling primarily to
check the adequacy of the normality assumption, it is not necessary to validate
all possible locations throughout the entire deposit to evaluate the quality of the
modeling.

• The effect of complexity in the geology is taken into account by the
semivariogram.

• In general, the thickness of every coal bed or the accumulated values of
thickness for several coal beds has a different semivariogram. Thus, even if the
sampling configuration is the same, the standard error maps will be different.

• The characterization of uncertainty is specific to the estimation method because
the results are valid only for estimated values using the same form of kriging
used to generate the standard errors.

Figure 19.7 summarizes the results of the maps in Fig. 19.5. Display of the 95th
percentile is based on the assumption that all random variables follow normal
distributions. The curves clearly outline the consequences of varying the spacing in

Fig. 19.7 Sensitivity of
ordinary kriging to spacing of
mean standard error, its 95th
percentile, and the maximum
standard error based on the
Fig. 19.5 configurations
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a square sampling pattern from 2,000 to 32,000 ft. So, for example, if it is required
that all estimates in the study area must have a standard error less than 10 ft, then
the maximum spacing must be at most 12,500 ft. The validity of the results,
however, is specific to the attribute and sampling pattern: thickness of the Anderson
coal bed investigated with a square grid. Any change in these specifications requires
preparation of another set of curves.

19.5 Stochastic Simulation

Despite limited acceptance, the kriging variance has been in use for a while in the
sensitivity analysis of uncertainty to changes in sampling distances and configu-
rations (e.g., Olea 1984; Cressie et al. 1990). Kriging, like any mathematical
method, has been open to improvements. One result has been the formulation of
another family of methods: stochastic simulation.

Relative to the topic of this chapter, stochastic simulation offers two improve-
ments: (a) it is no longer necessary to assume the form for the distribution providing
all possible values for the true value of the attribute zðsoÞ; and (b) the standard error
is sensitive to the data.

As seen in Fig. 19.4, for every attribute and sample, kriging produces two maps,
a map of the estimate and a map of the standard error. The idea of stochastic
simulation is to characterize uncertainty by producing instead multiple attribute
maps, all compatible with the data at hand and each representing one possible
outcome of reality—realization, for short. From among the many available methods
of geostatistical simulation, sequential Gaussian simulation has been chosen for this
study because of its simplicity, versatility and efficiency (Pyrcz and Deutsch 2014).
Figure 19.8 shows four simulated realizations, each of which is a possible reality in
the sense that the values have the same statistics and spatial statistics (semivari-
ogram) and the simulation reproduces the known sample values (i.e., the sample
used to prepare Fig. 19.5b).

Generation of significant results needs preparation of more realizations than the
four in Fig. 19.8. An estimation of uncertainty requires summarizing the fluctua-
tions from realization to realization, either at local or global scales. Figure 19.9 is
an example of local fluctuation summarizing all values of thickness at the same
location for 100 realizations. This histogram is the numerical characterization of
uncertainty through a random variable. There is one random variable for each of the
57,528 pixels (cells) comprising each realization. As clearly implied by the selected
values in the tabulation, this collection of 100 maps provides multiple predictions of
the true thickness value that should be expected at this location. For example, the
most likely value (mean) is 65.75 ft; the standard error is 13.47 ft; and there is a
0.95 probability that the coal bed will be less than 87.8 ft thick.

Maps can be generated for various statistics across the study area to display
fluctuations in their values. Figure 19.10 shows a map of the mean and a map of the
standard error. Note that the map for the mean is quite similar to the ordinary
kriging map in Fig. 19.4a. More importantly, the maps for the standard errors in
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Figs. 19.5b and 19.10b are significantly different. The differences in the standard
errors are primarily the result of the dependency of the standard error not only on
the semivariogram and the drill hole locations, but also on the values of thickness as
well. For example, comparing Figs. 19.1a and 19.10b, despite the regularity in the
drilling, there is less uncertainty in the southwest corner where all values are low as
well as in the south central part where all values are consistently high.

Production of a display of the standard error equivalent to that in Fig. 19.5 is
more challenging now that the standard deviation must be extracted from multiple
realizations and the preparation of each realization requires a value at each drill hole

Fig. 19.8 A sample of four sequential Gaussian realizations using the same data used in the
preparation of Fig. 19.5b
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in the configuration of interest to complete the analysis. Figure 19.11 shows the
equivalent results to Fig. 19.5 for the same drill holes, but now produced after
applying sequential Gaussian simulation. The additional data necessary to prepare
the maps in Fig. 19.11c–e where obtained by randomly selecting 10 of the 100
realizations used to prepare the maps in Figs. 19.8 and 19.10. The data for the
hypothetical drill holes were taken from the values at the collocated nodes in these
selected 10 realizations, thus obtaining 10 datasets consisting partly of the 48 actual
data in Fig. 19.11b plus the artificial data obtained by “drilling” the realizations.

Fig. 19.10 Anderson coal bed thickness according to 100 sequential Gaussian simulations:
a expected value of thickness; b standard error

Fig. 19.9 Example of the numerical approximation to the random variable modeling uncertainty
in the value of thickness at a site not yet drilled
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Fig. 19.11 Sequential Gaussian simulation standard error for the same configuration on Fig. 19.2
for several average spacings: a 6 mi; b 3 mi; c 1.5 mi; d 3/4 mi; e 3/8 mi
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Finally, each dataset was used to generate 100 realizations, for a total of 1,000
realizations per configuration. As mentioned for Fig. 19.10b, despite the regularity
of the drill hole pattern, the fluctuations in standard error are no longer completely
determined by the drilling pattern.

Figure 19.12 is the summary equivalent to that in Fig. 19.7. Considering the
completely different methodologies behind both sets of curves, the results are quite
similar, particularly the curves for the mean standard error, which are almost
identical. The more extreme standard errors of the sequential Gaussian simulation
are larger than those for ordinary kriging in the case of the 95th percentile and the
maximum value. The remaining question is: Which approach produces the most
realistic forecasts of uncertainty?

19.6 Validation

Figure 19.13 provides an answer to the question above in terms of percentiles.
A percentile is a number that separates a set of values into two groups, one below
and the other one above the percentile. The percentage of values below gives the
name to the percentile. For example, in Fig. 19.9, the value 46.22 ft separates the
100 values of thickness into two classes, those below and those equal to or above
46.22 ft. It turns out that only 5 of the 100 values are below 46.22 ft. Hence, 46.22
ft is the 5th percentile of that dataset. Accepting only integer values of percentages,
there are 99 percentiles in any dataset. The quality of a model of uncertainty can be
validated by checking the proportion of true values that are actually below the
percentiles of the prediction random variables collocated with data not used in the

Fig. 19.12 Sequential
Gaussian simulation
sensitivity to spacing of mean
standard error, its 95th
percentile, and the maximum
standard error based on the
configurations in Fig. 19.11
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Fig. 19.13 Validation of the uncertainty predictions made for the 3 mi spacing samples:
a ordinary kriging; b sequential Gaussian simulation

modeling. One of the reasons for selecting the Anderson coal thickness for the
study is that there are much more data than the 48 values used to generate the
realizations, a generous set of 2,136 additional values to be precise. This larger
number of values has been used for checking the accuracy of the percentiles, not
only the 5th percentile, but all 99 percentiles. In the graphs, the actual percentage
shows, on average, the proportion of times the true value was below the percentile
of a random variable at the location of a censored measurement. For example, in
Fig. 19.13a, 641 times out of 2,136 (i.e., 30%) the true value was indeed below the
35th percentile. Ideally, all dots should lie along the main diagonal. The clear
winner is sequential Gaussian simulation.

19.7 Conclusions

Distance methods, kriging and stochastic simulation rank, in that order, in terms of
increasing detail and precision of the information that they are able to provide
concerning the uncertainty associated to any spatial resource assessment.

The resource classification provided by distance methods is completely inde-
pendent of the geology of the deposit and the method applied to calculate the
mineral resources. The magnitude of the resource per class has no associated
quantitative measure of the deviation that could be expected between the calculated
resource and the actual amount in place.

The geostatistical methods of kriging and stochastic simulation base the mod-
eling on the concept of random variable used in statistics, which allows the same
type of probabilistic forecasting used in other forms of risk assessments. Censored
data were used for validating the accuracy of the probabilistic predictions that can
be made using the geostatistical methods. The results were entirely satisfactory,
particularly in the case of stochastic simulation.
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Appendix

See Table 19.1.

Table 19.1 Thickness data. ID = identification number; Thick. = thickness; ft = feet

ID Easting (ft) Northing (ft) Thick. (ft) ID Easting (ft) Northing (ft) Thick. (ft)

2 431,326 1,316,298 49.0 39 399,741 1,236,607 77.0
3 398,753 1,316,124 32.0 40 432,107 1,236,582 70.5
4 352,156 1,316,015 37.0 41 384,280 1,236,527 58.0
5 365,531 1.315,818 49.0 42 415,737 1,236,459 78.0
7 382,816 1,314,601 55.0 44 352,743 1,221,026 10.0
9 430,850 1,301,568 48.0 45 368,483 1,220,742 26.0
10 398,805 1,301,506 57.0 46 431,473 1,220,645 59.0
11 352,234 1,299,533 37.0 47 399,596 1,220,598 92.0
12 366,769 1,300,871 50.0 48 415,871 1,220,477 86.0
13 414,876 1,300,240 56.0 49 384,411 1,220,477 32.0
14 382,892 1,299,775 58.0 51 367,180 1,206,180 17.0
16 416,097 1,284,247 60.0 52 399,353 1,205,960 99.0
17 430,593 1,284,243 47.0 53 417,304 1,204,922 76.0
18 400,291 1,284,132 87.0 54 384,456 1,204,470 28.0
19 384,138 1,283,859 53.0 55 432,027 1,203,507 52.0
20 368,123 1,283,849 56.0 56 351,466 1,203,245 11.0
21 351,956 1,283,728 36.0 123 356,115 1,295,788 35.0
23 366,138 1,268,773 55.0 145 360,095 1,291,759 38.0
24 383,559 1,268,661 60.0 166 362,980 1,289,047 42.0
25 431,915 1,268,363 70.0 216 371,863 1,277,272 50.0
26 415,962 1,268,347 75.0 234 377,019 1,272,660 57.0
27 399,884 1,268,270 63.0 282 387,755 1,264,534 60.0
28 352,933 1,268,254 34.0 299 391,477 1,261,727 70.0
30 352,738 1,253,951 21.0 318 395,814 1,257,798 58.0
31 384,499 1,253,969 62.0 380 403,832 1,248,290 75.0
32 400,076 1,252,554 79.0 406 407,848 1,243,143 81.0
33 415,868 1,256,420 57.0 427 411,790 1,240,470 84.0
34 368,579 1,250,159 44.0 470 419,690 1,232,449 92.0
35 430,979 1,251,072 81.5 497 422,447 1,228,465 90.0
37 352,979 1,237 155 30.0 512 427,604 1,224,598 46.0
38 368,493 1,236,862 37.0 1001 415,000 1,316,000 45.0

19 Advances in Sensitivity Analysis of Uncertainty to Changes … 391

http://pubs.usgs.gov/circ/1367/
http://pubs.usgs.gov/circ/1367/


References

Bhat S, Motz LH, Pathak C, Kuebler L (2015) Geostatistics-based groundwater-level monitoring
network design and its application to the Upper Floridan aquifer, USA. Environ Monit Assess
187(1):4183, 15

Caers J (2011) Modeling uncertainty in the earth sciences. Wiley-Blackwell, Chichester, UK,
p 229

Cressie N (1990) The origins of kriging. Math Geol 22(3):239–252
Cressie N, Gotway CA, Grondona MO (1990) Spatial prediction from networks. Chemometr Intell

Lab Syst 7(3):251–271
CRIRSCO (Combined Reserves International Reporting Standards Committee) (2013) Interna-

tional reporting template for the public reporting of exploration results, mineral resources and
mineral reserves, pp 41. http://www.crirsco.com/templates/international_reporting_template_
november_2013.pdf

JORC (Joint Ore Reserves Committee) (2012) Australasian code for reporting of exploration
results, mineral resources and ore reserves. http://www.jorc.org/docs/jorc_code2012.pdf

Journel AG (1974) Geostatistics for conditional simulation of ore bodies. Econ Geol 69(5):673–
687

Luppens JA, Scott DC, Haacke JE, Osmonson LM, Rohrbacher TJ, Ellis MS (2008) Assessment of
coal geology, resources, and reserves in the Gillette coalfield, Powder River Basin, Wyoming.
U.S. Geological Survey, Open-File Report 2008-1202, pp 127. http://pubs.usgs.gov/of/2008/
1202/

Matheron G (1965) Les variables régionalisées et leur estimation; Une application de la théorie des
fonctions aléatories aux Sciences de la Nature. Masson et Cie, Paris, pp 305

Olea RA (1984) Sampling design optimization for spatial functions. J Int Assoc Math Geol 16
(4):369–392

Olea RA (1999) Geostatistics for engineers and earth scientists. Kluwer Academic Publishers,
Norwell, MA, p 303

Olea RA (2006) A six-step practical approach to semivariogram modeling. Stoch Env Res Risk
Assess 39(5):453–467

Olea RA, Luppens JA (2014) Modeling uncertainty in coal resource assessments, with an
application to a central area of the Gillette coal field, Wyoming. U.S. Geological Survey
Scientific Investigations Report 2014-5196, pp 46. http://pubs.usgs.gov/sir/2014/5196/

Olea RA, Luppens JA, Tewalt SJ (2011) Methodology for quantifying uncertainty in coal
assessments with an application to a Texas lignite deposit. Int J Coal Geol 85(1):78–90

Popper KR (2000) The logic of scientific discovery. Routledge, London, p 480
Pyrcz MJ, Deutsch CV (2014) Geostatistical reservoir modeling, 2nd edn. Oxford University

Press, New York, p 433
Rendu JM (2006) Reporting mineral resources and mineral reserves in the United States of

America—Technical and regulatory issues. In: Proceedings, Sixth International Mining
Geology Conference: Australasian Institute of Mining and Metallurgy, pp 11–20

Urdan TC (2017) Statistics in plain English. Routledge, New York, p 265
USBM and USGS (U.S. Bureau of Mines and U.S. Geological Survey) (1976) Coal resource

classification system of the U.S. Bureau of Mines and U.S. Geological Survey. Geological
Survey Bulletin 1450-B, pp 7. https://pubs.usgs.gov/bul/1450b/report.pdf

392 R. A. Olea

http://www.crirsco.com/templates/international_reporting_template_november_2013.pdf
http://www.crirsco.com/templates/international_reporting_template_november_2013.pdf
http://www.jorc.org/docs/jorc_code2012.pdf
http://pubs.usgs.gov/of/2008/1202/
http://pubs.usgs.gov/of/2008/1202/
http://pubs.usgs.gov/sir/2014/5196/
https://pubs.usgs.gov/bul/1450b/report.pdf


USGS (U.S. Geological Survey) (1980) Principles of resource/reserve classification for minerals.
U.S. Geological Survey Circular 831, pp 5. http://pubs.usgs.gov/circ/1980/0831/report.pdf

Wood GH Jr, Kehn TM, Carter MD, Culbertson WC (1983) Coal resources classification system
of the U.S. Geological Survey. U.S. Geological Survey Circular 891, pp 65. http://pubs.usgs.
gov/circ/1983/0891/report.pdf

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

19 Advances in Sensitivity Analysis of Uncertainty to Changes … 393

http://pubs.usgs.gov/circ/1980/0831/report.pdf
http://pubs.usgs.gov/circ/1983/0891/report.pdf
http://pubs.usgs.gov/circ/1983/0891/report.pdf
http://creativecommons.org/licenses/by/4.0/


Chapter 20
Predicting Molybdenum Deposit Growth

John H. Schuenemeyer, Lawrence J. Drew and James D. Bliss

Abstract In the study of molybdenum deposits and most other minerals deposits,
including copper, lead and zinc, there is speculation that most undiscovered ore
results from an increase (or “growth”) in the estimated size of a known deposit due
to factors such as exploitation and advances in mining and exploration technology,
rather than in discovering wholly new deposits. The purpose of this study is to
construct a nonlinear model to estimate deposit “growth” for known deposits as a
function of cutoff grade. The model selected for this data set was a truncated normal
cumulative distribution function. Because the cutoff grade is commonly unknown, a
model to estimate cutoff grade conditioned upon the deposit grade was constructed
using data from 34 deposits with reported data on molybdenum grade, cutoff grade,
and tonnage. Finally, an example is presented.

Keywords Porphyry molybdenum ⋅ Deposit growth ⋅ Cutoff grade
Truncated cumulative distribution model fitting and estimation ⋅ Confidence
and prediction intervals for nonlinear estimation

20.1 Introduction

Initial estimates of a mineral deposit size based on limited data usually underesti-
mate the ultimate size of a mineral deposit, often by a significant amount. The initial
size estimate may be of only marginal interest but the size estimate after some
exploration and development can be of significant interest. The steps in this process
are the subject of this chapter. “Mineral resources” are defined as concentrations or
occurrences of material of economic interest in or on the Earth’s crust in such form,
quality, and quantity that there are reasonable prospects for eventual economic
extraction (Zientek and Hammarstrom 2014), and the term “mineral reserves” is
restricted to the economically mineable part of a mineral resource.
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The reported size of known mineral or oil and gas deposit reserves recorded in the
mining literature typically increases through time as subsequent development dril-
ling and mining enlarge the deposit’s footprint. This phenomenon is referred to as
“deposit growth”. In a sense, a deposit is never finished “growing” until it is com-
pletely mined out. Research on the growth of a deposit’s reserves has been a topic of
investigation for many years within the United States Geological Survey. Drew
(1997) illustrated the growth of oil and gas fields over time in the United States and
determined that a large percentage of the ultimate production of a region could come
from deposit growth, if the forecast was made early enough in the discovery process.
Long (2008) defined reserve growth as the ratio of current reserves plus past pro-
duction to original reserves. He examined reserve growth in porphyry copper
deposits and found that about 20% of porphyry copper mines in the Western
Hemisphere had experienced reserve growth of a factor of 10 or better over initial
reserves. Reserve growth at these mines added reserves comparable in size to
reserves added through discovery of new deposits during the same time period.

Three variables are required to estimate the ultimate size of a deposit: (1) the
grade of the deposit, (2) cutoff grade of the deposit, and (3) associated tonnage of
ore at successive points in the development of the deposit (Long 2008). The grade
of a deposit is defined as the relative quantity of ore mineral within the orebody,
typically expressed as a percentage (or g/t). The grade may vary across an orebody,
but commonly an average grade may be applied to the orebody as a whole. A cutoff
grade is the lowest grade of mineralized material that qualifies as economically
mineable and available in a given deposit (Committee for Mineral Reserves
International Reporting Standards 2006). Mined material with a grade below the
cutoff grade is not processed into metal but is set aside. As deposit development and
mining progress, over time the cutoff grade usually declines in an orderly manner.
Tonnage is typically reported in metric tons (mt) and includes the mass of total
production, reserves and resources of pre-mined material.

The purpose of this study was to construct a nonlinear model to estimate the
incremental deposit “growth” for known mineralized areas as a function of cutoff
grade, using porphyry molybdenum deposits as an example. Porphyry molybdenum
deposits are related to granitic plutons, mostly of Tertiary age, and are formed by
hydrothermal fluids associated with the emplacement of granites. They typically
occur as large tonnage, low-grade deposits that are commonly mined using open-pit
methods.

Two issues must be addressed to predict porphyry molybdenum deposit growth.
The first is that, in many instances, the cutoff grade is not available for a given
deposit and thus must be estimated. Thus, the first part of this study uses the known
molybdenum grade of a deposit to predict probable cutoff grade. The second part of
this study in turn uses this predicted cutoff grade to estimate deposit growth as a
function of cutoff grade. Two data sets were used in this study. Nearly all porphyry
molybdenum deposits used in this study are for unworked deposits; that is, deposits
that have been delineated by drilling but are yet unmined. The first data set
(Appendix 1) consists of 34 porphyry molybdenum deposits used to model
molybdenum cutoff grade in percent (COG) as a function of molybdenum deposit
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grade, also expressed in percent. The second data set (Appendix 2) is used to model
the deposit growth as a function of cutoff grade. The references to Appendices 1 and
2 are Barnes et al. (2009), Baudry (2009), Becker et al. (2009), British Columbia
Ministry of Energy and Mines (2012, 2014a, b), Chen and Wang (2011), Ewert et al.
(2008), General Moly (2012), Geological Survey of Finland (2011), Geoscience
Australia (2012), Kramer (2006), Lowe et al. (2001), Ludington and Plumlee (2009),
Mercator Minerals (2011), Mindat.org (1992, 2011), Nanika Resources Inc (2012),
Northern Miner (2010), Raw Minerals Group (2011), RX Exploration Inc (2010),
Singer et al. (2008), Smith (2009), Taylor et al. (2012), Thompson Creek Metals
Company Inc (2011), TTM Resources Inc (2009), US Geological Survey (2011),
Wu et al (2011), Yukon Geological Survey (2005). The authors know of no subset of
publications that cite the deposits presented in Appendices 1 and 2.

20.2 Cutoff Grade as a Function of Deposit Grade

The first and most straightforward of the two models to analyze is the relationship
between molybdenum cutoff grade (Mo COG, %) as a function of molybdenum
deposit grade (Mo Grade, %) for the 34 deposits shown in Appendix 1. A scatter
plot between these two variables plus a fitted linear regression line, 95% confidence
intervals, and 95% prediction intervals are shown in Fig. 20.1.

Fig. 20.1 Cutoff grade (COG, %) versus deposit grade (%) plus a fitted linear model and the 95%
confidence intervals (dashed lines) and corresponding prediction intervals (dotted lines) for the 34
deposits (Appendix 1)
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The model to fit cutoff grade U as a function of deposit grade D is

U =
0 0≤D< c

β0 + β1D+ ε D≥ c

�

where ε is the random error, assumed to be normal Nð0, σ2Þ. The constant c is
determined from the linear regression fit since the COG≥ 0.

The fitted model is:

U ̂= 0 0≤D< c=0.0159
β0 + β1D= − 0.01042+ 0.6553D D≥ 0.0159

�

where U ̂ is the estimated cutoff grade in percent and D is the deposit grade in
percent. The residual standard error is 0.012 on 32 degrees of freedom and the
adjusted R2 = 0.61. The model is statistically significant and reasonable for the
given data set. The residual plot is shown in Fig. 20.2.

There is no evidence to suggest that the residuals are non-normal. Thus, within
the domain of the deposit grade, namely from 0.03 to 0.13, the linear model shown
above appears to be appropriate. Predictions outside of this interval will depend on
the same linear relationship holding.

Fig. 20.2 Residuals versus deposit grade for the linear model fit (Fig. 20.1)
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20.3 Deposit Growth as a Function of Cutoff Grade

The second model is the fraction of growth as a function of estimated cutoff grade.
In this example the growth data (Fig. 20.3) consists of 58 observations from eight
deposits (Appendix 2). The inverse S shaped form of the data corresponds to an
inverse cumulative distribution function. Therefore, this relationship is modeled as
an inverse cumulative distribution function, since the fraction growth is a number
between 0 and 1, inclusive. Several models including the gamma, lognormal,
normal and their left truncated forms were candidates to fit this data. Of these, the
left truncated normal was the best fit by visual inspection and by a nonlinear least
squares fit. The form of the left truncated normal probability distribution function
is:

fLðxjΘÞ= f ðxjΘÞ
1−FðλjΘÞ x> λ

where Θ′ = ðμ, σ2Þ and the left truncation point λ is assumed known. The probability
density function for the normal distribution with mean μ and standard deviation
σ is:

f ðxjμ, σ2Þ= e− x− μð Þ2 ̸2ffiffiffiffiffi
2π

p
σ

The corresponding left truncated cumulative distribution function, cdf, is:

FLðxjΘÞ= FðxjΘÞ−FðλjΘÞ
1−FðλjΘÞ , x> λ

The truncated distributions’ models used for model fitting are from the package
truncdist (r-project.org) by Novomestky and Nadarajah (2012) based upon work by
Nadarajah and Kotz (2006).

As Fig. 20.1 shows, there is uncertainty in the COG when estimated from the
deposit grade. However, when estimating the left truncated normal cumulative
distribution function (cdf), the estimates are conditioned upon the COG being
known. A possible alternative is an errors-in- variables approach (Schennach 2004)
where both the fraction growth and cutoff grade are considered to be random
variables.

The chosen optimization criterion to estimate the fraction growth (Fig. 20.3) is

minð∑
n

i=1
ðFðxijΘÞ−F ̂ðxiÞÞ2,

where xi is the ith COG and F is the cumulative distribution function. Θ contains the
estimated parameters. If F is a normal distribution the parameters would be μ̂ and σ ̂.
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The ith COG is represented by xi and F ̂ðxiÞ. Note that F ̂ðxiÞ=1−G ̂ðxiÞ where ĜðxiÞ
is the fraction growth. The nonlinear least squares package used to estimate the left
truncated normal model parameters is nls2 (r-project.org). See Grothendieck
(2013). The left truncation point is λ=0.

Deposit growth as a function of cutoff grade was modeled for each of the eight
deposits (not shown). These results indicate that the data could have been generated
from the same population Thus, the observations were pooled and a single model
was fit. The reason to fit a cumulative distribution function was twofold. One was
that eight deposits were used so the data was not in the form of a stepwise function.
The second was that the data were not randomly or systematically spaced across the
domain of the empirical distribution. The data, expressed as an empirical distri-
bution function, together with the cumulative left truncated normal distribution fit

Fig. 20.3 Deposit fraction growth plotted against cutoff grade (COG) in percent for the 8 deposits
used in this study
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and confidence intervals, are shown in Fig. 20.4. The results of the least square fit
were μ ̂=0.0609 and σ ̂=0.0282. The residual sum of squares, RSS = 0.3631.

The 95% confidence and prediction intervals for nonlinear estimation are
approximate. The confidence interval shown in Fig. 20.4 (dashed lines) is from
package propagate, r-project library predictNLS programmed by Spiess (2014)
based upon work by Bates and Watts (2007), and others. It uses a second-order
Taylor series expansion and Monte Carlo simulation. The second order approxi-
mation captures the nonlinearities around f(x). A corresponding algorithm for the
prediction interval has not been developed. The prediction interval shown in
Fig. 20.4 (dotted lines) is based upon a linear model of the form H = α0 + α1U + ε
where U was the COG. H is a linear estimate of growth. The next step was to
estimate the upper and lower prediction intervals for the linear model with U = 0,
0.001, 0.002, …, 0.150. These are vectors LPIu and LPIl respectively. The upper
and lower 95% nonlinear confidence interval vectors estimated above are CIu and
CIl respectively. The differences between the linear prediction intervals and the
nonlinear confidence intervals are computed as follows. Let Lud = LPIu − CIu
and Lld = CIl − LPIl. The estimated upper and lower predictions intervals, UP
and LP, for the nonlinear fit (Fig. 20.4) are UP = CIu + Lud and LP = CIi −
Lld. These estimates appear reasonable in the given domain, namely for COG
between 0.04 and 0.10.

Fig. 20.4 Data fit to a left truncated (at 0) normal distribution is the solid line. The approximate
95% confidence interval is the dashed line. The approximate 95% prediction interval is the dotted
line
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A histogram of the residuals, which appear normal, is shown in Fig. 20.5. The
truncated normal probability density function corresponding to the cumulative
distribution function (Fig. 20.4) and COG data are shown in Fig. 20.6.

Figure 20.7 is like Fig. 20.4 except that the variable plotted on the vertical axis
is the fraction growth as opposed to the cumulative distribution. There is no sug-
gestion that the model illustrated in Fig. 20.7 is universal, even for molybdenum
deposits. Clearly different deposits may require different models.

20.4 An Example

Suppose the problem is to estimate the fraction growth corresponding to a COG
(%) = 0.06 using the model shown in Fig. 20.7. Then, given that the assumed
distribution is a truncated normal at zero with estimated model parameters,
μ ̂=0.0609 and σ ̂=0.0282, the results are shown in Table 20.1. The point estimate
of fraction growth, namely 0.479, is straightforward to compute. Namely it is:

F ̂LðxjΘ ̂Þ= FðxjΘ̂Þ−FðλjΘ̂Þ
1−F ̂ðλjΘ ̂Þ , x>0, Θ̂

′

= ðμ ̂, σ ̂2Þ

Fig. 20.5 Histogram of residuals for fit to a left truncated normal distribution

402 J. H. Schuenemeyer et al.



Fig. 20.6 The fitted truncated normal probability density function and COG data (the circles)

Fig. 20.7 Fraction growth as a function of COG (%) and corresponding fitted values (solid line),
95% confidence interval (dashed line) and 95% prediction interval (dotted line)
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The confidence and prediction intervals are more difficult to compute; however,
the R code is available on request from John Schuenemeyer.

20.5 Conclusions

Mineral deposit growth commonly constitutes most unknown resources. The
growth considered in this study is due to a progressively lower cutoff grade, which
may be unknown. In this study, a statistical model was constructed to model cutoff
grade as a function of deposit grade, followed by construction of a model to
estimate the fraction growth as a function of cutoff grade. This latter model involves
estimation of a truncated normal distribution and second order Taylor series esti-
mates to characterize uncertainty.
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deposits, which was of considerable use in this study.

Appendix 1

Porphyry molybdenum data for 34 selected deposits used to model molybdenum
cutoff grade as a function of deposit grade.

[Country and state codes: AUQL = Australia, Queensland; CHHN = China;
CHNA = China; CNBC = Canada, British Columbia; CNNF, Canada, New-
foundland and Labrador; CNON = Canada, Ontario; CNYT = Canada, Yukon
Territory; GRLD = Greenland; MCDA = Macedonia; MNGA = Mongolia;
MXCO = Mexico; RUSA = Russia; USAK = USA, Alaska; USID = USA,
Idaho; USMT = USA, Montana; USNV = USA, Nevada; USWA = USA,
Washington]

Table 20.1 Estimated fraction growth, 95% confidence and prediction intervals for COG
(%) = 0.06

Confidence interval Prediction interval

COG (%) Fraction growth 2.50% 97.50% 2.50% 97.50%
0.06 0.479 0.450 0.507 0.291 0.666

404 J. H. Schuenemeyer et al.



Name ID Country-State Mo
grade
(%)

Deposit
size
(Mt)

Mo
COG
(%)

Ada nac-Ruby Creek 101 CNBC 0.042 791 0.020
Adjax-Le Roy 102 CNBC 0.062 552 0.040
Anduramba 103 AUQL 0.054 32 0.014
Bald Butte 106 USMT 0.059 176 0.040
Big Ben 108 USMT 0.092 245 0.060
Buckingham 110 USNV 0.063 1800 0.043
Cannivan Gulch-White Cloud 111 USMT 0.056 327 0.040
Carmi 113 CNBC 0.057 40 0.026
Cave Creek 114 USTX 0.130 28 0.060
Chu 115 CNBC 0.050 673 0.017
Creston 118 MXCO 0.071 215 0.059
Endako 124 CNBC 0.050 1232 0.020
Jiguanshan (Jiganshuan) 130 CHNA 0.095 100 0.060
Joem-Haskin Mountain 131 CNBC 0.101 11 0.050
Kitsault (Updated 11/2015) 132 CNBC 0.070 688 0.048
Lobash 140 RUSA 0.063 365 0.030
Lone Pine 143 CNBC 0.072 179 0.020
Lucky Ship 144 CNBC 0.064 85 0.015
Mac 145 CNBC 0.048 248 0.035
Malmbjerg 148 GRLD 0.118 229 0.072
Moly Brook 151 CNNF 0.049 199 0.010
Mount Hope 152 USNV 0.039 1148 0.014
Mount Tolman 156 USWA 0.056 2200 0.029
Pidgeon-Lateral Lake 163 CNON 0.083 59 0.040
Pine Nut 165 USNV 0.060 181 0.028
Qua rtz Hill 167 USAK 0.082 1310 0.030
Red Bird-Haven Lake 169 CNBC 0.049 201 0.010
Red Mountain 170 CNYT 0.100 187 0.067
Sphinx 178 CNBC 0.035 62 0.010
Storie Molie 180 CNBC 0.049 105 0.000
Sudulica-Mackatica-Kucisnjak-Groznatova
Dolina

146 MCDA 0.030 383 0.005

Tangjiaping 183 CHHN 0.063 373 0.020
Thompson Creek 184 USID 0.086 575 0.038
Zuun Mod 195 MNGA 0.052 408 0.050
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Appendix 2

Molybdenum data for estimating fraction deposit from cutoff grade; n = 58

Deposit name COG
(%)

Fraction
growth

Deposit
name

COG
(%)

Fraction
growth

Adanac-Ruby
Creek

0.095 0.113 Moly
Brook

0.095 0.126

Adanac-Ruby
Creek

0.085 0.168 Moly
Brook

0.085 0.180

Adanac-Ruby
Creek

0.075 0.247 Moly
Brook

0.075 0.258

Adanac-Ruby
Creek

0.065 0.351 Moly
Brook

0.065 0.365

Adanac-Ruby
Creek

0.055 0.470 Moly
Brook

0.055 0.504

Adanac-Ruby
Creek

0.045 0.581 Moly
Brook

0.045 0.673

Adanac-Ruby
Creek

0.035 0.679 Moly
Brook

0.035 0.831

Adanac-Ruby
Creek

0.025 0.864 Moly
Brook

0.025 0.941

Ajax 0.095 0.037 Moly
Brook

0.015 0.991

Ajax 0.085 0.087 Red Bird 0.105 0.107
Ajax 0.075 0.202 Red Bird 0.095 0.160
Ajax 0.065 0.450 Red Bird 0.085 0.226
Ajax 0.055 0.765 Red Bird 0.075 0.305
Ajax 0.045 0.956 Red Bird 0.065 0.409
Bald Butte 0.070 0.333 Red Bird 0.055 0.540
Bald Butte 0.055 0.623 Red Bird 0.045 0.687
Bald Butte 0.045 0.875 Red Bird 0.035 0.833
Cannivan 0.075 0.296 Red Bird 0.025 0.935
Cannivan 0.065 0.426 Red Bird 0.015 0.984
Cannivan 0.055 0.593 Storie 0.088 0.320
Cannivan 0.045 0.854 Storie 0.063 0.518
Lucky Ship 0.095 0.260 Storie 0.045 0.685
Lucky Ship 0.085 0.337 Storie 0.038 0.768
Lucky Ship 0.075 0.426 Storie 0.033 0.827
Lucky Ship 0.065 0.523 Storie 0.025 0.907
Lucky Ship 0.055 0.634 Storie 0.015 0.977

Lucky Ship 0.045 0.767 Storie 0.005 0.998
(continued)
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(continued)

Deposit name COG
(%)

Fraction
growth

Deposit
name

COG
(%)

Fraction
growth

Lucky Ship 0.035 0.891
Lucky Ship 0.025 0.963
Lucky Ship 0.015 0.985
Lucky Ship 0.005 0.993
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Chapter 21
General Framework of Quantitative
Target Selections

Guocheng Pan

Abstract Mineral target selection has been an important research subject for
geoscientists around the world in the past three decades. Significant progress has
been made in development of mathematical techniques and estimation method-
ologies for mineral mapping and resource assessment. Integration of multiple data
sets, either by experts or statistical methods, has become a common practice in
estimation of mineral potentials. However, real effect of these methodologies is at
best very limited in terms of uses for government macro policy making, resource
management, and mineral exploration in commercial sectors. Several major prob-
lems in data integration remain to be solved in order to achieve significant
improvement in the effect of resource estimation. Geoscience map patterns are used
for decision-making for mineral target selections. The optimal data integration
methods proposed so far can be effectively applied by using GIS technologies. The
output of these methods is a prognostic map that indicates where hidden ore bodies
may occur. Issues related to randomness of mineral endowment, intrinsic statistical
relations, exceptionalness of ore, intrinsic geological units, and economic transla-
tion and truncation, are addressed in this chapter. Moreover, a number of specific
important technical issues in information synthesis are also identified, including
information enhancement, spatial continuity, data integration and target delineation.
Finally, a new concept of dynamic control areas is proposed for future development
of quantification of mineral resources.

21.1 Introduction

Instead of elaboration of new techniques, this chapter focuses on fundamental
aspects in mineral resources assessment (Pan et al. 1992). Some of the critical issues
are reconsidered here with respect to new understanding of basic geo-relations
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between resource descriptors and geological processes. Various multivariate models
and techniques have been used over the past two decades to relate geological
variables to some aspects of mineral occurrence or deposits. Conventional objective
methods for mineral resource assessment have estimated either mineral endowment
or discoverable mineral resources of a particular type of deposit in a region. The
mineral endowment of a region usually refers to that quantity of mineral in accu-
mulations meeting specified physical characteristics, such as grade, size, and depth.
A multivariate endowment model is essentially characterized by a particular
information extraction strategy for the so-called optimum combination of those
geological features most related to spatial variations of endowment (Pan and Harris
1991). Most of these models estimate mineral resources based upon the principle of
analogy, i.e., the resources in a study region are estimated by a model that is
established on a control area by assuming different regions with similar geological
environments have similar endowment (Pan and Harris 1991; Harris 1984; Harris
and Pan 1991; Pan and Harris 2000; Agterberg 1981, 2014).

Most of these models have employed as information reference a grid of regularly
spaced cells (inter-grid areas) and have dealt in one way or another with either
mineral favorability, probability, mineral wealth or density of mineral occurrence
(deposit). Of special interest have been those models that describe uncertainty about
these estimates, such as the probability for occurrence of mineral deposits within a
cell. These studies seem to have been a necessary step in the evolution of the
science of mineral resources prediction, because geologists in general have been
slow to adapt quantitative methods, and even reluctant to substitute objective and
quantitative analysis for all or part of subjective analysis. Thus, there was a need to
demonstrate quantitative methods that could be used to estimate undiscovered
mineral resources. However, to some extent, this reluctance represented the dis-
satisfaction by geologists for the at-best low, and sometimes trivial, level of geo-
science information captured by the quantitative variables and related to mineral
occurrence by the multivariate models. Simply stated, mineral resource estimates by
quantitative and objective methods will not improve significantly until more geo-
science information is related in more appropriate ways to the various descriptors of
mineral resources.

Supplying worldwide demand of metallic raw materials throughout the rest of this
century may require multiple times the amount of metals contained in known ore
deposits (Patiño Douce 2016a, b). Sustainability of resource supply is a key task for
scientific mineral assessments. The concept of mineral resource is many faceted,
including physical and chemical properties ofmineral deposits, as they occur naturally
in the earth’s crust and economic properties created by man’s socio–technical pro-
duction system and the demands for mineral materials derived there from. The dis-
cussion presented here focuses upon several aspects of mineral resources that are
fundamental considerations in the effective information synthesis formineral resource
estimation: randomness of mineral endowment, basic statistical relations, scarceness,
geological foundations, economic truncation and translation, and spatial continuity.
Some major issues in quantitative mineral resource estimation are addressed,
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including information enhancement, information synthesis, as well as target identi-
fication. Information synthesis is a central task in both mineral exploration and
resource estimation.

21.2 Randomness of Mineral Endowment

Most of the past and current studies on mineral resource estimation have been
constructed and applied on the basis of a common assumption that mineral
endowment descriptors and at least some of the related geologic processes behave
more or less according to certain stochastic rules. The assumption is seldom
challenged, although controversies have continued over four decades, for example,
the types of the stochastic laws that govern the true distributions of geochemical
element concentrations (Harris 1984; Vistelius 1960; Brinck 1972). This seems to
indicate that the assumption that some geological processes are to some extent
stochastic and follow certain stochastic laws has been widely accepted, although it
is premature to assert that all of the geoscience features are stochastic. It is useful to
examine this notion before investigating specific stochastic laws for particular
geologic events, the use of statistical models to estimate mineral resources, and
probabilistic descriptions of resource descriptors.

In his famous ‘Ideal Granite Model’, Vistelius (1972) showed that the crystal-
lization of minerals, such as potassium feldspar, quartz, as well as plagioclase
contained in the ‘ideal granite’ can be modeled by some stochastic functions that
vary in space and time. It has been proved mathematically that there is a
three-dimensional ‘packing of particles’ such that the three mutually perpendicular
directions can be described according to the Markov property in each direction with
identical transition probability matrices in the three directions (Vistelius and Har-
baugh 1980). Another example due to Vistelius is his gravitational stratification
package model (Visteluus 1981). In the study of red beds of the Cheleken Penin-
sula, under certain assumptions, Vistelius showed that the sequence of red beds
with two distinct states, S (arenaceous beds) and A (argillaceous beds), can be
treated as a homogenous reversible Markov chain of second order, with the partial
transition through A being first order Markov and the partial transitions through S
being second-order Markov.

Sedimentary sequences have been regarded generally as some types of cyclic
processes which are associated with certain Markov properties (Schwarzacher
1969; Hattori 1976; Pan 1987; Kantsel 1967; Pan and Porterfield 1995). Pan (1987)
demonstrated that many sedimentary sections can be treated as homogeneous
stochastic processes if no significant depositional discontinuities or structural
unconformities occur in the sequences and that homogeneous sedimentary pro-
cesses can be decomposed uniquely into the sum of independent reversible and
unidirectional stochastic flows.

The process of ore deposition was closely examined by Kantsel (1967) based
upon the function of metal distribution in ores. The process of hydrothermal
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mineralization during a single stage can be treated as a continuous stationary
process of the Markov type. The resulting concentration of metal can be represented
by a distribution function, the most important characteristic reflecting speed of the
mineralization process. Stochastic modeling methods and uncertainty quantification
are important tools for gaining insight into the geological variability of subsurface
structures and formation of mineral deposits (Wang et al. 2017). Modeling of 3D
geological processes helps reveal hidden information on the variability of con-
trolling factors, which defines likelihood of occurrence of mineralization processes.

These contributions are informative about some fundamental and crucial con-
troversial issues regarding the application of stochastic models to mineral explo-
ration, although some concerns cannot be satisfactorily resolved without more
research. A partial conclusion drawn from these preliminary works should be that at
least under certain conditions some of the geologic or earth processes can be
modeled by stochastic laws. However, it would be incorrect to associate the earth
processes with the stochastic laws through one to one relations, since the random
properties of geologic events generally are space and time dependent.

21.3 Fundamental Geo-process Relations

Observations on geologic features in certain spatial and temporal settings are the
outcomes of a sequence of geologic processes superimposed during crustal evo-
lution and initiated by inner energies of the earth, biosphere, hydrosphere, atmo-
sphere, as well as other universal forces. Conceptually, there should be two levels
of cause–effect relations among the geologic events, crustal evolution and initial
forces, that created the earth. The earth commonly represents the entity of earth
processes, e.g., crustal movement, magmatic intrusion, migration of ore-bearing
fluids, erosions, etc., while geologic entities, such as lithologic phases, hydrother-
mal alterations, geologic structures, ore deposits, etc., are outcomes of the pro-
cesses. Let o1, o2, …, ok denote the k initial forces, f1, f2, …, fp the p earth
processes, and z1, z2, …, zm the m geological features, including resource
descriptors. Then, the cause–effect relations may be conceptualized as follows:

fj = gj o1, o2, . . . , okð Þ, j= 1, 2, . . . , p, ð21:1aÞ

zi = hi f1, f2, . . . , fp
� �

, i= 1, 2, . . . , m. ð21:1bÞ

The conceptual model (21.1a, 21.1b) implies that the original forces are direct
causes of the crustal evolution represented by a series of geologic processes which
in turn are the direct causes of the geologic features (outcomes). Since some of
these geologic features are resource descriptors, such as number of deposits,
quantity of endowment, etc., relation (21.1a, 21.1b) states that a mineral deposit is
the result of a sequence of superimposed geologic processes. The functions gj’s and
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hi’s may be assumed to be random, provided that the original causes or geologic
processes are considered to be stochastic.

A relevant question in statistical estimation of resources concerns basic statistical
models useful for describing inherent relations between the geodata and resource
descriptors given that geoscience information is stochastic. One should keep in
mind the basic cause-effect relations (21.1a, 21.1b) and that these cause-effect
relations do not imply any cause-effect between the resource descriptors and other
geological features, although syngenetic or parallel relations do exist because both
of these are outcomes of some common earth processes. For example, both argillic
alteration and copper mineralization result from the same process of magmatic
intrusion. Since the current knowledge on the original causes is very limited, it is
not realistic to discover relations gj’s in (21.1a, 21.1b). Assuming that the random
portions of the earth’s processes can be isolated from the deterministic part, the
following two sets of auxiliary relations should be essential:

rl =φl f1, f2, . . . , fp
� �

+ vl, l = 1, 2, . . . , d, ð21:2aÞ

zi =ψ i f1, f2, . . . , fp
� �

+ ei, i = 1, 2, . . . ,m, ð21:2bÞ

where rl’s are the resource descriptors, zi’s are other geologic features and vl’s and
ei’s are the random errors. However, a further difficulty arises because our
knowledge of earth processes is also limited. What one can observe in practice are
only the geological features zj’s and maybe part of the resource descriptors.
Although there is no direct causal relation between the mineral resource descriptors
and other geologic features, their syngenetic and concurrent relations will assure
some indirect information from the geologic features about the resources. Hence,
the geological processes, and thus the mineral resource descriptors, can be math-
ematically reconstructed through a reverse functional estimation:

fj =Ψ j z1, z2, . . . , zmð Þ + ωj, j = 1, 2, . . . , p, ð21:3aÞ

rl =Φl f1, f2, . . . , fp
� �

+ εl, l = 1, 2, . . . , d, ð21:3bÞ

where ωj and εl are the random error terms for the geological process and resource
descriptor estimates.

Accordingly, if m is much greater than d, a feasible solution for mineral resource
estimate may be completed in two steps:

(a) Factor out the f1, f2, etc. from relations (21.3a) based upon the known infor-
mation on the geological features zi’s;

(b) Substitute these estimates of the factors into relations (21.3b) and derive the
estimates for the multivariate resource descriptors.

The first step of the manipulation is exactly analogous to factor-type analysis,
constructing significant geologic factors (causes) from observable geological fea-
tures, whereas the second step is regression-type analysis, predicting the resource
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descriptors (effects) from the geological factors. Consequently, factor-type and
regression-type models should be fundamental multivariate statistical models for
quantitative mineral resource estimation, and other relevant statistical methods
may be considered as variations and combinations of the two types of method.
That’s why the mineral resource descriptors (r) can be statistically estimated
through the geological features by the following function:

rl =Θl z1, z2, . . . , zmð Þ + ϑl, l = 1, 2, . . . , d, ð21:4Þ

where θl the random error. The geological processes are directly created by the
initial forces of earth movement, while accumulation of mineral resources is
directly resulted from complex interactions of the geological processes. Since the
geological processes cannot be directly measured, they must be reconstructed by
observable geological features, which can be, in turn, indirectly used to estimate
mineral resource descriptors through relation (21.4).

21.4 Scarceness, Rareness, and Exceptionalness

The activities of mineral exploration have been motivated chiefly by economic and
social pursuits (Pan et al. 1992). Constantly growing economic and social demands
require greater amounts of raw material, including nonrenewable mineral com-
modities. The conduct of mineral resource exploration is predicated upon the
economic return expected from the discovery of new deposits. An increase in the
price of a mineral product, which is equivalent to the sum of the marginal rent and
marginal extraction cost, indicates that the mineral resource has become scarce.
A basic perspective of both geologists and economists is that mineral resources are
scarce materials in the crust as they occupy only an insignificant portion of crustal
material.

Any major ore deposit may be regarded in principle as an anomalous or rare
phenomenon commonly characterized by one or more geological, geochemical, and
geophysical features. Consequently, signatures of significant endogenic mineral-
ization are anomalous and exceptional geologic settings (Gorelov 1982). In par-
ticular, the formation of a giant deposit is an extremely rare event created by an
exceptional combination of earth processes. Rareness of the giant deposits is
reflected in both spatial and temporal dimensions. Significant concentrations of a
metal usually have a strong affinity or correlation with particular geologic forma-
tions and epochs, as well as metallogenic environments. The genesis of giant
deposits may be controlled by particular regularities that differ from those con-
trolling the formation of medium and small–size deposits of the same composition.
It is also thought that the formation of huge deposits appears to be controlled by a
so–called ‘ore–controlling structure’ (Tomson and Polyakova 1984).

Giant deposits often dominate reserves and production. It is not uncommon for a
few supergiant and giant deposits to constitute over 50% of the total metal
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recoverable under current economic and technological conditions; accordingly, the
metal quantity in small size deposits is almost negligible (Laznicka 1983). Con-
versely, giant deposits typically constitute an insignificant part of the total number
of ore deposits.

Thus, the scarcity of a mineral resource is essentially determined by the fact that
few giant deposits exist in the crust, but the few that do exist strongly dominate
reserves and production. Accordingly, the economic viability of mineral exploration
is strongly predicated upon its capability of locating the giant or large mineral
deposits through delineating the associated geologically anomalous regions of the
crust. Unfortunately, conventional quantitative techniques employed have failed to
deal with these important particulars satisfactorily, mainly owing to inability to
capture the nature of these exceptional constraints, since these unique deposits
rarely exhibit common statistical properties.

The discovery process for some deposit types, e.g., those for which structural,
geochemical, alteration, or geophysical signatures are correlated to deposit size or
those for which discovery is primarily by drilling and for which size is strongly
related to areal extent, is size biased, meaning that large, high-grade deposits tend to
be discovered in early stages of the exploration of regions (Chung et al. 1992; Pan
and Harris 1991). For such deposit types, the prognostication of exploration out-
comes or the estimation of additional resources in undiscovered deposits should
take into account the implication of this bias to the tonnages and grades of the
undiscovered deposits. However, representing the discovery process of other
deposit types, such as vein deposits with great vertical extent or those for which size
is only weakly related to exploration anomalies, as size bias sampling may not be
appropriate (Stanley 1992). Improvement in locating deposits or in estimating
probabilities for their occurrence requires consideration of the exploration effect and
the conjunction of improved genetic, tectonic, and other unifying geoscience the-
ories with improved synthesis methods for the effective extraction of information
from diverse geodata and improved quantitative models for inference or estimation.

Considering the low concentration of many elements, e.g., 65 ppm for copper, in
common crust rock, the presence of a large accumulation (1 to 10 million tons for
copper) of metal at concentrations that are mined today requires enrichments by 100
or 1000 s times crustal concentrations and the accumulation of metal from a large
amount of common crustal materials into a relatively small volume. Typically, this
concentration or accumulation is seen as requiring the successive operations of
several enrichment-depletion stages. Since these sub-processes rarely take place at
the scale and strength required to form an ore deposit, their joint (sequential)
occurrence could be an extremely rare event in both space and time. If each of these
processes is assumed to be stochastic, the mineralization process is also stochastic,
and thus the formation of ore deposits is deemed to be a rare, random event. To the
extent that this assumption is acceptable, the concept of rareness of ore deposits is
equivalent to the smallness of the probability for the formation of an economic
deposit.

The concept of rareness can be compared to that of exceptionalness described by
Gorelov (1982) and the conditional exceptionalness proposed by Pan (1989). Some
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other terms found in literature carrying similar meanings include atypicality,
uniqueness, anomaly, etc. The concept of exceptionalness is important and useful in
quantitative mineral exploration. The most general feature of major commercial ore
deposits is that the geological structures of their ore fields are exceptional and
anomalous compared with those of neighboring areas.

It is noted that scarceness is a term relevant to economic aspects of resources,
rareness is more closely associated with statistical (probabilistic) characteristics of
mineral occurrences; and exceptionalness should be used in a geological context.
More specifically, one would say that ore deposits are probabilistically rare and
geologically exceptional, even though the metal derived from them may not be
scarce in the economic sense described by Barnett and Morse (Barnett and Morse
1963). These terms are often used to describe the status of mineralization events in a
relative sense, but they can be statistically quantified in a rigorous framework.

21.5 Intrinsic Geological Unit

Most traditional resource estimations have been made on the basis of regular
inter-grids or cells as the sampling scheme and estimation unit. The “cell” approach
is associated with a number of drawbacks. The most significant problem is that
geological processes can be reconstructed through observable geoscience features,
which are measurable in geological units, not artificial cells. The cell-based mea-
surements tend to distort the intrinsic relations between geological features and
mineral resource descriptors. Secondly, quantification of the geological features,
spatially correlated and even connected, is difficult to capture essential genetic
factors that played key roles of metal enrichment. Finally, the cell-approach easily
ignores exceptional conditions for formation of large deposits, which cannot be
readily quantified through grids.

21.5.1 IGU Definition

In contrast with a population of cells having multiple attributes, consider a popu-
lation in which each member consists of a set of genetically related objects, e.g.,
igneous intrusives and associated altered host rock, and each member is described
by fields of the related geologic objects. Here, mineral resource descriptors and
geoscience measures are attributes of a group of geoscience fields which in turn are
attributes of a set of genetically related geologic bodies. Such a scheme employs a
sampling reference for quantification and integration of geoscience information that
is intrinsic to the deposit type being sought. That is why the Intrinsic Geological
Units (IGU) was proposed by Pan (1989) and Harris and Pan (1990).

The concept of intrinsic geological units, formally documented in Pan and Harris
(1993), has evolved from the notion of intrinsic samples (IS), or consistent
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geological area. The basic ideas behind both notions are identical and a minor
difference lies in the procedure for delineation. This concept has some common
characteristics with the notion of “geological anomalies” proposed by Zhao (2007)
(also see Zhao and Chi 1991), although the procedure of unit delineations differs
significantly.

An appropriately delineated IGU is at once a great improvement over the tra-
ditional inter-grid area or cell because it represents the joint occurrence of geologic
bodies that are genetically related to the mineral resources of interest. Thus, even
before geological attributes of the IGU are quantified, the very presence of an IGU
implies highly significant geoscience information about geology and mineral
resources. In contrast, the cell is simply a geometric reference. Therefore, it is
inevitably true that geological attributes of an IGU carry far more geoscience
information than do the geological attributes of a cell.

IGUs may be formally defined as members of a population consisting of sets of
genetically related geologic objects that are usually defined by their geofields (Pan
1989). Each member (IGU) of the population of IGUs constitutes an independent
set of geologic objects that are genetically related to each other and to mineral
deposits, although generally only some of these members contain ore deposits and
mineral resources. Moreover, although a particular member of a population of IGUs
contains mineral deposits, it may not be uniformly mineralized everywhere within
its volume. In other words, a mineral resource unit generally is a subset of an
intrinsic geologic unit.

21.5.2 Critical Genetic Factor

Any mineral deposit or mineralization can be considered as an anomalous con-
centration of one or more elements or their chemical compounds when compared to
crustal materials. This anomalous region originated from anomalous genetic pro-
cesses or their superposition during certain geological epochs. Usually, a genetic
model consists of a hierarchy of earth processes—from preconditions to post
mineralization preservation—which acted during one or more previous time spans,
and as such, these processes are not observable. Instead, the geologist must infer
their previous existence and operation using observable indirect evidence, e.g.,
geologic features, geochemical suites, hydrothermal alteration, aeromagnetic and
gravity anomalies, etc.

Since particular genetic processes were initiated and developed under certain
specialized circumstances, existence ofmineralization, as a significant outcome of the
processes,must also be conditional upon these relevant circumstances. In otherwords,
whether an anomalous concentration of a metal exists in a region depends solely upon
the existence of certain necessary conditions during crustal evolution. Although there
might exist a number of such necessary conditions for a particular genetic process or
mineralization, one, or atmost a fewof them, is referred to as critical. For convenience,
this (these) critical or necessary condition(s) is called the Critical Genetic Factor(s)
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(CGF). The idea of CGF does not rest solely upon one factor being more important or
critical than another in the formation of a mineral deposit, because unless all genetic
factors are present, there is no mineral deposit or mineral endowment. Criticality, as
used here, rests more upon the idea that the CGF arises from few, preferably only one,
earth process and that those features formed by that process can be detected reasonably
well by conventional sensing technologies, e.g., magnetics, gravity, geochemistry,
and geology mapping. If this CGF is not present, the intrinsic geological unit is
considered to be absent. For example, for amineral deposit related tomagmatic fluids,
the heat source that drives intrusionmay be treated as the CGF for identification of the
IGUs associated with the deposits of this type. Practically, only a single CGF is
necessary for identifying spatial units that are intrinsic for mineral deposits of a single
genetic type, but more than one CGF may be necessary when there is more than one
genetic type of interest.

An IGU can be further understood to be a member of a population consisting of
sets of geologic objects genetically associated with the CGF, each set being a
member of the IGU population. Individuals from the population are called known
IGUs if the related CGF is directly observed, while others are unknown or predicted
when the CGF cannot be observed directly, but is inferred to exist because of the
presence of geologic fields related to the CGF and to recognition criteria.

21.5.3 Critical Recognition Criteria

The CGF often may be identified as a process, based upon geoscience; conceptu-
ally, it may be an abstraction, instead of an observable feature. In order to make the
CGF concept workable in practice, a set of special geologic features which give
firm evidence of the previous existence and operation of the CGF are established.
Such a feature is here termed a Critical Recognition Criterion (CRC). Each of these
CRCs constitutes a sufficient condition for existence of the CGF. Any spatial
location at which one or more CRCs occur is by definition a location within an
intrinsic unit.

Although the concepts of CRC make it possible for identification of CGF, the
occurrence of CRCs known at the time of application may not represent the entire
picture of a CGF. In other words, estimation of the presence of a CGF based upon
only CRCs could be biased due to imperfect knowledge on the spatial distribution of
CRCs. For example, a CRC might exist underneath the sedimentary cover, even
though it is not found by surface geological mapping. This fact dictates that the
identification of CRCs beyond surface observation is an important step in the
appropriate prediction of the distribution of the CGF. This can be done by estab-
lishing statistical relations of each CRC to a set of selected geological, geochemical,
and geophysical fields, which provide indirect evidence for the presence of the CGF.

Although the existence of a recognition criterion at a spatial location almost
surely indicates that the location is within an IGU, the boundary of the IGU still is
unknown. Consider, for example, the outcrop of a Tertiary intrusive assumed to be
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a CRC. Then, the outcrop area is surely within an IGU, but probably, some of the
area around the outcrop also is within the same IGU because of the likelihood that
at depth the intrusive extends laterally underneath the surface rocks. Consequently,
the boundary of an IGU is usually uncertain. One way of representing such
uncertainty is to assign each spatial location a probability for presence of one or
more recognition criteria based upon a collection of geological observations at that
location.

21.5.4 IGU Delineation

At a known location (with at least one observed CRC), the probability for the CGF
should be one or very close to one. This implies that the point is almost surely
within an IGU. At an unknown location (with no observed CRCs), all of the CRC
probabilities estimated from geoscience fields will provide a measure of the like-
lihood of the presence of the CGF.

Several methods have been proposed and employed for delineating IGUs. One
such example is that which consists of three steps developed by Pan and Harris
(1993). The method delineates IGUs by estimating and combining probabilities of
CRCs. Another example is given by Pan (1989) and Harris and Pan (Harris and Pan
1991) based on the union of marginal field anomalies. As discussed, the presence of
a CRC gives evidence for the existence of an IGU; delineation of the boundary of
the IGU is made by resolution of the geoscience fields associated with the CRCs. In
this approach, the key step is to establish a procedure to identify the anomalies in
terms of CRCs for each geosciences field. These anomalies (called marginal
anomalies) are then combined into one anomaly through spatial union. This is
similar to the concept of using the maximum CRC probability to represent the
probability for CGF.

As we know, genetic theories are most useful for grass-roots exploration or
reconnaissance programs, where deposit information is not abundant. Without the
guidance of genetic models, it is unsafe to select an area for a massive investment.
Hence, the concept of IGU is most useful for regional mineral exploration, because
it provides a quantitative framework for delineation of those areas having the
conditions necessary for the presence of deposit. In large-scale exploration, such as
deposit or district scale, the methodology of IGU is still useful if detailed aspects of
deposit genetic models can be specified. With abundant occurrence information, it
is possible to extract genetic factors as necessary conditions for the localization of
deposit. However, in most cases, this detailed information is not available or not in
a usable form. In general, a mining district is already a known IGU defined by
broad genetic models. Unless refined genetic models are available, IGU will not
provide additional power to identify areas for the potentials of deposit or district
scale.
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21.5.5 Relations Between IGU and Mineral Target

As discussed, CGF serves as the necessary condition for presence of an IGU, but it
is not a sufficient condition for the boundary definition of the IGU. The purpose of
IGU proposal is to improve methodology of target identification and delineation,
which, in turn, improves the effect of mineral resource assessment. The IGU theory
creates a new platform on which new approach to mineral target identification can
be constructed. A critical question to ask would be what is the relation between IGU
and mineral targets?

Theoretically, an IGU is a necessary condition for presence of mineralization of
interest. The concept of IGU provides a precursor to the identification of miner-
alization or deposits. However, presence of an IGU does not necessarily serve as
sufficient conditions to the presence of mineralization or deposit. Presence of an
IGU is a necessary condition of presence of mineral target. In general, an IGU is
much broader in areal or volumetric extents than a mineral target. Mineral targets
are defined in the IGU areas where additional necessary and even sufficient con-
ditions are observable or inferable from maps or data collected from various sensing
or engineering technologies. Instead of using an inter-grid sampling scheme, the
framework of IGU provides a more practical and useful approach for extraction of
sufficient conditions for identification of mineralization events through recon-
struction of geological processes that resulted in the occurrence of mineralization.

For mineral resources appraisal, the concept of IGU establishes a theoretical base
for definitions of necessary and sufficient conditions of mineralization or deposit. It
has radically changed the conventional methodology for estimation of mineral
potentials. The relationships of IGU, target, occurrence, and deposit are depicted as
follows:

Deposit ⊆Mineral Target⊆ IGU ⊆Working Area

Clearly, an IGU is not a mineral target, but a mineral target must be enclosed in
an existing IGU. Similarly, a mineral target is not a deposit, but a deposit must be
localized inside an existing mineral target. Therefore, identification and delineation
of IGUs is a necessary step for definition of mineral targets. This new approach will
play a revolutionary role in improvement of mineral resources assessment.

21.6 Economic Truncation and Translation

Mineral deposit is not a purely geological concept when it is linked to resources and
reserves. The effects of economic truncation and translation on mineral deposits
have been recognized several decades ago, and a thorough discussion of these has
been given by Harris (1984). These phenomena reflect an important fact that
mineral resources generally are a dynamic function of relevant economic and
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technologic constraints, including price of product and costs associated with various
production phases, such as mining, milling, smelting, as well as refining. Available
data on mineral deposits generally are truncated by a cost surface which is defined
in terms of physical features of the deposits and technological states. In other
words, the collection of mineral deposits reported reflects only the truncated frac-
tion of the entire population of mineral deposits. Thus, use of these data directly and
unavoidably results in biased estimates of mineral resources, as the characteristics
of the resource distribution derived from the partial data set only are a distorted
representation of deposits as they occur in nature.

Translation refers to the fact that commonly reported deposit grades and ton-
nages are for ore reserves and that these tonnages and grades generally differ from
those for the total mineralized material for the deposit as a geologic phenomenon.
For deposit types having great lateral or vertical gradation in mineralization, eco-
nomic rents may lead to the selection of a cutoff grade that leaves part of the deposit
in the ground. When this is the case, reported ore tonnage is smaller than deposit
tonnage and average grade is higher than deposit average grade.

The importance of translation as a distortion varies with the mineral commodity
and the maturity of the exploration activity. In general, the greater variation of the
grade within a deposit (intra deposit grade variance), the stronger the translation
effect, and vice versa. For those deposit types having sharp boundaries or a uniform
grade distribution, the translation effect may be negligible. For some deposit types,
it is also true that the longer the deposit has been mined, the greater the reserve
additions and the more representative the revised ore tonnage and grade data are of
the geologic deposit.

The truncation and translation effects are related to some degree when produc-
tion costs are strongly influenced by ore tonnage and ore average grade, provided
that intra deposit grade variation and the spatial distribution of grades permit the
effective use of cutoff-average grade relations to maximize the net present value of
economic rents. However, translation occurs mainly in mine development and
subsequent mining, while truncation reflects both exploration and mining. Con-
version of resources to reserves involves using cutoffs for grades that define
boundaries of ore economic portions in the deposits. This procedure involves both
translation and truncation.

In order to resolve these difficulties, Harris (1984) suggested a possible remedy:
treating the truncation effect requires first identifying the truncation relationship,
and second the explicit consideration of this relationship in the estimation of
parameters, one of which is the correlation of deposit tonnage with grade. Although
several attempts have been made to mitigate the difficulty in practical studies by
employing more sophisticated mathematical methods in mineral endowment esti-
mation, the problem remains to be explored further, as estimation of the cost
relation is still based on the truncated data. Thus, the cost relation must be
reconstructed from a truncated surface before estimation is carried out.

The importance of truncation and translation effects on a quantitative estimate of
mineral resources depends to some degree upon the means of estimation and upon
the objective of the estimation. For example, when estimation is to be done using
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analogue or control regions and the objective is to estimate the magnitude of
resources for price, cost, and technology similar to those of the analogue regions,
the effect of truncation and translation on the estimate may be minor. But, when the
objective is to estimate the magnitude of resources for improved exploration and
production technology, the effect of truncation and translation upon the estimate
may be very significant.

21.7 Information Synthesis

The geologist’s view of an ore deposit may differ from that of the economist.
Economists tend to consider an ore deposit as being a continuous geologic phe-
nomenon that is discretized by applying a set of economic regularities, while
geologists tend to perceive a deposit to be a discrete geologic phenomenon with
anomalous concentration of one or more valuable elements (Agterberg 1981).
Physical mechanisms of ore genesis suggest that the continuity of ore concentration
is meaningful mainly in a relative sense. A high magnitude of element concen-
tration in host rocks often contrasts sharply with concentrations in surrounding wall
rocks. This perspective may be partially illustrated by the DeWijs’ scheme of
element enrichment in a deposit, which was extended by Brinck (1972) to
describe element concentrations within the crust. Another well-known hypothesis is
Skinner’s bimodal proposition of element distribution which asserts that a gap
exists between the grades of mineralized rock and the grades of common crustal
material (Skinner 1976).

21.7.1 Spatial Continuity

Although the continuity of the statistical distribution of grades seems to differ
conceptually from that of spatial and temporal distributions, they are in fact closely
related. For example, if the proposition is accepted that the grades of an element are
continuously distributed in space and time, the continuity of the statistical distri-
bution of these grades can be automatically invoked in certain environments, and
vice versa. This assertion may be explained by the requirement that samples must
be taken in a uniform and regular manner from the population of interest.

Metallogenic and tectonic studies depict elements to be concentrated in geologic
terrains of different scales, such as ore shoot, ore body, ore district, ore belt, ore
province, etc. (Laznicka 1983). This hierarchical structure of ore formation seems to
indicate that continuity exists within each of these scales, while discreteness of ore
concentrations can be seen between these different scales. For instance, an ore
district may be viewed as a continuously anomalous region within an ore belt, but
the individual deposits included in that same district are discrete geological
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phenomena. This perspective carries strong implications as to sampling procedures
and the organization of data for the estimation of mineral potentials.

Thus, a specific mineral exploration project focused upon the ore deposits of
certain valuable elements formed and confined in a particular dimensional scale
requires an appropriate sampling scheme of that same scale. For example, a new ore
body developed within a deposit may be considered as mineral potential at the
deposit scale, while a new ore deposit discovered in a district is regarded as mineral
potential at a district scale. When estimation is aimed at predicting the mineral
potentials at the district scale, the sampling scheme must accommodate the geo-
logical and mineral continuity at the corresponding hierarchical level. The match in
scale is a prerequisite in mineral resource estimations.

21.7.2 Information Enhancement

Although in one sense considerable progress is apparent in the use of quantitative
techniques for mineral exploration and resource estimation since the early work in
the 1950s and 1960s (Allais 1957; Harris 1965), much less success has been made
in creating estimates that are or have been used in mineral exploration and mineral
policy decisions. Even though quantitative estimation of local/drilling targets may
require the detailed quantitative characterization of favorable geological, geo-
chemical, and geophysical information, many explorationists still favor subjective
and qualitative methods for the integration of geodata. Concurrent with these
applications, mathematical methods were designed and demonstrated, but few were
adopted. Perhaps, this is a natural evolution of the science of quantitative mineral
exploration in terms of data integration, because geologists in general have been
slow to adopt quantitative techniques. However, this reluctance is at least partly
related to ineffective integration of geodata and insufficient extraction of geoscience
information by quantitative models. Mineral resources cannot be satisfactorily
estimated until more geoscience information is related by improved methods to
mineral occurrence. Major difficulties that have hindered further development have
been far from fully attacked, and some of them are even completely ignored.

A common practice in quantitative mineral exploration is to collect all relevant
geoscience data available in the study region, including numerical observations,
digitized maps, and remotely sensed images. These data are then compiled, digi-
tized, resorted, and formatted in a readily manageable data base. Each record is
usually stored as a row, while each geologic attribute occupies a column. In
standard statistical terms, each record in a data base is called a sample and each
attribute is referred to as a variable. A sample in mineral exploration can be a spatial
point or a one-, two-, or three-dimensional block. Most data in regional mineral
exploration are interpreted in two dimensional areas.

Sampling schemes are considered to be an important factor in data interpretation
and target identification. A viable sampling scheme should be able to cope with the
hierarchical structures of mineralization or ore concentration. Mineralized
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geological bodies in different hierarchical scales correspond to different domains in
space and time, which are generally defined by particular tectonic settings and
geological formations. Statistically, samples should be randomly taken in the
population of mineralized and non-mineralized geological blocks of the same scale.
Furthermore, spatial characterization of geological features is another criterion for
reasonable representation of the resource variability. A reliable sampling scheme
should also result in a sample distribution which portrays closely the ‘true’ popu-
lation distribution of geological and mineralized bodies. Our experience has shown
that quantities measured on the basis of equal area cells might lead to distorted
probability distributions.

The original data may include geological, geochemical, geophysical, as well as
remote sensing information in diverse modes. For example, geological data can be
hydrothermal alteration, faults, and lithology, which are typically considered as
non-numerical attributes. Geochemical data can be collected from a rock outcrop,
stream sample survey, or a soil grid survey. Magnetics data can be obtained from an
airborne geophysical survey. It is readily seen that all these types of geodata are
diverse not only in terms of sampling methods, but also the presentation of
quantities. Different sampling schemes create different data densities, inconsistent
spatial locations, disconnectivity, as well as uneven precisions. Different quantity
presentations may give rise to even more serious problems in data integration. The
most difficult problem is dealing with the correlation of different variables, which is
the most critical step in geological information synthesis, especially when some
data are non-numerical. The first step in overcoming these difficulties is the
quantification and unification of different data sets.

The quantification of non-numerical attributes refers to assignment of a
numerical value to each sample location; of course, the numerical value must
convey explicit geological information. For example, a binary assignment gives 1
or 0 to the attributes to represent presence or absence. When each data set is
‘quantitative’, the next step is to enhance geological information of each individual
data set before they are compared, correlated, and integrated. As a matter of fact,
enhancement of information from original and individual data is the most critical
step towards a successful information synthesis for mineral target selection.
Unfortunately, geologists traditionally tend to place too much emphasis on the
original data and denigrate the importance and necessity of data filtering, cleaning,
and enhancing. Conversely, some geomathematicians devote too much attention to
processing of data and give too little regard to fundamental characteristics of the
original data and the useful information of the data. Original data carry the most
genuine information, but they may be ‘contaminated’ or masked by noise and even
distorted due to inadequate sampling or analytical methods.

Filtering and enhancing of useful information is important to remove noise and
reveal signals, such as separation of soil geochemical anomalies from background
values. Furthermore, one data set may carry information on several geological
aspects. Some of these signals are not the major interests and their presence
sometimes masks or distracts from the information useful in identifying mineral
targets. These signal components are unwanted, even though they are not noise, and
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should be filtered out, or at least suppressed. However, many filtering, enhancing,
and other data processing techniques can easily introduce artifacts or false signa-
tures. For instance, a magnetic anomaly map generated from a short-wavelength
filter can exhibit many high-amplitude, single-grid-point anomalies, which are
known as the aliasing effect in the geophysical literature. Another example is
interpolation which has been commonly used in data interpretation and quantitative
mapping. All interpolation algorithms, e.g., minimum curvature and kriging, which
can be considered as low pass filters, are notorious in that they tend to produce
overly smoothed surfaces and quite often cause a loss of important detailed features.
It is our opinion that some applications of quantitative analysis in mineral explo-
ration have either failed to extract the important geoscience information or have
created too many artifacts relative to signals; these effects are believed to be among
the major reasons underlying the reluctance of geologists to replace qualitative
judgment by quantitative analysis.

The above discussion suggests that filtering and enhancing is necessary for
geological data interpretation and integration, but care is warranted in the use of
enhancing techniques. Also, enhancement of a geological attribute includes iden-
tification and description of spatial structural characteristics, which constitute useful
information about spatial auto-correlation of the attribute. More specifically, the
objective of information enhancement is to maximize the signal relative to noise.
By analogy, the best picture of an object taken by a camera requires a correct focus
on the object; either too short or too long of a focus will blur the picture. Moreover,
one should keep in mind that any enhancement technique cannot create information
that is not present; instead, it is only able to reveal important features of the
information carried by the attribute. But, without enhancement, some important
features may not be identified nor employed in subsequent analyses. Since the
amount of information in each attribute is limited, enhancement also is limited.
A minimum level is necessary, for an insufficient removal of noise fails to reveal the
signals to be extracted and used in subsequent analyses. Generally, the tendency of
analysts is to ignore or inadequately remove noise and to over-enhance the signals.
Of course, intense enhancement of data that contain noise leads to enhancement of
noise as well as the signal and to false patterns and inter-relations with other
information.

21.7.3 Data Integration

Synthesis of geoscience information includes the quantification of geological
observations, maps, and other geological images; extraction of quantitative vari-
ables; statistical preprocessing; filtering and enhancement; estimation of statistical
relations among variables; and the combination of different data sets (layers).
Clearly, most of the components require some amount of computation which can be
performed more efficiently by using a computer. There is an obvious advantage of
using a computer when many variations of the same type of analysis are required
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(Green 1991) or when important information includes the computer interaction of
several large sets of geodata. This additional information helps to reduce uncer-
tainties and ambiguities in geological interpretation and mineral potential estima-
tion. Furthermore, some effective and sophisticated statistical techniques which
generally prohibit manual calculations can be readily implemented on a computer.

Mineral exploration generally deals with diverse geological data in various
chemical and physical forms. Appropriate information synthesis should reflect the
types of information contained in each data set and their geological implications.
For example, geochemical information is generally different than geophysical data.
Even the same type of data, e.g., geochemical, may require different interpretation
when it is obtained through different sampling techniques. For instance, soil geo-
chemical samples are processed in different ways from stream samples. Geophys-
ical data are rich in depth information and are capable of locating blind targets, but
the extraction of such information requires appropriate processing and analysis. It is
important to note that any data set has its limitations in the diagnosis of geologic
favorability for mineralization, and interpretation and information synthesis must
recognize these limits. Because of vast differences in geoscience content, precisions
of measurement, and scales of reference among diverse geologic data, integration of
these data directly cannot constitute their optimum use in mineral exploration
unless the data are appropriately preprocessed and unified. Unfortunately,
these problems are far less than adequately treated in traditional exploration
applications.

Geoscience attributes are usually processed, correlated, and integrated to pro-
duce some estimates which characterize the favorability or probability of mineral
occurrence. A more comprehensive approach treats each of the various kinds of
geoscience information as a field of a particular type, e.g., geochemical fields,
magnetic fields, etc. (Harris and Pan 1990, 1991). Mineralization may also be
viewed as an ore field. The notion of field enriches useful information about three
dimensional characteristics of geological bodies. Such a field is generally more
expressive of meaningful geoscience information relevant to mineral resources than
are ‘man-made’ variables, e.g., measurements quantified with regard to an artificial
reference, such as a grid.

A major objective of information synthesis is to maximize the extraction of
relevant geoscience information in terms of mineral potentials. Geological mea-
surements in mineral exploration are commonly multivariate in terms of either
several variables (fields) measured at same sample locations, or different variables
measured in different sample locations but in the same study region. In the latter
case, synthesis may require an appropriate interpolation of the data before they can
be jointly analyzed. When strong correlations exist among the variables, multi-
variate techniques are necessary to capture the joint information from multiple
associations as well as the marginal contributions from individual attributes.
A multivariate exploration system sometimes can be decomposed into several less
significantly correlated sub systems with smaller dimensions. This partitioning may
reduce the complexity of modeling and possibly permit more robust estimates at the
expense of decreasing the degrees of freedom in the system.
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Optimum combination of different geological data sets (layers) has been a
central task in data integration and information synthesis. Agterberg (1989) gives a
comprehensive review on some major integration methods developed in recent
years. Two major types of models notable in literature include favorability analyses
and probability methods. Pan and Harris (1992) propose a weighted canonical
correlation method for the estimation of a favorability function. These methods are
most suitable for combining continuous geological attributes. Agterberg (1992)
provides probabilistic techniques for combining indicator patterns in weights of
evidence modeling. Both types of models, however, are deficient in some regards.
Favorability methods often carry ambiguities in predicting mineral potentials,
whereas evidence combination techniques are subject to strong constraints on the
independency of different attributes. Moreover, as an information synthesis method,
weight of evidence is simplistic. Another useful combination approach is color
(RGB) image composition (Sabins 1987). This type of technique also bears some
serious limitations, since most current image processing software systems are only
capable of combining a very limited number of ‘layers’. Therefore, there is a need
for development of more effective combination methods.

Geologic information about mineral occurrence may be roughly grouped into
two categories: marginal information contributed from individual variables or fields
and joint information contributed from the cross correlations between different
variables or fields. The first category of information has been extensively quantified
and interpreted in most of the traditional studies on mineral exploration. The second
category, however, has been inadequately treated due to complexities and ambi-
guities. Information from the inter-dependencies of variables can be an important
factor in improving the definition of exploration targets, if single exploration
variables are ambiguous, noisy, and/or uncertain as to mineral occurrence. Thus, an
effective synthesis technique must be able to efficiently quantify and extract the
cross-correlation information.

Intuitively, there should exist a combination of variables in multivariate mineral
exploration that is sufficient to capture the majority of useful information and at the
same time to minimize the effort of manipulation. It is probably incorrect to think
that more variables are always preferred. On the contrary, a large set of data almost
always contains redundant information which, if not appropriately eliminated, can
result in unstable solutions and create noisy estimates. Therefore, another important
problem in information synthesis is to select and refine variable sets such that
redundant and trivial variables are excluded from consideration.

21.7.4 Target Delineation

Mineralization is considered as an anomalous geologic event, because the element
is either present in anomalous grades, rare minerals, or in anomalous quantities. The
purpose of mineral exploration is to locate economic mineral deposits in such
anomalous regions based on direct and most often indirect information (chemical,
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physical, structural, etc.) and ore genetic theories. Since the direct information, e.g.,
the concentration of the metal of interest, is usually meager in the early stages of
exploration, indirect information (e.g., geological, geophysical, geochemical,
remote sensing, etc.) is commonly employed to identify mineral exploration targets.
However, the mineralized anomalies, which are distinctive from the surrounding
areas in terms of the accumulated metal(s), are typically fuzzy or ambiguous in
terms of indirect information. Therefore, ambiguities of information raise an
intricate question, i.e., how to ‘best’ define targets in terms of the maximum
inclusion of mineralized rock and exclusion of non-mineralized rock.

Information synthesis produces either a set of processed (enhanced, quantified,
integrated) geological, geochemical, geophysical fields, or a single synthesized
index characterizing the favorability/probability of mineral occurrence. Based upon
the derived grids, maps, or images, all of which are commonly referred to as
‘layers’, mineral exploration targets can be delineated by overlaying or combining
the different layers. Since the synthesized results, however, are generally continu-
ous, some threshold values are necessary to define the boundaries of targets. The
traditional approaches to determine the boundaries are generally subjective and tend
to introduce too many uncertainties. Obviously, a precise definition of a target is an
important exploration problem to be solved.

Delineation of potential mineral targets has been a central task especially in the
earlier phases of a mineral exploration program. Target areas have been identified
by either subjective or objective analysis. Subjective methods provide opportunity
for the maximum use of genetic theories of ore deposits and connect genetic
knowledge and geological observations either intuitively by expert geologists or
formally by a computer system (Harris and Carrigan 1981; Finch and McCammon
1987; McCammon 1990; Koch and Papacharalampos 1988). Subjective methods
have been generally formulated as follows: (i) formulate genetic models, (ii) relate
geological observations to genetic processes, and (iii) estimate subjective proba-
bilities of mineral occurrence. Objective (mathematical) methods attempt to max-
imally use various existing mineral occurrence data and quantified geological
variables (Botbol et al. 1978; Chung and Agterberg 1980; Agterberg 1988;
McCammon et al. 1983; Singer and Kouda 1988). An objective approach generally
consists of three major steps: (i) quantification of geological variables, (ii) estima-
tion of mathematical models, and (iii) extrapolation of the estimated models to
identify target areas.

Ore genesis models are crucial in mineral exploration and resource evaluation.
Since genetic models of ore deposits are usually constructed on the basis of man’s
past experience, imagination, and logical inference, they have a natural connection
to subjective probability analyses and expert systems, giving such an approach
great potential for prediction. However, in practice this approach also is subject to
some limitations. First, expert systems are costly to build and to validate; second,
the full potential of such systems requires the construction and incorporation of
extensive data bases. Without such data bases, estimates may be associated with
large uncertainties. Furthermore, genetic models change as knowledge is acquired
and geologists often disagree on at least some points of a genetic model; this creates
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uncertainty about the identification of mineral targets. An obvious advantage of
objective methods is the production of relatively robust estimates of mineral
potentials by extensively using geological, geochemical, and geophysical data.
However, these methods also are deficient in some regards. Without using genetic
theories, geoscience information content of the variables may be low and may have
poor predicting power, i.e., the estimates often ‘at best’ reproduce what an expert
geologist had recognized.

A useful procedure as a link between the two types of model is outlined as
follows. First, based upon genetic theories, identify one or more critical genetic
factors which are considered as necessary conditions for ore formation. A mineral
deposit is believed to be absent if these genetic factors do not exist. Second, identify
a set of recognition criteria that offer ‘almost sure’ existential evidence for critical
genetic factors. Third, estimate the favorabilities or probabilities of occurrence of
these recognition criteria based upon multiple geodata sets. Fourth, generate a
synthesized favorability or probability measure for the occurrence of critical genetic
factor(s) based upon the probabilities estimated in the third step. Finally, potential
exploration targets are delineated from the synthesized favorability or probability
measure through optimum discretization (Pan and Harris 1990). These targets have
been referred to as intrinsic geological units with respect to the chosen critical
genetic factor(s) (Pan and Harris 1993). These targets are so-called chiefly because
they are not delineated directly in terms of mineral deposits, but in terms of the
critical genetic factor that is a necessary condition for formation of the mineral
deposits.

Upon the completion of target delineation, a decision needs to be made as to
which targets should receive high priority to be drilled, as different targets vary in
the degrees of favorability of mineral occurrence. This need requires the ranking of
the targets in the sequence of drilling plans. Rank estimates may be derived directly
from the synthesized fields or index. When a reasonable amount of known infor-
mation on the metal(s) of interest is available in the study region, the rank esti-
mation can be substantially improved by using a functional relation between the
synthesized index and the quantity of metal. Of course, estimation of metal
quantities is a difficult task, if not impossible. Such a function for estimation of
metal quantities is valid only in a sense of pseudo terms, meaning that the results
are meaningful only in a statistical sense. Verification for the results is necessary in
later stages of exploration and estimation.

21.8 Prediction with Dynamic Control Samples

Most conventional resource analyses are constructed on the basis of extrapolation
of some mathematical relations established in control areas into unknown areas
(Pan and Harris 2000). Control areas are commonly employed in geodata inte-
gration and for the estimation of mineral resources of a relatively unexplored
region. As such estimation is predicated upon the principle of analogy, the
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properties of the estimates are heavily reflective of (1) how good of a geological
analogue the control area is of the unexplored region and (2) the economic refer-
ence for the estimated resources. When analogue and desired resource estimate is
for economic and technologic conditions similar to those that induced the explo-
ration and resource development of the control area, resource estimates produced by
a mathematical model estimated on a control area may be unbiased. However, when
economic or technologic references for the estimates differ or when the control area
is not a good geologic analogue, resource estimates are biased and even totally
wrong.

Two different approaches to improvement of estimation by mathematical models
estimated on control areas are: (1) use only control areas that are exhaustively
explored and (2) extend the mathematical model to include exploration variables
(such as those defined in Pan and Harris (1991). Both of these solutions present
difficulties however: (1) except for very small regions, there are few regions large
enough to make good control areas that are exhaustively explored and (2) infor-
mation on exploration activities generally is not available for regions large enough
to make good control areas. When exploration variables are not explicitly included
in the model, identification of an appropriate control area presents a difficult
problem, for it must represent an unbiased sample of deposit occurrence and
nonoccurrence for the relevant geologic environment. As noted by Chung et al.
(1992), to compute unbiased estimates of the probability for deposit occurrence
conditional upon a set of geologic attributes, it is necessary to know not only the
distribution of various attributes in and near mineral deposits, but also the distri-
bution of the same attributes away from mineral deposits (Cox 1990; Agterberg
2015).

Given the issues presented above, it is necessary to solve the dilemma in the
selection of control areas and even method of extrapolations of these control areas
into unknown regions. The nature of control areas so far is static, meaning that the
control areas are fixed when a mathematical model established from these control
areas is extended into unexplored regions. Clearly, this static model is hardly
adequate for prediction of a large region with complex variability of geological
conditions and mineralization characteristics. In other words, the mathematical
model built on a basis of samples collected from a control area is only appropriate
when the extrapolated areas have geological conditions identical to those in the
control areas. It is deemed invalid when the geological conditions in the estimated
areas differ from those in the control areas. Hence, a new concept is proposed here:
dynamic control areas, which are characterized as self-improvement of the math-
ematical models through information gains of extrapolated areas away from the
initial control areas. The methodology of dynamic control areas and extrapolation
of mathematical models are implemented in three steps as follows:

(1) Select the best explored areas in the working region as the initial control area,
from which control samples are collected. On the basis of this sample data, a
mathematical model is established through data enhancement, combination of
different datasets, and techniques of information synthesis. This mathematical
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model is then used as the initial model for extrapolation and prediction of
unknown areas in the working region.

(2) Update the mathematical model when the model is used for prediction of an
unknown unit based on an expanded control sample through addition of new
information of exploration variables and target variables (if any) in the pre-
dicted unit. The new mathematical model will be more appropriate to the
estimation of unknown units. The decision of model update is predicated upon
availability of new known target variable information and variability of geo-
logical and mineralization conditions from the initial control areas.

(3) Tests are performed with the updated model with respect to its effect in pre-
diction of known units in the initial control areas and the unknown unit. The
updated model would be accepted if the test results are satisfied; otherwise, the
models will be reconstructed. Quantification of variability of geological and
mineralization conditions in the unknown units plays a key role in the pre-
dicting power of the updated mathematical models.

The model update above is in nature an iterative process, which improves pre-
dictability of the model in the unknown units. The initial control sample is only
used for establishment of the initial mathematical model, which is then updated and
optimized as it is extended into the predicted areas through incorporation of new
information on the variability of geological environments.
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Chapter 22
Solving the Wrong Resource Assessment
Problems Precisely

Donald A. Singer

Abstract Samples are often taken to test whether they came from a specific
population. These tests are performed at some level of significance (α). Even when
the hypothesis is correct, we risk rejecting it in α percent of the cases—a Type I
error. We also risk accepting it when it is not correct—a Type II error at β prob-
ability. In resource assessments much of the work is balancing these two kinds of
errors. Remarkable advances in the last 40 years in mathematics, statistics, and
computer sciences provide extremely powerful tools to solve many mineral
resource problems. It is seldom recognized that perhaps the largest error—a third
type—is solving the wrong problem. Most such errors are a result of the mismatch
between information provided and information needed. Grade and tonnage or
contained models can contain doubly counted deposits reported at different map
scales with different names resulting in seriously flawed analyses because the
studied population does not represent the target population of mineral resources.
Among examples from mineral resource assessments are providing point estimates
of quantities of recoverable materials that exist in Earth’s crust. What decision is
possible with that information? Without conditioning such estimates with grades,
mineralogy, remoteness, and their associated uncertainties, costs cannot be con-
sidered, and possible availability of the resources to society cannot be evaluated.
Examples include confusing mineral occurrences with rare economically desirable
deposits. Another example is researching how to find the exposed deposits in an
area that is already well explored whereas any undiscovered deposits are likely to
be covered. Some ways to avoid some of these type III errors are presented. Errors
of solving the wrong mineral resource problem can make a study’s value negative.
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22.1 Introduction

Howard Raiffa (1968, p. 264) noted that statistics students learn the importance of
constantly balancing making an error of the first kind (that is, rejecting the null
hypothesis when it is true) and an error of the second kind, that is, accepting the null
hypothesis when it is false (Fig. 22.1). Raiffa thought it was John Tukey who
suggested that practitioners all too often make errors of a third kind: of solving the
wrong problem. Raiffa nominated a candidate for the error of the fourth kind:
solving the right problem too late. John Tukey believed that it was better to find an
approximate answer to the right question, than the exact answer to the wrong
question, which can always be made precise. More recently, Mitroff and Silvers
(2009) focused mostly on social questions where type III errors occurred and
provided many examples of developing good answers to the wrong questions (type
III error). Unfortunately concerns of Raiffa, Tukey, Mitroff, Silvers, and others are
appropriate for mineral resource assessments. And the concerns should not be
limited to classical statistics.

Supply of minerals to society is dependent not only on the total amount of
mineral material but also on quality or concentrations, spatial distributions or how
scattered the material is, whether it has been found, whether it is remote from
infrastructure, and a whole host of other issues such as government policies, pro-
duction technologies, and market structures. Decision-makers, whether concerned
about development of a technology, development of a region, exploration, or land
management, are faced with the dilemma of obtaining new information, or allowing
or encouraging others to obtain it, and the possible benefits and costs of develop-
ment if mineral deposits of value are discovered. Decisions about exploration for
these resources and their possible development require awareness of various kinds
and the import of errors that can be made by analysts in their studies.

A type I error is the rejection of the null hypothesis when it is true. In some fields
a type I error is called a false positive. The risk of this error is α, the level of
significance. A type II error is the acceptance of the null hypothesis when it is false,
also known as a false negative error. The probability of making a Type II error, β,

Fig. 22.1 Type I error is the rejection of the null hypothesis (Ho) when it is true. The risk of this
is α, the level of significance. Type II error is the acceptance of the null hypothesis when it is false
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depends on the alternative value and its distribution. The most important question
of the analyst and decision-maker should be: Are we solving the right problem? It is
the need to consider this source of error in mineral resource studies that is the focus
of this chapter. Common to many of the errors of solving the wrong problem is a
mismatch of the studied population and the population that is central to the deci-
sions—this topic is presented first. Next, effects of mismatches of populations to
some mineral resource assessments are discussed. Possible ways to avoid some of
these type III errors are finally presented.

22.2 Target Population

Type III errors are fundamental and should be considered before errors of types I
and II. Type III errors stem from improper definition of the problem and therefore
are not strictly a statistical issue, but one of critical thinking. It does no good to
minimize the expected costs of type I and type II errors if the wrong problem is
being solved. In mineral resource assessments, careless problem definition is the
primary source of type III errors. For almost all resource assessment problems, the
fundamental sample is the mineral deposit.

The idea of a mineral resource involves both geologic and economic aspects and
because knowledge about the earth and future economic conditions is limited,
should recognize uncertainty. Mineral deposits are the geologic entities containing
resources. Mineral deposits and their contents are the fundamental target popula-
tions that are estimated. So what is a mineral deposit? Mineral deposits are defined
as mineral occurrences of sufficient size and grade that they might, under favorable
circumstances, be economic.

A map of some volcanogenic massive sulfide deposits from Northern Japan is
used to clarify our understanding of what is a deposit (Fig. 22.2). From this plot one
can see that some of the deposits are just a few meters apart from each other. Grade
and tonnages are available for 23 of these named deposits from the western part of
the Hokuroku district, Japan (Ohmoto and Takahashi 1983). It is important that if a
different map scale were used, this part of the district might have three or four
named deposits with grades and tonnages. This well-studied district has more
detailed maps than many other volcanogenic massive sulfide districts around the
world. If one gathered all available data on the names and grades and tonnages of
volcanogenic massive sulfide deposits and built grade and tonnage or contained
metal models, the models would contain metals double counted from deposits
reported at different map scales and from the same deposits with different names
due to grouping. To have a consistent sampling unit that can be applied in statistical
analysis and in assessments of undiscovered deposits it is necessary to have spatial
rules to help define a deposit. In addition, mine names and deposit names do not
always match, mine names sometimes change over time, and district and deposits
can be reported with different names and numbers. For example, careless data
gathering might contain the grades and tonnage of the total Sudbury Ni-Cu District
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in Canada and also contain grades and tonnages of the many mines thus double
counting and generating biased metal statistics and frequency distributions of
questionable value. There are databases in which spatial rules for combining

Fig. 22.2 Kuroko volcanogenic massive sulfide deposits of the western part of the Hokuroku
district in Northern Japan (after Ohmoto and Takahashi 1983)

440 D. A. Singer



adjacent deposits have been consistently applied and multiple names have been
eliminated (e.g., Mosier et al. 2009). Compilations that use the above sources
combined with other sources of data on, for example, volcanic-hosted massive
sulfide deposits very likely contain deposits and prospects counted twice (e.g.,
Patiño-Douce 2016), resulting in statistical analyses that are seriously flawed
because the studied population does not represent the target population of mineral
resources. Operational rules defining deposits need to account for these map scale
effects and for the fact that some deposits have multiple names, mines and separate
reported tonnages (Singer 2017).

Mineral occurrences or prospects which are the focus of prospectivity analysis
do not qualify as economic mineral deposits because they are typically quite small
and incompletely explored. Because number of undiscovered deposits estimates
must be defined in a way that is linked to the grade-tonnage or contained metal
models, estimates of number of deposits made using models based on such flawed
grade-tonnage models must also be a mismatch with the target population.

22.3 Examples of Mismatches in Assessments

Solving the wrong problem due to mismatches of the target population with the
studied or estimated population abound in mineral resource assessments. Examples
of mismatches include issues of not understanding where the undiscovered
resources might exist and estimating something other than mineral deposits that
might be economic to mine (De Young and Singer 1981).

In one example, five or more epithermal gold vein deposits were estimated at the
90% level but no grade-and-tonnage model was provided, so the estimated deposits
could be any size (Singer and Menzie 2010). To provide critical information to
decision-makers, a grade-and-tonnage or contained metal model is key, and the
estimated number of deposits that might exist must be from the linked
grade-and-tonnage frequency distributions. Estimates of number of undiscovered
deposits are completely arbitrary unless tied to a grade-and-tonnage or contained
metal model that has been defined in a consistent operational manner.

In an unpublished study, four geoscientists made subjective probabilistic esti-
mates of the number of undiscovered hot-spring mercury deposits in a 1:250,000
scale quadrangle in Alaska. They made independent estimates at the 90th, 50th, and
10th percentiles (Table 22.1). The 10th percentile, for example, is the number of
deposits for which there is at least a 10% chance of that number of deposits or more
exist.

It was pointed out to participant D that because the number of deposit estimates
must be consistent with the grade and tonnage model, his estimates imply that there
is more undiscovered mercury in this quadrangle than has been found in the world
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in this deposit type. He responded that he was estimating wisps of cinnabar, not
deposits consistent with the grade and tonnage model. In this case, the population
considered by participant D did not match the target population. Using a variety of
different guidelines such as deposit densities (Singer 2008) for estimates of the
number of undiscovered deposits provides a useful crosscheck of assumptions that
may have been relied upon and discourages mismatches between target and esti-
mated populations. In these examples of errors in estimating the number of
undiscovered deposits, the key is the difference between the understanding of what
was being estimated and the population of interest.

In Harris’s landmark study (1965), multiple discriminate analysis was used to
predict value of mineral production—among the best predictors was geologic cover
with a negative value. In a study by Singer (1971), multiple regression was used to
predict mineral production and again, cover with a negative value was an important
variable. Unlike in petroleum exploration, minerals exploration under cover is a
developing technology. Most commonly, mineral exploration under cover results
from trying to extend known deposits, that is, additions to reserves. More difficult
discovery and higher costs relative to exposed deposits, tend to reduce interest in
covered areas. Covered areas tend to be poorly explored and, consequently,
deposits under cover tend to be underreported.

In situations where resource assessments are made based on local information,
the possibility of solving the wrong problem is high. For example, if the mapped
geology were used to predict where and how many undiscovered orogenic gold
deposits might in the Bendigo Zone of Victoria Australia, one would conclude that
deposits are clustered in space and gold deposits are related to older rocks and
covered areas would be worst place to look (Fig. 22.3). Even if we use some
modern tools like weights of evidence or neural networks, we would predict no
undiscovered deposits under cover. Yet, because geology permissive for the gold
deposits is known under cover, and exposed permissive geology is thoroughly
explored, most experts would recommend exploration under cover (Lisitin et al.
2007).

Each of these examples demonstrates mismatches of the target population and
the studied population. Type III errors in these cases could produce useless or, even
worse, misleading assessments.

Table 22.1 Independent estimates by four scientists of the number of undiscovered hot-spring Hg
deposits in a quadrangle in Alaska

Participant A B C D

90% chance of at least 1 1 2 9,000 Deposits
50% chance of at least 3 2 4 10,000 Deposits
10% chance of at least 6 6 7 11,000 Deposits
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Fig. 22.3 Geology and known orogenic gold deposits (black) in the Bendigo Zone of Victoria,
Australia (modified after Lisitsin et al. 2007)

22 Solving the Wrong Resource Assessment Problems Precisely 443



22.4 How to Correct Type III Errors

The problems of mineral resource assessment can only be solved if they are for-
mulated in a way consistent with the decision-maker’s language and understanding
of the problem. The questions need to be asked: Why perform an assessment? Who
is the study being done for and what are the problems they are trying to resolve?

We start with the question of what kinds of issues decision makers are trying to
resolve and what types and forms of information would aid in resolving these
issues. Unfortunately, the decision-maker may not be available for the needed
insight or may not be able to clearly state the information needs. Because the
primary purpose of the kinds of assessments recommended here is to help
decision-makers determine consequences of economic and policy decisions about
tracts of land, regions, countries, or the earth, it is critical that the assessments be
unbiased. For example, if the question concerns the long-term supply of a metal, the
data used should not contain biased information such as grades and tonnages on
multiple versions of the same deposits. These situations require care in compiling
data and using sources that report locations, other names of deposits and names of
deposits that have been combined with the primary deposit to meet spatial com-
bination rules. A reliable source (e.g., Mosier et al. 2009) has specific information
about locations, rules used to combine deposits and specific names that were
combined for each deposit. These kinds of data provide a reliable basis for testing
statistical distributions of metals in mineral deposits such as the lognormal distri-
bution (Singer 2013).

It is important to recognize that success of assessments depends on the assess-
ments following an integrated approach. This means that no part of the models and
methods of estimation have any meaning in isolation. For instance, estimates of
number of undiscovered deposits are completely arbitrary unless tied to a grade and
tonnage or contained metal model. The goal should be to make explicit the factors
that can affect a mineral-related decision so that the decision-maker can clearly see
what are the possible consequences of decisions (Singer and Menzie 2010).

To avoid situations where occurrences are the basis of information used to
discriminate barren areas from the economic deposits sought, it is necessary to
construct models based on the economic deposits sought. Mineral deposit models
can be based on data gathered from well-explored deposits of each type from
around the world. This would allow the determination of how commonly different
attributes and combinations of attributes occur. Quantifying mineral deposit attri-
butes is the necessary and sufficient next step in statistically classifying known
deposits by type. Quantified deposit attributes also can provide a firm foundation to
identify which observations on geologic and other maps should be effective in
delineation of tracts and perhaps identifying sites for detailed exploration. The kind
of digital models advocated here would require the recording of both absolute time
units and the relative time units of spatially related mineral deposits, rocks, geo-
chemistry, geophysics, and tectonics. The scale of the observations is critical to
proper application of such models. This is required to properly apply the models in
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new geologic settings. Information in these models about the attributes associated
with known deposits is necessary but not sufficient to discriminate barren from
mineralized environments; quantifying the attributes of barren environments also is
necessary for this task. Such digital models could be the foundation for identifying
the discriminating functions that could remove many type III errors in assessments.

The exploration department of a major zinc producer found it essential to doc-
ument a robust decision-making process to maintain internal and investor support
(Penney et al. 2004). Zinc deposits from around the world were classed by type,
grade, and tonnage models developed for each, cost filters were applied to each, and
tracts around the world were delineated where the types could occur (Penney et al.
2004). This study was designed to aid the exploration decision-makers plan the
search for economic deposits. Their process was the same as that recommended in
three-part assessments (Singer and Menzie 2010), with the exception that they
ranked or scored tracts rather than estimating the number of undiscovered deposits.

22.5 Conclusions

Errors of solving the wrong mineral resource problem can make a study’s value
negative. Type III errors, solving the wrong problem, can be avoided by using care
in matching the information needed to solve the decision-maker’s problem with
information provided in the study. In some cases, we know how to solve the wrong
problem but not the real one. It is not uncommon to get rewarded for publishing an
answer—not THE answer. With some care and critical thinking in the planning
stages, it is possible to provide information useful to decision-makers and to be
rewarded for a publication.
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Chapter 23
Two Ideas for Analysis of Multivariate
Geochemical Survey Data: Proximity
Regression and Principal Component
Residuals

G. F. Bonham-Carter and E. C. Grunsky

Abstract Proximity regression is an exploratory method to predict multielement
haloes (and multielement ‘vectors’) around a geological feature, such as a mineral
deposit. It uses multiple regression directly to predict proximity to a geological
feature (the response variable) from selected geochemical elements (explanatory
variables). Lithogeochemical data from the Ben Nevis map area (Ontario, Canada)
is used as an example application. The regression model was trained with geo-
chemical samples occurring within 3 km of the Canagau Mines deposit. The
resulting multielement model predicts the proximity to another prospective area, the
Croxall property, where similar mineralization occurs, and model coefficients may
help in understanding what constitutes a good multielement vector to mineraliza-
tion. The approach can also be applied in 3-D situations to borehole data to predict
presence of multielement geochemical haloes around an orebody. Residual prin-
cipal components analysis is another exploratory multivariate method. After
applying a conventional principal components analysis, a subset of PCs is used as
explanatory variables to predict a selected (single) element, separating the element
into predicted and residual parts to facilitate interpretation. The method is illustrated
using lake sediment data from Nunavut Territory, Canada to separate uranium
associated with two different granites, the Nueltin granite and the Hudson granite.
This approach has the potential to facilitate the interpretation of multielement data
that has been affected by multiple geological processes, often the situation with
surficial geochemical surveys.
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23.1 Introduction

Proximity to selected spatial features on geological maps has been used in the
analysis of multivariate data in several ways, but usually as a weighting function
not as a variable to be directly predicted. For example, Cheng et al (2011) describe
“spatially weighted principal component analysis” to emphasize proximity to
selected intrusions in the analysis of geochemical patterns. This involves using
spatial weights (in range 0–1) to calculate weighted correlation coefficients, before
the usual eigenvector determinations of principal components analysis. The
resulting weighted principal component scores were mapped to predict element
associations related to intrusions. Brunsdon et al. (1998 and other papers) have used
“geographically weighted regression” to analyze long-term illness data from a UK
census. This approach recognizes that a regression may often not be spatially
stationary, but will show changes geographically. Again, the regression equations
use spatial variables as weights. In both these examples, proximity to some feature
is introduced as a spatial weight, not as a response variable for direct prediction.

In the first part of this chapter we suggest that proximity to a geological feature
can be more directly studied by using proximity itself as a response variable in a
regression using a collection of geochemical elements as explanatory variables. In
regional geochemical surveys, one may be interested in understanding which
variables are good predictors of proximity to a mineral deposit, or to some other
selected feature with known location. This is frequently referred to in mineral
exploration as finding good ‘vectors’ to mineralization, but as far as we are aware
direct prediction of proximity from multielement data has not been published,
although plots of single elements, or element ratios, on profiles showing distance to
known mineralization are often used. If a good predictive suite of elements can be
determined (either from understanding a genetic model or from empirical tests) and
based on a training set of samples relatively close to the geological feature of
interest, the resulting predictive equation can be used to look for similar associa-
tions outside the training area. If the feature of interest is a mineral deposit, this
approach may be useful in finding new deposits. This may be used both for 2-D
regional geochemical surveys, and in 3-D geochemical data from borehole data.

The second part of the chapter is about using residual principal components
analysis (PCA) of multielement geochemical data. PCA has been widely used by
exploration geochemists and others to understand multielement geochemical pro-
cesses, particularly in surficial geochemical surveys, but also in lithogeochemical
data collected at surface or in boreholes. This literature is large, and here we refer as
an example to a study of soil geochemistry as measured along two continental scale
transects of North America. PCA of logratio-transformed variables revealed the
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effects of soil-forming processes, including soil parent material, weathering, and
soil age as interpreted from PCs (Drew et al. 2010). There are many examples of
successful geological interpretations by PC analysis. Individual PCs can often be
interpreted both from variable loadings, from biplots and from spatial patterns seen
by mapping PC scores (e.g. Grunsky 2010).

Sometimes, however, one may be interested in the spatial distribution of a single
geochemical element, and it is desirable to remove the effect of some particular
geological process or processes that are reflected in one or more PCs. For example,
in the analysis of till geochemical surveys, the first PC is often interpreted as due to
the effect of till transport. Thus it may be desirable to look at the element distri-
bution after removing PC1. Usually this is carried out by progressively examining
element loadings and the spatial patterns seen by mapping PC scores. However,
there may be situations where it is helpful to examine spatial patterns of a single
element after removing PC1 (or several PCs). This can be achieved what we are
terming here as “principal component regression”. This is a straightforward
regression using the selected element as the response variable, and PC1 (or PC
combination) as the explanatory variable(s). The residuals (the observed response
variable minus the predicted response variable) provide the desired element dis-
tribution after removing the effect of PC1 (or PC combination). If PC1 is interpreted
as due to till transport, then the residuals represent the element values after
removing the effect of till transport.

This approach represents a process that is somewhat analogous to a geochemical
selective leach separating a mineral phase or perhaps several mineral phases.
A ‘total’ analysis is designed to dissolve all mineral phases, whereas a partial leach
targets a selected mineral phase. The element under study can thereby be partitioned
into phases by selective leaching. Residual PCA also separates the element under
study into parts, although the partitions are not the same as those targeted in
selective leaches. The partitions in residual PCA are related to proportions of an
element quantity that can be ‘explained’ by different multivariable associations as
determined by PCA. Residual PCA was first used by Bonham-Carter and Hall
(2010) in a study of uranium in soils in the Athabasca Basin. Residual U, after
removing the effect of till transport (as determined by PCA), was a better predictor
of buried mineralization than raw U values in A-horizon soils.

In this chapter, we use a lithogeochemical dataset from the Ben Nevis area of
Ontario to illustrate proximity regression, and a lake-sediment dataset from
southern Nunavut to illustrate residual principal components analysis.

23.2 Method 1: Direct Prediction of Spatial Proximity

Suppose we have an array of geochemical data, with rows being samples, and
elements as columns. In addition, we have distance measurements for each sample
reflecting the shortest distance from the sample to some geological feature (mineral
deposit, an intrusion, a fault, etc.). Before multivariate analysis, it will be important
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to transform the element variables by a centred logratio, to overcome the effects of
closure (Aitchison 1986; Buccianti et al. 2006; and many other papers).

Although distances may be used directly, we have found that transforming
distance to proximity gives somewhat better predictions. If for example the goal is
to model the dispersion ‘halo’ around a deposit, the decay of the halo effect with
distance from the contact may be exponential, or may follow a power law. Thus,
instead of using distance as a response variable, we often get better results by
transforming distances inversely to proximities. Here we have used a simple
exponential decay of proximity with distance, that assumes that the rate of decay of
proximity with distance is constant, similar to the familiar model of decay of a
radioactive element with time. Let distance be denoted as Z (metres from feature)
and proximity by Y (in range 1, 0 where 1 is at zero distance decreasing to zero at
infinitely large distances), then the rate of decay of proximity with distance is
assumed to be a constant

dY
dZ

= − α. ð23:1Þ

Integrating (23.1) from distance 0 to Z leads to:

Y Zð Þ= Y 0ð Þe−αz. ð23:2Þ

The value of proximity at zero distance Y(0) = 1, so this term drops out. It is
also convenient to define the ‘half distance’ Z0.5 where proximity Y equals 0.5, then
by rearranging Eq. 23.2 we can express α in terms of the half-distance:

α=
− ln 0.5
Z0.5

. ð23:3Þ

Substituting for α in (23.1), distance can then be transformed to proximity from

Y Zð Þ= exp
ln 0.5
z0.5

⋅ Z
� �

ð23:4Þ

We note that an alternative approach was used by Cheng et al. (2011) in the
spatially weighted principal components to determine spatial weights W (equivalent
to proximities) using a power relation:

W =
1−Z
Zmax

� �γ

ð23:5Þ

where γ is a power parameter, and Zmax is a selected maximum distance for
modelling. For γ = 0, all weights = 1, with γ = 1, weights are a linear inverse of
distance, but positive values of gamma such as 2, 8, 16 define a power-law decrease
of proximity with increasing distance.
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Typical exponential curves and power law curves using Eqs. 23.4 and 23.5 are
shown in Fig. 23.1.

We now model proximity with a training set of samples (chosen within some
arbitrary but reasonable distance from the selected feature) using selected geo-
chemical variables.

Then let X be the matrix of CLR-transformed element values, with rows as
samples, columns as elements. The geochemical elements are the explanatory
variables, and the column vector Y contains the proximity values, the response
variable. The geochemistry is used to ‘explain’ the response. Here we used multiple
linear regression to model this relationship, although other approaches could be
taken.

Y=Xβ+ ∈ ð23:6Þ

where β is a column vector of coefficients to be determined by least squares, and ϵ is
the vector of errors. The coefficients are solved from the normal equations

β= X′X
� �− 1

X′Y
� � ð23:7Þ

where X’ is the transpose of X and (X′X)−1 is the inverse of X′X.
If inspection of the coefficients and goodness of fit are satisfactory, the predicted

values of proximity, Ŷ, are calculated from

Ŷ=Xβ. ð23:8Þ

Fig. 23.1 Left. Example of relationship between proximity and distance using exponential decay
with a ‘half-distance’ parameter. Proximity = 1 at distance = 0, proximity = 0.5 at dis-
tance = half-distance. Right. Similar to left diagram, but using power law model with gamma
parameter
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23.2.1 Application of Proximity Regression with Ben Nevis
Lithogeochemical Data

23.2.1.1 Background Geology

The Ben Nevis Township area is part of the Blake River Group (Fig. 23.2) a
calc-alkaline volcanic sequence. The same sequence extends eastward to the Nor-
anda area of Quebec where major Cu-Zn-Ag deposits are located. Extensive
alteration and mineralization was recognized in the Ben Nevis area (Jensen 1975;
Wolfe 1977), which led to a later geochemical study by Wolfe (1977) with
emphasis on the metal distribution of stratiform volcanogenic sulphide deposits in
Archean volcanic rocks. Lithogeochemical sampling was undertaken across the
area by Jensen (1975) and Wolfe (1977) followed by additional sampling by
Grunsky (1986a, b). Grunsky and Agterberg (1988) and Grunsky (1986a, b) carried
out a detailed a multivariate geostatistical investigation of these data. A regional
multi-element geochemical study over the Abitibi Greenstone Belt was later
undertaken by Grunsky (2013) in which multivariate statistical methods were
applied to recognize lithological variation, areas of alteration and potential
base-metal mineralization.

The principal lithologies of the study area are basaltic pillowed flows, pillow
breccias and breccias of calc-alkaline affinity (Grunsky 1986a). Two felsic volcanic
units comprised of tuff, tuff breccia and flows of rhyolitic and dacitic composition
occur within the basaltic sequence. The volcanic sequence has been intruded by
tholeiitic gabbroic and diorite bodies throughout (Fig. 23.3). More recent studies of

Fig. 23.2 Location map of Ben Nevis study area adapted from Grunsky (1986a)
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the volcanic assemblage in the context of the Abitibi Greenstone Belt are described
by Pelogquin et al. (2008).

Within the area, the two most significant mineral occurrences are the Canagau
Mines deposit and the Croxall property. The Canagau Mines deposit is dominated
by strongly carbonatized, sericitized, and silicified mafic and felsic volcanic rocks.
Mineralization consists of sphalerite, gold, silver, galena, chalcopyrite, and pyrite
within east-trending fractures and shear zones that dip 40–60° south. Tonnages are
unknown, and the grade is as high as 11 ppm gold and 22 ppm silver. The area was
extensively explored by Wallbridge Mining in 2004 (Wallbridge 2004) and a report
on exploration activities by Meyer et al. (2004). The deposit is currently considered
to be uneconomic. The Au-Ag-Cu-Pb-Zn style of mineralization is typical of an
epithermal system.

The Croxall property consists of a zone of brecciated and sheared rhyolite with
interstitial pyrite, chalcopyrite, chlorite, calcite and quartz. Gold assays have been
reported up to 1 ppm.

Grunsky (1986a, b) showed that multivariable data analysis techniques distin-
guish the altered from unaltered volcanic rocks.

Fig. 23.3 Geology of Ben Nevis area, adapted from Grunsky (1986a). Note locations of Canagau
Mines deposit and Croxall property. Figure from Grunsky (1986b)

23 Two Ideas for Analysis of Multivariate Geochemical Survey Data … 453



23.2.1.2 Application

The purpose of this application is to determine whether a multielement signature
can be identified related to proximity to the Canagau Mines deposit, then use this
signature to look for other places with similar patterns.

The distances between each sample and the Canagau Mines deposit was cal-
culated using the eastings and northings associated with each sample, plus the
known location of the deposit. Distances were converted to proximities using
Eq. (23.4). Different proximity vectors were calculated for half-distances of 100,
300, 500, 800, 1000 and 1500 m so that an optimal half distance parameter could
be determined. Figure 23.4 shows the sample points with proximity (half distance
equal to 800 m) classified by colour and dot size. The training set comprises all
points lying within 3 km of the deposit (equivalent to points with proximity greater
than exp(ln(0.5) * 3000/800) = 0.074).

There are 26 geochemical variables in the dataset—a mixture of trace elements
and major oxides. After converting all elements to a common unit of measurement
(ppm), all chemical variables were transformed by centred logratios (CLR) to avoid
the problem of closure. Using the training samples, correlation coefficients were
calculated between each element (CLR-transforms) and proximity. These correla-
tions were sorted by magnitude and used to reduce the number of elements selected
to predict proximity by multiple regression analysis. Elements were selected for
Model 1 if the absolute value of correlation (Pearson’s r) with proximity was greater

Circle radius 3 km round deposit

Fig. 23.4 Map showing locations of lithogeochemical samples, with size and colour of dots
related to proximity to Canagau Mines deposit (Fig. 23.3). Training set for regression model
includes only those samples within 3 km of deposit (within circle)
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than 0.2 (Table 23.1). This reduced the number of elements to be used as
explanatory variables from 26 to 11.

CLR variables were not further transformed, and the coefficients and associated
probabilities obtained by using Eq. (23.7) are shown in Table 23.1. Note that Co,
Li, Pb and CO2 have positive coefficients, whereas Ni, Sr, V, CaO, Na2O, K2O,
TiO2 and S have negative coefficients. This model has a goodness-of-fit of about
40% (adjusted R2 = 0.399). A second model was then run to remove those vari-
ables in Model 1 with p-values greater than 0.03. In Model 2, CO2 is the only
variable with a positive coefficient, and V, CaO, Na2O and K2O have negative
coefficients. The goodness-of-fit of Model 2 is almost the same as Model 1, with
adjusted R2 = 0.394. Although not shown here, a plot of predicted values from
Model 1 and Model 2 are highly correlated, and maps of each are virtually
indistinguishable.

The predicted values of proximity are shown in Fig. 23.5 for both the training
and non-training samples. As expected, the Canagau Mines deposit shows up as a
‘bullseye’ at the centre of the training sample area. Notice that the Croxall property
shows as another less prominent bullseye to the west, in the non-training sample
area. Other high values of predicted proximity to the south of the Canagau Mines
deposit and northeast of the Croxall property are associated with known sulphide
occurrences as shown in Fig. 23.3. Thus, we can conclude that proximity regression
led to the selection of a suite of useful explanatory variables that, after training on
the Canagau Mines deposit, was able to ‘discover’ the Croxall property.

Table 23.1 Result of multiple linear regression. Variables selected for regression against
proximity (Model 1) by selecting those with abs (correlation coefficient) > 0.2. The explanatory
variables are CLR-transformed geochemical element values, the response variable is proximity to
the Canagau Mines deposit, using n = 278 samples that lie within 3 km of the deposit for training.
Variables selected for Model 2 based on p-values < 0.03 from Model 1

Correlation coefficient, r Model 1 Model 2
Element Proximity Coefficient p-value Coefficient p-value

Co-CLR −0.34 0.0489 0.3242
Li-CLR 0.35 0.0285 0.2841
Ni-CLR −0.26 −0.0164 0.5226
Pb-CLR 0.38 0.0081 0.5816
Sr-CLR −0.23 −0.0227 0.2633
V-CLR −0.35 −0.0681 0.0101 −0.0646 0.0001
CaO-CLR −0.48 −0.1100 0.0000 −0.1206 0.0000
Na2O-CLR −0.30 −0.0728 0.0000 −0.0801 0.0000
K2O-CLR 0.26 −0.0285 0.0205 −0.0287 0.0046
TiO2-CLR −0.43 −0.0721 0.2082
CO2-CLR 0.26 0.0330 0.0012 0.0417 0.0000
S-CLR 0.24 −0.0123 0.2411
Constant 1.1344 0.0000 0.8083 0.0000
Adjusted R2 0.3991 0.3942
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Croxall Property

Canagau Mines deposit

Fig. 23.5 Map showing predicted proximity to Canagau Mines deposit. Plot includes both points
used in training (those within 3 km of deposit) and other sample points. Croxall property is
identified with large proximity values by this model

Fig. 23.6 Plot of observed proximity versus predicted proximity, with best fit line, training points
only. In general, fit is noisier at lower values of proximity. Points with proximity >0.5 (i.e. within
the ‘half-distance’ of 800 m of the Canagau Mines deposit) show a stronger relationship
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A bivariate plot of observed versus predicted proximity, training points only,
(Fig. 23.6) shows that the relationship is noisier far away from the deposit than
closer to it, consistent with the proximity response weakening at increasing
distance.

Experimental results show that an optimum half distance for modelling prox-
imity as an inverse function of distance is 800 m, although the results are not very
sensitive to changes in the 300–1000 m range (Fig. 23.7). It is not clear how useful
this parameter might be in describing the geometry of the ‘halo’ effect around the
deposit.

23.3 Method 2: Principal Component Residuals

Many geochemical survey data are difficult to interpret, because multiple over-
lapping processes affect element levels in space and time. In some situations, a
principal component will show a composition (based on element loadings) and a
spatial pattern reflecting an interpretable geological process, but usually interpre-
tation is complex because of interacting processes.

Fig. 23.7 Variation in goodness of fit (adjusted R2) with changes in ‘half distance’, the parameter
used to control rate of exponential decay of proximity with increasing distance (23.4). Note that
curve shows that relationship is strongest using half-distance parameter = 800 m
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Residual principal components analysis is an exploratory approach that can
sometimes be helpful in sorting out complex multielement interactions. The method
is a straightforward extension of applying principal components, followed by a
series of multiple linear regressions. As with the proximity regression method, it is
important first to carry out a centred log ratio transform of all the elements,
otherwise distortions may occur in principal component (and subsequent multiple
regression) results due to constant sum ‘closure’ effects.

Regular PCA is carried out in the usual way on the correlation matrix calculated
from CLR-transformed element variables (e.g. Davis 2002, ch. 6).

Inspection of the eigenvectors for each PC, inspecting biplots, and mapping PC
scores for the at least the first few PCs can then lead to an interpretation of PCs in
terms of geological processes (Grunsky 2010). Here the objective is to focus on a
selected element to separate out (‘partition’) this element compositionally and
spatially using the principal component results.

For the element of interest, the next step is to inspect the corresponding row of
the eigenvector matrix (the ‘loadings’) to understand better in which components
the element occurs. It may be decided to predict the element from PC1 only, or from
PC1 and PC2, or PC1, PC2 and PC3, and so on. For each of these selections, a
multiple regression is carried out with the selected PCs as explanatory variables,
and the chosen element as the response variable. For example, if the response
variable is V and the explanatory variables are PCs 1 to PC3, then

V = β0 + β1PC1 + β2PC2 + β3PC3 + ∈ ð23:9Þ

can be solved as before for the coefficients β by least squares. If the predicted values
of V are V*, then the residuals VR are simply

VR =V −V* ð23:10Þ

computed over all sample locations.
The choice of PCs in Eq. (23.9) may be as simple or as complex as needed. We

have had good results by successively adding PCs, inspecting the goodness of fit at
each stage and mapping the predicted and residual values at each step. Inspection of
residual patterns may reveal, spatially, where concentrations of that particular
element are distributed, facilitating interpretation.

In this method, there is no training set, calculations are carried out on all
samples.
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23.3.1 Application to Nunavut Lake Sediment Data

23.3.1.1 Geological Background

The lake sediment survey was carried out over three 1:250,000 scale map areas
(NTS 65A, 65B, 65C) in southern Nunavut Territory, Canada (McCurdy et al.
2012). The geology of two of the NTS sheets (65A, 65B) were mapped by Eade
(1973) and is shown in Fig. 23.8. Of particular interest to this study, we notice that
there are two important granitic intrusion types: the Hudson granite (1.83 Ga) and
the Nueltin granite (1.75 Ga) suites as identified and characterized by Peterson et al.
(2015).

This area lies within the southern Hearne Province, a poorly understood terrane.
The domain is dominantly comprised of Archean tonalitic and charnokitic gneisses,
approximately 2.8 Ga in age. However, strong evidence for fragments of much
older crust, up to 3.3 Ga, has been found in the form of inherited Archean zircons
and Sm–Nd model ages obtained from Proterozoic post-orogenic plutons of the
Hudson granite, intruded at about 1.83 Ga. Nueltin rapakivi granite (ca. 1.75 Ga) is
also present in the area.

A comprehensive multielement study of the lake sediment data was carried out
by Grunsky et al. (2012a, b), and by Grunsky and Kjarsgard (2016). One of the
results of those studies was to show that the multivariate geochemistry could be
used to map the various rock types using a variety of methods including PCA.

Fig. 23.8 Geological map of NTS sheets 65A, 65B and 65C, with coordinates shown for UTM
Zone 14, Nunavut Territory, adapted from Grunsky et al. (2012a, b). Two units noted in text are
Nueltin granite (Pp-Ng shown in orange) occurring in west and Hudson granite (Pp-Hgr shown in
light pink) occurring in east
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23.3.1.2 Application

The data consists of 1611 samples and 48 geochemical elements—both major and
traces. Prior to CLR transformation, all variables were converted to ppm. PCA was
carried out on all 48 elements. The objective was to understand better how uranium
is partitioned between the two granites: the Nueltin and the Hudson.

PCA analysis was calculated on all 48 CLR transformed variables. A scree plot
(Fig. 23.9a) shows that the first 15 PCs (out of the full 48) account for almost 85%
of the total variation in the data, and the first 5 PCs account for over 60%.
Inspection of the uranium loadings (Fig. 23.9b) shows that PCs 2 and 3 both have
high positive loadings, whereas PC 5 has a strong negative loading. Multiple
regressions were carried out (using U-CLR, not untransformed U) starting with
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Fig. 23.9 a Scree plot showing cumulative variation explained by first 15 PCs. b Values of
loadings for U-CLR on first 15 PCs
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PC1, then successively adding PCs up to 12. For each regression, predicted U and
residual U were calculated and mapped (not shown here), and a record made of the
goodness of fit (Fig. 23.10). This graph shows that PC1 does not account for much
U variation, but PCs 2 and 3 show marked increases in goodness of fit. PC 4 shows
a minor increase, and PC5 shows a major increase. After PC5, improvements in
goodness of fit are minor.

Figure 23.11 shows maps of U-CLR predicted from PCs 1-5, and U-CLR
residuals. Not shown is the unmodified U-CLR map (which sums these two parts).
Notable here is that the predicted map shows a pattern strongly correlated with the
Nueltin granite, whereas the residual map is strongly correlated with the Hudson
granite. PCs 1-5 ‘explain’ the uranium in the Nueltin granite, whereas the residual
uranium is that which occurs in the Hudson granite. The residual PC analysis has
partitioned uranium into two parts that have a distinct geological interpretation.

This is confirmed in Fig. 23.12 which shows for the successive regressions
results of t-tests on the mean U-residual in the Nueltin and Hudson granites. The
value of t increases up to PC5, then decreases. This confirms that, for partitioning
uranium between the two granites, regression against PC1-5 gives the best result.

Fig. 23.10 Goodness of fit
(R2) for successive multiple
regressions with U-CLR as
response variable and an
increasing number of PCs as
explanatory variables. Note
that after adding PC 5, there is
little change in R2 values

Fig. 23.11 Left. Map of U-CLR predicted from PCs 1-5 using lake sediment data. Right. Map of
residual U-CLR unexplained by PCs 1-5. Predicted uranium is strongly related to presence of
Nueltin granite, whereas residual uranium is strongly related to presence of Hudson granite. Map
of total U-CLR does not distinguish between these two granites
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23.3.2 Discussion

These two methods add to the already large basket of multivariate methods useful
for interpreting regional geochemical surveys.

With the wide use of GIS, spatial information is now easily determined for many
features of map data. Distance calculations from points to points, points to lines and
points to polygons are now routine, allowing the spatial characterization of prox-
imity of geochemical samples to mineral deposits (points—depending on map
scale), to faults of specified contacts (lines), or to rock units (polygons). In 3-D,
proximity of geochemical samples to an orebody using borehole data is also
straightforward. There are therefore many potential applications of proximity
regression for a variety of situations involving multivariate geochemical data.

One particular idea that may be worthy of investigation is the application of this
approach to prospectivity mapping. Instead of treating known mineral occurrences
as binary points to be predicted from a series of evidential layers (weights of
evidence, logistic regression, neural networks, etc.), a response variable could be
constructed showing distance (or proximity) to the nearest mineral occurrence. The
explanatory variables can be various evidential layers, as usual. The result would
not be the probability of occurrence of a mineral occurrence, but rather the pre-
dicted proximity to the nearest mineral occurrence.

It should also be noted that proximity regression as described here has used
ordinary multiple linear regression, so although the observed proximity measure in
in the range (0, 1), predicted proximities are unconstrained and may be greater than
1 or negative. There might be some advantage to using logistic regression, that
would automatically constrain the expected proximity to the range (0, 1), and would
also allow the use of non-numeric explanatory variables (e.g. presence/absence of

Fig. 23.12 t-test values for
U-CLR residuals obtained
from successive regressions
with U-CLR as response
variable and increasing
number of PCs as explanatory
variables. These are
‘2-sample’ t-tests comparing
means between two groups:
Nueltin granite samples and
Hudson granite samples. Note
that regression to predict
U-CLR using PCs 1-5 gives
best separation of two granites
by U residuals. Adding more
PCs reduces t-value and
significance of difference
between U residual means
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geological units, etc.). Alternatively, there are several neural network approaches
that could also be tried for predicting proximity.

It should be noted that when doing a residual PCA on geochemical data, that
logratio transforms are essential, because the effect of closure for introducing
artefacts in PCA results is well known. Experience has also shown that residual
analysis requires that the geochemical element used as a response variable must also
be CLR transformed, as regression results are poor if untransformed response
variables are used in the analysis.

In the separation of uranium between the Nueltin and Hudson granites, it would
be most interesting to determine whether this partition was also related to isotopic
differences. But this would require isotopic analyses of the lake sediment samples,
an expensive proposition.

23.4 Conclusions

Proximity analysis allows for the use of multielement geochemical data for direct
prediction of proximity to geological features, such as mineralization, faults and
intrusions.

Application of proximity analysis to lithogeochemical data from the Ben Nevis
area showed that a suite of elements provided a good prediction of proximity to the
Canagau Mines deposit, and that this model also predicted the Croxall property and
other nearby sulphide occurrences.

Residual principal components analysis is a useful way to partition particular
geochemical elements that can facilitate geological interpretation.

For example, uranium in a lake sediment survey could be partitioned into two
groups based on PCs. Uranium associated with PCs 1-5 is strongly correlated with
the Nueltin granite, whereas, residual uranium, after removing the effects of PC 1-5,
is strongly correlated with the Hudson granite.
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Chapter 24
Mathematical Minerals: A History
of Petrophysical Petrography

John H. Doveton

Abstract The quantitative estimation of mineralogy from wireline petrophysical
logs began as an analytical stepchild. The calculation of porosity in reservoir
lithologies is affected by mineral variability, and methods were developed to
eliminate these components. Simple inversion methods were applied in pioneer
applications by mainframe computers to a limited suite of digital log data. Over
time, the value of lithological characterization of reservoirs and resource plays has
been recognized. At the same time, the introduction of newer petrophysical mea-
surements, particularly geochemical logs, in conjunction with increasingly
sophisticated algorithms, has increased confidence in mineral profiles from logs as a
routine evaluation tool.

24.1 Pioneering Computer Methods

The volumetric determination of mineral composition from petrophysical logs
originated in efforts to estimate reliable porosity estimates that were confounded by
variations in rock mineralogy. When Archie (1950) introduced the term ‘petro-
physics’ he framed it in terms of “the physics of particular rock types” and then
elaborated on the petrophysics of reservoir rocks. The petrophysical properties that
he considered were restricted entirely to those “related to the pore and fluid dis-
tribution”. The reason was obvious in that almost all boreholes were drilled for the
location of either hydrocarbons or useable water in commercial quantities. The
mineralogy of the pore framework complemented the fluid content of the pore
network, but estimations would be focused on the evaluation of pore volume,
permeability, and fluid content. In monominerallic rocks, pore volumes could be
estimated very simply by interpolating between two endpoints of mineral and fluid.

J. H. Doveton (✉)
Kansas Geological Survey, Lawrence, KS 66047, USA
e-mail: doveton@kgs.ku.edu

© The Author(s) 2018
B. S. Daya Sagar et al. (eds.), Handbook of Mathematical Geosciences,
https://doi.org/10.1007/978-3-319-78999-6_24

467

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78999-6_24&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78999-6_24&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78999-6_24&amp;domain=pdf


In multiminerallic rocks, porosity estimates became more difficult and significant
errors were introduced if the mineral properties were radically different from one
another.

Probably the earliest application of a mathematical solution to the resolution of
porosity in a multiminerallic rock was directed to Permian carbonate reservoirs in
West Texas. Petrophysicists were frustrated by complex mineralogy in their
attempts to obtain reliable porosity estimates from logs as described by Savre
(1963). Porosities had been commonly estimated from neutron logs, but values
were excessively high in zones that contained gypsum, caused by the hydrogen
within the water of crystallization. If the density log was used, then porosity esti-
mation was compromised by the occurrence of either anhydrite or gypsum.
Collectively, the mix of dolomite, anhydrite, gypsum, and porosity meant that pore
volumes could not be resolved by graphical methods such as crossplots and
nomograms that were the standard procedures of that time.

It was recognized that lithologies composed of several minerals would require
several porosity logs to be run in combination in order to estimate volumetric
porosity. In the most simple solution model, the proportions of multiple compo-
nents together with porosity could be estimated from a set of simultaneous equa-
tions for the measured log responses. These equations can be written in matrix
algebra form as:

CV =L

where C is a matrix of the component petrophysical properties, V is a vector of the
component unknown proportions, and L is a vector of the log responses of the
evaluated zone. The equation set describes a linear model that links the log mea-
surements with the component mineral properties. Although porosity represents the
proportion of voids within the rock, the pore space is filled with fluid whose
physical properties make it a “mineral” component. The set of equations is then
solved as an “inverse problem”, in which rock composition is deduced from the
logging measurements. As a closed system of dolomite, anhydrite, gypsum, and
porosity, a deterministic solution is possible from three log inputs, which were
chosen as neutron, density, and acoustic velocity log measurements. The solution
for the unknown vector, V is:

V =C − 1L

where C−1 is the inverse of the C matrix.
Savre (1963) described how this procedure was coded in a computer program, as

a pioneer application of computers to petrophysics. An example of the graphical
output drafted from one of the earliest computer runs is shown in Fig. 24.1 (Alger
et al. 1963), where profiles of porosity, dolomite, anhydrite, and gypsum are shown
from a Permian San Andres Formation section in West Texas. At the time that this
early application was made, computing power was typically provided by a single
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mainframe computer in the company or university which had extended computing
times and limited memory, while programming code was a specialized and
time-consuming task. The same application is very easy to implement today as a
spreadsheet procedure, using standard matrix functions and graphical outputs.

The inverse solution is a simple and powerful procedure for compositional
analysis, but its simplicity carries certain assumptions that must be considered
carefully. In particular, the basic model contains no intrinsic constraint to preclude
negative estimates of compositional proportions. A unity equation dictates the
closure of the system so that the proportions collectively sum to unity. However,
individual proportions can have a negative value or one that exceeds unity. Rather
than representing mathematical error, apparently anomalous zones are located
outside the composition space defined by the mineral endmembers as vertices.
Consequently, the generation of negative proportions is a perfectly natural conse-
quence of the model and can contain useful feedback information. If the negative

Fig. 24.1 Graphical output profiles of porosity, dolomite, anhydrite, and gypsum from one of the
earliest computer runs that processed neutron, sonic, and density logs of a Permian San Andres
Formation section in West Texas (from Savre 1963)
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values are small, then this is usually called by the stochastic nature of the input
nuclear logs coupled with borehole rugosity perturbations. If large, the possibility
of washouts and gas effects should be examined before evaluating the possibility of
another mineral that is not included in the composition model.

If these explanations are not sufficient, then negative proportions of components
have a role as a basic check on the validity of the model used for compositional
analysis. As such, they are diagnostic errors with an information content to be used
to guide the analysis to a better solution. The distinction between errors that are
acceptable as minor, random measurement noise and systematic deviations is best
made by a comparison between the original logs and the logs predicted by the
model solution. The predictions are given by:

L̂=CV

If the inverse procedure has generated zone solutions with proportions that are
negative or exceed unity, then the adjustment to rational proportions will result in
log predictions that will deviate from the original logs. The deviations between
measurements and predictions can then be examined to differentiate minor mea-
surement error from systematic perturbations that require intervention and correc-
tion. In the more sophisticated models to be reviewed, tool response errors are
actively incorporated within the solution algorithm, together with constraints that
preclude irrational compositional proportions.

However, if the solution results in compositional proportions that are all positive,
then there will be an exact match between the logs and model predictions. This
equivalence does not imply that the result is geologically correct; it simply means
that the solution is rational and consistent with the choice of components and their
properties. There may be other satisfactory solutions based on alternative mineral
suites.

24.2 Mineralogy of Underdetermined Systems

The basic compositional inversion procedure requires a precise match between the
number of knowns and unknowns. This situation is a “determined system”. The
alternative possibilities are that the number of logs is insufficient to provide a
unique resolution of the proportions of the components (an underdetermined sys-
tem) or that the number of logs exceeds the number of components (an overde-
termined system). In reality, it is likely that most formations present
underdetermined compositional problems, if all the constituents are counted and
matched against the number of logs run in a typical borehole. As counterpoint,
many of the minerals will be found in small quantities and the overall composition
dominated by a few components.
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McCammon (1970) and Harris and McCammon (1971) considered alternative
model procedures to the estimation of mineral compositions from logs in
underdetermined cases. Although their algorithms have been superseded by opti-
mization procedures, their approach is instructive concerning the role of informa-
tion in log compositional analysis and the potentially competing criteria of
mathematical optimality and geological reality. McCammon (1970) considered the
underdetermined system. In terms of classical information theory, which proposes
that the least biased solution is the one that maximizes the entropy function:

E= ∑ pi log pi

where pi is the proportion of the ith component. This equation for entropy is closely
approximated by that for proportional variance:

P=
n

n− 1

� �
∑ við1− viÞ

=
n

n− 1

� �
1− ∑ v2i
� �

The maximum of the variance function, P, is close to the condition of maximum
entropy, and the resulting optimal solution is easier to compute using the matrix
algebra equation:

V =CtðCCtÞ− 1L

where V is the vector of unknown proportions, C is the matrix of component log
properties, t signifies a matrix transpose, and L is the vector of zone log responses
(Doveton and Cable 1979).

The compositional solution from the proportional variance algorithm is optimal
from a classical statistical viewpoint: the average squared errors between estimates
and real compositions should be the minimum possible.

This is a conservative philosophy that aims to be least wrong or risk-averse with
a minimum error as penalty. However, mineral proportions are frequently dis-
tributed in a highly unequal manner. Therefore the real rock composition will often
be one of several extreme possibilities, rather than the less likely seemingly
homogeneous composition that can result from a minimum variance solution. The
correct interpretation of a bland compositional solution is that it represents the
average of a range of possibilities. As such, it is a good estimate of the average, but
may be a very poor prediction of the particular: the composition of the zone in
question. Such a result is a useful diagnostic that suggests that several extreme
alternatives should be reviewed and that extra information is required. The infor-
mation can take a variety of forms, such as explicit geological knowledge of the
range of actual compositions, or the use of additional constraints that preclude
impossible solutions.
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24.3 Mineralogy of Overdetermined Systems

Many rocks are dominated by a relatively small number of components, so that the
number of logging tool measurements may exceed the number of significant
lithological components. The situation becomes overdetermined when the number
of log response equations is greater than the number of components. The appro-
priate solution is then one that most accurately reproduces the original logs when
logs are calculated as predictions from the compositional solutions. Using con-
ventional statistical theory, this solution is the one that minimizes the sums of
squares of the deviations between the original logs and their predictions. The
least-squares solution is given readily by the matrix algebra equation:

V = ðCtCÞ− 1CtL

where the terms are the same as those in both the determined and underdetermined
matrix algorithms written earlier. The matrix formulation requires some additional
weighting function to allow for the fact that the logging measurements are recorded
in radically different units. Without any weighting, the error minimization is
predicated on equal units and results in a solution which preferentially honors logs
with the highest data ranges. The modified least-squares algorithm is then:

V = ðCtWCÞ− 1CtWL

where W is a diagonal matrix that contains the elements of a weight vector (Harvey
et al. 1990). The weights may be assigned based on physical first principles or by a
standardization scheme, such as transformation from the original measurement to a
scale anchored to the mean and counted in standard deviation units.

For any given zone, the sum of squares error is given by:

e= L− L̂
� �t ðL−L̂Þ� �

where L̂ is the vector of log responses associated with the least-squares solution.
The error term can be plotted as a monitor log to highlight zones where there are
striking inconsistencies between the model and the log responses. The overall
performance of an algorithm may be judged from the standard error, computed from
the summed zone errors as:

se =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σe

ðn−m− 1Þ

s

where n is the number of observations and m is the number of logs.
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24.4 Optimization Methods

Current compositional analysis procedures has moved beyond simple inversion
algorithms described, so that constraints and tool error functions have been
incorporated as part of the solution process. The methodology was first developed
by Mayer and Sibbit (1980) who applied modified steepest-descent strategies to
hunt for an optimal solution that minimized the “incoherence” between the logs and
their predicted values. For any given log, the incoherence function is given by:

IA =
ða− a ̂Þ2
σ2A + τ2A
� �

where IA is the incoherence for log A, a is the log response for the zone and a ̂ is its
prediction, σ2A and τ2A are the uncertainties associated with the log measurement and
the response equation, respectively.

The uncertainty term for each log measurement is compounded from the sources
of sensor error, data acquisition, and the dispersions associated with environmental
corrections. Response equation dispersion represents the uncertainties introduced
by linear approximations, erroneous choices of component log responses, and
hidden factors such as the influence of textural parameters. It seems reasonable to
suppose that these two types of uncertainty are independent, so that they can be
summed as one total error term for each tool:

u2A = σ2A + τ2A

The total log incoherence for any particular depth zone is the sum of the separate
log incoherences:

It = IA + IB + IC +⋯

The form of the equations shows that the solution will tend to be most strongly
influenced by the logs to which the most confidence can be attributed. Logs with
large errors will have greater incoherences and will contribute more to the total
incoherence term.

Constraints are also included and take the general form of:

giðviÞ≥ 0

where gi is some function that constrains the value of the unknown proportion of
the ith component. Rigid, mathematical constraints are those that preclude the
occurrence of proportions that are negative or those that exceed unity. Geological
and local constraints incorporate relations that conform to general geological
principles or prior knowledge of local geology. These geological constraints are
more generalized, so that appropriate uncertainties are assigned to them. The
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constraint dispersions generate additional incoherence terms to be considered.
A combined incoherence function is then the sum of the log and constraint
incoherences:

It = ∑
ðai − aîÞ2
σ2i + τ2i

+ ∑
giðvjÞ2
τ2j

Notice that if the system is fully determined, then the total incoherence will be
zero, provided that no constraints are violated. This special situation is the limiting
case of applications which are otherwise presumed to be overdetermined. In a
routine application of the optimization algorithm, the number of logs would be
expected to exceed the number of components. In part, this is feasible because the
bulk of rock compositions tend to be dominated by relatively few components. In
addition, the range of wireline measurements used today typically extends beyond
the traditional porosity logs to resistivity, spectral gamma ray and geochemical logs.

The optimization method of Mayer and Sibbit (1980) is an iterative search
procedure. The system model of input logs and output components are first defined.
The incoherence values associated with each log type are entered, together with the
constraints to be met. For each zone, an initial composition is estimated by an
approximate method and used as the starting point for a sequence of intermediate
solutions. At each step, the incoherence is calculated between the input log
responses and those predicted from the solution. A gradient is also computed as the
means to generate the next solution, using a steepest descent technique. The process
terminates when it is determined that convergence has been satisfied, at which time
there is no appreciable difference between successive solutions. The final solution
will be approximate, but the total incoherence between the logs and the composi-
tional estimate will be the minimum possible. The combined display of real and
theoretical logs is invaluable as a quality control mechanism to alert the user to
problem zones which may be optimal, but are flatly wrong. The generality of the
approach allows alternative and remedial attempts to be made without major
difficulty.

In further refinements, Gysen et al. (1987) described an extension of the method
to the simultaneous optimization of component proportions and response parame-
ters. Moss and Harrison (1985) also reported a technique to solve for the uncer-
tainty multipliers which contain the total error associated with each tool. Although
the errors cannot be solved for every depth zone, they can at least be estimated for
selected intervals and assumed to be effectively constant between zones.

Phyllosilicate minerals pose a difficult problem because their composition is so
variable. However, the clay mineral properties listed provide a useful reference
standard in the estimation of hypothetical composition volumes in the absence of
explicit information keyed to the formation that is analyzed. The estimates can be
considered as normative, as contrasted with modal predictions of clay mineral
proportions based on X-ray diffraction analyses from core.
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Optimal, minimum error solutions are worthless if the component model is
incorrectly specified. Meaningful results are best obtained by patient geological
evaluation of a sequence of solutions where the results of each are used to an
improvement of the successive solution. Modern compositional analysis software
utilizes the power of the error minimization method, but allows user interaction so
that alternative geological models can be compared.

Quirein et al. (1986) described the use of quadratic programming techniques and
linearized response equations, as an improvement on the penalty constraint
approach used by earlier methods. In addition, they incorporated a program to solve
for poorly known log responses of a component subset, as an optimization pro-
cedure applied to specific depths that could be used for calibration. These cali-
bration intervals are those where both logs and compositions are known and are
most typically those that have been cored. In addition, knowledge of composition
could be utilized from other sources. Not all component log responses need to be
estimated since their properties are restricted to a limited range. However, a subset
of mineral components have ambiguous and locally variable properties. The most
notorious example of such components are clay minerals, and these will be dis-
cussed more fully in the following section.

In common with earlier optimization methodologies, the system is assumed to be
either determined or overdetermined. The use of multiple alternative models then
allows a more realistic treatment of this assumption, in which common associations
can be modeled in parallel and a final selection made between them at any depth.
Wherever possible, each separate model is designed to be close to fully determined
in an attempt to find a good match and to sidestep problems associated with the
estimates of log and equation dispersions (Marett and Kimminau 1990). The
appropriate logs for each model are clearly those that discriminate well between the
separate components. If a poor choice of logs is made, then the model is
ill-conditioned. The model structure can be checked through the computation of the
condition number of:

CtDC

where C is the matrix of component log responses and D is a matrix of uncertainty
values. The condition number is higher for ill-conditioned models and gives a
measure of the sensitivity of proportion estimates to small changes in component
log responses (Quirein et al. 1986). The choice between alternative models for
any zone can be made by the user based on an assessment of the relative inco-
herence of the solutions and their feasibility as reasonable geological descriptions.
Alternatively, the decision can be made on the basis of probability established either
from comparison of alternative solutions or the use of a Bayesian prior probability.

While generally still applied to an overdetermined system, the multiple models
are not far removed from determined matches of components and logs. Where a
model becomes determined, the solution is that of a simple and fast matrix inversion
with zero incoherence, provided that the non-negative constraint is not violated.
The analysis of the relative conditioning of the model system is a valuable
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mathematical contribution to the determination of which logs provide the maximum
discrimination of model components that will lead to the most stable estimates of
volumetric proportions.

24.5 Clay Component Estimation

Shales are composed typically of a mixture of clay minerals, quartz, carbonates, and
iron minerals, as well as other accessory components. Clay minerals are markedly
different from other rock-forming minerals in terms both of their complexity and
variability. Shales present special problems for log interpretation and while many
algorithms have been designed for their volumetric estimation, the meaning and
limitations of their results should be understood.

In more detailed work, the older and broader methods of shale evaluation have
been expanded to the quantitative assessment of clay mineral species. Clay minerals
show differing degrees of variability, but are generally subdivided between four
major types: illite, smectite, kaolinite, and chlorite. Clay mineral typing is based on
several log criteria which must be considered carefully and collectively. Ellis (1987,
pp. 460–461) noted that the four principal clay mineral types could be combined
into two types, based on their hydroxyl content. Kaolinite and chlorite have eight
hydroxyls, as contrasted with four for smectite and illite. The neutron log is sen-
sitive to this difference, which can be used as one diagnostic guide, through
comparison of the neutron and density porosities when they are both scaled with
respect to a quartz matrix. The photoelectric factor is also a useful clay discrimi-
nator because of its control by the aggregate atomic number. Ellis (1987,
pp. 451–454) pointed out that iron-free aluminosilicate clays would have photo-
electric absorption characteristics that are virtually the same as for quartz. There-
fore, variations in the photoelectric factor within shales are primarily a reflection of
iron content. Overall, there is a tendency for a progressive increase in iron from low
values in kaolinite, through smectite and illite, to high values for iron-bearing
chlorite. Distinctions between clay minerals can also be made on the basis of
spectral gamma-ray logs, particularly in the differentiation of relatively potassium–

rich illites from low-potassium kaolinite and chlorite.
The quantitative estimation of clay mineral abundances from the neutron, den-

sity, photoelectric factor, and spectral gamma ray measurements is fraught with
difficulties. Wide compositional changes within clay mineral groups pose special
problems. Useful quantitative models are not easy to define and are frequently
ambiguous in their interpretation. The most realistic approach would be to coor-
dinate log measurements with laboratory analyses of core samples. The core values
may be idealized as a calibration standard in the development of a statistical pre-
diction model for clay minerals from logs. Even this strategy must be considered
thoughtfully and honestly. The most widely used laboratory method to estimate
quantities of clay minerals is that of X-ray diffraction. Even with careful sample
preparation procedures, the error of clay mineral estimates from X-ray diffraction
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can be routinely expected to be 50% or more of the reported value (Eslinger and
Pevear 1988, p. A-24). Nevertheless, an important result is that at least the
appropriate mineral subset can be identified with some confidence. This ensures that
the correct components will be selected for compositional analysis from logs.
Reconciliation of the log estimates with X-ray diffraction analyses should then be
made within a model that attributes appropriate error magnitudes to both data
sources.

24.6 Normative Estimation by Geochemical Logs

Geochemical logging tools measure induced gamma-ray spectra that are created
when a formation is bombarded by high energy neutrons from an electronic pulsed
source. A matrix inversion spectral fit algorithm then separates the spectrum into
individual elemental sources. The major rock composition elements of silicon,
calcium, magnesium, iron, sulfur, titanium and carbon are estimated together with
the rare earth, gadolinium. In addition, potassium, thorium, uranium can be esti-
mated from the natural gamma rays emitted by formations and measured by the
spectral gamma-ray log. As a consequence of the direct relationship between ele-
mental data and mineral compositions more realistic mineral transforms have been
developed that are a major improvement on models based on mineral properties.
However, a distinction must be made between normative minerals that are com-
puted from transforms of elemental data and modal minerals that are observed
visually or by petrographic laboratory methods such as X-ray diffraction or
infra-red spectroscopy. Clearly, the fundamental goal of an effective transform is to
provide a close match between normative mineral solutions and modal mineral
suites.

“Normative” minerals calculated from oxide analyses have been a standard
procedure in igneous petrology since the CIPW (Cross-Iddings-Pirsson-
Washington) norm was introduced by Cross et al. (1902). These normative min-
erals are contrasted with modal compositions that are commonly measured by
point-counting of minerals in thin-sections of rock. The normative concept has also
been extended to sedimentary rocks in attempts to compute realistic mineral
assemblages. Krumbein and Pettijohn (1938) pp. 490–492 explained the molecular
ratio method to calculate the probable mineral composition of a rock, based on
chemical analyses of oxide percentages. As a first step, the minerals to be resolved
are first identified from thin-section observation or other sources of information.
The molecular ratios are then assigned in a stepwise fashion to the minerals. The
process consists of a logical order of steps that first accommodates unique asso-
ciations between oxides and certain minerals, and then allocates the remainder to
other components. Imbrie and Poldervaart (1959) described a commonly used
method of sedimentary normative analysis and then compared the results with
modal estimates of mineralogy. From a detailed study of the Permian Florena Shale,
they concluded that estimates of the chert, calcite, dolomite, and clay had errors of
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less than 5%. However, there was little agreement between computed clay mineral
proportions and those produced from X-ray diffraction analysis. Imbrie and
Poldervaart (1959) were not surprised by this discrepancy, but attributed it to the
known high variability of clay mineral compositions through isomorphous
substitution.

Essentially the same problems are tackled in the computation of sedimentary
normative minerals, when based on elements measured by geochemical logs
(Herron 1986). However, many of the older normative methods predated com-
puters. The classical norm calculation is subtractive, deterministic and rigidly
leveraged. As discussed by Harvey et al. (1990), the method can be useful when
certain elements can be assigned totally to single individual minerals. These
assignations can then be made in an ordered protocol of analysis partition between
mineral species. Otherwise, the use of simultaneous equations to link mineral
compositions with elemental measures is a much more general and powerful
method. The speed of modern software also allows real-time interaction between
petrophysicist and machine, so that alternative models can be evaluated quickly and
decisions made that blend mathematical optimality with geological credibility. Any
analysis should be preceded by some notion of what constitutes a fit-for-purpose
estimation. Less accuracy is needed if the intent is for a generalized
semi-quantitative description of variation rather than more rigorous estimates for
use in quantitative basin modeling or physical property predictions (Harvey et al.
1998).

The model that links minerals with elements can be set up as a fully determined
system and solved by standard matrix inversion using methods described earlier.
Whenever the components are computed as positive proportions, then the com-
positional solution is rational and honors the analysis perfectly. However, in
common with the normative model, any apparent precision read into the result is
illusory because the determined system makes no allowance for analytical error. It
is usually practical to model a rock with a set of minerals that are fewer in number
than the elements available from geochemical logging. The system is then
overdetermined and can be resolved by one or other of a variety of optimization
techniques. The additional complexity in computation is offset by several distinct
advantages. The overdetermination allows constraints and error functions to be
incorporated, both for optimal solution control and diagnostic evaluation of sources
of analytical error. The choice of an overdetermined system also provides better
assurance of a stable solution in situations where the mineral response matrix
becomes sparse or there are potential compositional colinearities that link some of
the mineral subsets (Harvey et al. 1990).

Strictly speaking, there will almost always be more minerals than elements to
solve for them, so that the problem is always underdetermined. However, as Herron
(1988) noted, the overwhelming majority of sedimentary rocks are composed of
only ten minerals: quartz, four clays, three feldspars, and two carbonates. In
practice, reasonable compositional solutions can be generated using relatively small
mineral sub-sets, provided that they have been identified correctly and that the
compositions used are both fairly accurate and constant. Alternatively, the inversion
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procedure can be run as an unconstrained procedure and components with negative
proportions eliminated from the model. Harvey et al. (1998) found this approach to
be successful, but cautioned that negative components should be eliminated one at a
time, starting with the largest negative component, because of interactions between
the components.

Mineral solutions may be calculated by two alternative strategies. In the first, the
average chemical compositions of minerals drawn from a large data-base are used
as endmember responses and resolved by standard matrix inversion procedures.
This result is normative and generic in the sense that it is based on a sample drawn
from a universal mineral reference set and applied to a specific sequence where
local mineral compositions may deviate from the global average. The result is
hypothetical, but has the particular advantage that comparisons can be made
between a variety of locations and do not require expensive ancillary core mea-
surements. New methods of classification may also be necessary as discussed by
Herron (1988) in his study of terrigenous sands and shales in terms both of core and
geochemical log data.

In a second approach, the solution is calibrated to core data, where laboratory
determinations of mineralogy and elemental geochemistry are analyzed by multiple
regression techniques to determine local mineral compositions. This result is linked
to petrography and so is philosophically closer to an estimated modal solution,
rather than the more hypothetical normative model. As mentioned earlier, realistic
statistical calibration models should incorporate error terms from all sources of
measurement. When geochemical logging was first introduced, several detailed
studies were made to assess the strengths and limitations of borehole geochemistry
through exhaustive comparisons with core elemental and mineralogical analyses.
These included comparisons in the Conoco Research well, Ponca City, Oklahoma
by Hertzog et al. (1987); the discussion of the results from an Exxon research well
which penetrated Upper Cretaceous siliciclastic rocks in Utah by Wendlandt
and Bhuyan (1990); and an assessment of data from three Shell wells in the
Netherlands, Oman, and the U.S. by van den Oord (1990).

There are several ways to assess modal mineralogy, so which constitutes the
most accurate method to use as a standard for the real mineral composition? Harvey
et al. (1998) addressed this problem when they compared core data from the
spectral measurements of quantitative X-ray diffraction and infrared spectroscopy,
as well as micrometric analysis from thin section point counts. Overlapping peaks
and poor resolution at low resolution pose special problems for the spectral
methods, while appropriate sample sizes must be observed for robust statistics in
micrometric analysis. Also, the distinction between volume percentage and weight
percentage must be observed when interrelating modal and normative composi-
tions. Harvey et al. (1998) concluded that the results of their study did not favor one
method over another, but pointed out that their comprehensive analysis demon-
strated the difficulty of obtaining accurate modal estimates and even the notion of
what constitutes the “real” mineral composition. This is certainly worth bearing in
mind when making a judgement about the “accuracy” of a normative mineral
solution from inversion of log responses. So, for example, mismatches in clay
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mineral estimates by log inversion represents a failure to reproduce the results of
quantitative X-ray diffraction which are themselves only estimates of the true
composition.

A major obstacle to the production of unique mineral transformations from
element concentrations has been the problem of compositional colinearity. If pre-
cisely colinear, then an infinite range of solutions is possible, causing a matrix
singularity and a breakdown of an inversion procedure. If average mineral com-
positions are used, a solution becomes possible, but may be unstable (Harvey et al.
1998). Wendlandt and Bhuyan (1990) found that the use of silicon, potassium and
aluminum tended to result in overestimates of kaolinite; the use of iron to predict
illite content caused underestimates of kaolinite. However, effective discrimination
between illite and kaolinite contents became possible when dry density was applied
as an extra constraint.

24.7 Conclusion

The estimation of mineral composition from petrophysical logs is now a standard
feature on any log analysis software package. However, the degree to which these
estimates match reality is highly variable and requires a knowledgeable and
experienced user to work with powerful procedures. The identification of the major
mineral suite that actually occurs in the rock is an important first step. As the old
Chinese proverb says, “The beginning of wisdom is calling a thing by its right
name.” In the end, the solution of “mathematical minerals” will often come down to
a choice between an acceptable estimate of an unreachable modal mineralogy or the
realization of a useful, but hypothetical, normative assemblage.
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Chapter 25
Geostatistics for Seismic
Characterization of Oil Reservoirs

Amílcar Soares and Leonardo Azevedo

Abstract In the oil industry, exploratory targets tend to be increasingly complex
and located deeper and deeper offshore. The usual absence of well data and the
increase in the quality of the geophysical data, verified in the last decades, make
these data unavoidable for the practice of oil reservoir modeling and characteri-
zation. In fact the integration of geophysical data in the characterization of the
subsurface petrophysical variables has been a priority target for geoscientists.
Geostatistics has been a key discipline to provide a theoretical framework and
corresponding practical tools to incorporate as much as possible different types of
data for reservoir modeling and characterization, in particular the integration of
well-log and seismic reflection data. Geostatistical seismic inversion techniques
have been shown to be quite important and efficient tools to integrate simultane-
ously seismic reflection and well-log data for predicting and characterizing the
subsurface lithofacies, and its petro-elastic properties, in hydrocarbon reservoirs.
The first part of this chapter presents the state of the art and the most recent
advances of geostatistical seismic inversion methods, to evaluate the reservoir
properties through the acoustic, elastic and AVA seismic inversion methods with
real case applications examples. In the second part we present a methodology based
on seismic inversion to assess uncertainty and risk at early stages of exploration,
characterized by the absence of well data for the entire region of interest. The
concept of analog data is used to generate scenarios about the morphology of the
geological units, distribution of acoustic properties and their spatial continuity.
A real case study illustrates the this approach.
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25.1 Integration of Geophysical Data for Reservoir
Modeling and Characterization

One of the main challenges regarding hydrocarbon reservoir characterization has
been the integration of different types of data—geological conceptual models,
well-log data, geophysical data, production data—for modelling the subsurface
properties of interest while assessing the corresponding uncertainty and risk.
Although well data provides certain ‘hard’ measures of the subsurface properties,
given the usual lack of such data and, consequently, its limited spatial represen-
tativeness, the corresponding models normally provide little understanding of the
complex and heterogeneous subsurface geology of the entire reservoir area. Since
the eighties, Geostatistics has been a key discipline to provide a theoretical
framework and corresponding practical tools to incorporate as much as possible
different types of data for reservoir modeling and characterization, in particular the
seismic reflection data (Dubrule 2003). One of the most important contributions of
geostatistical methods for seismic data integration in reservoir modelling, has been
the development of stochastic seismic inversion techniques.

Seismic reflection data, since it has high spatial representativeness, by covering
the full spatial extent of the reservoir volume, is a different and privileged window
for targeting the subsurface petro-elastic properties of interest. However, seismic
reflection data represents an indirect measurement of these properties and has a poor
spatial resolution along the vertical direction (temporal domain). This is translated
in a much greater support compared with the well-log data and much greater
uncertainty derived both from measurement errors and the nonlinear relationship
between the recorded seismic signal and the subsurface properties one wishes to
describe (Tarantola 2005). This has been the most serious limitation of direct use of
seismic data as secondary information either in methods using it as local trends or in
joint simulation methods (Dubrule 2003), or even accounting for the different
support of both data (Liu and Journel 2009).

To overcome such limitations, an alternative approach has been widely used.
Seismic inversion methods are based on the following rational: subsurface petro-
physical properties (such as facies, porosity and saturation), can have a relationship
to other seismic attributes, such as acoustic and/or elastic impedances; hence, one
wishes to know the model parameters r (reflectivity coefficients derived from the
subsurface elastic properties), which convolved with a known wavelet w give rise
to the known solution A (i.e. the recorded seismic amplitudes):

A= r*w. ð25:1Þ

The theoretical solutions for seismic inversion are stated in Tarantola (2005).
The seismic inversion problem began to be tackled with deterministic method-
ologies (Lindseth 1979; Lancaster and Whitcombe 2000; Russell 1988; Coléou
et al. 2005). Later, this framework was extended into a statistical domain. Among
the many statistical inverse approaches, two different stochastic approaches for
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solving the seismic inversion are worth mentioning. The first group of stochastic
methodologies approach the seismic inversion as an optimization problem in an
iterative and convergent process. This includes what are traditionally designated by
iterative geostatistical seismic inversion methods, from the seminal work by Bor-
tolli et al. (1993), until the most recent geostatistical inversion methods (Soares
et al. 2007; Nunes et al. 2012; Azevedo et al. 2015; Azevedo and Soares 2017). The
second group of stochastic seismic inversion algorithms is known by linearized
Bayesian inverse methodologies. These are based on a particular solution of the
inverse problem using the Bayesian framework and assuming the model parameters
and observations as multi-Gaussian distributed as well as the data error, which
allows the forward model to be linearized (Buland and Omre 2003). Several authors
have recently contributed towards overcoming some of the limitations of this
method, particularly the multi-Gaussian assumption, by using Gaussian Mixture
Models (Grana and Della Rossa 2010).

This chapter summarizes some iterative geostatistical modeling techniques
dealing with the integration of seismic reflection and well-log data, through seismic
inversion procedures, for characterizing hydrocarbon reservoirs with high spatial
resolution models of main properties of interest, such as lithologies, facies and fluid
saturations.

Uncertainty and risk assessment at different stages of exploration are also
important targets of the proposed methodologies approached in this chapter. Hence,
this chapter finishes with the introduction of recent advances of geostatistical
seismic inversion methods for the uncertainty and risk assessment at early stages of
exploration.

25.2 Iterative Geostatistical Seismic Inversion
Methodologies

The aim of seismic inversion is the inference of the subsurface elastic or acoustic
properties from recorded seismic reflection data. The retrieved inverse models can
be acoustic and/or elastic impedance for post-stack seismic data, or density, P-wave
and S-wave models if the inversion algorithm is used to invert pre-stack seismic
reflection data (Francis 2006).

Seismic inversion might be described as an ill-posed and nonlinear problem with
multiple solutions that can be summarized by (Tarantola 2005):

dobs =F mð Þ+ e. ð25:2Þ

The goal is to estimate a subsurface Earth model, m, that after being forward
modelled, F, produces synthetic seismic data showing a good correlation with the
recorded seismic data, the observed data, dobs, which are normally contaminated by
measurement errors e. The match between observed and synthetic seismic is
achieved by the maximization (or minimization) of an objective function measuring
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the mismatch between inverted and real seismic. For example, the objective
function can be as simple as the Pearson’s correlation coefficient:

ρX, Y =
cov X,Yð Þ
σXσY

, ð25:3Þ

where cov is the centered covariance between variables X and Y, which are the
synthetic and real seismic volumes, respectively, and σ the individual standard
deviations of each variable. More complex objective functions integrate Pearson’s
correlation coefficient with least-square errors calculated between the synthetic and
the recorded seismic reflection data in terms of amplitudes.

A geostatistical seismic inversion framework consists on an iterative procedure
in which a set of realizations of parameters, m, are generated by using stochastic
sequential simulation methods (Deutsch and Journel 1996) and optimized until the
match of the objective function reaches a given user-defined value, or a certain
number of fixed iterations. Geostatistical inversion techniques are based on the use
of stochastic sequential simulation as the model perturbation technique, ensuring in
this way the reproduction of the main spatial continuity patterns and the joint
distribution functions of the acoustic and/or elastic properties of interest as retrieved
from the existing well-log data in all the models generated during the iterative
procedure, while simultaneously allowing access to the uncertainty attached to the
retrieved inverse models.

Within this framework there are two traditional approaches for integrating
seismic reflection and well-log data for hydrocarbon reservoir modeling.

25.3 Trace-by-Trace Geostatistical Seismic Inversion

Geostatistical seismic inversion was introduced by the seminal papers of Bortoli
et al. (1993) and Haas and Dubrule (1994). These authors proposed a sequential
trace-by-trace approach in which each seismic trace, or location within the inversion
grid, is visited individually following a pre-defined random path within the seismic
volume. At each step along the random path a set of Ns realizations of one acoustic
impedance trace is simulated using sequential Gaussian simulation (Gómez-Her-
nández and Journel 1993; Deutsch and Journel 1996), taking the well-log data and
previously visited/simulated nodes into account. Then, for each individual simu-
lated impedance trace, the corresponding reflection coefficient is derived and
convolved by a wavelet, resulting in a set of Ns synthetic seismic traces. Each of the
Ns synthetic traces is compared in terms of a mismatch function with the recorded/
real seismic trace. The acoustic impedance realization that produces the best match
between the real and the synthetic seismic traces is retained in the reservoir grid as
conditioning data for the simulation of the next acoustic impedance trace at the new
location following the pre-defined random path. One of the main drawbacks of
trace-by-trace stochastic seismic inversion methodologies concerns those areas of
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the record seismic reflection data with low signal-to-noise ratio. In areas of poor
seismic signal, the sequential trace-by-trace approaches impose inverted models
fitting the observed noisy seismic reflection data. As the simulated trace is assumed
to be ‘real’ data for subsequent steps, this can lead to the spread of unreliable
impedance values that are related with noisy seismic samples. Noisy areas should
be interpreted as high uncertainty areas with very low influence throughout the
inversion process. More recent versions of trace-by-trace models try to overcome
this drawback by avoiding noisy areas in the early stages of the inversion procedure
(Grijalba-Cuenca and Torres-Verdín 2000).

25.4 Global Geostatistical Seismic Inversion
Methodologies

To overcome these limitations, Soares et al. (2007) introduced the global stochastic
inversion methodology that, contrary to trace-by-trace approaches, uses a global
approach during the stochastic sequential simulation stage of the inversion proce-
dure: at each iteration a set of Ns impedance models is generated at once for the
entire inversion grid. The general outline of this family of geostatistical inversion
algorithms is depicted in Fig. 25.1. Briefly, this group of iterative inverse
approaches uses the principle of cross-over genetic algorithms as the global opti-
mization technique driving the convergence of the procedure from iteration to
iteration, while the model perturbation is performed using direct sequential simu-
lation and co-simulation (Soares 2001). The global optimizer uses the trace-by-trace
correlation coefficients between the different simulated synthetic seismic data and
the real model as the affinity criterion to create the next generation of models for the
next iteration, by using stochastic sequential co-simulation. The iterative procedure
continues until a stopping criterion is reached: frequently the global correlation
coefficient between real and inverted seismic reflection data.

In global iterative geostatistical seismic inversion procedures, areas of low
signal-to-noise ratio remain poorly matched throughout the entire iterative inversion

Fig. 25.1 General outline for global iterative geostatistical seismic inversion
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procedure: an ensemble of best-fit inverted models will always present high vari-
ability, or high uncertainty, for those noisy areas where the signal-to-noise ratio is
low.

This framework was generalized for the inversion of seismic reflection data for
acoustic and elastic impedance, direct inversion of petrophysical properties and
seismic AVA inversion. These methods are introduced with more detail in the
following sections.

25.4.1 Global Geostatistical Acoustic Inversion

The global stochastic inversion (GSI; Soares et al. 2007; Caetano 2009) is one of
the existing methods to invert fullstack seismic reflection data for acoustic impe-
dance (Ip) models. The general outline of this iterative geostatistical methodology
can be described in the following sequence of steps, summarized in Fig. 25.2:

Fig. 25.2 Outline of geostatistical acoustic inversion (adapted from Azevedo and Soares 2017)
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(1) Simulate with direct sequential simulation (Soares 2001) for the entire seismic
grid a set of Ns acoustic impedance models, conditioned to the available
acoustic impedance well-log data and assuming a spatial continuity pattern as
revealed by a variogram model;

(2) From the impedance models simulated in the previous step, derive a set Ns
synthetic seismic volumes by computing the corresponding normal incidence
reflection coefficients (RC) (Eq. 25.4):

RC =
Ip2 − Ip1
Ip2 + Ip1

, ð25:4Þ

where the indexes 1 and 2 correspond to the layer above and below a given
reflection interface.

(3) The resulting RC are convolved by an estimated wavelet for that particular
seismic dataset in order to compute synthetic seismic volumes (Eq. 25.1).

(4) Each seismic trace from the Ns synthetic seismic volumes is compared in terms
of correlation coefficient against the real seismic trace from the same location.
From the ensemble of simulated Ip models, the acoustic impedance traces that
produce synthetic seismic with the highest correlation coefficient are stored in
an auxiliary volume along with the value of the correlation coefficient.

(5) These auxiliary volumes, the one with the best acoustic impedance traces and
the other with the corresponding local correlation coefficients, are used as
secondary variables and local regionalized models for the generation of the new
set of acoustic impedance models for the next iteration. The new set of Ns
acoustic impedance models is built using direct sequential co-simulation
(Soares 2001) conditioned to the available acoustic impedance well-log data,
and using the best Ip volumes as secondary variable and local correlation
coefficients to condition the co-simulation.

(6) The iterative procedure stops when the global correlation coefficient between
the full synthetic and real stacked seismic volumes is above a certain threshold.

Synthetic and real case applications of geostatistical acoustic inversion can be
found in several studies; for example, Soares et al. (2007) and Caetano (2009).
A summary of a real application example, using a fullstack seismic volume
acquired offshore Brazil, illustrates herein the method (a detailed description of the
dataset is available in Azevedo et al. 2015). The best-fit Ip model (Fig. 25.3) was
retrieved after 6 iterations where on each iteration an ensemble of 32 realizations of
Ip were generated. The use of stochastic seismic inversion allows retrieving high
resolution (with high variability) acoustic impedance models. The synthetic full-
stack seismic data computed from this model (Fig. 25.4) do match the observed
seismic reflection data in both the spatial extent of the main seismic reflection and
its amplitude content. This is of great importance for this case study since the
reservoir areas are related with those spatially constrained amplitude anomalies
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observed in the real seismic volume. The global correlation between the inverted
and the real seismic volumes is 87%.

25.4.2 Global Geostatistical Elastic Inversion

The acoustic inversion algorithm was extended for the inversion of partial angle
stacks directly, and simultaneously, for acoustic and elastic impedance (Is) models

Fig. 25.3 Vertical well-section extracted from the best-fit P-impedance volume retrieved from the
global stochastic inversion after six iteration with thirty-two realizations generated at each iteration

Fig. 25.4 Comparison between vertical well sections extracted from: a synthetic seismic
reflection data computed from the best-fit inverse Ip model shown in Fig. 25.3 and b real seismic
volume. The log curve plotted on top of the seismic data represents Ip (same color scale as shown
in Fig. 25.3)
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(Nunes et al. 2012; Azevedo et al. 2013b). The main purpose of this development
was the integration of more information, related with the elastic domain (Is), to
enrich the final elastic reservoir models allowing better lithofacies prediction. Two
main differences compared with acoustic inversion summarize this elastic inversion
method (Azevedo and Soares 2017):

(i) Acoustic and elastic impedances, Ip and Is, are jointly simulated (step 1) of
previous outline and co-simulated (step 5) by using the direct sequential
simulation with joint distributions of probability (Horta and Soares 2010).
This simulation method succeeds in reproducing the bivariate distribution
function (Ip, Is) as it was estimated from the experimental log data.

(ii) The reflectivity coefficients (step 9) are obtained with the Ns pairs of Ip and Is,
simulated at each iteration, using the approximation outlined in Fatti et al.
(1994) (Eq. 25.5) for the calculation of the corresponding angle-dependent
reflection coefficient volumes:

Rpp θð Þ≈ 1+ tan2θð Þ ΔIpΔIs − 4 Is
Ip

� �2
sin2θ ΔIs

2Is
,

ΔIp = Ip2 − Ip1,

Ip =
Ip2 + Ip1

2
,

ΔIs = Is2 − Is1,

Is =
Is2 + Is1

2
.

ð25:5Þ

The index 1 refers to the vertical location in which the calculation of the
reflection coefficient is carried out, the layer above the reflection interface; and 2
refers to the sample immediately below, the layer below the reflection interface.

Detailed application examples of this method can be found in the following
studies: Nunes et al. (2012), Azevedo et al. (2013b), Azevedo and Soares (2017).
For illustrative purpose, here we show the application of this methodology to the
same case study shown in the previous section. The best-fit Ip and Is models that
jointly produce the highest value of correlation coefficient between synthetic and
real seismic reflection data are shown in Fig. 25.5. Comparing the Ip models
derived from the acoustic and elastic inversion it is clear that the introduction of
more information using different angles of incidence brings more detail for the
retrieved inverse model. The comparison between real and synthetic seismic
reflection data derived from the best-fit elastic models is shown in Fig. 25.6.

Due to the use of direct sequential simulation with joint probability distributions
(Horta and Soares 2010) the relationship between Ip and Is as observed in the
well-logs is reproduced for all pairs of models generated during the inversion
procedure (Fig. 25.7). Besides the richness of the inverted models, this is a key step
of the proposed inversion technique since it allows, for example, more reliable
facies classification, and consequently a better reservoir description, over the
inverted elastic models.
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Fig. 25.5 Comparison between vertical well sections extracted from: a best-fit Ip model and
b best-fit Is model

Fig. 25.6 Comparison between vertical well sections extracted from: (left) synthetic seismic
reflection data computed from the best-fit inverse Ip and Is models and (right) real seismic volume.
From top to bottom: nearstack, near-mid stack, far-mid stack and farstack. The log curve plotted on
top of the seismic data represents Is (same color scale as shown in Fig. 25.5)
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25.4.3 Geostatistical Seismic AVA Inversion
(Pre-stack Inversion)

During the last decades, the quality of seismic reflection data has increased
tremendously, together with the decreasing of its acquisition costs. Pre-stack seis-
mic data with high signal-to-noise ratio and high fold number is nowadays a reality,
increasing this data’s use in seismic reservoir characterization even within early
exploratory stages. The better subsurface characterization using pre-stack seismic
data is achieved by interpreting the changes of amplitude versus the offset (AVO),
or with the angle of incidence (AVA; Castagna and Backus 1993; Avseth et al.
2005). The use of pre-stack seismic reflection data allows the inference of density,
P-wave and S-wave velocity models, instead of the traditional impedance models.
The availability of the three properties individually is a clear enhancement in what
reservoir modelling and characterization are concern with.

Stochastic seismic inversion methodologies for pre-stack seismic data, commonly
called seismic AVA inversion, are being proposed based on different assumptions
and frameworks (Mallick 1995; Ma 2002; Buland and Omre 2003; Contreras et al.
2005). Here we refer to geostatistical seismic AVA inversion (Azevedo et al. 2013a),
which relies on the same general framework of global iterative geostatistical seismic
inversion methodologies but with the following main characteristics of pre-stack
inversion (see outline of Fig. 25.8; Azevedo and Soares 2017):

Fig. 25.7 Comparison between the joint distribution of Ip and Is as retrieved from the best-fit
inverse pair of Ip and Is and from the well-logs
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(i) the perturbation of the model parameters for density, P-wave and S-wave
velocities is performed sequentially using stochastic sequential co-simulation
with joint distributions (Horta and Soares 2010);

(ii) forward modeling is computed using an angle-dependent approximation
when computing the reflection coefficients that can be modified according to
the complexity of the subsurface geology;

(iii) the mismatch evaluation between the observed and the inverted seismic data
and selection of the conditioning data for the generation of the next set of
elastic models during the next iteration by multi-variable optimization.

In this approach, each elastic property is generated sequentially. Density is first
simulated because it is the property associated with a higher degree of uncertainty
since its contribution to the recorded seismic reflection data is small, i.e. the
component of the seismic reflection data related with density is low and mostly
related to the signal received at the far angles (Avseth et al. 2005). Also, density is
the most spatially homogeneous variable and consequently most convenient to be
used as secondary variable for the co-simulation with joint probability distributions
of Vp. The resulting Vp models are then used as auxiliary variable for the
co-simulation with joint probability distributions of Vs. At the end of the iterative
inversion procedure, the reproduction of the joint distribution densities, Vp and Vs,
allows a distinction to be made between any litho-fluid facies previously identified
from the original well-log data within the inverted set of elastic models. As well as
the spatial interpretation of these litho-fluid facies, the stochastic approach allows
the assessment of the spatial uncertainty related with each facies of interest.

Fig. 25.8 Schematic representation of the global iterative geostatistical seismic AVO inversion
methodology (adapted from Azevedo and Soares 2017)
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After the sequential simulation of Ns elastic models, density, Vp and Vs, an
ensemble of synthetic pre-stack seismic volumes are calculated. The
angle-dependent RC (Rpp θð Þ) may be calculated, for example, following Shuey’s
(1985) three-term approximation:

Rpp θð Þ≈R 0ð Þ+Gsin2θ+F tan2θ− sin2θ
� �

, ð25:6Þ

with the normal incidence, R(0), reflection as defined by:

R 0ð Þ= 1
2

ΔVp
Vp

+
Δρ
ρ

� �
,

and the variation of the reflectivity versus the angle, the AVO gradient, G:

G=R 0ð Þ− ΔVρ
Vρ

1
2
+

2ΔVs2

Vs2

� �
−

4ΔVs2

Vp2
ΔVs
Vs

,

and F, the reflectivity at the far angles (reflection angles higher than 30°), defined
as:

F =
1
2
ΔVp
Vp

.

Each elastic property is defined on each side of the interface where the reflection
is happening as follows:

ΔVp =Vp2 −Vp1,

Vp =
Vp2 +Vp1

2
,

ΔVs =Vs2 −Vs1,

Vs =
Vs2 +Vs1

2
,

ΔVρ =Vρ2 −Vρ1,

Vρ =
Vρ2 +Vρ1

2
.

Indexes 1 and 2 have the same meaning as in Eq. 25.4.
Each angle gather is composed by n seismic traces, equal to the number of

reflection angles considered. The Ns angle-dependent reflection coefficient traces
are convolved by estimated angle-dependent wavelets for each particular incident
angle θ (Fig. 25.9) to obtain Ns synthetic angle gathers. The best elastic models,
created at the end of each iteration, are composed by the portions of the elastic
traces from the ensemble of density, P-wave and S-wave velocity models simulated
at the current iteration, that jointly produce synthetic seismic reflection data with the
highest correlation coefficient compared with the real seismic volume. Hence, the
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best models are selected by using a multivariate (traces for each angle) objective
function (Azevedo and Soares 2017 illustrate an example of multivariate objective
function).

As an application example, Fig. 25.10 shows vertical well sections extracted
from the triplet of elastic models that produced synthetic pre-stack seismic reflec-
tion data with the maximum correlation coefficient during the iterative procedure.
The inverted density, Vp and Vs models show high variability and agree with the
expected spatial extent of the anomalies of interest as inferred from previous studies
(Azevedo et al. 2015).

By comparing the inverse elastic inversion, shown in the previous sections for
the different geostatistical seismic inversion techniques (Figs. 25.3, 25.5 and 25.10)
it is clear that introducing more information within the inversion procedure, i.e.
moving from the fullstack into the pre-stack domain, allows retrieving more
detailed and variable inverse models. Usually, such models allow for a better
understanding of the reservoir and identify and assess the main uncertainties related
with its subsurface properties.

25.4.4 Recent Developments of Iterative Geostatistical
Seismic Inversion

The global iterative geostatistical inversion techniques presented in the previous
sections have been extended to allow inferring the subsurface petrophysical

Fig. 25.9 Example of an angle-dependent wavelet, for 23 angles, used for the convolution of the
angle-dependent reflection coefficients (Rpp θð Þ) to generate pre-stack seismic reflection data
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properties of interest, directly from the existing seismic reflection data: direct
geostatistical seismic inversion to porosity (Azevedo and Soares 2017); and inte-
gration of rock physics into geostatistical seismic AVA inversion for simultaneous
characterization of facies (Azevedo et al. 2015). In addition, the potentiality of these
methodologies is enormous in what concerns the very different data integration like
for example the electromagnetic data (CSEM). Application example of the joint
inversion of seismic and electromagnetic data is illustrated in the study of Azevedo
and Soares (2014).

The integration of dynamic production data with seismic data is another
important and very promising field of application of these methodologies. In fact
the integration of dynamic production data in reservoir modelling (commonly
designated as history matching) is an even more complex inverse problem (e.g.
Oliver and Chen 2011; Oliver et al. 2008; Mata-Lima 2008; Demyanov et al. 2011;
Caeiro et al. 2015). If this is approached by a geostatistical iterative outline, the
integration of both inverse methods can lead to a very rich model able to

Fig. 25.10 Vertical well section extracted from the best-fit models of: (from top to bottom)
density, Vp and Vs
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characterize geological complex structures and, simultaneously, reproduce the
geological conceptual model, the seismic data and the dynamic data at the pro-
duction wells (Marques et al. 2015; Azevedo and Soares 2017).

25.5 Uncertainty and Risk Assessment at Early Stages
of Exploration

This section introduces a recent development of using seismic inversion for
uncertainty and risk assessment at early stages of reservoir exploration character-
ized by the lack of well data. The idea of the proposed methodology is to account
with the concept of geological analog data to define possible geological models of a
given target, such as the geometry of different geological units, and also the a priori
probability distributions for the elastic property of interest. An a priori uncertainty
space is first built from plausible geological scenarios, generated from different
sources of knowledge about the area of interest. For each scenario the corre-
sponding elastic properties are computed and existing seismic reflection data is
integrated, through a geostatistical seismic inversion, giving rise to an uncertainty
space of petro-elastic properties. The first steps towards this direction correspond to
the case study presented below.

25.5.1 Characterization of Different Scenarios
with Analogue Data

Due to the lack of data, several authors use analog data to constrain and integrate
regional geological knowledge into reservoir models (e.g. Martinius et al. 2014;
Grammer et al. 2004). The use of analog fields, and/or sedimentary basins, can help
understand and predict the behavior of a reservoir since they are natural systems
that may have similarity with the unknown study area. For example, one of the most
valuable information that analogs can give to reservoir modelling, normally
obtained from outcrop studies (Howell et al. 2014), is related to the geometry and
the relation between the different geological units and their elastic properties.

This section proposes the extension of a traditional geostatistical seismic
inversion methodology to integrate data from analogs (Pereira et al. 2017). In this
application example the analog information is provided by well-logs located very
far from the exploration area but somehow geologically related with the area of
study. This iterative geostatistical seismic inversion methodology integrates a priori
knowledge from the regional geology and the information from analogs, such as
existing well-logs far from the region of interest (illustrated in Fig. 25.11).

One of the mandatories steps of this procedure, consists in dividing the area of
interest in regional geological units based on conventional seismic interpretation
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and the current knowledge of the prospect under study. The interpretation of the
available seismic reflection data should be such that the interpreted seismic units are
consistent with the stratigraphy of the region. The geological regionalization model
of the area of study should be based not only on available seismic reflection data but
include information from outcrop analogs or based on the geological knowledge of
the sedimentary basin.

After the definition of the geological regionalization model, one needs to
establish different scenarios, for each geological unit, about its elastic responses.
These can be inferred from for example analogue data. This critical step should be
done by integrating expertizes from different fields. The correlation between the
elastic and rock properties should result in probability distribution functions of the
elastic property of interest per region. The resulting distributions should be repre-
sentative of the elastic properties of the geological region, and also of the rela-
tionship between the different geological regions. Meaning that if there is a
progressive transition between geological regions (i.e. geological transition in terms
of facies), this relationship should be expressed in the distributions of each region.

This approach is illustrated here with a real case study located in an offshore
unexplored basin. The available data of this basin comprises a 3D seismic reflection
and three appraisal wells drilled outside the main region of interest. The existing
appraisal wells show evidences that suggest hydrocarbon generation, migration and
possibly accumulation. Within this unexplored basin a promising prospect was

Fig. 25.11 Schematic representation of the workflow to integrate geological analogue data into
geostatistical seismic inversion, for each scenario
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identified associated with a turbidite system, corresponding to a classic clastic
sedimentary unit. This can be recognized and interpreted from the available seismic
reflection data (Fig. 25.12). A detailed description about the geology of this basin
can be found in Pereira et al. (2017).

The interpretation of the existing seismic reflection data resulted in three main
geological units. For each region, probability distribution functions of Ip were
assumed, taking into account the geological knowledge of the region of interest and
from the Ip-logs available at the three neighbor wells. A representative wavelet of
the time interval of interest was extracted exclusively from the available seismic
reflection data using conventional wavelet extraction techniques based on statistical
procedures (i.e. Weiner-Levinson filters). One of the main difficult steps of this
methodology is the validation of the wavelet scale. A possible approach to tackle
this issue can be selecting the distribution function of Ip for each region, making
them plausible, by comparing the amplitude values of the synthetic seismic against
the observed one.

25.5.2 Geostatistical Seismic Inversion of Each Scenario

The previous step of this approach results in a set of geological models that rep-
resent the uncertainty about the prospect to be modelled. In order to reduce this
space, the purpose of this step is based in the following rationale:

(i) for each one of the a priori chosen scenarios, in terms of geological region-
alization model, one intends to access the models of acoustic and/or petro-
physical properties, that match the known seismic, by running a conventional
iterative geostatistical seismic inversion;

Fig. 25.12 Real Seismic data for the area of interest showing the seismic signature of the prospect
of interest. Lighter values indicate positive polarity and darker values indicate negative polarity
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(ii) The match of each scenario synthetic seismogram with the real seismic can be
used to validate or falsify them and build an uncertainty space of those
properties.

Here, we show an example for one of the scenarios considered. The iterative
geostatistical seismic inversion ran with six iterations, where on each sets of
thirty-two realizations of Ip were generated conditioned simultaneously by the
regionalization model (i.e. the three main seismic units resulting from seismic
interpretation (Fig. 25.12)) and the individual Ip distributions as inferred from the
nearby analog wells and published data.

The seismic inversion converged after six iterations when a global correlation
coefficient between real seismic and synthetic seismic reflection data reached 85%.
For region 1, the overburden region the correlation coefficient was 80%; for region 2,
the potential reservoir region the correlation coefficient was 89% and for region 3,
the underburden region the correlation coefficient was 70%. The synthetic seismic
data was able to reproduce the real observed seismic reflection data in terms of the
location and spatial distribution of the main geological features of interest.

The best-fit inverse Ip model (Fig. 25.13) allows the interpretation of the tur-
bidite feature of interest in both vertical and horizontal slices. It also shows a
reasonable spatial continuity pattern where it is possible to identify both large and
subtle features of potential interest when appraising an unexplored sedimentary
basin. Moreover it is clear that each region of the inversion grid is constrained
individually by a given distribution function of Ip values. In this way we are
constraining the spatial distribution of the simulated values. Since the regional-
ization of the area of interest is done using a geological criterion, the resulting
best-fit inverse models are therefore geological consistent with the geological
knowledge.

Uncertainty and risk of this unexplored area could be accessed by doing identical
exercise but for different scenarios regarding the geometry of different geological
units (regions) and, as well as, the Ip distributions for each one of them.

Fig. 25.13 Best-fit inverse model of Ip retrieved after 6 iterations (left). It is possible to identify
the turbidite system of interest corresponding to lower acoustic impedance values (purple). At right
is the distribution function of the Best-fit inverse model of Ip, which reproduces the initial
distribution function of Ip
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25.6 Final Remarks

This chapter presents the state of the art and the most recent advances in geosta-
tistical seismic inversion. The promising results of presented and also referenced
case studies clearly show an evident maturity of these methods as privileged
instruments for the integration of different types of data, particularly seismic
reflection data, for the characterization and modeling of hydrocarbon reservoirs.

Very recent studies, regarding the integration of electromagnetic data and pro-
duction data, show the inversion methodologies as important new paths on geo-
statistical tools for modelling complex geological structures.

The methodology introduced for the characterization of uncertainty and risk in
early stages of exploration integrates two important components: (i) the use of
analog data to generate scenarios of uncertainty regarding the morphology of
geological units and the distribution of acoustic and petrophysical properties;
(ii) the stochastic inversion methodologies evaluate the most probable images
within each scenario and also validate (or falsify) these scenarios regarding the
known seismic reality.
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Chapter 26
Statistical Modeling of Regional
and Worldwide Size-Frequency
Distributions of Metal Deposits

Frits Agterberg

Abstract Publicly available large metal deposit size data bases allow new kinds of
statistical modeling of regional and worldwide metal resources. The two models
most frequently used are lognormal size-grade and Pareto upper tail modeling.
These two approaches can be combined with one another in applications of the
Pareto-lognormal size-frequency distribution model. The six metals considered in
this chapter are copper, zinc, lead, nickel, molybdenum and silver. The worldwide
metal size-frequency distributions for these metals are similar indicating that a
central, basic lognormal distribution is flanked by two Pareto distributions from
which it is separated by upper and lower tail bridge functions. The lower tail Pareto
distribution shows an excess of small deposits which are not economically
important. Number frequencies of the upper tail Pareto are mostly less than those of
the basic lognormal. Parameters of regional metal size-frequency distributions are
probably less than those of the worldwide distributions. Uranium differs from other
metals in that its worldwide size-frequency distribution is approximately lognormal.
This may indicate that the lognormal model remains valid as a standard model of
size-frequency distribution not only for uranium but also for the metals considered
in this chapter, which are predominantly mined from hydrothermal and
porphyry-type orebodies. A new version of the model of de Wijs may provide a
framework for explaining differences between regional and worldwide distribu-
tions. The Pareto tails may reflect history of mining methods with bulk mining
taking over from earlier methods in the 20th century. A new method of estimating
the Pareto coefficients of the economically important upper tails of the metal
size-frequency distributions is presented. A non-parametric method for long-term
projection of future metal resource on the basis of past discovery trend is illustrated
for copper.
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26.1 Introduction

Most models for regional or worldwide mineral or hydrocarbon resource appraisal
assume either a lognormal or a Pareto model for the size-frequency distribution of
the deposits considered. It can also be assumed that both models apply with the
lognormal distribution providing a good fit to all sizes except for the smallest and
largest deposits that satisfy fractal/multifractal Pareto distributions. The largest
deposits obviously are rare and may be too few in number for adequate modeling in
regional studies. However, recently, very large data bases have become available
for metal deposits (Patiño Douce 2016a, b, c, 2017). In a newly proposed
Pareto-lognormal model for worldwide metal deposit size-frequency distributions
(Agterberg 2017a, b, in press), a basic lognormal distribution is flanked by two
Pareto distributions. In this chapter this model is applied to copper, zinc, lead,
nickel, molybdenum and silver. The upper and lower tail Pareto’s are separated
from the central lognormal by bridge functions to ensure continuity. An improved
version of the Pareto-lognormal model will be applied to the upper tails of the
size-frequency distributions for the six metals considered.

Previously, this approachwas also applied to gold and uranium (Agterberg 2017b).
For gold, the Pareto-lognormal model is not fully satisfied in that there is a shortage of
gold deposits with sizes in the vicinity of the median of the worldwide gold
size-frequency distribution. For uranium (sizemeasured in tons ofU3O8), a lognormal
size-frequency distribution without Pareto tails provides a good fit. In the earlier
publications (Agterberg 2017a, b, in press) comparisons were made between regional
and worldwide size-frequency distributions for copper and gold. Logarithmic vari-
ances ofworldwide size-frequency distributions exceed those of regional distributions
and worldwide separate mineral deposit-type distributions. This observation also
applies to the upper tail Pareto size-frequency distributions. A new variant of the
model of de Wijs, to be discussed in more detail later in this chapter, can provide a
partial explanation of the fact that the worldwide basic lognormal can be regarded as a
mixture of regional lognormal distributions with parameters less than those of the
worldwide basic lognormals and Pareto’s. For example, within the Abitibi volcanic
belt on the Precambrian Canadian Shield, the largest deposits for copper and gold
satisfy Pareto size-frequency distributions with Pareto parameters (αCu = 0.45;
αAu = 0.88) that are less than those of their worldwide distributions (αCu = 1.21;
αAu = 1.16) illustrating that upper tail size parameter estimates for individual metal
deposits are not stochastically independent data but subject to spatial correlation.

It should be pointed out that worldwide size-frequency distributions for some
metals including copper (2541 deposits) are sufficiently large so that original data
(without use of parametric statistical models) can be employed for long-term pro-
jections into the future at specific cut-off metal sizes (Agterberg 2017b; also see
later in this chapter). Main emphasis in this chapter will be on size-frequency
distribution modeling of the upper tail Pareto distribution and its transition into the
basic lognormal. This is because total amount of metal in the lower tail of each
Pareto-lognormal distribution is negligibly small. For example, 1340 copper

506 F. Agterberg



deposits with greater than median size contain 99.7% of all copper in the complete
data set of 2541 deposits so that information provided by the approximately 50%
smaller deposits can be neglected (cf. Patiño Douce 2016c).

Patiño Douce (2016a, b, c, 2017) has published four important papers that are
helpful in planning future metal supply; showing, for example, that for copper there
would be a deficit of about 2.39 × 109 t (tonnes) by the end of this century if recent
discovery rates are maintained. For comparison, according to the USGS Mineral
Commodity Summaries (2015), proven copper reserves currently are 0.68 × 109 t.
According to Patiño Douce (2017), current copper resources including the estimated
reserves are 2.32 × 109 t whereas new demand by 2100 will be 4.70 × 109 t.
Consequently, estimated future copper deficit is approximately equal to currently
known copper resources. Using a non-parametric statistical method, this forecast
was confirmed by Agterberg (2017b) who estimated copper resources to be dis-
covered by the end of this century at 2.77 × 109 t with 95% confidence interval
of ±0.994 × 109 that contains Patiño Douce’s estimate (also see Sect. 26.5).

Patiño Douce (2016b) is accompanied by a supplementary database with sizes
and grades for 20 metals. For example, his data on 2541 copper deposits were
compiled from as many as 49 different sources. Patiño Douce (2016b) initially fitted
lognormal distributions to the metal deposit size-frequency distributions in this data
base pointing out that the logarithmic (base e) standard deviation ranges from about
2 to 3 for different metals, although average metal deposit sizes are greatly different.
Both Patiño Douce (2016c) and Agterberg (2017a) showed that the largest deposits
for different metals can be described by means of Pareto distributions. In the
Pareto-lognormal metal size-frequency distribution model of Agterberg (2017a, b)
the lognormal has a Pareto upper tail separated from the central lognormal by a
bridge zone. This model recognizes both (1) lognormality of metal content of ore
deposits from within smaller regions and those belonging to different mineral
deposit types (see, e.g. Singer 2013), and (2) Pareto size-frequency distribution of
the largest deposits but also for the economically unimportant smallest metal
deposits that exhibit Pareto size-frequency distributions as well.

The Pareto-lognormal model for metal deposits provides an alternative to other
size-frequency distribution models, which until about 30 years ago almost exclu-
sively were based on the lognormal model. Mandelbrot (1983, p. 263) stated that oil
and other natural resources have Pareto distributions and “this finding disagrees
with the dominant opinion, that the quantities in question are lognormally dis-
tributed. This difference is extremely significant, the reserves being much higher
under the hyperbolic than under the lognormal law.” It will be seen in this chapter
that size frequencies in the upper Pareto tails of the worldwide metal deposits taken
for example are less than those of the basic lognormals when these are projected to
the largest sizes. In this sense, the metal size frequency distributions are not
“heavy-tailed”. It can, however, be assumed that the Pareto represents a stable
limiting form for the largest as well as the smallest metal deposits. Pareto
size-frequency distribution modeling of the largest deposits has during the past
35 years been used by many authors including Drew et al. (1982) and Crovelli
(1995) for oil and gas fields, and Cargill (1981), Cargill et al. (1980, 1981) and
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Turcotte (1997) for metal deposits. The latter author has developed a modification
of the model of de Wijs (1951) that results in a Pareto instead of a lognormal
distribution. Turcotte (1997) based this model on original publications by Cargill
et al. (1980, 1981) and Cargill (1981) who had assumed power-law instead of
lognormal models for U.S. mercury, lode gold and copper production. Like the
lognormal, the Pareto-lognormal distribution is not universally applicable to all
elements, which show bimodal or multimodal size-frequency distributions when all
the many different rock bodies within the Earth’s crust would be considered.

The fact that uranium has lognormal distribution without Pareto tails suggests
that a multiplicative form of the central limit theorem is applicable for this metal
and possibly for other metals in different kinds of mineral deposits as well. A new
variant of the model of de Wijs described in the next section provides a partial
explanation of the fact that the basic lognormal probably can be regarded as a
mixture of regional lognormals with parameters that are less than those of the
worldwide basic lognormal.

26.2 Modified Version of the Model of de Wijs Applied
to Worldwide Metal Deposits

In the original model of de Wijs (1951) for metal concentration values in blocks of
rock, any block with metal concentration model ζ is repeatedly divided into halves
with concentration values (1 + d) ˑ ζ and (1 − d) ˑ ζ where d is the coefficient of
dispersion which us assumed to be independent of block size. The frequency dis-
tribution for metal concentration values in increasingly smaller blocks then satisfies
the so-called logbinomial distribution that rapidly approaches lognormal form. If

there are p subdivisions, the logbinomial distribution of the
p
K

� �
concentration

values of the resulting n = 2p blocks is

X p,Kð Þ= ζ ⋅ ð1+ dÞp−Kð1− dÞK

where K satisfies the binomial distribution with μ(K) = p/2 and variance
σ2(K) = p/4 (cf. Agterberg 1974, p. 322). This logbinomial has μ(X) = ζ and
variance σ2(X) approaching to:

σ2ðXÞ= p
4

⋅ ln
1− d
1+ d

� �2

Various modifications of the original model of de Wijs (1951) were developed
by Matheron (1962), Turcotte (1997) and Agterberg (2007). These modifications
were primarily concerned with randomizing the model of the Wijs (e.g. in the
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random-cut model), spatial realizations to account for spatial autocorrelation,
maximizing p (three-parameter model of de Wijs) and producing a Pareto tail (or
other types of tail) on the logbinomial (e.g., as in the accelerated dispersion model,
Agterberg (2007)). As discussed by Mandelbrot (1983), the model of de Wijs was
the earliest example of a multifractal cascade. Lovejoy and Schertzer (2007) have
pointed out that this original cascade is micro-canonical in that average metal
concentration value is preserved locally at every cut. In universal multifractal theory
these authors have generalized the cascade-type approach by preserving regional-
ized instead of strictly local averages. Their approach can result in a cascade that is
largely lognormal but generates tails which are exactly Pareto-type. Here, another
modified version of the original model of de Wijs (1951) is introduced as follows.

Suppose that the sizes of all deposits are combined with one another into a single
very large block which is assigned to an arbitrary point in the upper part of the
Earth’s crust that contains metal deposits that have been or can be discovered.
Suppose further that this block is divided into halves and the two smaller blocks are
assigned to two points randomly located within halves of the upper part of the
Earth’s crust. This process can be repeated 2p times. At each step, the two resulting
half-blocks of metal are further divided into halves that, after every cut, are ran-
domly assigned to successively smaller segments of the upper Earth’s crust. If there
are n known deposits the cascade process is repeated until n ≤ 2p. For example, in
relatively well-known parts of the Earth’s crust there occur 2541 copper deposits.
Suppose that p = 12 so that total number of subdivisions would be 4096. The 2541
copper deposits then can be regarded as a random subset of this larger population,
so that the overall mean copper content value ζ and the coefficient of dispersion
d can be estimated. From the parameters of the straight line representing the basic
copper lognormal distribution (Fig. 26.2a, see later) it follows that the logarithmic
(base e) mean and standard deviation are μ = 10.445 and σ = 3.1062. Conse-
quently, ζ = exp (μ + σ2/2) = 4.277 × 109. It then follows that d = 0.7276.

“Observed” frequencies satisfying the log-binomial model are shown in
Fig. 26.1. The best-fitting straight line (y = 0.755x – 3.8123) in this diagram has
coefficients corresponding to mean μˊ = 11.627 and standard deviation σˊ = 3.050
which are relatively poor estimates in comparison to the values to derived later for
the basic lognormal for copper in Fig. 26.2a. Main reason for this minor discrep-
ancy is relatively strong influence on the best-fitting regression line of logbinomial
frequencies represented by first and last points which are for single blocks only.
Positions of these two points illustrate that the logbinomial produces slightly
weaker upper and lower tails in comparison with the lognormal. On the whole, the
logbinomial very closely approximates the lognormal in this application.

The preceding model would allow for spatial autocorrelation of metal deposit size
observations, which is known to exist. For example, the largest copper deposits are
porphyry type and largely clustered in the Andes mountain chain of South America.
On the other hand, the largest copper deposits in the Abitibi volcanic belt on the
Canadian Shield are volcanogenic massive sulphide deposits which are smaller than
the South American porphyry coppers. Because of the close resemblance of the
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logbinomial to the lognormal, preceding results also can be represented as follows.
The characteristic function of a random variable X is:

ɡ uð Þ=EðeiuxÞ =
Z∞

−∞

e− iuxf xð Þdx

where f(x) is the probability density function of X. Characteristic functions are
discussed in statistical textbooks including Billingsley (1986) and Bickel and
Doksum (2001). For a normal distribution:

ɡ uð Þ= eiμu− σ2u2 ̸2

If Z, with mean μz and variance σ2z , represents the sum of two random variables
X and Y, then the respective three characteristic functions satisfy:

ɡzðuÞ=ɡxðuÞ ⋅ ɡyðuÞ

y = 0.755x - 3.8123
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Fig. 26.1 Model of de Wijs
applied to worldwide copper
deposit size-frequency
distribution. Overall mean set
equal to ζ = 4.277 Mt copper;
dispersion index d = 0.7276;
number of subdivisions
p = 12. “Observed”
frequencies satisfy
log-binomial model.
Best-fitting straight line
represents lognormal
distribution. Logbinomial
frequencies represented by
first and last point are for
single blocks only (Source
Agterberg, in press)
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If X is normal with zero mean and variance σ2x , and Y is normal as well with
mean μy and variance σ2y , then Z is normal with:

ɡzðuÞ= e iðμx + μyÞ ⋅ u− ðσ2x + σ2yÞ ⋅ u2 ̸2½ �

-5
-4
-3
-2
-1
0
1
2
3
4

-2 0 2 4 6 8 10

N
or

m
al

 Q
ua

n
le

Log (Cu Deposit Size)

-5

-4

-3

-2

-1

0

1

2

3

-2 0 2 4 6 8

N
or

m
al

 Q
ua

n
le

Log (Pb Deposit Size)

-4

-3

-2

-1

0

1

2

3

0 2 4 6 8

N
or

m
al

 Q
ua

n
le

Log (Mo Deposit Size)

-6
-5
-4
-3
-2
-1
0
1
2
3

-2 0 2 4 6 8

N
or

m
al

 Q
ua

n
le

Log (Zn Deposit Size)

-4
-3
-2
-1
0
1
2
3
4

0 2 4 6 8

N
or

m
al

 Q
ua

n
le

Log (Ni Deposit Size)

-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4

0 5 10 15

N
or

m
al

 Q
ua

n
le

Log (Ag Deposit Size)

Fig. 26.2 Lognormal Q-Q plots for six metals (Cu, Zn, Pb, Ni, Mo and Ag). Coefficients of
straight lines representing truncated lognormal distributions are shown in Table 26.1. Sample sizes
are shown in Table 26.2. In each case, frequencies for the largest and smallest deposits deviate
from the straight-line pattern indicating lower and higher number frequencies than expected on the
basis of the lognormal size frequency distribution models represented by the straight lines
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Consequently, the probability density function of Z is:

f ðzÞ= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x + σ2y

q
⋅

ffiffiffiffiffi
2π

p e− z− ðμx + μyÞf g2
⋅ 2 ⋅ ðσ2x + σ2y Þf g− 1

Interpretation of this result in the context of worldwide metal deposits can be as
follows. Suppose that log Z represents the basic lognormal metal deposit
size-frequency distribution with logarithmic mean μz = μx + μy and logarithmic
variance σ2z = σ2x + σ2y . Then log Z can be regarded as a composite of many regional
lognormal distributions with different means and lesser logarithmic variances, much
like as in the previous version of the model of de Wijs the overall logbinomial
would consist of regional logbinomials with different parameters.

26.3 Theory and Applications of the Pareto-Lognormal
Model

The cumulative frequency distribution for the Pareto-lognormal distribution
F(x) = F(log x) can be written as

Fðlog xÞ≈Φ
log x− μ

σ

� �
+Hðlog x− μÞ ⋅ B1ðlog xÞ ⋅ ðlog x− μÞ− α

+Hðμ− log xÞ ⋅ B2ðlog xÞ ⋅ ðμ− log xÞ− κ

where Φ log x− μ
μ

� �
represents the basic lognormal (logs base 10). H (…) is the

Heaviside function that applies to two filtered Pareto distributions, for positive and
negative values of (log x - µ), respectively; it signifies that values at the other side of
µ are set equal to zero when the equation is applied to either the upper tail or the
lower tail of the Pareto-lognormal distribution.. The bridge functions B1(log x)
and B2(log x) span relatively short intervals between the basic lognormal and
the Pareto distributions for the largest and smallest values, respectively. They
satisfy limx→∞ B1 log xð Þ= limx→ 0 B2 log xð Þ=1 and limx→ 0 B1 log xð Þ= limx→∞
B2 log xð Þ=0.

The Pareto-lognormal probability density function f(log x) corresponding to
F(log x) can be written as

f ðlog xÞ≈φ
log x− μ

σ

� �
+Hðlog x− μÞ ⋅ B′

1 log xð Þ ⋅ ðlog x− μÞ− α− 1

+H μ− log xð Þ ⋅ B′
2 log xð Þ ⋅ ðμ− log xÞ− κ− 1
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It may be useful for prediction of resources to be discovered in the future. The
exponents in ðlog x− μÞ− α− 1 and ðμ− log xÞ− κ− 1 reflect the fact that the Pareto
probability density function remains linear on a plot with logarithmic scales for
both frequency and deposit size, but has a steeper dip.

The lognormal QQ-plot (logarithmic probability paper) provides a useful first
step in fitting the Pareto-lognormal distribution. Figure 26.2 contains results for the
six metals. Original data were taken from Patiño Douce (2016b). Each graph shows
a straight-line pattern with departures from lognormality in the upper and lower
frequency distribution tail. Relatively, there are too many smallest deposits and too
few largest deposits. In the Pareto-lognormal model both the upper and lower tail
distributions have transitions to the central lognormal that are gradual and described
by the two bridge functions. For projections into the future (or for global downward
projections into the Earth’s crust) only the upper tails of the size-frequency dis-
tributions are of economic interest. In the next section, a new, relatively simple
method will be described for fitting the upper tail Pareto distributions. The upper
tail bridge function will be fitted empirically by connecting this Pareto to the central
lognormal distribution. Copper can be used for illustrating details of the methods
used. The straight line y = bx + a in Fig. 26.2a for copper represents the basic
lognormal with coefficients a = −3.314 and b = 0.741 derived from the logarith-
mic mean μ = −a/b = 4.469 and standard deviation σ = 1/b = 1.349 of a trun-
cated lognormal for which 10% (or 254 values) in both upper and lower tail were
excluded from the sample of 2541 original copper deposit size values. The mean μ
of this truncated distribution is only slightly different from 4.403 representing the
logarithmic mean of all values. The basic lognormal standard deviation σ = 1.349
is slightly less than 1.423 representing the standard deviation based on all values
because there are relatively many copper deposit size values in the lower tail. It was
obtained by dividing 0.893 representing the standard deviation of the truncated
copper data set by 0.662, representing a value taken from Johnson and Kotz (1970,
Table 10, p. 84). Other published truncation correction factors were used for metals
with wider upper or lower tails. Coefficients for all six straight lines shown in
Fig. 26.2 are given in Table 26.1. The basic statistics estimated for all six metals
shown in Table 26.2 were taken from Agterberg (2017a, b and in press) except for
the upper tail Pareto coefficients with slightly different values newly derived by the
method to be described in the next section.

Table 26.1 Constants a and
b in equations y = a + bx for
straight lines shown in
Fig. 26.2 representing
truncated lognormals for six
metals

Metal a b

Cu −3.314 0.741
Zn −4.538 0.924
Pb −3.894 0.847
Ni −3.400 0.758
Mo −4.616 1.030
Ag −6.501 0.819
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26.4 Upper Tail Pareto Distribution and Its Connection
to the Basic Lognormal Distribution

The cumulative Pareto distribution function satisfies

FðxÞ=1−
k
x

� �α

where α > 0 and k > 0 are its two parameters. The following maximum likelihood
estimator of the Pareto coefficient α has been used in several publications (Clauset
et al. 2009; Patiño Douce 2016c; Agterberg 2017b) in various ways:

α=
n

∑n
i=1 ln

xi
k

where n represents number of metal deposits selected in an ordered sequence of
values xi (i = 1, 2, …, n), and k is the critical size parameter representing the
truncation point at which the maximum value of the Pareto probability—density
drops to zero. In the original algorithm of Clauset et al. (2009), which was used by
Patiño Douce (2016c), all possible values of k are tested for sizes x1 < x2 < x3 … <

xn. Minimum size (x1) was set at median size and xn at maximum size. Each sample
of n sizes provides a different estimate of k and α. The Kolmogorov-Smirnov test
was used to find the Pareto distribution that provides the best fit.

In Agterberg (2017b)’s application, x1 > x2 > x3 … > xn, was used instead. This
reversal of order was based on the following three premises: (1) worldwide metal
deposit size sample sizes are very large ensuring that cumulative frequencies
become increasingly precise when n is increased, regardless of whether or not the
Pareto distribution model is satisfied; (2) starting with the largest deposits and
increasing sample size by including progressively more deposits improves results if

Table 26.2 Comparison of basic statistics for eight metals including the six metals represented in
Table 26.1 and Figs. 26.2, 26.3 and 26.4. N—number of deposits; Mt—million tons, t metric tons;
LM, LS—logarithmic mean and standard deviation; μ, σ—ditto for truncated lognormal; α, κ—
upper and lower tail Pareto coefficients

Metal N Total metal Mean LM LS μ σ α κ

Cu 2541 2319.11 Mt 0.9127 Mt 4.403 1.423 4.469 1.349 1.206 0.332
Zn 1476 1111.51 Mt 0.7531 Mt 4.821 1.215 4.910 1.082 1.162 0.318
Pb 1102 481.43 Mt 0.4367 Mt 4.479 1.337 4.596 1.180 1.654 0.340
Ni 464 171.05 Mt 0.3686 Mt 4.384 1.261 4.484 1.319 1.352 0.515
Mo 343 59.76 Mt 0.1742 Mt 4.371 1.131 4.480 0.971 1.093 0.358
Ag 1644 1899.43 t 1.1554 t 7.832 1.342 7.936 1.221 1.382 0.361
Au 2106 284.33 t 0.1350 t 6.551 1.168 6.629 0.994 1.164 0.297
U 172 59.76 Mt 0.3474 Mt 2.979 1.177 2.979 1.177 0.000 0.000
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the Pareto distribution model would indeed be satisfied; and (3) for increasingly
large values of n, observed frequencies become increasingly less than expected
Pareto distribution model frequencies because the upper tail Pareto gradually passes
into the lower frequency density basic lognormal via the upper tail bridge function.
Theoretically, if α is known, k could be derived from α by using the preceding
equation for the maximum likelihood estimator. In Agterberg (2017a, b, in press), α
was pre-determined by visual inspection for 7 metals that all show approximately
linear patterns in log rank—log size plots for their largest deposits.

Initially, for small values of n, the resulting patterns for copper and other metals
show large random fluctuations. For larger values of n the plots develop multi-peak
patterns for α that are superimposed on a gradational decrease. In Agterberg
(2017b) a straight line was fitted by least squares for copper and gold avoiding the
large small-sample fluctuations at the largest size values end capture the downward
bend of log rank values toward lower log size values. This procedure produced
estimates of kCu = 6.98 and kAu = 8.98. Both estimates were confirmed by more
detailed analysis of cumulative frequencies for largest deposits yielding kCu ≈ 7.0
and kAu ≈ 9.2.

However, the preceding method does not work very well for some metals with
fewer data than copper and gold. The following relatively simple method gave good
results for six metals as shown in Figs. 26.3 and 26.4. The value of n was set equal
to 20 in each application for a window that was slid along the series of ordered
metal deposit size values from the largest deposit downward. Initial random fluc-
tuations connected to the largest values were avoided and so were windows on the
upper bridge function transition zone toward the basic lognormal size-frequency
distribution. For copper this procedure gives α = −1.2059 for k = 6.996. The
straight line with slope α passing through the point with average log size and
average log rank for the 20 pairs of copper deposit size values used is shown in
Fig. 26.3a. Similar results for the other five metals are shown in Figs. 26.3 and
26.4. According to the Pareto-lognormal model, a decrease of estimated values of α
at the point where the upper tail Pareto ceases to be applicable is indeed expected.
However, it is not clear why there is an equally strong decrease of estimated values
of α in the patterns of Fig. 26.3 from the peak outward toward increasing values of
log (deposit size). Very large random fluctuations are known to exist for the largest
deposits. However, the upper tail downward trends in Fig. 26.3 could mean larger
sizes than expected for the largest deposits although there are no indications of this
in Fig. 26.4. Neither are there obvious deviations from linearity in log rank—log
size plots that include the largest deposits for various metals (Agterberg 2017a, b).
Residuals from the straight lines representing the Pareto distributions show rela-
tively strong autocorrelation. Because of this uncertainty, it remains important to
look for alternative upper tail models like the lognormals proposed by Patiño Douce
(2016c, 2017) and shown for copper and gold in Agterberg (2017b). These alternate
lognormals differ from the basic lognormals primarily in that they have much large
mean deposit size values.

In order to fully represent the upper tail cumulative size-frequency distribution,
the Pareto’s have to be connected to the basic lognormals. Taking copper for
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example again, it can be seen in Fig. 26.2a that observed frequencies deviate from
the best-filling straight line for log Cu deposit size values greater than 6. In total 42
deposits have log Cu deposit size values greater than 7 and their observed cumu-
lative frequency of 42/2524 can be used as an anchor point to connect the upper tail
Pareto to the upper bridge function which represents the transition zone between the
basic lognormal (for values < 6) and the Pareto (for values ≥ 7). Table 26.3 shows
anchor points used for all six metals considered. Figure 26.5 shows best-fitting
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Fig. 26.3 Pareto coefficient (α) for log of metal deposit size as obtained in the text, setting n equal
to 20 for overlapping data sets moving from larger to smaller log (deposit size) values. Maximum
α will be taken as optimum value with data sets, on which it is based, for the six metals shown in
Fig. 26.4
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Fig. 26.4 Sets of twenty log (metal deposit size) values corresponding to maximum value of α in
Fig. 26.3 for the six metals. Corresponding Pareto distribution functions are shown as straight lines
on these log rank—log size plots

Table 26.3 Pareto coefficients α and k corresponding to peaks for six metals in Fig. 26.3. Anchor
point is log metal deposit size on upper tail Pareto distribution with relative frequency (Rel Freq)
and observed y-value—log10 (1—cumulative frequency)

Metal α k Anchor pnt Rel Freq Obs y-value

Cu 1.2059 6.996 7 42 −1.7818
Zn 1.1615 6.782 7 15 −1.9930
Pb 1.6535 6.405 6.5 27 −1.6108
Ni 1.3523 6.049 6 42 −1.0433
Mo 1.0926 5.130 5 106 −0.5286
Ag 1.3820 10.017 10 38 −1.6361
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Fig. 26.5 Upper tails of Pareto-lognormal size-frequency distributions for the six metals
constructed by using the method explained in Table 26.4. Upper tails bridge functions are
smooth curves that satisfy quartic polynomials fitted by least squares to log size values satisfying
basic lognormal on the left and upper tail Pareto on the right side. For copper the result does not
differ significantly from sextic polynomial previously shown in Agterberg (2017b, Fig. 14). For
molybdenum no bridge function was fitted. Points with log (Mo deposit size) ≤ 5 satisfy basic
lognormal shown as straight line on Fig. 26.2e; points with log (Mo deposit size) ≥ 5 belong to the
upper tail Pareto distribution
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frequency distribution curves that are Pareto-type for log deposit size values
exceeding the anchor points. Some anchor points slightly exceed the estimated
values of the truncation parameters k without significantly changing the results.
Quartic polynomials were used to approximate the smooth shapes of each fre-
quency distribution within the upper tail bridge function that connects the Pareto
with the basic lognormal. Table 26.4 shows results of this interpolation procedure
for copper. The curve in Fig. 26.5a resembles the curve previously shown in
Agterberg (2017a) where it was a best-fitting sextic polynomial. Contrary to the
fitting of sextic polynomials to other metals, the method using a quartic explained in
Table 26.4 gave good results for the other metals considered with the exception of
molybdenum that does not seem to need a bridge function to pass from the Pareto
into the basic lognormal. It is the only metal for which the upper tail Pareto and the
central lognormal almost continuously pass into one another. Molybdenum,
therefore, almost exactly satisfies the model proposed by Patiño Douce (2016b,
Appendix 1) in which the probability density function of the lognormal as well as
its first derivative pass continuously into the density function of the Pareto. The
value at log (Mo deposit size) = 5 predicted by the basic lognormal is equal to the
value of the Pareto at this point. Figure 26.5e, however, shows that there is a slight
change of dip of the curve for log (1—cumulative frequency) at this point. All
frequency distribution curves in Fig. 26.5 are close to their observed cumulative
frequencies also shown in these diagrams.

26.5 Prediction of Future Copper Resources

As previously pointed out in Agterberg (2017b; in press), one of the purposes of
developing statistical models of the size-frequency distributions of worldwide metal
deposits is to use these models for prediction purposes either spatially (e.g., from
relatively well-explored regions to unexplored regions, or deeper down from the
Earth’s surface), or in time. For multifractal modeling of the spatial distribution of
mineral deposits, see Cheng (1994) or Cheng and Agterberg (1995). Use of para-
metric models is discussed by many authors including Agterberg (1974), Patiño
Douce (2017) and Agterberg (2017b). The following non-parametric approach was
first presented in the latter paper.

Suppose that X is a continuous random variable denoting mineral deposit size
and that K is a discrete random variable for number of deposits per unit of area,
volume or time; then the continuous random variable Y representing the sum of the
sizes of the K deposits satisfies:

Y =X1 +X2 + ⋯ +XK

26 Statistical Modeling of Regional and Worldwide … 519



The mean E(Y) and variance σ2(Y) satisfy:

EðYÞ=EðKÞ ⋅ EðXÞ; σ2 Yð Þ=EðKÞ ⋅ σ2ðXÞ+ σ2ðKÞ ⋅ E2ðXÞ

These equations were previously used in Agterberg (1974, Eq. 7.72) who had
adopted them from Feller (1968, Chap. 12) where they are derived for K and X both
representing integral-valued random variables. The approach also is applicable
when X is a continuous random variable. The variance equation can be found in an
online article on compound distributions (Lin 2014, Eq. (4)) with many additional
references. Specific distribution models can be assumed to hold true for K and
X. However, as shown earlier in this chapter, significant uncertainties remain in
modeling the upper tail of worldwide metal size-frequency distributions that contain
most metal. Fortunately, samples now available for statistical modeling are so large
that the following non-parametric approach can be used.

Patiño Douce (2017) contains tables with statistics based on number of 1950–
2007 copper deposit discoveries originally derived from a plot by Schodde (2010)
for copper deposits with size > 3 × 105 t Cu. Mean and variance of yearly number
of discoveries are 8.621 and 14.304, respectively. Extrapolation of these two
parameters over 85 years, toward the end of this century, would yield an expected
number of 732.8 discoveries with variance of 12.158 × 103. Patiño Douce (2016b)’s
original data base contains 591 copper deposits with sizes > 3 × 105 t Cu resulting
in estimated values of E(X) = 3.784 × 106 t and σ2(X) = 1.135 × 1014. Because of
the large sample size, the 95% confidence limits on the estimated mean value are
3.784 × 106 ± 0.859 × 106 t with the large sample ensuring approximate normality
of the frequency distribution of this mean. Consequently, this estimate is rather

Table 26.4 Curve connecting smoothed y-values for log10 (1—cumulative frequency) in
Fig. 26.5a in comparison with observed y-values for copper. Commencing as lognormal, the
curve passes gradually into the straight line for its upper tail Pareto. Smoothed y-values for the
intermediate bridge function satisfy a quartic polynomial equation fitted by least squares to
lognormal values for x ≤ 5 and x ≥ 7. Smoothed values include quartic polynomial for x = 5 and
x = 7

x Lognormal Pareto Quartic Smoothed Observed

4 −0.196 −0.199 −0.196 −0.198
4.5 −0.309 −0.298 −0.309
5 −0.460 −0.449 −0.449 −0.460
5.5 −0.653 −0.671 −0.671
6 −0.892 −0.974 −0.974 −0.908
6.5 −1.180 −1.364 −1.364
7 −1.518 −1.782 −1.838 −1.838 −1.782
7.5 −1.909 −2.411 −2.388 −2.411
8 −2.354 −3.041 −2.999 −3.041 −2.928
8.5 −2.853 −3.670 −3.650 −3.670
9 −3.408 −4.299 −4.313 −4.299
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precise. Using the preceding equations for mean E(Y) and variance σ2(Y), it follows
that estimated total tonnage copper value amounts to 732.8 × 3.784 × 106 =
2.773 × 109 t. The corresponding variance amounts to 25.726 × 1016, from which
it follows that the 95% confidence limits on the estimated mean value are 2.773 ×
109 ± 0.994 × 109 t. This mean value is approximately normally distributed as
well. Although the method for deriving this result differs significantly from the
computer simulation method used by Patiño Douce (2017), the end result is only
0.654 × 109 t greater and the difference between the two estimates is not statisti-
cally significant. These results confirm Patiño Douce (2017)’s conclusion that there
would be a significant shortage of copper if current rates of discovery will be
maintained. The problem would become even worse if future rates would decrease.

26.6 Concluding Remarks

In this chapter it was argued that publicly available large metal deposit size data
bases (especially Patiño Douce 2016b) allow new kinds of statistical modeling of
regional and worldwide metal resources. The two models most frequently used in
the past are lognormal size-grade and Pareto upper tail modeling. Both approaches
are probably valid for several metals including copper, zinc, lead, nickel, molyb-
denum and silver taken for example because the upper tails of their mostly log-
normal size frequency distributions satisfy the Pareto distribution model. The
worldwide metal size-frequency distributions for these metals are similar indicating
that a central, basic lognormal distribution is flanked by two Pareto distributions
from which it is separated by upper and lower tail bridge functions. The lower tail
Pareto distribution shows an excess of small deposits which are not economically
important. Number frequencies of the upper Pareto are mostly less than those of the
basic lognormal. A new method for fitting the upper tail Pareto was introduced and
produces good results for the six metals taken for example. Parameters of regional
metal size-frequency distributions as well as those of mineral deposit type distri-
butions are less than those of the worldwide distributions. Uranium differs from
other metals in that its worldwide size-frequency distribution is approximately
lognormal. This may indicate that the lognormal model remains a standard model of
size-frequency distributions of metals predominantly mined from hydrothermal and
porphyry-type orebodies. A new version of the model of de Wijs may provide a
framework for explaining the differences between regional and worldwide distri-
butions. Further research on this topic remains to be carried out. The Pareto tails
may reflect historical mining methods with bulk mining becoming prevalent in the
20th century. A new method of estimating the Pareto coefficients of the econom-
ically important upper tails of the size-frequency distributions was presented, and a
non-parametric method for long-term projection of future metal resource on the
basis of past discovery trend was illustrated for copper.
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Chapter 27
Bayesianism in the Geosciences

Jef Caers

Abstract Bayesianism is currently one of the leading ways of scientific thinking.
Due to its novelty, the paradigm still has many interpretations, in particular with
regard to the notion of “prior distribution”. In this chapter, Bayesianism is intro-
duced within the historical context of the evolving notions of scientific reasoning
such as inductionism, deductions, falsificationism and paradigms. From these
notions, the current use of Bayesianism in the geosciences is elaborated from the
viewpoint of uncertainty quantification, which has considerable relevance to
practical applications of geosciences such as in oil/gas, groundwater, geothermal
energy or contamination. The chapter concludes with some future perspectives on
building realistic prior distributions for such applications.

27.1 Introduction

Much of the topic of research within the IAMG community involves developing
tools for prediction: what is the grade? The volume of Oil in Place? The
spatio-temporal changes of a contaminant plume? Making realistic predictions,
meaning providing realistic uncertainty quantification, is key to making informed
decisions. Decisions and their consequences are what matters in the end, not the
kriging map of gold, or simulated permeability, or hydraulic conductivity. These are
only intermediate steps to decision-making. In this chapter, I focus on a funda-
mental discussion on how we make predictions in the Geosciences and about the
current leading paradigm: Bayesianism. This chapter is a revised version of the
book “Quantifying Uncertainty in Subsurface Systems”, Scheidt et al. Wiley
Blackwell, 2018. The term UQ is therefore used for “Uncertainty Quantification”

Most of our applications involve three major components: data, a model and a
decision. For example, in contaminant hydrology, we need to decide on a
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remediation strategy or simply a decision to clean or not. We collect data: geo-
chemical samples, geological studies, possibly even some geophysical surveys. We
build models: a reactive transport model, a geostatistical model of spatial properties,
a geochemical model. How does this all come together? Bayesian modeling is
usually invoked as a way of integrating all these components. But what really
constitutes “Bayesian” modeling? Thomas Bayes did not write Bayes’ rule in the
form we often see it in textbooks. However, after a long period of being mostly
ignored in history, his idea of using a “prior” distribution heralded a new way of
scientific reasoning which can be broadly classified as: Bayesianism. The aim of
this chapter is to frame Bayesianism within the historical context of other forms
of scientific reasoning such as induction, deduction, falsification, intuitionism and
others. The application of Bayesianism is then discussed in the context of uncer-
tainty quantification and specific to the Geosciences. This makes sense since
quantifying uncertainty is about quantifying a lack of understanding or lack of
knowledge. Science is all about creating knowledge. But then, what do we
understand and what exactly is knowledge (the field of epistemology)? How can
this ever be quantified with a consistent set of axioms and definitions, that is, if a
mathematical approach is taken? Is such quantification unique? Is it rational at all to
quantify uncertainty? Are we in agreement as to what Bayesianism really is?

These questions are not just practical questions towards engineering solutions,
but to a deeper discussion around uncertainty. This discussion is philosophical, a
discussion at the intersection of philosophy, science and mathematics. The science
of studying knowledge and as a result, uncertainty. In many papers published
journals that address uncertainty in subsurface systems, or in any system for that
matter, philosophical views are rarely touched upon. Many such publications would
start with the “we take the Bayesian approach…” or, “we take a fuzzy logic
approach to….” But what entails making this decision? Papers quickly become
about algebra and calculus. Bayes or any other way of inferential reasoning is
simply seen as a set of methodologies, technical tools and computer programs. The
emphasis lies on the beauty of the calculus, solving the puzzle, improving “accu-
racy” not on any desire of deeper understanding to what exactly one is quantifying.
A pragmatic realist may state that in the end, the answer is provided by the com-
puter codes, based on the developed calculus. Ultimately, everything is about bits
and bytes and transistors amplifying or switching electronic signals; inputs and
outputs. The debate is then which method is better, but such debate is only within
the choices of the particular way of reasoning about uncertainty. That particular
choice is rarely discussed. The paradigm is blindly accepted.

Bayes is like old medicine, we know how it works, what the side effects are and
has been debated, tweaked, improved, discussed since Reverend Bayes’ account
was published by Price (1763). Our discussion will start with a general overview of
the scientific method and the philosophy of science. This discussion will be useful
in the sense that it will help introduce Bayesianism, as a way of inductive rea-
soning, compared to very different ways of reasoning. Bayes is popular, but not
accepted by all (Earman 1992; Wang 2004; Gelman 2008; Klir 1994).
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27.2 A Historical Perspective

In the philosophy of sciences, fundamental questions are posed such as: what is a “law
of nature”?Howmuch evidence andwhat kind of evidence shouldwe use to confirm a
hypothesis? Can we ever confirm hypotheses as truths? What is truth? Why do we
appear to rely on inaccurate theories (e.g. Newtonian physics) in the light of clear
evidence that they are false and should be falsified? How does science and the sci-
entific method work? What is science and what is not (the demarcation problem)?
Associatedwith the philosophy of science are concepts such as epistemology (study of
knowledge), empiricism (the importance of evidence), induction and deduction,
parsimony, falsification, paradigm…. all of which will be discussed in this chapter.

Aristotle (384-322 BC) is often considered to be the founder of both science and
the philosophy of science. His work covers many areas such as physics, astronomy,
psychology, biology, and chemistry, mathematics, and epistemology. Attempting to
not solely be Euro-centric, one should also mention the scientist and philosopher
Ibn al-Haytham (Alhazen), who could easily be called the inventor of the
peer-review system, on which this chapter too is created. In the modern era, Galileo
Galilei and Francis Bacon take over from the Greek philosophy of thought
(rationality) over evidence (empiricism). Rationalism was continued by Rene
Descartes. David Hume introduced the problem of induction. A synthesis of
rationalism and empiricism was provided by Emanuel Kant. Logical positivism
(Wittgenstein, Bertrand Russel, Carl Hempel) ruled much of the early twentieth
century. For example, Bertrand Russel attempted to reduce all of mathematics to
logic (logicism). Any scientific theory then requires a method of verification using a
logic calculus in conjunction with the evidence, to prove such theory true of false.
Karl Popper appeared on the scene as a reaction to this type of reasoning, replacing
verifiability with falsifiability, meaning that for a method to be called scientific, it
should be possible to construct an experiment or acquire evidence that can falsify it.
More recently Thomas Kuhn (and later Imre Lakatos) rejected the idea that one
method dominates science. They see the evolution of science through structures,
programs and paradigms. Some philosophers such as Feyerabend go even further
(“Against method”, Feyerabend 1993) stating that no methodological rules really
exist (or should exist).

The evolution of the philosophy of science has relevance to UQ. Simply replace
the concept of “theory” with “model”, and observations/evidence with data. There
is much to learn from how people’s viewpoints towards scientific discovery differs;
how they have changed and how such change has affected our ways of quantifying
uncertainty. One of the aims of this chapter therefore is to show that there is not
really a single objective approach to uncertainty quantification based on some laws
or rules provided by a passive, single entity (the truth-bearing clairvoyant God!).
Uncertainty quantification just like science is dynamic, relies on interaction between
data, models and predictions and evolving views on how these components interact.
It is with high certainty that few methods covered in this chapter will not be used in
100 years; just consider the history of science as evidence.
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27.3 Science as Knowledge Derived from Facts,
Data or Experience

Science has gained considerable credibility, including in everyday life, because it is
sold as “being derived from facts”. It provides an air of authority, of truth to what
are mainly uncertainties in daily life. This was basically the view with the birth of
modern science in the seventeenth century. The philosophies that exalt this view are
empiricism and positivism. Empiricism states that knowledge can only come from
sensory experience. The common view was that (1) sensory experience produces
facts to objective observers, (2) facts are prior to theories (3) facts are the only
reliable basis for knowledge.

Empiricism is still very much alive in the daily practice of data collection, model
building and uncertainty quantification. In fact, many scientists find UQ inherently
“too subjective” and of lesser standing than “data”, physical theories or numerical
modeling. Many claim that decisions should be based merely on observations, not
models.

Seeing is believing. “Data is objective, models are subjective”. If facts are to be
derived from sensory experience, mostly what we see, then consider Fig. 27.1.
Most readers see a panel of squares, perhaps from a nice armoire. Others (very few)
see circles and perhaps will interpret this as an abstract piece of art with interesting
geometric patterns. Those who don’t see circles at first, need to simply look longer,
with different focusing of their retinas. Hence, there seems to be more than meets
the eyeball (Hanson 1958). Consider another example in Fig. 27.2. What do you
see? Most will recognize this as a section of a geophysical image (whether seismic,
radar etc.…). A well-trained geophysicist will potentially observe a “bright spot”
which may indicate the presence of a gas (methane, carbon dioxide) in the sub-
surface formations. A sedimentologist may observe deltaic formations consisting of
channel stacks. Hence, the experience in viewing an object is highly dependent on
the interpretation of the viewer and not the pure sensory light perceptions hitting
one’s retina. In fact, Fig. 27.2 is a modern abstract work of art by Mark Bardford
(1963) on display in the San Francisco Museum of Modern Art (September 2016).

Fig. 27.1 How many circles
do you see?
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Anyone can be trained to make interpretations, and this is usually how education
proceeds. Even pigeons can be trained to spot cancers as well as humans, Levenson
et al., PLOS ONE (18 November 2015) http://www.sciencemag.org/news/2015/11/
pigeons-spot-cancer-well-human-experts. But this idea may also backfire. First off,
the experts may not do better than random (Financial times, March 31, 2013:
“Monkey beats man on stock market picks”, based on a study by the Cass Business
School in London), or worse produce cognitive biases, as pointed out by a study of
interpretation seismic images (Bond et al. 2007).

First facts, then theory. Translated to our UQ realm as “first data, then models”.
Let’s consider another example in Fig. 27.3, now with actual geophysical data and
not a painting. A statement of fact would then be “this is a bright spot”. Then, in the
empiricist view, deduction, conclusions can be derived from it (“It contains gas”).

Fig. 27.2 What do you see?

Fig. 27.3 Not art, just a geophysical image
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However, what is relevant here is the person making this statement. A lay person
will state as fact “There are squiggly lines”. This shows that any observable fact is
influenced by knowledge (“the theory”) of the object of study. Statements of fact are
therefore not simply recordings of visual perceptions. Additionally, quite an amount
of knowledge is needed to consider taking the geophysical survey in the first place,
hence facts do not proceed theory. This is the case for the example here but a reality
for many scientific discoveries (we need to know where to look). A more nuanced
view therefore is that data and models interact with each other.

Facts as the basis for knowledge. “Data precedes the model”. If facts depend on
observers resulting in statements that depend on such observers, and if such
statements are inherently subjective, then can we trust data as a prerequisite to
models (data precede models)? It is now clear that data does not come without a
model itself, and hence if the wrong “data model” is used, then the data will be used
to build incorrect models. “If I jump in the air and observe that I land on the same
spot, then ‘obviously’ the Earth is not moving under my feet”. Clearly the “data
model” used here is lacking the concept (theory) of inertia. This again reinforces the
idea that in modeling, and in particular UQ, data does not and should precede the
model, or that one is subjective and the other somehow is not.

27.4 The Role of Experiments—Data

Progress in science is usually achieved by experimentation, the acquisition of
information in a laboratory or field setting. Since “data” is central to uncertainty
quantification, we spend some time on what “data” is, what “experiments” aim to
achieve and what the pitfalls are in doing so.

First, the experiment is not without the “experimenter”. Perceptual judgements
may be unreliable, and hence such reliance needs to be minimized as much as
possible. For example, in Fig. 27.4, the uninformed observer may notice that the
moon is larger when on the horizon, compared to higher up in the sky, which is
merely an optical illusion (on which there still is no consensus as to why).
Observations are therefore said to be both objective as well as fallible. Objective in
the sense that they are shared (in public, presentations, papers, online) and subject
to further tests (such measuring of the actual moon size by means of instruments,
revealing the optical illusion). Often such progress happens when more advances in
the ways of testing or gathering data occur.

Believing that a certain acquisition of data will resolve all uncertainty and lead to
determinism on which “objective” decisions is an illusion because the real world
involves many kinds of physical/chemical/biological processes that cannot be cap-
tured by one way of experimentation. For example, performing a conservative tracer
test, to reveal better hydraulic conductivity, may in fact be influenced by the reac-
tions in the subsurface taking place while doing such an experiment. Hence the
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hydraulic conductivity measured and interpreted through some modeling without
geochemical reactions may provide a false sense of certainty about the information
deduced from such an experiment. In general, it is very difficult to isolate a specific
target of investigation in the context of one type of experiment or data acquisition.
A good example is in the interpretation of 4D geophysics (repeated geophysics). The
idea of the repetition is to remove the influence of those properties that do not change
in time, and therefore reveal only those that do change, for example, a change in
pressure, a change in saturation, etc.… However, many processes may be at work at
the same time, a change in pressure, in saturation, rock compressibility, even
porosity and permeability, geomechanical effects, etc. … Hence someone interested
in the movement of fluids (change in saturation) is left with a great deal of difficulty
in unscrambling the time signature of geophysical sensing data. Furthermore, the
inversion of data into a target of interest often ignores all these interacting effects.
Therefore, it does not make sense to state that a pump test or a well test reveals
permeability, it only reveals a pressure change under the conditions of the test and of
the site in question, and many of these conditions may remain unknown or uncertain.

An issue that arises in experimentation is the possibility of a form of circular
reasoning that may exist between an experimental set-up and a computer model
aiming to reproduce the experimental set-up. If experiments are to be conducted to
reveal something important about the subsurface (e.g. flow experiments in a lab),
then often the results of such experiments are “validated” by a computer model. Is
the physical/chemical/biological model implemented in the computer code derived
from the experimental result, or, are the computer models used to judge the ade-
quacy of the result? Do theories vindicate experiments and do experiments vindi-
cate the stated theory? To study these issues better, we introduce the notion of
induction and deduction.

Fig. 27.4 The harvest moon
appearing gigantic as
compared to the moon in the
high sky (https://commons.
wikimedia.org/wiki/File:
Harvest_Moon_over_
looking_vineyards.jpg)
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27.5 Induction Versus Deduction

Bayesianism is based on inductive logic (Howson 1991; Howson et al. 1993;
Chalmers 1999; Jaynes 2003; Gelman et al. 2004), although some argue that it is
based both on induction and deduction (Gelman and Shalizi 2013). Given the above
consideration (and limitations) of experiments (in a scientific context) and data (in a
UQ context), the question now arises on how to derive theories from these
observations. Scientific experimentation, modeling, studies often rely on a logic to
make certain claims. Induction and deductions are such kinds of logic. What such
logic offers, is a connection between premises and conclusions:

1. All deltaic systems contain clastic sands.
2. The subsurface system under study is deltaic.
3. The subsurface system contains clastic sands.

This logical deduction is obvious, but such logic only establishes a connection
between premises 1 and 2 and the conclusion 3, it does not establish the truth of any
of these statements. If that would be the case, then also:

1. All deltaic systems contain steel;
2. The subsurface system under study is deltaic;
3. The subsurface system contains steel.

is equally “logic”. The broader question therefore is if scientific theories can be
derived from observations. The same question occurs in the context of UQ: can
models be derived from data. Consider an experiment in a lab doing a set of n
experiments.

Premises:

1. The reservoir rock is water-wet in sample 1.
2. The reservoir rock is water-wet in sample 2.
3. The reservoir rock is water-wet in sample 3.

…

20. The reservoir rock is water-wet in sample 20.

Conclusion: the reservoir is water-wet (and hence not oil-wet).
This simple idea is mimicked from Bertrand Russel’s Turkey argument (in his

case it was a chicken). “I (the turkey) am fed at 9 am” day after day, hence “I am
always fed at 9 am”, until the day before Thanksgiving (Chalmers 1999). Another
form of induction occurred in 1907: “But in all my experience, I have never been in
any accident … of any sort worth speaking about. I have seen but one vessel in
distress in all my years at sea. I never saw a wreck and never have been wrecked nor
was I ever in any predicament that threatened to end in disaster of any sort. (E.
J. Smith 1907, Captain, RMS Titanic)”.

534 J. Caers



Any model or theory derived from observations can never be proven in the sense
as being derived from it (David Hume).

This does not mean that induction (deriving models from observations) is
completely useless. Some inductions are more warranted than others. Specifically,
in the case when the observations set is “large”, performed and under a “wide
variety of conditions”, although these qualitative statements depend clearly on the
specific case. “When I swim with hungry sharks, I get bitten”, needs really be
asserted only once.

The second qualification (variety of conditions) requires some elaboration
because we will return to it when discussing Bayesianism. Which conditions are
being tested is important (the age of the driller for example is not), hence in doing so
we rely on some prior knowledge of the particular model or theory being derived.
Such prior knowledge will determine which factors will be studied, which are
influencing the theory/model and which not. Hence the question is to how this “prior
knowledge” itself is asserted by observations. One runs into the never-ending chain
of what prior knowledge is used to derive prior knowledge. This point was made
clear by David Hume, an eighteenth-century Scottish philosopher (Hume 2000,
originally 1739). Often the principle of induction is argued because it has “worked”
from experience. The reader needs simply to replace the example of the water-wet
rocks with “Induction has worked in case j” etc.… to understand that induction is, in
this way, “proven” by means of induction. The way out of this “mess” is to not make
true/false statements, but to use induction in a probabilistic sense (probably true), a
point to which we will return when addressing Bayesianism.

27.6 Falsificationism

A Reaction to Induction

Falsificationism, as championed by Karl Popper (1959) starting in the 1920s was
born partly as a reaction to inductionism (and logical positivism). Popper claimed
that science should not involve any induction (theories derived from observations).
Instead, theories are seen as speculative or tentative, as created by the human
intellect, usually to overcome limitations of previous theories. Once stated, such
theories need to be tested rigorously with observations. Theories that are incon-
sistent with such observation should be rejected (falsified). The theories that survive
are the best theories, currently. Hence, falsificationism has a time component and
aims to describe progress in science, where new theories are born out of old ones by
a process of falsification.
In terms of UQ, one can then see models not as true representations of actual reality
but as hypotheses. One has as many hypotheses as models. Such a hypothesis can
be constrained by previous knowledge, but real field data should be used not to
confirm a model (it confirms this with data) but to falsify a model (reject, the model
does not confirm with data). A simple example illustrates the difference:
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Induction:
Premise: All rock samples are sandstones.
Conclusion: The subsurface system contains only sandstone.
Falsification:
Premise: A sample has been observed that is shale.
Conclusion: The subsurface system does not consist just of sandstone.

The latter is clearly a logically valid deduction (true). Falsification therefore can
only proceed with hypotheses that are falsifiable (this does not mean that one has to
falsify the observations, but that such observation could exist). Some hypotheses
are not falsifiable; for example, “the subsurface system consists of rock that are
sandstone or not sandstone”. This then raises the question of the degree of falsifi-
ability of a hypothesis and the strength (precision) of the observation in falsifying.
Not all hypotheses are equally falsifiable and not all observations should be treated
on the same footing. A strong hypothesis is one that makes strong claims, there is a
difference between:

1. Significant accumulation in the Mississippi delta requires the existence of a river
system; and

2. Significant accumulation in all deltas require the existence of a river system.

Clearly 2 has more consequences than 1. Falsification therefore invites stating
bold conjectures rather than safe conjectures. Science advances through a large
number of bold conjectures that would be easily falsifiable. As a result, a hypothesis
B that is offered after hypothesis A should also be more falsifiable.

The latter has considerable implications in UQ and model building. Inductionists
tend to bet on one model, the best possible, best explaining most observations,
within a static context, without the idea that the model they are building will evolve.
Inductionists do evolve models, but that is not the outset of their viewpoint, there is
always the hope that the best possible will remain the best possible. The problem
with this inductionist attitude is that new observations that cannot be fitted into the
current model are used to “fix” the model with ad hoc modifications. A great
example of this can be found in the largest oil reservoir in the world, namely the
Ghawar field (see Twilight in the Desert: The Coming Saudi Oil Shock and the
World Economy, Matt Simmons). Before 2000, most modelers (geologists, geo-
physicist, engineers) did not consider fractures as being a driving heterogeneity for
oil production. However, flow meter observations in wells indicated significant
permeability. To account for this data, the existing models with already large
permeabilities (1000–10.000mD) where modified to 200D, see Fig. 27.5. While
this dramatic increase in permeability in certain zones did lead to explaining the
flow meter data, the ad hoc modification cannot be properly tested with the current
observations. It is just a fix to the model (the current “theory” of no fractures).
Instead, a new test would be needed, such as new drilling to confirm or not the
presence of a gigantic cave that can explain such ridiculous permeability values.
Today, all models built of the Ghawar field contain fractures.
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Falsificationism does not use ad hoc modification, because the ad hoc modifi-
cation cannot be falsified. In the Ghawar case, the very notion of fluid flow by
means of large matrix permeability tells the falsificationist that bold alternative
modifications to the theory are needed and not simple ad hoc fixes, in the same
sense that science does not progress by means of fixes. An alternative therefore to
the inductionist approach in Ghawar could be as follows: most fluid flow is caused
by large permeability, except in some area where it is hypothesized that fractures
are present despite the fact that we have not directly observed then. The falsifica-
tionist will now proceed by finding the most rigorous (new) test to test this
hypothesis. This could consist of acquiring geomechanical studies of the system
(something different than flow) or by means of geophysical data that aims to detect
fractures (AVOZ data). New hypotheses also need to lead to new tests that can
falsify them. This is how progress occurs. The problem is often “time”; a falsifi-
cationist takes the path of high risk, high gain, but time may run out on doing
experiments that falsify certain hypothesis. “Failures” are often seen as that and not
as lessons learned. In the modeling world one often shies away from bold
hypothesis (certainly if one wants to obtain government research funding!) and that
modelers, as a group tends to gravitate towards some consensus under the banner of
being good at “team-work”. It is the view of the authors that such practice is
however the death of any realistic UQ. UQ needs to include bold hypothesis, model
conjectures that are not the norm, or based on any majority vote, or by playing it
safe, being conservative. Uncertainty cannot be reduced by just great team-work,

Fig. 27.5 A reservoir model
developed to reflect super
permeability channels; note
the legend with permeability
values (Valle et al. 1993)
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it will require equally rigorous observations (data) that can falsify any (preferably
bold) hypothesis.

This does not mean that inductionist type of modeling and falsification type of
modeling cannot co-exist. If inductionism leads to cautious conjectures and falsi-
fication leads to bold conjectures. Cautious conjectures may carry little risk, and
hence, if they are falsified, then insignificant advance is made. Similarly, if bold
conjectures cannot be falsified with new observations, significant advance is made.
The matter that is important in all this however is the nature of the background
knowledge (recall, the prior knowledge), what is currently known about what is
being studied. Any “bold” hypothesis is measured against such background
knowledge. Likewise, the degree to which observations can falsify hypothesis
needs to be measured against such knowledge. This background knowledge
changes over time (what is bold in 2000 may no longer be bold in 2020), and such
change, as we will discuss is explicitly modeled in Bayesianism.

Falsificationism in Statistics

Schools of statistical inference are sometimes linked to the falsificationist views of
science, in particular the work of Fischer, Neyman and Pearson; all well-known
scientists in the field of (frequentist) statistics (Fisher and Fisher 1915; Fisher 1925;
Rao 1992; Pearson et al. 1994; Berger 2003; Fallis 2013 for overviews and original
papers). Significance tests, confidence intervals p-values are associated with a
hypothetico-deductive way of reasoning. Since these methods are pervasive in all
areas of science, particularly in UQ, we present some discussion on its rationality as
well as the opposing views of inductionism within this context.

Historically, Fisher can be seen as the founder of classical statistics. His work
has a falsificationist foundation, steeped in statistical “objectivity” (lack of neces-
sary subjective assumption, which is the norm in Bayesian methods). The now
well-known procedure starts by stating a null-hypothesis (a coin is fair), then
defines an experiment (flipping), a stopping rule (e.g. number of flips) and a
test-statistic (e.g. number of heads). Next, the sampling distribution (each possible
value of the test-statistic), assuming the null-hypothesis is true, is calculated. Then,
we calculate a probability p that our experiment falls in an extreme group (e.g.
4 heads or less which hypothesis has only a probability of 1.2% for 20 flips). Then a
convention is taken to reject (falsify) the hypothesis when the experiment falls in
the extreme group, say p≤ 0.05.

Fisher’s test works only on isolated hypotheses, which is not how science
progresses; often many competing hypotheses are proposed that require testing
under some evidence. Neyman and Pearson developed statistical methods that
involve rival hypotheses, but again reasoning from an “objective” perspective,
without relying on priors or posteriors of Bayesian inductive reasoning. For
example, in the case of two competing hypotheses H1 and H2, Neyman-Pearson
reasoned that either of the hypotheses are accepted or rejected, leading to two kinds
of errors (stating that one is false, while the other is false and vice versa), better
known as type I and II errors. Neyman and Pearson improved on Fischer in better
defining “low probability”. In the coin example, a priori, any combination of 20
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tosses has a probability of 2− 20, even under a fair coin, most tosses have small
probability. Neyman-Pearson provide some more definition of this critical region
(where hypotheses are rejected). If X is the random variable describing the outcome
(e.g. a combination of tosses), then the outcome space is defined by the following
inequality:

L Xð Þ= P X H1jð Þ
P X H2jð Þ ≤ δ P L Xð Þ≤ δ H1jð Þ= α ð27:1Þ

with δ depending on the significance level α and the nature of the hypothesis. This
theorem known as the Fundamental Lemma (Neyman and Pearson 1933) defines
the most powerful test to reject H1 in favor of H2 at significance level α for a
threshold δ. The interpretation of likelihood ratio was provided by Bayesianists as
the Bayes’ factor (the evidential force of evidence). This was however not the
interpretation of Neyman-Pearson, who rejected subjective models.

What then does a significance test tell us about the truth (or not) of a hypothesis?
Since the reasoning here is in terms of falsification (and not induction), the
Neyman-Pearson interpretation is that if a hypothesis is rejected, then “one’s
actions should be guided by the assumption that it is false” (Lindgren 1976).
Neyman-Pearson gladly admit that significance tests tell nothing about whether a
hypothesis is true or not. However, they do attach the notion of “in the long run”,
interpreting the significance level as, for example, the number of times in 1000
times that the same test is being done. The problem here is that no testing can be
done and will be done in exactly the same fashion, under the exact same circum-
stances. This idea would also invoke the notion that under a significance level of
0.05, a true hypothesis would be rejected with a probability of 0.05. The latter
violates the very reason on which significance tests were formed: events with
probability p can never be proven to occur (that requires subjectivity!), let alone
with the exact frequency of p.

The point here is to show that classical statistics should not be seen as purely
falsificationist, a logical hypothetic-deductive way of reasoning. Reasoning in
classical statistics comes with its own subjective notions of personal judgements
(choosing which hypothesis, what significance level, stopping rules, critical
regions, iid assumptions, Gaussian assumptions etc. …). This was in fact later
acknowledged by Pearson himself (Neyman and Pearson 1967, p. 277).

Limitations of Falsificationism

Falsificationism comes with its own limitations. Just as induction cannot be
induced, falsificationism cannot be falsified, as a theory. This becomes clearer when
considering real-world development of models or theories. The first problem is
similar to the one discussed in using inductive and deductive logic. Logic only
works if the premises are true, hence falsification, as a deductive logic cannot
distinguish between a faulty observation and a faulty hypothesis. The hypothesis
does not have to be false when inconsistent with observations, since observations
can be false. This is an important problem in UQ that we will revisit later.
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The real world involves considerably more complication than “the subsurface
system is deltaic”. Let’s return to our example of monitoring heat storage using
geophysics. A problem that is important in this context is to monitor whether the
heat plume remains near the well and is compact, so that it does not start to
disperse, since then recovery of that heat becomes less efficient. A hypothesis could
then be “the heat plume is compact”, geophysical data can be used to falsify this by,
for example, observing that the heat plume is indeed influenced by heterogeneity.
Unfortunately, such data does not directly observe “temperature”, instead it mea-
sures resistivity, which is related to temperature and other factors. Additionally,
because monitoring is done at a distance from the plume (at the surface), the issue
of limited resolution occurs (any “remote sensing” suffers from this limited reso-
lution). This is then manifested in the inversions of the ERT data into temperature,
since many inversion techniques result in smooth versions of actual reality (due to
this limited resolution issue), from which the modeler may deduce that homo-
geneity of the plume is not falsified. How do we find where the error lies? In the
instrumentation? In the instrumentation set-up? In the initial and boundary condi-
tions that are required to model the geophysics? In the assumptions about geo-
logical variability? In the smoothness of the inversion? Falsification does not
provide a direct answer to this. In science, this problem is better known as the
Duhem–Quine thesis after Pierre Duhem and Willard Quine (Ariew 1984). This
thesis states that it is impossible to falsify a scientific hypothesis in isolation,
because the observations required for such falsification themselves rely on addi-
tional assumptions (hypothesis) than cannot be falsified separately from the target
hypothesis (or vice versa). Any particular statistical method that claims to do so,
ignores the physical reality of the problem.

A practical way to deal with this situation is not consider just falsification, but
sensitivity to falsification. What impacts the falsification process? Sensitivity, even
with limited or approximate physical models provide more information that can
lead to (1) changing the way data is acquired (the “value of information”) changing
the way the physics of the problem (e.g. the observations) is modeled by focusing
on what matters most towards testing the hypothesis.

More broadly, falsification does not really follow the history of the scientific
method. Most science has not been developed by means of bold hypothesis that are
then falsified. Instead, theories that are falsified are carried through history; most
notably, because observations that appear to falsify the theory can be explained by
means of causes other than the theory that was the aim of falsification. This is quite
common in modeling too: observations are used as claims that a specific physical
model does not apply, only to discover at a later time that the physical model was
correct but that the data could be explained by some other factor (e.g. a biological
reason, instead of a physical reason). Popper himself acknowledged this dogmatism
(hanging onto models that have “falsified” to “some degree”). As we will see later,
one of the problems in the application of probability (and Bayesianism) is that zero
probability models are deemed “certain” not to occur. This may not reflect the
actual reality that models falsified under such Popper-Bayes philosophy become
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“unfalsified” later by new discoveries and new data. Probability and “Bayesianism”

are not at fault here, but the all too common underestimation of uncertainties in
many applications.

27.7 Paradigms

Thomas Kuhn

From the previous presentation, one may argue that both induction and falsification
provide too much of a fragmented view of the development of scientific theory or
methods that often do not agree with reality. Thomas Kuhn, in his chapter “The
Structure of Scientific Revolution” (Kuhn 1996) emphasizes the revolutionary
character of scientific methods. During such revolution one abandons one “theo-
retical” concept for another, which is incompatible with the previous one. In
addition, the role of scientific communities is more clearly analyzed. Kuhn
describes the following evolution of science:

paradigm → crises → revolution → new paradigm → new crisis.

Such a single paradigm consists of certain (theoretical) assumptions, laws,
methodologies and applications adapted by members of a scientific community.
Probabilistic methods, or Bayesian methods, can be seen as such paradigms: they
rely on axioms of probability and the definition of a conditional probability, the use
of prior information, subjective beliefs, maximum entropy, principle of indifference,
algorithms of McMC, etc. … Researchers within this paradigm do not question the
fundamentals of such paradigm, the fundamental laws or axioms. Activities within
the paradigm are then puzzle-solving activities (e.g. studying convergence of a
Markov chain) governed by the rules of the paradigm. Researchers within the
paradigm do not criticize the paradigm. It is also typical that many researchers
within that paradigm are unaware of the criticism on the paradigm or ignorant as to
the exact nature of the paradigm, simply because it is a given: who is really critical
of the axioms of probability when developing Markov chain samplers? Or, who
questions the notion of conditional probability when performing stochastic inver-
sions? Puzzles that cannot be solved are deemed to be anomalies, often attributed to
the lack of understanding of the community about how to solve the puzzle within
the paradigm, rather than a question about the paradigm itself. Kuhn considers such
unsolved issues as anomalies rather than what Popper would see as potential fal-
sifications of the paradigm. The need for greater awareness and articulation of the
assumptions of a single paradigm becomes necessary when the paradigm requires
defending against offered alternatives.

Within the context of UQ, a few such paradigms have emerged reflecting the
concept of revolution as Kuhn describes. The most “traditional” of paradigms for
quantifying uncertainty is by means of probability theory and its extension of
Bayesian probability theory (the addition of a definition of conditioning).
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We provide here a summary account of the evolution of this paradigm, the criticism
leveled, the counter-arguments and the alternatives proposed, in particular possi-
bility theory.

Is Probability Theory the Only Paradigm for Uncertainty Quantification?

The Axioms of Probability: Kolmogorov—Cox

The concept of numerical probability emerged in the mid-seventeenth century.
A proper formalization was developed by (Kolmogoroff 1950) based on classical
measure theory. A comprehensive study of its foundations is offered in Fine (1973).
The treatment is vast and comprises many works of particular note (Gnedenko et al.
1962; Fine 1973; de Finetti 1974, 1995; de Finetti et al. 1975; Jaynes 2003; Feller
2008). Also of note is the work of (Shannon 1948) on uncertainty-based infor-
mation in probability. In other words, the concept of probability has been around
for three centuries. What is probability? It is now generally agreed (the funda-
mentals of the paradigm) that the axioms of Kolmogorov form the basis, as well as
the Bayesian interpretation by Cox (1946). Since most readers are unfamiliar with
the Cox theorem and the consequences for interpreting probability, we provide
some high-level insight.

Cox works from a set of postulates for example (we focus on just two of three
postulates)

• “A proposition p and its negation ¬p is certain” or plaus p∩¬pð Þ=1 which is
also termed the logical principle of the excluded middle. plaus stands for
plausibility.

• Consider now two propositions p and q and the conjunction between them p∩ q.
This postulate states that the plausibility of the conjunction is the only function
of the plausibility of p and the plausibility of q given that p is true. In other
words

plaus p∨ qð Þ= f plaus pð Þ, plaus q pjð Þð Þ.

The traditional laws are recovered when setting plaus to be a probability measure
or P or stating as per the Cox theorem “any measure of belief is isomorphic to a
probability measure”. This seems to suggest that probability is sufficient in dealing
with uncertainty, nothing else is needed (due to this isomorphism). The conse-
quence is that one can now perform calculations (a calculus) with “degrees of
belief” (subjective probabilities) and even mix probabilities based on subjective
belief with probabilities based on frequencies. The question is therefore whether
these subjective probabilities are the only legitimate way of calculating uncertainty?
For one, probability requires that either the fact is there, or it is not there, nothing is
left in the “middle”. This then necessarily means that probability is ill-suited in
cases where the excluded middle principle of logic does not apply. What are those
cases?
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Intuitionism

Probability theory is truth driven. An event occurs or does not occur. The truth will
be revealed. From a hard scientific, perhaps engineering approach this seems per-
fectly fine, but it is not. A key figure in this criticism is the Dutch mathematician
and philosopher Jan Brouwer. Brouwer founded the mathematical philosophy of
intuitionism countering the then-prevailing formalism, in particular of David Hil-
bert as well as of Bertrand Russell, claiming that mathematics can be reduced to
logic; the epistemological value of mathematical constructs lies in the fundamental
nature of this logic.

In simplistic terms perhaps, intuitionists do not accept the law of excluded
middle in logic. Intuitionism reasons from the point that science (in particular
mathematics) is the result of the mental construction performed by humans rather
than principles founded in the actual objective reality. Mathematics is not “truth”,
rather it constitutes applications of internally consistent methods used to realize
more complex mental constructs, regardless of their possible independent existence
in an objective reality. Intuition should be seen in the context of logic as the ability
to acquire knowledge without proof or without understanding how the knowledge
was acquired.

Classic logic states that existence can be proven by refuting non-existence (the
excluded middle principle). For the intuitionist, this is not valid; negation does not
entail falseness (lack of existence), it entails that the statement is refuted (a counter
example has been found). For an intuitionist a proposition p is stronger than a
statement of not (not p). Existence is a mental construction, not proof of
non-existence. One specific form and application of this kind of reasoning is fuzzy
logic.

Fuzzy Logic

It is often argued that epistemic uncertainty (or knowledge) does not cover all
uncertainty (or knowledge) relevant to science. One such particular form of uncer-
tainty is “vagueness” which is borne out of the vagueness contained in language
(note that other language dependent uncertainties exists such as “context-driven”).
This may seem rather trivial to someone in the hard sciences, but it should be
acknowledged that most language constructs (“this is air”, meaning 78% nitrogen,
21% oxygen, and less than 1% of argon, carbon dioxide, and other gases) are a purely
theoretical construct, of which we still may not have incomplete understanding. The
air that is outside is whatever that substance is, it does not need human constructs,
unless humans use if for calculations, which are themselves constructs. Unfortu-
nately (possibly flawed) human constructs is all that we can rely on.

The binary statements “this is air” and “this is not air” are again theoretical
human constructs. Setting that aside, most of the concepts of vagueness are used in
cases with unclear borders. Science typically works with classification systems
(“this is a deltaic deposit”, “this is a fluvial deposit”), but such concepts are again
man-made constructs. Nature does not decide to “be fluvial”, it expresses itself
through laws of physics, which are still not fully understood.
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A neat example presents itself in the September 2016 edition of EOS: “What is
magma?” Most would think this is a problem which has already been solved, but it
isn’t, mostly due to vagueness in language and the ensuing ambiguity and difference
in interpretation by even experts. A new definition is offered by the authors: “Magma:
naturally occurring, fully or partially molten rock material generated within a plan-
etary body, consisting of melt with or without crystals and gas bubbles and con-
taining a high enough proportion of melt to be capable of intrusion and extrusion.”

Vague statements (“this may be a deltaic deposit”) are difficult to capture with
probabilities (it is not impossible, but quite tedious and construed). A problem
occurs in setting demarcations. For example, in air pollution, one measures air
quality using various indicators such as PM2.5, meaning particles which pass
through a size-selective inlet with a 50% efficiency cut-off at 2.5 μm aerodynamic
diameter. Then standards are set, using a cut-off to determine what is “healthy” (a
green color) and what is “not so healthy” (orange color) and “unhealthy” (a red
color) (the humorous reader may also think of terrorist alert levels). Hence, if the
particular matter changes by one single particle, the air goes suddenly from
“healthy” to “not so healthy”?

In several questions of UQ, both epistemic and vagueness-based uncertainty may
occur. Often vagueness uncertainty exists at a higher-level description of the system,
while epistemic uncertainty may then deal with questions of estimation because of
limited data within the system. For example, policy makers in the environmental
sciences may set goals that are vague, such as “should not exceed critical levels”.
Such a vague statement then needs to be passed down to the scientist who is required
to quantify risk of attaining such levels by means of data and numerical models,
where epistemic uncertainty comes into play. In that sense there is no need to be
rigorously accurate, for example according to a very specific threshold, given the
above argument about such thresholds and classification systems.

Does probability easily apply to vagueness statements? Consider a proposition
“the air is borderline unhealthy”. The rule of the excluded middle no longer applies
because we cannot say that the air is either not unhealthy or unhealthy. Probabilities
no longer sum to one. It has therefore been argued that the propositional logic of
probability theory needs to be replaced with another logic: fuzzy logic (although
other logics have been proposed such as intuitionistic, trivalent logic, we will limit
the discussion to this one alternative).

Fuzzy logic relies on fuzzy set theory (Zadeh 1965, 1975, 2004). An example of
fuzzy set A such as “deltaic” is said to be characterized by a membership function
μdeltaic uð Þ representing the degree of membership given some information u on the
deposit under study, for example μdeltaic depositð Þ=0.8 for a deposit with info u
under study. Probabilists often claim that such membership function is nothing
more than a conditional probability P A ujð Þ in disguise (Loginov 1966). The link is
made using the following mental construction. Imagine 1000 geologists looking at
the same limited info u and then voting whether the deposit is “deltaic” or “fluvial”.
Let’s assume these are the two options available. μdeltaic depositð Þ=0.832 means
that 832 geologists picked “deltaic” and hence a vote picked at random has 83.2%
chance of being deltaic. However, the conditional probability comes with its
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limitations as it attempts to cast a very precise answer into what is still a very vague
concept. What really is “deltaic”? Deltaic is simply a classification made by humans
to describe a certain type of depositional system subject to certain geological pro-
cesses acting on it. The result is a subsurface configuration, termed architecture of
clastic sediments. In modeling subsurface systems, geologists do not observe the
processes (the deltaic system) but only the record of it. However, there is still no full
agreement as to what is “deltaic” or when “deltaic” ends and “fluvial” starts as we go
more upstream? (Recall our discussion on “magma”) What are the processes which
are actually happening and how all this gets turned into a subsurface system?
Additionally, geologist may not have a consensus on what “deltaic” is, where “flu-
vial” starts, or, may classify based on personal experiences, different education
(schools of thought about “deltaic”), and different education levels. What then does
0.832 really mean? What is the meaning of the difference between 0.832 and 0.831?
Is this due to education? Misunderstanding or disagreement on the classification?
Lack of data provided? It clearly should be a mix of all this, but probability does not
allow an easy discrimination. We find ourselves again with a Duhem–Quine problem.

Fuzzy logic does not take the binary route of voting up or down, but allows a
grading in the vote of each member, meaning that it allows for more gradual
transition between the two classes for each vote. Each person takes the evidence at
his/her value and makes a judgement based on their confidence and education level:
I don’t really know, hence 50/50; I am pretty certain, hence 90/10. (More advanced
readers in probability theory may now see a mixture of the models of probability
stated based on the evidence of what the u is. However, because of the overlapping
nature of how evidence is regarded by each voter, these prior probabilities are no
longer uniform).

The Dogma of Precision

Clearly probability theory (randomness) does not work well when the event itself is
not clearly defined, subject to discussion. Probability theory does not support the
concept of a fuzzy event, hence such information (however vague and incomplete)
becomes difficult and non-intuitive to account for. Probability theory does not
provide a system for computing with fuzzy probabilities expressed as likely,
unlikely and not very likely. Subjective probability theory relies on the elicitation
rather than the estimation of a fuzzy system. It cannot address questions of the
nature “What is the probability that the depositional system may be deltaic”. One
should question, under all this vagueness and ambiguity what is really the meaning
of the digit “2” or “3” is in P A ujð Þ=0.832. The typical reply of probabilists to
possibilists is to “just be more precise” and the problem is solved. But this would
ignore a particular form of lack of understanding, which goes to the very nature of
UQ. Precision is required that does not agree with the realism of vagueness on
concepts, which are as yet imprecise (such as in subsurface systems).

The advantage and the disadvantage of the application of probability to UQ are
that, dogmatically, it requires, precision. It is an advantage in the sense that it
attempts to render subjectivity into quantification, that the rules are very well
understood, the methods deeply practiced, because of the nature of the rigor of the
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theory, the community (of 300 years of practice) is vast. But, this rigor does not
always jive with reality. Reality is more complex than “Navier Stokes” or “Deltaic”,
so we apply rigor to concepts (or even models) that probably deviate considerably
from the actual processes occurring in nature. Probabilists often call this “struc-
tural” error (yet another classification and often ambiguous concept, because it has
many different interpretations) but provide no means of determining what exactly
this is and how it should be precisely estimated, as is required by their theories. It is
left as a “research question”, but can this question be truly answered within
probability theory itself? For the same reasons, probabilistic method (in particular
Bayesian, see the following sections are computationally very demanding, exactly
because of this dogmatic quest for precision.

Possibility Theory: Alternative or Compliment?

Possibility theory has been popularized by Zadeh (1978), also by Dubois and Prade
(1990). The original notion goes back further to the economist (Shackle 1962)
studying uncertainty based on degrees of potential surprise of events. Shackle also
introduces the notion of conditional possibility (as opposed to conditional proba-
bility). Just as probability theory, possibility theory has axioms. Consider Ω to be a
finite set, with subsets A and B that are not necessarily disjoint:

axiom 1: pos ∅ð Þ=0 Ωð is exhaustive)

axiom 2: pos Ωð Þ=1 (no contradiction)

axiom 3: pos A∪Bð Þ=max pos Að Þ, pos Bð Þð Þ (“additivity”)
Noticeable difference with probability theory is that addition is replaced with

“max” and the subsets for axiom 3 need not be disjoint. Additionally, probability
theory uses a single measure, the probability, whereas possibility theory uses two
concepts, the possibility and the necessity of the event. This necessity, another
measure is defined as:

nec Að Þ=1− pos A ̄ð Þ ð27:2Þ

If the complement of an event is impossible, then the event is necessary.
nec Að Þ=0 means that A is unnecessary. One should not be “surprised” if A does
not occur, it says nothing about pos Að Þ.nec Að Þ=1 means that A is certainly true,
which implies pos Að Þ=1. Hence nec carries a degree of surprise: nec Að Þ=0.1 a
little bit surprised, nec Að Þ=0.9 very surprised if A is not true. Possibility also
allows for indeterminacy (which is not allowed in epistemic uncertainty), this is
captured by nec Að Þ=0, pos Að Þ=1.

Logically then

nec A∩Bð Þ=min nec Að Þ, nec Bð Þð Þ ð27:3Þ
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Possibility does not follow the rule of the excluded middle because

pos Að Þ+ pos A ̄ð Þ≥ 1 ð27:4Þ

Take the following example. Consider a reservoir. It either contains oil Að Þ or
contains no oil A ̄ð Þ (something we like to know!). pos Að Þ=0.5 means that I am
willing to bet that the reservoir contains oil so long as the odds are even or better.
I would not bet that it contains oil. Hence this describes a degree of belief very
different from subjective probabilities.

Possibilities are sometime called “imprecise probabilities” (Hand and Walley
1993) or are interpreted that way. “Imprecise” need not be negative, as discussed
above, it has its own advantages, in particular in terms of computation. In probability
theory, information is used to update degrees of belief. This is based on Bayes’ rule
whose philosophy will be studied more closely in the next section. A counterpart to
Bayes’ rule exists in possibility theory, but because of the imprecision of possibil-
ities over probabilities, no unique way exists to update possibilities into a new
possibility, given new (vague) information. Recall that Bayes’ rule relies on the
product (corresponding to a conjunction in classical logical)

P A Bjð Þ= P B Ajð Þ
P Bð Þ P Að Þ ð27:5Þ

Consider first the counterpart of the probability density function fX xð Þ in pos-
sibility theory: namely the possibility distribution πX xð Þ. Unlike probability den-
sities which could be inferred from data, possibility distributions are always
specified by users, and hence take simple form (constant, triangular) functions.
Densities express likelihoods, a ratio of the densities assessed in two outcomes
denotes how much more (or less) likely one outcome is over the other. A possibility
distribution simply states how possible an outcome x is. Hence a possibility dis-
tribution is always equal or less than unity (not the case for a density). Also, note
that P X = xð Þ=0, always if X is a continuous variable, while pos X = xð Þ is not zero
everywhere. Similarly, in the case of a joint probability distribution, we can define a
joint possibility distribution as πX,Y x, yð Þ and conditional possibility distributions as
πX Yj x yjð Þ. The objective now is to infer πX Yj x yjð Þ from πY Xj y xjð Þ and πX xð Þ.

As mentioned above, probability theory relies on a logical conjunction, see
Fig. 27.6. This conjunction has the following properties:

a∩ b= b∩ a commutativityð Þ
if a≤ a′and b≤ b′then a∩ b≤ a′ ∩ b′ monotonicityð Þ
a∩ bð Þ∩ c= a∩ b∩ cð Þ associativityð Þ
a∩ 1= a neutralityð Þ

Possibility theory, as it is based on fuzzy sets, rather than random sets, relies on
an extension of the conjunction operation. This new conjunction is termed a
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triangular norm (T-norm) (Jenei and Fodor 1998; Höhle 2003; Klement et al. 2004)
because it follows the following four properties:

T a, bð Þ=T b, að Þ commutativityð Þ
if a≤ a′and b≤ b′then T a, bð Þ=T a′, b′

� �
monotonicityð Þ

T a,T b, cð Þð Þ= T T a, bð Þ, cð Þ associativityð Þ
T a, 1ð Þ= a neutralityð Þ

Recall that Cox relied on the postulate that plaus p∩ qð Þ= f plaus pð Þ,ð
plaus q pjð ÞÞ. Similarly, possibility theory relies on:

πY Xj y xjð Þ=T πX xð Þ, πY Xj y xjð Þ� �
=T πY xð Þ, πX Yj x yjð Þ� � ð27:6Þ

For example, for the minimum triangular norms we get

πX Yj x yjð Þ= 1 if π xð Þ=min π xð Þ, πY Xj x yjð Þ� �
min π xð Þ, πY Xj x yjð Þ� �

if π xð Þ>min π xð Þ, πY Xj x yjð Þ� �
�

ð27:7Þ

and for the product triangular norm, we get something that looks Bayesian

πX Yj x yjð Þ= πY Xj x yjð Þπ xð Þ
π yð Þ ð27:8Þ

27.8 Bayesianism

Thomas Bayes

Uncertainty quantification, today often has a Bayesian flavor. What does this mean?
Most researchers simply invoke Bayes’ rule, as a theorem within probability theory.

Fig. 27.6 Example of t-norms for conjunction operations
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They work within the paradigm. But what is really the paradigm of Bayesianism? It
can be seen as a simple set of methodologies, but it can also be regarded as a
philosophical approach to doing science, in the same sense as empiricism, posi-
tivism, falsificationism or inductionism. The reverend Bayes’ would perhaps be
somewhat surprised by the scientific revolution and main stream acceptance of the
philosophy based on his rule.

Thomas Bayes was a statistician, philosopher and Reverend. Bayes presented a
solution to the problem of inverse probability in “An Essay towards Solving a
Problem in the Doctrine of Chances”. This essay was read after his death, by
Richard Price for the Royal Society of London, a year after his death. Bayes’
theorem remained in the background until reprinted in 1958, and even then it took a
few more decades before an entirely new approach to scientific reasoning,
Bayesianism was created (Howson et al. 1993; Earman 1992).

Prior to Bayes’ most works on chance were focused on direct inference, such as
the number of replications needed to calculate a desired level of probability (how
many flips of the coin are needed to assure 50/50 chance?). Bayes’ treated the
problem of inverse probability: “given the number of times an unknown event has
happened and failed: required the chance that the probability of its happening in a
single chance lies between any two degrees of probability that can be named” (see
the Biometrika publication of Bayes’ essay). Bayes’ essay has essentially four parts.
Part 1 consists of a definition of probability and some basic calculation which are
now known as the axioms of probability. The second part uses these calculations in
a chance event related to a perfectly leveled billiard table, see Fig. 27.7. Part 3
consists of using the equations obtained from the analysis of the billiard problem to
his problem of inverse probability. Part 4 consists of more numerical studies and
applications.

Bayes, in his essay, was not concerned with induction and the role of probability
in it. Price, however, in the preface to the essay did express a wish that the work
would in fact lead to a more rational approach to induction than was then currently
available. What is perhaps less known is that “Bayes’ theorem” in the form that we
now know it, was never written by Bayes’. However, it does occur in the solution to
his particular problem. As mentioned above, Bayes’ was interested in a chance
event with unknown probability (such as in the billiard table problem), given a

Fig. 27.7 Bayes’ billiard
table: “to be so made and
leveled that if either of the
ball O and W thrown upon it,
there shall be the same
probability that it rests upon
any one equal part of the
plane as another” (Bayes and
Price 1763)
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number of trials. If M counts the number of times that an event occurs in n trials,
then the solution is given through the binomial distribution

P p1 ≤ p≤ p2 Mj =mð Þ=
R p2
p1

n
m

� �
pm 1− pð Þn−mP dpð Þ

R 1
0

n
m

� �
pm 1− pð Þn−mP dpð Þ

ð27:9Þ

where P dpð Þ is the prior distribution over p. Bayes’ insight here is to “suppose the
chance is the same that it pð Þ should lie between any two equi-different degrees”.
P dpð Þ= dp, in other words the prior is uniform, leading to

P p1 ≤ p≤ p2 Mj =mð Þ= n+1ð Þ!
m! n−mð Þ!

Zp2
p1

n
m

� �
pm 1− pð Þn−mdp ð27:10Þ

Why uniform? Bayes’ does not reason from the current principle of indifference
(which can be debated, see later), but rather from an operation characterization of an
event concerning the probability which we know absolutely nothing about prior to
the trials. The use of prior distributions however was one of the key insights of
Bayes’ that very much lives on.

Rationality for Bayesianism

Bayesians can be regarded more as relativists than absolutists (such as Popper). They
believe in prediction based on imperfect theories. For example, they will take an
umbrella on their weekend, if their ensemble Kalman filter prediction of the weather
at their trip location puts a high (posterior) probability of rain in 3 days. Even if the
laws involved are imperfect and probably can be falsified (many weather predictions
are completely wrong!), they rely on continued learning from future information and
adjustments. Instead of relying on Popper’s zero probability (rejected or not), they
rely more on an inductive inference yielding non-zero probabilities.

If we now take the general scientific perspective (and not the limited topic of
UQ), then Bayesians see science progress by hypothesis, theories and evidence
offered towards these hypotheses as all quantified using probabilities. In this general
scientific context, we may therefore state hypothesis H, gather evidence E, with
P H Ejð Þ the probability of the hypothesis in the light of the evidence, P E Hjð Þ the
probability that the evidence occurs when the hypothesis is true, P Hð Þ the proba-
bility of the hypothesis without any evidence and P Eð Þ the probability of the
evidence, without stating any hypothesis being true.

P H Ejð Þ= P E Hjð Þ
P Eð Þ P Hð Þ ð27:11Þ

550 J. Caers



P Hð Þ is also termed the prior probability and P H Ejð Þ the posterior probability.
We provided some discussion on a logical way of explaining this theorem (Cox
1946) and the subsequent studies that showed this was not quite as logical as it
seems (Halpern 1995, 2011). Few people today know that Bayesian probability has
6 axioms (Dupré and Tiplery 2009). Despite these perhaps rather technical diffi-
culties, a simple logic underlies this rule. Bayes’ theorem states that the extent to
which some evidence supports a hypothesis is proportional to the degree to which
the evidence is predicted by the hypothesis. If the evidence is very likely (“Sand-
stone has lower acoustic impedance than shale) then the hypothesis (“Acoustic
impedance depends on mineral composition”) is not supported significantly when
indeed we measure that “Sandstone has lower acoustic impedance than shale”. If,
however, the evidence is deemed very unlikely, (e.g. “Shale has higher acoustic
impedance than sandstone”), then the hypothesis of another theorem (“acoustic
impedance depends not only on mineralization, but also fluid content”) will be
highly confirmed (have high posterior probability).

Another interesting concept is how Bayes deals with multiple evidences of the
same impact on the hypothesis. Clearly, more evidence leads to an increase in the
probability of a hypothesis supported by that evidence. But evidences of the same
impact will have a diminishing effect. Consider that a hypothesis has as equal
probability as some alternative hypothesis:

P Hð Þ=0.5

Now consider multiple evidence sources such that

P H E1jð Þ=0.8;P H E2jð Þ=0.8;P H E3jð Þ=0.8;

Then according to a model of conditional independence and Bayes’ theorem
(Bordley 1982; Journel 2002; Clemen and Winkler 2007):

P H E2j ,E1ð Þ=0.94;P H E3,j E2,E1ð Þ=0.98;

Compounding evidence leads to increasing probability of the hypothesis.

Objective Versus Subjective Probabilities

In the early days of the development of Bayesian approaches, several general
principles were stated under which researchers “should” operate, resulting in an
“objective” approach to the problem of inference, in the sense that everyone is
following that same logic. One such principle is the principle of maximum entropy
(Jaynes 1957), of which the principle of indifference (Laplace) is a special case.
Subjectivists do not see probabilities as objective (leading to prescribing zero
probabilities to well-confirmed ideas). Rather, subjectivists (Howson et al. 1993)
see Bayes’ theorem as an objective theory of inference. Objective is the sense that
given prior probabilities and evidence, posterior probabilities are calculated. In that
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sense, subjective Bayesian make no claim on the nature of the propositions on
which inference is being made (in that sense, they are also deductive).

One interesting application of reasoning in this way results when disagreement
occurs on the same model. Consider modeler A (the conformist) who assigns a high
probability to some relatively well-acceptedmodeling hypothesis and low probability
to some rare (unexpected) evidence. Consider modeler B (the skeptic) who assigns
low probability to the norm and hence high probability to any unexpected evidence.
Consequently, when the unexpected evidence occurs and hence is confirmed
P E Hjð Þ=1, then the posterior of each is proportional to 1 ̸P Eð Þ. Modeler A is forced
to increase their prior more than the Modeler B. Some Bayesians therefore state that
the prior is not that important as continued new evidence is offered. The prior will be
“washed out” by cumulating new evidence. This is only true for certain highly
idealized situations. It is more likely that two modelers will offer two hypotheses,
hence evidence needs to be evaluated against each other. However, there is always a
risk that neither model can be confirmed, regardless how much evidence is offered,
hence the prior model space is incomplete, which is the exact problem of the
objectivist Bayes. Neither objective nor subjective Bayes’ addresses this problem.

Bayes with Ad Hoc Modifications

Returning now to the example of Fig. 27.5. Bayesian theory, if properly applied
allow for assessing these ad hoc model modifications. Consider that a certain
modeling assumption H is prevailing in multi-phase flow: “oil flow occurs in rock
with permeability of 10-10000 md” Hð Þ, now this modeling assumption is modified
ad hoc to “oil flow occurs in rock with permeability of 10-10000md and 100-200D
H ∩AdHocð Þ. However, this ad hoc modification, under H, has very low proba-
bility, P AdHocð Þ≃ 0 and hence P H ∩AdHocð Þ≃ 0. The problem, in reality is that
those making the ad hoc modification often do not use Bayesianism, hence never
assess or use the prior P AdHocð Þ.
Criticism of Bayesianism

What is critical to Bayesianism is the concept of “background knowledge”. Prob-
abilities are calculated based on some commonly assumed background knowledge.
Recall that theories cannot be isolated and independently tested. This “background”
consists of all the available assumptions tangent to the hypothesis at hand. The
problem often resulting with using Eq. (27.11) is that such “background knowl-
edge” BK is taken implicit:

PBK0 H Ejð Þ≃PBK0 E Hjð ÞPBK0 Hð Þ→PBK1 Hð Þ ð27:12Þ

where 0 indicated at time t=0. The posterior then includes the “new knowledge”
which is included in the new background knowledge at the next stage t=1.
A problem occurs when applying this to the real world: what is this “background
knowledge”? In reality, the prior and likelihood are not determined by the same
person. For example, in our application, the prior may be given by a geologist, the
likelihood by a data scientist. It is unlikely that they have the same “background
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knowledge” (or even agree on it). A more “honest” way of conveying this issue is
to make the background knowledge explicit. Suppose that BK(1) is the background
knowledge of person 1, who deals with evidence (the data scientist) then

P H Ej ∩BK 1ð Þ
	 


≃P E ∩BK 1ð Þ Hj
	 


P H BKj 1ð Þ
	 


ð27:13Þ

Suppose BK(2) is person 2 (geologist) who provides the “prior”, meaning pro-
vides background knowledge on his/her own, without evidence. Then, the new
posterior can be written as

P H Ej ∩BK 1ð Þ ∩BK 2ð Þ
	 


≃P E ∩BK 2ð Þ Hj
	 


P H BKj 2ð Þ
	 


P H BKj 1ð Þ
	 


ð27:14Þ

assuming however, there is no overlap between background knowledge. In practice,
the issue that different components of the “system” (model) are done by different
modelers with different background knowledge is ignored. Even if one would be
aware of this issue, it would be difficult to implement in practice. The ideal
Bayesian approach rarely occurs. No single person understands all the detailed
aspects of the scientific modeling study at hand. A problem then occurs with
dogmatism. The study in Fig. 27.5 illustrates this. Hypotheses that are given very
high probability (no fractures) will remain high, particularly in the absence of
strong evidence (low to medium P(E)). Bayes’ rule will keep assigning very high
probabilities to such hypotheses, particularly due to the dogmatic belief of the
modeler or the prevailing leading idea of what is going on. This is not the problem
of Bayes’, but its common (faulty) application. Bayes’ itself cannot address this.

More common is to select a prior hypothesis based on general principles or
mathematical convenience, for example using a maximum entropy principle. Under
such a principle, complete ignorance results in choosing for uniform distribution. In
all other cases, one should pick the distribution that makes the least claims, from
whatever information is currently available, on the hypothesis being studied. The
problem here is not so much the ascribing of uniform probabilities but providing a
statement of what all the possibilities are (on which then uniform probabilities are
assigned). Who chooses these theories/models/hypotheses? Are those the only ones?

The limitation therefore of Bayesianism is that no judgment is leveled to the
stated prior probabilities. Hence, any Bayesian analysis is as strong as the analysis
of the prior. In subsurface modeling this prior is dominated by the geological
understanding of the system. Such geological understanding and its background
knowledge is vast, but qualitative. Later we will provide some ideas on how to
make quantitative “geological priors”.

Deductive Testing of Inductive Bayesianism

The leading paradigm of Bayesianism is to subscribe to an induction from of rea-
soning: learning from data. Increasing evidence will lead to increasing probabilities
of certain theories, models or hypothesis. As discussed in the previous section, one
of the main issues lies in the statement of a prior distribution, the initial universe of
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possibilities. Bayesianism assume that a truth exists, that such truth is generated by a
probability model, and also than any data/evidence are generated from this model.
The main issue occurs when the truth is not even with the support (the range/span)
generated by this (prior) probability model. The truth is not part of this initial
universe. What happens then? The same goes when the error distribution on the data
is chosen at too optimistic a level, in which case the truth may be rejected. Can we
verify this? Diagnose this? Figure out whether the problem lies with the data or the
model? Given the complexity of models, priors, data in the real world this issue may
in fact go undiagnosed if one stops the analysis with the generation of the posterior
distribution. Gelman and Shalizi (2013) discuss how mis-specified prior models (the
truth is not in the prior) may result in either no solution, multi-model solutions to
problems that are unimodal or complete non-sense.

Recent work (Mayo 1996) started to look at these issues. They attempt to frame
these tests within classical hypothesis testing. Recall that classical statistics rely on
a deductive form of hypothesis testing, which is very similar in flavor to Popper’s
falsification. In a similar vein, some form of model testing can be performed
posterior to the generation of the posterior. Note that Bayesian model averaging
(Rings et al. 2012; Henriksen et al. 2012; Refsgaard et al. 2012; Tsai and Elshall
2013) or model selection are not tests of the posterior, rather, they are consequences
of the posterior distribution, yet untested! Classical checks are whether posterior
models match data, but these are checks based on likelihood (misfit) only.

Consider a more elaborate testing framework. These formal test rely on gener-
ating replicates of the data given some model hypothesis and parameters are the
truth. Take a simple example of a model hypothesis with two faults H =ð two
faults) and the parameters θ representing those faults (e.g. dip, azimuth, length etc.).
The bootstrap allows for a determination of achieved significance level ASLð Þ as

ASL θð Þ=P S drep
� �

≥ S dobsð Þ Hj , θ
� � ð27:15Þ

here, we consider calculating some summary statistic of the data as represented by
the function S. This summary statistic could be based on some dimension reduction
method; for example, a first or second principal component score. The uncertainty
on θ is provided by its posterior distribution, hence we can sample various θ from
the posterior. Therefore we first sample drep from the following distribution (av-
eraging out over posterior in θÞ

P drep Hj , dobs
� �

=
Z

P drep Hj , θ
� �

P θ Hj ,dobsð Þdθ ð27:16Þ

and calculate average ASL over the posterior distribution. Analytically this equals to

ASL=
Z

ASL θð ÞP θ Hj , dobsð Þdθ ð27:17Þ

or for given limited sample θ ℓð Þ,ℓ=1, . . . ,L∼P θ Hj ,dobsð Þ
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ASL=
1
L
∑
L

ℓ=1
ASL θ ℓð Þ

	 

ð27:18Þ

These tests are not used to determine whether a model is true, or even should be
falsified but whether discrepancies exist between model and data. The nature of the
functions S defines the “severity” of the tests (Mayo 1996). Numerous complex
functions will allow for a more severe testing of the prior modeling hypothesis. We
can learn how the model fails by generating several of these summary statistics,
each representing different elements of the data (a low, a middle and some extreme
case etc.…).

Within this framework of deductive tests, the prior is no longer treated as “ab-
solute truth”, rather the prior becomes a modeling assumption that is “testable”
given the data. Some may however disagree on this point: why should the data be
any better than the prior? In the next section, we will try to get out of this trap, by
basing priors on physical processes, with the hope that such priors are more realistic
representations of the universe of variability, rather than simply relying on statis-
tical methods that are devoid of physics.

27.9 Bayesianism for Subsurface Systems

What is the Nature of Geological Priors?

Constructing Priors from Geological Field Work

In a typical subsurface system, the model variables are parameterized in a certain
way, for example with a grid, or a set of objects with certain lengths, widths dips,
azimuths etc. What is the prior distribution of these model variables? Since we are
dealing with a geological system, e.g. a delta, a fluvial or turbidite systems, a
common approach is to do geological field work. This entails measuring and
interpreting the observed geological structures, on outcrops, and creating a history
of their genesis, with an emphasis on generating (an often qualitative) under-
standing of the processes that generated the system. The geological literature
contains a vast amount of such studies.

To gather all this information and render it relevant for modeling UQ, geological
databases based on classification systems have been compiled (mostly by the Oil
industry). Analog databases, for example, on proportions, paleo-direction, mor-
phologies and architecture of geological bodies or geological rules of association
(Eschard and Doligez 2000; Gibling 2006) for various geological environments
(FAKT: Colombera et al. 2012; CarbDB: Jung and Aigner 2012; WODAD: Kenter
and Harris 2006; Paleoreefs: Kiessling and Flügel 2002; Pyrcz et al. 2008) have
been constructed. Such relational databases employ a classification system based on
geological reasoning. For example, the FAKTS database classifies existing studies,
whether literature-derived or field-derived from modern or ancient river systems,
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according to controlling factors, such as climate, and context-descriptive charac-
teristics, such as river patterns. The database can therefore be queried on both
architectural features and boundary conditions to provide the analogs for modeling
subsurface systems. The nature of the classification is often hierarchical. The
uncertain style or classification, often termed “geological scenario” (Martinius and
Naess 2005) and variations within that style.

While such approach appears to gather information, it leaves the question of
whether the collection of such information and the extraction of parameters values
to state prior distribution produce realistic priors (enough variance, limited bias) for
what is actually in the subsurface. Why?

• Objects and dimensions in the field are only apparent. An outcrop is only a 2D
section of a 3D systems. This invokes stereological problems in the sense
structural characteristics (e.g. shape, size, texture) of 2D outcrops are only
apparent properties of the three-dimensional subsurface. These apparent prop-
erties can drastically change depending on the position/orientation of the survey
(e.g. Beres et al. 1995). Furthermore, interpreted two-dimensional outcrops of the
subsurface may be biased because large structures are more frequently observed
than small structures (Lantuéjoul 2013). The same issue occurs for those doing
2D geophysical surveys to interpret 3D geometries (Sambrook Smith et al. 2006).
For example, quantitative characterization of two-dimensional ground penetrat-
ing radar (GPR) imaging (e.g. Bristow and Jol 2003) ignore uncertainty on the
three-dimensional subsurface characteristics resulting from the stereological
issue.

• The database is purely geometric in nature. It records the end-result of depo-
sition not the process of deposition. In that sense it does not include any physics
underlying the processes that took place and therefore may not capture the
complexity of geological processes fully to provide a “complete” prior. For that
reason, the database may aggregate information that should not be aggregated,
simply because each case represents different geological processes, accidently
creating similar geometry. For modeling, this may appear irrelevant (who cares
about the process), yet it is highly relevant. Geologists reason based on geo-
logical processes, not just the final geometries, hence this “knowledge” should
be part of a prior model construction. Clearly prior should not ignore important
background knowledge, such as process understanding.

The main limitation is that this pure parameterization-based view (the geome-
tries, dimensions) lacks physical reasoning, hence ignore important prior infor-
mation. The next section provides some insight into this problem as well as
suggests a solution.

Constructing Priors from Laboratory Experiments

Depositional systems are subject to large variability whose very nature is not fully
understood. For example, channelized transport systems (fan, rivers, delta, etc.)
reconfigure themselves more or less continually in time, and in a manner often
difficult to predict. The configurations of natural deposits in the subsurface are thus
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uncertain. The quest for quantifying prior uncertainty necessitates understanding
the sedimentary systems by means of physical principles, not just information
principles (such as the principle of indifference). Quantifying prior uncertainty thus
requires stating all configurations of architectures of the system deemed physically
possible and at what frequency (a probability density) they occur. This probability
density need not be Gaussian or uniform. Hence, the question arises: what is this
probability density for geological systems, and how does one represent it in a form
that can be used for actual predictions using Bayesianism?

The problem in reality is that we observe geological processes over a very short
time span (50 years of satellite data and ground observations), while the deposition
of the relevant geological systems we work with in this chapter may span
100.000 years or more. For that reason, the only way to study such system is either
by computer models or by laboratory experiment. These computer models solve a
set of partial differential equations that describe sediment transport, compaction,
diagenesis, erosion, dissolution, etc. (Koltermann and Gorelick 1992; Gabrovsek
and Dreybrodt 2010; Nicholas et al. 2013). The main issue here is that PDEs are a
limited representation of the actual physical process and require calibration with
actual geological observations (such as erosion rules), require boundary conditions
and source terms. Often their long computing times limit their usefulness for
constructing complete priors.

For that reason, laboratory experiments are increasingly used to study geological
deposition, simply because physics occurs naturally, and not as constructed with an
artificial computer code. Next, we provide some insight into how laboratory
experiments work and how they can be used to create realistic analogs of deposi-
tional systems.

Experimenting the Prior

We consider a delta constructed in an experimental sedimentary basin subject to
constant external boundary conditions (i.e. sediment flux, water discharge, subsi-
dence rates), see Fig. 27.8. The data set used is a subset of the data collected during

Fig. 27.8 Flume experiment
of a delta with low Froude
number performed by John
Martin, Ben Sheets, Chris
Paola and Michael Kelberer.
Image source https://www.
esci.umn.edu/orgs/seds/Sedi_
Research.htm
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an experiment in the Tulane Delta Basin, conducted in 2010 (Wang et al. 2011).
Basin dimensions were 4.2 m long, 2.8 m wide and 0.65 m deep. The sediment
consisted of a mix of 70% quartz sand and 30% anthracite coal sand. These
experiments are used for a variety of reasons. One of them is to study the rela-
tionship between the surface processes and the subsurface deposition. An intriguing
aspect of these experiments is that much of the natural variability is not due to
forcing (e.g. uplift, changing sediment source), but due to the internal dynamics of
the system itself, i.e. it is autogenic. In fact, it is not known if the autogenic
behavior of natural channels is chaotic (Lanzoni and Seminara 2006), meaning one
cannot predict with certainty the detailed configuration of even a single meandering
channel very far into the future. This then has an immediate impact on uncertainty
in the subsurface in the sense that configuration of deposits in the subsurface cannot
be predicted with certainty away from wells. The experiment therefore investigates
uncertainty related to the dynamics of the system, our lack of physical under-
standing (and not some parameter uncertainty or observational error). All this is a
bit unnerving, since this very fundamental uncertainty is never included in any
subsurface UQ. At best, one employs a Gaussian prior, or some geometric prior
extracted from observation databases, as discussed above. The fundamental ques-
tions are:

1. Can we use these experiments to construct a realistic prior, capturing uncertainty
related to the physical processes of the system?

2. Can a statistical prior model represent (mimic) such variability?

To address these questions and provide some insight (not an answer quite yet!),
we run the experiment under constant forcing for long enough to provide many
different realizations of the autogenic variability—a situation that would be prac-
tically impossible to find in the field. The autogenic variability in these systems is
due to t temporal and spatial variability in the feedback between flow and sediment
transport, weaving the internal fabric of the final subsurface system.

Under fixed boundary conditions, the observed variability in deposition is
therefore the result of only the autogenic (intrinsic) variability in the transport
system. The data-set we use here is based on a set of 136 time-lapse overhead
photographs that capture the dynamics of flow over the delta approximately every
minute. Figure 27.9 shows representative images from this database. This set of
images represents a little more than 2 h of experimental run time. Figure 27.9b
shows the binary (wet-dry) images for the same set, which will be used in the
investigation.

The availability of a large reference set of images of the sedimentary system
enables testing any statistical prior by allowing a comparison of the variability of
the resulting realizations, since all possible configurations of the system are known.
In addition, the physics are naturally contained in the experiment (photographs are
the result of the physical depositional processes). A final benefit is that a physical
analysis of the prior model can be performed, which aids in understanding what
depositional patterns should be in the prior for more sophisticated cases.
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Reproducing Physical Variability with Statistical Models

In this study we employ a geostatistical method termed multiple-point geostatistics.
MPS methods have grown popular in the last decade due to their ability to introduce
geological realism in modeling via the training image (Mariethoz and Caers 2014).
Similar to any geostatistics procedure, MPS allows for the construction of a set of
stochastic realizations of the subsurface. Training images, along with trends (usu-
ally modeled using probability maps or auxiliary variables) constitute the prior
model as defined in the traditional Bayesian framework. The choice of the initial set
of training images has a large influence on the stated uncertainty, and hence a
careful selection must be done to avoid artificially reducing uncertainty from the
start.

It is unlikely that all possible naturally-occurring patterns can be contained in
one single training image within the MPS framework (although this is still the
norm; similarly, it is the norm to choose for a multi-Gaussian model by default). To
represent realistic uncertainty realizations should be generated from multiple TIs.
The set of all these realizations then constitutes a wide prior uncertainty model. The
choice of the TIs brings a new set of questions: how many training images should
one use, and which ones should be selected? Ideally, the TIs should be generated in
such a way that natural variability of the system under study is represented (fluvial,
deltaic, turbidite, etc.), hence all natural patterns are covered in the possibly infinite
set of geostatistical realizations. Scheidt et al. (2016) use methods of computer
vision to select a set of representative TIs. One such computer vision method
evaluates a rate of change between images in time, and the training images are
selected in periods of relative temporal pattern stability (see Fig. 27.10).

The training image set shown in Fig. 27.10 displays patterns consistent with
previous physical interpretations of the fundamental modes of this type of delta
system: a highly channelized, incisional mode; a poorly channelized, depositional
mode; and an intermediate mode. This suggests that some clues to the selection of

Fig. 27.9 Examples of a few photographic images of the flume experiment for different time
periods. Flow is from top to bottom. a Photographs of the experiments. The blue pixels indicate
locations where flow moves over the surface. The black sediment is coal which is the mobile
fraction of the sediment mixture, and the tan sediment is sand. b Binary representation of the
photographs. Black represents wet (flow) pixels, white represents dry (no flow) pixels
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appropriate training images lie in the physical properties of the images from the
experiment.

With a set of training images available, multiple geostatistical realization per
each training image can be generated (basically a hierarchical model of realiza-
tions). These realizations can now be compared with the natural variability gen-
erated in the laboratory experiments, to verify whether such set of realizations can
in any way reproduce natural variability. Scheidt et al. (2016) calculate the Mod-
ified Hausdorff Distance (MHD, a distance used in image analysis), between any
two geostatistical realization and also between any two overhead shots A QQ-plot
of the distribution of the MHD between all the binary snapshots of the experiment
and the MPS models is shown in Fig. 27.11a, showing similarity in distribution.

The result is encouraging but also emphasizes a mostly ignored question of what
a complete geological prior entails, that the default choices (one training image, one
Boolean model, one multi-Gaussian distribution) make very little sense when
dealing with realistic subsurface heterogeneity. The broader question remains as to
how such a prior should be constructed from physical principles and how statistical
models, such as geostatistics should be employed in Bayesianism when applied to

13 min 24 min 45 min 91 min 125 min

Fig. 27.10 Selected images by clustering based on the modified Hausdorff distance. The value at
the top of the image represents the time in minutes of the experiment

Fig. 27.11 a QQ-plot of the MHD distances between the 136 images from the experiment and
136 images generated using DS. b Comparison of the variability, as defined by MHD, between
generated realizations per each training image (red) and the images from the experiment (blue)
closest (in MHD) to the selected TI
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geological systems. This fundamental question remains unresolved and certainly
under-researched.

Field Application

The above flume experiments have helped in the understanding of the nature of a
geological prior, at least for deltaic type deposits. Knowledge accumulated from
these experiments will create scientific understanding on the fundamental processes
involved in the genesis of these deposits and thereby understand better the range of
variability of the generated stratigraphic sequences.

It is unlikely, however, that laboratory experiments will be of direct use in actual
applications, since they take considerable time and effort to set them up. In addition,
there is a question of how these scale to the real world. It is more likely in the near
future that computer models, built from such understanding, will be used in actual
practice. Various such computer models exist for depositional systems
(process-based, process-mimicking, etc.).

We consider here one such computer model, FLUMY (Cojan et al. 2005), which
is used to model meandering channels, see Fig. 27.12. FLUMY uses a combination
of physical and stochastic process models to create realistic geometries. It is not an
object-based model, which would focus on the end result, but it actually creates the
depositional system. The input parameters are therefore a combination of physical
parameters as well as geometrical parameters describing the evolution of the
deposition.

Consider a simple application to an actual reservoir system (Courtesy of ENI).
Based on geological understanding generated from well data and seismic, modelers
are asked to input the following FLUMY parameters: channel width, depth and
sinuosity (geometric), and two aggradation parameters: (1) decrease of the alluvium
thickness away from the channel, and, (2) maximum thickness deposited on levees
during an overbank flood. More parameters exist but these are kept fixed for this
simple application.

Fig. 27.12 Example of a FLUMY model with several realizations of the prior generated from
FLUMY with uncertain input parameters
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The prior belief now consists of (1) assuming the FLUMY model as a hypothesis
that describes variability in the depositional system and (2) prior distributions of the
five parameters. After generating 1000 s of FLUMY models (see Fig. 27.12), we
can run the same analysis as done for the flume experiment to extract modes in the
system that can be used as training images for further geostatistical modeling.

27.10 Summary

Eventually philosophical principles will need to be translated into workable prac-
tices, ultimately into data acquisition, computer codes, and actual decisions.
A summary of some important observations and perhaps also personal opinion
based on this chapter are:

• Data acquisition, modeling and predictions “collaborate”; going from data to
models to prediction ignores the important interactions that take place between
these components. Models can be used, prior to actual data acquisition to
understand what role they will play in modeling and ultimately into the
decision-making process. The often classical route of first gathering data, then
creating models, may be completely inefficient if the data has no or little impact
on any decision. This should be studied beforehand and hence requires building
models of the data, not just of the subsurface.

• Prior model generation is critical to Bayesian approaches in the subsurface and
statistical principles of indifference are very crude approximations of realistic
geological priors. Uniform and multi-Gaussian distributions have been clearly
falsified with many case studies (Gómez-Hernández and Wen 1998; Feyen and
Caers 2006; Zinn and Harvey 2003). They may lead to completely erroneous
predictions when used in subsurface applications. One can draw an analogy here
with Newtonian physics: it has been falsified but it is still around, meaning it can
be useful to make many predictions. The same goes with multi-Gaussian type
assumptions. Such choices are logical for an “agent” that has limited knowledge
and hence (rightfully) uses the principal of indifference. More informed agents
will however use more realistic prior distribution. The point therefore is to use
more informed agents (geologists) into the quantification of prior. The use of
such agents would make use of the vast geological (physical) understanding that
has been generated over many decades.

• Falsification or prior. It now seems logical to propose workflows of UQ that
have both the induction and deduction flavors. Falsification should be part of
any a priori application of Bayesianism, and also on the posterior results. Such
approaches will rely on forms of sensitivity analysis as well as developing
geological scenarios that are tested against data. The point here is not to state
rigorous probabilities on scenarios but to eliminate scenarios from the pool of
possibilities because they have been falsified. The most important aspect of
geological priors are not the probabilities given to scenarios but the generation
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of a suitable set of representative scenarios to represent the geological process
taking place. This was illustrated in the flume experiment study.

• Falsification of the posterior. The posterior is the result of the prior model choice,
the likelihoodmodel choice and all of the auxiliary assumptions and choices made
(dimension reduction method, sampler choices, convergence assessment etc.…).
Acceptance of the posterior “as is” would follow the pure inductionist approach.
Just as the prior, it would be good practice to attempt to falsify the posterior. This
can be done in several ways, usual using hypothetico-deductive analysis, such as
the significance tests introduced in this chapter.
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Chapter 28
Geological Objects and Physical
Parameter Fields in the Subsurface:
A Review

Guillaume Caumon

Abstract Geologists and geophysicists often approach the study of the Earth using
different and complementary perspectives. To simplify, geologists like to define and
study objects and make hypotheses about their origin, whereas geophysicists often
see the earth as a large, mostly unknown multivariate parameter field controlling
complex physical processes. This chapter discusses some strategies to combine both
approaches. In particular, I review some practical and theoretical frameworks
associating petrophysical heterogeneities to the geometry and the history of geo-
logical objects. These frameworks open interesting perspectives to define prior
parameter space in geophysical inverse problems, which can be consequential in
under-constrained cases.

28.1 Introduction

The earth is three-dimensional, heterogeneous and, for its major part, inaccessible
to direct observations. A consequence is that the static and dynamic parameters
governing physical processes below the earth surface are generally poorly known.
A recurrent challenge for geoscientists and engineers is, therefore, to predict the
likely nature or behavior of the subsurface from limited data. In all fields of geo-
physics sensu lato, these forecasts may use physically and mathematically-based
data processing (such as upward continuation of potential fields, seismic process-
ing, classical processing of ground penetrating radar (Nobakht et al. 2013), reser-
voir production decline curves (Davis and Annan 1989; Fetkovich 1980,
Fig. 28.1a), or the resolution of an inverse problem that explicitly uses physical
models computing observations from some earth parameters and physical param-
eters (Fig. 28.1b–d, f–h). In geology, forecasts (e.g., about the location and volume
of a specific formation or resource) and geological scenarios involve direct
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observations and geophysical images (Jackson and Rotevatn 2013; Perrouty et al.
2014; Fig. 28.1e). In this process, the loop may not always close: in the end, the
interpretations are not guaranteed to be compatible with the initial geophysical
observations. This may or may not be a problem, depending on the purpose of this
interpretation. For example, a qualitative match between reflection seismic data and
structural interpretations is probably sufficient to discuss fault growth models
(Jackson and Rotevatn 2013), whereas such mismatch can be problematic in other
tasks such as natural resource assessment (Caumon 2010; Jessell et al. 2014).
Another practical problem is the interpretation and fusion of several independent
data sets corresponding to different physical or geological observations (Corbel and
Wellmann 2015; Paasche 2016). Geostatistics (Chiles and Delfiner 2012; Goovaerts
1997) was historically developed with these problems in mind, and is an attractive
theoretical framework to recombine point and volume data coming from geo-
physical images consistently with spatial statistics. However geological reasoning
and statistical reasoning are of different nature (Frodeman 1995), so honoring some
spatial statistics is very useful but not always sufficient to represent geological
concepts. Therefore, several methodologies have been introduced to explicitly
incorporate geological knowledge in subsurface interpretation, all of them explicitly
considering geological objects (Fig. 28.1f–h).

The main focus of this chapter is to review the main frameworks by which
geological concepts can be represented in earth models and inverse methods
addressing several types of physics. Thus, it aims at complementing the existing
reviews and discussions of Linde et al. (2015) and Jessell et al. (2014), who address
this problem with similar objectives but different perspectives. As the topic is very
vast, the reader is also referred to previous review papers related to this topic
(Farmer 2005; Lelièvre and Farquharson 2016; Linde et al. 2015; de Marsily et al.
2005; Mosegaard and Hansen 2016; Oliver and Chen 2011; Pyrcz et al. 2015; Zhou
et al. 2014a). Several books also present complementary perspectives and more
complete descriptions and details (Agterberg 2014; Caers 2011; Mallet 2002, 2014;
Perrin and Rainaud 2013; Pyrcz and Deutsch 2014). Section 28.2 provides further
motivations for considering geology in geophysical models, and tries to define what
“geology” means in that sense. Then, Sect. 28.3 briefly describes the type of
parameterizations classically used in computational physics. We discuss some links
between these physical parameterizations and the frameworks used to represent
geological domains in Sect. 28.4.

28.2 Motivations for Explicit Geological
Parameterizations

A wealth of perspectives is essential and complementary to make progresses in the
understanding of our planet and its resources. This is exemplified by the various
disciplines involved in natural resource characterization, see for instance Ringrose
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and Bentley (2015). Feedbacks and interactions between the various approaches
generate many types of possible workflows to integrate geological data and produce
forecasts, as illustrated in Fig. 28.1. For example, geophysical processing and
inverse methods that use minimal geological prior information (Fig. 28.1a–d) are
typically considered as data for geological interpretations (Fig. 28.1e). Whereas
these “minimal prior” approaches are not this chapter’s focus, they are very useful
and are always used to some extent in practical studies, because they provide at
least a useful first-order view of the geological domain. This is illustrated in par-
ticular in deterministic workflows of Fig. 28.1h that strive for fit-for purpose,
simplest as possible, subsurface models (Elrafie et al. 2008; Ringrose and Bentley
2015; Williams et al. 2004). They are also conceptually satisfying in the sense that
they produce images or forecasts that mainly depend on the physics, hence can be
claimed to be parsimonious and objective. As a consequence of this parsimony and
of the non-linear nature of most involved physical processes, these models make it
difficult to evaluate uncertainty (Watson et al. 2013). The term “objective” is also
relative, as some choices are always made in these methods. In data processing
methods these subjective choices relate to the underlying model assumptions (e.g.,
sub-horizontal layers). In inverse methods, choices must also be made about the
parameterization, and a statistical model (e.g., the multi-Gaussian model) or a
particular regularization (e.g., Mosegaard 2011).

Among the approaches that try to get the most out of the physics with minimal
assumptions, recent and most promising developments use several types of data and
petrophysical models to constrain local anisotropy, (see for instance Clapp et al.
2004; Ma et al. 2012; Sava et al. 2014; Zhou et al. 2014b) and recent reviews in
geophysical imaging (Meju and Gallardo 2016), reservoir seismology (Bosch et al.
2010), hydrogeophysics (Linde and Doetsch 2016), mineral exploration (Lelièvre
and Farquharson 2016), petroleum exploration (Moorkamp et al. 2016). Two main
ideas underlie these approaches. First, some local structural orientations are inferred
from borehole data or other geophysical data to constrain the covariance function
used during inversion. Second, a petrophysical model is used to exploit the existing
correlation between the physical parameters. As these correlations generally depend
on the rock type, the model often includes discrete variables that estimate or sample
the rock type at a given location. This notion of rock type is close to the notion of
lithofacies, so it is a way to integrate geological reasoning into inverse methods.

In the field of reservoir engineering and hydrogeology, methods incorporating
prior geological knowledge in flow and transport models have also been developed
very early on, as discussed in several review papers (Farmer 2005; Linde et al.
2015; de Marsily et al. 2005; Oliver and Chen 2011; Zhou et al. 2014a). One
fundamental reason is that flow and transport processes can be highly non-linear
while pressure and concentration measurements are generally quite sparse as
compared to the number of potential factors influencing fluid transfers in porous
and fractured media. The same observation holds in potential field inversion, where
geological prior information can significantly help addressing the ill-posedness of
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the inverse problem (Lelièvre and Farquharson 2016). But what does “geological
prior” exactly mean?

As noted in particular by Frodeman (1995), geology is an interpretive science
which includes a significant component of historical thinking. One aim of geology
is to describe the earth in historical terms by identifying the main geological pro-
cesses and their impact. In terms of scientific philosophy, it is interesting to
highlight that geology generally produces refutable scenarios, whereas mathematics
are concerned with formal and irrefutable proofs (given some hypotheses). The
encounter of these two scientific methods is deeply written in the DNA of Math-
ematical Geosciences. Advanced methods in physically-based modeling have been
developed to quantitatively model geological processes. Some very interesting
inverse methods that use such models have been developed recently to quantita-
tively integrate spatial observations (Charvin et al. 2009; Cross and Lessenger
1999; Gallagher et al. 2009). These methods are ideal in the sense that they could in
principle unify geology and geophysics rigorously. However, the interplay of
multiple coupled physical and chemical processes at geological time scales remains
extremely challenging to model on a computer. The use of such models in an
inverse framework is also very challenging, as the number of unknown or poorly
known parameters makes the inverse problem highly ill-posed and computationally
intractable. This empty space problem is very general and applies to most inverse
problems in geosciences, but it is critical when an explicit time dimension is
considered because the density of information in time-space is very small (e.g., only
a few points typically constrain pressure and temperature in basin studies). This
explains why most of the methods in Fig. 28.1e–h do not explicitly consider
geological time and instead use an object-based approach, a statistics-based
approach or a combination of both to represent the geological prior information and
make forecasts in the 3D physical space.

Classically, the object-based strategy is essential to the geological approach. For
example, geological mapping typically decomposes a complex reality into discrete
and interconnected tectonic, igneous, metamorphic, diagenetic, stratigraphic and
sedimentological objects. These object definitions do integrate historical and
process-based considerations. For instance, time is explicitly considered in the
definition of the remarkable surfaces that sequence stratigraphers use to interpret
geoscience data. The characterization of these objects in mathematical and com-
putational terms has been a significant focus of the IAMG for that last 50 years. The
statistics-based approach, another clear focus of the IAMG, is clearly comple-
mentary to the object-based approach. Indeed, objects are heterogeneous, bound-
aries between objects may be difficult to define and objects can be difficult to map
from available observations. Statistical reasoning is key to address these problems.
In this chapter, we will try to explain a few manners by which the object-based and
statistics-based methods interact in the frame of geo-data and physical modeling
integration. For this, we will start from the perspective of what physical modeling
needs.
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28.3 Parameterizations for Physical Models

Sambridge et al. (2012), among others, give a very crisp and generic summary of
the parameterizations used in most numerical physical modelling methods. In this
view, a model m xð Þ is defined at any point x of the physical space by a set of basis
functions:

m xð Þ= ∑
K

k =1
mkφk xð Þ. ð28:1Þ

For example, in the finite element method with linear triangular elements, a basis
function φk is defined for each mesh vertex xk: φk xkð Þ is equal to 1, φk xj≠ k

� �
is

equal to 0 and φk linearly decreases in the mesh elements adjacent to xk. The values
mk are the parameter values (e.g., thermal conductivity) associated to the mesh
vertices.

The general formulation (28.1) allow to compute or approximate differential
operators to solve partial differential equations describing physical processes. Many
recent advances in computational physics consist of particular choices of basis
functions. For instance, in the extended finite element method, the use of Heaviside
basis functions to represent internal discontinuities in a mesh was a step change in
the computation of fracture growth (Moës et al. 2002). Another very active research
field concerns the combination of basis functions at several scales (e.g., Efendiev
et al. 2013). These methods have been applied for instance in finite volume mod-
eling of flow in porous media to solve the flow and transport equations at two
distinct and interacting scales (Jenny et al. 2003; Møyner and Lie 2014).

Equation (28.1) is also compatible with the theory of spatial random fields. At
point scale, the values mk are seldom known below the Earth surface. Geostatistics
offers many ways to estimate or simulate such values (Chiles and Delfiner 2012;
Goovaerts 1997) using statistical parameters inferred from subsurface data. One of
these parameters is the variogram, which models the statistical correlation between
two variables as a function of the distance. In dual kriging, Eq. (28.1) is also used,
as the unknown value is estimated as a linear combination of covariance functions
centered on the data points. The use of point-based parameterizations is also much
studied in computational physics under the term “meshless methods”, see for
instance Liu and Gu (2005). In the practice of geostatistical methods, the values mk

are generally modeled on a Cartesian grid, but recent papers also discuss about the
application of geostatistics on unstructured grids (Gross and Boucher 2015; Man-
chuk et al. 2005; Zaytsev et al. 2016), or directly on points (Zagayevskiy and
Deutsch 2016). A major interest of these methods is to estimate or simulate values
directly on the physical modeling support, and also to use adaptive resolution
depending on the local information density and on the sensitivity between the
model parameters and the physical process.

Last, but not least, Eq. (28.1) is compatible with a new breed of inverse methods
in which the number of parameters K is variable, see Sambridge et al. (2012) and
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references therein. These transdimensional inverse methods show much promise to
address some of the challenges highlighted in this chapter.

The beauty of Eq. (28.1) lies in its potential to unify object-based geological
descriptions and mathematical descriptions. In a sense, the goal of the various
workflows described in Fig. 28.1 and in the associated references can be seen as a
quest to find “geological basis functions” to model the earth. The purpose of
Sect. 28.4 is to try to establish a more explicit correspondence between geological
concepts and existing mathematical and computational models for representing
geological domains in three-dimensional space. In doing so, we keep in mind that
these 3D models will eventually need to be expressed by Eq. (28.1) in physical
models.

28.4 Geological Parameterizations

As discussed in Sect. 28.2, geologists apply the divide and conquer principle to
analyze the earth. Hundreds of years of geological reasoning have essentially led to
identify multiple geological features at various scales, depending on their origin:

• Tectonic objects: Faults, joints, folds, cleavages.
• Sedimentary objects: stratigraphic units, horizons and unconformities, sedi-

mentary bodies, facies, bedding structures.
• Intrusive and effusive objects: salt diapirs, salt sheets, shale diapirs, shale

mounds, sills or dykes, lava flows, etc.
• Epigenetic objects (originating from chemical and mineralogical processes after

rock formation): Metamorphic units, hydrothermalized facies, dissolved rocks
(karsts).

These features typically exist at kilometric to micrometric scales (from plates to
minerals and fluid inclusions). It is not useful (and not possible) for a model to
explicitly represent all objects across these scales. Rather, most modeling approa-
ches hierarchically subdivide the domain to represent a few nested scales (Pyrcz and
Deutsch 2014; Ringrose and Bentley 2015).

Two main complementary mathematical and numerical frameworks exist to
represent these geological features: spatial random fields and object-based methods.
The choice of which framework is most appropriate (or whether and how these
frameworks should be combined) depends on the size of the features with regard to
the density of observations and on the likely impact of the features for the question
at hand. Whereas the object size can be objectively discussed and characterized, the
impact of features is often based on rules of thumb derived from experience
(Ringrose and Bentley 2015). This may be a source of biases in forecasts. In
practical studies, choices may also be constrained by very practical reasons, as
some methods are implemented only in commercial software or in distinct software
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which are not interoperable. These problems and the need for better and abstract
knowledge integration are also discussed by Perrin and Rainaud (2013).

28.4.1 Spatial Random Fields

As geological processes are not random and result from many physical processes,
the resulting spatial fields are generally correlated in space. The characterization of
the correlation structure by statistical inference is an essential aspect of geostatistics
(Chiles and Delfiner 2012; Goovaerts 1997). Indeed, trust can be gained when data
are numerous enough to provide robust statistics—even though the modeling
assumptions themselves may remain questionable (Journel 2005). In inverse
modeling of flow and transport in porous media, this has led to many approaches
that perturb parameters on a grid while preserving variogram or spatial covariance
models (de Marsily et al. 2005; Oliver and Chen 2011; Zhou et al. 2014a).

In geostatistics, a result of the divide-and-conquer strategy used in geology is the
definition of many types of discrete categories to describe the physical world. These
categories can be localized in space in the form of a geological map (or, in three
dimensions, a 3D geological model). From a geostatistical standpoint, categories
can be modeled with indicator variables. This has led to significant advances, in
particular in the field of multiple-point geostatistics (MPS), to represent discrete
facies from sparse data and analog training images. Since the seminal work of
Guardiano and Srivastava (1993), a vast community of mathematical geoscientists
has embraced this field and made essential advances, see Hu and Chugunova
(2008), Mariethoz and Caers (2014). In particular, MPS have opened concrete and
effective ways to using complex (and deliberately subjective) geological priors
models in inversion (Linde et al. 2015; Melnikova et al. 2015). MPS have shown, in
a number of instances, the impact of applying analog reasoning and scenarios to
find sensible sets of solutions to inverse problems and to assess uncertainties. They
also make up an interesting formalism to analyze complex geological systems
(Scheidt et al. 2016).

However, even though progresses can still be made (see for instance Renard
et al. 2011), a recurrent challenge with the indicator geostatistical approaches is to
ensure that some categories are always connected or adjacent to other categories.
This is why, to echo a friendly discussion we had with Andre Journel in 2005, I
persist considering that there is more to geological realism than MPS (in its spatial
understanding). The Truncated Gaussian method and the Pluri-Gaussian methods
(Armstrong et al. 2011), even though they rely on multi-Gaussian assumptions,
enforce continuity conditions that approach geological reasoning in a very inter-
esting way. For instance, they can produce consecutive successions of facies from
shallow marine to offshore environments. This type of method is appropriate when
the discrete geological categories originate from an underlying continuous variable
(in the previous example, this variable can be assimilated to bathymetry, all facies
being defined between consecutive threshold values). In the Pluri-Gaussian
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approach, the application of Boolean operations on simulated random fields is also
a way to emulate the succession of geological events (e.g. simulation of late dia-
genetic facies overprinting the depositional facies).

In general, spatial random field methods are implemented on grids of fixed
resolution. As a result, the discontinuities that may exist in the medium are sampled
at that particular resolution. However, some important features such as fractures or
shale lenses may be much smaller than the grid resolution, hence cannot be
explicitly represented in the grid. Under some hypotheses, this can be addressed by
directly modeling a field of equivalent properties assumed representative of the
block scale (e.g., equivalent dual porosity and dual permeability fields in fractured
media). However, this can be a source of bias in a number of cases (Jackson et al.
2014). The explicit consideration of these objects generally relies on fewer
assumptions and provides a way to deal with more complex geometries and with
spatial observations, as will be discussed in Sect. 28.4.2. Note that these two
approaches are not mutually exclusive and a combination of both equivalent and
explicit approaches are, in general, relevant (Bourbiaux et al. 2002; Maier et al.
2016).

Another important aspect of geological reality is that the orientation and the
magnitude of spatial correlation can vary in space. This can be modelled with
random fields using locally varying anisotropy (Boisvert et al. 2009; Stroet and
Snepvangers 2005; Xu 1996). In geophysics, the use of local anisotropy is illus-
trated for instance by Clapp et al. (2004) and by the image-guided inversion
methods mentioned in Sect. 28.2 and Fig. 28.1d. In the absence of exhaustive data
to constrain these orientations, one should estimate or simulate the orientations
away from local observations (Gumiaux et al. 2003; Stroet and Snepvangers 2005;
Xu 1996). A practical challenge in the presence of locally varying anisotropy is the
inference of geostatistical parameters, as the domain is non-stationary. Object
approaches offer another way of dealing with locally varying anisotropy, as will be
discussed in the next section.

28.4.2 Object Models

In a general sense, object models directly represent the tectonic, sedimentological,
intrusive and epigenetic features listed at the beginning of Sect. 28.4. As geological
objects originate from distinct geological processes at different periods of time, they
often correspond to contrasts or discontinuities of the physical parameters of
interest. This explains why, beyond pure cartographic goals, so much effort is
dedicated to object modeling in geosciences.

Geometry and Topology

As discussed by Mallet (2002) and Perrin and Rainaud (2013), geological objects
can be represented in geometrical and topological terms. Topology refers to
essential characteristics: the dimension of objects (line, surface or volume), whether
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objects have inclusions or holes, and if they are connected to other objects.
Depending on the type of geological objects, some topological configurations are
impossible (Caumon et al. 2004). For instance, a chronostratigraphic horizon must
be an open surface and may include internal holes due to faults or intrusions. More
generally, the continuity of objects can have a relation to the genesis of the object,
hence is a way to constrain geological models. Knowing what is topologically
possible and what is not gives precious insights to design modeling methods and to
test the validity of geological models (Pellerin et al. 2017; Wellmann et al. 2014).
Topological analysis also provides interesting metrics to characterize and under-
stand geological objects such as karsts (Collon et al. 2017), fracture networks
(Sanderson and Nixon 2015) and structural models (Lindsay et al. 2013; Pellerin
et al. 2015; Thiele et al. 2016a, b). Last, but not least, topology is very important for
flow modeling, as it directly relates to the connectivity of permeability conduits and
barriers. The links between connectivity and effective flow properties has been
much studied at multiple scales in the frame of percolation theory (Berkowitz and
Balberg 1993; King et al. 2001). In the cases where geological considerations are
not sufficient to fully characterize the topology of the medium, specific methods
have been proposed to find possible object geometry honoring some prescribed
connectivity (Borghi et al. 2012; Collon-Drouaillet et al. 2012; Henrion et al. 2010).

Geometry concerns the embedding of the topological objects in 3D space, and is
typically described either analytically (e.g., ellipses for fractures) or numerically
(using a mesh). Meshes provide much flexibility to discretize the geometry of rock
volumes (geological bodies), surfaces (geological boundaries) and lines (contacts
between boundaries). All these geometric components are linked by topological
relationships (Pellerin et al. 2017). More fundamentally, meshes are a way to define
basis functions approximating the geometry of the true object. For example, one can
define mathematically a triangulated surface as a set of a “hat” basis functions
centered on each surface node (taking the value 1 at each node and linearly
decreasing it to zero at the node’s neighbors), as in Eq. (28.1). This description is
very powerful to devise advanced geometry processing algorithms and reduce the
dimensionality of complex geometrical shapes (Vallet and Lévy 2008). In the frame
of inverse modeling, several inverse methods use the meshed model geometry as an
unknown parameter (Fullagar et al. 2000; Gjøystdal et al. 1985; Mondal et al.
2010).

Over the past decade, computational advances have also made it possible to
consider implicit surfaces to represent geological boundaries. In these approaches,
the surfaces are considered as level sets of some three-dimensional scalar field
(Calcagno et al. 2008; Cowan et al. 2003; Frank et al. 2007; Henrion et al. 2010).
These methods share the same principles as the Truncated Gaussian and
Pluri-Gaussian methods (Mannseth 2014), but the underlying random function
model is not necessarily Gaussian, and their focus is set on the geometry of object
boundaries. These level set methods are very powerful to automate geometric
modeling tasks such as interpolation and extrapolation. In particular, they have
shown much interest in stratigraphic modeling as one single scalar field can rep-
resent a conformable stratigraphic series at once, which opens new possibilities in
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structural data interpolation (Calcagno et al. 2008; Caumon et al. 2013; Hillier et al.
2014; Laurent et al. 2016). Implicit surfaces also offer very nice ways to consider
geometric model perturbations needed to address inverse problems in geosciences
(Cardiff and Kitanidis 2009; Caumon et al. 2007; Noetinger 2013; Zheglova et al.
2013). A major distinction between explicit and implicit surface models is about
topological control: the surface topology has to be chosen before interpolation in
explicit methods, whereas it emerges from the interpolation in implicit models, see
also Collon et al. (2016) for more discussions.

As in Pluri-Gaussian simulation, it is possible to indirectly account for geo-
logical time in object models using the truncation between implicit or explicit
objects (Calcagno et al. 2008; Caumon et al. 2009; Gjøystdal et al. 1985). Boolean
operations also provide ways to obtain sharp features in object geometry using
constructive solid geometry principles (Rongier et al. 2014; Ruiu et al. 2016). In
terms of Eq. (28.1), Boolean operations between implicit objects can be described
as indicator (or Heaviside) basis functions (Mannseth 2014; Moës et al. 2002):
these functions are equal to zero on one side of the interface and equal to 1 on the
other side. The representation of faults is a major challenge which is specific to
geosciences. Indeed faults are not just discontinuities or sharp geometric features:
they result from sliding of rocks that were previously connected. Several authors
have proposed mathematical or numerical solutions to address this problem by
considering directly or indirectly the displacement between either sides of a fault
(Calcagno et al. 2008; Georgsen et al. 2012; Hale 2013; Holden et al. 2003; Jessell
and Valenta 1996; Laurent et al. 2013; Mallet 2002, 2014).

From Objects to Physical Parameters

Generally, geological object geometry cannot be described analytically and deter-
mining the associated physical parameter fields is not straightforward. In most
cases, objects are first discretized in space with a mesh that will support the
numerical resolution of the physical equations (Kolditz et al. 2012; Pellerin et al.
2017). This mesh is a numerical translation of Eq. (28.1) discretizing the space in
elementary volumes deemed representative of some effective physical properties
(the values mk in Eq. (28.1)).

A possible working assumption is to consider a constant (or analytically defined)
parameter value associated to each type of geological object. This principle is used
for simplicity in a number of numerical models (Gjøystdal et al. 1985; Jackson et al.
2015). However, as discussed above, heterogeneity exists at many different scales
and can have an impact on the physical process below the scale of the objects that
are explicitly represented in a numerical model. For example, it is well known in
stochastic hydrogeology and reservoir engineering that petrophysical heterogeneity
exists within layers or sedimentary facies and impacts flow and transport (see for
instance de Marsily et al. 2005 for a review). In many cases, the orientation of
heterogeneities within a geological object depends on the object geometry (e.g.,
crystal orientations in a dyke may be preferentially aligned along the dyke
boundaries; sedimentary heterogeneities tend to be more continuous along layers
than orthogonally to layers). This can be addressed in modeling by explicitly using
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locally variable directions of anisotropy (Boisvert et al. 2009) or by considering a
geometric transform between two spaces (Mallet 2014; Shtuka et al. 1996). This
last option is very promising as it provides a way to simplify geostatistical mod-
eling, and as it allows to define some useful geological variables such as the
apparent sedimentation rate (Kedzierski et al. 2007; Mallet 2014; Massonnat 1999).
Such use of indirect geological parameters is an essential and powerful way to
introduce geological principles in earth models.

Nonetheless, one should not neglect that object geometry affects model pre-
dictions at the two main stages of geostatistical models: (1) geostatistical inference
(distributions of continuous variables within each subdomain, multivariate rela-
tionships between different variables, trends, spatial variability) and (2) geostatisti-
cal modeling (interpolation or simulation). The separation of integrated modeling
into an object-modeling phase and a petrophysical modeling phase are, therefore,
relatively easy in the classical case where objects are known, when a clear sepa-
ration of scales exist between representative elementary volume (REV) properties
and object geometry, and when objects do not affect geostatistical parameters.
However, uncertainty about object geometry and topology can have a significant
impact on statistical parameters (Lallier et al. 2016), which can be a significant
source of complexity in practical studies. More generally, finding at what scale
explicit objects properties and REV effective properties can be separated is a
fundamental problem in modeling. Therefore, more research is clearly needed to
capture the interactions between object geometric (and topological) parameters and
random field parameters.

Object Uncertainty

Geometric uncertainty can be sampled by adding geometric perturbations to an
existing reference model (Caumon et al. 2007; Corre et al. 2000; Lecour et al. 2001)
or creating several models after perturbing data (Lindsay et al. 2013; Wellmann
et al. 2010). As the very existence of some objects is also uncertain in many cases, it
is also useful to consider object-based stochastic simulation. In random set theory,
geometric objects are placed randomly and independently in the domain by com-
bining the simulation of points (Poisson Point Process) and the simulation of
objects shapes around these points (see Chiles and Delfiner 2012 and references
therein; Lantuéjoul 2002). Classically, objects are geometric primitives defined
analytically, whose shape, orientation and size parameters are simulated from some
input distribution. Random set theory places a lot of emphasis on the statistical
aspects of this process and on conditioning to spatial data, see in particular Lan-
tuéjoul (2002) and Allard et al. (2006). These models, in particular the Boolean
Model, have been used to simulate many types of geological objects such as
fractures (Chiles 1988), shale lenses (Haldorsen and Lake 1984) or sedimentary
channels (Deutsch and Wang 1996; Holden et al. 1998). Extensions of the Boolean
Model have also been proposed to introduce interactions between objects such as
attraction or repulsion between fractures to reproduce their mechanical interactions
(Aydin and Caers 2017; Bonneau et al. 2016; Chiles 1988; Hollund et al. 2002).

578 G. Caumon



From a random set perspective, a deterministic object model is a particular
realization of some underlying random set process. In this case, the relatively large
data density allows one to consider mainly the data conditioning problem rather
than focusing on the number of objects and on their spatial density. Another focus
of deterministic object modeling approaches relates to the expert-guided definition
of interactions between objects using interactive editing tools to ensure that the
connectivity between objects is compatible with the geological history of the
domain (e.g., how faults branch one onto another and how faults displace horizons).

Yet, more and more complex geometric object parameterizations have recently
been introduced in object-based simulation methods. For instance, several authors
propose to anchor sedimentary channels on discrete polygonal curves (Mariethoz
et al. 2014; Pyrcz et al. 2009; Rongier et al. 2017; Ruiu et al. 2016; Viseur 2004).
Other variants consider the bounding surfaces of stratigraphic deposits together
with some rules to mimic depositional processes (Graham et al. 2015; Labourdette
2008; Michael et al. 2010; Pyrcz et al. 2005, 2015; Rongier et al. 2017; Ruiu et al.
2016; Sech et al. 2009). As argued in the review of Pyrcz et al. (2015), these models
make it possible to consider genetic principles such as erosion, progradation and
aggradation of sedimentary deposits in an automatic way. Similarly,
pseudo-process-based models have also been proposed in the area of fracture
modeling to approximate mechanical interactions and truncations that occur during
fracture growth (Bonneau et al. 2013; Davy et al. 2013; Srivastava et al. 2005). At a
larger scale, a recent trend has been to simulate possible stochastic geometries
where the number and the connectivity of faults is variable (Aydin and Caers 2017;
Cherpeau et al. 2010, 2012; Cherpeau and Caumon 2015; Holden et al. 2003; Julio
et al. 2015a). In all these approaches, the use of rules is often a means to generate
realistic objects and to produce likely connectivities and spatial features without
being constrained by some input grid resolution. However, conditioning to dense
spatial data sets remains challenging with these approaches. A possible way for-
ward is to consider parameter-rich object-models and to consider process-based
rules backward in time (Parquer et al. 2016; Ruiu et al. 2015). In all cases, expert
control of model realism is also difficult and may call for additional “geological
likelihood” functions to scrutinize the realizations (Jessell et al. 2010).

Interestingly, the use of continuous functions around the Poisson points used in
object-based simulation (Random Function Model (Jeulin 2002)), is a possible way
to relate random sets to Eq. (28.1). However, formalizing the link between object
models and basis functions used in physical models is not easy and relies on the
assumption that values are analytically defined on each object, and that objects have
stationary statistics (Jeulin 2012; Oda 1986). Dealing with more realistic geometries
and sequential Boolean operations to reproduce the succession of geological events
calls for further numerical and mathematical developments. Meanwhile, as statis-
tical properties of random sets are not easily checked in practical cases, the
numerical approach to relate objects to physics clearly remains an area of much
interest (Botella et al. 2016; Cacace and Blöcher 2015; Karimi-Fard and Durlofsky
2016; Merland et al. 2014; Mustapha 2011; Pellerin et al. 2014; Zehner et al. 2015).
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28.5 Conclusions and Challenges

Several complementary ways exist to incorporate geological information in earth
models (Fig. 28.2): spatial statistics, geological variables, geometry and topology of
geological objects and explicit geological process modeling. Links exist between
the random field and object-based frameworks in cases where the canonical random
field theory is applicable (e.g., homogeneous and stationary object densities). This
forms the rationale for most modeling methods where “small” objects are treated
though their (spatially correlated) equivalent properties at the representative ele-
mentary volume scale. “Large” objects are modeled explicitly using rules and
parameters that incorporate geological principles and may be calibrated from data
and analogs.

Although geostatistics has proven an invaluable theoretical framework to rig-
orously describe geological domains, it needs to be complemented by geological
reasoning (sensu Frodeman 1995). Namely, considering discrete time steps
approximating geological history and geological variables which cannot be directly
measured can significantly help generating more predictive geological models,
which may not always have stationary statistical properties. Geometric and topo-
logical interactions between objects have a direct connection to geological history
and prove a powerful tool to characterize geological domains.

From a physical modeling perspective, geometric object models allow to rep-
resent small spatial features which can have a large impact on physical processes
(Jackson et al. 2015; Julio et al. 2015b; Matthäi et al. 2007). This calls for specific
developments in meshing and physical simulation, for example to better account for
object features directly in the numerical code (Pichot et al. 2012). In the frame of
inverse problems, sensitivity analysis is essential in practical studies. Theoretically,
specific methods integrating the probability of existence of objects also need to be
considered more widely, such as random vector parameterization (Cherpeau et al.
2012), reversible jump Monte-Carlo Markov Chain simulation (Green 1995;
Sambridge et al. 2012) or ensemble-based methods (Scheidt and Caers 2009). Both
in forward and inverse physical models, an additional and significant challenge is to
better characterize the multi-sale interactions between geometrical and petrophys-
ical parameterizations (basis functions and associated parameters values).

Fig. 28.2 Summary of the various complementary ways to incorporate geological knowledge in
earth models
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Chapter 29
Fifty Years of Kriging

Jean-Paul Chilès and Nicolas Desassis

Abstract Random function models and kriging constitute the core of the geosta-
tistical methods created by Georges Matheron in the 1960s and further developed at
the research center he created in 1968 at Ecole des Mines de Paris, Fontainebleau.
Initially developed to avoid bias in the estimation of the average grade of mining
panels delimited for their exploitation, kriging received progressively applications
in all domains of natural resources evaluation and earth sciences, and more recently
in completely new domains, for example, the design and analysis of computer
experiments (DACE). While the basic theory of kriging is rather straightforward, its
application to a large diversity of situations requires extensions of the random
function models considered and sound solutions to practical problems. This chapter
presents the origins of kriging as well as the development of its theory and its
applications along the last fifty years. More details are given for methods presently
in development to efficiently handle kriging in situations with a large number of
data and a nonstationary behavior, notably the Gaussian Markov random field
(GMRF) approximation and the stochastic partial differential (SPDE) approach,
with a synthetic case study concerning the latter.

29.1 Introduction

The creation of the IAMG is a landmark of year 1968, which motivates the present
book. Another important event of this year is the foundation of a research center of
Ecole des Mines de Paris dedicated to geostatistics and mathematical morphology,
two disciplines created by Georges Matheron. Concerning geostatistics, this
research center was about to develop the applications of kriging, invented by
Matheron several years earlier. The theory of kriging seems so straightforward that
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it was reasonable to imagine that, after some generalizations, kriging would become
a classical tool requiring no further research. On the contrary, 50 years later it
remains the subject of active research, with renewed points of view. Other paradox:
originating from mining estimation problems, and very close to statistical regression
from a theoretical standpoint, it was not obvious that kriging would be considered
in other domains than mining and earth sciences. However applications now con-
sider, for example, the design of aircrafts (Chung and Alonso 2002), the prediction
of the mechanical properties of nanomaterials (Yan et al. 2012), the optimization of
supply chain networks (Dixit et al. 2016), the construction of financial
term-structures (Cousin et al. 2016), the modeling of social systems (Oliveira et al.
2013), and in all cases the quantification of the uncertainty.

It is therefore not surprising to see in Table 29.1 that the number of articles on
kriging (word “kriging” or “cokriging” present in the title) published by the journals
of the Scopus database doubles decade after decade. The situation is slightly dif-
ferent for the three journals published by the IAMG: Mathematical Geosciences
(formerly Journal of the International Association for Mathematical Geology, then
Mathematical Geology), Computers & Geosciences, and Natural Resources
Research; indeed, IAMG journals played a major role in the dissemination of the
geostatistical literature in English in the first decades, but have now to share this
role with the journals of the new application domains. (Note incidentally that few
articles were published before 1980: the literature relative to kriging was largely
written in French or published in monographs and conference proceedings.)

At a closer look, the originality of kriging lies in its inclusion in the geostatistical
approach, where the optimality provided by kriging rests on an analysis of the
spatial variability of the phenomenon of interest. Indeed, if methods for charac-
terizing that variability were lacking, the optimality of kriging would simply be
virtual. As for the persistence of research works on kriging, it is widely bound to the
evolution of the capacities of calculation and memory of computers, and to the
increase of the volume of the data. At its origin kriging considered some samples in
the vicinity of a target block, while it has now to take into account up to thousands
or even millions of data (remote sensing, laser, seismic).

This chapter first presents the origins of kriging and its theory. It continues with
further developments, roughly chronologically, up to current research. Kriging has
a number of variants and generalizations. We focus here on linear kriging, more-
over in a monovariate context. Cokriging and disjunctive kriging are therefore not

Table 29.1 Articles whose
title includes the word
“kriging” or “cokriging”:
number of articles per decade
for IAMG journals and for all
journals of the Scopus
database

Decade IAMG Scopus

1970–1979 2 14
1980–1989 63 136
1990–1999 61 272
2000–2009 53 512

2010–2016 28 1076
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considered; conversely, the use of kriging to condition geostatistical simulations is
acknowledged. Our aim is not a thorough presentation of kriging, which can be
found in many textbooks, for example, Chilès and Delfiner (2012).

29.2 The Origins of Kriging

One of the tasks of the mining engineer is to select the panels to be exploited, and
even to delimit them if the exploitation method lets him this freedom. Indeed, to
simplify, a panel deserves to be exploited only if the cost of its extraction and
processing does not exceed the value of the metal which can be extracted from it.
For given technico-economic parameters, this means that the panel grade has to
exceed some cutoff grade. In practice the true grade of a panel is not known before
its exploitation, so that the selection is made on the basis of an estimated grade. At
the beginning of the 1950s the estimate was simply the average grade of the data
belonging to the panel or situated at its border. Krige (1951, 1952), studying
exploitation data of several orebodies, observed that for high cutoffs the panels
selected that way were on average less rich than expected.

As Fig. 29.1 shows it, this is not really surprising. Two parallel galleries in a
sub-horizontal deposit present segments AB and CD with grades above the cutoff,
contrarily to the neighboring parts of the galleries. Therefore the decision is made to
exploit the trapezoid ABDC, and its grade is anticipated to be equal to the weighted
average of the grades of segments AB and CD. In fact, segments AC and BD do not
represent the real border between rich and poor ores. The true (unknown) limits
look like the dotted lines. Therefore, poor ore is exploited (and rich ore abandoned),
so that the grade of the exploited ore is lower than expected.

Mathematically, this expresses a conditional bias: Denoting Zv the panel grade
and Z ̄ the average grade of the cores situated within the panel, the conditional
expectation E½ZvjZ ̄� is not equal to Zv.

A 

C D 

B 

abandoned 
rich ore

exploited 
poor ore

B’A’

Fig. 29.1 Illustration of the estimation bias. The panel ABDC to be exploited was delimited from
the rich samples observed along AB and CD. Because the true border between rich and poor ores
follows a line similar to the dotted line rather than segments AC and BD, poor ore will be exploited
and rich ore abandoned. (from Matheron 1961)
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To avoid this bias, Krige gives a weight λ to the average grade of the data
situated in the panel and the complementary weight 1 – λ to the average grade of
the orebody, λ being determined by linear regression (Krige in fact considered the
lognormal case and worked with grade logarithm).

Also facing problems of mining estimation, Matheron studied Krige’s work and
generalized his approach by assigning a proper weight to each sample, these
weights being determined so as to minimize the estimation variance under the
condition that the weights sum to 1 (this condition simply expresses that the esti-
mator is a weighted average of the data).

Matheron called this method “kriging” in honor to Danie Krige. To be accurate,
according to Cressie (1990), the French term “krigeage” was coined by Pierre
Carlier and first used at the French Commissariat à l’énergie atomique in the late
1950s, and Matheron translated it by “kriging” in Matheron (1963b) (the first
appearance of “krigeage” found by the present authors in Matheron’s work is
Matheron 1960, where it is mentioned as an already known concept).

29.2.1 Ordinary Kriging (OK)

Geostatistics considers natural variables distributed in space, whose behavior pre-
sents a large complexity of detail. These regionalized variables cannot be ade-
quately represented by deterministic functions and therefore methods dedicated to
random functions (RF) are considered. The theory of kriging as it is usually pre-
sented appears in Matheron (1962, 1963a). It takes place in the framework of an
order-2 stationary random function (SRF) model. The regionalized variable of
interest (here a grade) is considered as a realization of an SRF Z(x), where x denotes
a point in a two- or three-dimensional space. N data are available, at locations xα,
α = 1, 2, …, N, with values Zα = Z(xα). The target Z0 is the value Z(x0) of Z at an
unobserved point x0, or more generally the average value Z(v) of Z in a given cell or
block v. The kriging estimator of Z0 is by definition of the form

Z* = ∑
N

α=1
λαZα

with weights λα summing to 1. The weights are chosen so as to minimize the
variance of the estimation error Z* – Z0 subject to the condition on their sum. This
leads to a linear system of N + 1 equations with N + 1 unknowns (the N weights λα
and a Lagrange parameter μ):

∑
β
λβσαβ + μ= σα0 α=1, . . . ,N

∑
β
λβ =1

8<
:
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where σαβ denotes the covariance of the observations Zα and Zβ and σα0 the
covariance of Zα and the target Z0. This is the ordinary kriging system. The ordinary
kriging variance can then be expressed as:

σ2OK =EðZ* −Z0Þ2 = σ00 − ∑
α
λασα0 − μ

where σ00 denotes the variance of Z0.

29.2.2 Simple Kriging (SK)

Note that the kriging system and variance do not require the knowledge of the
mean. If the mean m were known, we would use an estimator of the form

Z* = ∑
α
λαZα + 1− ∑

α
λα

� �
m

without constraint on the weights, and the minimization of the estimation variance
would lead to the simple kriging system

∑
β
λβσαβ = σα0 α=1, . . . ,N

and to the simple kriging variance

σ2SK =EðZ* − Z0Þ2 = σ00 − ∑
α
λασα0

Simple kriging receives limited applications. It is, however, important, because it
has nice properties that are not shared by ordinary kriging and of course universal
kriging (see Chilès and Delfiner 2012, Chap. 3). From a computational point of
view, the kriging matrix being positive definite, the system can be solved by the
Cholesky method.

29.2.3 Ordinary Kriging in the IRF Model

Because the mean m is not involved in ordinary kriging, it is possible to extend
ordinary kriging to a more general random function model, the (order-2) intrinsic
random function (IRF) model, characterized by
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E½Zðx+ hÞ−ZðxÞ�=0
1
2E½Zðx+ hÞ−ZðxÞ�2 = γðhÞ

The variogram γ(h) summarizes the spatial variability of the random function.
Geostatistics provides a set of consistent tools for choosing the variogram model
adapted to a particular situation (e.g., Chilès and Delfiner 2012, Chap. 2). The
above OK system and OK variance remain valid provided that C(h) is formally
replaced by –γ(h) in the expressions of σαβ, σα0 and σ00 given in the next section.
This is the framework where kriging is widely used, especially in mining
applications.

29.2.4 Discussion

Finally, kriging appears as nothing but (a straightforward generalization of) mul-
tiple linear regression on N data Zα that need not to be of the form Z(xα). Does it
deserve a special consideration?

In fact the application of this regression requires that the covariances between
the observations, and between each observation and the target, are known. They can
be determined experimentally when repeated measurements are available, as is the
case in meteorology, but not in usual earth sciences applications, where a unique
phenomenon is considered. Applying the regression formula with a priori covari-
ances would provide an estimator that would lose any optimality, except if by
chance these covariances are perfectly suited to the data.

Kriging implies a spatial context:

• The random variables Zα are point values of an SRF Z(x) at points xα.
• Structural analysis methods make it possible to determine the covariance

function C(h) of the SRF Z(x).

The covariances σαβ are then of the form C(xβ – xα), and σα0 is C(x0 – xα) if the
target is Z(x0) or the average value of C(x – xα) when x spans v if the target is Z(v).
The variance σ00 of Z0 that appears in the expression of the kriging variance is C(0)
if the target is Z(x0) or the average value of C(x′ – x) when x and x′ span v inde-
pendently if the target is Z(v).

Several authors proposed an approach similar to simple or ordinary kriging
before Matheron but not in a spatial context (see Cressie 1990). The noticeable
exception is Gandin (1963), who independently developed an approach similar to
Matheron’s one, in meteorology. SK is called optimal interpolation, and OK op-
timal interpolation with normalization of weighting factors. Like Matheron, Gandin
was concerned by the theory and its applications; he is, for example, the first author
to define and compute a variogram cloud.

594 J.-P. Chilès and N. Desassis



29.2.5 Analytic Calculation of Average Covariances

In the early 1960s computers were not available, at least for mining applications. It
was therefore not easy to solve linear systems of equations. Even if point (or core)
data could be used to determine the variogram, kriging was applied to aggregated
data. In the case of Fig. 29.1, a typical situation examined by Matheron (1961), all
cores along AB are represented by their average grade Z1, those along CD by Z2,
and those belonging to A′A and BB′ by Z3. The target is the average grade Z0 of the
trapezoid ABDC. Kriging amounts to finding the best weights λ1 for Z1, λ2 for Z2,
and λ3 = 1 – λ1 – λ2 for Z3 minimizing the variance of λ1 Z1 + λ2 Z2 + (1 –

1 – λ2) Z3 – Z0. Kriging amounts to solving a system of two equations, which is
straightforward, but first requires to calculate the various covariances involved. For
example, if the series of contiguous cores along AB is described by a
three-dimensional elongated volume s and the target block (the trapezoid ABDC in
projection on the horizontal plane, with some thickness in the vertical direction) by
v, σ10 represents 1

jsjjvj
R
s

R
v Cðx′− xÞ dx′ dx, which is a sextuple integral. A special

variogram model, the logarithmic or de Wijsian model, was widely used because it
is very tractable for analytical calculations of average covariances with Taylor
expansions (see numerous technical reports of Matheron on the internet site of
Mines ParisTech, Center of Geosciences, On-line geostatistical library).

29.3 Development and Maturity: Trend, Neighborhood
Selection

With the availability of computers in the late 1960s, it was possible to solve linear
systems with about 10–20 equations. Kriging was then carried out with about ten
data in and around the target block. Usually a neighborhood of one or two rings or
aureolae around the target was used. If necessary, some data were grouped whose
situations with respect to the target were similar. At the first international geosta-
tistical congress in Rome in 1975, Michel David claimed that he was able to krige a
mining block for a few cents, a reasonable price for real-world applications (David
1976).

In mining applications the outputs were documents with grid cells representing
the blocks; the block estimates and the associated kriging standard deviations were
printed in the grid cells. Very soon applications emerged in other domains than
mining, with a slightly different objective: cartography, more precisely contour
mapping. See, for example, Huijbregts and Matheron (1971), Chauvet and Chilès
(1975) in oceanography; Delfiner (1973), Chauvet et al. (1976) in meteorology;
Delfiner and Delhomme (1975), Delhomme (1978) in hydrology. Moreover, the
phenomena considered in these application domains usually present a trend: the sea
floor is deeper when moving away from the coast line, aquifers have a general
gradient, the top of petroleum reservoirs is usually dome shaped. This called for
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developments in two directions: kriging theory, with universal kriging to account
for trends, and kriging practice, with a careful design of kriging neighborhoods.

29.3.1 Universal Kriging (UK)

The assumption of a constant mean—even if unknown—became soon a limitation
for the application of kriging to phenomena displaying a trend. Kriging was
therefore generalized by Matheron (1969) to random functions with a polynomial
drift m(x) of the form

mðxÞ= ∑
L

ℓ=0
aℓf ℓðxÞ

where the aℓ are unknown coefficients and the f ℓðxÞ are the L + 1 monomials with
degree up to a given degree k (in the one-dimensional case, L = k and f ℓðxÞ= xℓ).
For ℓ = 0, f 0ðxÞ≡ 1. The kriging estimator remains of the form Z* = ∑α λαZα but,
because the aℓ are not known, unbiasedness is ensured only under the L + 1
constraints

∑
α
λαf ℓα = f ℓ0 ℓ=0, . . . , L

where f ℓα = f ℓðxαÞ and f ℓ0 is f ℓðx0Þ if the target is Z(x0) or the average value of f ℓðxÞ
when x spans v if the target is Z(v). The minimization of the estimation variance
leads to a system similar to the OK system except that there are now L + 1 con-
straints instead of a single one, and as many Lagrange parameters.

The UK kriging matrix is no more positive definite, so that the kriging system
should be solved by Gaussian elimination, which is less efficient than the Cholesky
method. However, UK can be expressed as simple kriging, followed by a drift
correction. The second step appears as the solution of a linear system of L + 1
equations with L + 1 unknowns, whose matrix is positive definite. It is thus
advantageous to exploit this result to solve the SK system and the drift correction
system by the Cholesky method (an additivity property also allows the calculation
of the UK variance).

The equations of UK were already presented by Goldberger (1962) but not in a
spatial context and with covariances supposed to be known, whereas Matheron
proposed tools for determining the underlying variogram in the presence of a drift.
These tools let appear an inference problem that was adequately solved in the
framework of a more general model, presented hereafter.
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29.3.2 Kriging in the IRF-k Model

Like the mean for OK, the coefficients aℓ are not involved in universal kriging. This
made it possible to extend it to a more general random function model, the model of
intrinsic random functions of order k (IRF-k), where a generalized covariance
function K(h) is substituted to C(h). The RF model was first presented by Yaglom
and Pinsker (1953), and the complete theory in the n-dimensional space by
Matheron (1971, 1973). It suffices to say here that the class of GCs includes
ordinary covariances and covariances of the form –γ(h) when k = 0, and increases
with k. It includes, for example the power covariances (–1) p+1 |h| 2p+1,
0 ≤ p ≤ k, and the “spline” covariances (–1) p+1 |h| 2p log |h|, p integer,
1 ≤ p ≤ k. The kriging system is the same as for UK, with K replacing C.

29.3.3 Kriging as an Interpolant

In cartography, the objective of the applications of kriging was more precisely to
draw maps with isolines derived from point kriging at the nodes of a regular grid.
Nowadays it is possible to locally refine the grid to precisely track an isoline. In
both cases, there is a requirement that kriging is not only the optimal linear esti-
mator for a single point or block but also has nice interpolation properties.

According to theory, when kriging is considered as an interpolant, that is, as a
function z*(x) of the target point x, the kriged map inherits from the covariance or
variogram model. Indeed the universal kriging estimate can be presented in its dual
form

z*ðxÞ= ∑
α
bαCðx− xαÞ+ ∑

ℓ
cℓf ℓðxÞ

with the convention that C can be replaced by –γ or by the generalized covariance
K. The coefficients bα and cℓ are linear functions of the data. They are obtained as
solutions of a system of equations similar to the UK system (same kriging matrix).
If the variogram is parabolic at the origin, then z*(x) is differentiable; if the vari-
ogram is linear at the origin (and thus with a cusp at the origin when considered as a
function of vector h), z*(x) is continuous with cusps at the data points. This may not
be aesthetically nice from the user’s point of view, because this is not primarily the
purpose of kriging. Nevertheless, a smooth map can always be obtained by
applying kriging with a smooth variogram or generalized covariance model. This is
the way splines were used at that time, without explicit reference to geostatistics,
but Matheron (1981) showed that any spline problem is equivalent to a kriging
problem in the framework of the IRF-k model. For example, in 2D, interpolating
with biharmonic splines is equivalent to kriging in the framework of an IRF-1
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model with the generalized covariance |h|2 log |h|. Of course if the “true” covari-
ance model does not conform to this model, kriging loses its optimality.

29.3.4 Neighborhood Selection

The dual kriging approach is very efficient in terms of computer time but presents
two limitations: (i) it does not provide the kriging variance, and (ii) like direct
kriging, its above interpolation properties are valid when working globally, that is,
all data points are taken into account (global neighborhood). Due to practical
limitations in memory space and calculation time, there is a limit in the number N of
data that can be processed (several hundreds at that time, several thousands now).
Therefore, in practice kriging often continues to be used with a moving neigh-
borhood, that is, a limited number of data points around the target point are taken
into account.

Now, when kriging with a moving neighborhood, the neighborhoods of two grid
nodes can differ, and this can produce spurious discontinuities, especially when an
outlier data is included in the neighborhood of a grid node and not in the neigh-
borhood of the next grid node.

The neighborhood problem is also important when building conditional simu-
lations. The classical way at that time (and even now) for continuous variables was
to work in the framework of a Gaussian RF model (if necessary after suitable
transformation of the data), to generate a nonconditional simulation of the Gaus-
sian RF, and to condition that simulation on the data with a kriging step (Journel
1974). Due to their random nature, nonconditional simulations present small-scale
variations. If spurious discontinuities are added by the kriging step, it is not easy to
distinguish them from natural variations, which can lead to inaccurate conclusions.

Therefore, during years, much effort was devoted by software developers to
neighborhood selection (e.g., Renard and Yancey 1984). Sophisticated algorithms
have been devised to reach a compromise between near and far sample points.
Focusing on 2D only, neighborhoods usually include all points of the first ring and
then more distant points, following a strategy that attempts to sample all directions
as uniformly as possible while keeping the number of points as low as possible
(octant search). Typically, 16 to 32 points are retained, from at least five octants or
four noncontiguous octants. For contour mapping purposes, where continuity is
important, larger neighborhoods may be considered to provide more overlap. Such
an algorithm may not provide satisfactory results when data originate from profiles
sampled with a short interval. The neighborhood selection then includes the
requirement to have data originating from several profiles. Along years, the size of
the neighborhoods increased with the improvements of computers in terms of CPU
time and storage.
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29.3.5 Maturity

In the 1980s kriging seemed to have reached maturity. It was widely used in mining
projects to build block models of orebodies, even with a large number of sample
data and a very large number of blocks. In civil engineering it enabled an accurate
design of the Channel tunnel on the basis of a model of the geological layers
obtained by kriging from about 100 000 data, with a sound evaluation of the
uncertainty of the model (Blanchin and Chilès 1993; Chilès and Delfiner 2012,
Sect. 3.8). There were further developments specific to nonlinear geostatistics
(disjunctive kriging, indicator kriging) and to multivariate geostatistics (factorial
kriging analysis) which are not considered here.

At the same period, Sacks et al. (1989) opened a completely new domain to
kriging: the design and analysis of computer experiments (DACE). The coordinates
of x are no longer geographic but represent scalar design variables, while the
variable of interest Z is an objective function that depends on the design variables.
A computer experiment gives the value of the objective function for chosen values
of the design variables. When computer experiments are costly, kriging is used to
interpolate the response surface from a limited number of data (computer experi-
ments). Applications mainly concern engineering problems, for example, the design
of aircrafts (Chung and Alonso 2002). They call for specific research works, due to
the very special space considered, the sparsity of the data, the difficulty to infer the
covariance. See Kleijnen (2016) for a recent review.

29.4 Iterative Use of Kriging to Handle Inequality Data

Up to the early 1980s, geostatistics provided direct solutions: kriging was obtained
by solving a linear system of equations, (Gaussian) simulations were built by
turning bands or other methods directly transforming a vector of independent
standard normal random variables in a vector representing a discrete view of the
random function. Iterative algorithms appeared to handle inequality data and more
specifically to generate conditional simulations of truncated Gaussian RFs.

Inequality data were already considered in the 1980s, notably by Dubrule and
Kostov (1986) and Kostov and Dubrule (1986), with a solution based on quadratic
programming where inequality data are treated as constraints placed on the kriging
estimate. At the end, the inequalities are classified either as inactive (they can be
forgotten) or active, and in the latter case they are replaced by an equality to the
upper or lower bound of the inequality. This classification is not trivial at all and is
the value of the method, but the clamping effect produced by the replacement of
some inequalities by their lower or upper bound is not really satisfactory.

An alternative approach proposed by Langlais (1990) is to regard inequalities as
data and replace them by exact values. The procedure is to (i) simulate exact data
satisfying the given inequalities while honoring the exact data and the spatial
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structure, (ii) average the results over several simulations, thus generating data that
will replace the inequality data, and (iii) proceed to kriging from both actual and
generated data.

At the same period, truncated Gaussian RFs were considered to represent geo-
logical facies. In its simplest form, such RF is defined by a Gaussian SRF Y(x) and a
threshold s. The truncated Gaussian RF is simply the indicator 1Y(x)≥ s. The
applications account for a threshold that varies with x (an ordinary function of x).
More general models are obtained with several thresholds and possibly two or three
Gaussian SRFs (plurigaussian RF). Matheron et al. (1987) proposed a method to
build conditional simulations of truncated Gaussian RFs in the case of a separable
exponential covariance. The method is rather simple because it fully exploits the
Markov properties of that covariance model.

From that time the geostatistics community devoted a growing interest to
Markov chain Monte Carlo (MCMC) methods (e.g., Tjelmeland and Holden 1993),
and particularly to the Gibbs sampler (Geman and Geman 1984). Initially devel-
oped to solve optimization problems, these methods also provide useful algorithms
for generating simulations of RFs at a finite number of sites (e.g., grid nodes). The
Gibbs sampler gives a consistent iterative method to achieve the first step of
Langlais (1990), which is the critical one: simulate exact data satisfying the
inequalities. Let us consider that the inequality data are of the form Zα ∈ Bα for
some values of α, where Bα denotes an interval. The procedure is initialized by
generating each of these Zα separately, by a value zα chosen in the interval Bα. Then
the following sequence is repeated:

1. Select an inequality site α.
2. Simulate Zα conditional on Zα ∈ Bα and Zβ = zβ for all α ≠ β (β ranges over

all sites except α), and assign the simulated value to zα.

The procedure changes the simulated values at the inequality sites so that they
progressively honor the spatial structure given by the covariance. This approach
finds its theoretical justification in the ideal case of a Gaussian SRF with a known
mean, where the conditional distribution of Zα is Gaussian with mean and variance
equal to the kriging estimate and the kriging variance. It is however robust and is
used even in the case of an unknown mean. The same approach is used effectively
to generate conditional simulations constrained by inequality data, and especially
truncated Gaussian RFs (the 0 or 1 data are transformed in inequality data of the
form Y(xα) < s or Y(xα) ≥ s). The algorithm should be used in global neighbor-
hood; otherwise, care should be given to the neighborhood selection, because the
algorithm may diverge.
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29.5 Nonstationary Covariance

Up to now we have considered models with a stationary covariance. But reality
does not care about our theoretical models. If a stationary covariance is often a
reasonable assumption when a limited number of samples is available, large data
sets usually show some lateral variations in the covariance or variogram, so that a
global model with a stationary covariance would be a too crude approximation.
This problem is obviously not new. A simple solution is to split the study domain
into several subdomains, to determine a specific variogram in each subdomain, and
to krige each subdomain with its own variogram. To avoid discontinuities at sub-
domains boundaries, the variogram parameters evolve progressively from one
model to the next in a transition area. This ad hoc method was used, for example,
for the study of the Channel tunnel where the 100 000 data clearly showed struc-
tural variations along the 60 km of the tunnel project. Machuca-Mory and Deutsch
(2013) generalize and systematize this approach.

Global nonstationary covariance models are of course sounder than the previous
approach from a theoretical point of view, and also from a practical one if they can
adapt to actual situations. A simple global covariance model can be derived by
generalization of the covariogram model, defined by autoconvolution of an inte-
grable and square integrable function w(u):

gðhÞ=
Z

wðuÞwðu+ hÞdu

If we replace w(u) by a dilution or kernel function w(x; u) also depending on x,
integrable and square integrable in u whatever x, and define

gðx, x′Þ=
Z

wðx; uÞwðx′; uÞdu

then g(x, x′) is a nonstationary covariance model (e.g., Higdon et al. 1999).
A random function with that covariance can be obtained by the dilution method
(Higdon 2002).

Let us now examine the case where w, considered as a function of u for fixed x,
is a Gaussian kernel with variance–covariance matrix Σx. The resulting correlation
function can be written (e.g., Paciorek and Schervish 2006)

gðx, x′Þ= Σxj j1 ̸4 Σx′j j1 ̸4 Σx +Σx′

2

����
����
− 1 ̸2

expð−Qxx′Þ
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with quadratic form

Qxx′ = ðx′− xÞT Σx +Σx′

2

� �− 1

ðx′− xÞ

If Σx is constant with respect to x, then g(x, x′) is the standard Gaussian cor-
relation function with global anisotropy matrix Σx. Otherwise, if Σx varies slowly,
g is approximately stationary in a small neighborhood of x. This locally stationary
correlation function can be generalized by replacing expð−Qxx′Þ by ρð−Qxx′Þ
where ρ is a stationary correlation function that is valid in every dimension. This
class of nonstationary covariance functions can be fitted by using local variograms
whose parameters are used to build local Σx matrices (e.g., Fouedjio et al. 2016).
Emery and Arroyo (2018) describe a spectral algorithm for simulating such models.

29.6 Kriging for Large Data Sets

We have seen that kriging with moving neighborhoods provides artifacts that can
be limited in their amplitude by a careful design of the neighborhood selection but
not eliminated. This problem is important when putting the Gibbs algorithm into
practice because the procedure might diverge. The best way to avoid artifacts is to
krige in global neighborhood, that is, any target point is kriged from all the data. As
the capabilities of computers in terms of memory and computational performance
always increase, this becomes possible for larger and larger data sets. However, the
size of most data sets is also increasing with the advent of automatic measurement
stations, so that the problem remains. A direct solving of the kriging system by
Gaussian elimination or the Cholesky method is possible for up to several thousand
equations. Several attempts were made for processing larger systems. Before pre-
senting two truly global approaches, let us start with a method deriving from
moving neighborhoods.

29.6.1 Continuous Moving Neighborhood

Gribov and Krivoruchko (2004) developed an original method to ensure continuity
with moving neighborhoods. The idea is to modify the kriging system so that data
beyond a specified distance from the estimated point receive weights gradually
approaching zero. This way, no discontinuity occurs when data points enter or exit
the kriging neighborhood.

Rivoirard and Romary (2011) propose an equivalent approach from a different
perspective: The idea is to introduce a penalty on the kriging weights in the
objective function to be minimized. This penalty acts as a noise variance except that
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it varies with the target point x0. It is typically equal to 0 for data points xα within a
distance r of the estimated point x0 (no penalty applied near the target point), and
increases continuously to infinity as xα approaches the outer boundary of the kriging
neighborhood, located at a distance R. Data points at a distance larger than R thus
receive a zero weight. Because this method is solely based on the addition of a noise
that increases with distance, it works for all versions of kriging algorithms: OK,
UK, and even IRF-k. Because it is local, this method can handle lateral changes in
the covariance parameters.

29.6.2 Covariance Tapering

Large systems can be solved if the kriging matrix is sparse. This can be achieved by
tapering the covariance function to zero beyond a certain range. Furrer et al. (2006),
who proposed this approach, define the tapered covariance as the product of the true
covariance C by a taper covariance K that has a finite range. To preserve the
behavior of the true covariance C near the origin, which controls the lateral con-
tinuity of the interpolant, the taper covariance K should be more regular near the
origin than C. The authors apply the method with about 6 000 data.

29.6.3 Fixed Rank Kriging

In order to reduce the complexity of the kriging system when the number of data is
very large, Cressie and Johannesson (2008) represent Z(x) as a linear combination
of r given basis functions Sk(x) with random coefficients ηk, plus a white noise
ε(x) (for simplicity, we omit the covariates considered by the authors as external
drift functions):

ZðxÞ= ∑
r

k=1
ηkSkðxÞ+ εðxÞ

The basis functions need not be orthogonal. They are usually chosen so as to
represent several scales of variation and, for each scale, to cover the whole study
domain. A typical choice is wavelet functions.

Denoting by S(x) the vector of the basic functions Sk(x), by K the variance–
covariance matrix of the ηk, and assuming that the white-noise variance is constant
and equal to σ2, the covariance of Z(x) and Z(x′) is

Cðx, x′Þ=SðxÞT KSðx′Þ+ σ2 δðx′− xÞ

where δ is the Kronecker function.
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Given a vector Z of N data Z(xα), the kriging matrix is

Σ= SKST + σ2I

where S is the N × r matrix whose (α, k) element is Sk(xα). The authors show that
the inverse of Σ (an N × N positive-definite matrix) in fact only requires the
inversion of K and K–1 + ST S/σ2 (two r × r positive-definite matrices). They also
show that the inference of the positive-definite matrix K and the variance σ2 can be
done with the classical geostatistical approach. Therefore, kriging becomes tractable
even with a very large number of data. In an application to ozone satellite data, the
authors use 396 basis functions, a huge reduction in comparison with the 173 000
data.

29.6.4 Gaussian Markov Random Field Approximation

The approach of Gaussian Markov random fields may be seen as the opposite of
that of covariance tapering in the sense that it seeks to make the inverse of the
covariance matrix—and not the covariance matrix itself—sparse. It was first used to
generate simulations (Besag 1974, 1975) but offers a new approach to kriging (Rue
and Held 2005). Let us consider a Gaussian random vector Z = {Zi: i = 1, …, N}
with known mean m and variance–covariance matrix C. The conditional distribu-
tion of Zi given the other components {Zj: j ≠ i} is Gaussian with mean and
variance the kriging estimate Z*

− i of Zi (the minus sign recalls that Zi is excluded
from the data used for that kriging) and the associated kriging variance σ2Ki.
Denoting by B the inverse of C, the kriging weights are found to be equal to
λjðiÞ= −Bij ̸Bii so that we have

Z*
− i =mi − 1

Bii
∑
j≠ i

Bij ðZj −mjÞ σ2Ki = 1
Bii

Since Bii is the inverse of the conditional variance of Zi given {Zj: j ≠ i} (all
except the i-th), B is known as the precision matrix. Its off-diagonal elements are
related to the conditional correlations of Zi and Zj given {Zk: k ≠ i, j} by

CorrðZi,ZjjfZk: k≠ i, jgÞ= −
Bi jffiffiffiffiffiffiffiffiffiffiffi
Bii Bjj

p

B is a symmetric positive-definite matrix. The pattern of zeroes of B can be used
to define an undirected graph structure in which two nodes are connected by an
edge when Bij ≠ 0. Let ne(i) denote the neighborhood of node i, that is, the set of
nodes connected to i by an edge. The vector Z has the Markov property that Zi is
conditionally independent of {Zk: k ∉ ne(i)} given {Zj: j ∈ ne(i)}. The discretely
indexed Gaussian Z is called a Gaussian Markov random field (GMRF).
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If the N components Zi are split in N1 unknown components to be estimated and
N2 = N – N1 data, it can be shown that kriging can be achieved by solving a linear
system of N1 variables and N1 equations whose system matrix is that part of the
precision matrix B corresponding to the N1 unknown components. The GMRF
approach is used when this matrix is sparse, so that the system can be solved even
when N1 is large.

29.6.5 The Stochastic Partial Differential Equation (SPDE)
Approach

Although the GMRF approach seems particularly appealing to deal with large data
sets, its use remained limited due to the fact that the link with the geostatistical
models based on covariance functions was not clear, making it difficult to param-
eterize the precision matrix. Nevertheless, some empirical studies showed that the
commonly used covariance functions could be approximated quite closely by
GMRFs (e.g., Rue and Tjelmeland 2002; Hrafnkelsson and Cressie 2003). These
results spurred some authors to model the data by using a Gaussian field charac-
terized by its covariance and then to find a discretized GRMF for which the inverse
of the associated precision matrix B provides a good approximation of the
covariance matrix of the Gaussian field (Song et al. 2008; Cressie and Verzelen
2008). Although promising, these algorithms suffer from a lack of theoretical
foundations, which makes their application difficult.

In their seminal paper, Lindgren et al. (2011) propose a formal link between
Gaussian field and GRMFs. They use a result established by Whittle in the 1950s
linking some Gaussian fields and the solutions of a class of SPDEs. More precisely,
let us consider the Matérn covariance function

CðhÞ= σ2

2ν− 1ΓðνÞ
jhj
a

� �ν

Kν
jhj
a

� �

where σ2 is the sill parameter, a > 0 is the scale parameter, ν > 0 is a regularity
parameter which determines the mean-square differentiability of the Gaussian field
and Kν is the modified Bessel function of the second kind and order ν. The result of
Whittle (1954) states that a Gaussian field Z with Matérn covariance function C is a
solution of the linear fractional SPDE

ðκ2 −ΔÞα ̸2ZðsÞ= τWðsÞ s∈ℝd

where α= ν+ d ̸2, κ=1 ̸a, τ2 = Γðν+ d ̸2Þð4πÞd ̸2κ2ν

ΓðνÞ , Δ is the Laplacian operator, and

W is a Gaussian white noise with unit variance. The pseudo-differential operator
ðκ2 −ΔÞα ̸2 can be defined through its Fourier transform but it is simply a linear
combination of iterated Laplacians when α ̸2 is an integer.
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Then, by using some numerical methods to solve the PDE, for example, a finite
differences method (FDM) or a finite elements method (FEM), Lindgren et al. (2011)
show that the resulting discretized field at the mesh points (which can include the
data locations) is a discrete GRMF. The precision matrix is directly provided by the
FDM or FEM implementation. It is a sparse matrix although the number of non-zero
elements increases with ν. Therefore, by including the target points in the mesh
generation, one can perform kriging with very large data sets by using an efficient
solver for sparse matrices. Note that, when α is not an integer, the operator

ðκ2 −ΔÞα ̸2 has to be approximated by ∑p
i=0 λiΔ

i
� �1 ̸2, where p is the smallest

integer greater than α. This operator can also be discretized by a FDM or FEM.
Anisotropies can be handled with the operator ðκ2 − divðH.∇ÞÞα ̸2 where H is a

symmetric positive-definite matrix linked to the anisotropy matrix and div is the
divergence operator.

An interesting feature of the SPDE approach is that it allows to easily incor-
porate varying coefficients. For instance, the matrix H can be replaced by H(s) to
handle a varying anisotropy (see Fuglstad et al. 2015).

Figure 29.2 presents a synthetic vertical section that could represent a variable of
interest such as porosity in a sedimentary layer. The base and top of the layers were
obtained by standard geostatistical simulations. The variable of interest was built
according to the model of Fuglstad et al. (2015) with α = 3/2, the matrix H in-
corporating the anisotropy model depicted in Fig. 29.3. This anisotropy model was
deduced from the model of the base and top of the layer, with a constant range
along the local direction of the layer, and a shorter range, varying proportionally to
layer thickness, in the orthogonal direction. Figure 29.2 shows five vertical
“drill-holes” considered as the data set, and Fig. 29.4 shows the kriged section
obtained with the SPDE method. The latter shows the capability of this approach to
account for the anisotropy model even in areas where there are no data (provided of
course that information is available concerning the anisotropy). From a computa-
tional point of view, the method is extremely efficient: in 2D a data set with about
100 000 data can be processed in about 10 s on a standard computer, with possibly
a number of conditional simulations nearly in the same time.

Fig. 29.2 SPDE synthetic case study: “Reality” (in fact a simulation) and sampling of five
drill-holes
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29.7 Iterative Algorithms for Solving the Kriging System

Before to conclude, it is advisable to remind a presentation of two iterative kriging
algorithms by Jean-François Royer in 1974, that is, in the early times of geo-
statistics. In meteorology, at that time, two main approaches were used to carry out
the “objective analysis”, that is, the interpolation of temperature and pressure at the
nodes of a grid from the observations at time t, then used as input for a numerical
weather forecast at time t + 1. One is Gandin’s approach (1963), similar to simple
kriging (in meteorology, the mean can be considered known thanks to a long
sequence of observations). The other is an iterative approach, the method of suc-
cessive corrections proposed by Cressman (1959).

Royer (1975) considers the simple monovariate situation. Rewritten with present
notations, let us consider a vector z with N = NG + NS components zi, the first NG

components corresponding to grid nodes (i ∈ G = {1; …; NG}) and the other NS

components corresponding to observation stations (i ∈ S = {NG + 1; …; NG +
NS}); zi represents the variable of interest, at location xi. Because the average
situation for the season or month considered is known from past observations, we
can subtract it and assume that z has mean 0. Two iterative algorithms are proposed,
depending on the set of points that drives the changes (grid nodes or observation
stations). In both cases, an influence function ρ(h) is used for extending a change

Fig. 29.3 SPDE synthetic case study: Anisotropy model

Fig. 29.4 SPDE synthetic case study: Kriging from the data of the five drill holes
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made at location x to location x + h depending on separation h. This function
satisfies ρ(0) = 1 and decreases to 0 when h increases. When extending to xj a
change made at xi, the notation ρij = ρ(xj – xi) will be used.

Algorithm driven by grid nodes: As step p = 0, select a vector z0 with com-
ponents z0i , for example zeroes or the values of the weather forecast for time t based
on the objective analysis made at time t – 1. Then iterate as follows:

1. increase the step number p by 1
2. calculate the discrepancies of step p – 1 with regard to the data: zi − zp− 1

i , i∈ S
3. define model p as zpi = zp− 1

i + ∑
j∈ S

ρijðzi − zp− 1
i Þ, i∈G∪ S

Algorithm driven by the observations: As initial state, select a vector znew with
components znewi , for example zeroes or the values of the weather forecast for time
t based on the objective analysis made at time t – 1. Then iterate as follows:

1. Set zcurrentj = znewj , j∈G∪ S
2. Select a component of S, say i, at random or by systematic scans of all the

components of S
3. Calculate the discrepancy of the current value with regard to the observation:

zi − zcurrenti
4. Define znewi = zi
5. Update all other components so that znewj − zcurrentj = ρijðznewi − zcurrenti Þ, j≠ i

The convergence of both algorithms is ensured if and only if the matrix ρ defined
by the ρij is positive definite, which is ensured if ρ(h) is a correlogram. Moreover, in
that case, the iterative process converges to the solution of dual kriging. Indeed,
both approaches amount to an iterative resolution of the dual kriging system (by the
Jacobi method in the first approach, by the Gauss-Seidel method in the second one),
followed, after each iteration, by the propagation of the changes to the point kriging
estimates.

The second algorithm is very similar to the Gibbs propagation algorithm pro-
posed nearly 40 years later by Lantuéjoul and Desassis (2012) to simulate a
Gaussian vector (this algorithm is also presented in Chilès and Delfiner 2012,
Sect. 7.6.3; it constitutes a further step to an algorithm proposed by Galli and Gao
1999). It is this similarity that reminded one of the present authors the paper of
Royer, not exploited by geostatisticians to our knowledge, which should deserve
new consideration. These iterative algorithms have the advantage that they can be
used even with a very large number of data, notably when the Cholesky method
cannot be used.
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29.8 Conclusion

We have shown the long way from Krige’s regression, which took account of two
average sample grades (a local one and a global one) to avoid bias in the estimation
of a panel, to present applications of kriging, which can deal with few data (e.g., a
limited number of computer experiments in applications to DACE) as well as
several hundred thousand data (remote sensing, seismic). We have seen the large
diversity of application domains of kriging, so that is it probable that many users do
not know the origin of the word: this is the price of success.

We also gave a look at current research to enable a global application of kriging
to large data sets, with the requirement to also benefit from nonstationary random
function models. Much work remains necessary to transform them in standard
methods applicable to a large variety of situations but, in view of the large com-
munity of researchers and developers in this area, no doubt that it will be done. The
future will show which approaches are the most efficient ones.
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Chapter 30
Multiple Point Statistics: A Review

Pejman Tahmasebi

Abstract Geostatistical modeling is one of the most important tools for building an
ensemble of probable realizations in earth science. Among them, multiple-point
statistics (MPS) has recently gone under a remarkable progress in handling complex
and more realistic phenomenon that can produce large amount of the expected
uncertainty and variability. Such progresses are mostly due to the recent increase in
more advanced computational techniques/power. In this review chapter, the recent
important developments in MPS are thoroughly reviewed. Furthermore, the
advantages and disadvantages of each method are discussed as well. Finally, this
chapter provides a brief review on the current challenges and paths that might be
considered as future research.

30.1 Introduction

Characterization and modeling of geological structures have been investigated for
several years in geosciences. Geostatistics is one of the such methods that can be
used to analyze the data effectively. Such analysis can be performed both spatially
and temporally. Lack of data is one of the intrinsic issues in the earth science
applications, which causes a significant uncertainty and ambiguity in these prob-
lems. Kriging, as one of the most widespread geostatistical tools, was developed for
dealing with such problems. The basic mathematically equations of Kriging, after
developing by Daniel Krige, was further advanced by Matheron (Journel and
Huijbregts 1978; Matheron 1973). Kriging is a deterministic method, meaning that
it only produces one outcome from the available sparse data, which intrinsically
cannot be used to effectively quantify the uncertainty. This method requires a prior
model of variability and correlation between the variables, known as the variogram
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(Chiles and Delfiner 2011; Cressie and Wikle 2011; Deutsch and Journel 1998;
Goovaerts 1997; Kitanidis 1997).

It has been shown that Kriging produces excessively smooth results (Deutsch
and Journel 1998; Journel and Zhang 2006) and it cannot represent the hetero-
geneity and non-smooth phenomena. One consequence is the underestimation and
overestimation for low and high values, respectively. This problem becomes evi-
dent when important parameters such as water breakthrough is intended to be
predicted. Thus, the results of Kriging cannot be used for these situations as they
ignore the connectivity and variability.

Stochastic simulation can be used to overcome the limitations of Kriging
(Goovaerts 1997; Journel and Huijbregts 1978). Several simulation methods have
been proposed that can produce various equi-probable realizations. Methods such as
sequential Gaussian simulation (SGSIM) and sequential indicator simulation
(SISIM) have become popular among different fields of earth sciences. These
methods, give a number of “realizations” or interpolation scenarios, which allow
assessing the uncertainty and quantifying it more accurately. It should be noted that
Kriging is still the main algorithm used in the above stochastic methods. An example
for the application of Kriging and stochastic modeling is provided in Fig. 30.1.

Due to relying on variogram (i.e. covariance), kriging-based geostatistical sim-
ulations are not able to reproduce complex patterns. Clearly, considering only two
points is not sufficient for reproducing complex and heterogeneous models. Thus,
several attempts in the recent years in the context of multiple point geostatistics
(MPS) have been made that can use more than two points simultaneously. Using the
information from multiple points require a big source of data, which is not usually
available in the earth science problems as they come with sparse and incomplete
data. Such data, instead, can be browsed in the form a conceptual image, called
training image (TI).

Fig. 30.1 Comparison between the results of Kriging (b) and stochastic simulation (c) using
conditioning point data in (a)
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Technically, geostatistical methods can be divided into three main groups.
Object-based (or Boolean) simulation methods are in the first group (Kleingeld
et al. 1997). These methods consider the medium as a group of stochastic objects
that are defined based on a specific statistical distribution (Deutsch and Wang 1996;
Haldorsen and Damsleth 1990; Holden et al. 1998; Skorstad et al. 1999).

Pixel-based methods are considered in the second group. These methods are
based a set of points/pixels that represent various properties of a phenomenon.
Mathematically speaking, such methods vary from the LU decomposition of the
covariance matrix (Davis 1987), sequential Gaussian simulation (Dimitrakopoulos
and Luo 2004), frequency- domain simulation (Borgman et al. 1984; Chu and
Journel 1994), simulated annealing (Hamzehpour and Sahimi 2006), and the
genetic algorithm. The last two methods, namely optimization techniques, also
belong to this group as they gradually change an earth model in a pixel-by-pixel
manner.

Each of the above methods has some advantages and limitations. For example,
geological structures can be reproduced accurately using the object- based simu-
lations. However, conditioning in these methods to well and soft data require
intensive computation.

Pixel-based methods simulation on one pixel at a time. Such techniques produce
the conditioning point data exactly. One drawback of these methods is that they are
based on variograms that represent two-point statistics and, thus, they cannot
reproduce the complex and realistic geological structures. Consequently, the gen-
erated models using these techniques cannot represent an accurate representation of
any physics-based simulations (e.g. flow, grade distribution, contaminate fore-
casting and etc.).

In the MPS methods, the spatial statistics are not either extracted using vari-
ogram, but a conceptual tool named training image (TI), which is an example of the
spatial structure to be reproduced, is provided that can represent the necessary data.
During the recent years, several MPS methods have been developed to address
issues related to CPU time and improved graphical representation of the models
produced. This chapter, thus, reviews the existing concepts in MPS and discusses
the available methods. The main two-point based stochastic simulation methods are
first reviewed. Then, the basic terminologies and concepts of MPS are demon-
strated. Next, different MPS methods are explained and the advantages and dis-
advantages associated with each method are demonstrated. Finally, some avenues
for future research are discussed.

30.2 Two-Point Based Stochastic Simulation

The smoothing effect of Kriging can be avoided using the sequential simulation,
which helps to quantify the uncertainty accurately. Consider a set of N random
variables Z uαð Þ, α=1, . . . ,N defined at locations uα. The aim of sequential sim-
ulation is to produce realizations z uαð Þ, α=1, . . . ,Nf g, conditioned to n available
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data and reproducing a given multivariate distribution. For this aim, the multivariate
distribution is decomposed into a set of N univariate conditional cumulative dis-
tribution functions (ccdfs):

Fðu1, . . . , uN ; z1, . . . , zN j nð ÞÞ= Fðu1; z1j nð ÞÞ×
Fðu2; z2j n+1ð ÞÞ×⋯×

FðuN − 1; zN − 1j n+N − 2ð ÞÞ×
FðuN ; zN j n+N − 1ð ÞÞ

ð30:1Þ

where FðuN ; zN j n+N − 1ð ÞÞ=Prob fZ uNð Þ≤ zN j n+N − 1ð Þg is the conditional
ccdf of Z uNð Þ conditioned to a set of n original data and N − 1ð Þ previously sim-
ulated values.

30.2.1 Sequential Gaussian Simulation (SGSIM)

In this method, the multivariate distribution and the higher order are constructed
based on the lower order statistical such as histogram and variogram. In other
words, the mean and covariance matrix are used to build a Gaussian function.
Therefore, along a random path, the mean and variance of the Gaussian distribution
is estimated via Kriging and Kriging variance. The overall algorithm of SGSIM can
be summarized as follows. First, a random path is defined over all visiting points on
the simulation grid. Then, the ccdf at each node based on the hard data and pre-
viously simulated data are considered in Kriging. Then, a random value from the
obtained Gaussian ccdf is drawn and added to the simulation grid. Next, based on
the predefined random path, another node is chosen and simulated. Finally, another
realization can be generated using a different random path.

It is worth noting that the conditioning data should be normally distributed. If it
is not the case, it entails transforming them into a Gaussian distribution in order to
be useable for SGSIM. Finally, the results must be back-transferred at the end of
simulation. Such transformations can be accomplished using normal-score trans-
forms or histogram anamorphous through Hermite polynomials.

30.2.2 Sequential Indicator Simulation (SISIM)

Indicator simulation follows the same principle as SGSIM. This method, however,
is suited for categorical data, which do not have an order relationship. Typical
examples in earth science are rock type, lithology codes and some other categorical
properties. The similar sequential procedure based on the estimation of the ccdf
conditioning to neighboring data is applied here as well. This algorithm is based on
two-point indicator variograms, which represent the spatial variability of each
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category. An indicator variable is defined for each variable, equal to 1 if at location
u a particular category is found, and zero otherwise. Also, E I uð Þf g= p is the
stationary proportion of a given category. The indicator variogram can be expressed
as:

Prob I uð Þ=1, I u+ hð Þ=1f g
=E I uð ÞI u+ hð Þf g
=Prob fI uð Þ=1jI u+ hð Þ=1g

ð30:2Þ

Usually, the categorical variables expressed as a set of K discrete categories that
z uð Þ 0, . . . , k− 1f g. Therefore, the indicator value for each of the defined classes
can be expressed as:

I u, kð Þ= 1 Z uð Þ= k
0 otherwise

�
ð30:3Þ

The aim of the indicator formulation is to estimate the probability of Z uð Þ to be
less than the predefined threshold for a category conditional to the data (n) retained:

I* u, zkð Þ=E* I u, zkð Þj nð Þð Þ
=Prob* Z uð Þ< zk nð Þð Þ ð30:4Þ

We can rewrite the above equation for categorical variables by using simple
Kriging as:

I* u, zkð Þ−E I u, kð Þð Þ= ∑
n

α=1
λα uð Þ I uα, kð Þ−E I uα, kð Þf gð Þ

∑
K

k=1
I* u, kð Þ=1

ð30:5Þ

where E I u, kð Þf g is the marginal probability for category k.
The above formulation can be applied within the sequential scheme which

known as SISIM. Indicator Kriging (IK) is used to estimate the probability of each
category. This algorithm can be described as follow. Similarly, as SGSIM, a ran-
dom path is defined by which all of the nodes are visited. Then, using Simple
Kriging, the indicator random variable for each category is estimated for each node
on the random path based on the neighboring data. Next, the conditional probability
density function (cpdf) is obtained and a value is randomly drawn from that cpdf
and assigned to the simulated node. This procedure is repeated sequentially for all
the visiting nodes until the simulation grid is completed. By choosing another
random path, one can generate another realization. More information on this
method can be found in Goovaerts (1997).
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30.3 Multiple Point Geostatistics (MPS)

One of the bottlenecks in the two-point based geostatistical simulations is their
inability in dealing with complex and heterogeneous spatial structures. Such
methods cannot fully reproduce the existing physics and most of their parameters
usually do not have an equivalent in the reality. In particular, these methods cannot
convey the connectivity and variability when the considered phenomenon contains
definite patterns or structures. For example, models containing regular structures
cannot be reproduced using the SGSIM method. Thus, increasing the number of
points can help reproducing the connectivities and complex features. The MPS
methods, indeed, intend to reproduce the physics in natural phenomena and they all
are based on a set of training images. Below, some preliminary concepts are first
reviewed.

30.3.1 Training Image

Training image (TI) is one of the most important inputs in the MPS techniques.
Thus, providing a representative TI, or a set of TIs, is the biggest challenge in the
MPS applications. In general, TIs can be generated using the physics derived from
process-based methods or statistical methods or by using the extracted and observed
rules for each geological system. The TI can be of any type, ranging from an image
to statistical properties in space and time. In fact, TIs let us to include subjectivity in
the geological modeling, as they are difficult to be taken into account in the tra-
ditional statistical methods. In a broader sense, TI can be constructed based on the
traditional statistical methods. These outcomes, however, do not represent
the deterministic aspects of geological models, as they usually tend to signify the
randomness fragment. Geologically speaking, most of the images in natural sci-
ences represent some degree of complexity and uniqueness. Some examples of the
available TIs are shown in Fig. 30.2.

The available methods for constructing the TIs are divided into three main
groups:

• Outcrop Data: An example of TI is the outcrop images, which are one of the
preliminary sources of information at the first step of geological modeling. They
provide a unique and direct representation of geological features. They also
provide a clear illustration of the geometry and spatial continuity that allow
visual inspection of the existing structures in 2D sections.

• Object-based Methods: An alternative for constructing structured categorical
models is the object-based (or Boolean) method (Deutsch and Wang 1996;
Haldorsen and Damsleth 1990; Holden et al. 1998; Lantuéjoul 2002; Skorstad
et al. 1999). These methods are defined based on some shape parameters (e.g.
size, direction, and sinuosity). The results can be used within an iterative
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Fig. 30.2 a Wagon Rock Caves outcrop (Anderson et al. 1999), b digitized outcrop driven from
(a), c Herten gravel pit (Bayer et al. 2011), d litho and hydrofacies distribution extracted from (c),
e a 3D object-based model (Tahmasebi and Sahimi 2016a), f some 2D section of the 3D model
shown in (e), g a 2D model generated using the process-based techniques (Tahmasebi and Sahimi
2016a), h a 3D model generated by the process-based methods (Tahmasebi and Sahimi 2016a)
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algorithm to provide any further alterations. The results of object-based simu-
lation methods are one of the best and most accessible sources for TIs.

• Process-based Methods: Process-based methods (Biswal et al. 2007, 1999;
Bryant and Blunt 1992; Gross and Small 1998; Lancaster and Bras 2002; Pyrcz
et al. 2009; Seminara 2006) try to develop 3D models by mimicking the
physical processes that form the porous medium. Though realistic, such meth-
ods are, however, computationally expensive and require considerable calibra-
tions. Moreover, they are not general enough, because each of them is
developed for a specific type of formation, as each type is the outcome of some
specific physical processes.

30.4 Simulation Path

Geostatistical techniques are conducted on a simulation grid G, which is con-
structed on several cells. These cells are visited in diverse ways on a predefined
path, either in random or in structural manner (i.e. raster path).

30.4.1 Random Path

Random path is one of the most commonly used visiting path in sequential sim-
ulation algorithms. In this particular path, a series of random number equal to the
number of unknown cells, based on a random seed, is generated for each realization
and the unvisited points on G are simulated accordingly. Clearly, the number of
simulated (i.e. known) points increase as the simulation proceeds. Each realization
is generated using a simulation path. These paths commonly come with unbi-
asedness around the conditioning point data.

30.4.2 Raster Path

Algorithms based on raster path are popular in the stochastic modeling. These paths
are constructed based on structural 1D path, meaning that the simulation cells are
visited systematically and one can predict the future visiting points. Daly (2005)
presented a Monte Carlo algorithm that utilized raster path. Then, patch-based
algorithm was used based on this path by El Ouassini et al. (2008). Next, Parra and
Ortiz (2011) used a similar path in their study. Finally, Tahmasebi et al. (2014,
2012a, b) implemented a raster path along a fast similarity computation and
achieved high-quality realizations. Such paths usually produced high quality real-
izations that can barely be produced using the random path algorithms.
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One of the advantages in using such paths is the small number of constraints that
help the algorithms to better identify the matching data (or patterns). For instance,
one only deals with 1–2 overlap regions in 2D simulations, which is much more
efficient when four overlaps are used in the random path algorithms. Thus, one
should expect more discontinuities and artefacts when then number of overlaps are
increased. Indeed, identifying a pattern from TI based on four constraints is very
difficult, if not impossible. Therefore, using small number of overlaps is desirable as
they result in high-quality realizations. Raster path algorithms offer such a prospect
and one can achieve realizations with higher quality.

Dealing with conditioning data (e.g. point and secondary data) is one of the
crucial issues in these paths. They, in fact, cannot account for the conditioning data
that are ahead of them. Therefore, some biases have been observed in these algo-
rithms, particularly around the conditioning point data. Some complementary
methods such as template splitting (Tahmasebi et al. 2012a) and co-template (Parra
and Ortiz 2011; Tahmasebi et al. 2014) have addressed this issue partially.

30.4.3 Some Other Definitions

Simulation Grid (G): a 2D/3D computation grid on which the geostatistical mod-
eling is performed and is composed of several cells, depending on the size of
domain and simulation. It contains no information for unconditional simulation,
while the hard data are distributed in their corresponding cells.

Data-Event: a set of points that are characterized by a distance, namely lag,
which are considered around a visiting point (cell) on G.

Template: a set of points that are organized systematically and used for finding
similar patterns in TI.

30.5 Current Multiple Point Geostatistical Algorithms

Generally, the MPS methods have been developed in both pixel- and pattern-based
states, each of which, as discussed, have similar pros and cons. For example, the
pixel-based MPS methods can perfectly match the well data, whereas, these
methods, in some complex geological models, produce unrealistic structures. On
the other hand, pattern-based techniques bring a more accurate representation of the
subsurface model, while they usually miss the conditioning data. The pattern-based
methods simulate a group of points at a time. Currently, these techniques are under
different progress, due to their ability for simultaneous reproduction of conditioning
data and geologically realistic structures. As mentioned, conditioning to well data is
one of the critical issues in the pattern-based techniques. Thus, taking advantage of
the capabilities of both pixel- and pattern-based techniques in the MPS methods
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through the hybrid frameworks will result in an efficient algorithm. Such a com-
bination is reviewed thoroughly in this chapter as well.

Most of the available MPS methods can be used with non-stationary systems, the
ones in which the statistical properties of a region is different from other parts
(Chugunova and Hu 2008; Honarkhah and Caers 2012; Mariethoz et al. 2010;
Strebelle 2012; Tahmasebi and Sahimi 2015a; Wu et al. 2008).

30.5.1 Pixel-Based Algorithms

i. Extended Normal Equation Simulation (ENESIM)

The ENESIM is the first method wherein the idea of MPS was raised (Guardiano
and Srivastava 1993). This method is based on an extended concept of indicator
kriging, which allows reproduction of multiple-event inferred from a TI. It first
finds the data even at each visiting point and then scans the TI for identifying all
occurrences. Then, a conditional distribution for all the identified occurrences is
constructed. Next, a sample from the generated histogram is drawn and placed in
the visiting point on G. One of the main drawbacks of this algorithm is scanning the
TI for each visiting point, which makes it unpractical for large G and TI. This
algorithm was later redesigned in the SNESIM algorithm by aid of search tree so
one does not need to rescan the TI for each visiting point, but it can be done once
before the simulation begins. Some of the results of this algorithm are presented in
Fig. 30.3.

ii. Simulated Annealing

Simulated annealing (SA) is one of the popular methods in optimization that is used
to the global minima. Suppose E represent the energy:

E= ∑
n

j=1
f Oj
� �

− f Sj
� �� �2 ð30:6Þ

where Oj and Sj represent the observed (or measured) and the corresponding
simulated (calculated) properties of a porous medium, respectively, with n being the
number of data points. If there are more than one set of data for distinct properties
of the medium, the energy E is generalized to

E= ∑
m

i=1
ωiEi ð30:7Þ
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where Ei is the total energy for the data set i, and ωi the corresponding weight, as
two distinct set of data for the same porous medium do not usually have the same
weight or significance.

An initial guess is usually considered as the structure of medium by which the
algorithm can start. Then, a small perturbation is made on the initial model and the
new energy E′ and the difference ΔE=E′ −E, are then computed. Based on a
probability this interchange is then accepted. The interchange is then accepted with
a probability p ΔEð Þ. Then, according to the Metropolis algorithm,

p ΔEð Þ= 1, ΔE≤ 0,
exp −ΔE ̸Tð Þ ΔE>0,

�
ð30:8Þ

where T is a fictitious temperature.
Based on statistical mechanics, it is well known that the equilibrium state of

ground state can be achieved when it is heated up to a high temperature T and then
slowly cooled down to absolute zero. The cooling is usually considered slow to
allow the system to reach its true equilibrium state. It, indeed, allows the systems to
not trap in a local energy minimum. At each annealing step i the system is allowed
to evolve long enough to “thermalize” at T ið Þ. Then, the temperature T is decreased

Fig. 30.3 The results of the ENESIM algorithm. a cross-bedded sand, which is used as TI, b one
realization generated using ENESIM, c TI: fractured model generated using physical rock
propagation, d one conditional realization based on the TI in (c) and 200 conditioning data points.
The results are browed from Guardiano and Srivastava (1993)
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and continues until the true ground state of the system is reached. This process stops
when the E is deemed to be small enough. This method has been used widely for
reconstruction of fine-scale porous media by Yeong and Torquato (1998a, b),
Manwart et al. (2000) and Sheehan and Torquato (2001), as well as large-scale oil
reservoirs.

Using this framework, the algorithm starts on a spatially random distribution for
the simulation grid G. It should be noted that the hard data are placed in the G at the
same time. Afterwards, the simulation cells are visited and the energy of realization
(i.e. global energy) is calculated using the terms considered in the objective func-
tion. Then, the probability of acceptance/rejection is calculated and the new value
will be used/ignored accordingly. Consequently, the objective function will be
updated and next T can be defined afterwards. This process continues until the
predefined stopping criteria are meet.

Deutsch (1992) used this algorithm to reproduce some MPS properties. He
considered an objective function that satisfies some constrains such as histogram
and variogram. Furthermore, some researchers applied simulated annealing for
simulation of continuous variables (Fang and Wang 1997). However, simulated
annealing has drawbacks, a major one being CPU time. Therefore, one can only
consider a limited number of statistics as constrains, because increasing the number
of constrains has a strong effect on CPU time. In addition, this algorithm has many
parameters which should be tuned and therefore need a large amount of trial and
error to achieve optimal values. Peredo and Ortiz (2011) used speculative parallel
computing to accelerate the simulated annealing; however the computation times
are still far from what is obtained with sequential simulation methods (Deutsch and
Wen 2000). A overall comparison between the SA algorithm and the traditional
algorithms is presented in Fig. 30.4. In a similar fashion, the multiple point sta-
tistical methods have also used the effect of iterations on removing the artifacts
(Pourfard et al. 2017; Tahmasebi and Sahimi 2016a). It should be noted that the
sequential algorithms can be parallel using different strategies which are not dis-
cussed in this review chapter (Rasera et al. 2015; Tahmasebi et al. 2012b).

iii. Markov Random Field (MRF)

These models incorporate constraints by formulating high-order spatial statistics
and enforcing them on the simulated domain using a Metropolis-Hastings algo-
rithm. In this case, the computational problem of the previous methods remains
because the Metropolis-Hastings algorithm, although always converging in theory,
may not converge in a reasonable time. The model parameters are inferred from the
available data, namely TI.

The Markovian properties are usually expressed as a conditional probability:

p Zjall previousZð Þ= p z1ð Þp z2jz1ð Þ . . . p zN jzN − 1, zN − 2, . . . , z2, z1ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p zN jZΦNð Þ

ð30:9Þ
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where ZΦN indicates the conditional probability of zN and p zNð Þ>0∀zN .
Fully utilizing the MRF algorithm for large 3D simulation grids in earth science

is not practical. Thus, researchers have focused on less computationally demanding

TI SA realization 

SGESIM SISIM

SA

TI SA

Fig. 30.4 A comparison between the results of the SA algorithm and traditional two-point based
geostatistical simulations (Deutsch 1992). It should be noted that the results of the SGESIM,
SISIM and SA algorithms are generated based on the TI shown in Fig. 30.3a. The last raw is
browed from Peredo and Ortiz (2011)
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algorithms such as Markov Mesh Models (MMM) (Daly 2005; Stien and
Kolbjørnsen 2011; Toftaker and Tjelmeland 2013). In this algorithm, the simulation
is only restricted to a reasonable small window around the visiting point, see
Fig. 30.5. Thus, Eq. (9) can be shorten as:

p Zð Þ= p z1ð Þp z2jz1ð Þ . . . p znjzn− 1, zn− 2, . . . , z2, z1ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p znjZΦnð Þ

ð30:10Þ

where n≪N.
Tjelmeland and Eidsvik (2005) used a sampling algorithm that incorporates an

auxiliary random variable. These methods suffer from extensive CPU demand and
instability in convergence. Besides, the large structures cannot be reproduced finely,
a series of factors that make them difficult to use for 3D applications. Some of the
results of this method are shown in Fig. 30.6.

iv. Single Normal Equation Simulation (SNESIM)

The single normal equation simulation (SNESIM) is an improved version of the
original algorithm proposed by Guardiano and Srivastava (1993). The SNESIM
algorithm scans the input TI for once and then stores the frequency/probability of
all pattern occurrences in a search tree (Boucher 2009; Strebelle 2002), which
reduces the computational time significantly. Then, the probabilities are retrieved
from the constructed search-tree based on the existing data in the data-event.
The SNESIM algorithm is a pixel-based algorithm, which can perfectly reproduce
the conditioning point data.

The SNESIM algorithm is a sequential algorithm and, thus, each cell S can take
k possible states sk, k=1, . . . , Kf g, which usually represents facies unit. This
algorithm, like any other conditional techniques, calculates the joint probability
over n discrete points using:

Fig. 30.5 An illustration of the MMM method. The gray cells represent the unvisited points. The
neighborhood is shown in a red polygon. This figure is taken from Stien and Kolbjørnsen (2011)
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Φ h1, . . . , hn; k1, . . . , knð Þ=E ∏
n

α=1
I u+ hα; kαð Þ

� �
ð30:11Þ

where h, k, u and E represent separation vector (lag), state value, visiting location
and expected value, respectively. I u; kð Þ also denotes the indicator value at location
u. This equation, thus, gives the probability of having n values ðk1, . . . , knÞ at the
locations s u+h1ð Þ, . . . , s u+ hnð Þ. The above probability is replaced with the
following equation in SNESIM:

Φ h1, . . . , hn; k1, . . . , knð Þ≅ c dnð Þ
Nn

ð30:12Þ

where Nn and c dnð Þ denote the total number of patterns in the TD and number of
replicates for the data event dn = s u+ hnð Þ= skα , α=1, . . . , nf g.

Fig. 30.6 A demonstration of the results of MRF (Daly 2005; Stien and Kolbjørnsen 2011). a,
c TI and b, d realizations
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This algorithm benefits from multiple-grid by which the large structures are first
captured using a smaller number of nodes and then the details are added. This
concept is illustrated in Fig. 30.7.

One of the limitations in the SNESIM algorithm is lack of producing realistic,
highly connected and large-scale geological features. This algorithm, however, can
be used only on categorical TIs. The SNESIM algorithm is still inefficient for the
real multimillion cells applications (Tahmasebi et al. 2014). Several other methods
were latter proposed to improve the efficiency and quality of the SNESIM algorithm
(Cordua et al. 2015; Straubhaar et al. 2013). A new technique has recently been
presented that can take the realizations and perform a structural adjustment to match
the well data (Tahmasebi 2017) (Fig. 30.8).

V. Direct Sampling

Direct sampling method is very similar to SIMPAT algorithm (see below) in that
sense it only scans a part of TI and pastes one single pixel (Mariethoz et al. 2010).
Since the TI is scanned in each loop of the simulation, thus, there is no need to
make any database and less RAM is required. Like the pattern-based techniques,
this algorithm uses a distance function for finding the closest patterns in TI. This
method can be used for both categorical and continuous variables.

The DS algorithm selects the known data at each visiting point. Then, the
similarity of the data-event with the TI is calculated based on a predefined searching
portion. As soon as the first occurrence of a matching data event in the TI is found
(corresponding to a distance under a given threshold acceptance), the value of the
central node of the data event in the TI is accepted and pasted in the simulation. It

Fig. 30.7 Demonstration of
multiple-grid approach in
SNESIM. The figure is taken
from Wu et al. (2008)
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should be noted that the searching phase stops if the algorithm finds a pattern that is
similar up to a given threshold. If not, the most similar pattern found in the pre-
defined portion of TI is selected and its central node is pasted on the simulation grid
(Fig. 30.9).

vi. Cumulants

More information beyond two-point statistics can be inferred using the cumulants
approach. This method, indeed, can extract such a higher information directly from
the existing data, rather than the TI. Dimitrakopoulos et al. (2010) first used this
method to simulate geological structures. The geological process, anisotropy and
pattern redundancy are the important factors that should be considered in selecting
the necessary cumulants (Mustapha and Dimitrakopoulos 2010). The conditional
probability is first calculated based on the available data. Then, the TI is only
researched if not sufficient replicates cannot be found in the data. One requires
selecting appropriate spatial cumulants for each geological scenario and there is no
specific strategy on this. Some of the results of this method are shown in Fig. 30.10.

Fig. 30.8 The results of SNESIM. The realizations shown in (a, b) are generated using the TI in
Fig. 30.6c. c TI and d a realization based on the TI in (c)
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30.5.2 Pattern-Based Algorithms

Pixel-based algorithms can have problems to preserve the continuity of the geo-
logical structures. To palliate this, some pattern-based methods have been devel-
oped which briefly are introduced bellow. Their commonality is that they do not
simulate one pixel at a time, but they paste an entire “patch” in the simulation. One
of the main aims of using pattern based simulation methods is their ability to
preserve the continuity and overall structure observed in TI.

i. Simulation of Pattern (SIMPAT)

The algorithm of simulation of patterns was first introduced to address some of the
limitations in the SNESIM algorithm, namely the CPU time and connectivity of
patterns (Arpat and Caers 2007). This method replaces the probability with a dis-
tance for finding most similar pattern. The algorithm can be summarized as follows.

TI Realization

TI Realization

Fig. 30.9 The results of the DS algorithm for modeling of a hydraulic conductivity field (upper
row) and a continuous property (b). The results are taken from Mariethoz et al. (2010) and Rezaee
et al. (2013)
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The TI is first scanned using a predefined template T and all the extracted patterns
are stored in a pattern database. Then simulation points are visited based on the
given random path and the corresponding data-event is extracted accordingly. One
of the patterns in pattern database is selected randomly if the data-event at the
visiting point contains no data. Otherwise, the most similar pattern is selected based
on the similarity between the data-event the patterns in pattern database. The above
steps are repeated for all visiting points. The results of SIMPAT algorithm are
realistic. However, it requires an extensive CPU time and encounters various
serious issues in 3D modeling. Furthermore, the produced results manifest a con-
siderable similarity with TI as this algorithm seeking for the best matching pattern.
Thus, this method seems to underestimate the spatial uncertainty. Some of the
results of SIMPAT are shown in Fig. 30.11.

In a similar fashion, the pattern-based techniques can be used within a Bayesian
framework (Abdollahifard and Faez 2013). This process, however, can be very

TI Realization

TI Realization

Fig. 30.10 The results of cumulants for modeling of two complex channelized systems. The
results are taken from Mustapha and Dimitrakopoulos (2010, 2011)
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CPU demanding. Other enhancements on SIMPAT was also considered later by
incorporating wavelet decomposition (Gardet et al. 2016).

ii. Filter-based Simulation (FILTERSIM)

As pointed out, SIMPAT suffers from its computational cost, as it requires calcu-
lating the distance between the data-event the entire patterns in pattern database.
One possible solution is to summarize both the TI and data-event. Zhang et al.
(2006) proposed a new method, FLITERSIM, in which various filters (6 and 9
filters in 2D and 3D) have been used in order to reduce the spatial complexity and
dimensions. This allows reducing the complexity and computation time. Thus, the
patterns are first filtered using the pre-defined linear filters. Then, the outputs are
clustered based the similarity of the filtered patterns. Next, a prototype pattern is
computed for each cluster that represents the average of all the patterns in the
cluster. Afterwards, similar to SIMPAT, the most similar prototype is identified
using a distance function and one of its patterns is selected randomly. These steps
are continued until the simulation grid is filled. Due to using a limited number of
filters, this algorithm requires less computational time compared to SIMPAT. The
distance function in FILTERSIM was later replace with wavelet (Gloaguen and
Dimitrakopoulos 2009). The drawbacks of the wavelet-based method are that it has
a lot of parameters (e.g. wavelet decomposition level) that can effect on both quality

TI Realization

TI Realization

Fig. 30.11 The results of SIMPAT. These results are taken from Arpat (2005)
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and CPU time. Such parameters require an extensive tuning in order to achieve
good results in a reasonable time.

In a similar fashion, Eskandari and Srinivasan (2010) proposed Growthism to
integrate the dynamic data in the simulation. This method begins with the locations
of data and grows gradually and completes the simulation grid.

The most important shortcoming of FILTERSIM is that, it uses a limited set of
linear filters that cannot always convey all the information and variability in the TI.
Moreover, selecting the appropriate filters and several user-dependent parameters
for each TI is an issue that is that common among many MPS methods. Some of the
generated realizations using the FILTERSIM algorithm are shown in Fig. 30.12.

iii. Cross-Correlation based Simulation (CCSIM)

One of the recent algorithms of MPS is the cross correlation-based simulation
(CCSIM) algorithm that utilizes a cross-correlation function (CCF) along a
1D-raster path (Tahmasebi et al. 2012a). The CCF, which represents a multi-point

Realization #1 Realization #2

TI Realization

Fig. 30.12 The results of FILTERSIM. These results are taken from Zhang et al. (2006)
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characteristic function, is used to match the patterns in a realization with those in
the TI. This algorithm has been adopted for different scenarios and computational
grids. For example, multi-scale CCSIM (Tahmasebi et al. 2014) can be used when
the simulation grid is very larger. This algorithm, similar to the SNESIM algorithm,
is also based on calculating the joint probability. The SNESIM algorithm calculates
the probability using a search-tree algorithm. However, calculating the above
conditional probability for every single point in the simulation grid, in the presence
of a large 2D/3D TD, is computationally prohibitive. Unless a very small neigh-
borhood is used, which leads to poorly connected features in the outcome
realizations.

In the CCSIM algorithm, the above limitation is addressed differently. First, the
probability function is replaced with a similarity function, called cross-correlation
function (CCF), which is much more efficient than drawing the probability. Sec-
ondly, based on the Markov Chain theory, the CCSIM algorithm uses a similar
search template (i.e. radius). However, unlike the previous algorithms where all the
data in the search template are used for simulating the visiting point, only a small
data-event located in the boundaries, called overlap region OL, is considered in the
calculations. Furthermore, except the point fallen in the OL region, the rest of the
points are removed from the visiting points and they would not be simulated again.
Thus, instead of simulating each single point, this algorithm ignores some of them
and partitions the grid into several blocks. The CCF can be calculated as follow:

CTD,DT i, jð Þ= ∑
Dx − 1

x=0
∑

Dy − 1

y=0
TI x+ i, y+ jð ÞDT x, yð Þ, ð30:13Þ

with i∈ 0½ Tx +Dx − 1Þ and j∈ ½0 Ty +Dy − 1Þ and i, j∈ Z. The i and j represent the
shift steps in the x and y directions. TI x, yð Þ represents the location at point x, yð Þ of
TD of size Lx × Ly, with x∈ 0, . . . ,Dx − 1f g and y∈ 0, . . . ,Dy − 1

	 

. An OL

region of size Dx ×Dy and a data event DT are used to match the pattern in the TI.
T represents the size of template used in CCSIM.

The CCSIM algorithm can realistically reproduce the large-scale structures in
diminutive time. These techniques, however, do not fully match the well data and
some artefacts are generated around the point conditioning data. Recently, this
techniques has been used within an iterative framework along with boundary cut-
ting methods by which the efficiency and conditioning data reproduction have been
increased significantly (Gardet et al. 2016; Kalantari and Abdollahifard 2016;
Mahmud et al. 2014; Moura et al. 2017; Scheidt et al. 2015; Tahmasebi and Sahimi
2016a, b; Yang et al. 2016). Some of the results of CCSIM are shown in Fig. 30.13.
Furthermore, this method has been successfully implemented for fine-scale mod-
eling in digital rock physics (Karimpouli et al. 2017; Karimpouli and Tahmasebi
2015; Tahmasebi et al. 2016a, b, c, 2017a, b).
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30.5.3 Hybrid Algorithms

Each of the current MPS has some specific limitations. For example, the
pixel-based techniques are good in conditioning the point data, while they barely
can produce long-range connectivities. Similarly, the pattern-based methods can
produce such structures, but they are unable to preserve the hard data. Thus, the
idea of hybrid MPS method can be interesting if one uses the strength of both group
effectively. Following, the available hybrid methods are reviewed and their
advantages and disadvantages are discussed as well.

i. Hybrid Sequential Gaussian/Indicator Simulation and TI

Ortiz and Deutsch (2004), under an assumption of independence of the different
data sources, integrate the indicator method with MPS. Hence, instead of using a TI,
the MPS properties are obtained directly from the available hard data (variogram)
and integrated with the results of indicator kriging. Finally, a value is drawn from
this new distribution. These methods were further investigated by Ortiz and Emery
(2005). However, in most cases, the initial results of indicator kriging highly
influence final realization.

Realization #1 Realization #2

TI Realization

Fig. 30.13 The results of the CCSIM algorithm
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ii. Hybrid Pixel- and Pattern-based Simulation (HYPPS)

The strength of both the pixel- and pattern-based algorithms can be combined and
make a hybrid algorithm. Tahmasebi (2017) has combined these two algorithm and
proposed a new hybrid algorithm, called HYPPS. This algorithm discretizes the
simulation grid into regions with/without the conditioning data. One needs to
consider more attention the location containing the well data as providing them
require considerable cost. Thus, the SNESIM algorithm, as a pixel-based method
can be used around such locations. Regardless of the type of any geostatistical
methods, reproducing of patterns and well data are the most important factors.
Producing realistic models, without taking into account the conditioning data, or
vise versa, is not deasirable. Any successful algorithm should be able to manintin
both of the above crietra at the same time.

In the HYPPS algorithm the simulation grid is divided into two regions. Then,
the geostatistical methods are applied on each of them. Following this step, the
HYPPS algorithm uses the CCSIM, as a pattern-based algorithm, for the location
where no HD exist and, similarly, the SNESIM algorithm is used around the well
data, which can precisely reproduce the conditioning data. Thus, the hybrid state of
the pixel-based and pattern-based techniques can be written as follow:

Φ h1, . . . ,hn; k1, . . . , knð Þ=E ∏
n

α=1
I u+hα; kαð Þ

� �
+ ∏

n

α=1
Φ hαjhΦnð Þ ð30:14Þ

which implies that the joint event over a template where both methods are working
simultaneously can be expressed as the summation of the two probability distri-
butions defined earlier (see the SNESIM algorithm). Thus, a normalization terms,
namely nx and np, should be included such that nx + np =1. Note that nx and np
represent normalized number (or percentage) of the simulated points used in the
pixel- and pattern-based methods. An equivalent form of the above probability can
be expressed as:

Φ h1, . . . , hn; k1, . . . , knð Þ≅
nx

c dnð Þ
Nn

� �
+

np ∑
Dx − 1

x=0
∑

Dy − 1

y=0
TI x+ i, y+ jð ÞDT x, yð Þ

 !
0
BB@

1
CCA ̸nx + np

ð30:15Þ

The second term in the above equation on the right side is used for the areas
where the CCSIM algorithm is utilized. While, the visiting points around the well
data are evaluated jointly.

It is worth mentioning that co-template (Tahmasebi et al. 2014) can be used with
the CCSIM to give the priority to the patterns that contain the conditioning data
ahead of the raster path. Therefore, long-range connectivity structures are taken into
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account even in the blocks with no conditioning data. An example is provided in
Fig. 30.13e. Although the density of conditioning data, compared to the previous
scenario, is increased, but the produced realizations represent the real heterogeneity
represented in the TI. The HYPPS algorithm can be used to integrate data at
different scales as well (Fig. 30.14).

Fig. 30.14 The application of the SNESIM algorithm for simulating a grid when the borders are
conditioned (a): the TI, b: boundary data, c generated realizations using the boundary data, d:
boundary data along with well data, e generated realizations using the boundary and well data.
Note, the sizes of the TI and simulation grid in (a) and (b) are 250 × 250 and 100 × 100,
respectively. The shale and sand facies are indicated by blue and red colors, individually
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30.6 Current Challenges

The MPS techniques have been developed extensively to deal with complex and
more realistic problems in which the geology and other source of data such as well
and secondary data are reproduced. There are still some critical challenges in MPS
that require more research. Some of them are listed below:

• Conditioning the model to dense point/secondary datasets (e.g. well and
seismic data): This issue is one of the main challenges in the pattern-based
techniques. In fact, such methods require calculating distance function between
the patterns of heterogeneities in the TI and the model and between the con-
ditioning data that must be honored exactly in conditional simulation (Hashemi
et al. 2014a, b; Rezaee and Marcotte 2016; Tahmasebi and Sahimi 2015b).

• Lack of similarity between the internal patterns in the TI: Producing a
comprehensive and diverse TI is very challenging. Thus, serious discontinuity
and unrealistic structures are generated using the current MPS techniques when
the TI is not enough large. On the other hand, using very large or multiple TIs
are costly for most of such methods.

• Deficiency of the current similarity functions for quantitative modeling:
Most of the current distance functions are based on some simple and two-point
criteria by which the optimal pattern cannot be identified. Such distance func-
tions are very limited in conveying the information. Thus, more informative
similarity functions are required.

• Better and more realistic validation methods: There is not so many number of
methods that can be used to evaluate the performance of new developed MPS
algorithms (Dimitrakopoulos et al. 2010; Tan et al. 2014). For example, the
realizations can show a considerable different with each other and TI, while such
a variability cannot be quantified using the current methods. Thus, visual
comparison is still one of the popular method for verifying the performance of
the MPS methods.

Many issues must be addressed yet. For example, the current MPS methods are
designed for stationary TIs, whereas the properties of many large-scale porous
media exhibit non-stationary features. Some progress has recently been made in this
direction (Chugunova and Hu 2008; Honarkhah and Caers 2012; Tahmasebi and
Sahimi 2015a). In addition, associated with every TI is large uncertainties. Thus, if
several TIs are available, it is necessary to design methods that can determine which
TI(s) to use in a given context.
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Chapter 31
When Should We Use Multiple-Point
Geostatistics?

Gregoire Mariethoz

Abstract Multiple-point geostatistics should be used when there is either too little
or too much information available for other types of geostatistics.

31.1 Under-Informed Versus Over-Informed Models

For a long time, the classical geostatistical framework required moderate amounts
of knowledge. Too little knowledge (few hard data, poorly distributed, absence of
auxiliary information), makes it difficult to infer the parameters of a covariance
model. In the other extreme, too much knowledge risks revealing characteristics of
the underlying field that are too complex to be represented by a handful of
covariance model parameters. These two situations can be denoted respectively
under-informed and over-informed models. In-between these extremes, we have the
moderately informed case where it is convenient to use the covariance-based
geostatistical framework, which has been—and still is—a very solid basis for
building models that incorporate spatial and temporal variability.

Extreme under-informed and over-informed cases have often presented technical
challenges, for which practical workarounds are used. For under-informed cases,
standard geostatistical practice consists for example in including interpretative
knowledge to guide variogram fitting when too few hard data are available. This is
one of the reasons for the common recommendation to fit variograms by hand (e.g.
Olea 1999). The question of designing spatial models for over-informed cases (i.e.,
when large amounts of data are available) is relatively recent, with the development
of improved sensors and high-resolution numerical models that triggered the era of
“big data”.

The concept of multiple-point statistics (MPS) appeared in the early 1990s,
initially as a means of overcoming extreme under-informed situations. The idea, at
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the time developed by Guardiano and Srivastava (1993) under the impulsion and
guidance of A. Journel, was to give the modeler improved tools to include inter-
pretative knowledge in spatial models. The fundamental novelty of the MPS
framework was to encapsulate in a training image the interpretative knowledge on
the spatial structure of the modeled phenomenon. Since an image is an object most
people are familiar with, it allows combining different types of expertise and data,
in particular from people who are not familiar with geostatistics.

This approach naturally leads to disregarding hard data as a tiny fraction of the
information to include in a model, implying that data alone are not enough. Then,
an important part of the modeling work resides in the design of the training image,
which can be difficult as natural images are typically not sufficiently repetitive or
stationary. Unsurprisingly, the first successful applications of MPS took place in
fields where data are typically few, uncertain and expensive, such as reservoir
modeling, soil science or mining. In those domains, MPS is often seen as an
alternative to object-based methods. Later, it was found that the concept of training
image could also be used to incorporate large amounts of information in a model,
and therefore address over-informed and data-rich situations, where an increasing
number of applications are taking place.

31.2 MPS Versus Covariance-Based Geostatistics

These different aspects have resulted in MPS being seen as in opposition with
covariance-based geostatistics. Indeed, from a traditional statistics point of view,
MPS is not rigorous in many respects: for instance there is no real model inference,
the uncertainty that can be estimated based on a set of MPS realizations is poorly
defined, and extreme events cannot be produced beyond those found in the training
image. Emery and Lantuéjoul (2014) have shown, based on thorough numerical and
theoretical investigations, that MPS only produces random fields when the size of
the training image tends to infinity. With a finite training image, MPS algorithms do
no longer approximate a random function. Their value then lies in their capability to
automatically generate realistic model realizations, but without control of the
underlying statistical model. These issues make MPS methodologically close to
machine learning and computer graphics. As a result, when using MPS, one often
has to make compromises with random function theory and model consistency. In
return, it may be possible to explore the data in new ways and obtain, in some cases,
models that are more in line with the unobserved physical reality (Journel 1993).

While the hypotheses and tools used are very different, the domains of appli-
cation of MPS are essentially the same as traditional geostatistics, consisting in the
simulation of either conditional or unconditional random fields, mainly for geo-
science applications. As such, MPS and covariance-based geostatistics can be seen
as competing, and it is not very surprising that in the last decade there have been
many cases of fierce debate between the promoters of these two concurrent
approaches (Journel and Zhang 2006; Li et al. 2015). My view is that in fact, the
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two sets of methods should not be seen as opposed, but as complementary
approaches. They are complementary because they are able to solve different types
of problems which can be distinguished by the nature and amount of information at
hand. Seeing the covariance-based and the algorithm-based approaches as opposed
can distract from the higher goal of building on the strengths of each approach. The
risk has been stated by Breiman (2001) on the topic of machine learning methods:
“statisticians have ruled themselves out of some of the most interesting and chal-
lenging statistical problems that have arisen out of the rapidly increasing ability of
computers to store and manipulate data”.

When the available data and knowledge on the studied phenomenon allow
building a random function model, using covariance-based geostatistics is usually
appropriate. There are numerous examples of successful models designed in this
framework for which it would be very difficult to apply MPS (e.g. Diggle et al.
1998; Goovaerts 2005). Conversely, there are applications where the use of training
images and MPS algorithms are better able to address some practical questions. In
the next sections, I will show two such examples where the available information is
either extremely poor or extremely rich. Applying covariance-based geostatistics to
these examples would likely yield unsatisfactory results. I emphasize here that for
the purpose of demonstration, I am exclusively focusing on examples that are
tailored for the application of MPS. Countless examples can be found for which
covariance models are perfectly applicable, but it is beyond the scope of this short
chapter to show them here.

31.3 Examples for Which MPS Works Well

31.3.1 MPS Can Be Used in Extreme Under-Informed
Situations

An example of extreme under-informed model is the common problem of inter-
polating rainfall data over a given area based on a small number of rain gauges.
Rainfall is an inherently intermittent and highly spatially variable process (Benoit
and Mariethoz 2017). Moreover, in some cases rain gauge data can be of poor
quality, and it is not uncommon to only have binary wet/dry information (as
opposed to rainfall accumulation). An example of such poor dataset is shown in
Fig. 31.1, with synthetic rain observations consisting of 30 rain gauges. While this
case is synthetic, the setting is relatively standard in terms of data density and
heterogeneity. It is quite clear that 30 observation points are insufficient to properly
infer a spatial model, which is confirmed by the experimental variogram that shows
no spatial structure (and wild fluctuations when the number of lags is varied).

In such a setting, the MPS approach starts by stating that the information con-
tained in the hard data is insufficient. At best, the data points can be used for
conditioning, but not for inferring any kind of structural model. Instead, one has to
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supplement the insufficient data by resorting to external knowledge of the modeled
process. For example, one may know the type of rainfall for that specific day. Based
on this knowledge, it is possible to collect radar images of rain events of the same
type. Rainfall radar images, either ground-based or satellite-based, are typically
collected by national weather agencies and made available to the scientific com-
munity. Then, using these representative radar images as training images, MPS can
be used to generate rain fields conditioned to the gauge data.

Figure 31.2 shows the results of using two different training images to inter-
polate the data shown in Fig. 31.1, by considering as training image alternatively a
cyclone (left) or a tropical storm (right). It is obvious here that the choice of the
training image has a strong influence on the results as it determines the types of
patterns found in the simulations, as well as global statistics such as the proportion
of wet areas.

This example illustrates the conceptual differences between MPS and
covariance-based geostatistics. These differences extend beyond the formalism or
the algorithms used. While classical geostatistics infer a model based on data, MPS
generates additional data based on external knowledge, in this case through the
search for and the selection of an appropriate radar image.

31.3.2 MPS Can Be Used in Extreme Over-Informed
Situations

The most common situation in geostatistics is to have a handful of data points, and
based on these, to estimate the target variable on a large grid. Increasingly in recent
years, the opposite situation occurs with a large number of data used to predict the
value at a smaller set of locations. One prime example of such over-informed

Fig. 31.1 Under-informed setting. Left: synthetic rain gauge network made of 30 points with only
wet/dry information. Right: experimental omnidirectional indicator variogram of the probability of
rainfall, computed on 10 lags
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problems is applications to satellite imagery, which typically consist in large spatial
datasets (typically the entire Earth is covered at high spatial resolution) that also
present a temporal aspect since the same location is imaged at regular intervals.
Here we look at the Landsat 7 ETM + sensor, which has the characteristic that it

Fig. 31.2 Application of MPS for rain occurrence simulation. Left: simulation of binary rainfall
based on a training image of a cyclone. Right: same setting based on a training image of a tropical
storm. Size of training images: 572 × 584 pixels. Size of simulation grid: 400 × 400 pixels. The
Direct Sampling MPS algorithm was used
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partially failed in 2003, and since then the images it acquires present gaps (as
shown on Fig. 31.3a). The goal here is to fill these gaps with simulated values. In
such an image, the regions to reconstruct typically represent about 20% of the

Fig. 31.3 MPS applied to gap-filling of a 5-band Landsat 7 image. Scene acquired on March 22,
2017 in Western Switzerland. Image size: 500 × 500 pixels. The Direct Sampling MPS algorithm
was used. Image shown in natural colors
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domain, the rest consisting of conditioning data. These data contain not only local
information, but also very rich structural information such as the type of land
surface features (fields, forests, cities), the connectivity of the different objects
(roads, water bodies), and their spatial arrangement (see details shown in
Fig. 31.3c, e).

The application of covariance-based geostatistics is in this case difficult, not
because of challenges related to model inference and identification (as in Fig. 31.1),
but because standard simulation techniques, such as Sequential Gaussian Simula-
tion or turning bands, will likely result in artifacts that are clearly visible to the eye.
Indeed, the complex land surface information cannot be entirely represented by
covariance models which are typically represented by a small number of parame-
ters. Furthermore, although interpolation artifacts are sometimes obvious to the eye,
they are typically undetectable by standard statistical metrics because these metrics
are based on covariance (or two-point statistics) and cannot identify complex pat-
terns such as connectivity, for which the human eye is very well suited. It can of
course be argued that there are applications where these complex properties do not
matter; but if they do, the covariance-based framework is inappropriate (Zinn and
Harvey 2003).

In contrast, applying MPS to this gap-filling problem is straightforward.
The MPS approach used here for the simulation of gaps is the one presented by Yin
et al. (2017a, b). Each color channel is co-simulated and no auxiliary variables are
used. Contrarily to the data-poor case, there is no need here to infer, construct or
hypothesize a training image. The training image is given by the 80% of the domain
that is known. While the training image size is far from infinity, it is a little closer to
the ideal situation outlined by Emery and Lantuéjoul (2014). The gap-filling results
(Fig. 31.3b, d, f) present very few visual artifacts. In certain places, it is possible to
see that some reconstructed elongated features are discontinuous (e.g. the road near
the center of Fig. 31.3d). However in most cases it is difficult to distinguish the
reconstructed and the original areas (e.g. in Fig. 31.3f).

31.4 Conclusion

Often the debate around MPS and covariance-based approaches has been centered
on the dichotomy between multiGaussianity or non-multiGaussianity of the vari-
able to simulate (Gómez-Hernández and Wen 1998). The choice of a simulation
approach or algorithm should certainly be driven by the nature of the variable of
interest: is it non-multiGaussian? is it non-stationary? is it channelized? do these
characteristics matter for a given problem? I argue here that the question of the
amount of information at hand is also a critical factor to consider when choosing
which simulation framework to use, and this question has often been overlooked. It
may make sense to also base this choice on the quantity of information available: do
I have a conceptual model? do I have enough hard or soft data to infer a covariance?
do I have so much data that I am able to detect non-multiGaussian behavior?
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To summarize, one can say that different tools are available, and those should be
chosen according to the problem to be solved. While no example with moderate
amount of information has been shown in this chapter, it is understood that it is
generally the realm of covariance-based geostatistics. Under-informed situations are
always going to be difficult because there are important modelling choices to make.
For over-informed cases, relatively few assumptions are needed and, with some
precautions, it can be possible to rely on algorithms such as MPS.

Better defining the role of MPS in the galaxy of existing spatial modeling tools
can potentially help narrowing areas where future MPS research should focus. So
far, there has been a strong emphasis on the development of simulation algorithms.
The different algorithms available can reproduce spatial features with various
degrees of faithfulness, they may need different computing resources or may offer
specific options. While developments in MPS are still needed (in particular
regarding training image selection and manipulation, as well as parametrization),
the simulation algorithms are becoming quite mature. Moving beyond the dichot-
omy between covariance-based geostatistics and MPS can enable the development
of new hybrid approaches. For example, using distance-based (also known as
convolution-based) MPS algorithms can be seen as bootstrapping the training
image. However, the link with bootstrapping theory (e.g. Davison and Hinkley
1997) has not yet been fully explored. Similarly, the MPS framework is currently
unable to simulate extreme values. Combining MPS with more standard statistical
approaches may open new fields of applications, in particular in domains such as
climate science, hydrology or earth surface observation where increasingly rich
space-time datasets are now available.
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Chapter 32
The Origins of the Multiple-Point
Statistics (MPS) Algorithm

R. Mohan Srivastava

Abstract First proposed in the early 1990s, the geostatistical algorithm known as
multiple-point statistics (MPS) now enjoys widespread use, particularly in petro-
leum studies. It has become part of the toolkit that new practitioners are trained to
use in several oil companies; it has been incorporated into commercial software;
and research programs in many universities continue to tap into the central MPS
idea of extracting statistical information directly from a training image. The
inspiration for the development of a proof-of-concept MPS prototype code owes
much to several different researchers and research programs in the late 1980s and
early 1990s: the sequential algorithms pioneered at Stanford University, the work of
Chris Farmer, then at UK Atomic Energy, and the growing use of outcrop studies
by several oil companies. This largely accidental confluence of divergent theoretical
perspectives, and of distinct practical workflows, serves as an example of how
science often advances through the intersection of ideas that are not only disparate
but even contradictory.

Keywords MPS ⋅ Multiple-point statistics ⋅ Conditional simulation
Training image

32.1 Introduction

Through the windows of the cottage, we watched the sun slip behind the trees on
the ridge across the lake, turning the light dusting of snow from pink to red to
crimson. As darkness settled outside, the windows became mirrors, lit by the flame
from the logs in the fireplace, until all we could see was our two reflections, each
resting comfortably in an armchair, wine glass in hand. We talked into the late
evening, past the rising of the crescent moon, reminiscing about people, about
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ideas, about where it all began. We’d known each other for more than three
decades, and were comfortable when talk lapsed into silence … and equally
comfortable when silence gave way to a new thought, a different recollection, and
the conversation flared up into a dispute about memory, about theory or about
practice. Even when the wine bottle stood empty, and the embers in the fireplace
seemed to be exhausted, the logs would sometimes adjust, one breaking and settling
against another as sparks shot into the air. New fire from old.

It was December 2013, and I had succeeded in having my old advisor from
Stanford, André Journel, visit me in Ontario to discuss a joint contribution to the
volume on multiple-point statistics being compiled by Grégoire Mariethoz and
Philippe Renard. Busy lives kept us from completing that task, but the conversation
from that weekend by Lake Muskoka did become enough of an almost-paper that I
was grateful for the opportunity of this 50th anniversary volume to complete what
we began. Neither André nor I have much to contribute to modern MPS research;
we are both “gray hairs” and now stand well back from the fire of leading-edge
research. But our hair was once not so gray, and we were there at the beginning
when we laid the kindling for what has become a remarkably rich idea. So our
offering from that Lake Muskoka discussion is reflections on how the MPS came
together. It is a tale familiar to science, with chance encounters, casual remarks that
turn out to have great depth, cocktail napkins turned into whiteboards, heads
shaking in disagreement: “that can’t be right”. As we yield the stage to the next
generations of researchers, our hope is that others continue to recognize the value of
cross-pollination, of interacting with others in the field, especially those who have
ideas that contradict one’s own beliefs. When one sturdy idea burns and breaks,
settling against another, sparks fly and we have our best chance to ignite new
understandings of both theory and practice.

32.2 1970s

32.2.1 A Hammer Without a Nail

Although the theory of geostatistical simulation was firmly established by the early
1970s (Journel 1974), it had still not been widely accepted in practice by the end of
the decade. The now-venerable turning bands algorithm was the only game in town
when one wanted to create a conditional simulation. There were a handful of
practical case study example of conditional simulation in the mining industry, but it
remained a hard sell in an industry that prefers, even now, to report one single
“best” estimate of mineral resources and reserves than to wrestle with a family of
equi-probable outcomes.
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32.3 1980s

32.3.1 Interest in Geostatistics Spreads to the Oil Industry

Through the 1970s, the oil industry lagged behind the mining industry as an adopter
of geostatistics. Many oil companies found value in some of the trend variants of
kriging as additional tools in their contouring toolkit, especially when dealing with
structural traps where trends are common in the elevation of the top of structure.
Kriging with an external drift provided a good contouring solution in faulted
reservoirs where seismic data provided strongly correlated indirect measurements of
depth to the top of the reservoir (Maréchal 1984). But oil companies had many
good contouring methods that worked well without any geostatistics, and it was not
until the late 1980s when most of the major oil companies took notice of condi-
tional simulation because it offered something new: the ability to do Monte Carlo
analysis with 3D models of a reservoir’s rock and fluid properties that honored data
and that were geologically plausible.

32.3.2 New Simulation Tools and the Struggle
for Visual Realism

At Stanford, where I studied in the 1980s, research was supported by the Stanford
Center for Reservoir Forecasting. The SCRF consortium’s interest in risk analysis
fueled a growing number of new geostatistical algorithms for creating realizations
that honored continuous data (typically rock and fluid properties) and categorical
data (typically lithologies): sequential indicator simulation (Alabert 1987), LU
decomposition (Alabert 1987; Davis 1987), sequential gaussian simulation (Isaaks
1990; Gómez-Hernández 1991).

Despite having new algorithms for the conditional simulation of continuous
variables, Stanford’s toolkit still struggled to produce convincing simulations of
categorical variables such as lithologies in a sand-shale sequence. Although indi-
cator realizations could be made to honor indicator variogram models, the results
usually were not convincing as artwork; they simply looked wrong. In Fig. 32.1,
much of the (limited) success of the SIS simulation is due to the use of a trend
model and to locally varying directions of maximum continuity, and not so much to
the indicator kriging or to sequential simulation.

Boolean simulations that stochastically arranged prescribed geometries into a
computer model usually won more approval for realism, but because these
object-based algorithms were not pixel-based, they had difficulty with conditioning
to well data, especially if there were lots of closely-spaced wells. In Fig. 32.1, the
SIS realization is conditioned to 240 data points; but the object-based simulation,
which produces a more satisfying result, is unconditional.

Through my time as a graduate student at Stanford, the Holy Grail of conditional
simulation was a best-of-both-worlds algorithm that had the visual realism of
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Fig. 32.1 Examples of indicator simulation and object-based simulation of fluvial channels. The
image at the top shows a training image (a satellite image of the Brahmaputra River) from which
indicator variograms were calculated and used to create the SIS realization in the middle frame,
conditioned to the data shown as circles. The same training image provides information on the
distribution of parameters that describe object geometry; these were used as input to an
object-based simulator, FLUVSIM (Deutsch and Tran 2002), to create the unconditional
realization at the bottom. Although the object-based simulation succeeds in creating channels that
are visually more coherent, it is difficult to condition to known lithologies at specific locations
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object-based methods but that conditioned easily to hard data, no matter how dense.
There were discussions at that time about the possibility that we might never achieve
what we thought we wanted because of the fundamental difference between the
statistical characteristics of an image and the meaning that knowledgeable experts
extract from the image. In the example in Fig. 32.1, human vision allows us to see
the entire set of meandering braided channels. Statistical summaries, especially
variograms, do not “see” anything in its entirety; they see the image two points at a
time. The analogy that André Journel often used was that it was like a blind person,
trying to understand an object in front of him when he was allowed only to probe
with the two forefingers. Limited to poking here and poking there, the blind person
would struggle to tell the difference between an elephant and a rhinoceros.

The envy of the visual success of object-based realizations, and the desire to
maintain the ease of conditioning with pixel-based methods, catalyzed a lot of
discussion in the late 1980s about multi-point geostatistics. What would three-point
or four-point or n-point variograms look like? How might they be calculated
experimentally? How could they be modeled? How should they be used in an
improved version of kriging?

32.3.3 Outcrops and Scanned Images as Analogs

In the mining industry, where geostatistics was first embraced, drill hole spacing is
typically on the order of tens of meters, close enough that the choice of a variogram
model could be based on experimental variograms. In petroleum reservoirs, wells
are typically spaced several hundreds of meters apart, sometimes thousands of
meters. This practical reality of petroleum applications gave rise to an immediate
practical problem when the oil industry took an interest in conditional simulation in
the 1980s: where to get the closely-spaced information required to make experi-
mental variograms?

The common advice in the 1980s was that outcrop studies could provide the data
required to support statistical and geostatistical parameter choices, such as the
length, anisotropy and orientation distributions required for object-based methods,
or the variograms required for geostatistical methods. Outcrop studies did not begin
in the 1980s; but this was the decade when they flourished. Many of the major oil
companies, either individually or in consortiums, funded detailed quantitative
studies of outcrops that could serve as good geological analogs for producing fields.
And outcrop studies from earlier decades were dusted off and re-purposed as
sources for data that could support parameterization of computer models.

Figure 32.2 shows an example of data from a 1960s outcrop study that was
re-discovered by several researchers in the 1980s. It was created by digitizing shale
streaks from a photograph of a cliff face of an outcrop of the Assakao Formation in
the Tassili region of the central Sahara (Dupuy and du Prey 1968). Fifteen years
after the data was first presented, Helge Haldorsen used the Assakao outcrop study
as the basis for choosing the shale length distribution for object-based simulations
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of sand-shale sequences for his Ph.D. research (Haldorsen 1983; Haldorsen and
Chang 1985). During the time when I studied at Stanford, I shared an office with
Alec Desbarats to whom Helge had given the Assakao data for Alec’s research on
stochastic modeling of flow in sand-shale sequences (Desbarats 1987).

If a good outcrop analog was not available, one could (with fingers crossed and a
prayer for absolution of sin) invoke a fractal argument and choose as an analog
something with an entirely different scale. At a much larger scale than most
reservoirs, satellite imagery, which started to become widely available in the 1980s,
could serve as the source of information on spatial statistics. At the regional scale,
or even at the scale of very large reservoirs, images like the top frame in Fig. 32.1
could help in sorting out statistical parameters for numerical simulation. And at a
much smaller scale, there were scanned images of slabs of sedimentary rock at the
scale of hand specimens, such as the example shown in Fig. 32.3.

Digitized images, whether of outcrops or of similar phenomena at different
scales provide a basis for calculating not only experimental variograms but also
multi-point statistics. When calculated from a rasterized image, the length distri-
bution of shale streaks can be seen as a multi-point statistic. In the Assakao outcrop
example shown in Fig. 32.2, where the individuals pixels are 20 × 20 cm, the
probability of encountering a shale streak that is 20 m long can be calculated by
scanning the image across each row, counting up the number of times we get a
white pixel followed by 100 black pixels, then followed by a white pixel … then
dividing this by the total number of shales of any length. Alec Desbarats did exactly
this in his Ph.D. thesis when he wanted to test the fidelity of the synthetic

Fig. 32.2 The Assakao Sandstone data set (from Desbarats 1987). The formation is generally
sandstone (white) with occasional shale streaks (black)
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sand-shale sequences he had created using indicator simulation (Fig. 32.4). He
knew he had the correct proportion of shales and that he had matched the indicator
variogram; but he was curious about how well he had done on the multi-point
statistic that Helge Haldorsen controlled directly in his simulations. Figure 32.5
shows the histograms of the shale length distributions from an indicator simulation
of the Assakao outcrop, and from the original image; the indicator simulation shows

Fig. 32.3 Digital image of a slab of cross-bedded sandstone from Utah

Fig. 32.4 Indicator simulation of the Assakao outcrop image in Fig. 32.2 (from Desbarats 1987)
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more very short shales than does the original image, with a lower mean length and
higher variance.

Other similar studies at the same time by François Alabert showed the same
result: indicator simulation produces realizations that show more short features and
too few long features. The over-representation of short features is also obvious from
a visual comparison of indicator simulations to the reality they try to mimic, e.g. the
top two frames in Fig. 32.1, or the realization in Fig. 32.4 with the outcrop image in
Fig. 32.2. The common explanation given at the time was that when an algorithm
controls only the first and second-order moments (histogram, or indicator propor-
tion, and the variogram) then the uncontrolled higher-order moments drift in the
direction of disorder or maximum entropy.

32.3.4 Leaving the Ivory Tower and Getting
on with Adult Life

My years as a student at Stanford ended in 1988. Sold my bicycle, the one that
hadn’t been stolen. Gave up the wonderful room I had in a camping trailer behind a
house in Palo Alto. Headed off into the world of consulting, with Neil Schofield and
Roland Froidevaux as my partners in FSS International Consultants. The notion
was simple: Neil and I were familiar with student poverty and didn’t mind another
year of living with little money. After a year, if we failed as consultants then we
could get real jobs.

Fig. 32.5 Histograms of shale lengths from Fig. 32.2 (left) and Fig. 32.4 (right) (from Desbarats
1987)
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We managed not to fail, and each of the FSS partners found ourselves busy with
clients who wanted advice and assistance with geostatistical studies. My workload
was split between mining studies, where simulation was rarely discussed, and
petroleum studies, where kriging was rarely discussed.

Even though my mining studies had little to do with stochastic modeling, there
was one mining project that, in hindsight, probably planted some useful seeds for
what later became the MPS prototype algorithm. It was a project in which some of
the useful geological and numerical data were available only from paper records
written by hand decades ago: drill logs with assay values transcribed manually. In
the late 1980s, software for optical character recognition (OCR) struggled with
handwriting; it still does today, but it was worse back then. Even though com-
mercial OCR software could make no sense of the handwritten logs, my sense was
that it should be possible to extract much of it automatically, instead of going
through a time-consuming and error-prone process of manual data entry. The drill
logs were neat and legible, and all of the key numerical values were written in
boxes on a form. With only 11 possible characters in use, the ten digits and the
decimal point, it seemed possible to me that the handwriting could be recognized by
an algorithm that trained itself from actual images. I wrote a program that would
search the scanned image (an eight-level grayscale raster), looking for islands of
non-white in the appropriate boxes on the form. It would then show what it had
found to the user, who would identify the symbol by typing in one of the 11
choices. After a few dozen examples of each of the 11 possibilities, the software
was able to estimate the probability that a new small patch corresponded to each of
the possibilities. It did this simply by direct pixel-to-pixel matching of grayscale
levels, without any clever rescaling or rotation. If it could not establish a sufficiently
high probability for one particular choice, it would drop pixels from the comparison
and try again. The user would correct it when it made mistakes, and the software
would store its acquired collection of confirmed examples in a growing database.
As with most of my Mo-code, it took a bit of tinkering to get it to work well; but it
ended up being used, and saved weeks of data entry from hundreds of old drill logs.
We ended up calling the program “Am-I-Right” because that’s how the program
worked: by making guesses based on pixel-to-pixel pattern matching, and then
checking with the user to see if that guess was correct.

32.3.5 Chris Farmer’s Unexpected Claim

1988 was also the year when I first met Chris Farmer, at the SPE Forum on
reservoir characterization in Grindelwald, Switzerland. He was working on methods
for numerically simulating reservoir rocks, recognized the benefits of a pixel-based
approach, and had developed new ideas about what information to extract from
outcrop studies and scanned images of analogs (Farmer, 1989). During my early
years as a consultant, I managed to visit Chris at the UK Atomic Energy Agency’s
research centre at Winfrith. During this visit, he made a claim that seemed
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implausible … no, it actually seemed flat out wrong; but I was raised well by my
parents, and knew that it was rude for a guest to precipitate an argument.

We had been talking about extracting indicator variogram and cross-variogram
information from scanned images and Chris remarked that you have to be careful
when you do this because if you try to make a realization exactly match all of the
indicator variograms and cross-variograms from a scanned image, then you’ll just
get back the scanned image; and the purpose of creating realizations is not to
exactly match one “true” image, but instead to sample a space of uncertainty that
shares something in common with the original image. I checked if I understood him
correctly: did he really mean that you can exactly… exactly … match an image just
by reproducing its indicator variograms and cross-variograms? I knew (or thought I
knew) that this wasn’t true. Even with multiple indicators, all of the variograms and
cross-variograms are still two-point statistics; you’re still a blind person, feebly
prodding either an elephant or a rhino.

Chris clarified that he did mean exactly, with one minor caveat: that you actually
get two possible images which are 180° rotations of each other; you might end up
with an upside-down elephant, but you’d easily be able to figure out that it wasn’t a
rhino. And he also explained that he meant that you match to the complete
experimental indicator variograms for every possible separation distance and
direction on the rasterized image. Even with these caveats, I still found his claim
implausible; but kept thinking about why he would be so sure about this.

The other reason it was not worth getting into the details of why Chris was
confused was that I agreed with the basic point he was trying to make: the purpose
of what we have now taken to calling a “training image” is not to match it, but
instead to use it as a guide for selected spatial statistical characteristics. You want to
match the statistics, while conditioning to data, not replicate one training image.

32.4 1990s

32.4.1 Why Chris Farmer Was Right

In 1991, the SPE Forum on reservoir characterization was held in Crested Butte,
Colorado, and I had a chance to continue the discussion with Chris Farmer about
indicator variograms and training images. When I explained, as diplomatically as I
could, that I didn’t think his claim was correct, he grabbed a nearby napkin,
sketched a small grid, and colored in some pixels as black, white and gray. He
agreed that I was right if we lived in a world of variogram models for random
functions that are infinite in all directions. “But in the real world, things have
edges,” he explained patiently, “and this means there’s only one pair of pixels in the
original image that completely span the diagonal”. He went on to show how
you can actually deduce the grayscale levels for the two corner pixels (up to the
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180° rotation) and then work inwards from the corners. The Appendix to this paper
shows a small worked-out example of the trick that Chris explained.

As soon as he explained it, and I realized that I was the one who was wrong,
Chris dismissed it as an algorithmic oddity, a cute and clever trick that has no
practical value for simulating reservoir rocks, especially because the goal is never to
exactly replicate the original image.

Even though I understood the principle behind the procedure of attacking the
corners first and then working inwards, the algorithm still wasn’t clear in my head,
and I spent some time that year trying to write code for doing what Chris had
described. I never did manage to work out all the special cases, and it ended up on
the back burner as one more unfinished project.

32.4.2 Back to the Ivory Tower: A Brief Escape
from Adult Life

In late 1991, my consulting business was thriving and growing; I had a small staff
in Vancouver, and plenty of project work. But I was spending more time as an
administrator and manager, neither of which I am good at, and less time doing the
technical work that I enjoy.

My old advisor convinced me that I could let the staff run the show while I spent
a year at Stanford, back in the ebb and flow of new ideas with his new crop of
graduate students. Twenty five years later, I find it remarkable what was accom-
plished during that year: P-field simulation, co-located cokriging, and a
proof-of-concept algorithm for multiple-point statistics. All of these new geosta-
tistical methods that we investigated in 1992 began with a piece of Mo-code that
did something useful, and not with theory; that came later. André comes at research
from the side of theory that leads to equations that can be coded and tested. I tend to
come at it the opposite way, with a piece of code that achieves a desired result and
that then leads to the question “I wonder why that works?”.

In the early part of 1992, with the luxury of time to do research again, I dusted
off some of my back-burner projects, and came back to my attempt to code Chris
Farmer’s trick for replicating an image from its indicator variograms and
cross-variograms. The details of the algorithm were still a mess, but I realized that I
could get very close to a satisfactory result using simulated annealing, a possibility
that came to the forefront because Clayton Deutsch was finishing his Ph.D. thesis
on simulated annealing that year. I wrote a program that would start with a grid that
had exactly the correct proportions of the gray levels, randomly scattered, and that
would use simulated annealing to iteratively adjust the image by swapping pixels in
order to push the experimental indicator variograms and cross-variograms of the
evolving grid in the direction of a target values established by the complete indi-
cator variograms of the original image. No variogram models were used; everything
was done using look-up tables of variogram values. I used a photo of André,
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exhausted after a climb on Mount Whitney, as the training image, converted it to an
eight-level grayscale image with seven indicators. 200 columns and rows, seven
direct indicator variograms, 21 indicator cross-variograms, all calculated for every
one of approximately 80,000 lags on the image. It took four days of run-time and
hundreds of millions of swaps before the difference between the indicator vari-
ograms of the simulation and the image could not be reduced. It was hopelessly
inefficient, but it confirmed for me that Chris Farmer had been right.

For me, the recognition that you can exactly match an image from a very
complete and specific statistical summary of specific patterns was an eye-opener.
Although it now probably seems fairly obvious, in the early 1990s, the wealth of
information contained in an image’s statistical summaries was not immediately
apparent. Then, the normal workflow was to assemble statistical parameters by
fitting models to experimental statistics. The experimental variogram, for example,
was an important stepping-stone to a variogram model; but it was only a means to
an end. We did not think of the massive look-up table of summary statistics for
thousands of grouped pairs of data as something that could serve directly as an
input parameter. But why not? Why in an age of computer power did we continue
to create simplified mathematical models of statistical characteristics? Was it really
necessary to boil the parameterization down to a few numbers, a nugget effect and a
range, rather than leave the statistical summary in its original form as a massive
look-up table? For me, this was the “aha” moment catalyzed by my belief, years
earlier, that Chris Farmer’s claim about indicator variograms was not correct. The
reason I was wrong was that massive look-up tables of indicator variograms are a
rich source of very detailed information. The mistake we were making was that we
moved past this wealth of information and replaced it with a simple model.

The idea for the first prototype of an MPS simulation algorithm came from the
accidental meeting of thoughts about the role of training images in reservoir sim-
ulation and the experience of having coded the Am-I-Right procedure for optical
character recognition for a mining project. The principal difference between
Am-I-Right and the MPS prototype is that, after scanning the image to build a
probability distribution, the Am-I-Right procedure always took the most likely
value while MPS used the distribution as a basis for random sampling.

The first tests of the MPS prototype were done on a digital image of a
cross-bedded sandstone, like the one shown in Fig. 32.3. This was chosen because
it presents curved structures that are difficult to capture with most geostatistical
simulations, which tend to show straight features in the direction of maximum
continuity unless an explicit attempt is made to use locally varying directions of
anisotropy. Figure 32.6 shows the first published results of an MPS simulation
(Guardiano and Srivastava 1992). That Tróia ’92 paper used a two-level
black-and-white training image because the first tests on an eight-level grayscale
image were very slow; it would be several years before Sebastien Strebelle’s Ph.D.
research (Strebelle 2000) produced the first efficient and practical implementation of
the original clumsy prototype.

Even though the first results were not brilliant, certainly not by today’s stan-
dards, they did show that it was possible to impart to a simulation higher-order
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connectivities and patterns that are not explicitly summarized in variograms. In the
right frame of Fig. 32.6, it is the black pixels that make the thin curved arcs, while
the contiguous regions of white pixels tend to be larger and blockier. The middle
frame of Fig. 32.6 shows that these features are hard to capture in an indicator
simulation, which tends to symmetrize the black and white geometries when the
proportion is near 50%.

32.5 Concluding Thoughts

Where do ideas come from? Is it possible to create fertile conditions for innovation?
Of the many who have studied these questions, my favorite is Steve Johnson, who
wrote Where Good Ideas Come From: The Natural History of Innovation; he has
presented his thoughts in a 2010 TED Talk and also in a short YouTube video
(https://www.youtube.com/watch?v=NugRZGDbPFU). Much of what Johnson
identifies as key elements of innovation are in evidence in the origins of the MPS
simulation algorithm: the slow incubation of hunches, the borrowing and com-
bining of ideas from other people with related hunches, the catalytic effect of
recognizing error, and of finding the missing piece.

The one piece of Johnson’s message that resonates most strongly with my
experience is the importance of staying connected to others; he often concludes his
presentations with the observation that innovation comes by chance, but chance
favors the connected mind. By “connected mind” he means a mind that is connected
to what others are doing, how they are thinking about similar problems. It is the
hunches and cast-off ideas of those people that you’ll end up borrowing and
adapting to improve a hunch of your own that has still not reached fruition.

Of the many different ideas that ended up being woven together into the MPS
prototype, there may be a dropped thread, something that might be research worth
pursuing. It is the fact that complete indicator variograms and cross-variograms
provide extremely rich and detailed information about an image, so rich and
detailed that they can, in fact, be used to replicate the original image.

Fig. 32.6 The first published example of results of an MPS simulation (from Guardiano and
Srivastava 1992). The frame on the left shows the training image, a black-white image obtained
from a digital photograph of a slab of cross-bedded sandstone. The middle frame shows a
realization from sequential indicator simulation. The right frame shows a realization from the MPS
prototype algorithm
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While replication of a training image should never be a goal, it’s intriguing to think
about what we might be able to do if we matched a small sub-set of the complete
look-up table of all indicator variograms. We know that we get a “perfect” real-
ization if we use 100% of the look-up table. Would the realization look “fairly
good” or “completely ugly” if we decimated the complete look-up table and used
only 10% of it, or only 1%? My own tests with the annealing version of this
procedure, and the example in Appendix A, indicate that the indicator
cross-variograms are sometimes not necessary, i.e. that you can achieve nearly
perfect reproduction of the original image without them. Dropping all the indicator
cross-covariances would considerably reduce the size of the look-up table, or any
subset of it. Something worth trying?

My final reflection is on the beneficial tug-of-war between theory and practice.
Throughout my career as a consultant, and tourist in academia, I have enjoyed
discovering that the path to a solution sometimes starts when you enter the maze
from the theory side, and sometimes starts from an entrance on the practical side.
When theory leads you to the point of a set of equations, that need not be the end
because there may be something useful to be learned in attempting to implement
those equations in practice, in writing a piece of computer code that produces an
answer in a reasonable amount of time. And, coming from the other end, having
developed an algorithm that produces an intriguing result that seems “good” or
“right”, it’s useful to try to work out why it works. Even if the answer came
heuristically, the theory that explains why it’s an approximately correct answer
might reveal a generalization that makes it possible to improve the answer.

Appendix: Example of Reconstructing a Grid from Its
Indicator Variograms and Cross-Variograms

Figure 32.7 shows a tiny image with three levels of gray on a 3 × 3 grid. If we
give values of 1, 2 and 3 to white, gray and black, the three levels give rise to two
indicators: I1 with a threshold between 1 and 2 and I2 with a threshold between 2
and 3. There are two direct indicator variograms, γ1 and γ2, and one
cross-variogram, γ12. The nine locations give rise to 36 paired locations (not
including the pairs that have zero separation). These 36 pairs are shown in
Fig. 32.8, grouped into the 12 possible lags.

For any lag, the experimental indicator variogram is calculated by taking half the
average squared difference between the paired indicators:

Fig. 32.7 Example used to
show how complete
experimental indicator
variograms can be used to
reconstruct an image
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γðhÞ= 1
2NðhÞ∑ IðxÞ− Iðx+ hÞ½ �2

Because the squared difference between 0 s and 1 s is always 0 or 1, all of the
terms in the summation are either 0 or 1; the summation is simply a counting of the
number of times that the indicators separated by h are different.

Fig. 32.8 All 36 pairs in the image in Fig. 32.7, grouped into the 12 lags

Table 32.1 Look-up table for the experimental indicator variograms and cross-variogram for
every lag for the image in Fig. 32.7

ΔX ΔY N #Diff1 #Diff2 #Diff12 γl1 γl2 γl12
0 1 6 5 3 3 0.42 0.25 0.25
1 0 6 2 4 2 0.17 0.33 0.17
1 1 4 3 2 3 0.38 0.25 0.38
1 −1 4 2 2 3 0.25 0.25 0.38
0 2 3 1 3 2 0.17 0.50 0.33
2 0 3 2 0 1 0.33 0.00 0.17
1 −2 2 1 0 1 0.25 0.00 0.25
1 2 2 0 0 1 0.00 0.00 0.25
2 1 2 1 1 2 0.25 0.25 0.50
2 −1 2 0 1 1 0.00 0.25 0.25

2 2 1 0 1 0 0.00 0.50 0.00
2 −2 1 1 1 1 0.50 0.50 0.50
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For the image in Fig. 32.7, Table 32.1 gives the complete look-up table of the
indicator variograms and cross-variograms in every lag, and includes for each lag
the value of the summation term before the division by 2N(h), i.e. the number of
pairs in each lag that have different indicators; these are in the columns headed
#Diff1, #Diff2 and #Diff12.

Figure 32.9 shows a sequence of steps that can be used to interrogate Table 32.1
for the information that allows the values of specific cells to be deduced. It begins in
the upper left with the (2, 2) lag that spans the main diagonal. There is only one pair
that contributes to this lag and the (2, 2) row, (second from the bottom of
Table 32.1) tells us that:

• the two I1 indicators are the same, because of the 0 in the #Diff1 column
• the two I2 indicators are different, because of the 1 in the #Diff2 column

The second of these facts says that the two values are either 2 and 3, or 1 and 3;
but the second choice is contradicted by the first fact, so the only choice is a 2 in
one cell and a 3 in the other. This gives us the next frame in Fig. 32.9, where a 2 has
been fixed in the lower left and a 3 in the upper right. Note that this is exactly where
the 180° rotation may occur because we can’t tell which one is the 2 and which is
the 3. But once we make a choice, everything else is fixed; so the worst that will
happen is that the final solution will be rotated upside-down.

Proceeding across the first row of Fig. 32.9, the next thing we check is the (1, 2)
lag, to which two pairs contribute. The look-up table entries for the (1, 2) lag, fifth
row from the bottom, tell us that both pairs have the same I1 and I2 indicators,
because of the 0s in the #Diff1 and #Diff2 columns. The only way that this can
occur is if the value paired with the 2 in the lower left is also a 2, and the value
paired with the 3 in the upper right is also a 3.

Continuing across the first row of Fig. 32.9, the next thing we check is the (0, 2)
lag, to which three pairs contribute. The look-up table entries for the (0, 2) lag, fifth
row from the top, tell us that all three pairs have different I2 indicators, because of

Fig. 32.9 The sequence of steps used to interrogate Table 32.1 to deduce values in specific cells,
the knowledge of which can then be used to fix the values of other cells by using other information
from the look-up table. The sequence begins in the upper left where the look-up table is used for its
information on the lag that spans the main diagonal. It then proceeds across the first row, down to
the start of the second row, and across to the final solution at the lower left
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the 3 in the #Diff2 column. This tells us that the upper right corner must be a 3, and
that the lower left is either a 1 or a 2.

The sequence continues on the second row, where we check the (2, −2) lag.
There is only one pair that contributes to this lag, and this pair has different values
for the I1 indicator, because of the 1 in the #Diff1 column. The only way this can
happen is if the value in the lower left is a 1.

Continuing across the second row, the next thing we check is (2, −1) lag, to
which two pairs contribute. The entries for the (2, −1) lag, third row from the
bottom, tell us that both pairs have the same I1 indicators, so the 1 in the bottom
right must be paired with a 1, and the 3 in the upper left must be paired with either a
2 or a 3. For the same two pairs, one of the I2 indicators is the same and one is
different; we know that the pair with the same I2 indicators is the pair of 1–1 values
that we just fixed, so it’s the other pair that must have different I2 indicators. We
already know that the 3 must be paired with a 2 or a 3, so the only correct choice is
a 2.

Moving along the second row, the last thing we check is the (0, 1) lag, to which
there are six pairs that contribute. In the #Diff1 column, the top row in Table 32.1
tells us that five of the six pair have different I1 indicators. With the eight values
already fixed in previous steps, we can see three of those (0, 1) pairs: the 3–1 and 1–
2 pairs in the first column and the 2–1 pair in the last column. But the only way we
can get to five such pairs is if the middle column gives us two more. So the only
correct choice for the middle cell is a 1 … which gives us the last value, and
completely reconstructs the original image (Fig. 32.7) with no conditioning data,
but with heavy use of the information in the complete table of indicator variograms.

Regardless of the size of the image, or of the number of levels in the grayscale
(or number of colors in a color image), the approach of starting at the corners and
working inwards will always work. There is enough information in the complete
look-up table of experimental indicator variograms and cross-variograms that the
corner pixels can be pinned down and then used to leverage the solution for the
neighbors. In this particular example, the indicator cross-variogram was never
needed for the final solution. It may be that the indicator cross-variograms are never
needed, and that the image can always be exactly reconstructed (up to a 180°
rotation) using only the indicator variograms.
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Chapter 33
Predictive Geometallurgy:
An Interdisciplinary Key Challenge
for Mathematical Geosciences

K. G. van den Boogaart and R. Tolosana-Delgado

Abstract Predictive geometallurgy tries to optimize the mineral value chain based

on a precise and quantitative understanding of: the geology and mineralogy of the

ores, the minerals processing, and the economics of mineral commodities. This

chapter describes the state of the art and the mathematical building blocks of a pos-

sible solution to this problem. This solution heavily relies on all classical fields of

mathematical geosciences and geoinformatics, but requires new mathematical and

computational developments. Geometallurgy can thus become a new defining chal-

lenge for mathematical geosciences, in the same fashion as geostatistics has been in

the first 50 years of the IAMG.

Keywords Geostatistics ⋅ Statistical scales ⋅ Microstructure ⋅ Computational

geometry ⋅ Processing optimisation ⋅ Value of information ⋅ Mineral liberation

analyser ⋅ QUEMSCAN

33.1 Introduction

Geometallurgy, from the Greek words for earth (geia), metal (metallo) and work

(ergon), can be understood as the exploitation of a metallic ore based on a precise

understanding of its geoscientific characteristics. Geometallurgy is hence a cooper-

ation field for geoscientists and mineral processing engineers, something which has

occurred in virtually all mining operations. A modern understanding of geometal-

lurgy, what we could call predictive geometallurgy, proposes a quantitative approach

to the subject. In rough terms, that requires optimizing the ore processing based

on automated mineralogy and microstructure characterisation of the ore, coupled

with geometallurgical tests. These are tests conducted at several scales (from lab to

plant) along which the actual ore is processed in realistic conditions in order to study

the differential behaviour of the several ore and waste mineral phases, and thus the

enriching potential of the ore through the processes considered.
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As a subject, mathematical geosciences has always had a wide application in

mining. Nowadays typical topics of the area are geostatistics, the analysis of data

from special scales (such as compositional data or spherical data), numerical analy-

sis of flow models, remote sensing, (mineral) potential modelling (for instance with

weights of evidence), fractals, geodata standards, 3D geomodelling, or data integra-

tion techniques. The aim of this chapter is to show the deep link between geometal-

lurgical problems and techniques from the main fields of mathematical geosciences.

Geometallurgy distinguishes primary and secondary properties of the ore

(Coward et al. 2009). Primary properties are intrinsic to the ore and do not depend on

the process. Secondary or response properties describe the behaviour of the ore dur-

ing processing. The primary properties are observed by chemical assays, automated

mineralogy (like with QUEMSCAN or Mineral Liberation Analyser—MLA—), X-

ray methods, and other analytical instrumentation. Secondary properties are mea-

sured with geometallurgical tests, such as blasting tests, Bond mill test, flotation

tests, magnetic separation, density separation and so on. These can even be con-

ducted using the operation itself, that is, on the real plant. The secondary properties

are used to predict the outcome and costs of the processing.

To the authors’ knowledge, all studies conducted on predictive geometallurgy

by mathematical geoscientists (Bye 2011; Boisvert et al. 2013; Rossi and Deutsch

2014; Hosseini and Asghari 2015; Tolosana-Delgado et al. 2015; Ortiz et al. 2015;

Deutsch et al. 2016) consisted on appropriately predicting the secondary properties at

each block of a mining block model, and proposing the mining and processing engi-

neers to conduct their mine planning and plant scheduling based on those properties

instead of on metal grades. The first step (Vann et al. 2011) is the geometallurgical

analysis of the ore body with respect to its primary properties. Samples of similar

primary properties or geology are often said to belong to the same geometallurgi-
cal domain. Conventional descriptive exploratory analysis like k-means clustering,

PCA (Caciagli Warman 2015) or machine learning methods are nowadays used for

this task. Moreover, primary properties are also interpolated to the block model, ide-

ally with geostatistics.

The second step is a geometallurgical testwork, i.e. the characterisation of sec-

ondary properties of material from different geometallurgical domains. Often the

goal of these tests is to define a mapping from the primary properties to the sec-

ondary properties, e.g. via more or less complex regression models (Keeney et al.

2011; Everett and Howard 2011; Sepulveda et al. 2017). Having it makes possible

to populate the block model with estimated secondary geometallurgical properties

and to infer the expected income and costs of each block. Such interpolation of sec-

ondary variables is often done on additive proxies (Ortiz et al. 2015; Deutsch et al.

2016). The result is typically called a geometallurgical (block) model.
This can be used in at least three different ways by an operation, to inform both

in short- and long-term actions (McKay et al. 2016). First, the prediction of costs

and recovery allows to assign monetary values to each block. These values can be

used instead of grade as better proxy of cashflow in further calculations, like the

mentioned ultimate pit or mine scheduling. Value is generated by minimizing cap-

ital costs, due to early exploitation of highly valuable parts of the deposit, and by
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an improved distinction between ore and waste (Bye 2011). Second, the predicted

properties can be used as well to find matching ore partners in blending to reduce

feed variability in the plant, and ensure constant plant operation conditions. Value is

generated by lower risk of plant failure, optimal use capacity of all parts of the plant,

and lower controlling efforts by the ability to find the optimal operation conditions

empirically (Shaw et al. 2013). The third option is to use that knowledge to actively

adapt the processing conditions to each portion of the varying feed. The value lies

in higher recovery, lower operation costs, more extensive exploitation (Powell 2013;

Tolosana-Delgado et al. 2015) and ultimately lower ecological footprint.

33.2 Process Modelling

With the exhaustion of simple-texture, single-commodity, easy-to-reach deposits,

the mining industry has been confronted with the need to study a broad range of ore

properties, beyond the classical grade. As mentioned in the introduction, predictive

geometallurgy proposes to obtain a wealth of primary and secondary properties at

each mining block in order to reproduce its behaviour through the processing chain

and, ultimately, to predict its monetary value. This section focuses on such process

modelling.

A couple of steps along the value chain after extraction and crushing, ores are

treated with a variety of processes, mostly physical and physico-chemical, in order

to liberate the several mineral grains and separate them in different streams. Later

on, streams enriched in ore minerals are sent through metallurgical processes, mostly

chemical and physical changes of state processes devised to break the crystal struc-

ture of the ore minerals and produce the final value metals. All these steps can be

studied with two approaches. In the first one, each operation unit is considered as

a black box, and data from both the conditions of operations and the properties of

input and output streams are obtained in order to build empirical rules to predict the

output streams (Matos Camacho et al. 2015). In the second strategy, these predic-

tion laws are built in accordance with thermodynamical, chemical and physical first

principles. These strategies are not mutually exclusive, as one can derive the form

of a parametric predicting equation by first principles and fit the parameters with the

empirical approach.

The first kind of processes mentioned, those mostly keeping the crystal structure

of the minerals involved, include many different processes. Grinding and milling aim

at splitting particles in order to produce single mineral, or liberated, particles. Sizing,

magnetic separation, density separation and many other separation processes aim at

splitting a feed stream into two or more streams with particles primarily classified

according to one particular bulk volumetric property, like size, magnetic suscepti-

bility or density. Finally, froth flotation aims at separating particles according to the

hydrophobicity of its surface minerals as they fall through a bubble-rich 2- or 3-

fluid medium (including water, gas, nonpolar liquids, oils). This is one of the most

complex yet barely understood processes in minerals processing, including effects
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from fluid dynamics, surface physics, organic and anorganic chemistry. In process-

ing plants, several of these processes might be combined so that the output streams

of each processing unit is fed into other units, thus building serial or parallel chains,

trees and even complex networks, with feed-back loops.

Particle based models (Lamberg 2011) are a particular simple and promising

modelling strategy, primarily of use for such networks of minerals processing pro-

cesses. Here, each particle of the general feed is given a probability of going to each

one of the output streams of each processing unit, according to its singular proper-

ties and certain characteristics of the bulk material within the unit. As long as these

probabilities can be considered constant in time, the transient behaviour of the sys-

tem can be modelled with a simple system of first order differential equations with

constant coefficients (Tolosana-Delgado et al. 2015). Other more complex settings,

in particular, milling steps within loops, pose a much more complex challenge and

remain yet unexplored to the authors’ knowledge.

The second kind of processes typically destroy the ore mineral structure into a

fluid state: a water solution (hydrometallurgy, electrometallurgy) or a melt (pyromet-

allurgy). All these processes can be modelled with relatively well-known thermo-

electro-chemical reactions. Lack of space and a certain distance from the classical

fields of mathematical geosciences made us leave the subject out of this contribution.

Whichever strategy of modelling is followed, it is necessary to characterise the

frequency distribution of certain properties on the particle streams. The most obvi-

ous are the size and mineralogical composition of the particles, in exposed surface,

mass and even in volume proportions. Derived from these, elemental deportment

and liberation distribution are also relevant. Elemental deportment is the proportion

of a given element mass apported by each mineral. The liberation distribution gives

the volume (or mass) of particles containing a certain mineral in a (volume, mass or

surface) proportion equal or larger than a threshold, as a function of that threshold.

This is a cumulative distribution in the fashion of the better known recovery and ton-

nage curves in classical Geostatistics. Finally, more complex mineral association or

paragenesis indicators do also matter, as often concentration processes do not target

the value minerals themselves, but some accompanying, more abundant minerals.

Next section discusses which instruments are used to measure these properties and

which are the challenges brought with them to mathematical geoscientists.

33.3 Ore Characterisation

In the past, one-commodity grade was considered the sole and sufficient variable to

characterize a mining block or a deposit. This variable could be more or less safely

considered as a positive variable yet with an interval scale, according to the defi-

nition by Stevens (1946). This explains why Geostatistics was originally concerned

with univariate properties following the properties of Gaussian or lognormal random

fields (Journel and Huijbregts 1978).
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However, the present and the future evaluation of a mining operation will require

many more variables, kinds of scales and new geostatistical models. Multi-

commodity grades, geochemistry and mineralogy, being vectors of positive or rela-

tive components (Pawlowsky-Glahn 2003; Boogaart and Tolosana-Delgado 2013),

have already brought the need of considering multivariate ratio scales and compo-

sitional scales (Caciagli Warman 2015). The routine analysis of mineral and chem-

ical properties by techniques like X-ray Fluorescence (XRF) or Instrumental Neu-

tron Activation Analysis (INAA) for bulk geochemistry, X-ray Diffraction (XRD) for

bulk mineralogy, or Electron Probe Microanalysis (EPMA), Proton-Induced X-ray

emission (PIXE), Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICP-

MS) or Raman spectroscopy for single grain or locally resolved chemistry and min-

eralogy will ensure a continuous growth of compositional and multivariate positive

data in predictive geometallurgy. The generalisation of microstructural analysis, with

machines like QUEMSCAN, MLA or X-ray tomography (Bam et al. 2016; Becker

et al. 2016), will make further primary properties easy to obtain: particle size curves

(showing a distributional scale (Delicado 2008; Menafoglio et al. 2016a)), interphase

mean contact length composition (a sort of two-way composition (Caracciolo et al.

2012)), grain size curves of each mineral phase (a discrete set of parallel distribu-

tions), deportment (a composition informing of the proportion of mass of a certain

element contributed by each of its bearing minerals), and many more properties.

Even the application of EBSD (electron backscatter diffraction) will make it pos-

sible to characterise the distribution of crystal orientations (spherical distributions)

or its modal values (spherical directions). Spectral information is also produced by

many instruments, and although spectra ar nowadays preferable interpreted in terms

of chemical elements, minerals or paragenesis (Chlingaryan et al. 2015) before treat-

ment, one might think of future applications in which core scanning or airborne

spectral data are considered as informative on their own in a 3D geomodel. Consider

that spectral information is easy and fast to obtain in the operation and thus could

help to guide the extraction process and identify ore types during mining and further

processing (Nguyen 2013).

Many of these characterisation techniques can be ordered in a chain of meth-

ods, where the more advanced methods provide more and more detail but at the

price of lower precision, higher costs, and longer aquisition or turnaround times.

For instance, XRD, though primarily measuring modal mineralogy, can be used to

infer bulk geochemical composition, though with higher uncertainty than directly

using XRF. Also, MLA, though primarily measuring grain and particle structures,

can provide a modal mineralogy, but at higher costs than XRD. Finally, EBSD allows

to characterize crystallites and defects, but can also be used to infer the mineralogical

microfabric, albeit at longer measurement times than MLA for a fixed precision.

The other way around, inferring more advanced characteristics of the ore indi-

rectly from cheaper measurements, is in general an inverse problem. Inverse prob-

lems are much more difficult to handle and often do not have a unique solution.

For instance, inferring modal mineralogy from XRF is an endmember problem, and

delivers at most equivalence classes of solutions (Tolosana-Delgado et al. 2011;

Berry et al. 2011). Interpreting spectra into chemical and mineral compositions often
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requires as well unmixing the signal obtained as a linear mixture of known endmem-

ber spectra. Finally, inferring processing properties from primary properties might

require statistical models or machine learning methods to approximate the inverse

problem solution (e.g. Matos Camacho et al. (2015) for magnetic susceptibility from

MLA data). In summary, each analytical method has a specific role to play, and sev-

eral methods will be required to appropriately characterise all relevant aspects of the

ores.

Another classical class of metrological problems appearing in ore characterisa-

tion is instrumental calibration, namely the inference of the composition of bulk

samples or spots by comparing their signals with the signal obtained from a refer-

ence material or standard where the property is known, as well as the corresponding

uncertainty. The specific challenges for geometallurgy are the high variability of

natural materials, difficult to reflect in standards with comparable compositional and

physical characteristics (called matrix matched), and to measure in a single method.

This concerns many of the techniques mentioned before, like XRF, INAA, ICP-MS,

PIXE and EPMA.

From the point of view of mathematical geosciences, these problems imply cali-

bration problems, data fusion and consensus building. Data has often been collected

during different periods with different instruments at different labs. Seldom all meth-

ods were applied to all locations. Different batches need to be made compatible and

calibrated against each other. In the authors’ opinion, solutions for such problems

will require existing concepts and tools and new developments from geodata man-

agement, geo-ontology and geoinformatics.

Additionally, local analytics techniques (MLA, QUEMSCAN, X-ray tomography,

PIXE, EPMA, Raman) bring their own problems to be solved with mathematical geo-

sciences techniques. It is often very challenging or impossible to acquire standard

material homogeneous at micron scale and matrix-matched to the ore samples. Geo-

statistical models have been proposed for supporting such local calibration efforts

(Tolosana-Delgado et al. 2013).

Imaging techniques are also becoming more and more popular, at all spatial

scales. More and more methods (hyperspectral satellite- and air-borne, drone-borne

imaging, mine face imaging, core scanning, EBSD, MLA, X-Ray-CT, PIXE, …)

acquire images rather than only univariate or compositional information. On large

scales, from the drill core to deposit scale, imaging gets a rising importance for

the characterisation of the meso- to megastructure of the deposit, because selec-

tivity of ore zones from barren zones during exploration, mining, extraction and

waste pre-screening is highly dependent on such structures. If we focus on sub-

millimeter scales, processing methods and processing costs react very sensitively to

analogous microstructural properties: for instance, the type of intergrowth of miner-

als strongly conditions the necessary milling to achieve sufficient liberation (Perez-

Barnuevo et al. 2013), and milling is one of the most cost intensive processing steps.

Many of these methods measure spectral information at each pixel. Various super-

vised and unsupervised machine learning techniques have been used for mapping

spectral information to geometallurgically relevant quantities (Decamp et al. 2015;
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Harraden et al. 2016; Nguyen et al. 2016). Image processing analysing structure will

thus become more and more relevant in geometallurgy.

Moreover surface imaging techniques like MLA or QUEMSCAN suffer of stere-

ologic degradation: these instruments are devised to characterise geometric proper-

ties of 3D bodies, but only observe them on 2D sections. It is well-known that only

some 3D properties can be estimated unbiasedly by averaging over their 2D counter-

parts. This allows e.g. to have certain confidence in properties like volumetric modal

mineralogy (estimated from the proportions of pixels of the several minerals on the

measured surface), mineral association as the proportion of surface of a mineral in

contact with all other minerals (estimated from the proportion of contact lengths on

the measured surface) or specific surfaces. But other highly relevant properties, like

liberation distribution, grade curves, tonnage curves or particle and grain size distri-

butions suffer significant stereological degradation (Perez-Barnuevo et al. 2012).

Open problems for the next generation of mathematical geoscientists will include,

to mention a few, the development of widely accepted local analytics calibration

procedures; the propagation of uncertainties through image analysis methods; or

the integration of several analytical techniques through consensus-building, e.g. to

deliver mutually consistent measurements of bulk mineral and chemical composi-

tions as well as elemental deportment together with their uncertainties out of XRD,

XRF, EPMA and MLA measurements of the same sample. Correcting stereological

degradation is as well an open issue.

33.4 Orebody Modelling

The generation of large scale 3D models of the ore bodies is the classical key con-

tribution of Mathematical Geosciences to the mining business. Nowadays, point and

block kriging or simulation for grade variables and indicator-based techniques (indi-

cator kriging, sequential indicator simulation, plurigaussian simulation) for categor-

ical variables are accepted standard techniques. Beyond the framework of Gaus-

sian random fields, cumulant based (Dimitrakopoulos et al. 2010; Minniakhmetov

and Dimitrakopoulos 2017) and Copula based (Musafer et al. 2013, 2017) propos-

als, as well as multiple point geostatistics (MPS) can be found in scientific papers,

though their penetration and acceptance in the industry is yet negligible. Multivari-

ate issues are also seldom considered, though compositions (mineral or chemical)

are geometallurgically relevant primary variables, and techniques do exist to pre-

dict or simulate them at both point (Pawlowsky 1989; Pawlowsky-Glahn and Burger

1992; Pawlowsky-Glahn and Olea 2004; Tolosana-Delgado 2006; Tolosana-Delgado

et al. 2011; Mueller et al. 2014) and block support (Tolosana-Delgado et al. 2013)

in a fashion consistent with their scale, namely delivering positive and constant-sum

predictions/simulations abiding to a relative scale.

The geostatistical treatment of other geometallurgically relevant multivariate

scales has received limited to no attention so far by the mathematical geosciences

community. The challenges are multiple (Boogaart et al. 2013). Geometallurgical
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data from EBSD are known to exhibit spherical scales, for which a kriging approach

is readily available (Boogaart and Schaeben 2002a, b). One-dimensional distribu-

tions are much more abundant, and methodological developments for kriging, cok-

riging and conditional simulation exist via functional analysis (Menafoglio et al.

2016a, b). Nevertheless, application to the many geometallurgical data with distribu-

tional scale still requires theoretical and practical developments. Upscaling of these

geometallurgical properties present counter-intuitive characteristics: for instance, a

categorical variable at point support gives rise to a compositional variable at block

support, and while block kriging is generally thought to reduce uncertainty, block

“estimates” of distributional and of categorical variables may very well exhibit

higher entropy themselves. With a few exceptions based on geostatistical simulation

(Deutsch et al. 2015), downscaling has not yet been systematically considered, but

it may become a necessary tool to populate block models with smaller scale granu-

larity, for instance for incorporating information from blast-hole analysis on the 3D

models. Finally, the joint consistent modelling of several variables from different

scales (for instance modal mineralogy, geochemistry, hardness and lithology) has

received limited attention (see Maleki and Emery 2015 for a two-point case study

with one continuous and one categorical variable), and only seminal ideas about

the combination of Bayesian spaces (Boogaart et al. 2014), multigrid Markov Mesh

Models (Stien and Kolbjornsen 2011; Kolbjornsen et al. 2014), generalized linear

models and MPS have been presented for discussion (Boogaart et al. 2014).

It has been shown that the conditional distribution of the geostatistical simulation

is highly relevant for optimal processing choices (Boogaart et al. 2013). Gaussian

geostatistics only delivers that correctly in a Gaussian random field setting. Like with

strategic mine planning (Dimitrakopoulos 2011; Goodfellow and Dimitrakopoulos

2017), non-linear simulation methods better reproducing the conditional distribu-

tions would thus be more appropriate for geometallurgical optimisation. However so

far (April 2017), beyond single categorical variables, no case studies could show the

added value of MPS methods in the context of geometallurgy. The fundamental diffi-

culty appears to be producing sufficiently large, stochastically representative training

images (Emery and Lantuejoul 2014), a problem made even worse by the many rel-

evant variables, some with multivariate, compositional or distributional scales.

Besides the geometric modelling of the large-scale structure of a deposit, 3D Geo-

modelling offer also a tool for modelling and simulation of microstructure and tex-

ture of the ores. Stochastic simulation of such 3D geomodels of ores might be nec-

essary to appropriately simulate breakage of microstructure by crushing, grinding

and milling, as well as to offer an approach to stereological reconstruction. This is

so because all these problems require an appropriate description of the geometric

spatial relations between the mineral grains, and not just summaries of their compo-

sition. However, new concepts, models and techniques have to be developed to link

the macroscale described by geostatistics and the microscale, possibly described by

stochastic geometry.

Another challenge posed by such multi-scale (in the sense of spatial granularity),

multi-scale (in the sense of statistical kinds of data), multi-step (data is added to the

models at different times), multi-dimensional geometric modelling of ore bodies is
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the structuring, management and exploitation of the necessary data to appropriately

provide input for the methods used. A more intimate link between geostatistical and

geodatabases will be required for that, as flexible and sequential conditioning meth-

ods able to incorporate into the conditional distributions data on batches, as they

become available. Sequential data assimilation techniques have been successfully

used for this task in the assessment of univariate quantities (Wambeke and Benndorf

2017).

33.5 Decision Making

Geometallurgy touches on all levels of optimization of the mining operation, from

exploration, investment, and strategic mine planning towards the daily operation.

Each optimization task can be stated as a w-question, and delimits a certain scope of

the decision to be taken.

Blending ores from different localities to ensure a stable feed properties for the

plant presents the smallest decision scope, as it only changes where to mine and

not when or how to process. Having the ability to predict mining and processing

behaviour for different feed materials allows to better predict block values or machine

time and maintenance requirements. Such better block values can be used in classi-

cal strategic mine planning tools for an optimal exploitation of the deposit, that is

answering the when and where issues related to pushbacks and ultimate pit calcu-

lations. For this task a statistic model relating the primary geometallurgical proper-

ties, with secondary ones is typically enough (Vann et al. 2011). If the processing

model is good enough to predict the value as a function of the processing choices, it

can be used in conjunction with a geostatistical description of the geometallurgical

ore properties to optimize the processing itself either for the whole deposit or each

block (optimal adaptive processing) (Turner-Saad 2011; Tolosana-Delgado et al.

2015). Goodfellow and Dimitrakopoulos (2017) shows how blending, strategic mine

planning and routing can be optimized together. The optimizability, i.e. the optimal

achievable productivity, depends on very basic decisions like the size of selective

mining units, available equipment and available data. The overall value of the mine

and thus the decision to mine itself depends on all details. Boogaart et al. (2015)

shows the relevance of the selective mining unit and the decision strategy for the

value of the mine (how to model). Boogaart et al. (2016) shows how to quantify these

values and the value of the available equipment, determining costs and available

processing choices, before the actual mining operation starts. Such calculations are

based on geostatistical simulation, and thus allow to optimize the geometallurgical

approach (how to optimize) and the investment (what to build). Boogaart et al. (2016)

show the substantial influence of the exploration plan and the data aquisition strat-

egy (e.g. the influence of processing data) on the overall value of the operation and

how quantifying the value of information can be used to optimize the geometallur-

gical exploration strategy. This offers a way to economically justify and timely plan

extensive geometallurgical data aquisition campaigns (what and when to measure).
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All these approaches rely on stochastic optimisation in a geostatistical framework

for geometallurgical data combined with a geometallurgical processing model, both

based on quantitative ore characterisations. That is, they rely on the mathematical

tools described in the preceeding three sections. Applying these techniques is still

a major geoinformational challenge including big data management, data fusion,

massive parallel computing and real time data management (Jones and Moorhead

2013; Lopez et al. 2016).

33.6 Conclusions

Geometallurgy requires substantial geomathematical developments in all the clas-

sical fields of mathematical geosciences and geoinformatics. The challenges are

beyond the classical solutions, e.g. a truly multivariate, multi-scale Geostatistics

honoring non-Gaussian relationships is required; statistical analysis for various scales

beyond positive data and compositions is required, in particular distributional data;

a full space-time 3D data fusion and fast automated updating of models will be

required; there are new challenges to the mathematical background of metrology

including issues of local analytics, compositional calibration, and varying mate-

rial matrices; structural characterisation on several scales from the ore body to the

microfabric are needed on a quantitative level from limited 2D stereological data and

supportive conditioning information (bulk mineralogy and geochemistry, accessory

information on mineral stoichiometry, cristallographic defects, etc.); geostatistical

models of the spatial variation of the microstructure throughout the deposits (i.e. a

structure Geostatistics) needs to be developed; and so on.

The mathematical challenges of integrating characterisation, stochastic mod-

elling, process simulation and optimisation, and data reconciliation, will extend to

manmade and secondary resources (tailing dams, recycling, urban mining) and to

the optimisation of other geosystems (water management, ecosystem management,

urban ecosystems, the trisystem of energy-minerals-water), hence the lessons learnt

from primary ores geometallurgy will be relevant for many fields beyond ore geology

and mining. Beyond the classical fields of mathematical geosciences, geometallurgi-

cal questions will as well require solutions from mathematical disciplines uncommon

at the IAMG, like optimisation, operations research and numerical process mod-

elling. Thus, geometallurgy extends the scope of the IAMG towards these fields. In

this way geometallurgy can become the scientific and economic driving force for the

next generation of mathematical geosciences and geoinformatics.
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Chapter 34
Data Science for Geoscience: Leveraging
Mathematical Geosciences
with Semantics and Open Data

Xiaogang Ma

Abstract Mathematical geosciences are now in an intelligent stage. The freshly
new data environment enabled by the Semantic Web and Open Data poses both
new challenges and opportunities for the conduction of geomathematical research.
As an interdisciplinary domain, mathematical geosciences share many topics in
common with data science. Facing the new data environment, will data science
inject new blood into mathematical geosciences, and can data science benefit from
the achievements and experiences of mathematical geosciences? This chapter
presents a perspective on these questions and introduces a few recent case studies
on data management and data analysis in the geosciences.

34.1 Introduction

The global science community is facing a fresh data environment that never existed
before. New generations of sensors, instruments and platforms extend the range of
exploration and speed up the frequency of data collection. The quick updates in data
storage facilities make it possible to archive and retrieve massive datasets in digital
formats. The wide coverage of Internet and World Wide Web services allow
researchers to share datasets and communicate with colleagues efficiently both in
the office and from the field. As transparency, openness and reproducibility of
research results and methods receive increasing attention, the science community is
now promoting an open science culture (Nosek et al. 2015) and encouraging actions
on open access, open data, open code and open samples (Easterbook 2014; Hey and
Payne 2015; McNutt et al. 2016). In the domain of geoscience, significant progress
has been achieved on open data, including those emanating from federal agencies
such as data services of NASA, USGS, NOAA and community-built data portals
such as OneGeology, EarthChem, RRUFF, PANGAEA, PaleoBioDB, and more.
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A clear trend in open data actions is that the World Wide Web is used as the space
for data storage, publication, discovery and access. Data resources on the Web
provide convenience for geoscience researchers, and lay out the platform for
cross-disciplinary collaboration and new scientific discoveries.

In addition to focused research topics within each discipline, geoscience
researchers in the 21st century are now able to tackle more grand research questions
(Fig. 34.1) that need broad perspectives, multidisciplinary collaboration and sus-
tained data support. Studies on these questions will lead to the extension of our
fundamental knowledge and understanding about the Earth system, which in turn
will contribute to the application of geoscience in tackling social and economic
issues that are relevant to human welfare. For example, the Future Earth, a ten-year
initiative (2015–2025) coordinated by several international organizations, proposed
eight key challenges to the global sustainability (Future Earth 2014):
water-energy-food nexus, decarbonization, natural assets, cities, rural futures,
human health, consumption and production, and social resilience. To grasp these
tremendous opportunities and make innovative discoveries, geoscience researchers
need the necessary data resources and skills. Although geoscience data are
increasingly made available online, due to the heterogeneities inside them, many
data are not ready for use by end users. The heterogeneities of geoscience data are
reflected in the vast number of subjects, varied data structures and formats, and
diverse terminologies (Berg-Cross et al. 2012; Ramachandran et al. 2006; Reitsma
and Albrecht 2005). Methods and skills of both data management and data analysis
are needed for conducting science within the inspiring and complex data envi-
ronment of today.

Data management and data analysis are the two key concepts in data science
(cf. Schutt and O’Neil 2013), which involves knowledge of library and information
science, computer science, mathematics, statistics, and domain-specific disciplines.
While the theoretical foundations of data science are still under development
(Drineas and Huo 2016), there have already been many applications and

Fig. 34.1 The 10 grand research questions for the 21st century Earth sciences (National Research
Council 2008)
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discussions of data science in recent years (Schutt and O’Neil 2013), and a general
process of data science is emerging (Fig. 34.2). The steps and processes in
Fig. 34.2 would be familiar to researchers in all disciplines mentioned above, as
they are comparable to the widely-adopted hypothesis-driven research method in
modern science. Nevertheless, there could remain many questions to be asked as we
are now in the “inspiring and complex data environment”: Do we have methods and
techniques to improve the efficiency in each step? How to create a space and design
an approach where researchers from the different disciplines can collaborate and
leverage their individual capabilities to achieve a focused objective? What is the
feature of data science in a domain-specific context, including geoscience?

Researchers of mathematical geosciences or geomathematics can have a lot to
say about their experience and understanding of data science, because mathematical
geosciences is a domain with a long history of incorporating knowledge from
computer science, mathematics and statistics with geoscience (Agterberg 2014;
Bonham-Carter 1994; Loudon 2000; Merriam 2004). Will the latest research pro-
gress of data science inject some new blood into the mathematical geosciences; and
vice versa, can the methods and experiences in mathematical geosciences contribute
to the theoretical developments of data science? The purpose of this chapter is to
present a perspective on questions based on a review of the evolution of mathe-
matical geosciences and a summary of the latest discussions of data science within
the geoscience community. To support the presented perspective, a few recent case
studies will be introduced in the second half of the chapter, with a focus on how
data science can help leverage the existing capabilities in geoscience research and
achieve new goals.

Fig. 34.2 Primary steps in a data science process. From Schutt and O’Neil (2013) with changes
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34.2 The Intelligent Stage of Mathematical Geosciences

34.2.1 Evolution of Mathematical Geosciences

Retrospection on the evolution of mathematical geosciences will help us understand
the characteristics of this discipline as well as the opportunities it faces today. In an
informative review, Merriam (2004) summarized the six stages in the development
of quantitative geology: Origins (1650–1833), Formative (1833–1895), Exploration
(1895–1941), Development (1941–1958), Automated (1958–1982), and Integration
(1982–). The three earlier stages, over a period of almost 300 years, made use of
various developments in both geoscience and mathematics, and more importantly
the co-evolution between them. The latter three stages were characterized by the
application of computers, first in geostatistics, simulation and modeling, and the
organization of large datasets and later in all aspects of the geoscience workflow,
including data capture, manipulation, analysis and documentation. Merriam (2004)
also briefly mentioned the Internet and the potential challenges and opportunities in
the connected virtual world, and he stated, “There is seemingly no limit to the
information and communication revolution.”

Indeed, coming to today, which is just about 12 years after Merriam’s review
paper, geomathematical researchers as well as the broad geoscience community
already face the fresh data environment. We now have new instruments for mea-
surement and observation, powerful facilities in data storage and transmission,
improved interoperability of online datasets, and effective algorithms for data
processing and analysis. New methods and technologies such as big data, open
data, machine learning, data mining, data science, semantic web, natural language
processing have been increasingly used in geoscience studies. The functionality of
computers is being leveraged to a new level, where they are not only capable to
represent “what is” known but can also show us “why” and help generate ideas on
“how to” explore new findings. Ma (2015) proposed that the mathematical geo-
sciences is now in an Intelligent stage (2014–). Besides these accelerated devel-
opments and applications of geomathematical methods within the geoscience
disciplines, there are growing needs for using these methods in cross-disciplinary
programs to address socio-economic issues that are of public concern (Freeden
2010).

In this intelligent stage, what we can do to leverage mathematical geosciences in
various multidisciplinary studies? In this chapter, the author wants to address the
need of refreshing our knowledge about the latest progress in open data and data
science. For geoscience researchers, especially those who are not familiar with data
science, knowing open data will be a key to understanding the general data science
process and some featured works using datasets retrieved from the Web.
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34.2.2 Characteristics of Open Data and Semantic Web

Most geoscience studies are driven by data. The term “open data” reflects people’s
desire of access to freely available datasets. Some open data are made accessible
with specified licenses and copyrights, and others are without any limits or
restrictions. The popularity of the Internet and the Web creates a wide space for the
implementation of open data. For end users of open data, an issue of extreme
concern is the data interoperability (Fig. 34.3). Researchers have discussed the
levels of data interoperability from different aspects. The levels in the center of
Fig. 34.3 (Brodaric 2007) are from a technical point of view. Systems level is
fundamental, which means there should be the necessary protocols (e.g. TCP/IP for
the Internet and HTTP for the Web) supporting data discovery and transmission.
Syntax and Schematics levels are relevant to the data structures and models, for
which an end user should be able to parse and analyze. Semantics level indicates
that the meaning of data reflected in data model, terminology and encoding are
made readable to machines and thus understandable to users. Pragmatics level
means the data are suitable for the user’s purpose and can contribute value in
applications. The right part of Fig. 34.3 (Ma et al. 2011) explains these technical
levels with layman’s language, and it also adds that all the technologies and
implementations at those levels should be legal and ethical from a point of view of
social science.

The Semantic Web (Berners-Lee 2000) provides technological support to each
level of data interoperability (Fig. 34.3). For geoscience researchers, the Semantic
Web creates a space where datasets can be more efficiently annotated, published,
discovered and accessed. The Semantic Web is an extension to the current World
Wide Web (Berners-Lee et al. 2001). The Web is now in the transition from a Web
of Documents to a Web of Data because of the embedded structures and meanings
that did not exist before. Nevertheless, to add structure and meaning to the

Fig. 34.3 Levels of data interoperability and a comparison with the architecture of the Semantic
Web. From Berners-Lee (2000), Brodaric (2007) and Ma et al. (2011)
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information on the Web, definitions and representations of concepts and the
interrelationships among concepts are needed (Berners-Lee. 2006). In the Semantic
Web such definitions and representations are called ontologies. Each ontology is the
formal specification of the shared conceptualization of a domain of study (Gruber
1995). In practice, ontologies can be of different forms, such as glossary, controlled
vocabulary, conceptual schemas and detailed logic constraints, depending on the
level of detail on conceptual specification. Semantic Web technologies provide the
essential elements for modeling and encoding ontologies in machine-readable
formats.

In the context of cross-disciplinary program with datasets from various resources
and subjects and researchers from different knowledge domains, there could be a
large number of ontologies addressing the various needs on knowledge engineering
and concept representation. Those ontologies can be implemented to build inno-
vative functions to support the discoverability, accessibility, understandability and
usability of open data. For example, there can be projects on categorizing datasets
and publications based on their subjects and keywords, recommending datasets or
publications to a user based on his research interests, suggesting matches between
datasets and scientific questions, and more. The data science domain recently also
has proposed the topic “smart data” (Sheth 2014), which aims at using Semantic
Web technologies to improve the efficiency in the transformation from massive
datasets into actionable information.

34.2.3 Methodology of Deploying Data Science
in Geoscience

Although data science has already attracted significant attention in both academia
and the industry, the theoretical foundations and technological systems of data
science are still under development. In the summary report of a recent NSF-funded
workshop (Drineas and Huo 2016), the emergence of data science as a discipline
was compared to the rise of computer science in the 1950s along with the wide
availability of computers, especially personal computers (PCs). The data deluge of
today and its great potential for academia and industry are, in the report authors’
language, a “forcing function” that will catalyze the emergence of data science
departments in universities and nurture the development of data science as a dis-
cipline. At the current time, since we do not have established theoretical founda-
tions for data science, we can understand the core of data science as a
cross-disciplinary topic, or a blend of massive datasets with methodologies in
existing disciplines, such as computer science, library and information science,
statistics and mathematics. The application of data science will further extend the
coverage of disciplines to other domains, such as geoscience.

In most scientific researches, including those in geoscience, a general research
process includes the following steps: (1) Choose a general direction and do
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background research; (2) Generate a hypothesis; (3) Conduct experiments and
collect data; (4) Analyze data and revise hypothesis; (5) Communicate results. We
can compare those steps with the data science process in Fig. 34.2. Both processes
follow a direction of data collection, data analysis and result communication, but
there are also a few items worthy of further discussion. First, data science often
faces a situation in which massive datasets are already in existence while we do not
yet have a hypothesis. Second, the data science process addresses a step called data
pre-processing, which detects the inconsistent, incomplete and incorrect parts in the
datasets and takes actions to ensure the data quality before doing analysis. Data
pre-processing is an essential step for large datasets collected from multiple sources.
Third, the step of exploratory data analysis (EDA) offers clues for hypotheses in
scientific research. EDA is a widely-used approach in statistics, and it covers many
methods, such as scatterplot, box plot, residual plot, smoother, bag plot, and more
(Brillinger 2011). The term “exploratory” explains the purpose of the method: it is
flexible and can help look for things that we believe are not there or to be there
(Tukey 1977). EDA helps address the shortage of research hypotheses for massive
data that already exist. The functionality of EDA is comparable to the approach of
data-driven abductive discovery (Hazen 2014). Abduction means the formation of a
plausible explanation for an observation. Charles S. Pierce (1839–1914) viewed
abduction as the first stage of scientific reasoning, i.e. to create a hypothesis. Then
deduction will be carried out to determine the specific evidence needed to prove the
hypothesis. After that, induction will be used to extrapolate a general rule or
principle from the findings. Hazen (2014) summarized that abduction is to discover
what we do not know we do not know, while deduction and induction are to
discover what we know we do not know. This is comparable to Tukey’s point of
view on EDA (Tukey 1977).

One of the most significant challenges to deploy data science in geoscience is to
create a space (physical and/or virtual) and establish an approach so that researchers
from different disciplines can talk to each other. Science of today is highly com-
partmented into disciplines and there are considerable gaps between these, as
reflected by differences in scientific subjects, research methods, terminologies used
and even styles of working. The challenge of cross-disciplinary collaboration is like
encouraging people to step out from their “comfort zones”. Researchers in geoin-
formatics (Fox and McGuinness 2008; Ma et al. 2014b) have proposed a method
called use case-driven iterative approach, and have successfully implemented it to
facilitate the collaboration between data scientists and domain scientists in several
projects. Each use case is a description of the process of a focused task. It can be
used to identify scientific questions to ask, resources to be used to answer these
questions and methods to be implemented to determine the answer. Through the
documentation and analysis of a use case, data scientists and domain scientists (e.g.
geologists) can understand the needs and aims of each other. As each use case is a
focused small task, the collaborative team can spend a relatively short time to
achieve the goal, and then can review, update and move on to the next use case. The
process is iterative until the overall objective of a research program is realized.
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34.3 Case Studies of Data Science in Geoscience

When applying data science to leverage current geoscience studies, the focus or
highlight can consist of one or a few steps, depending on the target aimed at. For
example, the target can be improving data discoverability and accessibility by
updating building blocks and frameworks in the cyberinfrastructure. It can also be
focused on finding patterns within massive datasets such as those from literature
legacy or crow-sourcing databases. In this section, a few recent efforts and case
studies will be introduced.

34.3.1 Coordinating Standards to Improve Data
Interoperability

In the domain of geoscience, a few recent achievements on data standards and their
implementation were led by CGI-IUGS (http://www.cgi-iugs.org), the Commission
for the Management and Application of Geoscience Information within the Inter-
national Union for Geological Sciences. GeoSciML was proposed as a markup
language for the exchange of general geoscience information on the Web (Sen and
Duffy 2005). GeoSciML was built on top of the Geography Markup Language
(GML) and the eXploration and Mining Markup Language (XMML). The first
geoscience subjects covered in GeoSciML included boreholes and structural
geology. Raw datasets such as those in geologic maps can be transformed into
GeoSciML formats once the mapping between the original data structure and the
GeoSciML schema is set up. This makes it easier for data exchange and sharing
among organizations and nations. GeoSciML was successfully implemented in the
OneGeology project (Jackson and Wyborn 2008). On the front end of the
OneGeology data portal (http://portal.onegeology.org), users can access geologic
map services in a standard data structure. At the back end of the portal, there are
multiple data providers, distributed data servers and different data structures.
GeoSciML acts as a mediator between those heterogeneous structures and improves
the data interoperability. Another significant contribution from CGI-IUGS is the
multi-lingual geoscience vocabularies. Initial projects on geologic time and rock
type vocabularies were applied in the OneGeology-Europe project to harmonize
geologic maps from around 20 European countries (Laxton et al. 2010). Standards
derived from those vocabularies also became a part of INSPIRE, the Infrastructure
for Spatial Information in Europe (http://inspire.jrc.ec.europa.eu).

Such efforts on data standards are an essential part of informatics, especially
applied informatics that has a domain specific background. Comparing with the
geoscience community at large, the number of people working on geoinformatics is
low. The value and gains that data standard work can provide are often not fully
understood within the geoscience community (Jackson and Wyborn 2008). The
situation has been changing in recent years since the value of data science was
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recognized by increasingly more geoscience researchers. For instance, besides
GeoSciML, CGI-IUGS also has developed EarthReousrceML for the exchange of
information on mineral occurrences, mines and mining activity. CGI-IUGS’s Ter-
minology Working Group has published additional standardized vocabularies. The
geoscience community has also collaborated with standard organizations to
improve the visibility of data standard outputs. In 2017, GeoSciML was published
as a standard of the Open Geospatial Consortium (OGC) (OGC 2017), making it
one of the first domain-specific standards in OGC. Geoinformatics researchers also
take the lead in coordinating data standards among different scientific disciplines. In
2016, CODATA, the International Council for Science’s Committee on Data for
Science and Technology, set up a task group on coordinating data standards
amongst scientific unions (http://www.codata.org/task-groups/coordinating-data-
standards). The aim of the group is to take stock of the progress on disciplinary data
standards in different scientific unions, recognize the best practices and coordinate
the development of future work. Data standards provide the basic-level technical
support when we collect and analyze datasets in cross-disciplinary projects. They
significantly reduce the workload on data pre-processing and data cleansing in a
data science process (Fig. 34.2).

34.3.2 Openness, Provenance and Reproducibility
of Research

Provenance and reproducibility are both regarded as important research topics in
data science (Drineas and Hou 2016), and they are also essential parts of open
science. The literal meaning of provenance is the origin of something. In data
science, documenting provenance involves the annotation and interconnection of a
network of research activities, people, organizations and resources involved in the
production of scientific findings (Ma et al. 2014a). In 2013, the Semantic Web
community released an ontology called PROV-O (Lebo et al. 2013). The three top
classes Entity, Activity and Agent in PROV-O are easy to understand. The ontology
also covers a list of subclasses and relationships that can be applied in domain
specific applications. A recent successful implementation of PROV-O is the Global
Change Information System (GCIS) (Tilmes et al. 2013), which is part of the U.S.
Global Change Research Program (USGCRP, http://www.globalchange.gov).
USGCRP is a multi-agency research program to “assist the Nation and the world to
understand, assess, predict, and respond to human-induced and natural processes of
global change.” Every four or five years, USGCRP releases a National Climate
Assessment Report with the latest scientific findings on different aspects global
change. The most recent one was released in 2014. The initial aim of GCIS is to
present the 2014 report and to incorporate integrated access to interlinked resources
underpinning that report. The long-term goal of GCIS is to be a web-based source
of authoritative, accessible, usable and timely information about global change.
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Semantic Web technologies, including PROV-O, were applied in the design and
development of GCIS. The project included four major parts: categorization,
annotation, identification and linking (Ma et al. 2014a), which are coherent within
the architecture of the Semantic Web (Berners-Lee 2000). With the
well-documented provenance information on the GCIS website (https://data.
globalchange.gov), users will be able to conduct innovative research on prove-
nance tracing data mining. For example, they can seek answers for the question:
What is NASA’s contribution to the sea-level rise scenarios in the 2014 National
Climate Assessment Report?

Reproducibility in data science and open science includes at least two levels of
meaning. The first is replicability of a research output by using the datasets and
methods in the research. The second is the derived value, which means the open
datasets and methods from that research can be reused in new research and make
substantial contributions (Beaulieu et al. 2017). To improve the reproducibility of
scientific research, several technical frameworks can be applied and/or adapted,
such as workflow platforms and provenance documentation. In a recent study about
reproducible marine ecosystem assessment (Ma et al. 2017), the PROV-O ontology
was extended and implemented in the Jupyter Notebook (http://jupyter.org) to
capture and interconnect information from various resources in a scientific research
project. Jupyter Notebook is an open-source web application that can be used to
create workflow documents with codes, formulas, tables, diagrams, interactive
visualizations and descriptive text. The developed ontology further enhanced the
function of the platform in capturing and presenting scientific provenance infor-
mation. The work was used in the Ecosystem Assessment Program of the U.S.
NOAA Northeast Fisheries Science Center to support assessment reports of Large
Marine Ecosystems. In the implementation, a user works within the Jupyter
Notebook to write codes and text for data input, analysis, output and documenta-
tion. Once the notebook is completed, the provenance information is automatically
captured using the structure defined in the ontology. The collected provenance
information is machine-readable and can be archived for later use, such as verifying
steps and outputs in the workflow or retrieving raw datasets used in any given step.

34.3.3 Leveraging Geoscience Data Legacy
for New Discovery

Geoscience is a domain with abundant literature resources, and much useful infor-
mation can be extracted from the data legacy. A recent study, originally called
PaleoDeepDive (Peters et al. 2014) and nowGeoDeepDive (https://geodeepdive.org),
has demonstrated the significant value of geoscience publication archives through the
application ofmachine learning and data mining technologies. The domain of focus in
GeoDeepDive is paleontology and its aim is to detect and extract fossil occurrence
information from the massive scientific literature. The work leverages methods in
natural language processing, entity recognition and extraction and knowledge graph
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construction to improve the efficiency of document processing and the quality of
output datasets. In several complicated data extrication and reasoning tasks, the
outputs of GeoDeepDive were comparable to the results collected by human experts
of geologic history (Peters et al. 2014). Most recently, several publishers and research
organizations have set up partnerships with GeoDeepDive and provided a huge
number of publications for processing. By middle April 2017, the team has already
processed more than 3.2 million documents. The extracted fossil records and their
interrelationships can provide useful updates to existing databases, such as the
Paleobiology Database (PBDB, https://paleobiodb.org/). PBDB, in turn, has set up
interfaces and libraries such as those for Web-based data query and retrieval (Peters
and McClennen 2015) and the R environment (Varela et al. 2015). These projects
build up channels through which any geoscience researcher can easily access datasets
of interest and integrate them with other datasets in their own projects.

A project ongoing in the author’s group is about using an ontology to help
integrate datasets from PBDB with geologic map services provided by USGS and,
thus, to build an enriched data portal where users can discover and access more
information. Previous works already have shown the functionality of ontology and
data visualization in geoscience data services (Ma et al. 2012). In the ongoing
project the focus is an ontology for the regional geologic time scale of North
America, in addition to the established ontology for the global geologic time scale
(Cox and Richard 2015). The geologic time scale of North America has unique
classification and terminology for the time intervals at the Epoch and Age levels;
for the levels of Eon, Era and Period it shares the architecture with the global
standard. As the terminology in the regional standard has been used in geoscience
research of the North American region, specific terms in the regional standard can
now also be used as keywords in data search, such as in queries sent to PBDB. In
the ontology for the regional geologic time scale of North America, detailed
information on all time intervals and their relationships were captured and repre-
sented in a machine-readable format. A Web-based visualization was then devel-
oped for the ontology, and interactive functions were developed to deploy the
visualization as a control panel for data search. When a user clicks a time term in
the panel, a query will be sent to PBDB, and the retrieved fossil records from PBDB
will be plotted in a map window. Our project also set up connections to the USGS
data services, so the user can load geologic map layers onto the map window and
browse the background geologic information of a location where a fossil was
discovered. The multi-source information has the potential to stimulate discussion
among users and help them propose new research questions.

34.3.4 Cross-Disciplinary Collaboration for Innovative
Discoveries

In early 2015, a research project focused on the co-evolution of geo- and biospheres was
kicked off at the Carnegie Institution of Washington (http://dtdi.carnegiescience.edu).
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The researchers in that project are from several universities and institutions and are
with diverse knowledge backgrounds, making the research a real cross-disciplinary
collaboration. The project proposed to deploy a data-driven abductive approach to
discover patterns in the evolution of Earth’s environment. A major task in the early
stage of the project is to set up a Deep-Time Data Infrastructure (DTDI), which
includes the enrichment of attributes (e.g. age information) in existing geo- and
bio-databases, connections among geo-databases of petrology, mineralogy and
geochemistry, the linkage between geo- and bio-databases, and open access and
dissemination protocols for the built data infrastructure. Many open access data
resources were considered for DTDI, including rruff.info (mineral species and
properties), mindat.org (mineral species and localities), earthref.org (geochemistry
and geomagnetism), geokem.com (igneous rock chemistry), metpetdb.rpi.edu
(metamorphic petrology), earthchem.org (geochemistry, geochronology, petrol-
ogy), vamps.mbl.edu (subsurface microbial ecosystem), pdb.org (protein struc-
tures), paleobiodb.org (paleobiology), and more. The user case-driven iterative
method mentioned in Sect. 34.2.3 has been implemented to organize meetings and
promote collaborations among researchers in the group. While the project is still
ongoing, several interesting findings have already been achieved. One of them is
the pattern of Large Number of Rare Events (LNRE) among the mineral species
frequency distribution (Hystad et al. 2015). The work used the records of mineral
species, localities and observations (species-locality pairs) from mindat.org and
discovered the LNRE pattern. By extrapolating the domain of observation to be
about four times the current size, the result in the LNRE model showed that there
are about 1,500 new mineral species to be discovered. From that work, further
studies on the population probabilities of all mineral species lead to the charac-
terization of Earth-like planets, such as the Mars (Hystad et al. 2017).

As an affiliated scientist in the project mentioned above, the author led a project
of using data visualization to study the co-relationships between mineral-forming
elements and mineral species. The first study focused on a list of 30 key elements
chosen by the research team (Ma et al. 2016). First, we built a 30 × 30 × 30
matrix and visualized it in a three-dimensional coordinate system, which made the
matrix a fundamental framework to fill in records. Along each axis in this matrix we
plotted the same arranged list of 30 elements as indices. Each cell in the matrix was
first filled with the raw number of minerals in which elements X, Y, and Z coexist.
A color spectrum was then applied to render each cell according to the value of the
number in it. The process was intuitive, and the output in the three-dimensional
matrix already showed interesting patterns in the co-relationships between elements
and minerals. The visualized matrix was developed to be interactive in a web
browser. Researchers can rotate the matrix and zoom into see details of a part,
highlight a certain cell and see attributes in it, and slice one or more planes out from
the matrix to see two-dimensional patterns. In another study, we extended the scale
to all the 72 mineral-forming elements and constructed a 72 × 72 × 72 matrix.
We then applied a chi-squared test to generate values to be filled and visualized in
that matrix (Hummer et al. 2016). The mineralogical research question in that
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study was “Does the presence of element Z affect the correlation between elements
X and Y in mineral species, and is the effect positive or negative?” Besides the
completed case studies, many other interesting projects can be further developed
with the three-dimensional matrix. For example, we can add data on electronega-
tivity, ionic radius, atomic number, period, crustal abundance, etc. as associated
parameters to each axis and test for different clustering of elements based those
parameters.

34.4 Concluding Remarks

Mathematical geosciences are now in an intelligent stage. As a research domain,
mathematical geosciences share many topics in common with the data science of
today. A topic of great interest in deploying data science for geoscience is how to
generate research questions or hypotheses when massive datasets are already in
existence. In this chapter, the role of exploratory data analysis was analyzed for that
purpose, and it was compared with the data-driven abductive approach. Semantic
Web and Open Data create a freshly new data environment for conducting geo-
mathematical studies. The Web is built as an open space where Anyone can say
Anything on Any topic. The Semantic Web aims to facilitate data Interoperability
on the Web, to improve Interactivity between humans and machines, and to inspire
Intercreativity for exploring new things. For informatics, a major objective is to
present the Right information to the Right person in the Right way. We can use the
acronym AIR3 to represent those nine words with initial capital letters. AIR3
presents a broad vision of deploying data science for geoscience in the context of
the Semantic Web and Open Data. To put this into practice, we need to create a
physical and/or virtual space and implement an approach where researchers from
different disciplines can step out from their ‘comfort zones’, talk to each other, and
collaborate on focused research topics.
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Chapter 35
Mathematical Morphology
in Geosciences and GISci:
An Illustrative Review

B. S. Daya Sagar

Abstract Georges Matheron and Jean Serra of the Centre of Mathematical
Morphology, Fontainebleau founded Mathematical Morphology (MM). Since the
birth of MM in the mid 1960s, its applications in a wide ranging disciplines have
illustrated that intuitive researchers can find varied application-domains to extend
the applications of MM. This chapter provides a concise review of application of
Mathematical Morphology in Geosciences and Geographical Information Science
(GISci). The motivation for this chapter stems from the fact that Mathematical
Morphology is one of the better choices to deal with highly intertwined topics such
as retrieval, analysis, reasoning, and simulation and modeling of terrestrial phe-
nomena and processes. This chapter provides an illustrative review of various
studies carried out by the author over a period of 25 years—related to applications
of Mathematical Morphology and Fractal Geometry—in the contexts of
Geosciences and Geographical Information Science (GISci). However, the reader is
encouraged to refer to the cited publications to gather more details on the review
provided in an abstract manner.

35.1 Introduction

A basic understanding of many geoscientific and geoengineering challenges across
multiple spatial and/or temporal scales of terrestrial phenomena and processes is
among the greatest of challenges facing contemporary sciences and engineering.
Many space-time models explaining phenomena and processes of terrestrial rele-
vance were descriptive in nature. Earlier, several toy models were developed via
classical mathematics to explain possible phases in dynamical behaviors of complex
systems. With the advent of computers with powerful graphics facilities, about three
decades ago the interplay between numerical methods (generated via classical
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equations explaining the behaviors of dynamical systems) and graphics was shown
to exist. That progress provided the initial impetus to visualize the systems’ spatial
and/or temporal behaviors that exhibit simple to complex patterns on graphical
screens. One of the efficient ways of understanding the dynamical behavior of many
complex systems of nature, society and science is possible through data acquired at
multiple spatial and temporal scales. Data related to terrestrial (geophysical) phe-
nomena at spatial and temporal intervals are available in numerous formats. The
utility and application of such data could be substantially enhanced through related
technologies documented in edited volumes and monographs of the recent past
(Sagar 2001a, b, c, d, 2005a, b, 2009, 2013; Sagar and Rao 2003; Sagar et al. 2004;
Sagar and Bruce 2005; Sagar and Serra 2010; Najman et al. 2012).

To understand the dynamical behavior of a phenomenon or a process, devel-
opment of a good spatiotemporal model is essential. To develop a good spa-
tiotemporal model, well-analyzed and well-reasoned information that could be
extracted/retrieved from spatial and/or temporal data are important ingredients.
Figure 35.1 shows a schematic illustrating the key links between the various phases
where the involvement of Mathematical Morphology becomes obvious from the
studies to be shown later in the chapter.

Mathematical Morphology—founded by Georges Matheron (1975) and Jean
Serra (1982) has shown great impact in various fields including Geosciences and
GISci—is one of the better choices to deal with all these key aspects mentioned.
Mathematical morphology was founded by Georges Matheron (Agterberg 2001,
2004; Serra 1982, 1988). There are numerous representative publications related to
mathematical morphology, to name a few: Serra (1982, 1988), Sternberg (1986),
Beucher (1990, 1999), Soille (2003), Najman and Talbot (2010), Sagar (2013).
Most notably, the comment on the issue of “What do Mathematical Geoscientists

Fig. 35.1 Mathematical morphology applications in several phases of studies of relevance to
geosciences and geographical information science
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Do?” made by Harbaugh (2014) includes the importance of mathematical mor-
phology of geological features in making predictions. In this chapter we outline the
successful applications of the most important concepts of mathematical morphology
(Table 35.1) in the context of geosciences and Geographical Information Science
(GISci).

While perceiving the terrestrial surfaces including geophysical and geomorphic
basins (e.g. using Digital Elevation Models, Digital Bathymetric Models, cloud
fields, microscale rock porous media etc.) as functions, planar forms (e.g. topo-
graphic depressions, water bodies, and threshold elevation regions, hillslopes) as
sets, and abstract structures (e.g. networks and watershed boundaries) as skeletons,

Table 35.1 Successful applications of MM transformations in geosciences, geomorphology,
GISci-major references

Morphological operator Application domain Major references

Binary and grayscale
morphological erosion,
dilation, opening, closing,
multiscale morphological
operations

Petrology, GISci,
geosciences, remote
sensing

Serra (1982), Sagar (2013),
Brunet and Sills (2017),
Beucher (1990, 1999)

Geodesic morphological
operations

Remote sensing, GISci,
geography, petrology

Lantuejoul (1978), Lantuejoul
and Beucher (1981), Sagar and
Lim (2008a, b), Challa et al.
(2016)

Hit-or-miss transformation Geomorphology,
hydrology

Serra (1982), Tay et al. (2005a,
b, c)

Morphological thinning,
thickening, pruning

Hydrology, cartography Soille (2003), Sagar (2013)

Morphological
skeletonization

Cartography, hydrology,
geomorphology

Sagar et al. (2000, 2003a, b),
Soille (2003)

Skeletonization by zones of
influence and weighted
skeletonization by zones of
Influence

Cartography, hydrology,
geomorphology

Beucher (1990), Rajashekara
et al. (2012), Sagar (2014a, b)

Granulometries and
anti-granulometries

Petrology,
geomorphology,
hydrology

Serra (1982), Maragos (1989),
Sagar (2013), Tay et al.
(2005a, b, c 2007), Vardhan
et al. (2013)

Morphological distances,
hausdorff dilation (erosion)
distances

GISci, limnology,
biogeography, spatial
planning

Serra (1988), Sagar (2010,
2013), Sagar and Lim (2015a,
b)

Morphological interpolations
and extrapolations

Geophysics, atmospheric
science, geology, remote
sensing, cartography

Sagar (2010) Brunet and Sills
(2017), Rajashekara et al.
(2012), Sagar (2014a, b), Sagar
and Lim (2015a, b)

Watershed transformation Hydrology, remote
sensing, mapping,
borehole studies, seismic
data processing

Meyer (1980), Beucher and
Meyer (1992), Rivest et al.
(1992), Sagar (2007)
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we make attempts to unravel key links for better understanding spatiotemporal
behaviors of several terrestrial and/or spatial phenomena and processes between the
following coherent aspects: (i) terrestrial pattern retrieval, (Sect. 35.2) (ii) terrestrial
pattern analysis, (Sect. 35.3) (iii) simulation and modeling, (Sect. 35.4) and
(iv) geocomputing, visualization, spatial reasoning and planning (Sect. 35.5).

35.2 Terrestrial Pattern Retrieval

Retrieving relevant information from precisely acquired spatial-temporal data of
varied types about a specific complex system is a basic prerequisite to understand
the spatial-temporal behavior of a system. Retrieval of information from a available
spatiotemporal data acquired from a wide range of sources and a variety of formats,
opens new horizons to the spatial statistical and geoscience communities. We have
developed original spatial algorithms based on non-linear morphological transfor-
mations for retrieval of unique geophysical networks, mountain objects, segmen-
tation of various geophysical objects, and pairing the geophysical spatial fields
based on certain similarities (Sagar et al. 2000, 2003a, b; Sagar and Chockalingam
2004; Sathymoorthy et al. 2007; Chockalingam and Sagar 2003; Lim and Sagar
2008a, b; Lim et al. 2009, 2011; Sagar and Lim 2015a, b; Danda et al. 2016).

35.2.1 Mathematical Morphology in Extraction of Unique
Topological Networks

In contrast to other recent works, which have focused on extraction of channel
networks via algorithms that fail to precisely extract networks from non-hilly
regions (e.g. tidal regions), the algorithms we proposed can be generalized for
application to both hilly (e.g. fluvial) and non-hilly (e.g. tidal) terrains, and also
pore connectivity networks. These algorithms concerning the framework to extract
multiscale geomorphologic networks via systematically decomposing elevation
surfaces and/or decomposed threshold elevation regions into their abstract struc-
tures lead to valley and ridge connectivity networks. We proposed a framework to
first decompose a binary fractal basin into fractal DEM from which two unique
topological connectivity networks are extracted. These networks facilitate to seg-
ment Fractal-DEM (Fig. 35.2a) into sub-basins ranging from first to highest order
(Fig. 35.2c). Results derived from a synthetic DEM (Fig. 35.2a) by applying one of
these algorithms include unique topological connectivity networks similar to valley
and ridge connectivity networks (Fig. 35.2b) and the hierarchically partitioned
watersheds (Fig. 35.2c). We demonstrated the superiority of these stable algorithms
which can be generalized to terrestrial surfaces of both fluvial and tidal types. This
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work helps to solve basic problems that algorithms meant for extraction of unique
terrestrial connectivity networks have faced for over three decades.

35.2.2 Retrieval of Morphologically Significant Regions

Algorithms meant for morphological segmentation were demonstrated on a DEM,
and mapped the physiographic features such as mountains, basins, and piedmont
slopes from DEM (Fig. 35.3a); and the results are compared with that of other
popular approaches (Fig. 35.3b).

Further, multiscale morphological opening was employed to segment binary
fractal basins (Fig. 35.4a–c) that mimic geophysical basins, and cloud fields

Fig. 35.2 a simulated fractal DEM achieved through morphological decomposition procedure,
b loop-like ridge connectivity and loopless channel connectivity networks, and c subbasins

Fig. 35.3 Mountain pixels are the pixels in white, the piedmont pixels are the pixels in gray, and
the basin pixels are the pixels in black. a The results obtained using the newly developed
algorithm. b The results obtained in Miliaresis and Argialas (1999). (From Sathymoorthy et al.
2007)
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isolated from MODIS data into topologically prominent regions (Fig. 35.4d–f). We
proposed granulometry-based segmentation of geophysical fields (e.g. DEMs,
clouds, etc.) with demonstration on binary fractals of deterministic and random
types (Fig. 35.4a–c), and on cloud fields (Fig. 35.4d–f) that have different com-
paction properties with varied cloud properties.

The approach based on computation of complexity measures of morphologically
significant zones decomposed from binary fractal sets via multiscale convexity
analysis—which can be implemented on several geophysical and geomorphologic
fields (e.g. DEMs, clouds, binary fractals etc.) to segment them into regions of
varied topological significance—has been demonstrated on cloud fields derived
from MODIS data to better segment the regions within the cloud fields that have
different compaction properties with varied cloud properties. This approach of
fundamental importance can be extended to several geophysical and geomorpho-
logic fields to segment them into regions of varied topological significance.

Fig. 35.4 Morphologically significant zones decomposed from a Koch triadic fractal island,
b Random Koch triadic fractal island, c Random Koch quadric fractal island, d Isolated Moderate
Resolution Imaging Spectroradiometer (MODIS) cloud (cloud-1), e Color-coded binarized (by
choosing threshold gray level value 128) cloud-1 images at three threshold-opening cycles
superimposed on binarized original cloud-1 color-coded with green, and f boundaries of 12th,
32nd, and 100th opened cloud-1 images and thresholded original cloud-1 superimposed on the
original cloud image
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35.2.3 Ranking of Best Pairs of Spatial Fields

A new metric to quantify the degree of similarity between any two given spatial
fields is proposed (Sagar and Lim 2015a, b). This metric based on morphological
operations can be used for image classification, in particular hyperspectral image
classification, to derive best pair(s) of spatial fields from among a large number of
spatial fields available in a database. In this proposed approach to compute the
ranks for every possible pair of spatial fields (grayscale images) in a database, the
two major computations involved include (i) estimation of grayscale morphological
distance between the source and target spatial fields, and (ii) the ratios between the
areas of infima and suprema of source and target spatial fields. Using this approach,
four spatial elevation fields (Fig. 35.5b–e), in other words four quadrants parti-
tioned from Fig. 35.5a could be paired into best pair (Fig. 35.6a), medium best pair
(Fig. 35.6b), and the least best pair (Fig. 35.6c).

Fig. 35.5 a Digital Elevation Model of size 256 × 256 pixels depicting Mount St Helens,
b–e four quadrants of size 128 × 128 pixels partitioned from DEM (Fig. 35.5a) include top-left
f 1ð Þ, top-right f 2ð Þ, bottom-left f 3ð Þ, and bottom-right f 4ð Þ portions

Fig. 35.6 Three best ranked pairs of spatial elevation fields shown in Fig. 35.5b–e a f 1, f 2ð Þ,
b f 1, f 3ð Þ, and c f 3, f 4ð Þ

35 Mathematical Morphology in Geosciences and GISci … 709



35.3 Terrestrial Pattern Analysis

Quantitative analyses of terrestrial phenomena and processes is one of the inno-
vative new directions of geoscientific research. Analysis of terrestrial patterns—that
include water bodies, valley and ridge connectivity networks, watersheds, hill-
slopes, mountain objects, elevation fields—at various spatial and temporal scales is
an important aspect to better understand the dynamical behaviors of various ter-
restrial processes and surfaces. Over the decades, various quantitative approaches
have been developed and successfully demonstrated. Some of these approaches
include morphometric analysis of river networks, hypsometry, allometry, and
granulometric analyses, and geodesic spectrum based analysis. In this section, we
show some results through illustrations arrived at via applications of mathematical
morphology in (i) morphometric and allometric analyses of river networks and
water bodies and their corresponding zones of influence, (ii) deriving
scale-invariant but shape-dependant power laws, (iii) deriving basin-specific geo-
desic spectrum, and (iv) DEM analysis.

35.3.1 Morphometry and Allometry of Networks

Towards analyzing terrestrial surfaces we have shown unique ways to quantitatively
characterize the spatiotemporal terrestrial complexity via scale-invariant measures
that explain the commonly sharing physical mechanisms involved in terrestrial
phenomena and processes. These contributions (Sagar and Rao 1995a, b, c, d; Sagar
1996, 1999a 2000a, b, 2001a, b, c, d 2007; Sagar et al. 1998a, b, 1999; Sagar and
Tien 2004; Chockalingam and Sagar 2005; Tay et al. 2005a, b, c) highlighted the
evidence of self-organization via scaling laws—in networks, hierarchically
decomposed subwatersheds, and water bodies and their zones of influence, which
evidently belong to different universality classes—which possess excellent agree-
ment with geomorphologic laws such as Horton’s Laws, Hurst exponents, Hack’s
exponent, and other power-laws given in non-geoscientific contexts. A host of
allometric power-law relationships were derived that were in good accord with
other established network models and real networks (Figs. 35.7, 35.8 and 35.9).

35.3.2 Allometry of Water Bodies and Their Zones
of Influence

Topologically, water bodies (Fig. 35.10a) are the first level topographic regions that
get flooded, and as the flood level gets higher, adjacent water bodies merge. The
looplike network that forms along all these merging points represents zones of
influence (Fig. 35.10b) of each water body. The geometric organizations of these
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two phenomena are respectively sensitive and insensitive to perturbation due to
exogenic processes. To demonstrate the allometric relationships of water bodies and
their zones of influence, a large number of surface water bodies (irrigation tanks),
situated in the floodplain region of certain rivers of India, which are retrieved from
multi-date remotely sensed data were analyzed in 2-D space (Sagar et al. 1995a, b).
Basic measures of these water bodies obtained by morphological analysis were
employed to show fractal-length-area-perimeter relationships.

We found that these phenomena follow the universal scaling laws (Sagar et al.
2002; Sagar 2005a, b) found in other geophysical and biological contexts. In this
work, universal scaling relationships among basic measures such as area, length,
diameter, volume, and information about networks are exhibited by several natural
phenomena to further retrieve and understand the common principles underlying
organization of these phenomena. Some of the recent findings on universal scaling
relations include relationships between brain and body, length and area (or volume),

Fig. 35.7 a An example of fourth-order channel network (nonconvex set) and b its convex hull.
A stationary outlet is shown as a round dot in Fig 35.7a. c color-coded traveltime network pruned
iteratively until it reaches the outlet and d color-coded union of convex hulls of networks pruned to
different degrees
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Fig. 35.8 Networks in a three-sided fractal basin, b four-sided fractal basin, c five-sided fractal
basin, d six-sided fractal basin, e seven-sided fractal basin, f eight-sided fractal basin, and
g Nizamsagar reservoir. (From Sagar et al. 1998a, b, 1999, 2001)

Fig. 35.9 a sub-basins decomposed from a Hortonian F-DEM areas, and b corresponding main
lengths
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size and number, size and metabolic rate. In this study, we have shown a host of
universal scaling laws in surface water bodies (Fig. 35.10a) and their zones of
influence (Fig. 35.10b) that have similarities with several of these relationships
encountered in various fields are shown.

35.3.3 Morphometry of Non-network Space: Scale Invariant
but Shape-Dependent Dimension

In sequel works on terrestrial analysis, we argued that the universal scaling laws
shown as examples in earlier section possess limited utility in exploring possibilities
to relate them with geomorphologic processes. These arguments formed the basis
for alternative methods (Radhakrishna et al. 2004; Teo et al. 2004; Sagar and
Chockalingam 2004; Chockalingam and Sagar 2005; Tay et al. 2005a, b, 2007).
Shape and scale based indexes provided to analyze and classify non-network space
(hillslopes) (Sagar and Chockalingam 2004; Chockalingam and Sagar 2005), and
terrestrial surfaces (Tay et al. 2005a, b, 2007) received wide attention. These
methods that preserve the spatial and morphological variability yield quantitative
results that are scale invariant but shape dependent, and are sensitive to terrestrial
surface variations. “Fractal dimension of non-network space of a catchment basin”,

Fig. 35.10 a A section consisting of a large number of small water bodies traced from the
floodplain region of Gosthani River and b zones of influence of water bodies shown in
Fig. 35.10a. Different colors are used to distinguish the adjacent influence zones

35 Mathematical Morphology in Geosciences and GISci … 713



provides an approach to show basic distinction between the topologically invariant
geomorphologic basins. It introduced morphological technique for hillslope
decomposition that yields a scale invariant, but shape dependent, power-laws
(Fig. 35.11a, b).

Varied degrees of topographically convex regions within a catchment basin
represent varied degrees of hill-slopes. The non-network space, the characterization
of which we focused on in our investigations, is akin to the space that is achieved
by subtracting channelized portions contributed due to concave regions from the
watershed space. This non-network space is akin to non-channelized convex region
within a catchment basin. We proposed an alternative shape-dependent quantity
akin to fractal dimension to characterize this non-network space (e.g.: Fig. 35.12a).
Towards this goal, non-network space is decomposed, in two- dimensional discrete
space, into simple non-overlapping disks (NODs) of various sizes by employing
mathematical morphological transformations and certain logical operations
(Fig. 35.12b). Furthermore, number of NODs of lesser than threshold radius is
plotted against the radius, and computed the shape-dependent fractal dimension of
non-network space. This study was extended to derive shape dependent scaling
laws as the laws derived from network measurements are shape independent for
realistic basins (Fig. 35.12). The relationship between number of NODs and the
radius of the disk provides an alternative fractal-like dimension that is shape
dependent. This was done with the aim to relate shape dependent power laws with
geomorphic processes such as hill-slope processes and erosion.

Applications of mathematical morphology transformations are shown to
decompose fractal basins (e.g.: Fig. 35.11a) into non-overlapping disks of various
sizes (Fig. 35.11b) further to derive fractal power-laws based on number-radius
relationships.

Fig. 35.11 a Apollonian space, and b after decomposition by means of octagon
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35.3.4 Geodesic Spectrum

We have provided a novel geomorphologic indicator by simulating geodesic flow
fields (Fig. 35.13d–f) within basins (Fig. 35.13a–c) consisting of spatially dis-
tributed elevation regions (Lim and Sagar 2008a, b), further to compute a geodesic
spectrum that provides a unique one-dimensional geometric support.

This one-dimensional geometric support, in other words geodesic spectrum,
outperforms the conventional width–function based approach which is usually
derived from planar forms of basin and its networks–construction involves basin as

Fig. 35.12 a 5th order channel network c of Durian Tungal catchment basin, basin X is
reconstructed from this channel network via multiscale morphological closing transformation,
b M = X\C

Fig. 35.13 a a flat circular basin, b a basin with three spatially distributed elevation regions, c a
fractal basin with channelised and non-channeled regions d flow fields with isotropic propagation
in a, e isotropic flow fields within b, and f flow fields within c and orthogonality between the flow
fields of channelized and non-channelized zones is obvious. (From Lim and Sagar 2008a, b.)
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a random elevation field (e.g. Digital Elevation Model, DEM) and all threshold
elevation regions decomposed from DEM for understanding the shape-function
relationship much better than that of width function.

35.3.5 Granulometric and Anti-granulometric Analysis
of Basin-DEMs

Granulometric indexes derived for spatial elevation fields also yield scale invariant
but shape-dependent measures (Tay et al. 2005a, b, c, 2007). DEMs are analyzed by
following granulometries via multiscale opening (Fig. 35.14 upper panel), and
antigranulometries (Fig. 35.14 lower panel) to derive shape-size complexity mea-
sures of foreground and background respectively that provide new indices to
understand the terrestrial surfaces further to relate with several geomorphic
processes.

35.4 Geomorphologic Modeling and Simulation

Simulations allow us to gain a significantly good understanding of complex geo-
morphologic systems in a way that is not possible with lab experiments. Effectively
attaining these goals presents many computational challenges, which include the
development of frameworks. The robustness of mathematical morphological
operators combined with concepts of fractal geometry (Mandelbrot 1982) in

Fig. 35.14 Basin 1 of Cameron Highlands is taken as an example to show the basin images at
multiple scales generated via closing and opening. Basin 1 is located at the northern part of
Cameron Highlands region, with a size of 3.1 km (east to west) 63.4 km (north to south). (Upper
sequence) DEM at multiple scales generated via opening, and (Lower Panel) multiscale DEMs
generated via closing
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modeling and simulations of certain geoscientific phenomena and processes is
shown briefly with illustrative examples in this section. The phenomena and pro-
cesses given emphasis in this section include geomorphologic features, basins and
channel networks, landscapes, water bodies, symmetrical folds and ideal sand
dunes. Besides providing approaches to simulate fractal-skeletal based channel
network model and fractal landscapes, we have shown via the discrete simulations
the varied dynamical behavioral phases of certain geoscientific processes (e.g. water
bodies, ductile symmetric folds, sand dunes, landscapes) under nonlinear pertur-
bations due to endogenic and exogenic nature of forces. For these simulations we
employed nonlinear first order difference equations, bifurcation theory, fractal
geometry, and nonlinear morphological transformations as the bases. The three
complex systems that we focus on include the channelization process, surface water
bodies, and elevation structures.

35.4.1 Geomorphologic Modeling: Concept of Discrete
Force

Concept of discrete force was proposed from theoretical standpoint to model certain
geomorphic phenomena, where geomorphologically realistic expansion and con-
tractions, and cascades of these two transformations were proposed, and five laws
of geomorphologic structures are proposed (Sagar et al. 1998a, b). A possibility to
derive a discrete rule from a geomorphic feature (e.g. lake) undergoing morpho-
logical changes that can be retrieved from temporal satellite data was also proposed
in this work, and explained (Fig. 35.15). Laws of geomorphic structures under the
perturbations are provided and shown, through interplay between numerical sim-
ulations and graphic analysis as to how systems traverse through various behavioral
phases.

Fig. 35.15 a Hypothetical geomorphic feature at time t, b geomorphic feature at time t + 1, and
c difference in geomorphic feature from time t to t + 1
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35.4.2 Fractal-Skeletal Based Channel Network Model

Our work on channel network modelling Gastner and Newman (2004) and Sagar
(2001c) represents unique contributions to the literature, which until recently were
dominated by the classic random model. Fractal-skeletal based channel network
model (F-SCN) was proposed by following certain postulates. We developed the
Fractal-Skeletal Channel Network (F-SCN) model by employing morphological
skeletonization to construct other classes of network models, which can exhibit
various empirical features that the random model cannot. In the F-SCN model that
gives rise to Horton laws, the generating mechanism plays an important role.
Homogeneous and heterogeneous channel networks can be constructed by sym-
metric generator with non-random rules, and symmetric or asymmetric generators
with random rules. Subsequently, F-SCNs (Fig. 35.16d–f) in different shapes of
fractal basins (Fig. 35.16a–c) are generated and their generalized Hortonian laws
(Fig. 35.16g, h) are computed which are found to be in good accord with other
established network models such as Optimal Channel Networks (OCNs), and
realistic rivers. F-SCN model is extended to generate more realistic dendritic
branched networks.

35.4.3 Fractal Landscape via Morphological Decomposition

By applying morphological transformations on fractals of varied types are
decomposed into topologically prominent regions (TPRs) (Fig. 35.17a) and each
TPR is coded and a fractal landscape organization that is geomorphologically
realistic is simulated (Fig. 35.17b) (Sagar and Murthy 2000).

Fig. 35.16 a, b and c Fractal basins after respective iterations. d, e and f An evolutionary
sequence of F-SCNs after respective iterations, g Horton’s law of number, and h Horton’s law of
mean length
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35.4.4 Discrete Simulations and Modeling the Dynamics
of Small Water Bodies, Symmetrical Folds, and Sand
Dunes

In this subsection we show the fusion of computer simulations and modeling
techniques in order to better understand certain terrestrial phenomena and processes
with the ultimate goal of developing cogent models in discrete space further to gain
a significantly good understanding of complex terrestrial systems in a way that is
not possible with lab experiments. The three synthetic phenomena that are
explained by generating attractors considered include water bodies (Sagar and Rao
1995a, b, c), symmetrical folds (Sagar 1998), and sand dunes (Sagar 1999b, 2000a,
b, 2001a, 2005a, b; Sagar and Venu 2001; Sagar et al. 2003a, b).

35.4.4.1 Discrete Simulations and Modeling the Dynamics of Small
Water Bodies

Spatio-temporal patterns of small water bodies (SWBs) under the influence of
temporally varied streamflow discharge behaviors are simulated in discrete space by
employing geomorphologically realistic expansion and contraction transformations
(Fig. 35.18). Expansions and contractions of SWBs to various degrees (e.g.
Fig. 35.18B g–l), which are obvious due to fluctuations in streamflow discharge
pattern (Fig. 35.18A, a–f), simulate the effects respectively owing to streamflow
discharge that is greater or less than mean streamflow discharge. The cascades of
expansion-contraction are systematically performed by synchronizing the stream-
flow discharge (Fig. 35.18A, a–f), which is represented as a template with definite

Fig. 35.17 a A binary fractal basin after decomposition into TPRs b A fractal landscape
generated from Fig. 35.17a. Light and dark regions of DEM are visualized as high and low
elevations (vertical exaggeration: 7)
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characteristic information, as the basis to model the spatio-temporal organization of
randomly situated surface water bodies of various sizes and shapes.

We have shown the varied dynamical behavioral phases of certain geoscientific
processes (e.g. water bodies) under nonlinear perturbations via the discrete
simulations.

35.4.4.2 Ductile Symmetrical Fold Dynamics

Under various possible time-dependent and time-independent strength of control
parameter, in other words nonlinear perturbations, the three-limb symmetrical folds
are transformed in a time sequential mode to simulate various possible fold dynamical
behaviors (Fig. 35.19a, b) synchronizing trajectory behavior simulated via logistic
equation with strength nonlinearity parameters 3.9 and 2.8 (Fig. 35.20a, b). We
employed normalized fractal dimension values, and interlimb angles (IAs) as
parameters along with strength of nonlinear parameters in this study. Bifurcation

Fig. 35.18 A Streamflow discharge behavioral pattern at different environmental parameters.
a–f λ = 1, 2, 3, 3.46, 3.57 and 3.99, and B Spatio-temporal organization of the surface water
bodies under the influence of various streamflow discharge behavioral patterns at the
environmental parameters at a–f λ = 1, 2, 3, 3.46, 3.57, and 3.99 are shown up to 20 time
steps. In all the cases, the considered initial MSD, A0 = 0.5 (in normalized scale) is considered
under the assumption that the water bodies attain their full capacity. It is illustrated only for the
overlaid outlines of water bodies at respective time-steps with various λs
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diagrams are constructed for both time-dependent and time-independent fold
dynamical behaviors, and the equations to compute metric universality by consid-
ering the interlimb angles computed at threshold strengths of nonlinearity parameters
are proposed (Sagar 1998).

35.4.4.3 Symmetrical Sand Dune Dynamics

Certain possible morphological behaviors with respective critical states represented
by inter-slip face angles of a sand dune under the influence of non systematic
processes are qualitatively illustrated by considering the first order difference
equation that has the physical relevance to model the morphological dynamics of
the sand dune evolution as the basis. It is deduced that the critical state of a sand
dune under dynamics depends on the regulatory parameter that encompasses
exodyanmic processes of random nature and the morphological configuration of
sand dune. With the aid of the regulatory parameter, and the specifications of initial
state of sand dune, morphological history of the sand dune evolution can be
investigated. As an attempt to furnish the interplay between numerical experiments
and theory of morphological evolution, the process of dynamical changes
(Fig. 35.21) in the sand dune with a change in threshold regulatory parameter (e.g.
Fig. 35.22) is modeled qualitatively for a better understanding. An equation to
compute metric universality by considering attracting interslipface angles is also
proposed. Avalanche size distribution in such a numerically simulated sand dune
dynamics have also been studied.

Fig. 35.19 Evolution of a fold type with the strength of nonlinearities: a λ = 3.9 and b λ = 2.8.
The numbers represent the discrete times. (From Sagar 1998)
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35.5 Geospatial Computing and Visualization

Mathematical morphology not only provides robust solutions in terrestrial pattern
retrieval, analysis, and modeling and simulations but also provides numerous
insights worth exploring to find solutions for the challenges encountered in GISci. In
recent works—that include (i) binary and grayscale morphological interpolations,

Fig. 35.20 Logistic maps for the qualitative dynamical behavior of symmetric folds under
evolution shown in Fig. 35.19a, b. It may be seen that the values mentioned on the abscissa are
IAs in degrees for the symmetric fold with three limbs. (From Sagar 1998)

Fig. 35.21 a Initial sand dune profile with α = 0.00001 or θ = 179.57334. The attractor sand
dune profiles at various threshold regulatory parameters: b λ = 3, fixed point attractor sand dune;
c λ = 3.46, period 2 attractor sand dunes; d λ = 3.569, period 4 attractor sand dunes; and
e λ = 3.57, period 8 attractor sand dunes. The attractor sand dune profiles shown in b–e are by
iterating 3 × 104 time steps. (From Sagar 1999a, b)
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SKIZ, WSKIZ and applications in spatiaotemporal visualizations, conversion of
point-specific variable data into contiguous zonal maps (Rajashekara et al. 2012),
morphing (Sagar and Lim 2015a, b) and variable-specific cartogram generation
(Sagar 2014a, b), (ii) volumetric visualization of topologically significant compo-
nents such as pore-bodies, pore-throats, and pore-channels (Teo and Sagar 2005,
2006), and (iii) spatial reasoning, planning, and interactions (Sagar et al. 2013;
Vardhan et al. 2013; Sagar 2018)—one can realize on how robust approaches could
be developed by considering mathematical morphological transformations.

Fig. 35.22 a A 1-D map plotted between θt+1 versus θt for sand dune case λ = 4 and b return
map plotted between θt+1 − θt versus θt+2 − θt+1 for sand dune case with λ = 4. (From Sagar
et al. 2003a, b; Sagar and Venu 2001)
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35.5.1 Morphological Interpolations

This subsection provides the applications of binary and grayscale morphological
interpolations in hierarchical computation of morphological medians and in mor-
phing, and the applications of SKIZ and WSKIZ in conversion of point-specific
variable data into contiguous zonal map, and generation of variable-specific con-
tiguous cartograms.

35.5.1.1 Computation of Hierarchical Morphological Medians

Hausdorff-distance based (i) spatial relationships between the maps possessing
bijection for categorization and (ii) nonlinear spatial interpolation in visualization of
spatiotemporal behavior are proposed and demonstrated. This work (Sagar 2010,
2014a, b; Challa et al. 2016) concerns the development of frameworks with a goal
to understand spatial and/or temporal behaviors of certain evolving and dynamic
geomorphic phenomena. In (Sagar 2010), we have shown (i) how
Hausdorff-Dilation and Hausdorff-Erosion metrics could be employed to categorize
the time-varying spatial phenomena, and (ii) how thematic maps in time-sequential
mode (Fig. 35.23a) can be used to visualize the spatiotemporal behaviour of a
phenomenon, by recursive generation of median elements (Fig. 35.23b). Spatial
interpolation, that was earlier seen as a global transform, is extended in Lim and
Sagar (2008) by introducing bijection to deal with even connected components.
This aspect solves problems of global nature in spatial-temporal GIS. Spatial
Interpolation technique is found useful for spatial-temporal GIS and is demon-
strated with validation on epidemic spread maps collected for eleven years between
1896 and 1906 (Fig. 35.23a–k, upper left panel). Morphological medians are
computed between the epidemic spread maps staggered at two-year interval
(Fig. 35.23a–k, upper right panel). Further morphological medians are computed in
a hierarchical manner between every two epidemic spread maps of successive years
(Fig. 35.23a, b in the lower panel).

35.5.1.2 Grayscale Morphological Interpolation and Morphing

The computation of morphological medians between the thematic maps (binary
images) demonstrated in the earlier subsection could be extended to the spatial
fields (functions, e.g.: DEMs). This extended version is termed as grayscale mor-
phological interpolation. We have demonstrated the application of grayscale mor-
phological interpolations, computed hierarchically between the spatial fields
(Fig. 35.24), to metamorphose a source-spatial field into a target-spatial field.
Grayscale morphological interpolations are computed in a hierarchical manner
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(Fig. 35.25) with respect to non-flat structuring element, and found that the mor-
phing, shown for transform source-spatial field into target-spatial field, created with
respect to non-flat structuring element is more appropriate as the transition of
source-spatial field into the target-spatial field across discrete time steps is smoother
than that of the morphing shown with respect to flat structuring element (Sagar and
Lim 2015a, b). This morphing shown via nonlinear grayscale morphological
interpolations is of immense value in geographical information science, and in
particular spatiotemporal geo-visualization.

Fig. 35.23 (Upper-Left Panel) a–k Spatial temporal maps that represent the geographic spread of
bubonic plague in India between 1896 and 1906 at intervals of one year Maragos and Schafer
(1986). The 11 spatial maps depicting the spread of plague were sequentially used to generate the
maximum possible number of interpolated maps; (Upper right panel) a Original spatial map of the
bubonic plague during 1896. b–j The first level median sets computed for M(Xt, Xt+2) for all “t”
ranging from 1896 to 1905. k Original spatial map during 1906. For validation, the maps of
Fig. b–j of upper left panel obtained as first-level median sets are, M(Xt, Xt+2) respectively,
compared for all “t” with those t of Fig. 35.23b–j of upper left panel. These first-level median sets
show a reasonable matching with the actual sets (Fig. 35.23b–j of upper left panel); (Lower Panel)
Superimposed gray-coded a original spatial maps and b spatial maps generated via median set
computations
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Fig. 35.24 Smaller regions of DEMs: a Cameron Highlands, and b Petaling region

Fig. 35.25 Generation of morphological medians generated by non-flat structuring element,
between the DEMs shown in (a) and (i), at b zeroth level, c, d first level, and e–h second level
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35.5.1.3 Point-to-Polygon Conversion via WSKIZ

Data about many variables are available as numerical values at specific geo-
graphical locations in a noncontiguous form. We develop a methodology based on
mathematical morphology to convert point-specific data into polygonal data. This
methodology relies on weighted skeletonization by zone of influence (WSKIZ).
This WSKIZ determines the points of contact of multiple frontlines propagating,
from various points (e.g.: gauge stations) spread over the space, at the travelling
rates depending upon the variable’s strength. We demonstrate this approach for
converting rainfall data available at specific rain gauge locations (points)
(Fig. 35.26a) into a polygonal map (Fig. 35.26b) that shows spatially distributed
zones of equal rainfall in a contiguous form (Rajashekara et al. 2012).

35.5.1.4 Cartograms via WSKIZ

Visualization of geographic variables as spatial objects of size proportional to
variable strength is possible via generating variable-specific cartograms. We
developed a methodology based on mathematical morphology to generate con-
tiguous cartograms. This approach determines the points of contact of multiple
frontlines propagating, from centroids of various planar sets (states), at the travel-
ling rates depending upon the variable’s strength (Fig. 35.27a–d).

The contiguous cartogram generated via this algorithm preserves the global
shape, and local shapes, and yields minimal area-errors. It is inferred from the
comparative error analysis that this approach could be further extended by

Fig. 35.26 a 34 points (locations) of rain-gauge stations spread over India indexed (A1–A34),
b Rainfall zonal map generated by having various possible propagation speeds, and the variable
strengths in terms of propagation speeds
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exploring the applicability of additional characteristics of structuring element,
which controls the dilation propagation speed and direction of dilation while
generating variable-specific cartograms, to minimize the local shape errors, and
area-errors. This algorithm addresses a decade-long problem of preservation of
global and local shapes of cartograms. This approach was extended to generate a
cartogram for a variable population to demonstrate the proposed approach. Further,
the population cartograms for the USA generated via four other approaches
(Kocmoud 1997; Keim et al. 2004; Gastner and Newman 2004; Gusein-Zade and
Tikunov 1993) are compared with the morphology-based cartogram (Fig. 35.28a–f)
in terms of errors with respect to area, local shape, and global shape. This approach
for generating cartograms preserves the global shape at the expense of compro-
mising with area-errors. It is inferred from the comparative error analysis that the
proposed morphology-based approach could be further extended by exploring the
applicability of additional characteristics of probing rule, which controls the dilation
propagation speed and direction of dilation while performing WSKIZ, to minimize
the local shape errors, and area-errors.

35.5.2 Visualization of Topological Components
in a Volumetric Space

Heterogeneous material is one that is composed of domains of different materials
(phases). The aim of this module is to show how geometric descriptors derived via
mathematical morphology and fractal analysis vary between the porous phases
isolated from varied types of rocks at various spatial and spectral scales. It is
evident from the recent works on Fontainebleau sandstone that the characteristics
derived through computer assisted mapping and computer tomographic analysis
were well correlated with the physical properties such as porosity, permeability, and
conductance. Whatever the physical processes involved in altering the porous phase
of material, we propose to emphasise quantifying the complexity of porous phase in
both 2-D and 3-D domains. From a petrologic study perspective, such a quantitative
characterization in both two- and three-dimensional spaces is of current interest.

Fig. 35.27 The variable strengths (in terms of propagation speeds are given as a A2 >A4 >A1 >A3,
b A2 >A1 >A3 >A4, c A1 >A3 >A2 >A4, and d A1 >A4 >A2 >A3
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Just like how CT scanning mechanism is employed to scan the brain to study
several neurophysiologic processes, one can also employ such a CT-scanning
mechanism, besides already existing scanning methods, to scan the rock bodies and
store the scanned information in layered forms. Each layer depicts rock’s cross
sectional information at specific depth. Retrieval of three significant geometric and/
or topologic components, describing organisation of porous medium, that include
(a) pore channel, (b) pore throat, and (c) pore body in both 2-D and 3-D spaces is an
important task. A 3-D fractal pore (Fig. 35.29a, b) simulated in such a way that it
mimics the stacked layers of pore sections is converted into 3-D pore channel

Fig. 35.28 a Equal-area-projection map of USA. b–e Population cartograms generated for USA
based on b Continuous cartogram (Kocmoud 1997), c cartodraw (Keim et al. 2004),
d Gastner-Newman cartogram (Gastner and Newman 2004), e Area cartogram of the United
States, with each county rescaled in proportion to its population (Gusein-Zade and Tikunov 1993),
and f morphology-based cartogram (Sagar 2014a, b). U.S. population cartogram by Gusein-Zade
and Tikunov (e: Reproduced with permission from Gusein-Zade and Tikunov 1993, page 172,
Fig. 35.1, © 1993 American Congress on Surveying and Mapping). The color coding given in
Fig. 35.28a is similar to that of Fig. 35.28f
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network (Fig. 35.29c, d), 3-D pore throats (Fig. 35.29e, f) and 3-D pore bodies
(Fig. 35.29g, h). These decomposed pore features that are of topological impor-
tance would shed the light to derive geometric relations which further can be related
with that of physical properties of porous structure.

Fig. 35.29 Top and side views of a, b model 3D fractal binary pore, c, d pore-channel,
e, f pore-throat, and g, h pore-body. (Source Teo and Sagar 2006)
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35.5.3 Spatial Reasoning and Planning

Mathematical morphology based algorithms developed and demonstrated shown in
this subsection include to determine (i) strategically significant set(s) for spatial
reasoning and planning, (ii) directional spatial relationship between areal objects
(e.g.: lakes, states, sets) via origin-specific dilations, and (iii) spatial interactions via
modified gravity model.

35.5.3.1 Strategically Significant State (S)

Identification of a strategically significant set from a cluster of adjacent and/or
non-adjacent sets depends upon the parameters that include size, shape, degrees of
adjacency and contextuality, and distance between the sets. An example of cluster
of sets includes continents, countries, states, cities, etc. The spatial relationships,
deciphered via the parameters cited above, between such sets possess varied spatial
complexities. Hausdorff dilation distance between such sets is considered to derive
automatically the strategic set among the cluster of sets. The (i) dilation distances,
(ii) length of boundary being shared, and (iii) degrees of contextuality and adja-
cency between origin-set and destination sets, which together provide solutions to
derive strategically significant sets with respect to distance, degree of contextuality,
degree of adjacency and length of boundary being shared. Simple mathematical
morphologic operators and certain logical operations are employed in this study.
Results drawn (Fig. 35.30)—by applying the proposed framework on a case study
that involves spatial sets (states) decomposed from a spatial map depicting the
country of India—are shown in Fig. 35.30.

This approach has been applied on data depicting randomly spread surface water
bodies (Fig. 35.31a, b) and their corresponding zones of influence (Fig. 35.31c, d)
within a subbasin to detect the strategically significant water body and zone of
influence (Fig. 35.32a, b).

35.5.3.2 Directional Spatial Relationship

We provide an approach to compute origin-specific morphological dilation dis-
tances between planar sets (e.g.: areal objects, spatially represented countries,
states, cities, lakes) to further determine the directional spatial relationship between
sets. Origin chosen for a structuring element that yields shorter dilation distance
than that of the other possible origins of structuring element determines the
directional spatial relationship between Ai (origin-set) and Aj (destination set). We
demonstrate this approach on a cluster of spatial sets (states) decomposed from a
spatial map depicting country India (Fig. 35.33a). This approach has potential to
extend to any number (type) of sets on Euclidean space.
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35.5.3.3 Spatial Interactions

Hierarchical structures include spatial system (e.g. river basin), clusters of a spatial
system (e.g. watersheds of a river basin), zones of a cluster (e.g. subwatersheds of a
watershed), and so on. Variable-specific classification of the zones of a cluster of
zones within a spatial system is the main focus of this work on spatial interactions.
Variable-specific (e.g. resources) classification of zones is done by computing the
levels of interaction between the ith and jth zones. Based on a heuristic argument,

Fig. 35.30 A Map of India (spatial system) with its constituent 28 states (subsets)—indexed
according to alphabetical order are shown—Andhra Pradesh (A1), Arunachal Pradesh (A2), Assam
(A3), Bihar (A4), Chhattisgarh (A5), Goa (A6), Gujarat (A7), Haryana (A8), Himachal Pradesh
(A9), Jammu & Kashmir (A10), Jharkhand (A11), Karnataka (A12), Kerala (A13), Madhya Pradesh
(A14), Maharashtra (A15), Manipur (A16), Meghalaya (A17), Mizoram (A18), Nagaland (A19),
Orissa (A20), Punjab (A21), Rajasthan (A22), Sikkim (A23), Tamilnadu (A24), Tripura (A25),
Uttarapradesh (A26), Uttarakhand (A27), West Bengal (A28), Union territories and Himalayan hill
range that are parts Indian peninsular are not included in the figure. B Spatial representation of
strategically important states in the order from 1 to 10 are shown in terms of twelve different
parameters shown in Fig. 35.7. In each panel of this Figure, first 10 strategically significant states
(please refer to the legend on each panel) are shown in different colors. These strategically
significant sets with respect to a boundary being shared, b shortest distance from origin to
destination states, c shortest total distance from destination states to origin state, d contextuality,
e Hausdorff dilation distance, f spatial complexity involved in length of the boundary being shared,
g spatial complexity in terms of contextuality, h spatial complexity in terms of distance from origin
to destination states, i spatial complexity in terms of distance from destination states to origin state,
j spatial complexity in terms of Hausdorff dilation distance from origin state to destination states.
States with color-codes denote first ten strategically significant states, and the region with white
space represents the states that are strategically non-significant with ranks starting from eleven to
twenty eight
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Fig. 35.31 a Indian Remote Sensing satellite (IRS LISS-III) multispectral image of the study
area, and the blue objects are water bodies traced from IRS LISS-III image with topographic map
reference superposed on IRS LISS-III image, and white dots indicate the boundary of the
considered cluster, b small water bodies, c zones of influence of corresponding water bodies, and
d water bodies and zones of influence with labeling

Fig. 35.32 Spatially significant a water body with label 35 (Red Color), and b zone of water body
influence labeled with 35 (Red Color)
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we proposed a modified gravity model for the computations of levels of interaction
between the zones. This argument is based on the following two facts: (i) the level
of interaction between the ith and jth zones, with masses mi and mj is
direction-dependent, and (ii) the level of interactions between the ith and jth zones
with corresponding masses, situated at strategically insignificant locations would be
much different (lesser) from that of the ith and jth zones with similar masses but
situated at strategically highly significant locations. With the support of this
argument, we provide a modified gravity model by incorporating the asymmetrical
distances, and the product of location significance indexes of the corresponding
zones. This modified gravity model yields level of interaction between the two
zones that satisfies the realistic characteristic that is level of interaction between the
zones is direction-dependent.

Each state of India is designated with ranks in terms of its (i) location signifi-
cance index, (ii) strengths of interaction of all states with a specific state,
(iii) strengths of interaction with other states, and (iv) strength out of (ii) and
(iii) (Fig. 35.34a–d). Further by employing a modified gravity model, 28 states (X1

to X28) of India (Fig. 35.30A) are paired into best interacting to least interacting
pairs with respect to areal extents of states as a variable (Fig. 35.35a–j).

Fig. 35.33 a Twenty nine sets (states of India) indexed according to alphabetical order are shown
—Gujarat (A1), Rajasthan (A2), Maharashtra (A3), Goa (A4), Karnataka (A5), Kerala (A6), Madhya
Pradesh (A7), Jammu and Kashmir (A8), Punjab (A9), Haryana (A10), Tamilnadu (A11), Andhra
Pradesh (A12), Himachal Pradesh (A13), Delhi (A14), Uttar Pradesh (A15), Uttaranchal (A16),
Chhattisgarh (A17), Orissa (A18), Bihar (A19), Jharkhand (A20), West Bengal (A21), Sikkim (A22),
Assam (A23), Meghalaya (A24), Tripura (A25), Arunachal Pradesh (A26), Mizoram (A27), Manipur
(A28), Nagaland (A29). Union Territories are not considered. b Directional spatial relationship
shown in colored matrix form in which there are 29 rows and 29 columns and a color in each grid
cell explaining directional relationship between each state to other 28 states

734 B. S. Daya Sagar



Fig. 35.34 India map with each state designated with a rank with respect to four different

parameters. a φXi, b max
i

∑j FXij

� �
, c max

j
∑i FXji
� �

, and d max max
i

∑j FXij

� �
, max

j
∑i FXji
� �� �

Fig. 35.35 Five best pairs exhibited the high levels of interactions a X20, 5, b X14, 26, c X26, 27,
d X14, 5, and e X1, 20. Five pairs exhibited the least levels of interactions f X6, 25, g X25, 6, h X6, 19,
i X6, 23, and j X23, 6
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35.6 Conclusions

From our attempts since early 1990s, we could clearly see a great potential for
mathematical morphological transformations in the three aspects (retrieval, analysis
and reasoning, and modeling) of relevance to geosciences and GISci. This chapter
provided a brief illustrative review on how mathematical morphology could be
applied to deal with varied topics of relevance to mathematical geosciences and
geographical information science communities. Reader is encouraged to dig cited
references for more details. Our studies show that there exist several open problems
of relevance to the mathematical geosciences community. These open problems
could be well-handled by mathematical morphology. Some of the recent advances
of mathematical morphology and their applications in spatial data segmentation and
morphological clustering were discussed. Applications of both classical and modern
mathematical morphological transformations in geosciences and GISci are yet to be
seen in full-length. It is our hope that most visible and highly distinguished sci-
entists who are active in the IAMG activities would spread a word wide across and
would spur the interest of young researchers to take the strides forward.
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Chapter 36
IAMG: Recollections from the Early
Years

John Cubitt and Stephen Henley

John Cubitt and Stephen Henley, with contributions from T. Victor (Vic) Loudon,
EHT (Tim) Whitten, John Gower, Daniel (Dan) Merriam, Thomas (Tom) Jones,
and Hannes Thiergärtner

This chapter records some of the dramatic history of the first few years of the
International Association for Mathematical Geology (IAMG, much later renamed
the International Association for Mathematical Geosciences), and its subsequent
development told mostly through recollections (both professional and personal) of
some of its early members. It complements the paper by Václav Němec in this
volume who discusses his own experiences leading up to and following the
foundation of the Society.

The IAMG was formed on 22nd August 1968, in a meeting at the International
Geological Congress in Prague, Czechoslovakia, attended by 20 scientists from
around the world. This followed preparatory work by an ad hoc committee of 14
(not all of whom were able to attend the formation meeting) which formulated
statutes and by-laws and proposed names of a first set of officers.
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36.1 The Birth of Mathematical Geology
and the Origins of the IAMG

36.1.1 Vic Loudon

The comprehensive framework for sharing geological knowledge developed over a
long period, in the form of a shared network of scientific books and papers, maps,
records, samples, specimens, reports, and guides—including the systematic output
of regional and national geological surveys. Geological projects could contribute
new information within a framework of existing knowledge and the requirements of
publication. This framework, however, did not anticipate the arrival of the
computer.

In the early 1960’s some enthusiasts considered that computers could have an
important role in creating new, widely shared mechanisms for analysing,
exchanging and integrating numerical information. But to many geologists at that
time, computers were a passing fad—surely the complexity of geological obser-
vation and thinking could not be reduced to mathematics, never mind its
mechanical representation! Nevertheless, computer programs were shown to handle
recurring statistical tasks, even if only in the detail of a geological study. They
might also build on the work of others. But that requires communication, a shared
objective, and in due course a shared framework.

At that early experimental stage, computer applications in geology were gen-
erally rather trivial, overlapping, uncoordinated and unpublishable. They were
nevertheless essential to determine which possibilities might be fruitful, and which
would be duplication. To help programmers to gain a broader view of similar work
elsewhere, an informal ‘Geologically Oriented Scheme for Sharing Information on
Programming (GOSSIP)’ was maintained at Reading University in England. Notes
from various workers in geological computing were assembled and typed onto
punched cards. These were sorted and revised by hand, the results printed on a
typewriter connected to the keypunch, and mailed to the participants. The last of
several editions was circulated in 1966 (GOSSIP 1966). It provides an insight into a
fast-growing area where many individuals had been exploring possibilities inde-
pendently, and beginning to develop an initial overview. Apart from one mention of
information retrieval, the applications referred exclusively to numerical data.

Later, to quote Krumbein (1969): “…on the one hand we observe a growth in the
complexity of programs, and on the other hand a spreading of essentially the same
computer techniques through the many subfields of geology… the underlying
methodology is so similar in all fields…that most speakers shifted emphasis from
standard or conventional techniques to consideration of new and more analytical
ways of setting up models applicable to their own fields.”
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36.1.2 John Cubitt and Stephen Henley

Merriam (1981) put Loudon’s comments into a historical perspective by giving a
helpful summary of the development of mathematical geology. This shows that the
introduction of mathematical methods into the science of geology was very slow, until
the advent of computer technology, despite the efforts of such notable scientists as
Paolo Frisi, Charles Lyell, Paul Deshayes, Charles Babbage, and Lord Kelvin, as well
as statisticians such as Karl Pearson and A.N. Kolmogorov, and others such as R.
Everest, chief surveyor for India. It is well-known that the first edition of Lyell’s
Principles of Geology (1830) included statistical data that he used to justify his sub-
division of the Tertiary; however, once the classification was accepted, this statistical
scaffolding was not deemed important enough to be retained in subsequent editions.

The earliest consistent efforts towards routine application of quantitative meth-
ods in geology were made by A.B. Vistelius from 1941 onwards, while the use of
computers was pioneered by W.C. Krumbein starting with a book in 1958 jointly
written with L.L. Sloss (Krumbein and Sloss 1958). For the next ten years, there
was a steadily increasing number and variety of publications on computational
methods applied to geology mostly but not exclusively statistical.

36.1.3 Tim Whitten

Whitten noted that prior to 1968, different approaches to quantitative geology applied
around the world. However, at the IAMG formation meeting, dissimilar approaches
came together, having evolved principally in the Soviet Union, Western Europe, and
U.S.A. Vistelius championed the concept that Mathematical Geology is a separate
branch of science based on testing geological hypotheses mathematically, and that
this should be IAMG’s primary focus (Whitten 2003, 2004 pp. 384–5); for some
years, he had contended it is not particularly important merely to manipulate geo-
logical data statistically. Dech and Henley (2003, p. 368) noted Vistelius (1991)
considered that, if a science does not use mathematical modelling in constructing
conclusions, “… it can be considered as belonging to the pre-Newtonian period, …
behind the present-day level of research by approximately 300 years.”

36.2 The Role of the Kansas Geological Survey
in the Origins of the IAMG

36.2.1 Tom Jones

When I got to Northwestern University in 1967, I found several faculty members
were quantitative, along with a few students. Krumbein was doing work in several
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areas at that time, notably geographic forms, Markov chains, and modifications of
trend analyses. The Kansas Geological Survey Computer Contributions (KGSCC),
spearheaded by Dan Merriam, provided an ongoing source of publications on
mathematical geology and associated software.

36.2.2 Vic Loudon

In the late 1960s, Dan Merriam led a pioneering group of geological programmers
in the Kansas Geological Survey at the University of Kansas, describing the results
of their computing activities in its own publication, the KGSCC. In 1967–8,
Richard Reyment spent some time at the Kansas Geological Survey, on sabbatical
leave from the University of Uppsala in Sweden. He was another of the prime
movers in establishing the IAMG (its first General Secretary and subsequently its
President, and in 2002 the recipient of that organization’s Commendation). I was
privileged to listen to one of their conversations, where they agreed that a formal
body was desirable to assist and encourage documentation and communication of
these developments.

36.2.3 Tim Whitten

The momentum driving a founding meeting in 1968 really stemmed from the
Kansas Survey folk—the main activist there was Dan Merriam, who was very keen
on instituting an international society and I imagine it was he who got the meeting
included in the IGC programme.

36.3 Name and Establishment of the Society

36.3.1 Vic Loudon

Merriam (perhaps only in the wishful thinking of my biased mind), in the con-
versation referred to above, seemed to take the view that computer science, rather
than mathematics, was the key issue. However, it seemed that the geological
establishment at that time might find ‘mathematics’ more acceptable. Subsequently,
Richard Reyment organised an ad hoc committee for the purpose of founding an
association for the promotion of mathematical geology.
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36.3.2 John Gower

I remember there being discussions on what name to give to the new Society and
that somebody had suggested Geometrics echoing the names of the Biometrics and
Psychometric Societies. It was noticed that Geometry had forestalled that sugges-
tion so it became Mathematical Geology succeeded by Geomathematics succeeded
by Mathematical Geosciences but perhaps geometrics was not so bad an idea as it
seemed because originally geometry was about Measuring the Earth. Indeed, the
mathematical geologists had nomenclatural problems from the start when, because
of the political climate at that time, they could not appoint D.G. Krige from South
Africa who would have been the obvious choice, to the Presidency. They made him
a Councillor.

36.3.3 Dan Merriam

The 1968 IAMG foundation meeting followed considerable correspondence and
fact-finding by the ad hoc committee whose Members were:

F.P. Agterberg (Canada)
C.J. Allègre (France)
F. Chayes (USA)
J.C. Griffiths (USA)
J.W. Harbaugh (USA)
W.C. Krumbein (USA)
T.V. Loudon (UK)

D.F. Merriam (USA)
V. Němec (Czechoslovakia)
R.A. Reyment (Sweden)
E. Schlegel (DDR)
A.B. Vistelius (USSR)
G.S. Watson (USA)
E.H.T. Whitten (USA)

This committee formulated a set of statutes and by-laws (largely written by R.A.
Reyment in compliance with IUGS and ISI guidelines), made provision for
establishing a journal, and proposed a slate of officers.

36.4 Foundation of IAMG Publications

36.4.1 Tom Jones

As time went on, the IAMG formed the journal Computers & Geosciences (C&G).
The Kansas Geological Survey Computer Contributions (KGSCC) series was dis-
continued in 1970, probably in part due to C&G and as a result of Dan Merriam
moving to Syracuse University to become Chairman of the Geology Department.
The American Association of Petroleum Geologists (AAPG) formed a committee
on Computer Applications, but I do not recall that it had much influence. A North
American group formed MGUS (Mathematical Geologists of the United States)
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around the mid 70’s with the goal that MGUS would eventually become a regional
group tied to IAMG. Much later (I believe 1985) AAPG sponsored a
computer-oriented magazine, GEOBYTE.

36.4.2 Vic Loudon

To quote the IAMG website: ‘The mission of the International Association for
Mathematical Geosciences is to promote, worldwide, the advancement of mathe-
matics, statistics and informatics in the geosciences’. It established a journal and a
newsletter. From its inception in 1968, an important role of the IAMG has been
publication—initially in its journal Mathematical Geology (now Mathematical
Geosciences) which ‘publishes original, high-quality, interdisciplinary papers
focusing on quantitative methods and studies of the Earth, its natural resources and
the environment.’

In 1975, Computers & Geosciences was established as a journal devoted to all
aspects of computing in the geosciences. It was published by Elsevier with Merriam
as its first Editor-in-Chief, and in due course became another IAMG publication. It
publishes research papers on computer methods in the geosciences, such as spatial
analysis, geomathematics, modelling, simulation, statistical and artificial intelli-
gence methods, e-geoscience, geoinformatics, geomatics, geocomputation, image
analysis, remote sensing and geographical information science.

These journals (including the later IAMG publication Natural Resources
Research) filled a growing gap in the maturing area of computer applications, and
became an essential part of geological computing. The earlier ad hoc sharing of
results and many individually trivial, and therefore unpublishable, exploratory
studies had helped to create the basis for their development and their integration.
This is relevant now, as communication heads towards another looming gap,
described later.

36.5 Prague

36.5.1 Dan Merriam

The organizational meeting of the IAMG took place at the XXIII International
Geological Congress (IGC) in Prague’s New Technical University, Czechoslovakia,
on the 22nd of August 1968. It was attended by 20 representatives from 10 different
countries:
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F.P. Agterberg (Canada)
F. Benkö (Hungary)
D.J. Burdon (FAO of United Nations)
C.J. Dixon (UK)
J.W. Harbaugh (USA)
R. Hesse (FRG)
R. Ivanov (Bulgaria)
H. Knape (DDR)
V. Kutolin (USSR)
T.V. Loudon (UK)

R.B. McCammon (USA)
D.F. Merriam (USA)
V. Němec (Czechoslovakia)
R.A. Reyment (Sweden)
D.A. Rodionov (USSR)
H. Thiergärtner (DDR)
A.B. Vistelius (USSR)
G.S. Watson (USA)
E.H.T. Whitten (USA)
P. Wilkinson (UK)

36.5.2 Tom Jones

Several Northwestern University faculty members went to the Prague IUGS
meeting, but Krumbein and Whitten were the only ones who were associated with
the founding of IAMG. Of course, when word came of the Soviet army moving into
Prague during the IUGS, everyone at Northwestern University was concerned about
safety issues, but no news was available to us. All went well, and they had lots of
stories to tell upon their return, along with photos of tanks driving down the street in
front of their hotel.

36.5.3 Tim Whitten

I was a founding IAMG Member in Prague in 1968 and, in several papers (Whitten
2003, 2004, 2005), I’ve alluded to that experience and to Vistelius’ participation in
the founding.

In many ways, 1968 was an extraordinary year that rocked the world (cf.
Kurlansky 2004). Some enthusiasts gathered to create the IAMG in exciting, but
tragic, times. Soviet troops had occupied the city on August 21st; guns of encircling
Soviet tanks pointed at the University, which was the centre for printing and
disseminating news. Vistelius was elected IAMG President and Krumbein ‘Past
President’ (a designation he appreciated and found amusing!); both are fathers of
geological modelling methodology.

Opening of the IGC itself was fine but it was immediately followed by the
invasion. The founding meeting was therefore brief, hurried, and somewhat
stressful because the Americans present were anxious to get away to complete and
execute their evacuation plans (being organised by the US Embassy); they soon left
Prague. However, despite the fact that I was an official delegate of Northwestern
University, the organisers of the US evacuation wouldn’t have anything to do with
me, because I was on a UK passport. With most other delegates, I continued
supporting and attending IGC sessions until, after a couple more days, the Czechs
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felt it necessary to terminate the Congress (at a very emotional hastily arranged
closing ceremony). My friends in the Finnish contingent immediately promised I
could evacuate with their party but, in the end, I learned the British Embassy was
organising two coaches to drive out to Nuremberg in Bavaria—the route went
through Pilsen and the passengers, being British, made the Czech drivers (against
their concerns and protests) stop at the Pilsen brewery to have a last tankard apiece
—thence to Nuremberg and a special BA plane via Amsterdam to Heathrow.

I had been on an excellent 14-day field trip right through Czechoslovakia before
the Congress, mainly organised and led by Václav Němec—there always seemed to
be an orchestra at dinner, stridently playing Dr. Zhivago, much to the consternation
of the several Russian delegates.

Dr. Václav Němec from Prague deserves a word. He played a large role in the
Prague IGC. In addition to his Prague home, my wife and I visited his attractive
rustic cottage (in the forest someway up to the north) once whilst the country was
still Russian occupied. He contributed quite a lot to one part of mathematical
geology by regularly organising well-attended conferences at Príbram (not too far
SW of Prague) through the 1970s—as appropriate to a mining town, there was quite
a focus on mining issues and latterly on geo-ethics; these were loosely connected
with IAMG. After truly awful food available during the conferences, he always
organised a magnificent closing banquet (always pronounced ‘basket’)—don’t
know where he wrestled up the fine food and drink!

36.5.4 Dan Merriam

Modified from an interview with the Lawrence Journal World August 21 2008 with
permission of the Merriam family–

In August 1968, the Soviet Union’s Warsaw Pact allies rolled into the Eastern
European country with tanks and planes to squash the movement known as the
“Prague Spring,” which sought more political and social freedoms during the Cold
War years. Dan Merriam, who sadly died in 2017 after retiring from the Kansas
Geological Survey, escaped the country safely on a train to Austria. He recorded his
notes in Prague and mailed them back to Lawrence. Merriam lived through a tense
time when more than 100 people were killed and Czechoslovakia’s Communist
Party leader, Alexander Dubcek, was arrested. Dubcek didn’t return to Prague until
1989. Just before the invasion, geologists from around the world, including the
Soviet Union, were there in August attending a session for the IGC to form a new
organization, the International Association for Mathematical Geology.

British colleagues had driven Merriam and Stanford University geologist, John
Harbaugh, into Prague for the conference. They were at a hotel in the eastern part of
the city when at 2 a.m. on Aug. 21, low-flying airplanes suddenly woke Merriam.

“For some reason in my mind, I thought the Russians were coming, but it didn’t
occur to me that’s what was happening,” he said.
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The invasion also shocked the native Czechs and even the Soviet delegates who
attended the geology conference. On the eastern side of the city, Merriam didn’t
witness much destruction. His notes from those few days mention an eerie sense of
calm in the eastern part of the city, apart from airplanes sweeping in and tanks
rolling around. He noted “the tears in the eyes of the waitresses and the little knots
of grim” in the neighbourhood along with several protests. Much of their news
came from rumours on the street because radio stations had been bombed and the
spread of information was spotty.

“There wasn’t anything they could do. There wasn’t anything we could do,
either, but just watch and hope nothing happened,” Merriam said.

The US Embassy had advised Merriam and his colleagues to stay in the hotel
because transport from the city was impossible. Even though several members fled
the city, the geological conference continued to meet for one day after the invasion.

“The new group, the International Association for Mathematical Geology, even
elected its leadership, including President Andrei B. Vistelius, a geologist from the
Soviet Union, while the tanks occupied the city,” Merriam said.

“It had nothing to do with it, but it was kind of an interesting coincidence
anyway,” he said.

During that week back in Lawrence, Annie Merriam was on edge. She fre-
quently called Harbaugh’s wife, Josephine, to see whether there was any word. But
she heard nothing. Finally, Dan Merriam and John Harbaugh had a chance to leave
Prague (Fig. 36.1) on a train. It left the city even with tanks nearby, he said. As it
approached the Austrian border, the lights went out, and soldiers came to check
passports. The train eventually stopped in Vienna, where Merriam sent the telegram

Fig. 36.1 Dan Merriam and Trevor Ford (Leicester University, UK) searching for a way out of
Prague August 1968. Copied with permission of the Merriam family
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to his wife. He also mailed home his letter, which didn’t arrive in Lawrence until
after he returned home the next week.

It was only a few words but the short telegram Annie Merriam received at her
home on Aug. 24, 1968, gave her a huge sense of relief.

“ARRIVED VIENNA OK = DAN = .”

“When that came, we were thrilled,” said Annie Merriam. When he did return to
Lawrence, it ended a tense chapter for his family. “Don’t you ever go anywhere
again,” Annie Merriam said about her thoughts upon her husband’s return. But he
did continue his travels. He even returned to Prague in 1993 for the IAMG’s 25th
anniversary.

36.5.5 Vic Loudon

A few months after our marriage, my wife and I set out from Reading in southern
England in our Morris Minor, heading for the inauguration of IAMG. Apart from a
stone-strike on the windscreen and its replacement before we reached the English
Channel, the journey seemed uneventful. But odd things happened. Travelling
through the beautiful Czech countryside, we were forcibly stopped at a secluded
spot by a long, shiny black Mercedes. The driver came menacingly to our window:
“Exchange foreign currency now, very good price!” The distraction of a passing
truck let us escape. As we approached Prague, we noticed more and more heaps of
cobblestones that had been lifted from the road and neatly arranged—road-works so
tidy they looked like walls. We had booked a room at the Zlata Husa, now a luxury
hotel, but then more mundane. The friendly receptionist, carrying our room key,
showed us into a small alcove in the reception area, pressed a button, and the entire
alcove, still open to the world, moved gently upwards through the ceiling,
becoming an alcove (with us still in it) in the room above. She showed us to our
bedroom overlooking the beautiful Wenceslas Square. But why did our door look
as though it was cased in sheets of steel?

No matter. The hotel was in the centre of town, convenient for exploring the
neighbourhood, which we eagerly proceeded to do. It was a long time ago, and I
forget the precise order of events, but well remember enjoying walks through alleys
and shops of the Old Town; the impromptu puppet show for our benefit in the back
room of a tiny shop; and the crossing of the Vltava River by the ornate Charles
Bridge, where the youth of the city were chatting in cheerful groups. On the other
side was St Nicolas Church, with Prague Castle beyond.

In our bedroom at the Zlata Husa, about 4 a.m. on the 21st of August, we were
wakened by planes flying at rooftop level. Did this happen often? But then it was
followed by gunfire outside our window, and explosions nearby. Before dawn
broke, the sound of tanks moving into position came from below. The armed forces
of the Soviet Union and the Warsaw Pact countries had made their point, and the
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city was now under their control. A Google search for ‘images for Prague spring
photography’ gives a good impression of the results.

The Report of the 23rd Session of the International Geological Congress records
on page 20 that “On August 21st, 1968 and in the following days, the work of the
Congress was interfered by the entry of foreign armies into Czechoslovakia. In
result of the overall uncertainty, the blockage of bridges, tanks around the Congress
Headquarters, shooting in the streets and other disturbances, a considerable part of
the attending members was prevented to come to the Congress Headquarters or had
to leave prematurely.” Visiting geologists housed in the suburbs lacked any means
of reaching the meeting. Merriam records that the US embassy negotiated a train to
the border, by which they were evacuated (Lawrence Journal World 2008).

The IGC Report records on pages 200–201: “International Association for
Mathematical Geology (IAMG). This Association was officially founded at Prague
on August 22nd, when it held its General Assembly. The following officers were
elected: President: A.B. Vistelius (USSR). Vice President: W.C. Krumbein (USA),
G.S. Watson (USA), General Secretary: R.A. Reyment (Sweden), Treasurers: V.
Němec (CSSR), T.V. Loudon (UK), Ordinary members: E.H.T. Whitten (USA), D.
A. Rodionov (USSR), D.G. Krige (S. Africa), G. Matheron (France), F.P. Agter-
berg (Canada), S.N. Sengupta (India), Editor-in-Chief: D.F. Merriam (USA). The
application for affiliation to the IUGS (International Union of Geological Sciences)
of this Association was unanimously approved by the Council.” And so, the IAMG
was created, before a reduced but still quite substantial audience.

While I was attending the meetings, my wife took the opportunity to photograph
the interesting happenings in the Old Town. A group of soldiers objected, and
indicated that she should hand over her camera. They opened it to spoil the film,
and returned it. A round of applause came from the on-lookers, perhaps realising
that the film in the Instamatic camera would be unaffected.

A day or two later, when our business and sight-seeing were eventually com-
plete, we felt that we should head for home and our anxious relatives. Getting out of
Prague was no problem, returning on the same route as our arrival. But half-way to
the border, a bridge across a river was blocked by the military, and the road closed
to all. Despondently, we slowly retreated for about a mile, when an old man outside
his cottage waved us down. We had no language in common, but looking about
nervously he gesticulated towards a farm road a hundred yards away, making
rippling movements with his hands, and repeating what sounded like the German
word ‘wasser’.

Not understanding, but with little to lose, we followed his directions and came to
a wide stretch of water. It was the same river, and this might be a ford. While
preparing to wade in and find out, a truck came the other way, water just reaching
its axles. The ford and the road led us back to our intended route, now beyond the
blocked bridge. So that kind man, at considerable risk to himself, had made possible
our continued journey. Our fuel was running low, and all garages had been closed.
Downhill coasting and gentle use of the accelerator brought us eventually to the
border at Rosvadov, with the needle firmly set on Empty. A careful passport
inspection, and we were through, greeted by US soldiers—pleasant, friendly and
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helpful. “There’s a gas station just up there. Or ask that guy [pointing to their
encampment], he’ll fill you up, no charge.” We took the first option, and soon were
in open countryside. We stopped, got out the car and for a while just stood there
together—still, silent, and subdued.

36.5.6 Hannes Thiergärtner

Founding member of the IAMG -
I remember rather well the founding procedure of the IAMG. This event

occurred for me as a drama in three unusual acts.
The prelude was to empower me to participate at the congress at all. Let me

explain for our younger colleagues that the European world at that time was split
into the western and the eastern blocks characterized by extremely different
political-social systems and ways of life. I grew up, lived and worked in the former
German Democratic Republic (GDR) that belonged to the “eastern world”. Here,
many, not to say most, things were centralized and provided from the top. Thus, it
was nearly impossible to participate individually in an international congress.
Participants have been selected, nominated and merged to so-called delegations.
I worked in the Central Geological Institute in Berlin, the geological survey of the
country, as young graduate in the field of mathematical geology and electronic data
processing without international reputation. I never had a chance to be nominated
for the IGC. On the other hand, I felt the opportunity to go there because it was the
first IGC after World War II held in the Eastern Bloc and restrictions to visit the
congress were still distinctly lower than in later years. So, I successfully requested
the Director of our institute for vacation and paid the fee and all other requirements
out-of-pocket. It was a unique courageous decision, for both the Director and
myself. I travelled to the congress, was integrated into the official “delegation” and
found accommodation in a student’s hostel.

The main act played out in Prague. It was and is a wonderful and pulsating place.
The townscape in the late 1960s was still characterized by the post war years,
predominantly in greyish colours but nevertheless imposing and unique. A metro
net did not yet exist at that time but the town centre was well developed by a dense
tramway system. The organizers of the XXIII IGC had chosen for the opening
ceremony the auditorium of the Charles University, the Carolinum, in the Prague
historic centre—an amazing and venerable baroque hall with a super interior. The
ceremony was impressive, indeed, and all participants hoped for a fruitful scientific
exchange of ideas within the following days.

All attendees knew about the critical political situation because of the Cze-
choslovakian trends to reform their political system. My journey to join the con-
gress session “Mathematical geology” passed the ministry of defence during these
days. When I started to go in for the lectures on Wednesday and Tuesday (August
21–22), I had to walk in front of the Ministry between many tanks which had come
from the Warsaw pact states and occupied the town. It was shocking! I do like to
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take photographs but I did not in this moment—it was too serious. The situation
was ghastly and the agile Prague was silent.

I reached the session rooms without personal impairment. There I met so many
colleagues I never had seen before but knew from the scientific literature, such as
Frederik Agterberg, John W. Harbaugh, Vyachelav Kutolin, Victor T. Loudon,
Richard B. McCammon, Václav Němec, Richard Reyment, Dmitri Alekseyevich
Rodionov, Andrey Borisovich Vistelius or Eric Harold Timothy Whitten. Alto-
gether 20 persons were present. It was simply great for the young fresh geologist
from Germany! Regardless of the stressful situation, we founded the International
Association for Mathematical Geology. The organisation was well prepared by
Richard Reyment and it proceeded to elect its leading officers. I remember that the
participants from the Eastern Bloc during a break agreed to vote for Andrei B.
Vistelius as first president to ensure parity within the top of the association.

On the same day, all members of the GDR delegation got orders to meet at a
very small railway station in the western part of Prague to “enter” one of the now
rarely running trains to the German boundary. We left the hosting country in a night
and fog action.

36.6 Subsequent Events Following Prague

36.6.1 John Cubitt

As a second-year undergraduate at Leicester University at the time, I was almost
unaware of the events of the IAMG foundation. All I can recollect is my tutor,
Trevor Ford, and our Department Chairman, Professor Peter Sylvester-Bradley,
returning from Prague with tall tales of the various lucky escapes. It must, however,
have made some form of subconscious impression on my mind because less than a
year later I mentioned to Trevor that I would like to go on to undertake postgraduate
work in computer applications in geology. In that case he said, you need to meet
someone and marched me out of his office and down the corridors of the Depart-
ment of Geology. In a minute, we found the mystery person he wanted to introduce
to me. He was striding down the corridor in cowboy boots, string tie and cowboy
hat in his typical dynamic intimidating style, Dan Merriam. After brief introduc-
tions from Trevor, Dan talked about the Research Group at the Kansas Geological
Survey and how I should undertake a Ph.D. at Leicester University but with the first
year paid for and spent at the KGS. “That will be OK with the Department, won’t
it?” Dan said to Trevor and whether it was or not, the decision had been taken.
Within a few months of whirlwind arrangements, I was on my way to Kansas and
my career was underway (Dan subsequently took me to Syracuse University as well
so I have much to be grateful to this amazing dynamic organiser for). This frenetic
activity was typical of the rapid growth in the subject of mathematical geology and
the IAMG at the time.
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36.6.2 Hannes Thiergärtner

The after-play led me back to the reality of those times. The founding of a new
seminal association within the international geological community was ignored [in
the Eastern Block] especially in the governmentally organized surveys. A policy of
restriction was introduced step by step. Any contact—to say nothing of an IAMG
membership—outside of the Eastern Bloc proved to be impossible and was strictly
forbidden. I would however meet the majority of founding members of the IAMG
again in 1984 during the XXVII IGC in Moscow where I could take an active part
only on special request made by D.A. Rodionov at the GDR ministry of geology.
But that is another story.

With the exception of my colleagues in Prague, Leningrad and Moscow, I was
unable to renew my contacts to other founding members until after the German
reunion (1990). Frits Agterberg was the first colleague I met in Potsdam (Germany). It
was also 1990 and I could then renew my membership in the International Associ-
ation for Mathematical Geosciences. I think we all have utilized this late time as well
as possible to solve some common questions in our interesting field of science.

36.6.3 Stephen Henley

As a humble Nottingham University postgraduate student in 1968, I wasn’t at the
IGC or the Prague launch of IAMG. However, I was deeply involved in computer
applications and statistical analysis, processing what then seemed like huge vol-
umes of data from the X-ray fluorescence spectrometer, and then making sense of
the data using esoteric methods such as factor analysis, cluster analysis, and trend
surface analysis. Under the mentoring eye of Peter Harvey, I joined IAMG as soon
as I heard of its existence, in 1969—and have remained a member without a break
since then. It is fair to say that mathematical geology shaped my entire career. As
my Ph.D. studies came to an end in 1970, an opportunity arose in Australia.

The Bureau of Mineral Resources (now Geoscience Australia) suffered a mass
resignation of several dozen geologists who left to join one of the periodic mining
booms—this one in Western Australia, sparked by discoveries of major nickel
deposits. Among those who left was their one computing ‘expert’, so my meagre
computing experience was sufficient to gain me a position in Canberra, where I
gained a broad experience of mathematical modelling and statistics in fields that
included hydrogeology, exploration geochemistry, earth tides, and global scale
geochemical modelling of Archaean evolution of the Earth (this last with Andrew
Glikson, based on studies of some of the world’s oldest rocks). After my return to
the UK, I finally accepted my type-casting as a computer geologist and in 1973
joined the Computer Unit of the Institute of Geological Sciences (now the British
Geological Survey). This small specialist unit occupied two rooms on the top floor
of the Geological Museum in London, and had an IBM 1130 computer—which
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even then was of very limited capacity. However, we also had access to the much
more powerful mainframe IBM 360/195 at the Atlas Computer Laboratory
(ACL) in Oxfordshire.

The head of the Computer Unit was Dr T. Victor (Vic) Loudon who had pio-
neered generalised software development in his previous academic work at Reading
University (the Rokdoc package) and was one of the founding members of IAMG.
Rokdoc was the inspiration for a colleague Keith Jeffery to start the development of
a general-purpose geological data handling system ‘G-EXEC’ which was built
around the recently published ideas of IBM researcher Edgar Codd for relational
database management. When I first met them, Keith and his co-worker Elizabeth
Gill at ACL, were preparing an early version of G-EXEC: I walked into the office
they were using to see the floor strewn with many piles of punched cards and reams
of fan-folded lineprinter listings of the software. The whiteboard displayed a
beautifully simple diagram of the system structure, and I was hooked.

Table 36.1 Officers and Council of IAMG

1968–72 1972–76 1976–80

President A.B. Vistelius
(USSR)

R.A. Reyment (Sweden) D.F. Merriam (USA)

Past president W.C. Krumbein
(USA)a

A.B. Vistelius (USSR) R.A. Reyment
(Sweden)

Vice president G.S. Watson (USA) A.T. Bharucha-Reid
(USA)

G. Hill (Australia)

Treasurers
Western
Eastern

T.V. Loudon (UK)
V. Němec (Czech.)

J.C. Davis (USA)
V. Němec (Czech.)

J.C. Davis (USA)
V. Němec (Czech.)

Secretary General R.A. Reyment
(Sweden)

D.F. Merriam (USA) E.H.T. Whitten (USA)

Council members F.P. Agterberg
(Canada)
D.G. Krige (S.
Africa)
G. Matheron (France)
S.C. Robinson
(Canada)
D.A. Rodionov
(USSR)
S. Sengupta (India)
E.H.T. Whitten
(USA)

H.A.F. Chaves (Brazil)
A.C. Cook (Australia)
J.E. Klovan (Canada)
P. Laffite (France)
G. Lea (UK)
D. Marsal (W.
Germany)
E.H.T. Whitten (USA)

F.P. Agterberg
(Canada)
K.L. Burns (USA)
G. de Marsily (France)
D. Gill (Israel)
D.M. Hawkins (S.
Africa)
R.J. Howarth (UK)
W. Schwarzacher (UK)

Editors-in-chief
Jour. Math. Geology

D.F. Merriam (USA) D.F. Merriam (USA) R.B. McCammon
(USA)

Computers &
Geosciences

— D.F. Merriam (USA)
J.C. Davis (USA)

D.F. Merriam (USA)
J.C. Davis (USA)

Newsletter G. Lea (UK)
aserved as Vice President
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Soon after that, John Cubitt joined the team, and we formed a “gang of four”
providing computing services to a wide range of users within IGS as well as
supplying the software to other institutes in the Natural Environment Research
Council and worldwide. The IGS Computer Unit itself was a research centre in its
own right: John and I both worked together on the potential use of catastrophe
theory as a geoscience modelling tool, though we were ahead of the times, and it
was only when catastrophe theory was superseded by chaos theory that the potential
became reality, in such fields as climatology and oceanography. Working with Jeff
O’Leary, then at Leicester University, I also used the relatively new field of geo-
statistics in developing a 3D model of the Jwaneng diamond pipe in Botswana, but
misgivings about the method, arising from that and other projects, led to devel-
opment of more robust ‘nonparametric’ methods which formed the basis of a book
(and led to my receiving the 1982 President’s Award of IAMG).

The underlying G-EXEC concepts (and much of the software itself) were sub-
sequently incorporated into other products including, in my case, the ‘Datamine’
mining software system. The rest, as they say, is history.

36.6.4 Dan Merriam

(From Merriam 1978, copied by permission of the Merriam family)–
A list of Officers and Council members of the Association is given in Table 36.1.
During the first year a call for members was made. A logo was designed

according to specifications of D.F. Merriam by Charles Barksdale of the Kansas
Geological Survey for use in connection with official Association business
(Fig. 36.2). This logo was used on a certificate received by all charter members
(those who joined during the first year). negotiations were complete with Plenum
Press for a new journal, Journal of Mathematical Geology (JMG), which appeared

Fig. 36.2 Official logo of
IAMG
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first in 1969. It was made a quarterly in 1970 and a bimonthly in 1975. Also in 1975
the quarterly journal, Computers & Geosciences (C&G) was established with
Pergamon Press the publisher.

The JMG focusses on geomathematics and mathematical geology, which
includes geological arguments supported by numerical observations to purely
mathematical models implemented with geological data. C&G is devoted to the
rapid publication of computer programs of interest to earth scientists in widely used
languages and their applications. A quarterly Newsletter contains general infor-
mation of interest to members.

Each year the Association sponsors meetings, many in cooperation with other
organisations. For example, IAMG cohosts the Geochautauqua held each year at
Syracuse University and every other year a session in mathematical geology at the
Pribram Mining Congress. At each IGC since Prague, we have sponsored or
cosponsored several sessions of interest to our members. In addition, we have
cohosted sessions at meetings of the American Association of Petroleum Geolo-
gists, and the Geological Information Society of the Geological Society of London.
Proceedings for many of these meetings have been published either as special issues
of the Journals or as hard-back books.

Seven national groups have been created and are functional. They are in the
United States, Canada, Brazil, Great Britain, Czechoslovakia, Hungary, and Russia;
others are in the formation stages. These national groups are active in disseminating
information on geomathematics on a national level. Although national groups are
autonomous, they are expected to coordinate their activities with the Association.

Operation of the Association is mainly through committees. The Project Com-
mittee is responsible for preparing the meetings at the next IGC which is held every
four years. The Membership Committee is concerned with soliciting new members;
the Finance Committee with soliciting money; and the Educational Committee with
organizing material and activities to promote geomathematics. Each year a

Table 36.2 IAMG committee chairmen

1968-72 1972-76 1976-80

Standing
committees

Projects J.E. Klovan
(Canada)

A.C. Cook
(Australia)
W.B. Hempkins
(USA)

G. de Marsily
(France)
W.B. Hempkins
(USA)

Membership G. Lea (UK) M.K. Horn
(USA)

J. Hefner
(USA)

Finance H.A.F. Chaves
(Brazil)

G.S. Koch
(USA)

R. Till (UK)

Education G.F.
Bonham-Carter
(USA)

Ad hoc
committee

CAI F. Mutschler
(USA)
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committee (chaired by the President) selects the William Christian Krumbein
medallist and another special committee selects the Best Paper for an award.

A special committee has undertaken the task of compiling a list of all
computer-aided instruction (CAI) programs available and of interest to geologists
and it will be distributed in the near future. There are also plans for compiling a list
of computer software, the list will contain information on programs and their
availability and limitations. Chairmen of the various committees are given in
Table 36.2.

The Association maintains close contact with other organizations which share
similar interests. For example, several members of the Association serve on the
IUGS-sponsored COGEODATA Committee. Others are working on special pro-
jects for CODATA. The Association has a member on Scientific Committee 4
which evaluates quantitative aspects of projects for the IGCP. Liaison is maintained
with the International Paleontological Association.

The William Christian Krumbein Medal is presented each year by the Associ-
ation to an outstanding geomathematician. The first recipient was Professor John C.
Griffiths of Pennsylvania State University, the second, Professor Walther Sch-
warzacher of Queen’s University, Belfast, Northern Ireland, and the third, Dr.
Frederik P. Agterberg of the Geological Survey of Canada, Ottawa. The recipient
receives a medal with the likeness of William C. Krumbein on one side and the
Association’s logo on the other. The Medal was designed in 1977 by A. Pattison,
sculptor of Florence, Italy and Winnetka, Illinois (Fig. 36.3).

The IAMG, in its short period of existence, has participated in and contributed to
changes in the earth sciences. In the future the Association should play an even
larger role in development of the science.

Fig. 36.3 Design for Krumbein medal
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36.7 The Looming Gap

36.7.1 Vic Loudon

The methodology of geological investigation and communication was initially
formalised within the constraints imposed by the traditional mechanisms of pen,
paper, typewriter, printing press, bookshops and libraries. It has been extended by
computer techniques, formalised in a framework set by the manufacturers and
providers of computer equipment and software, but is still based on and restricted
by geological traditions, conventions and precedents. Geological surveys continue
to provide geological maps world-wide, with defined scales of presentation, uni-
form stratigraphical classifications, and separate volumes of text, with
cross-references to locations on the map.

These products provide a stable underlying shared basis for subsequent geo-
logical investigations, essential for accurate communication, including a consistent
and coherent structure within which new investigations can build. This is achieved
by results being confined within the rigid framework and slow-moving processes of
conventional publication. Geological knowledge can potentially build on a wider
framework, going far beyond its current traditions, conventions, limitations and
precedents.

The global information structure is being remodelled, based on new technology
with unfamiliar implications. Current developments in computer translation, voice
recognition and speech synthesis point to a much more flexible future.

As in the mid-1960s, a significant gap may be developing between the future of
geological communication and its current implementation of published papers and
maps. Experimental initiatives might be a good starting point. Their results might
be inappropriate for traditional patterns of communication, but information on their
development could usefully be exchanged in an open and flexible forum, for which
IAMG might be a suitable host.

Appendix

A readable account in the Economist (2017) describes the power of deep learning:
‘an artificial intelligence technique in which a software system is trained using
millions of examples, usually culled from the internet… Computers are, in short,
getting much better at handling natural language in all its forms.’ But (p. 11):
‘Scientists do not know how the human brain draws on so many different kinds of
knowledge at the same time. Programming a machine to replicate that feat is very
much a work in progress.’

The conventional forms of scientific papers and the fixed scales of geological
maps reflect the limitations and conventions of earlier technologies. Future devel-
opment of our understanding of global geology can only be achieved through a
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multitude of investigations and experimental studies. Many geological develop-
ments will be based on local knowledge and requirements. Many will be too trivial
for conventional publication but valuable in their own local context. Already, the
computer technology for sharing detailed studies and strategies is well established.
It could help to provide the essential background for a more comprehensive
framework. It could lead to deeper evaluation and integration of data, text, graphic
and cartographic information at all relevant levels of detail; rapid and appropriate
response to input of new information; the routine calculation, depiction and
quantitative assessment of multiple geological hypotheses; and the emergence of a
never-ending dialogue between human input and computer implementation, sup-
ported by a multi-media interface for input and output.

This calls for developments that go far beyond the precedents and traditions of
our established conventions, into an environment for geological information where
users are motivated to carry forward an accessible shared understanding. Maps,
data, illustrations, simulations, text explanations and scientific papers need not be
separate entities nor restricted to a single scale. Input of new information can be
rapid, with continual assessment and reassessment of its validity and relevance, and
examination of its consistency with previous work.
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Chapter 37
Forward and Inverse Models Over
70 Years

E. H. Timothy Whitten

Abstract The transition over 70 years from qualitative rock description to
attempted quantitative description of rocks and rock bodies (inverse modelling) and
testing of process models with observation data (forward models) are outlined.
Dramatic increases of readily measured variables, combined with almost unlimited
computing power, yielded a plethora of varied inverse models, but limited attention
has been given to critical sampling, variance, closure, ‘black swan’, and nonlinear
issues; recent approaches to closure problems hold promise. Especially for plutonic
rocks, paucity of quantitative process modelling left exciting forward-modelling
opportunities neglected. Resulting challenges ahead are anticipated.

Keywords Sampling ⋅ Variance ⋅ Composition variability ⋅ Black swans
Granite composition

37.1 Birth of IAMG in 1968

In many different ways, 1968 was an extraordinary year that rocked the world
(cf., Kurlansky 2004). Some 20 enthusiasts gathered at the XXIII International
Geological Congress in Prague’s New Technical University, Czechoslovakia, to
create the International Association for Mathematical Geology in exciting, but
tragic, times. Soviet troops had occupied the city a couple of days previously; guns
of encircling Soviet tanks pointed at the university, which was the centre for
printing and disseminating news. Vistelius was elected first IAMG President and
Krumbein ‘Past President’ (a designation he appreciated and found amusing!); both
are fathers of geological models.
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At that meeting, dissimilar approaches came together, having evolved princi-
pally in the Soviet Union, Western Europe, and U.S.A. Vistelius championed the
concept that Mathematical Geology is a separate branch of science based on testing
geological hypotheses mathematically, and that this should be IAMG’s primary
focus (Whitten 2003; 2004, p. 384–5); for some years, he had contended it is not
particularly important merely to manipulate geological data statistically. Dech and
Henley (2003, p. 368) noted Vistelius (1991) considered that, if a science does not
use mathematical modelling in constructing conclusions, “… it can be considered
as belonging to the pre-Newtonian period, …. behind the present-day level of
research by approximately 300 years.”

37.2 In the Beginning (One Pre-1968 Experience)

Specializing in petrology in 1948, Hatch and Wells (1937) was my ‘bible’. That
descriptive, natural-history type, foundation meant it was thrilling in 1950 to visit
Jacupiranga, the Brazilian jacupirangite type locality. For a Ph.D. project in 1948, it
was recommended I look at 260 km2 of coastal NW Ireland to see what is there;
seventy years later, an unlikely method of identifying a thesis project. The area is
red (granite) on the Geological Survey of Ireland 1:63,360 map (Hull et al. 1889).

A plan to record variability of granite across the area (including numerous
islands in the Atlantic Ocean) was needed. Immediate problems in 1949 were
devising (i) a scheme to collect representative samples, and (ii) realistic measure-
ments (measurable in the field or laboratory) to reflect variability.

Unscientifically, a one-mile grid was oriented to maximize (by eye) grid nodes
over outcrops (i.e., islands in the ocean and less peat-bog and drift-covered mainland
areas). It was planned to collect samples (with hammer and chisel) at all nodes if
possible. In the field, two compromises became necessary—using the nearest out-
crop to nodes and accepting any hand-sample that could be hammered off.

Wet chemical analysis of numerous samples was beyond available resources;
X-ray fluorescence analysis was then undeveloped. Point counting thin sections to
determine mineral volume percentages with a Dollar (1937) mechanical stage was
feasible, provided larger thin Sections. (3.3 × 2.3 cm) could be hand ground and
stained with sodium cobaltinitrite—both challenging in 1949; this staining tech-
nique was described by Chayes (1952). Using a Chayes (1949) electrically-
controlled stage improved point-counting accuracy. Studies of spacing and required
number of counts (Chayes and Fairbairn 1951; Chayes 1954) suggested sufficiently
large thin sections were being used. Manual contours for modal variables (e.g.,
K-feldspar volume percentage, colour index) at 44 grid nodes reflected considerable
areal variation (Whitten 1957). Such contours were very controversial because they
crossed ocean between islands and superficial deposits on land; also, no exposures
occur in numerous grid squares. A senior reviewer deemed it impossible to draw
contours across ocean (despite greater outcrop density with off-shore islands than
on land with peat bogs, farming, etc.).
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In 1958, I became a colleague at Northwestern University of W. C. Krumbein,
who was pioneering quantitative description of sedimentary rocks. The University
acquired an IBM360 mainframe computer; we used punch cards and wrote FOR-
TRAN programs for statistical descriptors and surface-fitting algorithms for
areally-distributed data (e.g., Whitten 1960, 1961). Analogous approaches began
thriving at Kansas Geological Survey, Pennsylvania State University, etc. Krum-
bein developed the concept of descriptive, conceptual, and predictive models
(Krumbein 1963; Krumbein and Graybill 1965, p. 13, et seq.; Whitten 1964).
Driving to Leningrad to spend time at Vistelius’ Institute for Mathematical Geology
was a privilege in 1971.

37.3 Inverse and Forward Geology Problems

Vistelius (e.g., Vistelius 1977) differentiated inverse from forward problems. The
objective with the former was describing the nature and variability of specified
rocks, etc.; that is, with statistical or other techniques, formulating descriptive and/
or genetic models for essentially arbitrary data for arbitrary variables. With forward
problems, the objective was testing validity of genetic models (based on currently
available information) for rocks, fold belts, etc. That is, testing whether a genetic
model is supported or rejected by data for variables dictated by that model; many
commonly measured variables are likely to be irrelevant for such testing (cf.,
Whitten 2005).

For sedimentary and metamorphic rocks inverse and forward problems present
fewer difficulties. Thus, ‘marine beach’ can be defined descriptively by physical,
chemical, and biological features that commonly enable marine-beach deposits to
be recognised (e.g., in the stratigraphic column), or genetically by environmental
conditions that result in beach formation (waves, currents, sediment transport, etc.).
Similarly, as Bayly (1968) pointed out, metamorphic facies can be defined by
presumed temperature and pressure during genesis (Eskola 1915, p. 114; Turner
and Verhoogen 1951) or descriptively by diagnostic mineral assemblages (Fyfe
et al. 1958). With igneous rocks (especially plutonic assemblages), geotectonics,
etc., inter-relationships between the descriptive and genetic are commonly very
debateable (Whitten et al. 1987a, p. 334).

37.4 Forward Models in Earth Sciences

Forward modelling is in its infancy and rare because, in most cases, little objective
quantitative information is available about genetic factors, especially for plutonic
rocks. Unlike many scientific fields, most earth-science domains do not permit
reproducible experiment and testing. Vistelius (1972) used Tuttle and Bowen’s
(1958) experimental petrology to illustrate forward modelling of ‘ideal granite’,
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extending his method1 to Omsukchan Granite, SE Asia (Vistelius and Romanova
1972), Malsburg Granite, Germany (Choubert and Vistelius 1972), etc.

Over the past decade, numerous “forward models” appeared in geophysical
studies (petroleum, mining, water, volcanic activity) for prediction and extrapola-
tion based on measured variables (e.g., Geol Soc Amer Symposium 2002; Sui et al.
2012; Butler and Zhang 2016). Butler and Sinha (2012, p. 168) stated such forward
modelling is useful for interpreting data. McInerney et al. (2007) compared gravity
data computed for a 3D geological model with new Bouguer data to iteratively
improve their geological model, calling this forward modelling. Comparable usage
occurs in biology (e.g., Tolwinski-Ward 2012). In such studies, inverse models
have been honed with new data for sundry variables, producing improved inverse
models (cf., iterative forward modelling, Schlumberger Limited 2016). However,
such “forward modelling”, albeit useful, is wholly different from testing genetic
models with new variables prescribed by those models. Different distinctive ter-
minology would prevent confusion.

Vistelius’ forward-model definition is retained in this paper.

37.5 Inverse Models in Earth Sciences

Inverse–models reach into many earth-science domains. Manual contours for
variability of Donegal granite modes (Whitten 1957) represented an
inverse-problem approach; more-sophisticated inverse models followed as com-
puting power facilitated trend-surface map preparation (e.g., Whitten 1960).
Computing power soon resulted in every available data set being processed by
every available statistical artifice, to explore whether anything interesting (and
publishable) emerged. Such research provoked Vistelius’ strident remarks at the
IAMG founding meeting.

Inverse problems fall into two categories:

(a) analysis and description of available (or readily measured) data for geological
entities (e.g., colour index in granite plutons; grain-size skewness in silt sam-
ples), and

(b) use of data to predict

(i) useful features (e.g., gold content and location; subsurface sedimentary
rock permeability variation) as with kriging and so-called ‘geostatistics’

1Numerous papers by Vistelius and coworkers used the important and challenging discovery that
grain transitions along linear traverses of many granitic rocks possess the Markov property, to
suggest testing or erecting genetic crystallization models can be based on grain-transition proba-
bilities. However, Whitten and Dacey (1975) and Whitten et al. (1975) demonstrated Markov
chains in actual mineral sequences in varied rocks (including a calc-silicate granulite) is insuffi-
cient for establishing validity of the granite crystallization model.
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(cf., Krige 1964; David 1977; Journel and Huijbregts 1978), or flooding or
other risks (e.g., Burke et al. 2016), or

(ii) petrogenetic processes (e.g., infra-crustal origins of I- and S-type granites
within orogenic belts (e.g., White and Chappell 1983; Chappell 1984;
Chappell and Stephens 1988).

Speculation about petrogenetic processes that produced described rock assem-
blages has always been common. Over a thousand high-quality chemical analyses
of major and many trace elements for southeast Australian granites led to parti-
tioning samples into I-type or S-type granitoids with dissimilar sub-crustal origins,
and to the restite genetic model (e.g., Chappell et al. 1988, 1987; Chappell and
Stephens 1988). Analogous methods were used elsewhere (e.g., North American
Peninsula Ranges, Silver and Chappell 1987). Such inverse models could afford
excellent forward-modelling bases, if prescribing new variables with which to
support or negate the supposed genetic model/s.

However, such inverse models are fraught with difficulties (Whitten 1991,
p. 121). Use of different variable sets from Chappell and colleagues’ chemical
analyses can partition samples into an almost infinite set of descriptive suites. It is
unrealistic to enunciate genetic scenarios for one set of descriptive suites, without
concomitantly embracing all other coexisting sets defined by using different vari-
ables, sets of variables, variable weightings, etc. (Whitten et al. 1987a, p. 341;
1987b). Again, if techniques like cluster analysis were used to partition hundreds of
samples on the basis of 36 chemical variables, normalization (to give each variable
equal weight) would commonly be used, despite no a priori reason for each element
being equally important. Different clusters emerge if one (or more) variable receives
different weighting, and when more or less variables are included (Whitten et al.
1987b, p. 69; Whitten 1991, p. 121). Also, standard cluster analysis (and similar
partitioning techniques) yield questionable results when percentage and/or
parts-per-million data are used (cf., Aitchison 1986, p. 300).

However,where components are conserved throughout crystallisationwithin certain
basic igneous rocks, molar ratios with a common constant denominator were shown to
display, accurately and unequivocally, the actual chemical variability (e.g., Nicholls
1988; Stanley and Russell 1989). Molar-ratio diagrams for some Australian I- and S-
suites seem to show chemical variations accurately, permitting quantitative objective
testing of, say, the restite model (Whitten 1996). This technique for avoiding daunting
closed-data problems deserves further examination, although, formanygranites, lack of
component conservation during crystallization may introduce difficulties.

37.6 The Samples Analysed

Statistical or mathematical analyses of available data are the relatively easy
part. Statistical manipulation (inverse modelling) describes characteristics and
variation of particular data, but not necessarily characteristics and variation of those
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variables in the rock samples from which the data were derived (or necessarily of
variables of petrogenetic significance for forward modelling, or of direct economic
importance).

Data come from samples (or geophysically-sampled rocks, etc.). It is important
to assess how well available samples represent the sampled population of interest,
and whether that sampled population permits realistic extrapolation to the target
population of primary interest (cf. Whitten 1961). For example, where the objective
is determining compositional variation of a pluton, the exposed surface is an
arbitrary 2D section (or modestly 3D in mountainous terrain) through the original
3D mass, much of which is eroded away. Soil, vegetation, etc. always obscure
major parts of 2D exposures; actual outcrops are disposed arbitrarily or preferen-
tially, but not randomly. Analyses of those samples actually examined (samples
collected from sampled outcrops) are necessarily used to estimate composition and
variability of the sampled population, and subsequently the target population.

The significance of actual observed dependent data was reviewed by Whitten
(2000, pp. 4 et seq.) who asserted that, in favourable circumstances, rigorous sta-
tistical inferences can be drawn about the sampled population on the basis of
samples examined, and subsequently geologists can only use such inferences to
make subject-matter inferences about the target population on the basis of previous
geological experience (cf., Cochran et al. 1954, p. 19).

Unusually, such issues can be obvious. For example, road cuttings might expose
significantly banded or layered rocks, but only some of those bands may be exposed
in outcrops across neighbouring areas.

Serial thin sections from coarse-grained granite samples commonly yield modal
values with considerable variance. Exposed igneous rocks may be porphyritic
making collectable, representative, samples difficult to obtain. Commonly, samples
of dissimilar size are required to estimate composition and variability of each
variable. For variables measurable only by laboratory analyses (e.g., modal zircon
percentage, trace-element weight percentages), an adequate sampling plan can be
devised only following estimating the level of variance of each variable from
analytical results. The classical example is Krumbein and Slack’s (1956) determi-
nation that variance of their variable of interest within a black shale over many
square kilometres of Illinois, USA, is greatest at their smallest level of sampling
(thin-section level). Different rock types require dissimilar strategies (e.g., deter-
mining calcite volume percentage throughout a cratonic limestone requires a
less-dense sampling plan than, say, assaying gold weight percentage within sub-
surface Witwatersrand conglomerates or apatite volume percentage in a granite).

For Rattlesnake Mountain Pluton, California (USA), Baird and Welday (1967)
showed that, when variance of attributes is large at their smallest sampling level
(hand-specimen level), adjacent samples yield dissimilar values and thus dissimilar
areal-variability maps. For their monumental studies of Lachlan fold belt granitoids,
Australia, Chappell and colleagues powdered very large samples (over a kilogram)
from the mainly visually-homogeneous outcrops, with the intention of minimising
major and trace-element variance at the sample level (e.g., White et al. 1977;
Chappell 1978). Their sample size and reproducibility of their chemical analyses
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yielded reliable data. In many regions, they collected a sample from virtually every
outcrop protruding through arid rolling pasture. Areas between widely scattered
outcrops (sometimes a kilometre apart) were necessarily un-sampled and unknown;
it is appropriate to question whether extant outcrops exist because composed of
rocks less susceptible to weathering (compositionally dissimilar to the majority).

Generalising, each variable commonly has dissimilar variance in samples of a
specified size. Variance tends to be large between small samples, especially when
grain size is large, and, as sample size increases, variance between samples
decreases to a minimum, before increasing again for extremely large samples (cf,
Whitten 1968; 2000, p. 6).

Such issues have long been recognized in mining exploration. Moving-average
methods, developed by Krige (e.g., 1964) for South African gold-bearing con-
glomerates were extended and explicitly controlled (in what is known as ‘geo-
statistics’) by levels of variance of variable/s, as expressed by semi-variograms
(e.g., David 1977; Journel and Huijbregts 1978); observed large outlier values are
accommodated within the ‘nugget’ effect. ‘Nugget’ aptly reflects very sparse, larger
gold particles within the conglomerates, which affect predicted profitability of
subsequent mining; nuggets are represented only occasionally in actual samples and
resulting assay values (Whitten 2010, p. 250).

It is not uncommon for it to be assumed that, provided sampling has been
‘adequate’, variables of interest follow standard frequency distributions (normal,
lognormal, etc.). Many common statistical algorithms assume input data are nor-
mally distributed; frequently, packaged computer programs normalise input data
automatically (often with unspecified algorithms) prior to effecting statistical
analyses. However, different normalisation algorithms can produce dissimilar
resulting analyses.

37.7 The Black Swan Effect

Throughout the earth sciences, sporadic sample measurements are wholly dissimilar
to those for the majority of samples. Not infrequently, analyses lying on the extreme
wings of distribution curves (normal, lognormal, etc.), or beyond the tails, are
discarded; although such analyses might be attributable to analytical error, many are
likely to be real and very meaningful. In studying the influence of the improbable in
the earth sciences, Whitten (2010) demonstrated that real, localised, anomalous data
can reflect features of significant genetic and/or economic importance; the ‘black
swan’ effect (cf., Taleb 2007). That is, such data can reflect important factors not
previously considered in models and theories—factors that, after recognition, are
likely to be found highly significant.

Throughout geological time, all manner of events occurred that appear to be
wholly arbitrary with respect to formation of lithology, structure, palaeontology,
etc., of rock units. Impact of a meteor with the Earth is a good example, because it
can apparently affect substantially both current organic evolutionary patterns and
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ongoing physical processes (e.g., sedimentation). Consequently, some, but not
necessarily all, dependent variables (with respect to space and time) might show
anomalies reflected as outliers on a distribution curve (a nugget-like effect). Such
phenomena reflect the operation of customary physico-chemical laws and the
effects of irreducible elements of chance and indeterminism (Whitten 2010,
pp. 250–1).

The traditional search for order and simplified description commonly deflects
attention from important real black swans that require inclusion for realistic
understanding of geological phenomena and natural hazards. Mandelbrot (1982)
provided a beautiful introduction to fractal geometry in nature; more recently,
fractal, chaos, and nonlinear approaches have helped expose basic characteristics of
the physical world, whose fundamental significance throughout the earth sciences is
rapidly becoming more clear. A report (Lovejoy et al. 2009) on ‘geocomplexity’
summarized the importance of nonlinear geophysical methods in elucidating
rational bases for statistics and models of natural systems (including hazards),
which previously were treated by ad hoc methods. That report reflected 15 authors’
research ranging from earthquake dynamics, river-flood prediction, basalt
columnar-joint formation, coastline topography, meteorological cloud models, and
interaction of greenhouse gases and global warming. It concluded with a warning
against (a) reliance on traditional state-of-the-art statistical techniques (and theories
based on them) and (b) ignoring nonlinear methods which are often helpful for
more-complete understanding of the natural world.

37.8 Concluding Thoughts

Throughout most geological domains, the qualitative-to-quantitative revolution via
mathematical geology over the past half century has been awesome, made possible
by numerical models and readily available data for greatly increased numbers of
variables; all facilitated by hugely increased computing power. Investigations
extend to variables whose variance cannot be estimated by eye (e.g., isotope ratios;
electrical resistivity). The research is manifest in both IAMG Journals and other
new approaches (e.g., 3-D visual digital models and virtual presentation of rocks
and geological formations, De Paor 2016). Cataloguing, classifying, description,
and presentation are often the useful goals, especially for economic geologists (e.g.,
oil-field research; kriging and ‘geostatistics’).

Pragmatic review emphasises that many basic (but apparently unexciting)
problems enumerated five decades ago (e.g, variance; sampling), critical in inverse
models for correctly portraying rock formations (rather than merely assembling data
obtained from the rocks), have continued to receive little attention (Whitten 2003).

Birth, maturity, and old age characterise phases of all human endeavour. The
past 50 years witnessed birth of IAMG and spreading of its influence throughout
the earth sciences using inverse methods, but only initial recognition of the com-
pelling importance of modelling forward problems (in Vistelius’ meaning).
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Inverse-problem studies will move into maturity as variance, sampling, and
non-linear models underpin on-going research.

The challenging needs and goals of forward problems are reasonably obvious,
but the complex issues involved have been addressed only occasionally (e.g.,
Vistelius and Romanova 1972; Maslov 2003). Commonly, forward problems will
require non-linear process models (i.e., quantitative genetic models) that specify
those variables required to test the hypothesis. The next 50 years await research
towards that maturity in forward modelling. So-called forward models of recent
geophysical studies must not obscure this challenge.
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Chapter 38
From Individual Personal Contacts
1962–1968 to My 50 Years of Service

Václav Němec

Abstract The author’s initial personal random contacts with pioneers in intro-
ducing mathematics and computers to geology in Russia, USA and France evolved
thanks to the 23rd International Geological Congress and the foundation of the
IAMG in Prague 1968. An incredibly large set of colleagues from all over the world
have continuously contributed to a long series of regular international sessions at
the Mining Příbram Symposia—a unique East–West gateway for the IAMG during
the period 1968–1989. Very intensive work has been continuing until 2000 with
several new peaks. The author has used many positive international organizational
experiences from the work for the IAMG in developing geoethics, where many
experts of mathematical geology have brought a considerable contribution to this
new field.

Keywords Mathematical geology ⋅ IAMG history ⋅ East–West contacts
Mining Příbram Symposia ⋅ Geoethics

38.1 Introduction

My way into geology did not follow an easy direct path. In 1951 my studies of
economics (including courses of mathematics and statistics) were stopped because
of political reasons I was not admitted to the final 4th year. Instead of my studies I
spent the following 26 months in special army units for politically unreliable per-
sons working in the coal mines of the Ostrava region. At the end of 1953 I started to
work in a state enterprise for geology of industrial minerals. At that time, this was a
Cinderella among the other sectors of uranium, coal or metals deposits. My chief
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appointed me as an assistant to two associate professors of the Charles University
who were engaged by our enterprise because of a lack of our own graduated
geologists. Both these men later became known as very famous professors: Zdeněk
Pouba in economic geology and Zdeněk Špinar in palaeontology. I remained in
friendly contact with both of them for the rest of their lives. In 1954 I was able to
start distance university studies in applied geophysics (in order to study geology
there was a condition of having several years of practice, whereas for my spe-
cialization it was only necessary to have finished military service—such was the life
in those days). Mathematics was among the key disciplines of my studies and my
regular work in my enterprise became more and more focussed on evaluating the
results of geological projects concerned with computing ore reserves. I graduated in
1959.

At that time, our Cinderella was incorporated into a new enterprise covering
exploration of all sorts of deposits except uranium. Despite some renewed political
problems in 1960, I was appointed as chief of a special division for controlling the
final reports of the company, being the only trained specialist when two of my new
bosses arriving from other sectors preferred employment outside our company. On
my own initiative I took my job as a consultant service discussing with my col-
leagues responsible for individual projects the appropriate methods for computing
the reserves. Already in 1961, we started processes with the mechanization of work
using punch cards. During a tourist trip to the USSR in 1962 I had my first
occasional contacts with several colleagues in Moscow at the State Commission of
Ore Reserves—I. D. Kogan was one of the top personalities (his son Robert later
became my close friend). After a new reorganization in late 1962 I got a position in
which it was possible to realize along with trained computer specialists new ways of
applying computers for our specific professional needs.

In 1964—during my first trip behind the Iron Curtain after the Prague coup in
February 1948—on a private family visit in the USA I had the chance to contact
several colleagues in Colorado and Arizona working in the field of mathematical
geology. The existence of the Tucson centre active in this field was discovered from
literature by my colleague—economist and statistician Blahomil Soukup. My
contacts with the organizers of the APCOM Symposia at that time held in Tucson
and other US universities resulted in further interesting contacts. At the Colorado
School of Mines R. F. Hewlett gave me the address of Ivan P. Sharapov. The
following year (1965) this Russian scientist took a more than 2000 km long flight
from Perm to Sochi in order to meet me in person for one weekend during my
vacation in that famous Black Sea resort. Ivan was a man who despite incredible
personal political problems (several years of arrest and concentration camps)
continued to introduce mathematical statistics for applications in geology. He was
extremely pleased to meet a colleague from abroad for the first time in his life in his
58th year. He had already established his own written contacts abroad and I
obtained from him the addresses of such famous personalities as Danie G. Krige
and Georges Matheron.

In 1965 I was among three Czech authors who published their papers at the
APCOM Symposium in Tucson which in 1966 gave an impulse to Dan Merriam to
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contact us in the course of his visit to Europe including the Eastern territory
(Krakow and Prague). Further progress in establishing new international contacts
became extremely rapid and the approaching 23rd International Geological Con-
gress in Prague (1968) brought me several special engagements among the orga-
nizers of the Congress as well as membership of the International Preparatory
Committee (headed by R. A. Reyment) for the foundation of an international
association for the application of mathematical methods and computers in geology
(the exact name was under discussion).

In September 1967 during a private tourist trip to France I established personal
contacts with Professor Georges Matheron and with several other French col-
leagues (A. Carlier, Jean Serra). In November 1967 I defended my doctoral thesis
(RNDr.) at the Charles University in Prague in the field of economic and mathe-
matical geology based on my first computerized model of three deposits for a
cement factory in the suburbs of Prague.

In December 1967 I was the only foreign guest at the Second Siberian
Symposium on Mathematical Methods in Geology and Geophysics in Novosibirsk
(480 participants) where Ivan Sharapov and the local chief organizer Yuri Voronin
helped me to contact many VIPs in this field from all parts of the USSR (including
Dmitry Rodionov). When addressing the plenary meeting I invited people to attend
the Prague Congress with a specialized session on mathematical geology and
informed them about our plans to found a new international association. (A.
B. Vistelius was the only member from the USSR on the international committee
but he did not attend this Symposium).

38.2 IAMG Foundation (Prague 1968)

In 1968 an incredible optimism characterized both the hopeful political develop-
ment of the Prague Spring as well as the preparations of the International Geo-
logical Congress and of the founding meeting of the IAMG. I already had the
pleasure to describe more details of these events in the book for the IAMG Silver
Jubilee (Němec 1993a).

The euphoric start of the 23rd International Geological Congress gave me the
opportunity to meet in person for the first time many new colleagues already well
known in the field of mathematical geology (Frits Agterberg, R. B. McCammon,
J. W. Harbaugh, R. A. Reyment, A. B. Vistelius, G. S. Watson, and E. H. T. Whitten).
Professor W. C. Krumbein informed me that his arrival would be delayed. But very
early in the morning of Wednesday August 21 all plans were changed with the entry
of five armies under the Warsaw Treaty. Because it was impossible to visit the
Congress centre I spent part of that day with Professor Reyment, who was staying
in a hotel near my home. He made several telephone calls with the Swedish
Embassy. It appeared that the current situation prevented any prediction about the
future of the Congress.
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On the morning of Thursday August 22nd, 1968 special transportation was set
up again for Congress participants and some of the Congress program was
re-activated. It became possible to use the room reserved for the preliminary dis-
cussions planned prior to founding the new Association. The new situation only
permitted essential formal administrative steps including the election of the first
IAMG Council. Professor R. A. Reyment as the Chair of the meeting refused the
suggestion of John Harbaugh to be elected as President (preferring the position of
Secretary General) and asked to elect for this top position A. B. Vistelius. Both key
functions were unanimously approved. G. S. Watson was elected as the
Vice-President representing a liaison with the International Statistical Institute. My
suggestion to elect the absent Prof. W. C. Krumbein to the post of the “Past
President” was accepted as well. T. V. Loudon was elected as the Western
Treasurer. Prof. Watson suggested me for the post of the Eastern Treasurer. After
my election I started my official activity for the new Association by suggesting
D. Krige and G. Matheron (in their absence) as IAMG Council members.
F. P. Agterberg, D. A. Rodionov and E. H. T. Whitten as well as the absent
S. C. Robinson and S. Sengupta were elected as further members of the Council
while D. F. Merriam and Graham Lea (absent) were chosen as the first editors of
intended IAMG publications. The first IAMG Council had a very good
geographical distribution. The election of two Russian scientists to the Council on
that day was a testimony in favour of absolute priority being given to personal
professional quality avoiding any political concerns.

After a very emotional premature closing ceremony of the Congress on Friday
August 23 afternoon I had the honour to represent the IAMG together with A.
B. Vistelius and E. H. T. Whitten at a working meeting of the International Union of
Geological Sciences where, in an accelerated process, our Association was officially
approved as a new affiliated member. At that time I had no idea how many
opportunities were to be awaiting me to work in the IAMG for so many years ahead
including my service as the Eastern Treasurer altogether for six terms (1968–1980
and 1984–1996)!

38.3 Activities for the IAMG 1968–1993

Various activities of the new Association had to be negotiated, mostly using normal
mail. Today it is already difficult to imagine the modest technical means of that time
(without any fax or e-mail). However, some personal contacts helped me to make a
start with my duties. At that time, my employer—the geo-exploration state enter-
prise under a new name of Geoindustria became the sole collective IAMG member
in Czechoslovakia supporting my official activities abroad by financing a lot of my
travel expenses.

In January 1969 I visited a conference of mining geodesy in Moscow and paid a
visit to A. B. Vistelius in Leningrad. The possibility of visiting Western countries
continued until the autumn of 1969 and I therefore had no problem to meet with
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many IAMG Council members at the Congress of the International Statistical
Institute in London in August 1969, to spend three weeks in September in France
attending a special course on geostatistics at Fontainebleau, and to accept with the
consent of my employer the invitation of the Kansas Geological Survey in
Lawrence (initiated by Dan Merriam) to work there from November 1969 until
August 1970. This was an excellent opportunity for establishing many further
(already global) useful contacts for my activities for the IAMG and for the inter-
national development of mathematical geology. I hold deep memories of my
experiences from that time (Bonham-Carter et al. 2008), especially the colloquium
on Geostatistics (Nemec 1970) held on the campus in Lawrence and the APCOM
Symposium in Montreal (both in June 1970).

In addition to my stay in America I also had to work hard to fulfil my profes-
sional duties for Geoindustria. The following text will hopefully disclose how
useful working at this cosmic speed during this starting period turned out to be for
all the hyper-activities carried out during the remaining almost five decades of my
further life.

38.4 Příbram—East–West Gate Near the Iron Curtain

As explained elsewhere (Němec 1993b) a symposium “The Mining Příbram in
Science and Technique” was organised for the first time in 1962. The city of Příbram
—located 60 km SW from Prague—had a long mining tradition going back to the
thirteenth century. In November 1968 several Czech colleagues—mostly geophysi-
cists from the Czechoslovakian Uranium Industry—organised a special session on
Mathematical Methods in Geology and Geophysics for the first time. They also
agreed to organise a special seminar on Geostatistics in Prague and I had the honour
—in the course of my visit to France in September 1968—to invite G. Matheron and
J. Serra to take part in that two-day seminar as well as in the new session in Příbram.
Both guests were deeply impressed by both the Czech audience and hospitality and
Prof. Matheron himself suggested continuing the Příbram meetings with
co-sponsorship of the IAMG. I immediately started to promote that idea.

From 1969 I acted as the main convenor of that specialised international session,
which actually came about as early as October 1969. We had guests from six
countries, but it seemed impossible for A. B. Vistelius or I. P. Sharapov to attend the
meeting (they sent in their written articles). Shortly after the meeting I left Prague to
start my temporary work in Kansas. Through contact with the secretariat of the
Symposium and with several Czech colleagues (B. Soukup, M. Škubal) it was
possible for me to continue on from Lawrence with preparations for the next session
at Příbram in 1970. Using my new contacts, I was able to successfully promote the
idea of also holding these rendezvous at the above-mentioned meetings in Lawr-
ence and Montreal. My work in Kansas terminated in August 1970 and in October
there were already 26 foreign colleagues from 11 countries who participated in the
Příbram session, together with about 55 participants from Czechoslovakia. We had
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several guests from America (Michel David, Dan Merriam, and Tim Whitten), one
from India, and also Dmitry Rodionov appeared from Russia. Simultaneous trans-
lation was used for the first time. This was a very good start for further promotion of
this kind of meeting which later took place regularly in October every year until
1973. The 1970 Příbram meeting can be classified as an important milestone of
progress.

Since about 1965 the promotion of mathematical methods and computers in the
Earth sciences became included in official activities within the framework of the
Eastern bloc organization COMECON (Countries of the Mutual Economic Aid) and
just in 1973 a regular meeting of specialists was planned and organized in
Czechoslovakia. Many participants of previous regular meetings on this subject
already knew Příbram. It became possible to find a way how to join the official
meeting for COMECON delegates (it took place in a locality not far from Příbram)
with the regular Symposium (all scientific papers presented in Příbram).

This arrangement made it possible to intensify the already existing East–West
contacts. After 1973 the section on Mathematical Methods in Geology was regu-
larly organized every second year—in 1983 again in conjunction with a special
COMECON meeting. Many IAMG members from both the West and East were
taking regular part in the meetings, e.g. Tim Whitten visited Příbram as IAMG
Secretary General in 1977 and again as IAMG President in 1983. Also, represen-
tatives of COGEODATA were among the visitors and thanks to the initiative of Jiří
Hruška on several occasions official meetings of that organization were arranged in
Prague making it possible for their participants to also take part in the Mining
Příbram Symposium. In 1989 and 1991 specific problems of geoinformatics were
included in a separate parallel section of the Symposium.

Regular meetings of the specialized COMECON groups were organized in
different COMECON countries according to their usual format which involved
excluding visitors from other countries. However, both their meetings at Příbram in
1973 and 1983 were unique exceptions lifting scientific programs to a level
accessible to all scientists from around the world. I was very lucky that this idea
was adopted not only by top representatives of the Czechoslovak geological
community but also by the representatives of the COMECON Secretariat in
Moscow and by the authorities responsible for that sector especially in the USSR,
Hungary, Poland and Yugoslavia.

From 1983 onwards the meetings of Příbram were regularly attended by par-
ticipants of special courses on geochemistry organized regularly in Czechoslovakia
by UNESCO with the School of Mines at Ostrava. At that time, I also had some
written contact with UNESCO top representatives (see Fig. 38.1).

In 1987 the section was organized jointly with the GEOCHATAUQUA—held
for the first time outside North America (unfortunately, without visitors from that
part of the world).

The rapidly changing political situation in the Eastern bloc permitted in October
1989 (6 weeks prior to the November velvet revolution) the visit to the
geo-mathematical section at Příbram Symposium of many people from the East
(especially about 65 guests from the USSR). Altogether 125 visitors from 23
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foreign countries (both East and West) with also about 125 colleagues from
Czechoslovakia represented a new record of participation.

In 1991 the section was already organized in a new political and economic
climate. Members of a new ad hoc committee of the IAMG appointed by the IAMG
President R. B. McCammon for preparing the Silver Anniversary Meeting of the
IAMG were present among the participants: Dan Merriam, Frits Agterberg, Peter
Dowd, Mike Hohn (IAMG Secretary General), and V. Němec. Intensive talks were

Fig. 38.1 Letter of the UNESCO Deputy Director General A. Kaddoura to Vaclav Nemec. The
French text is a warm expression of thanks for the golden medal of the Mining Příbram
Symposium appreciating regular co-operation of the international section of mathematical geology
with UNESCO courses on geochemistry organized at the School of Mines in Ostrava
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held in my home in Prague prior to the Symposium and everybody seemed to agree
with my suggestion to prepare a joint Silver Anniversary Meeting of both IAMG
and the Mining Příbram as a festive gathering of Western and Eastern colleagues in
Prague following the format of the meetings of the Mining Příbram Symposium in
1993. The resulting information was communicated to all participants at Příbram.

At the IGC 1992 in Kyoto in my paper discussing the 15 geomathematical
sessions held regularly at the Mining Příbram Symposia from 1968 until 1991 I had
the pleasure to present the following impressive results:

• altogether 970 written contributions (total volume of 8696 printed pages),
• altogether 441 oral contributions (posters were used only marginally, mostly

adding data for oral contributions),
• altogether 925 individual authors,
• altogether 30 countries with representatives from the whole world.

Only 45% of the published full texts or abstracts that were given were repre-
sented orally, because of the fact that not every author was allowed to come to
Příbram. The State authorities, especially in the USSR and in Eastern Germany
were watching and controlling the situation and more freedom for individual vis-
itors only became evident in 1989 when the combination of both political and
economic situations had become optimal for the possibility of travel to Příbram.

38.5 My Own Professional Work

In 1972 I was asked by the Central Geological Institute in Prague for a peer review
of a book prepared by the Czech authors Vladimír Sattran and Blahomil Soukup
about the application of mathematical methods in geology. It was published in the
Czech language in 580 copies (Sattran and Soukup 1973). A large list of publi-
cations from prominent authors, both Western and Eastern, represented a very good
review and the whole book reflected the actual situation and some promising future
development trends.

In my own work at Geoindustria in Prague I had the possibility to continue
developing new space and time models for various deposits as well as arranging the
agendas for the Mining Příbram symposia. My continuing position in the IAMG
Council was accepted by top representatives not only from my employer but also of
the Czechoslovak Bureau of Geology. I had the chance to visit at least partially all
the International Geological Congresses since 1980 (see Fig. 38.2 from Moscow
1984), and International Stratigraphic Congresses in Heidelberg (1971) and in Nice
(1975), APCOM Symposia in Clausthal (1975) and London (1983). Every year I
was a regular guest at geomathematical meetings organized in Krakow by Professor
Janusz Kotlarczyk, in Freiberg (Saxony—Eastern Germany as section of large
events), and at many meetings in various parts of the USSR as well as several
meetings in Hungary (Istvan Dienes, Endre Dudich).
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I spent one month on a lecturing tour in Italy (1971—see Fig. 38.3) and another
lecturing tour in Canada and the USA (1986); also, several working visits in
Vietnam and in Mongolia should be mentioned because of the possibilities of
making some special contacts with local academic circles (Professor Ochir Gerel in
Ulaan Baatar).

In all these meetings I was presenting my own (sometimes co-authored) scien-
tific papers, mostly in the domain of space and time models for various kinds of
deposits. I always emphasized that special attention should be given to achieving a
geologically correct solution by avoiding inappropriate mathematical processes
(interpolation) leading to erroneous geological interpretations. My speciality also
covered so-called inserted subsystems (Němec 1988).

Every opportunity was used for spreading information about the IAMG and
about the possibility of visiting Příbram as the only relatively easily accessible
East–West meeting point. The success was partially achieved thanks to my ability
to communicate in different local languages.

I had also the possibility to officially invite several specialists to give individual
courses or lectures in Prague (Frits Agterberg, Tim Whitten, and Jan Harff).

In the early 1970s I was already a guest lecturer at the Charles University in
Prague, then in the late 80s at the Technical University of Košice and in 1991/92 at
the Comenius University in Bratislava, providing special courses about applying

Fig. 38.2 Václav Němec attending a session on mathematical geology at the International
Geological Congress in Moscow (1984). The neighbour of Václav Němec is the highly respected
French expert in geomorphology and petrography André Cailleux
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Fig. 38.3 Announcement of a presentation of Dr. Němec and of his following seminar in Italy
The Italian announcement signed by the Rector of the Polytechnic Institute in Torino Prof. Dr. Ing.
Lelio Stragiotti informs about a special conference on the application of mathematics to problems
of mineral deposits from the point of their exploration and mining exploitation followed by three
days of seminars about the computerized evaluation of reserves of deposits. Seminars were
reserved for teaching staff and students of the Institute but also accessible for specialists and
members of the Sub Alps Mining Association (May 1971, all events were held in the Italian
language)
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mathematical methods and models in the Earth sciences (including mining
processes).

In 1987 I defended my higher scientific degree C.Sc. (candidate in sciences as a
Ph.D. equivalent) at the Technical University in Košice (in the mining sciences).
The work, without any supervisor, was based on summarizing my development of
space and time models for optimizing the long-term mining processes at various
kinds of deposits.

38.6 Two Separate Silver Anniversary Meetings
of Mathematical Geologists in Prague (1993)

The idea to select Příbram 1993 for a broad international meeting in close
co-operation with the IAMG had been discussed originally in 1986 during my trip
to North America on the occasion of the Geochautauqua in Calgary and also when
visiting Dan Merriam in Wichita. These talks continued in Washington DC at the
International Geological Congress 1989, when the process of considerable change
in the Eastern block was already starting. A few months later the velvet revolution
in Czechoslovakia opened the door for fulfilling the idea in a more impressive way.
The IAMG President R. B. McCammon in particular was emphasising his vision of
a broad historical meeting of colleagues from both the West and East. All my
activities at that period were oriented toward this goal and all authorities responsible
for the Mining Příbram Symposium also agreed with such a vision.

With the help of my wife, Lidmila Němcová I arranged for contacts with the
centre Krystal in Prague—working for three main Prague universities and admin-
istrated by the University of Economics (where my wife was teaching). This centre
seemed to be the optimal place for holding the Silver Anniversary Meeting (tech-
nical equipment, advantage of relatively low prices in comparison with other
possible centres, hotel capacity, very good access from the airport as well as from
the down-town area, good personal contacts with administrators). We had also
found several other possibilities of accommodation (some of them in the neigh-
bourhood of Krystal)—at that time allowing people accommodation for only about
10 US$ per night. The members of the already aforementioned ad hoc committee
were able to verify the situation as well as the IAMG President R. McCammon who
paid his personal visit to Prague in November 1991. We also started to prepare a
special “silver” medal for the Silver Anniversary meeting: Antonín Ryčl, secretary
of the Příbram Symposium, introduced us to the famous Czech medallist Lumír
Šindelář who after several discussions designed both marvellous sides of it. In April
1992 John Davis and Jan Harff visited Prague which, in addition to our intensive
talks included a visit of the artist. We all expressed strong enthusiasm for the design
of the medal and only a few small corrections seemed to be necessary. John Davis
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prepared on his PC a Memorandum of Discussions and later I also received this
document from Dan Merriam with an accompanying letter giving full approval to
all the results achieved. It was possible to arrange for the final production of the
medal in the mint house of Kremnica and to continue with the standard preparations
for the Jubilee meeting.

In the meantime, I was also very pleased when the IAMG President Dick
McCammon announced to me by phone that I was elected as W. C. Krumbein
medallist for 1991. This highest IAMG award primarily reflected my long-term
service to the profession by organizing and keeping uninterrupted contact between
East–West between mathematical geologists through the gateway of Příbram.

Unfortunately, some misunderstandings arose: one of them was connected with
the side of the medal commemorating the liaison of Prague and Příbram with the
IAMG (use of some religious symbols from the Saint Hill—a famous pilgrim
locality at the border of Příbram). At that time the renewal of religious freedom was
highly appreciated in Czechoslovakia and in other countries of the Eastern bloc.
However, the American colleagues entertained different points of view for the
standards of international contacts. After my arrival at the IGC in Kyoto (1992) I
was asked to arrange with the artist to replace that side of the medal just by the
official IAMG logo. Another idea consisted in separating the IAMG Silver Jubilee
from the same jubilee of our meetings at Příbram. In my role as the IAMG officer I
continued my loyal service to the Association, arranging for contacts with the
Carolina agency as needed (enabling preparations for the IAMG Silver Anniver-
sary meeting in the Krystal centre). On the other hand, I also had to prepare the
Silver Anniversary meeting for the international section of the Mining Příbram
Symposium. The respective authorities approved the use of the Krystal centre for
that purpose for the days following the IAMG meeting. All potential participants of
the “Příbram” Symposium (about 400!) were informed in time by me about the
IAMG meeting as well. A special advertisement was published in the Czechoslovak
monthly geological magazine.

The final solution resulted in two separate Silver Anniversary meetings taking
place in Prague at the same Krystal centre. The IAMG sessions were visited by 152
(mostly Western) people, the Příbram sessions by 140 (mostly Eastern) people.
Only about 40 persons attended both meetings. Just one compromise had been
finally reached: a common half-a-day meeting accessible to both IAMG and Pří-
bram participants focussed on the history of mathematical geology.

In the end I think that the various misunderstandings and misconceptions con-
nected with the IAMG Silver Anniversary Meeting in Prague also had some pos-
itive consequences: more freedom was given to all local organizers of subsequent
annual IAMG conferences and the IAMG Councils in the years following until
1999 continued to provide some financial and moral support for the geomathe-
matical sessions organized by the Mining Příbram Symposium.
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38.7 From The Silver to the Golden IAMG Jubilee

In 1994 I received a diploma of “engineer” from the University of Economics in
Prague as restitution of the violation of my rights when I was not permitted to
complete my studies of economics in 1951 in spite of good results in my studies.

I continued to organize the international meetings as part of the Mining Příbram
Symposia in the years 1995, 1997 and 1999. These sessions were held again at the
Krystal centre in Prague without any help from any official congress agency, and
always with the moral and some financial support of the IAMG. Mike Hohn—the
IAMG President—honoured the session in 1995 by his presence and was able to
contact many Eastern participants. Financial support from the IAMG made it
possible to pay local expenses and registration fees for about 15 foreign colleagues
(for each session). We always had about 80–100 participants from abroad and the
scientific level of presentations was good. The new economic situation in the Czech
Republic led to decreasing participation from Czech colleagues who were repre-
sented by only a small minority.

Czech colleagues who helped me in my organization work until 1989 were not
available anymore (being completely absorbed by other activities, retired or
deceased). Western colleagues preferred to attend the official IAMG Annual
Conferences. For some Eastern colleagues (especially from the countries of the
former USSR) a new visa policy demanded lots of extra work for me as a volunteer
organizer of the Příbram meetings. Therefore, I decided to stop further activities for
the traditional session of “Mathematical Methods in Geology” organized 19 times
between 1968 and 1999. I only revived this old tradition in 2011 on the occasion of
the Mining Příbram Golden Jubilee Symposium, already reported in connection
with my new field of interest in the following text of this article. Very positive
remarks were published by Vera Pawlowsky in the Presidential Forum in the IAMG
Newsletter (December 2011).

38.8 The IAMG Experiences Applied to Develop a New
Discipline of Geoethics

With the inspiration and support of my wife Lidmila Němcová (expert on business
ethics) I have worked since 1991 to establish a new discipline in the family of earth
sciences—geoethics. Originally, the main reason was focussed on ethical problems
connected with the non-renewability of mineral resources.

The relatively good start of the new discipline and its rapid development became
possible thanks to our extensive contacts established especially in the former
Eastern bloc where many colleagues had first-hand knowledge of and personal
experience with the Mining Příbram Symposia and with their traditional sessions on
mathematical methods in geology.
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It is beyond the scope of this contribution to describe the proper development of
this new field of interest. On the other hand, I feel it as my duty to express thanks to
the IAMG representatives who supported these activities when the development
was not yet covered by another association (AGID since 2004).

38.9 Conclusion

I started my final preparation of this article during the days following the death of
the famous IAMG promoter Professor Dan Merriam as well as at the time of his
funeral service in Lawrence. I have never changed my very positive evaluation of
himself and of his merits for the IAMG as expressed in my Introduction to the
“Festschrift” (Němec 1993a). I was deeply moved when reading in the official
obituary about the Gold medal of the Mining Příbram Symposium 1970 which was
the first place among a lot of other awards for his activities. His personality and his
spirit will accompany the readers of this contribution at every page. It is impossible
for me to put across his image on this occasion to anybody of the many very happy,
pleasant and unforgettable events connected with Dan and other old fellows I had
the privilege to meet during my long service to the IAMG.

Let me emphasize my personal conviction that just a trans-generational soli-
darity is the “secret” explaining the otherwise unbelievable success of the
half-a-century IAMG history. A recipe for the further 50 years of the IAMG:
Enthusiasm of the young generation should be always accompanied by life expe-
riences and the know-how of the old pioneers.

Vivat IAMG!
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Chapter 39
Andrey Borisovich VISTELIUS

Stephen Henley

Abstract This chapter provides a glimpse of the legacy of Professor Andrey
Borisovich Vistelius, who served as the first President of the International Asso-
ciation for Mathematical Geoscientists (IAMG) during 1968–1972.

Professor Andrey Borisovich Vistelius (1915–1995) was arguably the founder of
the field of mathematical geology, and he was the first President of the International
Association for Mathematical Geology. As a 1982 recipient of the President’s Prize
(later renamed the Andrey Borisovich Vistelius Research Award) I consider it a
great privilege to have been invited to contribute this chapter in his honour. The
scientific heritage of Professor Vistelius is extremely rich. His active work on
fundamental and applied problems of geology, and especially mathematical geol-
ogy, continued to the last days of his life. He was responsible for more than 200
published works, each representing a significant contribution to science. His works
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cover a wide range of subjects, with contributions to the development of stratig-
raphy, mineralogy, petrography, petrology and geochemistry. The mathematical
approach to geoscientific research, pioneered by Vistelius, has gained recognition
worldwide. As applied in practice, these works also represent building blocks to
more effective methods of search for minerals. There have been a number of
publications about Vistelius, and in attempting to present a rounded view of his life
and works, this chapter quotes from them extensively: particularly Dvali et al.
(1970), Romanova and Sarmanov (1970), Dech and Glebovitsky (2000), Merriam
(2001), Henley (2003), Dech and Henley (2003), and Whitten (2004). I also wish to
acknowledge unpublished sources including Whitten, the late Merriam, Pshe-
nichny, and Dech.

39.1 Background

Andrey Borisovich Vistelius was born on 7th December 1915 into the family of a
Russian nobleman. His father Boris Vistelius was a lawyer in St. Petersburg before
the October Revolution of 1917. Boris’s father (Andrey Borisovich’s grandfather)
occupied a senior position in the civil service of the Russian Empire. The relatives
of Andrey’s mother (the Bogaevsky family) included some distinguished aca-
demics. Thus, his maternal grandfather was a professor at the Imperial St. Peters-
burg Institute of Technology, and his uncle was rector of the Imperial St. Petersburg
Academy of Art.

There is no published information on Vistelius’ early childhood and how he and
his family fared during the turbulent years of revolution and civil war. However, it
is known that in 1935, after the assassination of Sergei Kirov, the communist leader
of Leningrad (as St. Petersburg was renamed in 1924), Boris Vistelius with his wife
and son Andrey (at that time a student aged 20) were exiled from Leningrad like
many other intellectuals and noblemen. First the Vistelius family found themselves
in a remote village in middle Russia, though later the family was allowed to settle in
the city of Samara. Because of this forced deportation, A. B. Vistelius had to
interrupt his education at the Leningrad State University (which he had entered in
1933).

His studies were resumed only by good luck. Stalin issued an edict with the
slogan “sons are not responsible for their fathers’ deeds”, and Boris Vistelius sent a
letter to Stalin which clearly received a positive reply. This allowed Andrey Vis-
telius to resume his studies in Leningrad and in 1939 he graduated brilliantly from
the Department of Mineralogy which was headed at that time by Prof. S. M.
Kurbatov, a pupil of Academician V. I. Vernadsky, the great mineralogist and
geochemist who is considered one of the founders of geochemistry, biogeochem-
istry, and radiogeology.

A. B. Vistelius was a vivid and gifted personality. He had a very extensive
knowledge of history and literature (both Russian and foreign), appreciated poetry
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and read English authors in the original. But geology and mathematics were his
overwhelming passions. The research topics he investigated were always of great
practical importance and at the same time lent themselves to the innovative and
elegantly developed solutions which became a hallmark of Vistelius’ work.

He was very sensitive to any dishonesty in science—and especially to political
lies. He was known as a sharp-tongued man among his colleagues. Especially under
Stalin’s rule, officials did not like such people, and it was very hard for Andrey
Vistelius to further his career. His scientific honesty, frankness and his manner of
open and explicit expression of his viewpoint prevented his elevation to Aca-
demician of the Academy of Sciences, the highest scientific institution of the USSR.
For the political appointees who, as a rule, were heads of all scientific establish-
ments, he was an irritant, indeed an extreme nonconformist.

Thus, he never denied his aristocratic heritage, at a time when most descendants
of noblemen in Russia were trying to obscure their origins, some even changing
their surnames during the period of communist rule. In curricula vitae for job
applications he repeatedly wrote that he was a nobleman by birth. Of course, copies
of all these documents were compulsorily held by the KGB (Committee for State
Security of the USSR), and his noble descent was an embarrassment for the sci-
entific authorities, his employers.

During World War II, A. B. Vistelius was trapped in besieged Leningrad. He
underwent all the sufferings of Leningradians. He was not enlisted into the army
because of poor eyesight. However, despite the war, his studies continued, with
award of his ‘Candidacy’ (roughly equivalent to a western Ph.D.) in 1941, and
subsequently his Doctor of Science degree in 1948. After working as a senior
scientist in several state organisations, and serving as a director of several geo-
logical ‘expeditions’ (the organisations in the USSR, and later the Russian Feder-
ation, responsible for regional geological mapping), he became the director of the
newly created Laboratory of Mathematical Geology at the Steklov Mathematical
Institute of the USSR Academy of Sciences in Leningrad.

In 1968, Vistelius was instrumental, with others, in founding the International
Association for Mathematical Geology, and was elected its first president.

Although his circumstances meant that he was unable to participate in many of
IAMG’s activities, he continued work as a prolific researcher in Leningrad (sub-
sequently St. Petersburg) with extensive publications in both English and Russian.
Whitten (pers.comm.), during a visit to Leningrad in 1971, invited him to North-
western University (Illinois) which Andrey Vistelius was finally able to accept for
the Spring Quarter 1975, and his publication list reflects the results of research
projects which he was able to undertake in the US during his time there.

He continued to work in St. Petersburg during the 1970s and 1980s, with a
steady stream of research publications, in Russian and in English.

Professor Andrey Borisovich Vistelius died on 12 September, 1995. He con-
tinued to work until his last days, with lucidity and inventiveness of thought even in
spite of serious illness. In 1992, not long before his death, Kluwer Academic
Publishers printed an English translation of his life’s work “Principles of
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Mathematical Geology” (Vistelius 1992). This is a considerably reworked and
enlarged English edition of his Russian monograph with the same title (Vistelius
1980).

39.2 Scientific Achievements and Insights

The scientific heritage of Prof. A. B. Vistelius is extremely rich. His active work on
both fundamental and applied geology, and especially mathematical geology,
continued to his last days. He was responsible for more than 200 published works,
each of them presenting a very significant contribution to science. References to
many of these are supplied below.

Reflecting the breadth of his knowledge and fields of interest, his works cover a
wide range of subjects, dealing with research in the fields of stratigraphy, miner-
alogy, petrography, petrology and geochemistry. The application of mathematical
methods, pioneered by Prof. Vistelius, has gained recognition worldwide. As
applied in practice, these works represent a building block to more effective
methods of search for minerals.

From his earliest post-graduate studies, Vistelius carved out a career which
defined a whole new branch of science—mathematical geology.

The ideas of this newly created field of science were first vigorously supported
by Academician Vernadsky and then by Academician Kolmogorov. The high value
and prospects of Prof. Vistelius’s ideas were emphasized in a review of his works,
published by Nature, the international science journal, in 1947. Nevertheless, the
ideological regime that reigned in the USSR forced mathematical geology to follow
a most difficult path. At that time the Ideological Department of the Central
Committee of the Communist Party of the USSR was concerned with purging
various branches of science in any way connected with cybernetics, genetics and
other newly developed fields which they proclaimed as contradicting
Marxist-Leninist ideas. It is sufficient to remember the ill-starred session of the
Academy of Agriculture of the USSR in 1948, with Academician Lysenko in the
chair, whose actions contributed to the tragic death of Academician Vavilov, a
botanist and geneticist of international fame.

For minds narrowed by ideology, mathematical geology was nothing but another
suspicious field close to cybernetics. Prof. Vistelius and his group could not avoid
this political minefield. Scientific life in the country was totally governed by
communist administrators who, on the one hand, did not understand the ideas of
Vistelius and sought to deny him the opportunity to work, and on the other hand
wished to please higher party authorities. Prof. Vistelius with his unusual mathe-
matical ideas appeared an ideal target. But the ideological attacks on him, fortu-
nately, were not strong enough, and he was defending himself fiercely. This is why
the ideological persecution did not bring tragic results. Nevertheless, the damage to
his scientific career was considerable. He had to leave the All-Union Oil Geology
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Research Institute (VNIGRI, Leningrad) where he had been developing the concept
of phase differentiation of Paleozoic sedimentary carbonate rocks based on the
theory of random functions (nevertheless, brilliantly defended by him in the same
year, 1948, as his dissertation for the degree of Doctor of Science).

It is noteworthy that the academic summary “Introduction into the theory of
random stationary processes” (the basis for studying phase differentiation of sedi-
mentary carbonate rock), well-known today to mathematicians and specialists in
applied science, was first presented only in 1952 by mathematician A. M. Yaglom.
This shows that geological phenomena can become a principal material for creation
and development of formal mathematical schemes also, as was repeatedly stated by
Vistelius. At that period he closely collaborated with the distinguished mathe-
matician, Academician A. N. Kolmogorov, and worked with him on a very
important problem of sedimentology relating to the formation of sedimentary strata.
As a result, Kolmogorov wrote a paper “Solution of one problem of the theory of
probability, related to the problem of mechanism of bed formation” published in
“Doklady AN SSSR” (Kolmogorov 1949). The methods of solving this problem
were further discussed by M. F. Dacey in his paper “Models of bed formation”
(Dacey 1979). There are other examples of such development of formal mathe-
matical structures, for instance, mathematical investigations developing the for-
malisms of finite Markov chains and processes along with their geological
applications, by mathematicians B. P. Harlamov and A. V. Faas in close collabo-
ration with Vistelius.

In 1952 Prof. A. B. Vistelius was invited to join the Laboratory of Airborne
Methods of the Academy of Sciences of the USSR (AS USSR). There, with the
support of N. G. Kell, the director of the laboratory and a Corresponding Member
of the Academy, he organized a group to carry out investigations not just in the field
of airborne methods, but mainly in the field of mathematical geology. At this time
(before 1960) his group researched several approaches to the problem of compar-
ison of geological sections and reconstruction of the processes of bed formation
using the theory of random processes. A. B. Vistelius was actively involved in
development of methods of statistical evaluation and examination of hypotheses
able to provide the necessary validity for comparison of a model with geological
observations.

Despite the obvious importance of the results of Vistelius’ work, and the support
given by Academicians Kolmogorov, Korzhinsky, Belyankin, Linnik and later
Artsimovich, the academic Department for Geology and Geography was too closely
connected with the Ideological Department of the Central Committee of the
Communist Party and impeded the development of mathematical geology whenever
possible. In response, in 1961 the mathematical academicians transferred the group
headed by Prof. Vistelius to the Leningrad Branch of the Steklov Institute of
Mathematics (LOMI) of the USSR Academy of Sciences. The branch was headed
by Prof. Petroshen, a well-known mathematician who specialized in seismic fields,
and who encouraged the work of Vistelius’ group. There it was set up formally as
the Laboratory of Mathematical Geology. It is noteworthy that such a decision was
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an indication of the fact that the structure of the Academy of Sciences was like “a
state within a state”. Sometimes it was able to take actions which ran counter to the
wishes of the Central Committee of the Communist Party.

The Academy of Sciences was precisely the right environment for initiating
thorough field investigation, allowing disinterested scientific research, to develop
the fundamental principles of mathematical geology. A. B. Vistelius, with broad
experience in different fields of geology, developed ideas for the introduction of
mathematics into geology systematically and with clarity of purpose.

By the end of the 1970s he demonstrated the advantages of using the methods of
mathematical geology that he had developed to a range of questions in mineralogy,
petrography, lithology, petrology and more general problems of regional geology in
the fields of paleogeography, lithostratigraphy, and geochemistry. The results of his
studies showed that mathematical methods were not to be confined to summari-
sation of geological information, or to identification of geological events and
phenomena on the basis of numerical calculations, but could provide a means of
expressing geological concepts in mathematical language. The line of inquiry that
was defended by A. B. Vistelius and determined by that time as “mathematical
geology” leads geology to a higher level, demanding more concrete and accurate
notions about objects or processes under consideration than is possible without the
application of mathematics.

His group’s scientific work in LOMI, an outstanding internationally recognised
mathematical research centre, however, entailed some specific problems. The mere
principles of solving tasks of mathematical geology did not raise any objection in
the institute, but the choice of propositions for each geological mathematical model
remained hard to understand for mathematicians, including the hierarchy of the
institute. The institute’s administration consisted of theoretical mathematicians who
needed only a sheet of paper and a pen for their work. It was hard to persuade them
that geology needs field work and an experimental basis to obtain the data neces-
sary to construct and verify models.

This is why Prof. Vistelius had to look for another more suitable host organi-
sation for the Laboratory of Mathematical Geology. This difficulty, as well as the
importance of mathematical geology, were met with understanding by A. P. Alek-
sandrov, the President of USSR Academy of Sciences, in 1986, and in the fol-
lowing year he moved the Laboratory of Mathematical Geology from the
Department of Mathematics to the Department of Geology, Geochemistry, Geo-
physics and Mining of the Academy by attaching it to the Institute of Precambrian
Geology and Geochronology (IGGD, AS USSR).

Then, however, it became immediately apparent that a traditional geologist and a
mathematical geologist spoke different languages and the majority of geologists did
not understand the mathematical approach to modelling geological phenomena
despite the fact that mathematical geology had existed for more than forty years.

It seemed that transformation of the Laboratory of Mathematical Geology into an
institute was overdue. The necessity of such a decision was repeatedly stressed by a
number of senior scientists such as Academicians Sokolov and Laverov (who was
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an acting Vice-President of the Russian Academy of Sciences). But this idea was
achieved only in 1991 when the Russian Academy of Natural Sciences (RANS)
was founded. Prof. Andrey Vistelius was named an Honorary Member of this
Academy at the first elections and charged with organization of an Institute of
Mathematical Geology.

Vistelius’ Laboratory of Mathematical Geology together with the Laboratory of
Petrophysics and Mathematical Geology of the Earth’s Crust Institute of St.
Petersburg State University, constituted the basis of the institute. However, RANS
is not a government institution and it had no support from the federal budget. For
this reason RANS could not supply the Institute of Mathematical Geology with
appropriate financing. The Ministry of Science and Technology of the Russian
Federation agreed to subsidize the institute after difficult negotiations. The institute,
for its part, took on large obligations in solving some practical geological problems
by means of mathematical geology.

Dech and Glebovitsky (2000) give a detailed account of the many fields in which
the work of Vistelius advanced geological knowledge through his deep under-
standing of underlying geological processes and innovative application of mathe-
matical methods.

To understand fully Vistelius’ immense contribution to the geosciences, it is
necessary first to identify the different and complementary approaches to the sub-
ject. The two principal approaches can be summarised thus:

(1) development of genetic geological models and quantitative hypothesis testing
of them: this is very close to standard scientific method, but because of the
complexity of the subject, may not always be practicable

(2) the use of data to develop a numerical model which will often (indeed, usually)
have no genetic significance: this is the statistical or data processing approach,
where the emphasis is on finding patterns or structure in the data rather than
understanding the underlying geological processes

Andrey Borisovich Vistelius, with a firm grounding in scientific method, was a
strong advocate for genetic models and hypothesis testing. Not only was this the-
oretically more fulfilling, but also it did not generally require the massive computer
power that was not available to him in the Soviet Union.

Vistelius’ beliefs as expressed in 1968, were confirmed recently in a brief his-
torical review (Dech and Henley 2003, p 368) of his ‘scientific heritage’, where it
was noted that he

. . . supposed, and for good reason, that if a science does not use mathematical modelling in
constructing its conclusions, “then it can be considered as belonging to the pre-Newtonian
period, in other words such a science lags behind the present-day level of research by
approximately 300 years” (Vistelius 1991). He understands that the new scientific para-
digm of conceptual modelling of geological processes and objects will not be adopted by
conservative geologists, the majority of whom continue to use old methods. And he writes
that such a situation must be essentially changed, as to enter the twenty-first century with
such a considerable time-delay is simply dangerous, not least for economic development.
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39.3 The International Association for Mathematical
Geology

Vistelius’ participation in the IGC in Prague in 1968 was fortuitous from several
standpoints. Prior to the Congress, Reyment had been the first Visiting Research
Scientist at the Kansas Geological Survey (1966–67) where the idea of an Inter-
national Association for Mathematical Geology (IAMG) was conceived. The first
hint of mathematical geology as a subject in its own right had actually come to
Reyment’s attention in the late 1940s from some of Vistelius’ work. Reyment then
visited Vistelius in Leningrad in the early 1960s while in the USSR as a research
associate at Moscow University on exchange from the University of Stockholm.
From his contact with Vistelius and his experience in Kansas, Reyment had the idea
of sending a questionnaire to possible interested participants in such an organisa-
tion; he received an overwhelming positive response, and an especially enthusiastic
one from Vistelius. Later, at an ISI (International Statistical Institute) meeting in
Australia, Reyment conferred with a group of international scientists, including
Chester Bliss, founder of the journal Geometrics, and the IAMG concept was
nurtured (Reyment pers. comm., 1993). On April 9th, 1968, Reyment asked for
approval of a proposed set of statutes in a letter “To all Committee members”: “(1) I
am in agreement with the draft statutes of Professor Whitten, amended by Prof.
Vistelius and Dr. Marsal and including suggestions from Dr. Agterberg, Mr.
Schlegel, and Professor van Leckwijk,…”. The founding IAMG committee adopted
these statutes, and the IAMG then applied for affiliation with the International
Union of Geological Sciences (IUGS) and the International Statistical Institute
(ISI). The proposal for affiliation with the IUGS was supported by S. Van der
Heide, Secretary General of IUGS, and accepted at the Prague meeting as a result of
prodding and cajoling by Reyment, and thus the IAMG was officially born.

Vistelius had served on an ad hoc exploratory committee and then was member
of the Organizing Committee and attended, along with 19 other members, the first
meeting of the committee in Prague. Eight of the attendees were from the Eastern
Bloc; their attendance in Prague was allowed as being relatively ‘safe.’ It was the
understanding of the other attendees that the ‘Warsaw Pact’ attendees were there on
military visas (for reasons which were obvious later). The events during the Con-
gress substantiated that understanding. Vistelius’ participation in the IGC gave him
visibility to Western scientists and those contacts (with Frits Agterberg, John
Harbaugh, Tim Whitten, and Dan Merriam) were invaluable to him later.

Reyment had prepared a slate of officers to be ratified by the representatives, and
it was no surprise he nominated Vistelius for president. Reyment was aware of and
impressed by Vistelius’ work (through his Russian publications and personal
contact). He was an obvious choice for the position with Reyment’s backing, and

800 S. Henley



because Bill Krumbein, another possible choice for the office, was not interested,
Vistelius was in but, Krumbein was elected the first past president! Reyment was
elected Secretary General.

There was considerable discussion about the designation and focus for the new
organisation. Proposed for the name of the Association’s newly created journal
were such adjectives as geometrics, geomathematics, mathematical geology,
numerical, quantitative, etc. Vistelius championed ‘mathematical geology’ and, for
a variety of reasons, that name was agreed on. The new Journal of Mathematical
Geology was contracted to be published by Plenum Press. In 1969 in the first issue
of the fledgling journal, Vistelius, as President of IAMG, wrote a Preface on the
‘mathematization of geology’ and contributed a short note.

At the inaugural meeting of IAMG, Andrey Vistelius championed the concept
that Mathematical Geology is a separate branch of science (like Mathematical
Physics) based on testing geological hypotheses mathematically, and that this sci-
ence should be accepted as the primary focus of IAMG. He suggested it is not
particularly important or interesting merely to manipulate geological data statisti-
cally. These had been his contentions for many years, though few of those present
in 1968 appreciated the fact—and their primary objective was solely to initiate
IAMG. It was not until several years later that their full significance and the
historical importance of his earlier publications became clear to those outside the
Soviet Union. Although it can be argued that Vistelius was largely correct, process
modelling combined with objective hypothesis testing has received little attention
among IAMG members over the ensuing years (Whitten 2003).

Because of the restrictions on travel and communication placed on Vistelius,
most of the IAMG work load fell on Reyment as Secretary General and Merriam as
editor of the new journal. Vistelius’ direct contribution to the IAMG was minimal
through no fault of his own, and later he served a 4-year stint on the Council
helping prepare the IAMG sessions at the IGC in Moscow. Reyment succeeded
Vistelius as president and by that time in 1972 the organisation was firmly
established.

Vistelius attended few ‘official’ IAMG meetings. Because of his circumstances,
it was difficult for him to make much direct contribution, except in name, to the
activities of IAMG. Vistelius’ unique and important scientific contributions, how-
ever, were recognized by the IAMG by awarding him the Krumbein Medal (the
IAMG’s highest honour) in 1980 (unfortunately he was unable to attend the IGC in
Paris and collect his medal personally) and naming one of their awards in his
honour. After IAMG created the Krumbein Medal in 1976, Merriam proposed
another annual award for an outstanding young scientist, to be named in honour of
Vistelius. The proposal was rejected by the Russian authorities on the grounds that
such an honour could not be conferred upon a living person. Thus, the award was
designated the President’s Award in 1980 and subsequently changed to the Vis-
telius Award, as originally intended, after his death in 1995.
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39.4 The “Father of Mathematical Geology”?

Andrey Vistelius has often been referred to as the “father of mathematical geology”.
He was indeed the first president of IAMG, but there are many other pioneers in the
field who could also be acknowledged by the title of “father” (including among
others Krumbein, Griffiths, Matheron, Chayes, Krige, and Schwarzacher). Merriam
(2001) names W. C. Krumbein as the “father of computer geology”, but of course
this is not quite the same thing. Vistelius, himself, as noted above, was ambivalent
towards the use of computers.

The history of development of mathematical geology [in the broad sense] is
essentially two stories (East and West) with little connection or interaction until
near the end of the 20th Century. The two schools developed independently and
partly in parallel in response to changes in the science. The quantification of
geology began in earnest from modest beginnings of a few quantitatively oriented
researchers, such as Vistelius, Krumbein, and Griffiths among others.

Vistelius’ death in 1995 (Krumbein had died in 1979 and Griffiths in 1992),
ended an extraordinary era in the growth of quantitative (mathematical) geology.
Along with the rapid development of quantitative techniques and their adaptation to
computers, these advances spread throughout the science and allowed rapid strides
and changes to be made in the earth sciences.

Never before in the past, and probably never again in the future, will such rapid
progress be made in such a short time, fostered by such a small group of dedicated,
forwarding-thinking geo-giants.

39.5 Legacy

It is traditional to discuss the legacy of outgoing political leaders, to assess their
place in history and to estimate the quality and quantity of their achievements in the
light of effects on subsequent developments. Similar discussions take place over the
legacy of our foremost scientists, among whose number Andrey Vistelius must
surely be counted.

His rigorous scientific training led him to develop his ideas of applying math-
ematical methods in modelling geological processes, to allow statistical testing of
hypotheses against real data. This contrasted starkly with the approach of many
western geoscientists, of using data processing capabilities of computers to fit the
data using standardised methods. The latter approach allowed the identification of
patterns in data, but rarely provided scientific insight into the underlying geological
processes. In the English-language literature, perhaps the outstanding example of
Vistelius’ approach is the book Computer Simulation in Geology by Harbaugh and
Bonham-Carter (1970) which identifies a wide range of geological process models
which can be defined mathematically and implemented in computer code.
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The process modelling approach pioneered by Vistelius is now making serious
contributions to the geosciences. For example, in the work of Alison Ord, Bruce
Hobbs, and colleagues in Australia and elsewhere, mathematical models from a
number of hitherto separate fields have been combined into complex models with
their recognition that the interactions of rock deformation, fluid flow, thermal
transport, and chemical reaction are integral to geology. Prediction requires quan-
tification of the processes and their interactions. What is observed is demonstrably
multifractal so that we must explore and apply all that nonlinear dynamics has to
offer (Ord and Henley 1997; Ord et al. 2002, 2007, 2012, 2016; Hobbs et al. 2010;
Hobbs and Ord 2015, 2016).

The other approach is best typified by the field that is generally known as
“geostatistics”. Originating in the work of Matheron and many others, this uses
purely mathematical concepts to fit models to the data. These models bear little or
no relation to underlying geological processes, and the results are purely descrip-
tive. In attempts to improve the quality of fit to the observed data sets, over the past
40 years progressively more complex mathematics has been developed, using
assumptions about the statistical properties of data sets which have steadily less
justification in the underlying geological processes. The history of development of
geostatistics is reminiscent of the iterative refinement of the Ptolemaic astronomical
model when circular planetary orbits were found to be incompatible with obser-
vations, and epicycles were added in an attempt to improve the fit. The problem, of
course, was that the model was itself a mathematical fiction bearing no relation to
the laws underlying planetary motions. Similarly, geostatistics is purely descriptive
and bears no relationship to actual geological processes.

While geostatistics itself continues to be widely used, the more scientific
approach espoused by Vistelius remains very much alive. Even though many of its
practitioners are unaware of the debt of gratitude they owe to this pioneer, their
work nonetheless is tribute enough.

A special issue of the Journal of Mathematical Geology (volume 35, number 4)
dedicated to the memory of Vistelius was published in 2003 and contains papers by
many of his former colleagues, as well as one previously unpublished paper by
Vistelius himself (Dech et al. 2003; Vistelius and Pavlov 2003; Azimov and
Shtukenberg 2003; Harlamov 2003; Voytekhovsky and Fishman 2003; Podkovyrov
et al. 2003; Kotov 2003). The breadth of geoscientific subject matter and mathe-
matical approaches shown by this collection of papers is ample illustration of the
scientific legacy of Andrey Borisovich Vistelius.
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Chapter 40
Fifty Years’ Experience with Hidden
Errors in Applying Classical
Mathematical Geology

Hannes Thiergärtner

Abstract Classical mathematical geology is a branch of mathematical geosciences
in which mathematical methods and models—not specifically developed for and not
exclusive to specific geosciences—are applied to describe, to model and to analyse
quantitatively geoscientific subjects and processes. It was the dominant approach in
the 1960s to 1980s and it is still used today to solve numerous, mostly limited and
less complex problems. The methods have been implemented in the form of
algorithms in commercial software packages that are widely used in geological
practice. Their application frequently assumes specific pre-conditions, which are
often difficult, if not impossible, to verify. This situation can result in significantly
spurious output and errors that are often not recognised (hidden errors). In this
paper five case studies are used to demonstrate these errors. In particular, they
demonstrate that small mistakes can lead to serious, but often unrecognised, mis-
interpretations. The main conclusion is that there is a need to improve education
and training in classical mathematical geology especially for engineering sections
of consulting firms, governmental agencies and individual consultants.

Keywords Mathematical geology ⋅ Application ⋅ Case studies
Error ⋅ History of the IAMG

40.1 Introduction and Definitions

The application of mathematical formulae and methods to solve geological prob-
lems started decades before the International Association for Mathematical Geo-
sciences (IAMG) was founded. Initially, simple methods were used to compute
derived parameters such as petrochemical mineral norms or grain size distributions
and grain shapes. W. C. Krumbein in Chicago and A. B. Vistelius in the former
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Leningrad (now again St. Petersburg) were the first to introduce probability-based
statistical methods into geoscientific applications. In the 1960s sophisticated
mathematical methods were increasingly developed and applied simultaneously
with the development of electronic data processing. Numerous monographs were
published to introduce these new tools to geologists (Table 40.1). Step by step, a
new sub-discipline—termed “mathematical geology”—was established. It was
within this context that the IAMG was established as an association within the
International Union of Geosciences at the International Geological Congress in
Prague 1968.

The majority of the methods introduced into the geosciences between the 1960s
and 1980s were based on probability-statistical or heuristic models. Due to their
high level of abstraction, these methods are equally applicable to the solution of
analogous problems in other natural or social sciences provided the required data
are available. Table 40.2 summarises some essential methods belonging to this
group. For the purposes of this paper, these methods and models are classified as
classical mathematical geology. (The term “geology” has recently been replaced by
“geosciences” but the latter includes the former).

Classical mathematical geology applies mathematical methods and models,
which comprise procedures that are not developed specifically for geosciences and
which do not bear any direct relation to geological subjects or geological processes.
They are extensively implemented in software packages such as Statistical Package
for the Social Sciences (SPSS), and have been described in detail in the literature
(e.g., Bühl 2016).

Over recent decades the development of mathematical geosciences has resulted
in many new advanced models. These models have mostly been developed for
specific geoscience applications such as basin modelling, groundwater flow models,
contaminant transport models, heat flow models, and so they differ from the clas-
sical mathematical geology. This contribution does not cover these specific methods
and models.

Classical mathematical geology models retain their applicability and practical
advantages. They are helpful tools when other (specific) approaches are not
available, when the development of a new model is disproportionately, when the
geological problem does not require specific solutions or when limited questions are
to be answered on the basis of few data. To date, this area of mathematical geology
has not been replaced by later developments and it remains a useful component of
the complete set of methodologies.

40.2 Hidden Errors and Case Study Examples

In the course of the past 50 years many correct, useful results have been generated
by the application of classical mathematical geology. Whilst the application of
classical mathematical geology does not necessarily result in incorrect or inaccurate
solutions of geoscientific problems, it does have the potential to do so. Incorrect and
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Table 40.1 Early monographs of mathematical geology

Author(s) Year Monograph Field of
application

Model(s)

Krige DG 1962 Statistical Applications in Mine
Valuation. Journ. Inst. Mine
Surveyors South Africa, vol 12
no 2

South-African
gold deposits

Geostatistics

Miller RL,
Kahn JS

1962 Statistical analysis in the
geological sciences. John Wiley
& Sons, New York

Geology Mathematical statistics

Matheron G 1962 Traité de géostatistique
appliquée: tome 1. Éditions
Technip, Paris

Mineral
deposits

Regionalized variables

Matheron G 1963 Traité de géostatistique
appliquée: tome 2 – Le Krigeage.
Éditions Technip, Paris

Mineral
deposits

Regionalized variables
(kriging)

Whitten EHT 1963 A surface-fitting program suitable
for testing geological models
which involve areally distributed
data. Tech. Rept. of ONR task no
389-135, Evanston (Ill.), no 2

Mapping Trend analysis

Whitten EHT 1963 Application of quantitative
methods in the geochemical study
of granite massifs. Royal Soc.
Canada Spec. Publ. 6:76–123

Geochemistry,
igneous rock
geology

Mathematical statistics

Formery P 1964 Course de géostatistique. École
Polytechnique, Univ. de Montréal

Geosciences Geostatistics

Poдиoнoв ДA
[Rodionov DA]

1964 Funkcii raspredeleniya
soderzhanii elementov i
mineralov v izverzhennykh
gornyx porodov [Distribution
functions of the element and
mineral content in eruptive
rocks]. Izd. Nedra, Moskva

Geochemistry
and mineralogy
of eruptive
rocks

Mathematical statistics
(distribution functions)

Krumbein WC,
Graybill FA

1965 An introduction to statistical
models in geology. McGraw-Hill
Book Co., New York

Geology Modelling,
mathematical statistics,
mapping

Matheron G 1965 Thèses a la Faculté des Sciences
de l’Université de Paris – Les
Variables Régionalisées et Leur
Estimation. Masson et Cie

Éditeurs, Paris

Mathematical
basics

Regionalized variables

Шapaпoв ИП
[Šarapov IP]

1965 Primenenie matematicheskoy
statistiki v geologii [Application
of mathematical statistics in
geology]. Izd. Nedra, Moskva

Geology,
geochemistry

Mathematical statistics

Agterberg FP 1966 Markov schemes for multivariate
well data. Miner. Industr.
Experim. Station, Pennsylvania
State Univ, Spec. Publ. 2–65

Drill hole data Semi-Markov
processes

Smith FG 1966 Geological data processing using
FORTRAN IV. Harper & Row,
New York

Geosciences FORTRAN procedures
and application

Griffiths JC 1967 Sedimentology Sampling of
sedimentary rock

(continued)
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Table 40.1 (continued)

Author(s) Year Monograph Field of
application

Model(s)

Scientific Method in the Analysis
of Sediments. McGraw-Hill
Book Co., New York

Gy P 1967 L’Échantillonnage des Minerais
en Vrac: Tome 1 – Théorie
Générale. Mémoires Bureau
Recherche Géologiques et
Minières, no 56, Édition B.R.G.
M, Paris

Ore sampling Probability theory of
sampling and
minimization of
estimation errors

Serra J 1967 Échantillonnage et estimation
locale de phénomènes de
transition minière. Thèse de
docteur, Fontainebleau

Sampling in
mining

Geostatistics

Vistelius AB 1967 Studies in Mathematical
Geology. Consultants Bureau,
New York

Genesis of
granites;
sedimentary
sequences

Semi-Markov
processes

Marsal D 1967 Statistische Methoden für
Erdwissenschaftler.
E. Schweizerbart’sche
Verlagsbuchhandlung, Stuttgart

Geology Mathematical statistics
and application

Thiergärtner H 1968 Grundprobleme der statistischen
Behandlung geochemischer
Daten. Freiberger Forschungsh.
vol C237, Leipzig

Geochemistry Mathematical statistics
and application

Harbaugh JW,
Merriam DF

1968 Computer Applications in
Stratigraphic Analysis. John
Wiley & Sons Inc., New York

Geology of
sedimentary
rocks

Mapping,
trend-analysis,
classification,
simulation

Whitten EHT 1968 FORTRAN IV CDC 6400
Computer program to analyze
subsurface fold geometry. Kansas
Geol. Surv. Computer Contrib.,
vol 25

Structure
geology

FORTRAN procedures

Poдиoнoв ДA
[Rodionov DA]

1968 Statisticheskie metody
razgranicheniya geologicheskikh
obyektov po kompleksu
priznakov [Statistical methods for
classification of geological
objects based on a complex of
attributes]. Izd. Nedra, Moskva

Bore hole data Innovative approach of
multivariate
classification

Krumbein WC,
Kauffman ME,
McCammon RB

1969 Models in Geological Processes.
An Introduction to Mathematical
Geology. Amer. Geological Inst.,
Washington D.C.

Geology Univariate und
multivariate
mathematical statistics

Бондаренко В.Н.
[Bondarenko VN]

1970 Statisticheskie resheniya
nekotorykh zadach geologii
[Statistical solution of some
geological problems]. Izd. Nedra,
Moskva

Geochemistry Mathematical statistics

Harbaugh JW,
Bonham-Carter G

1970 Computer Simulation in Geology.
Wiley-Interscience Publishers,
New York

Geology Computer-aided
Modelling of

(continued)
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Table 40.1 (continued)

Author(s) Year Monograph Field of
application

Model(s)

geological processes,
FORTRAN procedures

Reyment RA 1971 Introduction to Quantitative
Paleoecology. Elsevier Publ.
Amsterdam

Paleontology Mathematical statistics

Blackith RE,
Reyment RA

1971 Multivariate Morphometrics, 1st
ed. Academic press Inc., London

Paleontology Biometrics

Aбpaмoвич, ИИ,
Гpyзa BB
[Abramovič II,
Gruza VV]

1972 Facialno-formacionnyj analiz
magmaticheskikh kompleksov
[Facies analysis of magmatic rock
complexes]. Izd. Nedra,
Leningrad

Petrochemistry
of eruptive
rocks

Mathematical statistics

Davis JC 1973 Statistics and Data Analysis in
Geology. John Wiley & Sons,
New York

Geology Statistical techniques
and application

Masset J 1973 Un système de visualisation des
variations géographiques d’un
paramètre géologique. Sciences
de la Terre, sér. Informat. Géol.,
no 1

Geochemistry,
stereography

Computer-aided
mapping

Agterberg FP 1974 Geomathematics. Elsevier Publ.,
Amsterdam

Geology Basics of mathematical
geology

Davis JC,
McCullagh MJ
[eds.]

1975 Display and Analysis of Spatial
Data. John Wiley–Blackwell,
London/New York

Point, line,
polygon and
field
information

Sampling, contouring,
software, relief
modelling,
interpolation

Schwarzacher W 1975 Sedimentation models and
quantitative stratigraphy. Elsevier
Publ., Amsterdam

Sedimentary
rocks

Stochastic models,
semi-Markov process,
time series, spectral
analysis

Bиcтeлиyc AБ
[Vistelius AB]

1980 Osnovy matematiheskoj geologii
[Basics of mathematical
geology]. Izd. Nauka, Leningrad

Genesis of
granites;
sedimentary
sequences

Semi-Markov
processes; theoretical
foundation
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frequently undetected errors can occur if the user is not sufficiently experienced
with mathematical methods, with data processing problems or with the application
of computer software. These problems occur mostly in geoscientific practice,
especially when time and/or finance are restricted and the work is subject to
pressure to produce positive results.

Table 40.2 Selected models of classical mathematical geology

Group of methods Scope

Frequency distribution and
descriptive statistics

Statistical description of random samples and estimation of
expected values, deviation

Statistical tests Analysis of the probability or significance of empirical values
with respect to probability-theoretical functions or
parameters; comparison between statistical parameter
estimations of random samples

Correlation and regression
analysis

Analysis of existence and kind of mutual association between
attributes if they do not form a closed system

Cluster analysis R-mode Non-supervised heuristic classification of variables
describing geological objects and visualization of their
mutual associations

Factor and principal
component analysis

Reduction of the multivariate parameter space

Non linear mapping Visualization of multivariate data structures in 2D plots
Analysis of variance Analysis of the influence of extern factors onto measured

values
Discriminant analysis Supervised multivariate-statistical classification of geological

objects and assignment of objects to given classes
Cluster analysis Q-mode Non-supervised heuristic classification of multivariate

described objects and visualization of their mutual
associations

Octree modelling Partition a 3D space into homogeneous octants regarding
multivariate attributes

Markov chain analysis Stochastic modelling of a sequence of (verbal) described
multivariate observations and prediction of the probability to
occur at not observed sectors

Time series analysis Analysis of existence and kind of temporal or spatial trends
in temporal or linear ordered sequences of measured values
and forecasting

Trend surface analysis Modelling of trends and anomalies in mapped data and
interpolation

Spatial trend analysis Modelling of trends and anomalies in 3D distributed
measurements and interpolation

Geostatistical analysis Modelling of main features of 1D, 2D, or 3D distributed data
with minimized estimation error; interpolation and
forecasting

Structure equation analysis Multivariate-statistical modelling to estimate and to test
correlative associations between dependent and independent
observed and not observed variables
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Spurious results or undetected errors result from apparently negligible inaccu-
racies such as unavailable or insufficient knowledge of data accuracy and precision,
the uncritical use of values below the threshold of measurement, merging of dif-
ferent input data types, statistical parameter estimations without preliminary tests of
the underlying type of frequency distribution, the restriction of correlation analyses
to linear models, an unsuitable selection of non-supervised classification models
and strategies, inclusion of non-informative attribute sets into the data file, missing
information about the significance of statistical results, the acceptance of mean-
ingless correlations, uncritical spatial or temporal extrapolation of trend-analytical
results.

The application of classical mathematical geology methods and models requires
frequent consideration of specific (mathematical) conditions such as the existence
of a certain probability distribution, the independence of variables, a minimum
number of observations, the proper treatment of missing values, a suitable choice of
cluster model and strategy. Usually, long-term experience of the correct interpre-
tation of results is necessary to avoid errors. All these fundamental conditions
appear to be rarely included in training programmes and apparently insufficiently
taught in courses. Commercial software is easy to handle but no signal alerts the
user to the absence of essential pre-conditions and consequent occurrence of an
inherent error in the results. Must computer-generated results be accepted as
unbiased and reliable simply because they are produced by electronic equipment?
Five selected cases derived from earlier projects will be used to demonstrate the
problem in detail.

40.2.1 Bathymetric Map of the Azores

The archipelago of the Azores (Ilhas dos Açores) consists of nine islands and a reef
area in the North Atlantic Ocean and is the result of partially active volcanoes. It
covers an ocean surface between 31°30′ and 24°30′ W and 36°30′ and 40°00′ N
(Fig. 40.1).

The Azores are situated on the Azores plateau, an area of thickened oceanic crust
due to submarine volcanism caused by a hot spot at the Azores triple junction. The
NE-SW striking Mid-Atlantic Ridge crosses the plateau between the Graciosa
Island and Terceira and continues over São Jorge and Pico. Along this tectonic
element, the North American plate and the Eurasian Plate drift to the west and the
east respectively. The Corvo and the Flores islands belong to the American plate.
The NW-SE striking Terceira rift runs from the island Graciosa over the São Miguel
island to the southeast. This is the tectonic line along which the African plate is
subducting under the Eurasian plate. The volcanic and seismic activity started in the
Miocene epoch and the formation of the islands continued during the Neogene
period.

This entire part of the Atlantic Ocean is of great geological and economic
interest and is the target of numerous geoscientific expeditions. The sea floor
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consists of basaltic rock and young volcanic glasses covered by abyssal clay and
biogenous and clastic sediments (cf. Hübscher 2015). The close proximity to the
crustal magmatic events causes the formation of important raw materials such as
manganese nodules.

A fundamental component of marine survey expeditions is to make depth
soundings of the locality. The depths measured in the early 1980s were interpolated
by specialists at a computer centre to construct bathymetric contour lines. They
used kriging interpolation, the results of which are shown in Fig. 40.2. These
results do not reflect the expected predominant NW-SE striking structures described

Fig. 40.1 The Azores. Area of investigation

Fig. 40.2 The Azores. Bathymetric contour lines based on inaccurate input data
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above and give a distorted representation of the main morphological structures.
Investigation showed that a suitable mathematical model was applied but the wrong
input data were used: geodetic coordinates were used but the minutes were recorded
as decimal places. This error was not detected in the computer centre. The result
obtained after correcting the data is shown in Fig. 40.3 in which the map more
closely reflects the main morphological structures of the investigated area (Open-
SeaMap 2016).

40.2.2 Granulometric Analysis of Coastal Sediments
of the Southern Baltic Sea

The Bay of Greifswald (Greifswalder Bodden) in Germany occupies the
south-central part of the Baltic Sea. Holocene sand, gravel and boulder cover late
Pleistocene till and basin sand. The recent material originated from an active cliff
and from an abrasion platform (for details, see Niedermeyer et al. 2011). The fine,
medium- and coarse-grained sediments show a lithological differentiation more or
less parallel to the erosional shore line. The grain size is specified using the
European standard DIN EN ISO 14688-1 (2013).

Knowledge of the characteristics of the sediment is important for designing
measures to protect the coast and is necessary if the raw material is to be exploited
for building purposes (cf. Börner 2011). One of the relevant parameters is the grain
size. A principal component analysis was conducted to reduce the dimensions, or
the number of manifest attributes, to a smaller number of latent components which

Fig. 40.3 The Azores. Bathymetric contour lines based on corrected input data
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largely explain the variance of the input data, and to avoid an undesirable
multi-collinearity, i.e. to obtain a set of essential information (Fig. 40.4). A cluster
(R) analysis should explain the relationships between the original grain size classes
(Fig. 40.5). The result reflects only a trivial fact: the coastal sediments are mainly
composed of silt and fine sand if they are not coarse-grained, and vice versa.

Fig. 40.4 Baltic Sea. Clastic sediments of the south coast. Principal component analysis of grain
size data

Fig. 40.5 Baltic Sea. Clastic
sediments of the south coast.
Cluster (R) analysis of grain
size data
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The input information scaled in mass% was correctly recorded. However, the
fact that the sum of all sieve fractions amounts to the constant sum of nearly 100%
was ignored. This closed system means that mathematical results based on corre-
lation among the attributes must be faulty. Chayes (1960a, b, 1971) and Vistelius
and Sarmanov (1961) showed that the so-called percent correlation leads to
unfeasible results. The modern approach to processing data that form a closed
system was developed only later and therefore could not be applied (e.g.,
Pawlowsky-Glahn 2005; Pawlowsky-Glahn and Buccianti 2011).

40.2.3 Areal Distribution of Polycyclic Aromatics
in an Abandoned Industrial Site

Until its abandonment an extensive industrial site in Germany was used for machine
manufacture. During later assessment for redevelopment the site was investigated for
possible ecological contamination. The disused, unsealed enterprise is located on
near-surface Holocene sand and gravel. The consultants sampled and analysed
twenty-five soil specimens and detected an appreciable concentration of polycyclic
aromatic hydrocarbons (PAHs) at two locations. PAHs belong to a group of extre-
mely carcinogenic substances. The 16 most important and persistent constituents are
on the National Priority Pollutant List of the US-EPA. An occurrence of these
hydrocarbons in subsoil typically requires appropriate remediation measures.

A map of the distribution of the pollutant within the site was constructed by
means of kriging (Fig. 40.6) and an expensive soil excavation at well no. T20 over

Fig. 40.6 Contaminated industrial site. Contour map of the apparent distribution of polycyclic
aromatics in subsoil
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75 m2 and at well no. T05 over 46 m2 was proposed. The application of this
geostatistical model to create a contour map is a widely used technique in mathe-
matical geosciences. Similar cases have been repeatedly observed. Less well-known
is that the analysed attributes must be interpolable between adjacent points.

PAHs include a wide spectrum of organic substances with relatively low solu-
bility in water, e.g. naphthalene (32 mg l−1), acenaphthylene (3.4 mg l−1), ace-
naphthene (4 mg l−1), fluorine (1.8 mg l−1) and pyrene (0.134 mg l−1). Their
solubility in water and tendency to migrate into aquifers rises if solvents such as
mineral oil, halogenated organic compounds or phenols are present. PAHs will be
generated during coking processes or coal-gas generation but they never occur as
waste products of machine manufacturing. A study by a project controller showed
that a gas generation facility had been operational on the site until 1898. Coal tar
was an unprofitable by-product at that time and it was frequently deposited near the
factory. Thus, PAH bearing waste was also deposited locally, at distinct locations.
Originally included fluids are removed by natural weathering processes over dec-
ades. At present, the remaining solid PAH components are persistent and relatively
immobile (Stupp and Püttmann 2001). A result of this man-made impact is a
spatially limited, although not tolerable, area of contamination. Any extension of
these spatially limited occurrences caused by mathematical interpolation methods is
meaningless.

The groundwater flow direction must be included in the risk evaluation if
contaminants in unconsolidated subsoil are water-soluble and if they are able to
migrate. Contour maps generated by standard kriging cannot consider this factor
and its application would also result in an incorrect result.

The resulting insolubility of the pollutants under natural conditions causes their
inability to migrate. Due to this property of the contamination, it is not correct to
interpolate the detected PAH concentration values between observed locations. An
isoline map predicts an area-wide contamination whereas only local and isolated
pollution actually occurs. Later, it was recommended that the survey data be pre-
sented in the form of a point map (Fig. 40.7) and to focus future remediation on the
observed hot spots.

A similar case study was discussed by Thiergärtner (1995).

40.2.4 Ore Grade Estimation in a Cassiterite Mine

Tin ore has been mined for centuries in Altenberg (Saxony, Germany). Monzo-,
aplite- and albite-granite intruded during the Cisuralian epoch (Permian) into Pre-
cambrian paragneiss and were followed by acid, fluorine and silica rich overcritical
auras. Feldspar was mainly altered to quartz; lithium bearing mica, topaz, fluorite,
and ore minerals such as cassiterite, wolframite, and molybdenite crystallised in the
form of small grains. For details, see Weinhold (2002).

Thirty samples were taken from an exploration gallery to calculate the mean
grade of the deposit yield in the investigated direction. The range of the metal
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content was 0.07–4.22% tin. The arithmetic mean of all analysed sample values was
computed “as usual” to be marith = 0.755% Sn. Inspection of the empirical his-
togram and the fitted normal distribution curve (Fig. 40.8) showed that the metal
grade was extremely skewed to the right. A lognormal distribution was fitted to the
input data (Fig. 40.9) and the arithmetic mean of the (decimal) logarithms of tin
grade was calculated and the corresponding antilogarithm (mgeom = 0.512% Sn)
was obtained. This value is less than the arithmetic mean. The geometric mean is a
location parameter, such as the median or mode, and scarcely suitable to estimate
the expected value of a population.

Fig. 40.7 Contaminated industrial site. Hot spot map of polycyclic aromatics in subsoil

Fig. 40.8 Tin grade.
Arithmetical mean value
estimation
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Which estimator should be applied? The statistical “best” estimator Ê(mlg) of the
expected value for lognormally distributed data is calculated using Eq. 40.1
developed by Aitchison and Brown (1957) and applied e.g. by Dowd (1984):

Ê mlg
� �

=10mean lgXð Þek 1−
k k− 1ð Þ

n
+⋯

� �
ð40:1Þ

where k = 2.65095 var (lg X) and n = number of observations.
This estimator is rather poorly known in geoscientific practice. The estimation

results in mlg = 0.765% Sn for the given example. Only this value can be applied to
estimate the mean tin grade of the investigated gallery in an unbiased way. The true
ore grades of samples in an operating underground mine can be used to estimate the
mean grade of un-mined volumes of ground and this is one of the most important
parameters in determining economic feasibility.

40.2.5 Classification of a Doleritic Sill Using Trace
Elements

Tholeiitic basalt occurs in the Thuringian Forest (Germany) as Sakmarian doleritic
sill (Lower Permian). It is intruded into a sandstone–siltstone formation. The
contacts are metamorphosed. This sill was extensively described recently by
Andreas and Voland (2010).

The matrix of the dolerite consists of pyroxene, plagioclase, olivine, alkali
feldspar and some magnetite. The drill core was partitioned into seven sections by
petrographical analysis (Table 40.3; Fig. 40.10a). Megascopic and mineralogical
indications differ negligibly.

Fig. 40.9 Tin grade.
Lognormal mean value
estimation
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Table 40.3 Vertical sections of doleritic sill, Thuringian Forest

Zone Depth (m
below
surface)

Description Geological
position

Symbol in
Fig. 40.10

1 22.3–27.8 Basalt, compact, greyish black Marginal
facies

B

2 27.8–37.0 Mainly olivine bearing dolerite with
streaked intercalations of quartz dolerite

Transition
facies

Doq

3 37.0–
120.0

Quartz dolerite, light greyish green to
greenish gray, with pale lathlike
plagioclase crystals

Gravity
fractionation

Dq

4 120.0–
230.0

Olivine bearing dolerite Gravity
fractionation

Do

5 230.0–
348.0

Olivine bearing dolerite with some
biotite

Gravity
fractionation

Dob

6 348.0–
376.0

Basaltic compact rock, partly including
xenolithic material

Transition
facies

Bx

7 376.0–
377.5

Basalt, compact Marginal
facies

B

Fig. 40.10 Doleritic sill.
Geochemical classification
(for explanation see
Table 40.3)
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The interesting question was to correlate this sequence with its chemical com-
position. Four trace elements were selected: cobalt and nickel which are fixed in the
olivine mineral replacing magnesium, zircon as a constituent of feldspar or
pyroxene, and copper which can occur in the form of microscopically small chal-
copyrite crystals. These four chemical elements were analysed in 79 samples
covering the whole sequence.

A hierarchical cluster analysis was carried out. It was based on z-scaled (nor-
malized) input data to avoid an overestimation of attributes with large values, using
the squared Euclidean distance measure and the Ward method. The cluster den-
drogram shows clearly distinguishable classes and can be interpreted without diffi-
culty. All resulting and interpretable classes have been assigned to the cross-section
(Fig. 40.10b). Chemical symbols without brackets refer to high concentrations of an
element in Fig. 40.10. Where medium concentrations occur they are enclosed in
brackets and missing chemical symbols indicate low contents in the sample. The
expressions High, Medium, and Low refer to the overall mean values. The figure
shows first that the geochemical composition differs noticeably from the petro-
graphical structure. The number of clearly distinguishable geochemical classes is
low. Thick parts of the sill seem to be characterised by a similar micro-chemical
composition. It is obvious that samples with lower depth (hanging-wall samples,
marked by h) dominate the hanging-wall of the sill, and samples taken from the
footwall (marked by ly) mainly occur at deeper levels. The middle section comprises
samples that were collected at depths between 200 and 300 m (marked by m).

The results gave sufficient reason to review the methodological approach. First, it
was noted that the depth was included as one of the input parameters and the
parameter “depth” significantly influences the classification. Such procedures are not
faulty in a mathematical sense but they accentuate the effect of neighbouring samples
within a common class due to the similar value of the parameter “depth”. Within the
drill core neighbouring samples have a higher chance of falling into this common
class than do the more distant samples. This effect should be avoided if not explicitly
requested by the researcher. The relatively long sections of the profile with little or
no geochemical variation can be explained by this effect. Secondly, the critical test
showed that the inclusion of both cobalt and nickel into the analysis caused an
overestimation of the olivine component. The linear pairwise correlation coefficient
(Pearson) between Co and Ni was calculated as r = +0.915. Cobalt is not signifi-
cantly correlated with copper or zircon, and copper and zircon are uncorrelated, too.
This result could be expected from the relationships of the geochemical bonds.

A repeated cluster analysis based on the attributes Ni, Cu and Zr resulted in
classes which were drawn into the rock sequence as shown in Fig. 40.10c. The
influence of the depth is eliminated and the double effect of the trace elements Co
and Ni—reflecting the olivine content—is reduced to only one factor. Much more
detail is visible; i.e. a clear vertical geochemical differentiation can be recognised.
In addition, the resulting geochemical classification of the rock profile does not
simply correspond to the mineralogical and petrographical structure and displays
more essential details than the first result. Although the mathematical model was
chosen correctly, an incorrect set of input data was applied to solve the problem.
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40.3 Conclusion and Suggestions

Classical mathematical geology is the application of non-specific mathematical
methods and models to solve geoscientific problems. Its proper application fre-
quently results in useful solutions but its misapplication can generate spurious
results that may not be recognised. These hidden errors are not caused by the
algorithms but by insufficient knowledge of their application and deficient expe-
rience with their use. They are avoidable.

A significant proportion of the methodological contributions to classic mathe-
matical geology are written in an academic environment. New developments are
mainly published in journals specialising in mathematical geosciences. However,
only in rare cases are they evaluated by engineers and geoscientists working in
engineering practices, mining companies, environmental bureaus, governmental
agencies or individual consultants.

As a conclusion the following suggestions are offered to developers of
mathematical-geoscientific methods, models, algorithms and software and to all
academic teachers in the field of mathematical geosciences:

1. Instructive tutorials on the applicability and modes of application should be
developed, introduced and delivered. This problem can be solved best by
experienced geoscientists who are experienced in the “traps” of applying
mathematical geology.

2. Informative, methodologically sound case studies should be published in
widely-used geoscientific and eco-scientific journals as a means of improving
the “daily” application of mathematical geosciences in practice.

3. A more critical view of users is required when assessing outputs from
computer-generated mathematical-geological methods and models. In particular,
belief in the absolute correctness of such outputs should be discouraged.

4. University studies and post-graduate education in the correct application of
mathematical-geological methods should be combined with the development of
new application fields (application research).
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Chapter 41
Mathematical Geology by Example:
Teaching and Learning Perspectives

James R. Carr

Abstract Numerical examples and visualizations are presented herein as teaching
aids for multivariate data analysis, spatial estimation using kriging and inverse
distance methods, and the variogram as a standalone data analytical tool. Attention
is focused on the practical application of these methods.

41.1 Introduction

An oxymoron. Mathematical geology has been characterized as such. Saying so,
though, betrays ignorance, not of mathematics, but of geology. The science is
inherently numerical. Minerals, for example, are quantifiable based on specific
gravity, hardness, Miller index, and abundance. Rock classification in petrology and
petrography is inherently dependent upon mineral frequency, determined in a
manner identical to that which is used by the hematologist when classifying
specimens of blood. Geologic structures are quantified by strike and dip, even
abundance when characterizing the integrity of rock masses. Economic geologists
and geochemists develop complex databases of samples, each associated with many
elements, the analysis of which provides clues to ore genesis, water origin, envi-
ronmental stresses, and rock classification, to name but a few applications. Geo-
physics and remote sensing provide enormous sets of numbers visualized as digital
images. Far from being an oxymoron, mathematical geology is broadly defined as
the application of theoretical and applied mathematics to the assessment of geologic
data to aid in the interpretation of earth evolution.

The word, aid, is not chosen carelessly. No equation, no calculator, no computer,
can substitute for the human ability to infer and interpret. Where equations, cal-
culators, and computers can help with geologic interpretation is in the conversion of
numbers to pictures, such as the case when converting numbers comprising a digital
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image into what mimics a photograph on a computer screen. Scientific visualization
is the process of converting numerical information of any kind into a picture,
hopefully improving its interpretation. The responsibility of interpretation remains,
always, with the human analyst.

There tends to be an element of distrust of numbers. The quote, attributed to
Benjamin Disraeli, is well known, “There are three kinds of lies: lies, damned lies,
and statistics.” Apparently, there is uncertainty regarding whether Disraeli actually
made this quote. This saying was, however, widely used by the end of the 19th
Century. Mark Twain, for example, writing in 1906: “Figures often beguile me,
particularly when I have the arranging of them myself; in which case the remark
attributed to Disraeli would often apply with justice and force: ‘There are three
kinds of lies: lies, damned lies, and statistics.”—Autobiography of Mark Twain.

Perhaps mistrust of numbers is not as accurate as saying that there exists a
reverence of numbers due to a fundamental insecurity about mathematical under-
standing. The presentation of a statistical analysis can be quite intimidating to those
whose confidence in understanding the analytical methods is weak. Of course, the
weak confidence can be taken advantage of by those less scrupulous, stating
interpretations of numbers for which there is no clear justification. Thus the
skepticism surrounding statistics—lies worse than damned lies.

Despite this ignorance, statistical analysis of data is the most widely applied
mathematical method in the geological sciences. Geologists draw maps, with
geostatistics, geographic information systems (GIS), and remote sensing funda-
mentally contributing to the process. Mine geologists are increasingly charged with
ore reserve estimation and ore control using geostatistics. Other examples of
applied statistics included bivariate and multivariate methods important for
understanding the correlation between two or more variables. Other numerical
methods of importance to geologic understanding are finite difference modeling for
understanding ground water flow, geostatistical simulation for modeling uncertainty
of spatial data, time-series (Fourier) analysis for identifying cycles in data strings
over time or space, linear algebra for modeling landform and geologic structure
morphology, fractal geometry for understanding scaling in geologic processes, and
the application of neural networks to the modeling of geologic processes.

Some of these applications have proven less interesting to students of mathe-
matical geology than others. Three and a half decades of teaching applied mathe-
matics to earth scientists and engineers at a hardrock mining school provide the
backdrop for the following observations. One, graduate students of economic
geology, moreover economic geology professionals eagerly seek instruction and
advice in multivariate methods applied to rock geochemistry data, with an emphasis
on interpretation for a better geologic understanding of ore deposits. These students
and professionals typically want a pure course on multivariate data analysis. Two,
teaching kriging theory in an undergraduate course is a waste of time when the
heavily parametric practice of spatial estimation is considered; industry often views
universities as workshops for training mine geologists and engineers on the use of a
particular choice of mine planning software, such as SURPAC, and teaching how to
use the software and what choices to make for parameter definition is more than one
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course can provide. These students are less interested in kriging theory than they are
in how to interpret a variogram, how to design a grid, what type of estimator to use,
and more. The challenge in this case is how to answer these and other questions
while not overstaying one’s welcome when explaining theory. Thirdly, the vari-
ogram is popular among students and professionals as an analytical tool when
kriging is not the primary goal; students and practitioners of remote sensing, in
particular, use the variogram for various types of digital image processing.

Multivariate data analysis, the practice of kriging, and the variogram as a
stand-alone data analytical tool are presented in this chapter with an emphasis on
their teaching. Both teacher and student perspectives are presented to balance the
discussion between tips for learning and advice for teaching.

41.2 Multivariate Analysis of Geochemical Data

During the 1930s decade, psychologists began to apply principal components
methods to help with the interpretation of their data (e.g., Hotelling 1933; Young
1937). Many psychologists collect data on patients characterizing their behavioral
traits. Principal components methods allow psychologists to group patients of
similar behaviors resulting in a better understanding of them. Three decades later,
sedimentologists (e.g., Imbrie and Purdy 1962; Klovan 1966) used principal com-
ponents analysis to group samples of sediment based on sedimentological charac-
teristics. In this case, the sediment sample is analogous to the patient and the sample
characteristics are analogous to behavioral traits. How sediment samples group can
be an indication of sediment source, depositional environment, composition, or
some other condition of importance to geologic interpretation. A collection of papers
published in 1983 (Howarth 1983) reviewed the application of multivariate analysis
to geochemical prospecting. Tomes written on geochemistry (e.g. Albarède 1995)
often discuss multivariate analysis applied to the interpretation of geochemical data.

Many mathematical methods have been developed to help with the analysis of
multivariate data. An important goal of each of these methods is a reduction in the
number of variables to enable a more efficient understanding. If there are M original
variables, in other words, a smaller number of variables, B, is sought that define a
lower multivariate sub-space. Then, the original M dimensional data are projected
onto the lower sub-space to yield a plot (graph) that is visually inspected to
appreciate data similarities and differences. For students and teachers alike, the
ultimate goal of multivariate analysis is the creation of these plots, the study of
which motivates subjective conclusions about data associations (Greenacre 1984).

In order to develop the plots, some mutually orthogonal coordinate system is
needed. Many of the mathematical methods used to analyze multivariate data
involve the reduction of the original data information into some matrix that is
eigendecomposed to obtain eigenvalues, each associated with a unique eigenvector.
The eigenvectors are mutually orthogonal. Moreover, these eigenvectors define the
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lower dimensional sub-space. They are the principal components of data intercor-
relation information.

Can multivariate data analysis be taught without explaining, or at least
reviewing, eigendecomposition of data? Answering yes leads to a teaching
approach that treats the multivariate analytical algorithm as a black box. This
approach relieves teachers of the chore of explaining a method that many students
abhor. Undergraduate students, and even graduate students in some cases, are likely
to skip class when eigenvalues and eigenvectors are to be discussed. Modern stu-
dents are quick to dismiss that which they do not like, or find boring. For example,
based on the experience of co-teaching mineralogy for the past five years, a dis-
cussion of crystallography often results in a rather empty classroom. A mental
laziness is betrayed by students’ behavior in this regard. It frustrates teachers
wanting students to achieve an understanding of analytical methods deeper than the
data in–data out black box.

Of course, answering no to the foregoing question and teaching multivariate data
analysis outside the black box is confounded by the same student attitudes. Their
learning cannot be forced. It can, however, be enticed by numerical examples that
are straight-forward, explained in class, and reinforced by extracurricular calcula-
tions. Students can be shown that an understanding deeper than black box mysti-
cism is relatively easy to achieve. What follows is a demonstration of this concept
and is intended as an aid to instruction. Student understanding can be assessed by
substituting the starting data table with alternative data.

41.2.1 Numerical Insight to Multivariate Data Analysis

Geochemical data from seven rock samples, each characterized by five elements
(variables), are presented in the following table:

Sample Gold (Au) Silver (Ag) Copper (Cu) Lead (Pb) Zinc (Zn)

1 15 0.4 21 21 15

2 25 0.3 14 15 3
3 19 0.5 12 19 4
4 37 0.5 24 17 7
5 33 0.3 14 13 5
6 12 0.4 21 29 5
7 12 0.4 13 19 5
Note values for Au, Ag, Cu, Pb, and Zn are in ppm

These data represent a five-dimensional variable space. The goal is to determine
the eigenvectors for these data, the sub-space that will be used for plotting.
A theorem presented by Eckart and Young (1936) holds that any real valued data
matrix can be represented as the following product, [data] = [R-mode eigenvectors]
[eigenvalues][transposed Q-mode eigenvectors]. In this case, Q-mode multivariate
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analysis is focused on the relationships among samples. R-mode multivariate
analysis is one that focuses on the relationships among the variables.

To obtain the Q-mode result, the data matrix is multiplied by its transpose in the
following order, [transposed data matrix][data matrix], to yield a square matrix as
follows: [data]T[data] = [Q-mode]:

15 25 19 37 33 12 12

0.4 0.3 0.5 0.5 0.3 0.4 0.4

21 14 12 24 14 21 13

21 15 19 17 13 29 19

15 3 4 7 5 5 5

0
BBBBBB@

1
CCCCCCA

15 0.4 21 21 15

25 0.3 14 15 3

19 0.5 12 19 4

37 0.5 24 17 7

33 0.3 14 13 5

12 0.4 21 29 5

12 0.4 13 19 5

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

=

3957 61 2651 2685 920

61 1.16 48.4 54 17.9

2651 48.4 2163 2325 813

2685 54 2325 2687 860

920 17.9 813 860 374

0
BBBBBB@

1
CCCCCCA

The result of this multiplication is a square matrix, M × M in size, and M is the
number of original variables, 5 in this case. This square matrix is the one from
which eigenvalues and Q-mode eigenvectors are obtained [software is necessary for
eigendecomposition, ironically rendering this step as a black box]:

Eigenvalues:

91.8 0 0 0 0
0 25 0 0 0
0 0 10.1 0 0
0 0 0 4.8 0
0 0 0 0 0.2

0
BBBB@

1
CCCCA

Eigenvectors:

0.655 − 0.73 − 0.10 − 0.17 − 0.007
0.011 0.005 − 0.01 − 0.17 1.0000
0.500 0.228 0.336 0.765 − 0.008
0.536 0.618 − 0.47 − 0.33 − 0.017
0.183 0.181 0.809 − 0.53 − 0.007

0
BBBB@

1
CCCCA

The eigenvectors are loaded column-wise. The eigenvalues are loaded into a
matrix along the diagonal. All off-diagonal entries in the eigenvalue matrix are zero.
These eigenvalues are actually the square roots of those computed directly from the
R-mode matrix because the original data matrix is squared when multiplied by its
transpose. By performing this multiplication to yield a square, symmetrical matrix,
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the eigenvectors from which are guaranteed to be orthogonal to one another. For
example, if the first two eigenvectors are multiplied together, the result should be
precisely zero:

3.59 × − 4.04+ 0.063 × 0.028+ 2.74 × 1.26+ 2.94 × 3.42+ 1 × 1=0.005≈ 0

and the result would be precise if not for round-off error.
Working toward the goal of plotting samples 1 through 7, a first step involves

multiplying the eigenvector matrix to the eigenvalue matrix:

0.655 − 0.73 − 0.10 − 0.17 − 0.007

0.011 0.005 − 0.01 − 0.17 1.0000

0.500 0.228 0.336 0.765 − 0.008

0.536 0.618 − 0.47 − 0.33 − 0.017

0.183 0.181 0.809 − 0.53 − 0.007

0
BBBBBB@

1
CCCCCCA

91.8 0 0 0 0

0 25 0 0 0

0 0 10.1 0 0

0 0 0 4.8 0

0 0 0 0 0.2

0
BBBBBB@

1
CCCCCCA

=

60.13 − 18.25 − 1.01 − 0.82 0.00

1.01 0.13 − 0.10 − 0.82 0.20

45.90 5.70 3.39 3.67 0.00

49.20 15.45 − 4.75 − 1.58 0.00

16.80 4.53 8.17 − 2.54 0.00

0
BBBBBB@

1
CCCCCCA

The next step involves multiplying this resultant matrix by the original data
matrix. Because the fifth column of this matrix represents values of practically zero,
only the first four columns are used to obtain four factors:

15 0.4 21 21 15
25 0.3 14 15 3
19 0.5 12 19 4
37 0.5 24 17 7
33 0.3 14 13 5
12 0.4 21 29 5
12 0.4 13 19 5

0
BBBBBBBB@

1
CCCCCCCCA

60.13 − 18.25 − 1.01 − 0.82
1.01 0.13 − 0.10 − 0.82

45.90 5.70 3.39 3.67
49.20 15.45 − 4.75 − 1.58
16.80 4.53 8.17 − 2.54

0
BBBB@

1
CCCCA

=

Factor 1 Factor 2 Factor 3 Factor 4

1 3151.00 238.40 78.80 −6.84
2 2935.00 −131.10 −24.56 −0.69
3 2696.00 33.38 −36.13 −12.13
4 4281.00 −244.00 20.38 12.69
5 3351.00 −298.90 −6.80 −9.17
6 3197.00 371.50 −37.87 8.38
7 2337.00 171.40 −17.49 −5.18
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The word, factor, heading each column is one of the new variables within the
sub-space of the original data matrix. The numbers to the left are the sample
numbers used in the original data able. The factors represent an orthogonal coor-
dinate system to enable plotting these seven samples to determine their relationship
to one another.

Relative significance of each factor with respect to the total data information is
determined by summing the eigenvalues, then dividing each eigenvalue by this sum
to obtain a proportion. The five eigenvalues sum to 131.9. Factor 1, for instance,
represents 100 × (91.8/131.9) = 70% of the original data information content. The
second factor associated with an eigenvalue equal to 25, incorporates 20% of the
original data information content. If the seven samples are plotted using the first two
factors, then the resultant plot represents 90% of the original data information
content. This plot is shown in Fig. 41.1.

Notice that samples 2, 4, and 5 plot in the negative region with respect to Factor
2. These three samples are associated with the highest gold values. But, these
samples are among the lowest for silver, lead, and zinc. Samples 1 and 6 are much
higher in lead and zinc, but much lower for gold. Each factor is a function of all five
of the data variables, Au, Ag, Cu, Pb, and Zn. For example, in the foregoing matrix
multiplication involving the original data matrix, the Factor 1 “coordinate” for
sample 1 is equal to:

15 × 60.13+ 0.4 × 1.01+ 21 × 45.9+ 15 × 49.2+ 15 × 16.8= 3151.0.

In reviewing this calculation, notice that it is:

Au− value × 60.13 + Ag− value × 1.01 + Cu− value × 45.9 + Pb− value

× 49.2 + Zn− value × 16.8.

Literally, the coordinate of a sample in any of the factors is a function of all the
original variables, not just any one, or two. Because of this, the way samples plot in
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 5 

Fig. 41.1 A plot of the seven data samples with respect to factor 1 (horizontal axis) and factor 2
(vertical axis). Sample numbers are shown near each plotting symbol
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Fig. 41.1 reflects their similarity over all variables. A grouping of samples, then,
suggests a rock-chemistry similarity that likely has importance to the interpretation
of ore genesis.

To obtain the R-mode result, the original data matrix is once again squared, but
in a different order of multiplication: [data][data]T = [R-Mode]. Following the
same steps above for the Q-mode result, resulting factors for plotting of the five
variables are:

Factor1 Factor 2 Factor 3 Factor 4 Factor 5

Au 5542.00 −463.80 −7.27 2.41 −0.28
Ag 96.58 2.98 −0.54 0.37 −0.03
Cu 4220.00 136.50 35.76 −18.29 −0.15
Pb 4527.00 378.80 −46.61 6.99 −0.13
Zn 1538.00 111.00 82.77 11.84 −0.09

The relative importance of each factor with respect to original data information
content is the same as for the Q-mode result because the eigenvalues are identical.
Figure 41.2 presents a plot based on the first two factors.

Figure 41.2 suggests that gold (Au) is not closely associated with any one of the
four other variables. Focusing only on factor 1, gold (Au) and silver (Ag) are on
opposite sides of the horizontal axis. Often, variables plotting as such are inversely
related; when one is higher in value, the other is lower in value. Further with respect
to factor 1, zinc (Zn) is closer to silver and lead (Pb) and copper (Cu) are closer to
gold. If, however, the focus is solely on factor 2, then gold and lead appear to be
inversely related.

Software is necessary for larger data sets. Using this example and challenging
students to follow it for data sets other than that which is used will not necessarily
guarantee a deep understanding. But, when reviewing the output from multivariate
software, students will have a general understanding of what happens to the input
data and the jargon inherent to the method. Knowing why eigenvectors (factors) are
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-200.00
-100.00

0.00
100.00
200.00
300.00
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Pb

CuZn
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Fig. 41.2 A plot of the variables based on factor 1 (horizontal axis) and factor 2 (vertical axis).
Variable labels are shown next to each plotting symbol
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used for developing plots gives students greater confidence when interpreting these
plots.

An actual multivariate data set consisting of about 1000 samples, each associated
with 50 elemental variables, is analyzed using the multivariate method known as
correspondence analysis (Benzecri 1973). This multivariate method is the one
preferred by the author for actual data analysis, but its mathematical presentation is
not as straightforward as that presented above for principal components analysis. It
is the opinion of the author that correspondence analysis yields plots that separate
the data better than other methods. The result is shown in Fig. 41.3 for variables
only (to reduce the clutter of the plot).

How elements are related is interpreted from Fig. 41.3. Manganese (Mn) is
polarizing with all other elements plotting away from it along factor 1. Rocks higher
in manganese are inferred to be much lower in the other elements. Given that the
likely manganese mineral in this deposit is MnO (wad), moreover knowing that this
mineral is black and sooty, could be useful knowledge in the field of where ore is,
or is not, present. Factor 2 separates barium (Ba) from the precious metals. The
likely barium mineral is barite, an easily recognized mineral in the field if crys-
talline. This element, too, may be useful for the approximate delineation of the ore
zone in the field based on visual inspection.

Fig. 41.3 An R-mode plot of a multivariate geochemical set of data characterizing an ore deposit.
The relative importance of each factor is indicated in the axis label. This plot was created by
software that is presented in Carr (2002)

41 Mathematical Geology by Example … 839



41.3 Geostatistics and Its Myriad Parameters

Decisions. A teacher of geostatistical estimation can spend weeks teaching geo-
statistical theory, broadly so by including polygonal and inverse distance strategies
in addition to kriging. Weeks! Then faced with teaching the practice of estimation.
The theory is complex, particularly in the case of kriging. And, yet, the outcome is
highly vulnerable to the parameters selected for implementing theory. Figure 41.4,
whereas not intended to be comprehensive, presents many of the decisions that
must be made by a geostatistician when practicing the gridding of data.

A teacher can spend more or less time on geostatistical theory, lesser for
undergraduates perhaps. Time, however, must still be devoted to explaining about
and advising on the parameters that are necessary to estimation. Moreover, the

A Noncomprehensive Table of Parameters

Method of Gridding: 

Polygonal
Inverse Distance Methods (ID)
Kriging

Kriging:    No Data Transform With Data Transform
Simple Log-normal; with or without bias adjustment
Ordinary Indicator (true indicator using quan les as cutoffs)

Cutoff
Support, Block or Punctual
Variogram Parameters:

Type of model
Nugget, Sill and Range 

ID:  Power term

Data:  Transform op ons
None
Indicator
Natural logarithms
Hermi an

Capping 

Gridding:  Grid dimensions
Number of rows
Number of columns
Number of levels (if three dimensional)
Spacing distance between rows, columns, and levels
Number, N, of nearest neighboring sample loca ons used for es ma on
Search window radius for loca ng N nearest neighbors

Search window strategy:  general, quadrant, octant
Anisotropy considera ons:  Major axis direc on, plunge direc on, 
dip, ra o of major axis/minor axis

Fig. 41.4 Gridding a set of spatial data requires selecting the estimation algorithm for gridding,
then defining parameters unique to the estimation algorithm. How to treat the data, raw or
transformed, is another important decision. Likewise, the geometry of the grid must be designed
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influence of one or more of these parameters is best appreciated by visualizing
estimation outcomes.

Estimation outcomes are visualized as color contour maps in the following
demonstration. A collection of 2,500 mercury values were collected to assess the
severity of site contamination after a flood. The variogram for these data is shown in
Fig. 41.5.

The shape of the variogram in Fig. 41.5 is modeled using a spherical variogram
model. This variogram shape is the most commonly observed for spatial data,
regardless of the spatial phenomenon under study. The model is explicitly defined
by setting the parameters for the nugget (found by extrapolating the calculated
variogram backwards to intersect the y-axis at h = 0), the sill, that value of the
variogram that is more or less constant once the range (of spatial correlation) is
reached. In this example, these parameters are: nugget = 20 (rounded), sill = 117
(rounded), and the range is 90 m. Other parameters used in the following data
visualization demonstration are as follows: (1) no data transform; (2) block support;
(3) ordinary kriging; (4) general, isotropic search strategy with a radius equal to
one-half the variogram range; (5) up to N = 10 nearest neighboring samples used
for estimation; (6) inverse distance (power term = 1) and inverse distance squared
(power term = 2) weighting presented for comparison to the kriging outcome;
(7) grid parameters: 50 rows, each with 50 columns, spacing between rows and
columns is 10 m. Outcomes are presented in Figs. 41.6 and 41.7.

A lower nugget value is seen to yield lesser smoothing during estimation
(Fig. 41.6). A larger nugget yields more smoothing. With inverse distance methods,
the larger the power term is, the less smoothing that results during estimation. The
aesthetic appeal of a map is a subjective assessment. The amount of smoothing
controls the complexity of the map. If larger scale aspects of a spatial region are of
more interest than smaller scale aspects, then more smoothing should be used
during estimation to downplay the smaller scales. On the other hand, if the desire is
to visualize spatial variability down to the smallest possible scale that is allowed by
the data, no to minimal smoothing should be used during estimation.

Fig. 41.5 Variogram for 2,500 mercury values. The jagged line is the actual calculation outcome.
The smooth, continuous line is a model fit to the calculation outcome. The model, in this case, is
the spherical variogram model and its parameters, nugget, sill, and range, are listed above the
variogram
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Indeed, there are similarities among these maps. Each map shows a zone of
higher mercury values in the center, and two low zones at the left-center and
top-center. These regions are associated with a higher density of spatial samples.
Regions of the map that change appreciably when estimation parameters are
changed are more sparsely sampled. The spatial distribution of mercury samples is
shown in Fig. 41.8.

Differences among the contour map outcomes are noteworthy for spatial loca-
tions associated with sparser sampling. Moreover, these differences are more easily
observed when increased smoothing is used during estimation.

Fig. 41.6 Three visualizations from kriging. Top, left map is based on the variogram parameters,
nugget, sill, and range, that are listed in Fig. 41.5. Top, right map is based on the same variogram
parameters, except the nugget value is set equal to zero. The bottom, left map is based on the
nugget value set equal to the sill value; in this case, the outcome is a simple average estimation.
Integer labels are used for the contour lines to indicate relative value from smaller, 1, to larger, 10.
Color also indicates relative value from lower, blue, to higher, red
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41.4 The Variogram as a Stand-Alone Data
Analytical Tool

Kriging is not necessarily the ultimate goal of geostatistical analysis. The variogram
as a stand-alone data analytical tool has a variety of uses that are independent of
estimation. Examples are many and include noise isolation, texture classification of
digital images, and self-affine fractal analysis and modeling. The concept of digital
image texture is chosen for demonstration.

Fig. 41.7 Outcomes from inverse distance squared weighting (left map) and inverse distance
weighting (right map). The higher the power term is the lesser is the smoothing. This outcome is
similar to decreasing the nugget value in kriging

Fig. 41.8 A map of the spatial locations of 2500 mercury samples within a 250,000 m2 region
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Four textures are illustrated in Fig. 41.9: water, playa, alluvium, and sedimen-
tary rock outcrops.

Water and playa textures are similar, differing only in reflectivity. Variograms of
these textures are likewise similar and indicate a predominant spatial randomness

ALLUVIUM PLAYA

SEDIMENTARY WATER

Fig. 41.9 The center mosaic shows four textures extracted from a Landsat TM image, clockwise
from top, left: alluvium, playa, water, and sedimentary rock outcrops. Variograms for these
textures are likewise arranged

844 J. R. Carr



with little underlying signal. The variogram of alluvium texture indicates an
underlying spatial structure that is heavily masked by noise (randomness). Unlike
these other textures, sedimentary rock layer texture is predominantly signal. The
variogram of this texture reveals the strong spatial structure and very low noise.

Digital image classification is a process that depends on automatic identification
of classes, features on the ground, based on some form of signature, or charac-
teristic for each class. The histogram of pixel values is one such signature that is
often used when basing classification on pixel value. The variogram is a signature
that is useful for classifying the texture of ground classes. The foregoing demon-
stration shows that variograms do differ for ground classes, but in ways that are not
directly relatable to pixel values. Playa and water, for instance, are distinctly dif-
ferent in brightness, yet their variograms are similar in shape. The variogram has
been used with considerable success for the classification of microwave images
(e.g., Carr and Miranda 1998; Miranda et al. 1998). These images are inherently
noisy due to microwave frequency additions and cancelations that impart what is
known as speckle. The classification of texture using variogram signatures applied
to less noisy images, such as those from the Landsat satellite, has not been
extensively tested.

In the foregoing example, the images of alluvium, playa, water, and sedimentary
rock are 100 × 100 pixel extracts from a band 3 (visible red) Landsat 7 image of

Fig. 41.10 A band 3 (visible red) extract from a complete Landsat 7 scene, Path 39, Row 35,
acquired on September 25, 2000
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southern Nevada, U.S.A (Fig. 41.10). This image was selected for its varied
textures.

The variogram signatures shown in Fig. 41.9 were applied to this image for the
classification of texture. The understanding of what constitutes texture in a digital
image takes some time to develop. Texture is not brightness, per se, but rather the
unique patterns exhibited by groups of pixels. The outcome of textural classification
is shown in Fig. 41.11.

The predominant texture seen in Fig. 41.11 is that of alluvium. The texture of
water is not unique and is confused with the texture of alluvium. The texture of the
shoreline of the lake is identified as playa. This lake (Lake Mead, Clark County,
Nevada, U.S.A.) is an artificial reservoir that has a fluctuating water level that
leaves an almost pure white calcium carbonate staining on the shoreline. Like playa
sediments, the reflectivity of this material often saturates the satellite sensor
resulting in identical textures. Sedimentary outcrop texture was often confused with
alluvium, and shadows (northwest facing slopes) were often confused with water.
Given that this image is of a harsh, arid environment (precipitation is less than 7 cm
per year), the predominant alluvium texture makes sense.

Fig. 41.11 Outcome of texture classification based on variograms applied to the Landsat image
shown in Fig. 41.10. Colors represent: water (red), playa (green), alluvium (blue), and sedimentary
outcrops (yellow)
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Chapter 42
Linear Unmixing in the Geologic
Sciences: More Than A Half-Century
of Progress

William E. Full

Abstract For more than a half-century, scientists have been developing a tool for
linear unmixing utilizing collections of algorithms and computer programs that is
appropriate for many types of data commonly encountered in the geologic and other
science disciplines. Applications include the analysis of particle size data, Fourier
shape coefficients and related spectrum, biologic morphology and fossil assemblage
information, environmental data, petrographic image analysis, unmixing igneous
and metamorphic petrographic variable and the unmixing and determination of oil
sources, to name a few. Each of these studies used algorithms that were designed to
use data whose row sums are constant. Non-constant sum data comprise what is a
larger set of data that permeates many of our sciences. Many times, these data can
be modeled as mixtures even though the row sums do not sum to the same value for
all samples in the data. This occurs when different quantities of one or more
end-member are present in the data. Use of the constant sum approach for these data
can produce confusing and inaccurate results especially when the end-members
need to be defined away from the data cloud. The approach to deal with these
non-constant sum data is defined and called Hyperplanar Vector Analysis (HVA).
Without abandoning over 50 years of experience, HVA merges the concepts
developed over this time and extends the linear unmixing approach to more types of
data. The basis for this development involves a translation and rotation of the raw
data that conserves information (variability). It will also be shown that HVA is a
more appropriate name for both the previous constant sum algorithms and future
programs algorithms as well.
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42.1 Introduction

Unmixing algorithms and programs have been used to solve many different types of
geologic problems for more than 50 years. This approach has been developed by
geologists for geologists and has been recently ‘borrowed’ by professionals in other
fields. For the most part, the International Association for Mathematical Geo-
sciences’ publications Journal of Mathematical Geology (later renamed Journal of
Mathematical Geosciences) and Computers & Geosciences have been the venue for
the papers describing the developments and computer codes associated with the
approaches described in this report. The history of linear unmixing tied to these
papers is the topic of this manuscript along with extending the mathematics to make
this approach more appropriate for more common types of geologic and petroleum
data. The most recent name for these algorithms is Hyperplanar Vector Analysis
(HVA)—a name that will be shown to be more appropriate than the other
algorithms/program names that have been used in the past.

42.2 History of Constant Sum HVA

42.2.1 Determination of the Number of End-Members

The rudiments of HVA started with a report to the Office of Naval Research by
Imbrie (1963). In this report, the application of the cosine-theta similarity matrix
was defined for the Q-mode factor analysis portions of HVA that were to follow.
The cosine is used as a similarity index between two samples (Fig. 42.1a). When
the angle between two samples approaches 0.0 (cosine approaches 1.0), the ratio of
the two variables are assumed to nearly the same. Conversely, when a cosine
approaches 0.0 (Θ = π/2 radians), the two samples are considered very different
from each other. In statistics, a cosine value of 0.0 would consider the two samples
to be independent of each other. While the Imbrie (1963) approach never calculated
a cosine function, it did accomplish the same thing by working with the unit vectors
of each sample and with the unit sphere defined by these vectors which was
subsequently rotated via an eigenvector rotation. The resulting matrix is the
cosine-theta matrix defined for all the samples. Figure 42.1b shows the case where
two vectors of differing length would produce a cosine Θ that would indicate that
the two vectors would be the same as two vectors of exactly the same length. The
constant sum approach assumes that the raw data represents vectors of equal length.

Working with vectors on the unit sphere is one of the fundamental differences
between what we have been calling vector analysis and traditional factor analysis.
Figure 42.2a illustrates the concept of a unit vector while Fig. 42.2b shows a
cross-section of the unit sphere in two dimensions. In traditional factor analysis, in
simplified terms, before the eigenvector rotation is performed, the mean of either
the raw data or transformed data (usually the z-transform) is subtracted from the
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variance (or covariance matrix). This step in the procedure is a translation of the
axes defining the system (Fig. 42.3). Figure 42.3 also shows in 2-dimensions that
the use of the cosine-theta similarity approach does ultimately define eigenvectors
and eigenvalues relative to the center of the unit sphere. It should be pointed out
that using the approach of Imbrie (1963), the total variability (sum of squares of
each coordinate in the space defined by the unit sphere) before and after the
eigenvector rotation is simply the number of samples (N). If we have 45 samples,
we will have variability in the unit sphere of 45.0. A FORTRAN-IV computer
program to perform this procedure was published by Klovan and Imbrie (1971) and
was named CABFAC (Columbia and Brown Factor Analysis). Unfortunately for a
generation of students and practitioners, the terminology used in this and several of
the subsequent programs was rooted in factor analysis.

The next step in the evolution of HVA was taken by Miesch (1976a, b). Miesch
realized that the CABFAC program was really a combination of linear algebra and
geometry. The eigenvector rotation defined by the previous authors was actually

Fig. 42.1 Example of the cosine as a measure of similarity where two samples are very similar to
each other in terms of the ratio of the defining variables (a), and where the two samples are more
dissimilar than the previous two samples (b). With constant sum models, both set of vectors would
be considered as essentially the same

Fig. 42.2 Every sample (row of data) can be considered a vector. The unit vector is the direction
of this vector where the length of the unit vector is exactly 1.0 (a). The collections of the sample
unit vectors are located on the unit sphere whose radius is 1.0 (b)
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capturing the geometry of the data on the unit sphere. This fact, in conjunction with
the observation that with constant sum data the raw samples must fall on either a
line (2-D), plane (3-D) or hyperplane (n-D), was a fundamental concept for Miesch.
This was a different viewpoint about constant sum data than that reported by
Chayes (1971). Miesch concluded that CABFAC can be used to tell us the real
dimensionality of the data (must be less than or equal to the number of variables)
and that with some additional programming, the end-members and relationships
between these end-members and each sample (proportions) can be defined. Pro-
grams were created and published by Klovan and Miesch (1976) called
EXTENDED CABFAC and QMODEL. These two programs, while still using the
standard terminology of factor analysis, represented the foundation of the vector
analysis unmixing approach that is used to this day. As a matter of fact, rotation
procedures such as the orthogonal VARIMAX rotation (Kaiser 1958) are still
performed in the programs.

Before we continue with the QMODEL evolution, a discussion of the ways that
EXTENDED CABFAC helps us determine the number of appropriate dimensions
to choose which is, in reality, the number of end-members present in the data.
CABFAC presents us with several ways of defining the exact number or range of
end-members that may be present in the data. Note that CABFAC does not tell us
anything about what they look like—or the proportions relating these end-members
to each sample. For the sake of this discussion, a data set was created wherein four
end-members were mixed in known proportions. While the end-members were not
constant sum (the sum of each end-member was not the same value), the collection
of these data can still be informative, especially when we discuss non-constant sum
analysis. The four end-members were taken from NURE stream sediment geo-
chemical samples (Smith 1997) and this data set. For this section on constant sum
algorithms, each sample in the data was transformed to a constant value of 1.0
before being submitted to CABFAC/SAWVEC/VECTOR/PVA routines.

Fig. 42.3 In traditional PCA or factor analysis, the subtraction of the mean is performed before
the eigenvector rotation and is a translation of the axes to the center of the data (a). Of course, in a
standard PCA or factor analysis, we would divide each value by the standard deviation of the
corresponding variable. In contrast, the Q-Mode analysis defined by Imbrie (1963) defines the
center of the unit sphere as the point of reference for the eigenvalue rotation (b)
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The traditional approach used in the past is the scree plot (Fig. 42.4a). In this
plot, the user looks for a break in the slope and then interprets this point as the
maximum number of end-members present in the data. Note that like real data,
Fig. 42.4a shows a case where the scree plot need not behave in an ideal sense.
Miesch (1976a, b) recognized that since we are looking at how well the constant
sum plane or hyperplane ‘fits’ the original data, back-calculated values from a
reduced space defined by fewer than n eigenvectors can be directly compared to the
variables defined in the raw data or real space. This back-calculation simply
reverses the mathematics using a reduced number of eigenvectors ‘back’ into the
raw data metric via matrix algebra. The comparison is made via the coefficient of
determination (CD) function (Draper and Smith 2014) and the CD for each
back-calculated variable to the original raw data for a given number of retained
eigenvectors is plotted (Fig. 42.4b). Similarly, for each sample, total amount of
original variability retained for a given number of eigenvectors is also calculated.
This ratio is called the communality for a given sample and is the amount of
variability retained by the reduced space divided by the total variability represented
by that sample in real space. Figure 42.4c presents a few communality trends for
arbitrary samples picked from the test data set. The collection of communalities for
a given number of retained eigenvectors can be scanned to look for anomalies that
may represent problematic data or the collection can be binned and plotted to assess
the range of problems. In the past, a general ‘rule of thumb’ was that, scanning the
columns of orthogonal coordinates (loadings) from the fewest to the highest number
of end-members, the first time that approximately 5% or less of the data had
communalities less than 0.99 and the coordinates had values less than 0.5, then that
number of end-members was near the upper range for the maximum number of
end-members. The reality was that lower communalities might be due to noise,
measurement error, recording error, or it might be the hint of an additional
end-member(s) which generally meant it could be more difficult for the modeling
programs to define. Johnson (1997a, b) used the insight that by looking at plots of
the back-calculated variables to the raw variables, further insights can be gleaned
especially by those that want to visualize the ‘pile’ of numbers described earlier.
Figure 42.4d displays some of those plots for a single variable. These plots have
been called Johnson plots in the programs described later in this report.

Finally, if the assumption is that what is not included is in fact noise, there might
not be enough information available that can be used to define any additional
end-members. In such a case, the distribution of the variability relative to each
‘removed’ eigenvector can be examined. This is usually done by looking either at
the ‘coordinates’ of the removed eigenvectors (similar to looking at the principal
component loadings in Principal Components Analysis) and using external tools
such as JMP Pro (1989–2017). The latest programs create appropriate data tables
for this step, and for all of the previous steps with key information, that can be used
in ancillary programs that have many more statistical functions and better graphics.
One such example might be to examine the behavior of the ‘removed’ eigenvector
coordinates to verify that the ‘removed’ eigenvectors do not contain meaningful
information (i.e. whether they can be considered noise and not pertinent to the
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overall model). The user would have to a priori establish criteria that defined noise
in terms of the individual data used and/or by some distribution parameters such
defined by mean and standard deviation, for instance.

42.2.2 Determination of the Composition
of the End-Members and Proportions

Klovan and Miesch (1976) developed the program QMODEL based on Miesch
(1976a) in order to define the composition of the end-members and calculate the
proportions relating each individual sample to this set of end-members. Given the

Fig. 42.4 An example of the scree plot from the test data where the number of eigenvectors
retained are plotted against individual eigenvalues (a). A plot of the CD’s for the test data shows
how each variable contributes to the overall choice of the number of end-members (b).
Communalities for four samples are presented for the range of eigenvectors retained (c). Collection
of Johnson plots showing the visual fit relative to a single variable as the number of end-members
(EM) has increased (d)
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choice of the number of end-members normally based on EXTENDED CABFAC,
the procedure to define the compositions and proportions (oblique coordinates of
the space defined by the end-member axes) is strictly linear algebra. The mathe-
matics used up to this point is well defined in Miesch (1976a). QMODEL was
designed to be a data modeling program that required interaction with the user.
A discussion of these approaches and other alternatives can be found in Clarke
(1978). There were several ways for this program to define end-members:

(1) Use the retained eigenvectors as end-members (principal factors)
(2) Use the VARIMAX axes as the end-members (VARIMAX factors)
(3) Use Imbrie’s oblique end-members (the extremes in the reduced space—

EXNORC routine)
(4) Use the extremes as defined by the back-calculated extremes in the raw space—

the EXRAWC routine
(5) Define the end-members by the row indices of the set of samples (e.g. use the

5th and 12th sample as end-members)
(6) Define the actual composition of each of the end-members (these would nor-

mally be a set of end-members defined in the raw metric that the user would
want to test)

(7) Externally define the end-members by defining the VARIMAX coordinates
(loadings)—this would normally be done when the user has made multiple
plots of the data in VARIMAX space

For each of the choices in the original QMODEL program, correct choices
produced end-members that were realistic (defined by acceptable variables in the
raw data space) and by proportions that were between 0.0 and 1.0. Problems arose
with many data sets when the raw end-member compositions were unrealistic and/
or the proportions were out of range. This problem is commonly encountered when
there are many variables and samples which makes visualization of the location of
the potential end-members difficult at best. To that end, new modeling approaches
were devised that gave some automation toward the definition of proper
end-members and proportions.

Full et al. (1981, 1982) devised two alternative methods that involves an iterative
scheme that started with one of the original QMODEL choices above or with fuzzy
cluster centers (Bezdek et al. 1984), and then allowed the program to define
end-members external to the data, check their proportions for viability, change if
needed the set of end-member compositions to the nearest viable location, and
repeat the process until either the program shows no convergence or an acceptable
solution is reached. The goal was to determine appropriate sets of end-members
closest to the data cloud defined by the samples. This may be likened to trying to
minimize the area or hyper-area that represents the planar/hyperplanar convex hull
defined by the end-members. The computer code, along with some bug fixes to the
EXRAWC and EXNORC subroutines, can be found in the appendix of Full (1981).
A general discussion of these methods and their applications at the time can be
found in Ehrlich and Full (1988). Alternatives to the aforementioned approaches
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can be found in Leinen and Pisias (1984) and Weltje (1997). Insights into the
appropriate applications of these algorithms and recognizing how to detect prob-
lems with the underlying model were discussed in Williams et al. (1988a, b, Chaps.
15 and 19). Optimized data binning for continuous distributions that improved the
results of these algorithms were presented in Full et al. (1984).

42.2.3 The Renaming to Polytopic Vector Analysis

In the early 1980s, given the changes to the original CABFAC and QMODEL
programs, the approach was renamed SAWVEC (South Carolina and Wichita
Vector Analysis) and sometimes simply VECTOR. It was the recognition that the
algorithms were dominated by vector algebra that prompted the name change. Circa
1990, the exact same approach was further renamed Polytopic Vector Analysis and
applied under that name in Evans et al. (1992) and in many of the references
mentioned in later in this report. Around this time, Sterling James Crabtree, then at
the University of South Carolina, translated the FORTRAN IV code of Full (1981)
into the C programming language and developed a Windows interface and ulti-
mately called the program PVA. This program can be recognized by the fact that
the first step after starting the program was to resize the introductory window.

The use of the term polytope has been problematic for this author even though
the term was used in the original Full et al. (1981) algorithm. The field of polytopic
mathematics has been around for over a century and was generally formulized by
Coxeter (1948, 1973). Coxeter assumed that a polytope was a geometric construct
in 4 or more dimensions with the degenerate cases being the point in 0 dimensions,
the line segment in 1 dimension, the polygon in 2 dimensions and polyhedron in
3-dimensions representing polytopes of dimension 0, 1, 2 and 3 respectively.
A search of the literature on polytopes shows that this field of mathematics is rich in
various definitions of a polytope, depending for instance on whether you are talking
about a convex hull in n-dimensions or more complex surfaces as in star-type
polytopes. It is clear that for the geologist this can be a confusing landscape to
travel through. A simplistic definition would be that a polytope is an n-dimensional
geometric figure (n > 3) whose sides are planes or hyperplanes. The implicit
assumption is that a polytope has some kind of volume or hypervolume. Henk et al.
(1997) even developed equations for calculating this volume or hypervolume for
many types of regular polytopes.

If a polytope can be considered as a region of n-dimensional space that is
enclosed by hyperplanes (Coxeter 1973), then that causes problems for linear
unmixing. If we consider a vector emanating from a point outside that region and
look at the potential intersections of that vector with the polytope, the only pos-
sibilities for unique points would be if the vector intersected the vertices of the
polytope. If the vector intersected a side, there could possibly be two or more points
of intersections which would cause havoc with the uniqueness aspects of the
unmixing model. The reality is that in the non-constant sum model, regardless of
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the number of dimensions (end-members), the data fall on a hyperplane when the
number of dimensions is greater than 3. As we will see later, it is this fact that the
extension of all of the previous algorithms to non-constant sum data can be realized.
Because of the confusion associated with the term ‘polytope’ relative to the
understanding of the previously described algorithms, they have been renamed
Hyperplanar Vector Analysis (HVA).

42.2.4 Review of the Applications of Constant Sum
Unmixing

The CABFAC, EXTENDED CABFAC-EXTENDED QMODEL, SAWVEC,
VECTOR, PVA algorithms and programs (henceforth referred to as HVA family of
algorithms) have found application in many geologic disciplines. Some of the
earliest studies have involved the analysis of size data in both nearshore and
lacustrine environments. These include the work of Klovan (1966) and Solohub and
Klovan (1970) using traditional sieved size data. Fillon and Full (1984) used
specialized equipment to define the size of particles on an individual basis and
defined 5 different sources of deep sea sediment. As pointed out in Fillon and Full
(1984) and Full et al. (1984), the success or failure of size analysis depends on the
optimization of the size data using transforms such as the maximum entropy
method.

In the field of grain shape analysis, the heart of the analytic scheme was the
constant sum unmixing algorithms described above. The studies included sediment
from Monterey Bay, CA (Porter et al. 1979). Brown et al. (1980), Reister et al.
(1982), Mazzullo et al. (1982, 1984), Hudson and Ehrlich (1980), Smith et al.
(1985), Tortora et al. (1986) and Evangelista et al. (1986, 1994, 1996) looked at
sediment distributions along beaches, barrier islands, shelf and abyssal plains.
Murillo-Jiménez et al. (2007) examined the sediment from a relatively large region
along the southern coast of Baha California, MX. Material from more lithified
material was studied by Mazzullo and Ehrlich (1980, 1983) and Civitelli et al.
(1992). El-Awawdeh and Full (1996) looked at changes in key morphology in
Florida Bay over time. The methods used in those studies were reviewed in Ehrlich
and Full (1984a, b) and Zhao et al. (2004).

The biologic morphology and fossil assemblage scientists were early adapters of
the HVA family of algorithms. Healy-Williams (1983, 1984) and Healy-Williams
et al. (1997) worked with forams, Burke et al. (1986) with ostracodes and Kens-
ington and Full (1994) with scallops. Williams et al. (1988a, b) looked at corre-
lations of foram shapes with isotopic signatures. Assemblages of microfossils were
unmixed in Gary et al. (2005) and Zellers and Gary (2007).

A major area of investigation using the HVA family of algorithms deals with
environmental science. Detecting contaminates in soils and identifying their sources
was reported by Ehrlich et al. (1994), Wenning and Erickson (1994), Doré et al.
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(1996), Jarman et al. (1997), Johnson (1997a, b), Huntley et al. (1998), Bright et al.
(1999), Johnson et al. (2000, 2001), Johnson and Quensen (2000), Nash and
Johnson (2002), Nash et al. (2004), Barabas et al. (2004a, b), Magar et al. 2005,
DeCaprio et al. (2005), Towey et al. (2012), Leather et al. (2012) and Megson et al.
(2014). The Battelle Memorial Institute (2012) has listed PVA in their handbook for
determining the sources of PCB in sediments.

The HVA family of algorithms is critical for the field of PIA (Petrographic
Image Analysis). The literature includes Ehrlich and Horkowitz (1984), Ehrlich
et al. (1984, 1991a, b, 1996, 1997), Ross et al. (1986), Scheffe and Full (1986), Full
(1987), Etris et al. (1988), McCreesh et al. (1991), Ross and Ehrlich (1991), Ferm
et al. (1993), Bowers et al. (1994, 1995), James (1995), Carr et al. (1996), Yannick
et al. (1996), Anguy et al. (1999, 2002) and Sophie et al. (1999).

Igneous rock researchers have also been an adapter of these unmixing algo-
rithms. These include Horkowitz et al. (1989), Stattegger and Morton (1992),
Tefend et al. (2007), Vogel et al. (2008), Deering et al. (2008), Barclay et al.
(2010), Szymanski et al. (2013), Lisowiec et al. (2015) and most recently by
Blum-Oeste and Wörner (2016).

The unmixing of sources of oil using the HVA algorithms has been reported by
Collister et al. (2004), Van de Wetering et al. (2015), Abrams et al. (2016) and
Mudge (2016). The correlation between stratigraphy and chemical stratigraphic data
was explored by McKenna et al. (1988). “Quasigeostopic potential vorticity” was
explored in Evans et al. (1992). Mason and Ehrlich (1995) looked at aspects of well
logs for basin exploration (1995). Full and James (2015) used the HVA
(non-constant sum version) to decompose a large data set consisting of exploration
data in order to better assess exploration and exploitation risk. At least two patents
have mentioned using the HVA family of algorithms for analysis of the data derived
from their process (Shafer and Ehrlich 1986; Nelson et al. 2013).

The above literature is by no-means the entire community of users of the
unmixing approach began by Imbrie (1963). There have been verbal reports of
researchers doing work with Shakespeare’s plays, classifying business reports,
analyzing social data and even applying these approached to marketing data. The
success or failure of these studies cannot be directly ascertained, but represent some
interesting applications.

42.3 Non-constant Sum Data and Algorithms

The previous sections, for the most part, dealt with rows of data whose row sum
was the same or very similar for each sample (vector). This type of data is merely a
subset of the data commonly encountered in the geologic sciences and, if you want
to use the previous algorithms, you have to potentially degrade your data by
transforming it to percentages or some other appropriate singular value. Oftentimes,
this involves removing the absolute quantity involved with each sample. For
example, if you have six glasses and pour into each glass a variable amount of three
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solutions, some glasses might contain a greater volume and some a lesser volume—
here the quantity of each solution might be important. The concept of unmixing
might still be appropriate but would only be accurately defined in terms of
end-member compositions and sample proportions in very special cases that will be
discussed below. With petrographic image analysis which heavily uses the
unmixing algorithms, two collections of imaged thin sections with vastly different
porosities would ultimately have equal constant sum smooth-rough distributions
(Fig. 42.5). Petrophysical logs, formation depths, seismic parameters and other
petroleum related data are mostly non-constant sum in nature. There are many other
types of data where the concept of mixtures and unmixing can be validly applied.

What happens when you try to apply the constant sum programs to inherently
non-constant sum data? This topic was partially addressed by Klovan (1981)
without addressing the application of determining end-members and proportions
using the techniques described by Full et al. (1981, 1984). In his paper, Klovan
notes that, if the data can be approximated by a plane or hyperplane parallel to the
constant sum plane, then the aforementioned algorithms can be appropriately
applied. However, Klovan (1981) acknowledges problems when the surface defined
by the non-constant sum data is not parallel to the unit constant sum plane. Some of
the problems can be demonstrated by a simple diagram in two dimensions
(Fig. 42.6). Note that the midpoint of the non-constant sum segment does not
correspond to the midpoint of the constant sum plane which would be the pro-
portions reported for this point by the computer codes. Using some of the usual
functions to create constant sum data that are available in the program would not
help matters. A more complex series of transformations using trigonometry could
be easily developed for 2 or 3 dimensions but would be difficult to visualize and
cannot be easily generalized to n dimensions. Also note that Fig. 42.6 represents an
example in two dimensions which intersects the two axes making the determination
of end-member compositions a bit easier; they would be represented by the
end-points of each line and whose compositions would be the raw data points
defining these end-points. If end-members needed to be defined beyond the data

Fig. 42.5 An example of two idealized images that would produce the same smooth-rough
distributions in the petrographic image analysis system described in Ehrlich (1991a, b). Note that
in image a, the porosity would be much greater than image b which would greatly affect the
calculation of permeability and other petrophysical variables
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cloud, the definition of the end-member compositions would be very difficult when
there are more than 3 dimensions.

How to deal with the non-constant sum problem was solved in the mid-1980s
and has been used in petroleum industry projects and for research projects for the
Department of Defense. The code was initially run on a 386-processor with
387-co-processor as well as IBM mainframes. It is only recently that the computer
code has been written for Windows operating system with a Windows GUI. The
abstract concept behind the approach to dealing with this type of data is to rec-
ognize that ultimately any mixing problem deals with data on either a line segment
(in 2-d), a plane (2 or 3-d) or hyperplane in more than 3 dimensions. The goal then
is to define that hyperplane and translate/rotate the data to a plane/hyperplane that is
parallel to the unit constant sum plane where we can apply the usual constant sum
approaches. Afterward, any time we want to know what the raw compositions are,
we reverse the translation/rotation to bring us back into the original metric. In this
way, the earlier approaches are not abandoned but can be efficiently extended to
almost any other data that can be modeled as a mixture.

The procedure for this translation/rotation is the following:

(1) Remove the mean from the data. This is equivalent to the first step of principal
components (Davis 2002; Draper and Smith 2014). The visualization for this
step is that the axes defining the raw data are translated to the mean of the data
with no loss of information.

Fig. 42.6 A simplistic example of some of the issues associated with using constant sum
algorithms with non-constant sum data. The unit constant sum line is represented by the solid line
passing through the points (1, 0) and (0, 1). The non-constant sum data is represented by the solid
line at an oblique angle to the constant sum plane. The mid-points (0.5, 0.5) proportion of each line
is represented with a symbol. Note that the extended unit vector (represented by the dashed line)
that represents the midpoint of the constant sum system is divergent from the same unit vector that
passes through the mid-point of the non-constant sum line segment
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(2) An eigenvector rotation is performed on this data. If we were to divide the
variable standard deviation by each corresponding row of the matrix defined
from the previous step above before this eigenvector rotation, we would have a
standard principal component analysis. Since we have not done so, we have not
altered the absolute position of the raw data in the data cloud nor the variance
associated with the raw data—no loss of information. It should be noted that
this step of the analysis is performed by the SVD computer algorithm (Golub
and Reinsch 1970) programmed to use quad precision (128 bit) to minimize
any information loss and to be able to run large raw data matrices. The rest of
the HVA program currently runs in double precision.

(3) Create a new matrix G with the following definition:
Letting ANV = 1/NV where NV is the number of variables and ANX = SQRT
(1−ANV), then G is defined as an NV × NVmatrix with every element−ANV/
ANX except along the main diagonal where the element is (1 − ANV)/ANX.
Note that the sum of squares of each row element is 1 and each of the elements is
orthogonal and represents spanning vectors for the constant sum plane.

(4) Using the Gram-Smith orthogonalization procedure (Cheney and Kincaid
2008), orthogonalize the matrix defined in the previous step. Call this matrix
G0.

(5) Create a new matrix G* where G* = G0 * B where B is the set of previously
defined eigenvectors in step 2. Note that since G* is an orthogonal matrix, then
G*−1 = G*T where T is the notation for transpose (this fact is well known in
mathematics: see for example Schwartz 2011). G* and G*T gives us the
mechanism to go from the raw data space to a plane parallel to a constant sum
plane. However, since this new reference system also contains the origin, the
addition of a constant value will translate the plane/hyperplane away from this
origin by a constant value to a position parallel to the constant sum plane/
hyperplane. In the program, this constant value is called AVAR and, based on
experience, has been set to 2 * NV * (smallest value of the G* rotated coor-
dinates) or 1.0 if this number is lower than 1.0.

In more simplistic terms, what we have done is to create an NV x NV matrix
(NV = the number of variables) that will be used to rotate the raw data in order to
create a one-to-one correspondence with a set of points in a plane/hyperplane parallel
to a constant sum plane/hyperplane. This matrix was orthogonalized and the
application of this rotation and translation results in the loss of no information. Since
this is an orthogonal matrix, the transpose of this matrix is the inverse of the matrix
and gives us the function to go from the constant sum hyperplane to the raw data.
These functions allow for properly defined proportions and end-member composi-
tions whether the end-members are contained in the data or not. Figure 42.7 illus-
trates what the procedure is doing in general.

The constant sum routines can then be applied as they were before only using the
G* and G*T matrix defined above to move from the raw data hyperplane to the
constant sum hyperplane with no (or minimum loss due to computational error) loss
of information. This approach capitalizes on more than a half-century of previous
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algorithmic and programming experience. Furthermore, the appropriateness of the
unmixing model in non-constant sum space can be checked by looking at the set of
eigenvalues—data that do not fall on the mixing hyperplane will have a value other
than 0.0 for the last eigenvalue. Additionally, by checking the raw data on a
sample-to-sample basis with its equivalent location in the constant sum hyperplane
via a similar function to the communality will allow the user to examine potentially
aberrant data.

As a demonstration sample, using the previously defined test data set, we can
compare the end-members and proportions when they are subjected to a constant
sum approach (data was transformed to 100%) and the non-constant sum approach.
The set of end-members are shown in Table 42.1 and randomly selected propor-
tions for 10 of the original 296 samples are tabulated in Table 42.2. This data set
will be made available from the GXStat website (www.GXSTat.com). Note that
these data contained the end-members as samples and therefore no iterative
schemes such as those described in Full et al. (1981, 1984) were used. It should be
noted that, for the most part, the end-members are not that extreme compared to
potential test end-members that could have been chosen. Mathematically, this is
saying that, with the test data used in this example, most of the variables in the
mixing hyperplane lie in portions of that hyperplane which can be modeled as
constant sum (i.e. take away the handful of variables that lie in a section of the
hyperplane that is most oblique to the constant sum plane, and the data might be
able to be modeled using the constant sum algorithm). In the more common case

Fig. 42.7 A 2-dimensional representation of the procedure to define the G* matrix procedure
described in the text. Note that in 2-dimensions, the first eigenvector defines the direction of the
line segment and the second the normal to this segment. The red axes represent the first
eigenvector and the normal to the constant sum line. These axes are then translated to the mean of
the non-constant sum data cloud defined by the green diamonds. The blue axes represent the first
eigenvector and the normal to the non-constant sum line. This set of axes will be orthogonally
rotated to the position of the constant sum axes (dotted axes), (i.e., the raw data will be defined by
a new set of coordinates). Mathematically, this procedure will not result in information loss
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where end-members need be defined external to the data cloud, the results would
have been potentially far off and confused if the constant sum algorithm was
applied. Also note that if the user did use the constant sum routines to define the
composition of the end-members and either manually extracted the raw data of an
internal end-member or the ‘nearest’ actual point (defined by the raw data) to the
external end-member, it would be difficult to know how these points relate to all of
the other data samples—the user would simply not know if all the data truly fall on
a mixing plane or hyperplane. Finally, because HVA rotates the data to a plane
parallel to the constant sum plane, when the data are inherently constant sum, no
new program is needed.

Finally, it should be noted that this non-constant sum model will work for any
mixing system that can be modeled as a plane or hyperplane. The dimensionality of
the hyperplane must be less or equal to than the number of variables otherwise there
will not be a unique solution to the end-member and proportions problem. This
does bring up the case where a three end-member solution (defined by a triangle) in
two dimensions can be solved using these algorithms. The G* rotation described
above can potentially produce a plane or hyperplane that intersects with the origin
defining an end-member consisting of the origin with (0, 0, …) as its composition.
The interpretation of the origin as an end-member has been successful in previous
studies when this situation has been encountered. It can be, however, a tricky
proposition depending on the type of data being analyzed. It might be useful to
substitute a value close to the origin for the definition of that end-member instead of
using the origin as an end-member composition.

Areas of application of this approach have included chemo-stratigraphic data,
correlation and mapping of wireline well logs, unmixing of oil compositions pre-
serving volume of source material, determination of various forms of risk in
exploration schema, correlating biologic assemblages to seismic stratigraphy, and
determination of ‘sweet spot’ locations for oil exploitation, to name a few.
Unfortunately, the results of these reports remain confidential. It is anticipated that
these and new applications will be reported in the future in various literature.

42.4 Summary

Fifty years of research and development have given the geologic community a
useful tool for the analysis of mixtures. It is anticipated at this time that this
approach will last well into the future, especially since the program will be made
available to anyone in any field they want. It should be noted however, that there
are still untested areas of research in this field. The most appropriate approach for
the definition of extreme end-members is still an open discussion. Generally,
researchers have been looking at the extremes of the data and not looking so much
at the bulk of the data. While much of the variable density of the raw data may be
due to localized over-sampling problems (usually, we geologists sometimes just
analyze the data we have!), there are other methods such as FUZZY clustering (Full
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et al. 1984; Bezdek et al. 1984) and algorithms that use FUZZY variables to define
data density in terms of sets of point, lines, planes, hyperplanes and various
n-dimensional spaces (Bezdek 1981).

Another area that needs some additional work is the definition of new criteria
that will allow the various iterative schemes to know when the ‘best’ solution is
achieved, when there might not be a complete convergence. In terms of computer
programming, what would be beneficial is to be able to define one or more ‘fixed’
end-member(s) (the number being less than the original number of chosen
end-members) and let the program determine other potentially viable end-members
using the DENEG iteration scheme (i.e. one or more end-members want to be fixed
in the analysis—the programs have always had ways of externally defining all of
the end-members). Additionally, defining how the end-members interact with the
modeled environment (such as when a geochemical component reaches a given
level and precipitates out of the system) would also be of great use. This has been
accomplished in the past by making alterations to the program, recompiling the
code and proceeding with the newly built custom program. Being able to run this
option without having to recompile would be quite useful. Another item on the wish
list would be to convert the program out of FORTRAN IV, although the current
program is very fast and FORTRAN has become a versatile programming lan-
guage. This author acknowledges that there are fewer and fewer people who can
program in this language, especially in the Windows environment. A language that
has a ‘better’ future would be of great advantage, especially since the programs and
algorithms may be used by a wider audience. Additionally, all of the mathematics
needs to be described in one place along with a user manual that describes in detail
not only all the options but also the whys and wherefores of particular options. It
should be noted that the program has a built-in user manual but does not go into
details of the more subtle nuances associated with the algorithms. These missing
discussions will be the topic of various discussions available on the GXStat website
(www.GXSTat.com). There is even some progress in producing an R version of the
program for those who want to incorporate this approach into their projects. This
flexibility will be of benefit to a large community of potential practitioners.

Finally, there is something that can be gleaned from the list of references. The
access of researchers to the HVA family of algorithms has been somewhat limited
by both changes in the computer industry (computer languages and graphic user’s
interfaces in addition to hardware) and by research association (i.e. who you know).
It is for this reason that the complete source code and compiled code for the past
algorithms and the HVA code discussed in this report will be made freely available
from the GXStat website (www.GXSTat.com) or directly from the author. This, in
addition to the test data set and additional research programs such as FUZZY
n-Varieties written by this author, will also be made available (in FORTRAN, of
course) through this outlet. This open access will allow others to contribute to the
mathematics and algorithms, making them even more useful for the next 50 years.
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Chapter 43
Pearce Element Ratio Diagrams
and Cumulate Rocks

J. Nicholls

Abstract While this chapter is about Pearce element ratios, I’ve included some
personal reflections as this book is a 50th Anniversary project of the IAMG. Pearce
element ratios, Felix Chayes and the Chayes medal, came together on September
11, 2001. As the recipient of the Chayes Medal, I was in Cancún, Mexico on that
fateful date to deliver a talk on Pearce element ratios. Pearce element ratios are
designed to model processes of fractionation and accumulation in igneous systems.
They are frequently used to extract information from analyses of rocks formed from
melts produced by fractionation—volcanic suites. Rock bodies formed from the
fractionated crystals—the cumulate rocks—have received practically no attention.
From the standard paradigm describing the formation of cumulate rocks, based on
studies of the Skaergaard Intrusion, one expects a predicted pattern of data points
on a Pearce element ratio diagram. Points derived from the mean compositions of
the units in the cumulate body should fall up-slope from the point representing the
initial melt composition on a diagram that accounts for the cumulate assemblage.
Points derived from the compositions of the inferred residual melts present at the
beginning of crystallization of a unit in the rock body should fall down-slope from
the point representing the initial magma. The distance between a point on the line of
a Pearce element ratio diagram and the point representing the initial magma
composition depends on (1) the size of the aliquot that crystallized to form the rock
unit and (2) the ratio of crystals to melt in the mush that solidified to form the rock
unit. Patterns extracted from computer simulations compared to analogous data
points from units of the Skaergaard Intrusion indicate that the crystal mushes that
formed the units of the Marginal Border Series had a smaller ratio of trapped melt to
crystals than did coeval mushes forming the Upper Border Series. Simulation
patterns further indicate that the LZa and UZa units of the Layered Series formed
from assemblages with larger ratios of melt to crystals than did the respective
coeval units, LZa* and UZa*, of the Marginal Border Series.
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Keywords Pearce element ratios ⋅ Cumulate rocks ⋅ Computer simulation
Skaergaard intrusion

43.1 Introduction

Blue skies and balmy temperatures graced a tranquil world when I entered the
lecture room of the hotel-conference center in Cancún, Mexico, venue of the 2001
International Association for Mathematical Geosciences (IAMG) meeting. It was an
early Tuesday morning and I was on my way to ensure the equipment worked for
the talk I was soon to deliver. I was looking forward to the day and feeling
honoured as the recipient of the IAMG Felix Chayes Prize for Excellence in
Research in Mathematical Petrology.

When the talk was over and people were thinking ahead to the coffee break and
upcoming lectures, we left the lecture room. Up until that moment, we were una-
ware that the world had changed: hijackers had crashed murder-suicide planes into
the World Trade Center in New York City. Those attending the meeting gathered
around a TV and watched the horror of the south tower collapse; smoke and dust
billowed down the streets of New York, chasing people as they ran for their lives.
The north tower collapsed a few minutes later. Hijackers crashed another plane into
the Pentagon, and a fourth had been brought down in a field in near Shanksville,
Pennsylvania just minutes away from its target in Washington, D.C. It was
September 11, 2001, referred to by nearly all as 9/11.

My talk on Pearce element ratio diagrams and their utility in evaluating petro-
logic hypotheses was largely forgotten, understandably, in the turmoil following the
events of that morning. Pearce element ratios and the events of 9/11 have been
inextricably linked in my mind since that terrible morning, which is why they come
together in this chapter.

Pearce element ratios were conceived in the last century (Pearce 1968), as were
the concepts and techniques needed to implement their application. Their defining
characteristic is a denominator formed from concentrations of elements that enter
the minerals crystallizing from igneous melts in negligible amounts. Pearce element
ratios have been used to model the evolution of melts in volcanic systems (see
Nicholls and Russell 2016 for recent applications and explanations of the concepts)
but they have not seen much service in modeling changes in the concomitant rocks
formed from the separated solids and the enclosed interstitial melts: the cumulate
rocks. Pearce element ratios can provide insight into the evolution of such
assemblages.
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43.2 Outline of a Cumulate Rock Paradigm

Petrologists have developed a paradigm for the crystallization of a single magma
body in a crustal magma chamber that explains many of the features of layered and
cumulate igneous rocks. This paradigm originated in features found in the Skaer-
gaard Intrusion of East Greenland (Wager and Deer 1939; Carmichael et al. 1974;
McBirney 1989a, 1996).

Cumulate bodies are often huge; the Bushveld Complex in South Africa has an
estimated volume between 370,000 and 1,000,000 km3 (Cawthorn and Walvraven
1998). Each unit forms by crystallization of a portion or aliquot of the melt in the
magma chamber at the time. The larger the unit, the larger the aliquot from which it
formed.

A cumulate body can be enclosed by a shell of finer grained rock petrologists are
wont to call a chilled margin. The standard inference is that the chilled margin
represents the initial magma and that the composition of the chilled margin closely
approximates the composition of the initial magma. However, the chilled margin of
a large body can be a boundary layer formed by the reaction of the corrosive
magma with the country rocks. If so, the composition of the chilled margin can
differ from that of the initial magma in a way that depends on the composition of
the country rock and on the extent of reaction between magma and country rock.
Nevertheless, chilled margins need to be considered as possible samples of the
initial magma.

43.2.1 The Skaergaard Intrusion

The Skaergaard Intrusion in East Greenland is one of the most studied rock bodies
on the face of the Earth. L.R. Wager discovered the intrusion in 1931 on a scientific
expedition. He returned in 1932 on another expedition and again in 1935–36 when
he organized and led the third expedition to map and study the intrusion. On this
trip, W.A. Deer accompanied him. Publications on the petrology of the Skaergaard
began with the report by Wager and Deer (1939). A facsimile of the report was
issued in 1952 with a new preface and a list of papers published since the 1939
publication. The list contains 46 references. One can find several hundred refer-
ences that target the Skaergaard in the literature published after 1952.

I never met Wager but I did meet Deer when he visited the University of
California, Berkeley during my time there as a graduate student. On a field trip, he
spoke briefly about working with Wager on the Skaergaard. Wager was a moun-
taineer and climber. In 1933, as a member of the British Expedition to Mount
Everest, he climbed to more than 8595 m, setting a record for a climb without
oxygen, a record that wasn’t bested until 1978. It the preface to the original report,
Wager and Deer wrote that the terrain was so demanding that the two-man mapping
parties had to traverse roped together, which lends credence to the story in which
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Deer was reputed to have said he woke scared nearly every day on the Skaergaard
because Wager took them up and down cliffs and slopes where Deer would never
go himself.

Significant contributions to Skaergaard petrology since the original Wager and
Deer report in 1939 have come from Wager (1960), Wager and Brown (1968),
Hoover (1989a, b), McBirney (1989a, b, 1996), Ariskin (2002), and Nielsen (2004)
among many others. As a result, the Skaergaard Intrusion has become a standard of
comparison against which the evolutionary paths of basaltic magmas are measured.

The major units of the intrusion are the Layered Series (LS), composed of
relatively horizontal layers, the Marginal Border Series (MBS) composed of rela-
tively steeply dipping layered rocks, and the Upper Border Series (UBS), com-
posed, again, of relatively horizontal layers of rock (Fig. 43.1). The layers in the
Layered Series and the Upper Border Series become approximately horizontal after
removal of a post-intrusion tilting (McBirney 1989a). The smaller units, Lower
Zone a, Lower Zone b (LZa, LZb), etc. (Fig. 43.1) are defined by mineralogical
changes. For example, the coeval units of the Middle Zone (MZ, MZ* and β) are
characterized by the absence of large, primary crystals of olivine (primocrysts)
(McBirney 1989a). Olivine primocrysts occur throughout the rest of the intrusion.

The stratigraphic nomenclature has slightly changed with time. Earlier workers,
for example, Wager and Deer (1939), Chayes (1970), Carmichael et al. (1974), and
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Fig. 43.1 Rock units of the Skaergaard Intrusion (modified from Nielsen 2004). The Layered
Series is interpreted to have formed by sedimentation of the crystallizing minerals onto the floor of
the magma chamber. The Marginal Border Series (Hoover 1989a, b) and the Upper Border Series
(Naslund 1984) are thought to have formed by plating of the crystallizing minerals on the walls
and roof of the magma chamber. Labels in parentheses are number of analyses used to calculate the
mean compositions of the rock units (McBirney 1989a)
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Naslund (1984) called the Marginal Border Series and Upper Border Series
(UBS) the Marginal Border Group and Upper Border Group. In addition, an
asterisk has been attached to the names of the units of the Marginal Border Series to
distinguish them from the units of the Layered Series.

The original floor of the magma is not exposed so the first rocks that formed on
the floor are not available nor are samples from UZc* in the Marginal Border Series
because of lack of outcrop (Hoover 1989a). The last or nearly last melt in the
chamber is believed to have been caught between the crystal mush of solids and
trapped melt that solidified as UZc* and the bottom of the UBS where the youngest
unit of the UBS, the γ3 unit, crystallized.

According to the paradigm, the rocks making up the intrusion formed by sedi-
mentation of the crystallized minerals on the floor of the chamber and by plating
minerals on the roof and walls. The solid assemblages that formed as sediments and
as layers of plated minerals change with crystallization stage as do the mineral
compositions. These mineral assemblages and mineral compositions found in the
bottom, sides and top of the solidified magma chamber can be correlated and a
stratigraphy of mineral assemblages and compositions provide coeval markers of
crystallization stage. The rocks making up the intrusion consist of the mineral
sediments and plated crystals plus melt trapped between the minerals; the trapped
liquids later crystallize, creating intercumulus assemblages that, with the primo-
crysts, make up the rock units that fill the magma chamber.

Properties not emphasized but usually implicit in this paradigm are the ideas that
the initial magma filling the magma chamber is uniform in composition and that the
compositions of successive melts in the shrinking chamber maintain uniform
compositions. These ideas may not be realistic. There may be compositional gra-
dients as well as temperature and pressure gradients in the melt that induce the
density currents that develop sedimentary structures, such as cross bedding, in the
crystal mush.

In addition, the sedimentation-plating paradigm fails to account for several
features of cumulate rocks, for example, repetition of stratigraphic units in the
sedimentary layers (Bons et al. 2015). Mush formation above the magma interface
(Bons et al. 2015) and double-diffusive convection in boundary layers (Huppert and
Turner 1981; McBirney and Noyes 1979; McBirney 1985) are processes postulated
to account for the repetition.

Processes behind the magma-mush front (post-cumulus processes, Sparks et al.
1985) can also affect the mineralogy and chemistry of the phases involved in the
evolution of the magma body. These processes include convection in the trapped
melt, compaction, and cementation. Cementation could produce significant chem-
ical changes in the cumulate rock. Large, optically continuous crystals (poikilitic
crystals) can be found enclosing previously formed primocrysts in both lava flows
and in cumulate rocks. In the Skaergaard Intrusion and larger cumulate bodies, an
interconnected crystal of pyroxene or plagioclase often fill the interstices between
the primocrysts.

One infers the primocrysts were originally enclosed in a melt with the same
composition as the melt that filled the magma chamber at the time and that melt was
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trapped between the primocrysts on the boundaries of the magma chamber. On
crystallization of the interstitial melt, a single crystal can grow, fill the intercon-
nected spaces, and displace the trapped melt. The melt, after undergoing
post-cumulus processes, will differ in composition from the initially trapped melt.
This modified melt could be expelled from the crystal pile and mix with the magma
in the chamber, changing its composition. The large poikilitic crystals left behind
would be part of the cement that holds the rock together.

Granted that processes in front of and behind the crystallization boundary can
affect the resulting cumulate rock, the questions are: how effective are they in
changing the rock composition and do they have a detectable influence on the
composition of the melt in the chamber?

When the trapped melt crystallizes, permeability decreases, flow of melt from
the cumulate mush slows, and its potential to change the composition of the melt in
the magma chamber is lowered.

The difference in composition between the trapped melt and the melt in the
magma chamber affects the composition of a mix of the two. If the trapped melt
differs only slightly from the composition of the melt in the magma chamber, then
the composition of a mix will differ from that of the composition of the melt in the
magma chamber by a small amount, especially if the amount of trapped melt added
to the mix is small.

Melt trapped in the crystal mush close to the crystallization boundary will be
close in composition to the melt in the magma chamber. Farther from the boundary,
the compositional differences will be larger. However, post-cumulus processes will
act to decrease the volume of the trapped melt farther from the boundary. Processes
like compaction, adcumulus growth (crystal growth on the surfaces of the primo-
crysts exposed to the interstitial melt), and cementation.

Expulsion of the trapped melt from the crystal mush could change the chemical
composition of the melt in the magma chamber; however, the physical setting and
processes could work in concert to keep the changes small.

Magma mixing, magma recharge, and magma mingling are labels for similar if
not nearly identical processes. Simply put, the terms label the incorporation of one
magma into another. If the invasive magma has a different composition than the
original, the final body will have a different composition from the original
(Anderson 1976; Carmichael 2004). Again, the effect of mixing on the chemistry of
the combined magmas depends on how different the compositions are. The greater
the differences, the greater the effect.

43.3 Pearce Element Ratio Patterns for Cumulate Rocks

The data to test any model of cumulate rock formation, Pearce element ratio or
otherwise, comes from geologic maps, mineralogy, rock and mineral compositions,
and rock textures. The more features of the data a model can predict, the stronger
the model. If the model conforms to the data, the model is accepted as a description
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of the implied process that formed the rocks. If the model does not conform to the
data, the model is rejected as an explanation (Nicholls and Russell 2016).

The numerators of the ratios plotted on the rectilinear axes of a Pearce element
ratio diagram reflect the chemical changes in the melt-solid system caused by
segregation and accumulation (sorting) of a specified mineral assemblage. Speci-
fication of the mineral assemblage allows us to create a model such that the
compositions of melts and solid assemblages will fall on a line with the model
slope. Only one rock composition is needed to locate the model line in Pearce
element ratio space. The other analyses in the set of rock analyses can then be used
to test the model. The specifics of the model dictate the slope of the line. Usually,
the slope is one by design. Consequently, we can talk about up-slope and
down-slope directions from a fixed point on the model line. If we select the point
representing the chemistry of the melt present when the rock unit begins to form as
the fixed point, then a point representing the chemistry of the derivative or residual
melt will fall down-slope from the fixed point. Points representing the chemistry of
crystal-melt mixtures (crystal mushes) will fall up-slope from the fixed point.

The general pattern expected for data points representing melts from a system
undergoing sorting are known (Pearce 1968; Russell and Nicholls 1988; Nicholls
and Russell 2016). The details of patterns expected in the data collected from
cumulate bodies have not been explicitly investigated. A simple computer simu-
lation of accumulation processes can delineate at least some of the expected pat-
terns. Details of the simulation are described in the appendix.

The results of a simulation for a system with the composition listed in Table 43.1
are shown on Fig. 43.2. The Pearce element ratios plotted on Fig. 43.2 are:

0.8 Al + 0.5Mg+ 0.4Cað Þ ̸Kversus Si ̸K

The diagram was designed to describe the Pearce element ratios in the melts
generated by fractionation (loss) of anorthite (CaAl2Si2O8) and forsterite (Mg2SiO4)
from the initial melt. The Pearce element ratio coordinates of the initial melt are
shown with a black star on Fig. 43.2. The ratios derived from the compositions of
the solids plus trapped melt are shown by filled circles.

Table 43.1 Composition of
the melts in the simulated
crystallization processes

Element Melt 1 Melt 2

Si 50% 52%
Al 20% 19%
Mg 15% 14%
Ca 10% 10%
K 3% 2.5%
P 2% 2.5%
Size 10000 m units
Aliquot 25%
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As expected, all the data points generated by the simulation fall on a line with a
slope of one. The residual melts do produce points on the line that fall down-slope
from the point representing the initial melt. Points representing the compositions of
the accumulated solids and trapped melt and do plot up-slope from the point
representing the initial melt (Fig. 43.2). These relationships are simply examples of
the lever rule of phase diagrams (see Bloss 1994, pp. 304–306).

A second model is shown with a dashed line on Fig. 43.2. If the magma chamber
undergoes recharge by a similar but not identical magma, we would expect the
same ratio pair to describe the variation produced by crystallization of the second
melt. The composition of the second simulated melt that produced the data points
shown by squares is listed in Table 43.1. Mixing and crystallization of the mixed
melts would produce data points falling between the two model-lines.

If the coordinates of the fixed point on a Pearce element ratio diagram are (xi, yi),
then the distance between the fixed point and another point on the model line with
coordinates equal to (xj, yj) will be given by:

10 20 30 40 50 60 70
0

10

20

30

40

50

60

Initial

Al=25
Al=10

Al=50

Aliquot = 50%
Aliquot = 10%

1/10

1/1

1/2

1/4

1/10

1/4
1/2

1/1

Simulated Accumulation Model
Forsterite + Anorthite

Si/K

(0
.8

Al
 +

 0
.5

 M
g 

+ 
0.

4 
C

a)
/K Trapped melt + solids

1/10, 1/4, 1/2, 1/1: Ratios of trapped melt
to solid in the accumulated layer

Resid

Rk

Init

2nd Model

Fig. 43.2 Pearce element ratio diagram for crystallization of a simulated system containing Si, Al,
Mg, Ca, K, and P. Forsterite and anorthite are subtracted from the initial melt, leaving a residual
melt that is trapped in the solid assemblage. Rocks formed by the simulated process would be
composed of forsterite, anorthite, and solidified trapped melt (see appendix)

882 J. Nicholls



d= xi − xj
� � ffiffiffi

2
p

if the slope is equal to one and if the points representing cumulate assemblages fall
exactly on the model line.

Two quantities determine the distance of a point from the fixed point: the size of
the quantity of melt (aliquot) that crystallized to form the unit of crystals plus
trapped melt and the amount of melt trapped in the crystal mush. Figure 43.3 shows
how distance along the model line, aliquot size, and ratio of trapped melt to solid
are related in the simulated system.

The two variables, distance along the model line and aliquot size, work in
concert. The two are also quantities that can be extracted from sets of rock analyses
and from geologic maps. The relationship between the two can be described by
treating the ratio of the amount of trapped melt to the amount of accumulated
crystals in a single unit of the cumulate rock body as a parameter. On a plot of
aliquot size versus distance from the point representing the melt along the model
line, lines of constant ratio of trapped melt to solid in the mush fan across the
diagram. The smaller the ratio, the farther the line of constant ratio falls from the
x-axis (Fig. 43.3).

Approximations of the amount of trapped melt could be made from estimates of
petrographic modes (Chayes 1956; Nicholls and Stout 1986) of intercumulus
assemblages versus primocrysts in thin section. However, distinguishing adcumulus
growth from original growth material of the primocrysts is sometimes difficult. In
addition, modal variations must underlie the large chemical variations found in the
units of cumulate rocks (see below, Sect. 43.4). Consequently, petrographic
assessment of the ratio of the volumes of trapped melt to primocrysts would require
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looking at many samples to get a precise value for a unit in the intrusion. At the
present time, data to make a quantitative assessment of the agreement between
model values and precise estimates of the petrographic modes are not available.

43.4 Compositions of Units of the Skaergaard Intrusion

A challenge to the construction of viable Pearce element models of cumulate rock
formation arises from the chemical and mineralogical heterogeneity in the map
units. The compositions of the constituent units must be determined as the mean of
analyses from different locations in the unit. Mean values of the compositions and
standard deviations for each constituent were published by McBirney (1989a, 1996)
with data from Naslund (1984) for the Upper Border Series units. Dividing the
standard deviations by the square root of the number of samples gives the standard
errors of the means; the accepted measure of the uncertainty in a mean value.
Standard errors of the means are large compared to analytical uncertainty (compare
McBirney 1989a; Wright et al. 1975, p. 117). Analytical uncertainties are often two
orders of magnitude smaller than the standard errors of the means. To make the two
measures of uncertainty approximately equal, on the order of 10,000 samples would
have to be analyzed for each unit.

When evaluating a model by comparing values from the model with the data, we
expect certain criteria to be met if the model is successful. When testing models
treating volcanic rocks, we expect model values to agree with the analytical data to
within analytical uncertainty (Nicholls and Russell 2016; Nicholls and Stout 1988).
Implicit in this expectation is the assumption that a sample from a lava flow is
representative of the flow itself.

Estimates of the proportional volumes (Nielsen 2004) are shown on Fig. 43.1.
The proportions, expressed as percentages of the volume of the intrusion were
derived from the geologic maps of the body. It is worth explicitly noting that the
quantitative entity plotted on Fig. 43.1 is volume, not thickness as has been tra-
ditionally plotted on similar looking graphs. Distances along the parallel lines have
no real-world significance. The proportional volumes shown on Fig. 43.1 are not all
independent (Nielsen 2004, p. 519). This dependence is revealed on Fig. 43.1 by
the straight lines separating Layered Series volumes from the Marginal Border
Series volumes and the Marginal Border Series volumes from the Upper Border
Series volumes.

The abundant primocrysts in the intrusion are plagioclase, olivine, pyroxene
(high-Ca augite and low-Ca pigeonite since inverted to orthopyroxene), and Fe-Ti
oxides. The Middle Zone of the Layered Series, the Middle Zone of the Marginal
Border Series, and the Upper Border Series β-zone lack olivine primocrysts, their
place taken by low-Ca pyroxene.
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43.4.1 Pearce Element Ratios and the Skaergaard Intrusion

We would like a Pearce element ratio design such that the products of sorting of all
the mineral-melt assemblages in the intrusion would have compositions that gen-
erate points along a straight line with a slope of one. Unfortunately, nature prevents
construction of such a diagram. The stoichiometry of olivine, (Mg, Fe)2SiO4, and
low-Ca pyroxene, (Mg, Fe)2Si2O6, with their different ratios of (Mg, Fe) to Si lead
to an inconsistent set of algebraic equations in the design matrix (Nicholls and
Russell 2016; Nicholls and Gordon 1994). We can, however, design two diagrams,
one that accounts for sorting of olivine, plagioclase, augite, and Fe-Ti oxide and
another that accounts for sorting of low-Ca pyroxene, plagioclase, augite, and Fe-Ti
oxide.

Two ratio pairs that account for the abundant phases and their different com-
positions are:

[0.25 Al + 0.5(Fe + Mg) + 1.5 Ca + 2.75 Na]/K versus
(Si + 1.5 Ti)/K
(Olivine in the sorted assemblage)

and

[0.5 Al + Fe + Mg + Ca + 2.5 Na]/K versus
(Si + 3 Ti)/K
(Low-Ca pyroxene in the sorted assemblage)

Pearce element ratio diagrams for the two ratio pairs appear on Figs. 43.4 and
43.5. Figure 43.4 shows the diagram for olivine in the sorted assemblage whereas
Fig. 43.5 shows a diagram for low-Ca pyroxene in the sorted assemblage.

Fig. 43.4 Pearce element
ratio diagram designed to
show the effects of sorting
plagioclase, augite, olivine,
and Fe-Ti oxide (Usp75).
Accumulation of Ca-poor
pyroxene in addition to the
listed minerals would cause
data points to fall away from
the model line along trends
parallel to the arrow. The grey
ellipse represents the size of
the 1σ uncertainty in the
location of the data point for
UZb*
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The points on the diagrams were calculated from the mean values of the com-
positions (McBirney 1989a, 1996). On both diagrams, the points are distributed
along a trend with a slope of one but with considerable scatter; more scatter than
found in trends calculated for suites of cogenetic volcanic rocks (compare
Figs. 43.4 and 43.5 with diagrams in Nicholls and Russell 1991, 2016). The
Skaergaard data span a larger range of values than do data from volcanic suites
when plotted on similar Pearce element ratio diagrams. Data collected from basaltic
volcanic suites, when plotted on comparable diagrams, span approximately 50 units
(see Nicholls and Russell 1991). The Skaergaard data span approximately 250
units.

Although the number of analyses for several of the units in the Skaergaard
Intrusion is large enough to make the mean values relatively stable in the sense that
one more analysis would have a small effect on the mean, especially if the one
analysis were for a rock like the ones analyzed. However, the large standard errors
attached to the mean values opens the possibility that analyses of another set of
samples of the same size collected from the same unit could result in a different set
of means for the constituent oxide values.

Propagating the standard error of the means through the procedure for calcu-
lating the uncertainty in the location of a data point (Nicholls 1990b) produces large
ellipses of 1σ analytical uncertainty in the location of the data point. The smallest
ellipses for the data points shown on Figs. 43.4 and 43.5, belong to the points
representing the mean of the UZb* unit of the Marginal Border Series.

The sizes of the uncertainty ellipses render them useless for testing the model.
Almost any line with a slope of one will intercept the uncertainty ellipses. The
model cannot be rejected because of the scatter of the data points off almost any line
with a slope of one that we can pick.

Fig. 43.5 Pearce element
ratio diagram designed to
show the effects of sorting
plagioclase, augite, Ca-poor
pyroxene, and Fe-Ti oxide
(Usp75). Accumulation of
olivine in addition to the
listed minerals would cause
data points to fall away from
the model line along trends
parallel to the arrow. The grey
ellipse represents the size of
the 1σ uncertainty in the
location of the data point for
UZb*
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Although the data points on Figs. 43.4 and 43.5 fall along a trend with a slope of
one, the scatter about the trend precludes there being an obvious choice for a point
through which to draw a model line. We could draw lines with unit slopes through
every one of the data points but could not justify picking any one line over the
others.

We can, however, calculate the mean compositions of each series (LS, MBS,
UBS) by weighting the mean compositions of the units in the series by their
respective relative volumes. The points derived from the weighted means are
plotted as diamonds on Figs. 43.4 and 43.5. The points representing the weighted
means do fall on a trend with a unit slope and with less scatter than do the full set of
data points. It is a straight-forward procedure to find a line with a slope of one that
falls closest, in the least-squares sense, to the three points representing the weighted
mean compositions of the three series that make up the intrusion. The best fit lines
for the weighted means fall close to the respective points (Figs. 43.4 and 43.5), well
within any 1σ error ellipse. These lines we will use as our model lines.

The inclusion of olivine or low-Ca pyroxene in the model assemblages produces
no statistically significant difference in the efficacy of testing the models that I can
see. If the lines defined by the weighted mean compositions for the three Series (LS,
MBS, UBS) are the best models, then one would expect the points representing the
Middle Zone rocks (MZ, MZ*, β) on Fig. 43.4 to deviate by falling below the line.
They don’t fall farther from the line than do points for the other units. Rather, they
often fall closer to the line. Possibly, low-Ca pyroxene accumulated in the Middle
Zone units in insufficient amounts to be detected with the olivine-sorting model.

On Fig. 43.5, one would expect the points representing the units outside the
Middle Zone units to fall above a model line through points representing the Middle
Zone rocks. The dashed line on Fig. 43.5 is a best fit line with a slope of one and is
defined by the three Middle Zone values (MZ, MZ*, β). The data points for the
other units displayed on Fig. 43.5 are displaced as expected if olivine sorting
happened; they fall above the line.

The points representing the units (filled circles) fall in overlapping clusters along
a trend with a slope of one with the larger units of the Layered Series generally
falling up-slope from the points representing the Marginal Border Series units and
with the Upper Border Series points falling farthest down-slope. This distribution is
consistent with predictions from the computer simulations. The points representing
Series compositions (filled diamonds) are also distributed as predicted by the
computer simulation; the larger aliquot plots up-slope and the smaller aliquot
down-slope.

The trends followed by the data points on Figs. 43.4 and 43.5 are consistent with
the predictions of the models. Given the size of the uncertainties in the locations of
the data points, there is no evidence that more than one magma was involved in the
formation of the Skaergaard Intrusion.
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43.5 Melts of the Skaergaard Intrusion

Three categories of melt crystallized to form the Skaergaard Intrusion: the melt that
initially filled the magma chamber, the subsequent melts residual to each crystal-
lization stage, and the melts trapped between the primocrysts. Melts trapped in the
oldest part of a unit would have a different composition from melts trapped in the
youngest part of a unit. Melt trapped in the youngest part of the unit would have
the composition of the residual melt at the time of entrapment. Between crystal-
lization of the oldest and youngest crystals in the units, the trapped melt would have
compositions gradational between the two.

Any melt that existed in the Skaergaard crystallized long ago. Perforce, estimates
of their compositions and their nature must be inferred. Melts whose compositions
we can infer are those for the initial melt and the residual melts filling the magma
chamber at the end of the formation of each rock unit and the beginning of the next.

43.5.1 The Initial Melt

Pearce element ratios for estimated compositions of the initial melt are plotted on
Fig. 43.6. The initial melt composition should plot down slope from the point
representing the mean composition of the Layered Series. Estimates of the initial
Skaergaard magma have been made by Wager (1960), Hoover (1989a), McBirney
(1996), Ariskin (1999), and Nielsen (2004). Wager (1960) used a composition from
a sample from the chilled margin of the intrusion. Hoover (1989a) also used an
analysis from a sample of the chilled margin but complimented it with melting
experiments. Ariskin (1999) used thermodynamic modeling to make his estimates.
AA1 (Fig. 43.6) is his preferred value. Nielsen (2004) based his estimate on vol-
umes and average compositions complimented by comparison with chilled margin
compositions and compositions of Tertiary basalts found near the intrusion.
McBirney (1996) based his estimate on the mean composition of three samples
from the chilled margin.

The estimates made by Wager (1960) and Ariskin (1999) do not fit the pattern
we expect. A point representing an initial melt on a Pearce element ratio diagram
should plot down-slope from the point representing our best estimate of the bulk
composition of the intrusion (grey diamond, Fig. 43.6). I think it a tribute to the
acumen of the estimators that all the preferred values fall close to the model line
defined by the points representing the compositions of the weighted means of the
major units of the intrusion.

43.5.2 Residual Melts

In addition to values for the mean compositions of the rock units of the Skaergaard
Intrusion and estimates of the compositions of the initial melts, there are at least two

888 J. Nicholls



estimates of the compositions of the melt that filled the magma chamber at the time
the particular crystal mush was in place: (1) experimentally determined composi-
tions (McBirney 1996, red circles on Fig. 43.7) and (2) compositions derived
through thermodynamic modeling (Ariskin 2002, green triangles on Fig. 43.7).

Felix Chayes was a petrologist who used mathematics in innovative ways to
understand petrologic processes at a time when most petrologists knew little about
mathematics. Among his many contributions was a small text that enhanced our
understanding of the roles ratios can play in inferring petrologic processes (Chayes
1971). I met him but once at the 1967 meeting of the Geological Society of America
in New Orleans. I was one of a number grad students and academics gathered in a
night club. I later corresponded with him in the late 1980’s about the efficacy of the
correlation coefficient as a statistic for testing Pearce element ratio models. That
correspondence caused me to use the designed slope of the line on a Pearce element
ratio diagram as a characteristic of the model rather than a line fit to the data by
least-squares methods. The designed line can then be compared to the data. Hence,
one doesn’t need the correlation coefficient to evaluate Pearce element ratio models.
I think the same realization came independently to several others, notably Kelly
Russell and Cliff Stanley, at about the same time.

In 1970 Chayes published a scheme for calculating residual melt compositions in
the magma chamber and trapped in the mush during crystallization. His equation is:
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Mk+1 = M1 − ∑
k

j=1
PjXj
� �" #

̸ 1− ∑
k

j=1
Pj

 !
, 0 < k< n

where the Mi are vectors whose elements are a set of oxide values in the residual
melt and n is the number of units in the intrusion. M1 is the vector containing the
oxide values for the initial melt. The Pj are the volumes or proportional volumes of
the units in the intrusion. The Xj are the mean values of the oxides in the units of the
intrusion.

The values contained in the Mi, i > 1, depend of the values contained in M1.
Change the values in M1 and the values in Mi change.

All values for the initial melt, the M1, except those estimated by McBirney
(1996) generate negative values for some of the oxides in the Mk at later stages in
the evolution of the residual melts (k > 3). The Pearce element ratios for residual
melts generated with Chayes’ (1970) equation using McBirney’s (1996) estimate
for the values in the initial melt are shown with solid black circles on Fig. 43.7.

At any stage in the evolution of the Skaergaard Intrusion, the residual melt is
simultaneously depositing crystals on the floor, walls and roof of the magma
chamber, at least according to the simplest paradigm. The points to be compared,
then, to the simulated patterns are the weighted means of the coeval units. Pearce
element ratios for the three sets of residual melts: (Chayes 1970 algorithm;
McBirney 1996; Ariskin 2003) can be compared on Fig. 43.7. McBirney’s (1996)
estimates for the compositions of the residual melts at the end of LZa, LZc, MZ,
UZa, and UZb do not fit the expected pattern in that they plot up-slope from their
respective cumulate compositions. All of the points representing the residual melt
compositions estimated by Ariskin (2003) plot down-slope from the points

Fig. 43.7 Pearce element
ratio diagram showing the
locations of points
representing residual melt
compositions at the end of the
crystallization of the coeval
units of the Skaergaard
Intrusion. residual melt
compositions estimated by
McBirney (1996) and Ariskin
(2003), and points calculated
with Chayes (1970) algorithm
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representing their respective cumulate compositions as do residual melt composi-
tions calculated with Chayes’ (1970) algorithm. Only the latter however, fall in
sequential order, a pattern expected for a series of melts formed by fractionation of
a single initial magma.

43.5.3 Relative Amounts of Trapped Melt

We can make qualitative assessments of the amount of melt trapped in the
cumulates by plotting the relative volumes of the units in the intrusion against the
position of the Pearce element values along the model line (see Fig. 43.2).

Data points on Pearce element ratio diagrams need not fall exactly on model
lines, which makes calculating distance along the model line less straight-forward
than given in the formula above (see Sect. 43.3). To calculate distance from a point
representing a melt composition to a point representing a cumulate composition we
measure the distance along the model line between two points that are the closest to
each of the two points in question. The point of closest approach will be along a line
through the point and normal to the model line. An example is shown on Fig. 43.8
for the coeval Lower Zone units (LZa, LZa*, and α1). The points on Fig. 43.8
represent the initial melt composition (McBirney 1996, black star) and the mean
compositions of the units (McBirney 1996 coloured circles).
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Figure 43.9 shows the distances along the model line versus unit size expressed
as a percentage of the volume of the intrusion (Nielsen 2004). The left hand sides of
the triangles defined by points representing coeval units are approximately vertical;
in other words, the units whose points define the left hand sides of the triangles are
approximately the same size. On Fig. 43.3, the ratio of trapped melt to primocryst
in the crystal mush decreases upwards along a vertical line. If the same pattern
carries over to real-world data, then the amount of trapped melt, relative to pri-
mocryst amount, is smaller in the UBS units than in the MBS units.

The lack of independence in the estimates of the volumes of the units does not in
itself invalidate these conclusions. The estimates of the relative volumes may be
correct; we just have less confidence that they may be. Because we are using the
estimates in a qualitative fashion, the chances that our conclusions are reasonable
improve.

Contours of equal trapped melt to primocryst ratio have a positive slope on
Fig. 43.3, which illustrates the pattern of points in the simulation model. If the
pattern applies to the real world, the upper boundaries, with negative slopes, of the
triangles representing the coeval LZa and UZa units (red and yellow triangles)
cannot be parallel to contours of equal ratio. We infer, then, that for these two sets
of coeval units, the ratio of trapped melt to primocryst amount was smaller in the
MBS units than in the LS units.

It is unlikely coeval units of the LS and the UBS would have the same ratios for
trapped melt to crystals. Consequently, the lines drawn between points representing
LS and UBS units are probably not lines of constant ratio (compare Fig. 43.3).
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43.6 Pearce Element Ratios, Cumulate Rocks,
and September 11

Wager’s discovery of the Skaergaard Intrusion and his recognition of its signifi-
cance to igneous petrology and Pearce’s insight that led to Pearce element ratios
opened ways to decipher how cumulus rocks came to be. Understanding how these
rocks came to be can affect our lives. They host ore deposits of chromium, nickel,
and the platinum group elements (ruthenium, rhodium, palladium, osmium, iridium,
and platinum), elements required by our civilization. To know more about how they
came to be adds to our understanding of the Earth.

For nearly a decade I did little to extend the range of application of Pearce
element ratios. An invitation to contribute to a review paper by Geoscience Canada
led me to look at cumulate rocks through the lens of Pearce element ratios. Perhaps
the perspective articulated by Stephen J. Gould in a piece he wrote for Canada’s
newspaper, the Toronto Globe and Mail, shortly after the events of 9/11 (Gould
2001) is apposite. His point: evil events, like 9/11, can cause big changes in our
lives whereas many good events come in small packages. The good, however, by
their number, eventually outweigh the evil. Maybe application of Pearce element
ratios to the study of cumulate rocks can count as one of the small packages.

Acknowledgements Discussions with many people helped me learn about Pearce element ratios,
in particular, Kelly Russell, Cliff Stanley, Terry Gordon, and Alex Wilson. Thanks to the late Tom
Pearce for inventing Pearce element ratios.

Appendix: Computer Simulation

The simulation will be for a single step or stage in the processes that lead to the
development of a layered intrusion. The simulated system contains Si, Al, Mg, Ca,
K, and P. Crystallization produces forsterite and anorthite with proportions of the
two minerals constrained by the concentrations of Si, Al, Mg, and Ca in the melt.
A fraction of the initial melt crystallizes to produce a melt modified in composition,
some of which is trapped between the primocrysts.

Numbers that have to be specified to run the simulation are a composition for the
initial melt (im[0], im[1], im[2], im[3], im[4]) where the items in the initial melt
vector represent molar percentages of the elements: Si, Al, Mg, Ca, K, and P. The
size (S) of the melt in the simulated magma chamber is entered into the simulation
procedure, as is the percentage (P) of the initial melt, or aliquot that will supply the
forsterite and anorthite crystals in the layer. The size is equal to the number of
moles of the elements in the initial melt. The numbers of the different elements in
the aliquot will designated as (aq[0], aq[1], aq[2], aq[3], aq[4], aq[5]).

One could assume the simulated magma chamber was initially uniformly mixed
and filled with a homogeneous melt. If the composition of the system is known, the
simulation could be made deterministic to within two adjustable parameters if a
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thermodynamic component were included in the model. This is a consequence of
Duhem’s theorem (see Nicholls 1990a, 2000, 2013). One could also make it
deterministic by extracting the maximum amounts of forsterite and anorthite from
the aliquot. To add some variability into the simulation, we will sample the initial
melt to create the aliquot by following a constrained random number procedure.
P × S/100 random integers, rn, n = 1 … P × S/100, are generated from a uni-
form distribution between 0 and P × S/100.

If: 0 < rn < im[0] × P × S/100,
aq[0] = aq[0] + 1

else if: im[0] × P × S/100 < rn < im[0] × P × S/100 + im[1] × P × S/100,
aq[1] = aq[1] + 1

else if: im[0] × P × S/100 + im[1] P × S/100 < rn <
im[0] × P × S/100 + im[1] × P × S/100 + im[2] × P × S/100,
aq[2] = aq[2] + 1

else: im[0] × P × S/100 + im[1] × P × S/100 + im[2] × P × S/100 < rn <
im[0] × P × S/100 + im[1] × P × S/100 + im[2] × P × S/100 + im
[3] × P × S/100,
aq[3] = aq[3] + 1

and aq[4] = im[4] × P × S/100
aq[5] = im[5] × P × S/100.

The last two equalities ensure that the two conserved elements, K and P, enter
the aliquot in the same proportions as they are found in the initial melt.

From this new melt, forsterite and anorthite crystallize. The amounts of the two
phases that can be extracted from the new melt are constrained by the composition
of the aliquot. The amount of anorthite that can be extracted depends on the
numbers of Ca and Al elements in the melt:

if: aq 3½ �< aq 1½ � ̸2,
An= aq 3½ �

else An= aq 1½ � ̸2
The amount of forsterite depends on the number of Mg elements in the melt.
Fo= aq 2½ � ̸2
Using the amounts of anorthite and forsterite extracted from the aliquot, the

numbers of elements in a new melt (nm[0], nm[1], nm[2], nm[3], nm[4], nm[5]) are
calculated by:

nm[0] = im[0] – Fo – 2 An
nm[1] = im[1] – 2 An
nm[2] = im[2] – 2 Fo
nm[3] = im[3] – An
nm[4] = im[4]
nm[5] = im[5]

A melt with the new composition is then trapped between crystals to form the
crystal mush. Solidification of the mush produces a layer in the cumulate rock body.
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Chapter 44
Reflections on the Name of IAMG
and of the Journal

Donald E. Myers

Abstract This note is to highlight the transformation of the names of International
Association for Mathematical Geologists and its flagship journal Mathematical
Geology respectively into International Association for Mathematical Geoscientists
and Mathematical Geosciences.

When first approached about submitting something for the special volume I thought
the idea was a good one but was not sure what I might have to say that would be
relevant and of interest. Initially I planned to simply reflect on my year as
Distinguished Lecturer (2008) but somehow it didn’t seem sufficient. Instead I want
to reflect on three words in the name of the organization and also on the current title
of the journal, i.e. International, Association Mathematical, Geologists and Geo-
sciences. As anyone familiar with IAMG knows it was born in Prague in 1968 in
the midst of what turned out to be a momentous event but it also returned to Prague
to celebrate its 25th anniversary in 1993. I wasn’t one of that moderately small but
very influential group but I subsequently knew or still know many of them. I didn’t
really start working in the field until the early 1970s.

Prior to the 1970s I was only a mathematician but accidentally came in contact
with two other faculty at the University of Arizona, Y. C. Kim (Mining Engi-
neering) and De Verle Harris (Mineral Economics) as well as Art Warrick (Soils,
Water and Engineering). Hence I was beginning to “Associate”. Through those I
learned about G. Matheron’s work, met Frits Agterberg, André Journel and Shlomo
Neuman (Hydrology), developed some collaboration with USGS in Denver and
made plans to spend a sabbatical at the Centre de Géostatistique (Fontainebleau) in
the spring of 1981. Ghislain de Marsily spent the academic year 1979–1980 at the
University of Arizona in the Department of Hydrology. Through Art Warrick I
knew of the work of Richard Webster, I was fortunate to be invited to participate in
the NATO ASI at Lake Tahoe in 1983 and met many of the others in the very
important group in mathematical geosciences.

D. E. Myers (✉)
Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA
e-mail: myers@math.arizona.edu
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At this point it is important to note the change(s) that have taken place in the
name of the journal. Initially most of the membership would have been geologists
or mining engineers but clearly hydrology and soil science are a part of the geo-
sciences so that the interests and membership were expanding in scope. In fairly
short order geosciences grew to encompass “environmental sciences”, “geography”,
“ecology”, “image analysis”, “remote sensing”, “epidemiology”, “atmospheric
sciences” because the stress was on “geo” and not on “ology”. Papers in the various
soil science journals cited papers in the IAMG journal (and conversely), papers in
the various American Geophysical Union cited papers in the IAMG journal (and
conversely) and of course the petroleum industry was involved early with the
collaboration between Fontainebleau and Shell Oil. It is likely that a list of referees
for Mathematical Geosciences (and all the previous titles) would cross an ever
increasing list of countries and institutions as well as areas of interest.

Except perhaps in France the work of G. Matheron was not really known in the
mathematical/statistics community even though his signal paper appeared in the
J. of Applied Probability in 1973. Mathematical Reviews still doesn’t really have a
category for mathematical geosciences other than geophysics. The statistics com-
munity likewise was slow to recognize mathematical geosciences. Most of the
interest in Radial Basis functions either relates to solutions for partial differential
equations or approximation theory.

The various editors (and publishers) of Mathematical Geosciences have been
very interested in the impact ratings of the journal but it would be even more
interesting to tabulate the number of different journals not closely related to
mathematical geology that publish papers citing papers appearing in Mathematical
Geosciences (including those that might have appeared twenty or thirty years ago.
In many fields of science it is not uncommon for the significance or usefulness of a
paper to appear many years later. This is especially true of pure mathematics.

As I have tried to point out that geosciences is a more encompassing term than
geology (many university departments have changed their names to reflect this), the
“mathematical” part of mathematical geosciences has also grown and expanded. In
some ways statistics is an outgrowth of mathematics but it is also an outgrowth of
agriculture (think of the work at Rothamstead Experimental Station and the many
land grant universities in the US) but also the social sciences and economics/
business. Statistics by its very nature is a very cross disciplinary applied area of
interest. Another part of “mathematical” pertains to computing. The VAX computer
and the software package BluePack were very much a part of the real growth of
geostatistics, the desktop computer has created an even greater explosion. I first
started teaching a class on geostatistics in 1982 and my students had to use a
mainframe CDC 6400 with punch card input, it was terribly inconvenient but
without that access the class would have had no practical value. The advances in
computing and in access to computing have revolutionized the teaching of statistics
in all its very forms.

Clearly IAMG was international from its original founding and that perspective
has only grown with time. I can speak to that from a personal perspective both from
my experience as the Distinguished Lecturer in 2008 but also as a referee/reviewer
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for the journal and attendance at various international meetings. I would also note
the level of interest evident in the Questions appearing on the ResearchGate.net
forum. It is truly international.

Sometimes old ideas come back in a different form. The Design of Experiments
originated in applications to agriculture and often emphasized various forms of
“plot design” but now it may be important in the design of aircraft wings and may
incorporate kriging and/or cokriging. Google tells me that my paper on cokriging
(J. of the International Assn of Mathematical Geologists, 1982) is being cited for
applications very far afield from the problem I thought I was addressing when I
wrote the paper. I am sure other authors of papers that appeared in this journal may
have had a similar experience. It is a tribute to the vision of the founders of IAMG
back in 1968. “Mining Geostatistics” was a classic when it appeared (the English
version) and I am sure that many readers had no interest in mining but there were
ideas and concepts in it that were useful for other kinds of problems. The pro-
ceedings of the NATO ASI (Advanced Geostatistics in the Mining Industry)
became “Geostatistics for Natural Resources Characterization” in 1984. Who
knows what the future will bring but IAMG and Mathematical Geosciences have
made a significant contribution. They have influenced the development of mathe-
matics, statistics, computing as well as the various fields that might be grouped
under the heading “GEO-sciences”.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

44 Reflections on the Name of IAMG and of the Journal 899

http://creativecommons.org/licenses/by/4.0/


Chapter 45
Origin and Early Development
of the IAMG

Frits Agterberg

Abstract This chapter is primarily concerned with the first 15 years of our exis-
tence (I was a member of the IAMG Founding Committee, and on the 1968–1972
and 1996–1980 IAMG Councils). Daniel Merriam and Richard Reyment are the
principal fathers of the IAMG, and many other scientists have contributed signif-
icantly to its origin and early development. Personal contacts with them are briefly
described. These comments are supplementary to those already provided in earlier
chapters by Founding Members and others who have made significant contributions
to the IAMG originally. Special attention is paid to inputs by prominent mathe-
matical statisticians with an interest in geology. I am grateful to all pioneers who
have helped to establish the IAMG and provided a climate encouraging younger
scientists, including myself, to pursue careers in their field of interest.

Keywords IAMG history ⋅ Richard Reyment ⋅ Daniel Merriam
Early mathematical geologists

45.1 Introduction

Perspectives on the origin and early development of the IAMG have already been
provided in earlier chapters. Most of the following remarks are complementary to
these other reminiscences. They are based on documents in the IAMG Archive,
private information and what is publicly available on the IAMG Website including
Newsletters from 1970 onward.

Richard Reyment had the original vision of establishing our organization as
offspring from two parents: the International Union of Geological Sciences and the
International Statistical Institute. As a successful example to follow for geologists,
he took the biometrical society which was already in existence for quantitative
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biologists and other life scientists, with its strong component of mathematical
statistics. During 1966 and 1967, Reyment sought international support for the
formation of our society. Especially mathematical statisticians were very supportive
of his idea. He then organized the Founding Committee of the IAMG, although our
name was to be chosen later. He invited me to be a member of his committee and
chaired our inaugural meeting during the 23rd IGC in Prague where he became the
IAMG’s first Secretary General.

Daniel Merriam provided us with the essential publication and organizational
background support for more than 30 years. In 1969 Dan was the founding
Editor-in-Chief of the Journal of the International Association for Mathematical
Geology (currently: Mathematical Geosciences), and in 1975 of Computers &
Geosciences. Additionally, he was the chief organizer of numerous international
meetings in our field, and editor of the proceedings for these meetings, as well as
several other multi-author books. Later, in 2001, he took over as Editor-in-Chief of
Natural Resources Research, our third international scientific journal that had
originally been founded by Dick McCammon in 1992 under the name Non-
Renewable Resources. In 1966, as Head of the Mathematical Geology Section,
Kansas Geological Survey, Dan established the Distinguished Visiting Research
Scientists program inviting mathematical geologists to work with him and his
colleagues for successive one-year periods in Lawrence, Kansas. I was happy to
accept Dan’s invitation to occupy this position in 1969/70. During this fruitful year,
my family and I were housed in the Sunflower apartments on the campus of Kansas
University and received great hospitality. Merriam left Lawrence in 1976 to become
Chair of the Geology Department, Syracuse University, where he commenced a
new school for quantitative geoscientists. John Davis succeeded him at the Kansas
Geological Survey.

Although originally educated in classical geology and geophysics at the
University of Utrecht, I developed an interest in probability and statistics as a
graduate student and published some papers on statistics applied in geology.
Because of this, I was in 1962 invited to become “petrological statistician” at the
Geological Survey of Canada (GSC) in Ottawa, initially to work within the
framework of the Canadian Contribution to the International Upper Mantle Project
and later to form their Geomathematics Section. The word “geomathematics” was
used in analogy with “geophysics” and “geochemistry”, but as a term it was never
widely accepted. In 1982, engineers in photogrammetry had the idea of abbrevi-
ating the same word to “geomatics”, which became widely accepted as a new
discipline but is quite different from “mathematical geosciences”.

GSC management allowed me to participate in the inaugural IAMG meeting on
August 22nd, 1968, during the 23rd International Geological Congress in Prague.
As described in earlier chapters, this event was disrupted and aborted because of the
Russian-led occupation of Czechoslovakia. A list of participants in the inaugural
meeting was included in its Minutes (see Appendix for final version of Minutes
copied from the IAMG Archive) but several mathematical geologists including Bill
Krumbein and Graeme Bonham-Carter, who had been planning to come to our first
meeting, were prevented from coming to Prague to participate in the event.
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Fortunately, my hotel was within walking distance of the Congress Centre and I
also had been able to see several Founding Members before our meeting. Soon
afterwards I was forced to leave Prague by car in a convoy of Dutch nationals led
by the Dutch ambassador in the first car. Reyment had asked me to prepare minutes
for our inaugural meeting and I handed him my first draft in Amsterdam where he,
Geof Watson and I presented review papers at the Geostatistics Session organized
during the 1968 meeting of the International Association of Statistics in the
Physical Sciences (Section of the International Statistical Institute). This event
helped to consolidate our affiliation with ISI. Formal affiliation with the IUGS had
already been achieved in Prague.

45.2 Pioneers of Mathematical Geology

At its annual meetings the IAMG continues to honor five most eminent, pioneering
scientists in our field: William Christian Krumbein, Andrey Borisovich Vistelius,
John Cedric Griffiths, Felix Chayes and Georges Matheron. I was fortunate to know
all five of them. Other leading scientists with strong IAMG involvements included
John Tukey, Geof Watson, Danie Krige, Tim Whitten, Jean Serra and Walther
Schwarzacher. Merriam and Howarth (2004) arranged for the publication of bio-
graphical articles on Matheron, Griffiths, Chayes, Reyment, Krumbein and Vistelius
in a special edition of Earth Sciences History.

Krumbein (1936, 1939) already was developing important statistical techniques
for geologists in the 1930s. My initial contact with him took place in the fall of
1961 when I was a postdoctorate fellow at the University of Wisconsin in Madison.
My first assignment there was to perform statistical analysis of thousands of
measurements on directional features taken by Ph.D. student Garrett Briggs in the
Arkoma Basin of east-central Oklahoma (Agterberg and Briggs 1963). My report
was reviewed by Krumbein before publication. His helpful comments included the
suggestion to expand what initially was a brief footnote into a full section. It said
that the circular normal (Von Mises) distribution for vectorial data converges to
normal (Gaussian) form when dispersion around the vector mean approaches zero,
so that standard (non-directional) statistical techniques including analysis of vari-
ance remain approximately applicable. Krumbein said that this remark solved a
long-standing problem for him. Later, two of his Ph.D. students working with
orientation data made use of this approach publishing their results in the first issue
of our first IAMG journal (Jones and James 1969). I did not know at the time that
Watson (1960) already had developed better approximations for statistical analysis
of directional data. During his career, Krumbein continually sought the advice of
mathematical statisticians including Franklin Graybill and John Tukey in order to
stay on the right track. In 1963 the GSC invited him to Ottawa as a consultant, and I
visited him at Northwestern University in a follow-up visit. Later I saw him reg-
ularly at scientific meetings, especially at those organized by Merriam in Lawrence,
Kansas.
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As a graduate student I gave an economic geology seminar on the skew fre-
quency distribution of ore assays. In preparation I had read Krige’s MSc thesis on
microfilm in the library of the University of Utrecht. Its published version
(Agterberg 1961) drew the attention of Danie Krige who wrote to me about it and
became a good friend and esteemed colleague for more than 50 years. In 1963 he
came to Ottawa on his way to the 3rd APCOM Symposium held at Stanford
University. APCOM stands for “Applications of Computers and Operations
Research in the Mineral Industries”. With his wife Ansie and a colleague we went
to Niagara Falls on a touristic outing. Danie persuaded GSC management that I
should attend the 4th APCOM to be hosted by the Colorado School of Mines in
1964. Originally, APCOM meetings provided an important forum for mathematical
geologists. I first met Dan Merriam, John Harbaugh, Tim Whitten and many others
at early APCOMs.

In 1965 the GSC allowed me two months of travel abroad provided that I paid
for my own travel expenses. First I went to the Netherlands where Codien
Zwaardemaker invited me to dinner (we got married later that year; from 1993
onward she accompanied me to all IAMG annual meetings except one). From
Amsterdam I went on to visit Krige in Johannesburg who took his family and me to
the Kruger Park. Next there was the 8th Commonwealth Mining Congress in
Australia, and finally the 5th APCOM at the University of Arizona, where I pre-
sented statistical analysis results for chemical analyses from the Muskox Layered
Intrusion in northern Canada that was considered to be a sample of the upper mantle
(Agterberg 1965). After this presentation John Griffiths came forward to congrat-
ulate me, also inviting me to present two papers instead of one at the next (1966)
APCOM he would be hosting at the Pennsylvania State University. In those days,
politicians in public paid more attention to oil and ore than today. The U.S. Sec-
retary then in charge of mineral resources and mining gave the post-Symposium
dinner speech. One of my two papers (Agterberg 1966) was entitled “Markov
schemes for multivariate well data” and the Secretary singled this one out for a Cold
War joke. Griffiths became one of my principal mentors. In 1968 Elsevier invited
me to write a geomathematical textbook (Agterberg 1974). Griffiths and Merriam
read all chapters and offered numerous helpful comments. Later I was honored to be
invited to write the first chapter in the Griffiths commemorative book “Future
Trends in Geomathematics” (Craig and Labovitz 1981).

Andrey Vistelius was the first IAMG President and his Laboratory of Mathe-
matical Geology was used for our IAMG name. Tim Whitten, who was with
Krumbein at Northwestern University, Evanston, Illinois, had invited him to come
to North America in 1975 and for the last two weeks of this visit he was in the
Geomathematics Section at the GSC in Ottawa. Before arrival, Vistelius had
expressed the desire to sample a Canadian granite intrusion, preferably one with
associated tin mineralization. There exists such a granite body in Nova Scotia but
logistically we could not mount an expedition to sample it. Instead, with the help of
other geologists we sampled the Meach Lake aplite body close to Ottawa. Aplite is
fine-grained granite and this turned out to be a practical advantage, because thin
sections of rock samples that could be cut in Ottawa were much smaller than the
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very large thin sections Vistelius had produced in Leningrad for counting fre-
quencies of transitions between different minerals in granites. In total 104 thin
sections were transition-counted and statistically analyzed. The rock body was
interpreted to be “ideal granite” in which sequences of mineral grains are Markov
chains (Vistelius et al. 1983). Later Xu et al. (2007) provided an alternative mul-
tifractal explanation of the Meach Lake aplite textures.

While Vistelius was in Ottawa, a preliminary itinerary was set up for my 6-week
visit to the Soviet Union that took place two years later. It commenced with a
10-day stay in Novosibirsk where I participated in the Siberian Seminar on
“Application of Mathematical Methods and Computers for Mineral Search and
Prospecting” organized by Yuri Voronin. Václav Němec, IAMG Treasurer (East)
was participating as well. Neither Vistelius nor Founding Member Dmitry Rodi-
onov attended. Němec was our IAMG ambassador to the Soviet bloc countries (cf.
Agterberg 1994). My Siberian Seminar contribution (Agterberg 1977) was the only
presentation with slides. Initially, the organizers told that I could only show three
slides, because other participants were not allowed to display more than three
posters but they relented. A slide projector was brought in from another institute
and all my slides were shown. Before I was leaving for Moscow on the next stop,
Němec had warned me that during my upcoming visit to Rodionov and his col-
leagues I would be asked for an opinion on the work of Voronin and his team; he
explained that a negative opinion could be detrimental because Moscow controlled
funding of the Novosibirsk projects. I was careful in what I said. It was understood
in the Soviet Union that the farther east you went, the more philosophical the
mathematical approach to geology became. I learned at the Siberian Seminar that
rocks are subject to the basic philosophical principle that the “whole is more than
the sum of the parts”.

The last two weeks of my visit to the Soviet Union were spent in Leningrad.
Every day I arrived at the Laboratory of Mathematical Geology 2 h before Vistelius,
who did most of his work at home where we went in the afternoon for discussions
and a meal. As explained by Steve Henley, Vistelius was given a hard time under
the communist regime because of his aristocratic roots. In order to accept an
invitation for a lecture tour he had just received from Japan, he needed numerous
approvals. The process, which involved various unpleasant interviews with officials
plus extensive form-filling, took more than two weeks. On the day of my departure
Vistelius received a phone call from somebody he referred to as a “foxtail” who
communicated indirectly to him what could be interpreted as final travel approval.
The foxtail did not communicate this in so many words but said that an official in
Moscow had remarked that the Laboratory of Mathematical Geology in Leningrad
did good work. This implied approval and Vistelius went indeed to Japan shortly
afterwards. During our many discussions we were not always in total agreement.
Vistelius held very strong opinions and was not at all impressed by geostatistics or
geostatisticians. He felt that mathematical geology had to be “pure” and not con-
taminated with economic motivations. Even much later, after he had invited me to
participate in a mathematical geology meeting, he pointed out that in his session
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there would be no room for statistics applied to ore deposits, but he suggested other
topics on which I could report.

My recognition of the validity of French geostatistics took place in 1964 because
of a curious incident. Our library had obtained a copy of the first book by Matheron
(1963) but there had been a complaint from the public that this volume contained
absolute nonsense and should be removed from the shelf. The head of the Library
Committee approached me and asked for an evaluation because: “We don’t want
bad books on our shelves”. My report was favorable and the book could stay.
Although this is not universally known, Georges Matheron commenced his career
at the French Geological Survey (BRGM) in 1954. One of his first publications
(Matheron 1955a) concerns the Gara Gjebilet oolithic iron deposit in Algeria. It is a
standard geological publication with detailed descriptions of the stratigraphy,
structure and genesis of this deposit of Early Devonian age plus a folded geological
map in the back. It seems that Matheron started out as a classical geologist but
shortly afterwards he published a paper (Matheron 1955b) on applications of sta-
tistical methods for ore reserve estimation. This first paper foreshadowed the rev-
olutionary approach to spatial statistics he was to bring about during the last
40 years of the 20th century. Like Vistelius, Matheron had strong opinions on
topics that would be suitable for research. His first two Ph.D. students (Michel
David and André Journel) ran into significant problems later on, when in some of
their projects they deviated from what Matheron felt was appropriate for them. In
1968 Michel David had come to the École Polytechnique in Montreal and we
collaborated on several projects. One of these involved correspondence analysis
(Agterberg and David 1979). But one day David showed me a letter from Matheron
stating that this work should be stopped immediately and that he should return to
working full-time on geostatistics.

In 1968 Georges Matheron established the Centre de Morphologie Mathéma-
tique in Fontainebleau, as a research institute of the École des Mines de Paris. Jean
Serra was his close collaborator. Matheron’s preferred mode of work was to be in
his office in Fontainebleau during the day. He would document his findings in
limited-edition geostatistical notes. Fully concentrating on his research, he did not
like to speak English nor extensive traveling. I visited him three times. Although for
about 10 years my position at the GSC was classified as “bilingual”, I never spoke
French in Ottawa because all French Canadian colleagues spoke English. However,
speaking French was a requirement for personal (and telephone) contact with
Matheron. An extra benefit of making the geostatistical pilgrimage to Fontainebleau
was that I could consult the numerous geostatistical notes in their library and could
bring back to Ottawa any copies of particular interest. Today all these notes are
freely available on a website maintained by the École des Mines de Paris. I am sure
they continue to contain valuable information that is relatively unknown. During
the late 1970s I programmed in FORTRAN some of the methods developed by
Matheron and Serra. Twice, I received a Computers & Geosciences best-paper
award for these efforts. I was pleased to be asked in 1975 to chair a session at the
first Geostatistical World Conference held in Frascati, Italy, at which Georges
Matheron presented a philosophical paper (Matheron 1976). At the 53rd Session of
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the International Statistical Institute in Seoul, August 2001, Georges Matheron was
honoured as one of the greatest mathematical statisticians during the second half of
the 20th century (cf. Baddeley 2001). After obtaining approval from Mrs. Math-
eron, the IAMG established its annual Georges Matheron lecture in 2005, delivered
for the first time by Jean Serra at IAMG2006 in Liège. Our Matheron Lecture was
modeled after the Fisher Memorial Lecture initiated by the International Statistical
Institute in 1966.

Felix Chayes was a member of the IAMG Founding Committee and participated
in many IAMG events. His numerous contributions have been documented by
Howarth (2004). Upon his death in 1993 he left the IAMG a significant legacy in
order to fund the biennial Felix Chayes Prize for Excellence in Research in
Mathematical Petrology. For many years Chayes was involved in compiling large
databases with worldwide data on Cenozoic volcanic rocks. This effort included
directing International Geological Correlation Programme (IGCP) Project 163
(1977–1984) IGBA (Igneous data Base) which had supportive software as well.
Close IAMG involvement with IGCP had been promoted by Merriam who also
helped initiate IGCP Project 148 (1976–1983) “Quantitative Stratigraphy”.

John Cubitt was the original leader of IGCP Project 148 but he left Syracuse
University where he was with Merriam in 1977 to become a private consultant in
the U.K. and I took over from him. We created a group of lecturers to present
one-week short courses on the subject that eventually were held in as many as nine
different countries. The strategy was to attract staff from oil companies in “devel-
oped” countries willing to pay registration fees that were later used to give the
course in “developing” nations. Walther Schwarzacher and I were part of this
“traveling circus”. Originally, I had met Schwarzacher in Lawrence, Kansas, where
we were both associated with Merriam’s quantitative geology group. He was the
IAMG’s second Krumbein Medallist in 1977 (John Griffiths was the first a year
earlier). In the IGCP Project 148 short course Schwarzacher lectured on lithos-
tratigraphic correlation. Later he published a book that explained the Milankovitch
theory (Schwarzacher 1993) according to which very small periodic variations in
solar radiation create major climate changes on Earth. This idea had been antici-
pated by Croll (1875) as an explanation of the ice ages. Currently, the entire
post-Cretaceous international geologic time scale is based on Milankovitch theory.

Walther and I had several things in common. In Europe we had attended similar
high schools called “gymnasium” in both Austria and the Netherlands, at which the
emphasis was on Latin and Greek. We still could recite some of the Odyssey to
each other. Later I tried some of my ancient Greek on Roussos Dimitrakopoulos
who smiled benevolently. The supervisor of Schwarzacher’s Ph.D. project had been
Bruno Sander at the University of Innsbruck. Later (in 1957) I took a short course at
this university in order to learn micro-tectonics in preparation of my fieldwork
during four successive summers in northern Italy (Agterberg 1961). The most
important results of this doctoral thesis were included in Whitten (1966)’s textbook
on structural geology. Later, Hannes Thiergärtner and Heinz Burger invited me to
contribute further articles on this subject on two occasions. Original Alpine
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deformation patterns for the basement of the Italian Dolomites had to be
re-interpreted in terms of rapid movements of the Adria microplate that presently
keep on creating earthquakes in the Apennines (cf. Agterberg 2014).

45.3 Inputs from Mathematical Statisticians

Most important among the first mathematical statisticians was Ronald Fisher (1954)
who suggested that geology with Lyell (1833) had been evolving as a more
quantitative science but, rapidly, opposition against this development grew to the
extent that Lyell’s elaborate tables and statistical arguments (60 pages long) for his
subdivision of the Tertiary were omitted from later editions of his Principles of
Geology. In 1952 Fisher commenced giving regular talks on continental drift (cf.
Fisher Box 1978. p. 440) lamenting that geophysicists and geologists were failing
to take seriously Alfred Wegener’s ideas on continental drift proposed in 1912.
Plate tectonics only became generally accepted as a theory in the mid-1960s.

My Moscow stay in 1977 would have included visiting Andrey Nikolayevich
Kolmogorov (1956) who originally formulated the axioms of probability calculus in
his famous paper of 1931. Unfortunately, this visit had to be canceled for medical
reasons. Like Krumbein in North America, Vistelius regularly consulted with
mathematical statisticians and Kolmogorov was a major source of inspiration to
him.

In 1983 the traveling circus of IGCP Project 148 was at the Indian Institute of
Technology in Kharagpur. The lecturers included Geof Watson, 1968–1972 IAMG
Vice President, who within 2 h filled an extra wide blackboard entirely with
equations on the relationship between kriging and interpolation splines. It is
doubtful that anybody in the audience (including me) could understand what he was
talking about. Later I spent significant time understanding his subsequent paper on
the subject (Watson 1984). I used smoothing splines extensively for estimating the
ages of stage boundaries (with 95% error bars) in the International Geological Time
Scale (Gradstein et al. 2004). Watson has done much to make Matheron’s work in
the fields of geostatistics and mathematical morphology better known in the
English-speaking world. He persuaded Matheron (1975) to write his book on
random sets and integral geometry. At the time Watson told me that there would be
only three people in world able to understand this book from beginning to end.

Originally, Watson (1960) had developed statistical methods for directional
features that were similar to methods for ordinary data originally developed by
Fisher who was the world’s most outstanding mathematical statistician during the
first half of the 20th century. Fisher was from before my time. Some of our earliest
IAMG members including Griffiths and Schwarzacher knew him personally.
When I attended the 1963 congress of the International Statistical Institute in
Ottawa, he had already left for Adelaide, Australia where he spent his last years in
retirement. Fisher’s life is described in detail by his daughter Joan Fisher
Box (1978). During the latter part of the 19th century, Karl Pearson had introduced
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many basic statistical concepts including the Pearson correlation coefficient and
goodness-of-fit tests for contingency tables, basing his approach on normal
(Gaussian) distribution models. Fisher derived the mathematical equation for the
frequency distribution of the Pearson correlation coefficient and introduced num-
bers of degrees of freedom for various statistical methods that became widely used,
also by the early mathematical geologists. In these methods extensive use was made
of independent identically distributed (iid) random variables, contrary to geosta-
tistical applications in which the emphasis was on “regionalized” variables that
generate observed values that are not stochastically independent but spatially
correlated.

In 1966 the GSC allowed me to participate in the Advanced Statistical Seminar
at the University of Wisconsin organized by Fisher’s son-in-law Box. During the
Icebreaker I was introduced to John Tukey who told me about his interest in
geology. At this seminar he presented “The Fast Fourier Transform, for fun and
profit” (cf. Cooley and Tukey 1965). Back in Ottawa, I received a box filled with
about 2000 IBM cards for running the FFT in 1, 2, or 3 dimensions on our
mainframe computer. During the next 25 years, Tukey commented on my projects
at the GSC in three of the approximately 800 publications he authored or
co-authored (cf. Agterberg 2001; Tukey 1984). Like Matheron, he was recognized
at the 2001 ISI Congress in Seoul as one of the greatest mathematical statisticians
alive during the second part of the 20th Century. With Watson who had become
Chair of the Princeton University Statistics Department, where Tukey was a pro-
fessor, he attended the 1969 Geostatistics Colloquium organized by Dan Merriam
in Lawrence, Kansas, that also had Matheron, Krumbein and Serra as participants.

Watson owned a cottage on Blood Hill near Elizabethville in the Adirondacks,
New York State, not too far from Ottawa. In those days, the GSC maintained a pool
of cars with the words “Geological Survey of Canada” in big letters on the sides.
I could use one if these cars to visit Watson during weekends. Once I drove Geof
and some of his family members to Princeton where Tukey spotted us on the
campus. He started laughing and pointing his finger at Watson suggesting that Geof
had become a “geologist”. Watson stimulated me to improve my mathematical
skills. Pointing out some errors in a review of Agterberg (1974) he had, somewhat
sarcastically, remarked that one could see I was not trained as a mathematical
statistician. However, he would have granted me an MSc degree in this discipline.
Subsequently I worked hard on my mathematics. In 1983 I organized a geomath-
ematical workshop at the GSC in Ottawa with Geof Watson, Jean Serra and Benoit
Mandelbrot among the presenters. Mandelbrot who had coined the word “fractal”
like Matheron had been a student of Paul Lévy at the École Polytechnique in Paris.
Other participants in our workshop included the directors of Carleton University’s
Centre of Mathematical Statistics who shortly afterwards invited me to become an
Adjunct Professor in their Mathematics Department. I felt this was almost as good
as a Ph.D. in mathematical statistics. Personally, I have always felt that this dis-
cipline offered me more challenges than conventional geology although this
remains a scientific discipline in its own right.
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45.4 Concluding Remarks

The preceding remarks are to a large extent personal like several reminiscences in
earlier chapters. I have tried to add to these other contributions, above all attempting
to bring out the generosity our pioneers extended to younger colleagues. By their
research and contributions to the IAMG they insured a healthy organization that
should continue to exist and expand for many years to come.

Appendix: Minutes of the First Meeting of the International
Association for Mathematical Geology, Prague, August 22,
1968

The meeting was attended by 20 representatives from 10 different countries (see
attached list of participants).

After a general introduction by the acting chairman, R. A. Reyment, the fol-
lowing two problems were discussed:

1. Statutes and By-laws
2. Journal

The relatively short name of “International Association for Mathematical
Geology (I.A.M.G.)” was adopted for the Society.

A. B. Vistelius proposed discussion of possible classes of membership and also
which categories of members should be entitled to vote in the General Assembly. It
was pointed out that the Association should consider the options of (a) voting by
country (each country one vote) or (b) as individual scientists. However, mem-
bership should be open to all scientists. The possibility of having a fixed number of
voting members was also discussed. It was felt that the latter procedure may be
unfair to the larger countries.

Article 7 of the proposed Statutes (each member of I.A.M.G. one vote) was
adopted. However, this discussion resulted in the following change in Article 10 of
the proposed statutes:

1. There shall be two treasurers (East and West) instead of one, in order to meet the
problem of non-convertible currencies.

2. There shall be only one representative on the Council appointed by the geolo-
gists of the host country for the next International Geological Congress.

3. The sentence “Not more than two ordinary members shall be from the same
country” shall be replaced by “Representation on the Council shall reflect
regional distribution of membership as stated in the by-laws.”
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The following by-law was adopted:
“By-law 7: Not more than two ordinary members, and/or four members of the

Council shall be from the same country. This by-law shall be reviewed every four
years by the General Assembly.”

The matter of introducing a journal was discussed. First, the following by-law
was accepted:

“By-law 8: The editor-in-chief, in consultation with the Council, shall be
empowered to appoint up to four associate editors.”

The Assembly adopted a motion initiated by G. S. Watson “that the Society shall
have a journal”.

After the acceptance of the statutes and by-laws had been reached and general
agreement there shall be a journal, the chairman proposed to the Assembly the
electing of the officers of the Council.

The following 13 members of the Council were elected:

A. B. Vistelius—President
G. S. Watson—Vice President (also president elect)
R. A. Reyment—Secretary General
V. Němec—Treasurer (east)
T. V. Loudon—Treasurer (west)
W. C. Krumbein—Past President (instead of Immediate Vice President, see
by-law 9)
D. F. Merriam—Editor-in-Chief
D. F. Rodionov, S. P. Sen Gupta, F. P. Agterberg, G. Matheron, D. G. Krige, E.
H. T. Whitten—Ordinary members.

The following by-law was accepted:
“By-law 9: For the first four years of the Society’s life, instead of an immediate

past president, there shall be an additional vice president.”
Since some of the elected members were not present at this meeting, the fol-

lowing motion initiated by J. W. Harbaugh, was adopted:
“If an elected member should not wish to serve on the council, Professor Vis-

telius shall nominate the next member on the list.” Prof. Vistelius has a list of
persons eligible as ordinary members and the number of votes they received at the
election.

P. Wilkinson moved that: “The Association encourages, in principle, the for-
mation of national groups in mathematical geology and that the question of affili-
ation should be discussed at the next General Assembly in Montreal.” This motion
was adopted.

Finally, the policy and objectives for the journal were discussed. It was sug-
gested that there should be a broad editorial program. Similar to that of the bio-
metrical journal Biometrics. The editor-in-chief should prepare guidelines for the
journal. The first issues should also contain educational papers.

The official languages of the organization are French, English, German and
Russian. It is appreciated that the editing of papers in Russian may present a
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problem to the editor-in-chief, and in practice only two or three languages will be
used for publication. All articles shall have an abstract in English.

List of participants, First meeting of International Association for Mathematical
Geology, Prague, August 22, 1968.

R. A. Reyment (Sweden)
D. A. Rodionov (U.S.S.R.)
A. B. Vistelius (U.S.S.R.)
F. P. Agterberg (Canada)
H. Knape (G.D.R.)
H. Thiergärtner (G.D.R.)
G. S. Watson (U.S.A.)
V. Němec (Czechoslovakia)
D. J. Burdon (FAO of United Nations)
C. J. Dixon (U.K.)
P. Wilkinson (U.K.)
T. V. Loudon (U.K.)
R. Ivanov (Bulgaria)
V. Kutolin (U.S.S.R.)
F. Benkö (Hungary)
E. H. T. Whitten (U.S.A.)
R. B. McCammon (U.S.A.)
J. W. Harbaugh (U.S.A.)
R. Hesse (F.R.G.)
D. F. Merriam (U.S.A.)
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