
Shortest Unique Palindromic Substring
Queries in Optimal Time

Yuto Nakashima1,2(B), Hiroe Inoue1, Takuya Mieno1, Shunsuke Inenaga1,
Hideo Bannai1, and Masayuki Takeda1

1 Department of Informatics, Kyushu University, Fukuoka, Japan
{yuto.nakashima,hiroe.inoue,inenaga,bannai,takeda}@inf.kyushu-u.ac.jp

2 Japan Society for the Promotion of Science (JSPS), Tokyo, Japan

Abstract. A palindrome is a string that reads the same forward and
backward. A palindromic substring P of a string S is called a shortest
unique palindromic substring (SUPS) for an interval [s, t] in S, if P
occurs exactly once in S, this occurrence of P contains interval [s, t],
and every palindromic substring of S which contains interval [s, t] and is
shorter than P occurs at least twice in S. The SUPS problem is, given a
string S, to preprocess S so that for any subsequent query interval [s, t]
all the SUPSs for interval [s, t] can be answered quickly. We present an
optimal solution to this problem. Namely, we show how to preprocess a
given string S of length n in O(n) time and space so that all SUPSs for
any subsequent query interval can be answered in O(α + 1) time, where
α is the number of outputs.

1 Introduction

A substring S[i..j] of a string S is called a shortest unique substring (SUS) for
a position p if S[i..j] is the shortest substring s.t. S[i..j] is unique in S (i.e.,
S[i..j] occurs exactly once in S), and [i..j] contains p (i.e., i ≤ p ≤ j). Recently,
Pei et al. [13] proposed the point SUS problem, preprocessing a given string S
of length n so that we can return a SUS for any given query position efficiently.
This problem was considered for some applications in bioinformatics, e.g., poly-
merase chain reaction (PCR) primer design in molecular biology. Pei et al. [13]
proposed an algorithm which returns a SUS for any given position in constant
time after O(n2)-time preprocessing. After that, Tsuruta et al. [15] and Ileri
et al. [9] independently showed optimal O(n)-time preprocessing and constant
query time algorithms. They also showed optimal O(n)-time preprocessing and
O(k) query time algorithms which return all SUS s for any given position where
k is the number of outputs. Moreover, Hon et al. [6] proposed an in-place algo-
rithm which returns a SUS . A more general problem called interval SUS problem,
where a query is an interval, was considered by Hu et al. [7]. They proposed an
optimal O(n)-time preprocessing and O(k) query time algorithm which returns
all SUS s containing a given query interval. Most recently, Mieno et al. [12] pro-
posed an efficient algorithm for interval SUS problem when the input string is
represented by run-length encoding.
c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 397–408, 2018.
https://doi.org/10.1007/978-3-319-78825-8_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_32&domain=pdf

398 Y. Nakashima et al.

In this paper, we consider a new variant of interval SUS problems concerning
palindromes. A substring S[i..j] is called a palindromic substring of S if S[i..j]
and the reversed string of S[i..j] is the same string. The study of combinatorial
properties and structures on palindromes is still an important and well studied
topic in stringology [1,3–5,8,14]. Droubay et al. [3] showed a string of length
n can contain at most n + 1 distinct palindromes. Moreover, Groult et al. [5]
proposed a linear time algorithm for computing all distinct palindromes in a
string.

Our new problem can be described as follows. A substring S[i..j] of a string
S is called a shortest unique palindromic substring (SUPS) for an interval [s, t] if
S[i..j] is the shortest substring s.t. S[i..j] is unique in S, [i..j] contains [s, t], and
S[i..j] is a palindromic substring. The interval SUPS problem is to preprocess a
given string S of length n so that we can return all SUPS s for any query interval
efficiently. For this problem, we propose an optimal O(n)-time preprocessing
and O(α+1)-time query algorithm, where α is the number of outputs. Potential
applications of our algorithm are in bioinformatics; It is known that the presence
of particular (e.g., unique) palindromic sequences can affect immunostimulatory
activities of oligonucleotides [10,16]. The size and the number of palindromes also
influence the activity. Since any unique palindromic sequence can be obtained
easily from a shorter unique palindromic sequences, we can focus on the shortest
unique palindromic substrings.

The contents of our paper are as follows. In Sect. 2, we state some definitions
and properties on strings. In Sect. 3, we explain properties on SUPS and our
query algorithm. In Sect. 4, we show the main part of the preprocessing phase
of our algorithm. Finally, we conclude.

2 Preliminaries

2.1 Strings

Let Σ be an integer alphabet. An element of Σ∗ is called a string. The length of
a string S is denoted by |S|. The empty string ε is a string of length 0, namely,
|ε| = 0. Let Σ+ be the set of non-empty strings, i.e., Σ+ = Σ∗ − {ε}. For a string
S = xyz, x, y and z are called a prefix, substring, and suffix of S, respectively.
A prefix x and a suffix z of S are respectively called a proper prefix and proper
suffix of S, if x �= S and z �= S. The i-th character of a string S is denoted by
S[i], where 1 ≤ i ≤ |S|. For a string S and two integers 1 ≤ i ≤ j ≤ |S|, let
S[i..j] denote the substring of S that begins at position i and ends at position
j. For convenience, let S[i..j] = ε when i > j.

2.2 Palindromes

Let SR denote the reversed string of S, that is, SR = S[|S|] · · · S[1]. A string
S is called a palindrome if S = SR. Let P ⊂ Σ∗ be the set of palindromes. A
substring S[i..j] of S is said to be a palindromic substring of S, if S[i..j] ∈ P .

Shortest Unique Palindromic Substring Queries in Optimal Time 399

The center of a palindromic substring S[i..j] of S is i+ j
2 . Thus a string S of

length n ≥ 1 has 2n − 1 centers (1, 1.5, . . . , n − 0.5, n). The following lemma can
be easily obtained by the definition of palindromes.

Lemma 1. Let S be a palindrome. For any integers i, j s.t. 1 ≤ i ≤ j ≤ |S|,
S[|S| − j + 1..|S| − i + 1] = S[i..j]R holds.

2.3 MUPSs,SUPSs and Our Problem

For any non-empty strings S and w, let occS(w) denote the set of occurrences
of w in S, namely, occS(w) = {i | 1 ≤ i ≤ |S| − |w| + 1, w = S[i..i + |w| − 1]}.
A substring w of a string S is called a unique substring (resp. a repeat) of S if
|occS(w)| = 1 (resp. |occS(w)| ≥ 2). In the sequel, we will identify each unique
substring w of S with its corresponding (unique) interval [i, j] in S such that
w = S[i..j]. A substring S[i..j] is said to be unique palindromic substring if
S[i..j] is a unique substring in S and a palindromic substring. We will say that
an interval [i1, j1] contains an interval [i2, j2] if i1 ≤ i2 ≤ j2 ≤ j1 holds. The
following notation is useful in our algorithm.

Definition 1 (Minimal Unique Palindromic Substring (MUPS)). A
string S[i..j] is a MUPS in S if S[i..j] satisfies all the following conditions;

– S[i..j] is a unique palindromic substring in S,
– S[i + 1..j − 1] is a repeat in S or 1 ≤ |S[i..j]| ≤ 2.

Let MS denote the set of intervals of all MUPS s in S and let mupsi = [bi, ei]
denote the i-th MUPS in MS where 1 ≤ i ≤ m and m is the number of MUPS s
in S. We assume that MUPS s in MS are sorted in increasing order of beginning
positions. For convenience, we define mups0 = [−1,−1],mupsm+1 = [n+1, n+1].

Example 1 (MUPS). For S = acbaaabcbcbcbaab, MS = {[4, 6], [8, 12], [13, 16]}
(see also Fig. 1).

Definition 2 (Shortest Unique Palindromic Substring (SUPS)). A string
S[i..j] is a SUPS for an interval [s, t] in S if S[i..j] satisfies all the following
conditions;

– S[i..j] is a unique palindromic substring in S,
– [i, j] contains [s, t],
– no unique palindromic substring S[i′..j′] containing [s, t] with j′ − i′ < j − i

exists.

Example 2 (SUPS). Let S = acbaaabcbcbcbaab. SUPS for interval [6, 7] is the
S[3..7] = baaab. SUPS for interval [7, 8] are S[2..8] = cbaaabc and S[7..13] =
bcbcbcb. SUPS for interval [4, 13] does not exist. (see also Fig. 1).

In this paper, we tackle the following problem.

400 Y. Nakashima et al.

Fig. 1. This figure shows all MUPSs for S = acbaaabcbcbcbaab and some SUPS
described in Example 2.

Problem 1 (SUPS problem).

– Preprocess: String S of length n.
– Query: An interval [s, t](1 ≤ s ≤ t ≤ n).
– Return: All the SUPS s for interval [s, t].

2.4 Computation Model

Our model of computation is the word RAM: We shall assume that the computer
word size is at least �log2 n�, and hence, standard operations on values repre-
senting lengths and positions of strings can be manipulated in constant time.
Space complexities will be determined by the number of computer words (not
bits).

3 Solution to the SUPS Problem

In this section, we show how to compute all SUPS s for any query interval [s, t].

3.1 Properties on SUPS and MUPS

In our algorithm, we compute SUPS s by using MUPS s. Firstly, we show the
following lemma. Lemma 2 states that MUPS s cannot nest in each other.

Lemma 2. For any pair of distinct MUPSs, one cannot contain the other.

Proof. Consider two MUPS s u, v such that u contains v. If u and v have the
same center, then u is not a MUPS . On the other hand, if u and v have a different
center, we have from Lemma 1 and that v is a palindromic substring, v occurs
in u at least twice. This contradicts that v is unique.

From this lemma, we can see that no pair of distinct MUPS s begin nor end
at the same position. This fact implies that the number of MUPS s is at most
n for any string of length n. The following lemma states a characterization of
SUPS s by MUPS s.

Shortest Unique Palindromic Substring Queries in Optimal Time 401

Lemma 3. For any SUPS S[i..j] for some interval, there exists exactly one
MUPS that is contained in [i, j]. Furthermore, the MUPS has the same center
as S[i..j].

Proof. Let S[i..j] be a SUPS for some interval. S[i..j] contains a MUPS S[x1..y1]
of the same center, i.e., i+ j

2 = x1 + y1
2 , s.t. j − i ≥ y1 − x1. Suppose that there

exists another MUPS S[x2..y2] contained in [i, j]. From Lemma 2, S[x1..y1]
and S[x2..y2] do not have the same center. On the other hand, if S[x1..y1] and
S[x2..y2] have different centers, then S[x2..y2] occurs at least two times in S[i..j]
by Lemma 1, since S[x2..y2] = S[x2..y2]

R. This contradicts that S[x2..y2] is a
MUPS .

From the above lemma, any SUPS contains exactly one MUPS which has the
same center (see also Fig. 1). Below, we will describe the relationship between
a query interval [s, t] and the MUPS contained in a SUPS for [s, t]. Before
explaining this, we define the following notations.

– M([s, t]): the set of MUPS s containing [s, t].
– predMUPS [t] = i s.t. i = max{k | ek ≤ t}.
– succMUPS [s] = i s.t. i = min{k | s ≤ bk}.

In other words, mupspredMUPS [t] is the rightmost MUPS which ends before posi-
tion t+1, and mupssuccMUPS [s] is the leftmost MUPS which begins after position
s − 1.

Lemma 4. Let S[i..j] be a SUPS for an interval [s, t]. Then, the unique MUPS
S[x..y] contained in [i, j] is in {predMUPS [t]} ∪ M([s, t]) ∪ {succMUPS [s]}.
Proof. Assume to the contrary that there exists a SUPS S[i..j] that contains a
MUPS S[x..y] /∈ {predMUPS [t]} ∪ M([s, t]) ∪ {succMUPS [s]}. Since S[x..y] �∈
M([s, t]), [x, y] does not contain [s, t]. Thus, there can be the following two cases:

– If y < t, there must exist MUPS [x′, y′] s.t. y < y′ ≤ t, since S[x, y] �=
predMUPS [t]. By Lemma 2, x < x′. Thus i ≤ x < x′ ≤ y′ ≤ t ≤ j holds.
However, this contradicts Lemma 3.

– If s < x, there must exist MUPS [x′, y′] s.t. s ≤ x′ < x, since S[x, y] �=
succMUPS [s]. By Lemma 2, y′ ≤ y. Thus i ≤ s ≤ x′ ≤ y′ ≤ y ≤ j holds,
However, this contradicts Lemma 3.

Therefore the lemma holds.

Next, we want to explain how SUPS s are related to MUPS s. It is easy to
see that there may not be a SUPS for some query interval. We first show a case
where there are no SUPS s for a given query. The following corollary is obtained
from Lemma 3.

Corollary 1. Let S[x1..y1] and S[x2..y2] be MUPSs contained in a query inter-
val [s, t]. There is no SUPS for an interval [s, t].

402 Y. Nakashima et al.

From this corollary, a SUPS for an interval [s, t] can exist if the number of
MUPS s contained in [s, t] is less than or equal to 1. The following two lemmas
show what the SUPS for [s, t] is, when [s, t] contains only one MUPS , and when
[s, t] does not contain any MUPS s.

Lemma 5. Let S[x..y] be the only MUPS contained in the query interval [s, t].
If S[x − z, y + z] is a palindromic substring where z = max{x − s, t − y}, then
S[x − z, y + z] is the SUPS for [s, t]. Otherwise, there is no SUPS for [s, t].

Proof. Assume that there exists a SUPS u for [s, t] which has the same center
with a MUPS other than S[x..y]. By the definition of SUPS , u should contain
[s, t]. Since [s, t] contains [x, y], u contains two MUPS s, a contradiction. Thus,
there can be no SUPS s.t. the center is not x+ y

2 . It is clear that S[x − z, y + z]
is a unique palindromic substring if S[x − z, y + z] is a palindromic substring
where z = max{x − s, t − y}. Therefore the lemma holds.

Lemma 6. Let [s, t] be the query interval. Then SUPSs for [s, t] are the shortest
of the following candidates.

1. S[x..y] s.t. [x, y] ∈ M([s, t]),
2. S[x − t + y..t] s.t. [x, y] = predMUPS ([s, t]), if it is a palindromic substring,
3. S[s..y + x − s] s.t. [x, y] = succMUPS ([s, t]), if it is a palindromic substring.

Proof. It is clear that S[x..y] is a unique palindromic substring containing [s, t]
if [x, y] ∈ M([s, t]) exists. It is also clear that if [x, y] = predMUPS ([s, t]) or
[x, y] = succMUPS ([s, t]), then S[x − t + y..t] or [s..y + x − s], respectively, are
unique palindromic substrings, if they are palindromic substrings. By Lemma 4,
we do not need to consider palindromic substrings which have the same center
as MUPS s other than the candidates considered above. Thus the shortest of the
candidates is SUPS for [s, t] (see also Fig. 2).

Fig. 2. Double arrows represent the candidates of SUPS for [s, t]. The shortest of the
candidates is SUPS for [s, t].

Shortest Unique Palindromic Substring Queries in Optimal Time 403

From the above arguments, the number of MUPS s is useful to compute
SUPS s for a query interval. The following lemma shows how to compute the
number of MUPS s contained in a given interval.

Lemma 7. For any interval [s, t],

– if succMUPS [s] > predMUPS [t], [s, t] contains no MUPS,
– if succMUPS [s] = predMUPS [t], [s, t] contains only one MUPS,

mupssuccMUPS [s] = mupspredMUPS [t], and
– if succMUPS [s] < predMUPS [t], [s, t] contains at least two MUPSs.

Proof. – Let j = succMUPS [s] > predMUPS [t] = i. Then bi < s ≤ bj and
ei ≤ t < ej hold, and thus neither of mupsi and mupsj are contained in [s, t].
If we assume that [s, t] contains a MUPS mupsk for some k, it should be that
i < k < j, bi < s ≤ bk < bj . However, this contradicts that j = succMUPS [s]
(see also the top in Fig. 3).

– Let succMUPS [s] = predMUPS [t] = i. Since succMUPS [s] = i, bi−1 should
be less than s, and bi at least s. Since predMUPS [t] = i, ei+1 should be larger
than t, and ei at most t. Thus [s, t] only contains mupsi (see also the middle
in Fig. 3).

– Let i = succMUPS [s] < predMUPS [t] = j. Then s ≤ bi < bj and ei < ej ≤ t
hold, which implies s ≤ bi ≤ ei < t and s < bj ≤ ej ≤ t. Thus, both mupsi
and mupsj are contained in [s, t] (see also the bottom in Fig. 3).

3.2 Tools

Here, we show some tools for our algorithm.

Lemma 8 (e.g., [14]). For any interval [i, j] in S of length n, we can check
whether S[i..j] is a palindromic substring or not in O(n) preprocessing time and
constant query time with O(n) space.

Manacher’s algorithm [11] can compute all maximal palindromic substrings in
linear time. If we have the array of radiuses of maximal palindromic substrings for
all 2n−1 centers, we can check whether a given substring S[i..j] is a palindromic
substring or not in constant time.

Range Minimum Queries (RmQ). Let A be an integer array of size n. A
range minimum query RmQA(i, j) returns the index of a minimum element in
the subarray A[i, j] for given a query interval [i, j](1 ≤ i ≤ j ≤ n), i.e., it returns
one of arg mini≤k≤j{A[k]}. It is well-known (see e.g., [2]) that after an O(n)-time
preprocessing over the input array A, RmQA(i, j) can be answered in O(1) time
for any query interval [i, j], using O(n) space.

404 Y. Nakashima et al.

Fig. 3. Illustrations for proof of Lemma 7.

3.3 Algorithm

Due to the arguments in Sect. 3.1, if we can compute predMUPS , the shortest
MUPS s in M([s, t]) and succMUPS for a query interval [s, t], then, we can
compute SUPS s for [s, t]. Below, we will describe our solution to the SUPS
problem.

Preprocessing Phase. First, we compute MS for a given string S of length
n in increasing order of beginning positions. We show, in the next section, that
this can be done in O(n) time and space. After computing MS , we compute the

Shortest Unique Palindromic Substring Queries in Optimal Time 405

arrays predMUPS and succMUPS . It is easy to see that we can also compute
these arrays in O(n) time by using MS . In the query phase, we are required
to compute the shortest MUPS s that contain the query interval [s, t]. To do
so efficiently, we prepare the following array. Let Mlen be an array of length
m = |MS |, and the i-th entry Mlen[i] holds the length of mupsi, i.e., Mlen[i] =
|mupsi| = ei − bi + 1. We also preprocess Mlen for RmQ queries. This can be
done in O(m) time and space as noted in Sect. 3.2. Thus, since m = O(n), the
total preprocessing is O(n) time and space.

Query Phase. First, we compute how many MUPS s are contained in a query
interval [s, t] by using Lemma 7, which we denote by num. This can be done in
O(1) time given arrays predMUPS and succMUPS .

– If num = 0, let mupsi = predMUPS ([s, t]) and mupsj = succMUPS ([s, t]),
i.e., i = predMUPS [s] and j = succMUPS [t]. We check whether S[bi−t+ei..t]
and S[s..ej + bj − s] are palindromic substrings or not. If so, then they
are candidates of SUPS s for [s, t] by Lemma 6. Let q be the length of the
shortest candidates which can be found in the above. Second, we compute the
shortest MUPS in M([s, t]), if their lengths are at most q. In other words, we
compute the smallest values in Mlen[i+1..j−1], if they are at most q. We can
compute all such MUPS s in linear time w.r.t. the number of such MUPS s by
using RmQ queries on Mlen[i + 1, j − 1]; if k = RmQMlen(i + 1, j − 1) and
Mlen[k] ≤ q, then we consider the range Mlen[i+1..k−1] and Mlen[k+1, j−1]
and recurse. Otherwise, we stop the recursion. Finally, we return the shortest
candidates as SUPS .

– If num = 1, let mupsi be the MUPS contained in [s, t]. First, we check
whether S[bi − z, ei + z] is a palindromic substring or not by using Lemma 8
where z = max{bi − s, t − ei}. If so, then return [bi − z, ei + z], otherwise
SUPS for [s, t] does not exist.

– If num ≥ 2, then, from Corollary 1, SUPS for [s, t] does not exist.

Therefore, we obtain the following.

Theorem 1. After constructing an O(n)-space data structure of a given string
of length n in O(n) time, we can compute all SUPSs for a given query interval
[s, t] in O(α + 1) time where α is the number of outputs.

4 Computing MUPSs

In this section, we show how to compute MS in O(n) time and space. Let DPS

be the set of distinct palindromic substrings in S, and strM S = {S[i, j] | [i, j] ∈
MS}. Our idea of computing MS is based on the following lemma.

Lemma 9. strM S ⊆ DPS.

Proof. It is clear that any string in strM S is a palindromic substring of S.

An algorithm for computing all distinct palindromic substrings in string in
linear time and space was proposed by Groult et al. [5]. We show a linear time
and space algorithm which computes MS by modifying Groult et al.’s algorithm.

406 Y. Nakashima et al.

4.1 Tools

We show some tools for computing MS below.

– Longest previous factor array (LPF). We denote the longest previous
factor array of S by LPFS . The i-th entry (1 ≤ i ≤ n) is the length of the
longest prefix of S[i..n] which occurs at a position less than i.

– Inverse suffix array (ISA). We denote the inverse suffix array of S by
ISAS . The i-th entry (1 ≤ i ≤ n) is the lexicographic order of S[i..n] in all
suffixes of S.

– Longest common prefix array (LCP). We denote the longest common
prefix array of S by LCPS . The i-th entry (2 ≤ i ≤ n) is the length of
the longest common prefix of the lexicographically i-th suffix of S and the
(i − 1)-th suffix of S.

4.2 Computing Distinct Palindromes

Here, we show a summary of Groult et al.’s algorithm. The following lemma
states the main idea.

Lemma 10 ([3]). The number of distinct palindromic substrings in S is equal
to the number of prefixes of S s.t. its longest palindromic suffix is unique in the
prefix.

Since counting suffixes that uniquely occur in a prefix implies that only the
leftmost occurrences of substrings, and thus distinct substrings are counted, their
algorithm finds all the distinct palindromic substrings by:

– computing the longest palindromic suffix of each prefix of S, and
– checking whether each longest palindromic suffix occurs uniquely in the prefix

or not.

They first propose an algorithm which computes all the longest palindromic
suffixes in linear time. They then check, in constant time, the uniqueness of the
occurrence in the prefix by using the LPF array, thus computing DPS in linear
time and space.

4.3 Computing All MUPSs

Finally, we show how to modify Groult et al.’s algorithm. As mentioned, they
compute the leftmost occurrence of each distinct palindromic substring. We call
such a palindromic substring, the leftmost palindromic substring. It is clear
that if a leftmost palindromic substring w is unique in S and is a minimal
palindromic substring, then w is a MUPS . Thus, we add operations to check the
uniqueness and minimality of each leftmost palindromic substring. We can do
these operations by using ISA and LCP array.

Let S[i..j] be a leftmost palindromic substring in S. First, we check whether
S[i..j] is unique or not in S. If ISA[i] = k, S[i..n] is the lexicographically k-th

Shortest Unique Palindromic Substring Queries in Optimal Time 407

suffix of S. S[i..j] is unique in S iff LCP [k] < j − i + 1 and LCP [k + 1] <
j − i + 1. Thus we can check whether S[i..j] is unique or not in constant time.
Finally, we check whether S[i..j] is a minimal palindromic substring or not. By
definition, S[i..j] is minimal palindromic substring if j − i + 1 ≤ 2, i.e., S[i..j]
has no shorter unique palindromic substring. If j − i + 1 > 2, then we check
whether S[i + 1..j − 1] is unique or not by using ISA and LCP in a similar way.
Thus we can also check whether S[i..j] is minimal or not in constant time. By
the above arguments, we can compute all MUPS s in linear time and space.

5 Conclusions

We consider a new problem called the shortest unique palindromic substring
problem. We proposed an optimal linear time preprocessing algorithm so that
all SUPS s for any given query interval can be answered in linear time w.r.t. the
number of outputs. The key idea was to use palindromic properties in order to
obtain a characterization of SUPS , more precisely, that a palindromic substring
cannot contain a unique palindromic substring with a different center.

References

1. Bannai, H., Gagie, T., Inenaga, S., Kärkkäinen, J., Kempa, D., Pi ↪atkowski, M.,
Puglisi, S.J., Sugimoto, S.: Diverse palindromic factorization is NP-complete. In:
Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 85–96. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21500-6 6

2. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000). https://doi.org/10.1007/10719839 9

3. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of
de Luca and Rauzy. Theor. Comput. Sci. 255(1–2), 539–553 (2001)

4. Fici, G., Gagie, T., Kärkkäinen, J., Kempa, D.: A subquadratic algorithm for
minimum palindromic factorization. J. Discrete Algorithms 28, 41–48 (2014)

5. Groult, R., Prieur, É., Richomme, G.: Counting distinct palindromes in a word in
linear time. Inf. Process. Lett. 110(20), 908–912 (2010)

6. Hon, W.-K., Thankachan, S.V., Xu, B.: An in-place framework for exact and
approximate shortest unique substring queries. In: Elbassioni, K., Makino, K. (eds.)
ISAAC 2015. LNCS, vol. 9472, pp. 755–767. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48971-0 63

7. Hu, X., Pei, J., Tao, Y.: Shortest unique queries on strings. In: Moura, E.,
Crochemore, M. (eds.) SPIRE 2014. LNCS, vol. 8799, pp. 161–172. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11918-2 16

8. I, T., Sugimoto, S., Inenaga, S., Bannai, H., Takeda, M.: Computing palindromic
factorizations and palindromic covers on-line. In: Kulikov, A.S., Kuznetsov, S.O.,
Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486, pp. 150–161. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07566-2 16

9. İleri, A.M., Külekci, M.O., Xu, B.: Shortest unique substring query revisited. In:
Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486, pp.
172–181. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07566-2 18

https://doi.org/10.1007/978-3-319-21500-6_6
https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/978-3-662-48971-0_63
https://doi.org/10.1007/978-3-662-48971-0_63
https://doi.org/10.1007/978-3-319-11918-2_16
https://doi.org/10.1007/978-3-319-07566-2_16
https://doi.org/10.1007/978-3-319-07566-2_18

408 Y. Nakashima et al.

10. Kuramoto, E., Yano, O., Kimura, Y., Baba, M., Makino, T., Yamamoto, S.,
Yamamoto, T., Kataoka, T., Tokunaga, T.: Oligonucleotide sequences required
for natural killer cell activation. Jpn. J. Cancer Res. 83(11), 1128–1131 (1992)

11. Manacher, G.: A new linear-time “on-line” algorithm for finding the smallest initial
palindrome of a string. J. ACM 22, 346–351 (1975)

12. Mieno, T., Inenaga, S., Bannai, H., Takeda, M.: Shortest unique substring queries
on run-length encoded strings. In: Proceedings of MFCS 2016, pp. 69:1–69:11
(2016)

13. Pei, J., Wu, W.C.H., Yeh, M.Y.: On shortest unique substring queries. In: Pro-
ceedings of ICDE 2013, pp. 937–948 (2013)

14. Rubinchik, M., Shur, A.M.: EERTREE: an efficient data structure for processing
palindromes in strings. In: Lipták, Z., Smyth, W.F. (eds.) IWOCA 2015. LNCS,
vol. 9538, pp. 321–333. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29516-9 27

15. Tsuruta, K., Inenaga, S., Bannai, H., Takeda, M.: Shortest unique substrings
queries in optimal time. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa,
A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 503–513. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-04298-5 44

16. Yamamoto, S., Yamamoto, T., Kataoka, T., Kuramoto, E., Yano, O., Tokunaga, T.:
Unique palindromic sequences in synthetic oligonucleotides are required to induce
IFN [correction of INF] and augment IFN-mediated [correction of INF] natural
killer activity. J. Immunol. 148(12), 4072–4076 (1992)

https://doi.org/10.1007/978-3-319-29516-9_27
https://doi.org/10.1007/978-3-319-29516-9_27
https://doi.org/10.1007/978-3-319-04298-5_44

	Shortest Unique Palindromic Substring Queries in Optimal Time
	1 Introduction
	2 Preliminaries
	2.1 Strings
	2.2 Palindromes
	2.3 MUPSs, SUPSs and Our Problem
	2.4 Computation Model

	3 Solution to the SUPS Problem
	3.1 Properties on SUPS and MUPS
	3.2 Tools
	3.3 Algorithm

	4 Computing MUPSs
	4.1 Tools
	4.2 Computing Distinct Palindromes
	4.3 Computing All MUPSs

	5 Conclusions
	References

