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Abstract. Over the past two decades, the use of low power Field Pro-
grammable Gate Arrays (FPGA) for the acceleration of various vision
systems mainly on embedded devices have become widespread. The
reconfigurable and parallel nature of the FPGA opens up new opportuni-
ties to speed-up computationally intensive vision and neural algorithms
on embedded and portable devices. This paper presents a comprehen-
sive review of embedded vision algorithms and applications over the past
decade. The review will discuss vision based systems and approaches, and
how they have been implemented on embedded devices. Topics covered
include image acquisition, preprocessing, object detection and tracking,
recognition as well as high-level classification. This is followed by an
outline of the advantages and disadvantages of the various embedded
implementations. Finally, an overview of the challenges in the field and
future research trends are presented. This review is expected to serve as
a tutorial and reference source for embedded computer vision systems.

1 Introduction

Scene understanding and prompt reaction to an event is a critical feature for any
time critical computer vision system. The deployment scenarios include a range
of applications such as mobile robotics, autonomous cars, mobile and wearable
devices or public space surveillance (airport/railway station). Modern vision
systems which play a significant role in such interaction process require higher
level scene understanding with ultra-fast processing capabilities operating at
extremely low power. Currently, such systems rely on traditional computer vision
techniques which often follow compute intensive brute-force approaches (slower
response time) and prone to fail in environments with limited power, bandwidth
and computing resources. The aim of this paper is to review state-of-the-art
embedded vision systems available from the literature and in the industry; and
therefore to aid researchers for future development.

Research into computer vision has made steady and significant progress in the
past two decades. The tremendous progress, coupled with cheap computational
power has enabled many portable and embedded devices to operate with vision
capabilities. Digital Signal Processing and for that matter Digital Image Pro-
cessing (DIP) is an exciting area to be involved in today. Having been around
for over two decades, it is typically used in application areas where cost and
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performance are key [7], including the entertainment industry, security surveil-
lance systems, medical systems, automotive industry and defence. DIP systems
are often implemented using the ubiquitous general purpose processors (GPPs).
The increasing demand for high-speed has resulted in the use of dedicated Dig-
ital Signal Processors (DSPs) and General Purpose Graphics Processing Units
(GPGPU); special types of GPP optimised for signal processing algorithms.
However, power dissipation is important in almost all DSP-based consumer elec-
tronic devices; hence the high-speed, power-hungry GPPs become unattractive.
Battery-powered products are highly sensitive to energy consumption, and even
line-powered products are often sensitive to power consumption [41]. For hard-
ware acceleration and low power consumption, DIP designers have opted for
alternatives like the Field Programmable Gate Array (FPGA) and Application
Specific Integrated Circuits (ASIC).

The use of FPGAs in application areas like communication, image process-
ing and control engineering has increased significantly over the past decade [54].
Computer vision and image processing algorithms often perform a large number
of inherently parallel operations, and are not good candidates for implementa-
tion on machines designed around the von Neumann architecture. Some image
processing algorithms have successfully been implemented on embedded system
architectures running in real-time on portable devices [35,45], and relatively
small literature has been dedicated to the development of high-level algorithms
for embedded hardware [39,63]. The demand for real-time processing in the
design of any practical imaging system has led to the development of the Intel
Open source Computer Vision library (OpenCV) for the acceleration of various
image processing tasks on GPPs [46]. Many imaging systems rely heavily on the
increasing processing speed of today’s GPPs to run in real-time.

2 Application Specific Vision Systems

Every embedded vision systems follows a common pipeline of image processing
functional blocks as depicted in Fig. 1. The image sensor or camera is the starting

Fig. 1. Vision system pipeline.
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point of this pipeline followed by a frame grabber that controls the frame syn-
chronization and frame rate. The raw pixels are then passed for further process-
ing which includes image pre-processing, feature extraction and classification.
Within this higher level abstraction various vision systems implemented required
functionalities as shown in the figure. Image preprocessing functions are often
pixel processing and offer stream computations. However features extraction and
classification tasks are complex in nature and usually involves non-deterministic
loop conditions. Analysis and optimisations [59] of such complexity with respect
to performance and power [13] is an emerging topic of interest and often seen as
a trade-off including the choice of the hardware.

Embedded vision systems are usually developed either to accelerate complex
algorithms that handles large stream of image data, e.g., stereo matching, video
compression etc.; or to minimize power at resource constraint systems including
unmanned aerial vehicle (UAV) or autonomous driver assistant systems. While
a large number of applications of embedded vision systems can be found in the
literature, they can be grouped to major application areas including robotics,
face detection applications, multimedia compression, autonomous driving and
assisted living as shown in Table 1. Various implementation techniques are pro-
posed in the literature that considers a range of image processing algorithms.
Efforts were made either to parallelize the algorithms, or to approximate com-
puting to reduce computational complexities.

While the first approach has implications in performance improvement, the
latter ones are more suitable for low power applications. Popular higher level
complex image processing algorithms that are used in embedded computer vision

Table 1. Embedded vision application areas. UAV: unmanned aerial vehicle; AUV:
autonomous underwater vehicle.

Robotics Face

detection

Media com-

pression

Autonomous

driving

Assisted

living

UAV Mobile robot AUV

Cesetti et al. [15] X

Humenberger et al. [31] X

Yang et al. [70] X

Chen et al. [17] X

Velez et al. [65] X

Yang et al. [69] X

Lin et al. [42] X

Oleynikova et al. [50] X

Flores et al. [22] X X

Xu and Shen [68] X

Wang and Yu [67] X

Abeydeera et al. [1] X

He et al. [28] X

Basha and Kannan [10] X
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literature includes stereo vision, feature extraction and tracking, motion estima-
tion, object detection, scene segmentation and more recent convolutional neural
network (CNN). These categories and corresponding literature are captured in
Table 2.

Table 2. Common high level algorithms used in embedded vision systems.

Feature point
extraction

Stereo
vision

Motion
estimation

Object
detection

Scene seg-
mentation

CNN

Park et al. [51] X

Jin et al. [36] X

Chen et al. [17] X X

Belbachir et al. [11] X

Banz et al. [8] X

Cesetti et al. [15] X

Humenberger et al. [32] X

Lin et al. [42] X X X

Oleynikova et al. [50] X

Flores et al. [22] X

Ttofis et al. [64] X

He et al. [28] X

Basha and Kannan [10] X

Liu et al. [43] X X

Zhao et al. [74] X X

3 Embedded Vision Systems

3.1 Central Processing Unit (CPU)

The widespread adoption of imaging and vision applications in industrial
automation, robotics and surveillance calls for a better way of implementing
such techniques for real-time purposes. The need to address the gap in knowl-
edge for students who have either studied computer vision or microelectron-
ics to fill positions in the industry requiring both expertise has been address
with the introduction of various CPU based platforms like Beagleboard [47]
and Raspberry-Pi [48]. Hashmi et al. [27] used a beagleboard-xM low-power
open-source hardware to prototype a real-time copyright protection algorithm.
A human tracking system which reliably detect and track human motion has
been implemented on a beagleboard-xM [24]. In [5], a LeopardBoard has been
used to implement an efficient edge-detection algorithm for tracking activity
level in an indoor environment. Similarly, Sharma and Kumar [56] presented
an image enhancement algorithm on a beagleboard, mainly for monitoring the
health condition of an individual. To demonstrate the efficiency of embedded
image processing Sahani and Mohanty [55] showcased various computer vision
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applications developed on Raspberry-Pi. The system uses a camera powered by
the raspberry-pi with a resolution of 1280 × 720 to detect text and images in
real-time. Various other computer vision algorithm have been implemented on
small dedicated platforms using Raspberry-Pi. In [30], a robot with on-board
camera for carrying lightweight objects is presented and uses raspberry-pi to
process the camera data in aid of navigation. Other robotic systems like [37,44]
have all implemented some vision based algorithms on a Raspberry-Pi because
of its portability and ease of programmability.

3.2 Graphic Processing Unit (GPU)

The parallel nature of GPUs have made them a choice for the acceleration of
many computer vision algorithms [66]. Coupled with the emerging heteroge-
neous programming models like OpenCL, GPGPU has been enabled on mobile
devices. To explore the capabilities of mobile GPU for the acceleration of com-
puter vision algorithms, Wang et al. [66] presented and exemplar-based inpaint-
ing algorithm for object removal. Rister et al. [53] presented an implementation
of the Scale-Invariant Feature Transform feature detection algorithm on a mobile
based GPU to achieved 7× speed-up over optimised GPP implementation. A face
detection and recognition system implementation on two GPU architectures are
presented in [71] with reported speed-up of approximately 3.7×. A mobile GPU
based object detection algorithm with twofold speed-up compared to a simi-
lar implementation on a mobile GPP is presented in [3]. The implementation
also reported energy savings of up to 84% compared to a smartphone GPP. A
GPU enabled architecture for scaling up convolutional networks have been pre-
sented in [62]. The explored networks [62] are trained with stochastic gradient
distributed machine learning system using 50 replicas on a NVidia Kepler GPU.
Deep learning or Convolutional Neural Network (CNN) has become popular in
the fields of machine learning and computer vision, because of it’s high perfor-
mance in object detection [33]. Using only GPP, a complex CNN may require
more than one month to train [19]. GPUs offer approximately ten fold speed-up
compared to GPP, which is demonstrated in [33] for faster training and testing.
A number of other computer vision and image processing algorithms [9,34,57]
have been implemented on GPU mainly to accelerate them for real time needs.

3.3 Field Programmable Gate Array (FPGA)

FPGAs are successfully used in many application areas, including embedded
computer vision and image processing. The key advantage of FPGAs over con-
ventional CPUs or GPUs is configurability. Resource allocation and memory
hierarchy on general purpose processors must perform well across a range of
applications, whereas FPGA designs leave many of those decisions to the appli-
cation designer to optimally use logic gates to implement one specific application.
Moreover, they can be significantly faster as their nature supports fine-grained,
massively parallel and pipelined execution. FPGAs allows stream processing
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from camera input and offers parallel execution of processing blocks that resem-
bles the vision system pipeline as depicted in Fig. 1. Various forms of parallelism,
e.g., pipeline, task or data parallelism were exploited in FPGA based vision sys-
tems [59]. Additionally FPGAs are known for low power execution and vision
system designers often exploit this characteristics by using multi-clock domain
design paradigm [13]. However on the downside, FPGAs are blamed on pro-
grammability aspect as FPGAs are most often specified directly in low level less
expressive hardware description languages such as Verilog or VHDL.

The intrinsic parallel architecture of FPGAs have also been exploited in
a number of application areas including high level feature classification with
conventional neural networks [29,60], convolutional neural networks [12,18,52]
and architecture specific neural networks [4,49]. A variant of self-organising
map designed specifically for FPGA is presented in [4] and tested on two com-
puter vision applications; character recognition and appearance-based object
identification. The implementation in [4] was achieved using Xilinx Virtex-4
XC4VLX160 and capable being trained with approximately 25,000 patterns
every second. Embedded vision systems, implemented on FPGAs are usually
evaluated on a few objective measurements including (1) performance measured
in throughput (e.g., frames per second or fps); (2) clock frequency; (3) input
image frame size; (4) FPGA resource usage (e.g., DSP, BRAM, FF/LUTs) and
(5) power consumption. Power consumption on FPGAs consists of (a) static
power, which is directly proportional to the amount of used logic; and (b)
dynamic power, which is a weighted sum of several components (these include
clock signal propagation power, proportional to clock frequency; signals power,
proportional to signal switching rates, among others). The implementation relies
on available programmable logic gates available on different FPGA boards from
handful of manufacturers, including Xilinx and Altera (now Intel). Table 3 pro-
vides a comparative overview of these measurements metrics reported in the
literature that are referred earlier in Sect. 2.

3.4 ASIC

Vision based applications and systems are typically associated with high com-
putational cost, slow when implemented on general purpose processors and not
very useful in real-time applications. To address some of theses problems, mainly
the real-time requirements, most researchers have resulted to the use of dedi-
cated and application specific systems. In [61], Sugiura et al. used an application
specific instruction-set processor to execute a lossless data compression method
as part of a visual prosthesis systems. Deep networks, models for understanding
the content of images, videos and audio have been used successfully in various
application [40] with relatively high computational cost. Gokhale et al. [26] pre-
sented a scalable, low-power co-processor for enabling real-time execution of deep
neural networks on mobile devices. This was implemented using a large number
of parallel operators, optimised to process multiple streams of information. The
implementation presented in [26] shows that image understanding with deep net-
works can be accelerated on custom hardware to achieve better performance per
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Table 3. A comparative overview of the FPGA metrics used in embedded computer
vision.

Frame size Frame rate Max.
clock
frequency

Target devices

Jin et al. [36] 640 × 480 230 fps 93MHz Xilinx Virtex-4

Appiah et al. [6] 640 × 480 35 fps 65MHz Xilinx Virtex-4

Banz et al. [8] 640 × 480 30 fps 39MHz Xilinx Virtex-5

Oleynikova et al. [50] 640 × 480 60 fps - Xilinx Artix-7

Ttofis et al. [64] 1280 × 720 60 fps 103MHz Xilinx Kintex-7

He et al. [28] 7680 × 4320 30 fps 188MHz Altera Stratix II

Abeydeera et al. [1] 4096 × 2160 30 fps 150MHz Xilinx Zynq 7045

Tanabe and Maruyama [63] 640 × 480 349 fps 228MHz Xilinx Virtex-6

Albo-Canals et al. [2] 177 × 144 1562 fps 30MHz Actel IGLOO

Bhowmik et al. [13] 320 × 240 52 fps 85MHz Xilinx Zynq 7020

watt. Chen et al. [16] presented an application specific integrated circuit accel-
erator on a 65 nm scale technology, for large-scale convolutional and deep neural
networks capable of performing 452 GOP/s of key neural network operations in
a small footprint. A convolution chip built on 0.35µm CMOS technology for
event-driven vision sensing and processing is presented in [14].

4 Future Trends and Conclusions

In this paper we made a modest effort to review embedded computer vision sys-
tems that satisfy application specific constraints e.g., performance or power. The
literature is scattered and covers a range of application areas, vision algorithms
and target hardware. This paper made an effort to categorize them in an orderly
fashion. We identified two emerging trends (described below) in this domain
namely, heterogeneous computing and bi-inspired computing for efficient vision
systems.

4.1 Heterogeneous Computing for Vision Systems

Current computer vision algorithms are highly complex and consist of different
functional blocks that are suitable for a variety of targets i.e., CPUs, GPUs
or FPGAs. Therefore, designing computer vision systems for single target hard-
ware platform is inefficient and does not necessarily meet performance and power
budgets especially for embedded and remote operations. A heterogeneous archi-
tecture is a natural alternative but manifests new challenges:

– design choices to dissect the algorithm according to their suitability for the
target hardware,

– interoperability and data flow synchronisations between functional units as
different blocks may have different timing constraints.
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– programmability and coordination between different hardware platforms.
There is a need for unified programming environment.

Although recently hardware manufacturers launched new heterogeneous prod-
ucts, e.g., Xilinx Zynq Ultrascale+ MPSoC1 (CPU, GPU and FPGA) and Altera
SoC products2 (CPU and FPGA), these are not fully exploited in computer
vision domain (except handful of recent work, e.g., Zhang et al. [73]) as major-
ity of the existing algorithms are not designed to target heterogeneous platforms.
Consideration of target hardware during the algorithmic development cycle is
not always necessary and the domain experts often prototype new algorithms
using library-rich languages such as MATLAB. However, efficient deployment of
these prototypes on a heterogeneous hardware is challenging. Asynchronous data
process network [20] may provide a plausible solution to this problem, however
requires further research.

4.2 Biologically Inspired Vision Systems

The ability to detect moving objects in a scene is a fundamental problem in
computer vision. This is a baseline problem that requires detection accuracy as
well as computational efficiency to guarantee a successful high level processing in
behavioural or event analysis [72]. Various background subtraction methods [25]
have been proposed and proven to be successful for detecting moving objects
with the use of stationary cameras. These methods build statistical background
models and extract moving objects by finding regions which do not have similar
characteristics to the background model. Human visual systems processes a very
high volume of data and hence it is often selective and activity driven (responsive
to the scene event).

The high volume data problem is also faced by many modern technical sys-
tems like computer vision systems which need to deal with a multitude of image
pixels at any point in time. Physiological research has illustrated that biological
vision systems use neuronal circuits to extract movement in the visual scenes [38].
Biological visual systems are intrinsically complex hierarchical processing sys-
tems with diverse specialised neurons, displaying very powerful specific biological
processing functionalities that traditional computer vision techniques have not
yet fully emulated [38]. Another important finding during the last decades, that
most neuromorphic designers may overlook is the fact that processing of the
visual information is not serial but rather highly parallel [23] and hence such
implementations should target parallel architectures.

A concept proposed and implemented in [21], shows that motion informa-
tion can be capture with the use of one retina sheet and two LGN sheets (one
ON and one OFF). Orientation preference has successfully been modelled using
a Gain Control, Adaptation, Laterally (GCAL) model consisting of four two-
dimensional sheets. Solari et al. [58], presented a feed-forward model based on

1 https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html.
2 https://www.altera.com/products/soc/overview.html.

https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.altera.com/products/soc/overview.html
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the biological visual system to solve motion estimation problem. The model inte-
grates media temporal (MT) neurons for estimation of optical flow by extending
it into a scalable framework. What is missing from their model is the feedback
capabilities as perceived in the visual pathway, but the results are very promis-
ing and acts as a good starting point for building bio-inspired scalable computer
vision algorithms.
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