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Abstract. Ramsey’s Theorem tells us that there are exactly two mini-
mal hereditary classes containing graphs with arbitrarily many vertices:
the class of complete graphs and the class of edgeless graphs. In other
words, Ramsey’s Theorem characterizes the graph vertex number in
terms of minimal hereditary classes where this parameter is unbounded.
In the present paper, we show that a similar Ramsey-type character-
ization is possible for a number of other graph parameters, including
neighbourhood diversity and VC-dimension.

1 Introduction

In 1930, a 26 years old British mathematician Frank Ramsey proved the following
theorem, known nowadays as Ramsey’s Theorem.

Theorem 1 [12]. For any positive integers k, r, p, there exists a minimum
positive integer F = F (k, r, p) such that if the k-subsets of an F -set are colored
with r colors, then there is a monochromatic p-set, i.e. a p-set all of whose
k-subsets have the same color.

It is not difficult to see that with k = 1 this theorem coincides with the
Pigeonhole Principle. For k = 2, the theorem admits a nice interpretation in the
terminology of graph theory, since coloring 2-subsets can be viewed as coloring
the edges of a complete graph. In the case of r = 2 colors, the graph-theoretic
interpretation of Ramsey’s Theorem can be further rephrased as follows.

Theorem 2. For any positive integer p, there is a minimum positive integer
R = R(p) such that every graph with at least R vertices has either a clique of
size p or an independent set of size p.

It is not difficult to see that Theorem 2 is equivalent to the following state-
ment.

Theorem 3. The class of complete graphs and the class of edgeless graphs are
the only two minimal infinite hereditary classes of graphs.
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Theorem 3 characterizes the family of hereditary classes containing graphs
with a bounded number of vertices in terms of minimal “forbidden” elements,
i.e. minimal hereditary classes where the vertex number is unbounded. Is it
possible to find a similar characterization for other graph parameters?

The purpose of this paper is to show that Ramsey’s theorem can be used
to find minimal “forbidden” classes for various other parameters. For instance,
directly from Ramsey’s Theorem it follows that

– the class of complete graphs and the class of stars (and all their induced sub-
graphs) are the only two minimal hereditary classes of graphs of unbounded
vertex degree.

– the class of complete graphs and the class of complete bipartite graphs are the
only two minimal hereditary classes of graphs of unbounded biclique number
(the size a maximum complete bipartite subgraph with equal parts).

In the subsequent sections, we show that a similar Ramsey-type characterization
is possible for a number of other graph parameters. In the rest of the present
section, we introduce basic definitions and notations used in the paper.

We consider only simple undirected graphs without loops and multiple edges
and denote the vertex set and the edge set of a graph G by V (G) and E(G),
respectively. If v is a vertex of G, then N(v) is its neighbourhood, i.e. the set
of vertices of G adjacent to v. The closed neighbourhood of v is defined and is
denoted as N [v] = N(v) ∪ {v}. The degree of v is |N(v)|.

In a graph, an independent set is a subset of vertices no two of which are
adjacent, a clique is a subset of vertices every two of which are adjacent, and a
matching is a subset of edges no two which share a vertex.

For a graph G, we denote by G the complement of G. Similarly, for a class
X of graphs, we denote by X the class of complements of graphs in X .

Given a graph G and a subset U ⊆ V (G), we denote by G[U ] the subgraph
of G induced by U , i.e. the subgraph obtained from G by deleting all the vertices
not in U . We say that a graph G contains a graph H as an induced subgraph if H
is isomorphic to an induced subgraph of G. A graph G is said to be n-universal
for a class of graphs X if G contains all n-vertex graphs from X as induced
subgraphs.

A class X of graphs is hereditary if it is closed under taking induced sub-
graphs, i.e. if G ∈ X implies H ∈ X for every graph H contained in G as an
induced subgraph. Two hereditary classes of particular interest in this paper are
split graphs and bipartite graphs.

A graph G is a split graph if V (G) can be partitioned into an independent set
and a clique, and G is bipartite if V (G) can be partitioned into at most two inde-
pendent sets. A bipartite graph G given together with a bipartition of its vertices
into independent sets A and B will be denoted G = (A,B,E), in which case we
will say that A and B are the color classes of G. If every vertex of A is adjacent
to every vertex of B, then G = (A,B,E) is complete bipartite. The bipartite com-
plement of G = (A,B,E) is the bipartite graph G′ = (A,B,E′), where ab ∈ E′

if and only if ab �∈ E. Clearly, by creating a clique in one of the color classes of a
bipartite graph, we transform it into a split graph, and vice versa.
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2 Neighbourhood Diversity

The neighbourhood diversity of a graph was introduced in [7] and was used
to develop fpt-algorithms for some difficult graph problems (see e.g. [5]). This
parameter can be defined as follows.

Definition 1. Two vertices x and y are said to be similar if there is no vertex
z distinguishing them i.e. if there is no vertex z adjacent to exactly one of x and
y. Clearly, the similarity is an equivalence relation. The neighbourhood diversity
of G is the number of similarity classes in G.

Before we provide a Ramsey-type characterization of the neighbourhood diver-
sity, we introduce an auxiliary notion.

Definition 2. A skew matching in a graph G is a matching {x1y1, . . . , xqyq}
such that yi is not adjacent to xj for all i < j. The complement of a skew
matching is a sequence of pairs of vertices that create a skew matching in the
complement of G.

Lemma 1. For any positive integer m, there exists a positive integer r = r(m)
such that any bipartite graph G = (A,B,E) of neighbourhood diversity r contains
either a skew matching of size m or its complement.

Proof. Define r = 22m and let X be a set of pairwise non-similar vertices of size
r/2 chosen from the same color class of G, say from A. Let y1 be a vertex in B
distinguishing the set X (i.e. y1 has both a neighbour and a non-neighbour in
X) and let us say that y1 is big if the number of its neighbours in X is larger
than the number of its non-neighbours, and small otherwise. If y1 is small, we
arbitrarily choose its neighbour in X, denote it by x1 and remove all neighbours
of y1 from X. If y is big, we arbitrarily choose a non-neighbour of y1 in X, denote
it by x1 and remove all non-neighbours of y1 from X. Observe that y1 does not
distinguish the vertices in the updated set X.

We apply the above procedure to X 2m − 1 times and obtain in this way a
sequence of 2m − 1 pairs xiyi. If m of these pairs contain small vertices yi, then
the respective pairs create a skew matching of size m. Otherwise, there is a set
of m pairs containing big vertices yi, in which case the respective pairs create
the complement of a skew matching. ��

Now we turn to the neighbourhood diversity and start with the bipartite
case. For this, we denote by

M the class of graphs of vertex degree at most 1. By Mn we denote an induced
matching of size n, i.e. the unique up to isomorphism graph in the class
M with 2n vertices each of which has degree 1. Clearly, Mn is n-universal
for graphs in M.

Mbc the class of bipartite complements of graphs in M. The bipartite comple-
ment of the graph Mn will be denoted M bc

n . Clearly, M bc
n is n-universal for

graphs in Mbc.
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Z the class of chain graphs, i.e. bipartite graphs in which the neighbourhoods
of the vertices in each part form a chain with respect to set-inclusion. By
Zn we denote a chain graph such that for each i ∈ {1, 2, . . . , n}, each part
of the graph contains exactly one vertex of degree i. Figure 1 represents
the graph Zn for n = 5. It is known [9] that Zn is n-universal for graphs
in Z.

Fig. 1. The graph Z5

Lemma 2. For any positive integer p, there exists a positive integer q = q(p)
such that any bipartite graph G = (A,B,E) of neighbourhood diversity q contains
either an induced Mp or an induced Zp or an induced M bc

p .

Proof. Let m = R(p+1) (where R is the Ramsey number defined in Theorem2)
and q = 22m. According to the proof of Lemma1, G contains a skew matching
of size m or its complement. If G contains a skew matching M , we color each
pair (xiyi, xjyj) of edges of M (i < j) in two colors as follows:

– color 1 if xi is not adjacent to yj ,
– color 2 if xi is adjacent to yj .

By Ramsey’s Theorem, M contains a monochromatic set M ′ of edges of size
p + 1. If the color of each pair of edges in M ′ is

1. then M ′ is an induced matching of size p + 1,
2. then the vertices of M ′ induce a Zp+1.

Analogously, in the case when G contains the complement of a skew matching,
we find either an induced M bc

p+1 or an induced Zp (observe that the bipartite
complement of Zp+1 contains an induced Zp). ��

Now we proceed to the general case and denote by

M∗ the class of split graphs obtained from graphs in M by creating a clique in
one of the color classes. The graph obtained from Mn by creating clique in
one its color classes will be denoted by M∗

n. Clearly, M∗
n is n-universal for

graphs in M∗.
Z∗ the class of split graphs obtained from graphs in Z by creating a clique in

one of the color classes. This class is known in the literature as the class
of threshold graphs. The graph obtained from Zn by creating a clique in
one of its color classes will be denoted Z∗

n. This graph is n-universal for
threshold graphs [6].
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Lemma 3. For any positive integer p, there exists a positive integer Q = Q(p)
such that every graph G of neighbourhood diversity Q contains one of the fol-
lowing nine graphs as an induced subgraph: Mp, M bc

p , Zp, Mp, M
bc

p , Zp, M∗
p ,

M
∗
p, Z∗

p .

Proof. Let Q = R(q), where q = 22m and m = R(R(p) + 1) (R is the Ramsey
number). We choose one vertex from each similarity class of G and find in the
chosen set a subset A of vertices that form an independent set or a clique of size
q = 22m. Let us call the vertices of A white. We denote the remaining vertices of
G by B and call them black. Let G′ denote the bipartite subgraph of G formed
by the edges between A and B. By the choice of A, all vertices of this set have
pairwise different neighbourhoods in G′. Therefore, according to the proof of
Lemma 2, G′ contains a subgraph G′′ inducing either Mn, or M bc

n or Zn with
n = R(p). Among the n black vertices of G′′, we can find a subset B′ of vertices
that form either a clique or an independent set of size p in the graph G. Then
B′ together with a subset of A of size p induce in G one of the nine graphs listed
in the statement of the lemma. ��

Since the nine graphs of Lemma3 are universal for their respective classes,
we make the following conclusion.

Theorem 4. There exist exactly nine minimal hereditary classes of graphs of
unbounded neighbourhood diversity: M, Mbc, Z, M, Mbc

, Z, M∗, M∗
, Z∗.

3 VC-Dimension

A set system (X,S) consists of a set X and a family S of subsets of X. A subset
A ⊆ X is shattered if for every subset B ⊆ A there is a set C ∈ S such that
B = A∩C. The VC-dimension of (X,S) is the cardinality of a largest shattered
subset of X.

The VC-dimension of a graph G = (V,E) was defined in [1] as the VC-
dimension of the set system (V, S), where S the family of closed neighbourhoods
of vertices of G, i.e. S = {N [v] : v ∈ V (G)}. Let us denote the VC-dimension
of G by vc[G].

In this section, we characterize VC-dimension by means of three minimal
hereditary classes where this parameter is unbounded. To this end, we first rede-
fine it in terms of open neighbourhoods as follows. Let vc(G) be the size of a
largest set A of vertices of G such that for any subset B ⊆ A there is a vertex v
outside of A with B = A ∩ N(v). In other words, vc(G) is the size of a largest
subset of vertices shattered by open neighbourhoods of vertices of G.

We start by showing that the two definitions are equivalent in the sense
that they both are either bounded or unbounded in a hereditary class. To prove
this, we introduce the following terminology. Let A be a set of vertices which is
shattered by a collection of closed neighbourhoods. For a subset B ⊆ A we will
denote by v(B) the vertex whose neighbourhood intersect A at B. We will say
that B is closed if v(B) belongs to B, and open otherwise.
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Lemma 4. vc(G) ≤ vc[G] ≤ vc(G)(vc(G) + 1) + 1

Proof. The first inequality is obvious. To prove the second one, let A be a subset
of V (G) of size vc[G] which is shattered by a collection of closed neighbourhoods.
If A has no closed subsets, then vc[G] = vc(G). Otherwise, let B be a closed
subset of A.

Assume first that |B| = 1. Then B = {v(B)} and v(B) is isolated in G[A],
i.e. it has no neighbours in A. Let C be the set of all such vertices, i.e. vertices
each of which is a closed subset of A. By removing from A any vertex x ∈ C
we obtain a new set A and may assume that it has no closed subsets of size 1.
Indeed, for any vertex y ∈ C different from x, there must exist a vertex y′ �∈ A
such that N(y′) ∩ A = {x, y} (since A is shattered). After the removal of x from
A, we have N(y′)∩A = {y} and hence {y} is not a closed subset anymore. This
discussion allows us to assume in what follows that A has no closed subsets of
size 1, in which case we only need to show that vc[G] ≤ vc(G)(vc(G) + 1).

Assume now that B is a closed subset of A of size at least 2. Suppose that
B−v(B) contains a closed subset C, i.e. v(C) ∈ C. Observe that v(C) is adjacent
to v(B), as every vertex of B − v(B) is adjacent to v(B). But then N [v(C)] ∩ A
contains v(B) contradicting the fact that N [v(C)] ∩ A = C. This contradiction
shows that every subset of B − v(B) is open, i.e. |B − v(B)| ≤ vc(G).

The above observation allows us to apply the following procedure: as long as
A contains a closed subset B with at least two vertices, delete from A all vertices
of B except for v(B). Denote the resulting set by A∗. Assume the procedure was
applied p times and let B1, . . . , Bp be the closed subsets it was applied to. It is not
difficult to see that the set {v(B1), . . . , v(Bp)} has no closed subsets and hence
its size cannot be large than vc(G), i.e. p ≤ vc(G). Combining, we conclude:

vc[G] = |A| ≤ |A∗| +
p∑

i=1

|Bi − v(Bi)| ≤ vc(G) + p · vc(G) ≤ vc(G)(vc(G) + 1).

��
This lemma allows us to assume that if A is shattered, then there is a set C

disjoint from A such that for any subset B ⊆ A there is a vertex v ∈ C with
B = A∩N(v), in which case we will say that A is shattered by C, or C shatters
A.

Let Qn = (A,B,E) be the bipartite graph with |A| = n and |B| = 2n such
that all vertices of B have pairwise different neighbourhood in A. Also, let Sn

be the split graph obtained from Qn by creating a clique in A.

Lemma 5. The graph Qn is an n-universal bipartite graph, i.e. it contains every
bipartite graph with n vertices as an induced subgraph.

Proof. Let G be a bipartite graph with n vertices and with parts A and B of
size n1 and n2, respectively. By adding at most n2 vertices to A, we can guaran-
tee that all vertices of B have pairwise different neighbourhoods in A. Clearly,
Qn contains the extended graph and hence it also contains G as an induced
subgraph. ��
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Corollary 1. Every co-bipartite graph with at most n vertices is contained in
Qn and every split graph with at most n vertices is contained both in Sn and in
Sn.

Lemma 6. If a set A shatters a set B with |B| = 2n, then B shatters a subset
A∗ of A with |A∗| = n.

Proof. Without loss of generality we assume that B is the set of all binary
sequences of length n. Then every vertex a ∈ A defines a Boolean function of
n variables (the neighbourhood of a consists of the binary sequences, where the
function takes value 1). For each i = 1, . . . , n, let us denote by ai the Boolean
function such that ai(x1, . . . , xn) = 1 if and only if xi = 1. Let A′ be an arbitrary
subset of A∗ = {a1, . . . , an} and α = (α1, . . . , αn) its characteristic vector, i.e.
αi = 1 if and only if ai ∈ A′. Clearly, α ∈ B and N(α) ∩ A∗ = A′. Therefore, B
shatters A∗. ��
Lemma 7. For every n, there exists a k = k(n) such that every graph G with
vc(G) = k contains one of Qn, Qn, Sn, Sn as an induced subgraph.

Proof. Define k = R(2R(n)), where R is the Ramsey number. Since vc(G) = k,
there are two subsets A and B of V (G) such that |A| = k and B shatters A.
By definition of k, A must have a subset A′ of size 2R(n) which is a clique or
an independent set. Clearly, B shatters A′ and hence, by Lemma 6, A′ shatters
a subset B′ of B of size R(n). Then B′ must have a subset B′′ of size n which
is either a clique or an independent set. Now G[A′ ∪ B′′] is either bipartite or
co-bipartite or split graph, |B′′| = n and A′ shatters B′′. Therefore, G[A′ ∪ B′′]
contains one of Qn, Qn, Sn, Sn as an induced subgraph. ��
Theorem 5. The classes of bipartite, co-bipartite and split graphs are the only
three minimal hereditary classes of graphs of unbounded VC-dimension.

Proof. Clearly these three classes have unbounded VC-dimension, since they
contain Qn, Qn, Sn, Sn with arbitrarily large values of n.

Now let X be a hereditary class containing none of these three classes. There-
fore, there is a bipartite graph G1, a co-bipartite graph G2 and a split graph
G3 which are forbidden for X. Denote by n the maximum number of vertices in
these graphs.

Assume that VC-dimension is not bounded for graphs in X and let G ∈
X be a graph with vc(G) = k, where k = k(n) is from Lemma 7. Then G
contains one of Qn, Qn, Sn, Sn, say Qn. Since Qn is n-universal for bipartite
graphs (Lemma 5), it contains G1 as an induced subgraph, which is impossible
because G1 is forbidden for graphs in X. This contradiction shows that VC-
dimension is bounded in the class X. ��

4 More Results and Discussion

In [4], it was shown that for every t, p, s, there exists a z = z(t, p, s) such that
every graph with a (not necessarily induced) matching of size at least z contains
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either an induced matching of size t or an induced complete bipartite graph with
color classes of size p or a clique of size s. This result was used in [4] to develop
fpt-algorithms for the maximum induced matching problem in special classes
of graphs where the problem is W[1]-hard. Now we use this result to derive a
Ramsey-type characterization of the matching number μ(G), i.e. the size of a
maximum matching in G. It is well known that μ(G) ≤ τ(G) ≤ 2μ(G), where
τ(G) is the vertex cover number, i.e. the size of a minimum vertex cover in G.
Therefore, the same characterization is valid the vertex cover number.

Theorem 6. The class of complete graphs, the class of complete bipartite graphs
and the class M of graphs of vertex degree at most 1 are the only three minimal
hereditary classes of graphs of unbounded matching number and unbounded vertex
cover number.

One more result of the same nature was proved in [2]. It states that for every
t, p, s, there exists a z = z(t, p, s) such that every graph with a (not necessarily
induced) path of length at least z contains either an induced path of length t
or an induced complete bipartite graph with color classes of size p or a clique
of size s. This result was used in [2] to obtain fpt-algorithms in special classes
of graphs for the k-Biclique problem, which is generally W[1]-hard [8]. Now we
use this result to derive the following Ramsey-type characterization of the path
number, i.e. the length of a longest path.

Theorem 7. The class of complete graphs, the class of complete bipartite graphs
and the class of linear forests (i.e. graphs every connected component of which
is a path) are the only three minimal hereditary classes of graphs of unbounded
path number.

From the last two theorems and the remark in the introduction it follows that
path number lies between matching number and biclique number in the hierarchy
of graph parameters. Also, it is well known that graphs of bounded path number
have bounded tree-width and that the complete graphs and complete bipartite
graphs are minimal hereditary classes of unbounded tree-width. Therefore, tree-
width lies between path number and biclique number. On the other hand, it is
known that tree-width lies below clique-width, i.e. bounded tree-width implies
bounded clique-width, which was shown in [3]. In the same paper it was also
shown that bounded clique-width together with bounded biclique number imply
bounded tree-width. Therefore, the family of classes of bounded tree-width is
precisely the intersection of the family of classes of bounded clique-width and
the family of classes of bounded biclique number.

The above discussion shows that a Ramsey-type characterization of tree-
width can be derived from such a characterization for clique-width, if it exists.
However, in the case of clique-width even the existence of minimal classes is not
obvious. The first two such classes have been recently discovered in [11]. In spite
of this progress, a complete Ramsey-type characterization of clique-width is not
possible, because in the universe of hereditary classes there are areas, where
minimal classes do not exist, for instance, graphs of bounded vertex degree.
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There are several ways to overcome this difficulty. One of them is to reduce the
universe. For instance, by reducing the universe of hereditary classes to minor-
closed classes of graphs, we conclude that the class of planar graphs is the unique
minimal minor-closed class of graphs of unbounded tree-width [13] and hence it
is the unique minimal minor-closed class of graphs of unbounded clique-width.
One more way to overcome the difficulty of non-existence of minimal classes is
to employ the notion of boundary classes, which is a relaxation of the notion of
minimal classes (see e.g. [10]).

Finally, instead of characterizing graph parameters in terms of “forbidden”
elements (i.e. in terms of “what is not allowed”) one can characterize them in
terms of “what is allowed”, and the results of the present paper suggest a uniform
way to such characterizations. To see this, let us observe that both neighbour-
hood diversity and VC-dimension describe how complex the neighbourhood of
a set X of vertices can be outside of X. This complexity can be described by a
hypergraph whose hyperedges correspond to the neighbourhoods of vertices in
X. In this terminology, neighbourhood diversity marks the jump from finitely
many to infinitely many (distinct) hyperedges. Similarly, VC-dimension marks
the jump from infinitely many hyperedges to all possible hyperedges. Between
these two extremes, lies a variety of other graph parameters, such as clique-
width, and exploring their neighbourhood complexity (i.e. the structure of the
corresponding hypergraphs) is a very challenging task.
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