
Ljiljana Brankovic · Joe Ryan
William F. Smyth (Eds.)

 123

LN
CS

 1
07

65

28th International Workshop, IWOCA 2017
Newcastle, NSW, Australia, July 17–21, 2017
Revised Selected Papers

Combinatorial
Algorithms

Lecture Notes in Computer Science 10765

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Ljiljana Brankovic • Joe Ryan
William F. Smyth (Eds.)

Combinatorial
Algorithms
28th International Workshop, IWOCA 2017
Newcastle, NSW, Australia, July 17–21, 2017
Revised Selected Papers

123

Editors
Ljiljana Brankovic
University of Newcastle Australia
Callaghan, NSW
Australia

Joe Ryan
University of Newcastle Australia
Callaghan, NSW
Australia

William F. Smyth
McMaster University
Hamilton, ON
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-78824-1 ISBN 978-3-319-78825-8 (eBook)
https://doi.org/10.1007/978-3-319-78825-8

Library of Congress Control Number: 2018939453

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-5056-4627
http://orcid.org/0000-0002-7781-0306

Preface

The 28th International Workshop on Combinational Algorithms (IWOCA 2017) was
held during July 17–21, 2017, in Newcastle, Australia. This meeting was dedicated to
the memory of Emeritus Professor Mirka Miller, who sadly passed away in January
2016. Mirka was a founding member of AWOCA, as IWOCA was then known, and
attended many gatherings of this workshop since its initiation in 1988. Mirka was
present at AWOCA 2006 at which it was decided to change the name to IWOCA to
better reflect the growing international participation and interest. Mirka was a member
of the IWOCA Steering Committee from its beginning until her death.

Obituaries have appeared in the Australian Mathematical Society Gazette
(see http://www.austms.org.au/Publ/Gazette/2016/July16/ObitMiller.pdf) as well as the
AKCE International Journal of Graphs and Combinatorics and the Bulletin of The
Institute of Combinatorics and Its Applications. In 2017 a special issue of the Aus-
tralasian Journal of Combinatorics was dedicated to Mirka. The introduction is
available at https://ajc.maths.uq.edu.au/pdf/69/ajc v69 p292.pdf.

For IWOCA 2017, calls for papers were distributed widely around the world and
participants came from Austria, Canada, China, Czech Republic, France, Germany,
India, Italy, Japan, Singapore, Spain, UK, as well as Australia. The invited speakers
were Martin Baca (Kosice, Slovakia), Henning Fernau (Trier, Germany), Costas
Iliopolous (UK), and Diane Donovan and Jennifer Seberry both of Australia. All five
invited papers are included in these LNCS proceedings. There were 55 contributed
submissions. Each contributed submission was reviewed by at least two, though
generally three Program Committee members. The committee decided to accept 30
papers.

We thank the sponsors of IWOCA 2017: CARMA, School of Electrical Engineering
and Computing, EATCS, and Springer. We acknowledge and thank all members of the
Program Committee and the Organizing Committee for their commitment to IWOCA
and for their excellent and timely work. Last but not least, we thank EasyChair that we
used for organizing the conference, as well the informal proceedings and these LNCS
proceedings, which made our job so much easier.

July 2017 Ljiljana Brankovic
Joe Ryan

William F. Smyth

Organization

Program Committee

Donald Adjeroh West Virginia University, USA
Hideo Bannai Kyushu University, Japan
Cristina Bazgan LAMSADE, Universite Paris-Dauphine, France
Ljiljana Brankovic University of Newcastle, Australia
Pino Caballero-Gil DEIOC, University of La Laguna, Spain
Charles Colbourn Arizona State University, USA
Tatjana Davidovic Mathematical Institute of Serbian Academy of

Sciences and Arts, Serbia
Vlad Estivill-Castro Griffith University, Australia
Michael Fellows University of Bergen, Norway
Andrea

Semanicova-Fenovcikova
Technical University Kosice, Slovakia

Gabriele Fici Università di Palermo, Italy
Dalibor Froncek University of Minnesota, USA
Serge Gaspers University of New South Wales and Data61, CSIRO,

Australia
Pinar Heggernes University of Bergen, Norway
Seok-Hee Hong University of Sydney, Australia
Peter Horak University of Washington, USA
Jesper Jansson The Hong Kong Polytechnic University, Hong Kong,

SAR China
Ralf Klasing CNRS and University of Bordeaux, France
Christian Komusiewicz Philipps-Universität Marburg, Germany
Jan Kratochvil Charles University, Czech Republic
Thierry Lecroq University of Rouen, France
Zsuzsanna Liptak University of Verona, Italy
Petra Mutzel University of Dortmund, Germany
Kunsoo Park Seoul National University, South Korea
Vangelis Paschos LAMSADE, University Paris-Dauphine, France
Christophe Paul CNRS - LIRMM, France
Solon Pissis King’s College London, UK
Simon Puglisi University of Helsinki, Finland
Frances Rosamond University of Bergen, Norway
Gordon Royle University of Western Australia, Australia
Frank Ruskey University of Victoria, Canada
Joe Ryan The University of Newcastle, Australia
Oliver Schaudt University of Cologne, Germany
Jamie Simpson Curtin University, Australia

Michiel Smid Carleton University, Canada
William F. Smyth McMaster University, Canada
Sue Whitesides University of Victoria, Canada
Christos Zaroliagis Computer Technology Institute and University of

Patras, Greece

Additional Reviewers

Ahn, Hee-Kap
Bampas, Evangelos
Basavaraju, Manu
Belazzougui, Djamal
Biniaz, Ahmad
Bredereck, Robert
Bökler, Fritz
Castiglione, Giuseppa
Charalampopoulos,

Panagiotis
Chen, Jiehua
Cicalese, Ferdinando
De Oliveira Oliveira,

Mateus
Droschinsky, Andre

French, Tim
Fujita, Takahiro
Gargano, Luisa
Grabowski, Szymon
Hsieh, Sun-Yuan
Jaffke, Lars
Kontogiannis, Spyros
Kuo, Jyhmin
Lee, Chia-Wei
Lee, Edward J.
Lefebvre, Arnaud
Macgillivray, Gary
Mihalak, Matus
Myrvold, Wendy
Patrignani, Maurizio

Prezza, Nicola
Rahman, Md. Saidur
Rechnitzer, Andrew
Rutter, Ignaz
Ryan, Patrick
Rümmele, Stefan
Saffidine, Abdallah
Salson, Mikaël
Schittekat, Patrick
Shur, Arseny
Soltys, Michael
Toubaline, Sonia
Umboh, Seeun William
Wasa, Kunihiro

VIII Organization

Contents

Invited Papers

Entire H-irregularity Strength of Plane Graphs . 3
Martin Bača, Nurdin Hinding, Aisha Javed,
and Andrea Semaničová-Feňovčíková

Combinatorial Questions: How Can Graph Labelling Help? 13
Diane Donovan and Thomas A. McCourt

Extremal Kernelization: A Commemorative Paper . 24
Henning Fernau

Recent Advances of Palindromic Factorization . 37
Mai Alzamel and Costas S. Iliopoulos

A Construction for f0; 1;�1g Orthogonal Matrices Visualized 47
N. A. Balonin and Jennifer Seberry

Approximation Algorithms and Hardness

On the Maximum Crossing Number . 61
Markus Chimani, Stefan Felsner, Stephen Kobourov, Torsten Ueckerdt,
Pavel Valtr, and Alexander Wolff

Approximation Results for the Incremental Knapsack Problem 75
Federico Della Croce, Ulrich Pferschy, and Rosario Scatamacchia

Derandomization for k-Submodular Maximization . 88
Hiroki Oshima

Computational Complexity

On the Parameterized Complexity of Happy Vertex Coloring 103
Akanksha Agrawal

Complexity Dichotomies for the Minimum F -Overlay Problem 116
Nathann Cohen, Frédéric Havet, Dorian Mazauric, Ignasi Sau,
and Rémi Watrigant

Improved Complexity for Power Edge Set Problem. 128
Benoit Darties, Annie Chateau, Rodolphe Giroudeau,
and Matthias Weller

The Parameterized Complexity of Happy Colorings. 142
Neeldhara Misra and I. Vinod Reddy

Computational Complexity Relationship between Compaction,
Vertex-Compaction, and Retraction . 154

Narayan Vikas

Computational Geometry

Holes in 2-Convex Point Sets . 169
Oswin Aichholzer, Martin Balko, Thomas Hackl, Alexander Pilz,
Pedro Ramos, Pavel Valtr, and Birgit Vogtenhuber

Graphs and Combinatorics

Graph Parameters and Ramsey Theory. 185
Vadim Lozin

Letter Graphs and Geometric Grid Classes of Permutations:
Characterization and Recognition . 195

Bogdan Alecu, Vadim Lozin, Viktor Zamaraev, and Dominique de Werra

Fully Leafed Tree-Like Polyominoes and Polycubes 206
Alexandre Blondin Massé, Julien de Carufel, Alain Goupil,
and Maxime Samson

Improved Lower Bound on Broadcast Function Based on Graph Partition . . . 219
Hovhannes A. Harutyunyan and Zhiyuan Li

Graph Colourings, Labelings and Power Domination

Orientations of 1-Factors and the List Edge Coloring Conjecture. 233
Uwe Schauz

On Solving the Queen Graph Coloring Problem . 244
Michel Vasquez and Yannick Vimont

Minimal Sum Labeling of Graphs . 252
Matěj Konečný, Stanislav Kučera, Jana Novotná, Jakub Pekárek,
Štěpán Šimsa, and Martin Töpfer

On the Power Domination Number of de Bruijn and Kautz Digraphs 264
Cyriac Grigorious, Thomas Kalinowski, and Sudeep Stephen

X Contents

Heuristics

A Multi-start Heuristic for Multiplicative Depth Minimization
of Boolean Circuits . 275

Sergiu Carpov, Pascal Aubry, and Renaud Sirdey

The School Bus Routing Problem: An Analysis and Algorithm. 287
Rhydian Lewis, Kate Smith-Miles, and Kyle Phillips

Heuristic, Branch-and-Bound Solver and Improved Space Reduction
for the Median of Permutations Problem . 299

Robin Milosz and Sylvie Hamel

Efficient Lagrangian Heuristics for the Two-Stage Flow Shop
with Job Dependent Buffer Requirements. 312

Hanyu Gu, Julia Memar, and Yakov Zinder

Mixed Integer Programming

Linear Ordering Based MIP Formulations for the Vertex Separation
or Pathwidth Problem . 327

Sven Mallach

Polynomial Algorithms

How to Answer a Small Batch of RMQs or LCA Queries in Practice 343
Mai Alzamel, Panagiotis Charalampopoulos, Costas S. Iliopoulos,
and Solon P. Pissis

Computing Asymmetric Median Tree of Two Trees via Better Bipartite
Matching Algorithm . 356

Ramesh Rajaby and Wing-Kin Sung

Privacy

Privacy-Preserving and Co-utile Distributed Social Credit. 371
Josep Domingo-Ferrer

Combinatorial Algorithms and Methods for Security of Statistical
Databases Related to the Work of Mirka Miller . 383

Andrei Kelarev, Jennifer Seberry, Leanne Rylands, and Xun Yi

String Algorithms

Shortest Unique Palindromic Substring Queries in Optimal Time 397
Yuto Nakashima, Hiroe Inoue, Takuya Mieno, Shunsuke Inenaga,
Hideo Bannai, and Masayuki Takeda

Contents XI

A Faster Implementation of Online Run-Length Burrows-Wheeler
Transform . 409

Tatsuya Ohno, Yoshimasa Takabatake, Tomohiro I,
and Hiroshi Sakamoto

Computing Abelian String Regularities Based on RLE. 420
Shiho Sugimoto, Naoki Noda, Shunsuke Inenaga, Hideo Bannai,
and Masayuki Takeda

Author Index . 433

XII Contents

Invited Papers

Entire H-irregularity Strength
of Plane Graphs

Martin Bača1(B) , Nurdin Hinding2 , Aisha Javed3,
and Andrea Semaničová-Feňovč́ıková1

1 Department of Applied Mathematics and Informatics,
Technical University, Košice, Slovakia

martin.baca@tuke.sk
2 Faculty of Mathematics and Natural Sciences,

Hasanuddin University, Makassar, Indonesia
3 Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan

Abstract. We investigate an entire H-irregularity strength of plane
graphs as a modification of the well-known total and entire face irregular-
ity strengths. Estimations on this new graph characteristic are obtained
and determined the precise values for graphs from two families of plane
graphs to demonstrate that the obtained bounds are tight.

Keywords: Irregularity strength · Entire face irregularity strength
Entire H-irregularity strength

1 Introduction

We consider finite undirected graphs without loops and multiple edges. Denote
by V (G) and E(G) the set of vertices and the set of edges of a graph G, respec-
tively. By a labeling we mean any mapping that maps a set of graph elements
to a set of numbers (usually positive integers), called labels. If the domain is the
vertex set and the edge set then we call the labeling total labeling.

For a given total k-labeling φ : V (G) ∪ E(G) → {1, 2, . . . , k} the associated
total vertex-weight of a vertex x is wtφ(x) = φ(x) +

∑
xy∈E(G) φ(xy) and the

associated total edge-weight of an edge xy is wtφ(xy) = φ(x) + φ(xy) + φ(y). In
[8] a total k-labeling φ is defined to be an edge irregular total k-labeling of a graph
G if for every two different edges xy and x′y′ of G there is wtφ(xy) �= wtφ(x′y′)
and to be a vertex irregular total k-labeling of G if for every two distinct vertices
x and y of G there is wtφ(x) �= wtφ(y).

The minimum k for which the graph G has an edge irregular total k-labeling is
called the total edge irregularity strength of the graph G and is denoted by tes(G).
Analogously, the total vertex irregularity strength of G, denoted by tvs(G), is the
minimum k for which there exists a vertex irregular total k-labeling of G.

Ivančo and Jendrol’ [13] posed a conjecture that for arbitrary graph G dif-
ferent from K5 and maximum degree Δ(G), tes(G) = max

{ �(|E(G)| + 2)/3� ,

c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 3–12, 2018.
https://doi.org/10.1007/978-3-319-78825-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_1&domain=pdf
http://orcid.org/0000-0002-5758-0347
http://orcid.org/0000-0002-9894-061X
http://orcid.org/0000-0002-8432-9836

4 M. Bača et al.

�(Δ(G) + 1)/2� }
. This conjecture has been verified for complete graphs and

complete bipartite graphs in [14,15], for the categorical product of two cycles
in [3], for generalized Petersen graphs in [12], for generalized prisms in [10], for
corona product of a path with certain graphs in [17] and for large dense graphs
with (|E(G)| + 2)/3 ≤ (Δ(G) + 1)/2 in [11].

The bounds for the total vertex irregularity strength of a graph G with
minimum degree δ(G) are given in [8] as follows

⌈
|V (G)|+δ(G)

Δ(G)+1

⌉
≤ tvs(G) ≤ |V (G)| + Δ(G) − 2δ(G) + 1. (1)

Przyby�lo in [18] proved that tvs(G) < 32|V (G)|/δ(G)+ 8 in general and tvs(G) <
8|V (G)|/r + 3 for r-regular graphs. This was then improved by Anholcer et al.
in [4] that tvs(G) ≤ 3 �|V (G)|/δ(G)� + 1 ≤ 3|V (G)|/δ(G) + 4.

Recently Majerski and Przyby�lo in [16] based on a random ordering of
the vertices proved that if δ(G) ≥ (|V (G)|)0.5 ln |V (G)|, then tvs(G) ≤ (2 +
o(1))|V (G)|/δ(G)+4. The exact values for the total vertex irregularity strength
for circulant graphs and unicyclic graphs are determined in [1,2,5], respectively.

Motivated by total irregularity strengths and a recent paper on entire colour-
ing of plane graphs [19], Bača et al. in [6] studied irregular labelings of plane
graphs with restrictions placed on the weights of faces. For a 2-connected
plane graph G = (V,E, F) with the face set F (G), they defined a labeling
ϕ : V (G) ∪ E(G) ∪ F (G) → {1, 2, . . . , k} to be an entire k-labeling. The weight
of a face f under an entire k-labeling ϕ, wϕ(f), is the sum of labels carried by
that face and all the edges and vertices surrounding it. An entire k-labeling ϕ is
defined to be a face irregular entire k-labeling of the plane graph G if for every
two different faces f and g of G there is wϕ(f) �= wϕ(g). The entire face irreg-
ularity strength, denoted by efs(G), of a plane graph G is the smallest integer k
such that G has a face irregular entire k-labeling.

Bača et al. in [6] proved that for every 2-connected plane graph G with
ni i-sided faces, i ≥ 3, efs(G) ≥ �(2a + n3 + n4 + · · · + nb)/(2b + 1)�, where
a = min{i : ni �= 0} and b = max{i : ni �= 0}. In [7] there is described a face
irregular entire 2-labeling of octahedron and it proves that this lower bound is
tight. In the case if a 2-connected plane graph contains only one largest face,
nb = 1, and c = max{i : ni �= 0, i < b}, then in [6] there is proved that
efs(G) ≥ �(2a + |F (G)| − 1)/(2c + 1)�. In [9] are estimated the lower and upper
bounds of the entire face irregularity strength for the disjoint union of multiple
copies of a plane graph and proved the sharpness of the lower bound in two
cases.

An edge-covering of G is a family of subgraphs H1,H2, . . . ,Ht such that each
edge of E(G) belongs to at least one of the subgraphs Hi, i = 1, 2, . . . , t. Then it
is said that G admits an (H1,H2, . . . , Ht)-(edge) covering. If every subgraph Hi

is isomorphic to a given graph H, then the graph G admits an H-covering. Note,
that in this case all subgraphs of G isomorphic to H must be in the H-covering.

Entire H-irregularity Strength of Plane Graphs 5

Let G be a plane graph admitting H-covering. For the subgraph H ⊆ G
under the entire k-labeling ϕ, we define the associated H-weight as

wϕ(H) =
∑

v∈V (H)

ϕ(v) +
∑

e∈E(H)

ϕ(e) +
∑

f∈F (H)

ϕ(f).

An entire k-labeling ϕ is called an H-irregular entire k-labeling of the plane
graph G if for every two different subgraphs H ′ and H ′′ isomorphic to H there
is wϕ(H ′) �= wϕ(H ′′). The entire H-irregularity strength of a plane graph G,
denoted Ehs(G,H), is the smallest integer k such that G has an H-irregular
entire k-labeling. If H is isomorphic to the cycle Cn, then the Cn-irregular
entire k-labeling is isomorphic to the face irregular entire k-labeling of a plane
graph G with only n-sided faces and thus the entire Cn-irregularity strength of
the plane graph G is equivalent to the entire face irregularity strength, that is
Ehs(G,Cn) = efs(G).

The main aim of the presented paper is to obtain estimations on the param-
eter Ehs(G,H) and determine the precise values of the entire H-irregularity
strength for two families of plane graphs namely, ladders and fan graphs to
demonstrate that the obtained bounds are tight.

2 Lower Bounds for the Entire H-irregularity Strength

Next theorem provides a lower bound on the parameter Ehs(G,H).

Theorem 1. Let G = (V,E, F) be a 2-connected plane graph admitting an H-
covering given by t subgraphs isomorphic to H. Then

Ehs(G,H) ≥
⌈

1 +
t − 1

|V (H)| + |E(H)| + |F (H)|
⌉

.

Proof. Let ϕ be an H-irregular entire k-labeling of a 2-connected plane graph
G = (V,E, F) admitting an H-covering given by t subgraphs isomorphic to H
with Ehs(G,H) = k. The smallest weight of a subgraph H under the entire
k-labeling is at least |V (H)|+ |E(H)|+ |F (H)| and the largest H-weight admits
the value at most (|V (H)|+|E(H)|+|F (H)|)k. It means that for every subgraph
H we have

|V (H)| + |E(H)| + |F (H)| ≤ wϕ(H) ≤ (|V (H)| + |E(H)| + |F (H)|)k. (2)

Since H-covering of G is given by t subgraphs thus from (2) it follows that

|V (H)| + |E(H)| + |F (H)| + t − 1 ≤ (|V (H)| + |E(H)| + |F (H)|)k

and

k ≥
⌈

1 +
t − 1

|V (H)| + |E(H)| + |F (H)|
⌉

.

6 M. Bača et al.

If H is isomorphic to the cycle Cn and G is a plane graph with only n-sided
faces then from Theorem 1 follows the lower bound on the entire face irregularity
strength given in [6].

Corollary 1. Let G = (V,E, F) be a plane graph having exactly t n-sided faces.
Then

Ehs(G,Cn) = efs(G) ≥
⌈

2n + t

2n + 1

⌉

.

Next theorem gives the exact value of the entire Lm-irregularity strength for
ladders Ln, 2 ≤ m ≤ n and it proves that the lower bound in Theorem1 is tight.

Theorem 2. Let Ln
∼= Pn�P2, n ≥ 2, be a ladder admitting Lm covering,

where m is a positive integer, 2 ≤ m ≤ n. Then

Ehs(Ln, Lm) =
⌈
5m+n−3
6m−3

⌉
.

Proof. Let Ln
∼= Pn�P2, n ≥ 2, be a ladder with the vertex set V (Ln) = {ui, vi :

i = 1, 2, . . . , n} and the edge set E(Ln) = {uiui+1, vivi+1 : i = 1, 2, . . . , n − 1} ∪
{uivi : i = 1, 2, . . . , n}. The ladder Ln contains (n − 1) 4-sided faces and one
external 2n-sided face. Denote by fi the 4-sided face surrounded by vertices
ui, ui+1, vi, vi+1 and edges uiui+1, vivi+1, uivi, ui+1vi+1, for i = 1, 2, . . . , n − 1,
and denote by fext the external 2n-sided face. Clearly, for every m, 2 ≤ m ≤ n,
the ladder Ln admits a Lm-covering with exactly n−m+1 subgraphs. According
to Theorem 1 we have that

Ehs(Ln, Lm) ≥
⌈
5m+n−3
6m−3

⌉
.

Put k = �(5m + n − 3)/(6m − 3)�. To show that k is an upper bound for
the entire Lm-irregularity strength of Ln we describe an entire k-labeling
ϕm : V (Ln) ∪ E(Ln) ∪ F (Ln) → {1, 2, . . . , k}, m = 2, 3, . . . , n, as follows:

ϕm(ui) =
⌈

i+3m−2
6m−3

⌉
for i = 1, 2, . . . , n,

ϕm(vi) =
⌈

i+5m−3
6m−3

⌉
for i = 1, 2, . . . , n,

ϕm(uiui+1) =
⌈

i+2m−1
6m−3

⌉
for i = 1, 2, . . . , n − 1,

ϕm(vivi+1) =
⌈

i+4m−2
6m−3

⌉
for i = 1, 2, . . . , n − 1,

ϕm(uivi) =
⌈

i+m−1
6m−3

⌉
for i = 1, 2, . . . , n

ϕm(fi) =
⌈

i
6m−3

⌉
for i = 1, 2, . . . , n − 1,

ϕm(fext) =1.

We can see that all vertex, edge and face labels are at most k. Every ladder
Lj

m, j = 1, 2, . . . , n − m + 1, in Ln has the vertex set V (Lj
m) = {uj+i, vj+i :

Entire H-irregularity Strength of Plane Graphs 7

i = 0, 1, . . . ,m − 1}, the edge set E(Lj
m) = {uj+ivj+i : i = 0, 1, . . . ,m − 1} ∪

{uj+iuj+i+1, vj+ivj+i+1 : i = 0, 1, . . . , m − 2} and the face set F (Lj
m) = {fj+i :

i = 0, 1, . . . ,m − 2}. One can see that every edge of Ln belongs to at least one
ladder Lj

m if m = 2, 3, . . . , n.
For the Lm-weight of the ladder Lj

m, j = 1, 2, . . . , n − m + 1, under the total
labeling ϕm, m = 2, 3, . . . , n, we get

wϕm
(Lj

m) =
∑

v∈V (Lj
m)

ϕm(v) +
∑

e∈E(Lj
m)

ϕm(e) +
∑

f∈F (Lj
m)

ϕm(f).

Since vertex labels, edge labels and face labels form non-decreasing sequences
thus it is enough to prove that wϕm

(Lj
m) < wϕm

(Lj+1
m), j = 1, 2, . . . , n − m. In

fact, for the difference of weights of subgraphs Lj+1
m and Lj

m for j = 1, 2, . . . ,
n − m we get

wϕm
(Lj+1

m) − wϕm
(Lj

m) =ϕm(uj+m) + ϕm(uj+m−1uj+m) + ϕm(uj+mvj+m)
+ ϕm(vj+m) + ϕm(vj+m−1vj+m) + ϕm(fj+m−1)
− ϕm(uj) − ϕm(ujuj+1) − ϕm(ujvj)
− ϕm(vj) − ϕm(vjvj+1) − ϕm(fj)

=
⌈

j+4m−2
6m−3

⌉
+

⌈
j+3m−2
6m−3

⌉
+

⌈
j+2m−1
6m−3

⌉
+

⌈
j+6m−3
6m−3

⌉

+
⌈

j+5m−3
6m−3

⌉
+

⌈
j+m−1
6m−3

⌉
−

⌈
j+3m−2
6m−3

⌉
−

⌈
j+2m−1
6m−3

⌉

−
⌈

j+m−1
6m−3

⌉
−

⌈
j+5m−3
6m−3

⌉
−

⌈
j+4m−2
6m−3

⌉
−

⌈
j

6m−3

⌉

=
⌈

j+6m−3
6m−3

⌉
−

⌈
j

6m−3

⌉
= 1.

Thus wϕm
(Lj

m) < wϕm
(Lj+1

m), for m = 2, 3, . . . , n and j = 1, 2, . . . , n − m, and
the labeling ϕm is a desired Lm-irregular entire k-labeling.

Let G be a plane graph admitting H-covering. By the symbol H
S
r =

(HS
1 ,HS

2 , . . . , HS
r), we denote the set of all subgraphs of G isomorphic to H such

that the graph S, S �∼= H, is their maximum common subgraph. Thus V (S) ⊂
V (HS

i), E(S) ⊂ E(HS
i) and F (S) ⊂ F (HS

i) for every i = 1, 2, . . . , r. Next
theorem provides another lower bound on the entire H-irregularity strength.

Theorem 3. Let G = (V,E, F) be a 2-connected plane graph admitting an H-
covering. Let Si, i = 1, 2, . . . , s, be all subgraphs of G such that Si is a maximum
common subgraph of ri, ri ≥ 2, subgraphs of G isomorphic to H. Then

Ehs(G,H) ≥ max
{ ⌈

1 + r1−1
|V (H/S1)|+|E(H/S1)|+|F (H/S1)|

⌉
,

. . . ,
⌈
1 + rs−1

|V (H/Ss)|+|E(H/Ss)|+|F (H/Ss)|
⌉ }

.

8 M. Bača et al.

Proof. Let G be a plane graph admitting an H-covering. Let HSi
ri

, i = 1, 2, . . . , s,
be the set of all subgraphs HSi

1 ,HSi
2 , . . . , HSi

ri
, where each of them is isomorphic

to H, and Si is their maximum common subgraph. Let ψ be an H-irregular
entire k-labeling of G. Clearly, the HSi

j -weights

wψ(HSi
j) =

∑

v∈V (Si)

ψ(v) +
∑

e∈E(Si)

ψ(e) +
∑

f∈F (Si)

ψ(f) +
∑

v∈V (H
Si
j /Si)

ψ(v)

+
∑

e∈E(H
Si
j /Si)

ψ(e) +
∑

f∈F (H
Si
j /Si)

ψ(f),

for j = 1, 2, . . . , ri, are all distinct and each of them contains the value
∑

v∈V (Si)

ψ(v) +
∑

e∈E(Si)

ψ(e) +
∑

f∈E(Si)

ψ(f).

The largest among these HSi
j -weights cannot be less than

∑

v∈V (Si)

ψ(v) +
∑

e∈E(Si)

ψ(e) +
∑

f∈E(Si)

ψ(f)

+|V (H/Si)| + |E(H/Si)| + |F (H/Si)| + ri − 1.

This weight is the sum of at most |V (H/Si)|+|E(H/Si)|+|F (H/Si)| labels. So at
least one label is at least �1 + (ri − 1)/(|V (H/Si)| + |E(H/Si)| + |F (H/Si)|)�,
for i = 1, 2, . . . , s. Thus for the entire H-irregularity strength of a plane graph
G we get the desired result.

The lower bound from Theorem3 is tight for fan graphs.

Theorem 4. Let Fn, n ≥ 2, be a fan on n + 1 vertices admitting Fm-covering,
where m is a positive integer, 2 ≤ m ≤ n. Then

Ehs(Fn, Fm) =
⌈
3m+n−2
4m−2

⌉
.

Proof. Let Fn, n ≥ 2, be a fan graph obtained by joining all vertices of a
path Pn to a further vertex, called the centre. Thus Fn contains n + 1 ver-
tices, say, u1, u2, . . . , un, w, 2n − 1 edges, say, uiw, i = 1, 2, . . . , n, and uiui+1,
i = 1, 2, . . . , n − 1, (n − 1) 3-sided faces, say, fi, i = 1, 2, . . . , n − 1, and
finally the external (n + 1)-sided face, say, fext. The fan graph Fn, n ≥ 2,
admits Fm-covering with exactly n − m + 1 fan graphs Fm, 2 ≤ m ≤ n.
So every fan graph F j

m, j = 1, 2, . . . , n − m + 1, in Fn has the vertex set
V (F j

m) = {uj+i, w : i = 0, 1, . . . ,m − 1}, the edge set E(F j
m) = {uj+iw :

i = 0, 1, . . . ,m − 1} ∪ {uj+iuj+i+1, : i = 0, 1, . . . ,m − 2} and the face set
F (F j

m) = {fj+i : i = 0, 1, . . . ,m − 2}. Evidently every edge of Fn belongs to
at least one fan graph F j

m if m = 2, 3, . . . , n.

Entire H-irregularity Strength of Plane Graphs 9

Since every fan graph F j
m contains the vertex w as the maximum common

subgraph it follows that V (S1) = w, r1 = n − m + 1 and from Theorem 3 we
have

Ehs(Fn, Fm) ≥
⌈
1 + r1−1

|V (H/S1)|+|E(H/S1)|+|F (H/S1)|
⌉

=
⌈
1 + n−m

4m−2

⌉
=

⌈
3m+n−2
4m−2

⌉
.

Let k = �(3m + n − 2)/(4m − 2)� . To show that k is an upper bound for
entire Fm-irregularity strength of Fn it suffices to prove the existence of an
optimal entire k-labeling ψm : V (Fn) ∪ E(Fn) ∪ F (Fn) → {1, 2, . . . , k}. For
m = 2, 3, . . . , n, we construct the function ψm in the following way:

ψm(ui) =
⌈

i+2m−1
4m−2

⌉
for i = 1, 2, . . . , n,

ψm(uiui+1) =
⌈

i+3m−1
4m−2

⌉
for i = 1, 2, . . . , n − 1,

ψm(uiw) =
⌈

i+m−1
4m−2

⌉
for i = 1, 2, . . . , n

ψm(fi) =
⌈

i
4m−2

⌉
for i = 1, 2, . . . , n − 1,

ψm(fext) =1.

We can see that all vertex, edge and face labels are at most k. For the Fm-
weight of the fan graph F j

m, j = 1, 2, . . . , n−m+1, under the total labeling ψm,
m = 2, 3, . . . , n, we get

wψm
(F j

m) =
∑

v∈V (F j
m)

ψm(v) +
∑

e∈E(F j
m)

ψm(e) +
∑

f∈F (F j
m)

ψm(f).

Since vertex labels, edge labels and face labels form non-decreasing sequences
it follows that it is enough to consider the difference of weights of subgraphs
F j+1

m and F j
m for j = 1, 2, . . . , n−m. Observe that for every m = 2, 3, . . . , n and

j = 1, 2, . . . , n − m we get

wψm
(F j+1

m) − wψm
(F j

m) = ψm(uj+m−1uj+m) + ψm(uj+m) + ψm(uj+mw)
+ ψm(fj+m−1) − ψm(uj) − ψm(ujuj+1) − ψm(ujw)
− ψm(fj)

=
⌈

j+4m−2
4m−2

⌉
+

⌈
j+3m−1
4m−2

⌉
+

⌈
j+2m−1
4m−2

⌉
+

⌈
j+m−1
4m−2

⌉

−
⌈

j+2m−1
4m−2

⌉
−

⌈
j+3m−1
4m−2

⌉
−

⌈
j+m−1
4m−2

⌉
−

⌈
j

4m−2

⌉

=
⌈

j+4m−2
4m−2

⌉
−

⌈
j

4m−2

⌉
= 1.

In fact, the labeling ψm has been chosen in such a way that for every m =
2, 3, . . . , n and j = 1, 2, . . . , n − m wψm

(F j
m) < wψm

(F j+1
m). So the labeling ψm

has the required properties of Fm-irregular entire k-labeling. This concludes the
proof.

10 M. Bača et al.

3 Upper Bound for the Entire H-irregularity Strength

Next theorem gives an upper bound of the parameter Ehs(G,H) and shows that
this graph invariant is always finite.

Theorem 5. Let G = (V,E, F) be a 2-connected plane graph admitting an H-
covering given by t subgraphs isomorphic to H. Then

Ehs(G,H) ≤ 2|F (G)|−2.

Proof. Let G be a 2-connected plane graph admitting H covering given by sub-
graphs H1,H2, . . . , Ht. Let us denote the internal faces of G arbitrarily by the
symbols f1, f2, . . . , f|F (G)|−1. We define a total 2|F (G)|−2-labeling ϕ of G in the
following way.

ϕ(v) = 1, for v ∈ V (G),
ϕ(e) = 1, for e ∈ E(G),

ϕ(fi) = 2i−1, for i = 1, 2, . . . , |F (G)| − 1,
ϕ(fext) = 1.

Let us define the labeling θ such that

θi,j =

{
1, if fi ∈ F (Hj),
0, if fi �∈ F (Hj),

where i = 1, 2, . . . , |F (G)| − 1, j = 1, 2, . . . , t.
The H-weights are the sums of all vertex labels, edge labels and face labels

of vertices, edges and faces in the given subgraph. Thus, for j = 1, 2, . . . , t we
have

wtϕ(Hj) =
∑

v∈V (Hj)

ϕ(v) +
∑

e∈E(Hj)

ϕ(e) +
∑

f∈F (Hj)

ϕ(f)

=
∑

v∈V (Hj)

1 +
∑

e∈E(Hj)

1 +
∑

fi∈F (Hj)

2i−1

=|V (Hj)| + |E(Hj)| +
|F (G)|−1∑

i=1

θi,j2i−1. (3)

As we have

|V (Hj)| = |V (H)|
|E(Hj)| = |E(H)|

for every j = 1, 2, . . . , t, for proving that the H-weights are all distinct it is
enough to show that the sums

∑|F (G)|−1
i=1 θi,j2i−1 are distinct for every j =

1, 2, . . . , t. However, this is evident if we consider that the ordered (|F (G)| − 1)-
tuple (θ|F (G)|−1,jθ|F (G)|−2,j . . . θ2,jθ1,j) corresponds to binary code representa-
tion of the sum (3). As different subgraphs isomorphic to H can not have the
same face sets we immediately get that the (|F (G)| − 1)-tuples are different for
different subgraphs.

Entire H-irregularity Strength of Plane Graphs 11

4 Conclusion

In the paper, we estimated the lower and the upper bounds of the entire H-
irregularity strength of plane graphs and determined the precise values of this
parameter for ladders and fan graphs. These two cases proved the sharpness of
the lower bounds of the entire H-irregularity strength.

Acknowledgement. The research for this article was supported by APVV-15-0116
and by VEGA 1/0233/18.

References

1. Ahmad, A., Bača, M.: On vertex irregular total labelings. Ars Comb. 112, 129–139
(2013)

2. Ahmad, A., Bača, M., Bashir, Y.: Total vertex irregularity strength of certain
classes of unicyclic graphs. Bull. Math. Soc. Sci. Math. Roumanie 57(2), 147–152
(2014)

3. Ahmad, A., Bača, M., Siddiqui, M.K.: On edge irregular total labeling of categorical
product of two cycles. Theory Comput. Syst. 54(1), 1–12 (2014)

4. Anholcer, M., Kalkowski, M., Przyby�lo, J.: A new upper bound for the total vertex
irregularity strength of graphs. Discret. Math. 309(21), 6316–6317 (2009)

5. Anholcer, M., Palmer, C.: Irregular labellings of circulant graphs. Discret. Math.
312, 3461–3466 (2012)

6. Bača, M., Jendrol’, S., Kathiresan, K., Muthugurupackiam, K.: On the face irreg-
ularity strength. Appl. Math. Inf. Sci. 9(1), 263–267 (2015)

7. Bača, M., Jendrol’, S., Kathiresan, K., Muthugurupackiam, K., Semaničová-
Feňovč́ıková, A.: A survey of irregularity strength. Electron. Notes. Discret. Math.
48, 19–26 (2015)

8. Bača, M., Jendrol’, S., Miller, M., Ryan, J.: On irregular total labellings. Discret.
Math. 307, 1378–1388 (2007)

9. Bača, M., Lascsáková, M., Naseem, M., Semaničová-Feňovč́ıková, A.: On entire
face irregularity strength of disjoint union of plane graphs. Appl. Math. Comput.
307, 232–238 (2017)

10. Bača, M., Siddiqui, M.K.: Total edge irregularity strength of generalized prism.
Appl. Math. Comput. 235, 168–173 (2014)

11. Brandt, S., Mǐskuf, J., Rautenbach, D.: On a conjecture about edge irregular total
labellings. J. Graph Theory 57, 333–343 (2008)

12. Haque, K.M.M.: Irregular total labellings of generalized Petersen graphs. Theory
Comput. Syst. 50, 537–544 (2012)

13. Ivančo, J., Jendrol’, S.: Total edge irregularity strength of trees. Discuss. Math.
Graph Theory 26, 449–456 (2006)

14. Jendrol’, S., Mǐskuf, J., Soták, R.: Total edge irregularity strength of complete and
complete bipartite graphs. Electron. Notes Discret. Math. 28, 281–285 (2007)

15. Jendrol’, S., Mǐskuf, J., Soták, R.: Total edge irregularity strength of complete
graphs and complete bipartite graphs. Discret. Math. 310, 400–407 (2010)

16. Majerski, P., Przyby�lo, J.: Total vertex irregularity strength of dense graphs. J.
Graph Theory 76(1), 34–41 (2014)

12 M. Bača et al.

17. Nurdin, Salman, A.N.M., Baskoro, E.T.: The total edge-irregular strengths of the
corona product of paths with some graphs. J. Combin. Math. Combin. Comput.
65, 163–175 (2008)

18. Przyby�lo, J.: Linear bound on the irregularity strength and the total vertex irreg-
ularity strength of graphs. SIAM J. Discret. Math. 23, 511–516 (2009)

19. Wang, W., Zhu, X.: Entire colouring of plane graphs. J. Comb. Theory Ser. B 101,
490–501 (2011)

Combinatorial Questions: How Can
Graph Labelling Help?

Diane Donovan(B) and Thomas A. McCourt(B)

School of Mathematics and Physics, The University of Queensland,
Brisbane 4072, Australia

dmd@maths.uq.edu.au, tom.a.mccourt@gmail.com

Abstract. We highlight some connections between graph labelling,
combinatorial design theory and information theory. We survey results
on the construction and enumeration of Skolem labellings and related
structures. This includes discussion of two constructions of low density
parity check codes from Skolem labellings. We raise several pertinent
questions and suggestions for future research directions.

In Honour of Emeritus Professor Mirka Miller
9/05/1949 to 2/01/2016

An esteemed colleague and a good friend.

1 Introduction

The purpose of this article is to highlight some connections between combina-
torial objects and exploit these connections in applied problems. In particular
this article will discuss connections between Skolem sequences, Skolem labelled
graphs, additive permutations, Steiner triple systems and partial triple systems.
The later sections of the article focus on methods for constructing parity check
matrices for low density parity check codes from Skolem labellings for paths. We
present a progression of ideas starting with how to use Skolem sequences and
labellings to construct Steiner triple systems and partial triple systems leading
to two different methods for constructing low density parity check codes. The
main purpose is to raise and partially address the question

‘Can we harness ideas from graph labellings to solve problems in
combinatorics?’

To aid the reader each combinatorial structure considered is introduced as
needed. We begin with a discussion of Skolem sequences and Skolem labelled
graphs.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 13–23, 2018.
https://doi.org/10.1007/978-3-319-78825-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_2&domain=pdf

14 D. Donovan and T. A. McCourt

2 What are Skolem Sequences and Skolem Labelled
Graphs, and How are the Two Connected?

A Skolem Sequence of order n, denoted SS(n), is a sequence of 2n positive inte-
gers, [s1, s2, . . . , s2n], that satisfies the property

∀k ∈ {1, . . . , n}, ∃i, j ∈ {1, . . . , 2n}, such that si = sj = k and |j − i| = k.

For example consider the Skolem sequence, SS(5), [4, 1, 1, 5, 4, 2, 3, 2, 5, 3], of
length 2n = 2×5 = 10. Here s1 = s5 = 4, s2 = s3 = 1, s4 = s9 = 5, s6 = s8 = 2,
and s7 = s10 = 3. It is easy to check that for each k ∈ {1, 2, 3, 4, 5} there exists
precisely two terms in the sequence si, sj such that si = sj = k and |j − i| = k.

Skolem sequences were first introduced by Skolem in [23] where he presented
arguments to verify that a Skolem sequence SS(n) exists if and only if n ≡
0 or 1(mod 4). For more details see [5].

Mendelsohn and Shalaby [19] introduced the concept of a Skolem labelled
graph in 1991. Let u and v be distinct vertices in a connected graph G, then
dist(u, v) denotes the number of edges in a shortest path between u and v in G.
An undirected graph G = (V (G), E(G)), where |V (G)| = 2n for some positive
integer n, admits a Skolem labelling if there exists an onto function f : V (G) →
{d, d + 1, d + 2, . . . , d + n − 1}, for d an integer greater than 0, such that

(a) ∀i ∈ {0, . . . , n − 1}, ∃u, v ∈ V (G), such that f(u) = f(v) = d + i and
dist(u, v) = d + i;

(b) for G′ = (V (G), E(G′)) where E(G′) ⊂ E(G), f applied to G′ violates (a).

If G admits a Skolem labelling, then G alongside its labelling is said to be a
Skolem labelled graph. It is also worth noting that the definition of a Skolem
labelling and a Skolem-graceful labelling (see [2,11]) are different.

Mendelsohn and Shalaby [19] established a number of results, including
results on Skolem labelling of paths and cycles. In particular, Theorem 1 of
[19] states that the existence of Skolem sequence, SS(n), of order n implies
the existence of a Skolem labelling of the path P2n of length 2n − 1. The
following example, where d = 1, illustrates the construction. The Skolem
sequence SS(5) given above provides a Skolem labelling of P10, with vertex set
V (P10) = {s1, . . . , s10}, through the mapping f : V (P10) → {1, . . . , 10} where
f(s1) = f(s5) = 4, f(s2) = f(s3) = 1, f(s4) = f(s9) = 5, f(s6) = f(s8) = 2 and
f(s7) = f(s10) = 3, as displayed in Fig. 1.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

4 1 1 5 4 2 3 2 5 3

Fig. 1. A Skolem labelling for the graph P10.

The remainder of this article we will be primarily concerned with Skolem
labelled paths P2n where n ≡ 0 or 1(mod 4) and d = 1. For further details on

Combinatorial Questions: How Can Graph Labelling Help? 15

Skolem labellings, Skolem-graceful labellings and other graph labellings, see the
2013 survey by Gallian [11] and the 2006 survey [2] by Baca et al.

A Skolem labelling of P2n (d = 1) defines a set of triples; that is, for each
k ∈ {1, 2, . . . , n} there is precisely one triple {k, u, v}, u, v ∈ V (P2n), such that
f(u) = f(v) = k and dist(u, v) = k. Label the vertices of P2n by {n + 1, n +
2, . . . , 3n} so that consecutively labelled vertices are joined by an edge. Then the
set of triples {{k, u, v} | 1 ≤ k ≤ n} (where u + k = v) partitions {1, . . . , n} ∪
{n + 1, . . . , 3n}. This is important property of Skolem labellings will be used
throughout this article. Figure 2 illustrates this partition for the Skolem labelling
given in Fig. 1.

6 7 8 9 10 11 12 13 14 15

4 1 1 5 4 2 3 2 5 3

{1, . . . , 15} = {6, 4, 10} ∪ {7, 1, 8} ∪ {9, 5, 14} ∪ {11, 2, 13} ∪ {12, 3, 15}

Fig. 2. Using a SS(5) to partition {1, . . . , 5} ∪ {6, . . . , 15}.

2.1 How Many Distinct Skolem Labellings of P2n Exist?

The above decomposition of the labelling into triples was exploited by Abrham in
[1] to prove a lower bound on the number of distinct Skolem sequences SS(n), and
hence the number of distinct Skolem labellings of P2n, is 2�n/3�. Later, in Bennett
et al. [3] used similar counting arguments to extend the results to various gener-
alizations of Skolem sequences. More recently Donovan and Grannell [6] focused
on developing methods for partitioning the set {1, . . . , n} ∪ {n + 1, . . . , 3n} into
triples and obtained improved lower bounds for the number of distinct Skolem
labellings of P2n. Donovan and Grannell began by highlighting a connection to
additive permutations.

An additive permutation of order t, AP(t), on the set of integers X =
{−t, . . . , t}, is a permutation π : X → X such that the mapping σ : X → X,
σ(x) = x+π(x), x ∈ X, is also a permutation. A permutation may be visualised
as a 3 × (2t + 1) array, where the first row contains −t, . . . , t in the given order,
the second row contains the image of the first row under the permutation π and
the third row is the sum of the first two rows; the permutation is additive if
this third row is a permutation of {−t, . . . , t}. For example, Fig. 3 documents an
additive permutation π for t = 3.

The connection to Skolem labellings is through the triples {{x, π(x), x +
π(x)} | x ∈ X} of an additive permutation. However, these triples do not par-
tition some underlying set and so in some sense they need to be ‘spread out’.

16 D. Donovan and T. A. McCourt

x -3 -2 -1 0 1 2 3
π(x) 0 3 -1 2 -2 1 -3

x + π(x) -3 1 -2 2 -1 3 0

Fig. 3. An additive permutation of order 3.

To achieve this Donovan and Grannell [6] embedded the triples of an AP(t)
into a Skolem labelling of P14t+8, where t ≡ 0, 3(mod 4). Let V (P14t+8) =
{−(7t + 3), . . . , 7t + 4} and define a function F : V (P14t+8) → {1, . . . , 7t + 4}
using the following algorithm.

1. Under the assumption that there exists a Skolem labelling g of P2t+2, where
V (P2t+2) = {−t, . . . , t + 1} and g(0) = g(t + 1) = t + 1, set F (x) = g(x), for
all x ∈ V (P2t+2) \ {0, t + 1}

2. Under the assumption there exists an additive permutation AP(t), for each
x ∈ {−t, . . . , t} and hence each triple {x, π(x), x + π(x)} in the AP(t) choose
either

F (−(x + π(x) + 6t + 3)) = F (−(π(x) + 4t + 2)) = x + 2t + 1,

F (−(x + 2t + 1)) = F (π(x) + 4t + 2) = x + π(x) + 6t + 3,

F (x + 2t + 1) = F (x + π(x) + 6t + 3) = π(x) + 4t + 2,

or

F (π(x) + 4t + 2) = F (x + π(x) + 6t + 3) = x + 2t + 1,

F (−(π(x) + 4t + 2)) = F (x + 2t + 1) = x + π(x) + 6t + 3,

F (x + 2t + 1) = F (x + π(x) + 6t + 3) = π(x) + 4t + 2.

3. F (0) = F (7t + 4) = 7t + 4.

It was verified by Donovan and Grannell that for each k ∈ {1, . . . , 7t + 4}
there are precisely two vertices of P14t+8 that are labelled with k and these
vertices are distance k apart.

Thus we see that each distinct triple {x, π(x), x + π(x)}, for x ∈ X, of
the additive permutation AP(t), t ≡ 0, 3(mod 4), is used to label three triples
{w, k, u}, where w + k = u, associated with the path P14t+8. Hence the num-
ber of distinct Skolem labellings of P14t+8 is at least 22t+1 times the number
of additive permutations of order t. The number of additive permutations has
been computed for t = 1 to 11, and appear in Sloane’s sequence encyclopedia,
Sequence A002047, [24]. They are reproduced in Table 1.

To count the numbers of additive permutations for large values of t we follow
the work of Cavenagh and Wanless [4]. It is well know that the addition table
for the cyclic group of order 2t + 1 can be represented as a set of (2t + 1)2

distinct triples of the form C2t+1 = {(i, j, i + j(mod 2t + 1)) | 0 ≤ i, j ≤ 2t}.
Cavenagh and Wanless [4] established lower bounds on the number of distinct
transversal T in C2t+1. A transversal T is a subset of 2t+1 triples, such that for

Combinatorial Questions: How Can Graph Labelling Help? 17

Table 1. The number of additive permutations of order 2t + 1.

t Number of AP(t)

3 2

5 6

7 28

9 244

11 2 544

13 35 600

15 659 632

17 15 106 128

19 425 802 176

21 14 409 526 080

23 577 386 122 880

distinct triples (u, v, w), (x, y, z) ∈ T , u
= x, v
= y and w
= z. That is, a subset
of 2t + 1 triples drawn from distinct rows, columns and entries of the addition
table. Indexing the rows, columns and entries by the set {−t, . . . , t} instead of
{0, . . . , 2t} and using only transversals where all triples satisfy (i, j, i + j), the
permutation π(i) = j, −t ≤ i ≤ t is an additive permutation AP(t). By way of an
example the additive permutation given in Fig. 3 corresponds to the transversal
(indicated by underlined entries) in Fig. 4. (Note only those entries of the form
(i, j, i + j) have been displayed.)

-3 -2 -1 0 1 2 3
-3 -3 -2 -1 0
-2 -3 -2 -1 0 1
-1 -3 -2 -1 0 1 2
0 -3 -2 -1 0 1 2 3
1 -2 -1 0 1 2 3
2 -1 0 1 2 3
3 0 1 2 3

Fig. 4. A relabelled version of the addition table of the cyclic group of order 7 with
transversal underlined.

Thus for large t counting the number of additive permutations of order t, is
equivalent to counting the number of transversals in this restricted region of the
addition table of the cyclic group of order 2t + 1. By subdividing the addition
table into subarrays of size 23, Cavenagh and Wanless showed that a lower bound
for the number of transversal in addition table for the cyclic group of order 2t+1
is 3.2462t+1, where 3.246 is the 23rd root of the number of additive permutations

18 D. Donovan and T. A. McCourt

of order 23, 577 386 122 880. The transversals included in the counting arguments
of Cavenagh and Wanless are all contained in the restricted region and hence
correspond to additive permutations.

Consequently Donovan and Grannell [6] showed that for sufficiently large t,
the number of distinct Skolem labellings of P14t+8, where t ≡ 0, 3(mod 4), is at
least

22t+1 × 3.2462t+1 = (6.492)2t+1 > 2�(7t+4)/3�.

Donovan and Grannell [6] also provided other lower bounds for sporadic orders.
It was conjecture by Vardi [26] that the number of transversals in the addition

table for the cyclic group of order 2t+1 exceeds c2t+1(2t+1)! for some constant
c ∈ (0, 1). Eberhard, Manners and Mrazović, published a recent arXiv paper [8]
claiming to prove this conjecture. However, it is important to note that not all
transversals are suitable for constructing additive permutations. But unfortu-
nately it is also easy to see that the Cavenagh and Wanless construction does
not produce all additive permutations, leading to the following open questions.

Question: Can the lower bound on the number of additive permutation
of order t, given in [4], be improved?

Question: Can the lower bound on the number of distinct Skolem
labellings of order n, given in [6] be improved?

2.2 What is the Connection Between Skolem Labellings, Steiner
Triple Systems and Partial Triple Systems?

A Steiner triple system of order v, STS(v), is an ordered pair (V,B) where V is a
set of cardinality v and B is a collection of triples chosen in such a way that each
pair of distinct elements of V occurs in precisely one triple. Counting arguments
show that the number of triples is b = v(v − 1)/6, implying that a STS(v) exists
only if v ≡ 1, 3(mod 6). Sufficiency has also been established, see for instance
[5]. A Steiner triple systems, STS(v), with V = {0, 1, . . . , v − 1} is said to be
cyclic if it possesses the triple preserving automorphism α : V → V , where
α(x) = x + 1(mod v). It is known that cyclic STS(v) exist for all admissible
values of v except v = 9 [5]. Skolem showed that cyclic STS(v), v = 6n + 1,
can be constructed from Skolem sequences of order n and hence they can be
constructed from Skolem labellings of P2n.

We explain this construction using our Skolem labelling notation. Take the
set of n triples associated with a Skolem labelling f of P2n, with V (P2n) =
{1, . . . , 2n}; that is, the set T = {(x, y, k) | k = f(x) = f(y), 1 ≤ k ≤ n} and
use it to construct a set of starter triples D = {{0, n + x, n + y} | (x, y, k) ∈ T}.
Note that, working modulo 6n + 1,

∪1≤k≤n{±(n + x),±(n + y),±(k = f(x) = f(y))} = {1, . . . , 6n}.

Hence, again working modulo 6n+1, the set of triples B = {{i, n+x+i, n+y+i} |
{0, n + x, n + y} ∈ D, 0 ≤ i ≤ 6n} forms a cyclic STS(6n + 1).

Combinatorial Questions: How Can Graph Labelling Help? 19

A common representation for a STS(v), (V,B), is an incidence matrix; that
is, a v × b matrix M = [mij], with the rows indexed by the points of V , the
columns indexed by the triples of B = {Bj | 1 ≤ j ≤ b}, and

mij =
{

1, if point i occurs in triple Bj ,
0, otherwise.

If a STS(v) is cyclic, then the corresponding incidence matrix is said to be quasi-
cyclic in that the columns can be partitioned into n subsets of size 6n + 1 and
each column, within the n subsets, is a cyclic shift of the previous column modulo
6n + 1.

A partial triple system PTS(v), with λ = 1, is a pair (V,B) where V is a
set of cardinality v and B is a collection of triples chosen in such a way that
each pair of distinct elements of V occurs in at most one triple. As in the case
of a STS(v), a partial triple system PTS(v) can be represented in terms of its
incidence matrix.

It is the incidence matrices of STS(v) and PST(v) that will be used in the
next section to construct parity check matrices for low density parity check codes.

3 How Can We Use Skolem Labellings to Construct
Parity Check Matrices for Linear Codes?

A [n, k] linear block code over GF(2) encodes binary blocks u = [u1 u2 . . . uk] to
binary codewords x = [x1 x2 . . . xn] of length n, via a binary generating matrix,
over GF(2), G = [Ik|AT], where A is a (n−k)×k matrix and x = uG. Decoding is
via a binary parity check matrix H = [A|In−k], where HxT = 0. The generating
and parity check matrices satisfy GHT = HGT = 0. Further, the set of all
codewords is given by the null space of the parity check matrix H. Thus the
number of linearly independent rows of H determines the number of codewords.
For more details see for instance [22].

For example, consider a [6, 3] code, with generating matrix

G =

⎛
⎝1 0 0 1 0 1

0 1 0 1 1 1
0 0 1 1 1 0

⎞
⎠

and parity check matrix

H =

⎛
⎝1 1 1 1 0 0

0 1 1 0 1 0
1 1 0 0 0 1

⎞
⎠ .

Here a message u = [u1u2u3] is encoded to the codeword x = [x1x2x3x4x5x6],
where x1 = u1, x2 = u2, x3 = u3 and x4, x5, x6 are check digits chosen such that
HxT = 0. Thus the parity check equations are:

x4 = x1 + x2 + x3,

x5 = x2 + x3,

x6 = x1 + x2.

In this case u = [011] is encoded to the codeword x = [011001].

20 D. Donovan and T. A. McCourt

A linear block code over GF(2) with a sparse parity check matrix is called a
Low Density Parity Check code (LDPC code). The goal is to construct LDPC
codes with a high information rate R (R = k/n) and large error correction capac-
ity. The code will correct � 1

2 (d − 1)� errors where d is the minimum Hamming
distance of the code (the minimum weight of non-zero codewords).

Low density parity check (LDPC) codes were first introduced by Gallager
in [9], and later popularised by McKay and Neal [16,17] in the 1990s. Their
main attraction is that they can achieve information rates close to the Shannon
bound. Initially, Gallager constructed such codes by pseudorandomly generating
parity check matrices, then identifying ‘good’ LDPC codes through computer
searches [9,10]. However, the random structure of the generated codes made them
somewhat difficult to encode and it was often hard to determine the minimum
distance.

More recently, researchers have taken a more systematic approach to their
construction. Kou et al. [14] constructed LDPC codes using finite geometries,
Tanner et al. [25] used various group-structures to construct LDPC codes, and
Rosenthal and Vontobel constructed LDPC codes from Ramanujan graphs [21].
More recently, combinatorial designs, and in particular their incidence matrices,
have been used to construct LDPC codes, see [13,18,27,28].

Vasic and Milenkovic [27] used the incidence matrix of cyclic STS(v), (V,B),
as the parity check matrix for an LDPC code. The cyclic structure of the inci-
dence matrix was used to obtain a lower bound for the size of the null space of
the parity check matrix, and hence on the number of codewords. The structure
of the Steiner triple system also provides a bound on the information rate of the
code and the minimum distance of the code. The fact that every pair of points
of V occurs in precisely one triple of B implies that the inner product of any two
columns of the incidence matrix is at most one. This fact can be used to prove the
minimum distance of such codes is at least four, a result that is often validated
using a bipartite Tanner graph, see [28] for more details. If the underlying triples
of a cyclic Steiner triple system do not contain a subsets of triples of the form
{0, y, z}, {0, u, w}, {x, y, u}, {x, z, w}—that is, they are anti-Pasch systems—then
the resulting LDPC code can be shown to have a minimum distance of at least 6.
Anti-Pasch STS(v) exist if and only if v ≡ 1 or 3(mod 6) and v
∈ {7, 13} [12,15].
However if we add the requirement that the systems are cyclic (which may be
desirable for hardware implementation [27]) known orders are far fewer.

More recently Donovan et al. [7] provided an alternate construction for LDPC
codes based on partial triple systems. They began by constructing a set of 2n−1
starter triples Dj = (0, j, 2j + 1), 0 ≤ j ≤ n − 1 and Dj = (0, j, 2(j − n)),
n + 1 ≤ j ≤ 2n − 1. Using these starter triples a PTS(6n), (V,B), can be
constructed where B = {Bj | 0 ≤ j ≤ 2n − 1, j
= n}, and

Bj = {a, j + a (mod 2n) + 2n, j′ + a (mod 2n) + 4n}
where (0, j, j′) = Dj , 0 ≤ a ≤ 2n − 1.

The result is a PTS(6n), (V,B) where V = {0, . . . , 6n−1} and |B| = 2n(2n−1) =
4n2−2n. Notice that there is no starter triple of the form (0, n, 0). This restriction

Combinatorial Questions: How Can Graph Labelling Help? 21

is necessary to ensure that each pair of points of V occur in at most one triple
of PTS(6n). Indeed if y, z ∈ V the number of triples, λy,z, containing the pair
y, z is

λy,z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if y, z ∈ {0, . . . , 2n − 1},
0, if y, z ∈ {2n, . . . , 4n − 1},
0, if y, z ∈ {4n, . . . , 6n − 1},
0, if z = y + 3n or z = y + 4n and y ∈ {0, . . . , 2n − 1},
0, if z = y + 3n and y ∈ {2n, . . . , 3n − 1},
0, if z = y + n and y ∈ {3n, . . . , 4n − 1},
1, otherwise.

These triples can now be used to construct a 6n × (4n2 − 2n) incidence
matrix M = [mxy] that can be used as a parity check matrix for an LDPC code.
The structure of the resulting PTS(6n) can be used to verify the existence of
an infinite family of LDPC codes of length 6n, for n a positive integer. The
parity check matrix, H, has rank 6n − 2, consequently there are 6n − 2 linearly
independent rows. Thus, the number of codewords (the cardinality of the null
space of H) equals the length of the codewords less the rank of H; that is, there
are (4n2 − 2n) − (6n − 2) = 4n2 − 8n + 2 codewords. Hence it is possible to
explicitly determine the rate of the code, namely (4n2 − 8n + 2)/(4n2 − 2n),
which is greater than 0.8 for codes of length greater than or equal to 240. In
addition, these codes have minimum distance 6 when n is odd and minimum
distance 4 when n is even.

3.1 What is the Connection to a Skolem Labelling?

Skolem was the first researcher to use Skolem labelling of P2n (or equivalently
SS(n)) for the construction of a cyclic STS(6n + 1). Then Vasic and Milenkovic
[27] drew the connection between incidence matrices of cyclic STS(6n + 1) and
parity check matrix for a LDPC code. Later Park et al. [20] specially drew the
connection with Skolem’s construction. By [6], and as discussed above, there are
at least (6.492)2t+1 Skolem labellings of P14t+8, where t ≡ 0, 3(mod 4). Raising
the following question.

Question: If we take a random Skolem labelling of P2n, what are the
properties of the LDPC code constructed from the incidence matrix of the
associated cyclic STS(6n+1) (via the construction given in Subsect. 2.2)?

In addition, recent work has shown that it is possible to take a Skolem labelling
of P2n and use it to replicate, in a more general setting, the construction by Dono-
van, Rao and Yazıcı. Starting with the Skolem labelling of P2n given in Fig. 1 this
construction ‘doubles’ the sequence to yield the starter triples (0, 10, 7), (0, 2, 3),
(0, 6, 8), (0, 1, 5), (0, 4, 9), (0, 8, 4), (0, 3, 1), (0, 7, 6) and (0, 9, 2).

As before these starter triples can be cyclically developed to generate a
PTS(6n) where every pair of points of V occurs in at most one triple. The cor-
responding incidence matrix can be used as a parity check matrix for a LDPC
code, leading to our last question.

22 D. Donovan and T. A. McCourt

Question: If we take a random Skolem labelling of P2n and use it to
construct the incidence matrix of the associated PTS(6n), what properties
does the corresponding LDPC code exhibit?

4 Closing Remarks

In this article we have highlighted connections between graph labelling, combina-
torial design theory and information theory. All areas in which Mirka Miller made
significant contributions. The main focus of this article has been the development
of Skolem labelling of paths P2n, leading to a number of questions about their
enumeration and internal structure. We have also demonstrated how Skolem
labellings can be used to construct highly sought after low density parity check
(LDPC) codes. While there is existing research documenting constructions for
these LDPC codes, there has been little research into the properties of individual
Skolem labellings and how these manifest in distinct LDPC codes. In particular:

Question: Can we identify classes of Skolem labellings of P2n that lead
to ‘optimal’ LDPC codes?

We hope that we have enthused the reader to explore some of these codes, as
Mirka Miller enthused many researchers to explore the finer structure of graph
labellings.

References

1. Abrham, J.: Exponential lower bounds for the number of Skolem and extremal
Langford sequences. Ars Comb. 22, 187–198 (1986)

2. Baca, B., Baskoro, E.T., Miller, M., Ryan, J., Simanjuntak, R., Sugeng, K.A.:
Survey of edge antimagic labelings of graphs. J. Indones. Math. Soc. 12, 113–130
(2006)

3. Bennett, G.K., Grannell, M.J., Griggs, T.S.: Exponential lower bounds for the
numbers of Skolem-type sequences. Ars Comb. 73, 101–106 (2004)

4. Cavenagh, N.J., Wanless, I.M.: On the number of transversals in Cayley tables of
cyclic groups. Discret. Appl. Math. 158(2), 136–146 (2010)

5. Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of Combinatorial Designs. CRC
Press, Boca Raton (2006)

6. Donovan, D., Grannell, M.J.: On the number of additive permutations and Skolem-
type sequences. Ars Math. Contemp. 14(2), 415–432 (2017)

7. Donovan, D., Rao, R., Yazıcı, E.S.: High rate LDPC codes from difference covering
arrays. arXiv:1701.05686 (2017)

8. Eberhard, S., Manners, F., Mrazovic, R.: Additive triples of bijections, or the
toroidal semiqueens problem. arXiv:1510.05987 (2015)

9. Gallager, R.G.: Low density parity check codes. IRE Trans. Inf. Theory IT–8,
21–28 (1962)

10. Gallager, R.G.: Low Density Parity Check Codes. MIT Press, Cambridge (1963)
11. Gallian, J.A.: A dynamic survey of graph labeling. Electron. J. Comb. 16, #DS6

(2013)

http://arxiv.org/abs/1701.05686
http://arxiv.org/abs/1510.05987

Combinatorial Questions: How Can Graph Labelling Help? 23

12. Grannell, M.J., Griggs, T.S., Whitehead, C.A.: The resolution of the anti-Pasch
conjecture. J. Comb. Des. 8, 300–309 (2000)

13. Johnson, S.J., Weller, S.R.: Regular low-density parity-check codes from combina-
torial designs. In: Proceedings 2001 IEEE Information Theory Workshop, Cairns,
Australia, pp. 90–92, 27 September 2001

14. Kou, Y., Lin, S., Fossorier, M.P.C.: Low-density parity-check codes based on finite
geometries: a rediscovery and new results. IEEE Trans. Inf. Theory 47, 2711–2736
(2001)

15. Ling, A.C.H., Colbourn, C.J., Grannell, M.J., Griggs, T.S.: Construction tech-
niques for anti-Pasch Steiner triple systems. J. London Math. Soc. 61(2), 641–657
(2000)

16. MacKay, D.J.C., Neal, R.M.: Near Shannon limit performance of low density
parity-check codes. Electron. Lett. 33(6), 457–458 (1997)

17. MacKay, D.J.C.: Good error-correcting codes based on very sparse matrices. IEEE
Trans. Inf. Theory 45(2), 399–432 (1999)

18. Mahadevan, A., Morris, J.M.: On RCD SPC codes as LPDC codes based on arrays
and their equivalence to some codes constructed from Euclidean geometries and
partial BIBDs. Technical report no.: CSPL TR:2002–1, Communications and Sig-
nal Processing Laboratory, Computer Science and Electrical Engineering Depart-
ment University, of Maryland, USA

19. Mendelsohn, E., Shalaby, N.: Skolem labelled graphs. Discret. Math. 97(1–3), 301–
317 (1991)

20. Park, H., Hong, S., No, J.S., Shin, D.J.: Construction of high-rate regular quasi-
cyclic LDPC codes based on cyclic difference families. IEEE Trans. Commun.
61(8), 3108–3113 (2013)

21. Rosenthal, J., Vontobel, P.O.: Construction of LDPC codes using Ramanujan
graphs and ideas from Margulis. In: Proceedings of 2001 IEEE International Sym-
posium Information Theory, Washington, DC, p. 4, June 2001

22. Shokrollahi, A.: LDPC codes: an introduction. In: Feng, K., Niederreiter, H., Xing,
C. (eds.) Coding, Cryptography and Combinatorics, pp. 85–110. Birkhäuser, Basel
(2004). https://doi.org/10.1007/978-3-0348-7865-4 5

23. Skolem, T.: On certain distributions of integers in pairs with given differences.
Math. Scand. 5, 57–68 (1957)

24. Sloane, N.J.A.: The on-line encyclopedia of integer sequences. https://oeis.org/
25. Tanner, R.M., Srkdhara, D., Fuja, T.: A class of group-structured LDPC codes.

http://www.cse.ucsc.edu/tanner/pubs.html
26. Vardi, I.: Computational Recreations in Mathematics. Addison-Wesley, Boston

(1991)
27. Vasic, B., Milenkovic, O.: Combinatorial constructions of low-density parity-check

codes for iterative decoding. IEEE Trans. Inf. Theory 50(6), 1156–1176 (2004)
28. Zhang, L., Huang, Q., Lin, S., Abdel-Ghaffar, A., Blake, I.F.: Quasi-cyclic LDPC

codes: an algebraic construction, rank analysis, and codes on Latin squares. IEEE
Trans. Commun. 58(11), 3126–3139 (2010)

https://doi.org/10.1007/978-3-0348-7865-4_5
https://oeis.org/
http://www.cse.ucsc.edu/tanner/pubs.html

Extremal Kernelization:
A Commemorative Paper

Henning Fernau(B)

Fachbereich 4, Informatikwissenschaften, CIRT, Universität Trier, Trier, Germany
fernau@uni-trier.de

Abstract. We try to describe in this paper how methods from extremal
combinatorics play an important role in the development of parameter-
ized algorithms, also sketching further venues how this influence could
be even increased in order to obtain quick FPT classification results.
Conversely, we show how certain notions that have become of impor-
tance within parameterized algorithmics can be useful to keep in mind
for combinatorialists. We hope that this account initiates fruitful future
discussions between the different scientific sub-communities that usually
comprise IWOCA and that make this event quite special.

1 Introduction

This paper is a rather personal account, covering several encounters with the
late Mirka Miller. Actually, on her last travel to Europe, Mirka Miller and Joe
Ryan visited me. Unfortunately, she did not feel very well, so she basically stayed
in the hotel while Joe worked with my group in Trier. They then went to her
beloved Western Bohemia, hoping that she would recover from the hitherto too
stressful travel, as they still thought. As this did not have the desired effect, they
went home to Australia, where the sad reason of her unwellness was soon found
out; unfortunately, too late, as we know now.

I came to know Mirka and Joe back in 2002 when I took over a 2-year position
as a Senior Lecturer at the University of Newcastle. I still remember these times
quite well, also with a bit of melancholia, as somehow I worked together or
became friends with most of the staff members, something that I still miss in
Germany, where mostly the different groups do separate research.

For instance, in those days I learnt to know about graph labeling, most likely
in the many talks that were delivered in Mirka’s group. Together with Kiki Sug-
eng and Joe, we worked on sum labelings of particular graphs. This way, I also
learnt a bit more about the differences between Mathematics and Theoretical
Computer Science, the research area that I am usually working in. Namely, upon
presenting the mentioned paper at the British Combinatorics Conference (BCC)
in Durham in 2005, when I was working at the University of Hertfordshire, I con-
fidently entered the room where my talk was scheduled with my laptop computer
in my hand, ready to show the slides that I prepared. Only then I discovered that
not all lecture halls enjoyed the feature of having projecting facilities. Well, so
c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 24–36, 2018.
https://doi.org/10.1007/978-3-319-78825-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_3&domain=pdf

Extremal Kernelization: A Commemorative Paper 25

I turned to chalk and blackboard to deliver our talk. Even in those days, it was
rather standard to present papers using laptops within Computer Science con-
ferences. The topic of the mentioned paper, finally published in [25], is also quite
fitting to a commemorative paper like this one: generalised friendship graphs.

In 2003, Mirka asked me to give a talk at an event that was still
known as AWOGL in these days. Similarly as AWOCA has now turned into
IWOCA, AWOGL is now known as IWOGL (International Workshop on Graph
Labelling). Noticeably, the conference series A/I WOGL was initiated by Mirka
herself. Already at AWOGL 2003, I tried to bring together the mostly com-
binatorialists’ community of AWOGL with one of my other interests, which is
algorithms and complexity. I still think that the possible connections between
graph labeling and combinatorial algorithms are largely unexplored today.

But let me not deviate too much from the main scientific topic of this paper,
which is reflected in the title of extremal kernelization. This title was inspired by
the work Elena Prieto-Rodŕıguez did in 2002 and 2003 when I was in Newcastle,
see [35], where Michael Fellows, to whom I actually owe the chance to come to
Newcastle for the mentioned two years, asked her to look into problems where
extremal combinatorial methods could be used to prove so-called boundary lem-
mas to show kernelization results. At about the same time, Christian Sloper
wrote his PhD thesis with a similar direction [40]; he also visited Newcastle for
a couple of months. But, as we will see in the following, it is also often useful
for people working in Parameterized Complexity to make use of already known
results from Combinatorics, off-the-shelf, as Mike would say. We will show sev-
eral examples in this paper, including the use of relatively general combinatorial
machinery. As we will see, knowing of these results can be very helpful for those
working in Parameterized Complexity. Conversely, Parameterized Complexity
has developed its own methods and notions in the meantime, which can be use-
ful to know and apply for combinatorialists as well, as we will explain. Finally,
taking it to the extremes, so to speak, extremal kernelization tries to explore
the limits of its discipline. I will therefore finally mention several lower bound
results that, to some extent, also started out when I was in Newcastle.

2 Parameterized Complexity and Kernelization

Let me briefly summarize the basic notions of this field that we need in the fol-
lowing. For more details, we can easily refer to the two textbooks that appeared
in recent years [14,17].

Parameterized Complexity was developed in the early 90s, basically by Rod
Downey and Mike Fellows. The idea was to go beyond the barrier established
in the 70s when the P vs. NP-question was first made explicit, together with
the intuition that problems in P (having polynomial-time algorithms) are the
good guys, as opposed to NP-hard problems that were usually thought of as
infeasible. However, in practice computer scientists had to deal with them and
developed many ways to overcome this barrier of infeasibility. Nowadays, solvers
for (mixed) integer linear programs or for SAT-variants can deal with instances

26 H. Fernau

of practically relevant sizes. Also, (meta-)heuristics can help solving relatively
large instances. However, it is rarely well understood why these approaches work
that well. Parameterized Complexity can be seen as one way of trying to explain
the success of them. Namely, the idea is to use more information than just the
number of bits needed to encode the given problem instance in order to describe
and estimate the behavior of algorithms. This secondary measurement is called
the parameter. So, if n is the overall size of the instance and k the (size of the)
parameter, then one aims at algorithms running in time O(f(k)p(n)), where
f is some arbitrary (computable) function and p is some polynomial. In other
words, if the parameter k is fixed, then the running time of such an algorithm is
polynomial. The class of (parameterized) problems that admit such algorithms is
usually called FPT , standing for fixed-parameter tractable. This notion clearly
generalizes the class P, ignoring the parameter. Apart from this new class of
good guys, there are also (actually there is a whole hierarchy of classes of) bad
guys, the smallest bad class being W[1]. The hypothesis FPT �= W [1] is stronger
yet similar in spirit to the famous hypothesis P �= NP.

As with every good type of Complexity Theory, a notion of reducibility comes
along that preserves the good guys and allows to show hardness results. The
simplest form of such a reduction for Parameterized Complexity is a polynomial-
time computable function that maps an instance I of a parameterized problem
P , where I is of size n and has the parameter κ(I) associated to it, to an
instance I ′ of a possibly different parameterized problem P ′, where I ′ is then
of size n′ and has the parameter κ′(I ′) associated to it, where κ′(I ′) ≤ f(κ(I))
for some (computable) function f dependent on P and P ′ but independent of
n. If P ′ = P , κ′ = κ and n′ = g(κ(I)), then such a reduction is also known
as a kernelization, and instance I ′ is called a kernel. It is one of the simple yet
fascinating results of Parameterized Complexity that a parameterized problem
belongs to FPT if and only if it admits a kernelization, or, in other words, if
it is kernelizable. This makes kernelization a key notion in this theory. But this
notion also has a very practical motivation: Kernelizations are often built from
so-called reduction rules, which is a collection of very simple algorithms that
help simplify a given instance. It is exactly this strategy that is the key of many
successful (heuristic) algorithms to attack NP-hard problems. So, kernelization
can provide a mathematical analysis of this success.

Interestingly, observing the proof why kernelization characterizes FPT , one
sees that we can also require that κ′(I ′) ≤ κ(I), a variant called proper in [2].
Actually, at the first WorKer (Workshop on Kernels) in Bergen, back in 2009,
there was quite a discussion what the correct definition of a kernel should be;
in the end, this was not completely clear, though. Empirically, most reduction
rules (comprising reductions) are proper.

3 Combinatorial Results for Kernelization

We are going to explain how (known) combinatorial results can be used for or
interpreted as algorithmic results, i.e., as kernelizations.

Extremal Kernelization: A Commemorative Paper 27

3.1 Special Combinatorial Results

I am now coming back to some sort of Australian experience. Back in 2003, we
were looking into Minimum Dominating Set from the parameterized perspec-
tive. Recall that a dominating set of an undirected graph G = (V,E) is a vertex
set D such that N [D] = V , where N [x] = {y ∈ V | xy ∈ E ∨ x = y} is the
closed neighborhood of x and N [D] =

⋃
x∈D N [x]. Of course, the straightforward

question would lead to the following parameterized problem:

dominating set (DS)
Given: A graph G = (V,E), a positive integer k
Parameter: κ(G, k) = k
Question: Is there a dominating set D ⊆ V with |D| ≤ k?
Well-known: DS is W[2]-complete, i.e., most likely not in FPT .
Therefore, we considered the dual parameterization of this problem. We call the
complement of a dominating set a nonblocker set. This concept is known under
different names, e.g., enclaveless set, in [39].
nonblocker set (NB)
Given: A graph G = (V,E), a positive integer kd
Parameter: κ(G, kd) = kd
Question: Is there a nonblocker set N ⊆ V with |N | ≥ kd?

We quickly found the following result in the good old book by Ore [34]:

Theorem 1. If a graph G = (V,E) has minimum degree at least one, then the
size of its minimum dominating set is at most (1/2) · |V |.

Of course, this minimum degree condition should only rule out graphs with
isolated vertices, where the claim is obviously wrong. I chose this more compli-
cated looking condition, as there are ways to further generalize this, as we will
see. From this theorem, we can immediately deduce:

Corollary 1. If a graph G = (V,E) has minimum degree at least one, then the
size of its maximum nonblocker set is larger than (1/2) · |V |.

We can easily use these rules to obtain a kernel for NB, employing only the
following reduction rule:

Reduction Rule 1. Delete isolated vertices (without changing the parameter).

Let us make this simple algorithm explicit:

1. Apply reduction rule.
2. If reduced graph has at least 2kd vertices, YES.
3. Otherwise: We have a graph instance with less than 2kd vertices.

Strictly speaking, instead of answering YES, our algorithm should output
a trivial YES-instance, but this way of presenting kernelizations is now estab-
lished. The kernel that we obtain looks a bit like cheating, as we simply output
the original graph instance itself (without isolates). However, this allows us to
conclude:

28 H. Fernau

Corollary 2. NB admits a kernel of size at most 2kd.

Of course, we were not completely happy with this rather trivial result. We
worked pretty hard to find new reduction rules and also to prove new boundary
lemmas. Only then, we discovered two more (similar) theorems that would have
saved us a lot of work had we known them before. Obviously, there was a lesson
to be learnt for us: first study combinatorial results and check out how to use
them. Blank [6] and McCuaig and Shepherd [32] have shown:

Theorem 2. If a connected graph G = (V,E) has minimum degree of at least
two and is not one of seven exceptional graphs (each of them having at most
seven vertices), then the size of its minimum dominating set is at most 2/5 · |V |.

Reed showed a bit later:

Theorem 3 [36]. If a graph G = (V,E) has minimum degree of at least three,
then the size of its minimum dominating set is at most 3/8 · |V |.

In [16], we showed how to turn Theorem 2 into a kernelization result, which
reads as follows.

Theorem 4. There is an algorithm that provides a kernel of size upper-bounded
by 5/3 · kd + 3 for any nonblocker set-instance (G, kd), where the problem
size is measured in terms of the number of vertices.

We developed reduction rules to get rid of vertices of degree two that have
a neighbor of degree two, but we did not find reduction rules to cope with all
vertices of degree two. This leads to two natural questions, one more directed
towards algorithms people and one more towards combinatorialists.

Open Problem 1. Devise reduction rules in order to turn Theorem3 into a
kernelization result.

Open Problem 2. Prove an upper bound α|V | on the size of a minimum dom-
inating set of any graph G = (V,E) of minimum degree at least two, with no two
adjacent vertices of degree, such that 3/8 < α < 2/5.

Remark 1. The reduction rules from [16], devised to exploit Theorem 2, destroy
graph properties like planarity, as they are based on merging far-away vertices.
It would be nice to avoid this, for instance, by having a new kernelization result
that produces only kernels that are induced subgraphs of the original input [2].

3.2 General Combinatorial Results

Is it always necessary to recur to rather special combinatorial results in order
to prove kernelization algorithms? Possibly surprisingly, sometimes way more
general results from combinatorics also do the job, leading to an approach that
I like to advertise as quick kernels, because they do not require any advanced
understanding of the combinatorial algorithmic question at hand, but quickly

Extremal Kernelization: A Commemorative Paper 29

prove that the parameterized problem under consideration is in FPT . Recall
that it is believed that not all parameterized problems belong to FPT . Clearly,
quick kernels are usually not really small, although sometimes they are not that
bad at all, as our first concrete example will show. The two general methods I
will describe are based on Ramsey Theory and on the Degree-Diameter Problem.
Also other general combinatorial statements should be explored for quick kernels.

Ramsey Theory. Many will recall one or other form of Ramsey’s Theorem:

Theorem 5. There exists a least positive integer R(b, r) for which every blue-
red edge coloring of the complete graph on R(b, r) vertices contains a blue clique
on b vertices or a red clique on r vertices.

It is well-known that R(b, r) ≤
(
b+r−2
b−1

)
. This gives an immediate quadratic

kernel for Independent Set on triangle-free graphs, parameterized by a
lower-bound k on the independent set, even slightly better, as R(3, r) ≤ r2

log(r)

due to Kim [30]. Namely, if the input graph G has at least R(3, k) many vertices,
we know, as G contains no complete graphs of three or more vertices, that
G must contain an independent set of size at least k, so that we can answer
YES immediately. If the order of G is smaller than R(3, k), we already have
the desired kernel bound. This example also shows that kernels derived from
Ramsey arguments need not be that big. But of course, having used this heavy
and general combinatorial machinery, a natural question always asks if one can
do better, using different methodologies. Let us make this explicit in this case.

Open Problem 3. Does Independent Set on triangle-free graphs,
parameterized by a lower-bound k on the independent set, admit a kernel where
the order of the graph is linear in k?

Another classical result based on Ramsey’s Theorem is due to Erdős and
Szekeres [19].1

Theorem 6. For each k ≥ 1, there exists an nk ≥ 1 such that every point set
(in the plane) of size nk contains a convex subset of k points.

This result holds in two-dimensional and in higher-dimensional Euclidean
spaces. The question if there is a polynomial-time algorithm for finding such
a set in 2D can be decided in polynomial time, as shown in [8,18]. However,
Giannopoulos, Knauer and Werner have shown in [27] that Convex Set in 3D
Euclidean spaces (and in higher dimensions) is NP-complete. In addition, they
observed that Theorem 6 can be (ab)used to obtain a kernel result, which is of
exponential size. They also ask the following question:

Open Problem 4. Does Convex Set in 3D, parameterized by a lower-bound
k on the convex point set, admit a kernel of size polynomial in k?

1 For related results, we refer to P. Valtr’s paper in this proceedings.

30 H. Fernau

The idea of using Ramsey-style arguments in kernelization has been used by
different groups of authors before, most notably in papers co-authored by Lozin
and Rautenbach. Let us give one concrete example.2

Lemma 1 [15]. For any natural numbers t and k, there is a number N(t, k)
such that every bipartite graph with a matching of size at least N(t, k) contains
either a bi-clique Kt,t or an induced matching Mk.

Corollary 3. For each fixed t, the k-induced matching problem is fixed-
parameter tractable in the class of Kt,t-free bipartite graphs.

Open Problem 5. Does the k-induced matching on Kt,t-free bipartite
graphs allow a smaller kernel, avoiding Ramsey arguments?

Degree-Diameter Problem. Let G be a graph of maximum degree d and
diameter k. Forming a breadth-first tree shows that G has order at most 1 +
d

∑k−1
i=0 (d−1)i; this number is known as the Moore bound. The problem of finding

the largest possible graph for a given maximum degree and diameter is known as
the degree-diameter problem. The Moore bound sets limits on this, but finding
optimal graphs is in general an open combinatorial problem. Actually, this was
one of Mirka’s favorite ones, so she is still record holder for constructing various
hitherto largest graphs for given d, k, as can be seen in the Wikipedia entry on
the degree-diameter problem. Her survey [33] is the most-cited among her papers
according to Google Scholar. In fact, we started to work on one concrete instance
of the degree-diameter problem on the last trip Mirka could do, together with
Joe. Katrin Casel still has quite a pile of papers with drawings and sketches on
this work.

In order to make use of the relation of maximum degree and diameter bounds,
the Moore bound is the main tool. Let us see some examples.

dominating set with degree bound
Given: A graph G = (V,E) with maximum degree at most d
Parameter: positive integers d, k
Question: Is there a dominating set D ⊆ V with |D| ≤ k?

Lemma 2. If G has diameter > 3k, then G has no dominating set of size k.

This gives the following reduction: If in the instance (G, d, k) graph G has
more than 1 + d

∑3k−1
i=0 (d − 1)i many vertices, then this is a NO-instance.

Theorem 7. dominating set with degree bound is in FPT .

With a very similar argument, we can also derive a quick kernel for NB: if a
graph has a large diameter, then it has also a large nonblocker set; if a graph has a
vertex of large degree, then it also has a large nonblocker set. So, both situations
can be ruled out by easy reduction rules, which means that both diameter and
2 Further examples can be found in the paper of V. Lozin in this proceedings.

Extremal Kernelization: A Commemorative Paper 31

degree are linearly bounded by the size of the nonblocker set, which immediately
gives a kernel for NB. However, this example also shows that kernels based on
this type of argument are often unnecessarily big.

More effectively, these techniques can be applied to alliance problems. These
were shown to belong to FPT in [23] using a search-tree argument. Yet, these
problems (again) link to Mirka in several ways. For instance, Mirka collaborated
with several graph theorists in Spain, see [13,28], and so do I, see [22,38] although
so far with different sets of Spanish co-authors. We even had different sets of
co-authors from Tarragona, not the largest city in Spain!

We omit details here for reasons of space, but mention that we can obtain
kernels of sizes bounded by functions like (k!)! (yes, that big).

Open Problem 6. Devise better kernelization algorithms for alliance problems.

More Contributions of Mirka to Our Community. I like to emphasize two fur-
ther contributions of Mirka at this place. First, she was very active in helping
especially the mathematical community in Indonesia to flourish. For myself, this
brought along my hitherto only Indonesian co-author [25]. This will surely make
a difference for the development of Discrete Mathematics in that region. Sec-
ondly, she founded the Electronic Journal of Graph Theory and Applications,
which is now led by Edy Tri Baskoro, a former Ph.D. student of Mirka’s. In
connection with the alliance problem we studied above, I would like to men-
tion [24], a paper that appeared in Mirka’s journal, as it discusses several graph
parameters similar to alliances, to which similar FPT -membership arguments
apply.

4 FPT Ideas for Combinatorialists

Let us now consider two variants of domination problems that have been intro-
duced in the literature (independently) before.

A Roman domination function of a graph G = (V,E) is R : V → {0, 1, 2}
with

∀v ∈ V : R(v) = 0 ⇒ ∃x ∈ N(v) : R(x) = 2.

The historical background seems to be the Roman Empire in the times of
Emporer Constantine’s who wanted to arrange his main armies in the main
regions of the empire in a way that guards all regions. Here, regions without
any armies can only be guarded if some neighboring regions have more than one
army put on it. This domination variant was first discussed in [37] and more
intensively in [12] with γR as a graph parameter; the following parameterized
problem was studied in [20]. Actually, there are now dozens of papers on this
problem, so it is hard to list them all.

Roman domination (ROMAN)
Given: A graph G = (V,E), a positive integer k

32 H. Fernau

Parameter: k
Question: Is there a Roman domination function R such that

R(V) :=
∑

x∈V

R(x) ≤ k?

In 2011, I met Joe and Mirka again in Budapest at Eurocomb, see http://
www.renyi.hu/conferences/ec11/participants.html. I had a presentation of some
extremal combinatorial results on a graph parameter called differential that
was brought to my attention by Sergio Bermudo who spent large parts of his
sabbatical with me in Trier. These results were later published in [3].

Let G = (V,E) be a graph. For D ⊆ V , B(D) := N(D) \ D and C(D) :=
V \(D∪B(D)). The differential of D is ∂(D) = |B(D)|−|D| and the differential
of G, written ∂(G), is equal to max{∂(D) | D ⊆ V }. This graph parameter was
introduced in [31]. Our main results in [3] were as follows.

Theorem 8. For any connected graph G of order n ≥ 3, ∂(G) ≥ n/5.

Theorem 9. For any connected graph G of order n that has minimum degree
two, ∂(G) ≥ 3n

11 , apart from five exceptional graphs listed below.

Red dotted edges may be present or not.
We were quite proud about our results, but pretty soon we discovered that they
were already kind of known. Namely, as the main result of [5], we showed:

Theorem 10. If G is a graph of order n, then γR(G) = n − ∂(G).

Now, both Theorems 8 and 9 follow from [9]. We simply forgot about the idea
of looking into dual parameters! Our only consolation was that both Roman
domination and differential were studied by similar sets of people. Hence, others
did overlook this relation between γR and ∂, as well. So, most consequences that
we list in [5] deal with improvements that were possible on earlier results on
Roman domination by looking at the corresponding results for the differential
of a graph, and vice versa.

Let us once more turn towards parameterized algorithms. As shown in [20],
Roman domination is W[2]-complete, so most likely not in FPT . Conversely,
for the dual parameterization, coinciding with the standard parameterization for
Differential, or DIF for short (the natural parameterized decision problem
associated to this graph parameter), we could prove in [4], using quite some
intricate combinatorial arguments and quite a number of reduction rules:

http://www.renyi.hu/conferences/ec11/participants.html
http://www.renyi.hu/conferences/ec11/participants.html

Extremal Kernelization: A Commemorative Paper 33

Theorem 11. There exists a kernelization algorithm for DIF that runs in linear
time and that, given (G, kd), provides a kernel (G′, kd) with |V ′| ≤ 4kd, or that
directly (and correctly) answers YES.

Notice that this improves on the 5kd-vertex kernel that is rather immediate
from Theorem 8. With a different approach we could even meet our improved
bound of Theorem9; see [1].

5 How Extreme Can Kernels Be?

Nowadays, it has become standard to base lower-bound results for kernels,
in particular ruling out polynomial-size kernels, on the assumption that the
polynomial-time hierarchy would not collapse to the third level; see [7,26]. How-
ever, in the world of approximation algorithms, where also a plentitude of dif-
ferent complexity assumptions are considered for inapproximability results, it is
usually preferred if the assumption is that P �= NP. Johnson [29] calls this the
gold standard of inapproximability. Are there gold-standard lower-bound results
for kernels? Indeed, there are, and they actually pre-date the lower-bound results
that have nowadays become the standard ones.

I will report on these in the following, as they also relate to the times when
I worked at The University of Newcastle. Back in 2003, I got the simple idea to
rule out certain forms of kernel results, assuming that linear-size kernel exists
both for the standard parameterization and the dual parameterization.

Theorem 12 [10]. Let P be an NP-hard parameterized problem. If P has an
αk-size kernel and if its dual Pd has an αdkd-size kernel (α, αd ≥ 1), then
(α − 1)(αd − 1) ≥ 1 unless P = NP.

Notice that different results could be obtained depending on the chosen size
function. However, there are only few problems where both primal and dual vari-
ants admit linear-size kernels. Most of them are restrictions of graph problems to
planar graphs (or more generally, graphs of bounded genus). For instance, Ver-
tex Cover admits a 2k-vertex kernel on general and on planar graphs, and its
dual Independent Set (only on planar graphs) allows a 4kd-vertex kernel due
to the Four-Color-Theorem. This has the drawback that we can rule out kernels
for Vertex Cover smaller than 4

3k only if these reductions are fit for planar
graphs, i.e., if they preserve planarity. More generally, such a lower-bound result
holds true for four-colorable graphs, where the reduction rules should preserve
four-colorability. Analogously, we can use Theorem 11 to conclude:

Corollary 4. For any ε > 0, there is no (4/3−ε)k kernel for planar k-Roman
domination unless P = NP.

Open Problem 7. Design a linear-size kernel for planar k-Roman domina-
tion that comes close to the lower-bound expressed in Corollary 4.

34 H. Fernau

It must have been in 2008 upon an excursion at a conference in China when
Mike Fellows told me about another gold-standard lower-bound on kernel result,
namely for Rooted long path. This result (together with other similar ones)
was published in [11] but (somehow surprisingly) did not find the popularity of
the non-gold-standard approaches. In [21] we developed a somewhat more gen-
eral framework in which one could show gold-standard lower bound results. For
instance, this approach can be used for annotated versions of alliance problems.

Acknowledgements. This paper has profited a lot from discussions we had with
many colleagues, in particular, with Faisal Abu-Khzam, Ljiljana Brankovic and Mike
Fellows. Thanks to Frances Rosamond and Ulrike Stege for proofreading.

References

1. Abu-Khzam, F.N., Bazgan, C., Chopin, M., Fernau, H.: Data reductions and com-
binatorial bounds for improved approximation algorithms. J. Comput. Syst. Sci.
82(3), 503–520 (2016)

2. Abu-Khzam, F.N., Fernau, H.: Kernels: annotated, proper and induced. In: Bod-
laender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 264–275.
Springer, Heidelberg (2006). https://doi.org/10.1007/11847250 24

3. Bermudo, S., Fernau, H.: Lower bounds on the differential of a graph. Discret.
Math. 312, 3236–3250 (2012)

4. Bermudo, S., Fernau, H.: Combinatorics for smaller kernels: the differential of a
graph. Theoret. Comput. Sci. 562, 330–345 (2015)

5. Bermudo, S., Fernau, H., Sigarreta, J.M.: The differential and the Roman domi-
nation number of a graph. Appl. Anal. Discret. Math. 8, 155–171 (2014)

6. Blank, M.: An estimate of the external stability number of a graph without sus-
pended vertices. Prikl. Mat. i Programmirovanie Vyp. 10, 3–11 (1973). (in Russian)

7. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. Syst. Sci. 75, 423–434 (2009)

8. Boyce, J.E., Dobkin, D.P., (Scot) Drysdale III, R.L., Guibas, L.J.: Finding extremal
polygons. SIAM J. Comput. 14(1), 134–147 (1985)

9. Chambers, E.W., Kinnersley, B., Prince, N., West, D.B.: Extremal problems for
Roman domination. SIAM J. Discret. Math. 23, 1575–1586 (2009)

10. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization:
lower bounds and upper bounds on kernel size. SIAM J. Comput. 37, 1077–1108
(2007)

11. Chen, Y., Flum, J., Müller, M.: Lower bounds for kernelizations and other prepro-
cessing procedures. Theory Comput. Syst. 48(4), 803–839 (2011)

12. Cockayne, E.J., Dreyer Jr., P.A., Hedetniemi, S.M., Hedetniemi, S.T.: Roman dom-
ination in graphs. Discret. Math. 278, 11–22 (2004)

13. Conde, J., Miller, M., Miret, J.M., Saurav, K.: On the nonexistence of almost
Moore digraphs of degree four and five. Math. Comput. Sci. 9(2), 145–149 (2015)

14. Cygan, M., Fomin, F., Kowalik, �L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3

15. Dabrowski, K.K., Demange, M., Lozin, V.V.: New results on maximum induced
matchings in bipartite graphs and beyond. Theoret. Comput. Sci. 478, 33–40
(2013)

https://doi.org/10.1007/11847250_24
https://doi.org/10.1007/978-3-319-21275-3

Extremal Kernelization: A Commemorative Paper 35

16. Dehne, F., Fellows, M., Fernau, H., Prieto, E., Rosamond, F.: Nonblocker:
parameterized algorithmics for minimum dominating set. In: Wiedermann, J.,
Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS,
vol. 3831, pp. 237–245. Springer, Heidelberg (2006). https://doi.org/10.1007/
11611257 21

17. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in
Computer Science. Springer, London (2013). https://doi.org/10.1007/978-1-4471-
5559-1

18. Eppstein, D., Overmars, M.H., Rote, G., Woeginger, G.J.: Finding minimum area
k-gons. Discret. Comput. Geom. 7, 45–58 (1992)

19. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math-
ematica 2, 463–470 (1935)

20. Fernau, H.: Roman domination: a parameterized perspective. Int. J. Comput.
Math. 85, 25–38 (2008)

21. Fernau, H., Fluschnik, T., Hermelin, D., Krebs, A., Molter, H., Niedermeier, R.:
Diminishable parameterized problems and strict polynomial kernelization. Techni-
cal report, Cornell University, arXiv:1611.03739 (2016)

22. Fernau, H., Rodŕıguez, J.A., Sigarreta, S.M.: Offensive r-alliances in graphs. Dis-
cret. Appl. Math. 157, 177–182 (2009)

23. Fernau, H., Raible, D.: Alliances in graphs: a complexity-theoretic study. In: van
Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F.,
Bieliková, M. (eds.) SOFSEM 2007, Proceedings, vol. II, pp. 61–70. Institute of
Computer Science ASCR, Prague (2007)

24. Fernau, H., Rodŕıguez-Velázquez, J.A.: A survey on alliances and related parame-
ters in graphs. Electron. J. Graph Theory Appl. 2(1), 70–86 (2014)

25. Fernau, H., Ryan, J.F., Sugeng, K.A.: A sum labelling for the generalised friendship
graph. Discret. Math. 308, 734–740 (2008)

26. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. In: Dwork, C. (ed.) ACM Symposium on Theory of Computing,
STOC, pp. 133–142. ACM (2008)

27. Giannopoulos, P., Knauer, C., Werner, D.: On the computational complexity of
Erdős-Szekeres and related problems in R

3. In: Bodlaender, H.L., Italiano, G.F.
(eds.) ESA 2013. LNCS, vol. 8125, pp. 541–552. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40450-4 46

28. Gómez, J., Miller, M.: On the existence of radial Moore graphs for every radius
and every degree. Eur. J. Comb. 47, 15–22 (2015)

29. Johnson, D.S.: The NP-completeness column: the many limits on approximation.
ACM Trans. Algorithms 2, 473–489 (2006)

30. Kim, J.H.: The Ramsey number R(3, t) has order of magnitude t2/ log t. Random
Struct. Algorithms 7(3), 173–208 (1995)

31. Mashburn, J.L., Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Slater, P.J.:
Differentials in graphs. Utilitas Math. 69, 43–54 (2006)

32. McCuaig, B., Shepherd, B.: Domination in graphs of minimum degree two. J.
Graph Theory 13, 749–762 (1989)

33. Miller, M., Širáň, J.: Moore graphs and beyond: a survey of the degree/diameter
problem. Electron. J. Comb. 1000, DS14 (2005)

34. Ore, O.: Theory of Graphs. Colloquium Publications, vol. XXXVIII. American
Mathematical Society, Providence (1962)

35. Prieto, E.: Systematic kernelization in FPT algorithm design. Ph.D. thesis, The
University of Newcastle, Australia (2005)

https://doi.org/10.1007/11611257_21
https://doi.org/10.1007/11611257_21
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
http://arxiv.org/abs/1611.03739
https://doi.org/10.1007/978-3-642-40450-4_46

36 H. Fernau

36. Reed, B.: Paths, stars, and the number three. Comb. Probab. Comput. 5, 277–295
(1996)

37. ReVelle, C.S., Rosing, K.E.: Defendens imperium Romanum: a classical problem
in military strategy. Am. Math. Mon. 107, 585–594 (2000). http://www.jhu.edu/
∼jhumag/0497web/locate3.html

38. Sigarreta, J.M., Bermudo, S., Fernau, H.: On the complement graph and defensive
k-alliances. Discret. Appl. Math. 157, 1687–1695 (2009)

39. Slater, P.J.: Enclaveless sets and MK-systems. J. Res. Natl. Bur. Stand. 82(3),
197–202 (1977)

40. Sloper, C.: Techniques in parameterized algorithm design. Ph.D. thesis, University
of Bergen, Norway (2005)

http://www.jhu.edu/~jhumag/0497web/locate3.html
http://www.jhu.edu/~jhumag/0497web/locate3.html

Recent Advances of Palindromic
Factorization

Mai Alzamel1,2(B) and Costas S. Iliopoulos1

1 Department of Informatics, King’s College London, London, UK
{mai.alzamel,costas.iliopoulos}@kcl.ac.uk

2 King Saud University, Riyadh, Kingdom of Saudi Arabia

Abstract. This paper provides an overview of six particular problems of
palindromic factorization and recent algorithmic improvements in solving
them.

1 Introduction

1.1 General Definitions

Let S = S[1]S[2] · · · S[n] be a string of length |S| = n over an alphabet Σ.
We consider the case of an integer alphabet; in this case each letter can be
replaced by its rank so that the resulting string consists of integers in the range
{1, . . . , n}. For two positions i and j, where 1 ≤ i ≤ j ≤ n, in S, we denote
the factor S[i]S[i + 1] · · · S[j] of S by S[i . . j]. We denote the reverse string of S
by SR, i.e. SR = S[n]S[n − 1] · · · S[1]. The empty string (denoted by ε) is the
unique string over Σ of length 0. A string S is said to be a palindrome if and
only if S = SR. If S[i . . j] is a palindrome, the number i+j

2 is called the center of
S[i . . j]. Let S[i . . j], where 1 ≤ i ≤ j ≤ n, be a palindromic factor in S. It is said
to be a maximal palindrome if there is no longer palindrome in S with center
i+j
2 . Note that a maximal palindrome can be a factor of another palindrome.

Note that any single letter is a palindrome and, hence, every string can always
be factorized into palindromes. However, not every string can be factorized into
maximal palindromes; e.g. consider S = abaca [2].

In this paper we present a survey of six novel algorithms of palindromic fac-
torization. We start with maximal palindromic factorization presented by [2] in
Sect. 2. Later, we explain palindromic factorization with gaps, maximal palin-
dromic factorization with errors and maximal palindromic factorization with
gaps and errors presented by [1] in Sects. 3, 4 and 5.

Finally, we show in Sect. 6 an efficient algorithm of palindromes in weighted
strings presented by [3]

M. Alzamel—Fully supported by the Saudi Ministry of Higher Education and par-
tially supported by the Onassis Foundation.
C.S. Iliopoulos—Partially supported by the Onassis Foundation.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 37–46, 2018.
https://doi.org/10.1007/978-3-319-78825-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_4&domain=pdf

38 M. Alzamel and C. S. Iliopoulos

2 Maximal Palindromic Factorization

In this section we present an algorithm to compute the maximal palindromic
factorization of a given string S presented by Alatabbi et al. [2]. They first present
some notions required to present the algorithm. First of all, they use MP(S) to
denote the set of center distinct maximal palindromes of S. They further extend
this notation as follows. They use MP(S)[i], where 1 ≤ i ≤ n to denote the set
of maximal palindromes with center i. Further, for the string S, they denote the
set of all prefix palindromes (suffix palindromes) as PP(S) (SP(S)).

Proposition 1. The position i could be the center of at most two maximal
palindromic factors, therefore; MP(S)[i] contains at most two elements, where
1 ≤ i ≤ n, hence; there are at most 2n elements in MP(S).

On the other hand, they use MPL(S)[i] to denote the set of the lengths of all
maximal palindromes ending at position i,where 1 ≤ i ≤ n in S.

MPL(s)[i] = {2� − 1 |s[i − � + 1 . . . i + � − 1] ∈ MP(s)}
∪{2�′ |s[i − �′ . . . i + �′ − 1] ∈ MP(s)} (1)

where 1 ≤ i ≤ n, with 2� and 2�′ + 1 are the lengths of the odd and even
palindromic factors respectively.

Proposition 2. The set MPL(S) (Eq. 1) can be computed in linear time from
the set MP(s).

They define the list U(S) such that for each 1 ≤ i ≤ n,
U(S)[i] stores the position j such that j + 1 is the starting position of a

maximal palindromic factors ending at i and j is the end of another maximal
palindromic substring.

Clearly, this can be easily computed once MPL(S) is computed.

U [i][j] = i − MPL(s)[i][j] (2)

One can observe, from 1, that the sets MPL(S) and U(S) contain at most
2n elements. Given the list U(S) for a string S, they define a directed graph
Gs = (V, E) as follows. There are V = {i | 1 ≤ i ≤ n} and E = {(i, j) | j ∈
U(S)[i]}. Note that (i, j) is a directed edge where the direction is from i to j.
The steps of the proposed algorithms are as follows.

MPF Algorithm: Maximal Palindromic Factorization Algorithm
Input: A String S of length n
Output: Maximal Palindromic Factorization of S

1. Compute the set of maximal palindromes MP(S) and identify the set of
prefix palindromes PP(S).

2. Compute the list MPL(S).
3. Compute the list U(S).

Recent Advances of Palindromic Factorization 39

4. Construct the graph Gs = (V, E).
5. Do a breadth first search on Gs assuming the vertex n as the source.
6. Identify the shortest path P ≈ n � v such that v is the end position of a

palindrome belonging to PP(S). Suppose P ≈ 〈n = pk pk−1 . . . p2 p1 = v〉.
7. Return S = S[1..p1] S[p1 + 1..p2] . . . S[pk−1 + 1..pk].

Theorem 1. Given a string S of length n, (Maximal Palindromic Factorization
(MPF)) Algorithm correctly computes the maximal palindromic factorization of
S in O(n) time.

3 Palindromic Factorization with Gaps

In this section we present an efficient solution to the palindromic factorization
with gaps problem has been introduced by Adamczyk et al. [1].

It is based on several transformations of the algorithm for computing a palin-
dromic factorization by Fici et al. [5]. For a string S of length n this algorithm
works in O(n log n) time. The algorithm consists of two steps:

1. Let Pj be the sorted list of starting positions of all palindromes ending at
position j in S. This list may have size O(j). However, it follows from combi-
natorial properties of palindromes that the sequence of consecutive differences
in Pj is non-increasing and contains at most O(log j) distinct values. Let Pj,Δ

be the maximal sublist of Pj containing elements whose predecessor in Pj is
smaller by exactly Δ. Then there are O(log j) such sublists in Pj . Hence, Pj

can be represented by a set Gj of size O(log j) which consists of triples of the
form (i,Δ, k) that represent Pj,Δ = {i, i + Δ, . . . , i + (k − 1)Δ}. The triples
are sorted according to decreasing values of Δ and all starting positions in
each triple are greater than in the previous one. Fici et al. show that Gj can
be computed from Gj−1 in O(log j) time.

2. Let PL[j] denote the number of palindromes in a palindromic factorization of
S[1 . . j]. Fici et al. show that it can be computed via a dynamic programming
approach, using all palindromes from Gj in O(log j) time. Their algorithm
works as follows. Let PLΔ[j] be the minimum number of palindromes we can
factorized S[1 . . j] in, provided that we use a palindrome from (i,Δ, k) ∈ Gj .
Then PLΔ[j] can be computed in constant time using PLΔ[j − Δ] based on
the fact that if (i,Δ, k) ∈ Gj and k ≥ 2, then (i,Δ, k−1) ∈ Gj−Δ. Exploiting
this fact, PLΔ[j] can be computed by only considering PLΔ[j − Δ] and the
shortest palindrome in (i,Δ, k).
Finally, PL[j] can be computed from all such PLΔ[j] values.

To solve the Palindromic Factorization with Gaps problem,
Adamczyk et al. [1] algorithm firstly modify each of the triples in Gj to reflect the
length constraint (m). More precisely, due to the length constraint, in each Gj

some triples will disappear completely, and at most one triple will get trimmed
(i.e. the parameter k will be decreased).

The algorithm then computes an array MG[1 . . n][0 . . g] such that MG[j][q]
is the minimum possible total length of gaps in a palindromic factorization of

40 M. Alzamel and C. S. Iliopoulos

S[1 . . j], provided that there are at most q gaps. Simultaneously, Adamczyk et al.
[1] algorithm computes an auxiliary array MG′[1 . . n][0 . . g] such that MG′[j][q]
is the minimum possible total length of gaps up to position j provided that this
position belongs to a gap: at most the q-th one.

The following formula for j > 0 and q ≥ 0:

MG[j][q] = min(MG′[j][q],min
Δ

{MGΔ[j][q]})

where MGΔ[j][q] is the partial minimum computed only using palindromes from
(i,Δ, k) ∈ Gj . The formula means: either there is a gap at position j, or using a
palindrome ending at position j. Also MG[0][q] is filled by zeros for any q ≥ 0.

Adamczyk et al. [1] algorithm computes MGΔ[j][q] for (i,Δ, k) ∈ Gj using
the same approach as Fici et al. [5] used for PLΔ, ignoring the triples that
disappear due to the length constraint. If there is a triple that got trimmed, then
the corresponding triple at position j − Δ (from which they reuse the values in
the dynamic programming) must have got trimmed as well. More precisely, if the
triple (i,Δ, k) is trimmed to (i,Δ, k′) at position j, then at position j−Δ there is
a triple (i,Δ, k−1) which is trimmed to (i,Δ, k′−1); that is, by the same number
of palindromes. Consequently, to compute MGΔ[j][q] from MGΔ[j −Δ][q], they
need to include one additional palindrome (the shortest one in the triple) just
as in Fici et al.’s approach.

Finally, for j > 0 and q > 0 they compute MG′ using the following formula:

MG′[j][q] = min(MG′[j − 1][q],MG[j − 1][q − 1]) + 1.

The first case corresponds to continuing the gap from position j, whereas the sec-
ond to using a palindrome finishing at position j−1 or a gap finishing at position
j − 1 (the latter will be suboptimal). Here the border cases are MG′[j][0] = ∞
for j ≥ 0 and MG′[0][q] = ∞ for q > 0.

Thus Adamczyk et al. [1] arrive at the complete solution to the problem.

Theorem 2. The Palindromic Factorization with Gaps problem can be solved
in O(n log n · g) time and O(n · g) space.

4 Computing Maximal Palindromes with Errors

We show an algorithm presented by Adamczyk et al. [1] to compute maximal δ-
palindromes under the edit distance within O(n ·δ). If u is a δ-palindrome under
the edit distance, then there exists a palindrome v such that the minimal number
of edit operations (insertion, deletion, substitution) required to transform u to
v is at most δ. The following simple observation shows that it can restrict edit
operations to deletions and substitutions only, which Adamczyk et al. [1] call
in what follows the restricted edit operations. Intuitively, instead of inserting at
position i a character to match the character at position |u|− i+1, the character
can be deleted at position |u| − i + 1.

Recent Advances of Palindromic Factorization 41

Observation 3. Let u be a δ-palindrome and v a palindrome such that the edit
distance between u and v is minimal. Then there exists a palindrome v′ such that
the number of restricted edit operations needed to transform u to v′ is equal to
the edit distance between u and v.

Definition 1. A (LGPal-queries) is a maximal palindromes are computed using
Gusfield’s approach [6].

Adamczyk et al. [1] extend a maximal δ-palindrome S[i . . j] to a maximal
(δ+1)-palindrome in three ways; either ignore the letter S[i−1] and then perform
an LGPal-query, or ignore the letter S[j + 1] and then perform an LGPal-query,
or ignore both and then perform the LGPal-query. More formally:

Definition 2. Assume that S[i . . j] is a δ-palindrome. Then it says that each of
the factors S[i′ . . j′] for:

– i′ = i − 1 − d, j′ = j + d, where d = LGPal(i − 2, j + 1)
– i′ = i − d, j′ = j + 1 + d, where d = LGPal(i − 1, j + 2)
– i′ = i − 1 − d, j′ = j + 1 + d, where d = LGPal(i − 2, j + 2)

is an extension of S[i . . j]. If the index i′ is smaller than 1 or the index j′ is
greater than |S|, the corresponding extension is not possible. They also say that
S[i . . j] can be extended to any of the three strings S[i′ . . j′].

Clearly, the extensions of a δ-palindrome are always (δ + 1)-palindromes.
To facilitate the case of δ-palindromes being prefixes or suffixes of the

text, they also introduce the following border-reductions for S[i . . j] being a δ-
palindrome:

– If i = 1, a border reduction leads to S[1 . . j − 1].
– If j = n, a border reduction leads to S[i + 1 . . n].

If any of the reductions is possible, they also say that S[i . . j] can be border-
reduced to the corresponding strings. As previously, border-reductions of a δ-
palindrome are always (δ + 1)-palindromes.

Lemma 1. Given a maximal δ-palindrome S[i′ . . j′] with δ > 0, there exists a
maximal (δ − 1)-palindrome S[i . . j] which can be extended or border-reduced to
S[i′ . . j′].

The combinatorial characterization of Lemma1 yields an algorithm for gen-
erating all maximal d-palindromes, for all centers and subsequent d = 0, . . . , δ.

Recall maximal 0-palindromes are computed using Gusfield’s approach
(LGPal-queries). For a given d < δ, they consider all the maximal d-palindromes
and try to extend each of them in all three possible ways (and border-reduce, if
possible). This way they obtain a number of (d+1)-palindromes amongst which,
by Lemma 1, are all maximal (d + 1)-palindromes. To exclude the non-maximal
ones, they group the (d + 1)-palindromes by their centers (in O(n) time via
bucket sort) and retain only the longest one for each center.

They arrive at the following intermediate result.

Lemma 2. Under the edit distance, all maximal δ-palindromes in a string of
length n can be computed in O(n · δ) time and O(n) space.

42 M. Alzamel and C. S. Iliopoulos

5 Maximal Palindromic Factorization with Gaps
and Errors

We show an algorithm presented by Adamczyk et al. [1] to solve maximal palin-
dromic factorization with gaps and errors problem in O(n · (g + δ)) time and
O(n · g) space.

Let F be a set of factors of the text S[1 . . n]. In this section they develop a
general framework that allows to factorized S into factors from F , allowing at
most g gaps. They call such a factorization a (g,F)-factorization of S.

The goal is to find a (g,F)-factorization of S that minimizes the total length
of gaps. The authors aim at the time complexity O((n + |F|) · g) and space
complexity O(n · g + |F|).

In the proposed solution Adamczyk et al. [1] use dynamic programming to
compute two arrays, similar to the ones used in Sect. 3:

MG[1 . . n][0 . . g]: MG[j][q] is the minimum total length of gaps in a (q,F)-
factorization of S[1 . . j].

MG′[1 . . n][0 . . g]: MG′[j][q] is the minimum total length of gaps in a (q,F)-
factorization of S[1 . . j] for which the position j belongs to a gap.

They use the following formulas, for j > 0 and q > 0:

MG[j][q] = min(MG′[j][q], min
S[a. .j]∈F

MG[a − 1][q])

MG′[j][q] = min(MG[j − 1][q − 1],MG′[j − 1][q]) + 1

The border cases are exactly the same as in Sect. 3.
They apply this approach to maximal δ-palindromes in each of the considered

metrics (see the classic result from [6] for the Hamming distance and Lemma2
for the edit distance) to obtain the following result.

Theorem 4. The Maximal δ-Palindromic Factorization with Gaps
problem under the Hamming distance or the edit distance can be solved in
O(n · (g + δ)) time and O(n · g) space.

6 Maximal Palindromic Factorization of Weighted String

In this section, we show an algorithm to compute a smallest maximal z-
palindromic factorization of a given weighted string X of length n for a given
cumulative threshold 1/z ∈ (0, 1] has been presented by Alzamel et at [3]. Our
algorithm follows the one of Alatabbi et al. for computing a smallest maximal
palindromic factorization of standard strings [2] with some crucial modifications.
Recall by MP(x), we denote the set of center-distinct maximal palindromes of
string x We will use the below two facts related to palindromes:

Fact 5 ([6]). Given a string x, MP(x) can be computed in time O(|x|).

Recent Advances of Palindromic Factorization 43

Fact 6 (Trivial). Let x[i . . j] be a palindrome of string x with center c and let
u, |u| < j − i + 1, be a factor of x with center c. Then u is also a palindrome.

Note that for clarity we use upper case letters for weighted strings, e.g. X, and
lower case letters, e.g. x, for standard strings.

We start with some definitions related to weighted strings:

Definition 3. A weighted string X on an alphabet Σ is a finite sequence of n
sets. Every X[i], for all 0 ≤ i < n, is a set of ordered pairs (sj , πi(sj)), where
sj ∈ Σ and πi(sj) is the probability of having letter sj at position i. Formally,
X[i]={(sj , πi(sj)) | sj
= sl for j
= l, and Σπi(sj) = 1}. A letter sj occurs at
position i of X if and only if the occurrence probability of letter sj at position
i, πi(sj), is greater than 0.

Definition 4. A string u of length m is a factor of a weighted string X
if and only if it occurs at starting position i with cumulative probability∏m−1

j=0 πi+j(u[j]) > 0. Given a cumulative weight threshold 1/z ∈ (0, 1], we
say factor u is z-valid, if it occurs at position i with cumulative probability∏m−1

j=0 πi+j(u[j]) ≥ 1/z.

Definition 5. Given a cumulative weight threshold 1/z ∈ (0, 1], a weighted
string X of length m is a z-palindrome if and only if there exists at least one
z-valid factor u of X of length m which is a palindrome.

If the weighted string X[i . . j] is a z-palindrome, we analogously define the
number i+j

2 as the center of X[i . . j] in X and j−i+1
2 as the radius of X[i . . j].

Definition 6. Let X be a weighted string of length n, 1/z ∈ (0, 1] a cumulative
weight threshold, and X[i . . j], where 0 ≤ i ≤ j ≤ n − 1, a z-palindrome. Then
X[i . . j] is a maximal z-palindrome if there is no other z-palindrome in X with
center i+j

2 and larger radius.

We proceed as follows: By MP(X, z), we denote the set of center-distinct
maximal z-palindromes of our weighted string X. We present a z-palindrome
with center c and radius r by (c, r). For each position of X we define the heaviest
letter as the letter with the maximum probability (breaking ties arbitrarily). We
consider the string obtained from X by choosing at each position the heaviest
letter. We call this the heavy string of X.

We define a collection ZX of �z� special-weighted strings of X, denoted by
Zk, 0 ≤ k < �z�. Each Zk is of length n and it has the following properties.
Each position j in Zk contains at most one letter with positive probability and
it corresponds to position j in X. If f is a z-valid factor occurring at position
j of X, then f occurs at position j in some of the Zk’s. The combinatorial
observation telling us that this is possible is due to Barton et al. [4]. For clarity
of presentation we write Zk’s as standard strings.

Lemma 3 ([4]). Given a weighted string X of length n and a cumulative weight
threshold 1/z ∈ (0, 1], the �z� special-weighted strings of X can be constructed
in time and space O(nz).

44 M. Alzamel and C. S. Iliopoulos

Fact 7. Given a weighted string X of length n and a cumulative weight thresh-
old 1/z ∈ (0, 1], we have that MP(X, z) ⊆ MP(Z0, z) ∪ MP(Z1, z) ∪ . . . ∪
MP(Z�z�−1, z).

There are two steps for the correct computation of MP(X, z). First, we compute
the set Ak of all maximal palindromes of the heavy string of Zk, for all 0 ≤ k <
�z�, using Fact 5. We then need to adjust the radius of each reported palindrome
for Zk to ensure that it is z-valid in X (the center should not change). To achieve
this, we compute an array Rk, for each Zk, such that Rk[2c] stores the radius
of the longest factor at center c in Zk which is a z-valid factor of X at center c,
e.g. Rk[2c] = j−i+1

2 , c = (i + j)/2, if Zk[i . . j] is a z-valid factor of X centered
at c, and Zk[i − 1 . . j + 1] is not a z-valid factor of X. By Fact 7, we cannot
guarantee that all (c, r) in MP(Zk, z) are necessarily in MP(X, z). Hence, the
second step is to compute MP(X, z) from MP(Zk, z) by taking the maximum
radius per center and filtering out everything else.

Lemma 4. Given a weighted string X of length n, a cumulative weight threshold
1/z ∈ (0, 1], and the special-weighted strings ZX of X, each Rk, 0 ≤ k < �z�,
can be computed in time O(n).

After computing Ak and Rk, we perform the following check for each palin-
drome (c, r) ∈ Ak. If r > Rk[2c], the palindrome with radius r is not z-valid
but the factor with radius Rk[2c] is z-valid and maximal (by definition) and
palindromic (by Fact 6); if r ≤ Rk[2c], the palindrome with radius ri must
be z-valid and it is maximal. Therefore we set (c, r) ∈ MP(Zk, z), such that
r = min{r,Rk[2c]}, 0 ≤ 2c ≤ 2n − 2, and r ≥ 1/2.

To go from MP(Zk, z) to MP(X, z) we need to take the maximum radius
for each center. Therefore for each center c/2, 0 ≤ c ≤ 2n − 2, we set (c/2, r) ∈
MP(X, z), such that r = max{rk|(c/2, rk) ∈ MP(Zk, z), 0 ≤ k < �z�}. We thus
arrive at the first result of this article.

Theorem 8. Given a weighted string X of length n and a cumulative weight
threshold 1/z ∈ (0, 1], all maximal z-palindromes in X can be computed in time
and space O(nz).

After the computation of MP(X, z), we are in a position to apply the algorithm
by Alatabbi et al. [2] to find the smallest maximal z-palindromic factorization.
We define a list F such that F [i], 0 ≤ i ≤ n − 1, stores the set of the lengths
of all maximal z-palindromes ending at position i in X. We also define a list
U such that U [i], 0 ≤ i ≤ n − 1, stores the set of positions j, such that j + 1
is the starting position of a maximal z-palindrome in X and i is the ending
position of this z-palindrome. Thus for a given F [i] = {�0, �1, . . . , �q}, we have
that U [i] = {i−�0, i−�1, . . . , i−�q}. Note that U [i] can contain a “−1” element if
there exists a maximal z-palindrome starting at position 0 and ending at position
i. Note that the number of elements in MP(X, z) is at most 2n− 1, and, hence,
F and U can contain at most 2n−2 elements. The lists F and U can be computed
trivially from MP(X, z). Finally, we define a directed graph GX = (V, E), where

Recent Advances of Palindromic Factorization 45

V = {i | −1 ≤ i ≤ n− 1} and E = {(i, j) | j ∈ U [i]}. Note that (i, j) is a directed
edge from i to j. We do a breath first search on GX assuming the vertex n − 1
as the source and identify the shortest path from n − 1 to −1, which gives the
factorization. We formally present the above as Algorithm SMPF for computing
a smallest maximal z-palindromic factorization and obtain the following result.

Theorem 9. Given a weighted string X of length n and a cumulative weight
threshold 1/z ∈ (0, 1], Algorithm SMPF correctly solves the problem Smallest
Maximal z-Palindromic Factorization in time and space O(nz).

1 Algorithm SMPF(X,n, 1/z)

2 Construct the set ZX of special-weighted strings of X;

3 foreach Zk ∈ ZX do

4 Ak ← maximal palindromes of the heavy string of Zk;

5 Compute Rk for Zk;

6 MP(Zk, z) ← EmptyList();

7 foreach (c, r) ∈ Ak do

8 r ← min(r,Rk[2c]);

9 if r ≥ 1
2

Insert (c, r) in MP(Zk, z);

10 MP(X, z) ← EmptyList();

11 foreach c ∈ [0, 2n − 2] do

12 r ← max{rk|(c/2, rk) ∈ MP(Zk, z), 0 ≤ k < �z�};

13 Insert (c/2, r) in MP(X, z);

14 F ← EmptyList();

15 U ← EmptyList();

16 foreach (c, r) ∈ MP(X, z) do

17 j ← �c + r�;
18 Insert 2r in F [j];

19 Insert j − 2r in U [j];

20 Construct directed graph GX = (V, E), where V = {i | −1 ≤ i ≤ n − 1},
E = {(i, j) | j ∈ U [i]} and (i, j) is a directed edge from i to j;

21 Breadth first search on GX assuming the vertex n − 1 as the source;

22 Identify the shortest path P ≈ 〈n − 1 = p�, p�−1, . . . , p2, p1, p0 = −1〉;
23 Return X[0 . . p1], X[p1 + 1 . . p2], . . . , X[p�−1 + 1 . . p�];

7 Conclusion

In this paper we present a review of recent advances of palindromic factorization.

46 M. Alzamel and C. S. Iliopoulos

References

1. Adamczyk, M., Alzamel, M., Charalampopoulos, P., Iliopoulos, C.S.,
Radoszewski, J.: Palindromic decompositions with gaps and errors. arXiv
preprint arXiv:1703.08931 (2017)

2. Alatabbi, A., Iliopoulos, C.S., Rahman, M.S.: Maximal palindromic factorization.
In: Proceedings of Prague Stringology Conference 2013, pp. 70–77. Czech Technical
University, Prague (2013)

3. Alzamel, M., Gao, J., Iliopoulos, C.S., Liu, C., Pissis, S.P.: Efficient computation
of palindromes in sequences with uncertainties. In: Accepted at Mining Humanistic
Data Workshop (2017)

4. Barton, C., Kociumaka, T., Liu, C., Pissis, S.P., Radoszewski, J.: Indexing weighted
sequences: neat and efficient. CoRR, abs/1704.07625 (2017)

5. Fici, G., Gagie, T., Kärkkäinen, J., Kempa, D.: A subquadratic algorithm for min-
imum palindromic factorization. J. Discret. Algorithms 28(C), 41–48 (2014)

6. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, New York (1997)

http://arxiv.org/abs/1703.08931

A Construction for {0, 1,−1} Orthogonal
Matrices Visualized

N. A. Balonin1 and Jennifer Seberry2(B)

1 Saint Petersburg State University of Aerospace Instrumentation,
67, B. Morskaia Street, 190000 St. Petersburg, Russian Federation

korbendfs@mail.ru
2 School of Computing and Information Technology, EIS,

University of Wollongong, Wollongong, NSW 2522, Australia
jennifer seberry@uow.edu.au

Dedicated to the Unforgettable Mirka Miller

Abstract. Propus is a construction for orthogonal ±1 matrices, which
is based on a variation of the Williamson array, called the propus array

⎡
⎢⎢⎣

A B B D
B D −A −B
B −A −D B
D −B B −A

⎤
⎥⎥⎦ .

This array showed how a picture made is easy to see the construction
method. We have explored further how a picture is worth ten thousand
words.

We give variations of the above array to allow for more general matri-
ces than symmetric Williamson propus matrices. One such is the Gen-
eralized Propus Array (GP).

Keywords: Hadamard matrices · D-optimal designs
Conference matrices · Propus construction · Williamson matrices
Visualization · 05B20

1 Introduction

Hadamard matrices arise in statistics, signal processing, masking, compression,
combinatorics, error correction, coil winding, weaving, spectroscopy and other
areas. They been studied extensively. Hadamard showed [14] the order of an
Hadamard matrix must be 1, 2 or a multiple of 4. Many constructions for ±1
matrices and similar matrices such as Hadamard matrices, weighing matrices,
conference matrices and D-optimal designs use skew and symmetric Hadamard
matrices in their construction. For more details see Seberry and Yamada [30].
Different constructions are most useful in different cases. For example the Paley I

c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 47–57, 2018.
https://doi.org/10.1007/978-3-319-78825-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_5&domain=pdf

48 N. A. Balonin and J. Seberry

construction for spectroscopy and the Sylvester construction for Walsh functions
(discrete Fourier transforms) for signal processing.

An Hadamard matrix of order n is an n × n matrix with elements ±1 such
that HH� = H�H = nIn, where In is the n × n identity matrix and � stands
for transposition. A skew Hadamard matrix H = I + S has S� = −S. For more
details see the books and surveys of Seberry (Wallis) and others [30,34] cited in
the bibliography.

Propus is a construction method for symmetric orthogonal ±1 matrices, using
four matrices A, B = C, and D, where

AA� + 2BB� + DD� = constant I,

based on the array
⎡
⎢⎢⎣
A B B D
B D −A −B
B −A −D B
D −B B −A

⎤
⎥⎥⎦ .

It gives aesthetically pleasing visual images (pictures) when converted using
MATLAB (we show some below).

We show how finding propus-Hadamard matrices using Williamson matrices
and D-optimal designs can be easily seen through their pictures. These can be
generalized to allow non-circulant and/or non-symmetric matrices with the same
aim to give symmetric Hadamard matrices.

We illustrate two constructions to show the construction method (these are
proved in [2])

• q ≡ 1 (mod 4), a prime power, such matrices exist for order t = 1
2 (q + 1),

and thus propus-Hadamard matrices of order 2(q + 1) (this uses the Paley II
construction);

• t ≡ 3 (mod 4), a prime, such that D-optimal designs, constructed using two
circulant matrices, one of which must be circulant and symmetric, exist of
order 2t, then such propus-Hadamard matrices exist for order 4t.

We note that appropriate Williamson type matrices may also be used to give
propus-Hadamard matrices but do not pursue this avenue in this paper. There
is also the possibility that this propus construction may lead to some insight
into the existence or non-existence of symmetric conference matrices for some
orders. We refer the interested reader to mathscinet.ru/catalogue/ propus/.

1.1 Definitions and Basics

Two matrices X and Y of order n are said to be amicable if XY � = Y X�.
A D-optimal design of order 2n is formed from two commuting or amicable

(±1) matrices, A and B, satisfying AA� +BB� = (2n− 2)I +2J , J the matrix
of all ones, written in the form

http://mathscinet.ru/catalogue/propus/

A Construction for {0, 1, −1} Orthogonal Matrices Visualized 49

DC =
[
A B
B� −A�

]
and DA =

[
A B
B −A

]
.

respectively. In Fig. 1 the structure is clear to see.

Fig. 1. D-optimal designs for orders 2n

Symmetric Hadamard matrices made using propus like matrices will be called
symmetric propus-Hadamard matrices.

We define the following classes of propus like matrices. We note that there
are slight variations in the matrices which allow variant arrays and non-circulant
matrices to be used to give symmetric Hadamard matrices, All propus like matri-
ces A, B = C, D are ±1 matrices of order n satisfy the additive property

AA� + 2BB� + DD� = 4nIn. (1)

We make the definitions following [2]:

• propus matrices: four circulant symmetric ±1 matrices, A, B, B, D of order
n, satisfying the additive property (use P);

• propus-type matrices: four pairwise amicable ±1 matrices, A, B, B, D of
order n, A� = A, satisfying the additive property (use P);

• generalized-propus matrices: four pairwise commutative ±1 matrices, A, B,
B, D of order n, A� = A, which satisfy the additive property (use GP).

We use two types of arrays into which to plug the propus like matrices: the
Propus array, P , or the generalized-propus array, GP . These can also be used
with generalized matrices [33].

P =

⎡
⎢⎢⎣
A B B D
B D −A −B
B −A −D B
D −B B −A

⎤
⎥⎥⎦ and GP =

⎡
⎢⎢⎣

A BR BR DR
BR D�R −A −B�R
BR −A −D�R B�R
DR −B�R B�R −A.

⎤
⎥⎥⎦ .

Symmetric Hadamard matrices made using propus like matrices will be called
symmetric propus-Hadamard matrices.

50 N. A. Balonin and J. Seberry

2 Symmetric Propus-Hadamard Matrices

We first give the explicit statements of two well known theorem, Paley’s Theorem
[28], for the Legendre core Q, and Turyn’s Theorem [31], in the form in which
we will use them.

Theorem 1 [Paley’s Legendre Core [28]]. Let p be a prime power, either
≡ 1 (mod 4) or ≡ 3 (mod 4) then there exists a matrix, Q, of order p with
zero diagonal and other elements ±1 satisfying QQ� = (q + 1)I − J , Q is or
symmetric or skew-symmetric according as p ≡ 1 (mod 4) (Paley I) or p ≡ 3
(mod 4) (Paley II).

Theorem 2 [Turyn’s Theorem [31]]. Let q ≡ 1 (mod 4) be a prime power
then there are two symmetric matrices, P and S of order 1

2 (q + 1), satisfy-
ing PP� + SS� = qI: P has zero diagonal and other elements ±1 and S
elements ±1.

2.1 Simple Propus-Hadamard Matrices of 12 and 20

2.2 B = C = D

There are only two starting Hadamard matrices, of orders 12 and 28, based on
skew Paley core B = C = D = Q + I (constructed using Legendre symbols).
This special set is finite because 12 = 32 +12 +12 +12 and 28 = 52 +12 +12 +12

and these are the only orders for which a symmetric circulant A can exist with
B = C = D. Figure 2 clearly shows the structure.

Fig. 2. Propus-Hadamard matrices using three back circulants B = C = D

There are two simple propus-Hadamard matrices of orders 12 and 20 based
on symmetric Paley cores A = J , B = C = J − 2I, D = J = 2I for n = 3, and
A = Q+I, B = C = J−2I, D = Q−I (constructed using Legendre symbols) for
n = 5. This second construction can be continued with back-circulant matrices
C = B which allows the symmetry property of A to be conserved.

Note how the slightly different construction of P12 in Figs. 2 and 3 can be
easily seen.

A Construction for {0, 1, −1} Orthogonal Matrices Visualized 51

Fig. 3. Simple Propus-Hadamard matrices for orders 12 and 20

2.3 Order 4n from Williamson Matrices Using q a Prime Power

Lemma 1. Let q ≡ 1 (mod 4), be a prime power, then propus matrices exist for
orders n = 1

2 (q + 1) which give symmetric propus-Hadamard matrices of order
2(q + 1).

Proof. We note that for q ≡ 1 (mod 4), a prime power, Turyn (Theorem2 [31])
gave Williamson matrices, X+I, X−I, Y , Y , which are circulant and symmetric
for orders n = 1

2 (q + 1). Then choosing

A = X + I,B = C = Y,D = X − I

gives the required propus-Hadamard matrices. ��
This gives propus-Hadamard matrices for 45 orders 4n where n ≤ 200 [2].

Some of these cases arise when q is a prime power, however the Delsarte-
Goethals-Seidel-Turyn construction means the required circulant matrices also
exist for these prime powers (see Figs. 4 and 5).

Fig. 4. Propus-Hadamard matrices for orders 4q for q prime, q ≡ 1 (mod 4)

52 N. A. Balonin and J. Seberry

Fig. 5. Propus-Hadamard matrices for orders 4q, q a prime power.

2.4 Propus-Hadamard Matrices from D-optimal Designs

Lemma 2. Let n ≡ 3 (mod 4), be a prime, such that D-optimal designs, con-
structed using two circulant matrices, one of which is symmetric, exist for order
2n. Then propus-Hadamard matrices exist for order 4n.

Djoković and Kotsireas in [9,23] give 43 D-optimal designs, constructed using
two circulant matrices, for n < 200. We are interested in those cases where the
D-optimal design is constructed from two circulant matrices one of which must
be symmetric.

Suppose D-optimal designs for orders n ≡ 3 (mod 4), a prime, are con-
structed using two circulant matrices, X and Y . Suppose X is symmetric. Let
Q + I be the Paley matrix of order n. Then choosing

A = X, B = C = Q + I, D = Y,

to put in the array GP gives the required propus-Hadamard matrices.
Hence we have propus-Hadamard matrices, constructed using D-optimal

designs, for orders 4n where n is in {3, 7, 19, 31}. The results for n = 19 and
31 were given to us by Djokovic̀.

We see clearly, looking first at GP28 in Fig. 6 where the D-optimal design
is highlighted in purple, the construction method. Now the method will also be
clear in GP12 and GP76.

2.5 The Propus Construction

We have shown [2] that if X1 = A, X2 = B, X3 = B, X4 = D are pairwise
amicable, symmetric Williamson type matrices of order 2n + 1, where X2 =
X3 = B, and satisfy the additive property, they can be used as in the appropriate
array, G or GP , to form symmetric propus Hadamard matrix of order (4(2n+1).
For example from Paley’s theorem (Corollary 1) for p ≡ 3 (mod 4) we use the
backcirculant or type 1, symmetric matrices QR and R instead of Q and I;
whereas for p ≡ 1 (mod 4) we use the symmetric Paley core Q.

A Construction for {0, 1, −1} Orthogonal Matrices Visualized 53

Fig. 6. Order 4n propus-Hadamard matrices constructed using D-optimal designs
(Colour figure online)

Many powerful corollaries arose and new results were obtained by making
suitable choices for X1, X2, X3, X4 in the arrays P and GP to ensure that the
propus construction can be used to form symmetric Hadamard matrices of order
4(2n + 1).

From Turyn’s result (Corollary 2) we set, for p ≡ 1 (mod 4) X1 = P + I,
X2 = X3 = S and X4 = P − I.

Hence we have:

Corollary 1. Let q ≡ 1 (mod 4) be a prime power and 1
2 (q + 1) be a prime

power or the order of the core of a symmetric conference matrix (this happens
for q = 89). Then there exist symmetric Williamson type matrices of order q+2
and a symmetric propus-type Hadamard matrix of order 4(q + 2).

3 Propus-Hadamard Matrices from Conference Matrices:
Even Order Matrices

A powerful method to construct propus-Hadamard matrices for n even is using
conference matrices.

Lemma 3. Suppose M is a conference matrix of order n ≡ 2 (mod 4). Then
MM� = M�M = (n− 1)I, where I is the identity matrix and M� = M . Then
using A = M +I, B = C = M −I, D = M +I gives a propus-Hadamard matrix
of order 4n.

We use the sixteen conference matrix orders of even order n ≤ 100 from [1] to
give propus-Hadamard matrices of orders 4n. The conference matrices in Fig. 7
are made two circulant matrices A and B of order n where both A and B are
symmetric.

Then using the matrices A+I, B = C and D = A−I in P gives the required
construction.

The conference matrices in Fig. 8 are made from two circulant matrices A
and B of order n where both A and B are symmetric. However here we use
A + I, BR = CR and D = A − I in P to obtain the required construction.

54 N. A. Balonin and J. Seberry

Fig. 7. Conference matrices for orders 2n using two circulants: propus-Hadamard
matrices for orders 4n

Fig. 8. Conference matrices for orders 2n using two circulant and back-circulants:
propus-Hadamard matrices for orders 4n

There is another variant of this family which uses the symmetric Paley cores
A = Q + I, D = Q − I (constructed using Legendre symbols) and one circulant
matrix of maximal determinant B = C = Y .

Fig. 9. Matrices P16 and P32

A Construction for {0, 1, −1} Orthogonal Matrices Visualized 55

3.1 Propus-Hadamard Matrices for n Even

Fig. 9 gives visualizations (images/pictures) of propus-Hadamard matrices orders
16, 32. These have even n.

4 Conclusion and Future Work

Using the results of Lemma 1 and Corollary 1 and the symmetric propus-
Hadamard matrices of Di Matteo et al. given in [5], we see that the unresolved
cases for symmetric propus-Hadamard matrices for orders 4n, n < 200 odd, are
where n ∈.

{17, 23, 29, 33, 35, 47, 53, 65, 71, 73, 77, 93, 95, 97, 99,
101, 103, 107, 109, 113, 125, 131, 133, 137, 143, 149, 151, 153,

155, 161, 163, 165, 167, 171, 173, 179, 183, 185, 189, 191, 197.}

There are many constructions and variations of the propus theme to be
explored in future research. Visualizing the propus construction gives aesthet-
ically pleasing examples of propus-Hadamard matrices. The visualization also
makes the construction method clearer. There is the possibility that these visu-
alizations may be used for quilting.

References

1. Balonin, N.A., Seberry, J.: A review and new symmetric conference matrices.
Informatsionno-upravliaiushchie sistemy, 71(4), 2–7 (2014)

2. Balonin, N.A., Seberry, J.: Two infinite families of symmetric Hadamard matrices.
Australas. Comb. 69(3), 349–357 (2017)

3. Baumert, L.D.: Cyclic Difference Sets. LNM, vol. 182. Springer, Heidelberg (1971).
https://doi.org/10.1007/BFb0061260

4. Cohn, J.H.E.: A D-optimal design of order 102. Discret. Math. 1(102), 61–65 (1992)
5. Di Matteo, O., Djoković, D., Kotsireas, I.S.: Symmetric hadamard matrices of order

116 and 172 exist. Spec. Matrices 3, 227–234 (2015)
6. Djoković, D.Z.: On maximal (1, −1)-matrices of order 2n, n odd. Radovi Matem-

aticki 7(2), 371–378 (1991)
7. Djoković, D.Z.: Some new D-optimal designs. Australas. J. Comb. 15, 221–231

(1997)
8. Djoković, D.Z.: Cyclic (v; r, s; λ) difference families with two base blocks and

v ≤ 50. Ann. Comb. 15(2), 233–254 (2011)
9. Djoković, D.Z., Kotsireas, I.S.: New results on D-optimal matrices. J. Comb. Des.

20, 278–289 (2012)
10. Djoković, D.Z., Kotsireas, I.S.: email communication from I. Kotsireas, 3 August

2014 1:13 pm
11. Fletcher, R.J., Gysin, M., Seberry, J.: Application of the discrete Fourier transform

to the search for generalised Legendre pairs and Hadamard matrices. Australas. J.
Comb. 23, 75–86 (2001)

https://doi.org/10.1007/BFb0061260

56 N. A. Balonin and J. Seberry

12. Fletcher, R.J., Koukouvinos, C., Seberry, J.: New skew-Hadamard matrices of order
and new D-optimal designs of order 2 · 59. Discret. Math. 286(3), 251–253 (2004)

13. Roderick, R.J., Seberry, J.: New D-optimal designs of order 110. Australas. J.
Comb. 23, 49–52 (2001)

14. Hadamard, J.: Résolution d’une question relative aux déterminants. Bull. des Sci.
Math. 17, 240–246 (1893)

15. Gysin, M.: New D-optimal designs via cyclotomy and generalised cyclotomy. Aus-
tralas. J. Comb. 15, 247–255 (1997)

16. Gysin, M.: Combinatorial Designs, Sequences and Cryptography, Ph.D. Thesis,
University of Wollongong (1997)

17. Gysin, M., Seberry, J.: An experimental search and new combinatorial designs via
a generalisation of cyclotomy. J. Combin. Math. Combin. Comput. 27, 143–160
(1998)

18. Holzmann, W.H., Kharaghani, H.: A D-optimal design of order 150. Discret. Math.
190(1), 265–269 (1998)

19. Kotsireas, I.S., Pardalos, P.M.: D-optimal matrices via quadratic integer optimiza-
tion. J. Heuristics 19(4), 617–627 (2013)

20. Koukouvinos, C., Kounias, S., Seberry, J.: Supplementary difference sets and opti-
mal designs. Discret. Math. 88(1), 49–58 (1991)

21. Koukouvinos, C., Seberry, J., Whiteman, A.L., Xia, M.: Optimal designs, sup-
plementary difference sets and multipliers. J. Stat. Plan. Inference 62(1), 81–90
(1997)

22. Georgiou, S., Koukouvinos, C., Seberry, J.: Hadamard matrices, orthogonal designs
and construction algorithms. In: Wallis, W.D. (ed.) Designs 2002: Further Combi-
natorial and Constructive Design Theory, pp. 133–205. Kluwer Academic Publish-
ers, Norwell (2002)

23. Geramita, A.V., Seberry, J., Designs, O.: Quadratic Forms and Hadamard Matri-
ces. Marcel Dekker, New York-Basel (1979)

24. Hall Jr., M.: A survey of difference sets. Proc. Am. Math. Soc. 7, 975–986 (1956)
25. Hall Jr., M.: Combinatorial Theory, 2nd edn. Wiley, Hoboken (1998)
26. Miyamoto, M.: A construction for Hadamard matrices. J. Comb. Theoy. Ser. A

57, 86–108 (1991)
27. Mitrouli, M.: D-optimal designs embedded in Hadamard matrices and their effect

on the pivot patterns. Linear Algebra App. 434, 1751–1772 (2011)
28. Paley, R.E.A.C.: On orthogonal matrices. J. Math. Phys. 12, 311–320 (1933)
29. Plackett, R.L., Burman, J.P.: The design of optimum multifactorial experiments.

Biometrika 33, 305–325 (1946)
30. Seberry, J., Yamada, M.: Hadamard matrices, sequences, and block designs. In:

Dinitz, J.H., Stinson, D.R. (eds.) Contemporary Design Theory: A Collection of
Surveys, pp. 431–560. Wiley, New York (1992)

31. Turyn, R.J.: An infinite class of Williamson matrices. J. Comb. Theory Ser. A. 12,
319–321 (1972)

32. Sloane, N.J.A.: AT&T on-line encyclopedia of integer sequences. http://www.
research.att.com/∼njas/sequences/

33. Wallis, J.S.: Williamson matrices of even order. In: Holton, D.A. (ed.) Combinato-
rial Mathematics. Lecture Notes in Mathematics, vol. 403, pp. 132–142. Springer,
Heidelberg (1974). https://doi.org/10.1007/BFb0057387

34. Wallis, W.D.: Room Squares. Combinatorics: Room Squares, Sum-Free Sets,
Hadamard Matrices. LNM, vol. 292, pp. 30–121. Springer, Heidelberg (1972).
https://doi.org/10.1007/BFb0069907

http://www.research.att.com/~njas/sequences/
http://www.research.att.com/~njas/sequences/
https://doi.org/10.1007/BFb0057387
https://doi.org/10.1007/BFb0069907

A Construction for {0, 1, −1} Orthogonal Matrices Visualized 57

35. Whiteman, A.L.: A family of D-optimal designs. Ars Comb. 30, 23–26 (1990)
36. Yamada, M.: On the Williamson type j matrices of order 4.29, 4.41, and 4.37. J.

Comb. Theory, Ser. A, 27, 378–381 (1979)
37. Wallis, J.S.: On the existence of Hadamard matrices. J. Comb. Theory (Ser. A),

21, 186–195 (1976)
38. Craigen, R.: Signed groups, sequences and the asymptotic existence of Hadamard

matrices. J. Comb. Theory (Ser. A), 71, 241–254 (1995)
39. Ghaderpour, E., Kharaghani, H.: The asymptotic existence of orthogonal designs.

Australas. J. Combin. 58, 333–346 (2014)
40. de Launey, W., Kharaghani, H.: On the asymptotic existence of cocyclic Hadamard

matrices. J. Comb. Theory (Ser. A), 116(6), 1140–1153 (2009)

Approximation Algorithms and
Hardness

On the Maximum Crossing Number

Markus Chimani1, Stefan Felsner2, Stephen Kobourov3, Torsten Ueckerdt4,
Pavel Valtr5, and Alexander Wolff6(B)

1 Universität Osnabrück, Osnabrück, Germany
markus.chimani@uni-osnabrueck.de

2 Technische Universität Berlin, Berlin, Germany
felsner@math.tu-berlin.de

3 University of Arizona, Tucson, USA
kobourov@cs.arizona.edu

4 Karlsruhe Institute of Technology, Karlsruhe, Germany
torsten.ueckerdt@kit.edu

5 Charles University, Prague, Czech Republic
valtr@kam.mff.cuni.cz

6 Universität Würzburg, Würzburg, Germany
http://www1.informatik.uni-wuerzburg.de/wolff

Abstract. Research about crossings is typically about minimization. In
this paper, we consider maximizing the number of crossings over all pos-
sible ways to draw a given graph in the plane. Alpert et al. [Electron. J.
Combin., 2009] conjectured that any graph has a convex straight-line
drawing, that is, a drawing with vertices in convex position, that max-
imizes the number of edge crossings. We disprove this conjecture by
constructing a planar graph on twelve vertices that allows a non-convex
drawing with more crossings than any convex one. Bald et al. [Proc.
COCOON, 2016] showed that it is NP-hard to compute the maximum
number of crossings of a geometric graph and that the weighted geo-
metric case is NP-hard to approximate. We strengthen these results by
showing hardness of approximation even for the unweighted geometric
case and prove that the unweighted topological case is NP-hard.

1 Introduction

While traditionally in graph drawing one wants to minimize the number of edge
crossings, we are interested in the opposite problem. Specifically, given a graph
G, what is the maximum number of edge crossings possible, and what do embed-
dings1 of G that attain this maximum look like? Such questions have first been
asked as early as in the 19th century [3,23]. Perhaps due to the counterintuitive
nature of the problem (as illustrated by the disproved conjecture below) and due
to the lack of established tools and concepts, little is known about maximizing
the number of crossings.
1 We consider only embeddings where vertices are distinct points in the plane and

edges are continuous curves containing no vertex points other than those of their
end vertices.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 61–74, 2018.
https://doi.org/10.1007/978-3-319-78825-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_6&domain=pdf
http://orcid.org/0000-0001-5872-718X

62 M. Chimani et al.

Besides the theoretical appeal of the problem, motivation for this problem can
be found in analyzing the worst-case scenario when edge crossings are undesirable
but the placement of vertices and edges cannot be controlled.

There are three natural variants of the crossing maximization problem in the
plane. In the topological setting, edges can be drawn as curves, so that any pair
of edges crosses at most once, and incident edges do not cross. In the straight-
line variant (known for historical reasons as the rectilinear setting), edges must
be drawn as straight-line segments. If we insist that the vertices are placed in
convex position (e.g., on the boundary of a disk or a convex polygon) and the
edges must be routed in the interior of their convex hull, the topological and
rectilinear settings are equivalent, inducing the same number of crossings: the
number only depends on the order of the vertices along the boundary of the
disk. In this convex setting, a pair of edges crosses if and only if its endpoints
alternate along the boundary of the convex hull.

The topological setting. The maximum crossing number was introduced by
Ringel [20] in 1963 and independently by Grünbaum [11] in 1972.

Definition 1. ([21]). The maximum crossing number of a graph G, max-cr(G),
is the largest number of crossings in any topological drawing of G in which no
three distinct edges cross in one point and every pair of edges has at most one
point in common (a shared endpoint counts, touching points are forbidden).

In particular, max-cr(G) is the maximum number of crossings in the topolog-
ical setting. Note that only independent pairs of edges, that is those edge pairs
with no common endpoint, can cross. The number of independent pairs of edges
in a graph G = (V,E) is given by M(G) :=

(|E|
2

) − ∑
v∈V

(
deg(v)

2

)
, a parameter

introduced by Piazza et al. [18]. For every graph G, we have max-cr(G) ≤ M(G),
and graphs for which equality holds are known as thrackles or thrackable [26].
Conway’s Thrackle Conjecture [16] states that thrackles are precisely the pseud-
oforests (graphs in which every connected component has at most one cycle) in
which there is no cycle of length four and at most one odd cycle. Equivalently, this
famous conjecture states that max-cr(G) = M(G) implies |E(G)| ≤ |V (G)| [26].

Another famous open problem is the Subgraph Problem posed by Ringeisen
et al. [19]: Is it true that whenever H is a subgraph or induced subgraph of G,
then we have max-cr(H) ≤ max-cr(G)?

Let us remark that allowing pairs of edges to only touch without properly
crossing each other, would indeed change the problem. For example, the 4-cycle
C4 has two pairs of independent edges, and C4 can be drawn with one pair
crossing and the other pair touching, but C4 is not thrackable; it is impossible
to draw C4 with both pairs crossing, i.e., max-cr(C4) is 1 and not 2.

It is known that max-cr(Kn) =
(
n
4

)
[20] and that every tree is thrackable, i.e.,

max-cr(G) = M(G) whenever G is a tree [18]. We refer to Schaefer’s survey [21]
for further known results on the maximum crossing numbers of several graph
classes.

On the Maximum Crossing Number 63

The straight-line setting. The maximum rectilinear crossing number was intro-
duced by Grünbaum [11]; see also [8].

Definition 2. The maximum rectilinear crossing number of a graph G,
max-cr(G), is the largest number of crossings in any straight-line drawing of
G.

For every graph G, we have max-cr(G) ≤ max-cr(G) ≤ M(G), where each
inequality is strict for some graphs, while equality is possible for other graphs.
For example, for the n-cycle Cn we have max-cr(Cn) = max-cr(Cn) = M(Cn) =
n(n−3)/2 for odd n [26], while max-cr(Cn) = M(Cn)−n/2+1 and max-cr(Cn) =
M(Cn) for even n different than four [1,24]. For further rectilinear crossing
numbers of specific graphs we again refer to Schaefer’s survey [21].

For several graph classes, such as trees, the maximum (topological) crossing
number max-cr(G) is known exactly, while little is known about the maximum
rectilinear crossing number max-cr(G). For planar graphs, Verbitsky [25] studied
what he called the obfuscation number. He defined obf(G) = max-cr(G) and
showed that obf(G) < 3|V (G)|2. Note that this holds only for planar graphs.
For maximally planar graphs, that is, triangulations, Kang et al. [14] give a
(56/39 − ε)-approximation for computing max-cr(G).

The convex setting. It is easy to see that in the convex setting we may assume,
without loss of generality, that all vertices are placed on a circle and edges are
drawn as straight-line segments. In fact, if the vertices are in convex position
and edges are routed in the interior of the convex hull of all vertices, then a pair
of edges is crossing if and only if the vertices of the two edges alternate in the
circular order along the convex hull.

Definition 3. The maximum convex crossing number of a graph G, max-cr◦

(G), is the largest number of crossings in any drawing of G where the vertices
lie on the boundary of a disk and the edges in the interior.

From the definitions we now have that, for every graph G,

max-cr◦(G) ≤ max-cr(G) ≤ max-cr(G) ≤ M(G), (1)

but this time it is not clear whether or not the first inequality can be strict. It
is tempting (and rather intuitive) to say that in order to get many crossings in
the rectilinear setting, all vertices should always be placed in convex position.
In other words, this would mean that the maximum rectilinear crossing number
and maximum convex crossing number always coincide. Indeed, this has been
conjectured by Alpert et al. in 2009.

Conjecture 1. (Alpert et al. [1]). Any graph G has a drawing with vertices in
convex position that has max-cr(G) crossings, that is, max-cr(G) = max-cr◦(G).

64 M. Chimani et al.

Our contribution. Our main result is that Conjecture 1 is false. We provide sev-
eral counterexamples in Sect. 3. Before we get there, we discuss the four param-
eters in (1) and relations between them in more detail, and introduce some
new problems in Sect. 2. Finally, in Sect. 4, we investigate the complexity and
approximability of crossing maximization and show that the topological problem
is NP-hard, while the rectilinear problem is even hard to approximate.

2 Preliminaries and Basic Observations

Here we discuss the chain of inequalities in (1) and extend it by several items.
Recall that for a graph G, M(G) denotes the number of independent pairs
of edges in G. By (1) we have max-cr◦(G) ≤ M(G). We next show that this
inequality is tight up to a factor of 3. The first part of the next lemma is due to
Verbitsky [25].

Lemma 1. For every graph G, we have M(G)/3 ≤max-cr◦(G). Moreover, if G
has chromatic number at most 3, then M(G)/2 ≤ max-cr◦(G).

Proof. First, let G be any graph. We place the vertices of G on a circle in
a circular order chosen uniformly at random from the set of all their circular
orders. Then each pair of independent edges of G is crossing with probability
1/3 and there must be an ordering witnessing max-cr◦(G) ≥ M(G)/3.

Second, assume that G can be properly colored with at most three colors.
In this case we place the vertices of G on a circle in such a way that the three
color classes occupy three pairwise disjoint arcs. In each color class, we order
the vertices randomly, choosing each linear order with the same probability.
Doing this independently for each color class, each pair of independent edges
is crossing with probability 1/2. Hence, there must be an ordering witnessing
max-cr◦(G) ≥ M(G)/2. ��

By Lemma 1 we can extend the chain of inequalities in (1) as follows: For
every graph G, we have

M(G)/3 ≤ max-cr◦(G) ≤ max-cr(G) ≤ max-cr(G) ≤ M(G). (2)

The constant 1/3 in the first inequality in (2) cannot be improved: Consider the
six edges connecting a 4-tuple of vertices in a rectilinear drawing of the complete
graph Kn. There is exactly one crossing among them if the four vertices are
in convex position, and there is no crossing among them otherwise. It follows
that the maximum rectilinear crossing number of Kn is attained if and only if
the vertices are in convex position, and in this case there are M(Kn)/3 =

(
n
4

)

crossings. Since Ringel [20] proved max-cr(Kn) =
(
n
4

)
, we get max-cr◦(Kn) =

max-cr(Kn) = max-cr(Kn) = M(Kn)/3 =
(
n
4

)
.

We now introduce another item in the chain of inequalities (2). We say that
a rectilinear drawing of a graph G is separated if there is a line � that intersects
every edge of G. Clearly, this is only possible if G is bipartite and in this case
the line � separates the vertices of the two color classes of G.

On the Maximum Crossing Number 65

Fig. 1. The smallest tree G that is not a caterpillar with a topological drawing with
max-cr(G) = M(G) = 9 crossings (left), a 2-layer drawing with bcr(G) = 1 crossings
(middle) and a 2-layer drawing with max-cr(G) = M(G)−bcr(G) = 8 crossings (right).

Particularly nice are separated convex drawings, i.e., separated drawings with
vertices in convex position; see Fig. 1 for an example. Drawing bipartite graphs in
the separated convex model is equivalent to the 2-layer model where the vertices
of the two color classes are required to be placed on two parallel lines. In this
2-layer model, the minimum number of crossings of a bipartite graph G has been
studied under the name bipartite crossing number, denoted bcr(G).

Lemma 2. For every bipartite graph G, the maximum number of crossings
among all separated convex drawings of G is exactly M(G) − bcr(G).

Proof. Consider any separated convex drawing of any bipartite graph G. A pair
of independent edges is crossing if and only if their endpoints alternate along the
convex hull. So if e1 = u1v1 and e2 = u2v2 with u1, u2 being above the separating
line � and v1, v2 below, then e1 and e2 are crossing if in the circular order we see
u1 − u2 − v1 − v2, and non-crossing if we see u1 − u2 − v2 − v1. In particular,
reversing the order of all vertices below the separating line � transforms crossings
into non-crossings and vice versa. This shows that for a separated convex drawing
with k crossings, reversing results in exactly M(G)−k crossings, which concludes
the proof. ��

Applying Lemma 2 to the chain of inequalities (2) shows that for every bipar-
tite graph G we have

M(G)/2 ≤ M(G) − bcr(G) ≤ max-cr◦(G) ≤ max-cr(G) ≤ max-cr(G) ≤ M(G).
(3)

It remains open whether the new inequality M(G) − bcr(G) ≤ max-cr◦(G)
in (3) is attained with equality for every bipartite graph G. For example, for a
tree G it is known, see e.g. [26], that max-cr(G) = M(G), but it is not hard to see
that max-cr(G) = M(G) if and only if G is a caterpillar2. (Hence max-cr(G) <
max-cr(G) holds for every tree which is not a caterpillar.) Moreover, it is equally
easy to see that a tree G has a crossing-free 2-layer drawing if and only if G is a
caterpillar. Thus, for every tree G, we have that M(G) − bcr(G) = M(G) if and
only if max-cr(G) = M(G). We again refer to Fig. 1 for an illustration.

The expanded chain on inequalities (3), leads to two natural questions:

2 A caterpillar is a tree in which all non-leaf vertices lie on a common path.

66 M. Chimani et al.

Problem 1. Does every bipartite graph G have a separated drawing with
max-cr(G) many crossings? Does every tree G have a separated convex drawing
with max-cr(G) crossings, i.e., is max-cr(G) = M(G) − bcr(G)?

Let us mention that Garey and Johnson [9] have shown that bipartite crossing
minimization is NP-hard. The problem remains NP-hard if the ordering of the
vertices on one side is prescribed [7]. On trees, bipartite crossing minimization
can be solved efficiently [22]. For the one-sided two-layer crossing minimization,
Nagamochi [17] gave an 1.47-approximation algorithm, improving upon the well-
known median heuristic, which yields a 3-approximation [7]. The weighted case,
which we define formally in Sect. 4, admits a 3-approximation algorithm [5].

3 Counterexamples for Conjecture 1

In this section we present counterexamples for the convexity conjecture. After
some preliminary work we provide a counterexample H(4) on 37 vertices. To
show that this graph is a counterexample, we need to analyze only two cases.
The graph H(2) with 19 vertices is smaller, but requires more work. In the full
version of this paper [6] we prove that a planar subgraph of H(2) with 12 vertices
and 16 edges is a counterexample.

A set of vertices X ⊂ V in a graph G = (V,E) is a set of twins if all vertices
of X have the same neighborhood in G (in particular X is an independent set).
A vertex split of vertex v in G consists in adding a new vertex v′ to G such that
v′ is a twin of v, that is, for any edge vu, there is an edge v′u, and these are all
the edges at v′.

Lemma 3. For any graph G there is a convex drawing of G maximizing the
number of crossings among all convex drawings of G, such that each set of twins
forms an interval of consecutive vertices along the convex hull of the drawing.

Proof. Suppose V1, . . . , Vs are the maximal sets of twins in G. Consider a convex
drawing of G maximizing the number of crossings. It clearly suffices to show that
for any set Vi we may move all the points of Vi next to one of the points of Vi

without decreasing the number of crossings, since this procedure done iteratively
s times, once for each of the sets V1, . . . , Vs, results in a desired convex drawing
of G.

We call a crossing k-rich if there are k vertices of Vi among the four vertices
of the edges forming the crossing. Since Vi is independent, k is 0, 1 or 2 for
each crossing. If we move only vertices of Vi then 0-rich crossings remain in
the drawing. If the vertices of Vi appear in consecutive order along the convex
hull of the drawing then the number of 2-rich crossings is maximized due to the
following argument. For any two vertices u, v of Vi and for any two neighbors
x, y of Vi, the 4-cycle uxvy is self-crossing which gives rise to a 2-rich crossing.
Since every 2-rich crossing appears in a single 4-cycle and every 4-cycle can give
rise to at most one crossing, the number of 2-rich crossings is indeed maximized
whenever the vertices of Vi appear in consecutive order along the convex hull.

On the Maximum Crossing Number 67

Fig. 2. Left: The graph H(k). Each circle represents k independent vertices, each black
line segment represents a bundle of k2 edges, each gray line segment represents k edges.
Right: A non-convex drawing of H(k).

It remains to show that there is a vertex v in Vi such that we can move the
other vertices next to v without decreasing the number of 1-rich crossings. Each
1-rich crossing involves exactly one vertex of Vi. The number of 1-rich crossings
involving a given vertex of Vi is affected only by the position of that vertex and
of the vertices of V \Vi. Thus, if we choose v as the vertex involved in the largest
number of 1-rich crossings and move all the other vertices of Vi next to v, every
vertex will be involved in at least as many 1-rich crossings as it was before the
vertices were moved. ��
The construction of H(k). For the construction of our example graphs H(k), we
start with a 9-cycle on vertices v0, . . . , v8 with edges vi, vi+1 where i + 1 is to be
taken modulo 9. Add a ‘central’ vertex z adjacent to v0, v3, v6. This graph on
10 vertices is the base graph H. The example graph H(k) is obtained from H
by applying k vertex splits to each of the nine cycle vertices vi. The graph H(k)
thus consists of nine independent sets Vi of size k and the central vertex z. In
total it has 9k + 1 vertices and 9k2 + 3k edges. Figure 2 (left) shows a schematic
drawing of H(k), where each black edge represents a “bundle” of k2 edges of
H(k) and each gray edge represents a set of k edges. We will show that for k ≥ 4
the drawing in Fig. 2 (right) has more crossings than any drawing with vertices
in convex position.

From Lemma 3 we know that, in convex drawings of H(k) with many cross-
ings, the twin pairs of vertices can be assumed to be next to each other. Drawings
of H(k) of this kind are essentially determined by the corresponding drawings
of H, in which each set of twins is represented just by one representative; see
Fig. 2. This justifies that later on we only look at convex drawings of H with
weighted crossings, and not of the full H(k).

An independent set of edges of H(k) is weak if the corresponding edges in
the base graph H are not independent; it is strong otherwise. The next lemma
shows that our drawing of H(k) realizes as many crossings on weak pairs of
independent edges as possible. This allows us to focus on strong pairs in the
subsequent analysis.

Lemma 4. The drawing of H(k) on the right side of Fig. 2 maximizes the num-
ber of crossings on weak pairs of independent edges.

68 M. Chimani et al.

Proof. Each edge vi, vi+1 of H maps to a Kk,k in H(k). In the given drawing
the Kk,k is represented by a red edge. Since Vi ∪ Vi+1 are in separated convex
position the Kk,k contributes

(
k
2

)2
crossing.

A pair of adjacent edges vi−1, vi and vi, vi+1 in H maps to a Kk,2k in H(k).
We know that max-cr(Kk,2k) =

(
k
2

)(
2k
2

)
and this number of crossings is realized

with separated convex position. In the drawing Vi and Vi−1∪Vi+1 are in separated
convex position.

A pair of adjacent edges vi, z and vi, vi+1 in H maps to a Kk,k+1 in H(k).
Now max-cr(Kk,k+1) =

(
k
2

)(
k+1
2

)
, and this number of crossings is realized with

separated convex position of the vertices. In the drawing Vi, Vi+1∪{z} are in sep-
arated convex position. The case of adjacent edges vi, z and vi−1, vi is identical.

��
The remaining crossings of the drawing of H(k) correspond to crossings of

two independent edges of H. These are either two red edges or a red and a green
edge of H. Red edges represent a bundle of k2 edges of H(k) and green edges
a bundle of k edges of H(k). Hence a crossing of two red edges represents k4

individual crossing pairs and a crossing of a red and a green edge represent k3

individual crossing pairs. We devide by k3 and speak about a crossing of two red
edges as a crossing of weight k and of a red green crossing as a crossing of weight
1. In the given drawing of H(k) every pair of red edges is crossing but every
red edge has a unique independent green edge which is not crossed. Hence, the
weight of the independent not crossing pairs of edges of H is 9. We summarize
by saying that the given drawing has a weighted loss of 9.

The loss of convex drawings. We now study the weighted loss of convex drawings
of H. In a convex drawing every red edge splits the 7 non-incident cycle vertices
into those on one side and those on the other side. The span of a red edge is the
number of vertices on the smaller side. Hence, the span of an edge is one of 0,
1, 2, 3.

Let us consider the case where the 9-cycle is drawn with zero loss, i.e., each
red edge has span 3 and contributes a crossing with 6 other red edges. The cyclic
order of the cycle vertices is v0, v2, v4, v6, v8, v1, v3, v5, v7. Any two neighbors of
z have the same distance in this cyclic order. Therefore, we may assume that
z is in the short interval spanned by v0 and v6. Every edge of the 9-cycle is
disjoint from at least one of the two green edges z, v0 and z, v6 and the edge
v7, v8 is disjoint from both. This shows that the weighted loss of this drawing is
at least 10.

A sequence of eight consecutive edges of span 3 forces the last edge to also
have span 3. Hence, we have at least two red edges e and f of span at most 2.
Each of these edges is disjoint from at least two independent red edges. Since
the two edges may be disjoint they contribute a weighted loss of at least 3k. For
k > 4 this exceeds the weighted loss of the drawing of Fig. 2.

On the Maximum Crossing Number 69

4 Complexity

Very recently, Bald et al. [2] showed, by reduction from MaxCut, that it is NP-
hard to compute the maximum rectilinear crossing number max-cr(G) of a given
graph G. Their reduction also shows that it is hard to approximate the weighted
case better than ≈0.878 assuming the Unique Games Conjecture and better than
16/17 assuming P 	= NP. In the convex case, one can “guess” the permutation;
hence, this special case is in NP. Bald et al. also stated that rectilinear crossing
maximization is similar to rectilinear crossing minimization in the sense that
the former “inherits” the membership in the class of the existential theory of
the reals (∃R), and hence in PSPACE, from the latter. They also showed how to
derandomize Verbitsky’s approximation algorithm [25] for max-cr, turning the
expected approximation ratio of 1/3 into a deterministic one.

We now tighten the hardness results of Bald et al. by showing APX-hardness
for the unweighted case. Recall that MaxCut is NP-hard to approximate beyond
a factor of 16/17 [13]. Under the Unique Games Conjecture, MaxCut is hard
to approximate even beyond a factor of ≈0.878 [15]—the approximation ratio
of the semidefinite programming approach of Goemans and Williamson [10] for
MaxCut. For a graph G, let max-cut(G) be the maximum number of edges
crossing a cut, over all cuts of G.

Theorem 1. Given a graph G, max-cr(G) cannot be approximated better than
MaxCut.

Proof. As Bald et al., we reduce from MaxCut. In their reduction, they add a
large-enough set I of independent edges to the given graph G. They argue that
max-cr(G+ I) is maximized if the edges in I behave like a single edge with high
weight that is crossed by as many edges of G as possible. Indeed, suppose for
a contradiction that, in a drawing with the maximum number of crossings, an
edge e ∈ I crosses fewer edges than another edge e′ in I. Then e can be drawn
such that its endpoints are so close to the endpoints of e′ that both edges cross
the same edges—and each other. This would increase the number of crossings; a
contradiction. W.l.o.g., we can make the “heavy edge” so long that its endpoints
lie on the convex hull of the drawing. Then the heavy edge induces a cut of G.
The cut is maximum as the heavy edge can be made arbitrarily heavy.

Instead of adding a set I of independent edges to G, we add a star St with
t =

(
m
2

)
+ 1 edges, where m = |E(G)|. Then, max-cr(G) < t. The advantage of

the star is that all its edges are incident to the same vertex and, hence, cannot
cross each other. Let G′ = G + St be the resulting graph. Exactly as for the
set I above, we argue that all edges of St must be crossed by the same number
of edges of G, and must in fact form a cut of G. Hence, we get

t·max-cut(G) ≤ max-cr(G′) ≤ t·max-cut(G)+max-cr(G) < t·(max-cut(G)+1).

This yields max-cut(G) = �max-cr(G′)/t. Hence, any α-approximation for max-
imum rectilinear crossing number yields an α-approximation for MaxCut. ��

70 M. Chimani et al.

With the same argument, we also obtain hardness of approximation for
max-cr◦, which was only shown NP-hard by Bald et al. [2]. The reason is that in
the convex setting, too, the “heavy obstacle” splits the vertex set into a “left”
and a “right” side.

Corollary 1. Given a graph G, max-cr◦(G) cannot be approximated better than
MaxCut.

The weighted topological case is defined as follows. For a graph G with pos-
itive edge weights w : E → Q>0 and a drawing D of G, let max-wt-cr(D) =∑

e crosses e′ w(e) · w(e′) be the weighted maximum crossing number of D, and
let max-wt-cr(G) be the maximum weighted crossing number of G, that is, the
maximum of wt-cr(D) over every drawing D of G. Let MaxWtCrNmb be the
problem of computing the weighted maximum crossing number of a given graph.

Compared to the rectilinear and the convex case above, the difficulty of
the topological case is that an obstacle (such as the heavy star above) does
not necessarily separate the vertices into “left” and a “right” groups any more.
Instead, our new obstacle separates the vertices into an “inner” group and an
“outer” group, which allows us to reduce from a cut-based problem.

Our new starting point is the NP-hard problem 3MaxCut [27], which is the
special case of MaxCut where the input graph is required to be 3-regular.

Theorem 2. Given an edge-weighted graph G and a rational number c > 0, it
is NP-complete to decide whether max-wt-cr(G) ≥ c.

Proof. Clearly, topological crossing maximization is in NP since we can guess a
rotation system for the given graph and, for each edge, the ordered subset of the
other edges that cross it. In polynomial time, we can then check whether (a) the
weights of the crossings sum up to the given threshold c, and (b) the solution
is feasible, simply by realizing the crossings via dummy vertices of degree 4 and
testing for planarity of the so-modified graph.

To show NP-hardness, we reduce from 3MaxCut. Given an instance of
3MaxCut, that is, a 3-regular graph G and an integer k > 0, we construct
an instance of topological crossing maximization, that is, a weighted graph G′

and a rational number c′ > 0 such that G has a cut crossed by at least k edges if
and only if G′ has a drawing with weighted crossing number at least c′. Let G′

be the disjoint union of G with edges of weight 1 and a single triangle T with
edges of (large) weight t. Let n be the number of vertices and m the number of
edges of G. Due to the 3-regularity of G, we have m = 3n/2. We set t = 9n2/8
and c′ = t(2m + k).

Let (V1, V2) be a solution of 3MaxCut, that is, a cut of G crossed by k
edges. We need to show that this implies max-wt-cr(G′) ≥ c′. We construct a
drawing D′ of G′ as in Fig. 3. For i ∈ {1, 2}, let Mi be the edge set of G[Vi].
We can route the edges of G such that each of the k edges in the cut crosses all
three edges of T and each of the m − k edges in M1 ∪ M2 crosses exactly two

On the Maximum Crossing Number 71

Fig. 3. Given a 3-regular graph G, a drawing of G′ =
G+T with the maximum number of crossings yields
a maximum cut of G if the edges of triangle T have
much larger weight than the edges of G. The edges
(in the light blue region) that cross T trice are in
the cut. (Color figure online)

Fig. 4. A crossingmaximal draw-
ing of the complete tripartite
graph Kk,k,k

edges of T . Hence, max-wt-cr(G′) ≥ max-wt-cr(D′) ≥ t(3k + 2(m − k)) = c′ as
desired.

Conversely, let D′ be any drawing of G′ and let c′ = max-wt-cr(D′). We
need to show that G = G′ − T has a cut that is crossed by at least �c′/t − 2m
edges. As incident edges cannot cross, the triangle T of G′ must be drawn in D′

without self-crossings. Since max-cr(G) ≤ (
m
2

)
=

(
3n/2
2

)
< 9n2/8 = t, we have

that x = �c′/t is the number of crossings between edges of G and edges of T .
Let V1 be the set of vertices of G in the interior of T , and let V2 = V \ V1.

Consider the cut (V1, V2), and let k be the number of edges crossing this cut.
Each of these k edges contributes at most 3 to x, and each of the m − k edges
that lie in G[V1] or G[V2] contributes at most 2 to x (as in Fig. 3). Hence,
x ≤ 3k + 2(m − k) = k + 2m, and k ≥ x − 2m = �c′/t − 2m as desired.

Clearly, our reduction takes polynomial time. ��
We now set out to strengthen the result of Theorem 2; we want to show that

even the maximum unweighted crossing number is hard to compute. Observe that
in the above proof, the given graph G from the 3MaxCut instance remained
unweighted, but we required a heavily weighted additional triangle T . Our goal
is now, essentially, to substitute T with an unweighted structure that serves
the same purpose. Unfortunately, due to the large number of crossings of this
new structure, we cannot make any statement about non-approximability of
the unweighted case. The näıve approach of simply adding multiple unweighted
triangles does not easily work since already the entanglement of the triangles
among each other is non-trivial to argue.

Theorem 3. Given a graph G, max-cr(G) is NP-complete to compute.

Proof. The membership in NP follows from Theorem 2. To argue hardness, given
an instance G of 3MaxCut, we construct an unweighted graph G′—the instance

72 M. Chimani et al.

for computing max-cr(G′)—as the disjoint union of G and a complete tripartite
graph K := Kk,k,k with k vertices per partition set, k >

√
9/8 · n. A result of

Harborth [12] yields max-cr(K) =
(
3k
4

) − 3
(
k
4

) − 6k
(
k
3

) ∈ Θ(k4).
We first analyze a crossing-maximal drawing of K; see Fig. 4. Consider a

straight-line drawing “on a regular hexagon H”. Let V1, V2, V3 be the partition
sets of K and label the edges of H cyclically 1, 2, . . . , 6. Place Vi, 1 ≤ i ≤ 3, along
edge 2i of H. We claim that max-cr(K) is achieved by this drawing. In fact, the
arguments are analogous to the maximality of the näıve drawing for complete
bipartite graphs on two layers: a 4-cycle can have at most one crossing. In the
above drawing, every 4-cycle has a crossing. On the other hand, any crossing in
any drawing of K is contained in a 4-cycle.

Intuitively, when thinking about shrinking the sides 1, 3, 5 in H, we obtain
a drawing akin to T in the hardness proof for the maximum weighted crossing
number. It remains to argue that there is an optimal drawing of full G′ where
K is drawn as described. Consider a drawing realizing max-cr(G′) and note that
any triangle in K is formed by a vertex triple, with a vertex from each partition
set. Pick a triple τ = (v1, v2, v3) ∈ V1 × V2 × V3 that induces a triangle Tτ with
maximum number of crossings with G among all such triangles. Now, redraw K
along Tτ according to the above drawing scheme such that, for i = 1, 2, 3, it
holds that (a) all vertices of Vi are in a small neighborhood of vi and (b) any
edge (wi, wj) ∈ Vi ×Vj for some j 	= i crosses exactly the same edges of G as the
edge (vi, vj). Our new drawing retains the same crossings within G′, achieves
the maximum number of crossings within K, and does not decrease the number
of crossings between K and G; hence it is optimal. In this drawing, K plays the
role of the heavy triangle T in the hardness proof of the weighted case, again
yielding NP-hardness. ��

5 Conclusions and Open Problems

We have considered the crossing maximization problem in the topological, rec-
tilinear, and convex settings. In particular, we disproved a conjecture of Alpert
et al. [1] that the maximum crossing number in the latter two settings always
coincide. We proposed the new “separated drawing” setting, and ask whether
for every bipartite graph the maximum rectilinear, maximum convex, maximum
separated, and maximum separated convex crossing numbers coincide. In par-
ticular, for bipartite graphs, the separation of the rectilinear and the separated
convex setting is still open.

We have shown that the maximum rectilinear crossing number is APX-hard
and the maximum topological crossing number is NP-hard. Is the latter also
APX-hard? We have shown this to be true in the weighted topological case.
It also remains open whether rectilinear crossing maximization is in NP. For
planar graphs, MaxCut is tractable, and our hardness arguments no longer
apply, leaving open the complexity of computing the maximum crossing number
for this graph class.

On the Maximum Crossing Number 73

Acknowledgments. This work started at the 2016 Bertinoro Workshop of Graph
Drawing. We thank the organizers and other participants for discussions, in particu-
lar Michael Kaufmann. We also thank Marcus Schaefer, Gábor Tardos, and Manfred
Scheucher.

References

1. Alpert, M., Feder, E., Harborth, H.: The maximum of the maximum rectilinear
crossing numbers of d-regular graphs of order n. Electron. J. Combin. 16(1), 54
(2009)

2. Bald, S., Johnson, M.P., Liu, O.: Approximating the maximum rectilinear crossing
number. In: Dinh, T.N., Thai, M.T. (eds.) COCOON 2016. LNCS, vol. 9797, pp.
455–467. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42634-1 37

3. Baltzer, R.: Eine Erinnerung an Möbius und seinen Freund Weiske. Berichte über
die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu
Leipzig. Mathematisch-Physische Classe 37, 1–6 (1885)

4. Berman, P., Karpinski, M.: On some tighter inapproximability results (Extended
Abstract). In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP
1999. LNCS, vol. 1644, pp. 200–209. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-48523-6 17

5. Çakiroglu, O.A., Erten, C., Karatas, Ö., Sözdinler, M.: Crossing minimization in
weighted bipartite graphs. J. Discret. Algorithms 7(4), 439–452 (2009)

6. Chimani, M., Felsner, S., Kobourov, S., Ueckerdt, T., Valtr, P., Wolff, A.: On the
maximum crossing number. J. Graph Algorithms Appl. 22, 67–87 (2018)

7. Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algo-
rithmica 11, 379–403 (1994)

8. Furry, W., Kleitman, D.: Maximal rectilinear crossing of cycles. Stud. Appl. Math.
56(2), 159–167 (1977)

9. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Alg. Disc.
Methods 4, 312–316 (1983)

10. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. J. ACM 42(6),
1115–1145 (1995)

11. Grünbaum, B.: Arrangements and spreads. In: CBMS Regional Conference Series
in Mathematics, vol. 10. AMS, Providence, RI (1972)

12. Harborth, H.: Parity of numbers of crossings for complete n-partite graphs. Math-
ematica Slovaca 26(2), 77–95 (1976)

13. H̊astad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)
14. Kang, M., Pikhurko, O., Ravsky, A., Schacht, M., Verbitsky, O.: Obfuscated draw-

ings of planar graphs. ArXiv (2008). http://arxiv.org/abs/0803.0858v3
15. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results

for MAX-CUT and other 2-variable CSPs? SIAM J. Comput. 37(1), 319–357
(2007)

16. Lovász, L., Pach, J., Szegedy, M.: On Conway’s thrackle conjecture. Discret. Com-
put. Geom. 18(4), 369–376 (1997)

17. Nagamochi, H.: An improved bound on the one-sided minimum crossing number
in two-layered drawings. Discret. Comput. Geom. 33(4), 569–591 (2005)

18. Piazza, B., Ringeisen, R., Stueckle, S.: Properties of nonminimum crossings for
some classes of graphs. In: Proceedings of Graph Theory, Combinatorics, and
Applications, pp. 975–989 (1991)

https://doi.org/10.1007/978-3-319-42634-1_37
https://doi.org/10.1007/3-540-48523-6_17
https://doi.org/10.1007/3-540-48523-6_17
http://arxiv.org/abs/0803.0858v3

74 M. Chimani et al.

19. Ringeisen, R., Stueckle, S., Piazza, B.: Subgraphs and bounds on maximum cross-
ings. Bull. Inst. Combin. Appl. 2, 9–27 (1991)

20. Ringel, G.: Extremal problems in the theory of graphs. In: Proceedings of Theory
of Graphs and its Applications (Smolenice 1963), pp. 85–90 (1964)

21. Schaefer, M.: The graph crossing number and its variants: a survey. Electron. J.
Combin. 100 p. (2014). Dynamic Survey #DS21. http://www.combinatorics.org/
ojs/index.php/eljc/article/view/DS21

22. Shahrokhi, F., Sýkora, O., Székely, L.A., Vrt’o, I.: On bipartite drawings and the
linear arrangement problem. SIAM J. Comput. 30, 1773–1789 (2001)

23. Staudacher, H.: Lehrbuch der Kombinatorik: Ausführliche Darstellung der Lehre
von den kombinatorischen Operationen (Permutieren, Kombinieren, Variieren). J.
Maier, Stuttgart (1893)

24. Steinitz, E.: Über die Maximalzahl der Doppelpunkte bei ebenen Polygonen von
gerader Seitenzahl. Mathematische Zeitschrift 17(1), 116–129 (1923)

25. Verbitsky, O.: On the obfuscation complexity of planar graphs. Theoret. Comput.
Sci. 396(1), 294–300 (2008)

26. Woodall, D.R.: Thrackles and deadlock. In: Welsh, D. (ed.) Proceedings of Com-
binatorial Mathematics and its Applications, pp. 335–347. Academic Press, Cam-
bridge (1971)

27. Yannakakis, M.: Node- and edge-deletion NP-complete problems. In: Proceedings
of 10th Annual ACM Symposium Theory Computer (STOC 1978), pp. 253–264.
ACM (1978)

http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS21
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS21

Approximation Results for the
Incremental Knapsack Problem

Federico Della Croce1,2(B), Ulrich Pferschy3, and Rosario Scatamacchia1

1 Dipartimento di Automatica e Informatica, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

{federico.dellacroce,rosario.scatamacchia}@polito.it
2 CNR, IEIIT, Torino, Italy

3 Department of Statistics and Operations Research, University of Graz,
Universitaetsstrasse 15, 8010 Graz, Austria

pferschy@uni-graz.at

Abstract. We consider the 0–1 Incremental Knapsack Problem where
the knapsack capacity grows over time periods and if an item is placed in
the knapsack in a certain period, it cannot be removed afterwards. The
problem calls for maximizing the sum of the profits over the whole time
horizon. In this work, we manage to prove the tightness of some approx-
imation ratios of a general purpose algorithm currently available in the
literature. We also devise a Polynomial Time Approximation Scheme
(PTAS) when the input value indicating the number of periods is con-
sidered as a constant. Then, we add the mild and natural assumption
that each item can be packed in the first time period. For this variant,
we discuss different approximation algorithms suited for any number of
time periods and provide an algorithm with a constant approximation
factor of 6

7
for the case with two periods.

1 Introduction

We consider the 0–1 Incremental Knapsack Problem (IKP) as introduced in [2].
IKP is a generalization of the standard 0–1 Knapsack Problem (KP) ([4]) where
the capacity grows over T time periods. If an item is placed in the knapsack
in a certain period, it cannot be removed afterwards. The problem calls for
maximizing the sum of the profits over the whole time horizon.

IKP has many real-life applications since, from a practical perspective, it is
often required in resource allocation problems to deal with changes in the input
conditions and/or in a multi-period optimization framework. In [2], incremen-
tal versions of maximum flow, bipartite matching, and knapsack problems are
introduced. The authors in [2] discuss the complexity of these problems and show
how the incremental version even of a polynomial time solvable problem, like the
max flow problem, turns out to be NP–hard. General techniques to adapt the
algorithms for the considered optimization problems to their respective incre-
mental versions are discussed. Also, a general purpose approximation algorithm
is introduced.
c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 75–87, 2018.
https://doi.org/10.1007/978-3-319-78825-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_7&domain=pdf

76 F. Della Croce et al.

In [1], it is shown that IKP is strongly NP–hard. In addition, a PTAS is
derived for IKP under the assumption that T is in O(

√
log n), where n is the

number of items. A constant factor algorithm is also provided under mild restric-
tions on the growth rate of the knapsack capacity. For further details on the
matter, see [1].

In this work, we prove, first, the tightness of some approximation ratios
derived in [2]. Then, we devise a PTAS for IKP when the number of time periods
T is a constant. While this is a stronger assumption than the one made for the
PTAS in [1], our algorithm is much simpler and does not require a huge number
of complicated LP models.

Finally, we consider the case where each item can be packed in the first
period. Under this assumption, we give further insights into IKP and manage to
derive several approximation algorithms for any T . We focus also on the variant
with T = 2 and show an algorithm with a tight approximation factor of 6

7 . Due
to limits in paper’s length some of the results are given without proofs.

2 Notation and Problem Formulation

In IKP a set of n items is given together with a knapsack with increasing capacity
values ct over time periods t = 1, . . . , T . Each item i has an integer profit pi ≥ 0
and an integer weight wi ≥ 0. If an item is placed in the knapsack, it cannot
be removed at a later time. The problem calls for maximizing the total profit of
the selected items without exceeding the knapsack capacity over the given time
horizon.

In order to derive an ILP-formulation, we associate with each item i a 0/1
variable xit such that xit = 1 iff item i is contained in the knapsack in period t.
IKP can be formulated by the following ILP model (denoted by (IKP)):

(IKP):

maximize
T∑

t=1

n∑

i=1

pixit (1)

subject to
n∑

i=1

wixit ≤ ct t = 1, . . . , T ; (2)

xi(t−1) ≤ xit i = 1, . . . , n, t = 2, . . . , T ; (3)
xit ∈ {0, 1} i = 1, . . . , n, t = 1, . . . , T. (4)

The cost function (1) maximizes the sum of the profits over the time horizon.
Constraints (2) guarantee that the items weights sum does not exceed capacity
ct in each period t. Constraints (3) ensure that an item chosen at time t cannot
be removed afterwards. Constraints (4) indicate that all variables are binary.

We remark that the linear relaxation of model (IKP), denoted by IKPLP

and where constraints (4) are replaced by the inclusion in the interval [0, 1], can
be easily computed. In fact, it suffices to order the items by non-increasing pi

wi

and to fill the capacity of the knapsack in each period according to this ordering.

Approximation Results for the Incremental Knapsack Problem 77

In the following, we will denote by z∗ the optimal solution value of model
(IKP) and by zX the solution value yielded by a generic algorithm X. For
each period t and the related capacity value ct, we define the corresponding
standard knapsack problem as KPt. This means that in KPt we consider only
one of the T constraints (2). The optimal solution value of each KPt will be
denoted by zt. Finally, we define for a generic item set S the canonical weight
sum w(S) :=

∑
j∈S wj and profit sum p(S) :=

∑
j∈S pj .

3 Approximating IKP

3.1 Approximation Ratios of a General Purpose Algorithm

In [2], a general framework for deriving approximation algorithms is provided.
Following the scheme in [2] for IKP, we consider the following algorithm A. The
algorithm employs an ε–approximation scheme to obtain a feasible solution for
each knapsack problem KPt. Denote the corresponding solution value by zA

t for
t = 1, . . . , T . Each such solution is also a feasible solution for IKP where zA

t is
present in all successive time periods. The algorithm chooses as a solution value
zA the maximum among all these candidates, i.e.

zA = max
t=1,...,T

{(T − t + 1)zA
t }. (5)

The following Theorem which is a reformulation of Theorem 3 in [2] holds.

Theorem 1. Algorithm A is an approximation algorithm for IKP with ratio
bounded by 1−ε

HT
, where HT is the harmonic number 1 + 1

2 + · · · + 1
T .

At the present state of the art, the tightness of the bound is an open question.
We consider here the case where algorithm A solves each KPt to optimality.
Hence we have zA

t = zt for t = 1, . . . , T . And the corresponding approximation
ratio is 1

HT
.

We prove the tightness of this bound by an alternative model. Consider an
LP formulation with non-negative variables hA and ht associated with zA and
zA
t respectively and a positive parameter OPT > 0 associated with z∗. The

corresponding LP model for evaluating the worst case performance of algorithm
A is as follows:

minimize hA (6)

subject to hA ≥ (T − t + 1)ht t = 1, . . . , T ; (7)
T∑

t=1

ht ≥ OPT (8)

ht ≥ 0 t = 1, . . . , T. (9)

The value of the objective function (6) provides a lower bound on the worst case
performance of algorithm A. Constraints (7) guarantee that the contribution of

78 F. Della Croce et al.

each knapsack problem KPt as a solution of IKP will be taken into account
according to (5). Constraint (8) indicates that the sum of the optimal KPs
solution values zA

t over all T knapsack problems constitute a trivial upper bound
on z∗. We will denote the optimal value of hA and ht (t = 1, . . . , T) by hA∗

and
h∗

t respectively. By setting parameter OPT to an arbitrary positive value, the
corresponding lower bounds on the performance ratio of algorithm A for any T

are given by hA∗

OPT .
Model (6)–(9) allows us to prove the tightness of the approximation bound

1
HT

of algorithm A.

Theorem 2. For any value of T , if algorithm A solves to optimality each KPt,
t = 1, . . . , T , the approximation ratio 1

HT
of the algorithm is tight for IKP.

Proof. We first provide a characterization of the optimal solution of model (6)–
(9) and show that, for any T, the bound hA∗

OPT is actually equal to 1
HT

. Given
the model constraints, we note that the optimal value hA∗

will be naturally
equal to at least one of the right–hand side values (T − t + 1)h∗

t of constraints
(7). Also, the optimal solution will always fulfill

∑T
t=1 h∗

t = OPT . Suppose by
contradiction that there is an optimal solution with

∑T
t=1 h∗

t > OPT . In such a
case, we could always decrease hA∗

by jointly decreasing the corresponding h∗
t

values (i.e. such that hA∗
= (T − t + 1)h∗

t), thus contradicting the optimality
of the solution. In the optimal solution all right–hand side values of constraints
(7) will reach the same value. Suppose again by contradiction that there exists
an optimal solution where this structure does not hold, i.e. there are two time
periods t′ and t′′ with (T − t′ + 1)ht′ = max

t
{(T − t + 1)ht} > (T − t′′ + 1)ht′′ .

In this case, we could lower the objective by decreasing ht′ and increasing ht′′

by the same value thus preserving the equality in (8) but allowing a decrease of
hA, which contradicts the claim. Based on this structural property, computing
the optimal solution of the LP model amounts to solving the following system
with T + 1 equations in T + 1 unknowns inducing a unique solution:

⎧
⎪⎨

⎪⎩

h∗
t = hA∗

T−t+1 t = 1, . . . , T
T∑

t=1
h∗

t = OPT
(10)

Indeed, by combining the first T equations with the latter one, we have that

hA∗

T
+

hA∗

T − 1
+ · · · + hA∗

= HT hA∗
= OPT =⇒ hA∗

=
OPT

HT

(11)

that is hA∗

OPT = 1
HT

. To prove the tightness of the bound 1
HT

, notice from (10)
and (11) that we have

h∗
t =

OPT

HT (T − t + 1)
t = 1, . . . , T. (12)

Approximation Results for the Incremental Knapsack Problem 79

Then, it suffices to derive instances where the optimal solution values of KPs in
each period are equal to h∗

t for t = 1, . . . , T , and the optimal solution value for

IKP is equal to the sum of all these solutions, namely z∗ =
T∑

t=1
h∗

t . Such target

instances can be generated by the following procedure:

1. We first represent the harmonic number HT as a fraction, i.e. HT = a
b where b

is the smallest common multiple of the denominators of the fractions 1
2 + · · ·+

1
T . Then, we set OPT = a and solve model (6)–(9) according to (11)–(12).
This setting guarantees to get integer values h∗

t .
2. Then, we generate an IKP instance with: n = b, pj = wj = 1 (j = 1, . . . , n),

ct = h∗
t (t = 1, . . . , T). The optimal solution of each KPt will pack items until

the corresponding capacity ct is fulfilled and thus will yield a solution value
equal to h∗

t . The number of items is b because the capacity in the last period
T is cT = h∗

T = OPT
HT (T−T+1) = a

a
b

= b. At the same time, the optimal solution
for IKP can be obtained by progressively packing all items over time periods

while filling the capacities ct, hence z∗ =
T∑

t=1
ct =

T∑
t=1

h∗
t . ��

As an example of the outlined procedure, consider the case with T = 3 for
which HT = 11

6 . We solve model (6)–(9) by setting OPT = 11. Then, the
following instance with n = 6, pj = wj = 1 (j = 1, . . . , 6), c1 = 2, c2 = 3,
c3 = 6 is generated. The optimal solution is given by packing all items over
time periods and filling the corresponding capacities (z∗ = 11). The optimal
solutions values of the KPs are equal to 2, 3, 6 respectively. Hence we have
zA = max{3 ∗ 2, 2 ∗ 3, 6} = 6 which proves the tightness of the approximation
bound 1

H3
= 6

11 .
We remark that the bound tightness cannot be straightforwardly generalized

when an ε–approximation scheme is adopted for solving each KP. We could get
the ratio in Theorem1 by solving model (6)–(9) where the term

∑T
t=1 ht in

constraint (8) is divided by (1 − ε). However, the generation of tight instances
is strictly related to the choice of the approximation algorithm for KPs.

3.2 A PTAS When T is a Constant

Similarly to the line of reasoning for deriving PTAS’s for KP (see, e.g., [5]), we
propose an approximation scheme for IKP based on guessing the k items with
largest profits in an optimal solution. We first define the following variant of
algorithm A described in Sect. 3.1, denoted as algorithm A′. We run an FPTAS
for each time period t yielding ε-approximations zA′

t . Then we also consider
an alternative solution for IKP derived by computing the optimal solution of
IKPLP and rounding down all fractional variables to 0. Thus, we get a feasible
solution for IKP with solution value z′. Finally, we take the maximum between
these T + 1 candidates reaching a solution value zA′

, namely

zA′
= max{z′, max

t
{(T − t + 1)zA′

t }}. (13)

80 F. Della Croce et al.

Since computing z′ requires O(n log n) and the running time of the FPTAS for
KP can be bounded by O(n log(1ε) + (1ε)3 log2(1ε)) (see [3]) the overall running
time of algorithm A′ is O(n log n + T (n log(1ε) + (1ε)3 log2(1ε))).

A useful property of algorithm A′ is the following. Because of the special
structure of IKPLP , at most T fractional variables will be rounded down to get
z′. Thus, we have that

z∗ ≤ z′ + Tpmax ≤ zA′
+ Tpmax (14)

where pmax is the maximum profit of any item.
The overall approximation ratio of algorithm A′, denoted by ρ, can be stated

by considering the solution values zA′
t in each time period. Hence, according to

Theorem 1, we have ρ = 1−ε
HT

.
We can now state our approximation scheme, denoted by algorithm Approx,

as follows:

1. We sort the items by decreasing efficiency pj

wj
and guess the k items with

largest profits in an optimal solution. Also, we guess how these k items are
distributed over the T periods. This corresponds to consider O(nk) choices
for the items and O(kT) possible choices for their distributions over time. We
set k := min

{
n,

⌈
T
ε

⌉}
.

2. For each distribution of the items, we consider the remaining IKP instance.
Let Pr(k) be the overall profit contribution of the k items. We denote by cR

t

the residual capacities after the items insertion in each period t.
3. To keep the incremental structure of the problem, we set cR

t = min{cR
t , cR

t+1}
in decreasing order of t, i.e. for t = T − 1, . . . , 1. The corresponding residual
IKP instance is denoted by R.

4. Given the items ordering, we apply algorithm A′ to instance R getting a
solution value zA′

R . The sum zA′
R + Pr(k) yields the related solution value.

5. The overall best solution over all choices of k with value zApprox is returned.

The following proposition holds.

Proposition 1. The running time complexity of Algorithm Approx is polyno-
mial in the size n of the input.

Proof. The running time is given by the initial sorting of the items and by the
running time of algorithm A′ (without the sorting contribution) multiplied by
O(nkkT). Thus, the overall complexity is

O(n log n + n� T
ε �(

⌈T

ε

⌉
)T T (n log(

1
ε
) + (

1
ε
)3 log2(

1
ε
))). �� (15)

The following theorem holds.

Theorem 3. Algorithm Approx is a PTAS for IKP when T is a constant.

Proof. Omitted.

Approximation Results for the Incremental Knapsack Problem 81

We remark that [1] introduces a PTAS for T in O(
√

log n) thus providing a
stronger result. Still, the PTAS in [1] relies on solving a large number, namely
O(n(1ε + T)O(log(T

ε)/ε2)), of non-trivial LP models. Our approach instead does
not require the solution of LP models and requires lower complexity. Hence, it
constitutes an appealing approximation algorithm for reasonable values of T .

4 Approximation Algorithms for a Relevant IKP Variant

In this section we consider IKP under the mild assumption that each item can
be packed in the first period, i.e. wi ≤ c1, i = 1, . . . , n. We refer to this variant of
the problem as IKP ′. Let us denote by st the split items in the linear relaxation
of each KPt for t = 1, . . . , T , which also correspond to the fractional items in
the optimal solution of IKPLP . We state the following algorithm H1:

1. We first sort items by decreasing pi

wi
and solve IKPLP .

2. We pack either items j = 1, . . . , s1 − 1 or item s1 by taking the maximum
between their profit contributions

∑s1−1
j=1 pj and ps1 in all time periods before

these items are entirely packed in the optimal solution of IKPLP .
3. From then on, we take the rest of the optimal solution of IKPLP without

any fractional item.

The following theorem holds.

Theorem 4. Algorithm H1 has a tight 1
2 -approximation ratio for IKP ′.

Proof. Consider the optimal solution values zt of KPt for t = 1, . . . , T . From the
properties of KP and since items are ordered by decreasing pi

wi
, we have

max

⎧
⎨

⎩

st−1∑

j=1

pj , pst

⎫
⎬

⎭ ≥ 1
2
zt t = 1, . . . , T. (16)

st−1∑
j=1

pj

st−1∑
j=1

wj

≥ pst

wst

t = 1, . . . , T. (17)

Let t̂ be the first period when items 1, . . . , s1 are fully packed in the optimal
solution of IKPLP (i.e. st̂
= s1). Algorithm H1 yields a solution with value

zH1 = (t̂ − 1) · max

⎧
⎨

⎩

s1−1∑

j=1

pj , ps1

⎫
⎬

⎭ +
T∑

t=t̂

st−1∑

j=1

pj . (18)

82 F. Della Croce et al.

Since inequalities
∑st−1

j=1 wj ≥ ∑s1
j=1 wj > c1 ≥ wi hold for any item i and t ≥ t̂,

from (17) we get
∑st−1

j=1 pj > pst
for any t ≥ t̂ and thus

max

⎧
⎨

⎩

st−1∑

j=1

pj , pst

⎫
⎬

⎭ =
st−1∑

j=1

pj t = t̂, . . . , T. (19)

Considering (16), (18), (19) and that
∑T

t=1 zt is an upper bound on z∗, we get

zH1 ≥ 1
2

t̂−1∑

t=1

zt +
1
2

T∑

t=t̂

zt ≥ 1
2
z∗ (20)

which shows that algorithm H1 has a relative performance guarantee of 1
2 .

To prove the bound tightness, consider the following instance with ct = M +t
for t = 1, . . . , T (with integer M � T) and 3 items with entries

p1 =
M

2
+ δ, w1 =

M

2
; p2 =

M

2
+T +1, w2 =

M

2
+T +1; p3 =

M

2
− δ, w3 =

M

2
;

with δ > 0 being an arbitrary small number. Algorithm H1 will select only the
second item over all time periods getting a solution with value T (M

2 + T + 1).
The optimal IKP ′ solution will pack items 1 and 3 for all periods reaching a
value of T · M . Hence, the approximation ratio of the algorithm is

T (M
2 + T + 1)

TM
=

1
2

+
T + 1

M

which reaches a value arbitrarily close to 1
2 for large values of M . ��

We consider now an algorithm, denoted as H2, which considers the periods
from t = T to t = 1 and computes in each step an optimal knapsack solution.
The algorithm works as follows:

1. We solve KPT to optimality.
2. Iteratively going back over periods t = T − 1, . . . , 1, we solve to optimality

the problem induced by restricting the available item set for KPt to the set
of items packed in the preceding period for t + 1.

The following theorem holds.

Theorem 5. Algorithm H2 has a tight (12 + 1
2T)-approximation ratio for IKP ′.

Proof. Let Ot be the set of items selected in period t by the optimal IKP ′

solution and It the items packed by H2. For any arbitrary period t ≤ T − 1 we
construct an auxiliary item set Q as follows. At first insert all items in It+1 ∩Ot

into Q. Clearly, their total weight cannot exceed ct. Then we continue adding
items from It+1 in arbitrary order as long as w(Q) ≤ ct. Let us denote by r the

Approximation Results for the Incremental Knapsack Problem 83

first item considered in this process violating this weight bound. Hence, in any
period t ≤ T − 1 we have that

w(Q) ≤ ct, (21)
w(Q) + wr > ct. (22)

Since by definition w(Ot) ≤ ct, we also have

w(Q) + wr > w(Ot). (23)

All items in It+1 and thus also all items in set Q and item r are part of the
optimal solution of KPT . Therefore, with (23) the following inequality holds:

p(Q) + pr ≥ p(Ot) (24)

Otherwise we could improve the optimal solution value of KPT by replacing the
items in set Q and r with the items in set Ot (also if some items of Ot are already
contained in Q). We consider now the solution value contribution zH2

t yielded by
algorithm H2 in period t, namely zH2 =

∑T
t=1 zH2

t with zH2
T being the optimal

solution value of KPT . We have zH2
t ≥ pr and zH2

t ≥ p(Q) since, by definition,
item set Q constitutes a feasible solution for KPt. Thus we get with (24) that:

zH2
t ≥ 1

2
p(Ot) t = 1, . . . , T − 1 (25)

Note that if there isn’t any item r, i.e. all items packed by algorithm H2 in period
t+1 fit in period t as well, we have zH2

t = zH2
t+1. Increasing t towards T we either

find an iteration t′ > t where such an item r exists and thus from above zH2
t =

zH2
t′ ≥ 1

2 p(Ot′) ≥ 1
2 p(Ot), or we would even get zH2

t = zH2
T ≥ p(OT) ≥ p(Ot).

Moreover, since zH2
T ≥ p(Ot) for t = 1, . . . , T , the following inequality holds:

zH2
T ≥ 1

T − 1

T−1∑

t=1

p(Ot) (26)

Correspondingly, we have that:

zH2

z∗ =

T∑
t=1

zH2
t

T∑
t=1

p(Ot)
≥

zH2
T +

T−1∑
t=1

zH2
t

zH2
T +

T−1∑
t=1

p(Ot)
≥

zH2
T + 1

2

T−1∑
t=1

p(Ot)

zH2
T +

T−1∑
t=1

p(Ot)
(27)

≥
1

T−1

T−1∑
t=1

p(Ot) + 1
2

T−1∑
t=1

p(Ot)

1
T−1

T−1∑
t=1

p(Ot) +
T−1∑
t=1

p(Ot)
=

1
2 (T + 1)

T
=

1
2

+
1

2T
(28)

The first two inequalities derive from zH2
T ≥ p(OT) and from (25) respectively.

The last inequality is due to the fact that the value of the last term of expression
(27) decreases with the decrease of zH2

T which is lower bounded by (26).

84 F. Della Croce et al.

To prove the tightness of the bound, we consider the following instance with
capacities ct = M + t for t = 1, . . . , T (with M � T) and 3 items with entries

w1 =
M

2
+ T, p1 =

1
2

+ δ, w2 =
M

2
, p2 =

1
2
, w3 = M, p3 = 1.

Algorithm H2 will select items 1 and 2 n period T and only item 1 in the
other periods. The corresponding solution value is zH2 = T (12 + δ) + 1

2 . The
optimal solution will pack only item 3 in all periods, thus, z∗ = T . Hence,
zH2

z∗ = 1
2 + δ + 1

2T , which shows the claim as δ goes to 0. ��

4.1 Approximation for T = 2

We consider now IKP ′ with T = 2 and the following algorithm denoted as H3.

1. We solve to optimality KP1. We then solve KP2 where the optimal solution
set of items in KP1 is placed inside the knapsack.

2. As an alternative solution, we first solve to optimality KP2. Then, we consider
the optimal set of items in KP2 and solve KP1 with these items only.

3. The best solution found is returned.

The following theorem holds.

Theorem 6. Algorithm H3 has a tight 6
7 -approximation ratio for IKP ′ with

T = 2.

Proof. Let us define the following subsets of items Si:

– S1: subset of items included both in the optimal solutions of KP1 and KP2;
– S2: remaining items subset in the optimal solution of KP1;
– S3: remaining items subset not exceeding capacity c1 in the optimal solution

of KP2;
– S4: first item exceeding c1 in the optimal solution of KP2;
– S5: remaining items subset in the optimal solution of KP2.

The union of S1 and S2 gives the optimal solution set of items of KP1. The union
of S1, S3, S4 and S5 gives the optimal solution set of KP2. Figure 1 depicts the
decomposition of the optimal solution sets in each time period.

The dashed lines refer to the item in S4 which exceeds the first capacity
value. According to the above definitions, we have the following inequalities

w(S1) + w(S2) ≤ c1; (29)
w(S1) + w(S3) ≤ c1; (30)
w(S1) + w(S3) + w(S4) > c1; (31)
w(S1) + w(S3) + w(S4) + w(S5) ≤ c2; (32)
w(S1) + w(S2) + w(S5) < c2. (33)

Inequality (33) derives directly from inequalities (29), (31) and (32). The
optimal solution values of KP1 and KP2 are z1 = p(S1) + p(S2) and z2 = p(S1)+
p(S3) + p(S4) + p(S5) respectively. Now we can state three feasible solutions
reached by algorithm H3:

Approximation Results for the Incremental Knapsack Problem 85

S1 S2

S3 S4 S5S1

KP1 :

KP2 :

c1

c2

Fig. 1. Decomposition of the optimal solutions of KP1 and KP2.

– The optimal solution set of KP1 in the two periods plus the additional packing
of items in S5 in the second period. The whole profit is: 2(p(S1) + p(S2)) +
p(S5);

– The optimal solution set of KP2 in the second period with the packing of
items in subsets S1 and S3 in the first period. The resulting profit is: 2(p(S1)+
p(S3)) + p(S4) + p(S5);

– The optimal solution set of KP2 in the second period with item S4 placed in
the knapsack in the first period. The profit of this solution is: p(S1)+p(S3)+
2p(S4) + p(S5).

Algorithm H3 will return a solution at least as good as the best of these
solutions. In order to evaluate the worst case performance of the heuristic, we
consider an LP formulation where we associate a non-negative variable h with
the solution value computed by the algorithm. In addition, the profits of the
subsets Si are associated with non-negative variables p̄i (i = 1, . . . , 5). As in
Sect. 3.1, the positive parameter OPT represents z∗. This implies the following
LP model:

minimize h (34)
subject to h ≥ 2(p̄1 + p̄2) + p̄5 (35)

h ≥ 2(p̄1 + p̄3) + p̄4 + p̄5 (36)
h ≥ p̄1 + p̄3 + 2p̄4 + p̄5 (37)
(p̄1 + p̄2) + (p̄1 + p̄3 + p̄4 + p̄5) ≥ OPT (38)
p̄i ≥ 0 i = 1, . . . , 5. (39)

The cost function value (34) represents a lower bound on the worst case
performance of H3. Constraints (35)–(37) guarantee that H3 will select the best
of the three feasible solutions. Constraint (38) states that the sum of the optimal
values of KP1 and KP2 is an upper bound on z∗. Constraints (39) indicate that
variables are non-negative. Setting the parameter OPT = 1, we get an optimal
value h∗ equal to 0.8571 . . . = 6

7 . Thus, a lower bound on the performance ratio
provided by algorithm H4 is equal to h∗

OPT = 6
7 .

We can show that the ratio of 6
7 is tight by considering an instance with

n = 5, c1 = 3 + δ, c2 = 4 and the following entries:

86 F. Della Croce et al.

i 1 2 3 4 5

pi 3 2 2 1 − δ 1 − δ

wi 3 + δ 2 2 1 1

The optimal solution of KP1 consists of item 1. The corresponding IKP ′

solution considers only item 1 in the second period with a total profit of 6. The
optimal solution of KP2 consists in packing items 2 and 3. Then either item 2
or item 3 is placed in the knapsack in the first period. The resulting profit is
again 6. An optimal solution selects items 2 and 4 in the first period together
with item 5 in the second period, thus z∗ = 7 − 3δ. The approximation ratio of
algorithm H3 is

max{6, 6}
7 − 3δ

=
6

7 − 3δ

which can be arbitrarily close to 6
7 as the value of δ goes to 0. ��

Algorithm H3 is not polynomial since it requires the optimal solutions of
KP1 and KP2. We could solve these knapsack problems by an ε–approximation
scheme (PTAS or FPTAS) to get a polynomial running time at the cost of a
decrease of the approximation bound.

The following Corollary holds.

Corollary 1. If an ε–approximation scheme is employed for solving KP1 and
KP2, the approximation ratio of algorithm H3 is bounded by 6

7 (1 − ε).

Proof. Omitted.

5 Conclusions

We proposed for IKP a series of results extending in different directions the
contributions currently available in the literature. We proved the tightness of
approximation ratios of a general purpose algorithm previously laid out and
established a polynomial time approximation scheme (PTAS) when one of the
problem inputs can be considered as a constant. We then focused on a restricted
relevant variant of IKP which plausibly assumes the possible packing of any item
since the first period. We discussed the performance of different approximation
algorithms and showed an algorithm with an approximation ratio of 6

7 for the
variation with two time periods. In future research, we will investigate exten-
sions of our procedures to the design of improving approximation algorithms for
variants involving more than two periods. Also, since to the authors’ knowledge
no computational experience has been provided for IKP so far, it would also
be interesting to derive new solution approaches for the problem and test their
performance in solving instances after generating challenging benchmarks.

Approximation Results for the Incremental Knapsack Problem 87

References

1. Bienstock, D., Sethuraman, J., Ye, C.: Approximation algorithms for the incremental
knapsack problem via disjunctive programming (2013). arXiv:1311.4563

2. Hartline, J., Sharp, A.: An incremental model for combinatorial maximization prob-
lems. In: Àlvarez, C., Serna, M. (eds.) WEA 2006. LNCS, vol. 4007, pp. 36–48.
Springer, Heidelberg (2006). https://doi.org/10.1007/11764298 4

3. Kellerer, H., Pferschy, U.: Improved dynamic programming in connection with an
FPTAS for the knapsack problem. J. Comb. Optim. 8, 5–11 (2004)

4. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24777-7

5. Sahni, S.: Approximate algorithms for the 0–1 knapsack problem. J. ACM 22, 115–
124 (1975)

http://arxiv.org/abs/1311.4563
https://doi.org/10.1007/11764298_4
https://doi.org/10.1007/978-3-540-24777-7

Derandomization for k-Submodular
Maximization

Hiroki Oshima(B)

Department of Mathematical Informatics,
Graduate School of Information Science and Technology,

The University of Tokyo, Tokyo 113-8656, Japan
hiroki oshima@me2.mist.i.u-tokyo.ac.jp

Abstract. Submodularity is one of the most important properties of
combinatorial optimization, and k-submodularity is a generalization of
submodularity. Maximization of a k-submodular function is NP-hard,
and approximation algorithms have been studied. Most of algorithms
use randomization and achieve the approximation ratio as the expected
value. For unconstrained submodular maximization, [Buchbinder and
Feldman 2016] gave a derandomization scheme, and showed that ran-
domness is not necessary for obtaining optimal results. In this paper, we
extend their scheme for unconstrained k-submodular maximization and
give two deterministic algorithms for k-submodular maximization. The
first is for monotone k-submodular functions. We derandomize k/(2k−1)-
approximation algorithm [Iwata, Tanigawa, and Yoshida 2016], and
achieve the same approximation ratio. The second is for nonmonotone
functions with k ≥ 2. It achieves k/(3k − 2)-approximation, and it is
better than a simple greedy algorithm [Ward and Živný 2016] which
achieves 1/3-approximation for k ≥ 3.

1 Introduction

A set function f : 2V → R is submodular if, for any A,B ⊆ V , f(A) + f(B) ≥
f(A ∪ B) + f(A ∩ B). Submodularity is one of the most important properties
of combinatorial optimization. The rank functions of matroids and cut capacity
functions of networks are submodular. Submodular functions can be seen as a
discrete version of convex functions.

For submodular function minimization, Grötschel et al. [5] showed the first
polynomial-time algorithm. The combinatorial strongly polynomial algorithms
were shown by Iwata et al. [7] and Schrijver [11]. On the other hand, submodu-
lar function maximization is NP-hard and we can only use approximation algo-
rithms. Let an input function for maximization be f , a maximizer of f be S∗,
and an output of an algorithm be S. The approximation ratio of the algorithm
is defined as f(S)/f(S∗) for deterministic algorithms and E[f(S)]/f(S∗) for
randomized algorithms. For unconstrained submodular maximization, the ran-
domized algorithm called Double Greedy [2] achieves 1/2-approximation. Feige
et al. [3] showed (1/2 + ε)-approximation requires exponential number of value
c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 88–99, 2018.
https://doi.org/10.1007/978-3-319-78825-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_8&domain=pdf

Derandomization for k-Submodular Maximization 89

oracle queries. This implies that, Double Greedy algorithm is one of the best
algorithms in terms of the approximation ratio. Buchbinder and Feldman [1]
showed a derandomized version of randomized Double Greedy algorithm, and
their algorithm achieves 1/2-approximation.

k-submodularity is an extension of submodularity. It was first introduced by
Huber and Kolmogolov [6]. k-submodular function is defined as below.

Definition 1 ([6]). Let (k + 1)V := {(X1, ...,Xk) | Xi ⊆ V (i = 1, ..., k),Xi ∩
Xj = ∅ (i �= j)}. A function f : (k +1)V → R is called k-submodular if we have

f(x) + f(y) ≥ f(x 	 y) + f(x
 y)

for any x = (X1, ...,Xk), y = (Y1, ..., Yk) ∈ (k + 1)V . Note that

x 	 y = (X1 ∩ Y1, ...,Xk ∩ Yk) and

x
 y = (X1 ∪ Y1\
⋃

i�=1

(Xi ∪ Yi), ...,Xk ∪ Yk\
⋃

i�=k

(Xi ∪ Yi)).

It is a submodular function if k = 1. It is called a bisubmodular function if k = 2.
The rank functions of delta-matroids are bisubmodular. We can see applications
of k-submodular functions in influence maximization and sensor placement [10]
with maximization and computer vision [4] with minimization.

Maximization for k-submodular functions is also NP-hard and approxima-
tion algorithm have been studied. An input of the problem is a nonnegative
k-submodular function. Note that, for any k-submodular function f and any
c ∈ R, a function f ′(x) := f(x) + c is k-submodular. An output of the problem
is x = (X1, ...,Xk) ∈ (k + 1)V . The input function is accessed via value oracle
queries. For bisubmodular functions, Iwata et al. [8] and Ward and Živný [12]
showed that the algorithm for submodular functions [2] can be extended. Ward
and Živný [12] analyzed an extension for k-submodular functions. They showed
a randomized 1/(1 + a)-approximation algorithm with a = max{1,

√
(k − 1)/4}

and a deterministic 1/3-approximation algorithm. Now we have a randomized
1/2-approximation algorithm shown by Iwata et al. [9]. In particular, for mono-
tone k-submodular functions, they gave a randomized k

2k−1 -approximation algo-
rithm. (For monotone unconstrained maximization with k = 1, it is obvious that
X1 = V is optimal solution.) They also showed any (k+1

2k + ε)-approximation
algorithm requires exponential number of value oracle queries.

In this paper, we extend the derandomization scheme [1], used for Dou-
ble Greedy algorithm in submodular maximization, and give the scheme for k-
submodular maximization. Then we show two deterministic approximation algo-
rithms. One satisfies k

2k−1 -approximation for monotone functions. This algorithm
is a derandomized version of the algorithm for monotone functions [9]. The other
algorithm in this paper is k

3k−2 -approximation algorithm for nonmonotone func-
tions with k ≥ 2. First, we show a randomized k

3k−2 -approximation algorithm
as the base of derandomization. Then we derandomize it as in our algorithm for
monotone functions.

90 H. Oshima

The rest of this paper is organized as follows. In Sect. 2, we explain details
of k-submodularity. In Sect. 3, we explain previous works of unconstrained k-
submodular maximization. In Sect. 4, we expand the derandomization scheme [1]
for k-submodular maximization. In Sect. 5, we present a deterministic algorithm
for monotone functions. We present a deterministic algorithm for nonmonotone
functions in Sect. 6. We conclude this paper in Sect. 7.

2 Preliminary

Define a partial order � on (k + 1)V for x = (X1, ...,Xk) and y = (Y1, ..., Yk) as
follows:

x � y
def⇐⇒ Xi ⊆ Yi (i = 1, ..., k).

Also, for x = (X1, ...,Xk) ∈ (k + 1)V , e /∈ ⋃k
l=1 Xl, and i ∈ {1, ..., k}, define

Δe,if(x) = f(X1, ...,Xi−1,Xi ∪ {e},Xi+1, ...,Xk) − f(X1, ...,Xk).

A monotone k-submodular function is k-submodular and satisfies f(x) ≤
f(y) for any x = (X1, ...,Xk) and y = (Y1, ..., Yk) in (k + 1)V with x � y.

The property of k-submodularity can be written as another form.

Theorem 1 ([12], Theorem 7). A function f : (k + 1)V → R is k-submodular if
and only if f is orthant submodular and pairwise monotone.

Note that orthant submodularity is to satisfy

Δe,if(x) ≥ Δe,if(y) (x,y ∈ (k + 1)V , x � y, e /∈
k⋃

l=1

Yl, i ∈ {1, ..., k}),

and pairwise monotonicity is to satisfy

Δe,if(x) + Δe,jf(x) ≥ 0 (x ∈ (k + 1)V , e /∈
k⋃

l=1

Xl, i, j ∈ {1, ..., k} (i �= j)).

To analyze k-submodular functions, it is often convenient to identify (k+1)V

as {0, 1, ..., k}V . Let n = |V |. An n-dimensional vector x ∈ {0, 1, ..., k}V is
associated with (X1, ...,Xn) ∈ (k + 1)V by Xi = {e ∈ V | x(e) = i}.

3 Existing Algorithms

3.1 Algorithm Framework

In this section, we see the framework to maximize k-submodular functions (Algo-
rithm 1 [9]). Iwata et al. [8] and Ward and Živný [12] used it with specific dis-
tributions.

Derandomization for k-Submodular Maximization 91

Algorithm 1. ([9] Algorithm 1)
Input: A nonnegative k-submodular function f : {0, 1, ..., k}V → R+.
Output: A vector s ∈ {0, 1, ..., k}V .
s ← 0 .
Denote the elements of V by e(1), ..., e(n) (|V | = n).
for j = 1, ..., n do

Set a probability distribution p(j) over {1, ..., k}.

Let s(e(j)) ∈ {1, ..., k} be chosen randomly with Pr[s(e(j)) = i] = p
(j)
i .

end for
return s

Now we define some variables to see Algorithm 1. Let o be an optimal solu-
tion. We consider the j-th iteration of the algorithm, and we write s(j) as the
solution s after j-th iteration. Let other variables be as follows:

o(j) = (o
 s(j))
 s(j), t(j−1)(e) =

{
o(j)(e) (e �= e(j))
0 (e = e(j))

,

y
(j)
i = Δe(j),if(s(j−1)), a

(j)
i = Δe(j),if(t(j−1)).

From the updating rule in the algorithm, o(j)(e) = s(e) for e ∈ {e(1), ..., e(j)},
and o(j)(e) = o(e) for e ∈ {e(j+1), ..., e(n)}. Algorithm 1 satisfies following
lemma.

Lemma 1 ([9], Lemma 2.1). Let c ∈ R+. Conditioning on s(j−1), suppose that

k∑

i=1

(a(j)
i∗ − a

(j)
i)p(j)i ≤ c

k∑

i=1

(y(j)
i p

(j)
i) (1)

holds for each j with 1 ≤ j ≤ n, where i∗ = o(e(j)). Then E[f(s)] ≥ 1
1+cf(o).

3.2 The Randomized Algorithm for Monotone Functions

In this section, we see the randomized algorithm for monotone functions [9]. We
apply the distribution and their proof to our algorithms.

We show their algorithm as Algorithm 2. Algorithm 2 runs in polynomial
time. The approximation ratio of Algorithm 2 satisfies Theorem2. We rephrase
the proof [9] for fitting our settings. First, we introduce Lemma2. This lemma
is used in the proof [9], and we use it for proving our theorems later.

Lemma 2 ([9], Proof of Theorem 2.2). Let k be a positive integer, yi(i = 1, ..., k)
be nonnegative, and i∗ ∈ {1, ..., k}.

(
1 − 1

k

) k∑

i=1

piyi ≥
∑

i�=i∗
piyi∗ (2)

is always satisfied by the distribution {pi} in Algorithm2.

92 H. Oshima

Algorithm 2. ([9] Algorithm 3)
Input: A monotone k-submodular function f : {0, 1, ..., k}V → R+.
Output: A vector s ∈ {0, 1, ..., k}V .
s ← 0, t ← k − 1.
Denote the elements of V by e(1), ..., e(n) (|V | = n).
for j = 1, ..., n do

y
(j)
i ← Δe(j),if(s) (1 ≤ i ≤ k).

β ← ∑k
i=1(y

(j)
i)t.

if β �= 0 then p
(j)
i ← (y

(j)
i)t/β (1 ≤ i ≤ k).

else
p
(j)
1 = 1, p

(j)
i = 0 (i = 2, ..., k).

end if
Lets(e(j)) ∈ {1, ..., k} be chosen randomly with Pr[s(e(j)) = i] = p

(j)
i .

end for
return s

Proof. We first consider the case β = 0. From the monotonicity of f , yi ≥ ai ≥ 0
for all 1 ≤ i ≤ k. Then we have yi = ai = 0. Hence it is clear that (2) holds.
Now suppose β > 0. The goal is to show

(
1 − 1

k

) k∑

i=1

yt+1
i ≥

∑

i�=i∗
yt
iyi∗ . (3)

If k = 1, (3) is satisfied since i∗ = 1 and both sides is 0. Hence we
assume k ≥ 2. Let γ = (k − 1)

1
t = t

1
t . From the weighted AM-GM inequal-

ity, a
1

t+1 b
t

t+1 ≤ 1
t+1a + t

t+1b holds for all a, b ≥ 0. By setting a = (γyi∗)t+1 and
b = (

∑
i�=i∗ yt

i)
(t+1)/t, we have

∑

i�=i∗
yt
iyi∗ =

1
γ

⎛

⎝γyi∗ ·
∑

i�=i∗
yt
i

⎞

⎠ ≤ 1
γ

⎛

⎝ (γyi∗)t+1

t + 1
+

t

t + 1
(
∑

i�=i∗
yt
i)

t+1
t

⎞

⎠ . (4)

From Hölder’s inequality,
∑

i ai ≤ (
∑

i a
t+1
t

i)
t

t+1 (
∑

i 1
t+1)

1
t+1 holds for any non-

negative ai’s. By setting ai = yt
i , we have

(RHS of (4)) ≤ 1
γ

⎛

⎝ (γyi∗)t+1

t + 1
+

t

t + 1
(
∑

i�=i∗
yt+1
i) · (

∑

i�=i∗
1t+1)

1
t

⎞

⎠

=
1
γ

⎛

⎝ (γyi∗)t+1

t + 1
+

t(k − 1)
1
t

t + 1

∑

i�=i∗
yt+1
i

⎞

⎠

=
γt

t + 1

∑

i

yt+1
i =

(
k − 1

k

)∑

i

yt+1
i .

Thus we obtain (3). 	

Derandomization for k-Submodular Maximization 93

Theorem 2 ([9], Theorem 2.2). Let o be a maximizer of a monotone k-
submodular function f and let s be the output of Algorithm2. Then E[f(s)] ≥

k
2k−1f(o).

Proof. We obtain ai∗ − ai ≤ ai∗ ≤ yi∗ from orthant submodularity and mono-
tonicity. Then

k∑

i=1

pi(ai∗ − ai) ≤
∑

i�=i∗
piyi∗ (5)

is valid, regardless of the provability {pi}.
Now we can see the validity of this theorem from Lemmas 1 and 2. 	

4 Derandomization Scheme for k-Submodular
Maximization

Now we consider derandomization for k-submodular maximization. To explain
our deterministic algorithms, we have to expand the derandomization scheme
for submodular maximization [1] and obtain the scheme for k-submodular max-
imization. First, we introduce the base algorithm as Algorithm 3. The constants
c > 0 and {λi(y1, ..., yk, l)} depend on problem settings.

Let the variables be defined as follows:

ai(s) = Δe(j),if(ts), ts(e) =

{
o[s](e) (e �= e(j))
0 (e = e(j))

, o[s] := (o
 s)
 s.

Algorithm 3 achieves Theorem 3.

Theorem 3. Let o be a maximizer of a monotone nonnegative k-submodular
function f and let z be the output of Algorithm 3. We suppose the inequalities

k∑

i=1

pi,sλi(y1(s), ..., yk(s), l) ≥
k∑

i=1

(al(s) − ai(s))pi,s(l = 1, ..., k) (10)

is valid and

c ·
k∑

i=1

pi,syi(s) ≥
k∑

i=1

pi,sλi(y1(s), ..., yk(s), l)(l = 1, ..., k) (11)

is satisfied for all s ∈ Dj for any iterations by some randomized algorithm which
follows the framework (Algorithm1). Then f(z) ≥ 1

1+cf(o).

Proof. By the assumption (11), the linear formulation (6), (7) and (8) is feasible.
(For any s, we can set pi,s by the randomized algorithm in the assumption.) We
also obtain

c · Es∼Dj−1

[
k∑

i=1

pi,syi(s)

]
≥ Es∼Dj−1

[
k∑

i=1

(al(s) − ai(s))pi,s

]
(12)

94 H. Oshima

Algorithm 3. A base algorithm
Input: A (monotone/nonmonotone) k-submodular function f : {0, 1, ..., k}V → R+.
Output: A vector s ∈ {0, 1, ..., k}V .
D0 ← (1, 0), (D = {(p, s) | s ∈ (k + 1)V , 0 ≤ p ≤ 1} (

∑
s∈D p = 1)).

Denote the elements of V by e(1), ..., e(n) (|V | = n).
for j = 1, ..., n do

yi(s) ← Δe(j),if(s) (∀s ∈ supp(Dj−1) := {s | (p, s) ∈ Dj−1, p > 0}, i ∈
{1, ..., k}).

Find an extreme point solution (pi,s)i=1,...,k, s∈supp(Dj−1) of the following linear
formulation:

c · Es∼Dj−1

[
k∑

i=1

pi,syi(s)

]

≥ Es∼Dj−1

[
k∑

i=1

pi,sλi(y1(s), ..., yk(s), l)

]

(6)

(l ∈ {1, ..., k})

k∑

i=1

pi,s = 1 (∀s ∈ supp(Dj−1)) (7)

pi,s ≥ 0 (∀s ∈ supp(Dj−1), i ∈ {1, ..., k}). (8)

(c and {λi(y1, ..., yk)} depend on problem settings.)
Construct a new distribution Dj :

Dj ←
k⋃

i=1

{(pi,s · PrDj−1 [s], se(j),i) | s ∈ supp(Dj−1), pi,s > 0} (9)

(

se(j),i(e) =

{
s(e) (e �= e(j))

i (e = e(j))

)

.

end for
return argmaxs∈supp(Dn){f(s)}

by assumption (10). From the definition of {yi} and {ai}, we can see

Es∼Dj−1

[
k∑

i=1

pi,syi(s)

]
= Es∼Dj−1

[
k∑

i=1

{
pi,sf(se(j),i)

} − f(s)

]
, (13)

Es∼Dj−1

[
k∑

i=1

(ai∗(s) − ai(s))pi,s

]

= Es∼Dj−1

[
k∑

i=1

{
pi,sf(o[s]e(j),i)

} − f(o[s])

]
. (14)

Derandomization for k-Submodular Maximization 95

In addition, from the construction rule of Dj and inequalities (12), (13) and (14),
we obtain

c ·
{
Es′∼Dj

[f(s′)] − Es∼Dj−1 [f(s)]
}

≥ Es∼Dj−1 [f(o[s])] − Es′∼Dj
[f(o[s′])] .

(15)
Then, we can see

c · {
Es′∼Dn

[f(s′)] − Es∼D0 [f(s)]
} ≥ Es∼D0 [f(o[s])] − Es′∼Dn

[f(o[s′])]

from the summation of (15). We have D0 = {(1,0)} and f is nonnegative. Hence
we get

c · Es′∼Dn
[f(s′)] ≥ f(o) − Es′∼Dn

[f(s′)]

	

Algorithm 3 performs a polynomial number of value oracle queries.

Theorem 4. Algorithm3 returns a solution after O(n2k2) value oracle queries.

Proof. Algorithm 3 uses the value oracle to calculate yi(s). At j-th iteration, the
number of yi(s) is k|Dj−1|. From (9), |Dj | equals the number of pi,s �= 0. Then
we have to consider pi,s �= 0 at j-th iteration.

By the definition, (pi,s)i=1,...,k, s∈supp(Dj−1) is an extreme point solution of
(6), (7), and (8). We can see the feasible region of (6), (7), and (8) is bounded.
Then some extreme point solution exists.

Let |Dj−1| = m. By (pi,s)i=1,...,k, s∈supp(Dj−1) ∈ R
km and m equalities of

(7), km − k inequalities are tight at any extreme point solution. (6) have k
inequalities and (8) have km inequalities. Then, at least km−k −m inequalities
of (8) are tight. Hence, the number of pi,s �= 0 is at most m + k.

Now we have |Dj | ≤ |Dj−1| + k. We can also see |Dj | ≤ jk + 1. Then the
number of value oracle queries is

n∑

j=1

k|Dj−1| ≤
n∑

j=1

k(jk + 1).

	

In Algorithm 3, we have to search for an extreme point solution. We can do

it by solving LP for some objective function. If we use LP for our algorithm, it
is polynomial-time not only for the number of queries but also for the number of
operations. The simplex method is not proved to be a polynomial-time method.
However, it is practical. Our algorithm needs only an extreme point solution,
then if we get a basic solution, it is enough. So we can use the first phase of
two-phase simplex method to find an extreme point solution.

Next we have to build a randomized algorithm and give appropriate c and
{λi} for the monotone/nonmonotone setting. To build a randomized algorithm,
inequality 1 is only to consider. However, if we build it to derandomize, inequality
10 must be valid for any {pi}, and inequality 11 must be satisfied.

An important point is using l to define {λi}. Even if the size of Dj−1 is
large, i∗(= o(e(j))) is common for all s ∈ Dj−1. Then we reduce the number of
inequalities of the linear formulation and limit increases in size of Dj−1.

96 H. Oshima

5 A Deterministic Algorithm for Monotone Functions

In this section, we show a polynomial-time deterministic algorithm for maximiz-
ing monotone k-submodular functions. We prove that the randomized algorithm
for monotone functions [9] can be derandomized by the scheme.

Theorem 5. If we set c = 1 − 1
k , λl(y1(s), ..., yk(s), l) = 0 and λi(y1(s), ...,

yk(s), l) = yl (i �= l) in Algorithm3, we obtain a deterministic k
2k−1 -

approximation algorithm.

Proof. From Lemma 2,

(
1 − 1

k

) k∑

i=1

pi,syi(s) ≥
∑

i�=i∗
pi,syi∗(s) (2’)

is always satisfied by the distribution in their algorithm. And we can also obtain
ai∗(s) − ai(s) ≤ ai∗(s) ≤ yi∗(s) from orthant submodularity and monotonicity.
Then

k∑

i=1

pi,s(ai∗(s) − ai(s)) ≤
∑

i�=i∗
pi,syi∗(s) (5’)

is valid. The right hand side of the last inequality is the same as our setting of
{λi}. Hence the setting of c and {λi}, and the randomized algorithm [9] satisfies
the requirements of Theorem 3. 	

From Theorem 5, in order to maximize a monotone k-submodular function,
we replace inequality (6) with (6’).

(
1 − 1

k

)
· Es∼Dj−1

[
k∑

i=1

pi,syi(s)

]
≥ Es∼Dj−1

⎡

⎣
∑

i�=l

pi,syl(s)

⎤

⎦ (6’)

6 A Deterministic Algorithm for Nonmonotone Functions

In this section, we show a polynomial-time deterministic algorithm for maxi-
mizing nonmonotone k-submodular functions with k ≥ 2. The derandomization
scheme is the same as monotone version in the last section. First, we show a
randomized algorithm. Then we derandomized it with the scheme.

6.1 The Randomized Algorithm for Derandomization

We first show a randomized k
3k−2 -approximation algorithm in Algorithm 4.

Algorithm 4 satisfies the lemma below.

Lemma 3. Let o be a maximizer of a monotone nonnegative k-submodular func-
tion f and let z be the output of Algorithm4. Then E[f(z)] ≥ k

3k−2f(o)

Derandomization for k-Submodular Maximization 97

Algorithm 4. The base randomized algorithm
Input: A k-submodular function f : {0, 1, ..., k}V → R+.
Output: A vector s ∈ {0, 1, ..., k}V .
s ← 0.
Denote the elements of V by e(1), ..., e(n) (|V | = n).
for j = 1, ..., n do

y
(j)
i ← Δe(j),if(s) (1 ≤ i ≤ k).

I+ ← {i | yi ≥ 0}, , t ← |I+| − 1

β ← ∑
I+

(y
(j)
i)t.

if β > 0 then p
(j)
i ← (y

(j)
i)t/β (i ∈ I+), 0 (i /∈ I+).

else
p
(j)
1 = 1, p

(j)
i = 0 (i = 2, ..., k).

end if
Let s(e(j)) ∈ {1, ..., k} be chosen randomly with Pr[s(e(j)) = i] = p

(j)
i .

end for
return s

Proof. From orthant submodularity and pairwise monotonicity, we can see
ai∗(s) − ai(s) ≤ 2ai∗(s) ≤ 2yi∗(s) for i �= i∗. Hence

k∑

i=1

pi,s(ai∗(s) − ai(s)) ≤ 2
∑

i�=i∗
pi,syi∗(s) (16)

is satisfied. Now we prove

∑

i�=i∗
pi,syi∗(s) ≤

(
1 − 1

k

) k∑

i=1

pi,syi(s) (17)

for Algorithm 4. If |I+| = k, the validity is obvious from Lemma2. Hence we
consider the case with |I+| < k.

In this case, we obtain yi− < 0 and yi > 0 for all i �= i− from pairwise
monotonicity. And, by the algorithm, we set pi− = 0. So, we have to show

∑

i�=i∗,i−

pi,syi∗(s) ≤
(

1 − 1
k

) ∑

i�=i−

pi,syi(s).

If i∗ = i−, the validity of the inequality is obvious. Therefore let i∗ �= i−. From
Lemma 2,

∑

i�=i∗,i−

pi,syi∗(s) ≤
(

1 − 1
k − 1

) ∑

i�=i−

pi,syi(s).

It is obvious that 1 − 1
k−1 ≤ 1 − 1

k . Hence we obtain inequality (17).
From (16) and (17),

k∑

i=1

pi,s(ai∗(s) − ai(s)) ≤ 2
(

1 − 1
k

) k∑

i=1

pi,syi(s)

98 H. Oshima

is satisfied by the algorithm. It is the case c = 2(1 − 1/k) in Algorithm 1. Then
approximation ratio is 1

1+c = k
3k−2 . 	

6.2 A Deterministic Algorithm for Nonmonotone Functions

We show a polynomial-time deterministic algorithm for maximizing nonmono-
tone k-submodular functions. We prove that the randomized algorithm in the
last section can be derandomized by the scheme.

Theorem 6. If we set c = 2(1 − 1
k), λl(y1(s), ..., yk(s), l) = 0 and λi(y1(s), ...,

yk(s), l) = 2yl (i �= l) in Algorithm3, we obtain a deterministic k
3k−2 -

approximation algorithm.

Proof. In the proof of Algorithm 4, we show

∑

i�=i∗
pi,syi(s) ≤

(
1 − 1

k

) k∑

i=1

pi,syi(s) (18)

is always satisfied by the distribution in the algorithm. And we also see

k∑

i=1

pi,s(ai∗(s) − ai(s)) ≤ 2
∑

i�=i∗
pi,syi∗(s) (19)

is valid. The right hand side of the last inequality is the same as our setting of
{λi}. Hence the setting of c and {λi}, and Algorithm 4 satisfy the requirements
of Theorem 3. 	

From Theorem 6, in order to maximize a nonmonotone k-submodular func-
tion, we replace inequality (6) with (6”).

2
(

1 − 1
k

)
· Es∼Dj−1

[
k∑

i=1

pi,syi(s)

]
≥ 2 · Es∼Dj−1

⎡

⎣
∑

i�=l

pi,syl(s)

⎤

⎦ (6”)

In fact, (6”) is equivalent to (6’) in the monotone case.

7 Conclusion

We proposed a derandomized k
2k−1 algorithm for monotone k-submodular max-

imization and a derandomized k
3k−2 algorithm for nonmonotone k-submodular

maximization with k ≥ 2. For k ≥ 3, we improved approximation ratio from 1/3.
One of open problems is a faster method for finding an extreme point solution

of the linear formulation. For submodular functions, Buchbinder and Feldman [1]
showed greedy methods are effective. It is because their formulation is the form
of fractional knapsack problem. Our formulation is similar to theirs, and ours can
be seen as the form of an LP relaxation of multidimensional knapsack problem.

Derandomization for k-Submodular Maximization 99

However, faster methods are not given than general LP solutions. The number
of constraints in our formulation depends on k and the number of iterations. It
is therefore difficult to find an extreme point faster.

For nonmonotone functions, constructing a deterministic algorithm with bet-
ter approximation ratio is also an important open problem. For nonmonotone
functions, we have pairwise monotonicity instead of monotonicity. In such a sit-
uation, for some i, ai can be negative. However, if yj > 0 for all j, we can’t find
such i. Then, if we try to use the same derandomizing method, it is difficult to
construct {λi}.

References

1. Buchbinder, N., Feldman, M.: Deterministic algorithms for submodular maximiza-
tion problems. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 392–403. SIAM (2016)

2. Buchbinder, N., Feldman, M., Seffi, J., Schwartz, R.: A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM J. Comput.
44(5), 1384–1402 (2015)

3. Feige, U., Mirrokni, V.S., Vondrak, J.: Maximizing non-monotone submodular
functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

4. Gridchyn, I., Kolmogorov, V.: Potts model, parametric maxflow and k-submodular
functions. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 2320–2327 (2013)

5. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)

6. Huber, A., Kolmogorov, V.: Towards minimizing k -submodular functions. In:
Mahjoub, A.R., Markakis, V., Milis, I., Paschos, V.T. (eds.) ISCO 2012. LNCS,
vol. 7422, pp. 451–462. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32147-4 40

7. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algo-
rithm for minimizing submodular functions. J. ACM 48(4), 761–777 (2001)

8. Iwata, S., Tanigawa, S., Yoshida, Y.: Bisubmodular function maximization and
extensions. Technical Report METR 2013–16, The University of Tokyo (2013)

9. Iwata, S., Tanigawa, S., Yoshida, Y.: Improved approximation algorithms for k-
submodular function maximization. In: Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 404–413. SIAM (2016)

10. Ohsaka, N., Yoshida, Y.: Monotone k-submodular function maximization with size
constraints. In: Advances in Neural Information Processing Systems, pp. 694–702
(2015)

11. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. J. Comb. Theory Ser. B 80(2), 346–355 (2000)

12. Ward, J., Živný, S.: Maximizing k-submodular functions and beyond. ACM Trans.
Algorithms 12(4), 47:1–47:26 (2016)

https://doi.org/10.1007/978-3-642-32147-4_40
https://doi.org/10.1007/978-3-642-32147-4_40

Computational Complexity

On the Parameterized Complexity
of Happy Vertex Coloring

Akanksha Agrawal(B)

Department of Informatics, University of Bergen, Bergen, Norway
akanksha.agrawal@uib.no

Abstract. Let G be a graph, and c : V (G) → [k] be a coloring of
vertices in G. A vertex u ∈ V (G) is happy with respect to c if for all
v ∈ NG(u), we have c(u) = c(v), i.e. all the neighbors of u have color
same as that of u. The problem Maximum Happy Vertices takes as an
input a graph G, an integer k, a vertex subset S ⊆ V (G), and a (partial)
coloring c : S → [k] of vertices in S. The goal is to find a coloring
c̃ : V (G) → [k] such that c̃|S = c, i.e. c̃ extends the partial coloring c
to a coloring of vertices in G and the number of happy vertices in G
is maximized. For the family of trees, Aravind et al. [1] gave a linear
time algorithm for Maximum Happy Vertices for every fixed k, along
with the edge variant of the problem. As an open problem, they stated
whether Maximum Happy Vertices admits a linear time algorithm
on graphs of bounded (constant) treewidth for every fixed k. In this
paper, we study the problem Maximum Happy Vertices for graphs of
bounded treewidth and give a linear time algorithm for every fixed k and
(constant) treewidth of the graph. We also study the problem Maximum
Happy Vertices with a different parameterization, which we call Happy
Vertex Coloring. The problem Happy Vertex Coloring takes as
an input a graph G, integers � and k, a vertex subset S ⊆ V (G), and
a coloring c : S → [k]. The goal is to decide if there exist a coloring
c̃ : V (G) → [k] such that c̃|S = c and |H| ≥ �, where H is the set of
happy vertices in G with respect to c̃. We show that Happy Vertex
Coloring is W[1]-hard when parameterized by �. We also give a kernel
for Happy Vertex Coloring with O(k2�2) vertices.

1 Introduction

The structure of social networks is believed to be governed by the phenomenon
of homophyly (see Chap. 4 [5]). Similar type of people often have closely related
choices. For instance, people with similar educational interests often end up join-
ing closely related universities, people sharing similar beliefs tend to vote for the
same candidate in an election, people with matching interests purchase tickets

Due to space limitations most proofs have been omitted.
The research leading to these results received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-
2013)/ ERC Grant Agreements no. 306992 (PARAPPROX).

c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 103–115, 2018.
https://doi.org/10.1007/978-3-319-78825-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_9&domain=pdf

104 A. Agrawal

of particular kind of movies, and so on... In fact, Li and Peng [12] showed that
several social networks admit the phenomenon of homophyly. Li and Zhang [15]
modelled the small community detection in a social network based on homophyly
law as a graph coloring problem which is described below.

Consider a graph G and a coloring c : V (G) → [k]. A vertex u ∈ V (G) is
happy in G with respect to c if for all v ∈ N(u), we have c(u) = c(v), i.e. all the
neighbors of u have color same as that of u. A vertex which is not happy in G
with respect to c is unhappy. The problem Maximum Happy Vertices takes
as an input a graph G, an integer k, a vertex subset S ⊆ V (G), and a partial
coloring c : S → [k]. The goal is to find a coloring c̃ : V (G) → [k] that extends
c to a coloring of V (G) such that the number of happy vertices is maximized.
We note here that Li and Zhang also studied an edge variant of the problem
(Maximum Happy Edges), which is not defined here since the focus of this
paper is the problem Maximum Happy Vertices (and its variant).

Li and Zhang [15] showed that for k ≤ 2, both Maximum Happy Ver-
tices and Maximum Happy Edges are polynomial time solvable, while
for k ≥ 3, both the problems are NP-hard. Furthermore, they designed a
max{1/k,Ω(Δ−3)}-approximation algorithm for Maximum Happy Vertices
and a 1/2-approximation algorithm for Maximum Happy Edges. Here, Δ is
the maximum degree of a vertex in the input graph. Later, Zhang et al. [14]
gave improved approximation algorithms with approximation ratios 1/(1 + Δ)
and 0.8535 for Maximum Happy Vertices and Maximum Happy Edges,
respectively. Aravind et al. studied the problem Maximum Happy Vertices
and Maximum Happy Edges [1] on the family of trees and gave a linear time
algorithm for every fixed k.

In this paper, we study the problem Maximum Happy Vertices from the
viewpoint of Parameterized Complexity. A parameterized problem Q is a subset
of Σ∗ × N, where Σ is a finite set of alphabets. An instance of a parameterized
problem is a tuple (I, κ), where I is a classical problem instance and κ is an
integer, which is called the parameter. One of the central notions in the Parame-
terized Complexity is fixed-parameter tractability, where given an instance (I, κ)
of a parameterized problem Q, the goal is to design an algorithm that runs in
time f(κ)nO(1), where n = |I| and f(·) is some computable function whose value
depends only on κ. Such an algorithm is called an FPT algorithm. A parameter-
ized problem that admits an FPT algorithm is said to be in FPT. Another central
notion in Parameterized Complexity is kernelization, which mathematically cap-
tures the efficiency of a pre-processing/data reduction routine. A kernelization
algorithm for a parameterized problem Q takes as an input an instance (I, κ)
of Q and in time polynomial in |I| + κ returns an instance (I ′, κ′) of Q such
that (I, κ) ∈ Q if and only if (I ′, κ′) ∈ Q. Furthermore, |I ′| + κ′ ≤ g(κ), where
g(·) is some computable function whose value depends only on κ. Depending on
whether g(·) is a polynomial, linear or exponential function of κ, the problem
is said to admit a polynomial, linear or exponential kernel, respectively with
respect to the parameter κ. It is known that a parameterized problem is in FPT
if and only if it admits a kernel. Hereafter, whenever we talk about kernels, we

On the Parameterized Complexity of Happy Vertex Coloring 105

refer only to the polynomial or linear kernels. There are parameterized prob-
lems which are believed to be not in FPT under reasonable complexity-theoretic
assumptions. Similar to the notion of NP-hardness and NP-hard reductions for
the classical Complexity Theory, we have the notion of W[t]-hardness, where
t ∈ N and parameterized reductions in the Parameterized Complexity. For more
details on Parameterized Complexity we refer to the books of Downey and Fel-
lows [7,8], Flum and Grohe [10], Niedermeier [13], and Cygan et al. [4].

Our Results. Aravind et al. [1] posed an open problem on whether Maximum
Happy Vertices admits a linear time algorithm on graphs of bounded (con-
stant) treewidth without any constraints on the number of pre-colored vertices.
We resolve this question affirmatively, by designing an algorithm (Sect. 3) run-
ning in time O(2O(k+w log k)n), where w is the treewidth of the input graph on n
vertices, and k is the number of colors in the pre-coloring of a subset of vertices.
Formally, we give an algorithm for the following problem.

Maximum Happy Vertices Parameter: k, tw(G)
Input: A graph G, an integer k, a vertex subset S ⊆ V (G), and a (partial)
coloring c : S ⊆ V (G) → [k].
Output: An integer � such that for all c̃ ∈ {ĉ | ĉ|S = c}, we have |Hc̃| ≤ �,
where Hc̃ is the set of happy vertices in G with respect to c̃. Furthermore,
there exist c̃ ∈ {ĉ | ĉ|S = c} such that |Hc̃| = �.

We note that our algorithm can be easily modified to output a coloring for
which the maximum number of happy vertices, � is achieved.

Next, we consider the following problem, which we call Happy Vertex
Coloring.

Happy Vertex Coloring Parameter: k, �
Input: A graph G, integers k and �, a vertex subset S ⊆ V (G), and a
(partial) coloring c : S → [k].
Question: Does there exist a coloring c̃ : V (G) → [k] such that c̃|S = c and
the number of happy vertices in G with respect to c̃ is at least �?

We note that Happy Vertex Coloring is para-NP-hard for k ≥ 3, hence
it is unlikely to admit an FPT algorithm when parameterized by k. This follows
from the fact that Maximum Happy Vertices is para-NP-hard for k ≥ 3 [15].
Another natural parameter for Happy Vertex Coloring is the number of
happy vertices, � in the resulting coloring of vertices in the graph. In Sect. 4
we show that Happy Vertex Coloring when parameterized by � is W[1]-
hard. We show this by giving a parameterized reduction from Multi-Colored
Independent Set which is known to be W[1]-hard [9].

Having known that Happy Vertex Coloring when parameterized by
either k or � alone, is unlikely to admit an FPT algorithm, we next consider
the parameter k + �. In Sect. 5 we give a kernel for Happy Vertex Coloring
with O(k2�2) vertices.

106 A. Agrawal

2 Preliminaries

We denote the set of natural numbers by N. We use −∞ to denote an infinites-
imals number (minus infinity) and use the convention that for any n ∈ N, we
have −∞ + n = −∞ and −∞ + −∞ = −∞. For k ∈ N, by [k] we denote the
set {1, 2, · · · , k}. Let f : X → Y be a function. For y ∈ Y , by f−1(y) we denote
the set {x ∈ X | f(x) = y}. For X ′ ⊆ X, by f |X′ we denote the function
f |X′ : X ′ → Y such that fX′(x) = f(x), for all x ∈ X ′. For an ordered set
R = X × Y , a function f : R → Z, and an element r = (x, y) ∈ R, we slightly
abuse the notation to denote f(r) = f((x, y)) by f(x, y).

We use standard terminology from the book of Diestel [6] for graph-related
terms that are not explicitly defined here. For a graph G, by V (G) and E(G) we
denote the vertex and edge sets of G, respectively. For a graph G and a vertex
v ∈ V (G), by NG(v) we denote the set {u ∈ V (G) | (v, u) ∈ E(G)} and by
NG[v] we denote the set NG(v) ∪ {v}. For S ⊆ V (G), by NG(S) we denote the
set (∪u∈SNG(u)) \ S. We drop the subscript G from NG(v), NG[v] and NG(S)
when the context is clear. For a vertex subset S ⊆ V (G), by G[S] we denote
the subgraph of G induced by S, i.e. the graph with vertex set S and edge set
{(u, v) ∈ E(G) | v, u ∈ S}. By G − S we denote the graph G[V (G) \ S].

For vertices u, v ∈ V (G), unifying u and v in G results in the following graph
G′. We have V (G′) = (V (G) \ {u, v})∪{u�} and E(G′) = E(G[V (G) \ {u, v}])∪
{(u�, w) | w ∈ (NG(u) ∪ NG(v)) \ {u, v}} where, u� is a vertex that is not in
V (G). Moreover, we refer to u� as the resulting vertex after unification and the
operation is said to unify u and v in G.

A coloring of a graph G with k ∈ N colors is a function ϕ : V (G) → [k]. A
partial coloring of G with k colors is a function c : S → [k], where S ⊆ V (G). We
will refer to a partial coloring as a coloring when the context is clear. A coloring
c : V (G) → [k] is said to extend a partial coloring c̃ : S → [k] if c|S = c̃.

Definition 1. A tree decomposition of a graph G is a pair (T ,X = {Xt | t ∈
V (T)}), where an element X ∈ X is a subset of V (G), called a bag, and T is a
rooted tree satisfying the following properties:

1. ∪X∈X X = V (G);
2. For every (u, v) ∈ E(G), there exists X ∈ X such that u, v ∈ X;
3. For all t1, t2, t3 ∈ V (T) if t2 lies on the unique path between t1 and t3 in T

then Xt1 ∩ Xt3 ⊆ Xt2 .

Let (T ,X) be a tree decomposition of a graph G. We refer to the vertices
of the tree T as nodes. Note that since T is a rooted tree, we have a natural
parent-child and ancestor-descendant relationship among nodes in T . A leaf
node or a leaf of T is a node with degree exactly one in T which is different
from the root node. All the nodes of T which are neither the root node or a
leaf will be called non-leaf nodes. The width of the tree decomposition (X , T) is
defined to be maxX∈X (|X| − 1). The treewidth of a graph G, denoted by tw(G),
is the minimum of the widths of all its tree decompositions. We use the following
structured tree decomposition in our algorithm.

On the Parameterized Complexity of Happy Vertex Coloring 107

Definition 2. A tree decomposition (T ,X = {Xt | t ∈ V (T)}) with root node as
r of G is called a nice tree decomposition if the following conditions are satisfied.

1. Xr = ∅ and X� = ∅ for every leaf node � in T ;
2. Every non-leaf node t of T is of one of the following type:

– Introduce node: The node t has exactly one child t′ in T and Xt = Xt′∪{v},
where v /∈ Xt′ .

– Forget node: The node t has exactly one child t′ in T and Xt = Xt′ \ {v},
where v ∈ Xt′ .

– Join node: The node t has exactly two children t1, t2 in T and Xt = Xt1 =
Xt2 .

Lemma 1 ([4,11]). If a G has a tree decomposition (T ,X) of width at most
w then there is a nice tree decomposition of G of width at most w. Moreover,
given a tree decomposition (T ,X) of G of width at most w, in time O(w2 ·
max(|V (T)|, |V (G)|)) we can compute a nice tree decomposition of G of width
at most w with at most O(w|V (G)|) nodes.

3 Algorithm for Maximum Happy Vertices on Graphs
of Bounded Treewidth

In this section, we design a dynamic programming based FPT algorithm for
Maximum Happy Vertices when parameterized by the treewidth of input
graph and the number of colors in the pre-coloring of a subset of vertices.

Let (G, k, S, c : S → [k]) be an instance of Maximum Happy Vertices,
n = |V (G)| and m = |E(G)|. Without loss of generality we assume that for each
i ∈ [k], we have c−1(i) �= ∅, otherwise we can adjust the instance appropriately
by adding isolated vertices. For each i ∈ [k], we arbitrarily choose a vertex
from c−1(i), which we denote by v�

i . We let S� = {v�
i | i ∈ [k]}, and S� =

({v�
1}, {v�

2}, · · · , {v�
k}). We start by computing a tree decomposition (T̄ , X̄) of

width at most w ≤ 6 · tw(G) in time O(2O(tw(G))n), using the algorithm by
Bodlaender et al. [3]. Using Lemma 1 we compute a nice tree decomposition
(T ′,X ′ = {X ′

t | t ∈ V (T ′)}) of G with the root node as r′ and width at most w,
in time O(tw(G)2n). We modify the nice tree decomposition (T ′,X ′) to obtain
a more structured tree decomposition (T ,X) with root node r = r′ as follows.
We let T = T ′, and X = {Xt = X ′

t ∪S� | X ′
t ∈ X ′}, i.e. (T ,X) is obtained from

(T ′,X ′) by adding all the vertices in S� to each bag of X ′. Note that width of
(T ,X) is bounded by w + k ≤ 6 · tw(G) + k. The purpose of adding all vertices
in S� to each bag is to ensure the subgraph induced by the subtree rooted at a
node contains vertices of all k colors, which simplifies the proof. We note that
the notion of introduce node, forget node, and join node naturally extends to
the tree decomposition (T ,X).

For a node t ∈ V (T), by desc(t) we denote the set of nodes which are descen-
dants of t (including t) in T . Furthermore, for t ∈ V (T), by Gt we denote the
graph G[Vt], where Vt = ∪t′∈desc(t)Xt′ .

108 A. Agrawal

We now move to the description of the entries of the dynamic programming
table. Consider a node t ∈ V (T), and an ordered partition P = (P1, P2, · · · Pk)
of Xt into k sets. We call P a valid ordered partition if and only if for all i ∈ [k],
c−1(i)∩Xt ⊆ Pi. Note that for any valid ordered partition P = (P1, P2, · · · , Pk),
for all i ∈ [k], we have Pi �= ∅. This follows from the fact that S� ⊆ Xt.

For a valid ordered partition P = (P1, P2, · · · Pk) of Xt, let H = {(Hi, Ui) |
Hi � Ui = Pi and i ∈ [k]} be a set comprising of ordered pairs, which are
partitions of the sets Pis into two sets. A tuple τ = (t,P,H) is a valid tuple
if P is a valid ordered partition. For a valid tuple τ = (t,P,H), a coloring
cτ : V (Gt) → [k] is called a τ -good coloring if all the following conditions are
satisfied.

1. For all i ∈ [k], we have Pi ⊆ c−1
τ (i);

2. For all i ∈ [k], all the vertices in Hi are happy in Gt with respect to cτ ;
3. cτ |S∩V (Gt) = c.

For every valid tuple τ = (t,P,H), we have a table entry denoted by Π(τ)
which is set to an element z ∈ [|V (Gt)|] ∪ {−∞}. Intuitively, Π(τ) is set to an
element z ∈ [|V (Gt)|]∪{−∞} which corresponds to the maximum of the number
of happy vertices in Gt over all τ -good colorings (if it exists). Formally, the value
of Π(τ) is determined as follows.

1. If there is no τ -good coloring of Gt then Π(τ) = −∞.
2. Otherwise, over all τ -good colorings of Gt, Π(τ) is set to the maximum of the

number of happy vertices in V (Gt) \ (∪i∈[k]Ui) of Gt over all such colorings.

Let H� be the set comprising of all H = {(Hi, Ui) | Hi�Ui = P �
i and i ∈ [k]}.

Observe that maxH∈H� Π(r,S�,H) is exactly the number of happy vertices in G
maximized over all colorings that extends c to a coloring of V (G). We now
move to the description on how the values of Π(·) are computed. Since we have
a structured form of tree decomposition we compute the value of each of the
entries at node t ∈ V (T) based on the entries of its children, which will be given
by the recursive formula. For leaf nodes, we compute the values directly, which
corresponds to the base case for the recursive formula. Therefore, by computing
the formula in a bottom-up fashion we compute the value of Π(r,S�,H), for
each H ∈ H

�, and hence the value of maxH∈H� Π(r,S�,H). We now move to the
description of computing Π(τ), where τ = (t,P = (P1, · · · , Pk),H = {(Hi, Ui) |
Hi � Ui = Pi and i ∈ [k]}) is a valid tuple.

Leaf node. Suppose t is a leaf node. In this case, we have Xt = S�, and
P = S�. Note that in this case there is exactly one τ -good coloring of Gt namely,
c|S� . Moreover, we can find the set of happy vertices H, in Gt with respect to
c|S� by looking at the adjacencies between the vertices in S�. If there exist
i ∈ [k] such that Hi \ H �= ∅ then we set Π(τ) = −∞. Otherwise, we set
Π(τ) = |H \ (∪i∈[k]Ui)|. The correctness of setting the values as described is
justified by the uniqueness of τ -good coloring in Gt.

On the Parameterized Complexity of Happy Vertex Coloring 109

Introduce node. Suppose t is an introduce node. Let t′ be the unique child
of t in T , and Xt = Xt′ ∪ {ṽ}, where ṽ /∈ Xt′ . Furthermore, let Pi be the set
containing ṽ, where i ∈ [k]. Recall that by the properties of tree decomposition,
there is no u ∈ NGt

(ṽ) \ Xt, i.e. all the neighbors of ṽ in Gt are in Xt. Let P ′ =
(P1, P2, · · · , Pi \ {ṽ}, · · · , Pk), and H′ = (H\{(Hi, Ui)})∪{(Hi \ {ṽ}, Ui \ {ṽ})}.
Finally, let τ ′ = (t′,P ′,H′). Note that τ ′ is a valid tuple. We start by considering
the following simple cases where we can immediately set the value of Π(τ).

Case 1 If ṽ ∈ Hi and there is j ∈ [k] \ {i} such that Pj ∩NGt
(ṽ) �= ∅ then we set

Π(τ) = −∞ since for any τ -good coloring of Gt, ṽ is not a happy vertex.
Case 2 If there is j ∈ [k] \ {i} such that Hj ∩ NGt

(ṽ) �= ∅ then set Π(τ) = −∞.
The correctness of this step is justified by the fact that for any τ -good
coloring cτ , a vertex in Hj ∩ NGt

(ṽ) cannot be happy in Gt with respect
to cτ .

If none of the above cases are applicable then we (recursively) set the value
of Π(τ) as follows.

Π(τ) =
{

1 + Π(τ ′) if ṽ ∈ Hi;
Π(τ ′) if ṽ ∈ Ui.

(1)

Forget node. Suppose t is a forget node. Let t′ be the unique child of t in T
such that Xt = Xt′ \ {ṽ}, where ṽ ∈ Xt′ . For i ∈ [k], let Pi = (P1, P2, · · · , Pi ∪
{ṽ}, · · · , Pk), i.e. the ordered partition of Xt′ = Xt ∪ {ṽ} obtained from P by
adding ṽ to the set Pi. Furthermore, for the partition (Hi, Ui) of Pi in H let Hi1 =
(H\{(Hi, Ui)})∪{(Hi ∪{ṽ}, Ui)} and Hi2 = (H\{(Hi, Ui)})∪{(Hi, Ui ∪{ṽ})},
i.e. Hi1 and Hi2 are obtained from H by adding ṽ to the set of happy and
unhappy vertices, respectively. If for some ĩ ∈ [k], we have ṽ ∈ c−1(̃i) then we
let P = {Pĩ}, otherwise we let P = {Pi | i ∈ [k]}. We set the value of Π(τ) as
follows.

Π(τ) = max
Pi∈P,j∈[2]

{Π(t′,Pi,Hij)}. (2)

Join node. Suppose t is a join node. Let t1, t2 be the two children of t in T .
Recall that by the definition of nice tree decomposition we have Xt = Xt1 = Xt2 .
We set Π(t, w̃,P,H) as follows.

Π(t, w̃,P,H) = Π(t1, w̃,P,H) + Π(t2, w̃,P,H) − | ∪i∈[k] Hi| (3)

Correctness. For the proof of correctness of Eqs. 1 and 2 have been omitted due
to space limitations. The proof that Eq. 3 correctly computes Π(τ) follows from
the fact that Gt1 and Gt2 are subgraphs of Gt, and in Gt − Xt there is no edge
in Gt between a vertex in Gt1 − Xt and a vertex in Gt2 − Xt.

This concludes the description and the correctness proof for the recursive
formulas for computing the values Π(·). We now move to the runtime analysis
of the algorithm.

Runtime Analysis. Let (G, k, S, c : S → [k]) be an instance of Maximum
Happy Vertices. In time O(2O(tw(G))n), we compute a nice tree decomposition

110 A. Agrawal

(T ′,X ′) of G, with r as the root node, and of width at most w ≤ 6 · tw(G).
Furthermore, the number of nodes in T is bounded by O(wn). We then obtain
a more structured tree decomposition (T ,X), by adding S� to each bag of X ′.
For each node in T we have at most kw+12k+w+1 many table entries. Here, we
get a factor of kw+1 in the number of table entries instead of kk+w+1 because
for a node t ∈ T , we only consider valid ordered partition of Xt, and therefore,
we do not guess the set for vertices in Xt ∩ S. Using the recursive formula we
can compute each value of Π(·) in time O(2O(k+w log k)nO(1)). At this point of
time, we cannot guarantee the runtime which linearly depends on n because
we need to check the adjacency among vertices for setting the value of certain
entries of the table, which using the straightforward implementation will require
quadratic dependence on n. Nonetheless, we can start by computing a data
structure for the graph G of treewidth at most w in time wO(1)n that allows
performing adjacency queries in time O(w) (for instance using [2] or Exercise
7.16 in [4]). Thus using this data structure we can compute all the entries of
the table in time O(2O(k+w log k)n) ∈ O(2O(k+tw(G) log k)n), which gives us the
desired running time with linear dependence on n.

Theorem 1. Let (G, k, S, c : S → [k]) be an instance of Maximum Happy
Vertices. Then in time O(2O(k+tw(G) log k)n) we can find the maximum of the
number of happy vertices over all colorings that extent c to a coloring of V (G).
Here, n is the number of vertices in G.

We note here that using the standard backtracking technique together with
the fact that we have a partition of vertices into at most k parts which extends
c, we can construct a coloring which achieves the maximum number of happy
vertices.

4 W[1]-hardness of Happy Vertex Coloring

In this section, we show that Happy Vertex Coloring when parameterized
by the number of happy vertices is W[1]-hard. We give a parameterized reduction
from Multi-Colored Independent Set (MIS) which is known to be W[1]-
hard [9]. The problem MIS is formally defined below.

Multi-Colored Independent Set (MIS) Parameter: t
Input: A t-partite graph G with a partition V1, V2, · · · , Vt of V (G).
Question: Does there exist X ⊆ V (G), such that for each i ∈ [t], |X∩Vi| = 1
and G[X] is an independent set?

Intuitively, given an instance (G,V1, V2, · · · , Vt) of MIS, for each Vi we create
a vertex selection gadget, Wi which ensures that exactly one vertex from Vi can
be happy in any valid coloring. Furthermore, the selected set of vertices from
Vis form a set of happy vertices in the instance of Happy Vertex Coloring
created. We now move to the formal description of the reduction.

On the Parameterized Complexity of Happy Vertex Coloring 111

Let (G,V1, V2, · · · , Vt) be an instance of MIS. We create an instance
(G′, k, �, S, c : S → [k]) of Happy Vertex Coloring as follows. Let n = |V (G)|
and V (G) = {vi | i ∈ [n]}. Initially, we have V (G′) = V (G) and E(G′) =
{(u, v) ∈ E(G) | u ∈ Vi, v ∈ Vj , i, j ∈ [t] and i �= j}. We now describe the vertex
selection gadget Wi, for i ∈ [t]. For each vi ∈ V (G), we add three vertices ṽi, pi, p

′
i

to V (G′), and add the edges (vi, ṽi), (ṽi, pi), (ṽi, p
′
i), and (pi, p

′
i) to E(G′). Fur-

thermore, we add ṽi, pi, and p′
i to S, and set c(ṽi) = i, c(pi) = n + 1, and

c(p′
i) = n+2. For i ∈ [t], we add three vertices wi, xi, x

′
i to V (G′) and add all the

edges in {(u,wi) | u ∈ Vi} ∪ {(wi, xi), (wi, x
′
i), (xi, x

′
i)} to E(G′). Furthermore,

we add xi and x′
i to S, and set c(xi) = n+1 and c(x′

i) = n+2. Here, the vertices
xi and x′

i are added to ensure that wi can never be a happy vertex in any coloring
of G′, and wi is added to ensure that at most one vertex from Vi can be happy in
any coloring of V (G′). We have Wi = G′[Vi ∪ {ṽj , pj , p

′
j | vj ∈ Vi} ∪ {wi, xi, x

′
i}].

Notice that we have S = {ṽj , pj , p
′
j | vj ∈ V (G)} ∪ {xi, x

′
i | i ∈ [t]}. Note that

for each u ∈ S, we have described the value of c(u), and we have k = n + 2.
Finally, we set � = t, and the resulting instance of Happy Vertex Coloring
is (G′, k, �, S, c : S → [k]).

We state some lemmata which establish certain properties of the instance
(G′, k, �, S, c : S → [k]) of Happy Vertex Coloring that we created.

Lemma 2. Let c̃ be a coloring that extends c to a coloring of G′, and H be the
set of happy vertices in G′ with respect c̃. Then for all u ∈ {wi | i ∈ [t]} ∪ S we
have u /∈ H.

Lemma 3. Let c̃ be a coloring that extends c to a coloring of G′, and H be
the set of happy vertices in G′ with respect c̃. Then for all i ∈ [t], we have
|Vi ∩ H| ≤ 1.

We now state the main lemma of this section.

Lemma 4. (G,V1, V2, · · · , Vt) is a yes instance of MIS if and only if
(G′, k, �, S, c : S → [k]) is a yes instance of Happy Vertex Coloring.

Theorem 2. Happy Vertex Coloring when parameterized by the number of
happy vertices is W[1]-hard.

5 Kernelization Algorithm for Happy Vertex Coloring

In this section, we give a polynomial kernel for the problem Happy Vertex
Coloring. In fact, we give a kernel for an annotated version of Happy Vertex
Coloring, which we call Annotated Happy Vertex Coloring (AHVC).
The problem is formally defined below.

Annotated Happy Vertex Coloring (AHVC) Parameter: k + �
Input: A graph G, integers k and �, a vertex subsets S,U ⊆ V (G), a (partial)
coloring c : S → [k].
Question: Does there exist a coloring c̃ : V (G) → [k] such that c̃|S = c and
|H \ U | ≥ �, where H is the set of happy vertices in G with respect to c̃?

112 A. Agrawal

Observe that Happy Vertex Coloring is a special case of AHVC, where
U = ∅. Moreover, given an instance (G, k, �, S, U, c : S → [k]) of AHVC, in
polynomial time we can construct an instance (G′, k′, �, S′, c′ : S′ → [k′]) of
Happy Vertex Coloring such that |V (G′)| ∈ O(|V (G)|), k′ ∈ O(k), and
|S′| ∈ O(|S|) as follows. Initially, we have G′ = G and c′ = c. We add two
(new) vertices u�, v� to V (G′), add the edge (u�, v�) to E(G′), add u�, v� to
S, and set c′(u�) = k + 1 and c′(v�) = k + 2. Furthermore, we add the edges
{(u, u�), (u, v�) | u ∈ U} to E(G′) and set k′ = k + 2. It is easy to see that
(G, k, �, S, U, c : S → [k]) is a yes instance of AHVC if and only if (G′, k′, �, S′, c′ :
S′ → [k′]) is a yes instance of Happy Vertex Coloring. Therefore, to design
a kernel for Happy Vertex Coloring with O(k2�2) vertices it is enough to
design a kernel for AHVC with O(k2�2) vertices. Hereafter, the focus of this
section will be to design a kernel with O(k2�2) vertices for AHVC.

Let (G, k, �, S, U, c : S → [k]) be an instance of AHVC. The kernelization
algorithm applies the following reduction rules in the order in which it is stated.
Furthermore, at each step we assume that none of the preceding reduction rules
are applicable. When none of the reduction rules are applicable we argue that
we get a kernel of the desired size.

Reduction Rule 1. If � ≤ 0, then return that (G, k, �, S, U, c : S → [k]) is a
yes instance of AHVC.

Observe that if � ≤ 0, then any coloring that extends c to a coloring of V (G)
is a valid solution to the instance (G, k, �, S, U, c : S → [k]) of AHVC, which
implies that Reduction Rule 1 is safe.

Reduction Rule 2. Let v ∈ V (G) \ U be a vertex such that N(v) ⊆ S, for all
u, u′ ∈ N(v) we have c(u) = c(u′), and one of the following conditions is satisfied.
i) v /∈ S; or ii) c(v) = c(u), where u ∈ N(v). Then delete v from G and decrease
� by one. The resulting instance is (G−{v}, k, �−1, S\{v}, U, c|S\{v} : S\{v} →
[k]).

Lemma 5. Reduction Rule 2 is safe.

Reduction Rule 3. Let v ∈ S\U be a vertex such that there exists u ∈ N(v)∩S
with c(v) �= c(u). Then add v to the set U . The resulting instance is (G, k, �, S, U∪
{v}, c : S → [k]).

The safeness of Reduction Rule 3 follows from the fact that a vertex v ∈ S\U
with u ∈ N(v) ∩ S such that c(v) �= c(u) can never be a happy vertex in any
coloring of G that extends c to a coloring of V (G).

Reduction Rule 4. Let v ∈ V (G) \ U be a vertex such that there exists u, u′ ∈
N(v) ∩ S with c(u) �= c(u′). Then add v to the set U . The resulting instance is
(G, k, �, S, U ∪ {v}, c : S → [k]).

The safeness of Reduction Rule 4 follows from the fact that a vertex v with
u, u′ ∈ N(v) ∩ S such that c(u) �= c(u′) can never be a happy vertex in any
coloring of G that extends c to a coloring of V (G).

On the Parameterized Complexity of Happy Vertex Coloring 113

Next we consider the following sets. For i ∈ [k], let Ui = {v ∈ U ∩ S | c(v) =
i}, and UR = U \ (∪i∈[k]Ui). We proceed with the following reduction rules.

Reduction Rule 5. If there exists i ∈ [k] such that there are distinct u, v ∈ Ui

then unify u, v in G to obtain the graph G′ with u� being the vertex resulting
after unification. Furthermore, let c′ : (S \ {u, v}) ∪ {u�} → [k] be the coloring
obtained from c with c′|S\{u,v} = c and c′(u�) = c(u). The resulting instance is
(G′, k, �, (S \ {u, v}) ∪ {u�}, (U \ {u, v}) ∪ {u�}, c′ : (S \ {u, v}) ∪ {u�} → [k]).

Lemma 6. Reduction Rule 5 is safe.

Hereafter, we assume that Reduction Rule 5 is not applicable and hence
for each i ∈ [k], we have |Ui| ≤ 1. Let Z = V (G) \ U . For i ∈ [k], let SZ

i =
{v ∈ S ∩ Z | c(v) = i} and Zi = (Z ∩ N(Ui ∪ SZ

i)) ∪ SZ
i . Furthermore, we let

ZR = Z \ (∪i∈[k]Zi). Observe that for i, j ∈ [k], i �= j we have Zi ∩ Zj = ∅ since
Reduction Rules 3 and 4 are not applicable. Also, for each v ∈ ZR, we have
N(v) ⊆ V (G) \ S. We proceed with the following reduction rules.

Reduction Rule 6. If there exists i ∈ [k] such that |Zi| ≥ � then return that
(G, k, �, S, U, c : S → [k]) is a yes instance of AHVC.

Lemma 7. Reduction Rule 6 is safe.

Reduction Rule 7. If |ZR| ≥ � then return that (G, k, �, S, U, c : S → [k]) is a
yes instance of AHVC.

Lemma 8. Reduction Rule 7 is safe.

Notice that since Reduction Rule 4 is not applicable we have for each i ∈ [k],
|Ui| = 1. Furthermore, since Reduction Rule 6 is not applicable we have for each
i ∈ [k], |Zi| < �, and since Reduction Rule 7 is not applicable we have |ZR| < �.
Therefore, we have |Z ∪ (∪i∈[k]Ui)| ≤ k� + � − 1. We now move to bounding the
size of UR, which will give us the desired kernel. To bound the size of UR we
employ the following marking scheme and argue that all the unmarked vertices
can be deleted.

Marking Scheme for bounding |UR|. We will denote the set of marked vertices
by M� ⊆ UR. For all u, v ∈ V (G) \ UR (not necessarily distinct) such that
N(u) ∩ N(v) ∩ UR �= ∅, choose an arbitrary vertex in wuv ∈ N(u) ∩ N(v) ∩ UR

and add it to M�. That is we add a vertex in UR to the marked set of vertices
which is a common neighbor to vertices u and v.

We call a vertex in UR \ M� as an unmarked vertex. We now move to the
reduction rule which deletes an unmarked vertex.

Reduction Rule 8. If there exists u ∈ UR \ M� then delete u from G. The
resulting instance is (G − {u}, k, �, S, U \ {u}, c : S → [k]).

Lemma 9. Reduction Rule 8 is safe.

114 A. Agrawal

Once Reduction Rule 8 is not applicable we have |UR| ≤
(|Z|

2

)
+|Z|. Therefore,

when none of the Reduction Rules 1 to 8 are applicable, we get the desired kernel.
Hence, we obtain the following theorem.

Theorem 3. AHVC admits a kernel with O(k2�2) vertices, where k is the num-
ber of colors in the coloring function and � is the desired number of happy ver-
tices.

6 Conclusion

We proved that Maximum Happy Vertices admits a linear time algorithm
for every fixed k on graphs of bounded treewidth. It remains an interesting
question whether the Maximum Happy Vertices problem admits an FPT
algorithm when parameterized by treewidth alone. Another interesting direction
of research is to study whether Happy Vertex Coloring admits a linear
kernel when parameterized by k + �.

Acknowledgement. The author is thankful to Saket Saurabh for helpful discussions.

References

1. Aravind, N.R., Kalyanasundaram, S., Kare, A.S.: Linear time algorithms for happy
vertex coloring problems for trees. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.)
IWOCA 2016. LNCS, vol. 9843, pp. 281–292. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44543-4 22

2. Bodlaender, H.L., Bonsma, P., Lokshtanov, D.: The fine details of fast dynamic
programming over tree decompositions. In: Gutin, G., Szeider, S. (eds.) IPEC 2013.
LNCS, vol. 8246, pp. 41–53. Springer, Cham (2013). https://doi.org/10.1007/978-
3-319-03898-8 5

3. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D.,
Pilipczuk, M.: A ck n 5-approximation algorithm for treewidth. SIAM J. Com-
put. 45(2), 317–378 (2016)

4. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-21275-3

5. David, E., Jon, K.: Networks, Crowds, and Markets: Reasoning About a Highly
Connected World. Cambridge University Press, New York (2010)

6. Reinhard, D.: Graph Theory. GTM, vol. 173, 4th edn. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-53622-3

7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(1997). https://doi.org/10.1007/978-1-4612-0515-9

8. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized complexity.
Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

9. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized
complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61
(2009)

https://doi.org/10.1007/978-3-319-44543-4_22
https://doi.org/10.1007/978-3-319-44543-4_22
https://doi.org/10.1007/978-3-319-03898-8_5
https://doi.org/10.1007/978-3-319-03898-8_5
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4471-5559-1

On the Parameterized Complexity of Happy Vertex Coloring 115

10. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Heidelberg (2006). https://doi.org/10.
1007/3-540-29953-X

11. Kloks, T. (ed.): Treewidth: Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375

12. Li, A., Peng, P.: The small-community phenomenon in networks. Math. Struct.
Comput. Sci. 22(3), 373–407 (2012)

13. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and Its Applications. Oxford University Press, Oxford (2006)

14. Zhang, P., Jiang, T., Li, A.: Improved approximation algorithms for the maximum
happy vertices and edges problems. In: Xu, D., Du, D., Du, D. (eds.) COCOON
2015. LNCS, vol. 9198, pp. 159–170. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21398-9 13

15. Zhang, P., Li, A.: Algorithmic aspects of homophyly of networks. Theor. Comput.
Sci. 593, 117–131 (2015)

https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/978-3-319-21398-9_13
https://doi.org/10.1007/978-3-319-21398-9_13

Complexity Dichotomies for the
Minimum F-Overlay Problem

Nathann Cohen1, Frédéric Havet2, Dorian Mazauric3(B), Ignasi Sau4,5,
and Rémi Watrigant3

1 Université Paris-Sud, LRI, CNRS, Orsay, France
2 Université Côte d’Azur, CNRS, I3S, Inria, Sophia Antipolis,

Sophia Antipolis, France
3 Université Côte d’Azur, Inria, Sophia Antipolis,

Sophia Antipolis, France
dorian.mazauric@inria.fr

4 Université de Montpellier, CNRS, LIRMM, Montpellier, France
5 Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, Brazil

Abstract. For a (possibly infinite) fixed family of graphs F , we say that
a graph G overlays F on a hypergraph H if V (H) is equal to V (G) and
the subgraph of G induced by every hyperedge of H contains some mem-
ber of F as a spanning subgraph. While it is easy to see that the complete
graph on |V (H)| overlays F on a hypergraph H whenever the problem
admits a solution, the Minimum F-Overlay problem asks for such a
graph with the minimum number of edges. This problem allows to gen-
eralize some natural problems which may arise in practice. For instance,
if the family F contains all connected graphs, then Minimum F-Overlay
corresponds to the Minimum Connectivity Inference problem (also
known as Subset Interconnection Design problem) introduced for
the low-resolution reconstruction of macro-molecular assembly in struc-
tural biology, or for the design of networks.

Our main contribution is a strong dichotomy result regarding the
polynomial vs. NP-hard status with respect to the considered family
F . Roughly speaking, we show that the easy cases one can think of (e.g.
when edgeless graphs of the right sizes are in F , or if F contains only
cliques) are the only families giving rise to a polynomial problem: all oth-
ers are NP-complete. We then investigate the parameterized complexity
of the problem and give similar sufficient conditions on F that give rise
to W[1]-hard, W[2]-hard or FPT problems when the parameter is the size
of the solution. This yields an FPT/W[1]-hard dichotomy for a relaxed
problem, where every hyperedge of H must contain some member of F
as a (non necessarily spanning) subgraph.

Keywords: Hypergraph · Minimum F-Overlay Problem
NP-completeness · Fixed-parameter tractability

This work was partially funded by ‘Projet de Recherche Exploratoire’, Inria, Improv-
ing inference algorithms for macromolecular structure determination and ANR under
contract STINT ANR-13-BS02-0007.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 116–127, 2018.
https://doi.org/10.1007/978-3-319-78825-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_10&domain=pdf

Complexity Dichotomies for the Minimum F-Overlay Problem 117

1 Introduction

1.1 Notation

Most notations of this paper are standard. We now recall some of them, and
we refer the reader to [8] for any undefined terminology. For a graph G, we
denote by V (G) and E(G) its respective sets of vertices and edges. The order
of a graph G is |V (G)|, while its size is |E(G)|. By extension, for a hypergraph
H, we denote by V (H) and E(H) its respective sets of vertices and hyperedges.
For p ∈ N, a p-uniform hypergraph H is a hypergraph such that |S| = p for
every S ∈ E(H). Given a graph G, we say that a graph G′ is a subgraph of G if
V (G′) ⊆ V (G) and E(G′) ⊆ E(G). We say that G′ is a spanning subgraph of G
if it is a subgraph of G such that V (G′) = V (G). Given S ⊆ V (G), we denote by
G[S] the graph with vertex set S and edge set {uv ∈ E(G) | u, v ∈ S}. We say
that a graph G′ is an induced subgraph of G if there exists S ⊆ V (G) such that
G′ = G[S]. Given S ⊆ V (G), we say that an edge uv ∈ E(G) is covered by S if
u ∈ S or v ∈ S, and we say that uv ∈ E(G) is induced by S if {u, v} ⊆ S. An
isolated vertex of a graph is a vertex of degree 0. Finally, for a positive integer
p, let [p] = {1, . . . , p}.

1.2 Definition of the Minimum F-Overlay problem

We define the problem investigated in this paper: Minimum F-Overlay. Given
a fixed family of graphs F and an input hypergraph H, we say that a graph
G overlays F on H if V (G) = V (H) and for every hyperedge S ∈ E(H), the
subgraph of G induced by S, G[S], has a spanning subgraph in F .

Observe that if a graph G overlays F on H, then the graph G with any
additional edges overlays F on H. Thus, there exists a graph G overlaying F on
H if and only if the complete graph on |V (H)| vertices overlays F on H. Note
that the complete graph on |V (H)| vertices overlays F on H if and only if for
every hyperedge S ∈ E(H), there exists a graph in F with exactly |S| vertices.
It implies that deciding whether there exists a graph G overlaying F on H can
be done in polynomial time. Hence, otherwise stated, we will always assume that
there exists a graph overlaying F on our input hypergraph H. We thus focus on
minimizing the number of edges of a graph overlaying F on H.

The F-overlay number of a hypergraph H, denoted overF (H), is the smallest
size (i.e., number of edges) of a graph overlaying F on H.

Minimum F-Overlay

Input: A hypergraph H, and an integer k.
Question: overF (H) ≤ k?

We also investigate a relaxed version of the problem, called Minimum F-
Encompass where we ask for a graph G such that for every hyperedge S ∈ E(H),
the graph G[S] contains a (non necessarily spanning) subgraph in F . In an
analogous way, we define the F-encompass number, denoted encompF (H), of a
hypergraph H.

118 N. Cohen et al.

Minimum F-Encompass

Input: A hypergraph H, and an integer k.
Question: encompF (H) ≤ k?

Observe that the Minimum F-Encompass problems are particular cases of
Minimum F-Overlay problems. Indeed, for a family F of graphs, let F̃ be
the family of graphs containing an element of F as a subgraph. Then Minimum
F-Encompass is exactly Minimum F̃-Overlay.

Throughout the paper, we will only consider graph families F whose F-
Recognition problem1 is in NP. This assumption implies that Minimum F-
Overlay and Minimum F-Encompass are in NP as well (indeed, a certificate
for both problems is simply a certificate of the recognition problem for every
hyperedge). In particular, it is not necessary for the recognition problem to be
in P as it can be observed from the family FHam of Hamiltonian graphs: the
F-Recognition problem is NP-hard, but providing a spanning cycle for every
hyperedge is a polynomial certificate and thus belongs to NP.

1.3 Related Work and Applications

Minimum F-Overlay allows us to model lots of interesting combinatorial opti-
mization problems of practical interest, as we proceed to discuss.

Common graph families F are the following: connected graphs (and more
generally, �-connected graphs), Hamiltonian graphs, graphs having a universal
vertex (i.e., having a vertex adjacent to every other vertex). When the family is
the set of all connected graphs, then the problem is known as Subset Inter-
connection Design, Minimum Topic-Connected Overlay or Intercon-
nection Graph Problem. It has been studied by several communities in the
context of designing vacuum systems [10,11], scalable overlay networks [5,14,18],
reconfigurable interconnection networks [12,13], and, in variants, in the context
of inferring a most likely social network [2], determining winners of combinatorial
auctions [7], as well as drawing hypergraphs [3,15–17].

As an illustration, we explain in detail the importance of such inference
problems for fundamental questions on structural biology [1]. A major problem is
the characterization of low resolution structures of macro-molecular assemblies.
To attack this very difficult question, one has to determine the plausible contacts
between the subunits of an assembly, given the lists of subunits involved in all
the complexes. We assume that the composition, in terms of individual subunits,
of selected complexes is known. Indeed, a given assembly can be chemically
split into complexes by manipulating chemical conditions. This problem can be
formulated as a Minimum F-Overlay problem, where vertices represent the
subunits and hyperedges are the complexes. In this setting, an edge between two
vertices represents a contact between two subunits.

Hence, the considered family F is the family of all trees: we want the com-
plexes to be connected. Note that the minimal connectivity assumption avoids
1 The F-Recognition problem asks, given a graph F , whether F ∈ F .

Complexity Dichotomies for the Minimum F-Overlay Problem 119

speculating on the exact (unknown) number of contacts. Indeed, due to volume
exclusion constraints, a given subunit cannot contact many others.

1.4 Our Contributions

In Sect. 2, we prove a strong dichotomy result regarding the polynomial vs. NP-
hard status with respect to the considered family F . Roughly speaking, we show
that the easy cases one can think of (e.g. containing only edgeless and complete
graphs) are the only families giving rise to a polynomial problem: all others
are NP-complete. In particular, it implies that the Minimum Connectivity
Inference problem is NP-hard in p-uniform hypergraphs, which generalizes
previous results. In Sect. 3, we then investigate the parameterized complexity of
the problem and give similar sufficient conditions on F that gives rise to W[1]-
hard, W[2]-hard or FPT problems. This yields an FPT/W[1]-hard dichotomy for
Minimum F-Encompass.

Due to space restrictions, proofs of results marked by (�) can be found in the
long version of the paper [6].

2 Complexity Dichotomy

In this section, we prove a dichotomy between families of graphs F such that
Minimum F-Overlay is polynomial-time solvable, and families of graphs F
such that Minimum F-Overlay is NP-complete.

Given a family of graphs F and a positive integer p, let Fp = {F ∈ F :
|V (F)| = p}. We denote by Kp the complete graph on p vertices, and by Kp the
edgeless graph on p vertices.

Theorem 1. Let F be a family of graphs. If, for every p > 0, either Fp = ∅
or Fp = {Kp} or Kp ∈ Fp, then Minimum F-Overlay is polynomial-time
solvable. Otherwise, it is NP-complete.

The first part of this theorem roughly consists in analyzing the sizes of the
hyperedges, and adding cliques when necessary.

Theorem 2 (�). Let F be a set of graphs. If, for every p > 0, either Fp = ∅
or Fp = {Kp} or Kp ∈ Fp, then Minimum F-Overlay is polynomial-time
solvable.

The NP-complete part requires more work. We need to prove that if there
exists p > 0 such that Fp �= ∅, Fp �= {Kp}, and Kp /∈ Fp, then Minimum
F-Overlay is NP-complete. Actually, it is sufficient to prove the following:

Theorem 3. Let p > 0, and Fp be a non-empty set of graphs with p vertices such
that Fp �= {Kp} and Kp /∈ Fp. Then Minimum Fp-Overlay is NP-complete
(when restricted to p-uniform hypergraphs).

120 N. Cohen et al.

2.1 Prescribing Some Edges

A natural generalization of Minimum F-Overlay is to prescribe a set E of
edges to be in the graph overlaying F on H. We denote by overF (H;E) the
minimum number of edges of a graph G overlaying F on H with E ⊆ E(G).

Prescribed Minimum F-Overlay

Input: A hypergraph H, an integer k, and a set E ⊆ (
V (H)

2

)
.

Question: overF (H;E) ≤ k?

In fact, in terms of computational complexity, the two problems Minimum
F-Overlay and Prescribed Minimum F-Overlay are equivalent.

Theorem 4 (�). Let F be a (possibly infinite) class of graphs. Then Minimum
F-Overlay and Prescribed Minimum F-Overlay are polynomially equiva-
lent.

2.2 Hard Sets

A set Fp of graphs of order p is hard if there is a graph J of order p and two
distinct non-edges e1, e2 of J such that

• no subgraph of J is in Fp (including J itself),
• J ∪ e1 has a subgraph in Fp and J ∪ e2 has a subgraph in Fp.

The graph J is called the hyperedge graph of Fp and e1 and e2 are its two shifting
non-edges.

For example, the set F3 = {P3}, where P3 is the graph with three vertices
and two edges, is hard. Indeed, the graph O3 with three vertices and one edge
has no subgraph in F3, but adding any of the two non-edges of O3 results in a
graph isomorphic to P3.

Lemma 1. Let p ≥ 3 and Fp be a set of graphs of order p. If Fp is hard, then
Prescribed Minimum Fp-Overlay is NP-complete.

Proof. We present a reduction from Vertex Cover. Let J be the hyperedge
graph of Fp and e1, e2 its shifting non-edges. We distinguish two cases depending
on whether e1 and e2 are disjoint or not. The proofs of both cases are very similar,
we thus omit the second case which can be found in the long version of the paper.

Case 1: e1 and e2 intersect. Let G be a graph. Let HG be the hypergraph con-
structed as follows.

• For every vertex v ∈ V (G) add two vertices xv, yv.
• For every edge e = uv, add a vertex ze and three disjoint sets Ze, Y e

u , and
Y e

v of size p − 3.
• For every edge e = uv, create three hyperedges Ze ∪ {ze, yu, yv}, Y e

u ∪
{xu, yu, ze}, and Y e

v ∪ {xv, yv, ze}.

Complexity Dichotomies for the Minimum F-Overlay Problem 121

We select forced edges as follows: for every edge e = uv ∈ E(G), we force the
edges of a copy of J on Ze ∪ {ze, yu, yv} with shifting non-edges zeyu and zeyv,
we force the edges of a copy of J on Y e

u ∪ {ze, yu, xu} with shifting non-edges
yuze and yuxu, and we force the edges of a copy of J on Y e

v ∪ {ze, yv, xv} with
shifting non-edges yvze and yvxv.

We shall prove that overFp
(HG) = |E| + vc(G) + |E(G)|, which yields the

result. Here, vc(G) denotes the size of a minimum vertex cover of G.
Consider first a minimum vertex cover C of G. For every edge e ∈ E(G), let

se be an endvertex of e that is not in C if such vertex exists, or any endvertex of
e otherwise. Set EG = E ∪ {xvyv | v ∈ C} ∪ {zeyse

| e ∈ E(G)}. One can easily
check that (VG, E ∪ EG) overlays Fp on HG. Indeed, for every hyperedge S of
HG, at least one of the shifting non-edges of its forced copy of J is an edge of
E ∪ EG. Therefore overFp

(HG) ≤ |E| + |EG| = |E| + vc(G) + |E(G)|.
Now, consider a minimum-size graph (VG, E ∪EG) overlaying Fp on HG and

maximizing the edges of the form xuyu. Let e = uv ∈ E(G). Observe that the
edge yuyv is contained in a unique hyperedge, namely Ze∪{ze, yu, yv}. Therefore,
free to replace it (if it is not in E) by zeyv, we may assume that yuyv /∈ EG.
Similarly, we may assume that the edges xuze and xvze are not in EG, and that
no edge with an endvertex in Y e

u ∪ Y e
v ∪ Ze is in EG. Furthermore, one of xuyu

and xvyv is in EG. Indeed, if {xuyu, xvyv} ∩ EG = ∅, then {yuze, yvze} ⊆ EG

because EG contains an edge included in every hyperedge. Thus replacing yuze

by xuyu results in another graph overlaying Fp on HG with one more edge of
type xuyu than the chosen one, a contradiction.

Let C = {u | xuyu ∈ EG}. By the above property, C is a vertex cover of G, so
|C| ≥ vc(G). Moreover, EG contains an edge in every hyperedge Ze∪{ze, yu, yv},
and those |E(G)| edges are not in {xuyu | u ∈ V (G)}. Therefore |EG| ≥ |C| +
|E(G)| ≥ vc(G) + |E(G)|.
�

Let Fp be a set of graphs of order p. It is free if there are no two distinct
elements of Fp such that one is a subgraph of the other. The core of Fp is the
free set of graphs F having no proper subgraphs in Fp. It is easy to see that Fp

is overlayed by a hypergraph if and only if its core does. Henceforth, we may
restrict our attention to free sets of graphs.

Lemma 2. Let Fp be a free set of graphs of order p. If a graph F in Fp has an
isolated vertex and a vertex of degree 1, then Fp is hard.

Proof. Let z be an isolated vertex of F , y a vertex of degree 1, and x the neigh-
bor of y in F . The graph J = F \ xy contains no element of Fp because Fp

is free. Moreover J ∪ xy and J ∪ yz are isomorphic to F . Hence J is a hyper-
edge graph of Fp. Thus, by Lemma 1, Prescribed Minimum Fp-Overlay is
NP-complete.
�

The star of order p, denoted by Sp, is the graph of order p with p − 1 edges
incident to a same vertex.

Lemma 3. Let p ≥ 3 and let Fp be a free set of graphs of order p containing a
subgraph of the star Sp different from Kp. Then Fp is hard.

122 N. Cohen et al.

c1

c2 c3 c4 c5 c6 c7

S8

b

a1 a2

c1 c2 c3 c4 c5

Q8

Proof. Let S be the non-empty subgraph of Sp in Fp. If S �= Sp, then S has an
isolated vertex and a vertex of degree 1, and so Fp is hard by Lemma 2. We may
assume henceforth that Sp ∈ Fp.

Let Qp be the graph with p vertices {a1, a2, b, c1, . . . , cp−3} and edge set
{a1a2} ∪ {aicj | 1 ≤ i ≤ 2, 1 ≤ j ≤ p − 3}. Observe that Qp does not contain
Sp but Qp ∪ a1b and Qp ∪ a2b do. If Fp contains no subgraph of Qp, then Fp is
hard. So we may assume that Fp contains a subgraph of Qp.

Let Q be the subgraph of Qp in Fp that has the minimum number of triangles.
If Q has a degree 1 vertex, then Fp is hard by Lemma 2. Henceforth we may
assume that Q has no vertex of degree 1. So, without loss of generality, there
exists q such that E(Q) = {a1a2} ∪ {aicj | 1 ≤ i ≤ 2, 1 ≤ j ≤ q}.

Let R = (Q \a1c1)∪a2b. Observe that R∪a1c1 and R∪a1b contain Q. If Fp

contains no subgraph of R, then Fp is hard. So we may assume that Fp contains
a subgraph R′ of R. But Fp contains no subgraph of Q because it is free, so both
a2c1 and a2b are in R′. In particular, c1 and b have degree 1 in R′.

Let T = (Q\a1c1). It is a proper subgraph of Q, so Fp contains no subgraph
of T , because Fp is free. Moreover T ∪ a1c1 = Q is in Fp and T ∪ a2b = R
contains R′ ∈ Fp. Hence Fp is hard.
�

2.3 Proof of Theorem 3

For convenience, instead of proving Theorem 3, we prove the following statement,
which is equivalent by Theorem 4.

Theorem 5. Let p be a positive integer. Let Fp be a non-empty set of graphs of
order p. Prescribed Minimum Fp-Overlay is NP-complete unless Kp ∈ Fp

or Fp = {Kp}.
Proof. We proceed by induction on p, the result holding trivially when p = 1
and p = 2. Assume now that p ≥ 3. Without loss of generality, we may assume
that Fp is a free set of graphs.

A hypograph of a graph G is an induced subgraph of G of order |G| − 1. In
other words, it is a subgraph obtained by removing a vertex from G. Let F− be
the set of hypographs of elements of Fp.

If F− = {Kp−1}, then necessarily Fp = {Kp}, and Prescribed Minimum
Fp-Overlay is trivially polynomial-time solvable.

If F− �= {Kp−1} and Kp−1 /∈ F−, then Prescribed Minimum F−-
Overlay is NP-complete by the induction hypothesis. We shall now reduce
this problem to Prescribed Minimum Fp-Overlay. Let (H−, k−, E−) be

Complexity Dichotomies for the Minimum F-Overlay Problem 123

an instance of Prescribed Minimum F−-Overlay. For every hyperedge
S of H−, we create a new vertex xS and the hyperedge XS = S ∪ {xS}.
Let H be the hypergraph defined by V (H) = V (H−) ∪ ⋃

S∈E(H−) xS and
E(H) = {XS | S ∈ E(H−)}. We set E = E− ∪ ⋃

S∈E(H−){xSv | v ∈ S}.
Let us prove that overFp

(H;E) = overF−(H−;E−) + (p − 1) · |S|. Clearly,
if G− = (V (H−), F−) overlays F−, then G = (V (H), F− ∪ ⋃

S∈E(H−){xSv |
v ∈ S}) overlays Fp. Hence overFp

(H;E) ≤ overF−(H−;E−) + (p − 1) · |S|.
Reciprocally, assume that G overlays Fp. Then for each hyperedge S of H−,
the graph G[XS] ∈ Fp, and so G[S] ∈ F−. Therefore, setting the graph G− =
G[V (H−)] overlays F−. Moreover E(G) \ E(G−) =

⋃
S∈E(H−){xSv | v ∈ S}.

Hence overFp
(H;E) ≥ overF−(H−;E−) + (p − 1) · |S|.

Assume now that Kp−1 ∈ F−. Then Fp contains a subgraph of the star
Sp. If Fp contains Kp, then Prescribed Minimum Fp-Overlay is trivially
polynomial-time solvable. Henceforth, we may assume that Fp contains a non-
empty subgraph of Sp. Thus, by Lemma 3, Fp is hard, and so by Lemma 1,
Prescribed Minimum Fp-Overlay is NP-complete.
�

3 Parameterized Analysis

We now focus on the parameterized complexity of our problems. A parameteri-
zation of a decision problem Q is a computable function κ that assigns an integer
κ(I) to every instance I of the problem. We say that (Q,κ) is fixed-parameter
tractable (FPT) if every instance I can be solved in time O(f(κ(I))|I|c), where
f is some computable function, |I| is the encoding size of I, and c is some con-
stant independent of I (we will sometimes use the O∗(·) notation that removes
polynomial factors and additive terms). Finally, the W[i]-hierarchy of parame-
terized problems is typically used to rule out the existence of FPT algorithms,
under the widely believed assumption that FPT �= W[1]. For more details about
fixed-parameter tractability, we refer the reader to the monograph of Downey
and Fellows [9].

Since Minimum F-Overlay is NP-hard for most non-trivial cases, it is nat-
ural to ask for the existence of FPT algorithms. In this paper, we consider the
so-called standard parameterization of an optimization problem: the size of a
solution. In the setting of our problems, this parameter corresponds to the num-
ber k of edges in a solution. Hence, the considered parameter will always be k
in the remainder of this section.

Similarly to our dichotomy result stated in Theorem 1, we would like to
obtain necessary and sufficient conditions on the family F giving rise to either
an FPT or a W[1]-hard problem. One step towards such a result is the following
FPT-analogue of Theorem 2.

Theorem 6. Let F be a family of graphs. If there is a non-decreasing function
f : N → N such that limn→+∞ f(n) = +∞ and |E(F)| ≥ f(|V (F)|) for all
F ∈ F , then Minimum F-Overlay is FPT.

124 N. Cohen et al.

Proof. Let g : N → N be the function that maps every k ∈ N to the smallest
integer � such that f(�) ≥ k. Since limn→+∞ f(n) = +∞, g is well-defined.
If a hyperedge S of a hypergraph H is of size at least g(k + 1), then since f
is non-decreasing, overF (H) > k and so the instance is negative. Therefore,
we may assume that every hyperedge of H has size at most g(k). Applying
a simple branching algorithm (see [9]) allows us to solve the problem in time
O∗(g(k)O(k)).
�

Observe that if F is finite, setting N = max{|E(F)| | F ∈ F}, the function f
defined by f(n) = 0 for n ≤ N and f(n) = n otherwise satisfies the condition of
Theorem 6, and so Minimum F-Overlay is FPT. Moreover, Theorem 6 encom-
passes some interesting graph families. Indeed, if F is the family of connected
graphs (resp. Hamiltonian graphs), then f(n) = n − 1 (resp. f(n) = n) satisfies
the required property. Other graph families include c-vertex-connected graphs
or c-edge-connected graphs for any fixed c ≥ 1, graphs of minimum degree at
least d for any fixed d ≥ 1. In sharp contrast, we shall see in the next subsection
(Theorem 7) that if, for instance, F is the family of graphs containing a match-
ing of size at least c, for any fixed c ≥ 1, then the problem becomes W[1]-hard
(note that such a graph might have an arbitrary number of isolated vertices).

3.1 Negative Result

In view of Theorem 6, a natural question is to know what happens for graph
families not satisfying the conditions of the theorem. Although we were not
able to obtain an exact dichotomy as in the previous section, we give sufficient
conditions on F giving rise to problems that are unlikely to be FPT (by proving
W[1]-hardness or W[2]-hardness).

An interesting situation is when F is closed by addition of isolated vertices,
i.e., for every F ∈ F , the graph obtained from F by adding an isolated vertex is
also in F . Observe that for such a family, Minimum F-Overlay and Minimum
F-Encompass are equivalent, which is the reason that motivated us defining this
relaxed version. We have the following result, which implies an FPT/W[1]-hard
dichotomy for Minimum F-Encompass.

Theorem 7. Let F be a fixed family of graphs closed by addition of isolated ver-
tices. If Kp ∈ F for some p ∈ N, then Minimum F-Overlay is FPT. Otherwise,
it is W[1]-hard parameterized by k.

Proof. To prove the positive result, let p be the minimum integer such that
Kp ∈ F . Observe that no matter the graph G, for every hyperedge S ∈ E(H),
G[S] will contain K |S| as a spanning subgraph, which is in F whenever |S| ≥ p
(recall that F is closed by addition of isolated vertices). Then, a simple branching
algorithm allows us to enumerate all graphs (with at least one edge) induced by
hyperedges of size at most p − 1 in O∗(pO(k)) time.

To prove the negative result, we use a recent result of Chen and Lin [4] stat-
ing that any constant-approximation of the parameterized Dominating Set is

Complexity Dichotomies for the Minimum F-Overlay Problem 125

W[1]-hard, which directly transfers to Hitting Set2. For an input of Hitting
Set, namely a finite set U (called the universe), and a family S of subsets of
U , let τ(U,S) be the minimum size of a set K ⊆ U such that K ∩ S �= ∅ for all
S ∈ S (such a set is called a hitting set). The result of Chen and Lin implies
that the following problem is W[1]-hard parameterized by k.

Gapρ Hitting Set

Input: A finite set U , a family S of subsets of U , and a positive integer k.
Question: Decide whether τ(U,S) ≤ k or τ(U,S) > ρk.

Let Fis be a graph from F minimizing the two following criteria (in this
order): number of non-isolated vertices, and minimum degree of non-isolated
vertices. Let ris and δis be the respective values of these criteria, nis = |V (Fis)|,
and mis = |E(Fis)|. We thus have δis ≤ ris. Let Fe be a graph in F with the
minimum number of edges, and ne = |V (Fe)|, me = |E(Fe)|.

Let U,S, k be an instance of Gap2ris
Hitting Set, with U = {u1, . . . , un}.

We denote by H the hypergraph constructed as follows. Its vertex set is the
union of:

• a set Vis of ris − 1 vertices;
• a set VU =

⋃n
i=1 V i, where V i = {vi

1, . . . , v
i
nis−ris+1}; and

• for every u, v ∈ Vis, u �= v, a set Vu,v of ne − 2 vertices.

Then, for every u, v ∈ Vis, u �= v, create a hyperedge hu,v = {u, v} ∪ Vu,v and,
for every set S ∈ S, create the hyperedge hS = Vis ∪ ⋃

i:ui∈S V i. Finally, let
k′ =

(
nis−1

2

)
me + kδis. Since F is fixed, k′ is a function of k only.

We shall prove that if τ(U,S) ≤ k, then overF (H) ≤ k′ and, conversely, if
overF (H) ≤ k′, then τ(U,S) ≤ 2risk.

Assume first that U has a hitting set K of size at most k. For every u, v ∈ Vis,
u �= v, add to G the edges of a copy of Fe on hu,v with uv ∈ E(G). This already
adds

(
nis−1

2

)
me edges to G and, obviously, G[hu,v] contains Fe as a subgraph.

Now, for every ui ∈ K, add all edges between vi
1 and δis arbitrarily chosen

vertices in Vis. Observe that for every S ∈ S, G[hS] contains Fis as a subgraph,
and also |E(G)| ≤ k′.

Conversely, let G be a solution for Minimum F-Overlay with at most k′

edges. Clearly, for all u, v ∈ Vis, u �= v, G[Vu,v] has at least me edges, hence
the subgraph of G induced by V (H) \ VU has at least

(
nis−1

2

)
me edges, and

thus the number of edges of G covered by Vu is at most kδis. Let K be the
set of non-isolated vertices of VU in G, and K ′ = {ui | vi

j ∈ K for some j ∈
{1, . . . , nis−ris+1}}. We claim that K ′ is a hitting set of (U,S): indeed, for every
S ∈ S, G[hS] must contain some F ∈ F as a subgraph, but since Vis is composed
of ris − 1 vertices, and since Fis is a graph from F with the minimum number

2 Roughly speaking, each element of the universe represents a vertex of the graph, and
for each vertex, create a set with the elements corresponding to its closed neighbor-
hood.

126 N. Cohen et al.

ris of non-isolated vertices, there must exist i ∈ {1, . . . , n} such that ui ∈ S,
and j ∈ {1, . . . , nis − ris + 1} such that vi

j ∈ hS ∩ K, and thus S ∩ K ′ �= ∅.
Finally, observe that K is a set of non-isolated vertices covering kδis edges, and
thus |K| ≤ 2kδis (in the worst case, K induces a matching), hence we have
|K ′| ≤ |K| ≤ 2kδis ≤ 2risk, i.e., τ(U,S) ≤ 2risk, concluding the proof.
�

It is worth pointing out that the idea of the proof of Theorem 7 applies to
broader families of graphs. Indeed, the required property ‘closed by addition of
isolated vertices’ forces F to contain all graphs Fis + Ki (where + denotes the
disjoint union of two graphs) for every i ∈ N. Actually, it would be sufficient to
require the existence of a polynomial p : N → N such that for any i ∈ N, we have
Fis + Kp(i) ∈ F (roughly speaking, for a set S of the Hitting Set instance, we
would construct a hyperedge with |V (Fis + Kp(|S|))| vertices). Intuitively, most
families of practical interest not satisfying such a constraint will fall into the
scope of Theorem 6. Unfortunately, we were not able to obtain the dichotomy
in a formal way.

Nevertheless, as explained before, this still yields an FPT/W[1]-hardness
dichotomy for the Minimum F-Encompass problem.

Corollary 1. Let F be a fixed family of graphs. If Kp ∈ F for some p ∈ N, then
Minimum F-Encompass is FPT. Otherwise, it is W[1]-hard parameterized by
k.

We conclude this section with a stronger negative result than Theorem 7,
but concerning a restricted graph family (hence both results are incomparable).

Theorem 8 (�). Let F be a fixed graph family such that (i) F is closed by
addition of isolated vertices; (ii) Kp /∈ F for every p ≥ 0; and (iii) all graphs in
F have the same number of non-isolated vertices. Then Minimum F-Overlay
is W[2]-hard parameterized by k.

4 Conclusion and Future Work

Naturally, the first open question is to close the gap between Theorems 6 and 7
in order to obtain a complete FPT/W[1]-hard dichotomy for any family F .

As further work, we are also interested in a more constrained version of
the problem, in the sense that we may ask for a graph G such that for every
hyperedge S ∈ E(H), the graph G[S] belongs to F (hence, we forbid additional
edges). The main difference between Minimum F-Overlay and this problem,
called Minimum F-Enforcement, is that it is no longer trivial to test for the
existence of a feasible solution (actually, it is possible to prove the NP-hardness
of this existence test for very simple families, e.g. when F only contains P3, the
path on three vertices). We believe that a dichotomy result similar to Theorem 1
for Minimum F-Enforcement is an interesting challenging question, and will
need a different approach than the one used in the proof of Theorem 5.

Complexity Dichotomies for the Minimum F-Overlay Problem 127

References

1. Agarwal, D., Caillouet, C., Coudert, D., Cazals, F.: Unveiling contacts within
macro-molecular assemblies by solving minimum weight connectivity inference
problems. Mol. Cell. Proteomics 14, 2274–2284 (2015)

2. Angluin, D., Aspnes, J., Reyzin, L.: Inferring social networks from outbreaks. In:
Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (eds.) ALT 2010. LNCS (LNAI),
vol. 6331, pp. 104–118. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16108-7 12

3. Brandes, U., Cornelsen, S., Pampel, B., Sallaberry, A.: Blocks of hypergraphs. In:
Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS, vol. 6460, pp. 201–211.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19222-7 21

4. Chen, Y., Lin, B.: The constant inapproximability of the parameterized dominating
set problem. FOCS 2016, 505–514 (2016)

5. Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: Constructing scalable overlays
for pub-sub with many topics. In: PODC 2007, pp. 109–118. ACM (2007)

6. Cohen, N., Mazauric, D., Sau, I., Watrigant, R.: Complexity dichotomies for the
minimum F-overlay problem. CoRR, abs/1703.05156 (2017)

7. Conitzer, V., Derryberry, J., Sandholm, T.: Combinatorial auctions with structured
item graphs. In: AAAI 2004, pp. 212–218 (2004)

8. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-53622-3

9. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-
4471-5559-1

10. Du, D.Z., Kelly, D.F.: On complexity of subset interconnection designs. J. Global
Optim. 6(2), 193–205 (1995)

11. Ding-Zhu, D., Miller, Z.: Matroids and subset interconnection design. SIAM J.
Discrete Math. 1(4), 416–424 (1988)

12. Fan, H., Hundt, C., Wu, Y.-L., Ernst, J.: Algorithms and implementation for inter-
connection graph problem. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA
2008. LNCS, vol. 5165, pp. 201–210. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85097-7 19

13. Fan, H., Wu, Y.-L.: Interconnection graph problem. In: FCS 2008, pp. 51–55 (2008)
14. Hosoda, J., Hromkovic, J., Izumi, T., Ono, H., Steinov, M., Wada, K.: On the

approximability and hardness of minimum topic connected overlay and its special
instances. Theoret. Comput. Sci. 429, 144–154 (2012)

15. Johnson, D.S., Pollak, H.O.: Hypergraph planarity and the complexity of drawing
Venn diagrams. J. Graph Theory 11(3), 309–325 (1987)

16. Klemz, B., Mchedlidze, T., Nöllenburg, M.: Minimum tree supports for hyper-
graphs and low-concurrency Euler diagrams. In: Ravi, R., Gørtz, I.L. (eds.) SWAT
2014. LNCS, vol. 8503, pp. 265–276. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08404-6 23

17. Korach, E., Stern, M.: The clustering matroid and the optimal clustering tree.
Math. Program. 98(1), 385–414 (2003)

18. Onus, M., Richa, A.W.: Minimum maximum-degree publish-subscribe overlay net-
work design. IEEE/ACM Trans. Netw. 19(5), 1331–1343 (2011)

https://doi.org/10.1007/978-3-642-16108-7_12
https://doi.org/10.1007/978-3-642-16108-7_12
https://doi.org/10.1007/978-3-642-19222-7_21
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-3-540-85097-7_19
https://doi.org/10.1007/978-3-540-85097-7_19
https://doi.org/10.1007/978-3-319-08404-6_23
https://doi.org/10.1007/978-3-319-08404-6_23

Improved Complexity for Power Edge
Set Problem

Benoit Darties1(B) , Annie Chateau2, Rodolphe Giroudeau2,
and Matthias Weller2

1 Le2i FRE2005, CNRS, Arts et Métiers, University of Bourgogne Franche-Comté,
Dijon, France

benoit.darties@u-bourgogne.fr
2 LIRMM - CNRS UMR 5506, Montpellier, France

{chateau,giroudeau,weller}@lirmm.fr

Abstract. We study the complexity of Power Edge Set (PES), a
problem dedicated to the monitoring of an electric network. In such
context we propose some new complexity results. We show that PES
remains NP-hard in planar graphs with degree at most five. This result
is extended to bipartite planar graphs with degree at most six. We also
show that PES is hard to approximate within a factor lower than 328/325
in the bipartite case (resp. 17/15 − ε), unless P = NP, (resp. under

UGC). We also show that, assuming ET H, there is no 2o(
√
n)-time algo-

rithm and no 2o(k)nO(1)-time parameterized algorithm, where n is the
number of vertices and k the number of PMUs placed. These results
improve the current best known bounds.

1 Introduction

Monitoring the nodes of an electrical network can be carried out by means of
Phasor Measurement Units (PMUs). The problem of placing an optimal number
of PMUs on the nodes for complete network monitoring, is known as Power
Dominating Set [16]. A recent variant of the problem [15], called Power Edge
Set (PES), is to have the PMUs on the network links rather than the nodes,
considering the following two rules: (1) two endpoints of an edge bearing a PMU
are monitored and (2) if one node is monitored and all but one of its neighbors
are too, then the unmonitored neighbor becomes monitored. The problem of
assigning a minimum number of PMUs to monitor the whole network is known
to be NP-hard in the general case but can be solved in linear time on trees [15].
In this paper, we present some new complexity results, proposing new lower
bounds according to classic complexity hypotheses.

We model the electrical network by a graph G = (V,E) with |V | = n and
|E| = m. We let V (G) and E(G) denote the respective sets of vertices and edges
of G. Further, NG(v) denotes the set of neighbors of v and dG(v) = |NG(v)| its
degree in G. Finally, we let NG[v] := NG(v)∪{v} denote the closed neighborhood
of v in G.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 128–141, 2018.
https://doi.org/10.1007/978-3-319-78825-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_11&domain=pdf
http://orcid.org/0000-0002-9492-8613

Improved Complexity for Power Edge Set Problem 129

a

b c

d

e

f

g a

b c

d

e

f

g a

b c

d

e

f

g a

b c

d

e

f

g

a

b c

d

e

f

g a

b c

d

e

f

g a

b c

d

e

f

g

Fig. 1. Before placing any PMU (represented by crossed boxes on edges), all vertices
are white (Fig. 1a). If we place a PMU on {b, c}, then c(b) = c(c) = 1 (black) by Rule
R1 (Fig. 1b). By applying Rule R2 on b, we obtain c(a) = 1 (Fig. 1c). Then, Rule R2

on a gives c(d) = 1 (Fig. 1d), and, finally, c(e) = 1 with Rule R2 on c or d (Fig. 1e).
The color propagation is stopped, and we need to place a second PMU. A PMU on
{e, f} implies c(f) = 1 by Rule R1 (Fig. 1f) and Rule R2 on e gives c(g) = 1 (Fig. 1g).

The problem Power Edge Set can be seen as a problem of color propaga-
tion with colors 0 (white) and 1 (black), respectively designating the states not
monitored and monitored of a vertex of G. Let G = (V,E) be a graph as the
input of Power Edge Set and, for each vertex v ∈ V , let c(v) be the color
assigned to v (we abbreviate

⋃
v∈X c(v) =: c(X)). Before placing the PMUs, we

have c(V) = {0}. Given a set E′ ⊆ E of edges on which to place PMUs, colors
propagate according to the following rules:

RULE R1: if (u, v) ∈ E′, then c(u) = c(v) = 1 (“the endpoints of all {u, v} ∈ E′

are colored”).
RULE R2: for u, u′ with c(u) = 1, u′ ∈ NG(u) and c(v) = 1 for all v ∈

NG(u)\{u′}, then c(u′) = 1 (“if u′ is the only uncoloured neighbor of an
already colored vertex u, then u′ is colored” – we say that we apply Rule R2

on u to color u′, or that u′ is colored by propagation of u).

The objective of Power Edge Set is to find a smallest set of edges E′ ⊆ E
on which to place the PMUs such that c(V)={1} after exhaustive application of
Rule R1 and Rule R2. We call such a set a power edge set of G (see Fig. 1 for
a guided example of Rule R1 and Rule R2 on a simple graph, leading to an
optimal solution with two PMUs) and we let pmu(G) denote the smallest size
of any power edge set.

Power Edge Set (PES)
Input: a graph G = (V,E) and some k ∈ IN
Question: Is pmu(G) ≤ k?

130 B. Darties et al.

Previous Work. Toubaline et al. [15] propose a complexity result and an approx-
imation threshold 1.12 − ε for ε > 0 based on an E-reduction from Vertex
Cover. They also propose a linear-time algorithm on trees by performing a
polynomial reduction to Path Cover. Moreover, Poirion et al. [14] develop an
exact method, a linear program with binary variables, indexed on the neces-
sary iterations using propagation Rule R1 and Rule R2, extended to a linear
program in mixed variables, with the goal of being efficient in practice.

Our Contribution. An interesting open question stems from the assumption that
power lines run in a plane or, at least in few planes or surfaces of low genus. In
this work, we address this question, developing hardness results on (bipartite)
planar graphs, covering both approximation and parameterized complexity. We
show that PES is hard to approximate within a factor lower than 328/325 for
bipartite graphs (resp. 17/15 − ε), unless P = NP, (resp. under UGC). We also
show that, assuming ET H, there is no 2o(

√
n)-time algorithm, and no 2o(k)nO(1)-

time parameterized algorithm with respect to the standard parameter.

2 Preliminaries

In this section, we present some definitions and observations concerning parts
of optimal solutions to PES on a graph G. We call a cycle C ribbon if all but
exactly one vertex v of C have degree two in G and we call v the knot of C.

Lemma 1. Let G be a graph, let C be a ribbon with knot v and let e be an edge
of C. Then, there is an optimal power edge set S for G with S ∩ E(C) = {e}.

Proof. Suppose that no PMU is placed on the edges of C. Then, even if c(v) =
1, none of the neighbors of v in C can become colored and, thus, v cannot
propagate on any of them. If one PMU is placed on e, we obtain c(V (C)) = {1}
by consecutive propagation of vertices of degree two. ��

Definition 1 (Passive Relay). Let G be a graph, let C be a ribbon with knot
v, and let NG(v) \ V (C) = {x, y}. Then, v is called passive relay between x
and y.

G

v

x

y

Fig. 2. A passive relay
between x and y, consisting
in a ribbon with knot v.

If v is a passive relay between x and y, then
c(x) = 1 implies c(y) = 1 by Rule R2 applied to
v. A passive relay between x and y can be built by
connecting x and y to a ribbon (see Fig. 2). The
interest of adding this relay lies in the fact that,
by Lemma 1, any optimal power edge set intersects
the ribbon, thus coloring it completely. Then, a col-
oration of x necessarily implies a coloration of y
even if there were remaining uncolored vertices in
NG(x) (and symmetrically from y to x).

Throughout this work, we call a total order < of vertices of G valid for any
S ⊆ E(G) if, for each v ∈ V (G), there is an edge incident with v in S or there

Improved Complexity for Power Edge Set Problem 131

is some u ∈ NG(v) with NG[u] ≤ v (where ≤ denotes the extension of < by all
reflexive pairs). Note that valid orders correspond to propagation processes of S
in G. We also represent a total order < by a sequence (v1, v2, . . .) such that vi

occurs before vj in the sequence if and only if vi < vj .

3 Computational Results

In this section, we present new complexity results for PES on restricted graphs.
First, we show that PES remains NP-complete even if G is a planar graph with
bounded degree at most five (Theorem 1). Then, we extend this result to planar
bipartite graphs with degree at most six (Theorem 2). To prove these results, we
use a reduction from 3-regular planar Vertex Cover (3-RPVC) defined
as follows:

3-regular planar Vertex Cover (3-RPVC)
Input: a 3-regular planar graph G = (V,E) and some k ∈ IN.
Question: Is there a size-k set S ⊆ V covering E, i.e. ∀e∈E e ∩ S
= ∅?

3-RPVC is NP-complete [8] but admits a PTAS [1], and a 3
2 -approximation [3].

3.1 Hardness on Planar Graphs

First, we introduce the gadget graph Hv presented in Fig. 3:

v0

v1

v2

v3
v4

v5

v6

vx

xv Hx

v7

vy

yv Hy

v8 vz

zv Hz

Fig. 3. Gadget Hv for a vertex v with neighbors x, y, and z.

Construction 1. Given a vertex v of degree three with neighbors x, y, z, the
gadget Hv is composed of (1) an internal 5-wheel (vertices v0–v5) with center
v0, (2) a set of three border-vertices, one for each neighbor of v, called vx, vy

and vz connected in a triangle (3) and three intermediate vertices (v6, v7, v8),
connected respectively to vx and v2, to vy and v3, and to vz and v5. The whole
gadget contains 12 vertices and 19 edges.

From any 3-regular planar graph G, we construct a planar graph G′ by 1 for
each v ∈ V (G), adding Hv, and 2 for each {u, v} ∈ E, adding a connecting edge
{uv, vu}, thus linking the gadgets Hu and Hv (see Fig. 6 (appendix)).

132 B. Darties et al.

In the following, let S′ be a solution to PES on G′ and let < be a valid order
corresponding to S′.

Lemma 2. S′ contains an edge incident with v0, v1, or v4 for all v ∈ V (G).

Proof. Towards a contradiction, assume that S′ avoids all edges incident with
v0, v1 and v4 for some v ∈ V (G). Then, since v0 is neighbor of all neighbors
(except v0 itself) of v1, we have v0 < v1 and the same holds for v4. However, all
neighbors of v0 have either v1 or v4 as a neighbor (or are v1 or v4 themselves),
implying v1 < v0 or v4 < v0, contradicting v0 < v1, v4. ��
Lemma 3. For all {v, x} ∈ E(G), we have {vx, xv} /∈ S′.

Proof. Towards a contradiction, assume that {vx, xv} ∈ S′ for some {x, v} ∈
E(G). Then, we can swap {vx, xv} and the edges in S′ ∩ E(Hv) for {v0, v1} and
{v4, v5} in S′, allowing us to start < with (v0, v1, v4, v5, v2, v3, v6, v7, v8, vx,
vy, vz, xv) for {x, y, z} = NG(v). BY Lemma 2, S′ did not grow larger. Further,
vx and xv precede all w /∈ V (Hv) in this modified ordering, implying that it is
valid for the modified power edge set. ��
Lemma 4. Let v ∈ V (G) with |S′ ∩ E(Hv)| = 1, let x ∈ NG(v) and let w ∈
{v0, v1, . . . , v8} such that w is not incident with an edge of S′. Then, vx < w.

Proof. Abbreviate B := {vi | i ∈ NG(v)} and let w be chosen minimal with
respect to <. Since w is not incident with an edge of S′, there is some u ∈ NG′(w)
with NG′ [u] ≤ w. Assume towards a contradiction that u /∈ B. By minimality
of w, we then know that u is incident with an edge of S′ and by Lemma 2,
NG′ [u] avoids B. However, since |NG′ [u]| ≥ 4 for all such u, this contradicts
|S′ ∩ E(Hv)| = 1. Thus, u ∈ B, implying vx ∈ NG′ [u] and vx < w. ��
Lemma 5. Let {x, v} ∈ E(G). Then |S′ ∩ E(Hx)| > 1 or |S′ ∩ E(Hv)| > 1.

Proof. Towards a contradiction, assume that |S′ ∩ E(Hx)| = |S′ ∩ E(Hv)| = 1
(from Lemma 2, we know that |S′ ∩ E(Hv)| ≥ 1). By symmetry, suppose that
vx < xv and note that, by Lemmas 2 and 3, vx is not incident with an edge of
S′. Thus, there is some u ∈ NG′(vx) with NG′ [u] ≤ vx. Since vx < xv, we have
u ∈ V (Hv). By Lemma 4, we know that u ∈ {vi | i ∈ NG(v)}. However, NG′ [u]
intersects {v0, v1, . . . , v8}, contradicting Lemma 4. ��
Theorem 1. Power Edge Set is NP-complete in planar graphs of degree at
most five.

Proof. We show that G has a size-k vertex cover if and only if the result G′ of
applying Construction 1 has a power edge set of size n + k.

“⇒”: let S be a size-k vertex cover of G. We build a power edge set S′ for
G′ as follows: for each v ∈ V (G), add the edge {v0, v1} of Hv to S′ and for each
v ∈ S, add the edge {v4, v5} of Hv to S′. Note that |S′| = n + k. We construct a
valid ordering < of G′ for S′. To this end, for each v ∈ V (G) with (x, y, z) being
an arbitrary sequence of NG(v), let

<v:=

{
(v0, v1, v4, v5, v2, v3, v6, v7, v8, vx, vy, vz) if v ∈ S

(v0, v1, vx, vy, vz, v6, v7, v8, v2, v3, v5, v4) if v /∈ S.

Improved Complexity for Power Edge Set Problem 133

Let <∗ be an arbitrary ordering of V (G) such that u <∗ v for all u ∈ S and
v /∈ S and let < be the result of replacing each v by the sequence <v in this
ordering. Towards a contradiction, assume that < is not valid for S′ and let w
be the first vertex of < such that the subsequence of < ending with w is invalid
for S′. Let v ∈ V (G) such that w is a vertex of Hv. By construction of <v,
this is only possible if v /∈ S and w = vx for some x ∈ NG(v). However, since
S is a vertex cover, x ∈ S, implying x <∗ v and, thus, V (Hx) < w. But then,
NG′ [xv] ≤ vx contradicting that the subsequence of S′ ending with w is invalid.

“⇐”: Let S′ be a size-(n + k) power edge set of G′ and let < be a valid
total order of V (G′) for S′. Lemma 5 directly implies that the set {v | |S′ ∩
E(Hv)| > 1} is a vertex cover of G and, by Claims 2, 4 and 5, its size is at most
|S′| − n = k. ��

3.2 Hardness on Bipartite Planar Graphs

In the proof of Theorem 1, the graph G′ obtained by Construction 1 is not bipar-
tite. In the following, we modify this construction to yield planar bipartite graphs
while preserving large parts of the previous proof. To this end, we replace edges
of odd-length cycles with a gadget (See Fig. 4) and show that this replacement
does not alter the initial coloring propagation scheme in the graph.

Construction 2. Given a graph G and an edge e ∈ E(G), let r(G, e) denote
the graph (V (G) ∪ V (I(e)), E(G) ∪ E(I(e)) \ e) resulting from replacing e by the
gadget graph I(e) in G (see Fig. 4).

e1
e2

e3

e5
e6

e7

e9
e8

e4

e13

e11

x y

e10

e12

Fig. 4. Gadget graph I(e) with e = {x, y}.

Note that I(e) is bipartite and planar, and that the distance between x and
y is even. By Lemma 1, we know that each of the four 4-cycles connected to e4,
e8, e11, and e13, respectively contains a PMU. Moreover, vertex e4 (respectively
e8, e11, e13) is a passive relay between e3 and e5 (respectively between e1 and
e7, between e10 and y, between e12 and x). Recall that one can consider passive
relays and their connected cycles as always colored.

Lemma 6. Let G be a graph, let e = {x, y} ∈ E(G), and let G′ = r(G, e). Then,
pmu(G) ≤ k if and only if pmu(G′) ≤ k + 4.

134 B. Darties et al.

Proof. “⇒”: Let Fe be a set containing one edge of each ribbon of I(e), let S
be a size-k power edge set for G, and let S′ := (S \ {x, y}) ∪ Fe. We suppose
that {x, y} /∈ S as otherwise, S′ ∪ {x, e1} is a power edge set for G and its size
is k + 4. Let < be a valid order of G for S and let (v1, v2, . . .) be the sequence of
V (G) corresponding to <. From <, we build a valid ordering <′ of G′ for S′, thus
proving that S′ is a power edge set for G′. Without loss of generality, let x < y
and note that (v1, v2, . . . , x) is valid for S′. Let z be minimal with respect to <
such that NG[x] ≤ z and let <′ be the result of (1) prepending the vertices of
the ribbons of I(e) to <, (2) replacing x by (x, e12, e5, e3, e2), (3) replacing z by
(e1, e7, e6, e9, e10, z) if z = y, and (4) replacing y by (y, e10, e1, e7, e6, e9) if z
= y.
Let (v′

1, v
′
2, . . .) be the corresponding vertex sequence. Towards a contradiction,

assume that there is some w such that (v′
1, v

′
2, . . . , w) is not valid for S′ and let w

be minimal with respect to <′. As w is not incident with an edge of S′, it is also
not incident with an edge of S. Further, one can verify that (1)–(4) imply w
= ej

for all j and, thus, w ∈ V (G). Since < is valid for S, there is some u ∈ NG(w)
with NG[u] ≤ w. First, suppose that u = x and note that x, y ≤ w = z in
this case. If y = w = z, then NG[x] ≤ y and NG′ [e11] ≤′ y by (3). Otherwise,
y < w and, by (4), e1, e13 <′ w, implying NG′ [u] ≤′ w. Second, suppose that
u = y. By (1) and (2), however, e5, e11 <′ y <′ w, implying NG′ [u] ≤′ w. Thus,
u /∈ V (I(e)), implying NG[u] = NG′ [u] and NG′ [u] ≤′ w as <′ is an extension of
<.

“⇐”: Let S′ be a size-(k+4) power edge set for G′ and let S′
e := S′ ∩E(I(e)).

If |S′
e| ≥ 5, then (S \E(I(e)))∪{{x, y}} is clearly a power edge set for G and its

size is at most k. Otherwise, |S′
e| ≤ 4 and, by Lemma1, S′

e consists of four edges;
one in each ribbon of I(e). Let S := S′ \ S′

e, let <′ be a valid order of G′ for S′,
and let < be the restriction of <′ to V (G). Let (v′

1, v
′
2, . . .) and (v1, v2, . . .) be

the sequences of V (G′) and V (G) implied by <′ and <, respectively. Without
loss of generality, let x <′ y, implying x < y. By construction of I(e), we observe
that Se does not propagate beyond the ribbons of I(e), implying that

∀i∈{1,2,3,5,6,7,9,10,12} x <′ ei and ∀i∈{1,6,7,9,10} (NG′ [x] ≤′ ei) ∨ (y <′ ei). (1)

We show that < is valid for S. Towards a contradiction, assume that there is
some w ∈ V (G) such that (v1, v2, . . . , w) is not valid for S and let w be minimal
with respect to <. Since w ∈ V (G) and it is not incident with any edges of S, it
is also not incident with any edges of S′, implying that there is some u ∈ V (G′)
with NG′ [u] ≤′ w. First, suppose that u ∈ V (G′) \ V (G) and since, by (1),
w
= x, we have w = y and u ∈ {e5, e11}. Thus, NG′ [e5] ≤′ y, implying e6 <′ y
or NG′ [e11] ≤′ y, implying e10 <′ y. In either case, (1) implies NG′ [x] ≤′ y and,
thus, NG[x] ≤ y. Second, suppose that u ∈ V (G). Since NG[u] = NG′ [u] for all
u ∈ V (G) \ {x, y}, we have u ∈ {x, y} as otherwise, NG[u] ≤ w. If u = y, then
NG[u] ≤ w since NG[y] = (NG′ [y]∩V (G))∪{x}. If u = x then, since e1 ∈ NG′ [u],
we have e1 <′ w. But since w ∈ NG′ [x], we have NG′ [x] �′ e1 and (1) implies
y <′ e1. As NG[x] = (NG′ [x] ∩ V (G)) ∪ {y}, we conclude NG[x] ≤ w. ��

Improved Complexity for Power Edge Set Problem 135

In order to show hardness on bipartite graphs, we color the vertices of the
output graph G′ of Construction 1 arbitrarily with two colors and replace all
monochromatic edges e with I(e). We can strengthen the result using the fol-
lowing coloring strategy. For each boundary vertex vi of each Hv, color vi such
that NG′ [vi] \ {v6, v7, v8} is not monochromatic and let c be the color occurring
the least among {vx, vy, vz}. Then, color v0, v6, v7, and v8 with c and color v1–v5
with the other color.

Lemma 7. In Hv, each vi with i ∈ {x, y, z} is incident with at most two
monochromatic edges.

Proof. Let the color of vx be blue and assume towards a contradiction that
vx is incident with at least three monochromatic edges. As NG′ [vx] \ {v6} is
not monochromatic, v6 is blue. But then, blue appears least among vx, vy, vz,
implying that vy and vz are not blue. Thus, vx is incident with at most two
monochromatic edges. ��

Considering Lemma 7, we observe that the graph resulting from replacing
monochromatic edges of G′ has maximum degree six.

Theorem 2. Power Edge Set is NP-complete in planar bipartite graphs of
degree six.

4 Some Lower Bounds

4.1 Non-approximability

In this section, we prove new approximation lower bounds for PES, improving
the current best known bounds presented by Toubaline et al. [15]. First recall
the definition of L-reduction between two difficult problems Π and Π ′, described
by Papadimitriou and Yannakakis [13]. This reduction consists of polynomial-
time computable functions f and g such that, for each instance x of Π, f(x) is
an instance of Π ′ and for each feasible solution y′ for f(x), g(y′) is a feasible
solution for x. Moreover there are constants α1, α2 > 0 such that:

1. OPTΠ′(f(x)) ≤ α1OPTΠ(x) and
2. |valΠ(g(y′)) − OPTΠ(x)| ≤ α2|valΠ′(y′) − OPTΠ′(f(x))|.

We use an L-reduction from Vertex Cover in hypergraphs in which all edges
have cardinality exactly 3.

3-Uniform VC (3UVC)
Input: 3-uniform hypergraph G = (V,E) and some k ≥ 2.
Question: Is there a size-k vertex set V ′ ⊆ V covering E?

3-Uniform VC is hard to approximate within a factor less than 2 − ε for all
ε > 0, unless P = NP, even if each vertex appears in at most three edges [6].

136 B. Darties et al.

v0

vei

v6

Jei

v1

v2

v3

v4

v5

v0

vei

v6

vej

v7

Jei

Jej

v1

v2

v3

v4

v5

v0

vei

v6

vej

v7

vekv8

Jei

Jej

Jek

v1

v2

v3

v4

v5

3

e0

e1

e2

e3 e4

e5

ex ey

ez

Hi
x Hj

y

Hk
z

Fig. 5. Polynomial-time reduction for hypergraph G.

Theorem 3. Under UGC, Power Edge Set is hard to approximate within a
factor of 17

15 − ε, even on graphs of maximum degree five.

Proof. Given an instance I = (G, k) of 3-Uniform VC such that each vertex of
G appears in at most three edges, we construct an instance I ′ = (G′, k + n + m)
of PES in the following way: For each v ∈ V included in exactly γ ≤ 3 edges,
we add a gadget Hγ

v given in Fig. 5a–c. Vertices vei
, vej

, vek
are border-vertices

for H1
v , H2

v , H3
v . For each hyperedge e = {x, y, z}, we add a gadget Je, given by

Fig. 5d with border vertices ex, ey, ez and we add the edges {xe, ex}, {ye, ey},
and {ze, ez}.

Vertex-gadgets Hγ
v are designed such that if we have c(vej

) = 1 for all ej ∈ E
containing v, then placing a single PMU inside Hγ

v is sufficient to color the whole
vertex-gadget. If c(ev) = 0 for some e containing v, two PMUs are necessary in

Improved Complexity for Power Edge Set Problem 137

Hγ
v to color the whole gadget, but this also colors e′

v for all e′ containing v. Edge-
gadgets Je are designed such that if at least one border vertex ex is colored, then
only one PMU is required in Je to color the whole edge-gadget, but this also
colors ve for all v ∈ e. Note that if there are two PMUs on any edge-gadget
Je in an optimal solution, then one can simply switch one PMU from Je to any
adjacent Hγ

v and get a solution of same cost with only one PMU per edge-gadget.
Observe that G admits a size-k vertex cover if and only if G′ can be monitored

with k +n+m PMUs: the vertex-gadgets Hγ
v with two PMUs propagate on the

border-vertices on all edge-gadgets. If we add one PMU per edge-gadget, any
colored border vertex of Hγ

v propagates its color to all other border vertices.
To show that the vertex-gadgets Hγ

v with two PMUs induce a vertex cover
of I, suppose that there is a hyperedge e = {u, v, w} ∈ E that is not covered.
Then, their respective vertex gadgets contain a single PMU. Then, however, these
vertex gadgets cannot be colored by Rule R2, contradicting I ′ being monitored.

To show that the above constitutes an L-reduction, let f be a function trans-
forming any instance I of 3-Uniform VC into an instance I ′ of pmuas above,
let S′ be any feasible solution for I ′, and let g be the function that transforms
S′ into a solution S′′ that contains exactly one edge of each Je and at least one
edge of each Hγ

v , and then outputs the set of vertices v for which S′′ assigns at
least two PMUs to Hγ

v . First, the above argument shows that g(S′) is a feasible
solution for 3-Uniform VC. Second, by construction,

OPT (I ′) = OPT (I) + n + m (2)

and, since each vertex of I appears in at most 3 edges of I, at least one in seven
vertices has to be in a vertex cover of G, implying n/7 ≤ OPT (I). Since each
vertex is incident with at most three hyperedges and each hyperedge contains
exactly three vertices, Hall’s theorem implies m ≤ n. We then obtain OPT (I ′) ≤
15 · OPT (I). Third, by construction of g, we have

val(g(S′)) ≤ val(S′) − m − n
(2)

≤ val(S′) − OPT (I ′) + OPT (I) (3)

Thus, we constructed an L-reduction with α1 = 15, α2 = 1. Assuming UGC,
3-Uniform VC is hard to approximate to a factor of (3 − ε) [2] and, thus

val(S′)
(3)

≥ val(g(S′)) + OPT (I ′) − OPT (I)
≥ 3 · OPT (I) + OPT (I ′) − OPT (I)
≥ 2/15 · OPT (I ′) + OPT (I ′)
≥ 17/15 · OPT (I ′) ��

Theorem 4. Power Edge Set on bipartite graphs of maximum degree six
cannot be approximated to within a factor better than 328/325 > 1.0092 unless P
=NP.

Proof. To show that the reduction from 3-RPVC presented in Construction 2 is
an L-reduction, let I be an instance of 3-RPVC, let f be the described reduction

138 B. Darties et al.

and let g be the function that, given any feasible solution S′ for I ′ := f(I),
transforms S′ into a feasible solution S′′ according to Lemmas 2, 3, 4, 5 and
returns the set of vertices v such that S′′ contains at least two edges more than
four times the number of gadgets I(e) in Hv. Let m′ be the total number of
edges e that are replaced by I(e) by f . Using similar arguments, as in the proof
of Theorem 3 we have OPT (I ′) = OPT (I) + n + 4m′ and, since the graph G of
I is 3-regular, n/2 ≤ OPT (I) (no independent set of G can be larger than n/2).
Additionally to the coloring scheme suggested to prove Lemma 7, we repeatedly
find a Hv with at least two incident inter-gadget edges that are monochrome and
swap the coloring of Hv. Then, m′ ≤ 4n + m ≤ 4n + m/3 = 4n + n/2, we further
have OPT (I ′) ≤ 39 ·OPT (I). Then, val(S′) ≥ val(g(S′))+OPT (I ′)−OPT (I).
Since Vertex Cover is hard to approximate to within a factor of 1.36, even in
3-regular graphs [5,7] (unless P =NP), we conclude val(S′) ≥ 328/325OPT (I ′).

��

4.2 Lower Bounds for Exact and FPT Algorithms

We propose some negative results for Power Edge Set about the existence of
subexponential-time algorithms under ET H [9,10], and FPT Algorithms. Since
the polynomial-time transformation given in the proof of Theorem1 is linear
in the number of vertices, and since 3-regular planar Vertex Cover does
not admit a 2o(

√
n)nO(1)-time algorithm [7,11], there is also no 2o(

√
n)nO(1)-time

algorithm for Power Edge Set. Moreover, since the solution size k is at most
n, a 2o(k)nO(1)-time algorithm contradicts the non-existence (assuming ET H) of
2o(n)nO(1)-time algorithms for Vertex Cover on planar graphs [11].

Corollary 1. Assuming ET H, there is no 2o(
√

n)nO(1)-time algorithm for
Power Edge Set in planar graphs, and there is no 2o(k)nO(1)-time algorithm
for Power Edge Set where k is the solution size.

5 Conclusion

In this article, we presented several new hardness results and some lowers bounds
for the problem of selecting a smallest number of phasor measurement units to
monitor a given (planar) network. As perspectives, it would be interesting to
explore the problem on particular classes of graphs to understand to what extend
the regularity of the graph, or special patterns and minors, may influence the
complexity of the problem. Further, having excluded 2o(k)nO(1)-time algorithms,
it is also interesting to seek “the next best thing”, that is, single exponential-
time algorithms with respect to k as well as considering structural parameters
that are independent of planarity, such as the treewidth. Finally, as the problem
is hard to approximate in polynomial time, it is interesting to allow moderately
exponential time, in an FPT -approximation setting (see [4,12]).

Improved Complexity for Power Edge Set Problem 139

Appendix

a b

c

d

e

f

ae

af

ab

bd

bc

ba

ce

cb

cd

db

df

dc

fd

fa

fe

ea

ec

ef

Fig. 6. Example of a graph constructed from an instance I of 3-RPVC (Proof of
Theorem 1)

140 B. Darties et al.

v0

ve1

v6

v1

v2 v3

v4

v5

x0

xe4

x6

x1

x2 x3

x4

x5

y0

ye2

y6

y1

y2

y3

y4 y5

u0

ue1

u6

ue2

u7

u1

u2u3

u4

u5

z0

ze2

z6

ze3

z7

z1

z2

z3
z4

z5

t0

te3

t6

te4
t7

t1

t2

t3

t4
t5

w0

we4

w6

we3

w7

we1

w8

w1

w2

w3

w4 w5

e30

e31

e32

e33

e34

e35

et

ez

ew

e40

e41

e42

e43e44

e45

exet

ew

e20

e21e22

e23

e24

e25

eu

ez

ey

e10

e11e12

e13

e14

e15

ev

ew

eu

Fig. 7. Graph constructed from an instance I of ErVC with r = 3 (Proof of Theo-
rem 3). The 3-uniform hypergraph from I contains 8 vertices t, u, v, w, x, y, z and
the four edges e1 = {u, v, w}, e2 = {u, y, z}, e3 = {t, w, z}, e4 = {t, w, x}. An optimal
solution for PES is to place PMUs on edges with a box. Vertex-Gadgets w and y are
the only one with two PMU. Thus {w, y} is a vertex cover in the hypergraph.

Improved Complexity for Power Edge Set Problem 141

References

1. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. ACM 41(1), 153–180 (1994)

2. Bansal, N., Khot, S.: Inapproximability of hypergraph vertex cover and applica-
tions to scheduling problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 250–261.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14165-2 22

3. Bar-Yehuda, R., Even, S.: On approximating a vertex cover for planar graphs. In:
Proceedings of 14th STOC, pp. 303–309 (1982)

4. Bazgan, C.: Approximation schemes and parameterized complexity. Ph.D thesis,
INRIA, Orsay, France (1995)

5. Dinur, I., Safra, S.: On the hardness of approximating vertex cover. Ann. Math.
162(1), 439–485 (2005). https://doi.org/10.4007/annals.2005.162.439. ISSN 0003–
486X

6. Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered PCP and the
hardness of hypergraph vertex cover. SIAM J. Comput. 34(5), 1129–1146 (2005)

7. Feige, U.: Vertex cover is hardest to approximate on regular graphs. Technical
report, MCS03-15, the Weizmann Institute (2003)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

9. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001)

10. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

11. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential
time hypothesis. Bull. EATCS 105, 41–72 (2011)

12. Marx, D.: Parameterized complexity and approximation algorithms. Comput. J.
51(1), 60–78 (2008)

13. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

14. Poirion, P.-L., Toubaline, S., D’Ambrosio, C., Liberti, L.: The power edge set
problem. Networks 68(2), 104–120 (2016)

15. Toubaline, S., D’Ambrosio, C., Liberti, L., Poirion, P.-L., Schieber, B., Shachnai,
H.: Complexité du problème power edge set. In: ROADEF 2016 (2016)

16. Yuill, W., Edwards, A., Chowdhury, S., Chowdhury, S.P.: Optimal PMU place-
ment: a comprehensive literature review. In: 2011 IEEE Power and Energy Society
General Meeting, pp. 1–8, July 2011. https://doi.org/10.1109/PES.2011.6039376

https://doi.org/10.1007/978-3-642-14165-2_22
https://doi.org/10.4007/annals.2005.162.439
https://doi.org/10.1109/PES.2011.6039376

The Parameterized Complexity of Happy
Colorings

Neeldhara Misra and I. Vinod Reddy(B)

Indian Institute of Technology, Gandhinagar, Palaj 382355, India
{neeldhara.m,reddy vinod}@iitgn.ac.in

Abstract. Consider a graph G = (V, E) and a coloring c of vertices
with colors from [�]. A vertex v is said to be happy with respect to c if
c(v) = c(u) for all neighbors u of v. Further, an edge (u, v) is happy if
c(u) = c(v). Given a partial coloring c of V, the Maximum Happy Vertex
(Edge) problem asks for a total coloring of V extending c to all vertices of
V that maximizes the number of happy vertices (edges). Both problems
are known to be NP-hard in general even when � = 3, and is polyno-
mially solvable when � = 2. In [IWOCA 2016] it was shown that both
problems are polynomially solvable on trees, and for arbitrary k, it was
shown that MHE is NP-hard on planar graphs and is FPT parameterized
by the number of precolored vertices and branchwidth.

We continue the study of this problem from a parameterized perspec-
tive. Our focus is on both structural and standard parameterizations. To
begin with, we establish that the problems are FPT when parameterized
by the treewidth and the number of colors used in the precoloring, which
is a potential improvement over the total number of precolored vertices.
Further, we show that both the vertex and edge variants of the prob-
lem is FPT when parameterized by vertex cover and distance-to-clique
parameters. We also show that the problem of maximizing the number of
happy edges is FPT when parameterized by the standard parameter, the
number of happy edges. We show that the maximum happy vertex (edge)
problem is NP-hard on split graphs and bipartite graphs and maximum
happy vertex problem is polynomially solvable on cographs.

1 Introduction

Given an undirected vertex colored graph G, we say that a vertex v in G is happy
if v and all its neighbors have same color. Along similar lines, an edge is happy
if both its endpoints have same color. Given a partially colored graph G with �

colors, the Max Happy Vertices (�-MHV) problem is to color the remaining
vertices of graph such that number of happy vertices is maximized. The Max
Happy Edges (�-MHE) problem is to color the remaining vertices of the graph
such that number of happy edges is maximized.

The �-MHE problem generalizes the Multiway Uncut problem which is
defined as follows. Given a graph G and a terminal set S = {s1, · · · , sk} ⊆ V(G),
the goal is to find a partition {V1, · · · , Vk} of V(G) such that each partition
c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 142–153, 2018.
https://doi.org/10.1007/978-3-319-78825-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_12&domain=pdf

The Parameterized Complexity of Happy Colorings 143

contains exactly one terminal and the number of edges with both end points
present in the same Vi is maximized. The Multiway Uncut problem is a special
case of �-MHE problem, where each terminal has a unique precolor.

Both �-MHV and �-MHE are NP-hard [10] on general graphs for � � 3 and
both 2-MHV and 2-MHE can be solved in polynomial time. Aravind et al. [2]
showed that both the problems admit linear time algorithms on trees. Zhang and
Li [10] studied both problems from the approximation point of view and given
a max{1/k, Ω(d−3)}-approximation algorithm for the k-MHV problem, where d

is the maximum degree of the graph, and a 1/2-approximation algorithm for the
�-MHE problem.

We initiate, in this work, the study of these problems from a parameter-
ized perspective. The problem admits several natural parameters: the number
of colors (�), the number of precolored vertices (say t), the number of happy
vertices or edges (denoted by k, note that these parameters reflect the quality of
the solution, and might hence be regarded as standard parameters), and various
structural parameters. In particular, the linear time algorithms on trees prompt
us to consider the question of whether the problem is FPT when parameter-
ized by treewidth of the graph (w). The work in [2] already establishes that the
problem is FPT when parameterized by treewidth and the number of precolored
vertices. Since �-MHV and �-MHE are both NP-hard even when there are only
three colors used by the precoloring, the problems are para-NP-hard by this
parameter. We now proceed to describe some of the results that we obtain for
various combinations of parameters.

Our Contributions. We continue the study of this problem from a parameterized
perspective. Our focus is on both structural and standard parameterizations. To
begin with, we establish that the problems are FPT when parameterized by the
treewidth and the number of colors used in the precoloring, which is a potential
improvement over the total number of precolored vertices. This follows from a
MSO formulation but we also demonstrate a dynamic programming solution on
nice tree decompositions.

Further, we show that both the vertex and edge variants of the problem
is FPT when parameterized by vertex cover and distance-to-clique parameters.
Observe that there is no exponential dependence here on the number of colors
in the precoloring. We achieve this by not guessing all possible assignments of
colors on the modulators, but just a wireframe of equivalence classes based on
which vertices in the modulators receive the same colors, and it turns out that
this coarser information is sufficient to determine an optimal coloring. We also
show that the problem of maximizing the number of happy edges is FPT when
parameterized by the standard parameter, the number of happy edges. This
turns out to be a problem that reduces to the case of bounded vertex cover.

In the context of studying the problems on special classes of graphs, we
show that the problem of maximizing the number of happy vertices is polyno-
mially solvable on cographs. Unfortunately, our polynomial time approach for
the �-MHV problem does not extend in any straightforward way to the �-MHE
problem. On the other hand, both variants of the problem turned out to be

144 N. Misra and I. V. Reddy

NP-hard on split graphs and bipartite graphs. We note that some of the results
shown here, particularly relating to algorithms parameterized by the treewidth
of the graph, were obtained independently in [1,3].

2 Preliminaries

In this section, we introduce the notation and the terminology that we will need
to describe our algorithms. Most of our notation is standard. We use [k] to
denote the set {1, 2, . . . , k}. We introduce here the most relevant definitions, and
use standard notation pertaining to graph theory based on [5,6].

All our graphs will be simple and undirected unless mentioned otherwise. For
a graph G = (V, E) and a vertex v, we use N(v) and N[v] to refer to the open
and closed neighborhoods of v, respectively. The distance between vertices u, v

of G is the length of a shortest path from u to v in G; if no such path exists,
the distance is defined to be ∞. A graph G is said to be connected if there is a
path in G from every vertex of G to every other vertex of G. If U ⊆ V and G [U]

is connected, then U itself is said to be connected in G. For a subset S ⊆ V, we
use the notation G \ S to refer to the graph induced by the vertex set V \ S.

Special Graph Classes. We now define some of the special graph classes consid-
ered in this paper. A graph is bipartite if its vertex set can be partitioned into
two disjoint sets such that no two vertices in same set are adjacent. A graph
is a split graph if its vertex set can be partitioned into a clique and an inde-
pendent set. Split graphs do not contain C4, C5 or 2K2 as induced subgraphs.
Cographs are P4-free graphs, that is, they do not contain any induced paths on
four vertices.

Parameterized Complexity. A parameterized problem denoted as (I, k) ⊆ Σ∗ ×N,
where Σ is fixed alphabet and k is called the parameter. We say that the problem
(I, k) is fixed parameter tractable with respect to parameter k if there exists an
algorithm which solves the problem in time f(k)|I|O(1), where f is a computable
function. For a detailed survey of the methods used in parameterized complexity,
we refer the reader to the texts [5,7].

We now define the problems that we consider in this paper.

Max Happy Vertices Parameter: k

Input: A graph G = (V, E), a partial coloring p : S → [�] for some S ⊆ V, and
a positive integer k.
Question: Is there a coloring c : V → [�] extending p such that G has at
least k happy vertices with respect to c?

Max Happy Edges Parameter: k

Input: A graph G = (V, E), a partial coloring p : S → [�] for some S ⊆ V, and
a positive integer k.
Question: Is there a coloring c : V → [�] extending p such that G has at
least k happy edges with respect to c?

The Parameterized Complexity of Happy Colorings 145

3 Structural Parameterizations

In this section, we explore the complexity of Max Happy Vertices and Max
Happy Edges with respect to various structural parameterizations. A key ques-
tion here is if these problems are FPT when parameterized by treewidth alone.
While we do not resolve this question, we make partial progress in two ways.

First, we show that Max Happy Vertices and Max Happy Edges are
both FPT when parameterized by the combined parameter (� + w), where � is
the number of colors used in the precoloring and w is the treewidth of the input
graph. In particular, our running time is O∗((2�)(w+1)). It was already known
that the problem is FPT when parameterized by (q+w), where q is the number
of precolored vertices. It was also known that the problem admits a linear-time
algorithm on trees. In general, since � � q, and the treewidth of a tree is one,
our result unifies these results (although the running time we obtain on trees is
quadratic, rather than linear).

Secondly, we show that Max Happy Vertices and Max Happy Edges
are both FPT when parameterized by the size of the vertex cover. The running
time of this algorithm has a polynomial dependence on �, which is why this is not
subsumed by our FPT algorithm when we parameterized by (�+w). Along similar
lines, we also show that Max Happy Vertices and Max Happy Edges are
both FPT when parameterized by the size of a clique modulator.

The rest of this section is organized as follows. In the first subsection, we
demonstrate that the problem is FPT parameterized by treewidth. Next, we
consider the vertex cover and distance to clique parameterizations. In the last
subsection, we show how Max Happy Edges admits a FPT algorithm for the
standard parameter (the number of happy edges) by reducing it to the case of
bounded vertex cover number.

3.1 Treewidth

Theorem 1. Max Happy Vertices and Max Happy Edges are both FPT
when parameterized by (� + w), where � is the number of colors used in the
precoloring and w is the treewidth of input graph.

Proof. We give two different proofs to show Max Happy Vertices and Max
Happy Edges are both FPT when parameterized by (�+w). The first proof uses
a standard dynamic programming approach on nice tree decompositions (see
[5] for definition). The second proof follows from an application of Courcelle’s
theorem [4] and the fact that the Max Happy Vertices and Max Happy
Edges problems can be expressed by MSO formulas for fixed �. Due to lack of
space, the proof is presented in the full version of this paper [9]. ��

3.2 Vertex Cover and Distance to Clique

Theorem 2. Max Happy Vertices and Max Happy Edges are both FPT
when parameterized by the size of the vertex cover of the input graph.

146 N. Misra and I. V. Reddy

Proof. We first consider the Max Happy Vertices problem. Let (G, S, �, p, k)

denote an instance of Max Happy Vertices. We will use Q to refer to V \ S,
the set of vertices that are not precolored by p. Further, let X ⊆ V be a vertex
cover of G. We use d to denote |X|.

The algorithm begins by guessing a partition of X into at most min{�, d} parts.
Note that the number of such partitions is at most dd. Intuitively, we are guessing
the behavior of an optimal coloring c when projected on the vertex cover, where
our notion of behavior is given by which vertices are colored in the same way as
c. We also guess the subset of vertices in the vertex cover that are happy with
respect to c.

Let us formalize the notion of a behavior associated with a partition and the
subset of X. To begin with, let χ = (X1, . . . , Xt) be a fixed partition of X, where
t � d. For vertex v ∈ X, we abuse notation and use χ(v) to denote the index of
the part that v belongs to in the partition χ. In other words, if χ(v) = i, then
v ∈ Xi. A pair of vertices u, v ∈ X such that χ(u) = χ(v) are called equivalent
— we sometimes say that u is equivalent to v, or that u and v are equivalent.
Finally, let Y ⊆ X be a (possibly empty) subset of the vertex cover.

We say that a coloring c is valid and respects (χ, Y) if:

– c agrees with p on S,
– every vertex v ∈ Y is happy with respect to c, and
– for all u, v ∈ X, c(u) = c(v) if and only if u and v are equivalent.

Our goal now is to find a valid coloring c that respects (χ, Y). Let λ(v) denote the
set of colors employed by p in N[v], in other words, λ(v) := {j | ∃u ∈ N[v], p(u) = j}.

It is easy to check that there exists a valid coloring c that respects (χ, Y) if
and only if the following conditions, which we will refer to as (�), hold:

– For any vertex v ∈ Y, |λ(v)| � 1.
– For any pair of vertices u, v that are equivalent and u, v ∈ Y, if λ(v) �= ∅ and

λ(v) �= ∅, λ(v) = λ(u).
– For any pair of vertices u, v that are not equivalent and u, v ∈ Y, we have that

N(u) ∩ N(v) = ∅.
– For any vertex v ∈ Y, every vertex u ∈ N(v) ∩ X is equivalent to v.

In particular, that these conditions are necessary follow from the definition of
what it means for a coloring to be valid and respect (χ, Y). The fact that they
are sufficient will follow from the coloring obtained by the algorithm below.

We assume, without loss of generality, that all the conditions above are sat-
isfied: indeed, if not, we simply reject the choice of (χ, Y). Our algorithm now
proceeds to construct a coloring c of V that respects (χ, Y). In fact, among all
such colorings, we will construct one that maximizes the number of happy ver-
tices. To begin with, we initialize c to coincide with p on S. For convenience, we
will use U to refer to the set of uncolored vertices with respect to c. Observe
that at this stage, U = Q, and when the algorithm finishes, we will have U = ∅.
We now proceed as follows.

The Parameterized Complexity of Happy Colorings 147

Phase 1. Identifying forced colors. Let v ∈ Y be such that λ(v) �= ∅. Set c(u) = j

for all u ∈ N[v] ∩ Q. Further, set c(u) = j for all u equivalent to v in χ. At the
end of this phase, let v be any vertex in Y that either has a precolored vertex
in its closed neighborhood or has a precolored vertex that is equivalent to it. At
the end of this phase, v is a happy vertex. Observe that c is well-defined because
the conditions in (�) are true. We say that Xi is pending if Xi ⊆ U at the end of
Phase 1. If no Xi is pending, we skip directly to Phase 3.

Phase 2. Coloring the Pending Xi’s. Let i be such that Xi is pending, and let
j ∈ [�]. Let w[i, j] denote the number of vertices in (V \X)∩ S that will be happy
if all vertices of Xi are colored j. This is simply the size of the set of vertices in
the independent set precolored j, whose neighborhoods lie entirely in Xi.

Consider an auxiliary weighted bipartite graph, denoted by H = ((A, B), E)

with edge weights given by w : E → [|V |]. This graph is constructed as follows.
The vertex set A contains one vertex for every Xi that is pending at the end
of the first phase. The vertex set B contains a vertex corresponding to every
element in [�] \ [∪v∈Xc(v)], that is to say, B has one vertex for every color that
is not already used on vertices in X in Phase 1. The weight of the edge (ai, bj)

is simply w[i, j]. We find a matching M of maximum weight in H. It is easy to
see that any such matching saturates A, since |B| � |A|, the weights are positive,
and all edges are present.

For a pending part Xi, we now color all vertices in Xi based on the matching
M. In particular, if M matches ai to bj, then we color all vertices in Xi with
color j. At the end of this phase, all vertices in X have been colored—formally,
X ∩ U = ∅.

Phase 3. Coloring the independent set. We say that an uncolored vertex in V \X

is definitely unhappy with respect to χ if it has at least two neighbors which
are not equivalent with respect to χ. If a vertex v that is definitely unhappy
has a neighbor u in Y, then assign c(u) to v. Observe that this coloring is well-
defined, since vertices in Y that had different colors, and are hence not equivalent,
have disjoint neighborhoods. Arbitrarily color all the other remaining “definitely
unhappy” vertices, namely those that only have neighbors in X \ Y.

Similarly, we say that an uncolored vertex in V \X is always happy if all of its
neighbors are equivalent. For a vertex v that is always happy, let j be such that
all neighbors of v lie in Xj. We then color v with the same color that we used to
color all vertices in Xj. This completes the description of the construction of the
coloring—note that at this point, U = ∅.

To conclude, we count k′[χ, Y], the number of happy vertices with respect
to the constructed coloring c. Let k∗ denote max(k′[χ, Y]), where the max is
taken over all χ, S for which there exists a valid coloring that respects χ, Y. The
algorithm returns Yes if k� � k and No otherwise.

Proof of Correctness. [Sketch.] Let c∗ be an arbitrary but fixed coloring of G

that maximizes the number of happy vertices. Let χ, S be the behavior of c∗ with
respect to X, that is, let S be the set of happy vertices in X with respect to c∗,
and let χ := (X1, . . . , Xt) be a partition of X based on the colors given by c∗. Let

148 N. Misra and I. V. Reddy

c be the coloring output by the algorithm when considering the behavior (χ, S).
Note that the algorithm does output some coloring based on the characterizing
nature of the conditions in (�).

It is easy to see that c� and c agree on the colors given in Phase 1 of the
algorithm. Further, note that c and c� agree on the number (and even the subset)
of happy vertices in X. Also, among all uncolored vertices of V \ X, all definitely
unhappy vertices in V \ X are not happy in c�, while all the vertices that are
always happy are happy in c. Among the precolored vertices in V \ X, it can be
verified that the maximum number of vertices that can be happy with respect
to any coloring that respects the behavior (χ, S) is precisely the weight of the
maximum matching obtained in Phase 2. Indeed, any such coloring is a matching
in this auxiliary graph, and the number of happy vertices corresponds exactly
to the weight of the matching. It follows that the number of happy vertices in c

is at least the number of happy vertices in c∗.

Running Time Analysis. Trying all possible choices of (χ, S) requires time
proportional to O((2d)d). For a fixed choice of (χ, S), all the three phases of the
algorithm are straightforward to implement in polynomial time. A maximum
matching can be computed in time O(n +

√
nm) on bipartite graphs.

We now turn to the Max Happy Edges problem. Here the algorithm is
considerably simpler. Partition E into two sets E0 and E1, where E0 is the set
of all edges who have both their endpoints in X, and E1 := E \ E0. We again
guess the behavior of an optimal coloring in terms of how it partitions X into
equivalence classes. For a fixed partition χ, we count all the happy edges in E0

(note that this number does not depend on what colors are given to the parts,
but merely the fact that all vertices in a part are equivalent).

Having fixed a partition, we force the colors of the parts that have precolored
vertices. Construct an auxiliary bipartite graph as we did in Phase 2 of the
algorithm for Max Happy Vertices, with the only difference that now the
weight of the edge (ai, bj) is based on the number of edges that are made happy
when all vertices Xi are colored with color j. This helps us determine a coloring
of the vertices in X. Uncolored vertices in V \ X can now be colored greedily:
for an uncolored vertex v ∈ V \ X, let dj denote |N(v) ∩ Xj|, for 1 � j � t. Note
that coloring v with the same color as the one used on max(dj) makes max(dj)

edges happy. The correctness of this approach follows from the fact that this is
the best we can hope for from a coloring that is consistent with the behavior
specified by χ. ��
Theorem 3. Max Happy Vertices and Max Happy Edges are both FPT
when parameterized by the size of a clique modulator of the input graph.

Proof. Let (G, S, �, p, k) denote an instance of Max Happy Vertices. We will
use Q to refer to V \ S, the set of vertices that are not precolored by p. Further,
let X ⊆ V such that C = G \ X is a clique. We use d to denote |X|.

If � > d + 1 then there exists at least two vertices u and v in C such that
p(u) �= p(v), which implies no vertex of C is happy. First we guess the partition

The Parameterized Complexity of Happy Colorings 149

(H, U) of X in O(2d) time, where H and U denotes the happy and unhappy
vertices of X in optimal coloring c.

Let H = (H1, · · · , Ht) be the partition of H such that all vertices in set Hi,
i ∈ [t], are colored with the same color by c. We can guess the correct partition
in O(dd) time. Note that N(Hi)∩N(Hj) = ∅: suppose v ∈ N(Hi)∩N(Hj) then the
color of vertex v is either different from col(Hi) or col(Hj) which is a contradiction
to the fact that all vertices in both Hi and Hj are happy.

Since Hi is happy there does not exist two vertices u and v in the set Hi ∪
N(Hi) such that p(u) �= p(v). For each i ∈ [t], if at least one vertex is precolored
in Hi ∪ N(Hi) then assign same color to all vertices of Hi ∪ N(Hi). For the sets
Hi∪N(Hi), which do not have any precolored vertices, assign a color which is not
used so far to color any Hi. At the end arbitrarily color remaining vertices. For
each possible partition H and U of X and each possible partition H1, · · · , Ht of
H, count the number of happy vertices and the optimal coloring c is the coloring
which maximizes the number of happy vertices.

If � � d + 1 then some of the clique vertices can be happy, but this only
happens when all the clique vertices are colored by same color. Since there are
at most � colors we can guess the correct coloring of the clique in O(�) time. Now
it remained to color the set X, which can be done using the procedure described
in the case of l > d + 1.

We now turn to the Max Happy Edges problem. First we give a procedure
to color X when all the vertices in clique C = G\X are precolored and no vertex in
X is precolored. Let X = (X1, · · · , Xt) be the partition of X such that all vertices
in Xi are colored in the same way by c.

Let w[i, j] denote the number of edges in G[Xi ∪ C] that will be happy if
all vertices of Xi are colored j. Consider an auxiliary weighted bipartite graph,
denoted by D = ((A, B), E) with edge weights given by w : E → [|E|]. This graph is
constructed as follows. The vertex set A contains one vertex for every set Xi and
the vertex set B contains one vertex for every color used in clique. The weight
of the edge (ai, bj) is simply w[i, j]. We find a matching M of maximum weight
in D. It is easy to see that any such matching saturates A, since |B| � |A|, the
weights are positive, and all edges are present. We now color all vertices in Xi

based on the matching M. In particular, if M matches ai to bj, then we color all
vertices in Xi with color j. At the end of this phase, all vertices in X have been
colored. Now we are ready to describe the general case. Let CU be the number of
uncolored vertices in clique. If |CU| � d+ 1 then X ′ = X ∪ CU is a vertex deletion
distance to clique C ′ of size at most 2d + 1, i.e., G \ (X ∪ CU) is a clique. Since
all the vertices of the clique G \ (X ∪ CU) are precolored, The vertices of X ′ can
be colored using the procedure described above. So without loss of generality we
assume that |CU| > d + 1.

Lemma 1. If |CU| = n1 > d+1, then in any optimal coloring c all non precolored
vertices in clique has to be colored with single color.

Proof. Since � colors are used in precoloring there exists a color class of size
at least n−n1

� � in C. Assigning this color to all vertices of CU maximizes the

150 N. Misra and I. V. Reddy

number of happy edges, since if we color a vertex of CU with a different color
than others, then we loose at least d+ 1 happy edges in clique CU and can make
at most d edges happy. ��
The case when � � d + 1 is easy, since we can guess optimal coloring of X in
time O(dd) and then it can be easily extended to color the clique. If � > d + 1,
From Lemma 1 we know that all vertices of CU gets same color, we guess this
color in O(�) time. Now we need to color X such that the number of happy edges
is maximized. This can be done by simply applying the procedure described in
first case, where all vertices of clique are precolored. The running time of the
algorithm is O(�(dd)(n +

√
nm)(n + m)). ��

3.3 The Standard Parameter

We finally show that Max Happy Edges is, in fact, FPT when parameterized
by the number of happy edges. Here we use the fact that if there are enough edges
both of whose endpoints are uncolored, then we have a Yes instance right away.
If not, the number of uncolored vertices can be shown to be bounded, and since
it is safe to delete edges among precolored vertices (with some bookkeeping), the
problem effectively reduces to the bounded vertex cover number scenario.

Theorem 4. Max Happy Edges is FPT when parameterized by k and Max
Happy Vertices is FPT when parameterized by k and �.

Proof. Due to lack of space, the proof is presented in the full version of this
paper [9]. ��

4 Special Graph Classes

Theorem 5. Max Happy Vertices and Max Happy Edges are both
NP-complete on the class of bipartite and split graphs.

Proof. The reductions for Max Happy Vertices follow by easy modifications
of the reduction in [10]. Here, therefore, we only state the proofs for Max Happy
Edges. We first consider the case of bipartite graphs. We reduce from Max
Happy Edges on general graphs.

We let (G, �, S, p, k) be an instance of Max Happy Edges. Construct a bipartite
graph (H = (A, B), E) as follows. For every vertex v ∈ V(G), we introduce a vertex
av ∈ A. For every edge e ∈ E(G), we introduce a vertex be ∈ B, and if e = (u, v),
then be is adjacent to au and av. The precoloring function q mimics p on A,
that is, for every u ∈ S, q(au) = p(u). We use X to denote {au | u ∈ S} ⊆ A. Let
k′ = m + k. Thus our reduced instance is (H, �, X, q, k′).

We now argue the equivalence. First, consider the forward direction. If c is
a total coloring of V that makes k edges happy, then we define a coloring c′ for
H as follows: color c′(av) := c(v) for all av ∈ A. For every edge e = (u, v) ∈ E,
color be ∈ B according to c(u). Note that for all edges e in G that are happy

The Parameterized Complexity of Happy Colorings 151

with respect c, two edges (namely (be, av) and (be, au)) are happy with respect
to c′. Corresponding to all unhappy edges, H has one happy edge with respect
to c′. Therefore, the total number of happy edges in c′ is 2k + (m − k) = m + k.

In the reverse direction, let c′ be a coloring of H that makes at least m + k

edges happy. Now consider the coloring c obtained as follows: c(u) = c′(au). We
argue that at least k edges are happy in G with respect to c. Indeed, suppose
not. Without loss of generality, assume that only (k − 1) edges are happy with
respect to c. Then in H, there are at most (k−1) vertices in B that can have two
happy edges incident on them, and therefore the total number of happy edges
is at most 2(k − 1) + (m − k + 1) = m + k − 1, which contradicts our assumption
about the total number of happy edges in H with respect to c′.

We now turn to the case of split graphs. The construction is similar to the
case of bipartite graphs. Construct a split graph (H = (A, B), E) as follows. Let
(G, �, S, p, k) be an instance of Max Happy Edges. Let T :=

(
m
2

)
+ 1. For

every vertex v ∈ V(G), we introduce T copies of the vertex av ∈ A, denoted
by av[1], . . . , av[T]. For every edge e ∈ E(G), we introduce a vertex be ∈ B, and
if e = (u, v), then be is adjacent to all copies of au and av. Finally, we add all
edges among vertices in B, thereby making H[B] a clique.

The precoloring function q mimics p on A across all copies, that is, for every
u ∈ S, q(au) = p(u) for all copies of au. We use X to denote {au | u ∈ S} ⊆ A.
Let k′ = T(m + k). Thus our reduced instance is (H, �, X, q, k′).

We now argue the equivalence of these instances. First, consider the forward
direction. If c is a total coloring of V that makes k edges happy, then we define a
coloring c′ for H as follows: color c′(av) := c(v) for all copies of av ∈ A. For every
edge e = (u, v) ∈ E, color be ∈ B according to c(u). Note that for all edges e in G

that are happy with respect c, 2T edges (namely (be, av) and (be, au) across all
copies) are happy with respect to c′. Corresponding to all unhappy edges, H has
T happy edges with respect to c′. Therefore, the total number of happy edges in
c′ is at least 2Tk + T · (m − k) = T · (m + k).

In the reverse direction, , let c′ be a coloring of H that makes at least T(m+k)

edges happy. We argue that there must be at least one copy Ai of {av | v ∈ V}

for which the number of happy edges with one endpoint in B and one in Ai is at
least (m + k). Indeed, suppose not. Then consider the following partition of the
edges in H: let E0 be all edges with both endpoints in B, and let Ei be all edges
with one endpoint in B and the other endpoint in the ith copy of the vertices
{av | v ∈ V}. For the sake of contradiction, we have assumed that the number of
happy edges in Ei is less than (m+ k) for all i ∈ [T]. Note that the total number
of edges in B is

(
m
2

)
. Therefore, the the number of edges happy with respect to

c′ is at most:
(

m

2

)
+ T · (m + k − 1) = T · (m + k) +

(
m

2

)
− T < T(m + k),

where the last step follows by substituting for T =
(
m
2

)
+ 1. This leads to the

desired contradiction.

152 N. Misra and I. V. Reddy

Having identified one set Ei that has at least (m+ k) happy edges, the argu-
ment for recovering a coloring c for G that makes at least k edges happy is
identical to the case of bipartite graphs. ��

Theorem 6. Max Happy Vertices is polynomial time solvable on the class
of cographs.

Proof (Sketch.) Due to lack of space, we only give a brief overview of the algo-
rithm here and defer the details to the full version of the paper [9]. Our algorithm
is a recursive routine on the modular decomposition [8] of the input graph, say G.
Without loss of generality, we assume that the root r of tree MG is a series node,
otherwise, G is not connected and the number of happy vertices in G is equals
to the sum of the maximum number of happy vertices in each connected compo-
nent. Let the children of r be x and y. Further, let the cographs corresponding
to the subtrees at x and y be Gx and Gy.

We assume that � � 3, otherwise we use the polynomial time algorithm of 2-
MHV problem on general graphs to find the number of maximum happy vertices.
Also, it is easy to handle the case when one of Gx or Gy has only one vertex,
since such a vertex v is universal and in any optimal coloring c of G, all happy
vertices are colored with the color of v. Therefore, we may assume that both
Gx and Gy contains at least two vertices. This is helpful because if any part
uses more than two colors in the precoloring, we may conclude that no vertex
in the other part can be happy (since every vertex in Gx is adjacent to every
vertex in Gy). Using this fact, algorithm now proceeds by a straightforward case
analysis. ��

5 Conclusion

In this paper, we study the Max Happy Vertices and Max Happy Edges
problems from the parameterized perspective. We showed that Both the prob-
lems are FPT with respect to the structural parameters (a) Vertex cover (b)
Distance to clique. Max Happy Edges is FPT when parameterized by number
of happy edges in solution (standard parameter) and Max Happy Vertices is
FPT when parameterized by number of happy vertices in the solution and the
number of colors. Both Max Happy Vertices and Max Happy Edges are
NP-hard on split graphs and bipartite graphs and Max Happy Vertices is
polynomially solvable on cographs.

The following are some interesting open problems: Are Max Happy Ver-
tices and Max Happy Edges are FPT when parameterized by the cluster ver-
tex deletion number? Do the Max Happy Vertices and Max Happy Edges
problems admit polynomial kernels when parameterized by either the vertex
cover or the distance to clique parameters?

The Parameterized Complexity of Happy Colorings 153

References

1. Agrawal, A.: On the parameterized complexity of happy vertex coloring. In: Inter-
national Workshop on Combinatorial Algorithms. Springer (2017, in press)

2. Aravind, N.R., Kalyanasundaram, S., Kare, A.S.: Linear time algorithms for happy
vertex coloring problems for trees. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.)
IWOCA 2016. LNCS, vol. 9843, pp. 281–292. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44543-4 22

3. Aravind, N., Kalyanasundaram, S., Kare, A.S., Lauri, J.: Algorithms and hardness
results for happy coloring problems. arXiv preprint arXiv:1705.08282 (2017)

4. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: Handbook of
theoretical computer science, pp. 194–242 (1990)

5. Cygan, M., Fomin, F.V., Kowalik, �L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3

6. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-662-53622-3

7. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS,
vol. 4. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

8. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition.
Comput. Sci. Rev. 4(1), 41–59 (2010)

9. Misra, N., Reddy, I.V.: The parameterized complexity of happy colorings. arXiv
preprint arXiv:1708.03853 (2017)

10. Zhang, P., Li, A.: Algorithmic aspects of homophyly of networks. Theor. Comput.
Sci. 593, 117–131 (2015)

https://doi.org/10.1007/978-3-319-44543-4_22
https://doi.org/10.1007/978-3-319-44543-4_22
http://arxiv.org/abs/1705.08282
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-1-4471-5559-1
http://arxiv.org/abs/1708.03853

Computational Complexity Relationship
between Compaction,

Vertex-Compaction, and Retraction

Narayan Vikas(B)

School of Computing Science, Simon Fraser University,
Burnaby, BC V5A 1S6, Canada

vikas@cs.sfu.ca

Abstract. In this paper, we show a very close relationship between
the compaction, vertex-compaction, and retraction problems for reflexive
and bipartite graphs. The relationships that we present relate to a long-
standing open problem concerning whether any pair of these problems
are polynomially equivalent for every graph. The relationships we present
also relate to the constraint satisfaction problem, providing evidence that
similar to the compaction and retraction problems, it is also likely to be
difficult to give a complete computational complexity classification of
the vertex-compaction problem for every reflexive or bipartite graph. In
this paper, we however give a complete computational complexity classi-
fication of the vertex-compaction problem for all graphs, including even
partially reflexive graphs, with four or fewer vertices, by giving proofs
based on mostly just knowing the computational complexity classifica-
tion results of the compaction problem for such graphs determined earlier
by the author. Our results show that the compaction, vertex-compaction,
and retraction problems are polynomially equivalent for every graph with
four or fewer vertices.

Keywords: Computational complexity · Algorithms · Graph
Partition · Colouring · Homomorphism · Retraction · Compaction
Vertex-compaction

1 Introduction

We first introduce the following definitions and problems, and then describe the
motivation and results.

1.1 Definitions

A vertex v of a graph is said to have a loop if vv is an edge of the graph. A
reflexive graph is a graph in which every vertex has a loop. An irreflexive graph
is a graph in which no vertex has a loop. Any graph, in general, is a partially
reflexive graph, in which its vertices may or may not have loops. Thus reflexive
c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 154–166, 2018.
https://doi.org/10.1007/978-3-319-78825-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_13&domain=pdf

Compaction, Vertex-Compaction, and Retraction 155

and irreflexive graphs are special partially reflexive graphs. A bipartite graph is
irreflexive by definition.

Let G be a graph. We use V (G) and E(G) to denote the vertex set and the
edge set of G respectively. If uv is an edge of G then vu is also an edge of G.
Given an induced subgraph H of G, we denote by G−H, the subgraph obtained
by deleting from G the vertices of H together with the edges incident with them;
thus G − H is a subgraph of G induced by V (G) − V (H). For a vertex v of G,
we define G − v similarly (in the above, we have a single vertex v instead of the
graph H). We say that G is connected, if there exists a path between every pair
of vertices in G; otherwise we say that G is disconnected. A component of G is a
maximal connected subgraph of G. In the following, let G and H be graphs.

A homomorphism f : G → H, of G to H, is a mapping f of the vertices
of G to the vertices of H, such that f(g) and f(g′) are adjacent vertices of H
whenever g and g′ are adjacent vertices of G. If there exists a homomorphism of
G to H then G is said to be homomorphic to H.

A compaction c : G → H, of G to H, is a homomorphism of G to H, such
that for every vertex x of H, there exists a vertex v of G with c(v) = x, and for
every edge hh′ of H, h �= h′, there exists an edge gg′ of G with c(g) = h and
c(g′) = h′. If there exists a compaction of G to H then G is said to compact to
H.

A vertex-compaction c : G → H, of G to H, is a homomorphism of G to H,
such that for every vertex x of H, there exists a vertex v of G with c(v) = x. If
there exists a vertex-compaction of G to H then G is said to vertex-compact to
H. Note that every compaction is also a vertex-compaction.

A retraction r : G → H, of G to H, with H as an induced subgraph of G, is a
homomorphism of G to H, such that r(h) = h, for every vertex h of H. If there
exists a retraction of G to H then G is said to retract to H. Note that every
retraction is necessarily also a compaction, and hence a vertex-compaction, but
not vice versa.

For each vertex v of G, let L(v) be a list of vertices of H. We denote by L the
entire set of lists L(v) for the vertices v of G. A list homomorphism l : G → H, of
G to H, with respect to L is a homomorphism of G to H, such that l(v) ∈ L(v),
for every vertex v of G. If l : G → H is a list homomorphism with respect to
L then we say that l : G → H is a list-L-homomorphism. List homomorphism
problems of various variety have been studied in (Feder and Hell 1998); (Feder
et al. 1999) and (Vikas 2002).

An identification of two distinct vertices u and v of G is an execution of the
following steps (1), (2), and (3), which results in a new graph: (1) For every
nonloop edge uu′ of G, if vu′ is not an edge of G then we add the edge vu′ to G
(note that if uv is an edge of G then u′ = v and we will have the loop vv), (2) If
u has a loop then v is also made to have a loop if it does not already have one,
and (3) Delete the vertex u together with the edges incident with u from G.

156 N. Vikas

1.2 Homomorphism, Vertex-Compaction, Compaction,
and Retraction Problems

The problem of deciding the existence of a homomorphism to a fixed graph H,
called the homomorphism problem for H, also known as the H-colouring problem,
and denoted as H-COL, asks whether or not an input graph G is homomorphic to
H. The problem H-COL is trivial and easily seen to be polynomial time solvable
if H has a loop or H is bipartite. For any fixed non-bipartite irreflexive graph H,
it is shown in (Hell and Nesetril 1990) that H-COL is NP-complete. Note that
the classic k-colourability problem is a special case of the problem H-COL when
H is the irreflexive complete graph Kk with k vertices and the input graph G is
irreflexive.

The problem of deciding the existence of a vertex-compaction to a fixed graph
H, called the vertex-compaction problem for H, and denoted as VCOMP-H, asks
whether or not an input graph G vertex-compacts to H. Some results on the
vertex-compaction problem have been described in (Vikas 2011; 2013).

The problem of deciding the existence of a compaction to a fixed graph H,
called the compaction problem for H, and denoted as COMP-H, asks whether or
not an input graph G compacts to H. The compaction problem is a well studied
problem over last several years, and includes some popular problems. Results on
the compaction problem can be found in (Vikas 1999; 2003; 2004a; 2004b; 2004c;
2005; 2011; 2013).

The problem of deciding the existence of a retraction to a fixed graph H,
called the retraction problem for H, and denoted as RET-H, asks whether or not
an input graph G, containing H as an induced subgraph, retracts to H. Retrac-
tion problems have been of continuing interest in graph theory for a long time
and have been studied in various literature (see (Vikas 2004b) for references).

The vertex-compaction, compaction, and retraction problems are special
graph colouring problems, and can also be viewed as graph partition problems,
see (Vikas 2004c; 2005; 2011; 2013). Note that unlike the problem H-COL, the
problems VCOMP-H, COMP-H, and RET-H are still interesting if H has a loop
or H is bipartite. Some work on graph partition problems have also been studied
in (Feder et al. 2003) and (Hell 2014).

1.3 Motivation and Results

It is not difficult to show that for every fixed graph H, if RET-H is solvable in
polynomial time then COMP-H is also solvable in polynomial time (a polyno-
mial transformation from COMP-H to RET-H under Turing reduction is shown
in (Vikas 2004b). Is the converse true? This was also asked, in the context of
reflexive graphs, by Peter Winkler in 1988 (personal communication), cf. (Vikas
2003). Thus the question is whether RET-H and COMP-H are polynomially
equivalent for every fixed graph H. The answer to this is not known even when
H is reflexive or bipartite. However, a very close relationship is shown between
the compaction problem and the retraction problem for reflexive and bipartite

Compaction, Vertex-Compaction, and Retraction 157

graphs in (Vikas 2004b). It is shown in (Vikas 2004b) that for every fixed reflex-
ive (bipartite) graph H there exists a fixed reflexive (bipartite) graph H ′ such
that RET-H and COMP-H ′ are polynomially equivalent.

Similar to the polynomial transformation from COMP-H to RET-H shown in
(Vikas 2004b), we give a polynomial transformation from VCOMP-H to RET-H
under Turing reduction, for every fixed graph H. Thus if RET-H is solvable in
polynomial time then VCOMP-H is also solvable in polynomial time for every
fixed graph H, but again whether the converse is true is not known even for
reflexive or bipartite graphs H. We however establish a very close relationship
between the vertex-compaction problem and the retraction problem for reflexive
and bipartite graphs, similar to the relationship between the compaction problem
and the retraction problem established in (Vikas 2004b), showing that for every
fixed reflexive (bipartite) graph H, there exists a fixed reflexive (bipartite) graph
H ′ such that RET-H and VCOMP-H ′ are polynomially equivalent.

Similarly as in (Vikas 2004b), due to our above result and results of (Feder
and Hell 1998), (Feder and Vardi 1998), and (Vikas 2004b), we establish that for
every constraint satisfaction problem Π (with fixed templates), there exists a
fixed reflexive (bipartite) graph H such that the constraint satisfaction problem
Π, the vertex-compaction problem VCOMP-H, and the compaction problem
COMP-H are polynomially equivalent.

Since it is thought to be likely difficult to determine whether every constraint
satisfaction problem (with fixed templates) is polynomial time solvable or NP-
complete, we thus have evidence that it is likely to be difficult to determine
whether for every fixed reflexive (bipartite) graph H, the problems VCOMP-H
and COMP-H are polynomial time solvable or NP-complete. Similar evidence
has been shown for RET-H in (Feder and Hell 1998) in the case of fixed reflexive
graphs H, and in (Feder and Vardi 1998) in the case of fixed bipartite graphs H.
Issues related to the constraint satisfaction problem have also been considered
in (Feder and Vardi 1998).

Although, as argued above, determining whether VCOMP-H, COMP-H, or
RET-H is polynomial time solvable or NP-complete is likely to be difficult for
every graph H, a complete computational complexity classification of COMP-H
and RET-H when H has four or fewer vertices is given in (Vikas 2004c; 2005),
i.e., for every graph H with at most four vertices (including when H is partially
reflexive), it is determined in (Vikas 2004c; 2005) whether COMP-H is polyno-
mial time solvable or NP-complete, and whether RET-H is polynomial time solv-
able or NP-complete. As pointed out in (Vikas 2011; 2013), the computational
complexity classification of COMP-H also holds for the problem VCOMP-H, for
all graphs H with at most four vertices, as the proofs given in (Vikas 2004c;
2005) to determine the computational complexity classification of COMP-H also
hold for the problem VCOMP-H, if we consider VCOMP-H instead of COMP-
H in the proofs, for all graphs H with at most four vertices. The complexity
when H is a reflexive square follows as a special case of a reflexive k-cycle, cf.
(Vikas 2011; 2013). In this paper, we however give a complete computational
complexity classification of VCOMP-H, by giving proofs based on mostly just

158 N. Vikas

knowing the computational complexity classification results of COMP-H, when
H is any graph (including partially reflexive) having four or fewer vertices, i.e.,
for every graph H with at most four vertices, we determine whether VCOMP-H
is polynomial time solvable or NP-complete.

The complexity classification of VCOMP-H, COMP-H, and RET-H do not
differ for graphs H with at most four vertices. Thus the problems VCOMP-H,
COMP-H, and RET-H are polynomially equivalent for all graphs H with four or
fewer vertices. As discussed above, this relates to a long-standing open problem
whether any pair of these problems are polynomially equivalent for every graph.
We have various more results showing that for several graphs H, the problems
VCOMP-H, COMP-H, and RET-H are polynomially equivalent, i.e., they are
either all NP-complete or all polynomial time solvable. We do not know of any
graph H for which the complexity classification of VCOMP-H, COMP-H, and
RET-H differ.

Thus we have here two issues. One issue is concerned with the complete
computational complexity classification of the vertex-compaction, compaction,
and retraction problems, and the other issue is concerned with the equivalence of
the vertex-compaction, compaction, and retraction problems. We have resolved
fully the two issues for all graphs up to four vertices.

We have discussed above that whether COMP-H and RET-H are polyno-
mially equivalent is an open problem, and whether VCOMP-H and RET-H are
polynomially equivalent is also an open problem. The question that we con-
sider now is whether we can say that the two very close problems VCOMP-H
and COMP-H are polynomially equivalent. Similar to the proof given in (Vikas
2004b) showing a polynomial transformation from COMP-H to RET-H, we show
that VCOMP-H polynomially transforms to COMP-H under Turing reduction,
for every fixed graph H. What can we say about the converse? The answer to
this again is not known even for reflexive or bipartite graphs H. Thus we pose
the more specific open problem whether COMP-H polynomially transforms to
VCOMP-H for every fixed reflexive or bipartite graph H. We however establish
in this paper, a very close relationship between the vertex-compaction prob-
lem and the compaction problem, similar to the relationship between the com-
paction problem and the retraction problem established in (Vikas 2004b), show-
ing that for every fixed reflexive (bipartite) graph H, there exists a fixed reflexive
(bipartite) graph H ′, such that COMP-H ′ and VCOMP-H ′ are polynomially
equivalent.

In Sect. 2, we give a polynomial transformation from VCOMP-H to COMP-
H and RET-H under Turing reduction. In Sect. 3, we give very close relation-
ships between the vertex-compaction and compaction problems, and between the
vertex-compaction and retraction problems, for reflexive and bipartite graphs. In
Sect. 4, we give a complete computational complexity classification of VCOMP-H
when H has four or fewer vertices.

Compaction, Vertex-Compaction, and Retraction 159

2 A Polynomial Transformation from Vertex-Compaction
to Compaction and Retraction

In this section, we give a polynomial transformation from the vertex-compaction
problem to the compaction and retraction problems, similar to the polynomial
transformation from the compaction problem to the retraction problem given in
(Vikas 2004b). We also give an useful result relating them.

Theorem 2.1. For every fixed graph H, the problem VCOMP-H is polynomially
transformable to the problems COMP-H and RET-H under Turing reduction.

Proof. Let H be a fixed graph, and let a graph G be an instance of VCOMP-
H. We note from the definition of vertex-compaction that if c : G → H is a
vertex-compaction then part of the requirement for c is that for all h ∈ V (H),
there exists v ∈ V (G), with c(v) = h. Thus, there exists a set of |V (H)| vertices
in G which cover all the vertices in H under c. In other words, there exists an
induced subgraph Q of G, with |V (Q)| = |V (H)|, such that c : Q → H is a
vertex-compaction.

In general, there may exist several such above described induced subgraphs
Q of G such that Q vertex-compacts to H, regardless of whether or not G vertex-
compacts to H. Further, if Q vertex-compacts to H then there may exist several
vertex-compactions f of Q to H. The pair (Q, f) will be used to denote such a
subgraph Q of G with a vertex-compaction f : Q → H. Note that for each such
subgraph Q of G, there may be more than one but a fixed number of such pairs
(since H is fixed). Also, we have |V (Q)| = |V (H)|, and since H is fixed, all such
subgraphs Q of G, and all vertex-compactions f of Q to H, i.e., all the pairs
(Q, f), can be found in time polynomial in the size of G.

Let β denote the number of different possible pairs (Q, f). Clearly, β is a
polynomial in the size of G. Consider the ith pair (Q, f) (under an arbitrary
ordering of the pairs), 1 ≤ i ≤ β. We define Li(q) = {f(q)} (i.e., Li(q) is a
singleton containing the vertex f(q) of H), for all q ∈ V (Q), and Li(u) = V (H),
for all u ∈ V (G)−V (Q). Thus we obtain the lists Li(v) ⊆ V (H), for all v ∈ V (G),
i = 1, 2, . . . , β in polynomial time. Clearly, G vertex-compacts to H if and only if
there exists an i such that there is a list-Li-homomorphism of G to H, 1 ≤ i ≤ β.

We construct a graph Gi from G and Li, for all i = 1, 2, . . . , β. Let i be some
fixed value, 1 ≤ i ≤ β. The construction of Gi is as follows. We take a fresh
copy of the graphs G and H. For each vertex u of G, if Li(u) is a singleton, say
Li(u) = {h}, for some vertex h of H, then we identify u and h. The resultant
graph after identifications is our graph Gi. The graph Gi contains a copy of H
as a subgraph. Further, considering the ith pair (Q, f), since Q is an induced
subgraph of G and f : Q → H is a homomorphism, Gi has a copy of H as an
induced subgraph. Since β is a polynomial, we have only polynomially many
graphs G1, G2, . . . , Gβ . Thus we obtain the graphs G1, G2, . . . , Gβ in polynomial
time. Clearly, G vertex-compacts to H if and only if there exists an i such that
Gi retracts to H, 1 ≤ i ≤ β. Thus we have a polynomial transformation from
VCOMP-H to RET-H under Turing reduction.

160 N. Vikas

If G vertex-compacts to H then there exists an i such that Gi retracts to H,
and hence Gi compacts to H, 1 ≤ i ≤ β. Conversely, if there exists an i such
that Gi compacts to H, then clearly Gi and G vertex-compacts to H, 1 ≤ i ≤ β.
Thus, G vertex-compacts to H if and only if there exists an i such that Gi

compacts to H, 1 ≤ i ≤ β. Hence, we have a polynomial transformation from
VCOMP-H to COMP-H under Turing reduction. ��
Theorem 2.2. Let G be a graph and H be fixed graph. Then there exists a graph
G′, such that the following statements (i), (ii), and (iii), are equivalent: (i) G
vertex-compacts to H, (ii) G′ compacts to H, and (iii) G′ retracts to H.

Proof. Let G1, G2, . . . , Gβ be the graphs constructed in the proof of Theorem2.1.
Note that if there exists an i such that Gi compacts to H, then there exists a
j (which may be same as i) such that Gj retracts to H, 1 ≤ i ≤ β, 1 ≤ j ≤ β.
We know by definition that if there exists a j such that Gj retracts to H, then
Gj also compacts to H, 1 ≤ j ≤ β. Hence, we can find a value of i, such that
Gi compacts to H if and only if Gi retracts to H. Thus, there exists an i,
1 ≤ i ≤ β, such that the following statements (i), (ii), and (iii), are equivalent:
(i) G vertex-compacts to H, (ii) Gi compacts to H, and (iii) Gi retracts to H.

We have seen in the proof of Theorem 2.1, that (i) is equivalent to (ii), and as
discussed above, (ii) is equivalent to (iii). Note that we have already seen in the
proof of Theorem 2.1, that (i) is equivalent to (iii) also, but the value of i may
have been different for statements (ii) and (iii). The above equivalence shows
that we can find a value of i that is same for both statements (ii) and (iii). We
call the graph Gi in statements (ii) and (iii) as the graph G′. ��

3 Relationship between Vertex-Compaction, Compaction,
and Retraction Problems for Reflexive and Bipartite
Graphs

In this section, we establish a very close relationship between the vertex-
compaction and compaction problems, and between the vertex-compaction and
retraction problems, for reflexive and bipartite graphs.

Theorem 3.1. For every reflexive (bipartite) graph H, there exists a reflexive
(bipartite) graph H ′, such that RET-H, VCOMP-H ′, and COMP-H ′ are polyno-
mially equivalent, and COMP-H is polynomially transformable to VCOMP-H ′.

Proof. The construction of the graph H ′ is as described in (Vikas 2004b). The
equivalence of RET-H and COMP-H ′ for both the reflexive and bipartite cases
was shown in (Vikas 2004b). We point out that the same proof given in (Vikas
2004b) analogously also holds for the equivalence of RET-H and VCOMP-H ′, if
we consider the problem VCOMP-H ′ instead of COMP-H ′ in the proof given in
(Vikas 2004b).

To prove the equivalence of RET-H and VCOMP-H ′, we prove the following
statements (a) and (b) : (a) RET-H polynomially transforms to VCOMP-H ′,
and (b) VCOMP-H ′ polynomially transforms to RET-H.

Compaction, Vertex-Compaction, and Retraction 161

We first prove statement (a). Let a graph G, containing H as an induced
subgraph, be an instance of RET-H. We construct in time polynomial in the
size of G, a graph G′, containing G and H ′ as induced subgraphs, such that
the following statements (i) and (ii) are equivalent: (i) G retracts to H, and (ii)
G′ vertex-compacts to H ′. The construction of the graph G′ is as described in
(Vikas 2004b), and the proof showing equivalence of statements (i) and (ii) is
analogously same as given in the proof in (Vikas 2004b) to show that RET-H
polynomially transforms to COMP-H ′. Thus RET-H polynomially transforms
to VCOMP-H ′.

We now prove statement (b). Let a graph G be an instance of VCOMP-H ′.
We construct in time polynomial in the size of G, polynomial (in the size of G)
number of graphs G1, G2, . . . , Gβ , each containing a copy of H ′ as an induced
subgraph, and for each Gi, we construct in time polynomial in the size of Gi, a
graph G′

i also containing a copy of H ′ as an induced subgraph, 1 ≤ i ≤ β, such
that the following statements (i), (ii), (iii), (iv), (v), and (vi) are equivalent for
some value of i, 1 ≤ i ≤ β: (i) G vertex-compacts to H ′, (ii) Gi retracts to H ′,
(iii) Gi compacts to H ′, (iv) G′

i retracts to H ′, (v) G′
i compacts to H ′, and (vi)

G′
i retracts to H.

The equivalence of (i) and (vi) would show that VCOMP-H ′ polynomially
transforms to RET-H under Turing reduction, ie., statement (b) holds. The
graphs G1, G2, . . . , Gβ are constructed as in the proof of Theorem2.1 in Section 2
(where we replace H by H ′). As discussed there, β is a polynomial in the size
of G, and the graphs G1, G2, . . . , Gβ are constructed in time polynomial in the
size of G. The equivalence of (i) and (ii) follows from the proof of Theorem2.1.
The equivalence of (ii) and (iii) follows from the proof of Theorem2.2.

The construction of G′
i is analogous to the construction described in the

proof given in (Vikas 2004b), to show that COMP-H ′ polynomially transforms
to RET-H, where the graph G′

i is constructed from the graph Gi by identification
of certain vertices of Gi. We have that (ii) is equivalent to (iv), and (iv) is
equivalent to (vi), analogously as proved in (Vikas 2004b). Since (ii) and (iii) are
equivalent due to Theorem2.2 as pointed above, and the constructions are such
that we reason out (iv) and (v) are equivalent, as (i) implies (iv), (iv) implies
(v), and we show that (v) implies (i). Statements (iii) and (v) are additional
observations. Thus, in effect, we prove that (i) is equivalent to (vi), which shows
that VCOMP-H ′ polynomially transforms to RET-H under Turing reduction.
Thus statement (b) holds.

Since COMP-H ′ and VCOMP-H ′ are both polynomially equivalent to RET-
H, this shows that COMP-H ′ and VCOMP-H ′ are polynomially equivalent. Thus
RET-H, VCOMP-H ′, and COMP-H ′ are polynomially equivalent.

We now prove that COMP-H polynomially transforms to VCOMP-H ′. It is
shown in (Vikas 2004b) that COMP-H polynomially transforms to RET-H under
Turing reduction. We note from statement (a) above that RET-H polynomially
transforms to VCOMP-H ′. This implies that COMP-H polynomially transforms
to VCOMP-H ′ under Turing reduction. ��

162 N. Vikas

In Theorem 3.1, we note that the graph H ′ is the same in all the polyno-
mial equivalences showing the close relationships. Thus, the level of difficulty of
showing polynomial equivalence between each pair of the problems VCOMP-H,
COMP-H, and RET-H, all appears to be the same, even for reflexive or bipar-
tite graphs H. As discussed earlier, Theorem 3.1 leads to the following theorem,
providing evidence that it is likely to be difficult to determine whether for every
reflexive (bipartite) graph H, the problem VCOMP-H is polynomial time solv-
able or NP-complete.

Theorem 3.2. For every constraint satisfaction problem Π (with fixed tem-
plates), there exists a fixed reflexive (bipartite) graph H such that the constraint
satisfaction problem Π is polynomially equivalent to the vertex-compaction prob-
lem VCOMP-H and the compaction problem COMP-H. ��

4 A Complete Computational Complexity Classification
of Vertex-Compaction to All Graphs with Four
or Fewer Vertices

In this section, we give a complete computational complexity classification of
VCOMP-H when H has four or fewer vertices. In (Vikas 2004c; 2005), a list of
graphs H with at most four vetices is given for which COMP-H is shown there to
be NP-complete. This list is given in Fig. 1. For rest all other graphs H with at
most four vetices, not in this list, COMP-H is shown in (Vikas 2004c; 2005) to be
polynomial time solvable, and hence VCOMP-H is also polynomial time solvable
for these graphs H, as from Theorem 2.1, VCOMP-H polynomially transforms to
COMP-H. Thus to completely classify the complexity of VCOMP-H for graphs
H with at most four vertices, it only remains to determine the complexity of
VCOMP-H for the list of graphs H given in Fig. 1.

The computational complexity classification of COMP-H is shown in (Vikas
2004c; 2005) to be same as that of RET-H for all graphs H with at most four
vetices. As pointed out in (Vikas 2011; 2013), the computational complexity
classification of VCOMP-H is same as that of COMP-H, for all graphs H with
at most four vertices, as the proofs given in (Vikas 2004c; 2005) to determine the
computational complexity classification of COMP-H also hold for VCOMP-H, if
we consider VCOMP-H instead of COMP-H in the proofs, for all graphs H with
at most four vertices. The complexity when H is a reflexive square follows as a
special case of a reflexive k-cycle, cf. (Vikas 2011; 2013). We however give here
proofs determining the computational complexity classification of VCOMP-H,
mostly just by knowing results of the computational complexity classification of
COMP-H, for all graphs H with at most four vertices.

Theorem 4.1. VCOMP-H is NP-complete for the graphs H in Fig. 1(a), (d),
(e), (f), (g), and (h).

Proof. The problem VCOMP-H is clearly in NP. It is shown in (Vikas 2004c;
2005) that for each of these graphs H given in the figure, COMP-H is NP-
complete when its input graph is connected. Let a connected graph G be an

Compaction, Vertex-Compaction, and Retraction 163

(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

(k) (l) (m)

(n) (o) (p)

(q) (r) (s) (t)

Fig. 1. List of all graphs H with at most four vertices for which COMP-H, RET-H,
and VCOMP-H are NP-complete

instance of COMP-H. Clearly, if G compacts to H then G also vertex-compacts
to H. Now suppose that G vertex-compacts to H. Since H does not have a
cycle and is connected, there is a unique path between any pair of vertices in H.
Hence, since G is connected, G also compacts to H. This shows that VCOMP-H
is NP-complete. ��
Theorem 4.2. VCOMP-H is NP-complete for the graph H in Fig. 1(s).

Proof. Let the graph H in Fig. 1(s) be the square h0h1h2h3h0 with loops on
h0 and h2. Let S be the path h0h1h2 with loops on h0 and h2. We have from
Theorem 4.1 that VCOMP-S is NP-complete. Clearly, the problem VCOMP-H is
in NP. To prove NP-completeness of VCOMP-H, we give a polynomial transfor-
mation from VCOMP-S to VCOMP-H. It is shown in (Vikas 2004c; 2005) that

164 N. Vikas

the input graph G for which COMP-S is NP-complete is a connected graph con-
taining S as an induced subgraph. It follows from the proof of Theorem4.1 that
VCOMP-S is also NP-complete for the same input graph G which is connected
and contains S as an induced subgraph.

Let a graph G containing S as an induced subgraph be an instance of
VCOMP-S. We construct a graph G′ by adding to G, a new vertex h3 adjacent
to h0 and h2 only. The resulting graph G′ has G and H as induced subgraphs.
We show that G vertex-compacts to S if and only if G′ vertex-compacts to H.
Since VCOMP-S is NP-complete for such an input graph G, this shows that
VCOMP-H is also NP-complete.

Suppose first that G vertex-compacts to S. Let c : G → S be a vertex-
compaction. Since h0 and h2 are the only vertices with a loop in S, it must be
that c(h0) = h0 or h2, and c(h2) = h0 or h2. We define a vertex-compaction
c′ : G′ → H as c′(h3) = h3, and c′(v) = c(v), for all v ∈ V (G′ − h3). Since h3 is
adjacent to only h0 and h2 in G′, c′ : G′ → H is indeed a homomorphism and a
vertex-compaction. Thus G′ vertex-compacts to H.

Now suppose that G′ vertex-compacts to H. Let c′ : G′ → H be a vertex-
compaction. We first show that all the three vertices of the subgraph S of H
are covered by the vertices of G′ − h3 under c′. Since h0 and h2 are the only
vertices with a loop in H, it must be that c′(h0) = h0 or h2. Thus, since h3 is
adjacent to h0 in G′, if c′(h3) = h0 or h2 then it must be that c′(h0) = c′(h3),
and hence all the four vertices of H will be covered by the vertices of G′ − h3

under c′. If c′(h3) = h3 then the remaining vertices of H, i.e., all the three
vertices of S, must be covered by the vertices of G′ − h3 under c′. If c′(h3) = h1

then due to symmetry of the vertices h1 and h3 in H, we can always redefine
the vertex-compaction c′ so that c′(h3) = h3 (if c′(h3) = h1 then for all the
vertices x mapped to h3 under c′, we can redefine c′ so that c′(x) = h1 and
c′(h3) = h3, and the redefined c′ is still a vertex-compaction), and hence the
other three vertices of H, i.e., the vertices of S are covered by the vertices of
G′ − h3 under c′. Thus in all the cases, all the three vertices of the subgraph S
of H are covered by the vertices of G′ − h3 (i.e., the graph G) under c′.

We now define a vertex-compaction c : G → S as follows: c(v) = h1, if
c′(v) = h3, for all v ∈ V (G), and c(v) = c′(v), if c′(v) �= h3, for all v ∈ V (G).
The definition of c is same as that of c′ except that we are only mapping possibly
more vertices to S under c, and of course there is no need to consider h3 under c.
We showed above that all the three vertices of S are covered by the vertices of G
under c′. Hence all the three vertices of S continue to be covered by the vertices
of G under c also. If c′(v) = h3 for some vertex v ∈ V (G) then v is not adjacent
to any vertex mapped to h1 under c′, as c′ : G′ → H is a homomorphism.
Thus c : G → S as defined above is a homomorphism. Hence we conclude that
c : G → S is a vertex-compaction. Thus G vertex-compacts to S. This completes
the proof of the theorem. ��

Similarly, analogous to the above proof of Theorem4.2, we show that
VCOMP-H is NP-complete for the graphs H in Fig. 1(n), (o), and (r).

Compaction, Vertex-Compaction, and Retraction 165

For the graph H in Fig. 1(m), it is shown in (Vikas 2004c; 2005) that COMP-
H is NP-complete, and the same proof also holds if we consider the problem
VCOMP-H instead of COMP-H. Thus VCOMP-H is NP-complete for the graph
H in Fig. 1(m). The problem VCOMP-H is NP-complete when H is a reflexive k-
cycle, for all k ≥ 4, cf. (Vikas 2011; 2013), and hence VCOMP-H is NP-complete
for the graph H in Fig. 1(t).

We note that a graph G is homomorphic to a graph H if and only if the
disjoint union G ∪ H vertex-compacts to H. Thus we have a polynomial trans-
formation from H-COL to VCOMP-H. The problem H-COL is shown to be NP-
complete for any fixed non-bipartite irreflexive graph H in (Hell and Nesetril
1990). It follows that VCOMP-H is also NP-complete for any non-bipartite
irreflexive graph H. Hence VCOMP-H is NP-complete for the graphs H in
Fig. 1(i), (l), (p), and (q), as each of the graphs H given in the respective figures
is a non-bipartite irreflexive graph.

The results for the compaction problem for connected and disconnected
graphs given in (Vikas 2005) also hold analogously for the vertex-compaction
problem, and accordingly we have the following theorem.

Theorem 4.3. Let H be a fixed graph with components H1,H2, . . . , Hs. If
VCOMP-Hi is polynomial time solvable, for all i = 1, 2, . . . , s, then VCOMP-
H is also polynomial time solvable. If VCOMP-Hi is NP-complete for some i,
1 ≤ i ≤ s, then VCOMP-H is also NP-complete. ��

It follows from Theorem 4.3 that VCOMP-H is NP-complete for the graphs H
in Fig. 1(b), (c), (j), and (k), as for the first component H1 of H in the respective
figures, we have already shown that VCOMP-H1 is NP-complete.

We have now considered all the graphs H in Fig. 1, and shown that VCOMP-
H is NP-complete for each of these graphs H. For all other graphs H with at most
four vertices, not listed in Fig. 1, VCOMP-H is polynomial time solvable. Thus
the problems VCOMP-H, COMP-H, and RET-H are polynomially equivalent for
every graph H with four or fewer vertices.

References

Feder, T., Hell, P.: List homomorphisms to reflexive graphs. J. Comb. Theory Ser. B
72, 236–250 (1998)

Feder, T., Hell, P., Huang, J.: List homomorphisms and circular arc graphs. Combina-
torica 19, 487–505 (1999)

Feder, T., Hell, P., Klein, S., Motwani, R.: List partitions. SIAM J. Discret. Math. 16,
449–478 (2003)

Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and
constraint satisfaction: a study through datalog and group theory. SIAM J. Comput.
28, 57–104 (1998)

Hell, P.: Graph partitions with prescribed patterns. Eur. J. Comb. 35, 335–353 (2014)
Hell, P., Nesetril, J.: On the complexity of H-colouring. J. Comb. Theory Ser. B 48,

92–110 (1990)

166 N. Vikas

Vikas, N.: Computational complexity of compaction to cycles. In: Proceedings of the
Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (1999)

Vikas, N.: Connected and loosely connected list homomorphisms. In: Goos, G.,
Hartmanis, J., van Leeuwen, J., Kučera, L. (eds.) WG 2002. LNCS, vol. 2573, pp.
399–412. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36379-3 35

Vikas, N.: Computational complexity of compaction to reflexive cycles. SIAM J. Com-
put. 32, 253–280 (2003)

Vikas, N.: Computational complexity of compaction to irreflexive cycles. J. Comput.
Syst. Sci. 68, 473–496 (2004a)

Vikas, N.: Compaction, retraction, and constraint satisfaction. SIAM J. Comput. 33,
761–782 (2004b)

Vikas, N.: Computational complexity classification of partition under compaction
and retraction. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol.
3106, pp. 380–391. Springer, Heidelberg (2004c). https://doi.org/10.1007/978-3-540-
27798-9 41

Vikas, N.: A complete and equal computational complexity classification of compaction
and retraction to all graphs with at most four vertices. J. Comput. Syst. Sci. 71,
406–439 (2005)

Vikas, N.: Algorithms for partition of some class of graphs under compaction. In: Fu, B.,
Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842, pp. 319–330. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22685-4 29

Vikas, N.: Algorithms for partition of some class of graphs under compaction and
vertex-compaction. Algorithmica 67, 180–206 (2013). Invited Paper

https://doi.org/10.1007/3-540-36379-3_35
https://doi.org/10.1007/978-3-540-27798-9_41
https://doi.org/10.1007/978-3-540-27798-9_41
https://doi.org/10.1007/978-3-642-22685-4_29

Computational Geometry

Holes in 2-Convex Point Sets

Oswin Aichholzer1 , Martin Balko2,3(B) , Thomas Hackl1,
Alexander Pilz4 , Pedro Ramos5 , Pavel Valtr2 , and Birgit Vogtenhuber1

1 Institute for Software Technology, Graz University of Technology, Graz, Austria
{oaich,thackl,bvogt}@ist.tugraz.at

2 Department of Applied Mathematics and Institute for Theoretical Computer
Science (CE-ITI), Charles University, Prague, Czech Republic

balko@kam.mff.cuni.cz
3 Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences,

Budapest, Hungary
4 Department of Computer Science, ETH Zürich, Zürich, Switzerland

alexander.pilz@inf.ethz.ch
5 Departamento de F́ısica y Matemáticas, Universidad de Alcalá,

Alcalá de Henares, Spain
pedro.ramos@uah.es

Abstract. Let S be a set of n points in the plane in general position
(no three points from S are collinear). For a positive integer k, a k-hole
in S is a convex polygon with k vertices from S and no points of S in
its interior. For a positive integer l, a simple polygon P is l-convex if no
straight line intersects the interior of P in more than l connected compo-
nents. A point set S is l-convex if there exists an l-convex polygonization
of S.

Considering a typical Erdős–Szekeres-type problem, we show that
every 2-convex point set of size n contains an Ω(log n)-hole. In com-
parison, it is well known that there exist arbitrarily large point sets in
general position with no 7-hole. Further, we show that our bound is tight
by constructing 2-convex point sets with holes of size at most O(log n).

Keywords: Hole · 2-convex set · Convex position · Point set
Horton set

Research supported by OEAD project CZ 18/2015 and by project no.
7AMB15A T023 of the Ministry of Education of the Czech Republic. O. Aich-
holzer and B. Vogtenhuber supported by ESF EUROCORES programme Euro-
GIGA - ComPoSe, Austrian Science Fund (FWF): I648-N18. M. Balko and P.
Valtr supported by grant GAUK 690214, by project CE-ITI no. P202/12/G061 of
the Czech Science Foundation GAČR, and by ERC Advanced Research Grant no
267165 (DISCONV). T. Hackl supported by Austrian Science Fund (FWF): P23629-
N18. A. Pilz supported by an Erwin Schrödinger fellowship, Austrian Science Fund
(FWF): J-3847-N35. P. Ramos supported by MINECO project MTM2014-54207,
and ESF EUROCORES programme EuroGIGA, CRP ComPoSe: MICINN Project
EUI-EURC-2011-4306, for Spain.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 169–181, 2018.
https://doi.org/10.1007/978-3-319-78825-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_14&domain=pdf
http://orcid.org/0000-0002-2364-0583
http://orcid.org/0000-0001-9688-9489
http://orcid.org/0000-0002-6059-1821
http://orcid.org/0000-0001-6904-5803
http://orcid.org/0000-0002-3102-4166
http://orcid.org/0000-0002-7166-4467

170 O. Aichholzer et al.

1 Introduction

Let S be a set of n points in the plane in general position, i.e., the set S does not
contain a collinear point triple. Throughout the whole paper we only consider
point sets that are finite and in general position. A convex polygon H is a hole
in S if its vertices are points of S and the interior of H contains no points of
S. If a hole H of S has k vertices, then we say that H is a k-hole in S and k
is the size of the hole. In addition, we regard single points of S as 1-holes in S
and segments determined by two points from S as 2-holes in S. Slightly abusing
the notation, we sometimes use the terms “hole” and “k-hole” also for the set
of vertices of a hole and a k-hole, respectively. We remark that in some papers
the definition of a hole H allows H to be non-convex.

Erdős [4] asked for the smallest integer h(k) such that every set of h(k) points
in general position in the plane contains at least one k-hole. It is easy to check
that h(4) = 5 and Harborth [6] showed h(5) = 10. After this result, the question
of Erdős was settled in two phases: first, Horton showed that there are arbitrar-
ily large point sets without 7-holes [8]. Around 25 years later, Gerken [5] and
Nicolás [9] independently showed that sets with enough points always contain
a 6-hole. A recent summary of known results, together with some bounds on
the minimum number of k-holes in a set of n points, can be found in [3]. In the
current paper, we consider this question for a restricted class of point sets.

The notion of convexity is central in discrete geometry and it has been gener-
alized in a number of ways. Convex polygons can be characterized by looking at
their intersections with straight lines: A simple polygon P is convex if and only
if P ∩ � is connected for every line �. Aichholzer et al. [2] extended this property
to l-convex polygons: For a positive integer l, a simple polygon P is l-convex if
there exists no straight line that intersects the interior of P in more than l con-
nected components. Clearly, a convex polygon is 1-convex. An extensive study
of l-convex polygons can be found in [2].

Let P be an l-convex polygon. We use ∂P to denote the boundary of P . It
follows from the definition of l-convexity that every line that does not contain
an edge of P intersects ∂P in at most 2l points. In particular, every line that
does not contain an edge of a 2-convex polygon intersects its boundary in at
most four points.

In [1], the notion of l-convexity was transcribed to finite point sets. A point
set S is l-convex if there exists a polygonization P (S) of S such that P (S) is an
l-convex polygon. Note that an l-convex polygon or point set is also (l+1)-convex.

The problem of deciding whether a set of n points is 2-convex can be solved
in polynomial time with respect to n. Aichholzer et al. [1] provided an algorithm
that solves this problem in time O(n13). They also showed that the problem of
deciding whether a point set is 3-convex is NP-complete.

In this paper, we consider the following Erdős–Szekeres-type problem for 2-
convex point sets: What is the smallest number f(k) such that any 2-convex
point set of size f(k) contains a k-hole?

We show that every 2-convex point set of size n contains a hole of size
Ω(log n), implying that f(k) exists for any k > 0 (Sect. 3). Our proof actu-
ally yields an algorithm that, given a 2-convex set of n points, finds a hole of

Holes in 2-Convex Point Sets 171

size Ω(log n) in polynomial time with respect to n. Further, we show that our
bound is tight by providing a construction of 2-convex point sets of size n with
holes of size at most O(log n) (Sect. 4). It is natural in this context to wonder
about the convexity of large sets that contain only holes of constant size. We
provide an asymptotically tight lower bound Ω(

√
n) on the convexity of so-called

Horton sets of size n (Sect. 5).
Although some statements in the paper seem intuitively clear, despite our

efforts, the presented rigorous proofs are quite technical. One reason for this is
the necessity to take into account also singular cases when a line or a ray shares
a whole segment with ∂P or if it touches ∂P in some point of S.

2 Properties of 2-Convex Polygons

The proof of our main result is based on the structure of 2-convex polygons
shown in [2]. Let P be a simple polygon and let CH(P) be its convex hull. In
the following, we denote a connected piecewise linear simple arc as a chain. We
denote with 〈pi, . . . , pj〉 the chain that starts at pi and ends at pj and that traces
along ∂P in counterclockwise order. The points pi and pj are called the endpoints
of 〈pi, . . . , pj〉.

A pocket K of P is a chain 〈p0, . . . , pt〉 such that its two endpoints p0 and
pt are its only vertices of CH(P). The segment p0pt is called the lid of K. If a
pocket consists solely of a single convex hull edge of P , we call it a trivial pocket.

The following three observations follow directly from the definitions. First,
the lids of the pockets of P form the boundary of CH(P). Second, every vertex
of CH(P) lies in exactly two pockets. And finally, if a line intersects the interior
of CH(P) then its intersections with ∂P cannot all lie in a single pocket.

The structure of non-trivial pockets is quite simple and it will be crucial in
our proof. It is outlined in the following two lemmas. In the following, let P be
a set of points in general position and S be a polygonization of P .

Lemma 1 ([2, Lemma 12]). Let K = 〈p0, . . . , pt〉 be a non-trivial pocket of a
2-convex polygon between two extreme points p0 and pt. Then there are inte-
gers r and s with 0 ≤ r < s < t such that K consists of three chains
C1 = 〈p0, . . . , pr〉 , C2 = 〈pr+1, . . . , ps〉 , C3 = 〈ps+1, . . . , pt〉, and two segments
prpr+1 and psps+1, where all vertices in C1 and C3 are convex vertices of P ,
while all vertices in C2 are reflex; see Fig. 1.

Fig. 1. A non-trivial pocket consists of three chains C1, C2, C3 (drawn by thick seg-
ments) and two edges prpr+1 and psps+1 (drawn by thin segments).

172 O. Aichholzer et al.

Fig. 2. (a) The order of the points in H ∩ (S \ K) along ∂P matches their radial order
around p. (b) The ray r intersects K twice and each of the three chains C, C′, and C′′

at least once.

Lemma 2. Let K be a non-trivial pocket and let C1, C2, and C3 be the chains
from Lemma1. Then the following two statements hold for every i ∈ {1, 2, 3}.
(i) If the chain Ci contains at least three vertices, then Ci is the boundary of a

convex polygon with one edge removed.
(ii) The convex hull of Ci is a hole in S.

We omit the proof of Lemma 2. We say that two subsets A and B of the
plane are strictly separated by a line �, if they lie in opposite open half-planes
determined by �, and weakly separated by �, if they lie in opposite closed half-
planes determined by �.

The following lemma is somewhat similar to Lemma 10 in [1].

Lemma 3. Let e be an edge of a pocket K oriented according to the counter-
clockwise order of ∂P . Let p be the first vertex of e and let H be the right closed
half-plane of e; see Fig. 2(a). Then the counterclockwise order of the points of
H ∩ (S \ K) along ∂P matches their counterclockwise radial order around p.

Proof. Suppose for contradiction that there are two points u, v ∈ H ∩ (S \ K)
such that their counterclockwise order along ∂P does not match their coun-
terclockwise radial order around p. Let r be any ray with apex p such that
r is contained in H and the supporting line of r strictly separates u and v.
Since p ∈ S and S is in general position, such a ray r exists. We cut the chain
∂P \K at u and v, obtaining three chains C, C ′, and C ′′. Due to the choice of u
and v, the ray r intersects each of the three chains; see Fig. 2(b). Furthermore,
r intersects K in p and in one more point, which contradicts the 2-convexity
of P . �	

3 The Lower Bound

In this section, we prove the following.

Holes in 2-Convex Point Sets 173

Theorem 1. Every 2-convex set of n points in the plane and in general position
contains a k-hole for k ∈ Ω(log n).

Throughout this section, S denotes a 2-convex set of n points in the plane in
general position and P is a 2-convex polygon that is a polygonization of S.

Let us first sketch the proof of Theorem 1: If P has a large pocket, part (ii)
of Lemma 2 implies the existence of a large k-hole in S. When P has no large
pocket, we find a large set Q ⊂ S of points in convex position. If Q forms a
hole in S, we are done; otherwise, we can apply Lemmas 4 and 9 below to find
a sufficiently large hole in S.

The kernel of a simple polygon P is defined as the set of points x ∈ P such
that for every point y ∈ P , the line segment xy is fully contained in P . If the
kernel of P is non-empty, then P is said to be star-shaped.

Lemma 4. Assume each pocket of P contains at most s points of S for some
integer s ≥ 2. Then there exists a point p in S or in the kernel of P and a
set S′ of at least n

3s − 1 points of S such that (1) the points of S′ are strictly
separated by a line from p and (2) their counterclockwise radial order around p
matches their counterclockwise order along ∂P . Moreover, the points of S′ appear
consecutively in S \ {p} both in the counterclockwise radial order around p and
in the counterclockwise order of ∂P .

Proof. Suppose first that P is star-shaped and let p be a point in the kernel of P .
Consider any open half-plane H determined by a line � such that p lies on � and
H contains at least n−1

2 ≥ n
3s − 1 points of S. The counterclockwise radial order

of the points of S ∩ H around p matches their counterclockwise order along ∂P .
The points of S ∩ H are strictly separated from p by a line that is parallel to �
and that lies in H sufficiently close to �. Thus, if P is star-shaped, the lemma
follows.

Suppose now that P is not star-shaped, i.e., its kernel is empty. Let e1, . . . , en
be the edges of P oriented according to the counterclockwise order of ∂P . For
every i ∈ {1, . . . , n}, let Hi be the closed left half-plane of ei. It is well-known
and not difficult to prove that the kernel of P equals the intersection ∩n

i=1Hi.
Since the kernel of P is empty, Helly’s theorem [7] implies that Ha ∩ Hb ∩

Hc = ∅ for some a, b, c ∈ {1, . . . , n}. It follows that there exists an i ∈ {a, b, c}
such that the complement of Hi contains at least n/3 points of S.

Let K be the pocket that contains ei and let p be the first vertex of ei.
Since K contains at most s points of S and two of them are the endpoints of
ei, the rays −→pq, q ∈ K ∩ S, partition the complement of Hi into at most s − 1
wedges. By the pigeonhole principle, one of these wedges contains a set S0 of at
least n/3−(s−2)

s−1 ≥ n
3s − 1 points of S \ K. Due to Lemma 3, the counterclockwise

order of the points of S0 along ∂P matches their counterclockwise radial order
around p.

The points of S0 are strictly separated from p by a line that is parallel to ei
and that lies in the complement of Hi sufficiently close to ei. This finishes the
proof if P is not star-shaped. �	

174 O. Aichholzer et al.

Fig. 3. Examples of reversed triples (u, v, w).

In the proof of Lemma 4, if P is star-shaped and the point p is not part of S,
we can define a point set S′ consisting of p and S ∩ H, where H is the half-
plane from the proof of Lemma4. Then, it is easy to see that there is a 2-convex
polygonization P ′ of S′ in which p sees all the points in the order as they appear
along ∂P ′. Any k-hole in S′ contains a (k − 1)-hole in S. Hence the size of a
largest hole in S′ exceeds the size of a largest hole in S by at most 1. Thus, for
simplicity, we assume that p ∈ S.

Let φ ⊆ S3 be the ternary relation representing the counterclockwise cyclic
order of the vertices of P along ∂P . That is, a triple (u, v, w) of points of S is
in φ if we can trace u, v, w in this order along ∂P in counterclockwise direction.
For u,w ∈ S, an interval [u,w] from u to w in φ is the set {v ∈ S : (u, v, w) ∈
φ} ∪ {u,w}. For each point u ∈ S, we define a linear order <u on S \ {u} where
x <u y if and only if (x, y, u) ∈ φ.

The vertices of a pocket K = 〈p0, . . . , pt〉 of P induce a closed interval [p0, pt]
in φ. Consequently, φ induces a (counterclockwise) cyclic order of pockets of P .
We choose an arbitrary pocket K0 of P and use K0,K1, . . . , Km−1 to denote this
cyclic order where m is the number of pockets of P . In the rest of the section,
the indices of pockets are always taken modulo m.

For r, s ∈ {0, . . . , m − 1}, we use [Kr,Ks] to denote the set consisting of
pockets Kr,Kr+1, . . . , Ks. We call the set [Kr,Ks] an interval of pockets. A
subinterval of [Kr,Ks] is any interval of pockets that can be obtained from
[Kr,Ks] by deleting the first i and the last j consecutive pockets of [Kr,Ks] for
some i, j ∈ N0.

We say that a triple (u, v, w) ∈ φ is reversed if the triangle with the vertices
u, v, w traced in this order is oriented clockwise; see Fig. 3.

The following definition is crucial in our proof; see Fig. 4.

Definition 1. For an interval of pockets [Kr,Ks], a point p from S\(∪s+1
i=r−1Ki)

controls [Kr,Ks] if the following two conditions are satisfied:

(C1) If a triple (x, y, p) with x, y ∈ ∪s
i=rKi is reversed, then x and y lie in

the same pocket K and none of them is an endpoint of K,
(C1) CH(∪s

i=rKi) contains no point of S \ (∪s
i=rKi).

Observe that if p controls [Kr,Ks], then p also controls every subinterval of
[Kr,Ks]. Further, Condition (C2) implies that p is strictly separated from the
points of [Kr,Ks] by a line.

Holes in 2-Convex Point Sets 175

Fig. 4. The point p controls the interval [Kr, Ks] of pockets. The pockets of P are drawn
alternatingly along ∂P by thick and thin segments. The triple (x, y, p) is reversed.

We note that for a reversed triple (u, v, w) the point v might be a vertex of
CH(S); see parts (b) and (c) of Fig. 3. However, if the interval of pockets that
contains the points from [u, v] is controlled by some point p from S (see, for
example, part (a) of Fig. 3), then v has to lie in the interior of CH(S) due to
Condition (C2).

Lemma 5. Let (u, v, w) be a reversed triple of points in S and let K ′, K, and
K ′′ be arbitrary pockets that contain u, v, w, respectively. Let ab be the lid of
the pocket K such that (a, v, b) ∈ φ and such that the line uw weakly separates
v from ab. Assume that [K ′,K ′′] is controlled by some point p ∈ S. Then the
order <v matches the radial order around v for [u, a] and for [b, w].

We omit the proof of Lemma 5.

Lemma 6. Let Ki,Kj, and Kl be pockets appearing in this order in an interval
of pockets that is controlled by a point p ∈ S. Let (u, v, w) be a reversed triple
of points from S such that u, v, and w lie in Ki, Kj, and Kl, respectively, and
such that uw weakly separates v from the endpoints of Kj. Then v controls the
intervals [Ki+1,Kj−2] and [Kj+2,Kl−1].

Proof. It suffices to show that v controls [Ki+1,Kj−2], as the other case is anal-
ogous. The statement is trivial for [Ki,Kj] with at most three pockets, thus we
assume that [Ki,Kj] contains at least four pockets.

We first show that the line uw weakly separates v from Ki+1 ∪ · · · ∪ Kj−2.
Let H− and H+ be the open half-planes determined by uw such that v ∈ H−.
It follows from the assumptions of the lemma that the endpoints of Kj are
contained in H+ ∪ {w} and thus uw intersects the pocket Kj in at least two
points. The line uw (or its slight perturbation) has two additional crossings with
∂P and thus cannot intersect ∂P in any further point. Consequently, all vertices
of pockets from [Ki+1,Kj−2] lie in H+ ∪ {w}; see Fig. 5(a).

We now show that Conditions (C1) and (C2) are fulfilled for the point v and
the interval [Ki+1,Kj−2]. Let ab be the lid of Kj and let C be the part of ∂P
between u and a. Since v is weakly separated from C by a line, Lemma 5 implies

176 O. Aichholzer et al.

Fig. 5. Situations in the proof of Lemma 6.

that for any x, y ∈ [u, a], (x, y, v) is not a reversed triple; see Fig. 5(b). Thus,
Condition (C1) is satisfied.

Condition (C2) is also satisfied, since, by assumption, p controls the interval
of pockets that contains Ki and Kj . In particular, p controls the subinterval
[Ki+1,Kj−2] and thus CH(Ki+1 ∪ · · · ∪ Kj−2) contains no point of S \ (Ki+1 ∪
· · · ∪ Kj−2). �	

Lemma 7. Let [Kr,Kr+3d+3] be an interval of 3d+4 pockets controlled by some
point p ∈ S. Then it contains a subinterval with d pockets controlled by a point
of a pocket from [Kr,Kr+3d+3].

The proof of Lemma 7 uses Lemma 6 and is omitted.

Lemma 8. Let k ≥ 2 and let Ki1 , . . . , Kik+1 be distinct k + 1 pockets traced in
counterclockwise order along ∂P . Then the following two statements are true.

(i) If, for every j ∈ {3, . . . , k + 1}, we have a point qj ∈ Kij that controls
[Ki1 ,Kij−1], then there is a k-hole in S.

(ii) If, for every j ∈ {1, . . . , k − 1}, we have a point qj ∈ Kij that controls
[Kij+1 ,Kik+1], then there is a k-hole in S.

The proof of Lemma 8 is omitted. The following lemma is the last ingredient
for our proof of Theorem1.

Lemma 9. For every positive integer k and every interval [Kr,Ks] of pockets
it holds that, if [Kr,Ks] consists of at least 2 · 32k − 2 pockets and [Kr,Ks] is
controlled by some point of S, then [Kr,Ks] contains a k-hole in S.

Proof. Let [Kr,Ks] be an interval of at least 2 · 3t − 2 pockets for some positive
integer t. Assume that there is a point of S that controls [Kr,Ks]. First, we
show by induction on t that there are distinct pockets K ′

1, . . . , K
′
t in [Kr,Ks]

(not necessarily appearing in counterclockwise order along ∂P) such that for
every l ∈ {2, . . . , t} there is a point ql ∈ K ′

l that controls a subinterval Il of
[Kr,Ks] that contains the pockets K ′

1, . . . , K
′
l−1.

The statement is trivial for t = 1. For the induction step, we assume that
t ≥ 2. We let d := 2 · 3t−1 − 2 and we note that [Kr,Ks] consists of 3d + 4 =
2 · 3t − 2 pockets. By Lemma 7, there is a point qt contained in a pocket

Holes in 2-Convex Point Sets 177

K ′
t from [Kr,Ks] such that qt controls a subinterval It of [Kr,Ks] with at least

d pockets. Using the induction hypothesis, it follows that It contains distinct
pockets K ′

1, . . . , K
′
t−1 such that for every l ∈ {2, . . . , t−1} there is a point ql ∈ K ′

l

that controls a subinterval Il of Il+1 that contains the pockets K1, . . . , Kl−1. The
pockets K ′

1, . . . , K
′
t then satisfy the statement.

Every pocket K ′
l for l ∈ {2, . . . , t} either precedes Il or succeeds Il in the

interval [Kr,Ks] of pockets in the counterclockwise order of ∂P . Thus if t ≥ 2k,
we obtain distinct pockets Ki1 , . . . , Kik+1 traced in this order along ∂P such that
one the following two conditions holds. Either, for every j ∈ {3, . . . , k+1}, there
is a point qj ∈ Kij that controls [Ki1 ,Kij−1] or, for every j ∈ {1, . . . , k − 1},
there is a point qj ∈ Kij that controls [Kij+1 ,Kik+1]. In the first case, we apply
part (i) of Lemma 8 and obtain a k-hole in S. In the latter case, part (ii) of
Lemma 8 gives us a k-hole in S. �	
Proof of Theorem 1. To show Theorem 1, we prove that in every 2-convex
point set S of size n there is a k-hole for k ≥ log n/3, or we have an interval
with Ω(n/ log3 n) pockets that is controlled by a point of S. In the latter case
we then apply Lemma 9 and obtain a k-hole with k ≥ c log n for a fixed constant
c > 0.

First, assume that there is a pocket K = 〈p0, . . . , pt〉 in P with t ≥ log n in P .
By Lemma 1, the pocket K can be split into three chains C1 = 〈p0, p1, . . . , pr〉,
C2 = 〈pr+1, . . . , ps〉, and C3 = 〈ps+1, . . . , pt〉 for 0 ≤ r ≤ s < t, such that all
vertices in C1 and C3 are convex in P , while all vertices in C2 are reflex. Since
K contains at least log n vertices, at least one chain Ci, for some i ∈ {1, 2, 3},
contains at least log n/3 vertices. By part (ii) of Lemma 2, the vertices of Ci are
vertices of a k-hole for k ≥ log n/3; see Fig. 6(a).

Fig. 6. (a) A large pocket gives a large hole. (b) If no point of S interferes, then Q is
a hole. (c) If there is a point inside Q, then we use Lemma 6 and apply Lemma 9.

In the rest of the proof we thus assume that every pocket of P contains
less than log n vertices. In particular, there are more than n/ log n pockets in
P and CH(S) has more than n/ log n vertices. By Lemma 4, there are at least
z := n

3 logn −1 points that are strictly separated by a line from a point p (that is
not necessarily in S) and their counterclockwise radial order around p matches
their counterclockwise order along ∂P . We call these points the initial interval.
However, by the discussion after Lemma 4 we can assume for the following that
p ∈ S. Let q0, . . . , qlog n−1 be vertices of CH(S) traced in counterclockwise direc-
tion along ∂P in the initial interval such that the points in each interval [qi, qi+1]

178 O. Aichholzer et al.

for i = 0, . . . , log n− 1 (indices taken modulo log n) form at least z/ log2 n pock-
ets. Clearly, if the polygon Q with the vertices q0, . . . , qlog n−1 is a hole in S,
then we are done; see Fig. 6(b). Otherwise there is a point q in the interior of
Q and we have a reversed triple (qi, q, qj) for some i, j ∈ {0, . . . , log n − 1}. Let
K, K ′, and K ′′ be pockets containing qi, q, and qj , respectively. The endpoints
of K ′ are weakly separated from q by qiqj , as qi and qj are vertices of CH(S);
see Fig. 6(c). By Lemma 6, the point q controls the interval of pockets that are
between K and K ′ and between K ′ and K ′′. From the choice of Q, at least one
of these intervals consists of at least z/(2 log2 n) = Ω(n/ log3 n) pockets. Hence,
by Lemma 9, it contains a hole of size Ω(log n). �	

We note that the proof of Theorem 1 yields an algorithm that, given a 2-
convex set S of n points, finds a hole of size Ω(log n) in polynomial time with
respect to n.

4 An Upper-Bound Construction

Theorem 2. For every integer n there exists a 2-convex point set S of size n
such that the largest holes in S have size Θ(log n).

Proof. The set is constructed recursively, following the idea shown in Fig. 7. The
set S0 is a convex pentagon with vertices {a, b, c, d, e}. For an integer k ≥ 1 we
construct Sk := S0 ∪ Lk ∪ Rk in the following way: Lk is a set with the same
order type as Sk−1, located outside the convex hull of S0 and flat enough so
that no line defined by two points in Lk intersects the convex hull of S0 (Rk is
defined in an analogous way). Let Pk be the polygonization of Sk given by the
angular order around c. Because no line intersecting more than one edge of Pk

in Lk intersects the rest of Pk (and the same is true for Rk), it can be shown
that the set Sk is 2-convex. We observe that |Sk| = 5(2k+1 − 1) for every k ≥ 0.

Let L(Sk) := {a} ∪ {b} ∪ Lk be the left component of Sk and similarly let
R(Sk) := {d} ∪ {e} ∪ Rk be the right component of Sk.

A hole H containing points of R(Sk) cannot contain points of both the left
and the right component of Lk (because it would contain the point corresponding
to c in Lk). The same is true for every level in the recursion and an analogous
statement holds if H ∩ L(Sk) �= ∅. Hence, the number of vertices of any hole in
Sk is at most linear in k. Therefore, if we set k to be the smallest integer such
that |Sk| is at least n, we can remove the rightmost points of Sk to obtain a set
of size n and have that |H| = O(log n). Due to Theorem 1 this bound is tight. �	

Fig. 7. Recursive operation for the construction of an upper bound example.

Holes in 2-Convex Point Sets 179

5 Convexity of Horton Sets

Considering holes in point sets, the Horton sets are an ubiquitous class of point
sets, defined in [10,11]. A Horton set contains no 7-hole. We say that a point
set U is high above another point set D if all points of D lie below every line
through two points of U , and all points of U lie above every line through two
points of D. A Horton set consists either of a single point or of two Horton sets
U and D where U is high above D and by traversing the points by increasing
x-coordinate, the points of U and D are encountered alternatingly. We show that
no Horton set of size n ≥ 256 is �√n/8 − 1�-convex. As every set of n points is
O(

√
n)-convex [1, Theorem 2], this bound is asymptotically tight.

We use the following lemma, already used in [1] in a slightly less general
form.

Lemma 10. Let S be a set of n points for which there exists an arrangement
of l lines such that no two points of S lie in the same cell of the arrangement.
Then S is not (� n

2l� − 1)-convex.

Proof. Every edge of a polygonization of S crosses at least one line of that
arrangement, and thus there exists a line with at least �n

l � crossings. �	
Using this result, we prove the following lower bound on the convexity of

Horton sets.

Theorem 3. No Horton set of size n ≥ 256 is �√n/8 − 1�-convex.
Proof. We may assume that we have a Horton set of size 22a for some integer
a ≥ 4, as otherwise we may remove at most 3n/4 rightmost points and use the
fact that every subset of a k-convex point set is k-convex [1, Lemma 2].

We partition the Horton set by 2a − 1 vertical and 2a − 1 horizontal lines in
the following way. We place a horizontal line strictly separating the upper from
the lower Horton subset. We recursively repeat this on the two subsets defined
by the line until we have placed 1 + 2 + 4 + · · · + 2a−1 = 2a − 1 lines, thereby
partitioning the original set into Horton sets of size 22a/2a = 2a. Now we place a
vertical line strictly separating the 2a leftmost points from the remaining ones.
Observe that any two points to the left of the vertical line are strictly separated
by a horizontal line, as the points as encountered from left to right have to be
alternatingly from the lower and the upper set, and this also holds for the subsets.
This also holds for another vertical line strictly separating the next leftmost 2a

points and so on. Thus, after placing 2a − 1 vertical lines (i.e., 2a+1 − 2 lines
in total), we have an arrangement such that each point of the set is in a different
cell.

By Lemma 10, we thus know that there is no �22a/(2a+2 − 4) − 1�-convex
polygonization of a Horton set with 22a points. As every subset of a k-convex set
is k-convex, we see that the original Horton set on n points is not �22a/(2a+2 −
4) − 1�-convex. Since n ≤ 22a+2, we have

180 O. Aichholzer et al.

⌈
22a

2a+2 − 4
− 1

⌉
≥ 22a

2a+2
− 1 = 2a−2 − 1 ≥ √

n/8 − 1.

Since n ≥ 256, the latter expression is at least 1, which completes the proof. �	
Let λ(S) be the minimum number of lines needed to strictly separate each

pair of points of a point set S. Lemma 10 states that there is a lower bound
k ≥ Ω(|S|/λ(S)) on the k-convexity of S. Since every set S is O(

√|S|)-convex
[1, Theorem 2] and we clearly have λ(S) ≤ O(|S|), every set S is k-convex for
k ≤ O(|S|3/2/λ(S)). To see that it is tight, consider a set of n points consisting
of a set of n/2 points in convex position and of a Horton set on n/2 points.

The relation between l-convexity and the number of points needed to guar-
antee a k-hole seems to be an intriguing and difficult problem. We have shown
that if the set is not convex, but 2-convex, n points are enough to guarantee a
hole with size Ω(log n). Moreover, if the set is not �√n/8−1�-convex not even a
7-hole can be guaranteed for arbitrarily large sets (as the Horton set shows). It
would be very interesting to get some bounds analogous to the bounds in [12] for
the parameter Ñ(l, k), the minimum size of an l-convex set where the existence
of a k-hole can be guaranteed. However, this seems to be hard already for the
case of 3-convex point sets, as properties of 3-convex polygons analogous to the
properties presented in Sect. 2 are not known.

Acknowledgments. This work was initiated during the ComPoSe Workshop on Algo-
rithms using the Point Set Order Type held in March/April 2014 in Ratsch, Austria.

References

1. Aichholzer, O., Aurenhammer, F., Hackl, T., Hurtado, F., Pilz, A., Ramos, P.,
Urrutia, J., Valtr, P., Vogtenhuber, B.: On k-convex point sets. Comput. Geom.
47(8), 809–832 (2014)

2. Aichholzer, O., Aurenhammer, F., Demaine, E.D., Hurtado, F., Ramos, P., Urrutia,
J.: On k-convex polygons. Comput. Geom. 45(3), 73–87 (2012)

3. Aichholzer, O., Fabila-Monroy, R., González-Aguilar, H., Hackl, T., Heredia, M.A.,
Huemer, C., Urrutia, J., Valtr, P., Vogtenhuber, B.: On k-gons and k-holes in point
sets. Comput. Geom. 48(7), 528–537 (2015)

4. Erdős, P.: Some more problems on elementary geometry. Austral. Math. Soc. Gaz.
5(2), 52–54 (1978)

5. Gerken, T.: Empty convex hexagons in planar point sets. Discrete Comput. Geom.
39(1–3), 239–272 (2008)

6. Harborth, H.: Konvexe Fünfecke in ebenen Punktmengen. Elem. Math. 33(5),
116–118 (1978). In German

7. Helly, E.: Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahres-
ber. Dtsch. Math. Ver. 32, 175–176 (1923). In German

8. Horton, J.D.: Sets with no empty convex 7-gons. Canad. Math. Bull. 26(4), 482–
484 (1983)

9. Nicolás, C.M.: The empty hexagon theorem. Discrete Comput. Geom. 38(2), 389–
397 (2007)

Holes in 2-Convex Point Sets 181

10. Valtr, P.: Convex independent sets and 7-holes in restricted planar point sets.
Discrete Comput. Geom. 7(2), 135–152 (1992)

11. Valtr, P.: Sets in R
d with no large empty convex subsets. Discrete Math. 108(1–3),

115–124 (1992)
12. Valtr, P.: A sufficient condition for the existence of large empty convex polygons.

Discrete Comput. Geom. 28(4), 671–682 (2002)

Graphs and Combinatorics

Graph Parameters and Ramsey Theory

Vadim Lozin1,2(B)

1 Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
V.Lozin@warwick.ac.uk

2 Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia

Abstract. Ramsey’s Theorem tells us that there are exactly two mini-
mal hereditary classes containing graphs with arbitrarily many vertices:
the class of complete graphs and the class of edgeless graphs. In other
words, Ramsey’s Theorem characterizes the graph vertex number in
terms of minimal hereditary classes where this parameter is unbounded.
In the present paper, we show that a similar Ramsey-type character-
ization is possible for a number of other graph parameters, including
neighbourhood diversity and VC-dimension.

1 Introduction

In 1930, a 26 years old British mathematician Frank Ramsey proved the following
theorem, known nowadays as Ramsey’s Theorem.

Theorem 1 [12]. For any positive integers k, r, p, there exists a minimum
positive integer F = F (k, r, p) such that if the k-subsets of an F -set are colored
with r colors, then there is a monochromatic p-set, i.e. a p-set all of whose
k-subsets have the same color.

It is not difficult to see that with k = 1 this theorem coincides with the
Pigeonhole Principle. For k = 2, the theorem admits a nice interpretation in the
terminology of graph theory, since coloring 2-subsets can be viewed as coloring
the edges of a complete graph. In the case of r = 2 colors, the graph-theoretic
interpretation of Ramsey’s Theorem can be further rephrased as follows.

Theorem 2. For any positive integer p, there is a minimum positive integer
R = R(p) such that every graph with at least R vertices has either a clique of
size p or an independent set of size p.

It is not difficult to see that Theorem 2 is equivalent to the following state-
ment.

Theorem 3. The class of complete graphs and the class of edgeless graphs are
the only two minimal infinite hereditary classes of graphs.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 185–194, 2018.
https://doi.org/10.1007/978-3-319-78825-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_15&domain=pdf

186 V. Lozin

Theorem 3 characterizes the family of hereditary classes containing graphs
with a bounded number of vertices in terms of minimal “forbidden” elements,
i.e. minimal hereditary classes where the vertex number is unbounded. Is it
possible to find a similar characterization for other graph parameters?

The purpose of this paper is to show that Ramsey’s theorem can be used
to find minimal “forbidden” classes for various other parameters. For instance,
directly from Ramsey’s Theorem it follows that

– the class of complete graphs and the class of stars (and all their induced sub-
graphs) are the only two minimal hereditary classes of graphs of unbounded
vertex degree.

– the class of complete graphs and the class of complete bipartite graphs are the
only two minimal hereditary classes of graphs of unbounded biclique number
(the size a maximum complete bipartite subgraph with equal parts).

In the subsequent sections, we show that a similar Ramsey-type characterization
is possible for a number of other graph parameters. In the rest of the present
section, we introduce basic definitions and notations used in the paper.

We consider only simple undirected graphs without loops and multiple edges
and denote the vertex set and the edge set of a graph G by V (G) and E(G),
respectively. If v is a vertex of G, then N(v) is its neighbourhood, i.e. the set
of vertices of G adjacent to v. The closed neighbourhood of v is defined and is
denoted as N [v] = N(v) ∪ {v}. The degree of v is |N(v)|.

In a graph, an independent set is a subset of vertices no two of which are
adjacent, a clique is a subset of vertices every two of which are adjacent, and a
matching is a subset of edges no two which share a vertex.

For a graph G, we denote by G the complement of G. Similarly, for a class
X of graphs, we denote by X the class of complements of graphs in X .

Given a graph G and a subset U ⊆ V (G), we denote by G[U] the subgraph
of G induced by U , i.e. the subgraph obtained from G by deleting all the vertices
not in U . We say that a graph G contains a graph H as an induced subgraph if H
is isomorphic to an induced subgraph of G. A graph G is said to be n-universal
for a class of graphs X if G contains all n-vertex graphs from X as induced
subgraphs.

A class X of graphs is hereditary if it is closed under taking induced sub-
graphs, i.e. if G ∈ X implies H ∈ X for every graph H contained in G as an
induced subgraph. Two hereditary classes of particular interest in this paper are
split graphs and bipartite graphs.

A graph G is a split graph if V (G) can be partitioned into an independent set
and a clique, and G is bipartite if V (G) can be partitioned into at most two inde-
pendent sets. A bipartite graph G given together with a bipartition of its vertices
into independent sets A and B will be denoted G = (A,B,E), in which case we
will say that A and B are the color classes of G. If every vertex of A is adjacent
to every vertex of B, then G = (A,B,E) is complete bipartite. The bipartite com-
plement of G = (A,B,E) is the bipartite graph G′ = (A,B,E′), where ab ∈ E′

if and only if ab �∈ E. Clearly, by creating a clique in one of the color classes of a
bipartite graph, we transform it into a split graph, and vice versa.

Graph Parameters and Ramsey Theory 187

2 Neighbourhood Diversity

The neighbourhood diversity of a graph was introduced in [7] and was used
to develop fpt-algorithms for some difficult graph problems (see e.g. [5]). This
parameter can be defined as follows.

Definition 1. Two vertices x and y are said to be similar if there is no vertex
z distinguishing them i.e. if there is no vertex z adjacent to exactly one of x and
y. Clearly, the similarity is an equivalence relation. The neighbourhood diversity
of G is the number of similarity classes in G.

Before we provide a Ramsey-type characterization of the neighbourhood diver-
sity, we introduce an auxiliary notion.

Definition 2. A skew matching in a graph G is a matching {x1y1, . . . , xqyq}
such that yi is not adjacent to xj for all i < j. The complement of a skew
matching is a sequence of pairs of vertices that create a skew matching in the
complement of G.

Lemma 1. For any positive integer m, there exists a positive integer r = r(m)
such that any bipartite graph G = (A,B,E) of neighbourhood diversity r contains
either a skew matching of size m or its complement.

Proof. Define r = 22m and let X be a set of pairwise non-similar vertices of size
r/2 chosen from the same color class of G, say from A. Let y1 be a vertex in B
distinguishing the set X (i.e. y1 has both a neighbour and a non-neighbour in
X) and let us say that y1 is big if the number of its neighbours in X is larger
than the number of its non-neighbours, and small otherwise. If y1 is small, we
arbitrarily choose its neighbour in X, denote it by x1 and remove all neighbours
of y1 from X. If y is big, we arbitrarily choose a non-neighbour of y1 in X, denote
it by x1 and remove all non-neighbours of y1 from X. Observe that y1 does not
distinguish the vertices in the updated set X.

We apply the above procedure to X 2m − 1 times and obtain in this way a
sequence of 2m − 1 pairs xiyi. If m of these pairs contain small vertices yi, then
the respective pairs create a skew matching of size m. Otherwise, there is a set
of m pairs containing big vertices yi, in which case the respective pairs create
the complement of a skew matching. ��

Now we turn to the neighbourhood diversity and start with the bipartite
case. For this, we denote by

M the class of graphs of vertex degree at most 1. By Mn we denote an induced
matching of size n, i.e. the unique up to isomorphism graph in the class
M with 2n vertices each of which has degree 1. Clearly, Mn is n-universal
for graphs in M.

Mbc the class of bipartite complements of graphs in M. The bipartite comple-
ment of the graph Mn will be denoted M bc

n . Clearly, M bc
n is n-universal for

graphs in Mbc.

188 V. Lozin

Z the class of chain graphs, i.e. bipartite graphs in which the neighbourhoods
of the vertices in each part form a chain with respect to set-inclusion. By
Zn we denote a chain graph such that for each i ∈ {1, 2, . . . , n}, each part
of the graph contains exactly one vertex of degree i. Figure 1 represents
the graph Zn for n = 5. It is known [9] that Zn is n-universal for graphs
in Z.

Fig. 1. The graph Z5

Lemma 2. For any positive integer p, there exists a positive integer q = q(p)
such that any bipartite graph G = (A,B,E) of neighbourhood diversity q contains
either an induced Mp or an induced Zp or an induced M bc

p .

Proof. Let m = R(p+1) (where R is the Ramsey number defined in Theorem2)
and q = 22m. According to the proof of Lemma1, G contains a skew matching
of size m or its complement. If G contains a skew matching M , we color each
pair (xiyi, xjyj) of edges of M (i < j) in two colors as follows:

– color 1 if xi is not adjacent to yj ,
– color 2 if xi is adjacent to yj .

By Ramsey’s Theorem, M contains a monochromatic set M ′ of edges of size
p + 1. If the color of each pair of edges in M ′ is

1. then M ′ is an induced matching of size p + 1,
2. then the vertices of M ′ induce a Zp+1.

Analogously, in the case when G contains the complement of a skew matching,
we find either an induced M bc

p+1 or an induced Zp (observe that the bipartite
complement of Zp+1 contains an induced Zp). ��

Now we proceed to the general case and denote by

M∗ the class of split graphs obtained from graphs in M by creating a clique in
one of the color classes. The graph obtained from Mn by creating clique in
one its color classes will be denoted by M∗

n. Clearly, M∗
n is n-universal for

graphs in M∗.
Z∗ the class of split graphs obtained from graphs in Z by creating a clique in

one of the color classes. This class is known in the literature as the class
of threshold graphs. The graph obtained from Zn by creating a clique in
one of its color classes will be denoted Z∗

n. This graph is n-universal for
threshold graphs [6].

Graph Parameters and Ramsey Theory 189

Lemma 3. For any positive integer p, there exists a positive integer Q = Q(p)
such that every graph G of neighbourhood diversity Q contains one of the fol-
lowing nine graphs as an induced subgraph: Mp, M bc

p , Zp, Mp, M
bc

p , Zp, M∗
p ,

M
∗
p, Z∗

p .

Proof. Let Q = R(q), where q = 22m and m = R(R(p) + 1) (R is the Ramsey
number). We choose one vertex from each similarity class of G and find in the
chosen set a subset A of vertices that form an independent set or a clique of size
q = 22m. Let us call the vertices of A white. We denote the remaining vertices of
G by B and call them black. Let G′ denote the bipartite subgraph of G formed
by the edges between A and B. By the choice of A, all vertices of this set have
pairwise different neighbourhoods in G′. Therefore, according to the proof of
Lemma 2, G′ contains a subgraph G′′ inducing either Mn, or M bc

n or Zn with
n = R(p). Among the n black vertices of G′′, we can find a subset B′ of vertices
that form either a clique or an independent set of size p in the graph G. Then
B′ together with a subset of A of size p induce in G one of the nine graphs listed
in the statement of the lemma. ��

Since the nine graphs of Lemma3 are universal for their respective classes,
we make the following conclusion.

Theorem 4. There exist exactly nine minimal hereditary classes of graphs of
unbounded neighbourhood diversity: M, Mbc, Z, M, Mbc

, Z, M∗, M∗
, Z∗.

3 VC-Dimension

A set system (X,S) consists of a set X and a family S of subsets of X. A subset
A ⊆ X is shattered if for every subset B ⊆ A there is a set C ∈ S such that
B = A∩C. The VC-dimension of (X,S) is the cardinality of a largest shattered
subset of X.

The VC-dimension of a graph G = (V,E) was defined in [1] as the VC-
dimension of the set system (V, S), where S the family of closed neighbourhoods
of vertices of G, i.e. S = {N [v] : v ∈ V (G)}. Let us denote the VC-dimension
of G by vc[G].

In this section, we characterize VC-dimension by means of three minimal
hereditary classes where this parameter is unbounded. To this end, we first rede-
fine it in terms of open neighbourhoods as follows. Let vc(G) be the size of a
largest set A of vertices of G such that for any subset B ⊆ A there is a vertex v
outside of A with B = A ∩ N(v). In other words, vc(G) is the size of a largest
subset of vertices shattered by open neighbourhoods of vertices of G.

We start by showing that the two definitions are equivalent in the sense
that they both are either bounded or unbounded in a hereditary class. To prove
this, we introduce the following terminology. Let A be a set of vertices which is
shattered by a collection of closed neighbourhoods. For a subset B ⊆ A we will
denote by v(B) the vertex whose neighbourhood intersect A at B. We will say
that B is closed if v(B) belongs to B, and open otherwise.

190 V. Lozin

Lemma 4. vc(G) ≤ vc[G] ≤ vc(G)(vc(G) + 1) + 1

Proof. The first inequality is obvious. To prove the second one, let A be a subset
of V (G) of size vc[G] which is shattered by a collection of closed neighbourhoods.
If A has no closed subsets, then vc[G] = vc(G). Otherwise, let B be a closed
subset of A.

Assume first that |B| = 1. Then B = {v(B)} and v(B) is isolated in G[A],
i.e. it has no neighbours in A. Let C be the set of all such vertices, i.e. vertices
each of which is a closed subset of A. By removing from A any vertex x ∈ C
we obtain a new set A and may assume that it has no closed subsets of size 1.
Indeed, for any vertex y ∈ C different from x, there must exist a vertex y′ �∈ A
such that N(y′) ∩ A = {x, y} (since A is shattered). After the removal of x from
A, we have N(y′)∩A = {y} and hence {y} is not a closed subset anymore. This
discussion allows us to assume in what follows that A has no closed subsets of
size 1, in which case we only need to show that vc[G] ≤ vc(G)(vc(G) + 1).

Assume now that B is a closed subset of A of size at least 2. Suppose that
B−v(B) contains a closed subset C, i.e. v(C) ∈ C. Observe that v(C) is adjacent
to v(B), as every vertex of B − v(B) is adjacent to v(B). But then N [v(C)] ∩ A
contains v(B) contradicting the fact that N [v(C)] ∩ A = C. This contradiction
shows that every subset of B − v(B) is open, i.e. |B − v(B)| ≤ vc(G).

The above observation allows us to apply the following procedure: as long as
A contains a closed subset B with at least two vertices, delete from A all vertices
of B except for v(B). Denote the resulting set by A∗. Assume the procedure was
applied p times and let B1, . . . , Bp be the closed subsets it was applied to. It is not
difficult to see that the set {v(B1), . . . , v(Bp)} has no closed subsets and hence
its size cannot be large than vc(G), i.e. p ≤ vc(G). Combining, we conclude:

vc[G] = |A| ≤ |A∗| +
p∑

i=1

|Bi − v(Bi)| ≤ vc(G) + p · vc(G) ≤ vc(G)(vc(G) + 1).

��
This lemma allows us to assume that if A is shattered, then there is a set C

disjoint from A such that for any subset B ⊆ A there is a vertex v ∈ C with
B = A∩N(v), in which case we will say that A is shattered by C, or C shatters
A.

Let Qn = (A,B,E) be the bipartite graph with |A| = n and |B| = 2n such
that all vertices of B have pairwise different neighbourhood in A. Also, let Sn

be the split graph obtained from Qn by creating a clique in A.

Lemma 5. The graph Qn is an n-universal bipartite graph, i.e. it contains every
bipartite graph with n vertices as an induced subgraph.

Proof. Let G be a bipartite graph with n vertices and with parts A and B of
size n1 and n2, respectively. By adding at most n2 vertices to A, we can guaran-
tee that all vertices of B have pairwise different neighbourhoods in A. Clearly,
Qn contains the extended graph and hence it also contains G as an induced
subgraph. ��

Graph Parameters and Ramsey Theory 191

Corollary 1. Every co-bipartite graph with at most n vertices is contained in
Qn and every split graph with at most n vertices is contained both in Sn and in
Sn.

Lemma 6. If a set A shatters a set B with |B| = 2n, then B shatters a subset
A∗ of A with |A∗| = n.

Proof. Without loss of generality we assume that B is the set of all binary
sequences of length n. Then every vertex a ∈ A defines a Boolean function of
n variables (the neighbourhood of a consists of the binary sequences, where the
function takes value 1). For each i = 1, . . . , n, let us denote by ai the Boolean
function such that ai(x1, . . . , xn) = 1 if and only if xi = 1. Let A′ be an arbitrary
subset of A∗ = {a1, . . . , an} and α = (α1, . . . , αn) its characteristic vector, i.e.
αi = 1 if and only if ai ∈ A′. Clearly, α ∈ B and N(α) ∩ A∗ = A′. Therefore, B
shatters A∗. ��
Lemma 7. For every n, there exists a k = k(n) such that every graph G with
vc(G) = k contains one of Qn, Qn, Sn, Sn as an induced subgraph.

Proof. Define k = R(2R(n)), where R is the Ramsey number. Since vc(G) = k,
there are two subsets A and B of V (G) such that |A| = k and B shatters A.
By definition of k, A must have a subset A′ of size 2R(n) which is a clique or
an independent set. Clearly, B shatters A′ and hence, by Lemma 6, A′ shatters
a subset B′ of B of size R(n). Then B′ must have a subset B′′ of size n which
is either a clique or an independent set. Now G[A′ ∪ B′′] is either bipartite or
co-bipartite or split graph, |B′′| = n and A′ shatters B′′. Therefore, G[A′ ∪ B′′]
contains one of Qn, Qn, Sn, Sn as an induced subgraph. ��
Theorem 5. The classes of bipartite, co-bipartite and split graphs are the only
three minimal hereditary classes of graphs of unbounded VC-dimension.

Proof. Clearly these three classes have unbounded VC-dimension, since they
contain Qn, Qn, Sn, Sn with arbitrarily large values of n.

Now let X be a hereditary class containing none of these three classes. There-
fore, there is a bipartite graph G1, a co-bipartite graph G2 and a split graph
G3 which are forbidden for X. Denote by n the maximum number of vertices in
these graphs.

Assume that VC-dimension is not bounded for graphs in X and let G ∈
X be a graph with vc(G) = k, where k = k(n) is from Lemma 7. Then G
contains one of Qn, Qn, Sn, Sn, say Qn. Since Qn is n-universal for bipartite
graphs (Lemma 5), it contains G1 as an induced subgraph, which is impossible
because G1 is forbidden for graphs in X. This contradiction shows that VC-
dimension is bounded in the class X. ��

4 More Results and Discussion

In [4], it was shown that for every t, p, s, there exists a z = z(t, p, s) such that
every graph with a (not necessarily induced) matching of size at least z contains

192 V. Lozin

either an induced matching of size t or an induced complete bipartite graph with
color classes of size p or a clique of size s. This result was used in [4] to develop
fpt-algorithms for the maximum induced matching problem in special classes
of graphs where the problem is W[1]-hard. Now we use this result to derive a
Ramsey-type characterization of the matching number μ(G), i.e. the size of a
maximum matching in G. It is well known that μ(G) ≤ τ(G) ≤ 2μ(G), where
τ(G) is the vertex cover number, i.e. the size of a minimum vertex cover in G.
Therefore, the same characterization is valid the vertex cover number.

Theorem 6. The class of complete graphs, the class of complete bipartite graphs
and the class M of graphs of vertex degree at most 1 are the only three minimal
hereditary classes of graphs of unbounded matching number and unbounded vertex
cover number.

One more result of the same nature was proved in [2]. It states that for every
t, p, s, there exists a z = z(t, p, s) such that every graph with a (not necessarily
induced) path of length at least z contains either an induced path of length t
or an induced complete bipartite graph with color classes of size p or a clique
of size s. This result was used in [2] to obtain fpt-algorithms in special classes
of graphs for the k-Biclique problem, which is generally W[1]-hard [8]. Now we
use this result to derive the following Ramsey-type characterization of the path
number, i.e. the length of a longest path.

Theorem 7. The class of complete graphs, the class of complete bipartite graphs
and the class of linear forests (i.e. graphs every connected component of which
is a path) are the only three minimal hereditary classes of graphs of unbounded
path number.

From the last two theorems and the remark in the introduction it follows that
path number lies between matching number and biclique number in the hierarchy
of graph parameters. Also, it is well known that graphs of bounded path number
have bounded tree-width and that the complete graphs and complete bipartite
graphs are minimal hereditary classes of unbounded tree-width. Therefore, tree-
width lies between path number and biclique number. On the other hand, it is
known that tree-width lies below clique-width, i.e. bounded tree-width implies
bounded clique-width, which was shown in [3]. In the same paper it was also
shown that bounded clique-width together with bounded biclique number imply
bounded tree-width. Therefore, the family of classes of bounded tree-width is
precisely the intersection of the family of classes of bounded clique-width and
the family of classes of bounded biclique number.

The above discussion shows that a Ramsey-type characterization of tree-
width can be derived from such a characterization for clique-width, if it exists.
However, in the case of clique-width even the existence of minimal classes is not
obvious. The first two such classes have been recently discovered in [11]. In spite
of this progress, a complete Ramsey-type characterization of clique-width is not
possible, because in the universe of hereditary classes there are areas, where
minimal classes do not exist, for instance, graphs of bounded vertex degree.

Graph Parameters and Ramsey Theory 193

There are several ways to overcome this difficulty. One of them is to reduce the
universe. For instance, by reducing the universe of hereditary classes to minor-
closed classes of graphs, we conclude that the class of planar graphs is the unique
minimal minor-closed class of graphs of unbounded tree-width [13] and hence it
is the unique minimal minor-closed class of graphs of unbounded clique-width.
One more way to overcome the difficulty of non-existence of minimal classes is
to employ the notion of boundary classes, which is a relaxation of the notion of
minimal classes (see e.g. [10]).

Finally, instead of characterizing graph parameters in terms of “forbidden”
elements (i.e. in terms of “what is not allowed”) one can characterize them in
terms of “what is allowed”, and the results of the present paper suggest a uniform
way to such characterizations. To see this, let us observe that both neighbour-
hood diversity and VC-dimension describe how complex the neighbourhood of
a set X of vertices can be outside of X. This complexity can be described by a
hypergraph whose hyperedges correspond to the neighbourhoods of vertices in
X. In this terminology, neighbourhood diversity marks the jump from finitely
many to infinitely many (distinct) hyperedges. Similarly, VC-dimension marks
the jump from infinitely many hyperedges to all possible hyperedges. Between
these two extremes, lies a variety of other graph parameters, such as clique-
width, and exploring their neighbourhood complexity (i.e. the structure of the
corresponding hypergraphs) is a very challenging task.

Acknowledgment. This work was supported by the Russian Science Foundation
Grant No. 17-11-01336.

References

1. Alon, N., Brightwell, G., Kierstead, H., Kostochka, A., Winkler, P.: Dominating
sets in k-majority tournaments. J. Combin. Theory Ser. B 96, 374–387 (2006)

2. Atminas, A., Lozin, V.V., Razgon, I.: Linear time algorithm for computing a small
biclique in graphs without long induced paths. In: Fomin, F.V., Kaski, P. (eds.)
SWAT 2012. LNCS, vol. 7357, pp. 142–152. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31155-0 13

3. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Appl. Math. 101, 77–114 (2000)

4. Dabrowski, K.K., Demange, M., Lozin, V.V.: New results on maximum induced
matchings in bipartite graphs and beyond. Theor. Comput. Sci. 478, 33–40 (2013)

5. Gargano, L., Rescigno, A.: Complexity of conflict-free colorings of graphs. Theor.
Comput. Sci. 566, 39–49 (2015)

6. Hammer, P.L., Kelmans, A.K.: On universal threshold graphs. Comb. Probab.
Comput. 3(3), 327–344 (1994)

7. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica
64(1), 19–37 (2012)

8. Lin, B.: The parameterized complexity of k-Biclique. In: Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 605–
615 (2015)

9. Lozin, V., Rudolf, G.: Minimal universal bipartite graphs. Ars Comb. 84, 345–356
(2007)

https://doi.org/10.1007/978-3-642-31155-0_13
https://doi.org/10.1007/978-3-642-31155-0_13

194 V. Lozin

10. Lozin, V.: Boundary classes of planar graphs. Comb. Probab. Comput. 17(2), 287–
295 (2008)

11. Lozin, V.: Minimal classes of graphs of unbounded clique-width. Ann. Comb. 15(4),
707–722 (2011)

12. Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. 30, 264–286
(1930)

13. Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. J.
Comb. Theory Ser. B 41, 92–114 (1986)

Letter Graphs and Geometric Grid
Classes of Permutations: Characterization

and Recognition

Bogdan Alecu1, Vadim Lozin1(B), Viktor Zamaraev1,
and Dominique de Werra2

1 Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
V.Lozin@warwick.ac.uk

2 Institute of Mathematics, EPFL, 1015 Lausanne, Switzerland

Abstract. In this paper, we reveal an intriguing relationship between
two seemingly unrelated notions: letter graphs and geometric grid classes
of permutations. We also present the first constructive polynomial-time
algorithm for the recognition of 3-letter graphs.

1 Introduction

Letter graphs and geometric grid classes of permutations have been introduced
independently of each other in [1,9], respectively. Nothing in the definition of
these notions suggests that there is anything in common between them. The only
common property is well-quasi-orderability. We believe that there is much more
in common between letter graphs and geometric grid classes of permutations and
that they can be closely connected through the notion of permutation graph.
Speaking informally, we believe that geometric grid classes of permutations and
letter graphs are two languages describing the same concept in the universe of
permutations and permutation graphs, respectively. We state this formally as a
conjecture as follows:

Conjecture 1. Let X be a class of permutations and GX the corresponding class
of permutation graphs. Then X is a geometric grid class if and only if GX is a
class of k-letter graphs for a finite value of k.

In this conjecture, the parameter k stands for the size of the alphabet used to
describe graphs by means of letters (all definitions will be given in Sect. 2). In
Sect. 3, we prove the “only if” part of the conjecture, i.e. we translate the concept
of geometric grid classes of permutations to the language of letter graphs.

Well-quasi-orderability implies that geometric grid classes of permutations
can be described by finitely many forbidden patterns. Similarly, for each fixed k,
the class of k-letter graphs can be described by finitely many forbidden induced
subgraphs. This provides a nonconstructive proof of the fact that geometric grid
classes of permutations and k-letter graphs (for a fixed k) can be recognized

c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 195–205, 2018.
https://doi.org/10.1007/978-3-319-78825-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_16&domain=pdf

196 B. Alecu et al.

in polynomial time. However, constructive algorithms are not available for the
recognition problem, except for the 2-letter graphs and corresponding classes of
permutations. As a step towards solving this problem for larger values of k, in
Sect. 4 we study the class of 3-letter graphs. Our results lead to a cubic algorithm
to recognize graphs in this class.

All preliminary information related to the topic of the paper can be found in
Sect. 2.

2 Preliminaries

All graphs in this paper are finite, undirected, without loops and multiple edges.
The vertex set and the edge set of a graph G are denoted by V (G) and E(G),
respectively. For a vertex x ∈ V (G) we denote by N(x) the neighbourhood of x,
i.e. the set of vertices of G adjacent to x. A subgraph of G induced by a subset
of vertices U ⊆ V (G) is denoted G[U]. By G we denote the complement of G.

A clique in a graph is a subset of pairwise adjacent vertices and an inde-
pendent set is a subset of pairwise non-adjacent vertices. By Kn we denote the
complete graph on n vertices.

Chain graphs. A graph G is a chain graph if it is bipartite and admits a bipar-
tition V (G) = V1 ∪ V2 such that for any two vertices x, y in the same part Vi

either N(x) ⊆ N(y) or N(y) ⊆ N(x). In other words, the vertices in each part
of the bipartition of G can be linearly ordered under inclusion of their neigh-
bourhoods (form a chain). In terms of minimal forbidden induced subgraphs,
the chain graphs are precisely the 2K2-free bipartite graphs.

Permutation graphs. Let π be a permutation of the set {1, 2, . . . , n}. The per-
mutation graph Gπ of this permutation has {1, 2, . . . , n} as its vertex set with
i and j being adjacent if and only if (i − j)(π(i) − π(j)) < 0. A graph G is a
permutation graph if there is a permutation π such that G is isomorphic to Gπ.

2.1 Letter Graphs

Let Σ be a finite alphabet and P ⊆ Σ2 a set of ordered pairs of symbols from
Σ, called the decoder. To each word w = w1w2 · · · wn with wi ∈ Σ we asso-
ciate a graph G(P, w), called the letter graph of w, by defining V (G(P, w)) =
{1, 2, . . . , n} with i being adjacent to j > i if and only if the ordered pair (wi, wj)
belongs to the decoder P.

It is not difficult to see that every graph G is a letter graph in an alphabet of
size at most |V (G)| with an appropriate decoder P. The minimum � such that G
is a letter graph in an alphabet of � letters is the lettericity of G and is denoted
�(G). A graph is a k-letter graph if its lettericity is at most k.

The notion of k-letter graphs was introduced in [9] and in the same paper
the author characterized k-letter graphs as follows.

Theorem 1. A graph G is a k-letter graph if and only if

Letter Graphs and Geometric Grid Classes of Permutations 197

1. there is a partition V1, V2, . . . , Vp of V (G) with p ≤ k such that each Vi is
either a clique or an independent set in G, and

2. there is a linear ordering L of V (G) such that for each pair of distinct indices
1 ≤ i, j ≤ p, the intersection of E(G) with Vi ×Vj is one of the following four
types (where L is considered as a binary relation, i.e. as a set of pairs):
(a) L ∩ (Vi × Vj);
(b) L−1 ∩ (Vi × Vj);
(c) Vi × Vj;
(d) ∅.
The notion of letter graphs is of interest for various reasons. First, some

important graphs classes, such as threshold graphs [7], can be described in the
terminology of letter graphs. In particular, a graph G is threshold if and only if
G is a 2-letter graph representable over the alphabet Σ = {a, b} with the decoder
P = {(a, a), (a, b)}. Second, letter graphs provide an interesting contribution to
the theory of ordered graphs [8]. Third, they contribute to the rich theory of
graph parameters. On the one hand, graph lettericity generalizes neighbourhood
diversity (which was recently introduced in [6] to study parameterized complex-
ity of algorithmic graph problems) in the sense that bounded neighbourhood
diversity implies bounded lettericity, but not vice versa (threshold graphs have
unbounded neighbourhood diversity). On the other hand, bounded lettericity
implies bounded linear clique-width. Moreover, from an algorithmic point of
view graphs of bounded lettericity are more attractive, since they can be recog-
nized efficiently, while for graphs of bounded linear clique-width this question is
open [4].

Finally, and perhaps most importantly, graphs of bounded lettericity (i.e. of
lettericity at most k for a fixed value of k) are well-quasi-ordered by the induced
subgraph relation [9]. This is a rare property of graphs, which was shown, up to
date, only for some restricted graph classes [3,5]. Moreover, as was observed in
[5], k-letter graphs are well-quasi-ordered under the stronger relation of labelled
induced subgraphs (see [2] for more information on this topic).

2.2 Geometric Grid Classes of Permutations

The notion of geometric grid classes of permutations was introduced in [1] as
follows. Suppose that M is a 0/ ± 1 matrix. The standard figure of M is the set
of points in R

2 consisting of

– the increasing open line segment from (k − 1, � − 1) to (k, �) if Mk,� = 1 or
– the decreasing open line segment from (k − 1, �) to (k, � − 1) if Mk,� = −1.

We index matrices first by column, counting left to right, and then by row,
counting bottom to top throughout. The geometric grid class of M , denoted by
Geom(M), is then the set of all permutations that can be drawn on this figure
in the following manner. Choose n points in the figure, no two on a common
horizontal or vertical line. Then label the points from 1 to n from bottom to top
and record these labels reading left to right. Figure 1 represents two permutations
that lie, respectively, in grid classes of

198 B. Alecu et al.

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�1
�

2

�3

�
4

�
5

�

6

�1

�2

�3

�

4

�5
�

6

Fig. 1. The permutation 351624 on the left and the permutation 153426 on the right.

(
1 −1

−1 1

)
and

(−1 1
1 −1

)
.

A permutation class is said to be geometrically griddable if it is contained in
some geometric grid class. The geometrically griddable classes of permutations
enjoy many nice properties. In particular, in [1] the following results have been
proved.

Theorem 2. Every geometrically griddable class of permutations is well-quasi-
ordered and is in bijection with a regular language.

3 From Geometric Grid Class of Permutations to Letter
Graphs

In this section, we prove the “only if” of Conjecture 1, i.e. we prove the following
result.

Theorem 3. Let X be a class of permutations and GX the corresponding class
of permutation graphs. If X is a geometric grid class, then GX is a class of
k-letter graphs for a finite value of k.

To prove Theorem 3, we first outline the correspondence (bijection) between a
geometrically griddable class of permutations and a regular language established
in Theorem 2. To this end, we need the following definition from [1].

Definition 1. We say that a 0/ ± 1 matrix M of size t × u is a partial multipli-
cation matrix if there are column and row signs

c1, . . . , ct, r1, . . . , ru ∈ {1,−1}
such that every entry Mk,� is equal to either 0 or the product ckr�.

Example 1. The matrix
(

1 0 −1
−1 1 0

)
is a partial multiplication matrix. This

matrix has column and row signs c2 = c3 = r1 = 1 and c1 = r2 = −1.

Letter Graphs and Geometric Grid Classes of Permutations 199

The importance of this notion for the study of geometric grid classes of
permutations is due to the following proposition proved in [1].

Proposition 1. Every geometric grid class is the geometric grid class of a par-
tial multiplication matrix.

Let M be a t × u partial multiplication matrix with column and row signs

c1, . . . , ct, r1, . . . , ru ∈ {1,−1}
and let ΦM be the standard gridded figure of M . We will interpret the signs
of the columns and rows of M as the “directions” associated with the columns
and rows of Φ with the following convention: ci = 1 corresponds to →, ci = −1
corresponds to ←, ri = 1 corresponds to ↑, and ri = −1 corresponds to ↓. The

standard gridded figure of the matrix M =
(

0 1 1
1 −1 −1

)
with row signs r1 = −1

and r2 = 1 and column signs c1 = −1, c2 = c3 = 1 is represented in Fig. 2.

�
�

�
�

�

�
�

�
�

�

�

�
� � �

� p1
�

p2

�

p3

�
p4

�

p5

�

p6

�

p7

Fig. 2. A standard gridded figure of a partial multiplication matrix.

The base point of a cell Ck,� of the figure Φ is one of the four corners of
the cell, where both directions (associated with column k and row �) start. For
instance, in Fig. 2 the base point of the cell C3,1 is the top-left corner.

In order to establish a bijection between Geom(M) and a regular language,
we first fix an alphabet Σ (known as the cell alphabet of M) as follows:

Σ = {ak� : Mk,� �= 0}.

Now, let π be a permutation in Geom(M), i.e. a permutation represented by a
set of n points in the figure ΦM . For each point pi of π, let di be the distance
from the base point of the cell containing pi to pi. Without loss of generality, we
assume that these distances are pairwise different and the points are ordered so
that 0 < d1 < d2 < · · · < dn < 1. If pi belongs to the cell Ck,� of ΦM , we define
φ(pi) = ak�. Then φ(π) = φ(p1)φ(p2) · · · φ(pn) is a word in the alphabet Σ, i.e.
φ defines a mapping from Geom(M) to Σ∗. Figure 2 shows seven points defining
the permutation 1527436. The mapping φ associates with this permutation a
word in the alphabet Σ as follows: φ(1527436) = a31a31a22a21a11a32a22.

200 B. Alecu et al.

Conversely, let w = w1 · · · wn be a word in Σ∗ and let 0 < d1 < · · · < dn < 1
be n distances chosen arbitrarily. If wi = ak�, we let pi be the point on the line
segment in cell Ck,� at distance di from the base point of Ck,�. The n points of
ΦM constructed in this way define a permutation ψ(w) in Geom(M). Therefore,
ψ is a mapping from Σ∗ to Geom(M).

This correspondence between Σ∗ and Geom(M) is not yet a bijection, as
illustrated in Fig. 3, because the order in which the points are consecutively
inserted into independent cells (i.e. cells which share neither a column nor a
row) is irrelevant. To turn this correspondence into a bijection, we say that
two words v, w ∈ Σ∗ are equivalent if one can be obtained from the other by
successively interchanging adjacent letters which represent independent cells.
The equivalence classes of this relation form a trace monoid and each element of
this monoid is called a trace. It is known that in any trace monoid it is possible to
choose a unique representative from each trace in such a way that the resulting
set of representatives forms a regular language. This is the language which is in
a bijection with Geom(M), as was shown in [1].

�
�

�
�

�

�
�

�
�

�

�

�
� � �

�p1
�

p2

�

p3

�
p4

�

p5

�

p6

�

p7

�
�

�
�

�

�
�

�
�

�

�

�
� � �

�p1
�

p2

�

p3

�
p4

�p6

�

p5

�

p7

Fig. 3. Two drawings of the permutation 1527436. The drawing on the left is
encoded as a31a31a22a21a11a32a22 and the drawing on the right is encoded as
a31a31a22a21a32a11a22.

Next, we will show that the permutation graph Gπ of π ∈ Geom(M) is
a k-letter graph with k = |Σ|. Indeed, the non-empty cells of the figure ΦM

defines a partition of the vertex set of Gπ into cliques and independent sets and
the word φ(π) defines the order of the vertex set of Gπ satisfying conditions
of Theorem 1. More formally, let us show that the matrix M uniquely defines
a decoder P ⊆ Σ2 such that the letter graph G(P, w) of the word w = φ(π)
coincides with Gπ. In order to define the decoder P, we observe that two points
pi and pj of a permutation π ∈ Geom(M) corresponds to a pair of adjacent
vertices in Gπ if and only if one of them lies to the left and above the second
one in the figure ΦM . Therefore, if

– Mk,� = 1, then the points lying in the cell Ck,� form an independent set in
the permutation graph of π. Therefore, we do not include the pair (ak�, ak�)
in P.

Letter Graphs and Geometric Grid Classes of Permutations 201

– Mk,� = −1, then the points lying in the cell Ck,� form a clique in the permu-
tation graph of π. Therefore, we include the pair (ak�, ak�) in P.

– two cells Ck,� and Cs,t are independent with k < s and � < t, then no point of
Ck,� is adjacent to any point of Cs,t in the permutation graph of π. Therefore,
we include neither (ak�, ast) nor (ast, ak�) in P.

– two cells Ck,� and Cs,t are independent with k < s and � > t, then every
point of Ck,� is adjacent to every point of Cs,t in the permutation graph of
π. Therefore, we include both pairs (ak�, ast) and (ast, ak�) in P.

– two cells Ck,� and Cs,t share a column, i.e. k = s, then we look at the sign
(direction) associated with this column and the relative position of the two
cells within the column.

• If ck = 1 (i.e. the column is oriented from left to right) and � > t (the
first of the two cells is above the second one), then only the pair (ak�, akt)
is included in P.

• If ck = 1 and � < t, then only the pair (akt, ak�) is included in P.
• If ck = −1 (i.e. the column is oriented from right to left) and � > t (the

first of the two cells is above the second one), then only the pair (akt, ak�)
is included in P.

• If ck = −1 and � < t, then only the pair (ak�, akt) is included in P.
– two cells Ck,� and Cs,t share a row, i.e. � = t, then we look at the sign

(direction) associated with this row and the relative position of the two cells
within the row.

• If r� = 1 (i.e. the row is oriented from bottom to top) and k < s (the
first of the two cells is to the left of the second one), then only the pair
(ak�, as�) is included in P.

• If r� = 1 and k > s, then only the pair (as�, ak�) is included in P.
• If r� = −1 (i.e. the row is oriented from top to bottom) and k < s, then

only the pair (as�, ak�) is included in P.
• If r� = −1 and k > s, then only the pair (ak�, as�) is included in P.

It is now a routine task to verify that G(P, w) coincides with Gπ.

4 Recognition of 3-Letter Graphs

To develop a recognition algorithm for 3-letter graphs, we introduce some more
terminology. Let G = (V,E) be a graph and A an independent set in G. We will
say that a linear order (a1, a2, . . . , ak) of the vertices of A is

– increasing if i < j implies N(ai) ⊆ N(aj),
– decreasing if i < j implies N(ai) ⊇ N(aj),
– monotone if it is either increasing or decreasing.

By definition, each part of a chain graph (i.e. a 2K2-free bipartite graph)
admits a monotone ordering. Let G = (A∪B,E) be a chain graph given together
with a bipartition V (G) = A ∪ B of its vertices into two independent sets. We
fix an order of the parts (A is first and B is second), a decreasing order for A, an

202 B. Alecu et al.

increasing order for B, and call G a properly ordered graph. This notion suggest
an easy way of representing a 2K2-free bipartite graph as a 2-letter graph.

Let G = (A ∪ B,E) be a properly ordered 2K2-free bipartite graph. To
represent G as a 2-letter graph, we fix the alphabet Σ = {a, b} and decoder
P = {(a, b)}. The word ω representing G can be constructed as follows. To each
vertex of A we assign letter a and to each vertex of B we assign letter b. The a
letters will appear in ω in the oder in which the corresponding vertices appear
in A and the b letters will appear in ω in the oder in which the corresponding
vertices appear in B. The rule defining the relative positions of a vertices with
respect to b vertices can be described in two different ways as follows:

R1 an a vertex is located between the last b non-neighbour (if any) and the first
b neighbour (if any),

R2 a b vertex is located between the last a neighbour (if any) and the first a
non-neighbour (if any).

It is not difficult to see that both rules R1 and R2 define the same word and
this word represents G. Figure 4 represents the chain graph defined by the word
ababababab.

� � � � �

a a a a a

b b b b b

� � � � �

�
�

�
�

�

����������

���������������

																				

�
�

�
�

�

����������

���������������

�
�

�
�

�

����������

�
�

�
�

�

Fig. 4. A chain graph

In Sect. 4.1, we describe an efficient algorithm to recognize 3-letter graphs
representable over the decoder {(a, b), (b, c), (c, a)}. For other decoders, the algo-
rithms are similar (though not identical), so we omit them.

4.1 3-Letter Graphs with the Decoder {(a, b), (b, c), (c, a)}

Let G = (A ∪ B ∪ C,E) be a graph whose vertex set is partitioned into three
independent sets A, B, C such that

(a) G[A ∪ B], G[B ∪ C] and G[C ∪ A] are 2K2-free bipartite graphs,
(b) there are no three vertices a ∈ A, b ∈ B, c ∈ C inducing either a triangle

K3 or an anti-triangle K3.

We call any graph satisfying (a) and (b) nice. Our goal is to show that a graph
G is a 3-letter graph with the decoder {(a, b), (b, c), (c, a)} if and only if it is nice.
First, we prove the following lemma.

Letter Graphs and Geometric Grid Classes of Permutations 203

Lemma 1. Let G = (A∪B∪C,E) be a nice graph. Then each of the independent
sets A, B and C admits a linear ordering such that all three bipartite graphs
G[A ∪ B], G[B ∪ C] and G[C ∪ A] are properly ordered.

Proof. We start with a proper order of G[A∪B], in which case the order of B is
increasing with respect to A. Let us show that the same order of B is decreasing
with respect to C.

Consider two vertices bi and bj of B with i < j, i.e. bi precedes bj in the linear
order of B and hence N(bi) ∩ A ⊆ N(bj) ∩ A. To show that the linear order of
B is decreasing with respect to C, assume the contrary: bj has a neighbour
c ∈ C non-adjacent to bi. Without loss of generality, we may suppose that the
inclusion N(bi) ∩ A ⊆ N(bj) ∩ A is proper, since otherwise we could change the
order of the vertices bi and bj in B, which destroys the contradiction and keeps
the graph G[A ∪ B] properly ordered. According to this assumption, bj must
have a neighbour a ∈ A non-adjacent to bi. But then either a, bj , c induce a
triangle K3 (if a is adjacent to c) or a, bi, c induce an anti-triangle K3 (if a is
not adjacent to c). A contradiction in both cases shows that the linear order of
B is decreasing with respect to C.

Similar arguments show that the order of A which is decreasing with respect
to B is increasing with respect to C. Now we fix a linear order of C which is
increasing with respect to B and conclude, as before, that it is decreasing with
respect to A. In this way, we obtain a proper order for all three graphs G[A∪B],
G[B ∪C] and G[C ∪A] (notice, in the last graph C is the first part and A is the
second). ��
Theorem 4. A graph G is a 3-letter graph with the decoder {(a, b), (b, c), (c, a)}
if and only if it is nice.

Proof. If G is a 3-letter graph with the decoder {(a, b), (b, c), (c, a)}, then obvi-
ously Va (the set of vertices labelled by a), Vb and Vc are independent sets and
condition (a) of the definition of nice graphs is valid for G. To show that (b)
is valid, assume G contains a triangle induced by letters a, b, c. Then b must
appear after a in the word representing G, and c must appear after b. But then
c appears after a, in which case a is not adjacent to c, a contradiction. Similarly,
an anti-triangle a, b, c is not possible and hence G is nice.

Suppose now that G = (A ∪ B ∪ C,E) is nice. According to Lemma 1, we
may assume that A, B and C are ordered in such a way that each of the three
bipartite graphs G[A ∪ B], G[B ∪ C] and G[C ∪ A] is properly ordered.

We start by representing the graph G[A ∪ B] by a word ω with two letters
a, b according to rules R1 or R2. To complete the construction, we need to place
the c vertices

– among the a vertices according to rule R1, i.e. every c vertex must be located
between the last a non-neighbour alnn (if any) and the first a neighbour afn

(if any),
– among the b vertices according to rule R2, i.e. every c vertex must be located

between the last b neighbour bln (if any) and the first b non-neighbour bfnn

(if any).

204 B. Alecu et al.

This is always possible, unless

– either afn precedes bln in ω, in which case afn is adjacent to bln and hence
afn, bln, c induce a triangle K3,

– or bfnn precedes alnn in ω, in which case bfnn is not adjacent to alnn and
hence alnn, bfnn, c induce an anti-triangle K3.

A contradiction in both case shows that ω can be extended to a word representing
G. ��
We now turn to the recognition of 3-letter graphs with the decoder {(a, b), (b, c),
(c, a)}. If a graph G has a twin v for a vertex u (i.e. N(v) = N(u)), then any
word representing G − v can be extended to a word representing G by assigning
to v the same letter as to u and placing v next to u. This observation shows that
we may assume that G is twin-free.

Due to the cyclic symmetry of the alphabet, we may assume without loss of
generality that

– the last letter of the word is c.

Then

– the first letter is not a, since otherwise the first and the last vertices are twins.

Assume that the first letter of the word representing G is b. Then according
to the decoder

(b1) no vertex between the first b and the last c is adjacent to both of them,
(b2) every vertex non-adjacent to the first b and non-adjacent to the last c must

be labelled by a,
(b3) every vertex non-adjacent to the first b and adjacent to the last c must be

labelled by b,
(b4) every vertex adjacent to the first b and non-adjacent to the last c must be

labelled by c.

Therefore, in order to determine whether G can be represented by a word starting
with b and ending with c, we inspect every pair of adjacent vertices, assign letter
b to one of them and letter c to the other, check whether the set of vertices
adjacent to both of them is empty and split the remaining vertices of the graph
into three subsets A,B,C according to (b2), (b3) and (b4), respectively. Finally,
we verify whether the partition obtained in this way satisfies the definition of
nice graphs (conditions (a) and (b)).

Finally, we determine whether G can be represented by a word starting with
c. Then according to the decoder

(c1) no vertex between the first c and the last c is adjacent to both of them,
(c2) every vertex adjacent to the first c and non-adjacent to the last c must be

labelled by a,
(c3) every vertex non-adjacent to the first c and adjacent to the last c must be

labelled by b,

Letter Graphs and Geometric Grid Classes of Permutations 205

(c4) every vertex non-adjacent to the first c and non-adjacent to the last c must
be labelled by c.

Therefore, in order to determine whether G can be represented by a word start-
ing with c and ending with c, we inspect every pair of non-adjacent vertices,
assign letter c to both of them, check whether the set of vertices adjacent to
both of them is empty and split the remaining vertices of the graph into three
subsets A,B,C according to (c2), (c3) and (c4), respectively. Finally, we verify
whether the partition obtained in this way satisfies the definition of nice graphs
(conditions (a) and (b)).

From the above discussion we derive the following conclusion.

Theorem 5. The 3-letter graphs with the decoder {(a, b), (b, c), (c, a)} can be
recognized in cubic time.

Acknowledgment. Vadim Lozin and Viktor Zamaraev acknowledge support of
EPSRC, grant EP/L020408/1.

References

1. Albert, M.H., Atkinson, M.D., Bouvel, M., Ruskuc, N., Vatter, V.: Geometric grid
classes of permutations. Trans. Am. Math. Soc. 365, 5859–5881 (2013)

2. Atminas, A., Lozin, V.: Labelled induced subgraphs and well-quasi-ordering. Order
32(3), 313–328 (2015)

3. Damaschke, P.: Induced subgraphs and well-quasi-ordering. J. Graph Theory 14(4),
427–435 (1990)

4. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is NP-complete.
SIAM J. Discrete Math. 23(2), 909–939 (2009)

5. Korpelainen, N., Lozin, V.: Two forbidden induced subgraphs and well-quasi-
ordering. Discrete Math. 311(16), 1813–1822 (2011)

6. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica
64(1), 19–37 (2012)

7. Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics: Annals of
Discrete Mathematics, vol. 56. North-Holland Publishing Co., Amsterdam (1995).
xiv+543 pp.

8. Nešetřil, J.: On ordered graphs and graph orderings. Discrete Appl. Math. 51(1–2),
113–116 (1994)

9. Petkovšek, M.: Letter graphs and well-quasi-order by induced subgraphs. Discrete
Math. 244, 375–388 (2002)

Fully Leafed Tree-Like Polyominoes
and Polycubes

Alexandre Blondin Massé1(B), Julien de Carufel2, Alain Goupil2,
and Maxime Samson2

1 Laboratoire de Combinatoire et d’Informatique Mathématique,
Université du Québec à Montréal, Montreal, Canada

blondin masse.alexandre@uqam.ca
2 Université du Québec à Trois-Rivières, Trois-Rivières, Canada

Abstract. We present and prove recursive formulas giving the maximal
number of leaves in tree-like polyominoes and polycubes of size n. We call
these tree-like polyforms fully leafed . The proof relies on a combinatorial
algorithm that enumerates rooted directed trees that we call abundant.
We also show how to produce a family of fully leafed tree-like polyomi-
noes and a family of fully leafed tree-like polycubes for each possible size,
thus gaining insight into their geometric characteristics.

1 Introduction

Polyominoes and, to a lesser extent, polycubes have been the object of important
investigations in the past 30 years either from a game theoretic or combinatorial
point of view (see [12] and references therein). Recall that a polyomino is an
edge-connected set of unit cells in the square lattice that is invariant under
translation. The 3D equivalent of a polyomino is called a polycube, which is a
face-connected set of unit cells in the cubic lattice, up to translation.

A central problem is the search for the number of polyminoes with n cells
where n is called the size of the polyomino. This problem, still open, has been
investigated from several points of view; asymptotic evaluation [15], computer
generation and counting [14,16,17], random generation [13] and combinatorial
description [2,11]. Combinatorists have also concentrated their efforts in the
description of various families of polyominoes and polycubes, such as convex
polyominoes [4], parallelogram polyominoes [1,8], tree-like polyominoes [10] and
other families [5–7].

In this paper, we are interested in two related families: tree-like polyominoes
and tree-like polycubes which are acyclic polyominoes in the graph theoretic
sense. Our main results are recursive expressions giving the maximal number of
leaves of tree-like polyominoes and polycubes of size n. A tree-like polyform of
size n is called fully leafed when it has the maximum possible number of leaves
among all tree-like polyforms of size n. The numbers of leaves in a fully leafed
tree-like polyomino and polycube with n cells are denoted respectively L2(n)
and L3(n). The structures under investigation are similar to those solving the
c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 206–218, 2018.
https://doi.org/10.1007/978-3-319-78825-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_17&domain=pdf

Fully Leafed Tree-Like Polyominoes and Polycubes 207

2

1

0
0

00

10

Fig. 1. The depth of the vertices in a tree.

maximum leaf spanning tree problem in grid graphs, one of the classical NP-
complete problems described by Garey and Johnson in their seminal paper [9].
Both problems are concerned with the maximization of the number of leaves
in subtrees, but present a fundamental difference: On one hand, spanning trees
must contain all vertices of the graph while, on the other hand, induced subtrees
must contain any edge of the graph between two of its vertices. To our knowledge,
these new classes of polyforms present remarkable structure and properties that
have not been considered yet.

2 Preliminaries

Let G = (V,E) be a simple graph, u ∈ V and U ⊆ V . The set of neighbors of u
in G is denoted NG(u), which is naturally extended to U by defining NG(U) =
{u′ ∈ NG(u) | u ∈ U}. For any subset U ⊆ V , the subgraph induced by U is the
graph G[U] = (U,E ∩P2(U)), where P2(U) is the set of 2-elements subsets of V .
The extension of G[U] is defined by Ext(G[U]) = G[U ∪NG(U)] and the interior
of G[U] is defined by Int(G[U]) = G[Int(U)], where Int(U) = {u′ ∈ U | NG(u′) ⊆
U}. Finally, the hull of G[U] is defined by Hull(G[U]) = Int(Ext(G[U])).

The square lattice is the infinite simple graph G2 = (Z2, A4), where A4 is
the 4-adjacency relation defined by A4 = {(p, p′) ∈ Z

2 | dist(p, p′) = 1} where
dist is the Euclidean distance of R2. For any p ∈ Z

2, the set c(p) = {p′ ∈ R
2 |

dist∞(p, p′) ≤ 1/2}, where dist∞ is the uniform distance of R
2, is called the

square cell centered in p. The function c is naturally extended to subsets of
Z
2 and subgraphs of G2. For any finite subset U ⊆ Z

2, we say that G2[U] is a
grounded polyomino if it is connected. The set of all grounded polyominoes is
denoted by GP. Given two grounded polyominoes P = G2[U] and P ′ = G2[U ′],
we write P ≡t P ′ (resp. P ≡i P ′) if there exists a translation T : Z

2 → Z
2

(resp. an isometry I on Z
2) such that U ′ = T (U) (resp. U ′ = I(U)). A fixed

polyomino (resp. free polyomino) is then an element of GP/ ≡t (resp. GP/ ≡i).
Clearly, any connected induced subgraph of G2 corresponds to exactly one set of
square cells via the function c. Consequently, from now on, polyominoes will be
considered as simple graphs rather than sets of edge-connected square cells. All
definitions above are extended to the cubic lattice with the 6-adjacency relation.
Thus, we define cubic cell, grounded polycube, fixed polycube and free polycube
accordingly.

Grounded polyominoes and polycubes are connected subgraphs of G2 and G3

and the terminology of graph theory becomes available. A (grounded, fixed or
free) tree-like polyomino is therefore a (grounded, fixed or free) polyomino whose
associated graph is a tree. Tree-like polycubes are defined similarly. Observe that

208 A. Blondin Massé et al.

(a) (b)

(c) (d)

(e) (f) (g)

(h) (i)

Fig. 2. Fully leafed tree-like polyominoes of size (a) 2, (b) 3, (c) 4 and (d) 5. The images
(e), (f), (g), (h) and (i) depict the five cases of Lemma 3 (gray cells are removed).

if u, v are adjacent cells in a tree-like polyomino T then degT (u) + degT (v) ≤ 6,
which extends to degT (u) + degT (v) ≤ 2d + 2 in arbitrary Z

d with d ≥ 2.
Let T = (V,E) be any finite simple non empty tree. We say that u ∈ V is a

leaf of T when degT (u) = 1. Otherwise u is called an inner vertex of T . For any
d ∈ N, the number of vertices of degree d is denoted by nd(T) and n(T) = |V |
is the number of vertices of T which is also called the size of T . The depth of
u ∈ V in T , denoted by depthT (u), is defined recursively by

depthT (u) =

{
0, if degT (u) ≤ 1;
1 + depthT ′(u), otherwise,

where T ′ is the tree obtained from T by removing all its leaves (see Fig. 1).

3 Fully Leafed Tree-Like Polyominoes

In this section, we describe the number of leaves of fully leafed tree-like poly-
ominoes. For any integer n ≥ 2, let the function �2(n) be defined as follows:

�2(n) =

⎧⎪⎨
⎪⎩

2, if n = 2;
n − 1, if n = 3, 4, 5;
�2(n − 4) + 2, if n ≥ 6.

(1)

We claim that �2(n) is the maximal number of leaves for a tree-like polyomino
of size n so that �2(n) = L2(n). The first step is straightforward.

Lemma 1. For all n ≥ 2, L2(n) ≥ �2(n).

Proof. We build a family of tree-like polyominoes {Tn | n ≥ 2} whose number of
leaves is given by (1). For n = 2, 3, 4, 5, the polyominoes Tn respectively in (a),
(b), (c) and (d) of Fig. 2 satisfy (1). For n ≥ 6, let Tn be the polyomino obtained
by appending the polyomino of Fig. 2(c) to the right of Tn−4.

By induction on n, we have n1(Tn) = �2(n) for all n ≥ 2, since the fact that
appending the T-shaped polyomino of Fig. 2(c) adds 4 cells and 3 leaves, but
subtracts 1 leaf.
�

Fully Leafed Tree-Like Polyominoes and Polycubes 209

In order to prove that the family {Tn | n ≥ 2} described in the proof of
Lemma 1 is maximal, we need the following result characterizing particular sub-
trees that appear in possible counter-examples of minimum size.

Lemma 2. Let T be a tree-like polyomino of minimum size such that n1(T) >
�2(n(T)) and let T ′ be a tree-like polyomino such that n(T ′) = n(T) − i, for
some i ∈ {1, 3, 4}. Also, let Δ�2(1) = 0, Δ�2(3) = 1 and Δ�2(4) = 2. Then
n1(T) > n1(T ′) + Δ�2(i).

Proof. It is easy to prove by induction that for any k ≥ 2, �2(k + i) ≥ �2(k) +
Δ�2(i), where i ∈ {1, 3, 4}. Therefore,

n1(T) > �2(n(T)), by assumption,
= �2(n(T ′) + i), by definition of T ′,
≥ �2(n(T ′)) + Δ�2(i), by the observation above,
≥ L2(n(T ′)) + Δ�2(i), by minimality of n(T),
≥ n1(T ′) + Δ�2(i), by definition of L2,

concluding the proof.
�
We are ready to prove that the family {Tn | n ≥ 2} is maximal.

Lemma 3. For all n ≥ 2, L2(n) ≤ �2(n).

Proof. Suppose, by contradiction, that T is a tree-like polyomino of minimal
size such that n1(T) > �2(n(T)). We first show that all vertices of T of depth 1
have degree 3 or 4. Arguing by contradiction, assume that there exists a vertex
u1 of T such that depthT (u1) = 1 and degT (u1) = 2. Let T ′ be the tree-like
polyomino obtained from T by removing the leaf adjacent to u1 (see Fig. 2(e)).
Then n(T ′) = n(T) − 1 and n1(T ′) = n1(T), contradicting Lemma 2.

Now, we show that T cannot have a vertex of depth 2. Again by contradiction,
assume that such a vertex u2 exists. Clearly, degT (u2) �= 4, otherwise u2 would
have a neighbor of depth 1 and degree 2, which was just shown to be impossible.
If degT (u2) = 3, then we are either in case (f) or (g) of Fig. 2. In each case, let
T ′ be the tree-like polyomino obtained by removing the four gray cells. Then
n(T ′) = n(T) − 4 and n1(T ′) = n1(T) − 2, contradicting Lemma 2. Finally, if
degT (u2) = 2, then either (h) or (i) of Fig. 2 holds, leading to a contradiction
with Lemma 2 when removing the gray cells. Since every tree-like polyomino of
size larger than 6 has at least one vertex of depth 2, the proof is completed by
exhaustive inspection of all tree-like polyominoes of size at most 6.
�

Combining Lemmas 1 and 3, we have proved the following result.

Theorem 4. For all integers n ≥ 2, L2(n) = �2(n) and the asymptotic growth
of L2 is given by L2(n) ∼ 1

2n.
�

210 A. Blondin Massé et al.

4 Fully Leafed Polycubes

The basic concepts introduced in Sect. 3 are now extended to tree-like polycubes
with additional considerations that complexify the arguments. Recall that for
all integers n ≥ 2,

L3(n) = max{n1(T) | T is a tree-like polycube of size n}.

If the construction used for polyominoes would be extended to polycubes, then
the ratio L3(n)/n would lead to 4/6 as n → ∞. In this section, we show that
the optimal ratio is actually 28/41. Define the function �3(n) as follows:

�3(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f3(n) + 1, if n = 6, 7, 13, 19, 25;
f3(n), if 2 ≤ n ≤ 40 andn �= 6, 7, 13, 19, 25;
f3(n − 41) + 28, if 41 ≤ n ≤ 81;
�3(n − 41) + 28, if n ≥ 82.

(2)

where f3(n) =

⎧⎪⎨
⎪⎩

�(2n + 2)/3�, if 0 ≤ n ≤ 11;
�(2n + 3)/3�, if 12 ≤ n ≤ 27;
�(2n + 4)/3�, if 28 ≤ n ≤ 40.

(3)

The following key observations on �3 prove to be useful.

Proposition 5. The function �3 satisfies the following properties:

(i) For all positive integers k, the sequence (�3(n + k) − �3(n))n≥0 is bounded,
so that the function Δ�3 : N → N defined by

Δ�3(i) = lim inf
n→∞ (�3(n + i) − �3(n))

is well-defined.
(ii) For any positive integers n and k, if �3(n + k) − �3(n) < Δ�3(k), then

n ∈ {6, 7, 13, 19, 25}.

Proof. Omitted due to lack of space.

We now introduce rooted tree-like polycubes.

Definition 6. A rooted grounded tree-like polycube is a triple R = (T, r, �u)
such that

(i) T = (V,E) is a grounded tree-like polycube of size at least 2;
(ii) r ∈ V , called the root of R, is a cell adjacent to at least one leaf of T ;
(iii) �u ∈ Z

3, called the direction of R, is a unit vector such that r + �u is a leaf
of T .

Fully Leafed Tree-Like Polyominoes and Polycubes 211

Fig. 3. Atomic tree-like polycubes up to isometry

� =

Fig. 4. A well-defined, non-final graft union of two rooted grounded tree-like polycubes

The height of R is the maximum length of a path from the root r to some
leaf. Rooted fixed tree-like polycubes and rooted free tree-like polycubes are defined
similarly. If R is a rooted, grounded or fixed, tree-like polycube, a unit vector
�v ∈ Z

3 is called a free direction of R whenever r − �v is a leaf of T . A rooted
grounded, fixed or free, tree-like polycube R is called atomic if its height is 1.
The 10 atomic rooted free tree-like polycubes are illustrated in Fig. 3.

We now introduce an operation called the graft union of tree-like polycubes.

Definition 7 (Graft union). Let R = (T, r, �u) and R′ = (T ′, r′, �u′) be rooted
grounded tree-like polycubes such that �u′ is a free direction of R. The graft union
of R and R′, whenever it exists, is the rooted grounded tree-like polycube

R � R′ = (Z3[V ∪ τ(V ′)], r, �u),

where V , V ′ are the sets of vertices of T , T ′ respectively and τ is the translation
with respect to the vector �r′r − �u′.

The graft union is naturally extended to fixed and free tree-like polycubes. In
the latter case however, R � R′ is not a single rooted free tree-like polycube, but
rather the set of all possible graft unions obtained from an isometry. Observe
that graft union is a partial application on rooted grounded tree-like polycubes,
i.e. the triple (Z3[V ∪ τ(V ′)], r, �u) is not always a rooted tree-like polycube.
More precisely, the induced subgraph Z3[V ∪τ(V ′)] is always connected, but not
always acyclic. Also, r + �u needs not be a leaf. Therefore, we say that a graft
union R � R′ is

(i) non-final if R � R′ is a rooted grounded tree-like polycube;
(ii) final if the graph G = Z3[V ∪ τ(V ′)] is a tree-like polycube, �u′ = −�u and

r + �u is not a leaf of G;
(iii) well-defined if it is either non-final or final;
(iv) invalid otherwise.

212 A. Blondin Massé et al.

Figure 4 illustrates a well-defined graft union of two rooted tree-like poly-
cubes. The graft union interacts well with the functions n(R) and ni(R) giving
respectively the total number of cells and the number of cells of degree i in T .

Lemma 8. Let R1, R2 be rooted grounded tree-like polycubes such that R1 � R2

is well-defined. Then

n1(R1 � R2) = n1(R1) + n1(R2) − 2,

ni(R1 � R2) = ni(R1) + ni(R2), for i ≥ 2;
n(R1 � R2) = n(R1) + n(R2) − 2.

Proof. This is an immediate consequence of Definition 7.

We are now ready to define a family of fully leafed tree-like polycubes.

Lemma 9. For all n ≥ 2, L3(n) ≥ �3(n).

Proof. We exhibit a family of tree-like polycubes {Un | n ≥ 2} realizing �3, i.e.
such that n1(Un) = �3(n) for all n ≥ 2. First, for n = 6, 7, 13, 19, 25, let Un be
the tree-like polycubes depicted in Fig. 5(a), (b), (c), (d) and (e) respectively. It
is easy to verify that n1(Un) = �3(n) in these cases.

Now, let n /∈ {6, 7, 13, 19, 25}, let q and r be the quotient and remainder of
the division of n − 2 by 41 and define the integers a, b, c, d, e as follow.

a = χ(r ≥ 10)
b = χ(r ∈ {1, 4, 7, 10, 11, 14, 17, 20, 23, 26, 27, 30, 33, 36, 39})
c = χ(r ∈ {2, 5, 8, 12, 15, 18, 21, 24, 28, 31, 34, 37, 40})
d = �(r − 10 (χ(r ≥ 10) + χ(r ≥ 26))) /3�
e = χ(r ≥ 26),

where χ is the usual characteristic function. Let Un be the tree-like polycube
associated with a rooted grounded tree-like polycube Rn of the form

Rn = Ra
12 � Rq

43 � Rb
3 � Rc

4 � Rd
5 � Re

12, (4)

where, for n = 3, 4, 5, 12, 14, Rn is the rooted grounded tree-like polycube
depicted in Fig. 5(f), and the exponent notation is defined by

Rk
n =

⎧⎪⎨
⎪⎩

R2, if k = 0;
ρ(Rn) � Rk−1

n , if n = 5, 43;
Rn � Rk−1

n , otherwise.

with ρ(Rn) the rotation of 90◦ of Rn about the “horizontal” axis in Fig. 5 (f) and
(g) applied k − 1 times. In other words, when copies of R5 and R43 are grafted
to themselves, the new copy must be rotated by 90◦ before being grafted. We
assume that the roots and directions used for the graft union are respectively as
depicted in Fig. 5 (f) by red dots and blue arrows. Note also that the two rooted

Fully Leafed Tree-Like Polyominoes and Polycubes 213

(a) U6 (b) U7 (c) U13 (d) U19 (e) U25

R12

a ≤ 1 time

�

R43

q times

�

R3

b time

�

R4

c time
b+ c ≤ 1

�

R5

d times

�

R12

e ≤ 1 time

(f)
n = 124
q = 2
r = 40
a = 1
b = 0
c = 1
d = 6
e = 1

(g) U124

Fig. 5. Fully leafed tree-like polycubes (Color figure online)

grounded tree-like polycubes R12 at each end of Fig. 5 (f) are shown in the proper
position up to a rotation of 90◦. Clearly, all graft unions in Eq. (4) are well-defined
and it follows from Lemma 8 that n(Rn) = 41q+10(a+e)+b+2c+3d+2 = n and
n1(Rn) = 28q+7(a+e)+c+2d+2 = �3(n) (The recursive part in the definition of
�3(n) is straightforward since q is arbitrarily large and n1(R43) = 28.) Hence, for
n ≥ 2 and n /∈ {6, 7, 13, 19, 25}, we obtain Un by taking the unrooted version of
Rn, concluding the proof. Figure 5(g) shows the tree-like polycube U124 obtained
from R124 in Eq. (4) with n = 124.
�

We now introduce a notation for the operation of graft factorization of tree-
like polycubes associated to the graft union.

Definition 10 (Branch). Let T = (V,E) be a tree-like polycube and r, r′ two
adjacent vertices of T . Let Vr and Vr′ be the set of vertices of T defined by

(i) r ∈ Vr, r′ ∈ Vr′ ,
(ii) the subgraphs of T induced by Vr and Vr′ are precisely the two connected

components obtained from T by removing the edge {r, r′}.

214 A. Blondin Massé et al.

Then the rooted tree-like polycube B = (T [Vr ∪{r′}], r, �rr′) is called a branch
of T and the rooted tree-like polycube Bc = (T [Vr′ ∪ {r}], r′, �r′r) is called the
co-branch of B in T . When neither r nor r′ are leaves of T , then we say that B
and Bc are proper branches of T .

Proposition 11. Let T be a tree-like polycube and B a proper branch of T . Then
both B � Bc and Bc � B are well-defined and final, while their corresponding
unrooted tree-like polycube is precisely T .

Proof. This follows from Definitions 7 and 10.

We wish to identify branches appearing in potential counter-examples, which
would need to have many leaves with respect to their number of cells.

Definition 12. Let R,R′ be two rooted tree-like polycubes having the same direc-
tion. We say that R is substitutable by R′ if, for any tree-like polycube T con-
taining the branch R, Rc � R′ is well-defined.

Definition 12 means that R can always be replaced by R′ without creating a
cycle whenever it appears in some tree-like polycube T . A sufficient condition
for finding substitutable rooted tree-like polycubes is related to its hull (see the
first paragraph of Sect. 2).

Proposition 13. Let R be a rooted tree-like polycube and R′ a rooted subtree of
Hull(R) having the same root as R. Then R is substitutable by R′.

Proof. Omitted due to lack of space.

We are now ready to classify rooted tree-like polycubes.

Definition 14. Let R be a rooted tree-like polycube. We say that R is abundant
if one of the following two conditions is satisfied:

(i) R contains exactly two cells,
(ii) There does not exist another abundant rooted tree-like polycube R′, such that

R is substitutable by R′, n(R′) < n(R) and

n1(R) − n1(R′) ≤ Δ�3(n(R) − n(R′)) (5)

Otherwise, we say that R is sparse.

The following observation is immediate.

Proposition 15.
All branches of abundant rooted tree-like polycubes are also abundant.

Proof. Omitted due to lack of space.

Fully Leafed Tree-Like Polyominoes and Polycubes 215

Algorithm 1. Generation of all abundant rooted tree-like polycubes.
1: function AbundantBranches(h : height) : pair of maps
2: For i = 1, 2, . . . , h, let A[i] ← ∅ and F [i] ← ∅
3: A[1], F [1] ← {atomic free tree-like polycubes of size 5 and 6}
4: for i ← 1, 2, . . . , h do
5: for each atomic rooted free tree-like polycube B do
6: for each B′ ∈ B � ∪i−1

j=0 A[j] of height i do
7: if B′ is abundant then
8: if B′ is final then F [i] ← F [i] ∪ B′

9: else A[i] ← A[i] ∪ B′

10: end if
11: end for
12: end for
13: end for
14: return (A, F)
15: end function

Using Definition 14, one can enumerate all abundant rooted tree-like poly-
cubes up to a given height, both final and nonfinal, using a brute-force approach
as described by Algorithm 1. In Algorithm 1, for a given integer h > 0 and each
height i = 1, 2, . . . , h, the abundant final and nonfinal rooted tree-like polycubes
are stored respectively in the two lists F [i] and A[i].

Algorithm 1 was implemented in Python and run with increasing values of
h [3]. It turned out that there exists no abundant rooted tree-like polycube for
h = 11, i.e. |A[11]| = |F [11]| = 0. Due to a lack of space, we cannot exhibit
all abundant rooted tree-like polycubes, but we can give some examples. For
instance, in Fig. 5, any rooted version of the trees U6, U7 and U12 is abundant,
while rooted versions of U3, U4, U5, U13, U19, U25 and U43 are sparse.

The following facts are directly observed by computation.

Lemma 16. Let T = B � Bc be an abundant rooted tree-like polycube. Then

(i) The height of T is at most 10.
(ii) If T is final then n1(T) ≤ �3(n(T)).
(iii) If n(T) ∈ {6, 7, 13, 19, 25}, then either B or Bc is sparse.

Proof. Let A =
⋃h

i=1 A(i) and F =
⋃h

i=1 F (i), where A(i) and F (i)
are respectively the sets of abundant nonfinal and final rooted tree-like poly-
cubes computed by Algorithm1 with h = 11. In particular, one notices that
|A(i)|, |F (i)| > 0 for 1 ≤ i ≤ 10, but |A(11)| = |F (11)| = 0 (see [3]). (i) By
Proposition 15, it is immediate that |A(i)| = 0 implies both |A(i + 1)| = 0 and
|F (i+1)| = 0 for any i ≥ 1, so the result follows. (ii) By exhaustive inspection of
F . (iii) Assume by contradiction that both B and Bc are abundant. By inspect-
ing F , we must have T ∈ F , but F does not contain any final, abundant, rooted
tree-like polycube with 6, 7, 13, 19 or 25 vertices.
�

The nomenclature “sparse” and “abundant” is better understood with the
following lemma.

216 A. Blondin Massé et al.

Lemma 17. Assume that there exists a tree-like polycube T of minimum size
n(T) such that n1(T) > �3(n(T)). Then every branch of T is abundant.

Proof. Let B be any branch of T and Bc its co-branch so that T = B � Bc.
Assume that B is sparse, using the substitution of B by the abundant rooted
tree-like polycube B′, let T ′ = B′ � Bc. Suppose first that

�3(n(B � Bc)) − �3(n(B′ � Bc)) ≥ Δ�3(n(B) − n(B′)) ≥ n1(B) − n1(B′), (6)

where the last inequality is deduced from Inequation (5). Then

�3(n(T)) = �3(n(B � Bc)) ≥ n1(B) − n1(B′) + �3(n(B′ � Bc))
≥ n1(B) − n1(B′) + n1(B′ � Bc)
= n1(B � Bc) = n1(T),

contradicting the hypothesis n1(T) > �3(n(T)). It follows that

�3(n(B � Bc)) − �3(n(B′ � Bc)) < Δ�3(n(B) − n(B′)). (7)

By Proposition 5(ii), this implies that n(B′ � Bc) ∈ {6, 7, 13, 19, 25}. Since B′

is abundant, Lemma 16(iii) implies that Bc is sparse. Therefore, using the same
reasoning as above, either we have Inequations (6) by swapping B and Bc,
leading to a contradiction, or Bc can be substituted by some abundant branch
C such that n(B � C) ∈ {6, 7, 13, 19, 25}. Hence, n(B), n(Bc) ≤ 25. To conclude,
observe that B and Bc must be fully leafed: If B (or Bc) is not fully leafed, then
Bc (or B) would be a counter-example of size n(Bc) < n(T), contradicting our
minimality assumption. Finally, exhaustive inspection of sparse and fully leafed
rooted tree-like polycube of size at most 25 yields no counterexample T .
�

The following fact, together with Lemma 9, leads to our main result.

Lemma 18. For all n ≥ 2, L3(n) ≤ �3(n).

Proof. By contradiction, assume that there exists a tree-like polycube T of min-
imum size such that n1(T) > �3(n(T)). By Lemma 17, every branch of T is
abundant, so that there must exist two abundant branches B and B′ such that
T = B � B′. The result follows from Lemma 16(ii). Thus we have proved.
�
Theorem 19. For all n ≥ 2, L3(n) = �3(n) and the asymptotic growth of L3 is
given by L3(n) ∼ 28

41n.

5 Concluding Remarks

Theorems 4 and 19 give the exact values for the ratios Ld(n)/n, d = 2, 3 which are
1/2 and 28/41 respectively. For polycubes of higher dimension d > 3, elementary
arguments allow to find lower and upper bounds for Ld(n)/n. Indeed, it is always
possible to build such polycubes by alternating cells of degree 2d and 2, as was
done in dimension 2, for any dimension d > 2 (see for example polycube U19 in

Fully Leafed Tree-Like Polyominoes and Polycubes 217

Fig. 5). Since this connected set of cells has ratio Ld(n)/n = (d − 1)/d, a lower
bound is deduced for Ld(n)/n in all dimensions d > 1. Similarly the structure
of the polycube U12 in Fig. 5 can be extended in all dimensions d > 3 as the
graft union of three cells with respective degrees 2d − 1, 3, 2d − 1, whose ratio
Ld(n)/n = (4d − 3)/4d can be exceeded neither by the ratio of any realizable
triplet of cells nor by any connected set of k > 3 cells in dimension d. Therefore
the ratio (4d − 3)/4d is an upper bound for Ld(n)/n in any dimension d.

Fully leafed polycubes of size n all seem to possess the same geometric shape:
a connected kernel of cells of degree 4 grafted on its extremities to as many
polycubes U43 as possible. The best ratio occurs when there are 7 cells of degree
4 between every pair of polycubes U43. Future work on fully leafed polyforms
will consist in the extension of the results to other regular lattices such as Z

d,
for d > 3, the hexagonal, the triangular lattice and also to nonperiodic lattices.

References

1. Aval, J.-C., D’Adderio, M., Dukes, M., Hicks, A., Le Borgne, Y.: Statistics on
parallelogram polyominoes and a q, t-analogue of the narayana numbers. J. Comb.
Theory Ser. A 123(1), 271–286 (2014)

2. Barcucci, E., Frosini, A., Rinaldi, S.: On directed-convex polyominoes in a rectan-
gle. Discrete Math. 298(1–3), 62–78 (2005)

3. Blondin Massé, A.: A sagemath program to compute fully leafed tree-like polycubes
(2016). https://bitbucket.org/ablondin/fully-leafed-tree-polycubes

4. Bousquet-Mélou, M., Guttmann, A.J.: Enumeration of three dimensional convex
polygons. Ann. Comb. 1(1), 27–53 (1997)

5. Bousquet-Mélou, M., Rechnitzer, A.: The site-perimeter of bargraphs. Adv. Appl.
Math. 31(1), 86–112 (1997)

6. Castiglione, G., Frosini, A., Munarini, E., Restivo, A., Rinaldi, S.: Combinatorial
aspects of L-convex polyominoes. Eur. J. Comb. 28(6), 1724–1741 (2007)

7. Champarnaud, J.-M., Dubernard, J.-P., Cohen-Solal, Q., Jeanne, H.: Enumeration
of specific classes of polycubes. Electr. J. Comb. 20(4), 26 (2013)

8. Delest, M.-P., Viennot, G.: Algebraic languages and polyominoes enumeration.
Theoret. Comput. Sci. 34, 169–206 (1984)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, San Francisco
(1979)

10. Goupil, A., Cloutier, H., Nouboud, F.: Enumeration of polyominoes inscribed in a
rectangle. Discrete Appl. Math. 158(18), 2014–2023 (2010)

11. Goupil, A., Pellerin, M.E., de Wouters d’Oplinter, J.: Partially directed snake poly-
ominos. arXiv:1307.8432v2 (2014)

12. Guttmann, A.J.: Polygons, Polyominoes and Polycubes. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-1-4020-9927-4

13. Hochstättler, W., Loebl, M., Moll, C.: Generating convex polyominoes at random.
Discrete Math. 153(1–3), 165–176 (1996)

14. Jensen, I.: Enumerations of lattice animals and trees. J. Stat. Mech. 102(18), 865–
881 (2001)

https://bitbucket.org/ablondin/fully-leafed-tree-polycubes
http://arxiv.org/abs/1307.8432v2
https://doi.org/10.1007/978-1-4020-9927-4

218 A. Blondin Massé et al.

15. Klarner, D.A., Rivest, R.L.: A procedure for improving the upper bound for the
number of n-ominoes. Can. J. Math. 25, 585–602 (1973)

16. Knuth, D.E.: Polynum, program available from knuth’s. http://Sunburn.Stanford.
EDU/∼knuth/programs.html#polyominoes (1981)

17. Redelmeyer, D.H.: Counting polyominoes: yet another attack. Discrete Math.
36(3), 191–203 (1981)

http://Sunburn.Stanford.EDU/~knuth/programs.html#polyominoes
http://Sunburn.Stanford.EDU/~knuth/programs.html#polyominoes

Improved Lower Bound on Broadcast
Function Based on Graph Partition

Hovhannes A. Harutyunyan and Zhiyuan Li(B)

Concordia University, Montreal, QC H3G 1M8, Canada
l zhiyua@encs.concordia.ca

Abstract. Broadcasting is a one-to-all information spreading process
in a communication network. The network is modeled as a graph. The
broadcast time of a given vertex is the minimum time required to broad-
cast a message from that vertex to all vertices of the graph. The broadcast
time of a graph is the maximum time required to broadcast from any
vertex in the graph. A graph G on n vertices is a minimum broadcast
graph if the broadcast time of G is the minimum possible time: �logn�,
and the number of edges in G is minimized. The broadcast function B(n)
denotes the number of edges in a minimum broadcast graph on n vertices.
The exact value of B(n) is only known for n = 2m, 2m − 2, and some
small values of n < 64. Finding B(n) is very difficult due to the lack of
tight lower bounds on B(n). The existing lower bounds are based on the
vertex degree of the originator vertex. However, most of the minimum
broadcast graphs are not necessarily regular. In this paper, we present
an improved general lower bound on B(n) based on new observations
about partitioning broadcast graphs.

1 Introduction

One-to-all information dissemination problem, named broadcasting, is one of the
essential tasks in computer networks. The performance of broadcasting usu-
ally measures the overall efficiency of the network. To study the properties of
broadcasting and the topology of a network, the network is defined as a simple
connected graph G = (V,E), where the vertex set V represents the nodes in the
network, and the edge set E represents the communication links. A broadcast
in a graph originates from one vertex, called the originator, and finishes when
every vertex in the graph is informed.

In past decades, a long sequence of research papers study this topic under
different models. These models differ at the number of originators, the number
of destinations, the lifetime of each sender, the specific topologies of the graphs,
the number of receivers at each time unit, the distance of each call, and other
characteristics. In this paper, we focus on the classical model with the following
assumptions.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 219–230, 2018.
https://doi.org/10.1007/978-3-319-78825-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_18&domain=pdf

220 H. A. Harutyunyan and Z. Li

– the graph has only one originator;
– every call is a fundamental process of broadcasting and requires one time

unit;
– every call is from exactly one informed vertex, the sender to one of its unin-

formed neighbors, the receiver.

With the assumptions above, we have the following formal definitions.
Definition 1. A broadcast scheme is a sequence of parallel calls in a graph G
originating from a vertex v. Each call, represented by a directed edge, defines a
sender and a receiver. A broadcast scheme generates a broadcast tree, which is a
spanning tree of the graph rooted at the originator.

Definition 2. Let G be a graph on n vertices and v be the broadcast originator
in graph G, the broadcast time of vertex v, b(G, v) defines the minimum number
of time units required to broadcast from originator v in graph G. The broadcast
time of graph G b(G) = max{b(G, v)|v ∈ V (G)} defines the maximum of all
broadcast times of any vertex in graph G.

Since a sender can inform at most one receiver node during one time unit, the
number of informed vertices at each time unit is at most doubled. Thus, b(G) ≥
�log2 n� = �log n�. For convenience, we will omit the base of all logarithms
throughout this paper when the base is 2.

Definition 3. A graph G on n vertices is a broadcast graph if b(G) = �log n�.
A broadcast graph with the minimum number of edges is a minimum broadcast
graph. This minimum number of edges B(n) is called the broadcast function.

From the applications perspective minimum broadcast graphs are the cheapest
graphs (with minimum number of edges) where broadcasting can be accom-
plished in minimum possible time.

The study of minimum broadcast graphs and broadcast function B(n) has a
long history. In [5], Farley et al. introduced minimum broadcast graphs, defined
the broadcast function, determined the values of B(n), for n ≤ 15 and n = 2k

and proved that hypercubes are minimum broadcast graphs. Khachatrian and
Haroutunian [19] and independently Dinneen et al. [4] show that Knödel graphs,
defined in [20], are minimum broadcast graphs on n = 2k − 2 vertices. Park
and Chwa prove that the recursive circulant graphs on 2k vertices are minimum
broadcast graphs [25]. The comparison of the three classes of minimum broadcast
graphs mentioned above can be found in [6]. Besides these three classes, there is
no other known infinite construction of minimum broadcast graphs. The values
of B(n) are also known for n = 17 [24], n = 18, 19 [3,30], n = 20, 21, 22 [23],
n = 26 [26,31], n = 27, 28, 29, 58, 61 [26], n = 30, 31 [3], n = 63 [22], n = 127
[11] and n = 1023, 4095 [27].

By the difficulty of constructing minimum broadcast graphs, a long sequence
of papers present different techniques to construct broadcast graphs in order
to obtain upper bounds on B(n). Furthermore, proving that a lower bound
matches the upper bound is also extremely difficult, because most of the lower
bound proofs are based on vertex degrees. However, minimum broadcast graphs
except hypercubes and Knödel graphs on 2k − 2 vertices are not regular. Thus,
in general upper bounds cannot match lower bounds.

Improved Lower Bound on Broadcast Function Based on Graph Partition 221

Upper bounds on B(n) are given by constructing sparse broadcast graphs.
General Knödel graphs on even number of vertices give a good bound on B(n) for
even n. Compounding two broadcast graphs of smaller sizes is a powerful method
to construct good broadcast graphs with larger size. In [1,12], compounding
binomial trees, hypercubes, and Knödel graphs improves the upper bound on
B(n) for 2m−1 + 1 ≤ n ≤ 2m − 2

m
2 if the value of n is separated by intervals

[2m−2m−1+1, 2m]. The vertex addition method is also used in the constructions.
In [13], authors add one vertex to Knödel graphs and improve the upper bound
on B(n) for even 2m − 2

m
2 + 1 ≤ n ≤ 2m. Ad hoc constructions sometimes also

provides good upper bounds. This method usually constructs broadcast graphs
by adding edges to a binomial tree [9,14]. The vertex deletion is studied in [3].
Several other constructions are presented in [3,8,9,14,28–30].

Lower bounds on B(n) are also studied in the literature. In [8], Gargano
and Vaccaro show B(n) ≥ n

2 (�log n� − log(1 + 2�log n� − n)), for any n. B(n) ≥
n
2 (m−p−1) is proved in [21], where m is the length of the binary representation
am−1am−2...a1a0 of n and p is the index of the leftmost 0 bit. Harutyunyan and
Liestman study k-broadcasting (every sender can inform at most k neighbors in
each time unit) and give a lower bound on k-broadcast graph in [15]. The latter
bound is the best known general lower bound for our model of broadcasting
(which corresponds to the case k = 1 in [15]). Below we summarize this lower
bound for our model.

Theorem 1. Let n = 2m − 2k + 1 − d, 1 ≤ k ≤ m − 2 and 0 ≤ d ≤ 2k − 1.

B(n) ≥ n

2
(m − k)

Besides the general lower bounds, Labahn shows B(n) ≥ m2(2m−1)
2(m+1) for n = 2m−1

in [22] by considering the broadcast tree rooted at a vertex with the minimum
degree. Saclé follows this method and gives tight lower bounds on B(2m − 3),
B(2m − 4), B(2m − 5) and B(2m − 6) in [26]. Grigoryan and Harutyunyan show
a better lower bound for n = 2m − 2k + 1.

Theorem 2. [10] B(2m − 2k + 1) ≥ 2m−2k+1
2 (m − k + m(2k−1)−(k2+k−1)

m(m−1)−(k−1))

Better lower bounds for n = 24, 25 are given in [2]. Note that 23 ≤ n ≤ 25 are
the only values of n ≤ 32 for which B(n) is not known. For more on broad-
casting and gossiping in general see the following survey papers [7,16–18]. This
paper is organized as follows. Section 2 introduces some important definitions
and presents three useful observations. Section 3 gives a general lower bound on
B(n) by using the observations. Section 4 give conclusions and future work.

2 Definitions and Observations

Definition 4. A binomial tree BTm on 2m vertices of order m consists of

1. a single vertex which is also the root, if m = 1;
2. two copies of binomial trees BTm−1 having the two roots connected by an

edge, if m > 1.

222 H. A. Harutyunyan and Z. Li

Definition 5. Let BTm and BTk are two binomial trees of order m and k respec-
tively, and m > k. u is the root of BTm. BTm\BTk is a tree obtained by removing
a complete binomial tree BTk from u in BTm except the root u.

Figure 1 gives an example of a binomial tree and BTm \ BTk for m = 5 and
k = 3.

BT4 BT5

(a)

BT3

BT5\BT3

(b)

Fig. 1. (a) is an example of a binomial tree BT5. (b) the solid edges and the associated
vertices give an example of BT5 \ BT3.

Definition 6. Let T be a broadcast tree of graph G originating from root u.
Then Lk(T), the first k broadcast level tree of T , consists of all the vertices of T
which are informed in the first k time units following the broadcast scheme from
originator vertex u in graph G.

We know that any broadcast tree of graph G on n vertices is a subtree of a
binomial tree BT�log n�. So, the first k broadcast level tree Lk(T) is a subtree of
a binomial tree BTk. Figure 2 gives one example of a broadcast tree BT4 and its
first 3 broadcast level tree.

Let G be a minimum broadcast graph on n = 2m − 2k + 1 vertices, where
1 ≤ k ≤ m − 2; u be a vertex of degree m − k in G; T be the broadcast tree
rooted at vertex u; and Lk(T) be the first k broadcast level tree of T . If the
neighbors of u are sorted in the decreasing order of their degrees and the i-th
neighbor corresponds to the i-th branch, we have the following observations.

Observation 1. BTm \ BTk is a broadcast tree T of broadcast graph G on n =
2m − 2k + 1 vertices rooted at a vertex u of degree m − k.

Proof. Graph G has 2m −2k +1 vertices, so the broadcasting must be completed
in m time units. It is clear that during this m time broadcasting from originator
u in BTm \BTk there are no idle vertices (informed vertices but not transferring
the message). Thus, branches of the root u are complete binomial trees BTm−1,

Improved Lower Bound on Broadcast Function Based on Graph Partition 223

u0 u1

u2

u3

u4

u5

u6

u7u8

u9

u10

u11

u12

u13

(a)

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

(b)

Fig. 2. (a) is a broadcast graph G on 14 vertices. (b) is a binomial tree BT4 on 16
vertices. 14 vertices with labels among them together with the solid and the dashed
edges give a broadcast tree T of G. And the solid edges form a first 3 broadcast level
tree L3(T).

BTm−2,· · · , BTk. There are in total 2m−1 + · · · + 2k + 1 = 2m − 2k + 1 vertices,
which is exactly the same as the number of vertices in G. Thus, the broadcast
tree has to be BTm \ BTk.

Observation 2. If k ≥ m
2 , the i-th branch of u has 2k−i vertices in Lk(T).

Proof. If we ignore the first level (only one vertex: the root u), broadcast tree
T becomes a forest of binomial trees BTm−1, BTm−2, · · · , BTk. So, the first
k level broadcast tree Lk(T) of T consists of the first k − 1 level broadcast
tree Lk−1(BTm−1) of the first branch, Lk−2(BTm−2) of the second branch, and
Lk−i(BTm−i) of the i-th branch in general. If k ≥ m

2 , then the last neighbor is
informed at time unit m − k ≤ k. Thus, L2k−m(BTm−k) is a complete binomial
tree BT2k−m. Then, each of Lk−i(BTm−i) becomes a complete binomial tree
BTk−i. So, there are 2k−i vertices on the i-th branch.

Observation 3. If a vertex w is in Lk(T), then the corresponding vertex in
broadcast tree T has degree greater than m − k.

Proof. Observation 1 ensures that on i-th branch, BTm−i is a complete binomial
tree. So, Lk−i(BTm−i) is indeed a complete binomial tree BTk−i of order k − i,
and it can be obtained by replacing every vertex in BTk−i by a binomial tree
BTm−k. Thus, if a vertex w in Lk−i(BTm−i) (which is BTm−k) has degree a,
then vertex w has degree a + m − k in BTm−i (also in broadcast tree T). Every
leaf in any tree has the minimum degree 1. Therefore, any leaf in Lk(T) gives
the minimum degree m − k + 1 > m − k in broadcast tree T . Figure 3 shows an
example of broadcast tree T when k ≥ m

2 .

224 H. A. Harutyunyan and Z. Li

……{First k-1 level
broadcast tree {First k-2 level

broadcast tree {First 2k-m level
broadcast tree

BTk-1 BTk-2 BT2k-m

BTm-1 BTm-2 BTk

First branch Second branch k-th branch……

u

BTm-k

w

Fig. 3. An example of a broadcast tree rooted at vertex u of degree m − k. The
triangle at the i-th branch is a binomial tree BTm−i. The smaller triangle is the first
k− i broadcast level tree Lk−i(BTm−i). And leaf w is an example of a vertex in Lk(T).
w has degree 1 in Lk(T) and degree m − k in T − Lk(T). So, the degree is m − k + 1
in total.

3 New Lower Bound

In this section, we first give a lower bound on B(n) when n = 2m − 2k + 1 − d,
where m

2 ≤ k ≤ m − 2 and d = 0. Then, we generalize the lower bound for any
0 ≤ d ≤ 2k − 1. That is we give a lower bound on B(n) for all 2m−1 + 1 ≤ n ≤
2m − 2

m
2 +1 + 1.

Theorem 3. If n = 2m − 2k + 1 and m
2 ≤ k ≤ m − 2,

B(n) ≥ n

2
(m − k +

1
2

− 1
4m − 4k + 2

) +
2k+1 − 22k−m+1 − m + k

2m − 2k + 1

Proof. Observation 1 shows that the minimum degree of any vertex in G is
m−k. So, we partition the vertices of G into Vm−k, the vertices of degree m−k;
and Vother, other vertices. We also partition the edges into Em−k, the edges
connecting two vertices in Vm−k; Einter, the edges connecting one vertex in
Vm−k and one vertex in Vother; and Eother, the edges connecting two vertices in
Vother. Let vm−k, vother, em−k, einter, and eother be the cardinality of each of the
respective sets. It is easy to see n = vm−k +vother and e = em−k +einter +eother.

Case 1. If there is no vertex of degree m − k in graph G, then the minimum
degree is m − k + 1, we have

e ≥ n

2
(m − k + 1) (1)

Case 2. If there is a vertex of degree m − k in graph G, we consider the broadcast
tree T originating from such a vertex u. In order to inform all vertices in graph

Improved Lower Bound on Broadcast Function Based on Graph Partition 225

G within m time units, every vertex except originator u cannot be idle during
the minimum time broadcasting in G. So, the vertices informed by u (also the
neighbors of u in broadcast tree T) must have degree m, m − 1, ..., k + 1. In
other words the broadcast tree of originator u must be BTm \ BTk.

Since k ≥ m
2 , then the last neighbor of u has degree k + 1 > m − k. Thus,

there is no vertex of degree m−k having a neighbor of degree m−k. Furthermore,
if an edge is attached to a vertex of degree m − k, then it must be attached to
a vertex of degree at least m − k + 1.

em−k = 0

einter = (m − k)vm−k

Again we consider the broadcast tree T and estimate eother. By Observation 3,
every vertex in the first k broadcast level tree Lk(T) except the root u has degree
greater than m − k. Thus, every edge except the ones on the first level in Lk(T)
has both of its endpoints of degree greater than m − k. And by Observation
2, Lk(T) becomes a forest of Lk−1(BTm−1), · · · , L2k−m(BTm−k) by ignoring
the root and its incident edges. Then, eother can be estimated by counting the
number of the edges in the forest. Therefore,

eother ≥ 2k+1 − 22k−m+1 − (m − k)

Combining em−k, einter, and eother,

e = em−k + einter + eother

e ≥ (m − k)vm−k + 2k+1 − 22k−m+1 − (m − k)

vm−k ≤ e − 2k+1 − 22k−m+1 − (m − k)
m − k

n − vm−k ≥ n − e − 2k+1 + 22k−m+1 + (m − k)
m − k

vm + · · · + vm−k+1 ≥ n − e − 2k+1 + 22k−m+1 + (m − k)
m − k

(2)

We have the following trivial inequalities.

2e ≥ (m − k)vm−k + · · · + mvm

2e ≥ (m − k)n + vm−k+1 + 2vm−k+2 + · · · + kvm

2e ≥ (m − k)n + vm−k+1 + vm−k+2 + · · · + vm (3)

By substituting inequality (2) we get

2e ≥ (m − k)n + n − e − 2k+1 + 22k−m+1 + (m − k)
m − k

e ≥ n

2
(m − k +

1
2

− 1
4m − 4k + 2

)

+
2k+1 + 22k−m+1 + (m − k)

2m − 2k + 1
(4)

226 H. A. Harutyunyan and Z. Li

Now we combine inequality (1) and inequality (4) given by the two different cases.
Let RHS1 and RHS2 be the right hand side of the two inequalities respectively.

RHS1 − RHS2 =
m − k + 1

2(2m − 2k + 1)
n − 2k+1 − 22k−m+1 − m + k

2m − 2k + 1

=
1

2(2m − 2k + 1)
((m − k + 1)(2m − 2k + 1)

− (2k+2 − 22k−m+2 − 2m + 2k))

≥ 1
2(2m − 2k + 1)

(3(2k+2 − 2k + 1)

− (2k+2 − 22k−m+2 − 2m + 2k))

=
1

2(2m − 2k + 1)
((2k+3 + 2k+1 + 3)

− (2k+2 − 22k−m+2 − 2m + 2k))
> 0

Thus, inequality (4) is the worst case and gives the lower bound, which completes
the proof. 	

By simple comparison, we can see that Theorem 3 does not give a better bound
than Theorem 2. But Theorem 3 can be generalized to other n.

Theorem 4.

B(n) ≥ n

2
(m − k +

1
2

+
α − 1

4m − 4k − 2α + 2
) +

2k+1 − 22k−m+1 − m + k − d

2m − 2k + 1

where

α = �−W−1(−2−d−22k−m+1+2k−m+1 ln(2))
ln(2)

� − d − 22k−m+1

and W−1(x) is the lower branch of Lambert-W function.

Proof. Observation 1 is not true for general n, but in this case the minimum
degree is always m − k. Assume a vertex r has degree m − k − 1 in a broadcast
graph G on n = 2m − 2k + 1 − d vertices, where 0 ≤ d ≤ 2k − 1. Minimum
time broadcasting from originator r informs at most 2m−1 vertices on the first
branch, 2m−2 vertices on the second branch, · · · , and 2k+1 vertices on the last
branch. Together with the originator r, there are 2m − 2k+1 +1 vertices in total,
which is 2m − 2k+1 + 1 > 2m − 2k+1 ≥ 2m − 2k + 1 − d. Thus, the minimum
degree has to be m − k. Then, we have the two cases similar to Theorem 3.

Case 1. If the minimum degree is greater than m − k, then

e ≥ n

2
(m − k + 1) (5)

Improved Lower Bound on Broadcast Function Based on Graph Partition 227

Case 2. If the minimum degree is m − k, we again have em−k, einter, and
eother indicating the cardinality of the different edge set as in the proof of Theo-
rem 3. However, the value of em−k, einter, and eother are different after removing
d vertices.

Let u be a vertex of degree m − k. Assume α neighbors of u become degree
m − k after removing d vertices.

em−k + einter ≥ 1
2
αvm−k + (m − k − α)vm−k

=
1
2
(2m − 2k − α)vm−k

em−k + einter is minimized when α is maximized, which is the worst case for the
lower bound. Consider the broadcast tree T rooted at vertex u. The neighbors
s1, s2, · · · , sm−k of u have degree m, m − 1, · · · , k + 1 respectively. And si

is the root of a binomial tree BTm−i. To maximize α, we remove vertices and
make neighbors of u of degree m− k from sm−k to s1, because the last neighbor
sm−k has the smallest degree. So, 2k − m + 1 neighbors of sm−k are removed.
22k−m+1 − 1 vertices are removed from the last branch. And the binomial tree
BTk attached to sm−k becomes BTk \ BT2k−m+1.

In general, to make si of degree m − k, 2k−i+1 − 1 vertices are removed from
the i-th branch. Thus, if α neighbors of u are of degree m−k, we need to remove
22k−m+1 − 1 + 22k−m+2 − 1 + · · · + 22k−m+α − 1 = 22k−m+α+1 − 22k−m+1 − α
vertices from broadcast tree T . Since the number of removed vertices cannot
exceed d, we have the following inequality:

d ≥ 22k−m+α+1 − 22k−m+1 − α

22k−m+12α ≤ d + α + 22k−m+1

2α ≤ 22k−m+1α + 2−(2k−m+1)d + 1

Let α = −x − d − 22k−m+1

2−x−d−22k−m+1 ≤ −x2−(2k−m+1)

−2−22k−m+1−d+2k−m+1 ≥ x2x

−2−22k−m+1−d+2k−m+1 ln(2) ≥ x ln(2)ex ln(2) (6)

The right hand side of inequality (6) has the form z · ez. It can be solved by
Lambert-W function W (z · ez) = z. However, W (z) is a multivalued relation.
W (z) increases when z ≥ −1

e and W (z) ≥ −1; while it decreases when − 1
e ≤ z <

0 and W (z) ≤ −1. Let W0(z) and W−1(z) define the two single-valued function
for the two different branches of W (z) respectively. We need to estimate the
value of x ln(2) to decide which single-valued function is used. We know that
α ≥ 0, 0 ≤ d ≤ 2k − 1, and m

2 ≤ k ≤ m − 2.

228 H. A. Harutyunyan and Z. Li

−x − d − 22k−m+1 ≥ 0

−x − 22k−m+1 ≥ 0
−x ≥ 2

x ln(2) < −1

Thus, W−1(z) is used.

W−1(−2−22k−m+1−d+2k−m+1 ln(2)) ≤ x ln(2)

Solve α by substitution.

α ≤ −W−1(−2−22k−m+1−d+2k−m+1 ln(2))
ln(2)

− d − 22k−m+1

Since α is an integer,

α = �−W−1(−2−22k−m+1−d+2k−m+1 ln(2))
ln(2)

� − d − 22k−m+1

eother is analyzed as in the proof of Theorem 3 by counting the number of
vertices in the first k broadcast level tree Lk(T). If all the removed d vertices
are in Lk(T), then we have a trivial bound as follows.

eother ≥ 2k+1 − 22k−m+1 − (m − k) − d

Therefore, we have the following inequality

e ≥ 1
2
(2m − 2k − α)vm−k + 2k+1 − 22k−m+1 − (m − k) − d

After reformatting,

vm + · · · + vm−k+1 ≥ n − 2e − 2k+1 + 22k−m+1 + (m − k) + d

2m − 2k − α

Then, by substituting the inequality to 2e ≥ (m − k)vm−k + · · · + mvm and by
the similar technique given in the proof of Theorem 3,

e ≥ n

2
(m − k + 1)

2m − 2k − α

2m − 2k − α + 1
+

2k+1 − 22k−m+1 − m + k − d

2m − 2k + 1
(7)

Again by the similar comparison, we can see that this bound is worse than
bound 5 given in the first case. Thus, inequality (7) is the general lower bound
on broadcast function, which completes the proof. 	

4 Conclusion

Simple comparison shows that Theorem 4 always gives a better bound than The-
orem 1 when d ≥ 0. In the future, we can further improve this bound, because

Improved Lower Bound on Broadcast Function Based on Graph Partition 229

inequality (3) unifies the coefficients of vm−k+1, · · · vm to be 1. This step over
shrinks the lower bound. So, the gap between the current bound and the optimal
bound may not be small.

Another work can be done in the future is a further generalization. Since
Theorem 4 restricts n in the range 2m−1 + 1 ≤ n ≤ 2m − 2

m
2 +1 + 1, we can

further explore the lower bound for the other side of interval [2m−1 + 1, 2m].

References

1. Averbuch, A., Shabtai, R.H., Roditty, Y.: Efficient construction of broadcast
graphs. Discrete Appl. Math. 171, 9–14 (2014)

2. Barsky, G., Grigoryan, H., Harutyunyan, H.A.: Tight lower bounds on broadcast
function for n = 24 and 25. Discrete Appl. Math. 175, 109–114 (2014)

3. Bermond, J.-C., Hell, P., Liestman, A.L., Peters, J.G.: Sparse broadcast graphs.
Discrete Appl. Math. 36, 97–130 (1992)

4. Dinneen, M.J., Fellows, M.R., Faber, V.: Algebraic constructions of efficient broad-
cast networks. In: Mattson, H.F., Mora, T., Rao, T.R.N. (eds.) AAECC 1991.
LNCS, vol. 539, pp. 152–158. Springer, Heidelberg (1991). https://doi.org/10.1007/
3-540-54522-0 104

5. Farley, A.M., Hedetniemi, S., Mitchell, S., Proskurowski, A.: Minimum broadcast
graphs. Discrete Math. 25, 189–193 (1979)

6. Fertin, G., Raspaud, A.: A survey on Knödel graphs. Discrete Appl. Math. 137,
173–195 (2004)

7. Fraigniaud, P., Lazard, E.: Methods and problems of communication in usual net-
works. Discrete Appl. Math. 53, 79–133 (1994)

8. Gargano, L., Vaccaro, U.: On the construction of minimal broadcast networks.
Networks 19, 673–689 (1989)

9. Grigni, M., Peleg, D.: Tight bounds on mimimum broadcast networks. SIAM J.
Discrete Math. 4, 207–222 (1991)

10. Grigoryan, H., Harutyunyan, H.A.: New lower bounds on broadcast function. In:
Gu, Q., Hell, P., Yang, B. (eds.) AAIM 2014. LNCS, vol. 8546, pp. 174–184.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07956-1 16

11. Harutyunyan, H.A.: An efficient vertex addition method for broadcast networks.
Internet Math. 5(3), 197–211 (2009)

12. Harutyunyan, H.A., Li, Z.: A new construction of broadcast graphs. In: Govin-
darajan, S., Maheshwari, A. (eds.) CALDAM 2016. LNCS, vol. 9602, pp. 201–211.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29221-2 17

13. Harutyunyan, H.A., Li, Z.: Broadcast graphs using new dimensional broadcast
schemes for Knödel graphs. In: Gaur, D., Narayanaswamy, N.S. (eds.) CALDAM
2017. LNCS, vol. 10156, pp. 193–204. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-53007-9 18

14. Harutyunyan, H.A., Liestman, A.L.: More broadcast graphs. Discrete Appl. Math.
98, 81–102 (1999)

15. Harutyunyan, H.A., Liestman, A.L.: Improved upper and lower bounds for k-
broadcasting. Networks 37, 94–101 (2001)

16. Harutyunyan, H.A., Liestman, A.L., Peters, J.G., Richards, D.: Broadcasting and
gossiping. In: Handbook of Graph Theorey, pp. 1477–1494. Chapman and Hall,
New York (2013)

https://doi.org/10.1007/3-540-54522-0_104
https://doi.org/10.1007/3-540-54522-0_104
https://doi.org/10.1007/978-3-319-07956-1_16
https://doi.org/10.1007/978-3-319-29221-2_17
https://doi.org/10.1007/978-3-319-53007-9_18
https://doi.org/10.1007/978-3-319-53007-9_18

230 H. A. Harutyunyan and Z. Li

17. Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and
broadcasting in communication networks. Networks 18, 319–349 (1988)

18. Hromkovič, J., Klasing, R., Monien, B., Peine, R.: Dissemination of information
in interconnection networks (broadcasting & gossiping). In: Du, D.Z., Hsu, D.F.
(eds.) Combinatorial Network Theory. Applied Optimization, vol. 1, pp. 125–212.
Springer, Boston (1996). https://doi.org/10.1007/978-1-4757-2491-2 5

19. Khachatrian, L.H., Harutounian, H.S.: Construction of new classes of minimal
broadcast networks. In: Conference on Coding Theory, Dilijan, Armenia, pp. 69–
77 (1990)

20. Knödel, W.: New gossips and telephones. Discrete Math. 13, 95 (1975)
21. König, J.-C., Lazard, E.: Minimum k-broadcast graphs. Discrete Appl. Math. 53,

199–209 (1994)
22. Labahn, R.: A minimum broadcast graph on 63 vertices. Discrete Appl. Math. 53,

247–250 (1994)
23. Maheo, M., Saclé, J.-F.: Some minimum broadcast graphs. Discrete Appl. Math.

53, 275–285 (1994)
24. Mitchell, S., Hedetniemi, S.: A census of minimum broadcast graphs. J. Combin.

Inform. Syst. Sci 5, 141–151 (1980)
25. Park, J.-H., Chwa, K.-Y.: Recursive circulant: a new topology for multicomputer

networks. In: International Symposium on Parallel Architectures, Algorithms and
Networks, ISPAN 1994, pp. 73–80. IEEE (1994)

26. Saclé, J.-F.: Lower bounds for the size in four families of minimum broadcast
graphs. Discrete Math. 150, 359–369 (1996)

27. Shao, B.: On K-broadcasting in graphs. Ph.D. thesis, Concordia University (2006)
28. Ventura, J.A., Weng, X.: A new method for constructing minimal broadcast net-

works. Networks 23, 481–497 (1993)
29. Weng, M.X., Ventura, J.A.: A doubling procedure for constructing minimal broad-

cast networks. Telecommun. Syst. 3, 259–293 (1994)
30. Xiao, J., Wang, X.: A research on minimum broadcast graphs. Chin. J. Comput.

11, 99–105 (1988)
31. Zhou, J.-G., Zhang, K.-M.: A minimum broadcast graph on 26 vertices. Appl.

Math. Lett. 14, 1023–1026 (2001)

https://doi.org/10.1007/978-1-4757-2491-2_5

Graph Colourings, Labelings and Power
Domination

Orientations of 1-Factors and the List
Edge Coloring Conjecture

Uwe Schauz(B)

Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
uwe.schauz@xjtlu.edu.cn

Abstract. As starting point, we formulate a corollary to the Quan-
titative Combinatorial Nullstellensatz. This corollary does not require
the consideration of any coefficients of polynomials, only evaluations of
polynomial functions. In certain situations, our corollary is more directly
applicable and more ready-to-go than the Combinatorial Nullstellensatz
itself. It is also of interest from a numerical point of view. We use it
to explain a well-known connection between the sign of 1-factorizations
(edge colorings) and the List Edge Coloring Conjecture. For efficient
calculations and a better understanding of the sign, we then introduce
and characterize the sign of single 1-factors. We show that the product
over all signs of all the 1-factors in a 1-factorization is the sign of that
1-factorization. Using this result in an algorithm, we attempt to prove
the List Edge Coloring Conjecture for all graphs with up to 10 vertices.
This leaves us with some exceptional cases that need to be attacked with
other methods.

Keywords: Combinatorial nullstellensatz · One-factorizations
Edge colorings · List edge coloring conjecture
Combinatorial algorithms

1 Introduction

Using the polynomial method, we prove the List Edge Coloring Conjecture1

for many small graphs. This means, if such a graph G can be edge colored
with k colors (χ′(G) ≤ k), then it can also be edge colored if the color of
each edge e has to be taken from an arbitrarily chosen individual list Le of
k colors (χ′

�(G) ≤ k). There are no restriction on the lists, apart from the
given cardinality k. So, in general, there are very many essentially different
list assignments e �→ Le, and brute-force attempts to find one coloring from
every system of lists are computationally impossible. A way out may be found
in the Combinatorial Nullstellensatz, which seems to be one of our strongest
tools. It can also be used for list coloring of the vertices of a graph (see [1]), but
it becomes even more powerful if applied to edge colorings of regular graphs.

1 See [6, Sect. 12.20] for a discussion of the origins of this coloring conjecture.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 233–243, 2018.
https://doi.org/10.1007/978-3-319-78825-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_19&domain=pdf
http://orcid.org/0000-0002-3116-9402

234 U. Schauz

Ellingham and Goddyn [3] used it to prove the List Edge Coloring Conjecture
for regular planar graphs of class 1. As, by definition, the edges of a class 1
graph G can be partitioned into Δ(G) color classes, the regular class 1 graphs
are precisely the 1-factorable graphs. 1-factorable graphs, as we call regular class
1 graphs from now on, are also the first target in the current paper, but our
results have implications for other graphs as well. In our previous paper [15],
we could already prove the List Edge Coloring Conjecture for infinitely many
1-factorable complete graphs. There, we used a group action in connection with
the Combinatorial Nullstellensatz. Häggkvist and Jansson [5] could prove the
conjecture for all complete graphs of class 2. Nobody, however, has a proof
for K16, and 120 edges and 15 colors are completely out of reach for all known
numeric methods, including the algorithms that we suggest here. That we cannot
even prove the conjecture for all complete graphs shows how hard the problem is.
Before this background, it is surprising that Galvin could prove the conjecture for
all bipartite graphs [4]. His proof does not use the Combinatorial Nullstellensatz,
but the so-called kernel method. Other methods were also used by Kahn [7], who
showed that the List Edge Coloring Conjecture holds asymptotically, in some
sense. Moreover, most of the mentioned results can also be generalized to edge
painting [13,14], an on-line version of list coloring that allows alterations of the
lists during the coloration process.

This paper has three further sections. In Sect. 2, we formulate a corollary to
the Combinatorial Nullstellensatz that does not require the consideration of any
coefficients of polynomials, only evaluations of polynomial functions. There, we
also explain a well-known connections between the sum of the signs over all 1-
factorizations (edge colorings) of a graph and the List Edge Coloring Conjecture.
In Sect. 3, we then provide another characterization of the sign. We explain how
this can be used to calculate the sum of the signs over all 1-factorizations more
efficiently. In Sect. 4, we explain to which conclusions this approach and our
computer experiments with graphs on up to 10 vertices led.

2 A Nullstellensatz for List Colorings

We start our investigations from the following coefficient formula [12]:

Theorem 1. (Quantitative Combinatorial Nullstellensatz).
Let L1, L2, . . . , Ln be finite non-empty subsets of a field F, set L := L1 ×

L2 × . . .×Ln and define d := (d1, d2, . . . , dn) via dj := |Lj |− 1. For polynomials
P =

∑
δ∈Nn Pδx

δ ∈ F[x1, . . . , xn] of total degree deg(P) ≤ d1 + d2 + · · · + dn,
we have

Pd =
∑

x∈L

NL(x)−1P (x),

where NL(x) = NL(x1, . . . , xn) :=
∏

j NLj
(xj) with NLj

(xj) :=
∏

ξ∈Lj\xj

(xj − ξ) �= 0.

In particular, if deg(P) ≤ d1 + d2 + · · · + dn then

Pd �= 0 =⇒ ∃x ∈ L : P (x) �= 0.

Orientations of 1-Factorizations 235

The implication in the second part is known as Alon’s Combinatorial Nullstel-
lensatz [2]. The coefficient Pd seems to plays a central role in the Combinatorial
Nullstellensatz, but it is not really important in various applications. One may
get a wrong impression form the fact that Pd is assumed as non-zero in that
implication. There are applications of the theorem if the total degree deg(P)
is strictly smaller than d1 + d2 + · · · + dn, and thus Pd = 0. If Pd = 0, then
it cannot be that only one summand in the sum in that theorem is non-zero,
and this mens that there cannot be only one solution to the problem that was
modeled by P . So, if there exist a solution, say a trivial solution, than there
must also be a second solution, a non-trivial solution. This is a very elegant line
of reasoning, and it does not require us to look at the coefficient Pd at all. It is
enough to know that the total degree is smaller than d1 + d2 + · · ·+ dn and that
there is a single trivial solution. Beyond that, the theorem can also be used to
prove the existence of solutions to problems that do not have a trivial solution,
for example the existence of a list coloring of a graph. In these cases, looking
at the “leading coefficient” Pd appears to be unavoidable. However, to actually
calculate Pd, usually, the best idea is to use the Quantitative Combinatorial Null-
stellensatz again, just with changed lists Lj . In fact, the polynomial P can be
changed, too, as long as the “leading coefficient” is not altered. So, theoretically,
we can calculate Pd by applying the theorem to modified lists L̃j and a modified
polynomial P̃ . Afterwards, the theorem can then be applied a second time, to
P and the original lists Lj , in order to prove the existence of a certain object.
In this process, the coefficient Pd stands in the middle, playing a crucial role.
The coefficient Pd, however, does not appear in the initial setting and also not
in the final conclusion. Therefore, it must be possible to formulate a all-in-one
ready-to-go corollary in which Pd does not occur. In providing that corollary,
we free the user from the need to understand what Pd is. Of course, in its most
general form, there are two polynomials P and P̃ , and two list systems L and
L̃, which make that corollary look more technical, but it avoids mentioning Pd

and should be easier to apply in many situations:

Corollary 1. For j = 1, 2, . . . , n, let Lj and L̃j be finite non-empty subsets
of a field F with |Lj | = |L̃j |. Let NL and NL̃ be the corresponding coefficient
functions over the cartesian products L and L̃ of these sets. If two polynomials
P, P̃ ∈ F[x1, . . . , xn] of total degree at most |L1| + |L2| + · · · + |Ln| − n have the
same homogenous component of degree |L1| + |L2| + · · · + |Ln| − n (or at least
P̃d = Pd), then ∑

x∈L̃

NL̃(x)−1P̃ (x) =
∑

x∈L

NL(x)−1P (x)

and, in particular 2,
∑

x∈L̃

NL̃(x)−1P̃ (x) �= 0 =⇒ ∃x ∈ L : P (x) �= 0.

2 Also [14, Theorem 4.5]:
∑

NL̃(x)−1P̃ (x) �= 0 =⇒ P is (|L̃1|, . . . , |L̃n|)-paintable.

236 U. Schauz

We want to use this corollary to verify the existence of list colorings of graphs.
Therefore, we apply the corollary to the edge distance polynomials PG of graphs
G. The edge distance polynomial of a multi-graph G on vertices v1, v2, . . . , vn is a
polynomial in the variables x1, x2, . . . , xn, with one variable xi for each vertex vi.
It is defined as the product over all differences xi−xj with vivj ∈ E(G) and i < j,
where the factor xi − xj occurs as many times in P as the edge vivj occurs in
the multi-set E(G). It is also called the graph polynomial and was introduced in
[10]. We may view it as a polynomial over any field F. If PG is non-zero at a point
(x1, x2, . . . , xn) then the assignment vi �→ xi is a proper vertex coloring of G. If
the colors xi are supposed to lie in certain lists Li then the point (x1, x2, . . . , xm)
just has to be taken from the Cartesian product L1 × L2 × . . . × Lm. Here, we
simple need to assume that the sets Li lie in F, or in an extension field of F. This
is no restriction, as one can easily embed the color lists (and their full union⋃

i Li) into any big enough field F. We might just take F = Q. With this ideas
our corollary leads to the following more special result:

Corollary 2. Let G be a multi-graph on the vertices v1, v2, . . . , vn. To each edge
e, between any vertices vi and vj with i < j, choose a label ae in a field F (possible
ae = 0) and associate the monomial xi−xj−ae to the edge e. Let P be the product
over all these monomials. For j = 1, 2, . . . , n, let Lj be a finite non-empty subset
of F, and define � = (�1, �2, . . . , �n) via �j := |Lj |. If |E(G)| ≤ �1+�2+· · ·+�n−n
then

∑

x∈L

NL(x)−1P (x) �= 0 =⇒ G is �-list colorable and �-paintable.

In applications, one will often choose the ae as zero and take the lists Lj all
equal, but there are also examples where more complicated choices succeeded,
as for example in the proof of the last lemma in [15]. Things can be further
simplified if we examine edge colorings. In that case, one has to consider the line
graph L(G) of G and its edge distance polynomial PL(G). If G is k-regular, then
L(G) is the edge disjoint union of n complete graphs Kk, and PL(G) factors into
n factors accordingly. For each vertex v ∈ V (G) there is one complete graph
Kk whose vertices are the edges e ∈ E(vj) incident with v. The corresponding
factor of PL(G) is the edge distance polynomial PKk

(xe ¦ e ∈ E(vj)) of that
Kk. If the k-regular graph is of class 1, i.e. if its edges can be colored with k
colors, then, in the corresponding vertex colorings of L(G), every color occurs
one time at each vertex of that Kk. Therefore, by choosing equal lists, say all
equal to (k] := {1, 2, . . . , k}, the coefficients NL(x)−1 in the sum in the last
corollary become all the same. More precisely, NL(x) = NL(y) if PL(G)(x) �= 0
and PL(G)(y) �= 0. Moreover, PL(G)(x) assumes, up to the sign, the same value
for every edge coloring x: E(G) → (k]. So, in that sum, one basically only has
to see which edge colorings contribute a positive sign and which ones a negative
sign. This was already observed in [1]. It is easy to see that the definition of the
sign given there depicts what we need, but we simplify that a bit. Basically, we
only have to be able to say if two edge colorings have same or opposite sign. If
c: E → (k] and c0: E → (k] are proper edge colorings, then c|E(v) and c0|E(v) are
bijections form the set E(v) of edges at v ∈ V (G) to (k], and we set

Orientations of 1-Factorizations 237

sgnv(c, c0) := sgn
((

c0|E(v)

)−1 ◦ c|E(v)

)
and sgn(c, c0) :=

∏

v∈V (G)

sgnv(c, c0),

(1)

where (c0|E(v))−1 ◦ c|E(v) is a permutation of E(v) and sgn((c0|E(v))−1 ◦ c|E(v))
is its usual sign. We could have also defined sgnv(c, c0) as the sign of the inverse
permutation (c|E(v))−1◦ c0|E(v), or as sign of the permutations c|E(v)◦ (c0|E(v))−1

or c0|E(v) ◦ (c|E(v))−1 in Sk. This is all the same. It is the right definition here,
because the sign of a permutation ρ in Sk is exactly the sign of the edge distance
polynomial PKk

of Kk evaluated at (ρ1, ρ2, . . . , ρk),

sgn(ρ) =
PKk

(ρ1, ρ2, . . . , ρk)
∣
∣PKk

(ρ1, ρ2, . . . , ρk)
∣
∣,

. (2)

Hence, we only need to fix one edge coloring c0: E(G) → (k] and then count
how many colorings c: E(G) → (k] are positive or negative with respect to that
reference coloring. It is convenient to define an absolute sign sgn(c) through

sgn(c) := sgn(c, c0) sgn(c0), (3)

where sgn(c0) is fixed given as either +1 or −1. In this section, however, it does
not mater whether c0 is viewed as positive or negative, and we postpone the
stipulation of sgn(c0) till later. With that, we arrive at [1, Corollary 3.9]:

Corollary 3. Let G = (V,E) be a k-regular graph and let C(G) be the set of its
proper edge colorings c: E −→ (k]. Then

∑

c∈C(G)

sgn(c) �= 0 =⇒ G is k-list edge colorable and edge k-paintable.

Actually, we may assume that G has even many vertices, as 1-factors and
k-edge colorings only exist if there are even many vertices. If we exchange two
colors in an edge coloring c: E → (k] of a k-regular graph G, then all the factors
sgnv(c) in sgn(c) change, but sign sgn(c) does not change. Therefore, it makes
sense to define the sign of a 1-factorization. A 1-factorization F of G is a partition
F = {F1, F2, . . . , Fk} of the edge set E(G) into k 1-factors (perfect matchings).
To every 1-factorization F there are k! edge colorings c with F as set of fibers
c−1({α}). All of them have the same sign, and we define

sgn(F) := sgn(c). (4)

With that, the last corollary can be rewritten as follows:

Corollary 4. Let G = (V,E) be a k-regular graph and let OF(G) be the set of
1-factorizations of G. Then

∑

F∈OF(G)

sgn(F) �= 0 =⇒ G is k-list edge colorable and edge k-paintable.

238 U. Schauz

3 Another Characterization of the Sign

In this section, G denotes a k-regular graph on the vertices v1, v2, . . . , v2n, and
F = {F1, F2, . . . , Fk} denotes a 1-factorization of G. We examine the sign sgn(F)
in more detail, starting from the following definition:

Definition 1. Let F1 = {e1, e2, . . . , en} be a 1-factor of a k-regular graph G on
the vertices v1, v2, . . . , v2n. Let 1 ≤ ik < jk ≤ 2n be such that ek = vikvjk , for
k = 1, 2, . . . , n. We say that an edge ek ∈ F1 intersects another edge e� ∈ F1 if
ik < i� < jk < j� or i� < ik < j� < jk. We define

int(ek, e�) :=

{
1 if ek intersects e�,

0 otherwise,

and set

int(F1) :=
∑

1≤k<�≤n

int(ek, e�) and sgn(F1) := (−1)int(F1).

If we position the 2n vertices consecutively around a cycle and draw the
edges as strait lines, then an intersection is an actual intersection between lines.
With this picture in mind, it is not hard to see that, if int(vivj , F1) denotes the
number of intersections of an edge vivj ∈ F1 with other edges in F1, then

int(vivj , F1) ≡ j − i − 1 (mod 2). (5)

This, however, does not help to determine the sign sgn(F1) of F1, as
∑

e∈F1

int(e, F1) = 2 int(F1), (6)

with a 2 in front of int(F1). Counting the number of all intersections of each edge
e is not the right approach here. We may order F1 to

−→
F1 = (e1, e2, . . . , en) and

count only the intersections of an edge ek with the subsequent edges e�, � > k. If
int(ek,

−→
F1) denotes this number, then the corresponding sum yields the desired

result,
int(F1) =

∑

e∈F1

int(e,
−→
F1). (7)

Hence,
sgn(F1) =

∏

e∈F1

sgn(e,
−→
F1), (8)

if we set
sgn(e,

−→
F1) := (−1)int(e,

−→
F1). (9)

This formula may be used to calculate the sign of a 1-factor in algorithms that
generate a 1-factor by successively adding single edges. And, there is also an
analog to Formula (5). We may just count how many of the vertices b that lie

Orientations of 1-Factorizations 239

between the two ends vik and vjk of the edge ek are not yet matched when we
add ek to the sequence (e1, e2, . . . , ek−1). So,

int(vikvjk ,
−→
F1),≡

∣
∣{b ¦ ik < b < jk, b /∈ e1 ∪ e2 ∪ · · · ∪ ek−1}

∣
∣ (mod 2). (10)

In our algorithm, we kept track of these unmatched b by using a doubly linked
linear lists. From each unmatched vertex b, we have at any time a link to the
unmatched vertex before b and a link to the unmatched vertex after b. Updating
these links can then be done without shifting all subsequent vertices one place
forward.

The next theorem shows that the signs of the 1-factors in a 1-factorization F
can be used to calculate the sign of F . This can then be used in algorithms that
calculate the 1-factorizations of a graph by successively adding new 1-factors.
The advantage is that the sign of a 1-factor that is added at a certain point has to
be calculated only once, for all the 1-factorizations that are generate afterwards,
by adding more 1-factors in all possible ways. It is clear that the formula in
the next theorem does not really depend on the sign of the underlying reference
coloring c0, or the equivalent reference 1-factorization

{
c−1
0 ({α}) ¦ α ∈ (k]

}
.

But, to avoid additional minus signs in the theorem, we synchronize our different
signs at this point, and define

sgn(c0) :=
∏

α∈(k]

(−1)int(c
−1
0 ({α})) = (−1)int(c0) ∈ {−1,+1}, (11)

where
int(c0) :=

∑

α∈(k]

int(c−1
0 ({α})) (12)

is the number of intersections between edges of equal color in c0, if the vertices
v1, v2, . . . , v2n are arranged consecutively on a cycle and the edges are drown as
strait lines. With this stipulation of the sign of the reference coloring c0, we have
the following theorem:

Theorem 2. Let G = (V,E) be a k-regular graph on the vertices v1, v2, . . . , v2n,
and let F = {F1, F2, . . . , Fk} be a 1-factorization of G. Then

sgn(F) =
k∏

i=1

sgn(Fi).

In other words, if c: E −→ (k] is an edge coloring, then

sgn(c) = (−1)int(c),

where int(c) is the number of intersections between edges of equal color, if the
vertices v1, v2, . . . , v2n of G are arranged consecutively on a cycle and the edges
are drown as strait lines.

240 U. Schauz

Probably, this theorem can somehow be proven by induction. We derived it
in a topological way, using Jordan’s Curve Theorem. From that theorem, we
know that any two closed curves on the sphere have even many intersections
with each other. We also used the fact that the sign of a permutation ρ ∈ Sk

is −1 to the power of the number of inversions of ρ. Here, a pair (i1, i2) ∈ (k]2

with i1 < i2 is an inversion of ρ if ρ(i1) > ρ(i2). We used that this property
can be characterized as intersection of strait lines in R

2. Indeed, the pair (i1, i2)
is an inversion if and only if the line from (i1, h1) to (ρ(i1), h2) intersects with
the line from (i2, h1) to (ρ(i2), h2), where h1 and h2 are any two different real
numbers.

4 The List Chromatic Index of Small Graphs

Based on Corollary 4 and the results of the previous section, we have tried to
determine the list chromatic index χ′

�(G) of all graphs on up to 10 vertices, in
an attempt to prove the List Edge Coloring Conjecture for small graphs. We
implemented the approach explained in the previous sections in SageMath [11],
importing regular graphs from the webpage [8] described in [9]. With that we
attacked all regular graphs on 4, 6, 8 or 10 vertices. The results are shown in the
first paragraph of the following subsection. We tried than to draw conclusions
about the list chromatic index of all graphs with up to 10 vertices. We did this
by considering embeddings into regular graphs on even many vertices. Unfortu-
nately, there are many exceptional cases and special circumstances. We report
about these difficulties, and some ideas how to overcome them, in quite a view
case distinctions. It was not possible to go through all the cases and to prove the
List Edge Coloring Conjecture for all graphs on up to 10 vertices. If, however,
the List Edge Coloring Conjecture shall be proven for just one particular small
graph, one may find a way to do so within our case distinctions.

In the following case distinctions, the word graph stands for connected graph,
and a regular graph G is a zero-sum graph if the sum

∑
sgn(F) over all 1-

factorizations F ∈ OF(G) vanishes. We call a graph small if it has at most 10
vertices, and we call it even resp. odd if it has even resp. odd many vertices.

4.1 Small Even Graphs

Regular Graphs. By checking all small regular even graphs, we found only three
graphs of class 2. The Petersen graph and the following two graphs:

01

2

3 4 5 6

7

89 01

4

2 3 6 7

5

89

Our main method does not apply to class 2 graphs. In these three cases,
however, one can simply add a suitable 1-factor, and prove the List Edge Coloring
Conjecture for the resulting graph of class 1. It is, in fact, possible to choose the
1-factor in a way that the extended graph is not a zero-sum graph. So, in the

Orientations of 1-Factorizations 241

shown three cases, the List Edge Coloring Conjecture holds. Unfortunately, our
method also failed in a number of other cases, where the sum

∑
sgn(F) over all 1-

factorizations F ∈ OF(G) simple was zero. The smallest zero-sum graph is K3,3,
but this graph is bipartite. Hence, it meets the List Edge Coloring Conjecture
by Galvin’s Theorem [4]. On 8 vertices, there are exactly three zero-sum graphs.
The complement C3 ∪ C5 of the disjoint union of a 3-cycle and a 5-cycle, and
the following graph and its complement:

6

7

2
54

1

8

3

On 10 vertices there are 51 zero-sum graphs out of 164 regular class 1 graphs
(1-factorable graphs). There are 5 zero-sum graphs of degree 3, 17 of degree 4,
18 of degree 5, 8 of degree 6, and 3 of degree 7. It seems that, in every small
zero-sum graph, one can find a symmetry of order 2 that turns even edge coloring
(sgn = +1) into odd ones (sgn = −1) and vice versa; which explains the van-
ishing sum. The most simple symmetry of this kind is given if two non-adjacent
vertices of odd degree have the same neighbors, or if two adjacent vertices of even
degree have the same neighbors. But, there are also more complicated cases. In
the complement of the Petersen graph, for example, it is more difficult to under-
stand how odd and even edge colorings are matched through a graph symmetry.
Overall, it should be possible to proof the List Edge Coloring Conjecture for all
found zero-sum graphs with other methods. Some well chosen case distinctions
with respect to the color lists might suffice. This kind of reasoning, however, is
usually quite tedious and depends very much on the structure of the graph.

Non-regular Graphs. If a regular graph G is of class 1 and meets the List Edge
Coloring Conjecture, then every subgraph of same maximal degree still is of class
1 and still meets the List Edge Coloring Conjecture. With this argument, most
non-regular small even graphs can be proven to be of class 1 and to meet the
List Edge Coloring Conjecture. We just have to consider regular even extensions
of same maximal degree. If an extension is still small, we may apply our findings
about small regular even graphs. There are, however, three difficulties:

(i) Some small non-regular even graphs cannot be embedded into a regular
graph by adding edges only, which would keep these graphs small. Several
examples of this kind can be constructed from k-regular graphs (k ≥ 3)
that contain an induced path u−v−w by removing the edges uv and vw,
and inserting the edge uw.

(ii) The three small regular even graphs of class 2 are not suitable as regular
extensions in this line of reasoning. Some of their subgraphs are actually
of class 2, and we can only conclude that these class 2 subgraphs meet the
List Edge Coloring Conjecture.

(iii) There are still some open cases among the small regular even class 1 graphs,
for which we not yet have proven the conjecture. Circumventing these cases
is not always possible, as there may not be many different ways to add
edges.

242 U. Schauz

4.2 Small Odd Graphs

Class 2 Graphs (including all Regular Graphs). All regular graphs of odd order
are of class 2, as no 1-factors exist. Moreover, if we start from an k-regular odd
graph and remove less than k/2 edges, then the graph remains in class 2, because
it is still overfull (|E| > Δ · |V |/2�). All graphs that we obtain in this way have
maximal degree k, which is necessarily an even number, as the initial regular
graph was odd. Odd class 2 graphs with odd maximal degree are not obtained
in this way. But, they do exist. One example is K8 with one edge subdivided by
a new vertex, which is still overfull. To prove the List Edge Coloring Conjecture
for this graph and for all class 2 graphs G, however, we do not need to embed
G into a regular class 2 graph of same maximal degree Δ(G). To prove that
a graph G (whether of class 2 or not) has list chromatic index Δ(G) + 1, we
may simply embed it into a class 1 graph whose maximal degree is Δ(G) + 1.
If the List Edge Coloring Conjecture was proven for that extension graph, then
χ′

�(G) ≤ Δ(G)+1, and then the List Edge Coloring Conjecture holds for G if G
is of class 2. We may also add vertices. In this way, most small odd graphs can
be embedded into a suitable regular graph. As in the case of even non-regular
graphs, however, there are three difficulties:

(i) Some small odd graphs cannot be embedded into a regular graph by adding
only one vertex and some edges, which would keep these graphs small. One
example of this kind is K8 with one edge subdivided by a new vertex.

(ii) The three small regular even graphs of class 2 are not suitable as regular
extensions in this line of reasoning and must be circumvented. Since the
maximal degree can go up by one, however, there is a lot of flexibility. One
can show that the three exceptions of class 2 are not needed as extension
graphs. Still, circumventing them is an additional difficulty if one tries to
draw general conclusions.

(iii) There are still some open cases among the small regular even class 1 graphs.
If we try to embed a single small odd class 2 graph, it is often easy to
circumvent the open cases. But, in general examinations, avoiding open
cases is difficult.

Class 1 Graphs. The majority of small odd graphs are of class 1 and, in partic-
ular, non-regular. For these graphs, embedding without increasing the maximal
degree frequently works. One can try to add just one vertex and some additional
edges. In this way, the results about small even regular graphs can be applied.
As in the other case where we discussed embedding, there are three difficulties:

(i) Adding just one vertex, to stay within the small graphs, does not work if
there are not enough vertices of sub-maximal degree to which the new vertex
can be connected. In this regard, there are obviously more problematic cases
as in the discussion of small odd non-regular graphs of class 2, where we
could increase the maximal degree by one.

(ii) The three small regular even graphs of class 2 are not suitable as regular
extensions in this line of reasoning. However, if we remove just one vertex

Orientations of 1-Factorizations 243

from any of them, they remain in class 2. Hence, the three class 2 graphs
do not appear as single-vertex extensions of class 1 graphs. And, if we need
to add a vertex plus some edges, we may be able to circumvent these three
graphs.

(iii) If we try to embed a single small odd class 1 graph, circumventing the open
cases among the small regular even class 1 graphs is sometimes not possible.

References

1. Alon, N.: Restricted colorings of graphs. In: Surveys in Combinatorics. London
Mathematical Society Lecture Notes Series, vol. 187, pp. 1–33. Cambridge Univer-
sity Press, Cambridge (1993)

2. Alon, N.: Combinatorial nullstellensatz. Comb. Probab. Comput. 8(1–2), 7–29
(1999)

3. Ellingham, M.N., Goddyn, L.: List edge colourings of some 1-factorable multi-
graphs. Combinatorica 16, 343–352 (1996)

4. Galvin, F.: The list chromatic index of a bipartite multigraph. J. Comb. Theory
Ser. B 63, 153–158 (1995)

5. Häggkvist, R., Janssen, J.: New bounds on the list-chromatic index of the complete
graph and other simple graphs. Comb. Probab. Comput. 6, 295–313 (1997)

6. Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley, New York (1995)
7. Kahn, J.: Asymptotically good list-colorings. J. Comb. Theory Ser. A 73(1), 1–59

(1996)
8. Meringer, M.: Connected regular graphs. http://www.mathe2.uni-bayreuth.de/

markus/reggraphs.html
9. Meringer, M.: Fast generation of regular graphs and construction of cages. J. Gr.

Theory 30, 137–146 (1999)
10. Petersen, J.: Die theorie der regularen graphs. Acta Math. 15, 193–220 (1891)
11. SageMath: The sage mathematics software system (version 7.4.1). The Sage Devel-

opers (2017). http://www.sagemath.org
12. Schauz, U.: Algebraically solvable problems: describing polynomials as equivalent

to explicit solutions. Electron. J. Comb. 15, R10 (2008)
13. Schauz, U.: Mr. Paint and Mrs. Correct. Electron. J. Comb. 15, R145 (2008)
14. Schauz, U.: A paintability version of the combinatorial Nullstellensatz, and list col-

orings of k-partite k-uniform hypergraphs. Electron. J. Comb. 17(1), R176 (2010)
15. Schauz, U.: Proof of the list edge coloring conjecture for complete graphs of prime

degree. Electron. J. Comb. 21(3), 3–43 (2014)

http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html
http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html
http://www.sagemath.org

On Solving the Queen Graph Coloring
Problem

Michel Vasquez(B) and Yannick Vimont

Ecole des mines d’Alès, Alès, France
{michel.vasquez,yannick.vimont}@mines-ales.fr

Abstract. The chromatic numbers of queen − n2 graphs are difficult
to determine when n > 9 and n is a multiple of 2 or 3. In previous
works [6,7], we have proven that this number (denoted χn) is equal to
n for n ∈ {12, 14, 15, 16, 18, 20, 21, 22, 24, 28, 32} and that χ10 = 11. This
article describes how, by extending slightly further the previous work,
the chromatic number of queen − 262 and queen − 302 can be obtained.
A more general result, proving that χ2n = 2n and χ3n = 3n for infinitely
many values of n, is then presented.

1 Introduction

Given an n × n chessboard, a queen graph is one with n2 vertices, each of which
corresponds to a square of the board. Two vertices are connected by an edge if the
corresponding squares lie in the same row, column or diagonal (both ascending
and descending diagonals); this set-up matches the rules for the queen’s moves
in a game of chess. The coloring problem on this graph consists of finding the
minimum number of colors necessary for placing n2 queens on the board such
that no two queens of the same color can attack one another.

When the size of the chessboard is prime with 2 and 3, it is straight-
forward to color the graph with just n colors by using the knight’s moves
(on a toroidal chessboard) for each color position. Hence, χn = n for n ∈
{5, 7, 11, 13, 17, 19, ...}. Even recent graph coloring algorithms (see, for example,
[2–5]) do not obtain optimal values for queen − n2 graphs, such as 12 ≤ n ≤ 16,
and their best results for queen − 122, queen − 142, queen − 152 and queen − 162

are respectively 13, 15, 16 and 17 colors. These are obviously general approaches
dedicated to a large set of graph coloring instances. In contrast, the present work
will solely focus on specific algorithms to derive the chromatic numbers on the
queen graphs.

In [6], the algorithm implemented works with the independent sets (IS) of
the graph and employs an efficient backtracking procedure. Research on the
queen graph chromatic number has indeed been transformed into a decision
problem that requires recovering the chessboard with n IS, containing exactly
n vertices each. The diagonals of the chessboard constitute cliques. After each
IS enumeration, the number of non-colored vertices on each diagonal can be
computed. If this number is greater than the number of remaining IS for the
c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 244–251, 2018.
https://doi.org/10.1007/978-3-319-78825-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_20&domain=pdf

On Solving the Queen Graph Coloring Problem 245

covering problem, then it is impossible to color the queen − n2 graph with just
n colors. The resulting algorithm is able to complete the search for n = 10
and n = 12 and obtain many different certificates for χ14 = 14; however, the
computational time needed to yield results on larger instances is too long.

Fig. 1. A certificate for χ21 = 21 obtained by combination of rotations. Squares labeled
with the same number represent independent set (or stable) of the graph (i.e. a set
of vertices without connecting edges). Note also that the set of vertices colored with
numbers in {1, 9, 17, 21} is invariant by rotation

To further prune this search tree, geometric characteristics are imposed on
the colors output by this algorithm. The goal here is to clearly fix more than
one independent set at the same time. For instance, at each search tree node,
the queens of four different colors are simultaneously assigned by π

2 rotations.
For example, in Fig. 1 solution, the colors 1, 9, 17 and 21 are simultaneously
assigned. This step effectively halves the depth of the search tree explored by
the algorithm. More details on this approach are given in [7]. This assumption,
regarding the geometric characteristics of a possible solution, has yielded n-
colorings of queen graphs with a dimension equal to 15, 16, 18, 20, 21, 22, 24, 28
and 32. This heuristic however has its limitations, and the first certificate proving
that χ26 = 26 was found in 2005 after 1400000 s of computational time on a
pentium4 2.4 Ghz cpu.

The interested reader is invited to visit Vašek Chvátal’s home page1, which
offers elegant demonstrations for queen − 82 and queen − 92, along with most of
the certificates for the chromatic number values cited above.
1 http://ww.cs.concordia.ca/∼chvatal/queengraphs.html.

http://ww.cs.concordia.ca/~chvatal/queengraphs.html

246 M. Vasquez and Y. Vimont

2 Additional Assumptions

The main underlying notion leading to the solution of queen − 262 and queen − 302

instances within reasonable computational time calls for combining geometric
operators, like horizontal (H) and vertical (V) symmetries and π

2 rotations (R),
all of which were used separately in [7].

In denoting I for the identity, we have used the following combinations: C0 =
[I], C1 = [I, V], C2 = [I,R2], C3 = [I, V,H,H ◦V] and C4 = [I,R,R2, R3]. As an
example, in the certificate of queen − 262 (Fig. 2), C3(1) = [I(1), V (1),H(1),H ◦
V (1)] = [1, 26, 18, 9] (1 represents either one vertex of color 1 or the n vertices of
the independent set number 1). This approach is appropriate since if the square
of the chessboard is free, then the other one obtained by combinations C1 or C2, or
the three others obtained by combinations C3 or C4 are also free. This is obvious
since: V ◦V = I, R4 = I, H ◦V ◦H ◦V = H ◦V ◦V ◦H = H ◦I ◦H = H ◦H = I.
Moreover, the image by symmetry (or by rotation) of an independent set remains
an independent set.

The choice of the combination(s) can then be expressed mathematically by
solving simple equations such as: n = 4 × r + 2 × s + 1 × i, where r, s and i are
integers: r represents either number of combinations C3 or C4, which implies 4
vertices; s represents either C1 or C2, which implies 2 vertices; and i corresponds
to the identity C0, which naturally implies only 1 vertex. The objective of this
game is thus to minimize the sum r+s+ i under the constraint n = 4.r+2.s+ i.

We can write for example 26 = 4 × 5 + 2 × 3. Hence, the certificate in Fig. 2
has been obtained by enumerating 5 sets of 4 IS and then enumerating 3 sets of
2 IS, as shown in Table 1. Consequently, 8 search levels are being handled rather
than 13, and a solution is found in 2200 s vs. 1400000.

Table 1. The 5 first and 3 last levels of search for the queen − 262 coloring problem

IS1 IS2 IS3 IS4
1 26 = V (1) 18 = H(1) 9 = H ◦ V (1)
2 25 = V (2) 21 = H(2) 6 = H ◦ V (2)
3 24 = V (3) 17 = H(3) 10 = H ◦ V (3)
4 23 = V (4) 19 = H(4) 8 = H ◦ V (4)

12 15 = V (12) 13 = H(12) 14 = H ◦ V (12)

IS1 IS2
5 22 = V (5)
7 20 = V (7)

11 16 = V (11)

We observe that the set of vertices colored with numbers in
{5, 7, 11, 16, 20, 22} is invariant relative to H and V (When ordering the combi-
nations, care must be taken to ensure that only invariant subsets of squares are
being handled by isometries).

This opportunistic approach has also provided the certificate for χ30 = 30,
with C1 and C3 as geometric operators and with settings r= 6 and s= 3. Again,
Fig. 3 reveals that 18 = V (13) and 19 = V (12) and 24 = V (7): these are the six

On Solving the Queen Graph Coloring Problem 247

Fig. 2. A certificate for χ26 = 26 obtained by setting 26 = 4 × 5 + 2 × 3

Fig. 3. A certificate for χ30 = 30 obtained by setting 30 = 4 × 6 + 2 × 3

248 M. Vasquez and Y. Vimont

independent sets generated using C1; nevertheless, {7, 12, 13, 18, 19, 24} is stable
relative to H and V .

A number of blanks have thus been filled in the chromatic number list given
in Sect. 1, i.e. χn = n for n ∈ {12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 28, 30, 32}. At
this point however, we have reached the limit of our approach since this latest
result required 28 computer units2 (one for each valid square of the color “1” in
the second row), while only the 6th machine produced the certificate of Fig. 3
after 1 h of computational time: the 28 runs took 168 h for full execution.

3 Coloring Extension

In the previous sections, assumptions were made regarding the possible charac-
teristic solution to the queen graph coloring problem and several algorithms were
implemented to solve a number of particular instances. This section will prove
a construction procedure intended to solve an infinite number of instances. One
common aspect of both approaches is that the algorithms have been designed
from characteristics imposed by the solution these algorithms are expected to
produce.

Let’s start with the following remark: An independent set remains indepen-
dent even after an homothetic transformation (Fig. 4).

Fig. 4. Homogeneous dilation of the queen − 122 certificate to the 24 × 24 chessboard:
the color’s label in row i and column j is projected to row 2i and column 2j

Next, by replacing one vertex by a square of vertices, as shown in Fig. 5,
We obtain Fig. 6.
More formally, it will be proven that if χn = n, and if p is not a multiple of 2 or

3, then χnp = np. The coloring formula proposed herein generalizes well-known
results on the placement of the n queens [1]. Note that the particular case χ60 =

2 pentium4 2.4 Ghz cpu as mentioned above.

On Solving the Queen Graph Coloring Problem 249

Fig. 5. Replacing one vertex by a certificate for χ5 = 5 (obtained by the knight’s move
rule on a toroidal 5 × 5 chessboard)

Fig. 6. A certificate for χ60 = 60, obtained by highlighting that of queen − 122 (Fig. 4)
and substituting that of queen − 52 (Fig. 5)

60 has been solved (by combining the queen − 122 and queen − 52 certificates) by
Gunter Stertenbrink (www.cs.concordia.ca/∼chvatal/queengraphs.html).

www.cs.concordia.ca/~chvatal/queengraphs.html

250 M. Vasquez and Y. Vimont

Let’s denote by (i, j) the square situated on row i and column j; moreover,
c(i, j) is a coloring of the queen − n2 graph in n colors (e.g. see Fig. 4). If p is an
integer that is not a multiple of 2 or 3, then we set r(i, j) = (3i + j)modulo p
(e.g. see the certificate for χ5 = 5 in Fig. 5).

The formula R(i, j) = r(i, j)+p× c(i/p, j/p) is thus a coloring of queen − np2

in np colors. For one thing: 0 ≤ r(i, j) ≤ p − 1 and 0 ≤ c(i/p, j/p) ≤ n − 1
⇒ 0 ≤ R(i, j) ≤ p − 1 + p(n − 1) = np − 1, which results in using np colors.
Yet on the other hand, r(i, j) < p, R(i, j) = R(i′, j′) ⇔ r(i, j) = r(i′, j′) and
c(i/p, j/p) = c(i′/p, j′/p). The following four equivalences are therefore derived:

1. R(i, j) = R(i, j′) ⇔ j = j′modulo p and j/p = j′/p (c(i, j) is a coloring, with
positioning on the same row) ⇔ j = j′;

2. R(i, j) = R(i′, j) ⇔ i = i′modulo p (p is not a multiple of 3) and i/p = i′/p
(c(i, j) is a coloring, with positioning on the same column) ⇔ i = i′;

3. R(i, j) = R(i′, j′) and j − i = j′ − i′ ⇔ i = i′ and j = j′modulo p (p is not
a multiple of 2) and i/p = i′/p and j/p = j′/p (c(i, j) is a coloring, with
positioning on the same diagonal) ⇔ i = i′ and j = j′;

4. R(i, j) = R(i′, j′) and j + i = j′ + i′ ⇔ i = i′ and j = j′modulo p and
i/p = i′/p and j/p = j′/p (c(i, j) is a coloring, with positioning on the same
diagonal) ⇔ i = i′ and j = j′.

Hence, a uniqueness of colors is found on the same row, column or diagonal.
We have thus proven that R(i, j) is a coloring of queen − np2 in np colors. It can
also be noted that r(i, j) is a coloring of queen − p2 in p colors when p is not a
multiple of 2 or 3 (by simply setting n = 1 and c(0, 0) = 0).

Consequently, χnp = np; moreover, we can set for n any of the thirteen values
given at the end of the previous section and for p any integer that is not a
multiple of either 2 or 3. We then simply have to reproduce the design formed
by r(i, j) with n2 translations on the groundwork c(i, j). From a practical point
of view, the following results have therefore been obtained: χ60 = 12 × 5 = 60,
χ70 = 14 × 5 = 70, χ75 = 15 × 5 = 75, χ80 = 16 × 5 = 80, χ84 = 12 × 7 = 84, etc.

4 Conclusion

Below are the key features proposed by this contribution to the queen graph
coloring problem:

1. transforming the search for the chromatic number into a decision problem
that requires recovering the n × n chessboard with n independent sets, each
containing exactly n vertices;

2. implementing an incomplete exploration of the solution space over which
the distribution of colors on the chessboard verifies some of the geometric
characteristics;

3. proposing a coloring composition algorithm capable of building larger certifi-
cate from two smaller ones, and proving its correctness by modular algebra.

On Solving the Queen Graph Coloring Problem 251

In the first feature above, all potential solutions to χn = n were considered.
For the second feature, strong assumptions were made regarding the geomet-
ric property of the certificates obtained by the exhaustive enumeration and the
search space was reduced even further. The last feature served to impose the
solution shape; in this case, the exploration ceases in favor of a linear time pro-
cedure that prints out the certificate for χn = n. Under all circumstances, atten-
tion is first directed to the solution characteristics, and afterwards the algorithm
design takes the corresponding constraints into account. All of these steps have
yielded 14 results for the queen graph coloring problem: χ10 = 11 and χn = n
for n ∈ {12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 28, 30, 32}, thus proving that for the
queen graphs, an infinite number of values of n multiples of 2 or 3
exist, whereby χn = n. Efforts are still required however to find the chromatic
number of the 27 × 27 chessboard.

References

1. Abramson, B., Yung, M.M.: Construction through decomposition: a divide-and-
conquer algorithm for the N-queens problem. In: Proceedings of 1986 ACM Fall
Joint Computer Conference. ACM 1986, pp. 620–628, no. 9. IEEE Computer Society
Press, Los Alamitos (1986). http://dl.acm.org/citation.cfm?id=324493.324620.

2. Caramia, M., Dell’Olmo, P.: Embedding a novel objective function in a two-phased
local search for robust vertex coloring. Eur. J. Oper. Res. 189(3), 1358–1380 (2008).
https://doi.org/10.1016/j.ejor.2007.01.063. 9

3. Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the k-coloring
problem. Discrete Appl. Math. 156(2), 267–279 (2008). https://doi.org/10.1016/j.
dam.2006.07.017. Computational Methods for Graph Coloring and it’s Generaliza-
tions. http://www.sciencedirect.com/science/article/pii/S0166218X07001114

4. Gualandi, S., Malucelli, F.: Exact solution of graph coloring problems via constraint
programming and column generation. INFORMS J. Comput. 24(1), 81–100 (2012).
https://doi.org/10.1287/ijoc.1100.0436

5. Hansen, P., Labbé, M., Schindl, D.: Set covering and packing formu-
lations of graph coloring: algorithms and first polyhedral results. Dis-
crete Optim. 6(2), 135–147 (2009). https://doi.org/10.1016/j.disopt.2008.10.004.
http://www.sciencedirect.com/science/article/pii/S1572528608000716

6. Vasquez, M.: New results on the queens n2 graph coloring problem. J. Heuristics
10(4), 407–413 (2004). https://doi.org/10.1023/B:HEUR.0000034713.28244.e1

7. Vasquez, M., Habet, D.: Complete and incomplete algorithms for the queen graph
coloring problem. In: Proceedings of the 16th European Conference on Artificial
Intelligence, ECAI 2004, including Prestigious Applicants of Intelligent Systems,
PAIS 2004, Valencia, Spain, 22–27 August, 2004, pp. 226–230 (2004)

http://dl.acm.org/citation.cfm?id=324493.324620.
https://doi.org/10.1016/j.ejor.2007.01.063
https://doi.org/10.1016/j.dam.2006.07.017
https://doi.org/10.1016/j.dam.2006.07.017
http://www.sciencedirect.com/science/article/pii/S0166218X07001114
https://doi.org/10.1287/ijoc.1100.0436
https://doi.org/10.1016/j.disopt.2008.10.004
http://www.sciencedirect.com/science/article/pii/S1572528608000716
https://doi.org/10.1023/B:HEUR.0000034713.28244.e1

Minimal Sum Labeling of Graphs

Matěj Konečný, Stanislav Kučera, Jana Novotná , Jakub Pekárek,
Štěpán Šimsa, and Martin Töpfer(B)

Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
matejkon@gmail.com, stanislav.kucera@outlook.com, janka.novot@seznam.cz,

edalegos@gmail.com , simsa.st@gmail.com, mtopfer@gmail.com

Abstract. A graph G is called a sum graph if there is a so-called sum
labeling of G, i.e. an injective function � : V (G) → N such that for every
u, v ∈ V (G) it holds that uv ∈ E(G) if and only if there exists a vertex
w ∈ V (G) such that �(u) + �(v) = �(w). We say that sum labeling � is
minimal if there is a vertex u ∈ V (G) such that �(u) = 1. In this paper, we
show that if we relax the conditions (either allow non-injective labelings
or consider graphs with loops) then there are sum graphs without a
minimal labeling, which partially answers the question posed by Miller
in [6] and [5].

1 Introduction

An undirected graph G = (V,E) is a sum graph if there exists an injective
function � : V (G) → N such that every pair of vertices u �= v ∈ V (G) is
connected via an edge of G if and only if there exists a vertex w ∈ V (G) such
that �(w) = �(u)+�(v). We call the function � a sum labeling or labeling function.
The value �(u) + �(v) is an edge-number of the edge uv and it is guaranteed by
vertex w. The sum number σ(G) of a graph is defined as the least integer, such
that G + K̄σ(G) (G with σ(G) additional isolated vertices) is a sum graph.

The concept of sum graphs was introduced by Harary [4] in 1990. It was
further developed by Gould and Rödl [3] and Miller [6,7] who showed general
upper and lower bounds on σ(G) of order Ω(|E|) for a given general graph G
and better bounds for specific classes of graphs.

For some graphs the exact sum numbers are known: σ(Tn) = 1 for trees
(of order n ≥ 2) [2], σ(Cn) = 2 for cycles (n ≥ 3, n �= 4) and σ(C4) = 3 [4],
σ(Kn) = 2n − 3 for complete graphs (n ≥ 4) [1], σ(H2,n) = 4n − 5 for cocktail
party graphs (n ≥ 2) [6] and for complete bipartite graphs [8].

In the work of Miller et al. [5,6], an open question was raised whether every
sum graph has a labeling that uses number 1. Such labelings are called minimal.
In [6], a minimal labeling of complete bipartite graphs is presented. In [5], an

All authors were supported by grant SVV-2017-260452, M. Töpfer and M. Konečný
were supported by project CE-ITI P202/12/G061 of GA CR.
The full preprinted version of this paper is available at https://arxiv.org/abs/1708.
00552v1.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 252–263, 2018.
https://doi.org/10.1007/978-3-319-78825-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_21&domain=pdf
http://orcid.org/0000-0002-7955-4692
http://orcid.org/0000-0002-5036-2136
https://arxiv.org/abs/1708.00552v1
https://arxiv.org/abs/1708.00552v1

Minimal Sum Labeling of Graphs 253

upper bound on σ(G) for G being a disjoint union of graphs G1, G2 . . . , Gn is
shown. If at least one of the disjoint graphs has minimal labeling then

σ(G) ≤
n∑

i=1

σ(Gi) − (n − 1).

In our work, we approach sum graphs from a different perspective. Instead
of grounding our research on the properties of graphs, our basic objects are sets
of integers. Given an integer set M , the rules of sum labeling uniquely define
a graph such that it is a sum graph and its labeling consists exactly of all the
integers from the given set. From our research we provide two negative answers
to questions parallel to the one raised by Miller et al.

While it is natural to require graphs to have no loops, when we construct
a sum graph from an integer set, it seems more natural to allow loops (i.e. for
every not necessarily distinct vertices u, v ∈ V (G) we have uv ∈ E(G) if and
only if there exists w ∈ V (G) such that �(u)+�(v) = �(w)). We call these graphs
sum graphs with loops. When we say sum graphs without loops we refer to the
previous definition, where the vertices are required to be distinct. We show the
following:

Theorem 1. There exists an infinite family of sum graphs with loops which
admit no minimal labeling.

Another relaxation of the original problem (without loops) is to allow the
integer set M to be a multiset. This of course causes the labeling function to cease
being injective, thus we call such graphs non-injective sum graphs. Nevertheless,
in this approach we may consider graphs without loops and obtain the following
similar result:

Theorem 2. There exists an infinite family of non-injective sum graphs (with-
out loops) which admit no minimal labeling.

1.1 Preliminaries

Let G be a sum graph with some labeling �. We call set M = {�(v) : v ∈ V (G)}
label-set of G.

For a finite multiset of natural numbers S ⊂ N, let GS be the graph with
elements of S being its vertices and for every u, v ∈ S let there be an edge
uv ∈ E(GS) if and only if u + v ∈ S. Depending on context, we sometimes
allow GS to have loops. We say that set S induces a graph GS . Let f denote
the natural bijection of vertices of GS and integers in S. For any integer i ∈ S
we denote ψ(i) the subset of V (GS) such that a vertex v ∈ ψ(i) if and only if
f(v) = i. We say that an integer i induces a vertex v if v ∈ ψ(i).

We say that two vertices u, v of a graph G without loops are equivalent if it
holds that N(u)\{v} = N(v)\{u}.

Lemma 1. Let G be a graph with labeling � and let u, v be two of its vertices.
If �(u) = �(v), then u and v are equivalent.

254 M. Konečný et al.

Proof. Suppose �(u) = �(v). Consider any w ∈ V (G) other than u and v. The
edge-numbers of wv and wu are the same, so either both edges are present or
none of them is. Since we do not consider loops, the only remaining edge to
consider is uv. If uv /∈ E(G), then clearly N(u) = N(v). If uv ∈ E(G), then
all neighbors of v are also neighbors of u except u itself and vice versa. In both
cases, u and v are equivalent.

To get an analogous definition for a graph with loops one would not exclude
the vertices v and u from the neighborhoods. This rather subtle difference actu-
ally makes dealing with sum graphs with loops much easier.

We define an operation that removes loops from sum graphs. Consider a sum
graph G with loops. Let us take one by one each vertex v with a loop and choose
any integer k ≥ 2 (independently for each vertex). We replace v with a clique
Kk and connect all neighbors of v to all vertices from Kk. We denote set of all
possible results of this operation by C(G), and denote Ck(G) the unique result
where we fix all values k from the construction to a given fixed value. Let G be
induced by a multiset M , we may equivalently define C(G) as all graphs induced
by all possible multisets obtained from the set M via raising the multiplicity of
membership of any i ∈ M such that 2i ∈ M .

2 Sum Graphs with Loops

This section serves as an introduction to the topic of this paper. We show that
there is a sum graph with loops that admits no minimal sum labeling. Though
this is weaker result than Theorem 1, we provide a direct proof without usage
of complex tools. The full proof of Theorem 1 is given later as a consequence of
Theorem 2.

For a proof, we use the graph induced by the set {2, 3, 4, 6, 7} (see Fig. 1).
This specific graph was chosen based on a result of a computer experiment as
the smallest graph induced by an arithmetic sequence with difference 1 starting
from 2 with one element missing such that no minimal labeling was found. The
proof goes through several cases and is available in the full version of this paper.

Theorem 3. There exists a sum graph with loops that admits no minimal
labeling.

Although Theorem 3 does not require the labeling function to be injective,
the theorem holds also under the constraint of injectivity. The labeling used to
induce the graph is certainly injective, and the theorem shows that there exists
no minimal labeling; thus, in particular no injective minimal labeling.

2 43 6 7

Fig. 1. The sum graph induced by the set {2, 3, 4, 6, 7}.

Minimal Sum Labeling of Graphs 255

It is easy to observe that sets {1, 2, . . . , k} induce graphs with the maximum
number of edges out of all sum graphs with loops on the same number of vertices.
In fact, it can be shown that any graph with the same number of vertices and
edges is necessarily isomorphic to this graph. Based on this observation, it seems
reasonable to assume that the set {2, 3, . . . , k − 1, k} might induce a graph with
specific structure and possibly exclude all labelings with 1 as 1 was removed
from the inducing set. This idea does not hold, as the same graph is induced for
example by the set {1, 2, . . . , k, 3k}.

However, the situation seems to change dramatically once we remove one
more value. Let us call gap-graphs of size k all graphs induced by the set obtained
from {2, . . . , k} by removing one element we call a gap. Hence, a gap-graph of
size k has k − 2 vertices. While for small values of k some gap-graphs have a
minimal labeling, we conjecture that for k ≥ 10 none of the gap-graphs of size
k with gap i such that 3 < i < k has a minimal labeling. While we do not
prove this conjecture, it serves as a basic inspiration for our main result and as
a consequence of our main result, we prove Theorem 1 by providing a partial
proof of the conjecture for sufficiently large n and a specific choice of gap.

3 Non-injective Sum Graphs Without Loops

In this section, we construct graphs with (non-injective) sum labelings such that
they do not admit minimal labelings.

Based on the result from the previous section and the conjecture about gap-
graphs, it is a natural question whether we can modify the gap-graph idea
to remove all loops and keep the desired properties that may prevent exis-
tence of minimal labelings. Let us consider the gap-graph G induced by the
set {2, 3, 4, 6, 7} from Theorem 1, and its loopless modification H = C2(G). The
sum graph H is induced by a multiset {2, 2, 3, 3, 4, 6, 7} by definition. Unfortu-
natelly a graph isomorphic to H is induced by a multiset {1, 5, 2, 2, 4, 6, 9} (with
the same ordering of vertices). This numbering can be naturally extended to a
(non-injective) labeling of any graph from C(G). While this gives us a negative
result, we show that for large enough gap-graphs and at least some choice of
gap, the construction C does in fact guarantee all produced graphs to admit no
minimal labeling.

We first develop some tools applicable (up to minor adjustments) to all flavors
of sum graphs (injective, non-injective, with or without loops). Namely, that
labels of each sum labeling of a sum graph can be described as a set of arithmetic
sequences. We show how several simultaneous description of this form limit each
other and in doing so reflect some structural aspects of underlying sum graphs
directly into their label-sets.

The graphs we work with are based on arithmetic sequence of integers.
We define graph An as the unique sum graph with loops induced by the set
{2, 3, . . . , n − 1, n, n + 2}, in other words by a set of all integers from 2 up to
n + 2 without the second-last value n + 1. Note that graph An has exactly n
vertices.

256 M. Konečný et al.

3.1 Sequence Description

Let us denote an arithmetic sequence (a, a+d, a+2d, . . . , a+ jd) with difference
d as (id + a)i where we always consider i going from 0 up to some unspecified
integer. We also generally refer to sequences with difference d as d-sequences.

Let us fix a vertex v and call it generator. The set of terminals associated
with this generator is defined as V (G)\N(v). Note that v has exactly n−deg(v)
terminals. It is an important observation is that unless v has a loop, it is its own
terminal. We say that a terminal w is a proper terminal of v if w �= v, and is
improper terminal otherwise.

Lemma 2. Let G be a sum graph without loops, let � be a fixed labeling of G,
let v be a fixed generator and let w be a proper terminal of v. Then there is no
vertex in G labeled �(v) + �(w).

Proof. For contradiction, let a vertex u ∈ V (G) be labeled �(v)+ �(w). Then the
edge-number of the edge vw is guaranteed by u, thus vw ∈ E(G). This however
makes w a neighbor of v and we reach a contradiction.

The previous lemma does not hold for improper terminal v, as the edge used
in the proof would be a loop and thus would not be an edge of G even though it
is technically guaranteed. In case of sum graphs with loops this issue does not
arise.

Lemma 3. Let G be a sum graph with fixed labeling �, let M denote the label-
set of G, let v be a fixed generator and let u be a non-terminal of v. Then there
exists a sequence S = (i�(v) + �(u))i ⊆ M such that its last element is a label of
a proper terminal of v.

Proof. Since u is a non-terminal of v, there exists an edge uv with edge-number
�(v)+�(u). Clearly, this edge is guaranteed by some vertex u1 labeled �(v)+�(u).
The vertex u1 cannot be v as �(u1) > �(v). If u1 is a proper terminal, then
S = (�(u), �(u) + �(v)) and we are done. Otherwise, u1 is a non-terminal and
we iterate the previous argument, building a sequence S′ from u1 and setting
S = (�(u)). S′ where the dot operation denotes sequence concatenation.

Lemma 4. Let G be a sum graph, and let v be a fixed generator with k terminals
and label �(v) = g. Then for every labeling � and associated label-set M , the
following holds:

1. The label-set M can be described as a union of at most k distinct arithmetic
sequences with difference g.

2. The last element of each of the sequences is a label of a terminal.
3. Each label of a proper terminal is the last element of one of the sequences.
4. If v has j non-equivalent terminals and the description of M has j sequences,

then one of the sequences is a singleton sequence (g).

Minimal Sum Labeling of Graphs 257

Proof. Let u be a non-terminal of v such that it has the lowest label of all
non-neighbors. From Lemma 3 we have a sequence S1 such that it covers some
elements of M and ends in a terminal. If M\S contains non-terminals, we iterate
by using the Lemma 3 with the lowest remaining non-terminal label. If M\S
contains no further non-terminals and is non-empty, then we create a singleton
sequence (�(w)) for each proper terminal w. Clearly the only element of M
that can remain not-covered is �(v), as v is improper terminal. In such case we
create one more singleton sequence (�(v)). Suppose S1 = (ig + a)i and S2 =
(ig + b)i, for some integers a, b, are two constructed non-singleton sequences (S1

was constructed first). Since both S1 and S2 have the same difference, a /∈ S2

and a < b by the choice of a and b, both sequences are distinct. Clearly, no
singleton sequence shares an element with any other sequence. Since there are
exactly k terminals, each sequence ends with a terminal label and all sequences
are distinct, we get that there are at most k sequences in total. Naturally, M
is in the union of all of the constructed sequences and the sequences contain no
extra elements. This proves points 1 and 2.

From Lemma 2, we have that if a sequence contains the label of a proper
terminal, the hypothetical next element of the sequence is not a label of any
vertex. Thus labels of proper terminals can only be the last elements in sequences,
which proves the point 3.

Let v have j non-equivalent terminals. From Lemma 1 we have that there are
j distinct labels of terminals in M . If there are j sequences in the description of
M via generator v, we deduce from the previous points that each of the distinct
labels is the last element of a distinct sequence. In particular, the label g must
be the last in a sequence as v is its own (improper) terminal. Since all labels
are positive and the difference of each sequence is g, the label g must form a
singleton sequence (g).

Note that some labels generated by a sequence may be labels of several
vertices, if these are equivalent.

Let v be a vertex of a fixed graph G. Let v-cover denote the set of sequences
covering the label-set M of G as described in Lemma 4. Each such set is associ-
ated with one difference value. If α is this difference value (i.e. α = �(v)), then
we also reference to such a cover as α-cover .

3.2 Cover Merging

While the results of the previous section do not give particularly strong results
when all the degrees are low (in respect to the number of vertices), it does give
strong limits on potential labelings once we have one or more vertices with almost
full degree. In this section, we expand our tools to impose additional constraints
when applying the previous results to multiple vertices simultaneously.

Let G be a graph with fixed proper labeling and let M be its label-set. Then
each vertex gi induces a cover Ci of M , as described in Lemma 4. Each such
cover Ci is associated with a difference di (di = �(gi)) and a number of terminals
of gi (including gi) denoted ti.

258 M. Konečný et al.

We say that two covers Ci and Cj are mergeable if the number of non-
equivalent vertices in G (and thus also the size of any label-set of G) is at least
2 · (ti − 1) · (tj − 1) + 3. A proof of the following lemma is available in the full
version of this paper.

Lemma 5. Let Ci and Cj be mergeable covers, then there exists a pair of
sequences Si, Sj from covers Ci resp. Cj such that they share at least three ele-
ments.

Lemma 6. For any fixed mergeable covers C1, C2 there exist positive integers
j, k, such that GCD(j, k) = 1, j ≤ t1−1, k ≤ t2−1 and the equation k ·d1 = j ·d2
holds.

Proof. Let us fix two mergeable covers C1 and C2. Let S1, S2 denote sequences
such that S1 ∈ C1, S2 ∈ C2 and |S1 ∩ S2| ≥ 3. Let x0, x1, x2 be the three
smallest elements of S1 ∩ S2 so that x0 < x1 < x2. Since all of them come from
both sequences with no holes, we may denote the distance between elements
m = x1 − x0 = x2 − x1.

As both x1, x2 belong to both sequences, it must hold that m = k ·d1 = j ·d2
for some positive integers j, k such that x2 is k-th element following x1 in S1

and also j-th element following x1 in S2.
Suppose d1 = d2, then k = j = 1 ≤ t1−1, t2−1 and the lemma holds trivially.

We may assume d1 �= d2. From definition of a single sequence, S1 contains all k
possible elements from interval (x1, x2]. Similarly, S2 contains all j elements from
(x1, x2]. If GCD (k, j) > 1 then there is some m0 < m such that x1 + m0 is an
element of both sequences which would contradict the minimality of x1, x2. More
generally, if any two elements x3, x4 of S1 such that x1 < x3 < x4 ≤ x2 belonged
to the same sequence S0 ∈ C2, then x1 + (x4 − x3) ∈ S1 ∩ S2 which would
contradict the minimality of x2. Analogously, we would reach a contradiction if
any such x3, x4 belonged to any S′

0 ∈ C1. Thus the k elements of S1 from the
interval (x1, x2] fall into distinct sequences from C2 and we have k ≤ t2 as t2
limits the number of sequences in C2. Analogously we get j ≤ t1.

From Lemma 4, we know that if the k elements of S1 fall into t1 distinct
sequences from C2, then one of them has to be the singleton sequence (d2). Recall
that we chose x1, x2 from S1 ∩ S2 so that they are preceded by some element x0

from S1 ∩ S2. This means that x1 > d2 and thus the singleton sequences from
C2 cannot, in fact, play any role. Thus, the limit on the number of sequences
involved can be further reduced to k ≤ t2 − 1. Symmetrically, we obtain that
j ≤ t1 − 1.

Lemma 7. For any fixed mergeable covers C1, C2 of a graph G without loops,
let d1 = 1. Then d2 ≤ t2 − 1.

Proof. Consider the equation from Lemma 6. If d1 = 1 then k = j ·d2. From the
same lemma we also know that GCD (j, k) = 1, so necessarily j = 1 and k = d2.
Finally, we also have inequality k ≤ t2 − 1 which together give d2 ≤ t2 − 1.

Minimal Sum Labeling of Graphs 259

3.3 Vertices ψ(2) and ψ(3) in C(An)

In this section, we explore the exact structure of terminals of graphs from C(An).
Based on a number of simple properties we show that given large enough n, no
graph from C(An) admits label 1 on any vertex from ψ(2) and ψ(3).

For a vertex v of a fixed labeling, let τ(v) denote the set of proper terminals
of v. Lemma 8 summarizes some basic observations. The proof is omitted and is
available in the full version of this paper.

Lemma 8. For any graph G ∈ C(An) such that n ≥ 39, let us fix arbitrary
vertices vi such that vi ∈ ψ(i) for values of i from 2 to 6. Then for any integers
j, k such that 2 ≤ j, 2 ≤ k ≤ 6 all of the following holds:

1. Vertex vk has exactly k proper terminals (and k +1 terminals in total), all of
which have distinct labels.

2. If j ≤ 3, then the vertices vj and vk are mergeable.
3. If labeling is minimal and either �(v2) or �(v3) equals to 1, then �(vk) ≤ k.
4. There is exactly one proper terminal in the intersection of all τ(vk), and this

terminal has the highest label in the graph.
5. If j is not the highest label, then either j /∈ τ(v2) or j /∈ τ(v3).
6. τ(vk) ⊂ τ(vj) whenever j ≥ k + 2.
7. None of the chosen vertices is a proper terminal of any of the other chosen

vertices and thus �(vj) + �(vk) ∈ M for any j �= k.

For convenience, we extend the meaning of terminal. We characterize possible
labelings of graphs in terms of presence or absence of values in respect to the
label-set of the graph. For a vertex v we say an integer value k is a (proper)
terminal for v as a shortcut for the fact that there exists a vertex w, which is
a (proper) terminal for v and �(w) = k. We only deal with terminals of vertices
from ψ(2), . . . , ψ(6) whose all proper terminals are non-equivalent and thus have
distinct labels. Hence the integer terminals and the vertex terminals are in one-
to-one correspondence for these vertices.

Let G be a sum graph with a minimal labeling �. Let M be the label-set of G
in respect to � and let v ∈ V (G) be such that �(v) = 1. According to Lemma 4,
the vertex v describes M as a union of several distinct integer intervals separated
by some values that are not elements of M .

We say that an interval is long if its first six labels and its last six labels
do not intersect. In particular, its last six labels are strictly bigger than 6. The
property of the long intervals we want to use is that for any v such that v ∈ ψ(i)
for i ≤ 6, any terminal among the last six elements of a long interval is always a
proper terminal of v. Proofs of Lemmas 9 and 10 are very similar, thus the proof
of Lemma 9 is available in the full version of this paper.

Lemma 9. For any graph G ∈ C(An) such that n ≥ 39, there is no labeling
such that �(v) = 1 for any v ∈ ψ(2).

Lemma 10. For any graph G ∈ C(An) such that n ≥ 39, there is no labeling
such that �(v) = 1 for any v ∈ ψ(3).

260 M. Konečný et al.

Proof. Let us fix arbitrary vertices vi such that vi ∈ ψ(i) for values of i from
2 to 6 and let us denote their labels as α : = �(v2), β : = �(v3), γ : = �(v4), δ : =
�(v5), ε : = �(v6). For contradiction let β = 1. We use the observations from the
previous Lemmas 8 and 7 to reach contradiction.

As v3 has four terminals, M composes of at most three non-trivial intervals
with possible trivial interval {1}, let X,Y,Z denote the intervals other than {1}
so that X < Y < Z. Let k be the last label of X or Y .

As v2 has only two proper terminals, α ≤ 2 and thus α = 2. Since k is a
terminal for v3, it is not a terminal for v2. Together, we get that k + 2 is a label
and so both gaps between the intervals X,Y,Z have size exactly 1.

Let us focus on the interval X and let k from now on denote its last label.
From k being a terminal for v3 we have that k is also a terminal for v5 and v6.
Thus there are at least three distinct non-labels strictly between k and k + 7,
and so the third closest non-label following k is at most k + 6. As there are at
most two of them in the gaps separating the three intervals, we have that the
sum of lengths of Y and Z is at most 3 (together with 3 non-labels summing
up to 6). From this we get that X is long.

Since α = 2, there is one terminal for v2 in X. If Y or Z has length two, then
the first element is also a terminal for v2. Together with the highest label in M
we would reach a contradiction with v2 having only two proper terminals.

We have that Y = {k + 2} and Z = {k + 4}. The label k is a terminal for v3
and label k − 1 is a terminal for v2. Both are also terminals for v5. Therefore,
we need to set δ so that both k + δ and k − 1 + δ fall into {k + 1, k + 3, k + 5}.
But there is no such value and we reach a contradiction.

3.4 Smallest Labels of C(An)

In this section we give limitations on ordering of labels in general case. We apply
this together with our previously acquired knowledge to further limit the position
of label 1 in graphs from C(An).

Lemma 11. Let G be a sum graph, let v1, v2 be equivalent vertices of G with k
terminals. Let � be any labeling of G and M the label-set associated with �. Then
�(v1) is one of the k smallest labels in M . Furthermore, if �(v1) = �(v2) then
�(v1) is one of the k − 1 smallest labels in M .

Proof. Consider v1 and let us count the number of labels from M not appearing
on any neighbor of v1. The vertex v1 has exactly k terminals including itself.
Therefore there are at least |M | − k labels appearing on the neighbors of v1
and so the edges incident with v1 carry at least |M | − k distinct edge-numbers
expressed as a sum of �(v1) and a positive label of one of the neighbors. Together
we get that M contains at least |M | − k values strictly greater than �(v1).

Assume that �(v1) = �(v2). We can improve the previous argument by the
fact that the label of v1 is present on a neighbor of v1 (namely v2). This improves
the bound on labels in M strictly greater than �(v1) to at least |M | − (k − 1).

Minimal Sum Labeling of Graphs 261

Consider graph An for n ≥ 39 with some labeling �, let α denote a label of
some vertex from ψ(2) and let β denote a label of some vertex from ψ(3). Recall
Lemma 8 giving explicit amounts of terminals of vertices from ψ(2) and ψ(3).
As a corollary of the previous Lemma 11 we have that α is among the 3 smallest
labels from M and β is among the 4 smallest labels from M . And as we already
know from Lemmas 9 and 10, α, β �= 1.

Recall Lemma 6, which gives us limitations on mutual relations in between
labels of mergeable vertices. As we know that ψ(2) are mergeable with ψ(3), we
know that one of the following must hold: α = 2β, 2α = β, 3α = β or 3α = 2β.

We use these facts to show that Lemma 11 can be applied to vertices from
ψ(2) and ψ(3) in its stronger form, thus fully determining the smallest three
labels in minimal labelings of graphs from C(An).

Lemma 12. In any minimal labeling � of a graph G ∈ C(An) such that n ≥ 39,
�(v1) = �(v2) for any v1, v2 ∈ ψ(2).

Proof. For contradiction, let v1, v2 ∈ ψ(2) have distinct labels α1, α2. Without
loss of generality, α1 < α2. We use the observations from Lemma 8. As v1 is
mergeable with v2 and each has three terminals, Lemma 6 implies that neces-
sarily 2α1 = α2.

Let β denote a label of any vertex from ψ(3). From mergeability, both values
α1, α2 relate to β, from Lemma 6. The only values for any of the two alphas are
2β, 1

2β, 1
3β, 2

3β. Since 2α1 = α2, the only two suitable values are α1 = 1
3β and

thus α2 = 2
3β.

Consider the α2-cover of the label-set M . Since both α1 and α2 are among
the three smallest elements of M , according to Lemma 11, we know that the two
proper α2-sequences start with elements 1 and α1, as these are smaller than α2.
The value α2 is not an element of either of the two sequences, thus {α2} forms
an improper sequence and consequently 2α2 is not a label. From the last point of
Lemma 8, the value α1 +β = 4α1 = 2α2 is a label and we reach a contradiction.

Corollary 1. For any minimal labeling � of An, �(v) < �(w) for any v ∈ ψ(2)
and w ∈ ψ(3).

Proof. The previous Lemma 12 guarantees the additional condition of Lemma 11
on labels of vertices from ψ(2), thus �(v) is at most second smallest label in An.
As 1 is also a label, �(v) is exactly the second smallest and thus 1 �= �(w) > �(v).

Lemma 13. In any minimal labeling � of a graph G ∈ C(An) such that n ≥ 39,
�(v1) = �(v2) for any v1, v2 ∈ ψ(3).

The proof of Lemma 13 is analogous to the proof of Lemma 12 and is available
in the full version of this paper. We are now ready to prove the last limitation
on the placement of label 1 in minimal labelings of graphs from C(An) in order
to exclude all possible minimal labelings.

Lemma 14. In any labeling � of a graph G ∈ C(An) such that n ≥ 39, if v ∈ ψ(i)
and �(v) = 1, then i ≤ 3.

262 M. Konečný et al.

Proof. Let α be a label of a vertex v ∈ ψ(2) and let β be a label of a vertex
w ∈ ψ(3). From Lemmas 12 and 13, we know that these values are uniquely
determined by �. For contradiction, let α, β > 1. Let M denote the label-set of
G. From the previous Lemmas 12 and 13, we have the additional conditions to
apply Lemma 11 to v and w in its stronger form. Together we have that α < β
(corollary of Lemma 12) and labels 1, α, β are the three smallest labels in M .

Let x be a vertex such that �(x) = 1. Suppose x is not a terminal for v. Then
α + 1 is a label. Since β is the first label greater than α, we have β = α + 1.
From the fact that α > 1 and β is not a multiple of α and vice versa, the
mergeability of v and w leaves only one possible relation, 3α = 2β. We conclude
that α = 2 and β = 3. Consider any β-sequence, any of its consecutive elements
fall into distinct α-sequences. As there exists at least one β-sequence with at
least 8 elements, the two proper α-sequences must overlap to satisfy the last 4
elements, none of which can fall into the improper α-sequence. Let k be a label of
a proper terminal of v. As x is induced by a number of size at least 4, any proper
terminal label of v is also a terminal label of x. Thus, k + 1 is not a label. This
means that the other α-sequence not terminating in k cannot extend over k + 1
and thus, either ends before k or begins after k+1. Applying the same argument
to the other sequence, we get that the two α-sequences must not overlap as none
can extend over the last element of the other. This is a contradiction and x must
be a proper terminal for v.

Since 1 is a proper terminal of v, the α-cover of M has only one non-trivial
sequence with the first element k (for some yet unknown integer k). Values β
and β+α are elements of M with difference α, and thus are consecutive elements
of the only proper α-sequence. Since the only terminal shared between v and w
has the biggest label in M , x is not a terminal of w and thus β +1 is a label and
must belong to the proper α-sequence (as β > α). Together, we have that the
proper α-sequence contains elements β and β + 1; thus, the difference α must
equal to 1, which is a contradiction.

3.5 Results

Proof (of Theorem 2). Let G be any graph from C(An) where n ≥ 39 and let �
be any labeling of G. For contradiction, let �(v) = 1 for some vertex v. Clearly
v ∈ ψ(i) for some integer i, 1 < i ≤ n + 2. As shown by Lemmas 9 and 10,
i > 3. The Lemma 14, based on the previously mentioned lemmas, shows the
complementary fact that i ≤ 3. This is of course a contradiction.

The constant 39 is an artifact of used methods and may in fact be much
smaller. While minimal labeling exists for graphs from C(A6), based on a com-
puter search we conjecture that there is in fact no minimal labeling for any graph
from C(An) for any n ≥ 7.

Proof (of Theorem 1). Let G be a graph An where n ≥ 39. For contradiction let
G admit a minimal labeling. We replace each vertex of G with loop by a clique,
obtaining a graph H ∈ C(G), and assign all the new vertices from each new

Minimal Sum Labeling of Graphs 263

clique the label of the original vertex this clique replaces. We have a graph H
with sum labeling using the same labels as the labeling of G. Hence if G admits
a minimal sum labeling then H must also admit a minimal sum labeling, which
is a contradiction with Theorem 2.

4 Conclusion

We have shown that the set {2, 3, .., n − 1, n, n + 2} for n ≥ 39 induces a family
of sum graphs with loops which admit no minimal labeling. Furthermore the
loops can be replaced by a cliques of sizes at least two and we obtain an infinite
family of non-injective sum graphs (without loops) which also admit no minimal
labeling.

The constant 39 is an artefact of used methods and it might be much smaller.
While minimal labeling exists for graphs from C(A6), based on a computer
search, we put forward the following conjecture:

Conjecture 1. Let G ∈ C(An) such that n ≥ 7, then G allows no minimal
labeling.

Further computer experiments indicate that it is not necessary to restrict to
the omission of the second-last element from the sequence {2, 3, .., n − 1, n, n +
1, n + 2}. Thus, we put forward the following conjecture regarding sum graphs
with loops:

Conjecture 2. Let G be a gap-graph of size k, where k ≥ 10, with gap i such
that 3 < i < k, then G admits no minimal labeling.

Acknowledgements. This paper is the output of the 2016 Problem Seminar. We
would like to thank Jan Kratochv́ıl and Jǐŕı Fiala for their guidance, help and tea.

References

1. Bergstrand, D., Harary, F., Hodges, K., Jennings, G., Kuklinski, L., Wiener, J.: The
sum number of a complete graph. Bull. Malaysian Math. Soc. 12, 25–28 (1989)

2. Ellingham, M.N.: Sum graphs from trees. Ars Combin. 35, 335–349 (1993)
3. Gould, R.J., Rödl, V.: Bounds on the number of isolated vertices in sum graphs,

graph theory. Graph Theory Combin. Appl. 1, 553–562 (1991)
4. Harary, F.: Sum graphs and difference graphs. Congr. Numer. 72, 101–108 (1990)
5. Miller, M., Ryan, J.F., Smyth, W.F.: The sum number of a disjoint union of graphs

(2003)
6. Miller, M., Ryan, J.F., Smyth, W.F.: The sum number of the cocktail party graph.

Bull. Inst. Combin. Appl. 22, 79–90 (1998)
7. Nagamochi, H., Miller, M.: Bounds on the number of isolates in sum graph labeling.

Discrete Math. 240(1–3), 175–185 (2001)
8. Pyatkin, A.V.: New formula for the sum number for the complete bipartite graphs.

Discrete Math. 239, 155–160 (2001)

On the Power Domination Number
of de Bruijn and Kautz Digraphs

Cyriac Grigorious1, Thomas Kalinowski2,3 , and Sudeep Stephen3,4(B)

1 Graduate School, King’s College London, London, UK
cyriac.grigorious@kcl.ac.uk

2 School of Science and Technology, University of New England, Armidale, Australia
tkalinow@une.edu.au

3 School of Mathematical and Physical Sciences, The University of Newcastle,
Callaghan, Australia

4 School of Mathematical Sciences,
National Institute of Science Education and Research, Bhubaneswar, India

sudeep.stephen@niser.ac.in

Abstract. Let G = (V, A) be a directed graph, and let S ⊆ V be a set of
vertices. Let the sequence S = S0 ⊆ S1 ⊆ S2 ⊆ · · · be defined as follows:
S1 is obtained from S0 by adding all out-neighbors of vertices in S0. For
k � 2, Sk is obtained from Sk−1 by adding all vertices w such that for
some vertex v ∈ Sk−1, w is the unique out-neighbor of v in V \ Sk−1.
We set M(S) = S0 ∪ S1 ∪ · · · , and call S a power dominating set for G
if M(S) = V (G). The minimum cardinality of such a set is called the
power domination number of G. In this paper, we determine the power
domination numbers of de Bruijn and Kautz digraphs.

Keywords: Power domination · de Bruijn digraph · Kautz digraph

1 Introduction

Let G = (V,A) be a directed graph. For a vertex i ∈ V let N in(i) and Nout(i)
denote its in- and out-neighborhood, respectively, i.e.,

N in(i) = {j ∈ V : (j, i) ∈ A}, Nout(i) = {j ∈ V : (i, j) ∈ A}.

For a node set S, we use the corresponding notation

N in(S) =
⋃

i∈S

N in(i), Nout(S) =
⋃

i∈S

Nout(i).

Let G be a directed graph and S a subset of its vertices. Then we denote the
set monitored by S with M(S) and define it as M(S) = S0 ∪ S1 ∪ · · · where the
sequence S0, S1, . . . of vertex sets is defined by S0 = S, S1 = Nout(S), and

Sk = Sk−1 ∪ {
w : {w} = Nout(v) ∩ (V \ Sk−1) for some v ∈ Sk−1

}
.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 264–272, 2018.
https://doi.org/10.1007/978-3-319-78825-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_22&domain=pdf
http://orcid.org/0000-0002-8444-6848

On the Power Domination Number of de Bruijn and Kautz Digraphs 265

A set S is called a power dominating set of G if M(S) = V (G) and the minimum
cardinality of such a set is called the power domination number denoted as γp(G).

The undirected version of the power domination problem was introduced
in [11]. The problem was inspired by a problem in electric power systems con-
cerning the placements of phasor measurement units. The directed version of the
power domination problem was introduced as a natural extension in [1] where
a linear time algorithm was presented for digraphs whose underlying undirected
graph has bounded treewidth. Good literature reviews on the power domination
problem can be found in [7,8,18].

A closely related concept is zero forcing which was introduced for undirected
graphs by the AIM Minimum Rank – Special Graphs Work Group in [2] as a
tool to bound the minimum rank of matrices associated with the graph G. This
notion was extended to digraphs with loops in [4] with the same motivation. For
a red/blue coloring of the vertex set of a digraph G with loops, consider the
following color-change rule: a red vertex w is converted to blue if it is the only
red out-neighbor of some vertex u. We say u forces w and denote this by u → w.
A vertex set S ⊆ V is called zero-forcing if, starting with the vertices in S blue
and the vertices in the complement V \S red, all the vertices can be converted to
blue by repeatedly applying the color-change rule. The minimum cardinality of a
zero-forcing set for the digraph G is called the zero-forcing number of G, denoted
by Z(G). Since its introduction the zero-forcing number has been studied for its
own sake as an interesting graph invariant [3,5,6,10,16]. In [12], the propagation
time of a graph is introduced as the number of steps it takes for a zero forcing
set to turn the entire graph blue. Physicists have independently studied the zero
forcing parameter, referring to it as the graph infection number, in conjunction
with the control of quantum systems [17].

Recently, Dong et al. [9] investigated the domination number of generalized
de Bruijn and Kautz digraphs. Kuo and Wu [15] gave an upper bound for power
domination in undirected de Bruijn and Kautz graphs. In this paper we study
the directed versions, i.e., the zero forcing number and power domination number
of de Bruijn and Kautz digraphs. Due to their attractive connectivity features
these digraphs have been widely studied as a topology for interconnection net-
works [13], and some generalizations of these digraphs were proposed [14].

Section 2 contains some notation and precise statements of our main result.
In Sect. 3 we determine the power domination number and zero forcing number
for de Bruijn digraphs. In Sect. 4 we determine the power domination number
and zero forcing number for Kautz digraphs.

2 Notations and Main Result

We give an interpretation of the power domination problem and zero forcing
problem as a set cover problem. We call a vertex set W strongly critical if there
is no vertex in G which has exactly one out neighbor in W . We call a vertex
set W weakly critical if there is no vertex outside W which has exactly one out-
neighbor in W . If W is strongly (weakly) critical, but no proper subset of W is
strongly (weakly) critical, then we call W minimal strongly (weakly) critical.

266 C. Grigorious et al.

Note that a vertex set S is a zero forcing set if and only if S ∩ W �= ∅ for
every strongly critical set W ⊆ V . Similarly, S is a power dominating set if and
only if (S ∪Nout(S))∩W �= ∅ for every weakly critical set W ⊆ V , and therefore

Z(G) = min {|S| : S ∩ W �= ∅ for every strongly critical set W ⊆ V } ,

γp(G) = min
{|S| : (S ∪ Nout

G (S)) ∩ W �= ∅ for every weakly critical set W ⊆ V
}

.

For an integer d � 2, let Zd = {0, 1, . . . , d − 1} denote the cyclic group of order
d. The de Bruijn digraph, denoted B(d, n), with parameters d � 2 and n � 2 is
defined to be the graph G = (V,A) with vertex set V and arc set A where

V = Z
n
d = {(a1, . . . , an) : ai ∈ Zd for i = 1, . . . , n} ,

A = {((a1, a2, . . . , an), (a2, . . . , an, b)) : (a1, a2, . . . , an) ∈ V, b ∈ Zd} .

The Kautz digraph, denoted K(d, n), with parameters d � 2 and n � 2 is defined
to be the graph G = (V,A) with vertex set V and arc set A where

V = {(a1, . . . , an) : ai ∈ Zd+1, ai �= ai+1}
A = {((a1, a2, . . . , an), (a2, . . . , an, b)) : (a1, a2, . . . , an) ∈ V, b ∈ Zd+1 \ {an}} .

Our main results are the following theorems.

Theorem 1. Let G be a de Bruijn digraph with parameters d, n � 2. Then the
zero forcing number and power domination number of G are (d − 1)dn−1 and
(d − 1)dn−2, respectively.

Theorem 2. Let G be a Kautz digraph with parameters d � 2 and n � 3. Then
the zero forcing number and power domination number of G are (d−1)(d+1)dn−2

and (d − 1)(d + 1)dn−3, respectively.

3 The Power Domination Number of de Bruijn Digraphs

In this section we prove Theorem 1. Let us define the sets

X(a1, . . . , an−1) = {(a1, . . . , an−1, α) : α ∈ Zd}
which partition the vertex set V into dn−1 sets of size d. Furthermore, Nout(v) =
X(a1, . . . , an−1) for every vertex v of the form (α, a1, a2, . . . , an−1).

Lemma 1. Let G be a de Bruijn digraph with parameters d, n � 2. Then Z(G) �
(d − 1)dn−1.

Proof. Every 2-element subset of each of the sets X(a1, . . . , an−1) is strongly
critical, and therefore, any zero forcing set S needs to intersect X(a1, . . . , an−1)
in at least d − 1 elements, and the result follows.

Lemma 2. Let G be a de Bruijn digraph with parameters d, n � 2. Then Z(G) �
(d − 1)dn−1.

On the Power Domination Number of de Bruijn and Kautz Digraphs 267

Proof. Consider the vertex set S = {(a1, . . . , an−1, an) ∈ V : a1 �= an}. To
show that S is a zero forcing set, it is sufficient to verify that each vertex v =
(a1, . . . , an−1, an) is either in S or is the unique out-neighbor in V \ S for some
vertex w. If a1 �= an, then v ∈ S. If a1 = an, then for any vertex of the form
w = (β, a1, . . . , an−1), v is the only neighbor of w in V \ S.

Lemmas 1 and 2 imply the first statement of Theorem 1. In order to prove
the second part of this theorem we recall that S ⊆ V is a power dominating
set if and only if S ∪ Nout(S) intersects every weakly critical set. In particu-
lar, it is necessary that |(S ∪ Nout(S)) ∩ X(a1, . . . , an−1)| � d − 1 for every
(a1, . . . , ad−1) ∈ Z

n−1
d .

Lemma 3. Let G be a de Bruijn digraph with parameters d, n � 2. Then every
power dominating set has size at least (d − 1)dn−2.

Proof. Let S be a power dominating set, suppose |S| < (d − 1)dn−2 and set
Z = S ∪ Nout(S). We have

(Z \ S) ∩ X(a1, . . . , an−1) �= ∅ =⇒ X(a1, . . . , an−1) ⊆ Z.

For k = 0, 1, . . . , d, we set αk = #{(a1, . . . , an−1) : |S ∩ X(a1, . . . , an−1)| = k},
and get

|S| = α1 + 2α2 + · · · + (d − 1)αd−1 + dαd.

Now let I0 = {(a1, . . . , an−1) : X(a1, . . . , an−1) ⊆ Z}. Then

|I0| � |S| + αd = α1 + 2α2 + · · · + (d − 1)αd−1 + (d + 1)αd.

For (a1, . . . , an−1) /∈ I0 we must have |Z ∩ X(a1, . . . , an−1)| = d − 1, and this
implies that |S ∩ X(a1, . . . , an−1)| = d − 1. We conclude |I0| + αd−1 � dn−1.
Therefore

α1 + 2α2 + · · · + (d − 2)αd−2 + dαd−1 + (d + 1)αd � dn−1,

and together with |S| < (d − 1)dn−2 this yields

αd−1 + αd > dn−1 − (d − 1)dn−2 = dn−2.

But then |S| � (d − 1)(αd−1 + αd) > (d − 1)dn−2, which is the required contra-
diction.

We define a set S ⊆ V by

S =

⎧
⎪⎨

⎪⎩

{(0, 1), (0, 2), . . . , (0, d − 1)} if n = 2,

{(a1, a2, a3) ∈ V : a2 = a1, a3 �= a1} if n = 3,

{(a1, . . . , an) ∈ V : an−1 = a1 + an−2, an �= a1 + a2 + an−2} if n � 4.

(1)
Note that |S| = (d − 1)dn−2. The construction of the set S defined in (1) can
be visualized by arranging the vertices of G in a d2 × dn−2-array where the

268 C. Grigorious et al.

(3, 1, 0, 2, 4)(1, 3, 4, 4, 2)

a6 = 4

a6 = 3

a6 = 2

a6 = 1

a6 = 0

X(1, 3, 4, 4, 2, 0)

= Nout(3, 1, 3, 4, 2, 2, 0)

X(1, 3, 4, 4, 2, 1)

= Nout(3, 1, 3, 4, 2, 2, 1)

X(1, 3, 4, 4, 2, 2)

= Nout(3, 1, 3, 4, 2, 2, 2)

X(1, 3, 4, 4, 2, 4)

= Nout(3, 1, 3, 4, 2, 2, 4)

X(3, 1, 0, 2, 4, 0)

= Nout(2, 3, 1, 0, 2, 4, 0)

X(3, 1, 0, 2, 4, 1)

= Nout(2, 3, 1, 0, 2, 4, 1)

X(3, 1, 0, 2, 4, 3)

= Nout(2, 3, 1, 0, 2, 4, 3)

X(3, 1, 0, 2, 4, 4)

= Nout(2, 3, 1, 0, 2, 4, 4)

Fig. 1. Illustration of the construction of the power dominating set S for d = 5 and
n = 7. For the two columns (a1, . . . , a5) = (1, 3, 4, 4, 2) and (a1, . . . , a5) = (3, 1, 0, 2, 4)
we show the elements of S (black squares), and we indicate for the sets X(a1, . . . , a6)
(enclosed by rectangles) the elements of S having them as their out-neighbourhood.

rows are indexed by pairs (an−1, an) and the columns are indexed by (n − 2)-
tuples (a1, . . . , an−2). Then column (a1, . . . , an−2) is the union of the d sets
X(a1, . . . , an−2, an−1) over an−1 ∈ Zd, and the set S contains d−1 elements from
each column. More precisely, the intersection of S with column (a1, . . . , an−2) is

X(a1, . . . , an−2, a1 + an−2) \ {(a1, . . . , an−2, a1 + an−2, a1 + a2 + an−2)}.

In Fig. 1 this is illustrated for two columns with d = 5 and n = 7.

Lemma 4. The set S defined in (1) is a power dominating set for G.

Proof. For Z = S ∪Nout(S) it is sufficient to show that |Z ∩X(a1, . . . , an−1)| �
d− 1 for every (a1, . . . , an−1). We provide the full argument for n � 4 (the cases
n = 2 and n = 3 are easy to check).

Case 1. If an−1 = a1 + an−2, then by (1),

S ∩ X(a1, . . . , an−1) = {(a1, . . . , an) : an ∈ Zd \ {a1 + a2 + an−2}},
hence |Z ∩ X(a1, . . . , an−1)| � |S ∩ X(a1, . . . , an−1)| = d − 1.

Case 2. If an−1 �= a1 + an−2, then X(a1, . . . , an−1) ⊆ Z because

X(a1, . . . , an−1) = Nout((an−2 − an−3, a1, a2, . . . , an−1))

and (an−2 − an−3, a1, a2, . . . , an−1) ∈ S.

The second part of Theorem 1 follows from Lemmas 3 and 4.

On the Power Domination Number of de Bruijn and Kautz Digraphs 269

4 The Power Domination Number of Kautz Digraphs

In this section we prove Theorem 2. Let us define the sets

X(a1, . . . , an−1) = {(a1, . . . , an−1, an) : an ∈ Zd+1 \ {an−1}}
for (a1, . . . , an−1) ∈ Z

n−1
d+1 with ai �= ai+1 for all i. These sets partition the vertex

set V into (d + 1)dn−2 sets of size d. Furthermore, Nout(v) = X(a1, . . . , an−1)
for every vertex v of the form (a0, a1, a2, . . . , an−1).

Lemma 5. Let G be a Kautz digraph with parameters d, n � 2. Then Z(G) �
(d − 1)(d + 1)dn−2.

Proof. Every 2-element subset of each of the sets X(a1, . . . , an−1) is strongly
critical, and therefore, any zero forcing set S needs to intersect X(a1, . . . , an−1)
in at least d − 1 elements, and the result follows.

Lemma 6. Let G be a Kautz digraph with parameters d, n � 2. Then Z(G) �
(d − 1)(d + 1)dn−2.

Proof. Consider the vertex set

S =

{
{(a1, a2) ∈ V : a2 �= a1 + 1} if n = 2,

{(a1, . . . , an) ∈ V : an �= an−2} if n � 3.

We have |S| = (d − 1)(d + 1)dn−2, and to show that S is a zero forcing set, it is
sufficient to verify that each vertex v = (a1, . . . , an−1, an) is either in S or is the
unique out-neighbor in V \ S for some vertex w.

Case n = 2. If a2 �= a1 + 1, then v ∈ s. If a2 = a1 + 1, then for any vertex of
the form w = (β, a1), v is the only neighbor of w in V \ S.

Case n � 3. If an �= an−2, then v ∈ S. If an = an−2, then for any vertex of the
form w = (β, a1, . . . , an−1), v is the only neighbor of w in V \ S.

Lemmas 5 and 6 imply the first statement of Theorem 2.

Lemma 7. Let G be a Kautz digraph with parameters d � 2 and n � 3. Then,
every power dominating set has size at least (d − 1)(d + 1)dn−3.

Proof. Let S be a power dominating set, suppose |S| < (d − 1)(d + 1)dn−3 and
set Z = S ∪ Nout(S). We have

(Z \ S) ∩ X(a1, . . . , an−1) �= ∅ =⇒ X(a1, . . . , an−1) ⊆ Z.

For k = 0, 1, . . . , d, we set αk = #{(a1, . . . , an−1) : |S ∩ X(a1, . . . , an−1)| = k},
and get

|S| = α1 + 2α2 + · · · + (d − 1)αd−1 + dαd.

Now let I0 = {(a1, . . . , an−1) : X(a1, . . . , an−1) ⊆ Z}. Clearly,

|I0| � |S| + αd = α1 + 2α2 + · · · + (d − 1)αd−1 + (d + 1)αd.

270 C. Grigorious et al.

For (a1, . . . , an−1) /∈ I0 we must have |Z ∩ X(a1, . . . , an−1)| = d − 1 because Z
intersects every weakly critical set. This implies that |S ∩ X(a1, . . . , an−1)| =
d − 1, and we conclude |I0| + αd−1 � (d + 1)dn−2. Therefore

α1 + 2α2 + · · · + (d − 2)αd−2 + dαd−1 + (d + 1)αd � (d + 1)dn−2,

and together with |S| < (d − 1)(d + 1)dn−3 this yields

αd−1 + αd > (d + 1)dn−2 − (d − 1)(d + 1)dn−3 = (d + 1)dn−3.

But then |S| � (d − 1)(αd−1 + αd) > (d − 1)(d + 1)dn−3, which is the required
contradiction.

We define a set S ⊆ V by

S =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{(0, 1), (0, 2), . . . , (0, d)} ifn = 2,

{(a1, a2, a3) ∈ V : a2 = a1 + 1, a3 �= a1 + 2} ifn = 3,

{(a1, a2, a3, a4) ∈ V : a3 = a1, a4 �= a2} ifn = 4,
{
(a1, . . . , an) ∈ V :

(
(an−2, an−1) = (a1, a2) ∧ an �= a3

) ∨ (
an−1 = a1 ∧ an �= a2

)}
ifn � 5.

(2)

Lemma 8. |S| =

{
d if n = 2,

(d − 1)(d + 1)dn−3 if n � 3.

Proof. For n � 4 this is easy to check. For n � 5 we proceed by the following
argument. We consider the partition S = S1 ∪ S2 where

S1 = {(a1, . . . , an) ∈ S : an−3 = a1}, S2 = {(a1, . . . , an) ∈ S : an−3 �= a1}.

Let sk be the number of words a1 . . . ak over the alphabet Zd+1 which satisfy ak =
a1 and ai �= ai+1 for all i ∈ {1, . . . , k−1}. Then s2 = 0 and sk = (d+1)dk−2−sk−1

for k � 3. It follows by induction on k that sk = dk−1 − (−1)kd. Every vector
(a1, . . . , an−3) ∈ Z

n−3
d+1 with ai �= ai+1 and an−3 = a1 can be extended to an

element of S1 by choosing an−2 ∈ Zd+1\{a1}, an−1 = a1 and an ∈ Zd+1\{a1, a2},
hence

|S1| = sn−3d(d − 1) =
(
dn−4 − (−1)n−3d

)
d(d − 1).

If an−3 �= a1, then we can choose (an−2, an−1) = (a1, a2) and an ∈ Zd+1\{a2, a3},
or an−2 ∈ Zd+1 \ {a1, an−3}, an−1 = a1 and an = Zd+1 \ {a1, a2}, hence

|S2| =
[
(d + 1)dn−4 − sn−3

] [
(d − 1) + (d − 1)2

]

=
[
(d + 1)dn−4 − dn−4 + (−1)n−3d

]
d(d − 1)

=
[
dn−3 + (−1)n−3d

]
d(d − 1).

Finally,

|S| = |S1|+|S2| = d(d−1)
[
dn−4 − (−1)n−3d + dn−3 + (−1)n−3d

]
= (d+1)(d−1)dn−3.

On the Power Domination Number of de Bruijn and Kautz Digraphs 271

Lemma 9. The set S defined in (2) is a power dominating set for G = K(d, n).

Proof. For Z = S ∪Nout(S) it is sufficient to show that |Z ∩X(a1, . . . , an−1)| �
d− 1 for every (a1, . . . , an−1). We provide the full argument for n � 5 (the cases
n = 2, n = 3 and n = 4 are easy to check).

Case 1. If an−2 = a1 and an−1 = a2, then

|S ∩ X(a1, . . . , an−1)| = |{(a1, . . . , an) : an ∈ Zd+1 \ {a2, a3}}| = d − 1,

and the claim follows from Z ⊇ S.
Case 2. If an−2 = a1 and an−1 �= a2, then X(a1, . . . , an−1) ⊆ Z because

X(a1, . . . , an−1) = Nout((an−3, a1, a2, . . . , an−1))

and (an−3, a1, a2, . . . , an−1) ∈ S.
Case 3. If an−2 �= a1 and an−1 = a2, then X(a1, . . . , an−1) ⊆ Z because

X(a1, . . . , an−1) = Nout((an−2, a1, a2, . . . , an−1))

and (an−2, a1, a2, . . . , an−1) ∈ S.
Case 4. If an−2 �= a1 and an−1 = a1, then

|S ∩ X(a1, . . . , an−1)| = |{(a1, . . . , an) : an ∈ Zd+1 \ {a1, a2}}| = d − 1,

and the claim follows from Z ⊇ S.
Case 5. If an−2 �= a1 and an−1 �∈ {a1, a2}, then X(a1, . . . , an−1) ⊆ Z because

X(a1, . . . , an−1) = Nout((an−2, a1, a2, . . . , an−1))

and (an−2, a1, a2, . . . , an−1) ∈ S.

The second part of Theorem 2 follows from Lemmas 7, 8 and 9.

5 Conclusion

In this paper, we have determined the zero forcing number and power domina-
tion number of de Bruijn and Kautz digraphs. There are many variants of de
Bruijn and Kautz digraphs introduced and studied over the years, one of them
being generalized de Bruijn digraphs GB(d, n) and generalised Kautz digraphs
GK(d, n) which can be defined as follows:

V (GB(d, n)) = {0, 1, . . . , n − 1},

A(GB(d, n)) = {(x, y) : y ≡ dx + i (mod n), 0 � i � d − 1} ,

V (GK(d, n)) = {0, 1, . . . , n − 1},

A(GK(d, n)) = {(x, y) ; y ≡ −dx − i (mod n), 1 � i � d} .

We leave it as an open problem to determine the power domination number of
generalised de Bruijn and Kautz digraphs.

Acknowledgement. The authors would like to thank Dr. Joe Ryan for his valuable
comments and suggestions to improve the quality of the paper.

272 C. Grigorious et al.

References

1. Aazami, A., Stilp, K.: Approximation algorithms and hardness for domination with
propagation. SIAM J. Discret. Math. 23, 1382–1399 (2009)

2. AIM Minimum Rank – Special Graphs Work Group: Zero forcing sets and the
minimum rank of graphs. Linear Algebra Appl. 428(7), 1628–1648 (2008)

3. Barioli, F., Barrett, W., Fallat, S.M., Hall, H.T., Hogben, L., Shader, B., van
den Driessche, P., van der Holst, H.: Zero forcing parameters and minimum rank
problems. Linear Algebra Appl. 433(2), 401–411 (2010)

4. Barioli, F., Fallat, S.M., Hall, H.T., Hershkowitz, D., Hogben, L., van der Holst,
H., Shader, B.: On the minimum rank of not necessarily symmetric matrices: a
preliminary study. Electron. J. Linear Algebra 18, 126–145 (2009)

5. Barioli, F., Barrett, W., Fallat, S.M., Hall, H.T., Hogben, L., Shader, B., van den
Driessche, P., van der Holst, H.: Parameters related to tree-width, zero forcing,
and maximum nullity of a graph. J. Graph Theory 72(2), 146–177 (2012)

6. Berman, A., Friedland, S., Hogben, L., Rothblum, U.G., Shader, B.: An upper
bound for the minimum rank of a graph. Linear Algebra Appl. 429(7), 1629–1638
(2008)

7. Chang, G.J., Dorbec, P., Montassier, P., Raspaud, A.: Generalized power domina-
tion of graphs. Discret. Appl. Math. 160, 1691–1698 (2012)

8. Dorbec, P., Mollard, M., Klavzar, S., Spacapan, S.: Power domination in product
graphs. SIAM J. Discret. Math. 22, 554–567 (2008)

9. Dong, Y., Shan, E., Kang, L.: Constructing the minimum dominating sets of gen-
eralized de Bruijn digraphs. Discret. Math. 338, 1501–1508 (2015)

10. Edholm, C.J., Hogben, L., Huynh, M., LaGrange, J., Row, D.D.: Vertex and edge
spread of zero forcing number, maximum nullity, and minimum rank of a graph.
Linear Algebra Appl. 436(12), 4352–4372 (2012)

11. Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Henning, M.A.: Domination in
graphs applied to electric power networks. SIAM J. Discret. Math. 15(4), 519–529
(2002)

12. Hogben, L., Huynh, M., Kingsley, N., Meyer, S., Walker, S., Young, M.: Propaga-
tion time for zero forcing on a graph. Discret. Appl. Math. 160(13–14), 1994–2005
(2012)

13. Huang, J., Xu, J.M.: The bondage numbers of extended de Bruijn and Kautz
digraphs. Comput. Math. Appl. 51, 1137–1147 (2006)

14. Imase, M., Itoh, M.: A design for directed graphs with minimum diameter. IEEE
Trans. Comput. 32, 782–784 (1983)

15. Kuo, J., Wu, W.L.: Power domination in generalized undirected de Bruijn graphs
and Kautz graphs. Discrete Math. Algorithm. Appl. 07, 2961–2973 (2015)

16. Lu, L., Wu, B., Tang, Z.: Proof of a conjecture on the zero forcing number of a
graph. arXiv:1507.01364 (2015)

17. Severini, S.: Nondiscriminatory propagation on trees. J. Phys. A: Math. Theor.
41(48), 482002 (2008)

18. Stephen, S., Rajan, B., Ryan, J., Grigorious, C., William, A.: Power domination
in certain chemical structures. J. Discret. Algorithms 33, 10–18 (2015)

http://arxiv.org/abs/1507.01364

Heuristics

A Multi-start Heuristic for Multiplicative
Depth Minimization of Boolean Circuits

Sergiu Carpov(B), Pascal Aubry, and Renaud Sirdey

CEA, LIST, Point Courrier 172, 91191 Gif-sur-Yvette Cedex, France
sergiu.carpov@cea.fr

Abstract. In this work we propose a multi-start heuristic which aims at
minimizing the multiplicative depth of boolean circuits. The multiplica-
tive depth objective is encountered in the field of homomorphic encryp-
tion where ciphertext size depends on the number of consecutive multi-
plications. The heuristic is based on rewrite operators for multiplicative
depth-2 paths. Even if the proposed rewrite operators are simple and easy
to understand the experimental results show that they are rather pow-
erful. The multiplicative depth of the benchmarked circuits was hugely
improved. In average the obtained multiplicative depths were lower by
more than 3 times than the initial ones. The proposed rewrite operators
are not limited to boolean circuits and can also be used for arithmetic
circuits.

1 Introduction and Related Works

An encryption scheme describes the way of encrypting and decrypting plain-
text messages such that finding which is the plaintext message from encrypted
data (denoted ciphertext in what follows) is either very hard or even impossi-
ble without a secret. An encryption scheme is said to be homomorphic when
some operations on plaintext messages can be done homomorphically, that is
directly in the space of ciphertexts (and without decrypting them). When addi-
tion and multiplication operations are supported, the homomorphic encryption
(HE) scheme is functionally complete. Since the seminal work of Gentry [9],
introducing the first practical (to some extent) homomorphic encryption many
other simpler and more efficient schemes have been proposed [5,6]. A HE scheme
with a binary plaintext space allows to execute any boolean circuit directly over
encrypted data.

A noise component is added to the ciphertext during the encryption for secu-
rity reasons. The noise component is a common characteristic for HE schemes.
Each new homomorphic operation applied on the ciphertexts increases the noise
component in the resulting ciphertext. After a (predefined) number of homo-
morphic operations the noise is so large that the correctness of the decryption

This work has been supported in part by the French’s FUI project CRYPTOCOMP
and by the European Union’s H2020 Programme under grant agreement number
727528 (project KONFIDO).

c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 275–286, 2018.
https://doi.org/10.1007/978-3-319-78825-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_23&domain=pdf

276 S. Carpov et al.

cannot be not ensured anymore. Usually the noise growth induced by the addi-
tion operation is smaller than the noise growth induced by the multiplication
operation. That is why many authors consider only the multiplicative depth1 of
evaluated circuits when HE schemes are parametrized. In order to support the
evaluation of larger multiplicative depth circuits, for an equivalent security level,
the ciphertext sizes must be increased and respectively the cost of homomorphic
operations increases also. Another solution to this problem is to use cipher-
text bootstrapping [10]. The bootstrapping procedure takes a noisy ciphertext
as input and executes homomorphically the HE scheme decryption. The noise
of the resulting “bootstrapped” ciphertext is lower than the noise of the input
ciphertext.

Obtaining low multiplicative depth circuits is a major issue in the practi-
cal use of homomorphic encryption. With every new multiplicative level the
HE scheme parameters increase in size. Therefore the execution time of the
whole boolean circuit increases accordingly. Many works found in the litera-
ture treat the problem of boolean circuit optimization for hardware targets or
more generally the problem of hardware synthesis. We refer to the open-source
software system used for hardware synthesis ABC [3]. It is an open-source envi-
ronment providing implementations of the state-of-the-art circuit optimization
algorithms. The most common objectives used in hardware synthesis are circuit
area and circuit depth (latency). To the best of our knowledge none of these
algorithms were designed for multiplicative depth minimization.

Cryptographic literature mostly focused on the minimization of multiplica-
tive complexity of circuits, i.e. the number of AND gates in circuits where the
XOR gates are for free [4,11,14]. Minimization of boolean circuit depth was dis-
cussed in [7]. The authors introduced circuit depth minimization techniques in
the context of secure multi-party computation. No distinction is made between
multiplicative and additive gates. The authors of Armadillo compilation chain [8]
studied the use of ABC tools for minimizing the multiplicative depth of boolean
circuits in the context of a compilation chain targeting homomorphic execution.

Several works [2,12,13] study the minimization of bootstrappings in boolean
circuits problem. Bootstrapping is a computational heavy procedure. It is
straightforward to see that minimizing the number of bootstraps in a homo-
morphic evaluation of a circuit increases its execution performance. Although
the problem we study in this paper shares the same goal (i.e. increase the homo-
morphic execution performance of boolean circuits) the employed methods to
achieve it are orthogonal.

In this work we introduce and study multiplicative depth-2 path rewrite
operators which decrease the multiplicative depth of a boolean circuit. We fur-
thermore propose a heuristic method which makes use of these operators. The
goal of the heuristic is to minimize the boolean circuit multiplicative depth. The
paper is structured as follows, in Sect. 2 are described the proposed circuit rewrite

1 Multiplicative depth is the number of sequential homomorphic multiplications which
can be done on freshly encrypted ciphertexts in order to be able to decrypt and
retrieve the result of multiplications.

A Multi-start Heuristic for Multiplicative Depth Minimization 277

operators and the heuristic itself, Sect. 3 presents experimental results we have
performed and finally Sect. 4 concludes the paper and discuss some perspectives.

2 Multiplicative Depth Minimization Multi-start
Heuristic

2.1 Preliminary Definitions

A boolean circuit is a directed acyclic graph C = (V,E) with a set of nodes
V and a set of edges E. Circuit nodes represent boolean functions (gates) and
circuit edges are connections between nodes. The set of nodes can be split into
2 independent sub-sets:

– Nodes without a predecessor define circuit inputs. An input node can be
either a boolean input variable or a boolean constant (e.g. logic “0” or logic
“1” inputs).

– Nodes each representing a gate applying a basic boolean function to the values
of its predecessors. The input degree of gates is 2. A sub-set of gate nodes
represent circuit outputs. Without loss of generality we suppose that the set
of output nodes is the same as the set of nodes with zero output degree. In
this work we suppose that the boolean circuits use AND and XOR operators
only. The set {AND,XOR} together with the constant “1” is functionally
complete [15]. This means that any boolean function can be expressed using
these operators.

We denote by pred: V → 2V and succ : V → 2V the functions giving the set
of predecessors, respectively successors, of a node v ∈ V in a boolean circuit C.

The number of successively executed AND operators, also called multiplica-
tive depth, influences the parameters of a HE scheme. The minimization of the
multiplicative depth allows not only to obtain smaller ciphertext sizes but also
to minimize2 the overall execution time of the boolean circuit. Let us define a
function d : V → {0, 1} which returns one for AND nodes and zero otherwise.
Only the nodes for which d (v) = 1 influence circuit multiplicative depth.

Let l : V → N be a function which gives the multiplicative depth of circuit
nodes. The multiplicative depth of node v is equal to the maximal number of
AND gates on any path beginning in an input node and ending in node v. The
multiplicative depths for circuit nodes are computed recursively using relation:

l (v) =

{
0 if |pred (v)| = 0,
maxu∈pred(v) l (u) + d (v) otherwise.

Let r : V → N be a function which gives the reverse multiplicative depth of
circuit nodes. The reverse multiplicative depth of node v is the maximal number

2 As we shall further see, more precisely it depends on the relative computational cost
of circuit AND gates with respect to scheme multiplicative depth.

278 S. Carpov et al.

of AND gates on any path beginning in a successor of node v and ending in
an output node. It is somewhat equivalent to the multiplicative depth function
except that it does not include the depth due to the node itself. The reverse
multiplicative depths for circuit nodes are computed recursively using:

r (v) =

{
0 if |succ (v)| = 0,
maxu∈succ(v) (r (u) + d (u)) otherwise.

The overall multiplicative depth of a circuit C is the maximal multiplicative
depth of its nodes:

lmax = max
v∈V

l (v) = max
v∈V

r (v) .

The critical nodes of a circuit C are the nodes for which relation (1) is verified.
We denote critical circuit the sub-circuit containing all the critical nodes of a
circuit C. A critical path is a path in this circuit.

l (v) + r (v) = lmax, v ∈ V (1)

2.2 Multiplicative Depth-2 Path Rewrite Operators

The multiplicative depth of a boolean circuit equals to the multiplicative depth
of its critical part. Decreasing the multiplicative depth of the critical part will
necessarily decrease the overall circuit multiplicative depth. In this section we
introduce two rewrite operators which when applied to the critical part of a
boolean circuit potentially minimize the multiplicative depth of a circuit. The
idea behind these operators is to rewrite critical paths of multiplicative depth 2 in
such a way that the overall multiplicative depth decreases. We firstly describe an
operator which rewrites simple paths composed of two AND gates only. After-
wards, a second rewrite operator is described which allows to obtain such a
simple path (from two AND gates) from any path of multiplicative depth 2.
Additionally, we introduce the conditions these paths should verify so that the
multiplicative depth is lowered after the rewrite operators are applied.

Let P denote the set of all critical paths beginning and ending in an AND
gate and containing exactly 2 AND nodes, i.e. the set of paths of multiplicative
depth 2. A path p ∈ P contains at least 2 nodes: 2 AND gates separated by zero
or more XOR gates. Figure 1 illustrates such a critical path.

Let us examine a critical path p of length 2, i.e. p =
(
v1, v|p|

)
where v1 and

v|p| are AND gates. Such a path is shown on the left-hand side of Fig. 2. Path p
can be rewritten using AND associativity rule: (x · y) · z = x · (y · z). The right-
hand side of Fig. 2 illustrates the circuit part obtained after this rewrite operator
is applied to path p. Rewritten path multiplicative depth decreases only if the
multiplicative depth of nodes y and z are less than the multiplicative depth of
node x, i.e. l (y) < l (x) and l (z) < l (x). In this case the multiplicative depth of
gate v|p| decreases by one, from l (x) + 2 to l (x) + 1. The number of AND gates
in the resulting circuit either increases by one or rests the same if node v1 does
not have other successors than node v|p|.

A Multi-start Heuristic for Multiplicative Depth Minimization 279

Fig. 1. Critical path of multiplicative depth 2. Thick edges represent the critical path.

Fig. 2. Length 2 critical path
(
v1, v|p|

)
rewrite operator. Dotted line AND gate v1 is

kept only if needed.

In case of critical paths of length larger than 2, the inner XOR gates prevents
the direct use of the rewrite operator defined above. A second rewrite operator
allows to move an AND gate up the critical path by one place. We call it AND
gate move up operator. This operator uses XOR distributivity rule: (x � y) · z =
(x · z)� (y · z). An illustration of initial and resulting paths after the application
of this operator is shown in Fig. 3. In the resulting circuit the number of AND
gates increases by one and potentially the number of XOR gates increases by
one also.

Suppose that we need to move up an AND gate over a path containing k
XOR gates. Let (((x ⊕ y1) ⊕ . . .) ⊕ yk) · z be the formula of this circuit. The
direct application of the AND gate move up operator adds an AND gate for
each XOR gate on the path. Observing that the initial formula can be rewritten
as (x ⊕ (y1 ⊕ . . . ⊕ yk)) · z (XOR associativity) we can transform it into (x · z)⊕
(y1 ⊕ . . . ⊕ yk) · z. This new formulation is functionally equivalent to the one
obtained using direct application of AND gate move up operator except that
the number of additional AND gates is only one.

Let p =
(
v1, v2, . . . , v|p|

)
be the critical path illustrated in Fig. 1, we recall

that v1 and v|p| are AND gates. The AND gate move up operator is used to move
node v|p| next to node v1. Afterwards, a critical path of length 2 is obtained,
which is rewritten using the first operator. Condition (2) insures that the mul-
tiplicative depth of the rewritten node v|p| decreases. It is equivalent to the
condition defined earlier for length 2 paths.

280 S. Carpov et al.

Fig. 3. AND gate move up operator. Dotted line XOR gate v|p|−1 is kept only if needed.

min
u∈pred(v)

l (u) < l (v1) − 1, v ∈ {
v1, v|p|

}
(2)

We shall note that the overall boolean circuit multiplicative depth does not
necessarily decrease after the above defined rewrite operators are applied, as the
critical circuit can contain several parallel critical paths. All these critical paths
have to be rewritten in order to decrease the overall circuit multiplicative depth
by one.

2.3 Multi-start Heuristic

In this section we introduce a multi-start heuristic which uses rewrite opera-
tors defined above in order to minimize the multiplicative depth of a boolean
circuit. Algorithm 1 is a priority based heuristic which rewrites critical paths of
multiplicative depth 2. The path to rewrite is chosen using a priority function
(introduced later). The algorithm stops either when a termination condition (e.g.
time, number of iterations) is verified or when there are no more reducible criti-
cal paths, i.e. paths which respect condition (2). If the set of critical paths P is
not empty, the algorithm chooses a path from it according to a priority function
prior func and rewrites this path using operators presented in previous section.
If the multiplicative depth of the obtained circuit lowers then this new circuit is
memorized as output circuit (variable Cout).

In order to decrease the overall multiplicative depth of a boolean circuit by
one, all the parallel critical paths of this circuit must be rewritten. As we have
observed empirically, the decrease of circuit multiplicative depth makes the new
critical circuit wider and wider, that is to say the number of parallel critical
paths increases. Respectively, the number of newly added gates (due to rewrite
operators) increase in a non-linear way in the worst-case scenarios.

From the perspective of boolean circuit homomorphic execution, the mini-
mization of multiplicative depth is beneficial (in terms of execution time) if the
number of additional AND gates does not exceed a threshold. This threshold
is defined by the ratio between the AND gate execution time at the previous
multiplicative level and the AND gate execution time at the current multiplica-
tive level. In order to obtain the best boolean circuit for homomorphic execution
one can either stop when the number of newly added AND gates exceeds this
threshold or store all the obtained circuits Cout (algorithm line 11) and choose
afterwards the circuit for which the homomorphic execution time is minimal.

A Multi-start Heuristic for Multiplicative Depth Minimization 281

Algorithm 1. Multiplicative depth minimization heuristic.
Input: C – input boolean circuit
Input: prior func – priority function
Output: Cout – multiplicative depth optimized boolean circtuit
1: Cout ← C
2: while termination conditions are not verified do
3: P ← critical paths of multiplicative depth 2 from circuit C
4: P ← filter paths p ∈ P respecting condition (2)
5: if |P | = 0 then
6: break
7: end if
8: p ← prior func (P) � get highest priority path
9: p ← rewrite multiplicative depth-2 path p

10: if lmax (Cout) > lmax (C) then
11: Cout ← C
12: end if
13: end while

We introduce several functions which prioritize the path selection (ties are
broken randomly):

– multiplicative depth of first path node: increasing order (d) and decreasing
order (D),

– total number of critical predecessors of all path nodes: increasing order (i)
and decreasing order (I),

– total number of critical successors of all path nodes: increasing order (o) and
decreasing order (O),

– total number of critical predecessors and successors of all path nodes: increas-
ing order (p) and decreasing order (P),

– critical path length: increasing order (l) and decreasing order (L).

Additionally to non-random priority functions3 we have implemented a random
priority function. Using different random seeds we obtain various search space
explorations.

The multi-start heuristic consists in executing Algorithm 1 several times with
different priority functions. In our experimentations we test two versions of the
multi-start heuristic. In the first version an input circuit is optimized one time
for each non-random priority function (10 executions) and in the second one
the input circuit is optimized 10 times using random priority with different
seeds. In both cases the best obtained solution (minimal multiplicative depth
and minimal number of AND gates in case of equal multiplicative depths) is
kept as multi-start heuristic result. In the next section we present the results of
the experimentations we have performed for both multi-start algorithm versions.

3 By abuse of language we denote so the above defined priority functions.

282 S. Carpov et al.

3 Experimental Results

Boolean circuits from the EPFL Combinational Benchmark Suite were used for
experimentations. This set of benchmarks contains exclusively combinational
circuits. Three types of circuits are provided: arithmetic, random/control and
very large (multi-million gate designs). Please refer to [1] for more details about
these benchmarks. In our experiments we have used only the first two types of
benchmarks4: 10 arithmetic and 10 random/control circuits. Before using the
benchmarks we have optimized and mapped them with ABC commands resyn2
and map. The last command was used to obtain boolean circuits with AND and
XOR gates only. Table 1 shows the characteristics of the obtained benchmarks
after these commands were performed.

The heuristic described in the previous section was implemented in C lan-
guage. The binary uses ABC as helper library. The two versions of the multi-start

Table 1. EPFL Combinational Benchmark Suite characteristics after initial optimiza-
tion with ABC.

Circuit name #input #output ×depth #AND

adder 256 129 255 509

bar 135 128 12 3141

div 128 128 4253 25219

hyp 256 128 24770 120203

log2 32 32 341 20299

max 512 130 204 2832

multiplier 128 128 254 14389

sin 24 25 161 3699

sqrt 128 64 4968 15571

square 64 128 247 9147

arbiter 256 129 87 11839

ctrl 7 26 8 108

cavlc 10 11 16 658

dec 8 256 3 304

i2c 147 142 15 1161

int2float 11 7 15 213

mem ctrl 1204 1231 110 44795

priority 128 8 203 676

router 60 30 21 167

voter 1001 1 36 4229

4 We assume that multi-million gate designs are out of reach for homomorphic execu-
tion, at least for the current state of HE schemes.

A Multi-start Heuristic for Multiplicative Depth Minimization 283

heuristic were executed on each benchmark circuit. Algorithm 1 execution termi-
nates early if either the number of iterations is greater than 2 times the number
of AND gates in the input circuit or the execution time exceeds 1 h. A middle-
end server with AMD Opteron 6172 processors (2.1 GHz) was used as execution
platform.

Table 2. Best obtained solutions for heuristic aggregated by priority function (non-
random and random). Bold font is used to emphasize the best solution. The best
solution considers the multiplicative depth as well as the number of AND gates.

Circuit Initial Non-random Random

×depth #AND ×depth #AND Ratio Priority ×depth #AND Ratio

adder 255 509 12 911 21.2 P 11 1125 23.2

bar 12 3141 12 3141 1.0 - 12 3141 1.0

div 4253 25219 1852 29329 2.3 l 1463 31645 2.9

hyp 24770 120203 24563 120293 1.0 P 24562 120307 1.0

log2 341 20299 141 27362 2.4 p 150 22266 2.3

max 204 2832 27 4751 7.6 P 27 4660 7.6

multiplier 254 14389 60 21884 4.2 p 59 17942 4.3

sin 161 3699 76 5922 2.1 p 81 4473 2.0

sqrt 4968 15571 4225 18435 1.2 i 4391 16785 1.1

square 247 9147 28 10478 8.8 d, i 29 9731 8.5

arbiter 87 11839 42 8652 2.1 P 42 8582 2.1

ctrl 8 108 5 109 1.6 L 5 109 1.6

cavlc 16 658 9 669 1.8 D, I, o 10 658 1.6

dec 3 304 3 304 1.0 - 3 304 1.0

i2c 15 1161 8 1185 1.9 D, o 8 1185 1.9

int2float 15 213 8 216 1.9 D, o 9 214 1.7

mem ctrl 110 44795 45 54889 2.4 p 45 49175 2.4

priority 203 676 102 1121 2.0 l 102 1106 2.0

router 21 167 11 261 1.9 o 11 204 1.9

voter 36 4229 30 4288 1.2 P 30 4340 1.2

Obtained results are shown in Table 2. The solutions for first version (column
“non-random”) and second version (column “random”) of multi-start heuris-
tic are illustrated in this table. The initial characteristics of circuits are also
recalled (column “initial”). The notations we use are the multiplicative depth
(“×depth”), the number of AND gates (“#AND”), the ratio between the mul-
tiplicative depth of the input circuit and the optimized one (“ratio”) and the
non-random priority for which the best solution was obtained (“priority”).

The best solution (in terms of multiplicative depth and number of AND gates)
was obtained using a non-random priority in 9 cases and using a random priority

284 S. Carpov et al.

in 11 cases. For the ctrl and i2c benchmarks both heuristic versions obtained the
same result. Multiplicative depth of the obtained circuits is significantly smaller
when compared to the multiplicative depth of input circuits. In average the
multiplicative depth decreases by more than 3 times. As expected, the price to
pay for a smaller multiplicative depth is an increase in the number of AND gates
(approximatively 1.2 times more in average).

The most substantial decrease is obtained for the adder benchmark, which is
the usual 128-bit ripple carry adder. The proposed heuristic achieves an impres-
sive result being able to transform a ripple carry adder with multiplicative depth
255 into “some sort of” carry-lookahead adder with a multiplicative depth 11
only.

The multiplicative depth of 2 benchmark circuits was not improved by the
heuristic. In both cases the heuristic was not able to find any reducible multi-
plicative depth-2 paths. The dec benchmark (a 8 to 256 decoder) was already at
its lowest possible multiplicative depth. As for the bar circuit (barrel shifter) we
suppose that the proposed rewrite operators are too weak in terms of expressive
power and more complex rewrite operators (e.g. circuit cone rewrite operators)
are needed for dealing with such type of circuits.

There is not a single priority function which performs well (i.e. for which the
best solution is found) on all benchmarks. The best solutions for 13 benchmarks
are found using two priority functions: the total number of critical predecessors
and successors of all path nodes (p,P), total number of critical successors of
all path nodes in increasing order (o). We assume that each priority function
performs well for a specific topology of boolean circuits.

The heuristic finished early because of time limit in the case of 5 benchmarks:
div, hyp, sqrt, arbiter and mem ctrl. The obtained multiplicative depths for these
benchmarks are not the lowest possible ones. Allocating more execution time to
heuristic will potentially increase the quality of presented results. We have rerun
the tests for the 5 benchmarks with time limit increased to 2 h. The multiplicative

Fig. 4. Number of AND gates as a function of the multiplicative depth for the bench-
mark adder. Final multiplicative depth is 11.

A Multi-start Heuristic for Multiplicative Depth Minimization 285

depth further lowered for div (from 1463 to 675), hyp (from 24562 to 24417),
sqrt (from 4225 to 3709), arbiter (from 42 to 11) and mem ctrl (from 45 to 43)
benchmarks. The exploration did not finish for 3 benchmarks: div, hyp and sqrt.

In order to see how the multiplicative depth influences the number of AND
gates we have saved all the intermediary circuits obtained during heuristic exe-
cution. The heuristic was executed on the adder circuit. The random priority
function (for which the smallest depth circuit was obtained in previous experi-
ments) was used. The dependence between the number of AND gates and the
multiplicative depth of intermediary circuits is illustrated in Fig. 4. We can see
that the number of AND gates increases faster when the multiplicative depth
is smaller. Moreover this increase is exponential for the last circuits (smallest
multiplicative depth ones).

4 Conclusions and Perspectives

In this work we have proposed and studied a multi-start heuristic for minimizing
the multiplicative depth of boolean circuits. The heuristic uses rewrite operators
for boolean circuit critical paths. As a function of the used priority functions
several versions of the multi-start heuristic have been studied. We have tested
heuristic’s performance on a set of circuits found in the literature. In average the
multiplicative depth of benchmarked circuits was lowered by more than 3 times
by the proposed heuristic. In perspective we envisage to study more elaborate
heuristics together with new priority functions.

The optimization method described in this paper can also be applied to arith-
metic circuit. An arithmetic circuit is a generalization of boolean circuits where
instead of binary field operations higher degree field/ring operations are used.
An arithmetic circuit is functionally complete when defined over addition and
multiplication operations. It is easy to see that the optimization algorithm pro-
posed in this paper together with rewrite operators can also be directly applied
to arithmetic circuits and how to do so.

References

1. Amarú, L., Gaillardon, P.-E., De Micheli, G.: The EPFL combinational benchmark
suite. In: Proceedings of the 24th International Workshop on Logic & Synthesis
(IWLS) (2015)

2. Benhamouda, F., Lepoint, T., Mathieu, C., Zhou, H.: Optimization of bootstrap-
ping in circuits. In: SODA, pp. 2423–2433. SIAM (2017)

3. Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential
Synthesis and Verification, Release 30308. http://www.eecs.berkeley.edu/∼alanmi/
abc/

4. Boyar, J., Peralta, R.: Concrete multiplicative complexity of symmetric functions.
In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 179–189.
Springer, Heidelberg (2006). https://doi.org/10.1007/11821069 16

http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/
https://doi.org/10.1007/11821069_16

286 S. Carpov et al.

5. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of the 3rd Innovations in The-
oretical Computer Science Conference, ITCS 2012, pp. 309–325 (2012)

7. Buescher, N., Holzer, A., Weber, A., Katzenbeisser, S.: Compiling low depth cir-
cuits for practical secure computation. In: Askoxylakis, I., Ioannidis, S., Katsikas,
S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 80–98. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45741-3 5

8. Carpov, S., Dubrulle, P., Sirdey, R.: Armadillo: a compilation chain for privacy pre-
serving applications. In: Proceedings of the 3rd International Workshop on Security
in Cloud Computing, SCC 2015, pp. 13–19 (2015)

9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing, STOC 2009,
pp. 169–178 (2009)

10. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-30057-8 1

11. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building
blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji,
A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10433-6 1

12. Lepoint, T., Paillier, P.: On the minimal number of bootstrappings in homomorphic
circuits. In: Adams, A.A., Brenner, M., Smith, M. (eds.) FC 2013. LNCS, vol.
7862, pp. 189–200. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-41320-9 13

13. Paindavoine, M., Vialla, B.: Minimizing the number of bootstrappings in fully
homomorphic encryption. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS,
vol. 9566, pp. 25–43. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
31301-6 2

14. Schneider, T., Zohner, M.: GMW vs. Yao? Efficient secure two-party computation
with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
275–292. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-
1 23

15. Wernick, W.: Complete sets of logical functions. Trans. Am. Math. Soc. 51(1),
117–132 (1942)

https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-319-45741-3_5
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-10433-6_1
https://doi.org/10.1007/978-3-642-41320-9_13
https://doi.org/10.1007/978-3-642-41320-9_13
https://doi.org/10.1007/978-3-319-31301-6_2
https://doi.org/10.1007/978-3-319-31301-6_2
https://doi.org/10.1007/978-3-642-39884-1_23
https://doi.org/10.1007/978-3-642-39884-1_23

The School Bus Routing Problem:
An Analysis and Algorithm

Rhydian Lewis1(B), Kate Smith-Miles2, and Kyle Phillips3

1 School of Mathematics, Cardiff University, Cardiff, Wales
LewisR9@cf.ac.uk

2 School of Mathematical Sciences, Monash University, Melbourne, Australia
kate.smith-miles@monash.edu

3 Visible Services and Transport, Vale of Glamorgan Council, Barry, Wales
kwphillips@valeofglamorgan.gov.uk

Abstract. In this paper we analyse a flexible real world-based model
for designing school bus transit systems and note a number of parallels
between this and other well-known combinatorial optimisation problems
including the vehicle routing problem, the set covering problem, and
one-dimensional bin packing. We then describe an iterated local search
algorithm for this problem and demonstrate the sort of solutions that we
can expect with different types of problem instance.

1 Introduction

Vehicle routing problems (VRPs) involve identifying routes for a fleet of vehicles
that are to serve a set of customers. Often they are expressed using an edge-
weighted directed graph G = (V,E), where the vertex set V = {v0, v1, . . . , vn}
represents a single depot and n customers (v0 and v1, . . . , vn respectively), and
the weighting function w(u, v) gives the travel distance (or travel time) between
each pair of vertices u, v ∈ V .

Since the work of Dantzig and Ramser in the late 1950s [4], a multitude of
VRP formulations have been considered in the literature [7]. These include using
time-windows for visiting certain customers, placing limitations on the lengths
of individual routes, the partitioning of customers into pick-up and delivery
locations, and the dynamic recalibration of routes subject to the arrival of new
customer requests during the transportation period [11].

Solutions to most VRP problems can be expressed by a set of routes R =
{R1, . . . , Rk} using one vehicle per-route. In the classical VRP, each route should
be a simple cycle in G such that:

Ri ∩ Rj = {v0} ∀Ri, Rj ∈ R (1)
k⋃

i=1

Ri = V (2)

These constraints specify that each customer should be assigned to exactly one
route, and that all routes should start and end at the depot v0. A variation on
c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 287–298, 2018.
https://doi.org/10.1007/978-3-319-78825-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_24&domain=pdf

288 R. Lewis et al.

this is the open VRP in which, instead of cycles, all routes must be simple paths
containing v0 as one terminal vertex, meaning that routes either start or end at
the depot, but not both [8].

In the time constrained VRP, extra realism is added by specifying that the
total weight of edges in each route should be less than a given maximum—e.g.,
to ensure that driving time regulations are obeyed. In the capacitated VRP,
meanwhile, maximum capacities are specified for each vehicle, and weights are
also added to the vertices v1, . . . , vn in G. These vertex weights represent the
size of the items being delivered to each customer, and we require the total size
of items delivered by each vehicle to not exceed its maximum capacity.

The split-delivery VRP extends the capacitated VRP by relaxing Constraint
(1) to simply: v0 ∈ R, ∀R ∈ R. This allows more than one vehicle to visit a cus-
tomer and therefore permits a delivery to be made in many parts. Unlike the capac-
itated VRP, this relaxation also allows the minimum number of routes/vehicles in
a solution to meet the lower bound of �(∑n

i=1 w(vi)) /C�, where w(v) gives the
weight of a vertex and C is the maximum capacity of the vehicles [15].

Objective functions for the VRP can depend on many real world factors.
Most commonly we seek to minimise the number of vehicles used, the total
length of the routes, or some combination of the two. In other cases we might
also be concerned with the waiting times of customers, the obeying of time
windows, avoiding traffic jams, or meeting individual drivers’ needs. A useful
survey presenting a taxonomy of the various types of VRP can be found in [5].

In this paper we look at the problem of arranging school bus transport. This
problem is often cited as a type of VRP applicable in the real-world, though histor-
ically it has been less studied than other variants. One reason for this is that school
transport solutions usually only involve visiting a subset of the available stopping
points (bus stops); hence the issue of choosing which bus stops to visit adds an
extra layer of complexity to the problem. Indeed, Park and Kim [10] note that
bus stop selection is often omitted in the VRP literature altogether. One notable
exception to this is due to Schittekat et al. [14], who use a problem based on the
requirements of the Belgian school system; however, their formulation involves
assumptions not considered here, most notably their limitation that bus stops can
only be visited by a maximum of one vehicle in a solution.

The problem considered here is rather generic and was originally supplied by
the third author of this paper, whose organisation is responsible for arranging
school transport in the south of Wales (population 2.2m). Like many countries,
school transport in Wales is organised by local government and then run by
private bus companies. A few months before the start of the school year, a
list of addresses is compiled containing all school children eligible for school
transport (usually those who are in the school’s catchment area but not within
a reasonable walking distance). Each school is then considered individually, and
a set of suitable bus routes are drawn up to serve all qualifying students. These
routes are then put out for public tender, with bus companies bidding for the
contracts. A yearly contract for a 70-seat bus typically ranges from GBP£25,000
to £35,000, though these costs can increase further for longer journeys and for

The School Bus Routing Problem: An Analysis and Algorithm 289

Bus Stop
Address

(a) (b)

Fig. 1. (a) Example problem instance; (b) Example solution using k = 3 routes. Bus
stops with dotted outlines are not used (i.e., are not members of V ′

1).

routes requiring a chaperone (i.e., routes with young children). It is therefore
critical to try to reduce the number of buses used by each school. Note, however,
that government guidelines also specify that journeys should not be too lengthy
(less than 45 min for under-11 s, and one hour for under-18 s), though exceptions
can be made for schools with very large catchment areas.

2 Problem Definition

The school bus routing problem (SBRP) considered here can be more formally
stated using two sets of vertices. The first vertex set V1 contains one school, v0,
and n bus stops v1, . . . , vn. An edge set E1 then contains directed edges between
each u, v ∈ V1 in each direction, making the graph (V1, E1) a complete digraph. A
nonnegative weighting function t(u, v) is also used to define the shortest driving
time between each vertex pair.

The second vertex set V2 defines the set of student addresses, with the weight
s(v) ∈ Z

+ of each v ∈ V2 giving the number of students at this address requiring
school transport. As part of the problem, a parameter mw is defined stating the
maximum distance that students are expected to walk from their home address to
a bus stop. A second set of edges is thus used to signify bus stops within walking
distance of each address: E2 = {{u, v} : u ∈ V2 ∧ v ∈ V1 ∧ w(u, v) ≤ mw},
where w(u, v) gives the shortest walking distance between each u ∈ V2 and
v ∈ V1. Also, students living within me distance units of their school are not
considered eligible for school transport; consequently, w(u, v0) ≥ me ∀u ∈ V2.

The graph (V1 − {v0}, V2, E2) therefore constitutes an undirected bipartite
graph with potentially many components, as illustrated in Fig. 1(a). Note that if
there exists an address u ∈ V2 with just one incident edge {u, v} ∈ E2, then the
bus stop v ∈ V1 is compulsory, since it must be included in a solution in order
to satisfy the needs of address u. We can also assume that (V1 − {v0}, V2, E2)

290 R. Lewis et al.

contains no isolated vertices: such vertices in (V1 − {v0}) would give a bus stop
with no address within walking distance and can therefore be removed from the
problem; isolated vertices in V2 define an address with no suitable bus stop,
making the problem unsolvable (in practice, an additional bus stop would need
to be added to serve such an address).

A feasible solution to the SBRP is a set of routes R = {R1, . . . , Rk} in which
each route R ∈ R is a simple path served by a single bus of capacity mc. Each
bus then travels to the school v0 after visiting the terminal vertex on its path.
The following constraints need to be satisfied.

k⋃

i=1

Ri = V ′
1 (3)

∀u ∈ V2 ∃v ∈ V ′
1 : {u, v} ∈ E2 (4)

s(R) ≤ mc ∀R ∈ R (5)
t(R) ≤ mt ∀R ∈ R (6)

Here, V ′
1 is a subset of (V1 − {v0}) that should satisfy Constraint (4): that is,

for each address u ∈ V2, the set V ′
1 should contain at least one bus stop within

walking distance. Constraint (5) then specifies that the total number of students
boarding the bus on a route R, denoted by s(R), does not exceed the maximum
bus capacity mc. Similarly, Constraint (6) states that the total journey time t(R)
of each route should not exceed the stated time limit mt. The aim is to then
produce a feasible solution that minimises the number of routes k. An example
solution to this problem is shown in Fig. 1(b). Note that these constraints allow
bus stops to be included in more than one route, as is the case in the diagram.
We call these bus stops multistops, their presence allowing different bus routes
to split and merge as needed.

In our algorithm, our strategy is to relax Constraint (6) while ensuring that
(3)–(5) are always satisfied. In doing so, a number of assumptions are made.
First, students are always assigned to the bus stop in V ′

1 closest to their home.
Second, all students are given bus passes that only allow them to travel on one
particular route. This avoids situations where too many students might board a
bus at a multistop, thereby making it too full to serve students at a later non-
multistop. Third, solutions only concern buses travelling to school. After-school
routes are assumed to follow the same paths in reverse, with any discrepancies
in travel time due to one-way streets, etc. not being considered.

Our final assumption involves the use dwell times within a journey. These
measure the time spent servicing each bus stop, including decelerating, open-
ing doors, loading passengers, and rejoining the traffic stream. Dwell times are
influenced by many factors including the number of boarding passengers, the
size and position of the doors, the age of the passengers, and traffic density.
Commonly, simple linear models y = a + bx are used to estimate a dwell time y,
where x gives the number of boarding passengers, b gives the boarding time per-
passenger, and a captures all remaining delays. We follow this approach here:

The School Bus Routing Problem: An Analysis and Algorithm 291

Definition 1. The journey time t(R) of a route R = (u1, u2, . . . , ul) ∈ R is
calculated,

t(R) =

(
l−1∑

i=1

t(ui, ui+1)

)
+ t(ul, v0) +

(
l∑

i=1

a + b · s(ui, R)

)
, (7)

where s(ui, R) denotes the number of students boarding the bus on route R at
bus stop ui.

In our case we use the values a = 15 and b = 5 (seconds), which are consistent
with those recommended in [2,12,16].

3 Problem Analysis

In this section we now make some observations about the complexity of the
SBRP and its underlying subproblems.

Theorem 1. The task of finding a feasible solution with a minimum number of
routes is NP-hard.

Proof. Let (V1, V2, E2) be a graph such that deg(u) = 1 ∀u ∈ V2. This means
that, for all bus stops v ∈ (V1 − {v0}), (a) v is compulsory and must appear
in at least one route, and (b) the number of boarding students is fixed at∑

∀u∈Γ(v) s(u). This also implies the dwell times at each bus stop are fixed. This
special case is equivalent to the NP-hard time-constrained capacitated split-
delivery VRP, itself a generalisation of the NP-hard time-constrained VRP.

A similar proof of NP-hardness considers a generalisation of the above in
which each component in (V1 − {v0}, V2, E2) is a complete bipartite graph. In
this case, all students can be assigned to a bus by including in V ′

1 exactly one
bus stop from each component, making the problem a multi-vehicle version of
the NP-hard generalised travelling salesman problem.

As stated, the primary aim in the SBRP is to minimise the number of routes
(buses) being used in a solution. It is therefore desirable to fill buses where pos-
sible, bringing parallels with the NP-hard bin-packing problem [6]. Indeed, if
multistops were not permitted in a solution, then the identification of a solu-
tion using k routes while obeying Constraints (3)–(5) would result in a one-
dimensional bin-packing problem with bin capacity mc and item sizes equal to
the number of students boarding at each bus stop. As noted, multistops are per-
mitted in this SBRP meaning that students boarding at a particular bus stop
can be assigned to different routes if needed (or, equivalently, items in the cor-
responding packing problem can be split across different bins). This allows us to
produce a solution R = {R1, . . . , Rk} satisfying constraints (3)–(5) that meets
the lower bound of k = �(∑n

i=1 s(vi)) /mc�, though of course these routes could
be rather long.

From a different perspective, the issue of choosing the subset V ′
1 of bus stops

to include in a solution is closely related to the set covering problem. Recall

292 R. Lewis et al.

that set covering involves taking a “universe” U = {1, 2, ..., n} and a set S
whose elements are subsets of the universe, and seeks to find the smallest subset
S′ ⊆ S whose union equals the universe. For example, given U = {1, 2, 3, 4} and
S = {{1}, {1, 2}, {1, 3}, {3, 4}, {4}} the optimal solution is S′ = {{1, 2}, {3, 4}},
containing just two elements.

Definition 2. S′ ⊆ S is a complete covering if and only if
⋃

s∈S′ = U . A
minimal covering is a complete covering in which the removal of any element in
S′ results in an incomplete covering.

According to Definition 2, an optimal solution to a set covering problem is a
minimum cardinality solution among all minimal coverings. Note that while
the task of identifying an optimal solution is NP-hard [6], the identification of
minimal coverings is easily carried out in polynomial time. For example, starting
with the complete covering S′ = S, at each step we might simply remove any
element s ∈ S′ for which (S′ − {s}) is still a complete covering, repeating until
S′ is minimal.

With regards to the SBRP, using the bipartite graph (V1 − {v0}, V2, E2), let
S be the set whose elements correspond to the addresses within walking distance
of each bus stop, S = {Γ(v) : v ∈ (V1 − {v0})}. According to Constraint (4), all
addresses in a feasible solution must be served by a bus stop; hence, the task of
identifying a subset V ′

1 ⊆ V1 meeting this criterion is equivalent to the problem
of finding a complete covering of the universe V2 using the set S.

Theorem 2. Consider the SBRP in which multistops are not permitted (i.e.,
Ri ∩ Rj = ∅ ∀Ri, Rj ∈ R), and let (V1, E1) be a graph whose pairwise distances
satisfy the triangle inequality. Now let R = {R1, . . . , Rk} be a solution satisfying
Constraints (3)–(5) that has the minimum total journey time

∑k
i=1 t(Ri). Then

the subset of bus stops V ′
1 used in R corresponds to a minimal covering S′.

Proof. The removal of any bus stop v ∈ V ′
1 corresponds to the removal of the

element Γ(v) in S′ which, by definition, results in an incomplete covering and
violation of Constraint (4). Conversely, the addition of an extra element Γ(v) to
S′ will result in a complete but non-minimal covering; however, this corresponds
to the addition of an extra bus stop v in at least one route in R which, due to
the triangle inequality, will maintain or increase the total journey time of R.

Note that this theorem does not hold when multistops are permitted in a
solution. This is because the addition of an extra bus stop may allow a route to be
shortened by redirecting it from a multistop and then through this new stop. The
triangle inequality is also necessary, though it is acceptable here, being satisfied
by both real-world road maps (where minimum distances/times between each
pair of locations are used) and Euclidean graphs. Indeed, because of the extra
delays incurred by dwell times in the SBRP, this inequality can be strengthened
to ∀u1, u2, u3 ∈ V1, t(u1, u2) + t(u2, u3) > t(u1, u3).

The School Bus Routing Problem: An Analysis and Algorithm 293

4 Algorithm Description

As noted, our strategy for this problem is to use a fixed number of routes k
and allow the violation of Constraint (6) while ensuring that the remaining con-
straints (3)–(5) are always satisfied. Specialised operators are then used to try to
shorten the routes in a solution such that Constraint (6) also becomes satisfied,
giving a feasible solution. If this cannot be achieved at a certain computation
limit, k is increased by one, and the algorithm is repeated. Initially, k is set to the
lower bound �(∑n

i=1 s(vi)) /mc�. An alternative approach would be to allow our
search operators to alter k and then use its value as part of the objective func-
tion. However, evidence from the literature for similar partition-based problems
suggests the former to usually be a more suitable approach [9,13].

Our approach is based on iterated local search using a solution space V ′
1

that contains all bus stop subsets V ′
1 ⊆ V1 corresponding to minimal coverings.

To begin, a member of V ′
1 is generated and improved via a local search routine

(Sect. 4.2). Upon termination of this routine, a new member of V ′
1 is then gen-

erated by “kicking” the incumbent solution (Sect. 4.3), and re-running the local
search. This is repeated until a stopping criterion is met (see Sect. 5).

4.1 Initial Solution and Cost Function

An initial solution R = {R1, . . . , Rk} is constructed by first generating a subset
of bus stops V ′

1 corresponding to a minimal covering. In our case, this is achieved
using the well-known greedy heuristic of Chvatal [3], followed by the removal
of randomly selected bus stops (if necessary) until the covering is seen to be
minimal.

Having generated V ′
1 , the number of students boarding at each bus stop

s(v), v ∈ V ′
1 is calculated. A variant of the first-fit descending heuristic for bin

packing is then used to assign bus stops to routes. Specifically, at each step, the
bus stop v with the largest number of boarding students is chosen and assigned
to any route (vehicle) seen to have sufficient capacity. If no such route exists,
then the route with the largest spare capacity x is chosen and v is assigned to
this route along with x students. This has the effect of creating a multistop,
since a copy of bus stop v, along with its remaining students will also need to
be assigned to a different route in a subsequent iteration.

The above process produces a solution R obeying Constraints (3)–(5). It is
then evaluated according to an objective function f(R) =

∑k
i=1 t

′(R), where

t′(R) =

{
t(R) if t(R) ≤ mt

mt + W (1 + t(R) − mt) otherwise.
(8)

Here, W introduces a penalty cost for routes whose journey times exceed the
maximum mt. In our case we set W to mt and include the addition of one in the
formula to ensure that a route with t(R) > mt is always penalised more heavily
than two routes with individual journey times of less than mt.

294 R. Lewis et al.

u1 u2 u3 u4 u5 u6 u7

v1 v2 v3 v4 v5 v6

u1 u2 v2 v3 u6 u7

v1 u5 u4 u3 v4 v5 v6

R1 =

R2 =

R1 =

R2 =

u1 u2 u3 u4 u5 u6 u7R =

j

u1 u5 u6 u2 u3 u4 u7

(a)

(b)

R =

Fig. 2. Example application of (a) the Section Swap operator (here, the section
u3, u4, u5 has been inverted before insertion into R2); and (b) the Extended Or-opt
operator.

4.2 Local Search

As with many other VRP variants, our local search routine uses a combination of
both inter- and intra-route neighbourhood operators. The following inter-route
operators act on two routes R1, R2 ∈ R. Without loss of generality, assume that
R1 = (u1, u2, . . . , ul1) and R2 = (v1, v2, . . . , vl2).

Section Swap: Take two vertices in each route, ui1 , ui2 (1 ≤ i1 ≤ i2 ≤ l1) and
vj1 , vj2 (1 ≤ j1 ≤ j2 ≤ l2), and use these to define the sections ui1 , . . . , ui2

and vj1 , . . . , vj2 within R1 and R2 respectively. Now swap the two sections,
inverting either if this leads to a superior cost (see Fig. 2(a)).

Section Insert: Take a section in R1, defined by ui1 and ui2 as above, together
with an insertion point j (1 ≤ j ≤ l2 +1) in R2. Now remove the section from
R1 and insert it before vertex vj in R2, inverting the section if this leads to
a better cost. If j = l2 + 1, add the section to the end of R2.

Note that these inter-route operators may result in too many students being
assigned to R1 or R2, leading to a violation of Constraint (5). In our case, such
moves are disallowed. Since multistops are permitted, it is also possible that
they will result in a route containing a vertex v ∈ V ′

1 more than once. Since each
route must be a simple path, these need to be deleted. Assuming without loss of
generality that a new route is to be produced by inserting the section ui1 , . . . , ui2

(possibly inverted) into a route R = (v1, v2, . . . , vl2), and that some vertex in
the section is already present in R, this is done by simply removing the relevant
vertex from the section and reassigning its students to the other occurrence of
the vertex in R.

Our three intra-route neighbourhood operators act on a single route R =
(u1, u2, . . . , ul) ∈ R. Their application does not affect the satisfaction of Con-
straints (3)–(5), nor do they introduce duplicate vertices into a route.

Swap: Take two vertices ui1 , ui2(1 ≤ i1 ≤ i2 ≤ l) in R and swap their positions.
2-opt: Take two vertices ui1 , ui2(1 ≤ i1 ≤ i2 ≤ l) and invert the section

ui1 , . . . , ui2 within R.
Extended Or-opt: Take a section defined by ui1 and ui2 as above, together with

an insertion point j outside of this section (i.e., 1 ≤ j < i1 or i2+1 < j ≤ l+1).
Now remove the section and insert it before vertex uj . If j = l + 1, then add

The School Bus Routing Problem: An Analysis and Algorithm 295

the section to the end of the route. Also, invert the section if this leads to a
better cost (see Fig. 2(b)).

Note that, together, these five operators generalise a number of neighbour-
hood operators commonly featured in the literature. For example, our two inter-
route operators include and extend the six outlined by Silva et al. [15] for the
capacitated VRP. Similarly, they extend the basic VRP-based neighbourhood
operators used with the bus routing problem considered in [14]. Our Extended
Or-opt operator also generalises the more basic Or-opt, which only involves sec-
tions of up to three vertices [1].

Here, our local search procedure follows the steepest descent methodology: in
each cycle all moves in all neighbourhoods are evaluated, and the move offering
the largest reduction in cost is performed, breaking ties randomly. The process
halts when no improving moves are identified. Note that the number of moves
considered in each cycle is of O(m4), where m =

∑k
i=1 |Ri| is the size of the

incumbent solution. Though seemingly quite expensive, with appropriate book-
keeping the changes in cost caused by individual applications of these neigh-
bourhood operators can always be calculated in constant time. Consequently,
this growth rate was not found to be particularly restrictive.

4.3 Generating New Minimal Coverings via a Kick Operator

While our local search routine is able to alter and improve the cost of a solution,
it does not alter the subset of bus stops being used V ′

1 . One way of doing this, as
suggested in [14], would be to either swap a bus stop in a route with a currently
unused bus stop, or simply remove a bus stop from a route altogether. However,
besides not allowing the number of bus stops in V ′

1 to increase, this is unsuitable
here because it fails to ensure the satisfaction of Constraint (4).

Given a minimal subset of bus stops V ′
1 , our operator first removes a randomly

chosen non-compulsory bus stop v ∈ V ′
1 , followed by x further non-compulsory

bus stops, leaving a partial covering.1 A different minimal covering is then con-
structed by selecting bus stops from the set (V1−{v}) using a randomised version
of Chvatal’s heuristic that, at each stage, arbitrarily selects any bus stop that
will serve some currently unserved students, until all students are served. If nec-
essary, randomly selected bus stops are then also removed until the covering is
minimal.

Having produced a new minimal subset of bus stops V ′′
1 = V ′

1 , the current
solution R needs to be repaired to reflect these changes. To do this, the closest
bus stops in V ′′

1 to each address are first recalculated and bus stops from the set
(V ′

1 −V ′′
1) are deleted from routes in R. Instances of multistops are also removed

at this point so that each bus stop occurs at most once in R. Randomly selected
bus stops are then also removed from routes in R if their number of students
exceeds the maximum capacity mc. Finally bus stops in V ′′

1 not yet in R are

1 In our case a value for x is selected randomly according to a binomial distribution
X ∼ B(|V ′

1 |, 3/|V ′
1 |).

296 R. Lewis et al.

0.1
1.1

2.1
3.1

4.1

0
5

10
15
20

25

35 60 85

mw

Ex
tra

 R
ou

te
s

mt

0.1
1.1

2.1
3.1

4.1

0
5

10
15
20

25

35 60 85

mw

Ex
tra

 R
ou

te
s

mt

0.1
1.1

2.1
3.1

4.1

0
5

10
15
20

25

35 60 85

mw

Ex
tra

 R
ou

te
s

mt

0.1
1.1

2.1
3.1

4.1

0
5

10
15
20

25

35 60 85

mw

Ex
tra

 R
ou

te
s

mt

Fig. 3. Number of extra buses required by solutions for various values of mt (in min-
utes) and mw (in miles) for 25, 50, 100 and 250 bus stops respectively. Each point is
the mean across five problem instances.

assigned to routes using the bin packing heuristic from Sect. 4.1. This results in
a modified solution R obeying Constraints (3)–(5) as desired.

5 Experimentation

Our experiments consider the issues that affect the number of extra buses
required in a solution compared to the lower bound of �(∑n

i=1 s(vi)) /mc�. To do
this, artificial problem instances were generated by placing a school at the centre
of a circle with radius r > me. Bus stops were then randomly placed within this
circle, followed by a set of addresses, ensuring that each address was at least me

distance units from the school, but within mw distance units of at least one bus
stop. Distances between vertices are assumed to be Euclidean.

Figure 3 shows the effect of altering (a) the maximum walk distance mw in
our problem generator and (b) the maximum journey time mt permitted by
our algorithm, using 25, 50, 100 and 250 bus stops. In all instances we used a
radius r of 15 miles and buses were assumed to travel at 30 mph—hence all bus
stops are within 30 min of the school. The number of addresses was set to 400,
with the number of students boarding each bus stop s(v) selected randomly from
the set {1, 2, 3, 4}, giving approximately 1,000 students per-instance. Finally, the
maximum bus capacity mc and minimum eligibility distance me were set to 70
and 3 miles respectively, with ten seconds of execution time permitted for each
value of k. (The algorithm was written in C++ and executed on a 3.3 GHtz
Windows 7 machine with 8 GB RAM.)

Figure 3 demonstrates that more routes (buses) are needed when both the
maximum journey times mt and the maximum walking distances mw are low.

The School Bus Routing Problem: An Analysis and Algorithm 297

For low values for mt this is quite natural: shorter journey limits imply the need
for more routes in feasible solutions. On the other hand, for low values of mw

the instance generator clusters addresses tightly around bus stops; consequently,
nearly all bus stops are compulsory, making the problem very similar to that
described in Theorem 1. This means that any savings that could be achieved
by only using a subset of the bus stops are not available, creating a need for
additional routes. We also see that these effects increase for larger numbers of
bus stops where, for low values of mw in particular, more bus stops will need to
be visited.

Considering multistops, we found that these occur more frequently when it is
advantageous or necessary to assign large numbers of students to individual bus
stops. This occurs for high values of mw, where students are able to walk larger
distances to bus stops (implying fewer bus stops in V ′

1), or when the number
of bus stops is small. From a bin packing perspective, more students per-stop
implies larger items to pack into the bins, meaning that more of these items will
need to be “split”, resulting in a multistop.

As we might expect, the number of local optima visited by the algorithm
within the ten second time limit (and therefore the number of kicks applied) is
heavily influenced by the computational requirements of the local search rou-
tine, which is itself influenced by the size of a solution

∑k
i=1 |Ri|. To illustrate,

for values of 25, 50, 100 and 250, these figures were seen to be approximately
250,000, 47,000, 4,000 and 60 respectively, suggesting that longer run times may
be required for problem instances involving larger solutions.

6 Conclusions and Further Work

This paper has analysed a real-world school bus routing formulation that builds
on previous models proposed in the literature by including bus stop selection,
multistops, and dwell times. In doing so, relationships have been drawn with
three well-known combinatorial optimisation problems.

Our experiments have demonstrated that our algorithm is often able to find
solutions using the lower bound of �(∑n

i=1 s(vi)) /mc� routes. This is particularly
so for instances where only a small proportion of bus stops need to be used, such
as when the maximum walking distance of students is set quite high. Note,
however, that in cases where all bus stops need to be used, our proposed kick
operator has no effect, so it may be better to focus on extending the local search
operator by, for example, including a tabu element.

As noted, the solution space in our current algorithm is restricted to bus
stop subsets that correspond to minimal set coverings. However, according to
Theorem 2, our use of multistops means that optimal solutions to a particular
problem instance may not occur within this space. Future research will determine
whether this restriction is beneficial, or whether it is preferable to use the larger
space of all set coverings.

This paper has limited the empirical analysis to artificially generated prob-
lems; however, our research is ongoing and we are currently using this same

298 R. Lewis et al.

method with large real-world problems generated using web mapping services.
One feature of our current solutions to these problems is that, by ensuring the
set of used bus stops corresponds to a minimal covering, large numbers of stu-
dents are often assigned to a relatively small number of bus stops, rather than
using more convenient bus stops that are closer to their home. We expect further
improvements to the service might therefore be achieved by sometimes allowing
additional bus stops to be used, though perhaps without increasing the number
of routes unduly.

References

1. Babin, G., Deneault, S., Laporte, G.: Improvements to the Or-opt heuristic for the
symmetric travelling salesman problem. J. Oper. Res. Soc. 58(3), 402–407 (2007)

2. Bertini, R., El-Geneidy, A.: Modeling transit trip time using archived bus dispatch
system data. J. Transp. Eng. 130(1), 56–67 (2004)

3. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3), 233–235 (1979)

4. Dantzig, G., Ramser, J.: The truck dispatching problem. Manag. Sci. 60(1), 80–91
(1959)

5. Eksioglu, B., Volkan, V., Reisman, A.: The vehicle routing problem: a taxonomic
review. Comput. Ind. Eng. 57(4), 1472–1483 (2009)

6. Garey, M., Johnson, D.: Computers and Intractability - A Guide to NP-
Completeness, 1st edn. W. H. Freeman and Company, San Francisco (1979)

7. Laporte, G.: Fifty years of vehicle routing. Transp. Sci. 43, 408–416 (2009)
8. Letchford, A., Lysgaard, J., Eglese, R.: A branch-and-cut algorithm for the capac-

itated open vehicle routing problem. J. Oper. Res. Soc. 58, 1642–1651 (2007)
9. Lewis, R.: A Guide to Graph Colouring: Algorithms and Applications. Springer,

Cham (2015). https://doi.org/10.1007/978-3-319-25730-3
10. Park, J., Kim, B.: The school bus routing problem: a review. Eur. J. Oper. Res.

202, 311–319 (2010)
11. Pillac, V., Gendreau, M., Guéret, C., Medagila, A.: A review of dynamic vehicle

routing problems. Eur. J. Oper. Res. 225, 1–11 (2013)
12. Transit Cooperative Research Program: Transit Capacity and Quality of Service

Manual, 3rd edn. (2013). ISBN 978-0-309-28344-1
13. Qin, H., Ming, W., Zhang, Z., Xie, Y., Lim, A.: A tabu search algorithm for the

multi-period inspector scheduling problem. Comput. Oper. Res. 59, 78–93 (2015)
14. Schittekat, P., Kinable, J., Sörensen, K., Sevaux, M., Spieksma, F., Springael, J.:

A metaheuristic for the school bus routing problem with bus stop selection. Eur.
J. Oper. Res. 229, 518–528 (2013)

15. Silva, M., Subramanian, A., Ochi, L.S.: An interated local search heuristic for the
split delivery vehicle routing problem. Comput. Oper. Res. 53, 234–239 (2015)

16. Wang, C., Zhirui, Y., Yuan, W., Yueru, X., Wei, W.: Modeling bus dwell time and
time lost serving stop in China. J. Public Transp. 19(3), 55–77 (2016)

https://doi.org/10.1007/978-3-319-25730-3

Heuristic, Branch-and-Bound Solver
and Improved Space Reduction for the

Median of Permutations Problem

Robin Milosz and Sylvie Hamel(B)

DIRO, Université de Montréal, C.P. 6128 Succursale Centre-Ville,
Montréal, QC H3C 3J7, Canada

{robin.milosz,sylvie.hamel}@umontreal.ca

Abstract. Given a set A ⊆ Sn of m permutations of {1, 2, . . . , n} and
a distance function d, the median problem consists of finding a permu-
tation π∗ that is the “closest” of the m given permutations. Here, we
study the problem under the Kendall-τ distance which counts the num-
ber of order disagreements between pairs of elements of permutations.
In this article, we explore this NP-hard problem using three different
approaches: a well parameterized heuristic, an improved space search
reduction technique and a refined branch-and-bound solver.

1 Introduction

The problem of finding medians of a set of m permutations of {1, 2, . . . , n}
under the Kendall-τ distance [13], often cited as the Kemeny Score Problem [12]
consists of finding a permutation that agrees the most with the order of the m
given permutations, i.e., that minimizes the sum of order disagreements between
pairs of elements of permutations. This problem has been proved to be NP-hard
when m ≥ 4, m even (first proved in [8], then corrected in [4]), but its complexity
remains unknown for m ≥ 3, m odd. A lot of work as been done in the last 15
years, either on deriving approximation algorithms [1,14,21] or fixed-parameter
ones [3,11,20]. Other theoretical approaches aiming at reducing the search space
for this problem have also been developed [2,5–7,19].

In this present work, we are interested in solving methods for the median of
permutations problem, focusing on three different approaches. After introducing
some basic definitions and notations in Sect. 2, we present our first approach in
Sect. 3, an adaptation of the well known “Simulated Annealing” heuristic to our
context. Second, in Sect. 4, we built ordering constraints for pairs of elements
appearing in a median by merging previous approches [6,19] complemented by
our simulated annealing heuristic, thus reducing significantly the search space for

This work is supported by a grant from the National Sciences and Engineering
Research Council of Canada (NSERC) through an Individual Discovery Grant
RGPIN-2016-04576 (Hamel) and by Fonds Nature et Technologies (FRQNT)
through a Doctoral scholarship (Milosz).

c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 299–311, 2018.
https://doi.org/10.1007/978-3-319-78825-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_25&domain=pdf

300 R. Milosz and S. Hamel

this median. Third, we present, in Sect. 5, an implementation of an exact solver:
a branch-and-bound algorithm that is powered by the two previous approaches.
Finally, Sect. 6 gives some thoughts on future works.

2 Median of Permutation: Definitions and Notations

A permutation π is a bijection of [n] = {1, 2 . . . , n} onto itself. The set of all
permutations of [n] is denoted Sn. As usual we denote a permutation π of [n] as
π = π1π2 . . . πn, and a segment of π by π[i..j] = πiπi+1...πj−1πj . The cardinality
of a set S will be denoted #S.

The Kendall-τ distance, denoted dKT , counts the number of order dis-
agreements between pairs of elements of two permutations and can be defined
formally as follows: for permutations π and σ of [n], we have that

dKT (π, σ) = #{(i, j)|i < j and [(π[i] < π[j] and σ[i] > σ[j])
or (π[i] > π[j] and σ[i] < σ[j])]},

where π[i] denotes the position of integer i in permutation π.
Given any set of permutations A ⊆ Sn and a permutation π ∈ Sn, we have

dKT (π,A) =
∑

σ∈A
dKT (π, σ). The problem of finding a median of A under

the Kendall-τ distance can be stated formally as follows: Given A ⊆ Sn, we
want to find a permutation π∗ of Sn such that dKT (π∗,A) ≤ dKT (π,A), ∀ π ∈
Sn. Note that a set A can have more than one median. To keep track of the
number of permutations in A that have a certain order between two elements,
let us introduce the left/right distance matrices L and R.

Definition 1. Let L(A), be the left distance matrix of a set of m permuta-
tions A ⊆ Sn, where Lij(A) denotes the number of permutations of A having
element i to the left of element j. Symmetrically, let R(A), be the right dis-
tance matrix of A, where Rij(A) denotes the number of permutations of A
having element i to the right of element j. Obviously, Lij(A) + Rij(A) = m and
Lij(A) = Rji(A).

We can calculate the distance between a permutation π ∈ Sn and a set of
permutations A ⊆ Sn using the right (or left) distance matrix as follow:

dKT (π,A) =
n∑

i=1

n∑

j=1
j �=i

π[j]>π[i]

Rij(A) =
n∑

i=1

n∑

j=1
j �=i

π[j]>π[i]

Lji(A).

3 A Heuristic Approach

Our first approach is based on the well known Simulated Annealing (SA) heuris-
tic. This approach will give us an approximative solution for the median problem,
an upper bound on the distance we are trying to minimize (dKT (π,A)) and a
direction for our branch-and-bound search.

Heuristic, Branch-and-Bound Solver and Improved Space Reduction 301

3.1 Simulated Annealing

Simulated annealing (SA) is a probabilistic metaheuristic for locating a good
approximation to the global optimum of a given function in a large search space
[15]. It is an adaptation of the Metropolis-Hasting algorithm [16] and works best
on large discrete space. For that reason, it is a good choice in our case where the
search space is Sn, the space of all permutations of [n].

In a simulated annealing heuristic, each point s of the search space corre-
sponds to a state of a physical system, and minimizing a function f(s) corre-
sponds to minimizing the internal energy of the system in state s. The goal is
to bring the system, from a randomly chosen initial state, to a state with the
minimum possible energy. At each step, the SA heuristic considers a neighbour
s′ of the current point s and (1) always moves to it if f(s′) < f(s) or (2) moves
to it with a certain probability if f(s′) > f(s). This probability to do a “bad”
move is almost 1 at the beginning of the heuristic when the system is heated but
goes to 0 as the system is cooled. The heuristic stops either when the system
reaches a good enough solution or when a certain number of moves has been
made.

In our context, we are given a set of permutations A ⊆ Sn for which we
want to find a median. The function f we need to minimize, given the set A,
is f(π) = dKT (π,A), for π ∈ Sn. We first choose randomly a starting point in
our space i.e. a permutation π ∈ Sn. This permutation is uniformly generated
using the Fisher-Yates shuffle [9]. To find neighbours of a permutation π in our
system, we consider circular moves defined as follows:

Definition 2. Given π ∈ Sn, we call circular move of a segment π[i..j] of π,
denoted c[i, j](π), the cycling shifting of one position to the right, if i < j, of this
segment inside the permutation π: c[i, j](π) = π1 . . . πi−1πjπi . . . πj−1πj+1 . . . πn

(if i > j, we shift to the left: c[j, i](π) = π1 . . . πj−1πj+1 . . . πiπjπi+1 . . . πn).

So, to choose a neighbour for our current permutation π, our SA heuris-
tic first randomly generates two integers i �= j, 1 ≤ i, j ≤ n, and compute
neighbour(π) = c[i, j](π), if i < j or neighbour(π) = c[j, i](π), other-
wise. To decide whether or not we move into state neighbour(π), we com-
pute the difference of energy, noted ΔE, which in our case is the difference
dKT (neighbour(π)),A) − dKT (π,A). If this difference is negative or null, the
state neighbour(π) is closer to the median of A and we move to this state. If it is
positive, we move to state neighbour(π) depending on the acceptance probabil-
ity e−ΔE/T , where T is the temperature of the system. This process of going to
neighbours states is repeated a fixed number of times during which the permuta-
tion with the lowest energy (distance to A) are kept in a set. This set is returned
at the end of the process. Algorithm 1, in Appendix A.I, gives the pseudo-code
of our heuristic SA1.

1 Note that all appendices and the source code (Java) for testing can be found online
at http://www-etud.iro.umontreal.ca/∼miloszro/iwoca/iwoca.html.

http://www-etud.iro.umontreal.ca/~miloszro/iwoca/iwoca.html

302 R. Milosz and S. Hamel

3.2 Choosing the Parameters

The important parameters of a SA heuristic are: the initial temperature of the
system, the cooling factor, the maximal number of movements, the function
that propose a neighbouring alternative and the number of repetitions of SA.
First, we choose the circular move (see Definition 2) as our neighbouring choosing
function. This choice was made for two reasons. First, while looking at sets of
medians for different sets of permutations A ⊆ Sn, we observe that most of the
medians in a set could be obtained from one another by applying those circular
moves. Second, we did try a lot of other moves (exchanging element π[i] with
one of its neighbour π[i − 1] or π[i + 1] or exchanging it with any other element
π[j], inverting the order of the elements of a block, etc.) that clearly did not
converge as quickly as the circular moves.

For the rest of the SA parameters, note that for each instance of our problem,
i.e. a set of permutations A ⊆ Sn, we have two important parameters: the number
m of permutations in A and the size n of the permutations. This pair (m,n)
is very relevant to describe the problem’s difficulty. So, we were interested in
tuning the SA parameters as function of n and m.

We made extensive testing to find out the optimal parameters for SA given
the pair (m,n). More information on our choice of parameters are available in
Appendix A.II. But here is an overview:

1. Initial solution: a random permutation generated by Fisher-Yates shuffle.
2. The cooling schedule is: ti = αti−1.
3. The initial temperature of the system set to: t0 ←− (0.25m + 4.0)n
4. The cooling factor set to:

α =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.99 if m = 3, 4
0.95 if n ≤ 10
0.99 if 11 ≤ n ≤ 16
0.999 if 17 ≤ n ≤ 20
0.9995 if 21 ≤ n ≤ 24
0.9998 otherwise

5. The neighbour generating function: the circular move.
6. The number of allowed movements for a solution:

nbMvts =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.6n3 − 11n2 + 127n if m = 3
0.9n3 − 29n2 + 435n − 1623 if m = 4
250 if n ≤ 7
90n2 − 1540n + 7000 if 8 ≤ n ≤ 24
35n2 − 660n + 31000 if 25 ≤ n ≤ 38
80n2 − 2300n + 27000 if n > 38

Heuristic, Branch-and-Bound Solver and Improved Space Reduction 303

7. The number of times to repeat the SA heuristic:

nbRuns =

⎧
⎪⎨

⎪⎩

	0.05n + 2
 if m = 3, 4
	0.007nm + 3
 if m is odd
	0.002mn + 3
 if m is even

The initial temperature was set to accept (almost) all neighbours in the first
iterations. The cooling constant and the number of movements where chosen to
have a good compromise between the success probability (probability of achiev-
ing the optimal score) and the computing time for each (m,n). The number of
SA runs was set such that the probability of overall success is above 96% for all
instances n ≤ 38 and m ≤ 50. For greater m and n, we extrapolated the data to
predict a similar SA behaviour.

As m = 3, 4 are unique cases, that do not seem to be affected by the cooling
constant in our considered range and seem much easier to optimize, we treated
them appart. For the rest, we found out that m odd problems are harder to solve
than m even problems, and required more runs to reach the same success rate.
Without surprise, as n and m are getting bigger, the problem is harder to solve.

4 Space Reduction Technique

In [18,19] we found theoretical properties of a set of permutations A ⊆ Sn (called
the Major Order Theorems) that can solve the relative order between some
pairs of elements in median permutations of A thus reducing the search space. In
this section we will show how to find additional constraints for the problem by
merging this previous work on constraints with a lower bound idea of Conitzer
et al. [6], giving us an even stronger lower bound, that can be then combined
with the upper bound obtained by the simulated annealing method presented
in Sect. 3. But first, let us quickly recalled our major order theorems in Sect. 4.1
and Conitzer et al. lower bound idea in Sect. 4.2.

4.1 Some Constraints

Given a set of permutations A ⊆ Sn, the major order theorems, presented in [18],
solve the relative order between some pairs of elements in median permutations
of A. Thus, these theorems build a set of constraints that can be represented
as a boolean matrix C, where Cij = 1 if and only if we know that element i
will precede element j (denoted i ≺ j) in median permutations of A. Note that
this set of constraints reduces the search space for a median by cutting off all
permutations breaking at least one constraint.

Here, we resume the ideas behind these theorems2 but first, let us formally
define the major order between pairs of elements.

2 More detailed explanations and some examples for these Major Order Theorems can
be found in Sect. 4 of [18].

304 R. Milosz and S. Hamel

Definition 3. Let A ⊆ Sn be a set of permutations. Let L(A) and R(A) be the
left and right matrices of A as defined in Definition 1. Given two elements i and
j, 1 ≤ i < j ≤ n, we say that the major order between elements i and j is i ≺ j
(resp. j ≺ i) if Lij(A) > Rij(A) (resp. Rij(A) > Lij(A)), the minor order is
then j ≺ i (resp. i ≺ j). We use δij to denote the absolute value of the difference
between the major and minor order of two elements i and j.

The idea of the first major order theorem (MOT1) relies on the proximity of
two elements in permutations of A: if i ≺ j is the major order of elements i and j
in permutations of A, we can say that i will also be placed before j in all medians
of A if the numbers of elements (including possible copies) between i and j in
those permutations of A where j ≺ i is less than δij . Intuitively, this multiset
of elements between i and j, that we will called interference multiset, act as
interference to the major order i ≺ j and so, if its cardinality is small enough,
MOT1 gives a relative order for the pair (i, j) in medians of A.

The second major order theorem (MOT2) built on the first one by reducing
the cardinality of the interference multiset of a pair of elements i and j by remov-
ing from it any element that also appears in between i and j in permutations of
A that follows the major order of this pair.

The idea of the third Major Order Theorem (MOT3) is to use previously
found constraints (MOT1 and MOT2) to reduce even more the cardinality of
the interference multiset of a pair of elements i and j, by removing from it all
elements that cannot be in it. As an example, say that an element k is in the
interference multiset of pair (i, j). This means that k appears in between i and j
in at least one permutation of A where i and j are in their minor order. If we have
already found using MOT1 or MOT2 that Cki = Ckj = 1 or that Cik = Cjk = 1
then k cannot be in between i and j and we can remove it from the interference
multiset. This process is repeated until no new constraint is found.

Example 1. The MOT3 is better illustrated with the following exemple: for
A = {78236154, 35178624, 58341276}, the major order for 1 and 2 is 1 ≺ 2,
δ12 = 1 and we have {3, 6} as the interference multiset. The 6 gets cancelled
by the 6 between 1 and 2 in the second permutation (MOT2’s way) as the 3 is
eliminated by contraints 3 ≺ 1 and 3 ≺ 2 which were found by MOT1. Therefore
the interference multiset is empty and 1 ≺ 2 is a valid constraint.

In [19], we extended those major order theorems by considering the equality
case (denoted MOTe) i.e the extended MOT theorems gives us the relative order
of a pair of elements if the cardinality of the interference multiset for this pair
is less than or equal to δij . This case is more delicate as the method builds
constraints only for a subset of the set of median permutations of A, so care
is to be taken to avoid possible contradicting constraints (it is possible that in
one median of A, i ≺ j and in another j ≺ i; so using the MOTe theorems
we will strictly find those medians of A satisfying one and only one of those
“contradicting” constraint). However, the MOTe theorems have a much better
efficiency than the MOT theorems, as you can see in Table 1.

Heuristic, Branch-and-Bound Solver and Improved Space Reduction 305

4.2 A New Lower Bound

Given a set of permutations A ⊆ Sn, Davenport and Kalagnanam [7] propose a
first intuitive lower bound on the median problem of A: the sum, for all pairs of
elements i, j, 1 ≤ i < j ≤ n, of the number of permutations in A having the pair
(i, j) in its minor order. This bound corresponds to the possibility of ordering
all pairs in a median of A with respect to their major order. If this ordering is
possible without conflicting pairs, the bound is equal to the Kendall-τ distance
of a median to A. The bound can be easily compute by the following formula:

LowerBound0 =
∑

i<j
i,j∈[n]

min{Rij , Rji}

Consider the directed weighted graph G = (V,E), where each vertices v ∈ V
is a element of [n] and where E is composed of two edges for each pair of vertices
i, j: eij and eji with respected weights w(eij) = Rji(A) and w(eji) = Rij(A). The
median problem can be reformulated as a minimum feedback arc set problem [10]
which consist of finding the set of edges E∗ ⊂ E of minimal total weight w(E∗) =∑

e∈E∗ w(e) to be removed from G to obtain a direct acyclic graph. Let G′ be
the graph obtained from G by “cancelling”, for each pair of vertices, opposing
ordering in permutations of A: w(e′

ij) = w(eij)−min{Rij , Rji}, ∀1 ≤ i < j ≤ n.
Obviously w(E∗) = w(E′∗) + LowerBound0.

Let DCG′ be a set of disjoint directed cycles of G′. The previous lower bound
can be augmented by adding for each cycle c ∈ DCG′ the minimal weight of one
of its edges:

LowerBound1 = LowerBound0 +
∑

c∈DCG′

min
e∈c

{w(e)}.

In [6], Conitzer, Davenport and Kalagnanam push further the lower bound,
proving that the cycles do not need to be disjoint. Let JCG′ be any sequence
c1, c2, ..., cl of G′, that can share commun edges. Let I(c, e) be an indicator
function of the inclusion of an edge e to a cycle c, i.e. I(c, e) = 1 if e ∈ c and
0 otherwise. If vi = mine∈ci

{w(e) − ∑i−1
j=1 I(cj , e)vj}, then we obtain the new

following lower bound:

LowerBound2 = LowerBound0 +
l∑

i=1

vi.

In practice, we can apply this lower bound method by iteratively searching for a
cycle c in G′, containing only non-zero weight edges, finding its minimal weight
edge e, then subtracting w(e) to the weight of all edges of c and adding it to the
lower bound. This process is then repeating until no such cycle is left in G′.

The process of finding the strongest lower bound, i.e. the best sequence
and choice of cycles, becomes a problem itself and can be resolved using linear
programming. As we are interested here by an efficient pre-processing of the

306 R. Milosz and S. Hamel

problem, we will use a restrained version of this previous lower bound that can
be calculated quickly. Thus, only cycles of length 3 (3-cycles) will be considered.

Our contribution resides in taking advantage of a set of constraints (the one
described in Sect. 4.1) while calculating LowerBound2 as it provides additional
information on the structure of the optimal solution. If Cij = 1 then we know
that the order of elements i and j in a median permutation of A will be i ≺ j.
In that case, we can add w(eji) to the lower bound (since all permutations with
j ≺ i in A disagree with a median permutation) then set its value to w(eji) = 0
in G′.

At first glance, incorporating the constraints seems to be interesting but one
will quickly observe that the constraints previously found by the MOT method
are only of the type Cij = 1 where i ≺ j is the major order, adding nothing to
the lower bound because in the graph G′, the associated minor order edge e′

ji

has weight w(e′
ji) = 0, by construction.

Nevertheless, the superiority of calculating a lower bound with constraints
will appear in Sect. 4.4, when combined with an upper bound.

For A ⊆ Sn, we will denote the lower bound with set of constraints C by
LbA(C). If C = ∅, then LbA(∅) becomes LowerBound2 associated with 3-cycles,
described above.

4.3 An Upper Bound

In Sect. 3, we detailed a simulated annealing heuristic that finds a approximative
solution for our problem. The approximative solution is a valid permutation
therefore its distance to A will be used as an upper bound. We will denote this
upper bound by UbA.

Naturally, if LbA(C) = UbA for a particular instance of the problem and any
set of valid constraints C, then the problem is solved: the median distance is
UbA and the associated permutation to that upper bound will be a solution i.e.
a median of A.

4.4 Putting Everything Together

Given a set of permutations A ⊆ Sn, we can deduce a valid set of constraints
C using the MOT methods described in Sect. 4.1 and then apply the technique
described in Sect. 4.2 to obtain the lower bound LbA(C). Running the SA heuris-
tic of Sect. 3 will get us the upper bound UbA.

We can use these upper and lower bounds to search for new constraints
simply by adding a new possible constraint and verifying if the lower bound has
exceeded the upper bound with this new add on. To do so, let us choose a pair
of elements (i, j) for which the ordering is still unknown in the median, i.e. for
which Cij = 0 and Cji = 0. Now, let us suppose that i ≺ j in a median of A and
let C ′ be the set of constraints C augmented with this new constraint Cij = 1.
If LbA(C ′) > UbA then the added constraint i ≺ j is false, which means that
j ≺ i in a median of A and we can add Cji = 1 to our set of constraints C.

Heuristic, Branch-and-Bound Solver and Improved Space Reduction 307

As finding a new constraint give an advantage to find others (as there is more
knowledge about the structure of the optimal solution), we can redo the same
process including unknown constraints that previously failed the test, repeat-
ing until no new constraint is found. We will called this new way of finding
constraints the LUBC (lower-upper bounds and constraints) method.

Without surprise, as MOT3 method also benefits from new constraints, we
propose a method that will iteratively alternate between MOT and LUBC until
both are unable to find any additional constraint and call it MOT+LUBC. In
Appendix B.I, Algorithms 2 and 3 give the pseudo-code of our MOT+LUBC
method.

As seen before, the constraints found by the MOT method are only of the
type Cij = 1 where i ≺ j is the major order. An advantage of the LUBC is the
possibility to find constraints of A that are of the minor type i.e. where Cij = 1
and i ≺ j is the minor order (Rij > Rji). Recalling the construction of G′, the
weight of an edge associated with the major order is strictly positive and leads
to a non-zero augmentation of the lower bound. When the LUBC methods finds
any new valid constraint of the minor order type, the augmentation of the lower
bound is advantageous to find further new contraints.

The great efficiency of this new method can be observed in Table 1, where we
tested our different approaches on distributed random sets of m permutations
of [n], with m ∈ [3; 50] and n = 15, 20, 30 or 45. On our instances, the gain of
constraints is ranging from +1% to 41% passing from MOT to MOT+LUBC
and from +0.1% to 36% passing from MOTe to MOTe+LUBC. We can note
that all instances of n ≤ 20 have a average resolution rate higher than 90% with
the MOTe+LUBC method.

Tables 10 to 14 in Appendix B.II, gives more results for all of these methods.
Appendix B.III discuss the time complexity of this new approach.

Table 1. Efficiency of the MOT, MOT+LUBC, MOTe, MOTe+LUBC approaches in
terms of the proportion of ordering of pairs of elements solved, on sets of uniformly
distributed random sets of m permutations, m = 3 and m = 5x, 1 ≤ x ≤ 10, statistics
generated over 80000 sets for n = 15, 50000 sets for n = 20, 10000 sets for n = 30 and
1000 sets for n = 45.

n = 15 n = 20 n = 30 n = 45
m MOT MOT+ MOTe MOTe+ MOT MOT+ MOTe MOTe+ MOT MOT+ MOTe MOTe+ MOT MOT+ MOTe MOTe+

LUBC LUBC LUBC LUBC LUBC LUBC LUBC LUBC
3 0.635 0.921 0.878 0.966 0.579 0.885 0.808 0.952 0.506 0.725 0.702 0.873 0.447 0.513 0.604 0.669
5 0.595 0.913 0.800 0.954 0.530 0.859 0.715 0.929 0.444 0.605 0.595 0.766 0.361 0.381 0.490 0.516
10 0.524 0.845 0.824 0.951 0.465 0.809 0.709 0.915 0.384 0.616 0.549 0.747 0.310 0.347 0.419 0.454
15 0.579 0.939 0.704 0.953 0.500 0.890 0.612 0.919 0.400 0.569 0.490 0.668 0.316 0.328 0.383 0.398
20 0.540 0.884 0.747 0.945 0.472 0.843 0.636 0.908 0.383 0.597 0.493 0.697 0.306 0.327 0.377 0.399
25 0.581 0.949 0.680 0.923 0.500 0.903 0.587 0.923 0.398 0.579 0.465 0.653 0.312 0.322 0.363 0.375
30 0.550 0.904 0.720 0.947 0.479 0.861 0.610 0.910 0.386 0.589 0.472 0.674 0.301 0.317 0.362 0.379
35 0.584 0.955 0.668 0.961 0.501 0.909 0.575 0.926 0.396 0.582 0.453 0.642 0.309 0.320 0.345 0.356
40 0.556 0.915 0.702 0.950 0.483 0.873 0.596 0.912 0.388 0.590 0.461 0.660 0.307 0.323 0.354 0.371
45 0.587 0.959 0.660 0.964 0.502 0.913 0.568 0.927 0.397 0.586 0.448 0.638 0.306 0.317 0.350 0.363
50 0.562 0.923 0.691 0.952 0.486 0.881 0.586 0.914 0.388 0.589 0.456 0.654 0.301 0.314 0.352 0.366

308 R. Milosz and S. Hamel

5 An Exact Approach

Our third approach is an exact branch-and-bound solver for the problem that
combines the result of the simulated annealing method of Sect. 3 with the con-
straints obtained in Sect. 4.4 to avoid exploring not promising search sub-trees.

5.1 Branch-and-Bound

Our branch-and-bound algorithm simply constructs possible medians of A ⊆ Sn,
i.e. permutations of [n] by putting a new element to the right of the already
known ones till no more element are available. Thus we explore a tree having
the empty permutation at its root, permutations of any k elements of [n] as
nodes of level k and where the leaves are permutations of Sn. Each node N
will have a corresponding lower bound Lb(N) representing the fact that for all
permutations π derived from N , dKT (π,A) ≥ Lb(N).

If this lower bound Lb(N) is higher than the current upper bound of the
problem, then all the permutations derived from it will have a higher distance
than one already found and node N with all its descendants can be omitted
in the exploration. As the number of nodes/leaves is finite and the bounding
method only cuts branches that do not represent possible medians, the BnB will
always converge to the optimal solution.

More specifically, given our set A ⊆ Sn, we run the SA heuristic of Sect. 3 to
have a first approximative median of A, πapprox, and a first upper bound UbA,
which will always represents the score associated with the currently best solution
found. The approximative solution will serve as guidance so that the first leaf
that will be visited by the BnB will be πapprox. This guarantees us an efficient
cutting of non-promising branches.

A node at level k is represented by a vector of size k, x = [x1, ..., xk] which
corresponds to a permutation in construction. Let S be the set of elements still
to be placed i.e S = [n] − {x1, x2, ..., xk−1, xk} and L a list which orders S.
At the beginning of our BnB, S = [n] and L = πapprox. The BnB will branch
by choosing the next element from the list: �i ∈ L that will be placed at the
immediate right of xk. We are going to apply the bound and cuts Bound1,
Cut1, Cut2 and Cut3 described in Sect. 5.2 below for each choice of �i. If it
succeeds passing all the bounds test, xk+1 := �i, and we go down to the new
node x′ = [x1, x2, ..., xk−1, xk, xk+1]. If not, we try �i+1 as a possible xk+1. If
we go down to a leaf, i.e. if k + 1 = n, its corresponding permutation πleaf is
compared to the best solution. If dKT (πleaf ,A) = UbA, we add πleaf to the
current set of medians. If dKT (πleaf ,A) < UbA, then it is our new upper bound
and we change our set of medians so that it contain only this new optimal
permutation πleaf . The BnB backtracks after all possibilities of �i ∈ L for xk+1

had been explored or after investigating a leaf node.

5.2 Bounds and Cuts

Now, let us set everything that is needed to described our different bound and
cuts. First, given a set of permutations A ⊆ Sn, we deduce a valid set of con-

Heuristic, Branch-and-Bound Solver and Improved Space Reduction 309

straints C(A) using the method MOTe+LUBC described in Sect. 4.4. We also
pre-calculated, for each triplet of elements x, y and z ∈ [n] the best ways to put
them all together, one after the other, in a median of A. All the other ways
to order them consecutively in a permutation will be called a forbidden triplet,
since a permutation containing this ordering cannot be a median of A.

For each node x = [x1, ..., xk], we can compute a distance d(x,A) in the
following way:

d(x,A) =
|x|∑

i=1

|x|∑

j=i+1

Rxixj
(A)

︸ ︷︷ ︸
contribution to the Kendall-τ

distance for the elements
already placed

+
|x|∑

i=1

|L|∑

j=1

Rxilj (A).

︸ ︷︷ ︸
contribution obtained by the fact
that all elements of x are to the

left of elements in L (yet to be placed)

Finally, for each node x, let b(x) be the boolean vector of length n represent-
ing which elements of [n] are already placed in this node (i.e we have bi(x) = 1,
1 ≤ i ≤ n, if and only if i = xj , 1 ≤ j ≤ k). So if a node x′ contained the same k
elements of node x but in a different order, b(x) = b(x′). Our BnB will construct
and update a set TopScores of pairs < b, v >, where b is any boolean vector of
length n and v = min d(x,A), for x already explored such that b(x) = b.

Now, if our current best solution is πbest, our current upper bound is UbA =
dKT (πbest,A), our current node is x = [x1, ..., xk], L is an ordered list of the
elements still to be placed, and we are studying �i ∈ L as a possible xk+1, we
have that:

– Cut1: If (xk−1, xk, �i) is a forbidden triplet then xk+1 cannot be li and so it
is rejected. (i.e we do not explore the subtree having node x = [x1, ..., xk, �i]
as its root.)

– Cut2: If there exist �j ∈ L, �j �= �i such that C(A)(�j , �i) = 1 then we know
that �i has to be to the right of �j in a median permutation of A and so xk+1

cannot be �i and is rejected.
– Cut3: Let x′ = [x1, . . . , xk, �i]. If < b(x′), v >∈ TopScores and d(x′,A) > v

then xk+1 cannot be �i and so it is rejected.

– Bound1: Let a lower bound of a list L be lb(L) =
|L|∑

i=1

|L|∑

j=i+1

(min{Rlilj , Rlilj })

+tri(L), where tri(L) is a simpler implementation of the lower bound using
only 3-cycles described in Sect. 4.2. In this implementation, the 3-cycles are
pre-calculated at the beginning, and the contribution of a cycle is added if
and only if all three of its elements are in L. Let x′ = [x1, . . . , xk, �i] and let
L′ be the list L without �i. Let Lb(x′) = d(x′,A) + lb(L′). If Lb(x′) > UbA
then xk+1 cannot be �i and so it is rejected.

Algorithm 4, in Appendix C, gives the pseudo-code of our BnB method. As
a final note, our BnB can solve in reasonable time (a few seconds in average)
any problem with n ≤ 38,m ≤ 50, since we kept all calculation in linear time at
the node level for efficiency purpose. The case where m = 4 is the hardest case

310 R. Milosz and S. Hamel

(and the most variable in execution time) for the BnB, opposite to SA, as the
average number of medians of A ⊆ Sn have been observed to be the biggest for
all m.

In [17], Ali and Meilă made a thorough comparison of many solvers and
heuristics, solving uniformly generated problems of size up to n = 50,m = 100.
We did some quick testing of our BnB on similar problems (same n, m and
uniformly generated sets) and we claim that it solves them in a comparable time,
thus competing with the best solvers (BnB and Integer Linear Programming).
More intensive testing will be done in the near future.

6 Conclusion

In this article, we studied the problem of finding the median of a set of m
permutations A ⊆ Sn under the Kendall-τ distance. This problem is known
to be NP-hard for m ≥ 4, m even. This work presents three different solving
techniques for this problem; a well parameterized simulated annealing heuristic,
a space reduction technique and an promising exact BnB solver.

Ideas for future works includes an extensive comparison with other exact
solvers and heuristics, as well as testing on various synthetic and real life data
sets. It would also be interesting to take into account the fact that the rankings
considered are not always on the entire sets of elements involved. Furthermore,
some ranking schemes often rank several elements in the same position, so rank
ties are to be considered.

Acknowledgements. We would like to thanks our anonymous reviewers for their
careful and inspiring comments. Be sure that the suggestions that were not included
here, due to time and space constraints, will be integrate in the journal version of this
article.

References

1. Ailon, N., Charikar, M., Newman, N.: Aggregating inconsistent information: rank-
ing and clustering. J. ACM 55(5), 1–27 (2008)

2. Betzler, N., Bredereck, R., Niedermeier, R.: Theoretical and empirical evaluation
of data reduction for exact Kemeny Rank Aggregation. Auton. Agent. Multi-Agent
Syst. 28, 721–748 (2014)

3. Betzler, N., et al.: Average parameterization and partial kernelization for comput-
ing medians. J. Comput. Syst. Sci. 77(4), 774–789 (2011)

4. Biedl, T., Brandenburg, F.J., Deng, X.: Crossings and permutations. In: Healy,
P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 1–12. Springer, Heidelberg
(2006). https://doi.org/10.1007/11618058 1

5. Blin, G., Crochemore, M., Hamel, S., Vialette, S.: Median of an odd number of
permutations. Pure Math. Appl. 21(2), 161–175 (2011)

6. Conitzer, V., Davenport, A., Kalagnanam, J.: Improved bounds for computing
Kemeny rankings. In: Proceedings of the 21st Conference on Artificial Intelligence,
AAAI 2006, vol. 1, pp. 620–626 (2006)

https://doi.org/10.1007/11618058_1

Heuristic, Branch-and-Bound Solver and Improved Space Reduction 311

7. Davenport, A., Kalagnanam, J.: A computational study of the Kemeny rule for
preference aggregation. In: Proceedings of the 19th National Conference on Artifi-
cial Intelligence, AAAI 2004, pp. 697–702 (2004)

8. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for
the web. In: Proceedings of the 10th WWW, pp. 613–622 (2001)

9. Fisher, R.A., Yates, F.: Statistical Tables for Biological, Agricultural and Medical
Research, 3rd edn, pp. 26–27. Oliver & Boyd, London (1948)

10. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp.
85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2 9

11. Karpinski, M., Schudy, W.: Faster algorithms for feedback arc set tournament,
kemeny rank aggregation and betweenness tournament. In: Cheong, O., Chwa, K.-
Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 3–14. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17517-6 3

12. Kemeny, J.: Mathematics without numbers. Daedalus 88, 577–591 (1959)
13. Kendall, M.: A new measure of rank correlation. Biometrika 30, 81–89 (1938)
14. Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: STOC 2007,

pp. 95–103 (2007)
15. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.

Science 220(4598), 671–680 (1983)
16. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Marshall, N., Teller, A.H.,

Teller, E.: Equation of state calculations by fast computing machines. J. Chem.
Phys. 21–6, 1087–1092 (1953)

17. Ali, A., Meilă, M.: Experiments with Kemeny ranking: what works when? Math.
Soc. Sci. 64, 28–40 (2012)

18. Milosz, R., Hamel, S.: Medians of permutations: building constraints. In: Govin-
darajan, S., Maheshwari, A. (eds.) CALDAM 2016. LNCS, vol. 9602, pp. 264–276.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29221-2 23

19. Milosz, R., Hamel, S.: Space reduction constraints for the median of permutations
problem. J. Discret. Appl. Math. (submitted)

20. Nishimura, N., Simjour, N.: Parameterized enumeration of (locally-) optimal aggre-
gations. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol.
8037, pp. 512–523. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40104-6 44

21. van Zuylen, A., Williamson, D.P.: Deterministic pivoting algorithms for con-
strained ranking and clustering problems. Math. Oper. Res. 34(3), 594–620 (2009)

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-3-642-17517-6_3
https://doi.org/10.1007/978-3-319-29221-2_23
https://doi.org/10.1007/978-3-642-40104-6_44
https://doi.org/10.1007/978-3-642-40104-6_44

Efficient Lagrangian Heuristics
for the Two-Stage Flow Shop

with Job Dependent Buffer Requirements

Hanyu Gu, Julia Memar(B), and Yakov Zinder

University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
{hanyu.gu,julia.memar,yakov.zinder}@uts.edu.au

Abstract. The paper is concerned with minimisation of total weighted
completion time for the two-stage flow shop with a buffer. In contrast
to the vast literature on this topic, the buffer requirement varies from
job to job and a job occupies the buffer continuously from the start of
its first operation till the completion of its second operation rather than
only between operations. Such problems arise in supply chains requiring
unloading and loading of minerals and in some multimedia systems. The
problem is NP-hard and the straightforward integer programming app-
roach is impossible even for modest problem sizes. The paper presents a
Lagrangian relaxation based decomposition approach that allows to use
for each problem, obtained by this decomposition, a very fast algorithm.
Several Lagrangian heuristics are evaluated by means of computational
experiments.

Keywords: Flow shop · Buffer · Total weighted completion time
Lagrangian relaxation

1 Introduction

Scheduling problems for the flow shops with buffers have been studied for several
decades. Almost all existing publications are concerned with the buffers that
restrict the number of jobs between operations (see, for example, [1,2]). Much less
is known about the more general models where the buffer requirement varies from
job to job, although such more general models better describe many practical
situations [11].

In most existing publications a buffer restricts the number of jobs between
operations, whereas many practical situations require models where a job occu-
pies the buffer from the start of its processing and releases the buffer only at
the completion of its last operation. Such situations arise, for example, in supply
chains where change of the mode of transportation involves unloading and load-
ing operations. Another example is sequencing media objects for auto-assembled
presentations from digital libraries [5–8].

To the best of our knowledge, besides [5–8] only [4,9,10] studied the two-
stage flow shop with a buffer where each job occupies the buffer for the entire
c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 312–324, 2018.
https://doi.org/10.1007/978-3-319-78825-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_26&domain=pdf

Efficient Lagrangian Heuristics 313

duration of the job’s processing and the buffer requirement varies from job to
job. All these publications are concerned with the minimisation of the time
required for completion of all jobs or/and due dates based objective functions.
Our paper studies another commonly used objective function - the total weighted
completion time.

As far as the optimisation methods are concerned, the previous publica-
tions suggested the branch-and-bound method [5,9], constructive heuristics [8],
and various integer programming formulations and local search procedures [10],
whereas our paper presents a Lagrangian relaxation based optimisation proce-
dure - the approach that never has been used before for such flow shop problems.

The results of computational experiments below support the claim that the
effectiveness of our optimisation procedure makes it suitable for various practical
applications. It is important to stress that, although our method is based on an
integer linear programming formulation, the optimisation procedure is designed
in such a way that it does not need any mathematical programming software,
can be easily implemented, and requires minimum computer memory, which is
crucial advantage, for example, in the case of some multimedia applications.

1.1 Problem Description

The considered problem can be stated as follows. The set of n jobs N = {1, ..., n}
is to be processed by two machines - the first-stage machine and the second-stage
machine. Each job i is to be processed on the first-stage machine during p1i (the
first operation of the job) and on the second-stage machine during p2i (the second
operation of the job). All processing times are integer. The second operation of
a job can commence on the second-stage machine only after the completion of
its first operation on the first-stage machine. Once an operation has started, it
cannot be interrupted, i.e. no preemptions are allowed. Each machine can process
at most one job at a time, and each job can be processed by at most one machine
at a time. The processing of jobs commences at time t = 0.

In order to be processed, each job i requires b(i) units of the buffer space.
This buffer space is occupied by a job continuously from the start of its first
operation till the completion of its second operation. At any point in time t,
the total buffer requirement of all jobs that started their processing before or
at t and have completion time of their second operation greater that t can not
exceed B - the buffer capacity. As in [5–7,9,10], it is assumed that b(i) = p1i for
all i ∈ N . In other words, it is assumed that the buffer requirement of each job
is determined by the duration of the first operation. This assumption is valid,
for example, for the mentioned above multimedia application.

For each job i, let S1
i and S2

i be the starting times of the job’s first and sec-
ond operation, respectively. The goal is to construct a schedule with the smallest
total weighted completion time

∑
i∈N wiCi, where wi is a positive weight, char-

acterising i, and Ci = S2
i + p2i is the completion time of job i.

314 H. Gu et al.

1.2 Outline of the Optimisation Procedure

Lagrangian relaxation (see, for example, [3]) is one of the most effective methods
for solving difficult combinatorial optimisation problems. Section 2 presents an
integer linear programming formulation of the considered scheduling problem
and a Lagrangian relaxation of this formulation. This relaxation decomposes
into subproblems, that can be solved separately. Section 2 presents a very fast
recursive optimisation algorithm for these subproblems that also requires min-
imum computer memory. The jobs’ starting times, determined by solving the
Lagrangian relaxation, specify the order of jobs processing on each machine.
Since the Lagrangian relaxation is obtained by dualizing some constraints of the
integer linear programming formulation, in general, these orders do not give any
feasible schedule. Section 3 presents algorithms for conversion of a pair of orders
(one for each machine), determined by solving the Lagrangian relaxation, into
a feasible schedule. In the literature on Lagrangian relaxation, such algorithms
are referred to as Lagrangian heuristics. Section 4 presents the results of compu-
tational experiments. In order to find a good set of Lagrange multipliers for the
Lagrangian relaxation, these experiments utilise the standard and most com-
monly used iterative procedure known as the subgradient method [3]. According
to this method, at each iteration, the Lagrangian relaxation for the current set of
Lagrangian multipliers is solved and a feasible schedule is constructed using one
of the developed Lagrangian heuristics. The value of the objective function for
this feasible schedule is compared with the best value of the objective function
found so far and the smallest of these two is used as the current upper bound
on the optimal value of the objective function in the calculation of a new set of
Lagrangian multipliers. The best feasible schedule found in the course of these
iterations is considered as the solution produced by the iterative procedure.

2 Lagrangian Relaxation

It is obvious that, in any optimal schedule, the completion time of a job can not
exceed T =

∑
i∈N (p1i + p2i). For each i ∈ N , integer 0 ≤ t < T , m ∈ {1, 2}, let

xm
it =

{
1, if Sm

i = t;
0, otherwise. (1)

Then, similar to [10], the considered scheduling problem can be formulated as
the following integer linear program:

min
n∑

i=1

wi

(
T−1∑

t=1

tx2
it + p2i

)

(2)

Efficient Lagrangian Heuristics 315

subject to

T−1∑

t=0

xm
it = 1, for 1 ≤ i ≤ n and m ∈ {1, 2} (3)

n∑

i=1

t−1∑

τ=max{0,t−pm
i }

xm
iτ ≤ 1, for 1 ≤ t ≤ T and m ∈ {1, 2} (4)

T−1∑

t=1

tx2
it −

T−1∑

t=1

tx1
it ≥ p1i , for 1 ≤ i ≤ n (5)

t−1∑

τ=0

n∑

i=1

b(i)x1
iτ −

t−p2
i −1∑

τ=0

n∑

i=1

b(i)x2
iτ ≤ B, for 1 ≤ t ≤ T (6)

xm
it ∈ {0, 1}, for 1 ≤ i ≤ n, 0 ≤ t < T, and m ∈ {1, 2} (7)

Dualizing (4) and (6) for chosen nonnegative Lagrange multipliers vtm and ut,
where 1 ≤ t ≤ T and m ∈ {1, 2}, gives the Lagrangian Relaxation

min
n∑

i=1

wi

(
T−1∑

t=1

tx2
it + p2i

)

+
T∑

t=1

2∑

m=1

vtm

⎛

⎝
n∑

i=1

t−1∑

τ=max{0,t−pm
i }

xm
iτ − 1

⎞

⎠

+
T∑

t=1

ut

⎛

⎝
t−1∑

τ=0

n∑

i=1

b(i)x1
iτ −

t−p2
i −1∑

τ=0

n∑

i=1

b(i)x2
iτ − B

⎞

⎠

subject to (3), (5) and (7).
Let v be the set of all vtm and u be the set of all ut. Let LR(v, u) be the

optimal value of the objective function of the Lagrangian Relaxation above. For
each i ∈ N , let Zi(v, u) be the optimal value of the objective function of the
integer linear program

min wi

T−1∑

t=1

tx2
it +

T∑

t=1

2∑

m=1

vtm

t−1∑

τ=max{0,t−pm
i }

xm
iτ + b(i)

T∑

t=1

ut

⎛

⎝
t−1∑

τ=0

x1
iτ −

t−p2
i −1∑

τ=0

x2
iτ

⎞

⎠ (8)

subject to

T−1∑

t=0

xm
it = 1, for m ∈ {1, 2} (9)

T−1∑

t=1

tx2
it −

T−1∑

t=1

tx1
it ≥ p1i (10)

xm
it ∈ {0, 1}, for 0 ≤ t < T and m ∈ {1, 2} (11)

316 H. Gu et al.

It is easy to see that

LR(v, u) =
n∑

i=1

Zi(v, u) +
n∑

i=1

wip
2
i −

T∑

t=1

2∑

m=1

vtm − B
T∑

t=1

ut (12)

Hence, for chosen Lagrange multipliers, the Lagrangian Relaxation can be solved
by solving n separate integer linear programs (8)–(11). Each of these n problems
can be solved very fast using the technique described below.

According to (9), exactly one x1
it and exactly one x2

it must be equal to 1 and
all others must be zero. If x1

ie = 1 and x2
ir = 1, then the corresponding value of

the objective function is

wir +
e+p1

i∑

t=e+1

vt1 +
r+p2

i∑

t=r+1

vt2 + b(i)
r+p2

i∑

t=e+1

ut.

Observe that, by virtue of (10), e ≤ r − p1i and consider function f(r) defined
for all p1i ≤ r ≤ T − p2i as follows

f(r) = min
0≤e≤r−p1

i

⎛

⎝
e+p1

i∑

t=e+1

vt1 + b(i)
r+p2

i∑

t=e+1

ut

⎞

⎠ . (13)

If r > p1i , then the straightforward algebraic transformations lead to

f(r) = min

⎡

⎣f(r − 1) + b(i)ur+p2
i
,

r∑

t=r−p1
i+1

vt1 + b(i)
r+p2

i∑

t=r−p1
i+1

ut

⎤

⎦ (14)

On the other hand, the direct substitution into (13) gives

f(p1i) =
p1
i∑

t=1

vt1 + b(i)
p1
i+p2

i∑

t=1

ut. (15)

Hence, using (14) and (15), all values f(r) can be calculated recursively in O(T)
operations, and by virtue of

Zi(v, u) = min
p1
i ≤r≤T−p2

i

⎛

⎝f(r) + wir +
r+p2

i∑

t=r+1

vt2

⎞

⎠ ,

the integer linear program (8)–(11) can be solved in O(T) operations.

3 Lagrangian Heuristics

By virtue of (1), the optimal solution for the Lagrangian Relaxation specifies the
order in which the jobs are to be processed on the first-stage machine and the

Efficient Lagrangian Heuristics 317

order of job processing on the second-stage machine. It is convenient to refer to
these orders as permutations π1 and π2 on {1, ..., n}. Unfortunately, a feasible
schedule where the jobs are processed on the first-stage machine according to
π1 and on the second-stage machine according to π2 may not exist. This section
presents Lagrangian heuristics - algorithms that construct a feasible schedule
based on a pair of permutations that was obtained by solving the Lagrangian
Relaxation. The “no-wait” Lagrangian heuristic can violate the permutations,
whereas the “wait” heuristic strictly follows these permutations. Of course, the
latter Lagrangian heuristic is applicable only if there exists a feasible schedule
with job processing according to the pair of permutations. The former approach
is described in Subsect. 3.1. The latter approach, including a necessary and suffi-
cient condition of the existence of a feasible schedule for the pair of permutations,
is discussed in Subsect. 3.2.

3.1 No-Wait Algorithm

Let π1 and π2 be the permutations used for scheduling on the first and second-
stage machines, correspondingly. We assume that π1 = π2, if we use only one
of the two orders, defined by the starting times obtained during Lagrangian
Relaxation stage of the algorithm. Otherwise π1 and π2 may be different. The
algorithm uses Subroutine 1 for scheduling on the first-stage machine and Sub-
routine 2 - for scheduling on the second-stage machine. Denote by t1 and t2
the minimal starting time available for the unscheduled jobs on the first and the
second-stage machine, correspondingly. Let In be the sum of buffer requirements
of the jobs which are currently in buffer. Let n1 and n2 be the number of sched-
uled jobs on the first and the second-stage machine, correspondingly. Denote by
cur1 and cur2 the number of the jobs scheduled during the current iteration of
Subroutine 1 and Subroutine 2, correspondingly. Denote by pos1 and pos2 the
position of the last job which was considered on the first and the second-stage
machine, correspondingly. Set values of all these parameters to zero.

1. If all jobs are scheduled on both machines, stop. Otherwise go to next step.
2. If n1 > n, go to step 5. Otherwise go to Subroutine 1.
3. If cur1 > 0 after the last iteration of Subroutine 1, set cur1 = 0, pos1 = 0

and go to step 5. If cur1 = 0, set pos1 = 0, go to the next step.
4. If t1 < t2 determine the job j with the smallest S2

j +p2j , such that S2
j +p2j > t1;

set t1 = S2
j + p2j , set In = In − b(j) and go to step 2. If t1 ≥ t2, go to step 5.

5. If n2 > n, go to step 1. Otherwise go to Subroutine 2.
6. If cur2 > 0 after the last iteration of Subroutine 2, set cur2 = 0, pos2 = 0

and go to step 2. If cur2 = 0, set pos2 = 0, go to the next step.
7. If t2 < t1 determine the job j with the smallest S1

j +p1j , such that S1
j +p1j > t2;

set t2 = S1
j + p1j and go to step 5. If t2 ≥ t1, go to step 2.

318 H. Gu et al.

Subroutine 1

1. Set pos1 = pos1 + 1. If pos1 = n + 1, exit Subroutine 1 and go to step 3 of
the No-wait algorithm. Otherwise go to the next step.

2. Consider i = π1(pos1). If S1
i has not been assigned yet and there is a place

in the buffer for i, i.e In + b(i) ≤ B, then set S1
i = t1, In = In + b(i) and go

to the next step. Otherwise go to step 1 of the subroutine.
3. A job j is released from the buffer only if it is completed on the second-stage

machine by time t1. If t2 − p1i ≤ t1 < t2, then set In = In − b(j) for every
job j such that S2

j + p2j − p1i ≤ t1 < S2
j + p2j .

4. Set t1 = t1 + p1i , cur1 = cur1 + 1, n1 = n1 + 1 and go to step 1.

Subroutine 2

1. Set pos2 = pos2 + 1. If pos2 = n + 1, exit Subroutine 2 and go to step 6 of
the No-wait algorithm. Otherwise go to the next step.

2. Consider i = π2(pos2). If S2
i has not been assigned yet and i has been sched-

uled on the first-stage machine and S1
i + p1i ≤ t2, then set S2

i = t2 and go to
the next step. Otherwise go to step 1 of the subroutine.

3. If the job i is completed on the second-stage machine by t1, then it is released
from the buffer: if S2

i + p2i ≤ t1, set In = In − b(i).
4. Set t2 = t2 + p2i , cur2 = cur2 + 1 and n2 = n2 + 1. Go to step 1 of the

subroutine.

Lemma 1. The No-wait algorithm constructs a feasible schedule.

3.2 Wait Algorithm

Definition 1. A pair of permutations (π1, π2) is feasible if there exists a sched-
ule such that the jobs on the first-stage machine are processed in the order spec-
ified by π1 and on the second-stage machine the jobs are processed in the order
specified by π2.

Definition 2. Job i ∈ N is ordinary, if
∑

1≤u≤π−1
1 (i)

b(π1(u)) > B. (16)

Definition 3. For every ordinary job i ∈ N critical position 1 ≤ ki ≤ n is
defined as the smallest among all v for which the following inequality holds:

∑

1≤u≤π−1
1 (i)

b(π1(u)) −
∑

1≤u≤v

b(π2(u)) ≤ B. (17)

Lemma 2. If the pair of permutations (π1, π2) is feasible, then for each ordinary
i ∈ N

π−1
2 (i) > ki. (18)

Efficient Lagrangian Heuristics 319

Proof. Consider an arbitrary feasible schedule, in which the jobs are processed
in the orders, specified by π1 and π2, and assume that ki > π−1

2 (i) for a job i.
Consider all the jobs which are completed on the second-stage machine by the
time τ = S2

i + p2i . Since the considered schedule is feasible, S1
i + p1i ≤ S2

i , hence
{j : π−1

1 (j) ≤ π−1
1 (i)} ⊆ {j : S1

j ≤ τ}. At the same time {j : S2
j + p2j ≤ τ} ⊆

{j : π−1
2 (j) ≤ π−1

2 (i)}. For the feasible schedule the capacity of the buffer B
should not be exceeded in any moment of time, for example τ :

∑

u: S1
u≤τ

b(u) −
∑

u: S2
u+p2

u≤τ

b(u) ≤ B. (19)

Since ki > π−1
2 (i), by virtue of Definition 3 and (19),

∑

u: S1
u≤τ

b(u) −
∑

u: S2
u+p2

u≤τ

b(u) ≥
∑

1≤u≤π−1
1 (i)

b(π1(u)) −
∑

1≤u≤π−1
2 (i)

b(π2(u)) > B,

(20)
which contradicts (19). If ki = π−1

2 (i), then by Definition 3,
∑

1≤u<π−1
1 (i)

b(π1(u)) −
∑

1≤u≤π−1
2 (i)

b(π2(u)) ≤ B − b(i), (21)

which implies that job i has to be processed on the second-stage machine and
leave the buffer before it can start on the first-stage machine, which contradicts
to the assumption that the considered schedule is feasible. �

Lemma 2 demonstrated that (18) is a necessary condition for feasibility of pair
(π1, π2). To prove that (18) is also a sufficient feasibility condition we will need
results of the following lemma.

Lemma 3. If for the pair (π1, π2) the inequality (18) holds for each ordinary
i ∈ N , then for any q such that π−1

2 (q) ≤ ki, π−1
1 (q) < π−1

1 (i).

Proof. If q is not ordinary job and π−1
1 (q) ≥ π−1

1 (i), then
∑

1≤u≤π−1
1 (i)

b(π1(u)) ≤
∑

1≤u≤π−1
1 (q)

b(π1(u)) ≤ B, (22)

which contradicts i being ordinary job. Assume that q is ordinary job and
π−1
1 (q) ≥ π−1

1 (i). Then by virtue of (18), kq < π−1
2 (q) ≤ ki. Thus, by the

assumption and taking into account Definition 3,
∑

1≤u≤π−1
1 (q)

b(π1(u)) −
∑

1≤u≤kq

b(π2(u)) ≥
∑

1≤u≤π−1
1 (i)

b(π1(q)) −
∑

1≤u≤kq

b(π2(u)) > B,

(23)
which contradicts to the fact that kq is the critical position for job q. �

Wait algorithm. We assume that π1 = π2, if we use only one of the two orders,
defined by the starting times obtained during Lagrangian Relaxation stage of the

320 H. Gu et al.

algorithm. Otherwise π1 and π2 may be different. The Wait algorithm employs
Repair routine if (18) did not hold for (π1, π2) for all i ∈ N at the start of
the algorithm. The Repair routine checks whether or not π−1

1 (j) < π−1
1 (i) for

the considered job i and all jobs j such that j = π2(u) and u ≤ ki, and the
routine changes π2, if required. Denote by t1 and t2 the current minimal starting
time available for unscheduled jobs on the first and the second-stage machine,
correspondingly. Denote by pos1 and pos2 the current position in π1 and π2,
correspondingly. Set t1 = t2 = 0 and pos1 = pos2 = 1.

1. If all jobs are scheduled on both machines, stop. Otherwise go to next step.
2. If pos1 > n, go to step 5. Otherwise consider i = π1(pos1). If i is not ordinary

job or if i is ordinary job and S2
q has been assigned for q = π2(ki) and

S2
q + p2q ≤ t1, go to the next step. Otherwise go to step 4.

3. Set S1
i = t1 for i = π1(pos1), t1 = t1 + p1i , pos1 = pos1 + 1. Go to step 5.

4. There are the following possibilities for the considered job i = π1(pos1):
4.1. If S2

q has been assigned for q = π2(ki) but S2
q + p2q > t1, then set t1 =

S2
q + p2q, go to step 3 to schedule task i on the first-stage machine.

4.2. If S2
q has not been assigned for q = π2(ki) and (18) held for (π1, π2) for

all i ∈ N at the start of the algorithm, go to step 5.
4.3. If S2

q has not been assigned for q = π2(ki), (18) did not hold for (π1, π2)
for all i ∈ N at the start of the algorithm, go to Repair routine.

5. If pos2 > n, go to step 1. Otherwise consider j = π2(pos2). If S1
j has been

assigned and S1
j + p1j ≤ t2, go to the next step. Otherwise go to step 7.

6. Set S2
j = t2 for j = π2(pos2), t2 = t2 + p2i , pos2 = pos2 + 1. Go to step 2.

7. If job j = π2(pos2) has been scheduled on the first-stage machine but S1
j +p1j >

t2, set t2 = S1
j + p1j and go to step 6 to schedule job j on the second-stage

machine. Otherwise go to step 2.

Repair Routine

1. If ki ≥ π−1
2 (i), go to step 2 of the routine. Otherwise for pos2 ≤ u ≤ ki and

j = π2(u) check if π−1
1 (j) < π−1

1 (i). If π−1
1 (j) < π−1

1 (i) for all such j, go to
step 5 of the algorithm. Otherwise go to the next step of the routine.

2. If
∑

1≤u≤π−1
1 (i)

b(π1(u)) −
∑

1≤u<pos2

b(π2(u)) ≤ B, then set ki = pos2 − 1 and go

to step 2 of the algorithm. Otherwise set new2 = pos2 and go to the next
step of the routine.

3. Among jobs j such that new2 ≤ π−1
2 (j) ≤ n find the first job h, such that

π−1
1 (h) < π−1

1 (i). In permutation π2 increase by one positions of all jobs j
such that new2 ≤ π−1

2 (j) < π−1
2 (h), set π−1

2 (h) = new2, new2 = new2 + 1. If
∑

1≤u≤π−1
1 (i)

b(π1(u)) −
⎛

⎝
∑

1≤u≤new2

b(π2(u))

⎞

⎠ ≤ B, then go to the next step of

routine. Otherwise repeat the step 3 of the routine.
4. For i = π1(pos1) set ki = π−1

2 (h) and go to the step 6 of the algorithm.

Efficient Lagrangian Heuristics 321

Lemma 4. The Wait algorithm constructs a feasible schedule.

Corollary 1. If for the pair of permutations (π1, π2) the inequality (18) holds
for each i ∈ N , then the pair is feasible.

Proof. The statement of the corollary straightforwardly follows from Lemma4.

4 Computational Experiments

The computational experiments aimed to compare the No-wait algorithm and
Wait algorithm. The computational experiments were conducted by the second
author on a personal computer with Intel Core i5 processor CPU@1.70 Ghz,
using Ubuntu 14.04 LTS, with base memory 4096 MB. The algorithms were
implemented using C programming language. The test instances were generated
randomly with processing times chosen from the interval [1, 10], and job’s weights
chosen from the interval (0, 2]. Two groups of 15 instances of 25 and 50 jobs
were considered. The experiments were conducted for buffer sizes B = bmax and
B = 2bmax, where bmax is the maximum buffer requirement among all jobs of a
set. The No-wait and Wait algorithms were compared in terms of initial value
of the upper bound, the smallest upper bound produced by each algorithm, and
how this value improved in comparison with the initial value. Denote by NW1,
NW2 and NW3 the No-wait algorithm, with π1 and π2 defined by the starting
times of jobs on the first, the second-stage machine or each of the machines,
correspondingly; denote by W1, W2 and W3 the Wait algorithm with π1 and
π2 defined by the starting times of jobs on the first, the second-stage machine
or each of the machines, correspondingly. In all cases the starting times were
obtained during Lagrangian Relaxation stage of the algorithm. For each job the
parameter W 0

i = wi

(p1
i+p2

i)
was calculated, and the list of jobs in non-increasing

order of W 0
i was constructed. To obtain an initial value of upper bound No-

wait or Wait algorithm was employed with this order for both machines. In each
heuristic the subgradient algorithm was run for 1000 iterations. The initial upper
bounds for NW1, NW2 and NW3 have the same value which is provided in
the second column of a table, denoted by INW . The initial upper bounds for
W1, W2 and W3 have the same value which is provided in third column of a
table, denoted by IW . The fourth column shows difference D between the initial
bounds and calculated as D = 1− IW

INW . The columns 5−10 provide the smallest
upper bound produced by the corresponding No-wait or Wait algorithms, the
smallest value emphasised in bold.

The columns 11–16 show the improvement of upper bound I, calculated as
I = 1 − NWi

INW , for No-wait algorithms, and I = 1 − Wi
IW , for Wait algorithms,

where i = 1, 2, 3. The results for 25 jobs sets and B = bmax are presented in
Table 1, for 25 jobs sets and B = 2bmax - in Table 2; the results for 50 jobs sets
and B = bmax are presented in Table 3, for 50 jobs sets and B = 2bmax - in
Table 4.

322 H. Gu et al.

Table 1. 25 jobs, B = bmax

Inst Intial UB Best UB I, %

INW IW D,% NW1 NW2 NW3 W1 W2 W3 NW1 NW2 NW3 W1 W2 W3

1 1942 1592 18 1672 1672 1569 1423 1455 1592 14 14 19 11 9 0

2 1994 1751 12 1707 1732 1738 1584 1599 1751 14 13 13 10 9 0

3 1524 1516 0 1394 1402 1403 1356 1326 1410 9 8 8 11 13 7

4 1875 1688 10 1573 1575 1581 1506 1553 1671 16 16 16 11 8 1

5 1731 1622 6 1472 1503 1475 1411 1411 1535 15 13 15 13 13 5

6 2275 2228 2 1999 2025 1981 1936 1935 1990 12 11 13 13 13 11

7 1897 1745 8 1645 1649 1640 1630 1661 1722 13 13 14 7 5 1

8 1603 1500 6 1481 1550 1478 1277 1291 1345 8 3 8 15 14 10

9 2192 1997 9 2055 1964 2055 1868 1861 1965 6 10 6 6 7 2

10 2401 2220 8 2173 2172 2063 1984 2023 2110 10 10 14 11 9 5

11 1542 1736 −13 1483 1506 1484 1535 1528 1575 4 2 4 12 12 9

12 1467 1499 −2 1382 1349 1364 1285 1305 1404 6 8 7 14 13 6

13 2045 1791 12 1708 1730 1708 1535 1531 1600 16 15 16 14 14 11

14 1876 1844 2 1797 1791 1787 1765 1729 1826 4 5 5 4 6 1

15 1838 1800 2 1721 1767 1736 1714 1728 1778 6 4 6 5 4 1

Table 2. 25 jobs, B = 2bmax

Inst Intial UB Best UB I, %

INW IW D,% NW1 NW2 NW3 W1 W2 W3 NW1 NW2 NW3 W1 W2 W3

1 1488 1210 19 1218 1303 1260 1151 1118 1210 18 12 15 5 8 0

2 1429 1401 2 1347 1306 1333 1282 1297 1370 6 9 7 8 7 2

3 1218 1173 4 1083 1086 1083 1088 1081 1150 11 11 11 7 8 2

4 1451 1409 3 1277 1404 1304 1249 1245 1332 12 3 10 11 12 5

5 1406 1270 10 1133 1132 1131 1108 1102 1212 19 20 20 13 13 5

6 1629 1618 1 1502 1498 1502 1495 1488 1578 8 8 8 8 8 2

7 1367 1273 7 1189 1189 1189 1173 1177 1268 13 13 13 8 8 0

8 1402 1293 8 1199 1223 1177 1098 1108 1121 14 13 16 15 14 13

9 1625 1474 9 1440 1442 1439 1367 1384 1474 11 11 11 7 6 0

10 1882 1713 9 1519 1532 1535 1486 1459 1653 19 19 18 13 15 3

11 1337 1340 0 1242 1236 1243 1253 1242 1340 7 8 7 6 7 0

12 1206 1133 6 1055 1062 1061 1054 1054 1133 13 12 12 7 7 0

13 1525 1335 12 1270 1292 1351 1184 1175 1335 17 15 11 11 12 0

14 1744 1414 19 1321 1376 1322 1295 1325 1383 24 21 24 8 6 2

15 1496 1418 5 1238 1249 1242 1227 1250 1302 17 17 17 13 12 8

It took 5–9.8 seconds to process a 25 jobs set, and it took 38–56 seconds to
process a 50 jobs set. The overall time required for recursive procedure to calcu-
late (12) constituted only 10% of processing time of a set. For small instances of
5 and 10 jobs all algorithms provided optimal/near optimal solutions for most
instances, compared with the solutions obtained by CPLEX software. CPLEX
failed to obtain a solution for a 25 jobs set within 10 hours limit.

Efficient Lagrangian Heuristics 323

Table 3. 50 jobs, B = bmax

Inst Intial UB Best UB I, %

INW IW D,% NW1 NW2 NW3 W1 W2 W3 NW1 NW2 NW3 W1 W2 W3

1 5789 5293 9 5152 5180 5336 4944 4974 5293 11 11 8 7 6 0

2 7277 6774 7 6432 6403 6427 5749 5791 6390 12 12 12 15 15 6

3 6176 5180 16 5577 5875 5540 4932 4837 5180 10 5 10 5 7 0

4 7218 5691 21 6027 5843 6050 5217 5426 5691 16 19 16 8 5 0

5 7821 8358 −7 7616 7524 7494 7072 7097 7795 3 4 4 15 15 7

6 5539 5778 −4 5367 5472 5430 5237 5296 5778 3 1 2 9 8 0

7 6207 5830 6 5929 5953 5545 5199 5249 5830 4 4 11 11 10 0

8 8053 7000 13 6839 7166 7135 6289 6345 7000 15 11 11 10 9 0

9 8896 9309 −5 8099 8389 8042 7874 7986 8739 9 6 10 15 14 6

10 6918 6198 10 6306 6506 6427 5890 5988 6198 9 6 7 5 3 0

11 5414 5171 4 4959 4815 4853 4655 4640 5171 8 11 10 10 10 0

12 6517 5725 12 5821 5975 5666 5061 5235 5725 11 8 13 12 9 0

13 7615 6535 14 7118 7173 7093 6132 6161 6535 7 6 7 6 6 0

14 7388 6980 6 6685 6870 6748 6247 6307 6980 10 7 9 11 10 0

15 8749 7571 13 7209 7508 7193 6672 6993 7571 18 14 18 12 8 0

Table 4. 50 jobs, B = 2bmax

Inst Intial UB Best UB I, %

INW IW D,% NW1 NW2 NW3 W1 W2 W3 NW1 NW2 NW3 W1 W2 W3

1 4124 4159 −1 3901 3925 3936 3911 3853 4159 5 5 5 6 7 0

2 6438 4907 24 4930 5351 5183 4455 4559 4907 23 17 19 9 7 0

3 4857 4175 14 4004 4249 4063 3820 3861 4175 18 13 16 9 8 0

4 5244 4273 19 4241 4248 4348 4071 4074 4273 19 19 17 5 5 0

5 6827 6131 10 5607 5623 5587 5552 5609 6131 18 18 18 9 9 0

6 4646 4323 7 4052 4146 4092 3935 3987 4323 13 11 12 9 8 0

7 5506 4590 17 4596 4747 4635 4111 4111 4590 17 14 16 10 10 0

8 5282 4946 6 4722 4922 4850 4685 4714 4946 11 7 8 5 5 0

9 7085 6308 11 6023 6303 6052 5860 5922 6308 15 11 15 7 6 0

10 5884 4793 19 4699 5120 4954 4674 4667 4793 20 13 16 2 3 0

11 4301 4141 4 3722 3787 3742 3780 3764 4141 13 12 13 9 9 0

12 5540 4416 20 4270 4405 4354 4007 4065 4416 23 20 21 9 8 0

13 6181 5168 16 5045 5577 5231 4645 4753 5168 18 10 15 10 8 0

14 6115 5141 16 4844 4922 4969 4774 4797 5141 21 20 19 7 7 0

15 6498 5321 18 5183 5187 5315 5020 5030 5321 20 20 18 6 5 0

The results demonstrate that Wait algorithms, which follow the order of
jobs provided by Lagrangian Relaxation stage, produce feasible schedules with
smaller value of the objective function, than No-wait algorithms. It appears that
the order of jobs on the first-stage machine is more significant, as Wait algorithm
W1, in which the jobs are scheduled in each machine exactly in the order, defined
by starting times of jobs on the first-machine, provided the smallest upper bound

324 H. Gu et al.

for the most instances. Observe that Wait algorithm also provided smallest initial
upper bound for most instances.

Further research will explore the applications to larger instances.
Authors are grateful to the anonymous reviewers for the useful comments

and suggestions, which helped to improve the paper.

References

1. Brucker, P., Knust, S.: Complex Scheduling. GOR-Publications. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-23929-8

2. Emmons, H., Vairaktarakis, G.: Flow Shop Scheduling: Theoretical Results, Algo-
rithms, and Applications. Springer, New York (2013). https://doi.org/10.1007/
978-1-4614-5152-5

3. Fisher, M.L.: The Lagrangian relaxation method for solving integer programming
problems. Manag. Sci. 50(12), 1861–1871 (2004)

4. Fung, J., Zinder, Y.: Permutation schedules for a two-machine flow shop with
storage. Oper. Res. Lett. 44(2), 153–157 (2015)

5. Lin, F.-C., Hong, J.-S., Lin, B.M.T.: A two-machine flowshop problem with process-
ing time-dependent buffer constraints - an application in multimedia presentations.
Comput. Oper. Res. 36(4), 1158–1175 (2009)

6. Lin, F.-C., Hong, J.-S., Lin, B.M.T.: Sequence optimization for media objects with
due date constraints in multimedia presentations from digital libraries. Inf. Syst.
38(1), 82–96 (2013)

7. Lin, F.-C., Lai, C.-Y., Hong, J.-S.: Minimize presentation lag by sequencing media
objects for auto-assembled presentations from digital libraries. Data Knowl. Eng.
66(3), 382–401 (2008)

8. Lin, F.-C., Lai, C.-Y., Hong, J.-S.: Heuristic algorithms for ordering media objects
to reduce presentation lags in auto-assembled multimedia presentations from dig-
ital libraries. Electron. Libr. 27(1), 134–148 (2009)

9. Kononov, A., Hong, J.-S., Kononova, P., Lin, F.-C.: Quantity-based buffer- con-
strained two-machine flowshop problem: active and passive prefetch models for
multimedia applications. J. Sched. 15(4), 487–497 (2012)

10. Kononova, P.A., Kochetov, Y.A.: The variable neibourhood search for two machine
flowshop problem with passive prefetch. J. Appl. Ind. Math. 19(5), 63–82 (2013)

11. Witt, A., Voß, S.: Simple heuristics for scheduling with limited intermediate stor-
age. Comput. Oper. Res. 34(8), 2293–2309 (2007)

https://doi.org/10.1007/978-3-642-23929-8
https://doi.org/10.1007/978-1-4614-5152-5
https://doi.org/10.1007/978-1-4614-5152-5

Mixed Integer Programming

Linear Ordering Based MIP Formulations
for the Vertex Separation or Pathwidth

Problem

Sven Mallach(B)

Department of Computer Science, Universität zu Köln, Köln, Germany
mallach@informatik.uni-koeln.de

Abstract. We consider the task to compute the pathwidth of a graph
which has been shown to be equivalent to the vertex separation problem.
The latter is naturally modeled as a linear ordering problem w.r.t. the
vertices of the graph. Mixed-integer programs proposed so far express lin-
ear orders using either position or set assignment variables. As we show,
the lower bound on the pathwidth obtained when solving their linear pro-
gramming relaxations is zero for any directed graph. We then present a
new formulation based on conventional linear ordering variables and a
slightly different perspective on the problem that sustains stronger lower
bounds. An experimental evaluation of three mixed-integer programs,
each representing one of the different modeling schemes, displays their
potentials and limitations when used to solve the problem to optimality.

Keywords: Vertex separation · Pathwidth
Mixed integer programming

1 Introduction

A tree decomposition of an undirected graph G = (V,E) is a collection of sets
Xi ⊆ V , i ∈ I, along with a tree T = (I, F) such that (a)

⋃
i∈I Xi = V , (b) there

is a set Xi, i ∈ I, with {v, w} ⊆ Xi for each {v, w} ∈ E, and (c) for each j ∈ V ,
the tree-edges F connect all tree-vertices i ∈ I where j ∈ Xi [28]. The width of a
tree decomposition is defined as maxi∈I |Xi|−1 and the treewidth tw(G) of G is
the minimum width among all its tree decompositions. Path decompositions and
the pathwidth pw(G) of an undirected graph G are defined analogously, just now
requiring that T is actually a path [6]. It follows directly that tw(G) ≤ pw(G).

Both width parameters are of theoretical as well as of practical interest.
While deciding whether an arbitrary graph has pathwidth at most k is itself
NP-complete [1,25], many NP-complete problems on graphs can be solved effi-
ciently on instances of known constant bounded tree- respectively pathwidth.
For example, Arnborg and Proskurowski gave linear time algorithms for the
vertex cover, independent set, k-colorability, Hamiltonian circuit and further
combinatorial problems in this case [2]. Typically, algorithms based on tree or

c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 327–340, 2018.
https://doi.org/10.1007/978-3-319-78825-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_27&domain=pdf

328 S. Mallach

path decompositions are fixed-parameter algorithms [10] or follow the dynamic
programming [5] paradigm, i.e., their running times have constant factors that
are exponential in the tree- or pathwidth. It is also known that for a graph
with |V | = n, its pathwidth is at most O(log n) times its treewidth [7] which
can be used for the construction of approximation algorithms. In this paper, we
deal with computing the exact pathwidth of a graph and exploit the fact that
the (directed) pathwidth of a (directed) graph is equivalent to its (directed)
vertex separation number [22,31]. Direct applications of the tree- and the path-
width problems exist, among many others, in the context of VLSI design [14]
and register allocation [4]. The directed vertex separation problem has, e.g., an
application in optical communication networks [29]. For an overview of the sev-
eral other (equivalence) relations with other graph-theoretical problems as well
as applications, we refer to [6,7,15].

Exact approaches to compute the pathwidth have been studied rather rarely,
especially compared to the treewidth. They can be roughly divided into enu-
merative [23,24,30], fixed-parameter [8,9,17,20] and combinatorial branch-and-
bound algorithms [13,19], and finally mixed-integer programming (MIP) mod-
els [3,12,16,19,21,29]. While a combinatorial branch-and-bound method appears
to be the currently fastest and most robust method for small and moderately
sized graphs in practice, we aim at revealing the limitations and structural weak-
nesses of present MIP formulations and at improving their competitiveness. In
this respect, the contribution of this paper is threefold.

First, we derive two MIP formulations that represent the current state-of-the-
art. We then show that, for any given graph, the lower bound on its pathwidth
obtained when solving their linear programming (LP) relaxations, i.e., the linear
program that arises when neglecting any integrality requirements on the vari-
ables, is zero. Second, we propose a new MIP formulation whose LP relaxation
yields stronger lower bounds and is still compact in size. It uses different variables
than the previous ones and also exhibits a slightly different perspective on the
problem. Finally, we evaluate the performance of the now three representatives
when passed to a MIP solver in order to solve the problem to optimality.

The outline of this paper is as follows. Section 2 introduces the vertex sepa-
ration problem formally. Section 3 summarizes related research about the vertex
separation and pathwidth problems with emphasis on existing MIP and other
practical solution methods. It provides the basis to derive representative MIP
models reflecting the current state-of-the-art in Sect. 4. In Sect. 5, we present our
novel MIP formulation and carry out experimental evaluations in Sect. 6.

2 The Vertex Separation Problem

Let G = (V,A) be a directed graph (digraph) and let Π(V) be the set of all
permutations of the vertices V of G. For a given permutation or linear order
π ∈ Π(V), we denote with π(v) the position of each v ∈ V in π and consider
the sets L(π, v) = {u ∈ V | π(u) ≤ π(v)} and R(π, v) = {w ∈ V | π(v) < π(w)}.
They can be thought of as being generated by a cut δ(π, v) through the linear

Linear Ordering Based MIP Formulations 329

Fig. 1. A digraph drawn according to two different linear orders, π1 = 〈1, 2, 3, 4, 5, 6〉
and π2 = 〈2, 5, 1, 6, 4, 3〉, and illustrations of the associated cuts and separations.

order given by π that is carried out marginally close to the right of v. This is
illustrated in Fig. 1 for an example graph. With each cut δ(π, v), we associate its
corresponding separation S(π, v) = {w ∈ R(π, v) | ∃u ∈ L(π, v) : (u,w) ∈ A},
i.e., informally, the subset of vertices in R(π, v) that are ‘hit’ by arcs coming
in from vertices in L(π, v). For a fixed linear order π ∈ Π(V), let vs(π,G) =
maxv∈V |S(π, v)| be the corresponding maximum vertex separation. The vertex
separation problem is to find a linear order π∗ ∈ Π(V), such that the maximum
vertex separation is minimum, i.e., vs(π∗, G) ≤ vs(π,G) for all π ∈ Π(V). The
value vs(π∗, G) is also referred to as the vertex separation number of G. For an
undirected graph G = (V,E), the vertex separation associated to a linear order
π ∈ Π(V) is vs(π,G) = maxv∈V |{w ∈ R(π, v) | ∃u ∈ L(π, v) : {u,w} ∈ E}|.
Clearly, this value can be computed using a digraph-based method by replacing
each edge {u, v} ∈ E by two arcs (u, v) ∈ A and (v, u) ∈ A.

As a remark, the previous definitions differ from other presentations in that
L, R, S and the cuts are associated with a vertex rather than with a position
in the linear order. While this makes no difference concerning the objective, it
does in modeling, as we will see in the following sections.

3 Related Work

The amount of literature dealing with tree- and pathwidth as a theoretic con-
cept is tremendous, so in the following, we restrict ourselves to research that
deals with the exact solution of the pathwidth or vertex separation problem. As
before, we consider undirected graphs G = (V,E), and digraphs G = (V,A), and
throughout the paper, we have n = |V | and, respectively, m = |E| or m = |A|.

The proposal of combinatorial branch-and-bound algorithms started with
the work of Solano and Pióro [29] in the context of wavelength-division multi-
plexing in optical communication networks. Coudert et al. later improved and
extended their method by preprocessing and pruning techniques [13]. Compre-
hensive experimental studies in these articles show that it is currently the fastest
and most robust method to tackle the pathwidth problem. Many instances with
up to about 100 vertices can be solved routinely (still depending on the graph
structure), and also some considerably larger ones. There is an implementa-
tion of their algorithm in SageMath1 and also one of the dynamic program-
ming algorithm presented in [8] (that is applicable to graphs with up to 31
1 SageMath is an open-source mathematics library http://www.sagemath.org.

http://www.sagemath.org

330 S. Mallach

vertices only). A further combinatorial branch-and-bound scheme was proposed
by Fraire Huacuja et al. [19]. On the more theoretical side, enumerative algo-
rithms whose running times can be bounded by O(1.89n) and O(1.9657n) have
respectively been given by Kitsunai et al. [23], and Suchan and Villanger [30],
and exponential-time dynamic programming or fixed-parameter algorithms are
presented in [8,9,17,20].

Among the existing MIP formulations, we distinguish two types of binary
variables that have been used to model linear orders, namely position assignment
and set assignment variables. Their formal definition will be given in Sect. 4. We
are particularly interested in the strength of a formulation. A common strength
measure is the lower bound on the objective (which is here the optimum vertex
separation) obtained when solving a formulation’s LP relaxation, i.e., the linear
program that arises when neglecting any integrality constraints on the variables.

The first MIP formulation has been proposed by Solano and Pióro [29]. It
is set assignment-based, has 3n2 + 1 = O(n2) variables and O(nm) constraints.
Computational experience with this model is hardly reported. However, a slightly
adapted version has been implemented in SageMath and used for experiments,
e.g., in [13,18]. As already noticed by Coudert in [12], its number of variables can
be reduced to 2n2 + 1. Moreover, this reduction comes without losing strength,
and it is easily seen that only n2 of the variables need their integrality to be
enforced explicitly as integrality of the others is then implied. The resulting for-
mulation will be considered for experiments and stated formally as model MIPS

in Sect. 4. As proposed in [18], the number of constraints could be reduced to
O(n2) as well but the corresponding changes require to explicitly enforce inte-
grality of all but one variable while there is no improvement concerning strength.

Duarte et al. [16] devised the first MIP formulation with position assign-
ment variables (and a variable neighborhood search heuristic). It has O(n4)
variables and constraints. The quartic size stems from a straightforward lin-
earization of quadratic terms. Using a more compact linearization and by creat-
ing some variables arc- instead of vertex-pair-based, the number of variables and
constraints can be reduced to O(n2m) and O(nm), respectively [19]. Another
position assignment model by Gurski [21] involves O(n6) variables which is
impractical. However, as discussed by Coudert [12], it is possible to formulate
a position assignment model with only O(n2) variables and O(nm) constraints.
Compared to the one by Duarte et al., its relaxation strength is as least as good
whence we will consider it in our comparisons and state it as model MIPP in
the next section.

Finally, another integer program for undirected graphs has been presented
by Biedl et al. [3]. Its main motivation was to show that the pathwidth problem
can be formulated within a more general framework that assigns vertices and
edges to grid coordinates. Due to a poor performance in their experiments, it
was transformed into a satisfiability problem where graphs with n + m < 45
could almost always, but those where n + m > 70 could only rarely be solved.

Linear Ordering Based MIP Formulations 331

4 Representative MIP Models

As announced in Sect. 3, we formulate two models, MIPP and MIPS , as the
strongest and simultaneously most compact representatives for and with the
same LP relaxation strength as the existing ones with either position or set
assignment variables. We then show that the objective of these LP relaxations
(and thus any model represented by them) is zero for any given digraph2.

4.1 Position Assignments (MIPP)

We start with the representative model MIPP for position assignments. It models
a linear order π in the same way as the models in [16,19,21] but introduces, as
proposed by Coudert [12], fewer variables. These are the following:

– av,p = 1 if π(v) = p and av,p = 0 otherwise (position assignment variables).
– cv,p = 1 if π(v) > p and there is a vertex u with π(u) ≤ p such that (u, v) ∈ A

(v ‘counts’ for the cut at position p), and cv,p = 0 otherwise.
– Z: The objective variable that captures the vertex separation number.

The full model MIPP is then:

min Z

s.t.
∑n

p=1 av,p = 1 for all v ∈ V (1)
∑

v∈V av,p = 1 for all 1 ≤ p ≤ n (2)
∑p

q=1(au,q − av,q) ≤ cv,p for all v ∈ V, (u, v) ∈ A, 1 ≤ p ≤ n (3)
∑

v∈V cv,p ≤ Z for all 1 ≤ p ≤ n (4)
av,p ∈ {0, 1} for all v ∈ V, 1 ≤ p ≤ n (5)
cv,p ∈ [0, 1] for all v ∈ V, 1 ≤ p ≤ n (6)
Z ≥ 0 (7)

Equations (1) and (2) enforce a bijective mapping of vertices to positions.
Inequalities (3) require cv,p to be equal to 1 whenever π(v) > p and there is a
vertex u with π(u) ≤ p and (u, v) ∈ A. Finally, the objective value Z is given by
the maximum sum

∑
v∈V cv,p over all positions p (inequalities (4)). The number

of variables is 2n2 + 1 and thus of order O(n2), and the number of constraints
is 3n + nm and thus of order O(nm).

4.2 Set Assignments (MIPS)

The representative model MIPS for the set-assignment approach arises from the
initial one by Solano and Pióro [29] when successively applying the improvements
made in the SageMath-implementation and those proposed by Coudert in [12].

2 The model in [19] can be implemented such that its relaxation yields non-zero bounds
for some graphs, but it remains of too excessive size and inferior to MIPP in practice.

332 S. Mallach

It constructs a linear order π of the vertices V by enforcing a collection of sets
W = {W1, . . . ,Wn} such that Wp ⊆ V and |Wp| = p for each p ∈ {1, . . . , n}, and
Wp ⊂ Wq for any p < q. That is, W1 specifies the vertex v ∈ V with π(v) = 1,
and in general, the rank π(v) of vertex v ∈ V is π(v) = min{p | v ∈ Wp}.

Model MIPS adopts the c- and objective variables from MIPP but replaces
the a-variables with variables bv,p = 1 if v ∈ Wp and bv,p = 0 otherwise. Then
the lines (1)–(3) and (5) of MIPP are replaced by the following ones:

bv,p − bv,p+1 ≤ 0 for all v ∈ V, 1 ≤ p ≤ n − 1 (8)
∑

v∈V bv,p = p for all 1 ≤ p ≤ n (9)
bu,p − bv,p ≤ cv,p for all v ∈ V, (u, v) ∈ A, 1 ≤ p ≤ n (10)
bv,p ∈ {0, 1} for all v ∈ V, 1 ≤ p ≤ n (11)

Inequalities (8) are forwarding constraints implementing the condition that
v ∈ Wq for any q > p if v ∈ Wp. Equation (9) require the sets Wp to have their
desired cardinalities. The inequalities (10) force cv,p to be equal to 1 whenever
v �∈ Wp and there is a vertex u ∈ Wp with (u, v) ∈ A. The number of variables
is the same as in model MIPP and thus again of order O(n2). The number of
constraints is n(n− 1)+n+nm+n, i.e., a little larger but still of order O(nm).

4.3 Relaxation Strength of MIPP and MIPS

We denote the LP relaxations of MIPP and MIPS with LPP and LPS .

Theorem 1. For any digraph G = (V,A), there exists an optimum solution of
LPP and LPS with objective value zero.

Proof. We explicitly construct a feasible LP solution for both of the relaxations
and any digraph G = (V,A) with |V | = n that has objective value zero.

In case of LPP , set av,p = 1
n for each v ∈ V and 1 ≤ p ≤ n. It is easily verified

that Eqs. (1) and (2) are satisfied. For any arc (u, v) ∈ A and inequality of type
(3), we obtain a left hand side of zero since au,q equals av,q. Hence, each of these
constraints imposes cv,p ≥ 0 which leads to cv,p = 0 as we are minimizing.

Considering LPS , set bv,p = p
n for each v ∈ V and 1 ≤ p ≤ n. This satisfies

inequalities (8) strictly and Eqs. (9) exactly. Since inequalities (10) have only
variables on their left hand sides that refer to the same position p, they again
all evaluate to cv,p ≥ 0 such that an optimum solution has Z = 0. 	

5 A Novel Linear-Ordering Model (MIPL)

While the vertex separation problem has often been explained in a linear order-
ing context, we are not aware of any promising mixed-integer program that is
based on what is commonly known as linear ordering variables in the litera-
ture [27]. The only exception is [12] where such a formulation is indicated but
then overcomplicated leading to unsatisfactory results.

Linear Ordering Based MIP Formulations 333

Linear ordering variables xv,w ∈ {0, 1} are defined for each pair of vertices
v, w ∈ V such that v < w [27]. The variable xv,w is equal to 1 if and only if
π(v) < π(w), and hence equal to 0 if w precedes v. This will make it particularly
easy to exploit the following properties within a corresponding new model MIPL.

Lemma 1. Let v, w ∈ V , v �= w, and (v, w) ∈ A. Then w ∈ S(π, v) if and only
if π(v) < π(w).

Proof. Since v is the rightmost vertex of L(π, v), w must be in R(π, v) if it
succeeds v. As we assume that (v, w) ∈ A, w ∈ S(π, v) immediately follows in
this case. Conversely, if w ∈ S(π, v) then w must succeed v in π by definition. 	

Lemma 2. Let v, w ∈ V , v �= w, and (v, w) �∈ A. Then w ∈ S(π, v) if and only
if π(v) < π(w) and there is some u �= v, w such that π(u) < π(v) and (u,w) ∈ A.

Proof. First, suppose w ∈ S(π, v). Then w ∈ R(π, v) and hence π(w) > π(v).
Assume now that there is no such u as required. Then the only vertex in L(π, v)
that could cause w ∈ S(π, v) is v itself. However, by assumption, (v, w) �∈ A
which yields a contradiction. The converse direction is again immediate from
the definition of S(π, v). 	

Another central difference of MIPL compared to MIPP and MIPS is that it
defines cuts w.r.t. a vertex rather than a position. This leads to a replacement
of the previous c-variables by new vertex-relational y-variables where yv,w = 1
if w ∈ S(π, v). We now formulate MIPL entirely:

min Z

s.t. xu,v + xv,w − xu,w ≥ 0 for all u, v, w ∈ V, u < v < w (12)
xu,v + xv,w − xu,w ≤ 1 for all u, v, w ∈ V, u < v < w (13)
xu,v + xv,w − 1 ≤ yv,w for all u, v, w ∈ V, (v, w) �∈ A, (u,w) ∈ A (14)
∑

(v,w) �∈A

yv,w +
∑

(v,w)∈A

xv,w ≤ Z for all v ∈ V (15)

xv,w ∈ {0, 1} for all v, w ∈ V, v < w (16)
yv,w ∈ [0, 1] for all v, w ∈ V, v �= w, (v, w) �∈ A (17)
Z ≥ 0

Integer valued linear ordering variables are in one-to-one correspondence with
permutations of V if and only if they satisfy the so-called 3-dicycle-inequalities
(12) and (13) [27]. By Lemma 1, if (v, w) ∈ A, then the variables yv,w can be
omitted and replaced by xv,w where necessary. If (v, w) �∈ A, inequalities (14)
implement Lemma 2, i.e., enforce yv,w to be 1 whenever there is a vertex u such
that π(u) < π(v), (u,w) ∈ A, and π(w) > π(v). Finally, inequalities (15) let the
objective function attain the desired value. Although not displayed to improve
readability, in both inequalities (14) and (15), xv,w (and xu,v) must be replaced
by 1 − xw,v (1 − xv,u) if v > w (u > v) and we always refer to vertices w �= u, v.

Model MIPL has
(
n
2

)
+ n(n − 1) − m + 1 = O(n2) variables. Variables yv,w

(and hence also inequalities (14)) may further be omitted for vertices w ∈ V

334 S. Mallach

that have no incoming arcs. The number of constraints is of order O(n3) due
to the three-dicycle inequalities. These are a natural candidate to be considered
as cutting planes, i.e., they are omitted in the initial LP and then, as long as
there exist inequalities that are violated by an LP solution, these are iteratively
added and the LP is resolved. This increases the applicability to larger instances.
In addition, every other inequality that is valid for the linear ordering problem
(plenty exist, see e.g. [27]) is also valid for this formulation. When first neglecting
the three-dicycle inequalities, the order of the remaining constraints is O(nm).

6 Experimental Evaluation

In the previous sections, we derived three different MIP models, MIPP , MIPS

and MIPL. Analogously to LPP and LPS , we denote the LP relaxation of MIPL

with LPL. Our experiments shall give insights about the following questions:

(1) How good are the lower bounds on the pathwidth obtained with LPL?
(2) How do LPP , LPS , and LPL compare in terms of solution times?
(3) How do MIPP , MIPS and MIPL perform with a sophisticated solver?

We compile a testbed of 147 bidirected graphs with at most 100 vertices
from benchmark sets previously used for comparisons. First, we consider a set
TWLib consisting of 17 graphs from the TreewidthLIB. Second, we select six
Grid and 20 Tree instances from the VSPLIB [16]. Then there are 20 graphs
whose bidirected arcs represent the non-zero off-diagonal entries of instances
from the Harwell-Boeing sparse matrix collection (denoted HB), and another
set of 84 instances with only 16–24 vertices called Small that were introduced
in [26].

All LPs and MIPs were solved using version 12.6 of CPLEX3. For maximum
fairness and to reflect the effects of each formulation as purely as possible, all its
internal cutting plane algorithms, heuristics, and presolve routines were disabled.

Each run was executed single-threadedly on a Debian Linux machine with
an Intel Core i7-3770T processor running at 2.5 GHz and with 32 GB RAM.

6.1 Results

There is a table for each considered benchmark subset. Table 1 gives the results
for the set HB, Table 2 for TWLib, and Table 3 for the Tree and Grid
instances. In case of the trees, we restricted the displayed results to four instances
with indices 1, 6, and 11 as these are representative for all the graphs with indices
1–5, 6–10 and 11–15, respectively. Most (73 of 84) Small instances could be
solved easily with all formulations whence the results for these are shown aver-
aged in Table 4. Table 5 displays the instances that at least one formulation failed
to solve to optimality within the time limit of ten minutes (wall clock time). Each
of the Tables 1, 2, 3, 4 and 5, reports the following information: The instance

3 IBM ILOG CPLEX Optimization Studio is a proprietary LP and MIP solver.

Linear Ordering Based MIP Formulations 335

Table 1. Results for the HB instance test bed.

Instance n m pw LB Time [s] Time [s] or LB

LPL LPL LPP LPS MIPL MIPP MIPS

ash85 85 438 8 3.4521 42.93 74.31 13.75 4.0000∗ 1.0000∗ 1.0000∗

bcspwr01 39 92 4 1.5000 0.19 0.74 0.29 3.0000∗ 1.0000∗ 426.94

bcspwr02 49 118 3 1.7769 0.85 2.39 0.63 133.53 1.0000∗ 234.58

bcsstk01 48 352 13 4.7545 3.34 6.12 1.02 5.0000∗ 1.0000∗ 5.0000∗

bcsstk02 66 4290 65 32.5000 5.85 389.99 28.52 32.5000∗ 0.0000∗ 2.0000∗

can 24 24 136 5 3.0625 0.04 0.21 0.05 83.70 47.70 9.29

can 61 61 496 8 4.2394 3.51 22.77 2.52 5.0000∗ 1.0000∗ 3.0000∗

can 62 62 156 4 1.8333 1.96 7.55 1.96 3.0000∗ 1.0000∗ 2.0000∗

can 73 73 304 10 3.5556 17.60 27.88 4.01 4.0000∗ 1.0000∗ 4.0000∗

can 96 96 672 13 4.0000 58.16 203.11 37.10 5.0000∗ 0.0000∗ 2.0000∗

curtis54 54 248 6 2.9552 4.51 6.54 1.05 4.0000∗ 1.0000∗ 3.0000∗

dwt 59 59 208 5 2.1667 2.23 7.82 1.48 3.0000∗ 1.0000∗ 4.0000∗

dwt 66 66 254 2 1.9999 6.65 16.11 3.19 93.04 1.0000∗ 320.26

dwt 72 72 150 3 1.4473 4.44 13.66 3.24 115.68 1.0000∗ 208.56

dwt 87 87 454 8 3.8142 79.59 89.42 10.25 4.0000∗ 1.0000∗ 2.0000∗

ibm32 32 180 10 3.9028 0.27 0.66 0.15 5.0000∗ 2.5227∗ 8.0000∗

pores 1 30 206 7 4.1000 0.27 0.54 0.12 5.0000∗ 5.2381∗ 63.71

nos4 100 494 8 3.0000 51.18 161.99 37.92 4.0000∗ 1.0000∗ 4.0000∗

steam3 80 848 7 5.4860 41.94 133.86 14.03 6.0000∗ 1.0000∗ 1.0000∗

will57 57 254 5 2.8749 1.47 8.68 1.66 4.0000∗ 1.0000∗ 3.0000∗

name, the number of vertices n, the number of directed arcs m and the pathwidth
of the graph. Then, in column five, the lower bound obtained with LPL is given.
Columns 6–8 display the time required for solving the respective LP relaxations.
The time specified for LPL is the total time for iteratively solving LPs and
adding three-dicycle-inequalities until a solution is found where none of these
are violated. The last three columns give the results for solving MIPL, MIPP ,
and MIPS . If an instance could be solved within the time limit by a particular
formulation then the time needed is given in the respective table cell. Otherwise,
the lower bound on the pathwidth at termination is displayed and marked with
an asterisk. We now discuss the three posed research questions one-by-one.

How Good are the Lower Bounds on the Pathwidth Obtained
with LPL?
As could be expected, the lower bounds obtained depend on the graph structure.
For complete digraphs on n vertices, it is half the true pathwidth (being n − 1)
which can also be proven structurally. However, as the Grid instances show,
the lower bound to pathwidth ratio can also be (made) arbitrarily bad (when
increasing the number of vertices). When looking at the HB instances, the ratio
is 30% for can 96, the best is 99% for dwt 66 and on average it is 50%. For

336 S. Mallach

Table 2. Results for the TWLib instance test bed.

Instance n m pw LB Time [s] Time [s] or LB

LPL LPL LPP LPS MIPL MIPP MIPS

barley 48 252 7 3.5850 1.66 4.39 0.80 4.0000∗ 2.0000∗ 4.3226∗

david 87 812 13 7.2287 34.92 171.87 41.98 8.0000∗ 0.0000∗ 1.0000∗

huck 74 602 10 5.6045 13.58 61.56 8.59 6.0000∗ 0.0000∗ 1.0000∗

mainuk 48 396 7 4.7705 0.90 6.84 1.27 6.0000∗ 1.0000∗ 5.0000∗

mildew 35 160 5 2.6246 0.18 0.74 0.20 4.0000∗ 1.0000∗ 176.65

myciel2 5 5 2 1.0000 0.00 0.00 0.00 0.00 0.01 0.00

myciel3 11 20 5 2.0833 0.00 0.00 0.00 1.75 1.10 0.34

myciel4 23 71 10 3.8580 0.06 0.15 0.04 5.2817∗ 7.2000∗ 147.44

myciel5 47 236 20 6.8750 2.18 8.02 1.20 8.0000∗ 1.0000∗ 6.0000∗

queen5 5 25 320 18 6.6370 0.09 0.42 0.09 7.9205∗ 392.46 13.5714∗

queen6 6 36 580 25 8.5000 0.85 3.65 0.54 8.9608∗ 1.0000∗ 8.0000∗

queen7 7 49 952 35 10.4246 8.50 22.54 2.03 10.5145∗ 1.0000∗ 7.0000∗

queen8 8 64 1456 45 12.2308 36.99 106.08 4.65 13.0000∗ 0.0000∗ 6.0000∗

queen8 12 96 2736 65 15.5303 1790.72 1042.17 61.18 – – 2.0000∗

queen9 9 81 2112 58 14.1075 272.16 391.01 16.93 15.0000∗ 0.0000∗ 1.0000∗

queen10 10 100 2940 72 16.0686 1348.58 1335.73 68.30 – – 2.0000∗

water 32 246 10 4.9286 0.36 0.93 0.21 5.7253∗ 1.0000∗ 9.0000∗

Table 3. Results for the Tree and Grid instance test bed.

Instance n m pw LB Time [s] Time [s] or LB

LPL LPL LPP LPS MIPL MIPP MIPS

tree 22 rot1 22 42 3 1.1250 0.01 0.04 0.04 32.14 1.9167∗ 12.81

tree 67 rot1 67 132 4 1.2500 1.32 8.14 2.49 2.0000∗ 1.0000∗ 2.0000∗

tree 67 rot6 67 132 4 1.2656 1.09 7.80 2.43 2.0000∗ 1.0000∗ 2.0000∗

tree 67 rot11 67 132 4 1.2812 1.51 7.68 2.49 2.0000∗ 1.0000∗ 2.0000∗

grid 5 25 80 5 2.0000 0.04 0.16 0.04 78.16 552.65 12.60

grid 6 36 120 6 2.0000 0.22 0.72 0.22 4.0000∗ 2.3077∗ 57.28

grid 7 49 168 7 2.0000 0.61 3.17 0.61 2.2222∗ 1.0000∗ 277.32

grid 8 64 224 8 2.0000 1.21 13.13 2.19 2.0000∗ 1.0000∗ 4.7913∗

grid 9 81 288 9 2.0000 4.08 42.08 9.29 3.0000∗ 1.0000∗ 2.0779∗

grid 10 100 360 10 2.0000 20.08 125.20 23.88 2.0000∗ 1.0000∗ 2.0000∗

the TWLib instances, the picture is similar but the quality of the lower bound
drops considerably for the queen-graphs. For the Tree instances that are very
similar to each other, the lower bounds obtained differ only marginally.

How Do LPP , LPS , and LPL Compare in Terms of Solution Times?
Apart from a few exceptions, one can say that, across the instances considered,
LPS can be solved the fastest, followed by LPL, while solving LPP usually takes

Linear Ordering Based MIP Formulations 337

Table 4. Averaged results for the Small instances solved by all formulations.

n # Avg. LB/pw [%] Avg. time [s] Avg. time [s]

LPL LPL LPP LPS MIPL MIPP MIPS

16 4 51.09 0.0080 0.0220 0.0110 0.9440 27.2560 0.6160

17 10 57.11 0.0076 0.0216 0.0108 0.7984 33.8476 0.5592

18 10 57.30 0.0080 0.0260 0.0136 2.9644 46.6116 0.8476

19 10 54.28 0.0116 0.0348 0.0188 1.3064 84.8664 1.2656

20 9 53.55 0.0138 0.0431 0.0218 1.6124 95.1844 1.6596

21 7 57.83 0.0183 0.0514 0.0251 1.7971 62.2560 1.1634

22 6 54.77 0.0233 0.0680 0.0307 15.3127 184.4827 2.0993

23 8 55.58 0.0230 0.0750 0.0345 5.7990 150.7190 4.4000

24 9 56.20 0.0298 0.0987 0.0436 5.4227 231.2133 5.0178

Table 5. Results for the Small instances not solved by at least one formulation.

Instance n m pw LB Time [s] Time [s] or LB

LPL LPL LPP LPS MIPL MIPP MIPS

p56 20 23 20 46 4 1.5000 0.01 0.04 0.02 5.83 3.0000∗ 7.88

p61 21 22 21 44 3 1.3308 0.02 0.04 0.02 0.89 2.0000∗ 3.86

p63 21 42 21 84 6 2.6939 0.02 0.07 0.02 207.52 5.0000∗ 10.48

p69 21 23 21 46 3 1.4000 0.01 0.05 0.02 0.94 2.0000∗ 6.65

p72 22 49 22 98 7 3.0625 0.03 0.12 0.04 5.2391∗ 235.09 3.03

p73 22 29 22 58 4 1.7500 0.01 0.06 0.02 17.54 3.0000∗ 13.26

p78 22 31 22 62 4 1.9028 0.02 0.06 0.02 10.61 3.0000∗ 2.03

p80 22 30 22 60 4 1.8644 0.02 0.09 0.02 8.68 2.3500∗ 2.52

p81 23 46 23 92 7 2.6429 0.04 0.11 0.03 4.7121∗ 5.8333∗ 14.27

p85 23 26 23 52 3 1.3854 0.01 0.08 0.03 3.54 1.6667∗ 15.31

p100 24 34 24 68 4 2.0000 0.02 0.10 0.04 10.28 3.0000∗ 40.27

considerably more time. There are some outliers where solving LPL takes much
longer, especially for queen 8 12 and queen 10 10 where even the time limit
destined for the MIP experiment is exceeded. These extremes diminish when
activating the presolve methods of CPLEX. Iterative addition of the three-dicycle
inequalities is essential in order to achieve moderate solution times for LPL. If all
of them are added in advance, the solution times often degrade unsatisfactorily.

How Do MIPP , MIPS and MIPL Perform with a Sophisticated
Solver?
All models typically find an optimum solution quickly but often optimality can-
not be proven within the time limit. Concerning the number of solved instances
and derived lower bounds after ten minutes of computation time, MIPP is clearly

338 S. Mallach

inferior to the other two models except for seven instances in total. MIPS solves
a few instances more than MIPL within the time limit. On the other hand, for
many unsolved instances, MIPL provides a better lower bound than MIPS when
the timeout occurs. Further investigations revealed that the branch-and-bound
scheme of CPLEX is able to improve the global lower bound much better when
solving MIPS than when solving MIPL. More precisely, MIPL starts with a non-
zero bound but the bound then often stagnates early and solving the LPs takes
more time compared to MIPS which starts with a zero bound that can then often
be improved steadily and the occurring subproblems can be enumerated quicker.
So when raising the time limit, MIPS solves or obtains the best bound for even
slightly more instances although many remain unsolved even after 60 min.

6.2 Conclusion and Discussion

It became evident that the LP relaxation of MIPL provides stronger lower bounds
than those of MIPS and MIPP , and could still be solved relatively quickly in
most of the cases. This advantage does however not necessarily translate into a
better MIP solution performance. Contrarily, MIPS could typically be solved the
fastest (as also its relaxation) and could prove optimality for the highest number
of instances within the time limit of ten minutes. MIPP appeared to be inferior
to both other models. However, none of them is yet competitive to the currently
best combinatorial branch-and-bound methods to which many of the unsolved
instances pose no challenge. Moreover, even the lower bounds obtained with
MIPL are often inferior to those achieved by combinatorial methods for treewidth
(see, e.g., [11]). To become competitive, a prospective MIP formulation must
exploit more structural knowledge to combine a good lower bound quality with
effective search space reductions while retaining a fast relaxation performance.

References

1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebr. Discret. Methods 8(2), 277–284 (1987)

2. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems
restricted to partial k-trees. Discret. Appl. Math. 23(1), 11–24 (1989)

3. Biedl, T.C., Bläsius, T., Niedermann, B., Nöllenburg, M., Prutkin, R., Rutter,
I.: Using ILP/SAT to determine pathwidth, visibility representations, and other
grid-based graph drawings. CoRR, abs/1308.6778v2 (2015)

4. Bodlaender, H., Gustedt, J., Telle, J.A.: Linear-time register allocation for a fixed
number of registers. In: Proceedings of 9th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 1998, Philadelphia, PA, USA, pp. 574–583. SIAM
(1998)

5. Bodlaender, H.L.: Dynamic programming on graphs with bounded treewidth. In:
Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 105–118. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-19488-6 110

6. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11(1–2),
1–23 (1993)

https://doi.org/10.1007/3-540-19488-6_110

Linear Ordering Based MIP Formulations 339

7. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. The-
oret. Comput. Sci. 209(1–2), 1–45 (1998)

8. Bodlaender, H.L., Fomin, F.V., Koster, A.M., Kratsch, D., Thilikos, D.M.: A note
on exact algorithms for vertex ordering problems on graphs. Theory Comput. Syst.
50(3), 420–432 (2012)

9. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the path-
width and treewidth of graphs. J. Algorithms 21(2), 358–402 (1996)

10. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of
bounded treewidth. Comput. J. 51(3), 255 (2007)

11. Bodlaender, H.L., Wolle, T., Koster, A.M.C.A.: Contraction and treewidth lower
bounds. J. Graph Algorithms Appl. 10(1), 5–49 (2006)

12. Coudert, D.: A note on integer linear programming formulations for linear ordering
problems on graphs. Technical report hal-01271838, INRIA, February 2016

13. Coudert, D., Mazauric, D., Nisse, N.: Experimental evaluation of a branch-and-
bound algorithm for computing pathwidth and directed pathwidth. J. Exp. Algo-
rithmics 21, 1.3:1–1.3:23 (2016)

14. Deo, N., Krishnamoorthy, M.S., Langston, M.A.: Exact and approximate solutions
for the gate matrix layout problem. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 6(1), 79–84 (1987)

15. Dı́az, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput.
Surv. 34(3), 313–356 (2002)

16. Duarte, A., Escudero, L.F., Mart́ı, R., Mladenovic, N., Pantrigo, J.J., Sánchez-
Oro, J.: Variable neighborhood search for the vertex separation problem. Comput.
Oper. Res. 39(12), 3247–3255 (2012)

17. Ellis, J.A., Sudborough, I.H., Turner, J.S.: The vertex separation and search num-
ber of a graph. Inf. Comput. 113(1), 50–79 (1994)

18. Fraire-Huacuja, H.J., Castillo-Garćıa, N., López-Locés, M.C., Mart́ınez Flores,
J.A., Pazos R., R.A., González Barbosa, J.J., Carpio Valadez, J.M.: Integer linear
programming formulation and exact algorithm for computing pathwidth. In: Melin,
P., Castillo, O., Kacprzyk, J. (eds.) Nature-Inspired Design of Hybrid Intelligent
Systems. SCI, vol. 667, pp. 673–686. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-47054-2 44

19. Fraire Huacuja, H.J., Castillo-Garćıa, N., Pazos Rangel, R.A., Mart́ınez Flores,
J.A., González Barbosa, J.J., Carpio Valadez, J.M.: Two new exact methods for
the vertex separation problem. IJCOPI 6(1), 31–41 (2015)

20. Fürer, M.: Faster computation of path-width. In: Mäkinen, V., Puglisi, S.J.,
Salmela, L. (eds.) IWOCA 2016. LNCS, vol. 9843, pp. 385–396. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44543-4 30

21. Gurski, F.: Linear programming formulations for computing graph layout param-
eters. Comput. J. 58, 2921–2927 (2015)

22. Kinnersley, N.G.: The vertex separation number of a graph equals its path-width.
Inf. Process. Lett. 42(6), 345–350 (1992)

23. Kitsunai, K., Kobayashi, Y., Komuro, K., Tamaki, H., Tano, T.: Computing
directed pathwidth in O(1.89n) time. In: Thilikos, D.M., Woeginger, G.J. (eds.)
IPEC 2012. LNCS, vol. 7535, pp. 182–193. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33293-7 18

24. Kobayashi, Y., Komuro, K., Tamaki, H.: Search space reduction through commit-
ments in pathwidth computation: an experimental study. In: Gudmundsson, J.,
Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 388–399. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07959-2 33

https://doi.org/10.1007/978-3-319-47054-2_44
https://doi.org/10.1007/978-3-319-47054-2_44
https://doi.org/10.1007/978-3-319-44543-4_30
https://doi.org/10.1007/978-3-642-33293-7_18
https://doi.org/10.1007/978-3-642-33293-7_18
https://doi.org/10.1007/978-3-319-07959-2_33

340 S. Mallach

25. Lengauer, T.: Black-white pebbles and graph separation. Acta Informatica 16(4),
465–475 (1981)

26. Mart́ı, R., Campos, V., Piñana, E.: A branch and bound algorithm for the matrix
bandwidth minimization. Eur. J. Oper. Res. 186(2), 513–528 (2008)

27. Mart́ı, R., Reinelt, G.: The Linear Ordering Problem. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-16729-4

28. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
J. Algorithms 7(3), 309–322 (1986)

29. Solano, F., Pióro, M.: Lightpath reconfiguration in WDM networks. IEEE/OSA J.
Opt. Commun. Netw. 2(12), 1010–1021 (2010)

30. Suchan, K., Villanger, Y.: Computing pathwidth faster than 2n. In: Chen, J.,
Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 324–335. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-11269-0 27

31. Yang, B., Cao, Y.: Digraph searching, directed vertex separation and directed
pathwidth. Discret. Appl. Math. 156(10), 1822–1837 (2008)

https://doi.org/10.1007/978-3-642-16729-4
https://doi.org/10.1007/978-3-642-11269-0_27

Polynomial Algorithms

How to Answer a Small Batch of RMQs
or LCA Queries in Practice

Mai Alzamel, Panagiotis Charalampopoulos(B), Costas S. Iliopoulos,
and Solon P. Pissis

Department of Informatics, King’s College London, London, UK
{mai.alzamel,panagiotis.charalampopoulos,costas.iliopoulos,

solon.pissis}@kcl.ac.uk

Abstract. In the Range Minimum Query (RMQ) problem, we are given
an array A of n numbers and we are asked to answer queries of the fol-
lowing type: for indices i and j between 0 and n − 1, query RMQA(i, j)
returns the index of a minimum element in the subarray A[i . . j]. Answer-
ing a small batch of RMQs is a core computational task in many real-
world applications, in particular due to the connection with the Lowest
Common Ancestor (LCA) problem. With small batch, we mean that the
number q of queries is o(n) and we have them all at hand. It is there-
fore not relevant to build an Ω(n)-sized data structure or spend Ω(n)
time to build a more succinct one. It is well-known, among practitioners
and elsewhere, that these data structures for online querying carry high
constants in their pre-processing and querying time. We would thus like
to answer this batch efficiently in practice. With efficiently in practice,
we mean that we (ultimately) want to spend n + O(q) time and O(q)
space. We write n to stress that the number of operations per entry of A
should be a very small constant. Here we show how existing algorithms
can be easily modified to satisfy these conditions. The presented exper-
imental results highlight the practicality of this new scheme. The most
significant improvement obtained is for answering a small batch of LCA
queries. A library implementation of the presented algorithms is made
available.

1 Introduction

In the Range Minimum Query (RMQ) problem, we are given an array A of n
numbers and we are asked to answer queries of the following type: for indices i
and j between 0 and n − 1, query RMQA(i, j) returns the index of a minimum
element in the subarray A[i . . j].

The RMQ problem and the linearly equivalent Lowest Common Ancestor
(LCA) problem [4] are very well-studied and several optimal algorithms exist
to solve them. It was first shown by Harel and Tarjan [14] that a tree can be
pre-processed in O(n) time so that LCA queries can be answered in O(1) time
per query. A major breakthrough in practicable constant-time LCA-computation
was made by Berkman and Vishkin [6]. Farach and Bender [4] further simplified
c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 343–355, 2018.
https://doi.org/10.1007/978-3-319-78825-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_28&domain=pdf

344 M. Alzamel et al.

this algorithm by showing that the RMQ problem is linearly equivalent to the
LCA problem (shown also in [10]). The constants due to the reduction, however,
remained quite large, making these algorithms impractical in most realistic cases.
To this end, Fischer and Heun [9] presented yet another optimal, but also direct,
algorithm for the RMQ problem. The same authors (but also others [15]) showed
that due to large constants in the pre-processing and querying time implementa-
tions of this algorithm are often slower than implementations of the naive ones.
Continuous efforts for engineering these solutions are being made [8].

In this article we try to address this problem, in particular when one wants to
answer a relatively small batch of RMQs efficiently. This version of the problem
is a core computational task in many real-world applications such as in object
inheritance during static compilation of code [5] or in several string matching
problems (see Sect. 5 for some). With small batch, we mean that the number q
of the queries is o(n) and we have them all at hand. It is therefore not relevant
to build an Ω(n)-sized data structure or spend Ω(n) time to build a more suc-
cinct one. It is well-known, among practitioners and elsewhere, that these data
structures carry high constants in both their pre-processing and querying time.
(Note that when q = Ω(n) one can use these data structures for this compu-
tation.) We would thus like to answer this batch efficiently in practice. With
efficiently in practice, we mean that we (ultimately) want to spend n + O(q)
time and O(q) space. We write n to stress that the number of operations per
entry of A should be a very small constant; e.g. scan the array once or twice. In
what follows, we show how existing algorithms can be easily modified to satisfy
these conditions. Experimental results presented here highlight the practicality
of this scheme. The most significant improvement obtained is for answering a
small batch of LCA queries. The RMQ Batch problem can be defined as follows.

RMQ Batch
Input: An array A of size n of numbers and a list Q of q pairs of indices
(i, j), 0 ≤ i ≤ j ≤ n − 1
Output: RMQA(i, j) for each (i, j) ∈ Q

The LCA Queries Batch problem can be defined as follows.

LCA Queries Batch
Input: A rooted tree T with n labelled nodes 0, 1, . . . , n − 1 and a list Q of
q pairs of nodes (u, v)
Output: LCAT (u, v) for each (u, v) ∈ Q

Our Computational Model. We assume the word-RAM model with word
size w = Ω(log n). For the RMQ Batch problem, we assume that we are given a
rewritable array A of size n, each entry of which may be increased by n and still
fit in a computer word. For the LCA Queries Batch problem, we assume that we
are given (an O(n)-sized representation of) a rewritable tree T allowing constant-
time access to (at least) the nodes of T that are in some query in Q (see the
representation in [12], for instance). All presented algorithms are deterministic.

How to Answer a Small Batch of RMQs or LCA Queries in Practice 345

2 Contracting the Input Array

Consider any two adjacent array entries A[i] and A[i + 1]. Observe that if no
query in Q starts or ends at i or at i+1 then, if A[i] �= A[i+1], max(A[i], A[i+1])
will never be the answer to any of the queries in Q. Hence, the idea is that we
want to contract array A, so that each block that does not contain the left
or right endpoint of any query gets replaced by one element: its minimum. A
similar idea, based on sorting the list Q, has been considered in the External
Memory model [1] (see also [2]). In this section, we present a solution for our
computational model, which avoids using Ω(n) space or time, but also avoids
using Ω(sort(Q)) time.

There are some technical details in order to update the queries for A into
queries for the new array using only O(q) time and extra space. We first scan
the array A once and find μ = maxi A[i]. We also create two auxiliary arrays
Z0[0 . . 2q − 1] and Z1[0 . . 2q − 1]. For each query (i, j) ∈ Q we mark positions i
(and j) in the array A as follows. If A[i] ≤ μ, then i has not been marked before.
Let this be the k-th position, k > 0, that gets marked (we just store a counter
for that). We store A[i] in Z0[μ+k mod 2q] and replace the value that is stored
in A[i] by μ+k. We also start a linked list at Z1[μ+k mod 2q], where we insert
a pointer to query (i, j), so that we can update it later. If A[i] > μ, then the
position has already been marked; we just add a pointer to the respective query
in the linked list starting at Z1[A[i] mod 2q].

We then scan array A again and create a new array AQ as follows: for
each marked position j (i.e. A[j] > μ), we copy the original value (i.e. Z0[A[j]
mod 2q]) in AQ, while each maximal block in A that does not contain a marked
position is replaced by a single entry—its minimum. When we insert the original
entry of a marked position j of A (i.e. Z0[A[j] mod 2q]) in AQ at position p,
we go through the linked list that is stored in Z1[A[j] mod 2q], where we have
stored pointers to all the queries of the form (i, j) or (j, k), and replace j by p
in each of them. Thus, after we have scanned A, for each query (i, j) ∈ Q on
A, we will have stored the respective pair (i′, j′) on AQ. Note that we need to
scan array A only once if we know μ a priori (e.g. in LCP array [7]), or twice
otherwise.

Example 1. Assume we are given array A and Q = {(4, 18), (0, 6), (6, 10)}.

Then AQ is as follows.

While creating AQ, we also store in an auxiliary array the function f :
{0, 1, . . . , |AQ|−1} → {0, 1, . . . , n−1} between positions of AQ and the respective
original positions in A.

Now notice that AQ and the auxiliary arrays are all of size O(q) since in the
worst case we mark 2q distinct elements of A and contract 2q +1 blocks that do

346 M. Alzamel et al.

not contain a marked position. (We can actually throw away everything before
the first marked position and everything after the last marked position and get
4q − 1 instead.) The whole procedure takes n + O(q) time and O(q) space. Note
that if RMQAQ

(i′, j′) = � then RMQA(i, j) = f(�).
We can finally retrieve the original input array if required by replacing A[f(j)]

by AQ[j] for every j in the domain of f in O(q) time.

3 Small RMQ Batch

3.1 An n + O(q log q)-time and O(q)-space Algorithm

The algorithm presented in this section is a modification of the Sparse Table
algorithm by Bender and Farach-Colton [4] applied on array AQ; we denote it
by ST-RMQ. The modification is based on the fact that (i) we do not want
to consume Ω(q log q) extra space to answer the q queries; and (ii) we do not
want to necessarily do all the pre-processing work of the algorithm in [4], which
is designed to answer any of the Θ(q2) possible queries online. We denote this
modified algorithm by ST-RMQCON and formalise it below.

ST-RMQCON(A, Q)
1 AQ ← Contract(A,Q)
2 Store function f ; store (i′, j′) for every (i, j) ∈ Q
3 for each (i, j) ∈ Q do
4 if i = j then
5 Report((i, i), i)
6 else Add (i, j) in bucket B�log(j′−i′)�
7 t ← max{r|Br �= ∅} + 1
8 for m = 0 to |AQ| − 1 do
9 D[m] ← (AQ[m],m)

10 for k = 0 to t − 1 do
11 for each (i, j) ∈ Bk do
12 (a, p) ← min(D[i′],D[j′ − 2k + 1])
13 Report((i, j), f(p))
14 for m = 0 to |AQ| − 1 do
15 if m + 2k ≤ |AQ| − 1 then
16 D[m] ← min(D[m],D[m + 2k])

The idea is to first put each (i, j) ∈ Q with i �= j in a bucket Bk based on
the k for which 2k ≤ j′ − i′ < 2k+1—we can have at most �log(|AQ| − 1)	 such
buckets. In this process, if we find queries of the form (i, i) ∈ Q, we answer them
on the spot. We can do this in O(q) time.

We then create an array D of size |AQ| where we will store 2-tuples (a, p).
In Step k, D[m] will store the minimum value across AQ[m . . m + 2k − 1], as
well as the position p, m ≤ p < m + 2k where it occurs. We initialise it as
D[m] = (AQ[m],m) and we will then update it by utilising the doubling technique.
At Step 0 we answer all (trivial) queries that are stored in B0; they are of the form

How to Answer a Small Batch of RMQs or LCA Queries in Practice 347

(i, i + 1) and the answer can be found by looking at min(D[i′],D[i′ + 1])—note
that we compare elements of D lexicographically. When we are done with B0 we
have to update D by setting D[m] = min(D[m],D[m+20]) for all m < |AQ|− 1.

Generally, in Step k, we answer the queries of Bk as follows. For query (i, j),
we find the answer by obtaining min(D[i′],D[j′−2k+1] = (a, p). We then return
f(p). The point is that {i′, . . . , i′ + 2k − 1} ∪ {j′ − 2k + 1, . . . , j′} = {i′, . . . , j′}.
When we are done with Bk we set D[m] = min(D[m],D[m + 2k]) if m + 2k ≤
|AQ| − 1.

We do this until we have gone through all t non-empty buckets (i.e. t =
max{r|Br �= ∅} + 1). Updating D takes O(q) time in each step, and we need
in total O(q) time for the queries. We thus need O(qt) time for this part of the
algorithm. Since t = max{�log(j′ − i′)�|(f(i′), f(j′)) ∈ Q)} = O(log q), this time
is O(q log q). The overall time complexity of the algorithm is thus n+O(q log q).
Notably, the space required is only O(q) as we overwrite D in each step.

3.2 n + O(q)-time and O(q)-space Algorithms

Offline-Based Algorithm. Given an array A of n numbers its Cartesian tree is
defined as follows. The root of the Cartesian tree is A[i] = min{A[0], . . . , A[n−1]},
its left subtree is computed recursively on A[0], . . . , A[i−1] and its right subtree
on A[i + 1], . . . , A[n − 1]. An LCA instance can be obtained from an RMQ
instance on an array A by letting T be the Cartesian tree of A that can be
constructed in O(n) time [10]. It is easy to see that RMQA(i, j) in A translates
to LCAT (A[i], A[j]) in T . The first step of this algorithm is to create array AQ in
n+O(q) time similarly to algorithm ST-RMQCON. The second step is to construct
the Cartesian tree TQ of AQ in O(q) time and extra space. Finally, we apply the
offline algorithm by Gabow and Tarjan [11] to answer q LCATQ

queries in O(q)
time and extra space. This takes overall n + O(q) time and O(q) extra space.
We denote this algorithm by OFF-RMQCON. We denote by OFF-RMQ the same
algorithm applied on array A.

Online-Based Algorithm. The first step of this algorithm is to create array AQ

in n + O(q) time similarly to algorithm ST-RMQCON. We can then apply the
algorithm by Fischer and Heun [9] on array AQ to obtain overall an n + O(q)-
time and O(q)-space algorithm. We denote this algorithm by ON-RMQCON. We
denote by ON-RMQ the same algorithm applied on array A.

Note that in the case when q = Ω(n), i.e. the batch is not so small, we can
choose to apply algorithm OFF-RMQ or algorithm ON-RMQ on array A directly
thus obtaining an algorithm that always works in n+O(q) time and O(min{n, q})
extra space. We therefore obtain the following result asymptotically.

Theorem 1. The RMQ Batch problem can be solved in n + O(q) time and
O(min{n, q}) extra space.

348 M. Alzamel et al.

4 Small LCA Queries Batch

In the LCA problem, we are given a rooted tree T having n labelled nodes and
we are asked to answer queries of the following type: for nodes u and v, query
LCAT (u, v) returns the node furthest from the root that is an ancestor of both
u and v. There exists a time-optimal algorithm by Gabow and Tarjan [11] to
answer a batch Q of q LCA queries in O(n + q) time and O(n) extra space.
We denote this algorithm by OFF-LCA. In this section, we present a simple but
non-trivial algorithm for improving this, for q = o(n), to n+O(q) time and O(q)
extra space.

It is well-known (see [4] for the details) that an RMQ instance A can be
obtained from an LCA instance on a tree T by writing down the depths of the
nodes visited during an Euler tour of T . That is, A is obtained by listing all
node-visitations in a depth-first search (DFS) traversal of T starting from the
root. The LCA of two nodes translates to an RMQ (where we compare nodes
based on their level) between the first occurrences of these nodes in A.

We proceed largely as in Sect. 2. For each query (u, v) ∈ Q, we mark nodes
u (and v) in T as follows. If u < n then u has not been marked before. Let this
be the k-th node, k > 0, that gets marked (we just store a counter for that). We
also create two arrays Z0[0 . . 2q−1] and Z1[0 . . 2q−1]. We store u in Z0[n−1+k
mod 2q] and replace u by n − 1 + k. We also start a linked list at Z1[n − 1 + k
mod 2q], where we insert a pointer to query (u, v), so that we can update it later.
If u > n − 1, the node has already been marked, and we just add a pointer to
the respective query in the linked list starting at Z1[u mod 2q].

We then do a single DFS traversal on T and create two new arrays EQ and LQ

as follows. When a marked node v (i.e. v > n−1) is visited for the first time, we
write down in EQ its original value (i.e. Z0[v mod 2q]), while for each maximal
sequence of visited nodes that are not marked we write down a single entry—the
one with the minimum tree level. At the same time, we store in LQ[v] the level
of the node added in EQ[v]. While creating EQ, we also store in an auxiliary
array the function f : {0, 1, . . . , |EQ| − 1} → {0, 1, . . . , n − 1} between positions
of EQ and the respective node labels in T .

When we insert the original entry of a marked node u of T (i.e. Z0[u mod 2q])
in EQ at position p, we go through the linked list that is stored in Z1[u mod 2q],
where we have stored pointers to all the queries of the form (u, v) or (w, u), and
replace u by p in each of these queries. Thus, after we have finished the traversal
on T , for each LCA query (u, v) ∈ Q on T , we will have stored the respective
RMQ pair (u′, v′) on LQ; where u′ (resp. v′) corresponds to the first occurrence
of node u (resp. v) in the traversal. Thus we traverse T only once.

Now notice that EQ and the auxiliary arrays are all of size O(q) since in
the worst case we mark 2q distinct nodes of T and contract 2q + 1 sequences of
visited nodes that do not contain a marked node. (We can actually throw away
everything before the first marked node and everything after the last marked
node and get 4q−1 instead.) The whole procedure takes n+O(q) time and O(q)
space. We are now in a position to apply algorithm ON-RMQ on LQ to obtain
the final bound. To answer the queries, note that if RMQLQ

(u′, v′) = � then

How to Answer a Small Batch of RMQs or LCA Queries in Practice 349

LCAT (u, v) = EQ[�]. We denote this algorithm by ON-LCACON. Alternatively,
we can apply algorithm ST-RMQ on LQ to solve this problem in n + O(q log q)
and O(q) extra space; we denote this algorithm by ST-LCACON.

We can finally retrieve the original input tree if required by replacing node
f(v) by EQ[v] for every v in the domain of f in O(q) time.

Note that in the case when q = Ω(n), i.e. the batch is not so small, we
can choose to apply algorithm OFF-LCA on tree T directly, thus obtaining an
algorithm that always works in n+O(q) time and O(min{n, q}) extra space. We
therefore obtain the following result asymptotically.

Theorem 2. The LCA Queries Batch problem can be solved in n + O(q) time
and O(min{n, q}) extra space.

5 Applications

We consider the well-known application of answering q LCA queries on the suffix
tree of a string. The suffix tree T (S) of a non-empty string S of length n is a
compact trie representing all suffixes of S (see [7], for details). The nodes of the
trie which become nodes of the suffix tree are called explicit nodes, while the
other nodes are called implicit. Each edge of the suffix tree can be viewed as an
upward maximal path of implicit nodes starting with an explicit node. Moreover,
each node belongs to a unique path of that kind. Then, each node of the trie
can be represented in the suffix tree by the edge it belongs to and an index
within the corresponding path. The path-label of a node v is the concatenation
of the edge labels along the path from the root to v. The nodes whose path-label
corresponds to a suffix of S are called terminal. Given two terminal nodes u and
v in T (S), representing suffixes S[i . . n − 1] and S[j . . n − 1], the string depth
of node LCAT (S)(u, v) corresponds to the length of their longest common prefix,
also known as their longest common extension (LCE) [15].

In many textbook solutions for classical string matching problems (e.g. max-
imal palindromic factors, approximate string matching with k-mismatches,
approximate string matching with k-differences, online string search with the
suffix array, etc.) we have that q = Ω(n) and/or the queries have to be answered
online. In other algorithms, however, q can be much smaller on average (in
practice) and the queries can be answered offline. We describe here a few such
solutions. The common idea, as in many fast average-case algorithms, is to min-
imise the number of queries by filtering out queries that can never lead to a valid
solution.

Text Indexing. Suppose we are given the suffix tree T (S) of a text S of length n
and we are asked to create the suffix links for the internal nodes. This may be
necessary if the construction algorithm does not compute suffix links (e.g. con-
struction via suffix array) but they are needed for an application of interest [18].
The suffix link of a node v with path-label αy is a pointer to the node path-
labelled y, where α ∈ Σ is a single letter and y is a string. The suffix link of v

350 M. Alzamel et al.

exists if v is a non-root internal node of T . The suffix links can be computed as
follows. The first step is to mark each internal node v of the suffix tree with a
pair of leaves (i, j) such that leaves labelled i and j are in subtrees rooted at dif-
ferent children of v. This can be done by a DFS traversal of the tree. (Note that
if an internal node v has only one child then it must be terminal; assume that it
represents the suffix S[t . . n − 1]. We thus create a suffix link to the node repre-
senting S[t + 1 . . n − 1].) Given an internal node v marked with (i, j), note that
v = LCAT (S)(i, j), and let αy be its path-label. To create the suffix link from
v, node u with path-label y can be obtained by the query LCAT (S)(i + 1, j + 1).
We can create a batch of LCA queries consisting of all such pairs. Note that
in randomly generated texts, the number of internal nodes of T (S) is O(n/h)
on average, where h is the alphabet’s entropy [21]; thus the standard Θ(n)-time
and Θ(n)-space solution to this problem, building the LCA data structure over
T (S) [4], is not satisfactory.

Finding Frequent Gapped Factors in Texts. We are given a text S of length n,
and positive integers �1, �2, d, and k > 1. The problem is to find all couples
(u, v), such that string uwv, for any string w (known as gap or spacer), |w| = d,
occurs in S at least k times, |u| = �1, |v| = �2 [16,20]. The first step is to build
T (S). We then locate all subtrees rooted at an explicit node with string depth
at least �1 and whose parent has string depth less than �1, corresponding to
factors u repeated in S. From these subtrees, we only consider the ones with at
least k terminal nodes. Note that if k is large enough, we may have only a few
such subtrees. For each subtree with k′ ≥ k terminal nodes, representing suffixes
S[i1 . . n − 1], S[i2 . . n − 1], . . . , S[ik′ . . n − 1], we create a batch of LCA queries
between all pairs (ij + �1 + d, ij′ + �1 + d) and report occurrences when LCA
queries extend pairwise matches to length at least �2 for a set of at least k such
suffixes. (This algorithm can be easily generalised for any number of gaps.)

Pattern Matching on Weighted Sequences. A weighted sequence specifies the
probability of occurrence of each letter of the alphabet for every position. A
weighted sequence thus represents many different strings, each with the probabil-
ity of occurrence equal to the product of probabilities of its letters at subsequent
positions of the weighted sequence. The problem is to find all occurrences of a
(standard) pattern P of length m with probability at least 1/z in a weighted
sequence S of length n [17]. The first step is to construct the heavy string of
S, denoted by H(S), by assigning to H(S)[i] the most probable letter of S[i]
(resolving ties arbitrarily). The second step is to build T (P$H(S)), $ /∈ Σ. We
can then compute the first mismatch between P and every substring of H(S).
Note that the number of positions in S where two or more letters occur with
probability at least 1/z can be small, and so we consider only these positions
to cause a legitimate mismatch between P and a factor of H(S). We then use
O(log z) batches of LCA queries per such starting position to extend a match to
length at least m. This is because P cannot match a weighted sequence S with
probability 1/z if more than �log z� mismatches occur between P and H(S) [17].

How to Answer a Small Batch of RMQs or LCA Queries in Practice 351

Pattern Matching with Don’t Care Letters. We are given a pattern P of length
m, with m − k letters from alphabet Σ and k occurrences of a don’t care letter
(matching itself and any letter from Σ), and a text S of length n. The problem
is to find all occurrences of P in S [19]. The first step is to build T (P ′$S), $ /∈ Σ,
where P ′ is the string obtained from P by replacing don’t care letters with a
letter # /∈ Σ. We then locate the subtree rooted at the highest explicit node
corresponding to the longest factor f of P ′ without #’s. We also locate, in the
same subtree, all V terminal nodes corresponding to starting positions of f in
S. Note that if f is long enough, we may have only a few such nodes. Since we
know where the don’t care letters occur in P , we can create a batch of kV LCA
queries. An occurrence is then reported when LCA queries extend a match to
length at least m. (This algorithm can be easily generalised for any number of
patterns.)

Circular String Matching. We are given a pattern P of length m and a text S
of length n. The problem is to find all occurrences of P or any of its cyclic shifts
in S [3]. The first step is to build T (PP$PRPR#S%SR), where $,#,% /∈ Σ,
and XR denotes the reverse image of string X. We then conceptually split P in
two fragments of lengths �m/2	 and �m/2�. Any cyclic shift of P contains as a
factor at least one of the two fragments. We thus locate the two subtrees rooted
at the highest explicit nodes corresponding to the fragments. We also locate in
the same subtrees all V terminal nodes corresponding to starting positions of
the fragments in S. Note that if m is long enough, we may have only a few such
nodes. We create a batch of at most 2V LCA queries in order to extend to the
left and to the right and report occurrences when LCA queries extend a match
to length at least m. (This algorithm can be easily generalised for any number
of patterns.)

6 Experimental Results

We have implemented algorithms ST-RMQCON, OFF-RMQCON, and ON-RMQCON

in the C++ programming language. We have also implemented the same algo-
rithms applied on the original array A, denoted by ST-RMQ, OFF-RMQ, and
ON-RMQ, respectively; as well as the brute-force algorithm for answering RMQs
in the two corresponding flavours, denoted by BF-RMQCON and BF-RMQ. For the
implementation of ON-RMQCON and ON-RMQ we used the sdsl-lite library [13]. If
an algorithm requires f(n, q) time and g(n, q) extra space, we say that the algo-
rithm has complexity <f(n, q), g(n, q)>. Table 1 summarises the implemented
algorithms. The following experiments were conducted on a Desktop PC using
one core of Intel Core i5-4690 CPU at 3.50 GHz and 16GB of RAM. All programs
were compiled with g++ version 5.4.0 at optimisation level 3 (-O3).

Experiment I. We generated random (uniform distribution) input arrays of
n = 1, 000, 000 and n = 100, 000, 000 entries (integers), and random (uniform
distribution) lists of queries of sizes varying from

√
n to 128

√
n, doubling each

352 M. Alzamel et al.

Table 1. Time and space complexities of algorithms for answering RMQs offline.

Non-contracted Contracted

ST-RMQ <O(n log n + q),O(n log n)> ST-RMQCON <n + O(q log q),O(q)>

ON-RMQ <O(n + q),O(n)> ON-RMQCON <n + O(q),O(q)>

OFF-RMQ <O(n + q),O(n)> OFF-RMQCON <n + O(q),O(q)>

BF-RMQ <O(qn),O(1)> BF-RMQCON <n + O(q2),O(q)>

Fig. 1. Impact of the proposed scheme on the RMQ algorithms of Table 1.

time. We compared the runtime of the implementations of the algorithms in
Table 1 on these inputs; in particular, for each algorithm, we compared the stan-
dard implementation against the one with the contracted array. We used the
large array, n = 100, 000, 000, for ST-RMQ and ON-RMQ because they are sig-
nificantly faster and the small one, n = 1, 000, 000, for OFF-RMQ and BF-RMQ.
The results plotted in Fig. 1 show that the proposed scheme of contracting the
input array improves the performance for all implementations substantially.

Experiment II. We generated random input arrays of n = 1, 000, 000, 000 entries,
and random lists of queries of sizes varying from

√
n to 128

√
n, doubling each

time. We then compared the runtime of ON-RMQCON and ST-RMQCON on these
inputs. The results are plotted in Fig. 2a. We observe that ST-RMQCON becomes
two times faster than ON-RMQCON as q grows. Notably, it was not possible to

How to Answer a Small Batch of RMQs or LCA Queries in Practice 353

Fig. 2. Elapsed-time comparison of ON-RMQCON and ST-RMQCON algorithms for n =
1, 000, 000, 000 (left); and of OFF-LCA and ST-LCACON algorithms for n = 1, 000, 000
(right).

run this experiment with ON-RMQ, which implements a succinct data structure
for answering RMQs, due to insufficient amount of main memory.

Experiment III. In addition, we have implemented algorithms ST-LCACON and
OFF-LCA for answering LCA queries. We first generated a random input array
of n = 1, 000, 000 entries and used this array to compute its Cartesian tree. Next
we generated random lists of LCA queries of sizes varying from

√
n to 128

√
n,

doubling each time. We then compared the runtime of OFF-LCA and ST-LCACON

on these inputs. The results plotted in Fig. 2b show that the implementation of
ST-LCACON is more than two orders of magnitude faster than the implementation
of OFF-LCA, highlighting the impact of the proposed scheme on LCA queries.

7 Final Remarks

In this article, we presented a new family of algorithms for answering a small
batch of RMQs or LCA queries in practice. The main purpose was to show that
if the number q of queries is small with respect to n and we have them all at
hand existing algorithms for RMQs and LCA queries can be easily modified
to perform in n + O(q) time and O(q) extra space. The presented experimental
results indeed show that with this new scheme significant practical improvements
can be obtained; in particular, for answering a small batch of LCA queries.

Specifically, algorithms ST-RMQCON and ST-LCACON, our modifications to
the Sparse Table algorithm whose main catch is Θ(n log n) space [4], seem to
be the best way to answer in practice a small batch of RMQs and LCA queries,
respectively. A library implementation of ST-RMQCON is available at https://
github.com/solonas13/rmqo under the GNU General Public License.

https://github.com/solonas13/rmqo
https://github.com/solonas13/rmqo

354 M. Alzamel et al.

References

1. Afshani, P., Sitchinava, N.: I/O-efficient range minima queries. In: Ravi, R., Gørtz,
I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 1–12. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08404-6 1

2. Arge, L., Fischer, J., Sanders, P., Sitchinava, N.: On (dynamic) range minimum
queries in external memory. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS
2013. LNCS, vol. 8037, pp. 37–48. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40104-6 4

3. Athar, T., Barton, C., Bland, W., Gao, J., Iliopoulos, C.S., Liu, C., Pissis, S.P.:
Fast circular dictionary-matching algorithm. Math. Struct. Comput. Sci. 27(2),
143–156 (2017)

4. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000). https://doi.org/10.1007/10719839 9

5. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest
common ancestors in trees and directed acyclic graphs. J. Algorithms 57(2), 75–94
(2005)

6. Berkman, O., Vishkin, U.: Recursive star-tree parallel data structure. SIAM J.
Comput. 22(2), 221–242 (1993)

7. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press, Cambridge (2007)

8. Ferrada, H., Navarro, G.: Improved range minimum queries. J. Discret. Algorithms
43, 72–80 (2016)

9. Fischer, J., Heun, V.: Theoretical and practical improvements on the RMQ-
problem, with applications to LCA and LCE. In: Lewenstein, M., Valiente, G. (eds.)
CPM 2006. LNCS, vol. 4009, pp. 36–48. Springer, Heidelberg (2006). https://doi.
org/10.1007/11780441 5

10. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geom-
etry problems. In: STOC 1984, pp. 135–143. ACM (1984)

11. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint
set union. J. Comput. Syst. Sci. 30(2), 209–221 (1985)

12. Geary, R.F., Rahman, N., Raman, R., Raman, V.: A simple optimal representation
for balanced parentheses. Theoret. Comput. Sci. 368(3), 231–246 (2006)

13. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and play
with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 326–337. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07959-2 28

14. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM J. Comput. 13(2), 338–355 (1984)

15. Ilie, L., Navarro, G., Tinta, L.: The longest common extension problem revisited
and applications to approximate string searching. J. Discret. Algorithms 8(4), 418–
428 (2010)

16. Iliopoulos, C., Mchugh, J., Peterlongo, P., Pisanti, N., Rytter, W., Sagot, M.-F.:
A first approach to finding common motifs with gaps. Int. J. Found. Comput. Sci.
16(6), 1145–1155 (2005)

17. Kociumaka, T., Pissis, S.P., Radoszewski, J.: Pattern matching and consensus prob-
lems on weighted sequences and profiles. In: ISAAC 2016. LIPIcs, vol. 64, pp. 46:1–
46:12. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

https://doi.org/10.1007/978-3-319-08404-6_1
https://doi.org/10.1007/978-3-319-08404-6_1
https://doi.org/10.1007/978-3-642-40104-6_4
https://doi.org/10.1007/978-3-642-40104-6_4
https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/11780441_5
https://doi.org/10.1007/11780441_5
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1007/978-3-319-07959-2_28

How to Answer a Small Batch of RMQs or LCA Queries in Practice 355

18. Mäkinen, V., Belazzougui, D., Cunial, F., Tomescu, A.I.: Genome-Scale Algorithm
Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing.
Cambridge University Press, Cambridge (2015)

19. Pinter, R.Y.: Efficient string matching with don’t-care patterns. In: Apostolico, A.,
Galil, Z. (eds.) Combinatorial Algorithms on Words. NATO ASI Series, vol. F12,
pp. 11–29. Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-82456-
2 2

20. Pissis, S.P.: MoTeX-II: structured motif extraction from large-scale datasets. BMC
Bioinform. 15, 235 (2014)

21. Régnier, M., Jacquet, P.: New results on the size of tries. IEEE Trans. Inf. Theory
35(1), 203–205 (1989)

https://doi.org/10.1007/978-3-642-82456-2_2
https://doi.org/10.1007/978-3-642-82456-2_2

Computing Asymmetric Median Tree
of Two Trees via Better Bipartite

Matching Algorithm

Ramesh Rajaby1,2 and Wing-Kin Sung2,3(B)

1 NUS Graduate School for Integrative Sciences and Engineering,
National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore

e0011356@u.nus.edu
2 School of Computing, National University of Singapore,

13 Computing Drive, Singapore 117417, Singapore
ksung@comp.nus.edu.sg

3 Genome Institute of Singapore, 60 Biopolis Street, Genome,
Singapore 138672, Singapore

Abstract. Maximum bipartite matching is a fundamental problem in
computer science with many applications. The HopcroftKarp algorithm
can find a maximum bipartite matching of a bipartite graph G in
O(

√
nm) time where n and m are the number of nodes and edges,

respectively, in the bipartite graph G. However, when G is dense (i.e.,
m = O(n2)), the Hopcroft–Karp algorithm runs in O(n2.5) time.

In this paper, we consider a special case where the bipartite graph G
is formed as a union of � complete bipartite graphs. In such case, even
when G has O(n2) edges, we show that a maximum bipartite graph can
be found in O(

√
n(n + �) logn) time.

We also describe how to apply our solution to compute the asymmet-
ric median tree of two phylogenetic trees. We improve the running time
from O(n2.5) to O(n1.5 log3 n).

A phylogenetic tree is a rooted, unordered, leaf-labeled tree in which every inter-
nal node has at least two children and all leaves have different labels, which
represent the taxa. Using different data-sources, we may obtain different phylo-
genetic trees for the same set of taxa, and it is thus important to find a consensus
of these different phylogenetic trees. This problem was first proposed by Adam
[1]. After that, many different consensus tree definitions have been proposed.
They include Adam’s tree [1], strict consensus tree [12], loose consensus tree [2],
majority-rule consensus tree [10], asymmetric median tree problem [11], greedy
consensus tree problem [3,6], R* consensus tree problem [3], etc. Please refer to
the surveys in [3], Chap. 30 in [5], and Chap. 8.4 in [13] for more details about
different consensus trees and their advantages and disadvantages.

Here, we would like to focus on the asymmetric median tree problem [11],
which is introduced by Phillips and Warnow. Informally, it aims to find a tree T
that maximizes the number of common clusters with the input trees. (Section 1.1

c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 356–367, 2018.
https://doi.org/10.1007/978-3-319-78825-8_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_29&domain=pdf

Computing Asymmetric Median Tree of Two Trees 357

formally defines this problem.) The problem is NP-hard in general, but fortu-
nately Phillips and Warnow have shown that an asymmetric median tree for two
trees can be found in polynomial time. Basically, the asymmetric median tree
problem for two trees can be transformed into a problem of maximum matching
in a bipartite graph, where the bipartite graph has O(n) nodes and O(n2) edges.
Then, by the Hopcroft-Karp algorithm [7], the problem can be solved in O(n2.5)
time.

In this paper, we aim to improve the time complexity for computing the asym-
metric median tree for two trees. Our basic technique is an improved algorithm
for finding a maximum matching for a special type of bipartite graph. Although
the transformed bipartite graph has O(n2) edges, we observe that it can be
described using � complete bipartite graphs where � = O(n log2 n). (Section 1.2
gives a formal definition of this special type of bipartite graph.) We show that,
for this special type of bipartite graph, we can compute the maximum matching
using O(

√
n(n+ �) log n) time. Hence, we show that the asymmetric median tree

problem for two trees can be solved in O(
√

n(n log2 n) log n) = O(n1.5 log3 n)
time.

The organization of this paper is as follows. First, we define the asymmetric
median tree problem and the maximum bipartite matching problem. Second, we
give the O(

√
n(n+ �) log n)-time algorithm for computing the maximum match-

ing in a �-interval-pair bipartite graph. Finally, we describe the O(n1.5 log3 n)-
time algorithm.

1 Problem Definition

This section formally defines the asymmetric median tree problem and the max-
imum bipartite matching problem.

1.1 Asymmetric Median Tree Problem

For any phylogenetic tree T , the set of all internal nodes in T is denoted by V (T)
and the set of all leaf labels in T by Λ(T). For any u ∈ V (T), Tu denotes the
subtree of T rooted at the node u. The leaf-label set Λ(Tu) is called a cluster of
T . We denote C(T) = {Λ(Tu) | u ∈ V (T)} be the set of all clusters in T .

Given any two trees T and T ′ with the same leaf-label set. The similarity of
T and T ′ is defined as sim(T, T ′) = |C(T) ∩ C(T ′)|.

Now, we can define the asymmetric median tree problem. The input consists
of k phylogenetic trees T1, T2, . . . , Tk, where every tree Ti is leaf-labeled by the
same set of taxa L (assume |L| = n). The problem aims to find a tree T that
maximizes

∑k
i=1 sim(T, Ti). For example, for the trees T1, T2 and T in Fig. 1, we

have sim(T, T1) = 4 and sim(T, T2) = 2. In fact, T is the tree that maximizes
sim(T, T1) + sim(T, T2). Hence, T is an asymmetric median tree of T1 and T2.

Phillips and Warnow [11] showed that the asymmetric median tree problem
is NP-hard when k ≥ 3. When k = 2, they gave an O(n2.5)-time algorithm
to compute an asymmetric median tree of T1 and T2. Below, we improve the
running time of this algorithm.

358 R. Rajaby and W.-K. Sung

a

b

c

d

7

2

3

e

6

1

54

T1

A

B

C

D

5

3

4

6

2

1 E

T2

87

8

a

b

c

d

A

B

C

D

e E

a

b

c

d

E

2

3

e

6

1

54

T
87

Fig. 1. T1 and T2 are two phylogenetic trees leaf-labeled by {1, 2, 3, 4, 5, 6, 7, 8}. T is an
asymmetric median tree for T1 and T2. GT1,T2 is the incompatible graph for T1 and T2.
It is the union of three complete bipartite subgraphs: {b, c} × {B, C, D}, {d} × {B, C}
and {e} × {C, D}. The maximum bipartite matching of GT1,T2 consists of three edges
{(b, B), (c, D), (e, D)}. The maximum independent set of GT1,T2 is {a, b, c, d, e, A, E}.

1.2 Maximum Bipartite Matching Problem

Maximum bipartite matching problem is one of the fundamental problems in
computer science. It finds applications in a number of problems including MAST
[9], subtree isomorphism, etc.

Given a bipartite graph G = (U, V,E), where E ⊆ U × V , the maximum
bipartite matching problem aims to find the maximum subset M of E such that
the edges in M do not share endpoints.

This problem can be solved by the Hopcroft-Karp algorithm in O(
√

nm)
time, where n = |U | + |V | and m = |E|.

However, when G is dense (i.e. m = O(n2)), the Hopcroft-Karp algorithm
runs in O(n2.5) time, which is inefficient.

Here, we ask if G can be represented differently so that we can solve the
bipartite matching more efficiently. In particular, we study the following repre-
sentation. We fix the ordering of the nodes in U and V , say, U = {u1, . . . , un1}
and V = {v1, . . . , vn2} where n = n1 + n2. For any 1 ≤ i ≤ j ≤ n1, we denote
{ui, . . . , uj} be an interval of U . Similarly, for any 1 ≤ i ≤ j ≤ n2, we denote
{vi, . . . , vj} be an interval of V . For any interval I of U and any interval J of
V , the complete bipartite graph I × J is called an interval pair. Suppose the
edges in G can be partitioned into � interval pairs {Ik × Jk | k = 1, . . . , �, Ik is
an interval of U and Jk is an interval of V }. Then, we call G a �-interval-pair
bipartite graph. (Note that, for any bipartite graph G with m edges, G is a
�-interval-pair bipartite graph with � ≤ m.)

For example, the bipartite graph GT1,T2 in Fig. 1 has 10 edges. More-
over, GT1,T2 can be represented as the union of 3 interval pairs: {{b, c} ×

Computing Asymmetric Median Tree of Two Trees 359

{B,C,D}, {d}×{B,C}, {e}×{C,D}}. Hence, GT1,T2 is a 3-interval-pair bipar-
tite graph.

Below, we show that if a bipartite graph G is a �-interval-pair bipartite graph,
the maximum bipartite matching of G can be computed in O(

√
n(n + �) log n)

time.

2 Computing Maximum Matching in a �-Interval-Pair
Bipartite Graph

Consider two arrays of nodes U [1..n1] and V [1..n2] where n = n1 +n2. Consider
a set of interval pairs I = {(I1, J1), . . . , (I�, J�)}. The �-interval-pair bipartite
graph GI is a bipartite graph whose edge set is the union of {Ii×Ji | i = 1, . . . , �}.

We aim to compute the maximum bipartite matching of GI . Here, we describe
an algorithm which runs in O(

√
n(n + �) log n) time.

We need some preliminary lemmas.

Lemma 1. We can maintain a bit array A[1..n] that supports the following 3
operations:

– Initialize the bit array such that A[i] = 0 for 1 ≤ i ≤ n. This operation takes
O(n) time.

– flip(A[i]): This operation sets A[i] = 1 − A[i]. It takes O(log n) time.
– zero(A, i..j): This operation reports {k | A[k] = 0, i ≤ k ≤ j}. It takes

O(log n + occ) time where occ is the size of {k | A[k] = 0, i ≤ k ≤ j}.
Proof. We just maintain the set {i | A[i] = 0} using a balanced binary search
tree. �	
Lemma 2. We can maintain a set of intervals {I1, . . . , I�} supporting the fol-
lowing operations:

– (1) Insert/deletion an interval in O(log �) time.
– (2) Find all intervals overlap with a point q in O(log � + occ) time, where occ

is the number of intervals overlapping with q.

Proof. We use interval trees. �	
We have some definitions first. Given a matching M , an alternating path is

a path starting from an unmatched node whose edges alternate between match
and unmatch edges. An augmenting path is an alternating path that starts and
ends at an unmatched node. Note that if we flip the match and unmatch edges
in an augmenting path, the size of the matching is increased by 1.

We run a modified version of the Hopcroft–Karp algorithm. Initially, we set
the matching M to be an empty matching. Then, the algorithm iterates two
phases to improve the matching M . The two phases are as follows.

360 R. Rajaby and W.-K. Sung

– Phase 1: Given the current matching M , let d be the length of the shortest
augmenting path. Let W k = {w ∈ U ∪ V | the shortest alternating path
starting from an unmatched node in U to w is of length k}. This phase
computes W 0,W 1, . . . ,W d.

– Phase 2: From W 0,W 1, . . . ,W d, Phase 2 finds a maximal set of vertex-
disjoint shortest augmenting paths of length d and flips the match and
unmatch edges, obtaining an improved matching M .

These two phases will be iterated until there is no augmenting path (i.e., we
cannot further improve the matching M). Hopcroft and Karp showed that this
algorithm iterates the two phases at most O(

√
n) times. Below, we show that

both phases 1 and 2 take O((�+n) log n) time. In summary, we have the following
theorem.

Theorem 1. Given a �-interval-pair bipartite graph G with n nodes. The max-
imum matching of G can be found in O(

√
n(� + n) log n) time.

2.1 Phase 1

We first discuss the first phase. The input is a matching M . Let d be the length
of the shortest augmenting path. This step aims to find W k for k = 1, 2, . . . , d.

Let U and V be all nodes in U and V , respectively, which are unmatched by
M ; more precisely, U = {u ∈ U | (u, v) �∈ M} and V = {v ∈ V | (u, v) �∈ M}. By
definition, W 0 = U .

Lemma 3. W 0,W 1, . . . ,W d satisfy the following properties:

1. W k ⊆ U if k is even while W k ⊆ V if k is odd.
2. W i and W j are pairwise disjoint for all 0 ≤ i, j ≤ d.

Proof. For (1), since the alternating path starts from unmatched node in U , we
have W 0 ⊆ U . Then, since it is a bipartite graph, the next nodes are from V ;
hence, W 1 ⊆ V . Subsequently, the nodes are alternating between U and V .

For (2), by contrary, assume w appears in W i and W j where i < j. w ∈ W i

implies the shortest alternating path from some node in U to w is of length i.
Then, w cannot appear in W j . �	

We create a bit array bV [1..n2] and initialize bV [j] = 0 for all j. We also
create an interval tree I and insert {Ih | (Ih, Jh) ∈ L} into it. By definition,
W 0 = U ; then, for odd d = 1, 3, 5, . . ., the algorithm iteratively identifies W d

and W d+1 using three steps.
First, let QU = {Ih ∈ I | Ih properly overlaps with W d−1}. All intervals in

QU are removed from I.
Second, W d is set to be

⋃
Ih∈QU

zero(bV , Jh), which is the set of unmatched
nodes in V which are reachable from W d−1 (recall that (Ih, Jh) is an interval
pair, i.e., Ih × Jh is a complete bipartite graph). We set bV [j] = 1 for all j ∈⋃

Ih∈QU
zero(bV , Jh). If W d overlaps with V , d is the length of the shortest

augmenting path. Then, we report (W 0,W 1, . . . ,W d).

Computing Asymmetric Median Tree of Two Trees 361

Third, in this step, W d ⊆ V and all nodes in W d are matched. W d+1 is set
to be

⋃
j∈W d{i | (U [i], V [j]) ∈ M}.

Figure 2 details the algorithm for Phase 1. The following lemma shows that
Phase 1 runs in O((� + n) log n) time.

Lemma 4. Phase 1 runs in O((� + n) log n) time.

Proof. Refer to Fig. 2. Steps 1, 2 and 4 take O(n) time. Step 3 takes O(� log �)
time. Then, in the for loop, every interval will be identified and deleted at most
once from I. Hence, the time for processing the intervals in I is O(� log �).
As W 0, . . . ,W d are all pairwise disjoint, the time for processing the nodes is
O(n log n).

In total, the running time is O(n log n + � log �). Since � = O(n2), the lemma
follows. �	

Algorithm FindShortAugmentingPath(M, U [1..n1], V [1..n2], L)
Require: M is a matching of a bipartite graph subgraph of U × V , which is the

union of {Ih × Jh | (Ih, Jh) ∈ L}.
Ensure: (V0, V1, . . . , Vd) where d is the length of the shortest augmenting path
1: Let U = {u ∈ U | (u, v) �∈ M} and V = {v ∈ V | (u, v) �∈ M};
2: Initialize a bit array bV [1..n2] and set bV [j] = 0;
3: Build the interval tree I for {Ih | (Ih, Jh) ∈ L};
4: Set W 0 = U ;
5: for d = 1 to n step 2 do
6: By the interval tree I, set QU be the set of Ih in I such that Ih overlaps with

W d−1;
7: Remove QU from I;
8: Set W d =

⋃
Ih∈QU

zero(bV , Jh);

9: Perform flip(bV [j]) for j ∈ W d;
10: if W d ∩ V �= ∅ then
11: Set W d = W d ∩ V ;
12: Return (W 0, W 1, . . . , W d);
13: end if
14: Set W d+1 =

⋃
j∈Wd{i | (U [i], V [j]) ∈ M};

15: end for
16: Return nil;

Fig. 2. FindShortAugmentingPath(M, U, V, L) reports V0, . . . , Vd where d is the length
of the shortest augment path.

2.2 Phase 2

Let M be the current mathing in GL. Let d be the length of the shortest aug-
menting path (note that d is odd). Phase 1 identified W 0, . . . ,W d. In Phase 2,
we aim to identify a maximal set of shortest augmenting paths in GL. Let J
be the interval tree for {Jh | (Ih, Jh) ∈ L}. Let bU [1..n1] be a bit vector fully
initialized to zeroes.

362 R. Rajaby and W.-K. Sung

Given (W 0,W 1, . . . ,W d), we can perform depth-first search to identify a
maximal set of vertex disjoint paths from (W 0, . . . ,W d) where each path (w0, w1,
. . . , wd) is an augmenting path such that wp ∈ W p.

We first define the recursive formula DFS Path(). For any w in W k, for any
k ≤ d, we define DFS Path(w, k) be an alternating path (w0, w1, . . . , wk) if exists,
where wx ∈ W x for x = 0, 1, . . . , k and w = wk; otherwise, DFS Path(w, k) =
nil. The following lemma states a recursive formula for finding such an alternat-
ing path.

Lemma 5. For any w in W k, for any k ≤ d, we have DFS Path(w, k)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(w) if k = 0
(p,w) if k is even, (w, v) ∈ M and p = DFS Path(v, k − 1) �= nil

(p′, w) if k is odd, u ∈ Ih − (W k ∪ . . . ∪ W d), w ∈ Jh, (Ih, Jh) ∈ L and
p′ = DFS Path(u, k − 1) �= nil

nil otherwise

Proof. When k = 0, we report the alternating path of length 0 starting from
w ∈ W 0. By definition, we report (w).

When k is even, the alternating path is (w0, . . . , wk−1, wk = w) where (wk−1,
w) is a match edge in M . Suppose the matching edge in M ending at w is (v, w).
Then, the alternating path is (w0, . . . , wk−1 = v, wk = w). Note that (w0, . . . ,
wk−1 = v) = DFS Path(v, k − 1).

When k is odd, the alternating path is (w0, . . . , wk−1 = u,wk = w) where
(u,w) is an unmatch edge. This means that there exists (Ih, Jh) ∈ L such that
u ∈ Ih and w ∈ Jh. We also require u does not belong to W k ∪ . . .∪W d since we
need to ensure the alternating path is the shortest path starting from w. Hence,
we require u ∈ Ih−(W k ∪ . . .∪W d). This is accomplished by keeping track of the
visited nodes in the bit array bU . Furthermore, we also require the alternating
path DFS Path(v, k − 1) = p′ = (w0, . . . , wk−1 = u) exists, then (p′, w) is an
alternating path of length k ends at w. The lemma follows. �	

By the above lemma, we can select a node v ∈ W d and run the recursive
algorithm DFS Path(v, d) to find an augmenting path. During the execution of
the recursive algorithm, we mark all nodes visited. Figure 3 details the recursive
algorithm. To find another augmenting path, we find another unmarked node
v ∈ W d and rerun the recursive algorithm DFS Path(v, d). This process is
repeated until we obtain a maximal set of augmenting paths.

The complexity analysis is similar to Lemma 4. Note that each interval in J is
identified and removed once, and we make O(n) queries to J since we visit each
node at most once, which gives us O((�+n) log �) time in total. Furthermore, we
make O(�) queries to bU . Therefore the running time of this step is O((�+n) log n)
time.

Computing Asymmetric Median Tree of Two Trees 363

Algorithm DFS(w, k)

Require: w is a node in W k

Ensure: report an alternating path (w0, w1, . . . , wk = w), where wj ∈ W j , that has
not been reported before.

1: if k = 0 then
2: return (w);
3: else if k is even then
4: Let v be the node in W k−1 such that (w, v) ∈ M ;
5: p = DFS(v, k − 1);
6: If p �= nil, then return (p, w);
7: else
8: for every Jh in J that overlaps with w do
9: for every u ∈ zero(bU , Ih) such that u ∈ W k−1 do
10: Mark bU [u] = 1;
11: p = DFS(u, k − 1);
12: If p �= nil, then return (p, w);
13: end for
14: Remove Jh from J ;
15: end for
16: Return nil;
17: end if

Fig. 3. By DFS(u, d), we report a path (w0, w1, . . . , wd) where wj ∈ W j which are
disjoint from all paths reported previously.

3 Compute the Asymmetric Median Tree of Two Trees
by Maximum Bipartite Matching

Phillips and Warnow [11] proposed a method to compute the asymmetric median
tree of two trees. Below, we describe their method.

We first need some definitions. For any clusters C1 ∈ C(T1) and C2 ∈ C(T2),
C1 and C2 are compatible if either (1) C1 ⊆ C2, (2) C2 ⊆ C1 or (3) C1 ∩C2 = ∅;
otherwise, C1 and C2 are not compatible. We denote GT1,T2 as a conflict graph
if GT1,T2 is a bipartite subgraph of C(T1) × C(T2) and the edge set of GT1,T2 is
{(C1, C2) ∈ C(T1) × C(T2) | C1 and C2 are not compatible}.

Phillips and Warnow proved the following lemma.

Lemma 6. Consider two trees T1 and T2 Let C be the maximum independent set
of GT1,T2 . Let T be the asymmetric median tree of T1 and T2. We have C(T) = C.

As an illustration, consider the example in Fig. 1. T is the asymmetric median
tree of T1 and T2. C(T) is the clusters for {a, b, c, d, e, E}. The maximum inde-
pendent set of GT1,T2 is {a,A, b, c, d, e, E}. Since a and A correspond to the same
cluster, the maximum independent set of GT1,T2 equals C(T).

By Lemma 6, the asymmetric median tree of T1 and T2 can be computed as
follows. The method first constructs the conflict graph GT1,T2 . Then, it computes

364 R. Rajaby and W.-K. Sung

the maximum matching M of GT1,T2 . By Konig’s theorem, we can obtain a
maximum independent set C of GT1,T2 from M . For i = 1, 2, let T ′

i be the tree
containing the clusters C(Ti) ∩ C. Both T ′

1 and T ′
2 can be constructed in O(n)

time. By the merge operation of [8], we can merge T ′
1 and T ′

2 in O(n) time.
Figure 4 shows the pseudocode of the algorithm. The following lemma gives the
running time of the algorithm.

Lemma 7. Let T1 and T2 be two trees leaf-labeled by L, where |L| = n. Let
tconstruct be the time required to construct GT1,T2 . Let tmatching be the time
required to compute the maximum matching of GT1,T2 . The running time of the
algorithm FindAsymmetricMedianTree(T1, T2) is O(n + tconstruct + tmatching).

Proof. Apart from the steps for constructing GT1,T2 and finding maximum
matching of GT1,T2 , all other steps run in O(n) time. The lemma follows. �	

As GT1,T2 contains O(n2) edges, GT1,T2 can be constructed in O(n2) time.
Using Hopcroft–Karp algorithm, the maximum matching of GT1,T2 can be com-
puted in O(

√
nn2) = O(n2.5) time. Hence, Phillips and Warnow [11] proposed

an O(n2.5)-time algorithm to compute the asymmetric median tree of two trees.

Algorithm FindAsymmetricMedianTree(T1, T2)

Require: Two phylogenetic trees T1 and T2 leaf-labeled by L.
Ensure: An asymmetric median tree T of T1 and T2

1: Build GT1,T2 ;
2: Compute the maximum matching M of GT1,T2 .
3: By Konig’s theorem, we can obtain a maximum independent set C of GT1,T2 from

M using linear time;
4: Let T ′

1 be the tree formed by remove all clusters not in C from T1;
5: Let T ′

2 be the tree formed by remove all clusters not in C from T2;
6: Set T = merge(T ′

1, T
′
2);

7: Return T ;

Fig. 4. The algorithm FindAsymmetricMedianTree computes the asymmetric median
tree of T1 and T2.

Below, we show that GT1,T2 is an O(n log2 n)-interval-pair bipartite graph,
that is, GT1,T2 is formed by the union of O(n log2 n) interval pairs. Together with
the maximum matching algorithm in Sect. 2, we have the following theorem.

Theorem 2. An asymmetric median tree of T1 and T2 can be found in O(n1.5

log3 n) time.

Proof. By Lemma 10, GT1,T2 is an O(n log2 n)-interval-pair bipartite graph.
Lemma 13 shows that these O(n log2 n) interval pairs can be found using O(n
log3 n) time.

Then, by Theorem 1, the maximum matching of GT1,T2 can be found in
O(

√
n(n log2 n) log n) = O(n1.5 log3 n) time. The theorem follows. �	

Computing Asymmetric Median Tree of Two Trees 365

3.1 GT1,T2 is the Union of O(n log2 n) Interval Pairs

This section shows that the edges in GT1,T2 can be partitioned into a few interval
pairs.

First, we need to decompose the nodes in V (Ti), for i = 1, 2, into a set of
paths. We use core path decomposition [4].

For every node w ∈ V (Ti), denote w′ to be its core child if w′ is a child of u
and |Λ(Tw′

i)| has the biggest size among all the children of w. Call (w,w′) the
core edge. Denote P (Ti) to be the set of core paths formed by core edges. Note
that P (Ti) forms a partition of all nodes in Ti. For each core path Pi ∈ P (Ti),
denote r(Pi) be the most ancestral node of Pi. For example, in Fig. 1, T1 has two
core paths: (a, b, c, d) and (e). T2 has two core paths: (A, B, C, D) and (E).

For every core path P1 ∈ P (T1) and P2 ∈ P (T2), we denote GP1,P2 to be
{(Tu

1 , T v
2) ∈ GT1,T2 | u ∈ P1, v ∈ P2}. In other words, GP1,P2 is a bipartite graph

containing edges (Tu
1 , T v

2) denoting incompatibility between Tu
1 and T v

2 , where
u ∈ P1 and v ∈ P2. Hence, GT1,T2 is the bipartite graph formed by the union of
edges of GP1,P2 among all core paths P1 ∈ P (T1) and P2 ∈ P (T2).

The following lemma gives the upper bound of the number of edges in GP1,P2 .

Lemma 8. Consider any two paths P1 = (u1, u2, . . . , up) in T1 and P2 = (v1, v2,
. . . , vq) in T2, where u1 and v1 are the most ancestral internal nodes. GP1,P2 is
a �-interval-pair bipartite graph where � = O(|Λ(Tu1

1) ∩ Λ(T v1
2)|).

Proof. (Sketch) For every u ∈ P1, we define α(u) to be the largest index such
that Λ(Tu

1) ⊆ Λ(T vα(u)
2), while α(u) = 0 if no such node exists in P . We define

β(u) to be the smallest index such that either Λ(T vβ(u)
2) ⊆ Λ(Tu

1) or Λ(Tu
1) ∩

Λ(T vβ(u)
2) = ∅, while β(u) = q + 1 if no such node exists in P . By definition, we

have α(u) ≤ β(u), and α(u) = β(u) if and only if Λ(Tu
1) = Λ(T vα(u)

2).
For every ui in P1 such that α(ui) < β(ui), we can show that

G(ui),P2 is a 1-interval-pair bipartite graph, and the interval pair is {ui} ×
{vα(ui)+1, . . . , vβ(ui)−1}.

Let i1, . . . , ik be indexes such that (Γ (Tuir
1)−Γ (Tuir+1

1))∩Γ (T v1
2) �= ∅. Note

that k ≤ |Γ (Tu1
1) ∩ Γ (T v1

2)|.
Let I0 = [1..i1−1], Ik = [ik+1..p] and Ir = [ir+1..ir+1−1] for r = 1, . . . , k−1.

For every Ir, we can show that α(ui) = α(ui′) and β(ui) = β(ui′) for every
i, i′ ∈ Ir.

The intervals in {Ir | r = 0, . . . , k}∪ {{ir} | r = 1, . . . , k} partition [1..p] into
2k + 1 intervals. Since k ≤ |Γ (Tu1

1) ∩ Γ (T v1
2)|. The lemma follows. �	

Lemma 9.
∑

P1∈P (T1),P2∈P (T2)
|Λ(T r(P1)

1) ∩ Λ(T r(P2)
2)| = O(n log2 n).

Proof. By the property of the core path decomposition, a leaf label i can only
appear in O(log n) core paths in a tree T . Hence each leaf label will appear in
the intersection of at most O(log2 n) pairs of core paths. Since there are n leaf
labels, the lemma follows. �	
Lemma 10. GT1,T2 is the union of O(n log2 n) interval pairs.

366 R. Rajaby and W.-K. Sung

Proof. By Lemma 8, GP1,P2 is a |Λ(T r(P1)
1) ∩ Λ(T r(P2)

2)|-interval pair bipar-
tite graph. Recall that GT1,T2 equals

⋃
P1∈P (T1),P2∈P (T2)

GP1,P2 . Hence, the

total number of interval pairs in GT1,T2 equals
∑

P1∈P (T1),P2∈P (T2)
|Λ(T r(P1)

1) ∩
Λ(T r(P2)

2)|. By Lemma 9, the lemma follows. �	

Algorithm BuildGraph(T1, T2)

Require: T1 and T2 are two trees leaf-labeled by L
Ensure: A set L of � interval pairs such that GT1,T2 = GL
1: Let U [1..n1] be the concatenation of the core paths of T1 where n1 is the number

of internal nodes in T1;
2: Let V [1..n2] be the concatenation of the core paths of T2 where n1 is the number

of internal nodes in T2;
3: L = ∅;
4: Using Lemma 11, find the set E = {(P1, P2) | P1 ∈ P (T1), P2 ∈ P (T2), Λ(T

r(P1)
1)∩

Λ(T
r(P2)
2) �= ∅}. Furthermore, we also store the set Λ(T

r(P1)
1)∩Λ(T

r(P2)
2) for every

(P1, P2) ∈ E ;
5: for every core path pairs (P1, P2) ∈ E do
6: Compute the set S of interval pairs for GP1,P2 using Lemma 12;
7: Set L = L ∪ S;
8: end for
9: Return L;

Fig. 5. BuildGraph(T1, T2) constructs the bipartite graph GT1,T2 , which is represented
as a set of interval pairs L.

Denote the set E = {(P1, P2) | P1 ∈ P (T1), P2 ∈ P (T2), Λ(T r(P1)
1) ∩

Λ(T r(P2)
2) �= ∅}.

Lemma 11. E can be constructed using O(n log2 n) time. Furthermore, we also
store the set Λ(T r(P1)

1) ∩ Λ(T r(P2)
2) for every (P1, P2) ∈ E.

Proof. For i = 1, 2, for each leaf x ∈ L, observe that the path between x and the
root crosses at most log n core paths in Ti. Denoted Di(x) = {P ∈ P (T1) | x ∈
Λ(T r(P)

i)} be such a set of core paths. Using O(n log n) time, we can compute
D1(x) and D2(x) for all x ∈ L.

Then, we obtain a set of O(n log2 n) tuples, which is
⋃

x∈L D1(x) × D2(x) ×
{x}. By stable sorting, we can obtain the set E = {(P1, P2) | P1 ∈ P (T1), P2 ∈
P (T2), Λ(T r(P1)

1) ∩ Λ(T r(P2)
2) �= ∅}. Furthermore, for each (P1, P2) ∈ E , we can

compute the set Λ(T r(P1)
1) ∩ Λ(T r(P2)

2) for every (P1, P2) ∈ E . The total time
complexity is O(n log2 n). �	
Lemma 12. For any two paths P1 = (u1, u2, . . . , up) in T1 and P2 = (v1, v2, . . . ,
vq) in T2, given the set Λ(T r(P1)

1) ∩ Λ(T r(P2)
2), we can construct GP1,P2 using

O(|Λ(T r(P1)
1) ∩ Λ(T r(P2)

2)|) time.

Computing Asymmetric Median Tree of Two Trees 367

Proof. To be shown in the journal version. �	
Lemma 13. The algorithm in Fig. 5 can build the conflict graph GT1,T2 using
O(n log3 n) time.

Proof. Lemma 11 constructs the set E using O(n log2 n) time. For every heavy
paths P1 ∈ P (T1) and P2 ∈ P (T2), Lemma 12 constructs the interval pairs for
GP1,P2 using O(|Λ(T r(P1)

1)∩Λ(T r(P2)
2)| log n) time. The total time for construct-

ing GT1,T2 equals
∑

P1∈P (T1),P2∈P (T2)

|Λ(T r(P1)
1) ∩ Λ(T r(P2)

2)| log n,

which equals O(n log3 n) time. The lemma follows. �	

References

1. Adams III, E.N.: Consensus techniques and the comparison of taxonomic trees.
Syst. Biol. 21(4), 390–397 (1972)

2. Bremer, K.: Combinable component consensus. Cladistics 6(4), 369–372 (1990)
3. Bryant, D.: A classification of consensus methods for phylogenetics. In: Janowitz,

M.F., Lapointe, F.-J., McMorris, F.R., Mirkin, B., Roberts, F.S. (eds.) Bioconsen-
sus. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
vol. 61, pp. 163–184. American Mathematical Society (2003)

4. Cole, R., Farach-Colton, M., Hariharan, R., Przytycka, T., Thorup, M.: An o(nlog
n) algorithm for the maximum agreement subtree problem for binary trees. SIAM
J. Comput. 30(5), 1385–1404 (2000)

5. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates Inc., Sunderland (2004)
6. Felsenstein, J.: PHYLIP, version 3.6. Software package, Department of Genome

Sciences, University of Washington, Seattle, U.S.A. (2005)
7. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite

graphs. SIAM J. Comput. 2(4), 225–231 (1973)
8. Jansson, J., Shen, C., Sung, W.-K.: Improved algorithms for constructing consensus

trees. J. ACM 63(3), 1–24 (2016)
9. Kao, M.-Y., Lam, T.W., Sung, W.-K., Ting, H.-F.: Cavity matchings, label com-

pressions, and unrooted evolutionary trees. SIAM J. Comput. 30(2), 602–624
(2000)

10. Margush, T., McMorris, F.R.: Consensus n-trees. Bull. Math. Biol. 43(2), 239–244
(1981)

11. Phillips, C., Warnow, T.J.: The asymmetric median tree—a new model for building
consensus trees. Discrete Appl. Math. 71(1–3), 311–335 (1996)

12. Sokal, R.R., Rohlf, F.J.: Taxonomic congruence in the Leptopodomorpha re-
examined. Syst. Zool. 30(3), 309–325 (1981)

13. Sung, W.-K.: Algorithms in Bioinformatics: A Practical Introduction. Chapman &
Hall/CRC, Boca Raton (2010)

Privacy

Privacy-Preserving and Co-utile
Distributed Social Credit

Josep Domingo-Ferrer(B)

UNESCO Chair in Data Privacy, Department of Computer Science and Mathematics,
Universitat Rovira i Virgili, Av. Päısos Catalans 26, Tarragona 43007, Catalonia

josep.domingo@urv.cat

Abstract. Reputation is a powerful incentive for agents to abide by the
prescribed rules of an interaction. In computer science, reputation can be
phrased as being an artificial incentive that can turn into self-enforcing
protocols that would not be such otherwise. Quite recently, China has
announced a national reputation system that will be launched in the
future under the name of social credit system. However, to be gener-
alizable without damaging the privacy of citizens/agents, a reputation
system must be decentralized and privacy-preserving. We present a peer-
to-peer fully distributed reputation protocol in which the anonymity of
both the scoring and the scored agents is maintained. At the same time,
the reputation protocol itself is co-utile, that is, the rational option for
all agents is to honestly fulfill their part in the protocol.

Keywords: Protocols · Reputation · P2P · Self-enforcement
Co-utility · Privacy

1 Introduction

Ensuring that agents will honestly follow their roles in an interaction has always
been a thorny issue. In the presence of a common legal framework, the agents
may have an incentive not to deviate from the legally established procedures.
However, in an open environment such as the information society, common legal
frameworks are often lacking. In this case, the prescribed rules of interaction,
called a protocol in the computer science jargon, must be designed to that they
deter deviations and are thus self-enforcing.

Reputation is a powerful incentive for agents to adhere to the prescribed inter-
action rules, both in the information society and in society at large. The Chinese
government has realized this and they have recently announced a national rep-
utation system called Social Credit System [1]. However, unless properly imple-
mented, such a system has the potential of becoming a mass surveillance system.
Technical details of the Chinese reputation system are not yet known, although
it may be partly inspired on Alibaba’s Sesame Credit [12]. Anyway, since no
standard social credit system exists yet, it makes a lot of sense to investigate

c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 371–382, 2018.
https://doi.org/10.1007/978-3-319-78825-8_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_30&domain=pdf
http://orcid.org/0000-0001-7213-4962

372 J. Domingo-Ferrer

what properties a generalized reputation system should satisfy in order to be
socially acceptable.

Privacy preservation and decentralization, or even better distributedness,
stand out as obvious desiderata, and they are intertwined:

– Privacy should be preserved as much as possible for those agents whose rep-
utation is computed: the legitimate interest of society is to know how well a
certain agent has performed in the past, but this does not require knowing
the detail of all the transactions the agent has been involved in. Whereas in
a centralized reputation system, there is no way around the central authority
learning the behavior in all transactions, a distributed system may be more
privacy-preserving. After all, reputation is an aggregate metric of behavior,
not a history of the behavior of an agent in each and every past transaction.

– Privacy should also be preserved for those agents participating in the com-
putation of the reputation of other agents. Whereas in a centralized system
it does not make sense to request privacy for the central authority comput-
ing reputations, in a decentralized system reputation may be computed by
peers. Unless the privacy of those peers is protected, they might be subject
to bribery, extortion or retaliation aimed at altering the reputations they
compute.

1.1 Contribution and Plan of This Paper

In this paper, we describe a peer-to-peer reputation system that preserves privacy
both for the agents involved in computing the reputations and for the agents
whose reputation is computed. This makes it a good candidate to implement a
generalized social credit system.

Section 2 recalls the basics of co-utility, which is a property related to a proto-
col being self-enforcing and beneficial for the participants (a distributed reputa-
tion protocol must be co-utile for peers to rationally collaborate in the protocol).
Section 3 states the requirements of a co-utile privacy-preserving reputation sys-
tem. In Sect. 4 we recall the EigenTrust distributed reputation system, which
meets many of our requirements. In Sect. 5, we describe a co-utile and weakly
anonymous extension of EigenTrust. Then, in Sect. 6, we present a novel further
extension, that also offers enhanced privacy to agents, both when their reputa-
tion is computed and when they help computing the reputations of other agents.
Conclusions and future work directions are gathered in Sect. 7.

2 Co-utility

When setting forth for decentralized systems, peer-to-peer (P2P) architectures
are the most appealing ones, because they empower individual agents. The
challenge in P2P is how to ensure that peers will collaborate as expected. Co-
utility [3,4] is a specially attractive form of self-enforcing collaboration between
agents. Co-utile protocols are those in which helping other (rational) agents
increase their utilities is also the best way to increase one’s own utility.

Privacy-Preserving and Co-utile Distributed Social Credit 373

We can formalize the definition of co-utility in game-theoretic terms. A game
is an abstraction of a scenario in which a set of rational agents can take deci-
sions [7,10]. We will focus on sequential perfect-information games, consisting of
several rounds so that the agent choosing an action in a certain round knows the
actions chosen in previous rounds (by others and herself). A game of this class
can be represented in the so-called extensive form, that is a tree in which: (i)
nodes are the points where decisions are made, (ii) each node is labeled with the
name of the agent making the decision at that node, (iii) edges going out from
a node represent the available actions that can be chosen at the node, and (iv)
each of the terminal nodes (leaves) of the tree is labeled with the tuple of payoffs
that agents obtain when the node is reached. Now we can give game-theoretic
definitions of protocol, self-enforcing protocol and co-utility.

Definition 1 (Protocol). Given a perfect-information game G in extensive
form represented as a tree, a protocol is either a path from the root to a leaf or
a subtree from the root to several leaves. In the latter case, alternative edges are
labeled with probabilities of being chosen.

Definition 2 (Self-enforcing protocol). A protocol P on a game G is self-
enforcing if no agent can increase her utility by deviating from P , provided that
the other agents stick to P . Equivalently, at each successive node of the protocol
path, sticking to the next action prescribed by the protocol (taking the next edge
in the path) is an equilibrium of the remaining subgame of G (the subtree rooted
at the current node). More technically, P on G is self-enforcing if and only if P
is a subgame perfect equilibrium of G.

Definition 3 (Co-utility). A self-enforcing protocol P on a game G is co-
utile if it is Pareto optimal and the utility derived by each participating agent is
strictly greater than the utility the agent derives from not participating.

A co-utile protocol P is Pareto-optimal in the sense that there is no alterna-
tive protocol P ′ giving greater utilities to all agents and strictly greater utility
to at least one agent. See [3] for more details on co-utility.

3 Requirements of a Co-utile and Distributed
Reputation Protocol

Many reputation mechanisms have been proposed in the literature for peer-
to-peer communities, either centralized or distributed (see the surveys [5,9]).
Reputation is a very versatile artificial utility that can be used both as a reward
and as a penalty. In fact, the reputation incentive can be added to a non-co-
utile protocol to render it co-utile: it is a matter of rewarding with reputation
increases those actions within the protocol and penalizing any deviation with
reputation decreases. Yet, the reputation calculation and management protocol
itself should be naturally co-utile, without requiring any additional incentives.

374 J. Domingo-Ferrer

Otherwise, computing reputations would not be rationally sustainable and would
not serve its purpose of inducing co-utility or self-enforcement in other P2P
protocols.

Specifically, we want a reputation protocol with the following features, which
should make it amenable to co-utility, privacy-preserving and hence socially
acceptable as a generalized reputation protocol:

– Decentralization. Reputations should be computed and enforced by the peers
themselves rather than by a central authority. A central authority knows
everything on everyone (no privacy) and is a single point of failure.

– Privacy protection for those agents computing reputations and those whose
reputation is computed. See justification in Sect. 1 above. Surprisingly, most
reputation schemes in the literature provide very little privacy or no privacy
at all [11].

– Low overhead. The computational cost (bandwidth, storage, calculation) of
computing reputations should be low (linear or quasi-linear). Otherwise, the
negative utility of those costs might dominate the benefits brought by repu-
tation.

– Proper management of new agents. Newcomers should not enjoy any rep-
utation advantage. Otherwise, malicious peers may be motivated to create
new anonymous identifiers after abusing the system in order to regain the
advantages of a good reputation.

– Attack tolerance. A number of attacks may be orchestrated in order to subvert
the reputation system. Since we assume rational players, we must make the
cost of such attacks unattractively high. Following the classification in [5],
we must avoid the following attacks: self-promotion (agents falsely increasing
their reputations), whitewashing (creating new clean identities to get rid of
bad reputations), slandering (falsely lowering other agents’ reputations in
order for one’s own reputation to become comparatively higher) and denial
of service (agents blocking the calculation and dissemination of reputation
values).

After examining a number of decentralized reputation mechanisms [5], we
selected EigenTrust [6] as a starting point to obtain a co-utile distributed repu-
tation protocol. EigenTrust offers most of the desirable features identified above:
distributed reputation calculation, low overhead and robustness to attacks. This
reputation scheme is designed to filter out inauthentic content in peer-to-peer
file sharing networks. Its basic idea is to calculate a global reputation for each
agent based on aggregating the local opinions of the peers that have interacted
with the agent. If we represent the local opinions by a matrix whose compo-
nent (i, j) contains the opinion of agent i on agent j, the distributed calculation
mechanism computes global reputation values that approximate the left princi-
pal eigenvector of this matrix. For unstructured networks, other solutions can
be used, such as gossip-based reputation distribution protocols [13].

Privacy-Preserving and Co-utile Distributed Social Credit 375

4 The EigenTrust Distributed Reputation System

In EigenTrust, a local reputation is assigned by an agent to another agent with
whom the former has directly interacted, as a function of her opinion on the
latter’s behavior in the interaction. Then, the global reputation of an agent is
computed in a distributed way, by means of a protocol whereby the agents share
their local reputation values. The original EigenTrust system was designed for
P2P file sharing, and the file receiver’s opinion on a file download is just binary:
satisfactory or not satisfactory. Since we want to be able to compute reputations
based on opinions that have several categories or are even continuous, in [2] we
extended EigenTrust to compute reputations based on non-binary opinions.

4.1 Computing Local Reputations

The opinion of an agent Pi on another agent Pj with whom Pi has directly
interacted is the reputation sij of Pj local to Pi. We define this value as the
aggregation of payoffs (either positive or negative) that Pi has obtained from
the set of transactions (Yij) performed with Pj :

sij =
∑

yij∈Yij

payoffi(yij).

Payoffs may be binary (positive/negative opinion), discrete (an opinion from
a discrete scale) or continuous (for example, the cost incurred in the transaction,
in terms of bandwidth, time, etc.).

4.2 Computing Global Reputations

We review how EigenTrust computes global reputations from local reputations.
First, in order to properly aggregate the local reputation values computed by
peers, a normalized version cij of every local reputation sij assigned by peer Pi

to any other peer Pj is computed as:

cij =
max(sij , 0)∑
j max(sij , 0)

.

The normalized local reputations lie between 0 and 1 and the sum of all normal-
ized local reputations awarded by Pi to other peers is 1. In other words, each
agent has a reputation budget of only 1 that she has to split among her peers
proportionally to her positive experiences. In this way, all agents have the same
influence on the global reputation. In particular, there is no dominance by the
agents with more experiences and peers cannot collude by assigning arbitrarily
high values to good peers. Regarding the truncation of negative values to 0,
on the one hand it prevents Pi from assigning arbitrarily low values to other
peers (thus neutralizing slandering), and on the other hand it sets newcomers
on an equal footing with peers with whom Pi had a negative experience (thus
neutralizing whitewashing).

376 J. Domingo-Ferrer

The next step is to disseminate normalized local reputations and have them
aggregated through the network peers by leveraging transitive reputation. Any
agent Pi can compute t̂

(0)
ik , an approximation of the reputation of a potentially

unknown peer Pk, by asking the peers with whom Pi has interacted (Pj) for
their local reputation w.r.t. Pk, that is cjk. Since Pi has already computed
the local normalized reputation w.r.t. Pj , that is cij , Pi can compute a local
estimate of the reputation tik of Pk by using cij to weight Pj ’s local reputation;
specifically, t̂

(0)
ik =

∑
j cijcjk. Thanks to the local normalization, t̂

(0)
ik takes values

between 0 and 1. Observe that if we call ci = (ci1, . . . , cin)T and C = [cij], then
t̂(0)i = CT ci, where t̂(0)i = (t̂(0)i1 , . . . , t̂

(0)
in)T . If every agent Pi computes t̂(0)i , in

the next iteration Pi can compute t̂(1)i = CT (CT ci). After m iterations, Pi will
compute t̂(m−1)

i = (CT)mci. Under the assumptions that C is irreducible and
aperiodic [6], in an ideal and static setting the succession of reputation vectors
computed by any peer will converge to the same vector for every peer, which
we call t = (t1, . . . , tn)T and is the left principal eigenvector of C. The j-th
component of t represents the global reputation of the system on agent Pj , for
j = 1, . . . , n.

Unfortunately, computing the global reputations by the above method is not
efficient, because it takes too much communication. This and other issues are
fixed in the proposals discussed in the next sections.

5 Co-utile and Weakly Anonymous Computation
of Global Reputations

In the same EigenTrust paper [6], the authors gave a secure version of the pro-
tocol to compute global reputations, in which not every peer contributed to
computing the global reputation on every other peer. In [2], we extended that
version to make it co-utile and ensure some level of anonymity, and we summarize
this extension here.

In our extension, each agent Pi has an initial global reputation t
(0)
i (based

on previous experiences or assigned by default) and M score managers that
will update her reputation value. Given a pseudonym IDi of agent Pi (the
pseudonym is Pi’s identifier in the P2P network), her score managers are defined
by a distributed hash table (DHT), which maps IDi to M score managers whose
pseudonyms are closest (according to an agreed distance), respectively, to values
h0(IDi), . . . , hM−1(IDi), where h0, h1, . . . , hM−1 are hash functions. The use
of pseudonyms guarantees some level of anonymity (a weak level, as argued in
the next section) and the use of hash functions prevents anyone from choosing
a particular pseudonym as her score manager.

With the above arrangement, on average every agent is the score manager
for M agents, so the work is balanced. Let Di be the set of daughters of Pi, that
is, the set of agents for whom Pi is a score manager. During the computation
of the global reputation, each Pi learns, for each Pd ∈ Di, the set Ad of agents
that directly interacted with Pd (to provide or receive help) and receives the

Privacy-Preserving and Co-utile Distributed Social Credit 377

normalized local reputations cjd on Pd from each Pj ∈ Ad. The terms cji for
j �∈ Ai are zero. Then Pi engages in an iterative refinement, for k = 0, 1, 2, . . .:

t
(k+1)
d = c1dt

(k)
1 + c2dt

(k)
2 + . . . + cndt

(k)
n . (1)

Note that, in Expression (1), the weight attached to each normalized local rep-
utation cjd on Pd received from Pj is the current global reputation t

(k)
j of Pj .

The refinement ends when the global reputation for Pd changes less than a small
value ε > 0 from k to k + 1. The resulting global reputations td are kept for a
period until they are recomputed. The length of the reputation update period is
a parameter of the system.

With this arrangement, not only the entire computation is mediated by the
score managers, but also the dissemination of global reputations. For any Pi,
her global reputation ti can be obtained from her score managers.

Briefly speaking, this protocol to compute global reputations is co-utile because
it encourages the agents to collaborate. The reason is that the impact of their
opinions on the computation of the global reputations increases when they are
active (that is, when they are members of as many sets A∗ as possible). See [2]
for a detailed co-utility analysis.

6 Co-utile and Privacy-Preserving Computation
of Global Reputations

The protocol in Sect. 5 provides only weak anonymity, because it uses a single
pseudonym for each agent. Indeed, if all the interactions of an agent Pi are
carried out under the same pseudonym, in the end the agent can be identified
from its graph of interactions alone. This is well known in graph anonymization,
where it is clear that just replacing the node labels with pseudonyms is not a
sufficient anonymization (see, e.g. [8]).

A possible way to improve the privacy of agents is to split the identity of
each agent into as many pseudonyms as the agent wishes. We consider two
cases: multiple pseudonyms with independent reputations and multiple linkable
pseudonyms.

6.1 Multiple Pseudonyms with Independent Reputations

This case makes sense if it is socially tolerable that an agent leads several parallel
lives each with its own independent reputation. Splitting into parallel lives is not
necessarily unfair because:

– If an agent behaves very well under a pseudonym and earns a high reputation
with that pseudonym, she will only enjoy the benefits of high reputation under
that pseudonym.

– On the other hand, if the agent behaves very poorly under another
pseudonym, she will suffer the effects of a bad reputation only under that
pseudonym.

378 J. Domingo-Ferrer

In practice, this scenario amounts to splitting an agent into several surrogate
agents. So instead of agent Pi having a single pseudonym IDi, she will be allowed
to have several pseudonyms ID1

i , ID2
i , . . ., etc. Otherwise, the scheme will work

exactly as described in Sect. 5.

6.2 Multiple Linkable Pseudonyms

In this case, the agent can lead several independent lives under different
pseudonyms. However, at any point she can choose to link some of her
pseudonyms and thereby merge their corresponding reputations. This makes
sense if the motivation of the agent when using several pseudonyms is to improve
her privacy, but she would like to enjoy the same (or a similar) reputation no
matter which among her pseudonyms she is using. To allow this, the following
protocols can be followed.

We assume Pi wants to create k pseudonyms that are linkable to each other
at a later time. Protocol 1 creates multiple linkable pseudonyms.

Protocol 1 (Linkable pseudonym creation)

1. Pi chooses strings ID1
i , ID2

i , . . ., IDk
i .

2. Pi computes

H(ID1
i ||H1

i ,K1
i) = R1

i

H(ID2
i ||H2

i ,K2
i) = R2

i (2)
...

...
...

H(IDk
i ||Hk

i ,Kk
i) = Rk

i

where || is the concatenation operator, H(·, ·) is a secure keyed hash function,

Hj
i = H ′(ID1

i || . . . ||IDj−1
i ||IDj+1

i || . . . ||IDk
i), j = 1, . . . , k

with H ′(·) being a secure hash function, and K1
i , . . ., Kk

i are random keys.
The values Hj

i and the keys Kj
i are known only to Pi for j = 1, . . . , k.

3. Pi can now operate under ID1
i ||R1

i , ID2
i ||R2

i , . . ., IDk
i ||Rk

i as her
pseudonyms.

Linkable pseudonyms are longer than normal pseudonyms, because they are
appended the hash image as a suffix. Although their random-looking suffix makes
them distinguishable from normal pseudonyms, this should not be a problem as
long as a sufficient number of agents is using linkable pseudonyms. However, if a
single agent (or very few agents) used them, the linkable pseudonyms could be
easily linked by anyone, and the anonymity gain of the agent’s having several
pseudonyms would be canceled.

If, at a certain point of time, Pi wants to link some of her linkable
pseudonyms, say without loss of generality, ID1

i ||R1
i , ID2

i ||R2
i , . . ., IDk′

i ||Rk′
i ,

for k′ ≤ k, she can do so using the following protocol.

Privacy-Preserving and Co-utile Distributed Social Credit 379

Protocol 2 (Pseudonym linkage)

1. Pi sends ID1
i ||R1

i , . . ., IDk′
i ||Rk′

i , K1
i , . . ., Kk′

i , H1
i , . . ., Hk′

i to the score
managers corresponding to the k′ pseudonyms to be linked, that is, to
the M score managers whose pseudonyms are closest to h0(ID1

i ||R1
i), . . . ,

hM−1(ID1
i ||R1

i), and to the M score managers whose pseudonyms are closest
to h0(ID2

i ||R2
i), . . . , hM−1(ID2

i ||R2
i), and so on, up to the M score managers

whose pseudonyms are closest to h0(IDk′
i ||Rk′

i), . . . , hM−1(IDk′
i ||Rk′

i).
2. The score managers check that the k′ pseudonyms are currently marked as

unlinked. Any pseudonyms that have been linked in previous instances of the
protocol are discarded. Without loss of generality, assume that the first k′′

pseudonyms are unlinked, with k′′ ≤ k′.
3. The score managers verify whether the following equations hold:

H(ID1
i ||H1

i ,K1
i) ?= R1

i

H(ID2
i ||H2

i ,K2
i) ?= R2

i (3)
...

...
...

H(IDk′′
i ||Hk′′

i ,Kk′′
i) ?= Rk′′

i

where the j-th equation is verified by the M score managers managing
IDj

i ||Rj
i , for j = 1, . . . , k′′.

4. If all checks in Expression (3) hold, the score managers of IDj
i ||Rj

i , for j =
1, . . . , k′′, will consider the k′′ pseudonyms as linked from now on. If only a
subset of at least two equations holds, then the score managers will consider
as linked only the subset of pseudonyms corresponding to that subset. If only
one equation holds, no pseudonyms will be linked. The implications of having
a set of linked pseudonyms are:
(a) The newly linked pseudonyms are marked by the corresponding score man-

agers as “linked”.
(b) Each time the global reputation of one of the linked pseudonyms is

updated:
i. The score managers of that pseudonym notify the pseudonym’s

updated reputation to the score managers of the other linked
pseudonyms.

ii. The score managers of all linked pseudonyms recompute the reputa-
tion of the linked pseudonyms as the aggregation of the reputations
individually earned by those pseudonyms (using any agreed aggrega-
tion operator, like for example the mean).

iii. The score managers replace the reputations of the linked pseudonyms
with the newly computed aggregated reputation. A small random
perturbation can be added to the aggregated reputation of each
pseudonym, to avoid that exactly equal reputations leak to everyone
that pseudonyms are linked.

An interesting point of Protocol 2 is that, when Pi wants to link only a strict
subset of her pseudonyms (k′ < k), the rest of her pseudonyms are not disclosed
by the protocol as belonging to Pi.

380 J. Domingo-Ferrer

Note 4 (On the co-utility of multiple linkable pseudonyms). The extension to
multiple linkable pseudonyms presented in this section is in the interest of agent
Pi. Since Protocol 1 involves only Pi, it does not endanger the co-utility of the
protocol previous to the extension (justified in [2]). On the other hand, Protocol 2
involves Pi and the score managers. The motivation of Pi to adhere to the
protocol is clear. Regarding the score managers, they also can be assumed to
follow the protocol in their own interest, because the availability of accurate
reputations is good for all peers (the score managers do not deviate for the same
reasons they did not deviate from the protocol previous to the extension, see the
co-utility analysis in [2]).

Note 5 (On disagreements between score managers). We have argued in the pre-
vious note that rationally selfish score managers will adhere to Protocol 2. How-
ever, some score managers might be not only selfish, but interested in malicious
deviation (e.g. they may be offered money to alter a certain agent’s reputation).
Yet, consistently with the EigenTrust security model, we assume that a major-
ity among the M score managers assigned to each agent are honest (even if
rationally selfish), so that the reputation value reported by the majority can be
assumed to be correct. If small random perturbations are added to differentiate
the aggregate reputation reported for each linked pseudonym (as suggested at
the end of Protocol 2), only those reputation differences beyond the perturbation
range will be regarded as disagreements.

Note 6 (Confidentiality of pseudonym linkage). When several pseudonyms are
linked, the linkage becomes known to the score managers of the linked
pseudonyms, but, unless those managers tell other peers, no one else needs to
know about the linkage. Hence, linked pseudonyms are better in terms of privacy
than a single pseudonym replacing all of them.

Proposition 7 (Security of pseudonym linkage). Only the agent who cre-
ated a pseudonym can link it to other pseudonyms. Given a pseudonym created by
an agent Pi, no other agent Pj can create and link a pseudonym to a pseudonym
of Pi without the latter’s consent.

Proof. Non-linkable pseudonyms do not need to be considered, because they lack
the hash images R needed for the score managers to verify the linkage.

For a linkable pseudonym IDj
i ||Rj

i to be linked to other pseudonyms, the
score managers of the pseudonym need to be provided with Kj

i and Hj
i , so that

they can verify the j-th equation in Expressions (3). But, if IDj
i ||Rj

i is still
unlinked, Kj

i is only known to the agent Pi who created the pseudonym; this is
ensured by the security of the keyed hash function employed in Expressions (2).
On the other hand, if IDj

i ||Rj
i is already linked, by design of Protocol 2 no one

can link it again.
Regarding the second statement, agent Pl can fabricate a pseudonym

IDj′
l ||Rj′

l with the aim of linking it to a pseudonym IDj
i ||Rj

i created by agent
Pi. In order for the two pseudonyms to be considered as linked, the score man-
agers for IDj′

l ||Rj′
l should receive Kj′

l and Hj′
l such that H(IDj′

l ||Hj′
l ,Kj′

l) =

Privacy-Preserving and Co-utile Distributed Social Credit 381

Rj′
l , and the score managers for IDj

i ||Rj
i should receive Kj

i and Hj
i such

that H(IDj
i ||Hj

i ,Kj
i) = Rj

i . Now, Pl can choose any Hj′
l and Kj′

l and take
Rj′

l := H(IDj′
l ||Hj′

l ,Kj′
l). However, regarding IDj

i ||Rj
i , only Pi knows Kj

i if the
pseudonym is unlinked; if it was already linked, it cannot be linked again. ��

6.3 Generalization: Pseudonyms Allowing Multiple Linkages

In the protocols described in Sect. 6.2, a linkable pseudonym can only be linked
once. This is because there is a single secret key Kj

i for a pseudonym IDj
i :

after the agent Pi owning the pseudonym discloses Kj
i to perform the linkage in

Protocol 2, the owner would no longer be the only one able to link the pseudonym
if further linkages were allowed.

A way to overcome this problem is to create linkable pseudonyms with sev-
eral secret keys. For example, to allow up to � linkages, Pi could create and
disseminate a pseudonym as: IDj

i ||Rj,1
i , . . . , Rj,�

i where

H(IDj
i ||Hj

i ,Kj,1
i) = Rj,1

i (4)

H(IDj
i ||Hj

i ,Kj,2
i) = Rj,2

i (5)
...

...
...

H(IDj
i ||Hj

i ,Kj,�
i) = Rj,�

i .

In this way, there are � secret keys. Up to � linkages of the pseudonym can be
performed by using a slightly generalized version of Protocol 2, where in the
first linkage Pi would reveal Kj,1

i that satifies Eq. (4), in the second linkage Pi

would reveal Kj,2 that satisfies Eq. (5), and so on. The score managers for the
pseudonym would maintain a counter with the number of times the pseudonym
has been linked, and they would not accept the same key more than once.

7 Conclusions and Future Work

We have presented a peer-to-peer fully distributed reputation system that is
privacy-preserving, in that it allows peers to use any number of pseudonyms
and link some of them if they want to enjoy the same (or a similar) reputation
under several of their pseudonyms. A reputation system of this kind is a better
candidate than a centralized reputation system for generalized use in a social
credit system.

Future research will be devoted to improving the management of pseudonyms.
Specifically, we will investigate solutions that improve the confidentiality of
pseudonym linkage. Also, allowing multiple linkages of a pseudonym without
expanding its length deserves further work. Another interesting direction is to
create revocable pseudonyms that can be attributed to a certain agent with the
help of a trusted third party.

382 J. Domingo-Ferrer

Acknowledgments and Disclaimer. Partial support to this work has been received
from the Templeton World Charity Foundation (grant TWCF0095/AB60 “CO-
UTILITY”), ARC (grant DP160100913), the European Commission (projects H2020-
644024 “CLARUS” and H2020-700540 “CANVAS”), the Government of Catalonia
(ICREA Acadèmia Prize) and the Spanish Government (projects TIN2014-57364-C2-
1-R “SmartGlacis” and TIN 2015-70054-REDC). The author holds the UNESCO Chair
in Data Privacy, but the views in this paper are the author’s own and are not necessarily
shared by UNESCO.

References

1. Creemers, R.: China Copyright and Media, 15 March 2018. https://
chinacopyrightandmedia.wordpress.com/about/

2. Domingo-Ferrer, J., Farràs, O., Mart́ınez, S., Sánchez, D., Soria-Comas, J.: Self-
enforcing protocols via co-utile reputation management. Inf. Sci. 367–368, 159–
175 (2016)

3. Domingo-Ferrer, J., Mart́ınez, S., Sánchez, D., Soria-Comas, J.: Co-utility: self-
enforcing protocols for the mutual benefit of participants. Eng. Appl. Artif. Intell.
59, 148–158 (2017)

4. Domingo-Ferrer, J., Sánchez, D., Soria-Comas, J.: Co-utility - self-enforcing col-
laborative protocols with mutual help. Prog. Artif. Intell. 5(2), 105–110 (2016)

5. Hoffman, K., Zage, D., Nita-Rotaru, C.: A survey of attack and defense techniques
for reputation systems. ACM Comput. Surv. 42(1) (2009). Article no. 1

6. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The EigenTrust algorithm for
reputation management in P2P networks. In: Proceedings of the 12th International
Conference on World Wide Web, pp. 640–651. ACM (2003)

7. Leyton-Brown, K., Shoham, Y.: Essentials of Game Theory: A Concise Multidis-
ciplinary Introduction. Morgan and Claypool, San Rafael (2008)

8. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data -
SIGMOD 2008, pp. 93–106. ACM (2008)

9. Marti, S., Garcia-Molina, H.: Taxonomy of trust: categorizing P2P reputation sys-
tems. Comput. Netw. 50(4), 472–484 (2006)

10. Osborne, M., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge
(1994)

11. Singh, A., Liu, L.: TrustMe: anonymous management of trust relationships in
decentralized P2P systems. In: Proceedings of the Third International Conference
on Peer-to-Peer Computing (P2P 2003), pp. 142–149 (2003)

12. Hsu, S.: China’s new social credit system. The Diplomat, 10 May 2015. http://
thediplomat.com/2015/05/chinas-new-social-credit-system/

13. Zhou, R., Hwang, K., Cai, M.: GossipTrust for fast reputation aggregation in peer-
to-peer networks. IEEE Trans. Knowl. Data Eng. 20(9), 1282–1295 (2008)

https://chinacopyrightandmedia.wordpress.com/about/
https://chinacopyrightandmedia.wordpress.com/about/
http://thediplomat.com/2015/05/chinas-new-social-credit-system/
http://thediplomat.com/2015/05/chinas-new-social-credit-system/

Combinatorial Algorithms and Methods
for Security of Statistical Databases
Related to the Work of Mirka Miller

Andrei Kelarev1(B) , Jennifer Seberry2, Leanne Rylands3 , and Xun Yi1

1 School of Science, RMIT University,
GPO Box 2476, Melbourne, VIC 3001, Australia

andrei.kelarev@gmail.com, xun.yi@rmit.edu.au
2 School of Computing and Information Technology, University of Wollongong,

Northfields Avenue, Wollongong, NSW 2522, Australia
jennie@uow.edu.au

3 School of Computing, Engineering and Mathematics,
Western Sydney University, Locked Bay 1797, Penrith, NSW 2751, Australia

l.rylands@westernsydney.edu.au

Abstract. This article gives a survey of combinatorial algorithms and
methods for database security related to the work of Mirka Miller. The
main contributions of Mirka Miller and coauthors to the security of sta-
tistical databases include the introduction of Static Audit Expert and
theorems determining time complexity of its combinatorial algorithms,
a polynomial time algorithm for deciding whether the maximum possi-
ble usability can be achieved in statistical database with a special class
of answerable statistics, NP-completeness of similar problems concern-
ing several other types of databases, sharp upper bounds on the number
of compromise-free queries in certain categories of statistical databases,
and analogous results on applications of Static Audit Expert for the
prevention of relative compromise.

Keywords: Combinatorial algorithms · NP-completeness
Privacy in data mining · Database security · Time complexity
Sharp upper bounds

1 Introduction

This article surveys combinatorial algorithms and methods for maintaining the
security of statistical databases. We include concise statements of the main the-
orems and results related to the work of Mirka Miller. For background informa-
tion and preliminaries, the readers are referred to [6,17,18,42,48]. An excellent
overview of various concepts used in statistical disclosure control with detailed
explanations and examples illustrating the major notions is given in [4].

Statistical databases are databases in which only statistical types of queries
are allowed. They store records with data on individuals (companies, organiza-
tions, etc.) and can output statistics concerning subsets of individuals providing
c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 383–394, 2018.
https://doi.org/10.1007/978-3-319-78825-8_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_31&domain=pdf
http://orcid.org/0000-0001-9402-3534
http://orcid.org/0000-0002-1908-8706
http://orcid.org/0000-0001-7351-5724

384 A. Kelarev et al.

aggregated information on groups of records in the database, while protect-
ing confidential data of individuals from disclosure. Users can pose statistical
queries, which are either answered (precisely or approximately), or rejected by
a control mechanism to ensure the privacy of confidential data of individuals.
Statistical databases are very important for numerous practical application. For
example, answers to statistical queries can help medical researchers to evaluate
the effectiveness of medications or certain lifestyle changes for the treatment or
prevention of various conditions.

It is usually possible to deduce confidential information by comparing the
results of several different queries. The security problem for statistical databases
is to develop control mechanisms that will prevent direct or indirect disclosure
of confidential data by the release of statistics as answers to statistical queries.

2 Classical Compromise

If the value of a protected attribute of an individual record can be derived, then
the database is said to have been (positively) compromised. It is shown in [33]
how supplementary knowledge available from other sources can be exploited to
obtain values of a confidential attribute. The following types of supplementary
knowledge are defined in [33]. Supplementary knowledge of type I is knowledge of
the values of attributes which uniquely identify a particular record or a particular
subset of records in a database. Supplementary knowledge of type II is knowledge
of the value of a confidential attribute for a particular individual.

Let us denote the numerical attributes contained in a statistical database
by A0, A1, . . . , Am. Without loss of generality we may assume that the users
can submit queries on statistics concerning the attribute A0 and the values of
attributes A1, . . . , Am are used to select subsets of records for these queries. Then
A0 is called a quantitative attribute and A1, . . . , Am are called characteristic
attributes for such queries. The set of records chosen for a query by specifying
conditions on the characteristic attributes is called the query set. Denote by n the
number of records stored in the database. Let x1, x2, . . . , xn be the (protected)
values of the quantitative attribute in these records.

A SUM query is a sum of the form a1x1 + · · · + anxn, where ai = 1 if the
i-th record belongs to the query set, and ai = 0 otherwise. For SUM queries,
it is enough to consider 1-dimensional statistical databases, or databases with
only one quantitative attribute. An arbitrary set of SUM queries in a multi-
dimensional statistical database can be represented as a disjoint union of SUM
queries corresponding to different quantitative attributes, and each of these sub-
sets can be viewed as a set of SUM queries of the corresponding 1-dimensional
database. A set of SUM queries can be recorded as a system of linear equations
of the form

MX = V, (1)

where X = (x1, . . . , xn) and V is the vector with the values returned by the SUM
queries corresponding to the rows of the matrix M . Each query corresponds to
a row of the matrix M . It is enough to store only linearly independent queries in

Combinatorial Algorithms and Methods for Security of Statistical Databases 385

the matrix M , since if several queries are known, then all their linear combina-
tions are known too. The standard elementary row and column operations used
to simplify systems of linear equations (1) result in a new system with rows cor-
responding to new queries with the outcomes equal to the corresponding values
in the column V again. Therefore, we can assume that (1) has been simplified
and stores a so-called normalized query basis matrix, so that M = Mk, where

Mk = (Ik|M ′
k) (2)

and Ik is a (k×k) identity matrix. Then the matrix M is said to be in a normal-
ized form. The row vectors of Mk form a basis of the space of all queries with
outcomes which are known, since they all can be derived using linear combina-
tions of query vectors.

Audit Expert is a system using a normalized basis matrix to store all queries
answered so far (cf. [15]). When a new query is added, Audit Expert adds it to
the matrix and then reduces it to a normalized basis form again.

Theorem 1 ([15]). The time complexity of the combinatorial algorithm dynam-
ically processing the query matrix of the Audit Expert and maintaining it in
a normalized form for a set of k consecutive queries is O(k2). The statistical
database is compromised if and only if the normalized query basis matrix Mk

has a row with exactly one nonzero entry.

The paper [38] suggested using a Static Audit Expert, where the query basis
matrix is fixed by the system (possibly the database administrator) in advance.
A user’s query is then allowed to be answered if it belongs to the vector space
spanned by the rows of the matrix.

Theorem 2 ([38]). The time complexity of the combinatorial algorithm for pro-
cessing each new query by a Static Audit Expert with a predesigned query matrix
in a normalized basis form is O(k).

This shows that Static Audit Expert is substantially more efficient than
the dynamic Audit Expert. The maximum number of answerable queries, for
databases where all SUM queries are posable, was determined in [35], where a
combinatorial algorithm for constructing these sets of queries was also given.

Theorem 3 ([35]). (i) In a 1-dimensional database with n real entries, the
maximum number of SUM queries answerable without a compromise is equal
to

(
n

�n/2�
)
.

(ii) ([24]) The maximum is achieved if and only if the set of all entries is par-
titioned into two parts of size �n/2� and �n/2�, and each allowed query set has
equal numbers of elements from both parts.

The usability of a statistical database is defined as the ratio of the maximum
number of valid statistics that can be disclosed without a database compromise
to the total number of valid statistics in the database.

If a confidential statistic based on one record has been revealed, then the term
1-compromise is used. The problem of preventing a compromise (1-compromise)
can also be called the problem of preserving anonymity (1-anonymity).

386 A. Kelarev et al.

Theorem 4 ([8,23]). In a statistical database of size n where all statistics are
valid, the usability for 1-compromise is equal to

(
n

�n/2�
)
.

Theorem 5 ([11]). In a statistical database where all statistics are valid and a
fixed set of statistics are confidential and should not be disclosed, it is an NP-
complete problem to decide whether the usability

(
n

�n/2�
)
can be achieved.

Theorem 6 ([10]). There exists a polynomial time algorithm to decide whether
the usability

(
n

�n/2�
)
can be achieved in a statistical database where each statistic

is based on at most two records, or each record appears in at most two statistics.
It is an NP-complete problem to answer this question for statistical databases,
where each statistic is based on exactly four records or each record appears in at
most three statistics.

Range queries are a special case of SUM queries. A range query is a sum
of the form a1x1 + · · · + anxn, where x1, . . . , xn are values of the quantitative
attribute A0 in all records of the query set, and the query set is not arbitrary,
but is selected using a range defined by inequalities as follows. Let b1, . . . , bm
and c1, . . . , cm be real numbers such that b1 ≤ c1, . . ., bm ≤ cm. A query set of
a range query is a set of all records (r0, r1, . . . , rm) of the database such that
the following inequalities hold: b1 ≤ r1 ≤ c1, . . ., bm ≤ rm ≤ cm. The value of
the range query is the sum of the values of the quantitative attribute A0 in all
records in the query set.

The paper [9] presents several new results concerning the usability of sta-
tistical databases for general SUM, COUNT and MEAN queries as well as for
the corresponding range queries, and combinatorial algorithms for constructing
such sets of queries. In certain special cases the authors derive the usability of
m-dimensional statistical databases for all m ≥ 1.

The paper [3] is devoted to special sets of queries, where each record in a
database is contained in at most two queries. Sets of queries of this sort are
called queries of type α. For a set Q of queries, a graph G = G(Q) is associated
with Q. The vertices of G(Q) correspond to the queries in Q and edges of G(Q)
correspond to records of the database. The authors of [3] introduce the notion of
the L-core of the graph G. This concept makes it possible to formulate necessary
and sufficient conditions for the set Q to be compromise free. The paper [3] shows
how to determine the L-core from the eigenvalues of the graph, and proposes an
algorithm for computing the L-core directly from the graph.

Theorem 7 ([3]). Let Q be a query set of type α for a statistical database and
let G = G(Q) be the graph associated with Q. Then Q is compromise-free if and
only if G coincides with its L-core.

Several articles investigated range queries, where the values of the quan-
titative attribute A0 are confidential and should not be compromised. For
i = 1, . . . , k, denote by di the number of distinct values of the characteristic
attribute Ai in the database. The main result of the paper [27] shows that the
largest set of all range queries, which does not lead to a compromise, is uniquely

Combinatorial Algorithms and Methods for Security of Statistical Databases 387

determined and coincides with the set of all range queries with an even number
of records.

Theorem 8 ([27]). Let D be a k-dimensional database of size d1×· · ·×dk. Then
the usability of D is equal to 1− 1

2k

∏k
i=1 f(di), where f(x) = (x+2)/(x+1) for

x even, f(x) = (x + 1)/x for x odd.

It follows that the usability of the database always belongs to the segment
[

1 − 1
2k

k∏

i=1

di + 2
di + 1

, 1 − 1
2k

k∏

i=1

di + 1
di

]

. (3)

In [5], a formula is given for the usability of range queries in a 1-dimensional
database that is allowed to contain many indistinguishable copies of some
records.

3 Relative Compromise

A new type of compromise, which does not involve the disclosure of exact val-
ues, was introduced in [37]. Namely, a set S of records in a statistical database
is said to be relatively compromised with respect to a field F if the relative
order of magnitude of the F -values of the records in S becomes known [37].
It is shown in [37] that even when the exact confidential information remains
protected, relative compromise may still be possible. Possible consequences of
relative compromise are studied too. By applying block designs for the design
of queries, it is shown in [37] that a relative compromise can be achieved even
if the overlap of any two query sets is restricted not to exceed one element. In
the case of SUM queries of fixed query size, the paper [37] used block designs to
derive a number of conditions for the relative compromise to occur.

Theorem 9 ([38]). Let D be a 1-dimensional database with n records, where
SUM queries are allowed, and let Mk be the normalized query basis matrix of
the Audit Expert. Then there is a relative compromise if and only if at least one
of the following conditions is satisfied.

(i) There exists a row of the normalized query basis matrix containing exactly
one nonzero element.

(ii) A row of the normalized query basis matrix contains exactly two nonzero
entries which sum to zero.

(iii) There exist two rows i �= j of the normalized query basis matrix Mk =
(Ik|M ′

k) such that the rows M ′
i and M ′

j are identical.

The paper [38] classifies various types of compromise and extends the mech-
anism of Audit Expert to exclude relative compromises for SUM queries. The
paper [36] used Audit Expert to determine the maximal number of answerable
SUM queries preventing a relative compromise.

388 A. Kelarev et al.

Theorem 10 ([36]). Let D be a 1-dimensional database with n records, where
SUM queries are allowed. The maximum number of SUM queries preventing
relative compromised can be achieved by using a Static Audit Expert with the
normalized query basis matrix Mn−1 = (In−1|M ′

n−1), where the transpose of
M ′

n−1 is equal to

(−[n/2], . . . ,−3,−2, 1, 2, 3, . . . , [(n + 1)/2]).

It follows from the results of [47] that the exact value of the maximum num-
ber of SUM queries in Theorem10 coincides with the middle coefficient of the
polynomial

(1 + x)(1 + x2) · · · (1 + x[n/2])(1 + x)(1 + x2) · · · (1 + x[(n+1)/2])

if the order of the polynomial is even, and it coincides with both of the two
middle coefficients if the order of this polynomial is odd.

4 Group Compromise or k-compromise

Statistics revealing information about a subset of k or fewer individuals may
also need to be protected, because supplementary information often allows an
attacker to derive private data about an individual from such statistics. The
disclosure of a statistic based on k or fewer records in the database is called a
k-compromise. The prevention of a k-compromise can also be called the preser-
vation of k-anonymity.

It was shown in [24] that the usability of k-compromise in a statistical
database with n records is in O(n−1−k/2). Denote by G(n, k) the maximum
number of SUM queries, which can prevent k-compromise in the 1-dimensional
database with n records. For any positive integers n and k, the next theorem
determines the value G(n, k) up to a constant factor less than 1/2.

Theorem 11 ([1]). If n/2 ≤ k < n, then

k + 1
n

(
n

k + 1

)
< G(n, k) ≤

(
n

k + 1

)
.

If 2 ≤ k < n/2 and n is odd, then

n + 1
n − 1

(
n − 1
n−3
2

)
≤ G(n, k) < 2

(
n − 1
n−3
2

)
.

If 2 ≤ k < n/2 and n is even, then

n + 2
2n − 2

(
n

n−2
2

)
≤ G(n, k) <

(
n

n−2
2

)
.

Further, denote by G(n,m, k) (resp., G(n,≤ m, k)) the maximum number of
SUM queries in the database, where each of the sums contains m (resp., at most
m) summands, and k-compromise is prevented.

Combinatorial Algorithms and Methods for Security of Statistical Databases 389

Theorem 12 ([16]). Let m ≤ n be positive integers, and let t = �n/m�. Then
the following conditions are satisfied.

(i) If m 	 n, then

G(n,m, 1) = t

(
n − t

m − 1

)
.

(ii) If n → ∞, then

G(n,≤ m, 1) = t

(
n − t

m − 1

)
(1 + o(1)).

Theorem 13 ([1]). Let k < m ≤ n be positive integers, and let

t ∈ {�n/m�, �(n + 1)/m�}.

Then the following equality holds:

G(n,m, k) = t

(
n − t

m − 1

)
.

Furthermore, the optimal set of SUM queries involving k summands corresponds
to the set of (0, 1)-solutions of weight m to the linear equation

(m − 1)x1 + · · · + (m − 1)xt − xt+1 − · · · − xn = 0. (4)

If �n/m� = �(n + 1)/m�, then the optimal set of SUM queries is unique up
to permutation of the elements. If, however, �n/m� �= �(n + 1)/m�, then there
exist precisely two (up to permutation of the elements) optimal sets of SUM
queries determined by the linear equation (4) corresponding to t = �n/m� or
t = �(n + 1)/m�, respectively.
Corollary 1 ([1]). Let k < m be positive integers. If n → ∞, then

G(n,≤ m, k) = t

(
n − t

m − 1

)
(1 + o(1)).

Theorem 14 ([1]). Let k, m and n be positive integers satisfying one of the
following conditions:

(i) m ≥ 8, n ≥ m2,
(ii) 4 ≤ m ≤ 7 and n ≥ cm2 for a positive constant c,

and let t = �n/m�. Then the following equality holds:

G(n,≤ m, k) = t

(
n − t

m − 1

)
.

Conjecture 1 ([1]). If n ≥ 3, then

G(n, 2) =
t∑

i=0

(
t

i

)(
n − t

2i

)
,

where t = �n/3�.

390 A. Kelarev et al.

In [12] a new result is obtained for the problem of maximizing the number
of disclosed range queries preventing k-compromise, where k is odd, in the case
of a 1-dimensional statistical database.

Theorem 15 ([12]). Let D be a 1-dimensional database with n records, where
range queries are allowed, and let k = 2� − 1, where � > 1 is a positive integer.
Then the maximum number of elements in a k-compromise free set of range
queries in D is equal to �n/2��(�n/�� − �n/2��).

The paper [13] determines the maximum number of sum totals that can be
disclosed without leading to a 2-compromise in a 1-dimensional database for
range queries. The following theorem was proved in [13] for a 1-dimensional
statistical database of size n, where n is odd, or n is even and is greater than 52.
For all other values of n, these formulas were proved in [32].

Theorem 16 ([13,32]). Let D be a 1-dimensional database with n records,
where range queries are allowed. Then the maximum number μ2(n) of elements
in a 2-compromise free set of range queries in D is equal to

μ2(n) =
{

(n + 1)2/16 for odd n ≥ 1;
n2/16 for even n �= 12.

(5)

The paper [45] uses graphs to represent trust levels in informational rela-
tions among entities for the purposes of treating the requirements of access to
confidential data for maintaining privacy and security.

The paper [44] introduces a Hippocratic security method for managing a
collection of statistical databases by a virtual community at several institutions
following a collection of management rules.

An attacker can often gain insight into confidential records stored in a statisti-
cal database using additional available information about the types of attributes
stored in the database (called working knowledge), general restrictions on the
values of the attributes in the real world (called supplementary knowledge), or
additional restrictions on the values of attributes caused by various legal systems
(called legal knowledge). The paper [39] proposed to use knowledge based sys-
tems capturing working knowledge, supplemental knowledge and legal knowledge
to regulate access to statistical databases for the prevention of compromise.

5 Generalizations and Other Related Results

A new method for maintaining the integrity of data in publicly accessible
databases is developed in [26]. The method is based on the recent development
of pseudo-random function families and sibling intractable function families.

A practical method for maintaining anonymous and verifiable databases with
public data held in separate databases is introduced in [25]. It prevents unau-
thorized users from collecting and collating private data concerning individuals
from these separate databases. The method is based on the use of smartcards

Combinatorial Algorithms and Methods for Security of Statistical Databases 391

and the improved Leighton-Micali protocol for the distribution of keys and can
be extended to mobile computing environments.

The security problems and possible mechanisms for the prevention of com-
promises are discussed in [34] with particular attention devoted to medical
databases, where confidentiality is paramount. The paper concludes with a pro-
posal for a security subsystem to be incorporated in a database management
system. Applications of value added networks in managing the security of infor-
mation stored in statistical databases in the health informatics sector are dis-
cussed in [40,41].

It is explained in [20] that the multidimensional matrix model of statisti-
cal databases and the multidimensional cubes of On-Line Analytical Processing
(OLAP) are essentially the same. The paper investigates the application of deci-
sion trees to mining information from statistical databases and studies robust
noise addition methods to ensure the preservation of privacy. Methods for pre-
serving privacy and enabling k-means clustering are proposed in [31,43].

A novel noise addition framework for a statistical database containing several
numerical attributes and a single categorical attribute is studied in [28]. Data
perturbation techniques for the prevention of disclosure of confidential values are
studied in [29] in order to handle categorical attributes without a natural order
of their values. A novel approach towards clustering of such categorical values is
proposed in [29] and is used to perturb data. It applies horizontal partitioning
and clusters the values of a given categorical attribute rather than the records
of the datasets. An experimental study was performed to compare the resulting
perturbation system DETECTIVE in its effectiveness with another system called
CACTUS [29].

Notice that k-anonymity is a broad concept applicable in various settings.
For example, in [14] it is studied for recommendation systems. It is shown in [19]
that permutation is the most essential principle underlying any anonymization of
microdata that involves the utility and privacy guarantees. Any anonymization
for microdata can be regarded as a permutation combined with the possible
addition of a small amount of noise. This lead to a new natural privacy model
called (d, v, f)-permuted privacy. It incorporates subject-verifiability, i.e., the
ability of every subject supplying original data to verify privacy.

The paper [46] explains how sum labellings of graphs can be used for rep-
resenting the access structure of a secret sharing scheme. Another privacy-
preserving framework using novel noise addition techniques is investigated in
[30]. It uses noise addition to categorical values as well, so that attributes of
all types are protected. An experimental study of the practical system VICUS
incorporating noise addition for categorical attributes is carried out in [22].

Statistical disclosure control is also discussed in [21], where a strategic depen-
dency model of a statistical data warehouse system is proposed and an associated
model of trust is explored.

The problem of evaluating and comparing privacy provided by various tech-
niques is tackled in [2], where a novel entropy based security measure is pro-
posed. It can be applied to any generalization, restriction or data modification

392 A. Kelarev et al.

technique for preserving privacy of statistical databases. This measure is used
in [2] in an empirical study evaluating and comparing the methods of query
restriction, sampling and noise addition.

A new method for achieving k-anonymity of network graph data prior to
its release is considered in [7] for privacy protection. The method is based on
randomizing the location of the triangles in the graph. It is shown that this
new method preserves the main structural characteristics of the graph, which
can provide valuable information for the study of the graph, while preserving
k-anonymity.

Acknowledgements. The authors are grateful to three reviewers for comments and
corrections that have helped to improve this paper. This work has been supported by
Discovery grant DP160100913 from Australian Research Council.

References

1. Ahlswede, R., Aydinian, H.: On security of statistical databases. SIAM J. Discrete
Math. 25, 1778–1791 (2011)

2. Alfalayleh, M., Brankovic, L.: Quantifying privacy: a novel entropy-based measure
of disclosure risk. In: Kratochv́ıl, J., Miller, M., Froncek, D. (eds.) IWOCA 2014.
LNCS, vol. 8986, pp. 24–36. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-19315-1 3

3. Brankovic, L., Cvetković, D.: The eigenspace of the eigenvalue −2 in generalized
line graphs and a problem in security of statistical databases. Univ. Beograd. Publ.
Elektrotehn. Fak. Ser. Mat. 14, 37–48 (2003)

4. Brankovic, L., Giggins, H.: Statistical database security. In: Petković, M., Jonker,
W. (eds.) Security, Privacy, and Trust in Modern Data Management. DCSA, pp.
167–181. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69861-
6 12

5. Brankovic, L., Horak, P., Miller, M.: An optimization problem in statistical
database security. SIAM J. Discrete Math. 13(3), 346–353 (2000)

6. Brankovic, L., Islam, M.Z., Giggins, H.: Privacy-preserving data mining. In:
Petković, M., Jonker, W. (eds.) Security, Privacy, and Trust in Modern Data
Management. DCSA, pp. 151–165. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-69861-6 11

7. Brankovic, L., Lopez, M., Miller, M., Sebe, F.: Triangle randomization for social
network data anonymization. Ars Math. Contemp. 7, 461–477 (2014)

8. Brankovic, L., Miller, M.: An application of combinatorics to the security of sta-
tistical databases. Austral. Math. Soc. Gaz. 22(4), 173–177 (1995)

9. Brankovic, L., Miller, M., Horak, P., Wrightson, G.: Usability of compromise-free
statistical databases. In: Proceedings of the International Working Conference on
Scientific and Statistical Database Management, Melbourne, Australia, 29–30 Jan-
uary, pp. 144–154 (1997)

10. Brankovic, L., Miller, M., Širáň, J.: Graphs, 0–1 matrices, and usability of statis-
tical databases. Congr. Numer. 120, 169–182 (1996)

11. Brankovic, L., Miller, M., Širáň, J.: Towards a practical auditing method for the
prevention of statistical database compromise. In: Proceedings of the Seventh Aus-
tralasian Database Conference, Melbourne, Australia, 29–30 January, pp. 177–184
(1996)

https://doi.org/10.1007/978-3-319-19315-1_3
https://doi.org/10.1007/978-3-319-19315-1_3
https://doi.org/10.1007/978-3-540-69861-6_12
https://doi.org/10.1007/978-3-540-69861-6_12
https://doi.org/10.1007/978-3-540-69861-6_11
https://doi.org/10.1007/978-3-540-69861-6_11

Combinatorial Algorithms and Methods for Security of Statistical Databases 393

12. Brankovic, L., Miller, M., Širáň, J.: On range query dsability of statistical
databases. Int. J. Comput. Math. 79(12), 1265–1271 (2002)

13. Branković, L., Širáň, J.: 2-compromise usability in 1-dimensional statistical
databases. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387,
pp. 448–455. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45655-
4 48

14. Casino, F., Domingo-Ferrer, J., Patsakis, C., Puig, D., Solanas, A.: A k-anonymous
approach to privacy preserving collaborative filtering. J. Comput. Syst. Sci. 81,
1000–1011 (2015)

15. Chin, F.Y., Ozsoyoglu, G.: Auditing and inference control in statistical databases.
IEEE Trans. Software Eng. 8(6), 574–582 (1982)

16. Demetrovics, J., Katona, G.O.H., Miklós, D.: On the security of individual data.
In: Seipel, D., Turull-Torres, J.M. (eds.) FoIKS 2004. LNCS, vol. 2942, pp. 49–58.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24627-5 5

17. Domingo-Ferrer, J.: Inference Control in Statistical Databases, vol. 2316, 1st edn.
Springer, Berlin (2002). https://doi.org/10.1007/3-540-47804-3

18. Domingo-Ferrer, J.: A survey of inference control methods for privacy-preserving
data mining. In: Aggarwal, C.C., Yu, P.S. (eds.) Privacy-Preserving Data Min-
ing Models and Algorithms. ADBS, vol. 34, pp. 53–80. Springer, Boston (2008).
https://doi.org/10.1007/978-0-387-70992-5 3

19. Domingo-Ferrer, J., Muralidhar, K.: New directions in anonymization: permutation
paradigm, verifiability by subjects and intruders, transparency to users. Inf. Sci.
337–338, 11–24 (2016)

20. Estivill-Castro, V., Brankovic, L.: Data swapping: balancing privacy against pre-
cision in mining for logic rules. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999.
LNCS, vol. 1676, pp. 389–398. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48298-9 41

21. Giggins, H., Brankovic, L.: Statistical disclosure control: to trust or not to trust. In:
Proceedings of the International Symposium on Computer Science and its Appli-
cations, pp. 108–113. IEEE Computer Society (2008)

22. Giggins, H., Brankovic, L.: VICUS - a noise addition technique for categorical data.
In: Proceedings of the Tenth Australasian Data Mining Conference, AusDM 2012,
Conferences in Research and Practice in Information Technology (CRPIT), vol.
134, pp. 139–148 (2012)

23. Griggs, J.R.: Concentrating subset sums at k points. Bull. Inst. Comb. Appl. 20,
65–74 (1997)

24. Griggs, J.R.: Database security and the distribution of subset sums in Rm. In:
Graph Theory and Combinatorial Biology. Bolyai Society Mathematical Studies,
vol. 7, pp. 223–252 (1997)

25. Hardjono, T., Seberry, J.: Applications of smartcards for anonymous and verifiable
databases. Comput. Secur. 14, 465–472 (1995)

26. Hardjono, T., Zheng, Y., Seberry, J.: Database authentication revisited. Comput.
Secur. 13, 573–580 (1994)

27. Horak, P., Brankovic, L., Miller, M.: A combinatorial problem in database security.
Discrete Appl. Math. 91(1–3), 119–126 (1999)

28. Islam, M.Z., Brankovic, L.: A framework for privacy preserving classification in
data mining. In: Proceedings of the 2nd Workshop on Australasian Information
Security, Data Mining and Web Intelligence, and Software Internationalisation,
vol. 32, pp. 163–168 (2004)

https://doi.org/10.1007/3-540-45655-4_48
https://doi.org/10.1007/3-540-45655-4_48
https://doi.org/10.1007/978-3-540-24627-5_5
https://doi.org/10.1007/3-540-47804-3
https://doi.org/10.1007/978-0-387-70992-5_3
https://doi.org/10.1007/3-540-48298-9_41
https://doi.org/10.1007/3-540-48298-9_41

394 A. Kelarev et al.

29. Islam, M.Z., Brankovic, L.: DETECTIVE: a decision tree based categorical value
clustering and perturbation technique for preserving privacy in data mining. In:
Proceedings of the 3rd IEEE International Conference on Industrial Informatics,
INDIN 2005, pp. 701–708 (2005)

30. Islam, M.Z., Brankovic, L.: Privacy preserving data mining: a noise addition frame-
work using a novel clustering technique. Knowl.-Based Syst. 24, 1214–1223 (2011)

31. Liu, D., Bertino, E., Yi, X.: Privacy of outsourced k-means clustering. In: Proceed-
ings of the 9th ACM Symposium on Information, Computer and Communications
Security, ASIA CCS 2014, pp. 123–133 (2014)

32. Mathieson, L., King, T., Brankovic, L.: 2-compromise: usability in 1-
dimensional statistical database. Research Gate (2008). https://www.researchgate.
net/publication/228973056

33. Miller, M.: A model of statistical databse compromise incorporating supplementary
knowledge. In: Databases in the 1990’s, pp. 258–267 (1991)

34. Miller, M., Cooper, J.: Security considerations for present and future medical
databases. Int. J. Med. Inform. 41, 39–46 (1996)

35. Miller, M., Roberts, I., Simpson, J.: Application of symmetric chains to an opti-
mization problem in the security of statistical databases. Bull. Inst. Comb. Appl.
2, 47–58 (1991)

36. Miller, M., Roberts, I., Simpson, J.: Prevention of relative compromise in statistical
databases using audit expert. Bull. Inst. Comb. Appl. 10, 51–62 (1994)

37. Miller, M., Seberry, J.: Relative compromise of statistical databases. Aust. Comput.
J. 21(2), 56–61 (1989)

38. Miller, M., Seberry, J.: Audit expert and statistical database security. In: Databases
in the 1990’s, pp. 149–174 (1991)

39. Mishra, V., Stranieri, A., Miller, M., Ryan, J.: Knowledge based regulation of
statistical databases. WSEAS Trans. Inf. Sci. Appl. 3(2), 239–244 (2006)

40. Pacheco, F., Cooper, J., Bomba, D., Morris, S., Miller, M., Brankovic, L.: Educa-
tion issues in health informatics. Inform. Healthc. 4, 101–105 (1995)

41. Pacheco, F., Cooper, J., Bomba, D., Morris, S., Miller, M., Brankovic, L.: Value
added networks (VANs) and their benefit to a health information system. Inform.
Healthc. 4, 141–144 (1995)

42. Pieprzyk, J., Hardjono, T., Seberry, J.: Fundamentals of Computer Security.
Springer, Berlin (2003). https://doi.org/10.1007/978-3-662-07324-7

43. Rao, F.Y., Samanthula, B., Bertino, E., Yi, X., Liu, D.: Privacy-preserving and
outsourced multi-user k-means clustering. In: Proceedings of the IEEE Conference
on Collaboration and Internet Computing, CIC 2015, pp. 80–89 (2015)

44. Skinner, G., Chang, E., McMahon, M., Aisbett, J., Miller, M.: Shield privacy Hip-
pocratic security method for virtual community. In: IECON Proceedings of the
Industrial Electronics Conference, pp. 472–479 (2004)

45. Skinner, G., Miller, M.: Managing privacy, trust, security, and context relationships
using weighted graph representations. WSEAS Trans. Inf. Sci. Appl. 3(2), 283–290
(2006)

46. Slamet, S., Sugeng, K.A., Miller, M.: Sum graph based access structure in a secret
sharing scheme. J. Prime Res. Math. 2, 113–119 (2006)

47. Stanley, R.P.: Weyl groups, the hard Lefshetz theorem, and the Sperner property.
SIAM J. Algebr. Discrete Meth. 1, 168–184 (1980)

48. Yi, X., Paulet, R., Bertino, E.: Private Information Retrieval. Morgan and Clay-
pool, San Rafael (2013)

https://www.researchgate.net/publication/228973056
https://www.researchgate.net/publication/228973056
https://doi.org/10.1007/978-3-662-07324-7

String Algorithms

Shortest Unique Palindromic Substring
Queries in Optimal Time

Yuto Nakashima1,2(B), Hiroe Inoue1, Takuya Mieno1, Shunsuke Inenaga1,
Hideo Bannai1, and Masayuki Takeda1

1 Department of Informatics, Kyushu University, Fukuoka, Japan
{yuto.nakashima,hiroe.inoue,inenaga,bannai,takeda}@inf.kyushu-u.ac.jp

2 Japan Society for the Promotion of Science (JSPS), Tokyo, Japan

Abstract. A palindrome is a string that reads the same forward and
backward. A palindromic substring P of a string S is called a shortest
unique palindromic substring (SUPS) for an interval [s, t] in S, if P
occurs exactly once in S, this occurrence of P contains interval [s, t],
and every palindromic substring of S which contains interval [s, t] and is
shorter than P occurs at least twice in S. The SUPS problem is, given a
string S, to preprocess S so that for any subsequent query interval [s, t]
all the SUPSs for interval [s, t] can be answered quickly. We present an
optimal solution to this problem. Namely, we show how to preprocess a
given string S of length n in O(n) time and space so that all SUPSs for
any subsequent query interval can be answered in O(α + 1) time, where
α is the number of outputs.

1 Introduction

A substring S[i..j] of a string S is called a shortest unique substring (SUS) for
a position p if S[i..j] is the shortest substring s.t. S[i..j] is unique in S (i.e.,
S[i..j] occurs exactly once in S), and [i..j] contains p (i.e., i ≤ p ≤ j). Recently,
Pei et al. [13] proposed the point SUS problem, preprocessing a given string S
of length n so that we can return a SUS for any given query position efficiently.
This problem was considered for some applications in bioinformatics, e.g., poly-
merase chain reaction (PCR) primer design in molecular biology. Pei et al. [13]
proposed an algorithm which returns a SUS for any given position in constant
time after O(n2)-time preprocessing. After that, Tsuruta et al. [15] and Ileri
et al. [9] independently showed optimal O(n)-time preprocessing and constant
query time algorithms. They also showed optimal O(n)-time preprocessing and
O(k) query time algorithms which return all SUS s for any given position where
k is the number of outputs. Moreover, Hon et al. [6] proposed an in-place algo-
rithm which returns a SUS . A more general problem called interval SUS problem,
where a query is an interval, was considered by Hu et al. [7]. They proposed an
optimal O(n)-time preprocessing and O(k) query time algorithm which returns
all SUS s containing a given query interval. Most recently, Mieno et al. [12] pro-
posed an efficient algorithm for interval SUS problem when the input string is
represented by run-length encoding.
c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 397–408, 2018.
https://doi.org/10.1007/978-3-319-78825-8_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_32&domain=pdf

398 Y. Nakashima et al.

In this paper, we consider a new variant of interval SUS problems concerning
palindromes. A substring S[i..j] is called a palindromic substring of S if S[i..j]
and the reversed string of S[i..j] is the same string. The study of combinatorial
properties and structures on palindromes is still an important and well studied
topic in stringology [1,3–5,8,14]. Droubay et al. [3] showed a string of length
n can contain at most n + 1 distinct palindromes. Moreover, Groult et al. [5]
proposed a linear time algorithm for computing all distinct palindromes in a
string.

Our new problem can be described as follows. A substring S[i..j] of a string
S is called a shortest unique palindromic substring (SUPS) for an interval [s, t] if
S[i..j] is the shortest substring s.t. S[i..j] is unique in S, [i..j] contains [s, t], and
S[i..j] is a palindromic substring. The interval SUPS problem is to preprocess a
given string S of length n so that we can return all SUPS s for any query interval
efficiently. For this problem, we propose an optimal O(n)-time preprocessing
and O(α+1)-time query algorithm, where α is the number of outputs. Potential
applications of our algorithm are in bioinformatics; It is known that the presence
of particular (e.g., unique) palindromic sequences can affect immunostimulatory
activities of oligonucleotides [10,16]. The size and the number of palindromes also
influence the activity. Since any unique palindromic sequence can be obtained
easily from a shorter unique palindromic sequences, we can focus on the shortest
unique palindromic substrings.

The contents of our paper are as follows. In Sect. 2, we state some definitions
and properties on strings. In Sect. 3, we explain properties on SUPS and our
query algorithm. In Sect. 4, we show the main part of the preprocessing phase
of our algorithm. Finally, we conclude.

2 Preliminaries

2.1 Strings

Let Σ be an integer alphabet. An element of Σ∗ is called a string. The length of
a string S is denoted by |S|. The empty string ε is a string of length 0, namely,
|ε| = 0. Let Σ+ be the set of non-empty strings, i.e., Σ+ = Σ∗ − {ε}. For a string
S = xyz, x, y and z are called a prefix, substring, and suffix of S, respectively.
A prefix x and a suffix z of S are respectively called a proper prefix and proper
suffix of S, if x �= S and z �= S. The i-th character of a string S is denoted by
S[i], where 1 ≤ i ≤ |S|. For a string S and two integers 1 ≤ i ≤ j ≤ |S|, let
S[i..j] denote the substring of S that begins at position i and ends at position
j. For convenience, let S[i..j] = ε when i > j.

2.2 Palindromes

Let SR denote the reversed string of S, that is, SR = S[|S|] · · · S[1]. A string
S is called a palindrome if S = SR. Let P ⊂ Σ∗ be the set of palindromes. A
substring S[i..j] of S is said to be a palindromic substring of S, if S[i..j] ∈ P .

Shortest Unique Palindromic Substring Queries in Optimal Time 399

The center of a palindromic substring S[i..j] of S is i+ j
2 . Thus a string S of

length n ≥ 1 has 2n − 1 centers (1, 1.5, . . . , n − 0.5, n). The following lemma can
be easily obtained by the definition of palindromes.

Lemma 1. Let S be a palindrome. For any integers i, j s.t. 1 ≤ i ≤ j ≤ |S|,
S[|S| − j + 1..|S| − i + 1] = S[i..j]R holds.

2.3 MUPSs,SUPSs and Our Problem

For any non-empty strings S and w, let occS(w) denote the set of occurrences
of w in S, namely, occS(w) = {i | 1 ≤ i ≤ |S| − |w| + 1, w = S[i..i + |w| − 1]}.
A substring w of a string S is called a unique substring (resp. a repeat) of S if
|occS(w)| = 1 (resp. |occS(w)| ≥ 2). In the sequel, we will identify each unique
substring w of S with its corresponding (unique) interval [i, j] in S such that
w = S[i..j]. A substring S[i..j] is said to be unique palindromic substring if
S[i..j] is a unique substring in S and a palindromic substring. We will say that
an interval [i1, j1] contains an interval [i2, j2] if i1 ≤ i2 ≤ j2 ≤ j1 holds. The
following notation is useful in our algorithm.

Definition 1 (Minimal Unique Palindromic Substring (MUPS)). A
string S[i..j] is a MUPS in S if S[i..j] satisfies all the following conditions;

– S[i..j] is a unique palindromic substring in S,
– S[i + 1..j − 1] is a repeat in S or 1 ≤ |S[i..j]| ≤ 2.

Let MS denote the set of intervals of all MUPS s in S and let mupsi = [bi, ei]
denote the i-th MUPS in MS where 1 ≤ i ≤ m and m is the number of MUPS s
in S. We assume that MUPS s in MS are sorted in increasing order of beginning
positions. For convenience, we define mups0 = [−1,−1],mupsm+1 = [n+1, n+1].

Example 1 (MUPS). For S = acbaaabcbcbcbaab, MS = {[4, 6], [8, 12], [13, 16]}
(see also Fig. 1).

Definition 2 (Shortest Unique Palindromic Substring (SUPS)). A string
S[i..j] is a SUPS for an interval [s, t] in S if S[i..j] satisfies all the following
conditions;

– S[i..j] is a unique palindromic substring in S,
– [i, j] contains [s, t],
– no unique palindromic substring S[i′..j′] containing [s, t] with j′ − i′ < j − i

exists.

Example 2 (SUPS). Let S = acbaaabcbcbcbaab. SUPS for interval [6, 7] is the
S[3..7] = baaab. SUPS for interval [7, 8] are S[2..8] = cbaaabc and S[7..13] =
bcbcbcb. SUPS for interval [4, 13] does not exist. (see also Fig. 1).

In this paper, we tackle the following problem.

400 Y. Nakashima et al.

Fig. 1. This figure shows all MUPSs for S = acbaaabcbcbcbaab and some SUPS
described in Example 2.

Problem 1 (SUPS problem).

– Preprocess: String S of length n.
– Query: An interval [s, t](1 ≤ s ≤ t ≤ n).
– Return: All the SUPS s for interval [s, t].

2.4 Computation Model

Our model of computation is the word RAM: We shall assume that the computer
word size is at least �log2 n�, and hence, standard operations on values repre-
senting lengths and positions of strings can be manipulated in constant time.
Space complexities will be determined by the number of computer words (not
bits).

3 Solution to the SUPS Problem

In this section, we show how to compute all SUPS s for any query interval [s, t].

3.1 Properties on SUPS and MUPS

In our algorithm, we compute SUPS s by using MUPS s. Firstly, we show the
following lemma. Lemma 2 states that MUPS s cannot nest in each other.

Lemma 2. For any pair of distinct MUPSs, one cannot contain the other.

Proof. Consider two MUPS s u, v such that u contains v. If u and v have the
same center, then u is not a MUPS . On the other hand, if u and v have a different
center, we have from Lemma 1 and that v is a palindromic substring, v occurs
in u at least twice. This contradicts that v is unique.

From this lemma, we can see that no pair of distinct MUPS s begin nor end
at the same position. This fact implies that the number of MUPS s is at most
n for any string of length n. The following lemma states a characterization of
SUPS s by MUPS s.

Shortest Unique Palindromic Substring Queries in Optimal Time 401

Lemma 3. For any SUPS S[i..j] for some interval, there exists exactly one
MUPS that is contained in [i, j]. Furthermore, the MUPS has the same center
as S[i..j].

Proof. Let S[i..j] be a SUPS for some interval. S[i..j] contains a MUPS S[x1..y1]
of the same center, i.e., i+ j

2 = x1 + y1
2 , s.t. j − i ≥ y1 − x1. Suppose that there

exists another MUPS S[x2..y2] contained in [i, j]. From Lemma 2, S[x1..y1]
and S[x2..y2] do not have the same center. On the other hand, if S[x1..y1] and
S[x2..y2] have different centers, then S[x2..y2] occurs at least two times in S[i..j]
by Lemma 1, since S[x2..y2] = S[x2..y2]

R. This contradicts that S[x2..y2] is a
MUPS .

From the above lemma, any SUPS contains exactly one MUPS which has the
same center (see also Fig. 1). Below, we will describe the relationship between
a query interval [s, t] and the MUPS contained in a SUPS for [s, t]. Before
explaining this, we define the following notations.

– M([s, t]): the set of MUPS s containing [s, t].
– predMUPS [t] = i s.t. i = max{k | ek ≤ t}.
– succMUPS [s] = i s.t. i = min{k | s ≤ bk}.

In other words, mupspredMUPS [t] is the rightmost MUPS which ends before posi-
tion t+1, and mupssuccMUPS [s] is the leftmost MUPS which begins after position
s − 1.

Lemma 4. Let S[i..j] be a SUPS for an interval [s, t]. Then, the unique MUPS
S[x..y] contained in [i, j] is in {predMUPS [t]} ∪ M([s, t]) ∪ {succMUPS [s]}.
Proof. Assume to the contrary that there exists a SUPS S[i..j] that contains a
MUPS S[x..y] /∈ {predMUPS [t]} ∪ M([s, t]) ∪ {succMUPS [s]}. Since S[x..y] �∈
M([s, t]), [x, y] does not contain [s, t]. Thus, there can be the following two cases:

– If y < t, there must exist MUPS [x′, y′] s.t. y < y′ ≤ t, since S[x, y] �=
predMUPS [t]. By Lemma 2, x < x′. Thus i ≤ x < x′ ≤ y′ ≤ t ≤ j holds.
However, this contradicts Lemma 3.

– If s < x, there must exist MUPS [x′, y′] s.t. s ≤ x′ < x, since S[x, y] �=
succMUPS [s]. By Lemma 2, y′ ≤ y. Thus i ≤ s ≤ x′ ≤ y′ ≤ y ≤ j holds,
However, this contradicts Lemma 3.

Therefore the lemma holds.

Next, we want to explain how SUPS s are related to MUPS s. It is easy to
see that there may not be a SUPS for some query interval. We first show a case
where there are no SUPS s for a given query. The following corollary is obtained
from Lemma 3.

Corollary 1. Let S[x1..y1] and S[x2..y2] be MUPSs contained in a query inter-
val [s, t]. There is no SUPS for an interval [s, t].

402 Y. Nakashima et al.

From this corollary, a SUPS for an interval [s, t] can exist if the number of
MUPS s contained in [s, t] is less than or equal to 1. The following two lemmas
show what the SUPS for [s, t] is, when [s, t] contains only one MUPS , and when
[s, t] does not contain any MUPS s.

Lemma 5. Let S[x..y] be the only MUPS contained in the query interval [s, t].
If S[x − z, y + z] is a palindromic substring where z = max{x − s, t − y}, then
S[x − z, y + z] is the SUPS for [s, t]. Otherwise, there is no SUPS for [s, t].

Proof. Assume that there exists a SUPS u for [s, t] which has the same center
with a MUPS other than S[x..y]. By the definition of SUPS , u should contain
[s, t]. Since [s, t] contains [x, y], u contains two MUPS s, a contradiction. Thus,
there can be no SUPS s.t. the center is not x+ y

2 . It is clear that S[x − z, y + z]
is a unique palindromic substring if S[x − z, y + z] is a palindromic substring
where z = max{x − s, t − y}. Therefore the lemma holds.

Lemma 6. Let [s, t] be the query interval. Then SUPSs for [s, t] are the shortest
of the following candidates.

1. S[x..y] s.t. [x, y] ∈ M([s, t]),
2. S[x − t + y..t] s.t. [x, y] = predMUPS ([s, t]), if it is a palindromic substring,
3. S[s..y + x − s] s.t. [x, y] = succMUPS ([s, t]), if it is a palindromic substring.

Proof. It is clear that S[x..y] is a unique palindromic substring containing [s, t]
if [x, y] ∈ M([s, t]) exists. It is also clear that if [x, y] = predMUPS ([s, t]) or
[x, y] = succMUPS ([s, t]), then S[x − t + y..t] or [s..y + x − s], respectively, are
unique palindromic substrings, if they are palindromic substrings. By Lemma 4,
we do not need to consider palindromic substrings which have the same center
as MUPS s other than the candidates considered above. Thus the shortest of the
candidates is SUPS for [s, t] (see also Fig. 2).

Fig. 2. Double arrows represent the candidates of SUPS for [s, t]. The shortest of the
candidates is SUPS for [s, t].

Shortest Unique Palindromic Substring Queries in Optimal Time 403

From the above arguments, the number of MUPS s is useful to compute
SUPS s for a query interval. The following lemma shows how to compute the
number of MUPS s contained in a given interval.

Lemma 7. For any interval [s, t],

– if succMUPS [s] > predMUPS [t], [s, t] contains no MUPS,
– if succMUPS [s] = predMUPS [t], [s, t] contains only one MUPS,

mupssuccMUPS [s] = mupspredMUPS [t], and
– if succMUPS [s] < predMUPS [t], [s, t] contains at least two MUPSs.

Proof. – Let j = succMUPS [s] > predMUPS [t] = i. Then bi < s ≤ bj and
ei ≤ t < ej hold, and thus neither of mupsi and mupsj are contained in [s, t].
If we assume that [s, t] contains a MUPS mupsk for some k, it should be that
i < k < j, bi < s ≤ bk < bj . However, this contradicts that j = succMUPS [s]
(see also the top in Fig. 3).

– Let succMUPS [s] = predMUPS [t] = i. Since succMUPS [s] = i, bi−1 should
be less than s, and bi at least s. Since predMUPS [t] = i, ei+1 should be larger
than t, and ei at most t. Thus [s, t] only contains mupsi (see also the middle
in Fig. 3).

– Let i = succMUPS [s] < predMUPS [t] = j. Then s ≤ bi < bj and ei < ej ≤ t
hold, which implies s ≤ bi ≤ ei < t and s < bj ≤ ej ≤ t. Thus, both mupsi
and mupsj are contained in [s, t] (see also the bottom in Fig. 3).

3.2 Tools

Here, we show some tools for our algorithm.

Lemma 8 (e.g., [14]). For any interval [i, j] in S of length n, we can check
whether S[i..j] is a palindromic substring or not in O(n) preprocessing time and
constant query time with O(n) space.

Manacher’s algorithm [11] can compute all maximal palindromic substrings in
linear time. If we have the array of radiuses of maximal palindromic substrings for
all 2n−1 centers, we can check whether a given substring S[i..j] is a palindromic
substring or not in constant time.

Range Minimum Queries (RmQ). Let A be an integer array of size n. A
range minimum query RmQA(i, j) returns the index of a minimum element in
the subarray A[i, j] for given a query interval [i, j](1 ≤ i ≤ j ≤ n), i.e., it returns
one of arg mini≤k≤j{A[k]}. It is well-known (see e.g., [2]) that after an O(n)-time
preprocessing over the input array A, RmQA(i, j) can be answered in O(1) time
for any query interval [i, j], using O(n) space.

404 Y. Nakashima et al.

Fig. 3. Illustrations for proof of Lemma 7.

3.3 Algorithm

Due to the arguments in Sect. 3.1, if we can compute predMUPS , the shortest
MUPS s in M([s, t]) and succMUPS for a query interval [s, t], then, we can
compute SUPS s for [s, t]. Below, we will describe our solution to the SUPS
problem.

Preprocessing Phase. First, we compute MS for a given string S of length
n in increasing order of beginning positions. We show, in the next section, that
this can be done in O(n) time and space. After computing MS , we compute the

Shortest Unique Palindromic Substring Queries in Optimal Time 405

arrays predMUPS and succMUPS . It is easy to see that we can also compute
these arrays in O(n) time by using MS . In the query phase, we are required
to compute the shortest MUPS s that contain the query interval [s, t]. To do
so efficiently, we prepare the following array. Let Mlen be an array of length
m = |MS |, and the i-th entry Mlen[i] holds the length of mupsi, i.e., Mlen[i] =
|mupsi| = ei − bi + 1. We also preprocess Mlen for RmQ queries. This can be
done in O(m) time and space as noted in Sect. 3.2. Thus, since m = O(n), the
total preprocessing is O(n) time and space.

Query Phase. First, we compute how many MUPS s are contained in a query
interval [s, t] by using Lemma 7, which we denote by num. This can be done in
O(1) time given arrays predMUPS and succMUPS .

– If num = 0, let mupsi = predMUPS ([s, t]) and mupsj = succMUPS ([s, t]),
i.e., i = predMUPS [s] and j = succMUPS [t]. We check whether S[bi−t+ei..t]
and S[s..ej + bj − s] are palindromic substrings or not. If so, then they
are candidates of SUPS s for [s, t] by Lemma 6. Let q be the length of the
shortest candidates which can be found in the above. Second, we compute the
shortest MUPS in M([s, t]), if their lengths are at most q. In other words, we
compute the smallest values in Mlen[i+1..j−1], if they are at most q. We can
compute all such MUPS s in linear time w.r.t. the number of such MUPS s by
using RmQ queries on Mlen[i + 1, j − 1]; if k = RmQMlen(i + 1, j − 1) and
Mlen[k] ≤ q, then we consider the range Mlen[i+1..k−1] and Mlen[k+1, j−1]
and recurse. Otherwise, we stop the recursion. Finally, we return the shortest
candidates as SUPS .

– If num = 1, let mupsi be the MUPS contained in [s, t]. First, we check
whether S[bi − z, ei + z] is a palindromic substring or not by using Lemma 8
where z = max{bi − s, t − ei}. If so, then return [bi − z, ei + z], otherwise
SUPS for [s, t] does not exist.

– If num ≥ 2, then, from Corollary 1, SUPS for [s, t] does not exist.

Therefore, we obtain the following.

Theorem 1. After constructing an O(n)-space data structure of a given string
of length n in O(n) time, we can compute all SUPSs for a given query interval
[s, t] in O(α + 1) time where α is the number of outputs.

4 Computing MUPSs

In this section, we show how to compute MS in O(n) time and space. Let DPS

be the set of distinct palindromic substrings in S, and strM S = {S[i, j] | [i, j] ∈
MS}. Our idea of computing MS is based on the following lemma.

Lemma 9. strM S ⊆ DPS.

Proof. It is clear that any string in strM S is a palindromic substring of S.

An algorithm for computing all distinct palindromic substrings in string in
linear time and space was proposed by Groult et al. [5]. We show a linear time
and space algorithm which computes MS by modifying Groult et al.’s algorithm.

406 Y. Nakashima et al.

4.1 Tools

We show some tools for computing MS below.

– Longest previous factor array (LPF). We denote the longest previous
factor array of S by LPFS . The i-th entry (1 ≤ i ≤ n) is the length of the
longest prefix of S[i..n] which occurs at a position less than i.

– Inverse suffix array (ISA). We denote the inverse suffix array of S by
ISAS . The i-th entry (1 ≤ i ≤ n) is the lexicographic order of S[i..n] in all
suffixes of S.

– Longest common prefix array (LCP). We denote the longest common
prefix array of S by LCPS . The i-th entry (2 ≤ i ≤ n) is the length of
the longest common prefix of the lexicographically i-th suffix of S and the
(i − 1)-th suffix of S.

4.2 Computing Distinct Palindromes

Here, we show a summary of Groult et al.’s algorithm. The following lemma
states the main idea.

Lemma 10 ([3]). The number of distinct palindromic substrings in S is equal
to the number of prefixes of S s.t. its longest palindromic suffix is unique in the
prefix.

Since counting suffixes that uniquely occur in a prefix implies that only the
leftmost occurrences of substrings, and thus distinct substrings are counted, their
algorithm finds all the distinct palindromic substrings by:

– computing the longest palindromic suffix of each prefix of S, and
– checking whether each longest palindromic suffix occurs uniquely in the prefix

or not.

They first propose an algorithm which computes all the longest palindromic
suffixes in linear time. They then check, in constant time, the uniqueness of the
occurrence in the prefix by using the LPF array, thus computing DPS in linear
time and space.

4.3 Computing All MUPSs

Finally, we show how to modify Groult et al.’s algorithm. As mentioned, they
compute the leftmost occurrence of each distinct palindromic substring. We call
such a palindromic substring, the leftmost palindromic substring. It is clear
that if a leftmost palindromic substring w is unique in S and is a minimal
palindromic substring, then w is a MUPS . Thus, we add operations to check the
uniqueness and minimality of each leftmost palindromic substring. We can do
these operations by using ISA and LCP array.

Let S[i..j] be a leftmost palindromic substring in S. First, we check whether
S[i..j] is unique or not in S. If ISA[i] = k, S[i..n] is the lexicographically k-th

Shortest Unique Palindromic Substring Queries in Optimal Time 407

suffix of S. S[i..j] is unique in S iff LCP [k] < j − i + 1 and LCP [k + 1] <
j − i + 1. Thus we can check whether S[i..j] is unique or not in constant time.
Finally, we check whether S[i..j] is a minimal palindromic substring or not. By
definition, S[i..j] is minimal palindromic substring if j − i + 1 ≤ 2, i.e., S[i..j]
has no shorter unique palindromic substring. If j − i + 1 > 2, then we check
whether S[i + 1..j − 1] is unique or not by using ISA and LCP in a similar way.
Thus we can also check whether S[i..j] is minimal or not in constant time. By
the above arguments, we can compute all MUPS s in linear time and space.

5 Conclusions

We consider a new problem called the shortest unique palindromic substring
problem. We proposed an optimal linear time preprocessing algorithm so that
all SUPS s for any given query interval can be answered in linear time w.r.t. the
number of outputs. The key idea was to use palindromic properties in order to
obtain a characterization of SUPS , more precisely, that a palindromic substring
cannot contain a unique palindromic substring with a different center.

References

1. Bannai, H., Gagie, T., Inenaga, S., Kärkkäinen, J., Kempa, D., Pi ↪atkowski, M.,
Puglisi, S.J., Sugimoto, S.: Diverse palindromic factorization is NP-complete. In:
Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 85–96. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21500-6 6

2. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000). https://doi.org/10.1007/10719839 9

3. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of
de Luca and Rauzy. Theor. Comput. Sci. 255(1–2), 539–553 (2001)

4. Fici, G., Gagie, T., Kärkkäinen, J., Kempa, D.: A subquadratic algorithm for
minimum palindromic factorization. J. Discrete Algorithms 28, 41–48 (2014)

5. Groult, R., Prieur, É., Richomme, G.: Counting distinct palindromes in a word in
linear time. Inf. Process. Lett. 110(20), 908–912 (2010)

6. Hon, W.-K., Thankachan, S.V., Xu, B.: An in-place framework for exact and
approximate shortest unique substring queries. In: Elbassioni, K., Makino, K. (eds.)
ISAAC 2015. LNCS, vol. 9472, pp. 755–767. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48971-0 63

7. Hu, X., Pei, J., Tao, Y.: Shortest unique queries on strings. In: Moura, E.,
Crochemore, M. (eds.) SPIRE 2014. LNCS, vol. 8799, pp. 161–172. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11918-2 16

8. I, T., Sugimoto, S., Inenaga, S., Bannai, H., Takeda, M.: Computing palindromic
factorizations and palindromic covers on-line. In: Kulikov, A.S., Kuznetsov, S.O.,
Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486, pp. 150–161. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07566-2 16

9. İleri, A.M., Külekci, M.O., Xu, B.: Shortest unique substring query revisited. In:
Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486, pp.
172–181. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07566-2 18

https://doi.org/10.1007/978-3-319-21500-6_6
https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/978-3-662-48971-0_63
https://doi.org/10.1007/978-3-662-48971-0_63
https://doi.org/10.1007/978-3-319-11918-2_16
https://doi.org/10.1007/978-3-319-07566-2_16
https://doi.org/10.1007/978-3-319-07566-2_18

408 Y. Nakashima et al.

10. Kuramoto, E., Yano, O., Kimura, Y., Baba, M., Makino, T., Yamamoto, S.,
Yamamoto, T., Kataoka, T., Tokunaga, T.: Oligonucleotide sequences required
for natural killer cell activation. Jpn. J. Cancer Res. 83(11), 1128–1131 (1992)

11. Manacher, G.: A new linear-time “on-line” algorithm for finding the smallest initial
palindrome of a string. J. ACM 22, 346–351 (1975)

12. Mieno, T., Inenaga, S., Bannai, H., Takeda, M.: Shortest unique substring queries
on run-length encoded strings. In: Proceedings of MFCS 2016, pp. 69:1–69:11
(2016)

13. Pei, J., Wu, W.C.H., Yeh, M.Y.: On shortest unique substring queries. In: Pro-
ceedings of ICDE 2013, pp. 937–948 (2013)

14. Rubinchik, M., Shur, A.M.: EERTREE: an efficient data structure for processing
palindromes in strings. In: Lipták, Z., Smyth, W.F. (eds.) IWOCA 2015. LNCS,
vol. 9538, pp. 321–333. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29516-9 27

15. Tsuruta, K., Inenaga, S., Bannai, H., Takeda, M.: Shortest unique substrings
queries in optimal time. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa,
A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 503–513. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-04298-5 44

16. Yamamoto, S., Yamamoto, T., Kataoka, T., Kuramoto, E., Yano, O., Tokunaga, T.:
Unique palindromic sequences in synthetic oligonucleotides are required to induce
IFN [correction of INF] and augment IFN-mediated [correction of INF] natural
killer activity. J. Immunol. 148(12), 4072–4076 (1992)

https://doi.org/10.1007/978-3-319-29516-9_27
https://doi.org/10.1007/978-3-319-29516-9_27
https://doi.org/10.1007/978-3-319-04298-5_44

A Faster Implementation of Online
Run-Length Burrows-Wheeler Transform

Tatsuya Ohno, Yoshimasa Takabatake, Tomohiro I, and Hiroshi Sakamoto(B)

Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
{t ohno,takabatake}@donald.ai.kyutech.ac.jp,

{tomohiro,hiroshi}@ai.kyutech.ac.jp

Abstract. Run-length encoding Burrows-Wheeler Transformed strings,
resulting in Run-Length BWT (RLBWT), is a powerful tool for pro-
cessing highly repetitive strings. We propose a new algorithm for online
RLBWT working in run-compressed space, which runs in O(n lg r) time
and O(r lg n) bits of space, where n is the length of input string S received
so far and r is the number of runs in the BWT of the reversed S. We
improve the state-of-the-art algorithm for online RLBWT in terms of
empirical construction time. Adopting the dynamic list for maintaining
a total order, we can replace rank queries in a dynamic wavelet tree
on a run-length compressed string by the direct comparison of labels in
a dynamic list. The empirical result for various benchmarks show the
efficiency of our algorithm, especially for highly repetitive strings.

1 Introduction

1.1 Motivation

The Burrows-Wheeler Transform (BWT) [8] is one of the most successful and
elegant technique for lossless compression. When a string contains several fre-
quent substrings, the transformed string would have several runs, i.e., maximal
repeat of a symbol. Then, such a BWT string is easily compressed by run-length
compression. We refer to the run-length compressed string as the Run-Length
BWT (RLBWT) of the original string. Because of the definition of BWT, the
number r of runs in the RLBWT is closely related to the easiness of compres-
sion of the original string. In fact, r can be (up to) exponentially smaller than
the text length, and several studies [4,12,18,19] showed that r is available for a
measure of repetitiveness.

After the invention of BWT, various applications have been proposed for
string processing [7,9,10]. The most notable one would be the BWT based
self-index, called FM index [10], which allows us to search patterns efficiently
while storing text in the entropy-based compressed space. However, the tra-
ditional entropy-based compression is not enough to process highly repetitive
strings because it does not capture the compressibility in terms of repetitiveness.
Therefore several authors have studied “repetitive-aware” self-indexes based on

c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 409–419, 2018.
https://doi.org/10.1007/978-3-319-78825-8_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_33&domain=pdf

410 T. Ohno et al.

RLBWT [4,12,18,19]. In particular, a self-index in [4] works in space propor-
tional to the sizes of the RLBWT and LZ77 [20], another powerful compressor
that can capture repetitiveness.

When it comes to constructing the RLBWT, a major concern is to reduce the
working space depending on the repetitiveness of a given text. Namely, the prob-
lem is to construct the RLBWT online in run-length compressed space. It has
been suggested in [12] that we can solve the problem using a dynamic data struc-
ture supporting rank queries on run-length encoded strings. An implementation
appears very recently in [1,17], proving its merit in space reduction. However
the throughput is considerably sacrificed probably due to its use of dynamic
succinct data structure. To ameliorate the time consumption, we present a novel
algorithm for online RLBWT and show experimentally that our implementation
runs faster with reasonable increase of memory consumption. Since Policriti and
Prezza [16] recently proposed algorithms to compute LZ77 factorization in com-
pressed space via RLBWT, online RLBWT becomes more and more important,
and therefore, practical time-space tradeoffs are worth exploring.

1.2 Our Contribution

Given an input string S = S[1]S[2] · · · S[n] of length n in online manner, the
algorithm described in [16] constructs the RLBWT of the reversed string SR =
S[n] · · · S[2]S[1] in O(r lg n) bits of space and O(n lg r) time, where r is the
number of runs appearing in the BWT of SR. When a new input symbol c is
appended, whereas the BWT of Sc requires (in the worst case) sorting all the
suffixes again, the BWT of (Sc)R requires just inserting c into the BWT of SR,
and the insert position can be efficiently computed by rank operations on the
BWT of SR. Hence a dynamic data structure on a run-length compressed string
supporting rank operations allows to construct the RLBWT online. However,
the algorithm of [16] internally uses rank operations on dynamic wavelet trees,
which is considerably slow in practice.

In order to get a faster implementation, we replace the work carried out on
dynamic wavelet trees by a comparison of integers using the dynamic mainte-
nance of a total order. Here, the Order-Maintenance Problem is to maintain a
total order of elements subject to insert(X,Y): insert a new element Y imme-
diately after X in the total order, delete(X): remove X from the total order,
and order(X,Y): determine whether X > Y in the total order. Bender et al. [5]
proposed a simple algorithm for this problem to allow O(1) amortized insertion
and deletion time and O(1) worst-case query time. Adopting this technique,
we develop a novel data structure for computing the insert position of c in the
current BWT by a comparison of integers, instead of heavy rank operations on
dynamic wavelet trees.

Compared to the baseline [16], we significantly improve the throughput of
RLBWT with reasonable increase of memory consumption. Although there is a
tradeoff between memory consumption and throughput performance, as shown
in the experimental results, the working space of our algorithm is still sufficiently
smaller than the input size, especially for highly repetitive strings.

A Faster Implementation of Online Run-Length Burrows-Wheeler Transform 411

2 Preliminaries

Let Σ be an ordered alphabet. An element of Σ∗ is called a string. The length
of a string S is denoted by |S|. The empty string ε is the string of length 0,
namely, |ε| = 0. For a string S = XY Z, strings X, Y , and Z are called a prefix,
substring, and suffix of S, respectively. For 1 ≤ i ≤ |S|, the ith character of a
string S is denoted by S[i]. For 1 ≤ i ≤ j ≤ |S|, let S[i..j] = S[i] · · · S[j], i.e.,
S[i..j] is the substring of S starting at position i and ending at position j in S.
For convenience, let S[i..j] = ε if j < i.

In the run-length encoding (RLE) of a string S, a maximal run ce (for some
c ∈ Σ and e ∈ N) of a single character in S is encoded by a pair (c, e), where
we refer to c and respectively e as the head and exponent of the run. Since
each run is encoded in O(1) words (under Word RAM model with word size
Ω(lg |S|)), we refer to the number of runs as the size of the RLE. For example,
S = aaaabbcccacc = a4b2c3a1c2 is encoded as (a, 4), (b, 2), (c, 3), (a, 1), (c, 2),
and the size of the RLE is five.

For any string S and any c ∈ Σ, let occc(S) denote the number of occurrences
of c in S. Also, let occ<c(S) denote the number of occurrences of any character
smaller than c in S, i.e., occ<c(S) =

∑
c′<c occc′(S). For any c ∈ Σ and position

i (1 ≤ i ≤ |S|), rankc(S, i) denotes the number of occurrences of c in S[1..i], i.e.,
rankc(S, i) = occc(S[1..i]). For any c ∈ Σ and i (1 ≤ i ≤ occc(S)), selectc(S, i)
denotes the position of the ith c in S, i.e., selectc(S, i) = min{j | rankc(S, j) = i}.
Also we let access(S, i) denote the query to ask for S[i]. We will consider data
structures to answer occ<c, rank, select, and access without having S explicitly.

2.1 BWT

Here we define the BWT of a string S ∈ Σ+, denoted by BWTS . For convenience,
we assume that S ends with a terminator $ ∈ Σ whose lexicographic order is
smaller than any character in S[1..|S|−1]. BWTS is obtained by sorting all non-
empty suffixes of S lexicographically and putting the immediately preceding
character of each suffix (or $ if there is no preceding character) in the order.

For the online construction of BWT, it is convenient to consider “prepend-
ing” (rather than appending) a character to S because it does not change the
lexicographic order among existing suffixes.1 Namely, for some c ∈ Σ, we con-
sider updating BWTS to BWTcS efficiently. The task is to replace the unique
occurrence of $ in BWTS with c, and insert $ into appropriate position. Since
replacing can be easily done if we keep track of the current position of $, the
main task is to find the new position of $ to insert, which can be done with
a standard operation on BWT as follows: Let i be the position of $ in BWTS ,
then the new position is computed by rankc(BWTS , i) + occ<c(S) + 1 because
the new suffix cS is the (rankc(BWTS , i) + 1)th lexicographically smallest suf-
fix among those starting with c, and there are occ<c(S) suffixes starting with

1 Or appending a character but constructing BWT for reversed string.

412 T. Ohno et al.

some c′ (< c). Thus, BWT can be constructed online using a data structure that
supports rank, occ<c, and insert queries.

Let RLBWTS denote the run-length encoding of BWTS . In Sect. 3, we study
data structures that supports rankc, occ<c and insert queries on run-length
encoded strings, which can be directly used to construct RLBWTS online in
O(|S| lg r) time and O(r lg |S|) bits of space, where r is the size of RLE of BWTS .

2.2 Searchable Partial Sums with Indels

We use a data structure for the searchable partial sums with indels (SPSI) prob-
lem as a tool. The SPSI data structure T ought to maintain a dynamic sequence
Z[1..m] of non-negative integers (called weights) to support the following queries
as well as insertion/deletion of weights:

– T.sum(k): Return the partial sum
∑k

j=1 Z[j].
– T.search(i): For an integer i (1 ≤ i ≤ T.sum(m)), return the minimum index

k such that T.sum(k) ≥ i.
– T.update(k, δ): For a (possibly negative) integer δ with Z[k] + δ ≥ 0, update

Z[k] to Z[k] + δ.

We employ a simple implementation of T based on a B+tree whose kth leaf
corresponds to Z[k].2 Let B (≥ 3) be the parameter of B+trees that represents
the arity of an internal node. Namely the number of children of each internal
node ranges from B/2 to B (unless m is too small), and thus, the height of the
tree is O(logB m). An internal node has two integer arrays LA and WA of length
B such that LA[j] (resp. WA[j]) stores the sum of #leaves (resp. weights) under
the subtrees of up to the jth child of the node.

Using these arrays, we can easily answer T.sum and T.search queries in
O(logB m) time while traversing the tree from the root to a leaf: For exam-
ple, T.sum(k) can be computed by traversing to the kth leaf (navigated by LA)
while summing up the weights of the subtrees existing to the left of the traversed
path by WA. It is the same for T.search(i) (except switching the roles of LA and
WA). For T.update(k, δ) query, we only have to update LA and WA of the nodes
in the path from the root to the kth leaf, which takes O(B logB m) time. Also,
indels can be done in O(B logB m) time with standard split/merge operations
of B+trees.

Naively the space usage is O(m lg M) bits, where M is the sum of all weights.
Here we consider improving this to O(m lg(M/m)) bits. Let us call an internal
node whose children are leaves a bottom node, for which we introduce new arity
parameter BL, differentiated from B for the other internal nodes. For a bottom
node, we discard LA, WA and the pointers to the leaves. Instead we let it store
the weights of its children in a space efficient way. For example, using gamma
encoding, the total space usage for the bottom nodes becomes O(

∑m
j=1 lg Z[j]) =

O(m lg(M/m)) bits. The other (upper) part of T uses O(m lg M/BL) bits, which
2 More sophisticated solutions can be found in [6,11,15], but none of them has been

implemented to the best of our knowledge.

A Faster Implementation of Online Run-Length Burrows-Wheeler Transform 413

can be controlled by BL. The queries can be supported in O(BL+B logB m/BL)
time. Hence, setting B = O(1) and BL = Θ(lg m), we get the next lemma.

Lemma 1. For a dynamic sequence of weights, there is a SPSI data structure of
O(m lg(M/m)) bits supporting queries in O(lg m) time, where m is the current
length of the sequence and M is the sum of weights.

3 Dynamic Rank/Select Data Structures on Run-Length
Encoded Strings

In this section, we study dynamic rank/select data structures working on run-
length encoded strings. Note that select and delete queries are not needed for
online RLBWT algorithms, but we also provide them as they may find other
applications. Throughout this section, we let X denote the current string with
n = |X |, RLE size r, and containing σ distinct characters. We consider the
following update queries as well as rankc, selectc, access and occ<c queries on X :

– insert(X , i, ce): For a position i (1 ≤ i ≤ n + 1), c ∈ Σ and e ∈ N , insert ce

between X [i − 1] and X [i], i.e., X ← X [1..i − 1]ceX [i..n].
– delete(X , i, e): For a position i (1 ≤ i ≤ n−e+1) such that X [i..i+e−1] ∈ ce

for some c ∈ Σ, delete X [i..i + e − 1], i.e., X ← X [1..i − 1]X [i + e..n].

Theorem 1. There is a data structure that occupies O(r lg n) bits of space and
supports rankc, selectc, access, occ<c, insert and delete in O(lg r) time.

We will describe two data structures holding the complexities of Theorem1
in theory but likely exhibiting different time-space tradeoffs in practice. In Sub-
sect. 3.1, we show an existing data structure. On the basis of this data structure,
in Subsect. 3.2, we present our new data structure to get a faster implementation.

We note that the problem to support occ<c in O(σ lg n) bits of space and
O(lg σ) time is somewhat standard. For instance, we can think about the SPSI
data structure of Lemma 1 storing occc(X)’s in increasing order of c. It is easy
to modify the data structure so that, for a given c, we can traverse from the
root to the leaf corresponding to the predecessor of c, where we mean by the
predecessor of c the largest character c′ that is smaller than c and appears in X .
Then occ<c queries can be supported in a similar way to sum queries using WA.
Thus in the following subsections, we focus on the other queries.

3.1 Existing Data Structure

Here we review the data structure described in [16] with implementation avail-
able in [1,17].3 In theory it satisfies Theorem 1 though its actual implementation
has the time complexity of O(lg σ lg r) slower than O(lg r).

Let (c1, e1), (c2, e2), . . . , (cr, er) be the RLE of X . The data structure consists
of three components (see also Fig. 1 for the first two):
3 The basic idea of the algorithm originates from the work of RLFM+ index in [12].

414 T. Ohno et al.

2 4
4 10

2 4
4 8

4 8
10 18

3 1 4 2 2 2 1 3

3 6 9
5 13 18

3 1 1 2 4 2 2 1 2 1 1

2 4 7
2 6 11

9 16
18 29

2 2 1 1 3

Fig. 1. For X = a3b1a1c2a4b2a2c1a2b1c1a2c2a1b1a3, examples of Tall (left) and
Ta (right) with B = BL = 3 are shown. Note that the other components of
the data structure (Tb, Tc and H) are omitted here. Tall holds the sequence
[3, 1, 1, 2, 4, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 3] of the exponents in its leaves, and Ta holds the
sequence [3, 1, 4, 2, 2, 2, 1, 3] of the exponents of a’s runs in its leaves. For a node having
two rows, the first row represents LA and the second WA.

1. Tall : SPSI data structure for the sequence e1e2 · · · er of all exponents.
2. Tc (for every c ∈ Σ): SPSI data structure for the sequence of the exponents

of c’s run.
3. H: Dynamic rank/select data structure for the head string H = c1c2 · · · cr.

There is a data structure (e.g., see [13,14]), with which H can be implemented
in r lg σ + o(r lg σ) + O(σ lg r) bits while supporting queries in O(lg r) time.
(However, the actual implementation of [1,17] employs a simpler algorithm
based on wavelet trees that has O(lg σ lg r) query time.)

Note that for every run ce there are two copies of its exponent, one in Tall and
the other in Tc. Since σ ≤ r ≤ n holds, the data structure (excluding occ<c data
structure) uses r lg σ + o(r lg σ) + O(r lg(n/r) + σ lg r) = O(r lg n) bits.

Let us demonstrate how to support rankc(X , i). Firstly by computing k ←
Tall .search(i) we can find that X [i] is in the kth run. Next by computing kc ←
H.rankc(H, k) we notice that, up to the kth run, there are kc runs with head c.
Here we can check if the head of the kth run is c, and compute the number e of
c’s in the kth run appearing after X [i]. Finally, Tc.sum(kc) − e tells the answer
of rankc(X , i). It is easy to see that each step can be done in O(lg r) time.

Note that H plays an important role to bridge two trees Tall and Tc by
converting the indexes k and kc. The update queries also use this mechanism:
We first locate the update position in Tall , then find the update position in
Tc by bridging two trees with H. After locating the positions, the updates can
be done in each dynamic data structure. selectc(X , i) can be answered by first
locating ith c in Tc, finding the corresponding position in Tall with H.selectc,
then computing the partial sum up to the position in Tall . Finally, access(X , i)
is answered by H.access(H,Tall .search(i)).

3.2 New Data Structure

Now we present our new data structure satisfying Theorem 1. We share some of
the basic concepts with the data structure described in Sect. 3.1. For example,
our data structure also uses the idea of answering queries by going back and

A Faster Implementation of Online Run-Length Burrows-Wheeler Transform 415

19
3 1 1 2 4 2 2 1 2 1 1 2 2

5 13 18 2 6 11

18 29

4 10 4 8

10 18

1 1 3

a aa a

2 7 8 13 15

Fig. 2. For X = a3b1a1c2a4b2a2c1a2b1c1a2c2a1b1a3 (same as the one in Fig. 1), exam-
ples of modified Tall (up) and Ta (down) with B = BL = 3 are shown, where Ta

is illustrated upside down. Note that the data structure related to Tb and Tc (e.g.,
pointers of Change1 to them) are omitted here. Each pair of leaves corresponding to
the same run is connected by bidirectional pointers (Change1). Each internal node of
Ta has pointer to its leftmost leaf (Change2). The character a is stored in each bottom
node of Ta (Change3). Each bottom node of Tall stores a label (underlined number)
that is monotonically increasing from left to right (Change4). LAs and weights in the
leaves of Ta are discarded (Change5).

forth between Tall and Tc. However we do not use H to bridge the two trees.
Succinct data structures (like H) are attractive if the space limitation is critical,
but otherwise the suffered slow-down might be intolerable. Therefore we design
a fast algorithm that bridges the two trees in a more direct manner, while taking
care not to blow up the space too much.

In order to do without H, we make some changes to Tall and Tc (see also
Fig. 2):

1. We maintain bidirectional pointers connecting every pair of leaves represent-
ing the same run in Tall and Tc (recall that every run with head c has exactly
one corresponding leaf in each of Tall and Tc).

2. For every internal node of Tc, we store a pointer to the leftmost leaf in the
subtree rooted at the node.

3. For every bottom node of Tc, we store the character c.
4. For every bottom node of Tall , we store a label (a positive integer) such

that the labels of bottom nodes are monotonically increasing from left to
right. Since bottom nodes are inserted/deleted dynamically, we utilize the
algorithm [5] for the order-maintenance problem to maintain the labels.

5. Minor implementation notes: Every LA can be discarded as our data structure
does not use the navigation of indexes. Also, we can quit storing the leaf-level
weights in Tc as it can be retrieved using the pointer to the corresponding
leaf in Tall .

416 T. Ohno et al.

Space Analysis. In the change list, Changes1–4 increase the space usage while
Change5 reduces. It is easy to see that the increase fits in O(r lg n) bits. More pre-
cisely, since Changes2–4 are made to internal nodes, the increase by these changes
is O(r lg n/BL) bits, which is more or less controllable by BL (recall that BL

is arity parameter for bottom nodes, and we have O(r lg n/BL) = O(r lg(n/r))
by setting BL = Θ(lg r) for Lemma 1). On the other hand, Change1 is made to
leaves and takes 2r lg r bits of space. Thus, the total space usage of the data
structure (excluding occ<c data structure) is 2r lg r + O(r lg(n/r)) = O(r lg n)
bits.

By this analysis, it is expected that 2r lg r becomes a leading term when the
ratio n/r is small, i.e., compressibility in terms of RLE is not high. It should
be compared to r lg σ + o(r lg σ) + O(r lg(n/r) + σ lg r) bits used by the data
structure of Sect. 3.1, in which r lg r term does not exist. Hence, the smaller the
ratio n/r, the larger the gap between the two data structures in space usage will
be. On the other hand, when the r lg(n/r) term is leading, i.e., r is sufficiently
smaller than n, the increase by the r lg r term would be relatively moderate.

Answering Queries. We show how to answer queries on our data structure.
All queries are supported in O(lg r) time.

access(X , i): We first traverse from the root of Tall to the run containing X [i]
(navigated by WA), jump to the corresponding leaf of Tc by pointer of Change1,
then read the character stored in the bottom node of Tc due to Change3.

selectc(X , i): We first traverse from the root of Tc to the run containing ith
c (navigated by WA). At the same time, we can compute the rank i′ of ith c
within the run. Next we jump to the corresponding leaf in Tall by pointer of
Change1, then compute the sum of characters appearing strictly before the leaf
while going up the tree. The answer to selectc(X , i) is the sum plus i′.

rankc(X , i): Recalling the essence of the algorithm described in Sect. 3.1, we
can answer rankc(X , i) if we locate the leaf of Tc representing the rightmost c’s
run that starts at or before position i. In order to locate such leaf v, we first
traverse from the root of Tall to the run containing X [i] (navigated by WA). If
we are lucky, we may find a c’s run in the bottom node containing X [i], in which
case we can easily get v or the successor of v by using the pointer of Change1
outgoing from the c’s run. Otherwise, we search for v traversing Tc from the root
navigated by labels of Change4. Let t be the label of the bottom node containing
X [i]. Then, it holds that v is the rightmost leaf pointing to a node of Tall with
label smaller than t. Since the order of labels is maintained, we can use t as a
key for binary search, i.e., we notice that an internal node u (and its succeeding
siblings) cannot contain v if the leftmost leaf in the subtree rooted at u points to
a node of Tall with label greater than t. Using the pointer of Change2 to jump
to the leftmost leaf, we can conduct each comparison in O(1) time, and thus, we
can find v in O(lg r) time.

Update queries: The main task is to locate the update positions both in Tall

and Tc, and this is exactly what we did in rankc query—locating the run contain-
ing X [i] and v. After locating the update positions, the update can be done in

A Faster Implementation of Online Run-Length Burrows-Wheeler Transform 417

Table 1. Computation time in seconds and working space in mega bytes to construct
the RLBWT of r runs from each dataset of size |S| using the proposed method (ours)
and the previous method (PP).

Dataset |S| (MB) r Time (sec) Space (MB)

ours PP ours PP

fib41 255.503 42 27 552 0.004 0.067

rs.13 206.706 76 16 623 0.005 0.068

tm29 256.000 82 24 802 0.005 0.068

dblp.xml.00001.1 100.000 172, 195 37 2, 060 2.428 1.307

dblp.xml.00001.2 100.000 175, 278 37 2, 070 2.446 1.322

dblp.xml.0001.1 100.000 240, 376 40 2, 100 4.381 1.586

dblp.xml.0001.2 100.000 269, 690 40 2, 105 4.565 1.730

dna.001.1 100.000 1, 717, 162 58 1, 667 35.966 5.729

english.001.2 100.000 1, 436, 696 58 2, 153 20.680 6.166

proteins.001.1 100.000 1, 278, 264 58 1, 839 19.790 5.133

sources.001.2 100.000 1, 211, 104 49 2, 141 19.673 5.721

cere 439.917 11, 575, 582 534 7, 597 186.073 43.341

coreutils 195.772 4, 732, 794 128 4, 479 81.642 22.301

einstein.de.txt 88.461 99, 833 30 1, 807 2.083 1.106

einstein.en.txt 445.963 286, 697 182 9, 293 4.836 2.296

Escherichia Coli 107.469 15, 045, 277 154 2, 047 316.184 36.655

influenza 147.637 3, 018, 824 91 2, 501 72.730 12.386

kernel 246.011 2, 780, 095 146 5, 333 41.758 12.510

para 409.380 15, 635, 177 547 7, 364 329.901 52.005

world leaders 44.792 583, 396 17 857 9.335 2.891

boost 1024.000 63, 710 320 20, 327 1.161 0.904

samtools 1024.000 562, 326 440 21, 375 9.734 3.595

sdsl 1024.000 758, 657 419 21, 014 17.760 4.803

O(lg r) time in each tree. When the update operation invokes insertion/deletion
of a bottom node of Tall , we maintain labels of Change4 using the algorithm
of [5]. We note that the algorithm of [5] takes O(lg r) amortized time per “indel
of bottom node”, and hence, takes O(1) amortized time per “indel of leaf” (recall
that BL = Θ(lg r), and one indel of bottom node needs Θ(lg r) indels of leaves).
In addition, the algorithm is quite simple and efficiently implementable without
any data structure than labels themselves.

4 Experiments

We implemented in C++ the online RLBWT construction algorithm based on
our new rank/select data structure described in Sect. 3.2 (the source code is
available at [2]). We evaluate the performance of our method comparing with
the state-of-the-art implementation [1] (we refer to it as PP taking the authors’

418 T. Ohno et al.

initials of [16]) of the algorithm based on the data structure described in Sect. 3.1.
We tested on highly repetitive datasets in repcorpus4, well-known corpus in this
field, and some larger datasets created from git repositories. For the latter, we
use the script [3] to create 1024 MB texts (obtained by concatenating source files
from the latest revisions of a given repository, and truncated to be 1024 MB) from
the repositories for boost5, samtools6 and sdsl-lite7 (all accessed at 2017-03-27).
The programs were compiled using g++6.3.0 with -Ofast -march=native option.
The experiments were conducted on a 6core Xeon E5-1650V3 (3.5 GHz) machine
with 32 GB memory running Linux CentOS7.

Table 1 shows the comparison of the two methods on construction time and
working space. The result shows that our method significantly improves the
construction time of PP as we intended. Especially for dumpfiles of Wikipedia
articles (einstein.de.txt and einstein.en.txt), our method ran 60 times faster than
PP. Our method also shows good performance for the 1024 MB texts from git
repositories. On the other hand, the working space is increased (except the artifi-
cial datasets, which are extremely compressible) by 1.3–8.7 times. Especially for
less compressible datasets in terms of RLBWT like Escherichia Coli, the space
usage tends to be worse as predicted by space analysis in Sect. 3.2. Still for most
of the other datasets the working space of our method keeps way below the input
size.

5 Conclusion

We have proposed an improvement of online construction of RLBWT [1,17],
intended to speed up the construction time. We significantly improved the
throughput of original RLBWT with reasonable increase of memory consump-
tion for the benchmarks from various domain. By applying our new algo-
rithm to the algorithm of computing LZ77 factorization in compressed space
using RLBWT [16], we would immediately improve the throughput of [16].
As LZ77 plays a central role in many problems on string processing, engineer-
ing/optimizing implementation for compressed LZ77 computation is important
future work.

Acknowledgments. This work was supported by JST CREST (Grant Number
JPMJCR1402), and KAKENHI (Grant Numbers 17H01791 and 16K16009).

4 See http://pizzachili.dcc.uchile.cl/repcorpus/statistics.pdf for statistics of the
datasets.

5 https://github.com/boostorg/boost.
6 https://github.com/samtools/samtools.
7 https://github.com/simongog/sdsl-lite.

http://pizzachili.dcc.uchile.cl/repcorpus/statistics.pdf
https://github.com/boostorg/boost
https://github.com/samtools/samtools
https://github.com/simongog/sdsl-lite

A Faster Implementation of Online Run-Length Burrows-Wheeler Transform 419

References

1. DYNAMIC: Dynamic succinct/compressed data structures library. https://github.
com/xxsds/DYNAMIC

2. Online RLBWT. https://github.com/itomomoti/OnlineRLBWT
3. Get-git-revisions: Get all revisions of a git repository. https://github.com/

nicolaprezza/get-git-revisions
4. Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., Raffinot, M.: Composite

repetition-aware data structures. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.)
CPM 2015. LNCS, vol. 9133, pp. 26–39. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-19929-0 3

5. Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two simplified
algorithms for maintaining order in a list. In: Möhring, R., Raman, R. (eds.) ESA
2002. LNCS, vol. 2461, pp. 152–164. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45749-6 17

6. Bille, P., Cording, P.H., Gørtz, I.L., Skjoldjensen, F.R., Vildhøj, H.W., Vind, S.:
Dynamic relative compression, dynamic partial sums, and substring concatenation.
In: ISAAC, pp. 18:1–18:13 (2016)

7. Bowe, A., Onodera, T., Sadakane, K., Shibuya, T.: Succinct de Bruijn graphs. In:
Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 225–235. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33122-0 18

8. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Technical report, HP Labs (1994)

9. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled trees
for optimal succinctness, and beyond. In: FOCS, pp. 184–196 (2005)

10. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
FOCS, pp. 390–398 (2000)

11. Hon, W., Sadakane, K., Sung, W.: Succinct data structures for searchable partial
sums with optimal worst-case performance. Theor. Comput. Sci. 412(39), 5176–
5186 (2011)

12. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. J. Comput. Biol. 17(3), 281–308 (2010)

13. Munro, J.I., Nekrich, Y.: Compressed data structures for dynamic sequences. In:
Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 891–902. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3 74

14. Navarro, G., Nekrich, Y.: Optimal dynamic sequence representations. SIAM J.
Comput. 43(5), 1781–1806 (2014)

15. Navarro, G., Sadakane, K.: Fully functional static and dynamic succinct trees.
ACM Trans. Algorithms 10(3), 16 (2014)

16. Policriti, A., Prezza, N.: Computing LZ77 in run-compressed space. In: DCC, pp.
23–32 (2016)

17. Prezza, N.: A framework of dynamic data structures for string processing. In: SEA
(2017 to appear)

18. Sirén, J.: Compressed Full-Text Indexes for Highly Repetitive Collections. Ph.D.
thesis, University of Helsinki (2012)

19. Sirén, J., Välimäki, N., Mäkinen, V., Navarro, G.: Run-length compressed indexes
are superior for highly repetitive sequence collections. In: Amir, A., Turpin, A.,
Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 164–175. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-89097-3 17

20. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory IT 23(3), 337–349 (1977)

https://github.com/xxsds/DYNAMIC
https://github.com/xxsds/DYNAMIC
https://github.com/itomomoti/OnlineRLBWT
https://github.com/nicolaprezza/get-git-revisions
https://github.com/nicolaprezza/get-git-revisions
https://doi.org/10.1007/978-3-319-19929-0_3
https://doi.org/10.1007/978-3-319-19929-0_3
https://doi.org/10.1007/3-540-45749-6_17
https://doi.org/10.1007/3-540-45749-6_17
https://doi.org/10.1007/978-3-642-33122-0_18
https://doi.org/10.1007/978-3-662-48350-3_74
https://doi.org/10.1007/978-3-540-89097-3_17

Computing Abelian String Regularities
Based on RLE

Shiho Sugimoto1(B), Naoki Noda2, Shunsuke Inenaga1, Hideo Bannai1,
and Masayuki Takeda1

1 Department of Informatics, Kyushu University, Fukuoka, Japan
{shiho.sugimoto,inenaga,bannai,takeda}@inf.kyushu-u.ac.jp

2 Department of Physics, Kyushu University, Fukuoka, Japan

Abstract. Two strings x and y are said to be Abelian equivalent if x
is a permutation of y, or vice versa. If a string z satisfies z = xy with x
and y being Abelian equivalent, then z is said to be an Abelian square.
If a string w can be factorized into a sequence v1, . . . , vs of strings such
that v1, . . . , vs−1 are all Abelian equivalent and vs is a substring of a
permutation of v1, then w is said to have a regular Abelian period (p, t)
where p = |v1| and t = |vs|. If a substring w1[i..i+�−1] of a string w1 and
a substring w2[j..j + � − 1] of another string w2 are Abelian equivalent,
then the substrings are said to be a common Abelian factor of w1 and w2

and if the length � is the maximum of such then the substrings are said to
be a longest common Abelian factor of w1 and w2. We propose efficient
algorithms which compute these Abelian regularities using the run length
encoding (RLE) of strings. For a given string w of length n whose RLE
is of size m, we propose algorithms which compute all Abelian squares
occurring in w in O(mn) time, and all regular Abelian periods of w in
O(mn) time. For two given strings w1 and w2 of total length n and of
total RLE size m, we propose an algorithm which computes all longest
common Abelian factors in O(m2n) time.

1 Introduction

Two strings s1 and s2 are said to be Abelian equivalent if s1 is a permutation of
s2, or vice versa. For instance, strings ababaac and caaabba are Abelian equiva-
lent. Since the seminal paper by Erdős [7] published in 1961, the study of Abelian
equivalence on strings has attracted much attention, both in word combinatorics
and string algorithmics.

1.1 Our Problems and Previous Results

In this paper, we are interested in the following algorithmic problems related to
Abelian regularities of strings.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Brankovic et al. (Eds.): IWOCA 2017, LNCS 10765, pp. 420–431, 2018.
https://doi.org/10.1007/978-3-319-78825-8_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78825-8_34&domain=pdf

Computing Abelian String Regularities Based on RLE 421

1. Compute Abelian squares in a given string.
2. Compute regular Abelian periods of a given string.
3. Compute longest common Abelian factors of two given strings.

Cummings and Smyth [6] proposed an O(n2)-time algorithm to solve Prob-
lem 1, where n is the length of the given string. Crochemore et al. [5] proposed
an alternative O(n2)-time solution to the same problem. Recently, Kociumaka
et al. [12] showed how to compute all Abelian squares in O(s + n2

log2 n
) time,

where s is the number of outputs.
Related to Problem 2, various kinds of Abelian periods of strings have been

considered: An integer p is said to be a full Abelian period of a string w iff
there is a decomposition u1, . . . , uz of w such that |ui| = p for all 1 ≤ i ≤ z
and u1, . . . , uz are all Abelian equivalent. A pair (p, t) of integers is said to be a
regular Abelian period (or simply an Abelian period) of a string w iff there is a
decomposition v1, . . . , vs of w such that p is a full Abelian period of v1 · · · vs−1,
|vi| = p for all 1 ≤ i ≤ s − 1, and vs is a permutation of a substring of v1 (and
hence t ≤ p). A triple (h, p, t) of integers is said to be a weak Abelian period of a
string w iff there is a decomposition y1, . . . , yr of w such that (p, t) is an Abelian
period of y2 · · · yr, |y1| = h, |yi| = p for all 2 ≤ i ≤ r − 1, |yr| = t, and y1 is a
permutation of a substring of y2 (and hence h ≤ p).

The study on Abelian periodicity of strings was initiated by Constantinescu
and Ilie [4]. Fici et al. [9] gave an O(n log log n)-time algorithm to compute all
full Abelian periods. Later, Kociumaka et al. [11] showed an optimal O(n)-time
algorithm to compute all full Abelian periods. Fici et al. [9] also showed an
O(n2)-time algorithm to compute all regular Abelian periods for a given string
of length n. Kociumaka et al. [11] also developed an algorithm which finds all
regular Abelian periods in O(n(log log n + log σ)) time, where σ is the alphabet
size. Fici et al. [8] proposed an algorithm which computes all weak Abelian
periods in O(σn2) time, and later Crochemore et al. [5] proposed an improved
O(n2)-time algorithm to compute all weak Abelian periods. Kociumaka et al. [12]
showed how to compute all shortest weak Abelian periods in O(n2/

√
log n) time.

Consider two strings w1 and w2. A pair (s1, s2) of a substring s1 of w1 and
a substring s2 of w2 is said to be a common Abelian factor of w1 and w2,
iff s1 and s2 are Abelian equivalent. Alatabbi et al. [1] proposed an O(σn2)-
time and O(σn)-space algorithm to solve Problem 3 of computing all longest
common Abelian factors (LCAFs) of two given strings of total length n. Later,
Grabowski [10] showed an algorithm which finds all LCAFs in O(σn2) time
with O(n) space. He also presented an O((σ

k + log σ)n2 log n)-time O(kn)-space
algorithm for a parameter k ≤ σ

log σ . Recently, Badkobeh et al. [3] proposed an
O(n log2 n log∗ n)-time O(n log2 n)-space algorithm for finding all LCAFs.

1.2 Our Contribution

In this paper, we show that we can accelerate computation of Abelian regularities
of strings via run length encoding (RLE) of strings. Namely, if m is the size of
the RLE of a given string w of length n, we show that:

422 S. Sugimoto et al.

(1) All Abelian squares in w can be computed in O(mn) time.
(2) All regular Abelian periods of w can be computed in O(mn) time.

Since m ≤ n always holds, solution (1) is at least as efficient as the O(n2)-time
solutions by Cummings and Smyth [6] and by Crochemore et al. [5], and can be
much faster when the input string w is highly compressible by RLE. Amir et
al. [2] proposed an O(σ(m2 +n))-time algorithm to compute all Abelian squares
using RLEs. Our O(mn)-time solution is faster than theirs when σm2

m−σ = ω(n).
Solution (2) is faster than the O(n(log log n+log σ))-time solution by Kociumaka
et al. [11] for highly RLE-compressible strings with log log n = ω(m)1.

Also, if m is the total size of the RLEs of two given strings w1 and w2 of
total length n, we show that:

(3) All longest common Abelian factors of w1 and w2 can be computed in
O(m2n) time.

Our solution (3) is faster than the O(σn2)-time solution by Grabowski [10] when
σn = ω(m2), and is faster than the fastest variant of the other solution by
Grabowski [10] (choosing k = σ

log σ) when
√

n log n log σ = ω(m). Also, solution
(3) is faster than the O(n log2 n log∗ n)-time solution by Badkobeh et al. [3] when
log n

√
log∗ n = ω(m).

The time bounds of our algorithms are all deterministic. Proofs omitted due
to lack of space can be found in a full version of this paper [13].

2 Preliminaries

Let Σ = {c1, . . . , cσ} be an ordered alphabet of size σ. An element of Σ∗ is
called a string. For any string w, |w| denotes the length of w. The empty string
is denoted by ε. Let Σ+ = Σ∗ − {ε}. For any 1 ≤ i ≤ |w|, w[i] denotes the
i-th symbol of w. For a string w = xyz, strings x, y, and z are called a prefix,
substring, and suffix of w, respectively. The substring of w that begins at position
i and ends at position j is denoted by w[i..j] for 1 ≤ i ≤ j ≤ |w|. For convenience,
let w[i..j] = ε for i > j.

For any string w ∈ Σ∗, its Parikh vector Pw is an array of length σ such
that for any 1 ≤ i ≤ |Σ|, Pw[i] is the number of occurrences of each character
ci ∈ Σ in w. For example, for string w = abaab over alphabet Σ = {a, b},
Pw = 〈3, 2〉. We say that strings x and y are Abelian equivalent if Px = Py. Note
that Px = Py iff x and y are permutations of each other. When x is a substring
of a permutation of y, then we write Px ⊆ Py. For any Parikh vectors P and Q,
let diff (P,Q) = |{i | P [i] �= Q[i], 1 ≤ i ≤ σ}|.

A string w of length 2k > 0 is called an Abelian square if it is a concatenation
of two Abelian equivalent strings of length k each, i.e., Pw[1..k] = Pw[k+1..2k]. A
string w is said to have a regular Abelian period (p, t) if w can be factorized into
a sequence v1, . . . , vs of substrings such that p = |v1| = · · · = |vs−1|, |vs| = t,

1 Since we can w.l.o.g. assume that σ ≤ m, the log σ term is negligible here.

Computing Abelian String Regularities Based on RLE 423

Pvi
= Pv1 for all 2 ≤ i < s, and Pvs

⊆ Pv1 . For any strings w1, w2 ∈ Σ∗,
if a substring w1[i..i + � − 1] of w1 and a substring w2[j..j + � − 1] of w2 are
Abelian equivalent, then the pair of substrings is said to be a common Abelian
factor of w1 and w2. When the length � is the maximum of such then the pair
of substrings is said to be a longest common Abelian factor of w1 and w2.

The run length encoding (RLE) of string w of length n, denoted RLE (w),
is a compact representation of w which encodes each maximal character run
w[i..i+ p− 1] by ap, if (1) w[j] = a for all i ≤ j ≤ i+ p− 1, (2) w[i− 1] �= w[i] or
i = 1, and (3) w[i+p−1] �= w[i+p] or i+p−1 = n. E.g., RLE (aabbbbcccaaa$) =
a2b4c3a3$1. The size of RLE (w) = ap1

1 · · · apm
m is the number m of maximal

character runs in w, and each api

i is called an RLE factor of RLE (w). Notice
that m ≤ n always holds. Also, since at most m distinct characters can appear in
w, in what follows we will assume that σ ≤ m. Even if the underlying alphabet
is large, we can sort the characters appearing in w in O(m log m) time and use
this ordering in Parikh vectors. Since all of our algorithms will require at least
O(mn) time, this O(m log m)-time preprocessing is negligible.

For any 1 ≤ i ≤ j ≤ n, let RLE (w)[i..j] = api

i · · · apj

j . For convenience let
RLE (w)[i..j] = ε for i > j. For RLE (w) = ap1

1 · · · apm
m , let RLE Bound(w) =

{1 +
∑k

i=1 pk | 1 ≤ k < m} ∪ {1, n}. For any 1 ≤ i ≤ n, let succ(i) = min{j ∈
RLE Bound(w) | j > i}. Namely, succ(i) is the smallest position in w that is
greater than i and is either the beginning position of an RLE factor in w or the
last position n in w.

3 Computing Regular Abelian Periods Using RLEs

In this section, we propose an algorithm which computes all regular Abelian
periods of a given string.

Theorem 1. Given a string w of length n over an alphabet of size σ, we can
compute all regular Abelian periods of w in O(mn) time and O(n) working space,
where m is the size of RLE (w).

Proof. Our algorithm is very simple. We use a single window for each length d =
1, . . . ,
n

2 �. For an arbitrarily fixed d, consider a decomposition v1, . . . , vs of w
such that vi = w[(i−1)d+1..id] for 1 ≤ i ≤
n

d � and vs = w[n−(n mod d)+1..n].
Each vi is called a block, and each block of length d is called a complete block.

There are two cases to consider.
Case (a): If w is a unary string (i.e., RLE (w) = an for some a ∈ Σ). In this
case, (d, (n mod d)) is a regular Abelian period of w for any d. Also, note that
this is the only case where (d, (n mod d)) can be a regular Abelian period of any
string of length n with RLE (vi) = ad for some complete block vi. Clearly, it
takes a total of O(n) time and O(1) space in this case.
Case (b): If w contains at least two distinct characters, then observe that a
complete block vi is fully contained in a single RLE factor iff succ(1 + (i −
1)d) = succ(id). Let S be an array of length n such that S[j] = succ(j) for each
1 ≤ j ≤ n. We precompute this array S in O(n) time by a simple left-to-right

424 S. Sugimoto et al.

Fig. 1. (3, 2) is a regular Abelian period of string w = aabbaaababaaaabbaa since
Pw[1..3] = Pw[4..6] = Pw[7..9] = Pw[10..12] = Pw[13..15] ⊃ Pw[16..17].

scan over w. Using the precomputed array S, we can check in O(m) time if there
exists a complete block vi satisfying succ(1 + (i − 1)d) = succ(id); we process
each complete block vi in increasing order of i (from left to right), and stop as
soon as we find the first complete block vi with succ(1 + (i − 1)d) = succ(id).
If there exists such a complete block, then we can immediately determine that
(d, (n mod d)) is not a regular Abelian period (recall also Case (a) above.)

Assume every complete block vi overlaps at least two RLE factors. For each
vi, let mi ≥ 2 be the number of RLE factors of RLE (w) that vi overlaps (i.e.,
mi is the size of RLE (vi)). We can compute Pvi

in O(mi) time from RLE (vi),
using the exponents of the elements of RLE (vi). We can compare Pvi

and Pvi−1

in O(mi) time, since there can be at most mi distinct characters in vi and hence
it is enough to check the mi entries of the Parikh vectors. Since there are
n

d �
complete blocks and each complete block overlaps more than one RLE factor, we
have
n

d � ≤ 1
2

∑s−1
i=1 mi. Moreover, since each RLE factor is counted by a unique

mi or by a unique pair of mi−1 and mi for some i, we have
∑s

i=1 mi ≤ 2m.
Overall, it takes O(σ + n

d +
∑s

i=1 mi) = O(m) time to test if (d, (n mod d)) is a
regular Abelian period of w. Consequently, it takes O(mn) total time to compute
all regular Abelian periods of w for all d’s in this case. Since we use the array S
of length n and we maintain two Parikh vectors of the two adjacent vi−1 and vi

for each i, the space requirement is O(σ + n) = O(n). �
For example, let w = aabbaaababaaaabbaa and d = 3. See also Fig. 1 for

illustration. We have RLE(w) = a2b2a3b1a1b1a4b2a1. Then, we compute Pv1 =
〈2, 1〉 from RLE (v1) = a2b1, Pv2 = 〈2, 1〉 from RLE (v2) = b1a2, Pv3 = 〈2, 1〉
from RLE (v3) = a1b1a1, Pv4 = 〈2, 1〉 from RLE (v4) = b1a2, Pv5 = 〈2, 1〉 from
RLE (v5) = a2b1, and Pv6 = 〈1, 1〉 from RLE (v6) = b1a1. Since Pvi

= Pv1 for
1 ≤ i ≤ 5 and Pv6 ⊂ Pv1 , (3, 2) is a regular Abelian period of the string w.

4 Computing Abelian Squares Using RLEs

In this section, we describe our algorithm to compute all Abelian squares occur-
ring in a given string w of length n. Our algorithm is based on the algorithm of
Cummings and Smyth [6] which computes all Abelian squares in w in O(n2) time.
We will improve the running time to O(mn), where m is the size of RLE (w).

4.1 Cummings and Smyth’s O(n2)-Time Algorithm

We recall the O(n2)-time algorithm proposed by Cummings and Smyth [6]. To
compute Abelian squares in a given string w, their algorithm aligns two adjacent
sliding windows of length d each, for every 1 ≤ d ≤
n

2 �.

Computing Abelian String Regularities Based on RLE 425

Consider an arbitrary fixed d. For each position 1 ≤ i ≤ n − 2d + 1 in w,
let Li and Ri denote the left and right windows aligned at position i. Namely,
Li = w[i..i+d−1] and Ri = w[i+d..i+2d−1]. At the beginning, the algorithm
computes PL1 and PR1 for position 1 in w. It takes O(d) time to compute these
Parikh vectors and O(σ) time to compute diff (PL1 ,PR1). Assume PLi

, PRi
,

and diff (PLi
,PRi

) have been computed for position i ≥ 1, and PLi+1 , PRi+1 ,
and diff (PLi+1 ,PRi+1) is to be computed for the next position i + 1. A key
observation is that given PLi

, then PLi+1 for the left window Li+1 for the next
position i + 1 can be easily computed in O(1) time, since at most two entries of
the Parikh vector can change. The same applies to PRi

and PRi+1 . Also, given
diff (PLi

,PRi
) for the two adjacent windows Li and Ri for position i, then it

takes O(1) time to determine whether or not diff (PLi+1 ,PRi+1) = 0 for the two
adjacent windows Li+1 and Ri+1 for the next position i + 1. Hence, for each d,
it takes O(n) time to find all Abelian squares of length 2d, and thus it takes a
total of O(n2) time for all 1 ≤ d ≤
n

2 �.

4.2 Our O(mn)-Time Algorithm

We propose an algorithm which computes all Abelian squares in a given string
w of length n in O(mn) time, where m is the size of RLE (w).

Our algorithm will output consecutive Abelian squares w[i..i+2d− 1], w[i+
1..i + 2d], . . . , w[j..j + 2d − 1] of length 2d each as a triple 〈i, j, d〉. A single
Abelian square w[i..i + 2d − 1] of length 2d will be represented by 〈i, i, d〉.

For any position i in w, let beg(Li) and end(Li) respectively denote the
beginning and ending positions of the left window Li, and let beg(Ri) and
end(Ri) respectively denote the beginning and ending positions of the right
window Ri. Namely, beg(Li) = i, end(Li) = i + d − 1, beg(Ri) = i + d, and
end(Ri) = i+2d−1. Cummings and Smyth’s algorithm described above increases
each of beg(Li), end(Li), beg(Ri), and end(Ri) one by one, and tests all posi-
tions i = 1, . . . , n − 2d + 1 in w. Hence their algorithm takes O(n) time for each
window size d.

In what follows, we show that it is indeed enough to check only O(m) posi-
tions in w for each window size d. The outline of our algorithm is as follows.
As Cummings and Smyth’s algorithm, we use two adjacent windows of size d,
and slide the windows. However, unlike Cummings and Smyth’s algorithm where
the windows are shifted by one position, in our algorithm the windows can be
shifted by more than one position. The positions that are not skipped and are
explicitly examined will be characterized by the RLE of w, and the equivalence
of the Parikh vectors of the two adjacent windows for the skipped positions can
easily be checked by simple arithmetics.

Now we describe our algorithm in detail. First, we compute RLE (w) and let
m be its size. Consider an arbitrarily fixed window length d ≥ 1.

Initial Step for Position 1. Initially, we compute PL1 and PR1 for position
1. We can compute these Parikh vectors in O(m) time and O(σ) space using the
same method as in the algorithm of Theorem 1 in Sect. 3.

426 S. Sugimoto et al.

Steps for Positions Larger Than 1. For each position i ≥ 1 in a given
string w, let Di

1 = succ(beg(Li)) − beg(Li), Di
2 = succ(beg(Ri)) − beg(Ri), and

Di
3 = succ(end(Ri) + 1) − end(Ri) − 1. The break point for each position i,

denoted bp(i), is defined by i + min{Di
1,D

i
2,D

i
3}. Assume the left window is

aligned at position i in w. Then, we jump to the break point bp(i) directly from
i. In other words, the two windows Li and Ri are directly shifted to Lbp(i) and
Rbp(i), respectively.

It depends on the value of diff (PLi
,PRi

) whether there can be an Abelian
square between positions i and bp(i). Note that diff (PLi

,PRi
) �= 1. Below, we

characterize the other cases in detail.

Lemma 1. Assume diff (PLi
,PRi

) = 0. Then, for any i < j ≤ bp(i), j is the
beginning position of an Abelian square of length 2d iff w[beg(Li)] = w[beg(Ri)] =
w[end(Ri) + 1].

Lemma 2. Assume diff (PLi
,PRi

) = 2. Let cp be the unique character which
occurs more in the left window Li than in the right window Ri, and cq be the
unique character which occurs more in the right window Ri than in the left
window Li. Let x = PLi

[p] − PRi
[p] = PRi

[q] − PLi
[q] > 0, and assume x ≤

min{Di
1,D

i
2,D

i
3}. Then, i + x is the beginning position of an Abelian square of

length 2d iff w[beg(Li)] = cp, w[beg(Ri)] = cq = w[end(Ri)+1]. Also, this is the
only Abelian square of length 2d beginning at positions between i and bp(i).

Lemma 3. Assume diff (PLi
,PRi

) = 2. Let cp be the unique character which
occurs more in the left window Li than in the right window Ri, and cq be the
unique character which occurs more in the right window Ri than in the left
window Li. Let x = PLi

[p] − PRi
[p] = PRi

[q] − PLi
[q] > 0, and assume x

2 ≤
min{Di

1,D
i
2,D

i
3}. Then, i + x

2 is the beginning position of an Abelian square of
length 2d iff w[beg(Li)] = cp = w[end(Ri)+1], w[beg(Ri)] = cq. Also, this is the
only Abelian square of length 2d beginning at positions between i and bp(i).

Lemma 4. Assume diff (PLi
,PRi

) = 3. Let cp = w[beg(Li)], cp′ = w[end(Ri)+
1], and cq = w[beg(Ri)]. Then, i + x with i < i + x ≤ bp(i) is the beginning
position of an Abelian square of length 2d iff 0 < x = PLi

[p]−PRi
[p] = PLi

[p′]−
PRi

[p′] = PRi
[q]−PLi

[q]

2 ≤ min{Di
1,D

i
2,D

i
3}. Also, this is the only Abelian square

of length 2d beginning at positions between i and bp(i).

Lemma 5. Assume diff (PLi
,PRi

) ≥ 4. Then, there exists no Abelian square of
length 2d beginning at any position j with i < j ≤ bp(i).

Main Result. We are ready to show the main result of this section.

Theorem 2. Given a string w of the length n over an alphabet of size σ, we
can compute all Abelian squares in w in O(mn) time and O(n) working space,
where m is the size of RLE (w).

Computing Abelian String Regularities Based on RLE 427

Proof. Consider an arbitrarily fixed window length d. As was explained, it takes
O(m) time to compute PL1 , PR1 , and diff (PL1 ,PR1) for the initial position 1.
Suppose that the two windows are aligned at some position i ≥ 1. Then, our
algorithm computes Abelian squares starting at positions between i and bp(i)
using one of Lemmas 1, 2, 3, 4, and 5, depending on the value of diff (PL1 ,PRi

).
In each case, all Abelian squares of length 2d starting at positions between i and
bp(i) can be computed in O(1) time by simple arithmetics. Then, the left and
right windows Li and Ri are shifted to Lbp(i) and Rbp(i), respectively. Using the
array S as in Theorem 1, we can compute bp(i) in O(1) time for a given position
i in w.

Let us analyze the number of times the windows are shifted for each d. Since
bp(i) = i + min{Di

1,D
i
2,D

i
3}, for each position p there can be at most three

distinct positions i, j, k such that p = bp(i) = bp(j) = bp(k). Thus, for each d
we shift the two adjacent windows at most 3m times.

Overall, our algorithm runs in O(mn) time for all window lengths d =
1, . . . ,
n/2�. The space requirement is O(n) since we need to maintain the Parikh
vectors of the two sliding windows and the array S. �

Example on how our algorithm computes all Abelian squares using RLEs can
be found in Appendix of this paper [13].

5 Computing Longest Common Abelian Factors Using
RLEs

In this section, we introduce our RLE-based algorithm which computes longest
common Abelian factors of two given strings w1 and w2. Formally, we solve
the following problem. Let n = min{|w1|, |w2|}. Given two strings w1 and
w2, compute the length l = max{d ∈ [1, n] | 1 ≤ ∃i ≤ |w1|, 1 ≤ ∃k ≤
|w2| s.t. Pw1[i..i+d−1] = Pw2[k..k+d−1]} of the longest common Abelian factor(s)
of w1 and w2, together with a pair (i, k) of positions on w1 and w2 such that
Pw1[i..i+l−1] = Pw2[k..k+l−1].

Our algorithm uses an idea from Alatabbi et al.’s algorithm [1]. For each
window size d, their algorithm computes the Parikh vectors of all substrings of
w1 and w2 of length d in O(σn) time, using two windows of length d each. Then
they sort the Parikh vectors in O(σn) time, and output the largest d for which
common Parikh vectors exist for w1 and w2, together with the lists of respective
occurrences of longest common Abelian factors. The total time requirement is
clearly O(σn2).

Our algorithm is different from Alatabbi et al.’s algorithm in that (1) we use
RLEs of strings w1 and w2 and (2) we avoid to sort the Parikh vectors. As in
the previous sections, for a given window length d (1 ≤ n), we shift two windows
of length d over both RLE (w1) and RLE (w2), and stops when we reach a break
point of RLE (w1) or RLE (w2). We then check if there is a common Abelian
factor in the ranges of w1 and w2 we are looking at.

Since we use a single window for each of the input strings w1 and w2, we
need to modify the definition of the break points. Let Ui and Vk be the sliding

428 S. Sugimoto et al.

Fig. 2. Conceptual drawing of cpl , cpr , cqr , and cql .

windows for w1 and w2 that are aligned at position i of w1 and at position k of
w2, respectively. For each position i ≥ 1 in w1, let bp1(i) = i + min{Di

1,D
i
2},

where Di
1 = succ(beg(Ui)) − i and Di

2 = succ(end(Ui)) − i. For each position
k ≥ 1 in w2, bp2(k) is defined analogously. Let pl = beg(Ui), pr = end(Ui) + 1,
ql = beg(Vk) and qr = end(Vk) + 1.

Consider an arbitrarily fixed window length d. Assume that we have just
shifted the window on w1 from position i (i.e., Ui = w1[i..i + d − 1]) to the
break point bp1(i) (i.e., Ubp1(i)

= w1[bp1(i)..bp1(i)+d−1]). Let cpl
= w1[i] and

cpr
= w1[i + d] (see also Fig. 2).
For characters cpl

and cpr
, we consider the minimum and maximum numbers

of their occurrences during the slide from position i to bp1(i). Let min(pl) =
Pw1[bp1(i)..bp1(i)+d−1][pl], max(pl) = Pw1[i..i+d−1][pl], min(pr) = Pw1[i..i+d−1][pr]
and max(pr) = Pw1[bp1(i)..bp1(i)+d−1][pr]. We will use these values to determine
if there is a common Abelian factor of length d for w1 and w2.

Also, assume that we have just shifted the window on w2 from position
k (i.e., Vk = w2[k..k + d − 1]) to the break point bp2(k) (i.e., Vbp2(k)

=
w2[bp2(k)..bp2(k) + d − 1]). Let cql = w2[k] and cqr = w2[k + d] (see also
Fig. 2). For characters cql and cqr , we also consider the minimum and maximum
numbers of occurrences of of these characters during the slide from position k
to bp2(k). Let min(ql) = Pw2[bp2(k)..bp2(k)+d−1][ql], max(ql) = Pw2[k..k+d−1][ql],
min(qr) = Pw2[k..k+d−1][qr] and max(qr) = Pw2[bp2(k)..bp2(k)+d−1][qr].

Let m be the total size of RLE (w1) and RLE (w2), and l be the length
of longest common Abelian factors of w1 and w2. Our algorithm computes an
O(m2)-size representation of every pair (i, k) of positions for which (w1[i..i+ l −
1], w2[k..k + l − 1]) is a longest common Abelian factor of w1 and w2.

In the lemmas which follow, we assume that Pw1[i..i+d−1][v] = Pw2[k..k+d−1][v]
for any v ∈ {1, .., σ} \ {pl, pr, ql, qr}. This is because, if this condition is not
satisfied, then there cannot be an Abelian common factor of length d for positions
between i to bp1(i) in w1 and position between k to bp2(k) in w2.

Lemma 6. Assume cpl
= cpr

and cql = cqr . Then, for any pair of positions
i ≤ i′ ≤ bp1(i) and k ≤ k′ ≤ bp2(k), (w1[i′..i′ + d − 1], w2[k′..k′ + d − 1]) is an
Abelian common factor of length d iff Pw1[i..i+d−1] = Pw2[k..k+d−1].

Proof. Since cpl
= cpr

and cql = cqr , the Parikh vectors of the sliding windows
do not change during the slides from i to bp1(i) and from k to bp2(k). Thus the
lemma holds. �

Computing Abelian String Regularities Based on RLE 429

Lemma 7. Assume cpl
= cql �= cpr

= cqr . There is a common Abelian common
factor (w1[i+x..i+x+d−1], w2[k+y..k+y+d−1]) of length d iff 0 ≤ x ≤ bp1(i)−
i, 0 ≤ y ≤ bp2(k) − k and x − y = max(pl) − max(ql) = min(qr) − min(pr).

Lemma 8. Assume cpr
�= cpl

= cql �= cqr and cpr
�= cqr . There is a common

Abelian factor (w1[i+x..i+x+d−1], w2[k+y..k+y+d−1]) of length diff bp1(i)−
i ≥ x = Pw2[k..k+d−1][pr] − min(pr) ≥ 0, bp2(k) − k ≥ y = Pw1[i..i+d−1][qr] −
min(qr) ≥ 0 and Pw1[i..i+d−1][pl] − x = Pw2[k..k+d−1][ql] − y.

Lemma 9. Assume cpl
�= cpr

= cqr �= cql and cpl
�= cql . There is a common

Abelian factor (w1[i + x..i + x + d − 1], w2[k + y..k + y + d − 1]) of length d iff
x = max(pl) − Pw2[k..k+d−1][pl] ≥ 0, y = max(ql) − Pw1[i..i+d−1][ql] ≥ 0 and
Pw1[i..i+d−1][pr] + x = Pw2[k..k+d−1][qr] + y.

Lemma 10. Assume cpl
= cqr �= cpr

= cql . There is a common Abelian factor
(w1[i+x..i+x+d−1], w2[k +y..k +y +d−1]) of length d iff x+y = min(pr)−
max(ql) = max(ql) − min(pr), 0 ≤ x ≤ bp1(i) − i and 0 ≤ y ≤ bp2(k) − k.

Lemma 11. Assume cpl
, cpr

, cql and cqr are mutually distinct. There is a com-
mon Abelian factor (w1[i+x..i+x+d−1], w2[k+y..k+y+d−1]) of length d iff
0 ≤ x = max(pl) − Pw2[k..k+d−1][pl] = Pw2[k..k+d−1][pr] − min(pr) ≤ bp1(i) − i
and 0 ≤ y = max(ql)−Pw1[i..i+d−1][ql] = Pw1[i..i+d−1][qr]−min(qr) ≤ bp2(k)−k.

Lemma 12. Assume cql �= cpl
= cpr

�= cqr and cql �= cqr . There is a common
Abelian factor (w1[i + x..i + x + d − 1], w2[k + y..k + y + d − 1]) of length d iff
0 ≤ x ≤ bp1(i) − i, 0 ≤ y = max(ql) − Pw1[i..i+d−1][ql] = Pw1[i..i+d−1][qr] −
min(qr) ≤ bp2(k) − k and Pw1[i..i+d−1][pl] = Pw2[k..k+d−1][pl].

Lemma 13. Assume cpl
�= cql = cqr �= cpr

and cpl
�= cpr

. There is a common
Abelian factor (w1[i+x..i+x+d−1], w2[k+y..k+y+d−1]) of length d iff 0 ≤ y ≤
bp2(k)−k and x = max(pl)−Pw2[k..k+d−1][pl] = Pw2[k..k+d−1][pr]−min(pr) ≥ 0.

Lemma 14. Assume cpr
�= cpl

= cqr �= cql and cpr
�= cql . There is a common

Abelian factor (w1[i+x..i+x+d−1], w2[k+y..k+y+d−1]) of length d iff 0 ≤ x =
Pw2[k..k+d−1][pr] − min(pr) ≤ bp1(i) − i, 0 ≤ y = max(ql) − Pw1[i..i+d−1][ql] ≤
bp2(k)−k and x+y = Pw1[i..i+d−1][pl]−Pw2[k..k+d−1][qr] = max(pl)−min(qr).

Lemma 15. Assume cpl
�= cql = cpr

�= cqr and cpl
�= cqr . There is a common

Abelian factor (w1[i+x..i+x+d−1], w2[k+y..k+y+d−1]) of length d iff 0 ≤ x =
max(pl) − Pw2[k..k+d−1][pl] ≤ bp1(i) − i, 0 ≤ y = Pw1[i..i+d−1][qr] − min(qr) ≤
bp2(k)−k and x+y = Pw2[k..k+d−1][ql]−Pw1[i..i+d−1][pr] = max(ql)−min(pr).

Theorem 3. Given two strings w1 and w2, we can compute an O(m2)-size rep-
resentation of all longest common Abelian factors of w1 and w2 in O(m2n) time
with O(σ) working space, where m and n are the total size of the RLEs and the
total length of w1 and w2, respectively.

430 S. Sugimoto et al.

Proof. The correctness follows from Lemmas 6–15.
Let m1,m2 be the sizes of RLE (w1) and RLE (w2), respectively. Let nmin =

min{|w1|, |w2|}. For each fixed window size d, the window for w1 shifts over w1

O(m1) times. For each shift of the window for w1, the window for w2 shifts
over w2 O(m2) times. Thus, we have O(m1 · m2 · nmin) total shifts. Since all the
conditions in Lemmas 6–15 can be tested in O(1) time each by simple arithmetic,
the total time complexity is O(m1m2nmin + n), where the n term denotes the
cost to compute RLE (w1) and RLE (w2). Thus, it is clearly bounded by O(m2n).
Next, we focus on the output size. Let l be the length of the longest common
Abelian factors of w1 and w2. Using Lemmas 7–15, for each pair of the shifts
of the two windows we can compute an O(1)-size representation of the longest
common Abelian factors found. Since there are O(m1 · m2) shifts for window
length l, the output size is bounded by O(m2). The working space is O(σ), since
we only need to maintain two Parikh vectors for the two sliding windows. �

Examples. We show an example of how our algorithm computes a common
Abelian factor of length 4 for two input strings w1 = aaaaacbbbcc and w2 =
cccaaccbbbb.

Fig. 3. Showing two sliding windows of
length d = 4, where i = 3, bp1(i) = 6,
k = 1, bp2(k) = 2, cpl = a, cpr = b,
cql = c, cqr = a.

Fig. 4. Showing two sliding windows of
length d = 4, where i = 3, bp1(i) = 6,
k = 2, bp2(k) = 4, cpl = a, cpr = b,
cql = c, cqr = c.

Suppose that the window for w1 is now aligned at position 3 of w1 (U3 =
w1[3..6]). We then shift it to position bp1(3) = 6 (U6 = w1[6..9]). For this shift
of the window on w1, we test O(m2) shifts of the window over the second string
w2, as follows. We begin with position 1 of the other string w2 (V1 = w2[1..4]),
and shift the window to position bp2(1) = 2. See also Fig. 3. It follows from
Lemma 14 that there is no common Abelian factor during these slides. Next, the
window for w2 is shifted from position 2 to position bp2(2) = 4 (V4 = w2[4..7]).
See also Fig. 4. It follows from Lemma 13 that there is no common Abelian factor
during the slides.Next, the window for w2 is shifted from position 4 to position
bp2(4) = 6 (V6 = w2[6..9]). See also Fig. 5. Since the numbers of occurrences of c
on w1 and w2 are different and c is not equal to a or b, there is no common Abelian
factor during the slides. Next, the window for w2 is shifted from position 6 to
position bp2(6) = 8. See Fig. 5. It follows from Lemma 9 that there is a common
Abelian factor (w1[6..9], w2[7..10]) of length d = 4 (Fig. 6).

Computing Abelian String Regularities Based on RLE 431

Fig. 5. Showing two sliding windows of
length d = 4, where i = 3, bp1(i) = 3,
k = 4, bp2(k) = 6, cpl = a, cpr = b,
cql = a, cqr = b.

Fig. 6. Showing two sliding windows of
length d = 4, where i = 3, bp1(i) = 3,
k = 6, bp2(k) = 3, cpl = a, cpr = b,
cql = c, cqr = b.

References

1. Alatabbi, A., Iliopoulos, C.S., Langiu, A., Rahman, M.S.: Algorithms for longest
common Abelian factors. Int. J. Found. Comput. Sci. 27(5), 529–544 (2016).
http://dx.doi.org/10.1142/S0129054116500143

2. Amir, A., Apostolico, A., Hirst, T., Landau, G.M., Lewenstein, N., Rozenberg,
L.: Algorithms for jumbled indexing, jumbled border and jumbled square on run-
length encoded strings. In: Moura, E., Crochemore, M. (eds.) SPIRE 2014. LNCS,
vol. 8799, pp. 45–51. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11918-2 5

3. Badkobeh, G., Gagie, T., Grabowski, S., Nakashima, Y., Puglisi, S.J., Sugimoto,
S.: Longest common Abelian factors and large alphabets. In: Inenaga, S., Sadakane,
K., Sakai, T. (eds.) SPIRE 2016. LNCS, vol. 9954, pp. 254–259. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46049-9 24

4. Constantinescu, S., Ilie, L.: Fine and Wilf’s theorem for Abelian periods. Bull.
EATCS 89, 167–170 (2006)

5. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Pachocki, J.,
Radoszewski, J., Rytter, W., Tyczyński, W., Waleń, T.: A note on efficient com-
putation of all Abelian periods in a string. Inf. Process. Lett. 113(3), 74–77 (2013)

6. Cummings, L.J., Smyth, W.F.: Weak repetitions in strings. J. Comb. Math. Comb.
Comput. 24, 33–48 (1997)

7. Erdős, P.: Some unsolved problems. Hungarian Academy of Sciences Mat. Kutató
Intézet Közl 6, 221–254 (1961)

8. Fici, G., Lecroq, T., Lefebvre, A., Prieur-Gaston, É.: Algorithms for computing
Abelian periods of words. Discrete Appl. Math. 163, 287–297 (2014)

9. Fici, G., Lecroq, T., Lefebvre, A., Prieur-Gaston, É., Smyth, W.F.: A note on easy
and efficient computation of full Abelian periods of a word. Discrete Appl. Math.
212, 88–95 (2016)

10. Grabowski, S.: A note on the longest common Abelian factor problem. CoRR
abs/1503.01093 (2015)

11. Kociumaka, T., Radoszewski, J., Rytter, W.: Fast algorithms for Abelian periods
in words and greatest common divisor queries. In: STACS 2013, pp. 245–256 (2013)

12. Kociumaka, T., Radoszewski, J., Wísniewski, B.: Subquadratic-time algorithms for
Abelian stringology problems. In: Kotsireas, I.S., Rump, S.M., Yap, C.K. (eds.)
MACIS 2015. LNCS, vol. 9582, pp. 320–334. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-32859-1 27

13. Sugimoto, S., Noda, N., Inenaga, S., Bannai, H., Takeda, M.: Computing Abelian
regularities on RLE strings. CoRR abs/1701.02836 (2017). http://arxiv.org/abs/
1701.02836

http://dx.doi.org/10.1142/S0129054116500143
https://doi.org/10.1007/978-3-319-11918-2_5
https://doi.org/10.1007/978-3-319-11918-2_5
https://doi.org/10.1007/978-3-319-46049-9_24
https://doi.org/10.1007/978-3-319-32859-1_27
https://doi.org/10.1007/978-3-319-32859-1_27
http://arxiv.org/abs/1701.02836
http://arxiv.org/abs/1701.02836

Author Index

Agrawal, Akanksha 103
Aichholzer, Oswin 169
Alecu, Bogdan 195
Alzamel, Mai 37, 343
Aubry, Pascal 275

Bača, Martin 3
Balko, Martin 169
Balonin, N. A. 47
Bannai, Hideo 397, 420
Blondin Massé, Alexandre 206

Carpov, Sergiu 275
Charalampopoulos, Panagiotis 343
Chateau, Annie 128
Chimani, Markus 61
Cohen, Nathann 116

Darties, Benoit 128
de Carufel, Julien 206
de Werra, Dominique 195
Della Croce, Federico 75
Domingo-Ferrer, Josep 371
Donovan, Diane 13

Felsner, Stefan 61
Fernau, Henning 24

Giroudeau, Rodolphe 128
Goupil, Alain 206
Grigorious, Cyriac 264
Gu, Hanyu 312

Hackl, Thomas 169
Hamel, Sylvie 299
Harutyunyan, Hovhannes A. 219
Havet, Frédéric 116
Hinding, Nurdin 3

I, Tomohiro 409
Iliopoulos, Costas S. 37, 343
Inenaga, Shunsuke 397, 420
Inoue, Hiroe 397

Javed, Aisha 3

Kalinowski, Thomas 264
Kelarev, Andrei 383
Kobourov, Stephen 61
Konečný, Matěj 252
Kučera, Stanislav 252

Lewis, Rhydian 287
Li, Zhiyuan 219
Lozin, Vadim 185, 195

Mallach, Sven 327
Mazauric, Dorian 116
McCourt, Thomas A. 13
Memar, Julia 312
Mieno, Takuya 397
Milosz, Robin 299
Misra, Neeldhara 142

Nakashima, Yuto 397
Noda, Naoki 420
Novotná, Jana 252

Ohno, Tatsuya 409
Oshima, Hiroki 88

Pekárek, Jakub 252
Pferschy, Ulrich 75
Phillips, Kyle 287
Pilz, Alexander 169
Pissis, Solon P. 343

Rajaby, Ramesh 356
Ramos, Pedro 169
Reddy, I. Vinod 142
Rylands, Leanne 383

Sakamoto, Hiroshi 409
Samson, Maxime 206
Sau, Ignasi 116
Scatamacchia, Rosario 75
Schauz, Uwe 233

Seberry, Jennifer 47, 383
Semaničová-Feňovčíková, Andrea 3
Šimsa, Štěpán 252
Sirdey, Renaud 275
Smith-Miles, Kate 287
Stephen, Sudeep 264
Sugimoto, Shiho 420
Sung, Wing-Kin 356

Takabatake, Yoshimasa 409
Takeda, Masayuki 397, 420
Töpfer, Martin 252

Ueckerdt, Torsten 61

Valtr, Pavel 61, 169
Vasquez, Michel 244
Vikas, Narayan 154
Vimont, Yannick 244
Vogtenhuber, Birgit 169

Watrigant, Rémi 116
Weller, Matthias 128
Wolff, Alexander 61

Yi, Xun 383

Zamaraev, Viktor 195
Zinder, Yakov 312

434 Author Index

	Preface
	Organization
	Contents
	Invited Papers
	Entire H-irregularity Strength of Plane Graphs
	1 Introduction
	2 Lower Bounds for the Entire H-irregularity Strength
	3 Upper Bound for the Entire H-irregularity Strength
	4 Conclusion
	References

	Combinatorial Questions: How Can Graph Labelling Help?
	1 Introduction
	2 What are Skolem Sequences and Skolem Labelled Graphs, and How are the Two Connected?
	2.1 How Many Distinct Skolem Labellings of P2n Exist?
	2.2 What is the Connection Between Skolem Labellings, Steiner Triple Systems and Partial Triple Systems?

	3 How Can We Use Skolem Labellings to Construct Parity Check Matrices for Linear Codes?
	3.1 What is the Connection to a Skolem Labelling?

	4 Closing Remarks
	References

	Extremal Kernelization: A Commemorative Paper
	1 Introduction
	2 Parameterized Complexity and Kernelization
	3 Combinatorial Results for Kernelization
	3.1 Special Combinatorial Results
	3.2 General Combinatorial Results

	4 FPT Ideas for Combinatorialists
	5 How Extreme Can Kernels Be?
	References

	Recent Advances of Palindromic Factorization
	1 Introduction
	1.1 General Definitions

	2 Maximal Palindromic Factorization
	3 Palindromic Factorization with Gaps
	4 Computing Maximal Palindromes with Errors
	5 Maximal Palindromic Factorization with Gaps and Errors
	6 Maximal Palindromic Factorization of Weighted String
	7 Conclusion
	References

	A Construction for {0,1,-1} Orthogonal Matrices Visualized
	1 Introduction
	1.1 Definitions and Basics

	2 Symmetric Propus-Hadamard Matrices
	2.1 Simple Propus-Hadamard Matrices of 12 and 20
	2.2 B=C=D
	2.3 Order 4n from Williamson Matrices Using q a Prime Power
	2.4 Propus-Hadamard Matrices from D-optimal Designs
	2.5 The Propus Construction

	3 Propus-Hadamard Matrices from Conference Matrices: Even Order Matrices
	3.1 Propus-Hadamard Matrices for n Even

	4 Conclusion and Future Work
	References

	Approximation Algorithms and Hardness
	On the Maximum Crossing Number
	1 Introduction
	2 Preliminaries and Basic Observations
	3 Counterexamples for Conjecture1
	4 Complexity
	5 Conclusions and Open Problems
	References

	Approximation Results for the Incremental Knapsack Problem
	1 Introduction
	2 Notation and Problem Formulation
	3 Approximating IKP
	3.1 Approximation Ratios of a General Purpose Algorithm
	3.2 A PTAS When T is a Constant

	4 Approximation Algorithms for a Relevant IKP Variant
	4.1 Approximation for T=2

	5 Conclusions
	References

	Derandomization for k-Submodular Maximization
	1 Introduction
	2 Preliminary
	3 Existing Algorithms
	3.1 Algorithm Framework
	3.2 The Randomized Algorithm for Monotone Functions

	4 Derandomization Scheme for k-Submodular Maximization
	5 A Deterministic Algorithm for Monotone Functions
	6 A Deterministic Algorithm for Nonmonotone Functions
	6.1 The Randomized Algorithm for Derandomization
	6.2 A Deterministic Algorithm for Nonmonotone Functions

	7 Conclusion
	References

	Computational Complexity
	On the Parameterized Complexity of Happy Vertex Coloring
	1 Introduction
	2 Preliminaries
	3 Algorithm for Maximum Happy Vertices on Graphs of Bounded Treewidth
	4 W[1]-hardness of Happy Vertex Coloring
	5 Kernelization Algorithm for Happy Vertex Coloring
	6 Conclusion
	References

	Complexity Dichotomies for the Minimum F-Overlay Problem
	1 Introduction
	1.1 Notation
	1.2 Definition of the Minimum F-Overlay problem
	1.3 Related Work and Applications
	1.4 Our Contributions

	2 Complexity Dichotomy
	2.1 Prescribing Some Edges
	2.2 Hard Sets
	2.3 Proof of Theorem 3

	3 Parameterized Analysis
	3.1 Negative Result

	4 Conclusion and Future Work
	References

	Improved Complexity for Power Edge Set Problem
	1 Introduction
	2 Preliminaries
	3 Computational Results
	3.1 Hardness on Planar Graphs
	3.2 Hardness on Bipartite Planar Graphs

	4 Some Lower Bounds
	4.1 Non-approximability
	4.2 Lower Bounds for Exact and FPT Algorithms

	5 Conclusion
	References

	The Parameterized Complexity of Happy Colorings
	1 Introduction
	2 Preliminaries
	3 Structural Parameterizations
	3.1 Treewidth
	3.2 Vertex Cover and Distance to Clique
	3.3 The Standard Parameter

	4 Special Graph Classes
	5 Conclusion
	References

	Computational Complexity Relationship between Compaction, Vertex-Compaction, and Retraction
	1 Introduction
	1.1 Definitions
	1.2 Homomorphism, Vertex-Compaction, Compaction, and Retraction Problems
	1.3 Motivation and Results

	2 A Polynomial Transformation from Vertex-Compaction to Compaction and Retraction
	3 Relationship between Vertex-Compaction, Compaction, and Retraction Problems for Reflexive and Bipartite Graphs
	4 A Complete Computational Complexity Classification of Vertex-Compaction to All Graphs with Four or Fewer Vertices
	References

	Computational Geometry
	Holes in 2-Convex Point Sets
	1 Introduction
	2 Properties of 2-Convex Polygons
	3 The Lower Bound
	4 An Upper-Bound Construction
	5 Convexity of Horton Sets
	References

	Graphs and Combinatorics
	Graph Parameters and Ramsey Theory
	1 Introduction
	2 Neighbourhood Diversity
	3 VC-Dimension
	4 More Results and Discussion
	References

	Letter Graphs and Geometric Grid Classes of Permutations: Characterization and Recognition
	1 Introduction
	2 Preliminaries
	2.1 Letter Graphs
	2.2 Geometric Grid Classes of Permutations

	3 From Geometric Grid Class of Permutations to Letter Graphs
	4 Recognition of 3-Letter Graphs
	4.1 3-Letter Graphs with the Decoder

	References

	Fully Leafed Tree-Like Polyominoes and Polycubes
	1 Introduction
	2 Preliminaries
	3 Fully Leafed Tree-Like Polyominoes
	4 Fully Leafed Polycubes
	5 Concluding Remarks
	References

	Improved Lower Bound on Broadcast Function Based on Graph Partition
	1 Introduction
	2 Definitions and Observations
	3 New Lower Bound
	4 Conclusion
	References

	Graph Colourings, Labelings and Power Domination
	Orientations of 1-Factors and the List Edge Coloring Conjecture
	1 Introduction
	2 A Nullstellensatz for List Colorings
	3 Another Characterization of the Sign
	4 The List Chromatic Index of Small Graphs
	4.1 Small Even Graphs
	4.2 Small Odd Graphs

	References

	On Solving the Queen Graph Coloring Problem
	1 Introduction
	2 Additional Assumptions
	3 Coloring Extension
	4 Conclusion
	References

	Minimal Sum Labeling of Graphs
	1 Introduction
	1.1 Preliminaries

	2 Sum Graphs with Loops
	3 Non-injective Sum Graphs Without Loops
	3.1 Sequence Description
	3.2 Cover Merging
	3.3 Vertices (2) and (3) in C(An)
	3.4 Smallest Labels of C(An)
	3.5 Results

	4 Conclusion
	References

	On the Power Domination Number of de Bruijn and Kautz Digraphs
	1 Introduction
	2 Notations and Main Result
	3 The Power Domination Number of de Bruijn Digraphs
	4 The Power Domination Number of Kautz Digraphs
	5 Conclusion
	References

	Heuristics
	A Multi-start Heuristic for Multiplicative Depth Minimization of Boolean Circuits
	1 Introduction and Related Works
	2 Multiplicative Depth Minimization Multi-start Heuristic
	2.1 Preliminary Definitions
	2.2 Multiplicative Depth-2 Path Rewrite Operators
	2.3 Multi-start Heuristic

	3 Experimental Results
	4 Conclusions and Perspectives
	References

	The School Bus Routing Problem: An Analysis and Algorithm
	1 Introduction
	2 Problem Definition
	3 Problem Analysis
	4 Algorithm Description
	4.1 Initial Solution and Cost Function
	4.2 Local Search
	4.3 Generating New Minimal Coverings via a Kick Operator

	5 Experimentation
	6 Conclusions and Further Work
	References

	Heuristic, Branch-and-Bound Solver and Improved Space Reduction for the Median of Permutations Problem
	1 Introduction
	2 Median of Permutation: Definitions and Notations
	3 A Heuristic Approach
	3.1 Simulated Annealing
	3.2 Choosing the Parameters

	4 Space Reduction Technique
	4.1 Some Constraints
	4.2 A New Lower Bound
	4.3 An Upper Bound
	4.4 Putting Everything Together

	5 An Exact Approach
	5.1 Branch-and-Bound
	5.2 Bounds and Cuts

	6 Conclusion
	References

	Efficient Lagrangian Heuristics for the Two-Stage Flow Shop with Job Dependent Buffer Requirements
	1 Introduction
	1.1 Problem Description
	1.2 Outline of the Optimisation Procedure

	2 Lagrangian Relaxation
	3 Lagrangian Heuristics
	3.1 No-Wait Algorithm
	3.2 Wait Algorithm

	4 Computational Experiments
	References

	Mixed Integer Programming
	Linear Ordering Based MIP Formulations for the Vertex Separation or Pathwidth Problem
	1 Introduction
	2 The Vertex Separation Problem
	3 Related Work
	4 Representative MIP Models
	4.1 Position Assignments (MIPP)
	4.2 Set Assignments (MIPS)
	4.3 Relaxation Strength of MIPP and MIPS

	5 A Novel Linear-Ordering Model (MIPL)
	6 Experimental Evaluation
	6.1 Results
	6.2 Conclusion and Discussion

	References

	Polynomial Algorithms
	How to Answer a Small Batch of RMQs or LCA Queries in Practice
	1 Introduction
	2 Contracting the Input Array
	3 Small RMQ Batch
	3.1 An n + O(q logq)-time and O(q)-space Algorithm
	3.2 n + O(q)-time and O(q)-space Algorithms

	4 Small LCA Queries Batch
	5 Applications
	6 Experimental Results
	7 Final Remarks
	References

	Computing Asymmetric Median Tree of Two Trees via Better Bipartite Matching Algorithm
	1 Problem Definition
	1.1 Asymmetric Median Tree Problem
	1.2 Maximum Bipartite Matching Problem

	2 Computing Maximum Matching in a -Interval-Pair Bipartite Graph
	2.1 Phase 1
	2.2 Phase 2

	3 Compute the Asymmetric Median Tree of Two Trees by Maximum Bipartite Matching
	3.1 GT1, T2 is the Union of O(n log2 n) Interval Pairs

	References

	Privacy
	Privacy-Preserving and Co-utile Distributed Social Credit
	1 Introduction
	1.1 Contribution and Plan of This Paper

	2 Co-utility
	3 Requirements of a Co-utile and Distributed Reputation Protocol
	4 The EigenTrust Distributed Reputation System
	4.1 Computing Local Reputations
	4.2 Computing Global Reputations

	5 Co-utile and Weakly Anonymous Computation of Global Reputations
	6 Co-utile and Privacy-Preserving Computation of Global Reputations
	6.1 Multiple Pseudonyms with Independent Reputations
	6.2 Multiple Linkable Pseudonyms
	6.3 Generalization: Pseudonyms Allowing Multiple Linkages

	7 Conclusions and Future Work
	References

	Combinatorial Algorithms and Methods for Security of Statistical Databases Related to the Work of Mirka Miller
	1 Introduction
	2 Classical Compromise
	3 Relative Compromise
	4 Group Compromise or k-compromise
	5 Generalizations and Other Related Results
	References

	String Algorithms
	Shortest Unique Palindromic Substring Queries in Optimal Time
	1 Introduction
	2 Preliminaries
	2.1 Strings
	2.2 Palindromes
	2.3 MUPSs, SUPSs and Our Problem
	2.4 Computation Model

	3 Solution to the SUPS Problem
	3.1 Properties on SUPS and MUPS
	3.2 Tools
	3.3 Algorithm

	4 Computing MUPSs
	4.1 Tools
	4.2 Computing Distinct Palindromes
	4.3 Computing All MUPSs

	5 Conclusions
	References

	A Faster Implementation of Online Run-Length Burrows-Wheeler Transform
	1 Introduction
	1.1 Motivation
	1.2 Our Contribution

	2 Preliminaries
	2.1 BWT
	2.2 Searchable Partial Sums with Indels

	3 Dynamic Rank/Select Data Structures on Run-Length Encoded Strings
	3.1 Existing Data Structure
	3.2 New Data Structure

	4 Experiments
	5 Conclusion
	References

	Computing Abelian String Regularities Based on RLE
	1 Introduction
	1.1 Our Problems and Previous Results
	1.2 Our Contribution

	2 Preliminaries
	3 Computing Regular Abelian Periods Using RLEs
	4 Computing Abelian Squares Using RLEs
	4.1 Cummings and Smyth's O(n2)-Time Algorithm
	4.2 Our O(mn)-Time Algorithm

	5 Computing Longest Common Abelian Factors Using RLEs
	References

	Author Index

