
SqueezeJet: High-Level Synthesis
Accelerator Design for Deep

Convolutional Neural Networks

Panagiotis G. Mousouliotis(B) and Loukas P. Petrou

Division of Electronics and Computer Engineering,
Department of Electrical and Computer Engineering, Faculty of Engineering,

Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
pmousoul@ece.auth.gr, loukas@eng.auth.gr

Abstract. Deep convolutional neural networks have dominated the pat-
tern recognition scene by providing much more accurate solutions in com-
puter vision problems such as object recognition and object detection.
Most of these solutions come at a huge computational cost, requiring
billions of multiply-accumulate operations and, thus, making their use
quite challenging in real-time applications that run on embedded mobile
(resource-power constrained) hardware. This work presents the architec-
ture, the high-level synthesis design, and the implementation of Squeeze-
Jet, an FPGA accelerator for the inference phase of the SqueezeNet
DCNN architecture, which is designed specifically for use in embedded
systems. Results show that SqueezeJet can achieve 15.16 times speed-up
compared to the software implementation of SqueezeNet running on an
embedded mobile processor with less than 1% drop in top-5 accuracy.

Keywords: DCNN accelerator · FPGA · High-level synthesis

1 Introduction

Since the impressive results of AlexNet deep convolutional neural network
(DCNN) in the Image-Net Large-Scale Vision Recognition Challenge (ILSVRC)
in [1], DCNN research activity has seen exponential growth with the trend
being deeper architectures accompanied by higher accuracies [2,3]. Following this
trend, research in DCNN FPGA accelerators provides solutions that use high-end
costly FPGA devices and aim at the datacenter rather than the mobile appli-
cations [4–6]. An exception to the-most-accurate-network trend in the DCNN
architecture research, is SqueezeNet1 (SqN) [7,12], an AlexNet-level accuracy
architecture which reduces dramatically the number of MACs and network
parameters, requiring half of the MACs and fifty times less parameters com-
pared to AlexNet. Even though the SqN DCNN architecture is more suitable
than others for use in embedded mobile applications, it is still computationally
1 In this work, SqueezeNet refers to SqueezeNet v1.1.

c© Springer International Publishing AG, part of Springer Nature 2018
N. Voros et al. (Eds.): ARC 2018, LNCS 10824, pp. 55–66, 2018.
https://doi.org/10.1007/978-3-319-78890-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78890-6_5&domain=pdf
http://orcid.org/0000-0001-9621-924X
http://orcid.org/0000-0001-5760-2043


56 P. G. Mousouliotis and L. P. Petrou

very demanding and cannot be used in applications running on an embedded
mobile processor.

The contribution of this work is the design of SqueezeJet (SqJ), a small FPGA
convolutional (conv) layer accelerator for SqN, that can be used as a coprocessor
to an embedded mobile processor and enable the development of mobile com-
puter vision (CV) applications. Specifically, the SqJ design: (1) deals with the
challenge of the implementation of a single accelerator for multiple conv layers
with variable input arguments, (2) implements streaming input/output (I/O)
interfaces which, after the initialization phase, consume and produce data pixel-
by-pixel2, (3) uses a sophisticated hardware (HW) mechanism, which mimics
software (SW) pointers to the rows of a two-dimensional array, taking advan-
tage of the spatial locality of data and minimizing unnecessary data movement,
(4) presents the possibilities of high-level synthesis (HLS) design by using the
Xilinx Vivado HLS (VHLS) tool, (5) is implemented on a low-end FPGA system
on chip (SoC) device, the Xilinx XC7Z020, using the Xilinx SDSoC tool, and (6)
it achieves 80.29% ILSVRC12 top-5 accuracy when it is used for the inference
phase of SqN. To the best of the authors’ knowledge, the current work presents
the first low-end FPGA SoC (XC7Z020) DCNN implementation which achieves
80.29% ILSVRC12 top-5 accuracy.

The rest of this paper is organized as follows: Sect. 2 presents related work.
Section 3 is an introduction to the conv layer’s operation. Section 4 presents the
architecture, the HLS design, and the implementation of the SqJ accelerator.
Section 5 shows results related to the performance, the accuracy, and the power
consumption of SqJ. Finally, Sect. 6 concludes the paper and proposes future
work.

2 Related Work

Works related to DCNN FPGA accelerators can be classified into two main
categories; those which accelerate only the conv layer and those which accelerate
two or more layer types of a DCNN.

Conv layer accelerators: Zhang et al. [4] designed an architecture template for
the conv layer using loop tiling, loop arrangement based on data dependencies,
computation optimizations (loop unrolling and pipelining), and optimizations for
efficient data reuse. Using the parameters of the template and the roofline model,
they performed design space exploration (DSE) and found the optimal solution
which defined the parameters of their accelerator. A similar approach is followed
by Motamedi et al. [5] starting with a completely different architectural template.
Specifically, they designed their template to take advantage of all the possible
forms of parallelism; intra/inter-kernel and inter-output. They eventually used
the design parameters and proceeded as in the aforementioned work. Both of
these works use DSE to minimize the execution time of the accelerator and
32-bit floating-point arithmetic.
2 A pixel is comprised by all the channels at a specific (x, y) location in the future

map volume (see Fig. 1).



SqueezeJet 57

Multi-layer accelerators: Qiu et al. [8] developed a dynamic-precision data
quantization flow and designed a dynamic-precision 16-bit fixed-point acceler-
ator which is capable of accelerating conv, fully connected (FC), and pooling
layers. Their implementation is used to accelerate the VGG16-SVD DCNN,
which is the VGG16 DCNN with reduced weight matrices for the FC layers;
SVD is used for the weight matrix reduction. This accelerator also uses a huge
amount of FPGA resources to accelerate one of the most computational demand-
ing DCNNs, requiring 15470 million MACs for a single forward pass. Gschwend
[9] converted all the layers, except the last global pooling layer, of the SqueezeNet
v1.0 DCNN architecture to conv layers and accelerated, using floating-point
arithmetic, the new DCNN, called ZynqNet, using VHLS. Gokhale et al. [10]
designed and implemented nn-X, a complete low-power system for DCNN accel-
eration composed from a host processor, a coprocessor, and external memory.
The coprocessor consists of an array of processing elements which can perform
convolution, sub-sampling, and non-linear functions. Ma et al. [11] designed an
accelerator that supports conv, pooling and fully-connected layers by following
a strategy that minimizes computing latency, partial sum storage, access of on-
chip buffer, access of external memory, and uses loop optimization techniques.
Their accelerator uses 8–16 bit dynamic fixed point arithmetic and it is evalu-
ated by accelerating the VGG-16 DCNN.

SqJ is a conv layer accelerator and it uses fixed-point arithmetic for both
parameters (8 bits) and activations (16 bits), which results in considerable sav-
ings in both the resources and the power consumption compared to floating-
point implementations [4,5,9]. Furthermore, even though works in [8,10,11] use
fixed-point arithmetic, they require large costly FPGA devices for their imple-
mentation.

3 Convolutional Layer Basics

The conv layer of a DCNN can be described by:

FMo(yo, xo, co) =
Kh−1∑

kh=0

Kw−1∑

kw=0

Ci−1∑

ci=0

FMi((yo · S + kh), (xo · S + kw), ci) ·W (co, kh, kw, ci)

+B(co),

(1)

where FMo, FMi are the output and the input future maps (fmaps) respectively,
and W , B are the weight and bias parameters respectively. The y, x, c, represent
the vertical, the horizontal, and the channel dimensions of the fmaps, S is the
stride, and kh, kw are the vertical and horizontal dimensions of the kernel3.

The second line in Eq. 1 represents a 3D convolution between FMi, and
Co number of 3D kernels, the weight parameters. To calculate the first output
3 In this work, kernel has the same meaning as filter.



58 P. G. Mousouliotis and L. P. Petrou

Fig. 1. Calculation of the channels of the first pixel of FMo. The number of 3D kernels
is equal to Co, the number of output channels.

channel of the first output pixel of FMo, an input window IW of the FMi, of
size IW [Kh][Kw][Ci] is multiplied element-wise with kernel W [0][Kh][Kw][Ci]
and all partial results are accumulated to a single value. This value is then
added to the respective bias term, B(0), to produce the first output channel of
the first output pixel of FMo. This procedure is depicted in Fig. 1, which shows
the calculation of all the channels of the first pixel of FMo. To calculate all the
elements of FMo, the IW is moved vertically and horizontally by yo ·S and xo ·S
respectively, and the above procedure is repeated. The resulted size of each Y ,
X dimension of the FMo is calculated by:

Yo = (Yi −Kh + 2 · P )/S + 1
Xo = (Xi −Kw + 2 · P )/S + 1,

(2)

where P denotes the number of pixels added for padding the FMi. In all the
practical cases Yi = Xi and Kh = Kw.

An activation function always follows a conv layer. Thus, it is convenient,
from an implementation point of view, to include the activation layer in the
conv layer. In this case, the output of the conv layer becomes:

FMo,a(yo, xo, co) = f(FMo(yo, xo, co)), (3)

where f() is the activation function used in the specific DCNN, e.g. the Rectified
linear unit (ReLU) described by:

f(x) = max(0, x) (4)

The accelerator described in the next section, accelerates this fused
convolution-activation layer with output given by Eq. 3.



SqueezeJet 59

4 The SqueezeJet Accelerator

SqN is a DCNN architecture focused in reducing the network parameter count
for a given accuracy. Specifically, SqN achieves AlexNet-level accuracy with fifty
times less parameters, making its model sufficiently small to be stored in on-chip
FPGA memories and removing the need for off-chip memory access. For an FPGA
accelerator, such as SqJ, implemented on a device with a few Mbits of block RAM
(BRAM) resources, this means that the parameters (weight and bias values) of a
single layer can fit in the BRAMs. Thus, for the calculation of theFMo of a specific
conv layer by an accelerator, the following procedure is required: the parameters
are brought from off-chip memory and stored to BRAMs, the FMi is streamed
from off-chip memory in the accelerator, the calculation of FMo pixel(s) takes
place, and the resulting FMo pixel(s) are streamed back to the off-chip memory.
Having the layer’s parameters stored on-chip is a big advantage as they will be
reused for the calculation of each pixel of FMo.

Following the architecture principle “make the common case fast”, SqJ is
designed to accelerate conv layers described by Eq. 3 with stride limited to one;
it can be used for the acceleration of all the SqN conv layers except the first one,
which can be implemented as a distinct module. All SqN conv layers, except the
first one, share the following common characteristics: (1) a stride equal to 1, (2)
an input channel dimension with a greatest common divisor (GCD) equal to 16
and (3) an output channel dimension which is divisible by a power of 2. SqJ uses
all these three characteristics to accelerate a conv layer; the first SqN conv layer
does not have characteristics (1) and (2). Implementing SqJ to support the first
SqN conv layer would significantly degrade the acceleration of the other 17 conv
layers (25 conv modules) of SqN.

This section describes the architecture, the high-level synthesis design, and
the implementation of SqJ.

4.1 Architecture

Data organization: The data organization of all the convolution array argu-
ments is shown in Eq. 1. This data organization is imposed by the 3D convolution
operation; it is necessary to read all the input channels of the IW pixels in order
to be able to calculate a single output channel. Because SqJ accelerates 3D con-
volutions, the design of a streaming architecture is not possible, but it is possible
to design the accelerator to use streaming I/O interfaces.

Buffering: The implementation of the 3 × 3 convolution introduces an input
data access pattern which requires multiple lines of the input. Because FMi data
is streamed in the accelerator, FMi data lines must be buffered. In the general
case, the size of the input tile buffer ITB is:

ITB = K · Yi · Ci, (5)

where K denotes the kernel size (considering that K = Kh = Kw, see Fig. 1),
and Yi and Ci denote the width and the channels of FMi respectively. In the



60 P. G. Mousouliotis and L. P. Petrou

SqJ case, where support for up to 3 × 3 × Ci 3D kernels is required, K = 3 and
ITB3×3 is implemented as a set of 3 line buffers whose access is determined by
a pointer array. In this way, ITB3×3 shifts down the FMi without the need for
any data shift to take place; only the lowest, as defined by the pointer array, line
buffer gets updated. This shift mechanism is also used by the input tile window
buffer ITWB (depicted as IW in Fig. 1) to update only one of its columns as
it shifts horizontally on the ITB, taking advantage of the spatial locality of the
input data. Figure 2 shows the internal organization of ITB and the operation
of pointer array for ITB3×3. Apart from the ITB and ITWB, buffers are used
to store the weights, the bias, and one pixel of FMo. The buffer used to store
the FMo pixel could be omitted if each output channel was calculated serially,
but buffering is required to calculate multiple output channels in parallel and to
stream them out of the accelerator in order.

Fig. 2. ITB: (a) schematic and (b) pointer array content of ITB3×3 after a number
of shifts. AD denotes memory address, SH denotes a shift signal, and DI, DO denote
data input and output respectively.

Parallelism exploitation: SqJ takes advantage of the fact that SqN increases
in the input channel dimension and, with the exception of the first conv layer, all
conv layers’ input channels have a GCD equal to CImin = 16. The accelerator is
designed to perform CImin multiplications concurrently. These CImin products
are then fed to an accumulator unit which outputs a CImin MAC result. The
combination of the CImin concurrent multiplications plus the accumulator unit
forms a MAC-CImin unit which is pipelined. CImin is a design parameter and
can be easily modified according to the architecture of a different DCNN. This
intra-kernel parallelism has the advantage that it exploits parallelism in the
input channel dimension and it is independent from the kernel size K. Thus,
SqJ can be easily modified to support kernel sizes larger than 3 × 3. Another
form of parallelism that is used is the concurrent calculation of multiple output
channels for a specific output pixel. This is achieved by splitting the weights
buffer in 2n (n = 1, 2, 3, ...) equal groups of 3D kernels and assigning them to
2n MAC-CImin units.

Operation: First step in the operation of SqJ is the initialization of the input
buffers. Weights and bias are brought from off-chip memory and, only in the



SqueezeJet 61

case where kernel K = 3, the ITB is initialized. After the initialization step, the
convolution begins:

• For each row of FMo: (1) only if K = 3, the ITB is shifted down (in FMi)
and two FMi pixels are written in the empty line buffer, and (2) only if
K = 3, the ITWB is initialized with ITB data.

• For each column of each row of FMo: (1) ITB is updated with a new FMi

pixel and ITWB is updated with a new ITB column, (2) the weight buffers
and the ITWB are used to calculate one pixel of FMo, and (3) the computed
pixel is written back to off-chip memory.

4.2 Implementation

FPGA algorithm acceleration is not as trivial as implementing an algorithm
in SW using a general purpose programming language such as C/C++. Even
though HLS tools advertise the automatic generation of FPGA IP cores from
C/C++ code, this process requires knowledge of the architecture of the FPGA
device, knowledge of the internals of the HLS compiler [13], and use of a C/C++
coding style compatible with the HLS capabilities. This paragraph describes
the process of generating an IP core for SqJ using the Xilinx VHLS tool and
implementing it as a real application using the SDSoC tool.

Coding style: Hardware description languages (HDL) books warn the reader
that if the designer cannot understand what logic circuit is described by the
HDL code, then the design tool is not likely to synthesize the circuit that the
designer is trying to model [14]. The same applies for the C/C++ code used as
input to VHLS. A result of this coding style is the implementation of ITB shown
in Fig. 2, which uses the HW model of pointers to the rows of a two-dimensional
array. Even though VHLS simplifies the HW design of an algorithm, it doesn’t
provide a straightforward way for making a design scalable as it is the case with
the combination of generate constructs and generics/parameters used in HDLs.

Interfaces: The SqJ IP core requires buffers for the weights, the bias, the ITB
(FMi), and the FMo buffer for storing the output pixel. Three FIFO interfaces
are used to stream data in and out of the IP core; one for streaming in the
parameter (weights, bias) data, one for the FMi data, and one for the output
(FMo) data. In addition, an AXI-Lite interface is used for acquiring the rest
of the required HW function arguments. The SDSoC tool is used for interface
synthesis.

Optimizations: VHLS provides many optimization possibilities both in terms
of performance and resource usage [15].

• Parallelism: SqJ exploits parallelism in: (a) the input channel dimension
(intra-kernel parallelism), by calculating the result of CImin MACs every
clock cycle of the operation of the pipelined MAC-CImin unit, and (b) the
output channel dimension, by calculating 2n (n = 1, 2, 3, ...) output chan-
nels concurrently. Parallelism in (a) requires a CImin-wide data register and



62 P. G. Mousouliotis and L. P. Petrou

partitioning the operand buffers (array partitioning) in a way which makes
them able to provide CImin outputs concurrently. Parallelism in (b) requires
2n ITWB buffers and the same number of MAC-CI units.

• Arbitrary precision types: To further decrease the model size of SqN and
reduce the amount of logic required by SqJ, fixed-point quantization in both
the parameters and the FMi is used. Specifically, Ristretto [16] is used to
specify the proper quantization of the parameters (weights and bias) and the
FMi. Parameters are quantized at 8 bits (1 bit integer + 7 bits fractional)
and FMi at 16 bits (13 bits integer + 3 bits fractional), achieving 0.88% top-5
accuracy loss without performing any fine-tuning.

In Fig. 3, the block diagram of SqJ, implemented (for simplicity) with 4 MAC-
CImin units, is shown. Since the parallelization factor is equal to 4, the sizes
of the buffers are: (1.179648/4) Mbits for the weightsi, (2048/4) bits for the
biasi, 344.064 Kbits for the ITB, 73.728 Kbits for each ITWBi, and (4096/4) bits
for the fmap oi. Table 1 presents the FPGA resources required for the imple-
mentation of conv l0, the accelerator of the first SqN conv layer, and SqJ, in
an 8 MAC-16 unit configuration, on the XC7Z020 FPGA SoC. The conv l0 +
SqJ implementation is the one used in the results of the next Section.

Fig. 3. SqJ block diagram implemented with 4 MAC-CImin units. Bold lines denote
CImin = 16 times the data size shown at the left side of the figure.

Table 1. Resource utilization of conv l0 and SqJ on the XC7Z020 FPGA SoC

conv l0 SqJ conv l0 + SqJ
Resource Available Util. Util. % Util. Util. % Util. Util. %
LUT 53200 9405 17.678 12692 23.857 20631 38.780
LUTRAM 17400 707 4.063 726 4.172 1273 7.316
FF 106400 15459 14.529 18114 17.024 30554 28.716
BRAM 140 13 9.285 124 88.571 134.5 96.071
DSP 220 37 16.818 149 67.727 186 84.545



SqueezeJet 63

5 Performance Evaluation

Table 2 presents the per-layer execution times, the accuracy, and the chip
power consumption4 of SqN implemented on 4 different processing unit
configurations, an Intel Core i3-7100U@2.4 GHz core (Intel NUC), an ARM
Cortex-A53@1.2 GHz core (Raspberry Pi 3 (RPI3) Model B V1.2), an ARM
Cortex-A9@667 MHz core (Xilinx ZC702), and an ARM Cortex-A9@667 MHz
core with the SqJ@100 MHz accelerator in an 8 MAC-16 unit configuration (Xil-
inx ZC702).

Table 2. SqN application execution time/accuracy/power results

Processing Unit
NUC

Intel i3@2.4GHz
RPI3

ARM A53@1.2GHz
ZC702

ARM A9@667MHz

ZC702
ARM A9@667MHz
conv l0@100MHz
SqJ@100MHz

SqN Implementation Accuracy (bits)
Activations 32 16
Weights, Bias 32 8

SqN Application Per-Layer Execution Time Results (ms)
Load Image 0.1761 1.2137 21.3210 54.4263
0:Conv 25.3118 131.5186 297.2426 26.2756
1:Maxpool 2.0531 18.2868 28.7206 22.7574
2:Fire 16.1473 142.7623 446.1214 32.6526
3:Fire 17.0744 150.7194 474.1013 34.7981
4:Maxpool 1.3333 13.4446 27.3646 18.0916
5:Fire 13.5606 124.2315 450.0168 17.7738
6:Fire 14.5805 135.3108 482.2875 18.9882
7:Maxpool 0.6023 7.1370 14.4114 9.4158
8:Fire 7.4712 69.1218 257.9832 8.6426
9:Fire 7.8755 72.4013 273.4599 8.8704
10:Fire 13.1197 125.8514 497.6390 12.2322
11:Fire 13.6331 132.5349 517.09514 12.7946
12:Conv 34.7681 324.9181 1257.4682 33.9618
13:Fixed2float 0.0001 0.0004 0.0003 15.4479
13:Avgpool 1.5295 4.3149 5.7796 5.7085
14:Softmax 0.0260 0.1528 0.2212 0.2220
Total Conv 162.4322 1395.4275 4892.9386 174.9867
Total Merge 13.74 13.89 60.43 31.97
Total Maxpool 3.99 38.87 70.49 50.26
Total 169.2627 1453.9202 5051.2337 333.0595
FPS 5.907 0.687 0.198 3.002

SqN ILSVRC12 Accuracy Results (%)
Top-1 58.38 57.46
Top-5 81.01 80.29

SqN Application CPU/SoC Power Consumption Results (Watts)
Technology 14nm n/a 28nm 28nm
Chip Power 5.3253 2.9 1.569 2.275
FPS/W 1.109 0.237 0.126 1.319

SqN is a single floating point precision C/C++ Linux application accelerated
with single-instruction multiple-data (SIMD) instruction set extensions (Intel
AVX, ARM NEON) and executed on a single core of the target CPU-only pro-
cessing systems. In the case where the SqJ accelerator is used, the implementa-
tion uses 16 bits for the activations and 8 bits for the weights and bias. GCC
4 In the case of the ARM Cortex-A53, we measure RPI3 board power consumption,

because there is no way to acquire power consumption measurements or estimations
for the Broadcom 2837 SoC.



64 P. G. Mousouliotis and L. P. Petrou

(version 6.3.0 for the Intel (64-bit) and RPI3 (32-bit) configurations, and version
6.2.1 for the ZC702 (32-bit) configuration) with the -O3 flag is used to build the
SqN Linux application. Execution times are an average of 1000 inference itera-
tions. Power consumption is acquired: (1) using Intel PCM5 while the processing
system executes 1000 SqN iterations, in the case of the Intel i3 CPU, (2) using a
power plug and measuring board power consumption, in the case of RPI3, and
(3) using Xilinx XPE6 in the case of Xilinx ZC702. Accuracy is evaluated using
the Ristretto7 tool.

Results show that the SqJ configuration achieves an 15.16x execution time
speedup in SqN inference when compared to the ARM A9 core configuration,
4.36x execution time speedup in SqN inference when compared to the ARM A53
core, and similar convolution performance (see Total Conv in Table 2) to the
Intel i3 core configuration, with less than 1% top-5 accuracy loss. In terms of
performance per Watt, frames per second per Watt (FPS/W), the SqJ imple-
mentation is 10.46 times better than the ARM A9 core configuration; again,
with less than 1% accuracy loss. The Load Image execution time in the SqJ
implementation includes the conversion of the image from 32-bit floating point
to 16-bit fixed point; that’s why it takes more than double of the ARM A9 cor-
responding time. Because of the use of lower precision for the activations, Total
Merge (merge operations are included in the Fire layers) and Total Maxpool
operations require much less time than the ARM A9 implementation. Further-
more, the Maxpool layers require 15% of the Total SqJ implementation time
and could be incorporated in a future SqJ implementation. Table 3 summarizes
the characteristics of the SqJ implementation.

Table 3. SqJ (conv l0+SqJ) implementation summary

SqueezeNet v1.1
FPGA Zynq XC7Z020
Frequency (MHz) 100
Design Tool Vivado HLS
DCNN Ops (GOPs) 0.7755
Precision 8-16 bits
DSP (Util.) 186 (84.5%)
BRAM (Util.) 134.5 (96%)
LUT (Util.) 20631 (38.8%)
LUTRAM (Util.) 1273 (7.3%)
FF (Util.) 30554 (28.7%)
Conv Latency/Image (ms) 175
Throughput (GOPs) 4.43
Top-5
ILSVRC12 Accuracy

80.29%

5 https://www.intel.com/software/pcm.
6 https://www.xilinx.com/products/technology/power/xpe.html.
7 https://github.com/pmgysel/caffe.

https://www.intel.com/software/pcm
https://www.xilinx.com/products/technology/power/xpe.html
https://github.com/pmgysel/caffe


SqueezeJet 65

6 Conclusion

In this paper, we present the design and the implementation of SqJ, an FPGA-
based convolution layer accelerator which can be used to boost the performance
of an embedded mobile processor running a CV task. The accelerator, consisting
of a buffering architecture and multiple computational units, is designed using
the Xilinx Vivado HLS tool. The Ristretto tool is used to squeeze the SqN DCNN
in the Xilinx XC7Z020 FPGA SoC, and the Xilinx SDSoC tool is used to deploy
SqJ accelerated SqN to the XC7Z020 device. To the best of our knowledge, our
work is the first one which implements the SqN DCNN in a small FPGA SoC
device, such as the XC7Z020, and achieves 80.29% top-5 ILSVRC12 accuracy
(using XC7Z020). Results show that SqJ accelerates by 15.16 times the SqN
inference execution time of an embedded mobile processor while being 10.46
times more power efficient with less than 1% top-5 accuracy drop. Improvements
to the HLS SqJ design could include: (1) Maxpool layer support, since they
require considerable amount (15%) of the total inference time on a mobile ARM
core, and (2) streaming execution, to avoid memory accesses for fmaps (requires
additional BRAM resources). Future work could use an enhanced version of
SqJ as a template and perform multiobjective optimization for finding the best
solution in terms of performance, resources, accuracy, power, and cost.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

2. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9
(2015)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

4. Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., Cong, J.: Optimizing FPGA-based
accelerator design for deep convolutional neural networks. In: Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pp. 161–170. ACM, 2015 February

5. Motamedi, M., Gysel, P., Akella, V., Ghiasi, S.: Design space exploration of FPGA-
based deep convolutional neural networks. In: 2016 21st Asia and South Pacific,
Design Automation Conference (ASP-DAC), pp. 575–580. IEEE, January 2016

6. Ovtcharov, K., Ruwase, O., Kim, J.Y., Fowers, J., Strauss, K., Chung, E.S.: Accel-
erating deep convolutional neural networks using specialized hardware. Microsoft
Res. Whitepaper 2(11) (2015)

7. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model
size. arXiv preprint (2016). arXiv:1602.07360

http://arxiv.org/abs/1602.07360


66 P. G. Mousouliotis and L. P. Petrou

8. Qiu, J., Wang, J., Yao, S., Guo, K., Li, B., Zhou, E., Yu, J., Tang, T., Xu, N., Song,
S., Wang, Y.: Going deeper with embedded FPGA platform for convolutional neu-
ral network. In: Proceedings of the 2016 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pp. 26–35. ACM, February 2016

9. Gschwend, D.: Zynqnet: an FPGA-accelerated embedded convolutional neural net-
work. Masters thesis, Swiss Federal Institute of Technology Zurich (ETH-Zurich)
(2016)

10. Gokhale, V., Jin, J., Dundar, A., Martini, B., Culurciello, E.: A 240 G-ops/s mobile
coprocessor for deep neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pp. 682–687 (2014)

11. Ma, Y., Cao, Y., Vrudhula, S., Seo, J.S.: Optimizing loop operation and dataflow
in FPGA acceleration of deep convolutional neural networks. In: Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pp. 45–54. ACM, February 2017

12. Iandola, F.: SqueezeNet/SqueezeNet v1.1 at master. DeepScale/SqueezeNet
(2017). https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet v1.1

13. Xilinx Inc.: High-Level Synthesis. Vivado Design Suite User Guide. UG902
(2017). https://www.xilinx.com/support/documentation/sw manuals/xilinx2017
2/ug902-vivado-high-level-synthesis.pdf

14. Vranesic, Z., Brown, S.: Fundamentals of Digital Logic with Verilog Design, 3rd
edn. McGraw-Hill Education, New York (2014)

15. Ali, K.M.A., Ben Atitallah, R., Fakhfakh, N., Dekeyser, J.-L.: Exploring HLS opti-
mizations for efficient stereo matching hardware implementation. In: Wong, S.,
Beck, A.C., Bertels, K., Carro, L. (eds.) ARC 2017. LNCS, vol. 10216, pp. 168–
176. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56258-2 15

16. Gysel, P., Motamedi, M., Ghiasi, S.: Hardware-oriented approximation of convo-
lutional neural networks. arXiv preprint (2016). arXiv:1604.03168

https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug902-vivado-high-level-synthesis.pdf
https://doi.org/10.1007/978-3-319-56258-2_15
http://arxiv.org/abs/1604.03168

	SqueezeJet: High-Level Synthesis Accelerator Design for Deep Convolutional Neural Networks
	1 Introduction
	2 Related Work
	3 Convolutional Layer Basics
	4 The SqueezeJet Accelerator
	4.1 Architecture
	4.2 Implementation

	5 Performance Evaluation
	6 Conclusion
	References




