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Introduction

Advanced magnetic resonance imaging (MRI) techniques such as diffusion tensor
imaging (DTI), functional magnetic resonance imaging (fMRI), magnetic resonance
perfusion, magnetic resonance spectroscopy, and volumetric imaging are improving
our understanding of normal brain development up to pathophysiology of several
adverse processes [1], including cerebrovascular diseases. The application of these
techniques for research offers the opportunity to ask questions about where, when,
and how the abnormal pattern of anatomical connectivity and plastic changes occurs
in stroke. Indeed, neuroimaging techniques, especially the multimodality MRI, have
significantly contributed to the understanding of the mechanisms of stroke recovery
by characterizing brain structural and functional changes after stroke [2]. Stroke
lesions trigger several brain-wide processes to accommodate for tissue loss. MRI has
been extensively used to investigate brain activation changes during recovery and
has provided important information on monitoring of therapeutic strategies that
promote brain repair and functional reorganization after stroke [3].

This review focuses on the advances brought to the understanding of stroke
mechanisms by MRI-based neuroimaging techniques, particularly those related to
connectivity assessment among brain areas. Stroke is the major cause of long-term
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disability throughout the world [4], leaving more than half of the patients dependent
on daily assistance. Nonetheless, most patients exhibit a certain degree of recovery in
the weeks, months, and sometimes even years following stroke, which may be
directly related to structural and functional modifications in surviving brain tissue.
Several animal and human stroke studies have reported vicarious function of
ipsilesional and contralesional brain regions [5], which may contribute to restoration
of functions, although the exact mechanisms that lead to functional recovery remain
largely unclear. Elucidation of the critical pathways in post-stroke recovery would
not only provide important fundamental insight in brain function and plasticity but
could also lead the way toward development of new rehabilitation strategies for
recovering stroke patients [2].

Brain Connectivity from MRI Data

Connectivity models are based on the concept that the brain is organized by
segregation of specialized and anatomically distinct brain regions that are function-
ally integrated in networks mediating cognitive, sensory, or motor processing
[6]. Structural connectivity describes how spatially separated brain regions are
physically linked, for example, as demonstrated by invasive tracing of single
axons or by noninvasively measuring diffusion along major fiber bundles as in
DTI. In contrast, functional and effective connectivity describe how anatomically
connected areas interact with each other and can be estimated from noninvasive
techniques such as electroencephalography, magnetoencephalography, near-infrared
spectroscopy, or fMRI. The last two connectivity approaches, however, fundamen-
tally differ in the way of how these interactions are estimated. Functional connec-
tivity is defined as temporal correlation between spatially remote neurophysiological
events. In contrast to this nondirectional, correlative nature of functional connectiv-
ity, effective connectivity refers to the causal influences that brain areas exert over
another under the assumptions of a given mechanistic model [7].

Structural connectivity is obtained from MRI data through the aforementioned
DTI technique [8]. This is a noninvasive MRI method that measures the random
motion of water molecules in brain tissue and enables examination of white matter
microstructure in vivo. Since white matter tracts are composed of highly oriented
fibers, which cause relatively high anisotropy of diffusing tissue water, DTI is very
suitable to measure effects on white matter integrity. DTI data consists of mathe-
matical entities, called tensors, that give information on the amount of diffusion
happening in every direction within a given voxel of the image. From these data,
simpler, scalar measures, such as fractional anisotropy (FA), can be obtained. FA
quantifies the extent to which water diffusion is directionally restricted and is
influenced by a number of factors including axonal myelination, diameter, density,
and orientational coherence [9].

Functional and effective connectivity are obtained fromMRI data by means of the
fMRI technique. Functional MRI methods have been traditionally sensitized to
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changes in cerebral hemodynamics in response to task or stimulus-triggered neuro-
nal activity. The most frequently used type of fMRI data is that obtained by means of
the blood oxygenation level-dependent (BOLD) contrast, measured through a T2*-
weighted gradient-echo MRI sequence [10]. Although effective connectivity has
been, indeed, obtained from task-based fMRI data, functional connectivity has been
mostly obtained through resting-state fMRI (rs-fMRI) data.

Rs-fMRI data is obtained without the need of a stimulation paradigm, during
wakeful rest, but in the absence of an active task performance [11, 12]. Spontaneous
fluctuations in baseline (“resting-state”) neuronal signaling are reflected in
low-frequency fluctuations (<0.1 Hz) of the BOLD signal and show temporal
coherence between anatomically connected brain regions within a particular neuro-
nal network, such as the sensorimotor system [11]. Throughout the gray matter, the
extent of synchronization between these low-frequency BOLD fluctuations has been
related to functional connectivity. Correlation of these signals with electroencepha-
lographic brain activity has indicated that these slow hemodynamic fluctuations are
associated with neuronal function [13].

There are many approaches to estimate functional connectivity from rs-fMRI
data. One of the most used has been the seed-based approach, where a representative
time series is extracted from a region of interest (the seed), and this series is
correlated to all voxel time series of the brain [14] (Fig. 4.1). Another widely used
approach has been independent component analysis (ICA) that aims at retrieving the
brain networks that produce similarly varying time series [15]. And more recently,
functional connectivity from rs-fMRI has been modeled with the aid of graphs, by
parcellating the brain in several (anatomical or functional) regions and computing
correlations among all the representative time series of these regions. This allows
building a mathematical entity, the graph, composed of nodes (the regions) and
edges (the connections), from which many topological properties may be extracted
that in turn serve to characterize the underlying brain network [16].

Some of the advantages of the rs-fMRI technique are that many different cortical
systems may be studied with a single acquisition (as opposed to task-based fMRI,
where only the system associated to the given task is studied) and that it allows
increasing the number of subjects for a given study or performing studies with task-
impaired populations, who would be otherwise excluded from a task-based study
[17]. Rs-fMRI has been increasingly applied as a tool to study alterations in the
brain’s intrinsic functional architecture as potential physiological correlates of neu-
rological disorders [18].

Differently from functional connectivity, effective connectivity, as already men-
tioned, is estimated from task-based fMRI data. Also, effective connectivity requires
an a priori model of the brain regions involved in the task being studied, as well as
their interaction. It is, therefore, a model-driven technique, as opposed to the
functional connectivity technique, which is data-driven [19]. From the proposed
model, effective connectivity approaches infer the strength and direction of the
connections, giving some idea of temporal relations among the regions (e.g.,
which region acted before the others).
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Approaches to estimate effective connectivity include psychophysiological inter-
actions [20], structural equation modeling (SEM) [21], Granger causality [22], and
dynamic causal modeling (DCM) [23]. SEM is based on the translation of a network
model with predefined regions linked by a set of directional paths into a linear
regression model. The path coefficients are subsequently estimated using an iterative
maximum likelihood algorithm to minimize the difference between observed and
predicted covariance matrices [21]. DCM relies on a deterministic model that treats
the brain as an input-output system of hidden neural dynamics [23]. This neural
model describes changes in the system over time as a function of interactions
between regional activity, known experimental inputs, and neuronal parameters [12].

All types of MRI data-derived connectivities (structural, functional, and effective)
have been used to shed light on stroke mechanisms, and some of the main results are
discussed below.

Fig. 4.1 Example of functional connectivity (rs-fMRI) data between cortical motor areas in stroke
patients
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Insights into Stroke Mechanisms from Functional
and Effective Connectivity Studies

Findings from functional connectivity obtained from rs-fMRI can be summarized by
two major patterns of changes after stroke: reduced interhemispheric functional
connectivity between cortical motor areas, which correlates with the severity of
motor deficits, and reduced global network efficiency even in patients with good
clinical recovery [12]. Studies in animals demonstrate that interhemispheric resting-
state connectivity between ipsilesional primary sensorimotor cortex and its
contralesional homologue significantly diminish in the first few days and subse-
quently increase while sensorimotor functions recover. However, interhemispheric
connectivity remains reduced compared with assessments obtained prior to
stroke [24].

Carter and colleagues [25] found correlations between rs-fMRI time series in a
sensorimotor network consisting of M1, SMA, secondary somatosensory cortex,
cerebellum, putamen, and thalamus in both hemispheres. The authors reported that
particularly interhemispheric M1 connectivity positively correlates with motor per-
formance at the subacute stage after stroke. In addition, stronger interhemispheric
connectivity of ipsilesional M1 and contralesional areas such as thalamus, SMA, and
middle prefrontal cortex within the first few days of onset predicts better motor
recovery in the next 6 months post-stroke [26]. Also, patients with attention deficits
had reduced interhemispheric connectivity between attention-related areas in parietal
cortex or language areas in inferior frontal cortex [25].

In patients with sufficient integrity of ipsilesional sensorimotor cortex and
corticospinal tract, motor recovery may occur rapidly after stroke and be mediated
by reacquisition of normal dominance by ipsilesional sensorimotor cortex. However,
in patients in whom the integrity of this sensorimotor cortex is insufficient to support
good recovery, increased recruitment of contralesional sensorimotor cortices may be
utilized to achieve motor recovery [27]. Nonetheless, the role of contralesional M1
for reorganization after stroke and mechanisms associated with shifts in
interhemispheric functional connectivity motor cortices is still debatable.

Xu and colleagues [28] demonstrated decrease of the contralesional primary
sensorimotor connectivity in the acute state; Rehme and colleagues [29] and
Golestani and colleagues [30] showed the opposite. Greater activation of the
contralesional hemisphere may occur to compensate for loss of connectivity in the
ischemic region. Functional neuroimaging studies suggest that activity within the
sensorimotor network, or ipsilesional motor cortex, is most abnormal early after
hemiparetic stroke and motor recovery is related to normalization of its activity [27].

Animal models of stroke have provided evidence for a complex cascade of events
enabling changes in structural connections and synaptic transmission [31]. These
changes occur not only in the vicinity of the lesion but also in remote brain regions.
For example, studies in rats demonstrated reduced interhemispheric resting-state
connectivity with secondary myelin degeneration of transcallosal fibers within M1
[31]. In humans, it is possible to identify reduced integrity of transcallosal fiber tracts
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between motor areas that might result from a secondary degeneration of fibers
connected to the lesion zone [32]. Lu and colleagues [33] reported reduced func-
tional connectivity between M1 and the contralateral cerebellum in patients with
pontine lesions.

We examined motor activation patterns intra- and interhemispheric in patients
with stroke compared to healthy controls and the involvement of other functional
networks besides the motor network. We observed that among patients with and
without preserved function, functional connectivity between the primary motor
region and the contralateral hemisphere was increased compared to controls. None-
theless, only patients with decreased function exhibited decreased functional con-
nectivity between executive control, sensorimotor, and visuospatial networks
[34]. Possibly, functional recovery after stroke is associated with preserved func-
tional connectivity of motor to nonmotor networks [34]. A recent study found that
stroke patients with such greater capacity for global information integration achieved
better performance in a sensorimotor skill training [35]. Thus, one hypothesis is that
faster global information exchange may facilitate new functional networks’ config-
urations [36] (Fig. 4.2).

Rehme and colleagues [12] believed that stroke lesions do not globally reduce
connectivity in all functional systems of the brain but specifically alter connectivity
of areas connected to that lesion. The alterations affect the communication efficiency

Fig. 4.2 Example of functional connectivity between the primary motor region and others net-
works in stroke patients, in longitudinal analysis – time 1 (T1) and time 2 (T2)
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in a given functional network which is closely related to behavioral deficits after
stroke. Accordingly, the damage of hub regions has the strongest impact on local and
global information transfer. In addition, more random network architectures with
less local but high global efficiency seem to promote the relearning of sensorimotor
skills but may also explain why performance is often less stable, even in well-
recovered patients.

While functional resting-state correlations revealed a reduction of
interhemispheric connections after stroke, the most consistent finding from effective
connectivity analyses belongs to reduced intrahemispheric interactions in the
ipsilesional hemisphere [12]. Grefkes and colleagues [37] showed that compared
with healthy subjects, stroke patients with relatively poor motor performance exhibit
an enhanced inhibitory influence from contralesional to ipsilesional M1 during
movements of the paretic hand [37]. The hypothesis that this inhibition might
contribute to the motor deficit of the patients is further substantiated by findings
from intervention studies which demonstrated that reducing inhibitory influences
from contralesional M1 via repetitive transcranial magnetic stimulation (rTMS)
induces significant improvements in hand motor performance [38].

One factor that seems to determine the functional role of contralesional M1 for
motor performance of the stroke-affected hand is the time that has elapsed since
stroke onset. A longitudinal DCM study with recovering stroke patients showed that
interhemispheric inhibitory influences from ipsilesional motor areas to
contralesional M1 are significantly diminished in the first few days after onset
[39]. After 2 weeks, this apparent disinhibition of contralesional M1 is accompanied
by a promoting influence from contralesional to ipsilesional M1, particularly in
patients with severe motor deficits. Hence, in the subacute phase, contralesional
M1 seems to support activity of motor areas in the lesioned hemisphere. However,
after 3–6 months, this supportive influence may turn into inhibition in those patients
with incomplete motor recovery. Rehme and colleagues [12] suggest that motor
deficits after stroke are not only caused by direct disruption of descending motor
pathways but may also depend on a less effective communication between premotor
areas and M1 in the lesioned hemisphere.

Another important aspect in stroke is the distributed networks for the control of
behavior. It is entirely unknown what patterns of interaction within a network are
most closely associated with behavioral deficits after injury [25]. Carter and col-
leagues [25] showed a critical behavioral significance of interhemispheric connec-
tivity between homologous regions of a task-relevant network. In the dorsal attention
network, the breakdown of interhemispheric functional connectivity correlated with
difficulty in detecting targets in the contralesional visual field. Besides, connectivity
scores in the dorsal attention network also correlated with measures of upper
extremity and walking function. Physiological studies indicate that the dorsal atten-
tion network is important not only for stimulus selection but also for selection of
limb responses [40], especially early after injury [41]. Therefore, the broader behav-
ioral significance of the dorsal network can correspond to its involvement in a larger
range of behavioral functions [25].
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Vicentini and colleagues [42] found a relationship between increased default
mode network (DMN) functional connectivity and depression and anxiety symp-
toms after stroke. DMN plays an important role in the emotional processing and is an
anatomical-functional unit engaged in the processing of self-referential stimuli
[43]. According to Vicentini and colleagues [42], patients with depression and
anxiety symptoms show an increased connectivity in the left inferior parietal gyrus
and left basal nuclei, when compared to patients without symptoms. Specific corre-
lation between depression and anxiety scores and DMN functional connectivity
indicates that depression symptoms are correlated with increased connectivity in
the left inferior parietal gyrus, while anxiety symptoms are correlated with increased
connectivity in the cerebellum, brainstem, and right middle frontal gyrus.

Insights into Stroke Mechanisms from Structural Connectivity
Studies

The previous items deal with functional MRI methods that can be employed to
identify altered patterns of brain activity after stroke. Changes in functional brain
organization, however, are often closely associated with structural modification of
neuronal elements in the brain. DTI offers a MRI-based means for the assessment of
neuroanatomical changes associated with brain injury and repair [2]. Studies in
patients and animals have reported loss of FA in ipsilesional white matter subacutely
after stroke, which has been linked to demyelination or axonal loss [44, 45], and
elevated FA in ipsilesional corticospinal tracts in chronic stroke patients, which
could be associated with chronic reduction in edema or improved motor function
[27, 44]. Other example was shown with recovery of FA values 3 years after stroke,
which was observed in the internal capsule of patients with upper limb impairments
subjected to rehabilitation [46]. Structural integrity of the corticospinal pathway
appears critical for a favorable outcome in sensorimotor performance after stroke
[2]. Decreases [47] and increases [44, 48] in FA have been observed, and though the
exact mechanism of the increase remains unclear, it is possible that perpendicular
diffusion is restricted hyperacutely [4].

Finally, other MRI-based techniques not related to brain connectivity assessment
may also be used to understand the brain changes and repair mechanisms associated
with stroke. For example, voxel-based morphometry (VBM) can be used to detect
significant cortical gray matter volume changes in patients with stroke. Matsuoka
and colleagues assessed the correlation between changes in cortical volumes and
changes in neuropsychiatric symptoms during 6 months following a stroke. They
found significant volume reductions in the anterior part of the posterior cingulate
cortex and correlation between volume reductions and apathy scale. The delayed
atrophy may reflect degeneration secondary to neuronal loss due to stroke. Such
degeneration might have impaired control of goal-directed behavior, leading to the
observed increase in apathy [49].
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Conclusion

The field of experimental neuroimaging with MRI is rapidly expanding. Improve-
ments in hardware and pulse sequences that decrease scan time while maintaining
resolution will continue to impact the field. Post-processing strategies must evolve to
encompass these increasingly complicated data sets. It also seems clear that multi-
modal imaging strategies are necessary to develop more detailed patient profiles that
can be used to predict outcome [4]. Multicenter studies are increasingly needed to
prove these technologies and their usability with stroke patients.
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