
VerCoLib: Fast and Versatile
Communication for FPGAs

via PCI Express

Oğuzhan Sezenlik(B) , Sebastian Schüller , and Joachim K. Anlauf

Technical Computer Science, Institute of Computer Science VI, University of Bonn,
Endenicher Allee 19 A, 53115 Bonn, Germany

{sezenlik,anlauf}@cs.uni-bonn.de, schueller@ti.uni-bonn.de

Abstract. PCI Express plays a vital role in including FPGA accelera-
tors into high-performance computing systems. This also includes direct
communication between multiple FPGAs, without any involvement of
the main memory of the host. We present a highly configurable hard-
ware interface that supports DMA-based connections to a host system
as well as direct communication between multiple FPGAs. Our imple-
mentation offers unidirectional channels to connect FPGAs, allowing for
precise adaptation to all kinds of use cases. Multiple channels to the same
endpoint can be used to realise independent data transmissions. While
the main focus of this work is flexibility, we are able to show maximum
throughput for connections between two FPGAs and up to 88% satura-
tion of the available bandwidth for connections between the FPGA and
the host system.

Keywords: VerCoLib · PCI Express · FPGA
Communication library · Transceiver

1 Introduction

FPGAs are widely used to accelerate state-of-the-art algorithms or as co-
processors in heterogeneous high performance computer systems. FPGA vendors
offer affordable evaluation boards with high-end FPGAs, especially popular in
academic research. Through the development of high level synthesis tools like
Xilinx Vivado HLS or intelFPGA OpenCL, FPGAs became a more accessi-
ble and viable platform. While writing code for the FPGA accelerator itself is
one part of a design another important factor is to utilise its full performance
by transferring data reliably and with sufficient throughput. Here a common
high-bandwidth interface like PCI Express (PCIe in the following) is essential,
the use of which requires fundamental knowledge about its protocol, underlying
computer hardware as well as kernel driver programming. Therefore developers
often face the problem to implement the required complex logic to interface the

O. Sezenlik and S. Schüller—These authors contributed equally to this work.

c© Springer International Publishing AG, part of Springer Nature 2018
N. Voros et al. (Eds.): ARC 2018, LNCS 10824, pp. 81–92, 2018.
https://doi.org/10.1007/978-3-319-78890-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78890-6_7&domain=pdf
http://orcid.org/0000-0001-6612-9657
http://orcid.org/0000-0003-2364-6915
http://orcid.org/0000-0001-5280-8202


82 O. Sezenlik et al.

PCIe IP core provided by the vendor and integrate access to the accelerator
into their software. Furthermore modern mainboards allow devices to communi-
cate directly via PCIe, completely bypassing the main memory, a feature heavily
used to connect multiple GPUs and build low-cost supercomputers for various
scientific applications. The same idea also applies to FPGAs: one could simply
plug several off-the-shelf FPGA boards into one standard desktop computer to
improve the computational power. Such a feature is especially useful, since com-
bining several smaller FPGAs is more cost efficient than using high-end variants.

Our goal is to provide a highly configurable and easy to use open-source com-
munication library (VERsatile COmmunication LIBrary) that allows FPGA-
programmers to focus on their primary objective, namely implementing their
algorithms. With our interface it is very easy to build affordable multi-FPGA
computers, where communication is performed between Host and FPGA as well
as directly between FPGAs via PCIe. This includes configurable and generic
modules used on the FPGA as well as a Linux kernel driver to set up commu-
nication channels and performing the host part of the data transmission. After
setting up the channels between FPGAs, the host system is not involved into
FPGA-FPGA communication at all.

This paper is structured as follows: In Sect. 2 we give an overview about
existing commercial and open-source PCIe solutions and our motivation for the
development of VerCoLib. Then the hardware architecture and features of our
transceiver are described in Sect. 3, followed by the software interface and driver
in Sect. 4. Finally the resource consumption and performance are evaluated in
Sect. 5.

2 Related Work

There are already several other systems that provide a PCIe interface for FPGA
accelerators. In general the different solutions can be categorised based on the
PCIe configurations they support and the resulting theoretical maximum band-
width. This bandwidth depends on the generation of the PCIe standard as well
as the number of PCIe lanes a device is connected to. For reference, the max-
imum bandwidth for a Gen2 device with 8 lanes is 4 GB/s. This also applies
to Gen3 devices with 4 lanes. Gen3 devices with 8 lanes theoretically reach a
bandwidth of 8 GB/s.

Out of the available commercial solutions, the interfaces provided by Xillybus
[1] and Northwest Logic [2] are the most notable ones. The designs from North-
west are limited to Xilinx devices and are used in the reference design Xilinx
offers, supporting PCIe Gen3 with 8 lanes. Xillybus is available for both Xil-
inx and intelFPGA FPGAs and provides host software for Linux and Windows
operating systems.

Academic solutions include RIFFA 2.2 [3], JetStream [4], ffLink [5], EPEE
[6] and DyRact [7]. Out of these solutions, PCIe Gen2 is supported by EPEE (8
lanes), DyRact (4 lanes) and RIFFA (8 lanes), Gen3 is supported by RIFFA (4
lanes), JetStream and ffLink (8 lanes).



VerCoLib: Fast and Versatile Communication for FPGAs via PCI Express 83

RIFFA offers a host-FPGA interface for a wide range of devices and PCIe
configurations with drivers for both Linux and Windows as well as APIs for a
variety of programming languages. Their transceiver reaches a throughput of
up to 3.64 GB/s (upstream) and 3.43 GB/s (downstream).

EPEE is designed around the concept of a general purpose PCIe interface
including DMA communications with up to 3.28 GB/s, a set of IO registers
reachable from both hardware and software as well as user defined interrupts.
They support Xilinx Virtex-5, 6 and 7 series FPGAs on Linux systems. While
multiple independent DMA channels are supported as a plugin, there are no
measurements of the performance impact in terms of resource usage or through-
put.

DyRact implements an interface for dynamic partial reconfiguration within
its PCIe solution, allowing for convenient and efficient reconfiguration of user
designs with PCIe connections. Since they only support Gen2 devices with up to
4 lanes, their bandwidth peaks at 1.54 GB/s.

The ffLink interface is created mainly out of IP-Cores supplied by Xilinx
and relies heavily on the AXI-4 [8] infrastructure. Strongly relying on IP-Cores
has the advantage of low development times and bug fixes from the IP-Core
developer. On the flip side, this also means a comparatively high resource usage
and makes it impossible to adapt the design to other vendors. The ffLink system
achieves a maximum throughput of 7.04 GB/s.

JetStream is the only other solution we have found that supports direct
PCIe FPGA-FPGA communication. They demonstrate the effectiveness of direct
FPGA-FPGA communication with a large FIR filter that spans multiple FPGAs.
They were able to show that distributing the data directly between FPGAs can
result in a reduction of memory bandwidth by up to 75%. Their host-FPGA
solution supports only Gen3 devices with 8 lanes with a maximum throughput
of 7.09 GB/s. However, the missing support for Gen2 devices effectively limits
the use of JetStream to high-end devices.

3 FPGA Transceiver Design

The central concept of VerCoLib deals with unidirectional, independent chan-
nels. A channel is the user interface to send or receive data, translating between
raw data and PCIe packets.

Every configuration of the transceiver has the same structure, consisting of
one endpoint module, an arbiter and an arbitrary number of channels, all of
them using the same handshake interface, equivalent to AXI4-Stream [8]. An
example is shown in Fig. 1.

The function of the endpoint is to handle global resources which need to be
shared among the channels. This includes interfacing the Xilinx specific hard IP-
Core [9] and handling internal communication with the software driver as well
as managing the interrupts from all channel modules and providing dynamic tag
mapping for downstream DMA transfers.



84 O. Sezenlik et al.

FPGA

Endpoint

Driver config

Interrupt ctrl

Tag control

Host TX

DMA Engine FIFO

FPGA TX

Host RX

DMA Buffer

DMA Engine

Host RX

User Design

FPGAFPGA

Kernel

User
RX RX TX

open()

write()

close()

open()

read()

close()

Host

PCIe

Fig. 1. System overview of example configuration. Best viewed in color. The colors
indicate independent data streams. Black and gray connections may contain data from
all streams and fading colors displays the data being filtered. Note that a user can
instantiate channel modules as necessary.

We are using MSI-X interrupts that allow devices to allocate up to 2048
interrupt vectors instead of only 32 vectors allowed by MSI. This makes it pos-
sible to map every channel uniquely to a MSI-X vector. Thereby the driver is
able to immediately identify the channel that issued an interrupt without further
communication, which in turn reduces communication overhead and latency.

In a multi-channel PCIe transceiver design special consideration is required
when handling DMA transfers from host to FPGA. According to the PCIe spec-
ification [10], the receiver has to request data from the main memory of the host
system with memory read request packets. These are answered by the host via
memory completion packets with the requested data as payload. PCIe provides
a tag field with at most 256 different values in the packet header which is used
to determine the affiliation of each completion with a request. To reach optimal



VerCoLib: Fast and Versatile Communication for FPGAs via PCI Express 85

utilization of the PCIe-bandwidth the transceiver has to keep several requests in
flight. The easiest solution to identify the channel a completion belongs to would
be to use a fixed range of tag values per channel, but in this case the number
of available tag values per channel depends on the total number on instantiated
channels. This could reduce the bandwidth a single channel can reach, which
contradicts our goal to provide a flexible and high-performance interface, with-
out making assumptions about the detailed requirements of the attached user
design. In our solution the endpoint assigns unused tags dynamically to requests.
Note that no demultiplexing is done anywhere in the design. Instead all channels
receive the same data, filter out all packets not belonging to them and ignore the
rest. As a result the design allows for multiple independent data streams by sim-
ply attaching more channel modules to the same endpoint with a simple arbiter
module. Channels may be arbitrarily mixed to optimally fit the requirements of
the application, while using as little as possible of the resources of the FPGA.

Everything else is handled by the channel modules. They are designed indi-
vidually for specialised tasks, translating between raw data and PCIe packets, as
shown in Fig. 1. At this point we have implemented four different channel types
(host-rx/tx, FPGA-rx/tx). Each channel takes complete care of a unidirectional
transfer to or from the host or the FPGA.

3.1 Host Communication Channel

All data transfers between host and FPGA are initiated by the software driver.
The host-rx channel implements the downstream direction of the host commu-
nication, i.e. the transmission of data from host to FPGA. First the driver sends
the address and size of the data buffer to be transmitted to the host-rx channel
with the desired id. Then the DMA-Engine will check the available free memory
in the DMA-Buffer and starts requesting data from the main memory of the host.
Note that PCIe permits the host to answer requests in a different order than
originally issued. The DMA-Buffer is capable of reordering incoming completion
packets in order to extract and forward the raw data to the user design attached
to it. After the transfer is finished the DMA-Engine issues an interrupt, which
is finally handled by the MSI-X-interrupt handler in the endpoint and waits for
the next buffer information.

The host-rx channel is capable of processing incoming packets every clock
cycle, therefore it never stops the endpoint from sending data. Since it requests
only as much data as it can store in its memory, it will never create back-pressure
to the endpoint. This guarantees that deadlocks from data transmissions are
avoided in all cases. The throughput depends on the rate the user design pulls
data from the channel and the available bandwidth provided by the PCIe bus.

The host-tx channel works similar in the upstream direction. As before the
DMA-Engine waits for the buffer information from the driver and checks if the
FIFO has gathered enough data from the user design to generate at least one
memory write request packet. While the DMA-Engine always tries to maximise
the size of a packet to ensure high transfer rates, the user design has the option to
force a transmission prematurely by tagging the last valid data word it presents



86 O. Sezenlik et al.

to the host-tx channel. This is necessary in cases where the user design does not
produce enough data to fill a PCIe packet completely. Furthermore the channel
is able to generate and transmit PCIe packets at every clock cycle, as long as
the vendor-ip-endpoint is capable of accepting data.

3.2 Direct FPGA-FPGA Communication

To realise direct FPGA to FPGA communication it was sufficient for us to
develop a variation of the host communication channels. In order to send data
unidirectionally from one device to the other, a pair of FPGA-FPGA channel
modules is necessary: one receiver channel on the receiving FPGA to request
data and buffer incoming packets and one sender channel on the sending FPGA
to pack the PCIe packets and send them off.

These pairs are connected by the software on the host system which sends the
necessary address information to each channel during initialisation of the system.
The addresses are global on the complete system and consist of the FPGA PCIe
bus- and device number as well as a local channel number which needs to be
unique on its FPGA design. Pairs can be re-assigned by the software at any
point in time. For the sake of simplicity, we have not implemented a mechanism
that blocks re-assignment during a transfer, meaning that the user should check
that all communication ceased before changing the pair configurations.

Since all channel modules are designed never to create back-pressure to the
endpoint, the receiving channels contain a FIFO storing incoming packets. To
ensure that this FIFO never overflows, the receiver actively requests an amount
of data from the sender that is guaranteed to be free in the FIFO. If the user
design consumes enough data from the FIFO, the receiver can safely post a
new request even if not all data from the last request arrived yet. The sender
combines all requests it receives into a single one.

To minimise the overhead produced by PCIe packet headers, the sender chan-
nel tries to create PCIe packets of maximum size. Smaller packets will only be
created if the user design indicates the end of the data stream or the amount of
requested data is too small.

In contrast to the JetStream design in [4] which employs memory read request
and completions to realise direct FPGA to FPGA communication, we chose to
use a protocol solely based on memory write requests. Vesper et al. advocate their
decision with the ability to reuse the already existing host communication for
direct FPGA-FPGA transmissions. On the other hand, creating special modules
allows to save a lot of FPGA resources since there are fewer cases to take care
of when transferring data between FPGAs. The issue of memory reordering is
one example of a fairly complex and resource intensive operation that can be
ignored, since we are in control of both endpoints.

Although the presented channels are sufficient for most FPGA-accelerators,
some designs might require special functionality and therefore modifications to
the transceiver. In order to add features, understanding existing open-source
transceivers is often very difficult, hence modifying them is an error prone task.
The modularity of our transceiver allows the user to develop and integrate their



VerCoLib: Fast and Versatile Communication for FPGAs via PCI Express 87

own channels without the necessity to alter the already existing infrastructure.
The developer only has to make sure, that the new channel implements the
handshake-protocol to the endpoint and arbiters correctly.

In fact, the first version of the transceiver only allowed host to FPGA com-
munication, channels, enabling direct FPGA to FPGA connections were added
later, without changing the overall architecture.

Another benefit of our design can be shown with the following use case.
Imagine a developer wants to prioritise transfers higher for one particular core
he has implemented. This is simply possible by replacing the arbiter with a
weighted version. The arbiter itself is a very simple module, agnostic to the
PCIe interface and therefore it contains no special logic to process PCIe packets.

4 Software Interface

The Linux kernel driver for VerCoLib focuses on simplicity and tries to adhere
to standard Unix syscalls.

The driver presents each hardware channel as its own device which can be
interacted with using standard calls like open, close, read, and write. On initial-
ization the driver gets the number and directions of instantiated buffers auto-
matically from the FPGA transceiver. Note that hardware receiver channels
only support the ‘write’ call and analogue to this hardware sending channels
only support the ‘read’ call.

Aside from that the behaviour of the channel interfaces is comparable to com-
munication through a POSIX network socket. After opening a channel device the
user only needs to supply a pointer to the buffer that should be read from/writ-
ten to, as well as the number of bytes that should be transferred.

Internally the driver manages up to eight buffers per channel to realise multi
buffering for enhanced performance. If the user issues a transfer consisting of
more bytes than the buffers can hold, the driver will copy as many data as
possible into the buffers and informs the user of the amount of copied data. The
write/read calls return immediately after copying and remember used buffers
internally. If the user wants to transmit data on a channel that has no free
buffer available the call will block until the current transmission is finished. The
driver supports the poll/select calls on channel devices to allow the user to find a
channel ready for transmissions. For transmissions from the FPGA to the host,
the driver continuously requests data from the host-sender channel as soon as
the channel device is opened by the user. This allows for data transmissions
before the user reads from the channel device and thus reducing the latency of
this operation.

Since each channel has an individual set of buffers, the channel devices are
inherently thread-safe. Thus the user is allowed to handle different channel
devices in individual threads/processes.

Figure 2 shows a simple but representative use of the software API. Since the
API follows the POSIX standard it automatically supports all languages (addi-
tional to C/C++) that allow for direct write/read calls, e.g. python or rust.



88 O. Sezenlik et al.

The driver creates one additional device per FPGA in order to allow the
user to communicate directly with the hardware PCIe transceiver. This interface
offers the user the ability to set up and control direct FPGA-FPGA communi-
cation between channels on different FPGAs. This is also very useful during
development to debug the state of the hardware.

unsigned long size = data_transfer_size ();

void* buffer = create_data_to_transfer ();

int fd = open("/dev/fpga_0_downstream_0", O_WRONLY );

while(size) {

unsigned long written = write(fd, buffer , size);

if(written < 0) handle_error ();

buffer += written;

size -= written;

}

close(fd);

Fig. 2. API of the software interface

5 Evaluation

For all experiments in this section, we used two Xilinx VC707 development
boards (containing the Virtex-7 XC7VX485T) which are communicating with 8
PCIe Gen2 lanes. The host system features a Intel Core i5-3300 CPU and 16 GB
of RAM. DyRact and RIFFA also took their measurements on the XC7VX485T
board while ffLink and JetStream used the Xilinx VC709 development board
with the Virtex-7 XC7VX690T chip. It should be noted that the VC709 supports
the PCIe Gen3 standard, leading to the expectation of higher throughput and a
higher absolute resource usage.

In a typical scenario with one data connection from the host to the FPGA
and one connection in the opposite direction, the VerCoLib PCIe transceiver
uses very few FPGA resources as shown in Table 1. Only DyRact used fewer
resources than VerCoLib and they only implement a Gen2 solution with up to
4 lanes which is implemented internally with a 64 b interface in contrast to the
128 b interface used by Gen2 solutions with 8 lanes. If we additionally consider
having direct FPGA to FPGA communication only, our solution uses the fewest
resources overall.

In Table 2 we compare configurations with multiple independent data chan-
nels. The notation VerCoLib (x,y) should be read as a PCIe configuration with
x host downstream and y host upstream channels. The resource consumption
of the RIFFA configurations were calculated from the costs of adding a single
channel to the configuration, reported in [3]. It can be seen that our solution
uses significantly fewer resources than a comparable configuration of RIFFA.



VerCoLib: Fast and Versatile Communication for FPGAs via PCI Express 89

Especially configurations which use an asymmetrical amount of channels such
as VerCoLib (6,1) show the benefit of uni-directional channel designs. A RIFFA
configuration that allows for six independent connections uses significantly more
resources since it only allows for bi-directional connections.

Table 1. Comparison of resources of different PCIe solutions. [∗] ffLink provided mea-
surements given in percent only. The absolute numbers were calculated based on the
data-sheet of the VC7VX690T.

LUT FF BRAM

DyRact 5181 6971 26

RIFFA 2.1 7396 7489 16

VerCoLib Host 6410 7817 11

VerCoLib FPGA 5086 6559 8

ffLink∗ 12996 43320 132

JetStream 8571 6955 17

Table 2. Resource comparison of configurations with multiple channels.

LUT FF BRAM

RIFFA 2 channel 11767 12710 28

RIFFA 6 channel 29251 33594 76

VerCoLib (2,2) 8524 10007 17

VerCoLib (6,6) 18276 21021 41

VerCoLib (6,1) 12778 15602 31

For all tests the maximum payload size was set to 128 bytes. A larger maxi-
mum payload size would have been preferable, however the available host system
did not allow for 256 or more bytes.

With a maximum of 128 B payload and 16 B header we can reach up to
128/(128 + 14) ≈ 0.888 times of the bandwidth the wire can handle. Since PCIe
Gen2 with 8 lanes can reach a throughput of 4 GB/s, the maximum throughput
we can achieve in practice is ≈3.555 GB/s.

Bandwidths for host to FPGA data transmission with different channel con-
figurations are shown in Table 3. We measured the time a test software takes
to stream 1 GB of data in each direction. In half-duplex mode our transceiver
achieves transfer rates of about 3.13 GB/s for downstream (host to FPGA) and
3.11 GB/s for upstream transfers, thus utilizing about 88% of the theoretical
maximum in both directions. In full duplex mode VerCoLib achieves a through-
put of 2.79 GB/s, or 79% of the theoretical maximum in both directions. Dif-
ferent channel configurations, including asymmetric designs have no noteworthy
impact to the performance.



90 O. Sezenlik et al.

Table 3. Maximum transfer rates in GB/s for host - FPGA communication. Omitted
half duplex measurements in asymmetric configurations are equal to the respective
symmetric ones. ([∗] downstream/upstream)

Configuration Half duplex downstream Half duplex upstream Full duplex

DyRact 1.54 1.51 N/A

VerCoLib (1/1) 3.13 3.11 2.78

VerCoLib (4/4) 3.13 3.18 2.79

VerCoLib (4/1) 2.8

VerCoLib (1/4) 2.79

RIFFA 2.1 3.32 3.56 N/A

EPEE 3.2 3.28 2.76/2.62∗

ffLink 7.1 6.3 N/A

JetStream 6.4 6.4 N/A

While RIFFAs implementation achieves about up to 11.4% higher through-
put than VerCoLib in half duplex mode - at the cost of considerable more
resource consumption as shown before - they did not publish comparable values
for full duplex transfers. EPEE shows very similar results in terms of through-
put, whereas the former is slightly faster in half-duplex mode, VerCoLib has an
advantage in full duplex transfers. Although the performance of our design is not
directly comparable to DyRact, ffLink and Jetstream, all show similar transfer
rates with respect to the theoretical maximum given by the different hardware
they are using.

For direct communication between FPGAs we performed measurements of
the time it takes to transfer 16 GB data sequences. The measurements were taken
by counting the cycles between the first and last data word on the target FPGA.
This kind of measurement implies that the initial latency between sending the
first request for data and the arrival of the data is not taken into account.
For a sufficiently large amount of transferred data, the influence of this latency
is not significant. The measurements were performed over different amounts of
transferred data, ranging from 4096 kbyte to 16 GB. The measured mean transfer
rate was 3351.45 MB/s, which is roughly 204.1 MB/s less than the estimated
theoretical throughput.

Additional measurements were obtained on a transceiver-configuration using
two and four channel pairs. The setup for these were taken analogue to the
first measurement, each channel transferred a 16 GB long data sequence to the
target FPGA. This resulted in a mean transfer rate of ≈1675 MB/s per channel
for the configuration with two channel pairs and ≈837 MB/s per channel for
the configuration with four pairs. The total transfer rate per configuration adds
up to ≈3351 MB/s in both cases, implying that using multiple channel pairs has
no negative effect on the bandwidth. Since all channel pairs show similar results
in every configuration, it can be further argued that the channels indeed work
independently from each other.



VerCoLib: Fast and Versatile Communication for FPGAs via PCI Express 91

A separate experiment was conducted to measure the round trip time of a
single packet from one FPGA to another and back again. For this a special
module was written which sends a packet of length one to the other FPGA and
counts the number of cycles it takes until the packet returns. These counts are
summed up over a series of 2000 sent packets, resulting in a mean round trip
time of ≈176.5 cycles or ≈705 ns with a standard deviation of less then 0.15
cycles or 0.6 ns.

6 Conclusion

VerCoLib is a versatile, fast, and resource saving framework for communication
from FPGA to FPGA, from host to FPGA, and FPGA to host via PCIe. The
flexibility mainly originates from the fact that the logic for generating PCIe
packets and reacting on responses from the PCIe bus is handled individually by
the channel modules. Nevertheless the resource consumption in typical situations
is not higher than in other solutions since the configuration can be adapted to the
requirement of the applications in a very flexible way, using absolutely needed
resources only. Standardised interfaces allow for straightforward extensions of
functionalities and reduce the effort necessary for maintenance.

Part of the framework is a Linux kernel driver that is responsible for setting
up the communication channels and performing the communication between
host and the FPGAs, whereas the communication between FPGAs is handled
completely by the hardware itself without any interaction with the driver or the
application software, except for the initial setup of the channels. VerCoLib was
tested on the Xilinx Virtex-7 VC707 development board and the Linux kernel
version 4.4.

7 Future Work

We plan to release the VerCoLib framework under a permissive open-source
license in the near future. Without changing the general philosophy of VerCoLib
it will be possible to integrate other communication channels into the same
framework, e.g. Ethernet or USB channels. Thanks to the modular design, we are
confident that VerCoLib is easy to adapt to other hardware, e.g. an FPGA using
the PCIe v3.0 standard. Another topic for future work is extending VerCoLib to
support scatter/gather DMA transmissions.

References

1. Billauer, E.: Xillybus. http://xillybus.com
2. Northwest Logic: PCI Express Solution (2017). http://nwlogic.com/products/pci-

express-solution/
3. Jacobsen, M., Richmond, D., Hogains, M., Kastner, R.: RIFFA 2.1: A reusable inte-

gration framework for FPGA accelerators. ACM Trans. Reconfigurable Technol.
Syst. 8(4), 22:1–22:23 (2015). https://doi.org/10.1145/2815631

http://xillybus.com
http://nwlogic.com/products/pci-express-solution/
http://nwlogic.com/products/pci-express-solution/
https://doi.org/10.1145/2815631


92 O. Sezenlik et al.

4. Vesper, M., Koch, D., Vipin, K., Fahmy, S.A.: JetStream: an open-source high-
performance PCI express 3 streaming library for FPGA-to-host and FPGA-to-
FPGA communication. In: 2016 26th International Conference on Field Pro-
grammable Logic and Applications (FPL), pp. 1–9 (2016). https://doi.org/10.
1109/FPL.2016.7577334

5. de la Chevallerie, D., Korinth, J., Koch, A.: ffLink: a lightweight high-performance
open-source PCI express Gen3 interface for reconfigurable accelerators. SIGARCH
Comput. Archit. News 43(4), 34–39 (2016). https://doi.org/10.1145/2927964.
2927971

6. Gong, J., Wang, T., Chen, J., Wu, H., Ye, F., Lu, S., Cong, J.: An efficient and
flexible host-FPGA PCIe communication library. In: 2014 24th International Con-
ference on Field Programmable Logic and Applications (FPL), pp. 1–6 (2014).
https://doi.org/10.1109/FPL.2014.6927459

7. Vipin, K., Fahmy, S.A.: DyRACT: a partial reconfiguration enabled accelerator
and test platform. In: 2014 24th International Conference on Field Programmable
Logic and Applications (FPL), pp. 1–7 (2014). https://doi.org/10.1109/FPL.2014.
6927507

8. ARM Ltd.: AMBA AXI4-Stream Protocol Specification v1.0 (2010). http://
infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html

9. Xilinx Inc.: 7 Series FPGAs Integrated Block for PCI Express v2.2 Product Guide
for Vivado Design Suite (2016)

10. PCI-SIG: PCI Express Base Specification Revision 2.1 (2009)

https://doi.org/10.1109/FPL.2016.7577334
https://doi.org/10.1109/FPL.2016.7577334
https://doi.org/10.1145/2927964.2927971
https://doi.org/10.1145/2927964.2927971
https://doi.org/10.1109/FPL.2014.6927459
https://doi.org/10.1109/FPL.2014.6927507
https://doi.org/10.1109/FPL.2014.6927507
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html

	VerCoLib: Fast and Versatile Communication for FPGAs via PCI Express
	1 Introduction
	2 Related Work
	3 FPGA Transceiver Design
	3.1 Host Communication Channel
	3.2 Direct FPGA-FPGA Communication

	4 Software Interface
	5 Evaluation
	6 Conclusion
	7 Future Work
	References




