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of Composites

P. Raghu, Anna A. Nasedkina, Andrey V. Nasedkin, A. Rajagopal
and B. Saswata

Abstract In this work, we present the behaviour of laminated composite plates,
subjected to a static bending load under the influence of varying value of material
length scale parameters. Reddy’s (J Appl Mech 51:745, 1984 [1]) third order shear
deformation theory (TSDT) is used, which describes the kinematics accurately. The
geometric nonlinearity, which prevails under the effect of large deformations, is
accounted using von Karman nonlinear strains. Finite element model is developed
using four-noded rectangular conforming element. Tangent stiffness matrix is
derived to implement Newton Raphson method. The concept of non-locality is
adopted from the works of Eringen and Edelen (Int J Eng Sci 10:233, 1972 [2]).
Parametric study has been conducted to investigate the effect of non-locality and
non-linearity on the behaviour of laminated composites.

23.1 Introduction

The classical continuum theories have been used for decades to solve different
kinds of boundary value problems. This approach assumes the material is contin-
uously distributed and homogeneous at macroscale. At smaller length scales, it is
proven that the material possesses in homogeneities and is not continuously dis-
tributed. The experimental results also suggest that conventional continuum
approach is in adequate to model the material at smaller length scale such as
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nanoscale. At nanoscale, the materials’ spatial dimensions are comparable to the
internal characteristic lengths such as grain distance in which case the classical
continuum analysis ceases to provide the accurate results. The other deficiencies of
classical theory include negligence of microstructural size effect [3], mesh depen-
dent results [4], singularity at crack tip [5]. Hence, the continuum descriptions must
be enriched to obviate these discrepancies. The nonlocal approach is proven to
overcome these discrepancies. The term nonlocal in nonlocal theories refers to the
long range inter atomic that are taken into account in the constitutive relations.
Eringen and Edelen [2] first gave the relationship between the local and nonlocal
stress tensor through a Kernel function. This Kernel function depends on the
internal and external characteristic lengths of the material. John et al. [6] first
applied the nonlocal concept to structural mechanics applications. Jirásek et al. [7]
explained how the classical theories can be enriched to deal with problems of size
effects in microscale elasto-plasticity. Recently Reddy [8] gave the reformulated
Euler-Bernouli, Timoshenko beam theories using nonlocal theories. Aydogdu [9]
and Adhikari et al. [10] employed nonlocal models to investigate the small-scale
effect on elastic rods.

Applications of laminated composite plates range from aerospace industry to
sports industry. Accurate analysis is of paramount importance for effective utilizing
the material strength and for the safe design. Since laminated composite plates
possess low value of shear modulus, compared to Young’s modulus, shear defor-
mations are going to play significant effect on their behavior. Hence the correct
description of kinematics is necessary to predict the response of the composites
accurately. Classical theory does not account for the shear deformations hence
cannot be used to analyze thick plates. On the other hand, first order shear defor-
mation theory (FSDT) [11] takes into account shear deformation in a simple way
that it needs shear correction factor. Whereas Reddy’s TSDT [1] expands the
displacement field up to third order, it gives the quadratic variation of transverse
shear strains and shear stress. This kinematic description avoids the need for shear
correction factor. Classical continuum theory takes into account exclusively the
bulk, neglecting the contributions from the surface of the deformable body.
However, surface effects predominantly affect the material behavior. Raghu et al.
[12] presented the analytical solutions for laminated composite plates using non-
local third-order shear deformation theory of Reddy considering surface stress
effects. Preethi et al. [13] studied the effect of non-locality and non-linearity on the
bending and free vibration behavior of rotating nanocantilever beams using finite
element method. Mahmoud et al. [14] studied the effect of both non-locality and
surface effects on the behavior of nanobeams using finite element method. Recently
Barretta et al. [15] transfer the effect of non-locality on the viscoelastic functionally
graded nanobeams, subjected to torsion. Ebrahimi et al. [16] used non-local strain
gradient theory for the analysis of wave propagation in nanoplates.

308 P. Raghu et al.



23.2 Eringen’s Nonlocal Model

In non-local theory, the effect of neighborhood is taken into account via the con-
stitutive relations. The stress at a reference point is functional of strain at all
neighboring points. The non-local and local stress tensor are related by an atten-
uating Kernel function. Eringen proposed a constitutive model that expresses the
nonlocal stress tensor rnl at point x as

rnl ¼ Z
K x0�xj j; sð Þr x0ð Þdx0; ð23:1Þ

where r(x) is the classical macroscopic stress tensor at a point x and K(|x′ − x|, s) is
the Kernel function, which is normalized over the volume of the body represents the
nonlocal modulus. |x′ − x| is the non-local distance and s is the material constant
that depends on the internal and external characteristic length.

As Hooke law, we have:

r xð Þ ¼ C xð Þ : � xð Þ; ð23:2Þ

where ε is the strain tensor C is the fourth order elasticity tensor. Equations (23.1)
and (23.2) together form the nonlocal constitutive equation for Hookean solid.
Equation (23.1) can be represented equivalently in differential form as

ð1�s2l2r2Þrnl ¼ r; ð3Þ

where s = (e0a)
2/l2, e0 is a material constant and a and l are internal and external

characteristic lengths, respectively. In general, ∇2 is the three dimensional Laplace
operator. The nonlocal parameter l can be taken as l = s2l2.

23.3 Third-Order Shear Deformation Theory

In the third-order shear deformation theory (TSDT) of Reddy [1] the assumptions of
the straightness and normality of the transverse normal after deformation are relaxed
by expressing the displacements as cubic functions of thickness coordinate.
Consequently, the transverse shear strains and shear stresses vary quadratically
through the thickness of the laminate and avoid the need for shear correction factor.
Here the Reddy’s third-order theory is reformulated to account for the nonlocal
effect. These nonlocal laminated plate theories allow for the small-scale effect, which
becomes significant, when dealing with micro- and nano-plate like structures [8].

23 Nonlocal Nonlinear Analysis of Composites 309



23.3.1 Displacement Field

The displacement field of Reddy’s third order theory [1] is developed in such a way
that the in-plane displacements are expanded up to the third degree of the thickness
coordinate. This definition results in quadratic variation of shear strains and hence
the shear stress. The transverse displacement is independent of thickness coordinate
because it is assumed a transverse normal is inextensible:

u x; y; zð Þ ¼ u0 x; yð Þþ z/x � ð4z3=3h2Þð/x þ @w0=@xÞ; ð23:4Þ

v x; y; zð Þ ¼ v0 x; yð Þþ z/y � ð4z3=3h2Þð/y þ @w0=@yÞ; ð23:5Þ

w x; y; zð Þ ¼ w0 x; yð Þ; ð23:6Þ

where u0, v0, w0 are the in-plane displacements of a point on the mid plane (i.e.
z = 0); /x, /y denote the rotations of the transverse normal line at mid plane
(/x = ∂u/∂z and /y = ∂v/∂z). The total thickness of the laminate is given by h.

23.4 Equilibrium Equations

The non-local governing equations for TSDT can be derived, using the principle of
virtual displacements and (3). They can be derived as follows:

@Nxx

@x
þ @Nxy

@y
¼ 0; ð23:7Þ

@Nxy

@x
þ @Nyy

@y
¼ 0; ð23:8Þ
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þ @
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Nxx

@w0

@x
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@w0

@y
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@y
Nxy

@w0
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@w0
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@Mxx

@x
þ @Mxy

@y
� Qx ¼ 0; ð23:10Þ

@Mxy

@x
þ @Myy

@y
� Qy ¼ 0; ð23:11Þ
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where

Mab ¼ Mab � c1Pab;Qa ¼ Qa � c2Ra; c1 ¼ 4
3h2

; c2 ¼ 3c1; ð23:12Þ

Nab

Mab

Pab

8<
:

9=
; ¼

Z h
2

�h
2

rab
1
z
z3

8<
:

9=
;dz;

Qa

Ra

� �
¼

Zh
2

�h
2

raz
1
z2

� �
dz: ð23:13Þ

23.5 Finite Element Model

The weak form for each governing equation can be derived and the finite element
model is developed after substituting the displacement approximations in the weak
form. The weak form suggests that the primary degree of freedom of Reddy’s TSDT
should be u; v;w; @w@x ;

@w
@y ;

@2w
@x@y ;/x;/y. The approximations for each of the primary

degrees of freedom are as follows:

u �
Xm
j¼1

UjðtÞwjðx; yÞ; ð23:14Þ

v �
Xm
j¼1

VjðtÞwjðx; yÞ; ð23:15Þ

w �
Xm
j¼1

DjðtÞ/jðx; yÞ; ð23:16Þ

/x �
Xm
j¼1

XjðtÞwjðx; yÞ; ð23:17Þ

/y �
Xm
j¼1

YjðtÞwjðx; yÞ; ð23:18Þ

The D here denotes (w; @w@x ;
@w
@y ;

@2w
@x@y) at each node of the finite element.

Substitution of (23.14)–(23.18) in the weak forms of the governing equations will
yield the discretized weak form as follows:
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It is seen that (23.19) is non-linear in nature. To solve it, the Newton Raphson
method is used. The tangent stiffness matrix can be derived using the below formula
[17]:

Tab
ij ¼ @Ra

i

@Db
j

¼ Kab
ij þ

Xn
k¼1

@Kac
ik

@Db
j

Dc
k �

@Fa
i

@Db
j

: ð23:20Þ

23.6 Numerical Results

In this section, numerical examples are presented to investigate the effect of both
nonlinearity and nonlocality on the behavior of laminated composite structure,
subjected to transverse sinusoidal loading. The effect of a/h ratio and the integration
rule is also presented. Different types of boundary conditions such as SS-1 and SS-2
are considered. A four-noded rectangular element is used in all examples. The
tolerance value of error is fixed as 10−3. The deflection is calculated at the center of
the plate and non-dimensionalized as follows:

w ¼ w a
2 ;

b
2 ; 0

� �
E2h3

q0a4
: ð23:21Þ

Here q0 is the intensity of transverse load and a, b, h are the length, width and
thickness of the plate respectively. The following material properties typical of
graphite epoxy composite laminate are used in all examples:

E1=E2 ¼ 25;G12=E2 ¼ 0:6;G23=E2 ¼ 0:25;G12 ¼ G13; t12 ¼ 0:25; t12 ¼ t13:

23.6.1 Boundary Conditions

Two kinds of boundary conditions are considered for the analysis, namely SS-1
(simply supported-1) and SS-2. Figures 23.1 and 23.2 show the SS-1 and SS-2
boundary conditions, respectively.
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23.6.2 Example 1

A four-layered plate of the orientation (0/90/0/90) with each layer having equal
thickness is considered in this example. Both SS-1 and SS-2 boundary conditions
are considered. The intensity of the sinusoidal load is considered as one.

Tables 23.1 and 23.2 show the non-dimensionalised deflection values with
increasing values of nonlocal parameter for SS-2 and SS-1 boundary conditions.
respectively. It has been clearly observed that the deflection value increases as the

Fig. 23.1 SS-1 boundary
conditions

Fig. 23.2 SS-2 boundary
conditions
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value of l increases. It can also be observed that the effect of integration rule has
very less effect on the value of the deflection. Therefore, there is no shear locking.
As the value of a/h increases, the deflection decreases for the same value of l.

23.6.3 Example 2

In this example, a two-layered plate of the orientation (45/−45) with each layer
having equal thickness is considered in this example. SS-2 boundary conditions are
considered. The intensity of the sinusoidal load is considered as one.

Table 23.1 Effect of length scale parameter and integration rule on the non-dimensionalized
deflection of SS-2 anti-symmetric cross-ply laminate

a/h Source w(l = 0) wðl ¼ 1Þ wðl ¼ 3Þ wðl ¼ 5Þ
10 4 by 4 (F) 0.57911 0.6934 0.922 1.1506

4 by 4 (S)_ 0.5859 0.7016 0.9329 1.16

4 by 4 (R) 0.5895 0.7058 0.9385 1.1712

20 4 by 4 (F) 0.4531 0.5426 0.7215 0.9003

4 by 4 (S)_ 0.4632 0.5546 0.7375 0.9204

4 by 4 (R) 0.4639 0.5554 0.7385 0.9217

F full integration, S selective integration, R reduced integration

Table 23.2 Effect of length scale parameter and integration rule on the non-dimensionalized
deflection of SS-1 anti-symmetric cross-ply laminate

a/h Source w(l = 0) wðl ¼ 1Þ wðl ¼ 3Þ wðl ¼ 5Þ
10 4 by 4 (F) 0.7206 0.8628 1.1473 1.4317

4 by 4 (S)_ 0.7281 0.8719 1.1593 1.4468

4 by 4 (R) 0.7342 0.8791 1.1690 1.4588

20 4 by 4 (F) 0.5 0.5987 0.7961 0.9935

4 by 4 (S)_ 0.5093 0.6098 0.8109 1.0119

4 by 4 (R) 0.5104 0.6111 0.8126 1.0141

Table 23.3 Effect of
nonlinearity and nonlocality
on w of (45/−45) plate with
SS-2 boundary conditions (4
by 4 mesh with selective
integration is used)

Load value Nonlinear Linear

l = 0 l = 1 l = 0 l = 1

0.0125 0.0053 0.0058 0.0093 0.0111

0.05 0.0101 0.0108 0.0372 0.0446

0.1 0.0132 0.0142 0.0744 0.0891

0.5 0.0237 0.0253 0.3722 0.4457

1.0 0.03 0.0321 0.7445 0.8914
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Table 23.3 shows the value of deflection with increasing load and increasing
value of nonlocal parameter. As expected, the values of deflections both in the
nonlinear and linear cases are closer in the initial ranges of load values. Again, it is
observed that the deflection value increases as the value of l increases for the given
value of load.

23.7 Conclusions

The finite element formulation for the analysis of laminated composite plates is
developed and implemented by using the third-order shear deformation theory and
Eringen’s nonlocality. It has been observed that the nonlocality and geometric
nonlinearity have significant effect on the behavior of laminated composite plates.
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