
A Reconfigurable PID Controller

Sikandar Khan1, Kyprianos Papadimitriou2,3(B) , Giorgio Buttazzo1,
and Kostas Kalaitzakis2

1 Scuola Superiore Sant’Anna, Pisa, Italy
2 Technical University of Crete, Chania, Greece

kpapadim@mhl.tuc.gr
3 Technological Educational Institute of Crete, Heraklion, Greece

Abstract. We survey the Proportional-Integral-Derivative (PID) con-
troller variants and we switch them in runtime via reconfiguration, as
the control requirements change. Depending on the PID variant, e.g. P,
I, PI, PD, PID, PI-PD, the involved computations to produce the control
output are different. We rely on a previous published design to shorten
the execution cycle of each controller variant, by increasing the number
of arithmetic units operating concurrently. Furthermore, we incorporate
a design based on multiplexers that allows for eliminating frequent recon-
figurations, which were required in the previous work. Finally, we eval-
uate our approach in terms of resource utilization and reconfiguration
time.

1 Introduction

The PID algorithm has been widely adopted by the industry due to its simplicity
of design and implementation. An old work [1] surveying over 11, 000 controllers
in process industries, reports that more than 97% of regulatory controllers utilize
PID. Although designing a PID controller is conceptually intuitive, it is hard
in practice, if multiple and often conflicting objectives such as fast transient
response and high stability requirements are to be met. Therefore, different PID
controller variants have been suggested, each one serving better different control
scenarios. These controllers, e.g. P-only, I-only, PI, PD, PID, PI-PD, generate
a control output of different nature, ranging from more robust to more stable
or accurate [2]. In the present work, we are switching the controller variants via
reconfiguration, aiming at achieving a control response that integrates the best
feature of all these variants depending on the requirements. The computations
required to produce the control output differ, thus we are adjusting them at
run-time. Our contributions are:

– the controller type is reconfigured instead of implementing statically all con-
trollers and multiplexing their outputs. This accounts for latency reduction
in delivering controller’s output, and for resource savings;

– given a number of multipliers and adders, we are examining the overlapped
computations so as to parallelize them, while respecting the dependencies and
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Fig. 1. A PID controller in a feedback loop. r[n] is the desired value.

the delay added from the registers holding the intermediate results in each
computational unit;

– we propose a design relying on multiplexers built in each reconfigurable
module. This allows for avoiding frequent reconfiguration of the coeffi-
cients, i.e. gain parameters, of the controllers, yet respecting their dynamic
characteristics.

The rest of the paper is organized as follows. In Sect. 2 we briefly discuss the
PID controller and its variants, and in Sect. 3 the adaptive controllers. Section 4
presents our approach for switching the controllers. Section 5 has the implemen-
tation details along with its evaluation. Section 6 concludes the paper.

2 The PID Controller and Its Variants

A PID controller is used in industrial applications for regulating processes as
part of a control loop. It receives a setpoint request from the user, e.g. vehicle’s
desired speed when activating cruise control, and compares it to a measured
feedback, e.g. vehicle’s current speed. The difference between the setpoint and
feedback values is termed error, and the job of the controller is to eliminate it.
This process takes place continuously during which the PID controller performs
computations to generate an output for eliminating the error. Figure 1 illustrates
a generic PID controller. Mathematically it is expressed with Eq. 1,

u[n] = Kp × e[n] + Ki ×
n∑

j=0

e[j] + Kd × (e[n] − e[n − 1]) (1)

where e[n] represent the nth sample of the instantaneous error obtained as a dif-
ference between the setpoint value r[n], and the measured output of the process
y[n] for some physical variable under control, such that e[n] = r[n] − y[n]. The
PID controller takes the error e[n] as an input and computes its control output
u[n] based on its proportional Kp, integral Ki, and derivative Kd gains - termed
also coefficients - such that u[n] = P + I + D, where P , I, and D refer to the
proportional, the integral, and the derivative term, respectively. A closed-loop is
inserted in which the process output, y[n], is observed by a sensor, to calculate
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the instantaneous error e[n] after each sampling period T . The PID pseudo-code
is given below.

Em = 0 #Em = e[n-1]
SumEm = 0 #SumEm = e[0]+e[1]+...+e[n-1]
LOOP
wait (T) #1 execution cycle

En = error #En = e[n]
Un = (Kp*En) + (Ki*(En+SumEm)) + (Kd*(En-Em))
SumEm = En+SumEm
Em = En

end LOOP

A PID controller can be used in different combinations to achieve a control
response of different nature. The work in [3] analyzes the different control struc-
tures. The P controller has fast system response (robust), and decreases system’s
steady state error (SSE). However, beyond a certain value of the SSE reduction,
a further increase in the proportional gain leads to an overshoot of the system
response that causes oscillation and leads to instability. Moreover, P controller
never eliminates SSE, so it is suitable for systems that can tolerate a constant
SSE. On the other hand, the PI controller eliminates the SSE, but it is charac-
terized by slow response (sluggish); the integral term responds to accumulated
errors from the past, thus it can cause the present value to overshoot beyond the
setpoint, causing instability. The PD controller prevents sudden changes occur-
ring in the control output resulting from sudden changes in the error signal and
has good stability. The downside is that the derivative factor directly amplifies
the noise. The PID controller has the optimum control dynamics, however, tun-
ing its parameters to respond to different conditions is challenging. For instance,
if a PID controller for motor is tuned without load, it will not perform optimally
when the load changes. This is why most often a set of parameters is chosen that
is working satisfactory in all cases and not necessarily best for any particular
case [4]. The control response of PID variants are summarized in Table 1; their
advantages can be grasped by contemplating their differences side-by-side.

Table 1. Response characteristics of different controllers.

Parameter Controller type

P PI PD PID

Rise time Decreases Minor decrease No effect Minor decrease

Overshoot Increases Increases Decrease Minor decrease

Settling time Small change Increases Decrease Minor decrease

Steady state error Decreases Eliminates No effect Minor decrease

Stability Degrades Degrades Good Good for small Kd
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Fig. 2. The proper controller is activated depending on whether faster response or
steady accuracy is required.

3 Adaptive Controllers

Non-linear or adaptive controllers operate efficiently in dynamic environments
and cover a sufficiently large operating range. Adaptivity is achieved either by
combining different controllers and switching amongst them based on their indi-
vidual operating regime, or, by changing the gain parameters of a single con-
troller as control requirements change.

3.1 Switching Controllers

The concept of dividing the operating envelope of any control process into oper-
ating regimes was proposed in [5]. Using this concept, the authors of [6] presented
a performance-oriented ship track auto-control that combines the advantages of
a fuzzy PD controller and a conventional PI controller. The PD controller is
active in the transient regime to deliver fast response, and the PI controller is
activated in the steady regime to achieve greater accuracy. The switching deci-
sion is based on the rudder angle Ψ of the ship, which is small during straight
course (steady regime) but would change by large scale during a course change
(transient regime). Figure 2 illustrates the concept of switching the controllers.
Other earlier works combining different controllers to integrate both robustness
and stability were published in [7,8]. Similarly, [9] proposes switching amongst
multiple co-existing PID controllers in an electrostatic micro-actuator system.

3.2 Reconfigurable Controllers

FPGA technology offers good-closed performance and its suitability in control
applications has been reviewed in [10], which highlights its advantages of speed
and low-cost development, flexibility, and limited power consumption. In addi-
tion, reconfiguration has been used to modify the control parameters to a new
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set of values according to the run-time requirements. To the best of our knowl-
edge, only a few works have proposed reconfiguring the gain parameters [11–13].
The authors of an earlier work [14], proposed a reconfigurable circuit for con-
trolling the passing of the values of gain parameters kept in registers, depending
on whether the PID controller executes the P, I or D stage of its execution
cycle; this results in frequent reconfigurations. Our approach is different in that
it allows partial reconfiguration of the controller type, contrary to changing the
gain parameters only. Table 2 summarizes the main attributes of our approach
in contrast to previous ones.

Table 2. Static and reconfigurable resources in the proposed controllers. In our design
the values of gain parameters are kept in registers that can be changed with a “write”
command.

Reference Static Reconfigurable

[11–13] Controller type Gain parameters

Tpe of operations

# operations

[14] Controller type Switching of operands

Type of operations

# operations

Gain parameters

Present design Gain parameters Controller type

Type of operations

# operations

4 Designing Effectively the Controller Variants

We are combining both the foregoing adaptive strategies to model a reconfig-
urable PID controller that can be flexible and fast. Figure 3 illustrates our app-
roach. We are using as vehicle the architecture in [14], and initially we are study-
ing the way it supports all controller variants. We then show how we have paral-
lelized the computations, i.e. multiplications and additions, taking into account
the delay introduced by the registers holding the intermediate results in each
computational unit. Finally, we show that for switching the gain parameters -
depending on the stage of the execution cycle -, we use multiplexers as opposed
to frequently partially reconfiguring the fabric, as was done in [14].

4.1 Overlapped and Dependent Computations

In the original architecture [14], 1 multiplication and 1 addition are carried out
in each stage of the execution cycle of the PID controller. The gain parameters
are stored in registers and depending on the stage of the execution cycle, they
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Fig. 3. The partially reconfigurable area is programmed with a different controller
depending on the run-time control requirements.

are passed for computation to the PRODUCT and ADDITION blocks via recon-
figuring a circuit. We use this original architecture to study its performance for
designing other controller variants. Table 3 shows the actual number and type of
computations to carry out one complete execution cycle, i.e. generate one control
output, along with the dependencies between the computations. In Fig. 4(a), we
are analyzing the number of stages per execution cycle for the different variants,
assuming they are implemented with the original architecture. In Fig. 4 we have
considered the dependencies of the terms inside the involved computations as
well as the cycle delay added from the registers in each computational unit.

Table 3. Number and type of computations carried out in 1 period (T) of execution
for the different controllers. Table exposes also the dependencies between the compu-
tations.

Controller type # computations Involved multiplications Involved additions

P 1 Kp × En = P 0

PI 4 Kp × En = P En + SumEm

Ki × (En + SumEm) = I P + I

PD 5 Kp × En = P En− Em

−1 × Em

Kd × (En− Em) = D P + D

PID 8 Kp × En = P En + SumEm

−1 × Em En− Em

Ki × (En + SumEm) = I P + I

Kd × (En− Em) = D P + I + D
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Fig. 4. Comparison of [14] VS. our design in terms of the number of stages per execution
cycle. At the end of every execution cycle the output u[n] is computed. Fewer stages
can result in smaller latency.

4.2 Reducing the Number of Stages per Execution Cycle

We parallelize the arithmetic operations by incorporating additional multipliers
and adders; the number of additional computational units differs amongst the
controllers. This allows for shortening their execution cycle, which accounts for
smaller latency and faster responsiveness. This is a typical requirement in real-
time domains. The way the controller variants operate now is shown in Fig. 4(b).
It illustrates that in almost all cases 1 stage can be eliminated, e.g. for the PD
and the PID controllers the original design [14] completes the execution cycle
in 4 stages, while our design completes in 3 stages. In the near future, we will
study in-depth the trade-offs in terms of the latency from the incorporation
of registers in the computational units, i.e. for pipelining and registering their
inputs/outputs.

4.3 Switching the Gain Parameters via Multiplexers

In the original design, one reconfiguration occurs in every stage of the execu-
tion cycle, e.g. 4 reconfigurations for the PID. If the sampling period (T) for
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some control variable is 100 ms, roughly speaking, a reconfiguration occurs every
25 ms. We instead create partial bitstreams in which the design for each variant
incorporates a fixed set of multiplexers that allow for switching amongst the
gain parameters, depending on the stage of the execution cycle. Figure 5 illus-
trates our design, and its output depending on the stage. A Finite State Machine
(FSM) is also implemented in each bitstream for controlling the “SEL” signals
of the multiplexers. Depending on the stage of the execution cycle, the FSM
enters a different state driving accordingly the “SEL” signals. The operation of
the FSM is simple and further details remain out of the scope of this paper. This
additional hardware increases the bitstream size, but eliminates reconfiguration
in every stage.
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P
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Fig. 5. A fixed number of multiplexers in each RM allows for eliminating partial recon-
figuration of the gain parameters, i.e. coefficients, in every stage of the execution cycle.

5 Implementation of a Reconfigurable Arithmetic Block

To demonstrate our approach, we implemented a reconfigurable arithmetic block
in the Programmable Logic (PL) of a Zybo platform. We also developed code for
the Processor System (PS), which is responsible for I/O data handling, reconfig-
uration of the block, and runs the control application. This experimental setup
is shown in Fig. 6. The functionality of the block PL can be altered by loading
the corresponding partial bitstream from a DDR memory into a Reconfigurable
Partition (RP) via the PCAP configuration port [15]. One Reconfigurable Par-
tition (RP) in the block can host one Reconfigurable Module (RM) at a time,
performing a fixed set of 32-bit wide simultaneous operations. A number of RMs
have been predesigned and stored in DDR that implement the arithmetic oper-
ations of the different variants. The operands to be processed and the results
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Fig. 6. The proposed reconfigurable arithmetic block, and the experimental setup for
testing it.

are stored in a fixed set of register array, accessible to the PS through an AXI
interface.

In each RM, adders are implemented in LUTs, and multiplications in DSP
slices. The DSP slice, shown in Fig. 7, consists of a fundamental 25 × 18-bit
multiplier with pipelining and extension capabilities [16]. A total of 80 DSP
slices are available in the PL of Zybo (Z-7010), distributed equally across 4
Clock Regions (CRs) [15,16]. It should be noted here that according to Xilinx,
restricting modules to one CR accounts for reaching high clock frequencies. To
support wider multiplications the DSP slices need to be cascaded. This affects
the total number of multiplications than can be created within each CR; in

Inputs Output

Fig. 7. Xilinx’s fundamental DSP48E1 slice [16]
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our case the number of multiplications was reduced from 20 (of 25 × 18-bit
each) down to 16 (of 32 × 32-bit each). Such trade-offs between the number of
simultaneous multiplications and data widths of the operands must be taken into
account when designing any system that involves wider multiplications than the
width of the fundamental multiplier. Cascading DSP units also demands more
area to be annexed within each Reconfigurable Region (RR). This is why to
implement our largest RM - it performs up to 15 simultaneous multiplications
with 32 × 32-bit width - we annexed the entire X0Y1 CR in floorplanning the
RP of our design. This region is illustrated with the large Pblock on the left side
of Fig. 8. However, for the case of the PID controller, a smaller region is required
that can implement up to 4 arithmetic units. This is shown on the right side of
Fig. 8.

CR X1Y1

CR X1Y0CR X0Y0

CR X0Y1

CR-Instance

PS

pblock -

CR X1Y1

pblock

CR X1Y0CR X0Y0

CR X0Y1PS

Minimum area needed to fit the opera ons of our 
reconfigurable PID controller

The resources allocated in this Pblock can fit up to 15 
arithme c opera ons

Fig. 8. The large Pblock on the left accommodates up to 15 arithmetic operations. The
small Pblock on the right fits the arithmetic operations of the most resource-consuming
controller, i.e. PID.

In terms of resource utilization within the Pblock, we obtained that our design
is DSP-consuming mainly, while the requirements in flip-flops and LUTs are low.
Table 4 summarizes the resource utilization in the larger Pblock of Fig. 8, for
different Reconfigurable Modules (RMs). Floorplanning to the region indicated
by the large Pblock of Fig. 8, creates partial bitstreams of 192, 343 bytes each.
However, by restricting the floorplanning to the smaller region in Fig. 8, which
has enough resources to implement the required computations for any variant - 4
is the maximum, in the case of the PID controller - the size of partial bitstream
created for each PID variant becomes 55, 727 bytes. Considering the maximum
reconfiguration speed of 400 MBps for the latest Xilinx devices, a total of 132.8µs
are needed to load the partial bitstream into the fabric via PCAP configuration
port. Future versions can be built using the ICAP configuration port, accessed
by a fast hardware reconfiguration engine [17].



402 S. Khan et al.

Table 4. Resource utilization in the large Pblock of Fig. 8, for different RMs. Each
one implements a different number of arithmetic operations. Results are from Xilinx
Z-7010 device.

# arithmetic units
in the RM

# flip-flops (%) # LUTs (%) # DSPs (%)

5 160/5,696 (2.80%) 161/2,848 (5.65%) 5/16 (31.25%)

10 320/5,696 (5.60%) 321/2,848 (11.27%) 10/16 (62.50%)

15 480/5,696 (8.43%) 461/2,848 (16.89%) 15/16 (93.75%)

6 Conclusions

While most works were focused on reconfiguring the gain parameters, we propose
reconfiguring the controller type. In this way, the number of active arithmetic
units is adjusted at run-time. Our reconfigurable arithmetic block supports up to
a max of 15 simultaneous operations (of 32 × 32-bit each), and we envision its
use in adaptive state-space MIMO controllers such as Linear-Quadratic-Gaussian
(LQG) control. These controllers have high computational and storage demands
as they require several linear algebraic operations including matrix multiplication
that needs to store and process more information.
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