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Preface

The 13th EAI International Conference on Security and Privacy in Communication
Networks (SecureComm) was held during October 22–25, 2017, in the beautiful
Niagara Falls, Canada. SecureComm is one of the premier conferences in cyber
security, which provides an opportunity for researchers, technologists, and industry
specialists in cyber security to meet and exchange ideas and information.

We were honored to have hosted keynote speeches by two world renowned cyber
security researchers, Dr. Patrick McDaniel, Pennsylvania State University, and
Dr. Ninghui Li, Purdue University. Their topics included security and privacy in
machine learning, and differential privacy, which are currently hot research topics in
cyber security research.

The conference program included technical papers selected through peer reviews by
the Program Committee members, invited talks, and special sessions. Out of a total
number of 105 submissions, 31 were selected as full papers and 15 as short papers.
Besides the main conference, there were two workshops on emerging research topics in
the field of security and privacy. The first one, International Workshop on Applications
and Techniques in Cyber Security (ATCS), has been affiliated with SecureComm for
many years, focusing on all aspects of techniques and applications in cyber security
research. In all, 17 papers were accepted and are included in the proceedings. The
second one was the First Workshop on Security and Privacy in the Internet of Things
(SePrIoT). SePrIoT is intended to reflect the importance of addressing security and
privacy in the Internet of Things (IoT). Five papers were accepted and are included in
the proceedings. The technical program thus comprised a total of 68 papers.

We would like to thank all of our authors as well as our dedicated organizing team
and volunteers for their hard work. SecureComm would not be successful without the
dedication and passion of its contributors. Many people worked hard to make
SecureComm 2017 a success. We would like to express our gratitude to them. It is also
impossible to list here all those individuals whom we are grateful to. But we would like
to thank particularly the EAI, especially Prof. Imrich Chlamtac of EAI, for their strong
support of this conference. Also, we thank the members of the conference committees
and the reviewers for their dedicated and passionate work. In particular, we thank the
Program Committee co-chairs, Dr. Kui Ren and Dr. Sencun Zhu, for their great
leadership in creating such a wonderful program. We also thank Ms. Dominika
Belisová of EAI for her hard work and dedication in taking great care of the conference
organization. Without the extremely generous support of EAI, this conference could
not have happened. Last but not least, we thank the Steering Committee of
SecureComm for having invited us to serve as the general chairs of SecureComm 2017.

We hope you enjoy the proceedings of SECURECOMM 2017 as much as we
enjoyed the conference.

March 2018 Xiaodong Lin
Ali Ghorbani
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Gray-Box Software Integrity Checking
via Side-Channels

Hong Liu and Eugene Y. Vasserman(B)

Department of Computer Science, Kansas State University,
1701D Platt Street, Manhattan, KS, USA

{hongl,eyv}@ksu.edu

Abstract. Enforcing software integrity is a challenge in embedded sys-
tems which cannot employ modern protection mechanisms. In this paper,
we explore feasibility of software integrity checking from measuring pas-
sive electromagnetic emissions of FPGA-implemented SoCs. We show
that clock-cycle-accurate side-channel models can be built by utilizing
gray-box analysis and regression techniques. The generality and effective-
ness of our methods are shown by three different SoCs, profiled and tested
on different chips of the same model. Our technique is non-invasive, and
does not interrupt normal execution or change hardware/software config-
uration of the target device, making it particularly attractive for already-
deployed systems.

Keywords: Security · Embedded systems · Side-channel analysis
Software attestation · Soft-core processors · FPGA

1 Introduction

Enforcing software integrity is a fundamental problem in system security: a
device runs some software, and a verifier wants to know whether the device
runs an unmodified version of the software, or a different piece of code, or orig-
inal code but in an unintended execution state [13,17,43]. Enforcing software
integrity for embedded systems, especially fielded/legacy ones, is extremely dif-
ficult. Software-based methods such as hypervisors [41], separation kernels [19],
and control flow integrity checking [40,43] detect/prevent tampering by utiliz-
ing hardware security features that provide some form of separation such as
operation modes and memory protection. Remote attestation [10,23,29], secure
boot [16], and watchdog coprocessors [42] rely on trusted hardware and mem-
ory access controls to execute attestation code, e.g., to verify memory content
and examine signatures appearing on buses. However, many embedded systems
do not have such sophisticated capabilities due to hardware cost, high power
consumption, and/or the difficulty in updating fielded components. Further, an
external verification mechanism may be required no matter which protection
method is used, as some security assumptions may weaken with time, and veri-
fication of design-time assumptions is needed.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

X. Lin et al. (Eds.): SecureComm 2017, LNICST 238, pp. 3–23, 2018.

https://doi.org/10.1007/978-3-319-78813-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78813-5_1&domain=pdf
http://orcid.org/0000-0002-2420-4329


4 H. Liu and E. Y. Vasserman

For systems composed of discrete components, sniffing bus traffic between
constituent components may suffice to verify that the system acts as expected.
For Systems-on-Chips (SoCs), however, internal activities cannot be observed
directly, so we utilize “side-channel” emissions to infer them. The idea is to dis-
cover the relationships between the internal states of a target device and side-
channel information so that when given a new side-channel measurement, it is
possible to determine whether the internal state is an expected one or not. Unex-
pected state may be a sign of incorrect execution or malware. Researchers have
tried using external power measurements to detect abnormal behavior at the
level of functions or code segments [18,38,45], but attackers can write compact
malware (as small as one instruction in size), code-reuse malware, as well as mal-
ware that has minimal impact on system-wise side-channel measurements [49].
In such situations, software attestation [9,36,54,62] can be used to detect modi-
fication of software down to single instructions. These methods utilize the timing
side-channel and do not rely on specialized hardware or sophisticated processors,
but do require interruption of normal execution of the target device. In addi-
tion, systems must explicitly support software attestation, making retrofitting
difficult for legacy and deployed systems.

In this work we explore the possibility of using passive and non-invasive side-
channel measurements for software integrity checking on SoCs. Our approach
infers internal runtime state of an embedded system at a granularity sufficient to
detect compact and side-channel-aware malware, without modifying the target
device. This is extremely beneficial since the verifier is external to the device
under test and is the only possible effective verifier when all security mechanisms
(if any) internal to the device have failed.

Instead of analyzing numerous hardware platforms one by one, we choose
field-programmable gate arrays (FPGAs) as the target SoC device. It has unique
features compared to other platforms [20], but also poses unique challenges,
namely the inability to perform full white-box analysis, as the detailed design
and parameters of the base array and the configuration circuits are unknown
to developers. The use of IP cores further obscures the electrical characteristics
of a device. We therefore work with only partial knowledge, and so term our
approach “gray-box” side-channel analysis.

In this work, we make the following contributions:

• We demonstrate the feasibility of using passive electromagnetic (EM) emis-
sions of FPGA-based SoCs for software integrity checking. Our method is
scalable, low-cost, and easily applicable to deployed systems.

• We show how to build cycle-accurate models of passive EM radiation of
FPGA-based SoCs without access to detailed design specifications and how to
efficiency and effectiveness use regression for EM profiling, even for systems
with large instruction sets and variable instruction cycles.

• We experimentally validate the generality of our approach on three different
FPGA-based SoCs – two based on a soft processor IP core (namely NIOS
II), and one on the OpenMSP430 open processor core, and further show that
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profiling is robust to manufacturing variations by testing on a different FPGA
chip of the same model with the chip for profiling.

• We provide bounds on the (very low) probability that an EM-aware adversary
can successfully modify code without being detected.

2 Related Work

Passive side-channel emissions of various embedded systems have long been stud-
ied to optimize power usage and perform EMI/EMC analysis [58]. Side-channel
models can be built at different levels given different degrees of knowledge on
system configurations. At the lowest level, power consumption of FPGAs has
been modeled at the transistor level in order to build power-efficient FPGA
architectures and power-aware CAD tools [8,25,31,47,50]. Dynamic power con-
sumption is in general modeled as the aggregation of power consumed by each
node inside an FPGA whose load and parasitic capacitances are charged and dis-
charged at signal transitions, as well as short-circuit power that occurs in CMOS
inverters [8,25,50]. For FPGA-implemented SoCs in which a complex proces-
sor is involved, low-level analysis becomes impractical, especially given reliance
on detailed design information, so researchers built side-channel models from
empirical measurements of real boards. Senn et al. [53] measured system-level
power consumption of the NIOS II core and Zipf et al. [63] performed a hybrid
functional- and instruction-level power analysis of LEON2, another soft-core
processor. However, these estimation models profiled the average side-channel
emissions of embedded systems rather than trying to infer system state (which
program is running and its runtime state) from side-channel measurements.

In the cryptographic hardware domain, passive side-channel emissions of
FPGA-implemented cryptographic routines are used to extract secret materials
(e.g., keys) [7,33,34,60]. Such analyses concentrate on a few leakage points of
the keys, with cryptographic algorithms often considered to be public (although
the implementation details may be unknown), or irrelevant. Secret keys may
be exposed regardless of cryptographic algorithms used [11], so the work on
cryptographic hardware does not present a comprehensive picture of dynamic
side-channel emissions of an entire embedded system.

Work on side-channel analysis of general programs used passive system-wide
power measurements to detect anomalous behaviors and/or malware [18,27,28,
38,45,61]. These methods, however, assume malware (code) to be sufficiently
long and not written to conceal its side-channel profiles. To use side-channels for
rigorous integrity checking, we must consider compact and side-channel-aware
malware. Software attestation [9,36,54,62] utilizes the timing side-channel and
is capable of detecting malware at such precision. However, the device must
support such attestation, and carrying out the process requires interruption of
the device execution, a particular drawback for legacy and actively-used systems.

Researchers have tried to build side-channel models of the instruction set for
certain smart cards and microcontrollers [22,26,27,46,51,55,56,59], and to build
side-channel-based disassemblers by recognizing instruction operations from pas-
sive measurements. However, this focused on recognizing instruction operations
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(e.g., MOVLW) instead of the entire instructions including operands (e.g., MOVLW
0xAA) and content of operands. In [37], researchers found that passive power
measurement of some microcontroller was dominated by a small number of data-
dependent relationships, implying that recognizing instruction operations solely
from power consumption is unlikely to be reliable.

For integrity checking of the FPGA platforms specifically, previous research
on reading SRAM [57] and detection of FPGA trojans [30] shows the funda-
mental possibility of verifying FPGA configuration logic. The methods however
require invasive measurements and specialized equipment, and do not scale well
for complex systems. It is not known how to efficiently verify the software of an
FPGA-based embedded system in practice.

3 Problem Definition

We define the general software integrity checking problem as follows, shown in
Fig. 1. There are two parties: the prover P (a device running the target applica-
tion software S), and the verifier V (who would like to determine whether P runs
S or a modified version S′). V is a trusted entity who knows the initial hardware
and software configuration of P . P and V communicate over an explicit channel
C and/or a side-channel E. V bases its judgment on evidence that P provides
directly through C (e.g., using signatures) or indirectly over E (e.g., by timing
or EM radiation).

Fig. 1. General software integrity checking problem with explicit communication chan-
nels and side-channels

This model can be instantiated in different ways. In a microcontroller-based
embedded system, for example, S is naturally the software of the microcon-
troller, and P is the microcontroller chip and the printed circuit board (PCB).
In an FPGA-based embedded system, however, both the hardware and the soft-
ware are programmable: FPGA configuration logic describes both the embed-
ded system hardware (processor, memory, I/O, etc.) as well as the application
software running on the system. Since reconfiguring an FPGA causes consid-
erable difference in observations (such as loss of main clock in EM emissions),
it is straightforward to discover tampering with FPGA configuration logic. We
focus on detecting tampering with the application software which is modifiable
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on-the-fly in memory. S is therefore defined as the application software, and
P incorporates the PCB, the FPGA chip, and the FPGA configuration logic
describing the hardware of the system.

3.1 Threat Model

Attacker. We assume that the attacker is unable to modify or inject faults into
the PCB and the FPGA chip of the target embedded system. This is enforceable
in practice using physical tamper-resistance or tamper-proof techniques [35].
Moreover, the attacker is not an insider of the FPGA or IP core manufacturers,
and cannot tamper the FPGA IC design, IP cores, or the CAD tools, on which
we rely to establish the ground truth. We further assume that the attacker is
unable to modify the FPGA hardware configuration, i.e., cannot reconfigure the
hardware of the FPGA. This can be achieved by authenticating the configuration
bit-stream [20], or by removing configuration peripherals before deployment, or
by observing the EM emissions as mentioned in last paragraph. However, we
assume that the attacker is able to modify the application software S, e.g.,
modifying the RAM of the device through buffer overflows, data-based attacks,
etc. We also assume that the attacker is side-channel-aware – actively attempts
to evade detection via side-channel emissions by crafting the modified software
S′ in a fashion that minimizes side-channel deviations from S. Nonetheless, the
attacker cannot invasively profile the side-channels of the target device.

Verifier. We assume a verifier of very limited capability for applicability of
our approach. We assume that the verifier knows the configuration of a target
device and is able to profile the side-channel characteristics only on a different
device of the same model with the target device. The verifier can only perform
non-invasive measurements on the target device, which is important for this
methodology to be easily applied to deployed devices.

We emphasize that the verifier is completely external to the target device,
and cannot modify the device hardware or software to change the nature or
magnitude of side-channel emissions, so that the verifier has the advantage of
invisibility to attackers. The verifier can only passively measure the target device
with measurement equipment incurring minimal impact on EMC. For example,
the verifier may remove the shielding enclosure for measurements, but may not
remove the noise decoupling circuits.

4 Experimental Setup

For a representative legacy and deployed system, we choose a general-purpose
development board for the Altera Cyclone III FPGA EP3C5E144C8 as the tar-
get device. The FPGA chip is designed for low-cost, small-scale applications.
We choose the EM side-channel, which is much more convenient to measure
than power consumption. Preliminary test on the chip shows that it is not EM-
shielded, which eases our experiment. We implement one SoC on the FPGA at
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Fig. 2. Experimental setup and an example of a recorded result

a time in the way that the only observable I/O is a parallel peripheral I/O (the
memory chip on the development board is not used). Two different chips (i.e.,
boards) of the same model are used, one for profiling and another for testing.

We find that several positions on the board emit strong EM signals of similar
waveform. We have tried both far-field and near-field measurements of EM radia-
tion, and obtained the best result from near-field measurements with a shielded
loop probe similar to the EMC probe in [48]. The probe measures the global
radiation of the FPGA chip. The resulting setup, with the probe position near
one of the power regulators, is shown in Fig. 2a.

The output is amplified by a 20 dB amplifier with bandwidth from 1 kHz
to 1 GHz, and then is sampled by a PicoScope 5244B oscilloscope, which has a
200 MHz bandwidth and a maximally 500 MS/s sample rate for each channel. We
use the 20 MHz integrated hardware filter of the oscilloscope to avoid aliasing.
The processor core clock frequency therefore should be set far lower – we set
it to 1 MHz. Our results should be repeatable at higher frequencies using more
costly oscilloscopes supporting higher bandwidths. The position and orientation
of the probe is then adjusted to gain signals of the maximal signal-to-noise ratio
(SNR). Probe location is re-adjusted for each SoC. The resulting SNR of the EM
traces, computed by the ratio of the variance of the signal and noise, is around
15 dB. A typical single-captured waveform is shown in Fig. 2b.

We have intentionally used low-cost signal acquisition and analysis equipment
in order to show that verification of low-end legacy systems can be accomplished
with only modest resources. The most costly component in our experiment setup
is the off-the-shelf USB oscilloscope, at about $2,000; putting the total system
cost at under $2,100. Combining all components into a single “software integrity
measurement device” and manufacturing at scale is likely to further reduce costs.

5 The Test Code and SoC Test Targets

We evaluate our approach on three SoCs, implemented in turn on our FPGA
test-bed: a NIOS II-based system capable of running an operating system; a
simpler NIOS II-based system with a more constrained resource configuration;
and an OpenMSP430-based system that is also operating system-capable.
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5.1 System A: NIOS II-Based SoC

Our first experiment is on a NIOS II-based SoC. NIOS II is a general-purpose 32-
bit RISC soft processor core from Altera [4]. We chose the NIOS II/e Quartus II
13.1 web edition (the latest edition for the target FPGA). NIOS II/e is designed
for simple control logic applications and/or inexpensive systems. It supports
over a hundred instruction operations, executed in a variable number of clock
cycles, ranging from six to 38. (Our experiments show it is actually seven to 39,
contrary to specifications.) The HDL source is not available, and the processor
offers only limited configurability. It does not support different operating modes
or memory protection, so modern security mechanisms that rely on processor-
enforced separation cannot be used.

The NIOS II-based system is composed of the core, 40 kB M9K RAM, a
timer, and a 16-bit parallel I/O connected using the Avalon bus. The system
can run the FreeRTOS operating system [3] and several application tasks. The
entire FPGA-implemented SoC consists of the NIOS II-based system, a small
control unit that supplies clock and reset signals to the core, and a phase-locked
loop (PLL). Programs are loaded and executed directly in RAM, forming a
complete SoC, i.e., with no bus interfaces outside the chip except parallel I/O.
We remove the JTAG interface of the processor, as it is unlikely to be present in
a deployed device. The 1 MHz clock is obtained by using a PLL core connected
to an external 25 MHz clock source. We do not make any effort to enhance the
side-channel emissions when generating the system, so the experiment measures
the typical EM radiation of a NIOS II-based system.

5.2 System B: Resource-Constrained NIOS II-Based SoC

The second SoC is also NIOS II-based, but simpler, to represent a “bare-bones”
system that does not have enough resources to run an operating system. It has
only a 16 kB M9K RAM for program and data memory, and an 8-bit parallel
I/O. No timers are present. Otherwise is identical to system A.

5.3 OpenMSP430-Based SoC (System C)

The third system is based on OpenMSP430, a 16-bit open-source MSP430 family-
compatible processor [5]. It supports 27 core instructions and seven addressing
modes. Any valid combination of source and destination addressing modes is pos-
sible in an instruction, unlike NIOS II, which uses explicit load and store oper-
ations. Instructions of OpenMSP430 can be byte or word operations, whereas
NIOS II supports only 32-bit word operations for instructions other than load
and store. The number of clock cycles required for an instruction is variable
(from one to six), depending both on the instruction type and addressing mode.

The SoC consists of the processor, 32 kB M9K RAM for program memory and
4 kB for data memory, a timer, and a 16-bit parallel I/O. Otherwise configuration
is the same for all three systems. Programs are compiled using MSP430-GCC,
then binaries are converted to an FPGA RAM initialization file, and loaded and
executed directly in RAM, forming a complete SoC.
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5.4 Test Code

Ideally, we should exercise all the possible internal states of the target SoCs to
build side-channel models (i.e., template analysis). However, this is impractical
since our preliminary tests show that the EM radiation depends on instruc-
tion operations, operands, and the content of the registers, memories, etc. (see
Sect. 8). We can only build side-channel models from a very limited number of
programs and data configurations, compared with the entire state space of the
system. The validity of the resulting model is tested both by the reasonable-
ness of its form and by the predictive power for side-channel emissions of new
programs and data. Our test code is a integration of the FreeRTOS operating
system port for each core (except system B) and re-implementation (to fit into
available memory) of a part of the CoreMark benchmark suite [1]: integer matrix
multiplication, floating-point multiplication, greatest common divisor, quick-sort
of vector data, list find, list quick-sort, string hash, and a finite state machine,
as well as random assembly code we generate for each core that avoids mem-
ory access and bypasses the native compilers: one composed of logic/arithmetic
instructions, and one composed of only five types of logic/arithmetic instruc-
tions. The program binaries execute in a similar number of clock cycles. We do
not model the EM radiation of I/Os, or code that change system-level behaviors,
e.g., the timer intervals.

6 Modeling Side-Channels

Our preliminary tests show that EM emissions of different instruction opera-
tions largely overlap. Profiling target EM emissions by using general classifiers
is therefore difficult [22,26,51,56]. Furthermore, knowing only the instruction
operations does not guarantee integrity since an attacker may write malware by
varying only the operands and content of registers/memory, while keeping the
operations the same. Previous research [37] has shown that the power consump-
tion of a microcontroller can be accurately described as a linear model of a few
internal data-dependent activities, e.g., Hamming weight (HW) of instructions
and Hamming distance (HD) between operand and result – the contribution of
different operations is negligible. We perform a similar experiment using EM
measurements (same probe), and find that previous linear model of power con-
sumption still holds for EM radiation. The only difference is the values of regres-
sion coefficients and the omission of a near-DC component, which is linear to
the HW of instructions in the power model. This strongly suggests that we may
be able to build similar regression models for the FPGA-based SoCs.

We assume the EM sample Yt at time t can be modeled as a function of
internal states xt = (x1t, . . . , xpt) at t:

Yt = f(xt) + Nt

where Nt encloses remaining components in the EM radiation including noise
and time-dependent components, Yt and Nt are necessarily random variables.
xit(i = 1, . . . , p) are called the predictor variables and Yt the response variable.
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Since both processors execute instructions in a variable number of clock
cycles, depending on operands and bus traffic, we build side-channel models
for each clock cycle rather than for each instruction cycle. The sample rate of
the oscilloscope is 500 MS/s, meaning at least 500 regression models can be built.
In practice, however, most information is found at clock rising edges. Yt is there-
fore the peak amplitude at rising edges of clock t. A sum of 26 points near the
peak gives slightly better results than using the single peak value. We denoise
the traces for use in regression by averaging over only 100 EM traces. Selection
of the predictor variables still poses a challenge.

Black-box Model-building. Switches of internal signals and voltage differences of
neighboring signals are a promising initial choice for xt, supported by research
on power consumption of FPGAs and general circuits [21,25,31,47,50]. Because
the design details of NIOS II are not available, we initially treat the system as
a black box and attempt to reason about internal activities directly from the
instruction set documents, as in [37]. However, the EM samples correlate poorly
with predictions. This is not surprising, as the target SoC systems are much more
complex than the PIC microcontroller in previous work. In particular, unlike the
PIC chip, there is no dominant power-consuming memory interface. We instead
turn to the simulation models of the processor cores.

For system A, register-transfer level (RTL) simulation gives, for example,
runtime values of thousands of signals, including 35 bus signals; gate-level post-
fit simulation gives runtime values of at least 8259 1-bit internal signals. For
system B, and system C, there are over 5800 and 12606 1-bit gate-level signals,
respectively. EM radiation must be related with these signals in some form. How-
ever, directly estimating f(·) does not work due to the sheer number of signals,
and also due to the multicollinearity among the signals (many signals are highly
correlated with each other, and thus only one signal in a correlated set may be
a useful predictor). Some signals are even identical – a simulation artifact. More
variables are identical when considering switches of signals (transitions from 0 to
1 or vice versa). However, removing duplicate variables does not eliminate mul-
ticollinearity, showing that more complex correlations exist among the signals
and signal switches.

As a first step in selecting representative signals for xt, we test whether the
EM radiation has similar amplitudes when a subset of internal signals stay the
same while others vary. If so, we need only to retain the subset of signals for
model building. Figure 3a shows pairs of EM measurements (peak amplitudes)
when bus signals are identical while other signals vary. The x-axis is one EM
measurement, and y-axis is another EM measurement. Figure 3b shows pairs of
EM measurements when signal transitions (0-1 and 1-0 are regarded as different
transitions) of bus signals are identical. These two figures mean that, no matter
what the form of f(·) is, the EM radiation is not determined only by the bus
signals. This is in contrast with the PIC chip, whose EM radiation is dominated
by the Hamming distance of bus signals. Therefore, we must include additional
variables in xt. Because it is impractical to try arbitrary subsets of signals, we
have to turn to the gate-level signals, as RTL signals are optimized out in final
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Fig. 3. Measurements of system A when a subset of internal states are identical

layout of the SoC system. However there are thousands of gate-level signals.
To select the most representative ones, we utilize the vendor-provided power
estimation tool PowerPlay [6], therefore taking the gray box modeling approach,
since PowerPlay encodes partial knowledge of the FPGA design.

PowerPlay is a tool for developers to estimate power consumption of an
FPGA system to allow selection of power supply and heat dissipation scheme.
Total thermal power estimates are claimed to have ±20% accuracy to silicon.
However, since PowerPlay only reports comparatively rough estimates of accu-
mulative power consumption, it cannot be directly used to solve our problem,
which requires side-channel models for at least each instruction. PowerPlay can,
however, generate a set of signal names for use in a gate-level simulation (which
is in turn used for power estimation). It is reasonable to assume that these sig-
nals contribute more significantly to power consumption (thus causing more EM
radiation). For system A, 1778 (out of 8259) gate-level signals are selected by
PowerPlay, a huge reduction in variables requiring post-processing.
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We again test whether EM radiation is similar when the 1778 signals are
identical while others vary. Figure 3c shows pairs of EM measurements when
signal transitions are identical for the 1778 variables, and Fig. 3d shows pairs
of EM measurements when the HDs (which do not distinguish between 0-1 and
1-0) are identical. We do not find enough pairs whose absolute values of the
1778 variables are identical. Nevertheless, Fig. 3d already illustrates that it is
reasonable to select HD of the 1778 variables as xt, regardless the real form of
f(·) (Note that the set of points in Fig. 3c is a subset of those in Fig. 3d). After
modeling is finished, we retry using the original 8259 gate-level signals, and find
that indeed modeling with the 1778 signals gives better results. For systems B
and C the number of selected signals is 1280 and 2715, respectively.

However, multicollinearity still exists among the selected variables. Since fur-
ther dividing the selected variables based on SoC structure does not lead to
improvement and exhaustive search is computationally impractical, we turn to
statistical techniques. There are several which can deal with predictors that have
multicollinearity: ridge regression, partial least-square regression (PLS), princi-
pal component regression (PCR), and stepwise regression. For the selected vari-
ables, we find that all regression techniques produce similarly good regression
models in terms of the coefficients of determination R2, MSE, and F -tests in
the model building step. To test validity of the regression techniques, we perform
model validation to measure model reasonableness and predictive power.

7 Validation

We perform five-fold cross-validation to test the ability of the regression model in
predicting EM radiation. Among the test programs (see Sect. 5.4), half are used
for modeling and the other half for testing. One FPGA chip is used for building
the EM model and a different FPGA chip of the same model is used for testing
the model. This stricter five-fold (compared to the common seven-fold or even
ten-fold) validation scheme is used because it is impractical to perform exhaus-
tive exploration and associated physical measurements, so we are forced to use
a limited set of programs for side-channel profiling and derive a model which
accurately predicts the experimental results from all other possible programs.
The goal is to evaluate the validity of using above variable selection approach
and regression techniques for side-channel profiling, rather than to obtain a spe-
cific “best” model. Since some of the combinations of modeling/testing code
may yield better results, cross-validation eliminates this problem by repeating
the modeling and testing procedure using different programs for modeling and
testing each time. We exhaustively compute all 252 possible combinations. We
assume f(·) can be approximated as a first-order linear function for now. Pear-
son’s r and Spearman’s ρ are used to evaluate the quality of our models – the
larger the correlation, the greater the predictive power. Pearson’s r is effective
because we observe that slightly moving the probe will only cause the ampli-
tude of EM radiation to change linearly. We still compute Spearman’s ρ, which
can reveal nonlinear relationships between measurements and models (r and
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Fig. 4. Pearson’s r for model validation, with the profiling (modeling) results in the
top row ((a)–(c)) and the testing (on another chip) results in the bottom row ((d)–
(f)); from the darkest bar to the lightest are ridge regression, PLS, PCR, and stepwise
regression.

ρ are equivalent when relationships are linear). Pearson’s r is shown in Fig. 4.
Spearman’s ρ results are almost identical, validating our choice, and omitted
due to space constraints. In addition, regressing xt always has the highest cor-
relation coefficients when xt and Yt are aligned in time (omitted due to space
constraints). When profiling and testing using the same FPGA chip, all the r
and ρ values are slightly better (omitted due to space constraints), as expected.1

The results show that (with few exceptions) linear regression models can
predict EM radiation of new programs with satisfactory accuracy, especially for
system B. Adding the absolute values of the signals (i.e., Hamming weights) to
xt does not improve model performance. PLS and PCR outperform other tech-
niques and are stable in all cases (with no unacceptably low-performing outliers
r < 0.80). PLS and PCR have been used in various domains such as chem-
istry and biology, where, similar to our situation, one observation is associated
with many variables [24,44]. PLS and PCR have nearly identical performance,

1 The parameters of each regression technique are selected to achieve best results for
a few pre-selected random modeling/testing combinations and then fixed for all the
others. Note that although for a particular combination the best parameter varies,
it does not change our conclusions.
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Fig. 5. Model prediction and measurements for the best PLS model of system A.

which is interesting since unlike PLS, PCR does not take the response Yt into
account when selecting the predictors. Principal component analysis (PCA) has
been used in side-channel analysis as a preprocessing step of pattern match-
ing or classification to reduce dimension and to denoise the sampled traces in
time [12,22]. We instead use PCA to eliminate multicollinearity for regression.
Note that there is no noise in the predictors xt, which are not random variables.

The effectiveness of the regression models is further shown in Fig. 5. The x-
axis of Fig. 5a is the actual measurement for a testing program, and the y-axis
is the model prediction (of the best PLS model of system A). Although some
outliers exist, most measurements and predictions fall along the line of x = y.
Figure 5b shows the Pearson’s r between the actual measurement of a testing
program and the model prediction which has an offset in time from the actual
measurement. The x-axis of Fig. 5b is the time offset, and the y-axis is r. A
sharp peak occurs when the model prediction and real measurement have no
time offset, showing the soundness and validity of the model.

Second, we examine the resulting models for the reasonableness of their coef-
ficients. We observe that PLS and PCR result in similar regression coefficients for
each system. Several selected signals are clock signals that switch at each clock
cycle. These signals do not provide information on internal states, and should
only contribute to the constant in the model. Only ridge regression assigns non-
zero coefficients to these signals. This is due to the procedure of ridge regression
and has caused it to perform worse. PowerPlay reports that the M9K component
consumes the majority (∼60%) of the core dynamic power, but only a portion
of M9K signals have larger regression coefficients in our resulting models. We
have regressed separately with the M9K signals including memory and regis-
ters banks, as well as other signals reported in PowerPlay as consuming more
power, yet the resulting models are not better than original models, especially
in cross-validation.
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8 Applying Results to Software Integrity Checking

To enforce code integrity, we must guarantee that tampering with the internal
states of the system can be detected from side-channel measurements. Given
the regression model, we predict EM radiation of new programs by using only
gate-level simulation. We can therefore determine whether tampering with the
original code will be reflected in the emission or not.

We first consider a conventional attacker, who is unable to analyze the
side-channel of the system or unaware of the existence of a side-channel-based
integrity checking mechanism. Integrity checking is a hypothetical test of whether
a given measurement is from tampered code/data (undesired state) or not. The
performance of this integrity mechanism is quantified by (1) the false positive
rate (when a normal system state is flagged as tampering), and (2) the false
negative rate (when tampering is performed, but is not flagged).

Table 1. False positive rates (%) for a(n) (aligned) single-captured EM trace

Threshold 0.90 0.85

Number of cycles 7 14 21 7 14 21

System A 14.2 12.9 9.68 8.73 5.92 3.31

System B 13.1 10.3 8.57 8.52 6.14 3.08

System C 16.7 14.7 13.1 9.14 5.53 3.80

Table 2. False negative rates (%) for an aligned single-captured EM trace

Threshold 0.90 0.85

Number of cycles 7 14 21 7 14 21

System A 20.6 4.65 1.75 30.5 9.83 4.01

System B 5.74 0.99 0.59 10.12 1.98 1.01

System C 0.81 0.18 0.13 1.54 0.22 0.14

Table 3. False negative rates (%) for an arbitrary single-captured EM trace

Threshold 0.90 0.85

Number of cycles 7 14 21 7 14 21

System A 3.41 0.70 0.24 5.65 1.51 0.56

System B 1.43 0.16 0.09 2.93 0.38 0.16

System C 0.67 0.11 0.10 1.33 0.14 0.10

Recall that the SNR of our experiment is 15 dB. Taking both environmental
noise and regression residual into account, we obtain from the best PLS mod-
els and EM measurements that for system A, 85.8% of the Pearson’s r between
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Fig. 6. EM measurements of instructions grouped by operations for system A.

seven-cycle single-captured traces (on the testing chip) with the model predic-
tion (from the profiling chip) is greater than 0.90 to execute at most one instruc-
tion. We can design the integrity checking mechanism by fixing the threshold
0.90, and then compute the false positive rate of any 7-/14-/21-cycle trace for
each system from real measurements. Table 1 lists the false positive rates when
the threshold is fixed to 0.90 and 0.85. Seven cycles are chosen because the actual
number of clock cycles per instruction for NIOS II is from seven to 39. While
the actual number of clock cycles per instruction for OpenMSP430 ranges from
one to six, we use the same intervals for comparison purpose.

The false negative rate is computed from the percentage of 7-/14-/21-cycle
execution traces of different code and/or data on the testing chip, but having r
greater than the threshold with the model prediction of executing target code
with desired data. Table 2 lists the false negative rates when the EM traces
are aligned with starts of execution, applicable to the case in which tampered
code/data executes in the same number of clock cycles with the target code.
Table 3 lists the false negative rates for arbitrary EM traces that are aligned or
misaligned with the original one.

The results show that the probability of random malware evading the
integrity checking is very low. Even compact malware (very few instructions)
can be detected reliably. Both false positive and false negative rates decrease
rapidly as the number of clock cycles increases. When the number of cycles
is fixed, there is a tradeoff between false positives and false negatives: a lower
threshold will reduce false positives at a cost of higher false negatives. Note that
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or     r8,r6,r7
cmplt r8,r8,r6
ori    r8,r6,22322
mov   r8,r6
beq   r3,zero,14b6c
add   r3,r16,r16

Fig. 7. EM measurements of add r3,r16,r16 for system A; red cross indicates the
same instance of executing add r3,r16,r16. (Color figure online)

the threshold and number of cycles can be computed to achieve desired false
positive and false negative rates. Overall, the side-channel-based integrity check
is effective to detect a conventional attacker.

Next, we consider a side-channel-aware attacker who actively tries to com-
pute alternative code that has near indistinguishable EM radiation from the
original code. To rewrite malware with semantically equivalent code but hav-
ing similar EM measurements with the normal program, the attacker needs
to know the reverse mapping from EM radiation to runtime state including
instructions and data. The success rate of preventing the attacker from doing
so relies on the hardness to obtain such mapping. We first analyze the side-
channel of instructions classified by operations (e.g., add, call), as done in pre-
vious research [14,22,26,51,56]. We find that significant variation exists among
instructions of the same operations, and EM measurements of different oper-
ations are not discriminatory. Figure 6 shows the EM measurements grouped
by operations. Figure 7a shows an example in which even when executing the
same instruction (add r3,r16,r16), the EM radiation varies significantly. On
the other hand, EM measurements of executing different instructions may have
nearly the same value. Figure 7b shows an example in which the EM trace of
one execution of add r3,r16,r16 has nearly the same value with those of five
different instructions of different operations. This can be quantified by class (i.e.,
operation) separability by using within-class and between-class scatter matrices:

J =
trace(Sm)
trace(Sw)

,Sm = Sw + Sb

Sw =
M∑

i=1

PiΣi, Sb =
M∑

i=1

Pi(μi − μ0)(μi − μ0)T
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where each operation is a class, Pi is the a prior probability of operation i,
M is the total number of operations, μi is the mean of operation i, Σi is the
covariance of i, and μ0 = sumM

i=1Piμi is the global mean vector. We compute
the statistics of 53 common operations. The resulting J is 1.23, very close to
one, which means that EM radiation, when grouped by operations, is not well
clustered and is nearly indistinguishable from each other. For system C, the
number of clock cycles per instruction varies from one to six, and depends on
the addressing modes of the source and destination operands. Table 4 shows class
separability for different clock cycles. The resulting J is still close to one.

Table 4. Class separability J for system C.

One cycle 3.81 Four cycles 1.71

Two cycles 16.63 Five cycles 1.54

Three cycles 7.51 Six cycles 1.37

As shown in Sect. 6, the EM model is a function of thousands of selected
gate-level signal switches. The operations, bus signals, and M9K signals, which
can be easily deduced from code, only contribute to a small portion of EM vari-
ance. Even if exactly the same instruction is executed, different runtime state
of other signals will cause significantly different EM radiation. The attacker
has to rewrite malware based on the many thousands gate-level signals which
cannot be manipulated arbitrarily, but rather through the programming model
of the processor. Furthermore, the gate-level signals are synthesized and opti-
mized results of the processor core, whose relationship with the assembly code is
unknown. Without knowing the design of the processor, as in the case of NIOS
II, or without the ability to deal with processor complexity, the attacker will
have to exhaustively search for alternative malware code that has similar EM
radiation. In addition, each combination of operation and operands will result in
a different internal state at each clock cycle. As the length of EM measurements
increases linearly, the complexity of searching increases exponentially, effectively
making the attack impractical. Detailed information on experiment setup, data,
two ports of test code, and results are available at [2].

9 Discussion and Future Work

We have quantified the effectiveness and generality of using low-cost acquisition
equipment to verify runtime states of three FPGA-based SoCs passively and non-
invasively, against both conventional and side-channel-aware attackers. Profiling
and testing use different chips (boards) of the same model. We show that by using
our variable selection procedure and regression techniques, it is possible to model
EM radiation of complex and gray-box processor-core-based SoC systems with
high accuracy at clock-cycle granularity. Linear regression has also been used to
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break cryptographic hardware from side-channel leakage [15,32,39,52]. Note that
attacking cryptographic hardware is chiefly concerned with special time points
that leak key materials during multiple executions of the same cryptographic
routine. In contrast, for integrity checking, we must detect one-time execution
of malware from a single measurement and must consider instruction operations,
operands, register and memory content.

Since we build side-channel models from simulation results, it can be inferred
that directly applying the method for integrity checking requires the system to be
deterministic. For example, no context switching should happen when measuring
a target program. To what extent our approach can be applied for integrity
checking of non-deterministic systems is left for future work.

Acknowledgments. This work was supported in part by NSF grant 1253930.
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Abstract. The Android operating system provides a rich security model
that specifies over 100 distinct permissions. Before performing a sensitive
operation, an app must obtain the corresponding permission through a
request to the user. Unfortunately, an app is treated as an opaque, mono-
lithic security principal, which is granted or denied permission as a whole.
This blunts the effectiveness of the permissions model. Even the recent
enhancements in Android do not account for the interactions between
multiple permissions or for multiple uses of a single permission for dis-
parate functionality.

We describe app splitting, a technique that partitions a monolithic
Android app into a number of collaborating minion apps. This tech-
nique exposes information flows inside an application to OS-level media-
tion mechanisms to allow more expressive security and privacy policies.
We implement app splitting in a tool called AppSaw. We describe a
method for automatically selecting code partitions that isolate permis-
sion uses to distinct minion apps, and use existing security mechanisms
to mediate the flow of privileged data. Our partitioning strategy based
on vertex multicuts ensures that the minion apps are created efficiently.
In our experiments, AppSaw was effective at splitting real-world apps,
and incurred a low average performance overhead of 3%.

Keywords: Security · Android · Privilege separation · Permissions

1 Introduction

Smartphones have emerged as ubiquitous computing devices accompanied by
unique challenges to security and privacy. Through pervasive access, users
present troves of personal data to these devices, both by manual interaction
and through numerous sensors onboard the device. The misuse of such data can
cause significant harm to a user’s privacy. Thus, an important goal of a mobile
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operating system (OS), such as Android, is to mediate the access that applica-
tions (apps) of diverse provenance and trust levels have to this data. A guiding
principle in designing mediation mechanisms is the principle of least privilege
(PLP), which states that a principal, e.g., an app, should be granted no more
permissions than necessary to fulfill its intended purpose.

Existing approaches fall short of PLP. Legacy Android versions present the
user with a list of all permissions requested by an app at installation time, with
no enforceable explanation of purpose, while iOS and recent Android versions
present permission requests dynamically while the app runs and when it needs
them, in the hope that the UI context hints to the purpose of the permission
request. In both cases permissions are granted once and are always available to
the app for any purpose, least privilege remains an unachieved goal. Specifically,
current mobile OS permission models have two problems:

– Monolithic apps: Permissions are granted to an app as a whole: there is no
way to approve a permission for one purpose while denying it for another in
the same app. A particular case is where application code comes from different
sources, e.g., an app including ads and social media integration. A user may
want the GPS to be accessible for navigation but not for advertising in a
maps app. Previous work has emphasized the importance of isolating these
entities in different principals [25].

– Opaque flows: Users have no visibility how an app uses its permissions. For
instance, permissions cannot help distinguish between a contacts manager
app that accesses Internet to show ads and a spyware that leaks contacts to
the Internet.

Previous work has attempted to addresses these problems by identifying
undesirable information flows through static or dynamic taint analysis [7,12].
Static analysis does not provide any way for users to determine if a flow is
actually occurring at runtime. Dynamic taint analysis, on the other hand, has
significant runtime overhead. There is also work to rewrite the Android permis-
sions model entirely [14]. However, such approaches require updates to the OS
as well as ways developers program apps.

We solve the problems arising due to monolithicity of apps and opaqueness of
flows with a technique called app splitting. App splitting works by partitioning
an app into a number of smaller, collaborating apps called minions. Minion
apps contain a portion of the original app representing an action that the user
can mediate. Splitting the application into smaller pieces converts sensitive code
and data flows from intra-app (invisible to the user and to the OS) to inter-
app (visible to the user and the OS for mediation and access-control purposes).
We have implemented AppSaw, which accepts an Android app and a simple,
user-defined policy and performs app splitting on the given app. It provides the
relevant instrumentation to allow the created minions to communicate with each
other via OS-level interprocess communication (IPC) so that they can together
provide the functionality provided by the original app while restricting unwanted
flows.



26 D. Davidson et al.

Our paper makes the following contributions:

– We formalize app splitting as the problem of finding graph partitions and
show how various classes of security policies map to app-splitting strategies.
Underlying app splitting is a notion of fine-grained, flow-based permission
addressing the entanglement problem.

– We introduce a tool, AppSaw, for performing automatic, optimal app split-
ting of Android apps based on a specified security policy. AppSaw addresses
the monolithic app problem by naturally generalizing the existing work on
isolating advertising from the core functionality of an app [25,26].

– We demonstrate experimentally that AppSaw is practical, supports a variety
of app types (from book readers to translation apps to social networking
tools), and incurs low overhead: operations that use permissions incur a low
overhead of less than 3% and the total runtime of the app does not experience
any measurable slowdown.

Given that AppSaw works by retrofitting apps, it does not need support of
Android OS developers as well as app developers. It is thus amenable to a range of
deployment models. AppSaw comes with a number of scripts that ease the task
of using it as well as the apps produced by it. Savvy users could thus develop their
own policies and use the tool directly. More practically, however, we envision
AppSaw to find a unique spot among other mobile app management (MAM)
technologies developed as enterprise solutions [1]. An MAM provider could offer
AppSaw as a part of their suite to enterprises, where an IT administrator would
be able to use it to enforce custom flow policies on existing apps.

The remainder of the paper is structured as follows. Section 2 discusses the
problem and provides an overview of our approach. In Sect. 3 we detail our
technique for choosing program points at which to split a portion of an app
into a minion. Sections 4 and 5 discuss the technical details of how AppSaw
preserves app functionality across minions, allowing minion apps to collaborate.
In Sect. 6, we evaluate how applications split with AppSaw perform against their
monolithic counterparts. We review related work in Sect. 7. Section 8 discusses
limitations. We conclude in Sect. 9 with directions for future work.

2 Overview

In this section, we first motivate the need for fine-grained permission controls
with an example. We subsequently present our policies, our approach to imple-
ment the policies, the challenges involved, and how our approach can be deployed
in practice.

Motivating Example: To illustrate the permission problems identified in
Sect. 1, we present a running example app, NetDialer, that demonstrates the
challenges users face in the current Android ecosystem. While simple, this app is
representative of many similar apps and requires a set of commonly used permis-
sions. NetDialer is an enhanced contact manager app. It allows users to scroll
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1 // Flow contacts to the phone
2 public void makeCall(){
3 long id = getLong(CONTACT_ID_INDEX);
4 String key = getString(CONTACT_KEY_INDEX);
5 Uri cUri = Contacts.getLookupUri(id, key); // P0
6 number = getNumberFromContact(mContactUri);
7 String action = Intent.ACTION_CALL;
8 Uri asUri = Uri.parse(number);
9 Intent callIntent = new Intent(action, asUri);

10 startActivity(callIntent); // P1
11 }

13 // Flow contacts to the network
14 public void backupContacts(){
15 long id = getLong(CONTACT_ID_INDEX);
16 String key = getString(CONTACT_KEY_INDEX);
17 Uri cUri = Contacts.getLookupUri(id, key) // P2
18 number = getNumberFromContact(mContactUri);
19 Uri numberUri = Uri.parse(number);
20 URL url = new URL(baseURL + numberUri);
21 URLConnection conn;
22 conn = url.openConnection(); // P3
23 conn.connect();
24 }

26 // Pull information from the network
27 public byte[] weatherScreen(){
28 URL url = new URL(urlContactIcon + strurl);
29 Object content = url.getContent(); // P4
30 InputStream is = (InputStream) content
31 byte[] buffer = new byte[8192];
32 ByteArrayOutputStream bkg;
33 int bytesRead;
34 bkg = new ByteArrayOutputStream();
35 while ((bytesRead = is.read(buffer)) != -1) {
36 bkg.write(buffer, 0, bytesRead);
37 }
38 return bkg.toByteArray();
39 }

Fig. 1. Snippet of code from NetDialer demonstrating limitations of the Android per-
mission model. The methods that are shown here use an overlapping set of permissions
in different ways that are indistinguishable to the user

through the list of contacts maintained by the operating system and place a
phone call to a selected contact. The app also allows the user to access auxiliary
information from within the app, such as the day’s weather forecast.

There are three functions of NetDialer that use permissions, as shown in
Fig. 1. These functions illustrate different ways in which the same permissions
can be used. The makeCall method uses the READ CONTACTS permission to col-
lect contact information at program point P0 which is used to place a phone
call using CALL PHONE permission at P1. The backupContacts method also uses
READ CONTACTS, at P2. The data flows to P3 which uses the INTERNET permission
to leak contacts to the network. The weatherScreen method also uses INTERNET
to download weather information from the network at P4, which it returns. The
app can execute all three of the above methods by declaring the use of permis-
sions READ CONTACTS, CALL PHONE, and INTERNET in its manifest.
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Policies: By installing NetDialer, the user grants unconditional permission to
the app to read from the contact list and send data to the network, as it does
in backupContacts. Android does not provide any way to determine existence
of and control such a flow in the program. Nor can the user completely shut off
network access to the app as it would preclude downloading weather information.

Consider a policy in which a user wants to ensure that their contact infor-
mation is never leaked to the network. Such mediation policies are expressed
as a list of instruction pairs 〈s, t〉, where s is an instruction that is a source
of sensitive information and t is a sink instruction, each such pair written as
s !

� t. The user’s policy for NetDialer can be expressed as READ CONTACTS !
�

INTERNET. This policy requires that every flow from an instruction that uses
READ CONTACTS to one that uses INTERNET be mediated.1

Approach Overview and Challenges: Since Android uses an app as the
fundamental security principal, we implement these policies by partitioning an
app into multiple sub-apps or minions that are granted permissions individually.
IPC across these minions is mediated according to the policies. In the case of
NetDialer, AppSaw can isolate each of the program points P0, P1, P2, and P3

into distinct minions, and replace their invocations with inter-process commu-
nication code to retrieve the original behavior of these program points. In the
policy example above, since P2, and P3 are placed in different minions, the flow
between them can be mediated.

Fig. 2. AppSaw workflow. Rounded components indicate code modules; rectangles
indicate artifacts.

AppSaw needs to address two fundamental problems: (1) Given a flow policy,
how should the code be split into minions? An important consideration here is
to satisfy the policy while keeping the performance impact low. (2) How should
the minion apps communicate to collaboratively maintain the functionality of
the original app? We address the first challenge by developing formalisms around
identifying potential split points using vertex multicuts over the app’s control
flow graph. For the second challenge we develop a solution rewrites app code to
make use of Android IPC to communicate among minions.

The workflow of AppSaw is described in Fig. 2. The input app is first unpack-
aged with its code converted to the Jimple intermediate representation (IR) using

1 We can specify any permission pair as a policy and AppSaw ensures that any flow
between these permissions will cross a minion boundary. It is up to the user to decide
if separating these permissions is meaningful.
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dexplar [9]. Jimple is a native IR for the Soot framework [27] and is consumed by
our Split Director and Splitter modules. The Split Director module converts user
policies to a splitting strategy, which identifies at which points the app should
be split. The Splitter module partitions the IR into minions, which are pack-
aged back into native Android apps using the Soot dex compiler and Apktool [6]
while restraining the permissions requested by these minion apps. In addition,
the Support Generator module uses the splitting strategy to provide artifacts,
such as rules that allow the OS to mediate communication among minions. In the
next three sections we discuss the workings of the three interesting components:
the Split Director, the Splitter, and the Support Generator.

3 Splitting Strategies

In this section, we discuss our algorithm for building the splitting strategies
described in Sect. 2. First, we formalize the problem in terms of a labeled control-
flow graph (LCFG) of an application. Let G = (V,E,L) be a LCFG of an A,
where V is the set of nodes, E ⊆ V × V is the set of edges, and L : V → P is
a function that labels each node with an element (called permission) from a set
P. We assume that there is a special element ⊥ ∈ P which represents the null
permission. Intuitively L(v) = ⊥ means that the statement corresponding to
node v ∈ V does not need any special permissions. Formally, the problem, which
we call the permission separation problem (PSP) can be defined as follows:

Problem 1. Given a LCFG G = (V,E,L) and a relation X ⊆ P × P. The
problem is to find a partition Π = {V1, V2, · · · , Vk} of V , which satisfies the
following condition: for all pairs of nodes (v1, v2), if (L(v1), L(v2)) ∈ X, then v1
and v2 are in different sets of the partition Π.

Given a partition Π = {V1, V2, · · · , Vk}, we can create k applications
{A1, · · · , Ak} such that Ai consists of all instructions corresponding to nodes
in Vi. We call applications Ai (1 ≤ i ≤ k) minions. A naive algorithm for solving
PSP creates a partition as follows: each v ∈ V such that L(v) 	= ⊥ is put in
its own set and there is a set that consists of all nodes w such that L(w) = ⊥.
We call this naive algorithm permission isolation splitting. Of course, our naive
algorithm can create a lot of minions. Our goal is to construct as few minions as
possible and also minimize data transfer between the minions. Next we present
our algorithm to accomplish these goals.

Our Algorithm: Our algorithm works in two stages: (1) We compute a vertex
multicut using dominators and post-dominators (defined below). (2) We use the
vertex multicut found in step (1) to find a solution to the PSP. The two steps
of the algorithm are described below.

(Step 1) An Algorithm for Finding Vertex Multicuts. The vertex multicut
problem (VMP) is defined below.

Problem 2. We are given a graph G = (V,E), where V is the set of nodes,
E ⊆ V × V is the set of edges and a collection of k pairs of vertices
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H = {(s1, t1), · · · , (sk, tk)}. The problem is to remove the minimum number
of vertices V ′ ⊆ V such that in the resulting graph there is no path from si
to ti for 1 ≤ i ≤ k. In other words, every path from si to ti (for 1 ≤ i ≤ k)
goes through at least one vertex in V ′. This problem is called the directed graph
vertex multicut problem (VMP).

Although the problem of computing optimal vertex and edge multicuts
is NP -complete, there exist approximation algorithms to solve these prob-
lems [3,15]. However, these existing algorithms ignore the structure of the pro-
gram (i.e., the CFGs resulting from an application have a very special structure).
We present an algorithm that exploits the structure of the program and can
therefore be used to take into account domain-specific considerations (see the
discussion towards the end of this section). Specifically, we present here an algo-
rithm for computing vertex multicuts that is based on the concept of dominators
and post-dominators. Recall that dominators and post-dominators are used to
find control dependencies in programs [19] and there are efficient algorithms to
compute dominators and post-dominators [16]. We note that our algorithm is
not provably polynomial time, but can account for program structure. However,
incorporating program structure in other algorithms is an interesting avenue for
future research.

Assume that we are given a graph G = (V,E), where V is the set of
nodes, E ⊆ V × V is the set of edges and a collection of k pairs of vertices
H = {(s1, t1), · · · , (sk, tk)}. We present an algorithm that demonstrates that
an algorithm for finding hitting sets can be used to find a vertex multicut.
With each pair (si, ti) we associate a set Mi with the following property: for
all v ∈ Mi, every path from si to ti passes through v. The collection of k
pairs of vertices H = {(s1, t1), · · · , (sk, tk)} corresponds to a collection of sets
M = {M1, · · · ,Mk}. A hitting set Z for M is a set such that Z ∩Mi 	= ∅ (for
all 1 ≤ i ≤ k). Therefore, a hitting set for M corresponds to a vertex multicut.

The problem now is to associate with a pair of nodes (s, t) a set M such that
all vertices in M appear on all paths from s to t. For this, we use the concept of
dominators and post-dominators. We assume that the graph G = (V,E) has two
distinguished vertices r ∈ V (called the start node) and e ∈ V (called the exit
node) such that every vertex in V is reachable from r and e is reachable from
every vertex in V .

Dominators and Post-dominators: A vertex v dominates w (denoted as v dom w)
iff every path from r to w passes through v. A vertex z post-dominates w
(denoted as z pdom w) iff every path from w to e passes through z. The set
of dominators and post-dominators of a vertex w are denoted by DOM(w) and
PDOM(w), respectively.

Proposition 1. Let (s, t) be a pair of vertices and let M = DOM(t)∩PDOM(s).
Every path from s to t passes through every vertex in M .

Proof: Consider a path π from s to t. Since s is reachable from the start node
r ∈ V , π can be extended to a path from r to t. Similarly, since the exit node e
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is reachable from the node t ∈ V , π can be extended to a path from s to e. Let
πf be a path from r to e that is the extension of path π from s to t. Consider a
vertex z ∈ M . Let πr

f be the fragment of πf from r to t. Since z ∈ DOM(t), z
lies on the path fragment πr

f . Similarly, since z ∈ PDOM(s), z lies on the path
fragment πe

f of πf from s to e. This proves that z lies on the path from s to t.
Since z was an arbitrary node in M , the result follows. �

Based on the proposition given above we can formulate an algorithm for
finding a vertex multicut, which is based on the dominator and post-dominator
structure of the control-flow graph (see Fig. 3).

Input: A graph G = (V,E, r, e),
set H of k pairs of vertices {(s1, t1), · · · , (sk, tk)}.
Compute Mi (for 1 ≤ i ≤ k) as DOM(ti) ∩ PDOM(si)
Compute hitting set Z for the collection {M1, · · · ,Mk}
Output: The hitting set Z.

Fig. 3. Finding vertex multicuts using dominators, post-dominators, and hitting sets.

(Step 2) From Vertex Multicut to Partitions
An algorithm for solving VMP can be used to solve PSP. The description is

as follows:

– Assume that we are given an application A whose LCFG is G = (V,E,L),
where V is the set of nodes, E ⊆ V × V is the set of edges, and L : V → P
is a labeling function. We are also given a relation X ⊆ P × P.

– Relation X corresponds to a collection H(X) of pairs of vertices as follows:
(v1, v2) ∈ H(X) iff (L(v1), L(v2)) ∈ X.

– Now consider the graph G1 = (V,E) and set H(X). Let V ′ ⊆ V be
a vertex cut for G1 and H(X). Let G′ be the graph obtained from G1

where outgoing edges from all vertices in V ′ have been removed. G′ induces
a partition as shown in Fig. 4. It is not hard to see that the partition
P = {V1, V2, · · · , Vk, Vk+1} solves the corresponding PSP problem, i.e.,
for all pairs of nodes (v1, v2) such that (LA(v1), LA(v2)) ∈ X, then v1 and v2
are in different sets of the partition P.

Discussion: Our algorithm based on dominators and post-dominators allows
a designer to have control over how the split is performed. First, we introduce
some notation from [16]. Vertex v is the immediate dominator of w (denoted by
v i-dom w), if v dominates w and every other dominator of w dominates v. Sim-
ilarly, vertex v is the immediate post-dominator of w (denoted by v i-pdom w),
if v post-dominates w and every other post-dominator of w post-dominates v.
The relation i-dom and i-pdom form a directed rooted tree. Intuitively, a node
“higher” up in the tree corresponding to i-dom represents a statement closer to
the entry point of an application (similar intuition can be applied to the tree
corresponding to the relation i-pdom). Therefore, if there are two nodes v and
w in a set in the collection Z (see Fig. 3) and v is an ancestor of w in the tree
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Inputs: A collection H(X) = {(s1, t1), · · · , (sk, tk)},
a graph G′ such that there is no path from si to ti
(for all 1 ≤ i ≤ k).
Consider the sequence s1, s2, · · · , sk of source vertices and let G0 = G′.
For 1 ≤ i ≤ k,

define Vi as all vertices reachable from si in Gi−1.
To construct Gi, remove all vertices in Vi from Gi−1.

Let Vk+1 be the set V \ ⋃k
i=1 Vk.

Output: {V1, V2, · · · , Vk+1}

Fig. 4. Algorithm for creating partitions from vertex multicuts. Removing a vertex v
also means we remove all edges of the form (w, v) and (v, w).

corresponding to i-dom, then v can be preferred over w while constructing the
hitting set for Z. Similarly, a designer can specify other conditions. For example,
some vertices from the collection Z can be eliminated based on certain condi-
tions before computing the hitting set. Examples of some of these conditions are
given below (there are several other domain-specific possibilities).

– Eliminate vertices that correspond to statements in some specific functions
(e.g., belonging to a third-party library).

– Eliminate vertices from Z that belong to loops (having the split point in
the loop might result in expensive IPC calls because of marshaling and un-
marshaling of arguments).

Fig. 5. Control flow graph of the NetDialer function WeatherScreen.

Figure 5 shows the CFG for the NetDialer code of Fig. 1, with line numbers
preserved from the original figure. Although simplistic, this example shows the
importance of picking good split points: consider the naive solution of including
blocks 1 and 2 for a partition: since the variable buffer is live across the boundary
from block 2 to 3, making the call to the minion corresponding to the partition
will require copying the entire buffer. While this behavior might be acceptable
for a single transfer to a minion, but altering the minions in this way causes a
transfer on every iteration of the loop that begins on line 32. Thus, the heuristics
presented above places blocks 1, 2, and 3 into the minion.

The above example highlights the need to minimize the amount of data that
needs to marshaled. This would require us to solve a weighted version of PSP
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(the PSP version above is unweighted) where the weights on edges correspond
to the marshaled data amount and the solution is obtained by minimizing the
weights on the multicut. We will investigate this problem in future work.

Split Director Implementation: Our formalism above assumes L : V → P,
so a node is only mapped to a single permission. In practice, a node may require
a finite set of permissions. Extending the strategies support this behavior is triv-
ial and our implementation does not have limitations on the labeling function
L. Furthermore, L relies on a mapping from Android API to the requisite per-
missions. We integrate with PScout [8], Stowaway [13], and Flowdroid [7] to use
the mapping produced by these tools.

4 Minion App Generation

The previous section dealt with identifying split points in an application. In this
section we discuss the actual refactoring of an app into multiple collaborative
minion apps. This level of app rewriting is non-trivial to implement, and relies on
a number of unique circumstances that are fortunately present for Android apps.
In particular, there needs to be an efficient IPC mechanism that allows for objects
to be quickly moved from one app to another. We begin with a a background on
Android IPC and then discuss the details on minion app generation.

4.1 Android IPC Background

Android apps comprise a number of collaborating components, which may com-
municate via IPC. Android provides a fast IPC mechanism called binder. The
binder model uses a client/server architecture where the client (the app core in
the case of AppSaw) requests a connection to a service. Upon success, the client
is offered an interface to the service through which it can make calls to it as
though it were an object in the local process. Th binder API ensures that the
proper steps are taken to translate the call into IPC invocations.

One of the ways that binder achieves fast IPC is by allowing custom marshal-
ing and unmarshaling of objects that are passed through IPC. When an object
is passed, a process called Parcelization invokes the WriteToParcel method,
which gives developers the opportunity to choose how to pack the object. The
class must also provide a static (non-instance) member that implements the
Parcelable. Creator interface, which supplies a createFromParcel method, that
is invokes in the called component to unpack the parcel. Parcelization stands in
contrast to Java’s Serialization, in which objects implement a marker interface,
but are wholly serialized, with the exception of transient fields. Although Seri-
alization is still implemented in Android, Parcelization was specifically designed
to meet IPC performance requirements that Serialization lacks [24].

4.2 App Splitting Implementation

Our primary concern here is to ensure that executing minion apps preserves the
effect of executing the same code in the original, monolithic app. Because the
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splitting strategies that our tool uses yield regions in which the entry block to
the region dominates the exit of the block, and the exit postdominates the entry,
there is no need to worry about relocating control flow transfers. However, App-
Saw needs to ensure that data flow that passes through a minion is preserved.
While AppSaw could simply instrument an app to copy out all variables that
the minion defines, and copy in all variables that the minion uses, doing so would
unnecessarily copy data that is not dead. Instead, we perform a simple reaching
definition analysis to only copy uses that are live at the beginning minion region
and only copy definitions that are live at the end of the minion.

Parceling Objects: Binder IPC provides a means to transfer use and def values
across minions but it comes with the additional constraint that objects must be
parcelable. Unfortunately, it is unlikely that every object that must be transferred
to a minion will implement this interface. Thus, AppSaw is faced with a number
of challenges:

1. The minion may use or define a non-parcelable user-defined class. In this case,
AppSaw has significant power, because it can completely rewrite the defini-
tion of the class, adding the requisite writeToParcel and createFromParcel
implementations. A particularly ambitious implementation could even rewrite
the class such that it only packs and unpacks the fields used by the minion
region, though we leave this as an optimization for future work.

2. The minion may use or define a non-parcelable system-defined class. Here,
the previous solution does not apply, because the implementation of the class
is not part of the app itself, and therefore cannot be rewritten. A potential
solution is to define a parcelable subclass of this class but this fails as the
subclass does not have access to the superclass’s private fields needed for
parcelization or when the class is final.

3. The runtime class of an object may not match its declared class. While the
class must be a subclass of the declared type, it may not be an exact match.
This is important, because it complicates any attempt to statically insert
code to build proxies for the object.

We have developed a solution to the above problem that we call Parcel Wrap-
pers. At a high level, a Parcel Wrapper wraps a single object. When the object
needs to be transferred to a minion, the Parcel Wrapper uses reflection to decom-
pose the object into its parcelable components. When the component is returned,
the Parcel Wrapper uses reflection to get the new values of the object’s fields
and update it accordingly. Our solution based upon reflection is affected by
none of the above problems of private field access (private fields are accessible
via reflection) or final classes.

Minion Lifecycle: Android apps operate according to a lifecycle: the system
invoke callbacks into the app for events such as creating, starting, pausing, and
destroying components. To ensure that the services exposed by minion apps
are available to the app as it is launched, AppSaw calls the bindService
function to binds each minion field at the entry point lifecycle functions of
the app. In response to the bindService call, the system will invoke the
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onServiceConnected callback of the app (added by AppSaw, as appropriate),
where the service is connected. While this works well for most apps, consider
the case in which an entrypoint function itself requires the use of a minion: the
onServiceConnected callback cannot be invoked until the app returns from the
function, but the function uses minions initialized in onServiceConnected. We
resolve this paradox in the following way: For each such callback C that uses a
minion, we create a new function C ′. The body of C is replaced with code that
checks if the service is available, and if so calls C ′. If it is not, C raises a global
flag fC indicating that a call to C is necessary, and assigns all arguments of C
to newly-added instance fields argsC of the app. When the service is available,
onServiceConnected checks fC , and calls C ′ with argsC .

In effect, this modification of the app results in services being connected
before any entrypoint function of the app takes effect. Note that because
the C ′ are all called at entry to onServiceConnected, any user code in
onServiceConnected will not run until the entrypoint functions are run. This
handles any dependencies in the original body of onServiceConnected to data
touched in C.

Discussion: AppSaw generates multiple minion apps from one app. This would
unnecessarily clutter the device with apps. Our implementation hides the minion
apps from the user interface (e.g., from the launcher screen) but not having
the minion apps subscribe to the android.intent.category.LAUNCHER intent,
which is necessary for being launched from the UI.

Our app splitting implementation can transfer variables across minion bound-
aries. However, the case of transfer through persistent resources, such as files, is
different. Since Android isolates persistent resources of apps by default, our tool
does not automatically support transfer of data in these ways. Adding support
for persistent resources is our future work (Table 1).

Table 1. Characteristics of the apps in the Utility Test Suite.

Display name Package name Original
instruction count

# Permissions

Bible com.sirma.mobile.bible.android 575472 16

CNN com.cnn.mobile.android.phone 440211 13

Duolingo com.duolingo 562020 14

Facebook com.facebook.katana 272534 17

Job search com.indeed.android.jobsearch 153580 8

Original borders com.aviary.feather.plugins.borders-free 54 0

MyFitnessPal com.myfitnesspal.android 859176 13

Pandora com.pandora.android 296037 13

Pocket Manga com.supo.pocket.mangareader 150417 4

Ringtone maker com.herman.ringtone 135487 9

Zillow com.zillow.android.zillowmap 788544 16
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5 Minion Support Artifacts

The key advantage of app splitting is that opaque, internal functionality of a
single app can be exposed to app-centric security mechanisms. However, app
splitting increases the complexity of managing the functionality of the app. In
addition to the core functionality, AppSaw provides support artifacts both for
the purpose of enforcing security as well as improving usability. This section
describes the support artifacts produced by AppSaw.

1 <rules>
2 <activity block="true" log="false">
3 <component-filter name="com.netdialer.core/" />
4 </activity>
5 <broadcast block="true" log="true">
6 <intent-filter>
7 <action name="com.netdialer.minion1" />
8 </intent-filter>
9 </broadcast>

10 </rules>

Fig. 6. A sample Intent Firewall ruleset blocking broadcast intents from the NetDialer
core app to a minion.

Install Script: The most immediate drawback of app splitting is that a user
needs to manage multiple apps instead of one. To address this concern, the policy
generator outputs a script that can be invoked to install minion apps en masse.
This script can be incorporated into the user flow according to the deployment
model: in an MAM offering, the script will be launched directly by the MAM
interface.

Table 2. Minion partitioning for the DroidBench programs. For each of the flows
detected by the underlying FlowDroid analysis, AppSaw correctly separates the per-
mission into its own minion.

Category Number of apps Average number of minions

Aliasing 1 0.0

AndroidSpecific 12 1.25

ArraysAndLists 7 1.57

Callbacks 15 1.47

EmulatorDetection 3 2.33

FieldAndObjectSensitivity 7 2.14

GeneralJava 23 1.65

ImplicitFlows 4 0.0

InterComponentCommunication 18 1.0

Lifecycle 17 1.35

Reflection 4 2.0

Threading 5 1.2
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Interaction Graph: AppSaw produces an interaction graph where a node is
included for each minion and there is an edge between two minions if a flow may
occur between them. This graph allows the user to visualize permission flows
and iteratively develop better policies.

Intent Firewall Rules: The goal of AppSaw is to allow OS-level mediation
of flows inside the app. We leverage Intent Firewall, an integrated feature of
the Android framework that mediates intents (and hence binder IPC) based
on certain rules. AppSaw generates Intent Firewall rules to enable this media-
tion across minions at runtime. Figure 6 shows example rules for NetDialer, to
enforce the policy that the core app may not send any intent to minion1, which
corresponds to GPS use (Table 2).

6 Evaluation

This section empirically evaluates the utility, security, and performance of App-
Saw. We ask the following three key questions.

1. Utility. Can apps rewritten with AppSaw continue to provide their desired
functionality?

2. Security. Are apps rewritten with AppSaw prohibited from performing dis-
allowed functionality?

3. Performance. Does the rewriting process of AppSaw introduce manageable
overhead on apps?

Experimental Highlights:AppSaw preserves the desired functionality of apps
while blocking the disallowed functionality in the apps examined. Split apps
exhibit an average runtime overhead of 3% over their original variants and use
a trivial amount of additional disk space.

6.1 Methodology

We build our experimental setup around three distinct suites of Android apps
that evaluate respectively the utility, security, and performance aspects of App-
Saw. This allows us to evaluate AppSaw in depth on a small number of apps
and also perform tests in breadth on a larger number of apps. We now describe
each of these suites in detail.

Utility Test Suite – Google Play Dynamic Sample: To evaluate utility,
we obtained a cross-section of real-world apps, we built a test suite by randomly
selecting top apps, each with at least a million downloads, from the Google Play
store. To ensure that app splitting did not cause any errors or changes in the
functionality of the app, we executed the two app variants (original and split)
on the same sequence of user interactions, and then manually inspected the
resulting user interface (UI) states. This allowed us to observe any differences in
functionality caused by the AppSaw transformation.
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Previous work has noted that testing Android apps is challenging [5,28].
Apps are interactive and have significant functionality triggered via GUI. In the
absence of a practical, comprehensive app testing approach, one must employ
either human-generated or semi-random event sequences. Both of these options
have disadvantages. Scalability is a problem for human users, while semi-random
input sequences can be shallow in the functionality explored [21]. As the purpose
of this test suite is to determine whether the user experiences the same behavior
from an app in both its original and split versions, we chose human-generated
inputs. This necessarily limited the number of apps in the Utility Test Suite.

We manually interacted with the original apps and recorded all interactions
using [30]. We then used this tool to faithfully replay these interactions on the
rewritten apps. For each app in the Utility Test Suite we collected two interaction
traces, each sufficiently long to perform a logical task in the corresponding app.
On average a logical task took 5 s to complete.

Security Test Suite – DroidBench: This consists of 119 applications from
DroidBench 2, a testing suite originally developed as part of FlowDroid [7],
for the purpose of evaluating static analyses for information-flow tracking. As
such, apps in DroidBench are crafted by authors from a variety of institutions
to provide challenging data flows. In our experiments, we use the information
flows statically reported by FlowDroid as input to AppSaw, with the goal of
splitting the DroidBench apps such that all of the FlowDroid-discovered flows
are mediated by a cross-minion IPC.

Performance Test Suite – IPC Microbenchmarks: The primary overhead
introduced by AppSaw is due to the cost of each IPC call when data is trans-
ferred back and worth among minions. While the cumulative cost of AppSaw
IPC over the lifetime of an app execution is low enough to be invisible to the
user, mostly because apps typically do not cross cut boundaries frequently, this
does not give a precise estimate of the overhead. To isolate the overhead, we
crafted a number of apps that only create permission-to-permission flows and
do nothing else. These apps do not represent the behavior and performance of
a useful app, but provide a worst-case analysis and thus an upper bound on the
performance impact of app splitting.

The apps forming the Performance Test Suite are fully deterministic, do not
depend on user input or any environment settings, and behave as follows.

– Direct Flow: In this app, we measure the performance penalty of splitting the
most common form of permission leak on Android, a flow of a device-specific
identifier (IMEI) to the network. This microbenchmark measures the cost of
a single IPC call to a minion. Our measurements are averaged over 12 runs
and compare the original app versus the split app.

– Loop Flow: Here, we modify the direct flow experiment such that source data
is repeatedly queried in a loop. Once the loop is finished, the results of the
final query leaked to the network. The purpose of this microbenchmark is to
determine if the mechanism can properly identify good candidate regions for
including in a single minion: AppSaw should include the entire loop in the
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minion and perform a single transfer, rather than performing a per-iteration
transfer.

– Large Flow: This app tests the overhead of moving a large amount of data
into the minion. While a typical app will only include source and the small
amount of data that touches it, in this app we ensure that a large, user-defined
class is tainted with source data. We measured the overhead of transferring
progressively larger classes.

We performed all app rewriting and evaluation on an Intel Core 2 Quad CPU
at 3.00 GHz. This machine used the Android emulator configured to emulate an
Intel x86 device with 1 GB RAM running Android 4.1.2 with host-GPU accel-
eration. Our implementation of AppSaw is based on Soot 2.5.0 and consists of
20K lines of new or modified code.

6.2 Experimental Results

Utility Findings: Our experiments with the Utility Test Suite did not show
any change in behavior in the split apps compared to their original variants. A
number of statistics about each app are shown in Fig. 1.

Security Findings: For each of the 119 apps in DroidBench, AppSaw suc-
cessfully exposed each flow (as discovered by FlowDroid) to OS-level mediation.
As shown in Fig. 1, the number of minions varied between apps, with some apps
having no unwanted information flows (and thus no minions in the split version),
while others having two or more.

Performance Findings: Our findings are summarized in Table 3. The perfor-
mance measurements for the Direct Flow microbenchmark are shown in Fig. 7.
The transfer of IMEI, a small string, across minions is inexpensive and is dom-
inated by the cost of IPC itself, thus incurring only 3% overhead. For the Loop
Flow microbenchmark, we observed that the loop is rightly placed in a single
minion and so the overhead is unsurprisingly similar to that of the Direct Flow
microbenchmark. Finally, the Large Flow microbenchmark showed that the run-
time overhead scaled with the size of the data being transferred to the minions,
as captured by Fig. 8.

Table 3. Results of the Performance Test Suite. Split apps incur small overhead when
transferring low to moderate amounts of data, but can experience slowdowns with
larger data transfers.

Microbenchmark Overhead Number of permissions Number of
minions

Instructions
per minion

Direct flow 3% 2 1 18

Loop flow 3% 2 1 27

Large flow 21% 2 1 12
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Fig. 7. Runtime measurements of
the Direct Flow microbenchmark.
This scatterplot shows the runtime
of minion transfer on 12 runs of the
split app compared to the runtime
of the same code on 12 runs of the
unmodified version of the same app.
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Fig. 8. Runtime measurements of the
Large Flow microbenchmark. The
minion-IPC overhead increases with
the amount of data transferred.

7 Related Work

Program Partitioning: Several systems exist to partition applications. We
note that in general, the Android permissions model allows our system to boot-
strap simple policies without the cooperation of the developer which is a benefit
of our domain that much previous work did not have available. Chong et al.
propose a system for splitting web applications [17]. Unlike this work AppSaw
does not require the placement of annotations, nor does it require source code,
or any effort on the part of the app’s developer. However, granting such condi-
tions could potentially improve the performance of AppSaw, though it would
require a different threat model. Zheng et al. propose a system to partition
applications across multiple, mutually distrusting hosts [31]. This scheme also
requires annotations to the program source. Program partitioning has also been
studied for web apps. Akhawe et al. [4] propose non-invasive techniques to par-
tition real-world web apps but their partitioning is manual. Calzavara et al. [10]
detect privilege escalation vulnerabilities in web apps; they do not provide means
for privilege separation though. Luo and Rezk [18] automatically partition web
mashups to provide greater security. While their work is similar to ours, our work
fits cleanly in the domain of Android apps and is backed by different formalisms.

Advertising Isolation: There has been a line of work in isolating advertising
from the rest of an application, such as [25,26]. Special-case operation of App-
Saw [20,25,26]. The most closely related work to our own is AdSplit, which
automatically rewrites an app to use an isolated advertising library [25]. Unlike
AppSaw, AdSplit uses Quire [11], which requires modifications to Android itself.
AppSaw runs on an unmodified Android device, and thus has no presence on
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the actual device. Although the approach of AppSaw is similar to AdSplit, the
goals of the systems are different and both users may benefit from using both
tools in parallel.

Android Rewriting: Aurasium [29] rewrites apps in order to specify policies
by hooking system calls, and employing a runtime security monitor. Unlike App-
Saw, Aurasium does not separate apps into multiple pieces, and does not give
the user the chance to control permissions in any way.

Android Isolation: Previous work has explored advantages of application
level isolation. In particular, Roesner et al. developed a modified version of the
Android OS, called LayerCake, that allows entities of different trust levels to be
embedded into a single app [23]. At a high level, the goal of this work is similar
to that of app splitting in that it sharpens the boundaries of security principals.
However, the approach taken by Roesner et al. differs from our own in that it
requires action on the part of the developers to employ new programming prac-
tices to comply with a new version of Android. In constrast, our work focuses
on enabling existing security mechanisms to work within the current Android
security model. Furthermore, the goal of LayerCake is to enable trusted UI com-
ponents, whereas the goal of our work is to isolate fine-grained functionality
of apps.

8 Limitations

AppSaw is effective at splitting apps to expose intra-app flows to OS mediation.
However, it has some limitations. Importantly, AppSaw inherits all the limita-
tions of static analysis. It may not work correctly in the presence of reflection,
dynamic code loading, and code obfuscation. While lexical obfuscation (renam-
ing identifiers, most Android apps are lexically obfuscated only) is not a problem
for AppSaw, commercial Android packers [2] thwart static analysis. However, in
the context of enterprise deployment with MAM, it is reasonable for developers
to agree on not using such obfuscations in return for the enterprise deploying
their apps on a large scale.

Certain Android permissions work on content providers, which are often spec-
ified as URL strings. AppSaw will work correctly if our strings analysis can
decode these strings (which may not be possible in case of obfuscation). More-
over, since we perform Java-only static analysis, native code is not yet supported.
Handling implicit flows efficiently is also an open area of research and we do not
currently handle implicit permission flows during splitting. Finally, handling side
channel flows is beyond the scope of this work.

9 Conclusion and Future Work

Modern operating systems, such as Android, provide mechanisms for fine-grained
control using permissions how apps can use resources. In this paper we used app
splitting to extend this control to permission flows. Specifically, we developed
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app rewriting techniques to split an app into multiple collaborative apps to
expose its internal data flows for OS-level mediation. Our evaluation shows that
our tool, AppSaw, is practical: it works on real-world apps, fulfills its security
purpose, and the rewritten apps have low runtime overhead.

There are several avenues for future for in app splitting and AppSaw. Cur-
rently, we replicate all fields of an object when it is passed across minions. We
can aggressively optimize this by not replicating fields which have not been ini-
tialized or will not be used after transfer. Another level of optimization may be
achieved by solving the weighted version of PSP to identify split points with
low data transfers. Another avenue is to introduce more fine-grained policies.
Currently, our policies are defined in terms of Android permissions, which are
known to be coarse-grained [22]. We can in the future introduce syntax and
mechanisms for policies that are specified at the finer granularity of API func-
tions. Another direction worth looking at is providing app developers with an
SDK to enable easily developing collaborative, split apps that provide permis-
sion flow guarantees. By involving the developers we can overcome some of the
limitations inherent with retrofitting such as those mentioned in Sect. 8.
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Abstract. We present a new class of low-volume application layer DDoS
attack–Very Short Intermittent DDoS (VSI-DDoS). Such attack sends
intermittent bursts (tens of milliseconds duration) of legitimate HTTP
requests to the target website with the goal of degrading the quality
of service (QoS) of the system and damaging the long-term business of
the service provider. VSI-DDoS attacks can be especially stealthy since
they can significantly impair the target system performance while the
average usage rate of all the system resources is at a moderate level,
making it hard to pinpoint the root-cause of performance degradation.
We develop a framework to effectively launch VSI-DDoS attacks, which
includes three phases: the profiling phase in which appropriate HTTP
requests are selected to launch the attack, the training phase in which
a typical Service Level Agreement (e.g., 95th percentile response time
<1 s) is used to train the attack parameters, and the attacking phase
in which attacking scripts are generated and deployed to distributed
bots to launch the actual attack. To evaluate such VSI-DDoS attacks,
we conduct extensive experiments using a representative benchmark web
application under realistic cloud scaling settings and equipped with some
popular state-of-the-art IDS/IPS systems (e.g., Snort), and find that our
attacks are able to effectively cause the long-tail latency problem of the
benchmark website while escaping the radar of those DDoS defense tools.

Keywords: Long-tail latency · Performance bottleneck
n-tier systems · Pulsating attack · Web attack · DDoS attack

1 Introduction

Distributed Denial-of-Service (DDoS) attacks for Internet services such as social
networks and e-commerce are increasing in sophistication and scale. Kaspersky
Lab’s “DDoS Intelligence Report Q1 2017” [4] reports that the trend of DDoS
attacks has been increasing despite numerous DDoS defense mechanisms. One
important reason of the increasing popularity of DDoS attacks is due to the
ever-evolving new types of DDoS attacks that exploit various newly discovered
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network or system vulnerabilities, bypassing the state-of-the-art defense mecha-
nisms [30,38]. The damage that these DDoS attacks cause to enterprise organi-
zations is well-known, and includes both monetary (e.g., $40,000 per hour) and
customer trust losses [15]. Therefore, for guarding these Internet services, it is
very important to detect, prevent and mitigate various emerging DDoS attacks.

In this work, we present a new low-volume application-layer DDoS attack
called Very Short Intermittent DDoS (VSI-DDoS). A VSI-DDoS attacker sends
intermittent bursts of carefully chosen legitimate HTTP requests to the target
system, with the aim of creating “Unsaturated DoS”, where the denial of service
can successfully last for short periods of time (i.e., hundreds of milliseconds).
VSI-DDoS attacks are not to bring down the system as traditional flooding DDoS
attacks do, but rather to degrade the quality of service by causing frequent and
sometimes intolerable delays for legitimate users, which will eventually damage
the long-term business goal of the target system. For example, given that modern
web applications care more about the tail latency than the average latency [12]
(e.g., Google requires 99% of its web-search to finish within 0.5 s [13]), a long-tail
latency (e.g., 95th percentile response time >1 s) caused by a VSI-DDoS attack
can significantly affect the target website’s business and reputation.

Compared to previous research on network-layer pulsating DDoS attacks [17,
18,22,23,25,27], VSI-DDoS is a type of application-layer DDoS attacks, with
even lower level of traceability and better stealthiness. Unlike the network-layer
pulsating attacks which intend to temporarily saturate the bandwidth of net-
work links that connect to the target system, VSI-DDoS attacks aim to create
very short saturations of the bottleneck resource (usually in CPU or disk I/O)
inside the target system, which we refer to as very short bottlenecks (VSBs) and
typically require much less amount of attack traffic to trigger them. Less amount
of attack traffic leads to a higher level of stealthiness. In addition, a VSI-DDoS
attack adopts legitimate HTTP requests, which can easily penetrate the defense
mechanisms adopted by CDNs, network routers or switches in the path to the
target system, thereby reducing the detection surface.

To effectively mount VSI-DDoS attacks, we should fully understand the trig-
gering conditions of VSBs inside the target system, and quantify their long-term
damages on the overall system performance. We develop a three-phase frame-
work to tackle these challenges, which involves profiling, training, and attacking.
Specifically, in the profiling phase we profile all the HTTP requests supported
by the target website and select a set of appropriate ones to launch the attack.
We find that heavy requests (e.g., the request with long service time consum-
ing more bottleneck resource in the target web system) can achieve significantly
better attack efficiency than light requests; only a small burst of heavy requests
are needed to trigger VSBs of the target system, reducing the cost of an effective
attack. In the training phase we use a typical Service Level Agreement (e.g., 95th

percentile response time <1 s) for most e-commerce websites as an evaluation
metric to train the key parameters of an effective VSI-DDoS attack, including
burst volume, length, and interval. We find that an appropriate combination of
these parameters not only achieves high attacking efficiency, but also escapes
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the radar of the most popular state-of-the-art DDoS defense tools, which further
validates the stealthiness of the proposed attack.

In summary, the main two contributions of this work are:

– We present a novel low-volume application-layer VSI-DDoS attack that can
broadly threaten a wide range of web applications in a stealthy manner. Unlike
the traditional brute-force DoS attacks or pulsating attacks which focus on
network bandwidth, VSI-DDoS attacks target the bottleneck resource of the
target web system using legitimate HTTP requests, thereby reducing the cost
of an effective attack while keeping the attack highly stealthy.

– We develop a three-phase framework via an empirical approach that is able
to efficiently launch VSI-DDoS attacks against a target web application.
Through a representative web application benchmark under realistic cloud
scaling settings and equipped with the most popular state-of-the-art DDoS
defense tools, we validate the practicality of our attacking framework.

Through our evaluation of VSI-DDoS attacks under realistic cloud scaling
settings and IDS/IPS systems, we confirm that the proposed attacks not only
bypass the triggering conditions of the cloud scaling but also invalidate capacity-
based threshold monitoring and detection. We further explore two more potential
solutions to VSI-DDoS attacks: fine-grained VSBs detection and user behavior
model validation, and discuss their strengths and weaknesses in practice.

The remainder of this paper is organized as follows. Section 2 presents the
origin and motivation of VSI-DDoS attacks. Section 3 describes the definition of
VSI-DDoS attacks, and the design of the VSI-DDoS attack framework. Section 4
evaluates the effectiveness and stealthiness of our attacks. Section 5 discusses
some countermeasures and future work. Section 6 presents the related work and
Sect. 7 concludes the paper.

2 Background and Motivations

2.1 Origin of VSI-DDoS Attacks

VSI-DDoS attacks originate from the new phenomenon of very short bottlenecks
(VSBs), also called transient bottlenecks in recent performance analysis of Inter-
net services deployed in Cloud environments [35,36]. In these previous studies
VSBs have been identified as one of the main sources for the puzzling perfor-
mance anomalies of the cloud-host web applications even though the system is
far from saturation. From time to time cloud practitioners have reported that
n-tier web applications produce very long response time (VLRT) requests on
the order of several seconds, when the system average utilization is only about
50–60%. The VLRT requests themselves do not contain bugs, since the same
requests return within tens of milliseconds when no bottleneck exists in the tar-
get system. The reason why VSBs can turn these normal short requests into
VLRT requests is because VSBs can cause a large number of requests to queue
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in the system within a very short time. Due to some system level concurrency
constrains (e.g., limited threads) of component servers, additional requests that
exceed the concurrency limit of any component server will be dropped, causing
TCP retransmissions (minimum time-out is 1 s [19]). The requests encountered
TCP retransmissions become VLRT requests perceived by the end users.

While most of previous studies focus on VSBs caused by internal system level
factors such as Java garbage collection, CPU Dynamic Voltage and Frequency
Scaling (DVFS), interference of collocated virtual machines, this newly identified
system vulnerability (VSBs) also motivates us to study the hypothetical VSI-
DDoS attacks. Our hypothesis is that the external burst of legitimate HTTP
requests can cause erratic fluctuation of resource consumption to be injected into
the target system and cause VSBs in the weakest node of the whole distributed
system, which in turn cause queue overflow and VLRT requests resulting from
TCP retransmissions. Such VSI-DDoS attacks can potentially impose significant
threats on current cyber infrastructures while remaining stealthy under the radar
of state-of-the-art DDoS defense mechanisms and IDS/IPS systems.

2.2 Importance of Tail Latency

In web applications such as e-commerce, rapid responsiveness is vital for ser-
vice providers’ reputation and business. For example, Google requires 99% of
its web-search to finish within 0.5 s [13]; Amazon reported that an every 100 ms
increase in the web-page load reduces sales by 1% [24]. In practice, the tail
latency, instead of the average latency, is of special concern for mission-critical
web-facing applications [12–14,20]. In shared infrastructures such as cloud envi-
ronments, service level agreements (SLAs) are commonly used for specifying
desirable response times, typically within one or two seconds [12]. In this case,
only requests with response time within the specified threshold have a posi-
tive impact to service providers’ business, and the requests with long response
time (beyond the threshold), not only waste network and system resources, but
also cause penalties (negative impact in revenue) to the business of the service
provider. In general, 99th, 98th, and 95th percentile response time are represen-
tative metrics to measure the performance of web applications [12,26]. In this
paper, we also use percentile response time as the evaluation metric to measure
the effectiveness of an adversary’s VSI-DDoS attacks.

2.3 Measured Long-Tail Latency Caused by VSI-DDoS Attacks

Here, we show the impact of VSI-DDoS attacks through concrete benchmark
results. The benefit of benchmark experiments is to have a fully controlled sys-
tem, which enables a detailed study about how the target system behaves when
it is under a VSI-DDoS attack. The design of the VSI-DDoS attack framework
and the real production setting evaluation are in Sects. 3 and 4, respectively.
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HTTP
Requests

Apache Tomcat MySQL
Normal Clients

Web server App server DB server
DDoS bot 

Farm

Fig. 1. Experimental sample topology

Fig. 2. Measured performance of the benchmark application under a VSI-DDoS attack.
Bursts of attacking HTTP requests (a) trigger VSBs in the bottom-most MySQL of
the system (b), which cause requests to queue from local to the front-most Apache
(c). Queue-overflows occur in Apache, causing TCP retransmissions and long response
time requests (d). (Color figure online)
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Fig. 3. Resource utilization of each server in the system under the VSI-DDoS Attack.
Metrics are measured using vmstat at every 1 s. (a) and (b) show that both CPU and
network bandwidth are not saturated. Utilization of other resources (e.g., memory) are
omitted since they are far from saturation.

Benchmark Measurements. We use RUBBoS [6], a representative n-tier web
application benchmark modeling the popular news forum website such as Slash-
dot. In Fig. 1, we show the basic configuration for RUBBoS using the typical
3-tier architecture, with 1 Apache web server, 1 Tomcat application Server, and
1 MySQL database server deployed in an academic cloud platform (more details
of experimental setup in Sect. 4.1). RUBBoS can emulate the behavior of legiti-
mate users to surf the website. Each user follows a Markov chain model to navi-
gate among different webpages, with averagely 7-s think time between receiving
a web page and submitting a new page request. On the other hand, we adopt
Apache Bench to send intermittent bursts of carefully chosen legitimate HTTP
requests; each burst is injected within a very short time window (e.g., 50 ms).

The mechanism of how VSI-DDoS attacks impact the performance of the tar-
get n-tier web system can only be seen using fine-grained monitoring. Figure 2
shows such an analysis when the target 3-tier benchmark website serving 3000
legitimate users is under a VSI-DDoS attack. All the metrics in the subfigures
are measured at every 50 ms time window. Figure 2a shows that the burst of
attacking requests occurs in every 2 s. Each burst contains about 250 legitimate
HTTP requests supported by the benchmark website within a 50 ms time win-
dow. The bursts of attack requests cause transient CPU saturations of MySQL
in Fig. 2b. These transient CPU saturations create VSBs and cause requests to
queue in MySQL; MySQL local queue soon fills up (at 0.5 s, 2.5 s, 4.5 s, and
6.5 s), pushing requests to queue in upstream Tomcat and Apache in Fig. 2c. We
call this phenomenon as push-back wave. Once the queued requests in the front-
most Apache exceed its queue limit (180 in our configuration), new requests from
legitimate users will be dropped, leading to TCP retransmissions and very long
response time (VLRT) requests as we observed in Fig. 2d.
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We also find that the VSBs can-
not be observed by our normal system
monitoring tools (e.g., sar, vmstat,
top) with the typical 1-s monitor-
ing granularity. Figure 3a shows that
the CPU utilization of each server in
the system is not saturated all the
time using vmstat during the 8-s VSI-
DDoS attacking period. Figure 3b
shows the outgoing/incoming network
traffic of Apache is at very low rate
(<10 MBps). We omit the graphs of
resource utilization of other resources
(e.g., memory, disk I/O) since all of
them are far from saturation. Given
such monitoring data, it is difficult
for system administrators to trace the
cause of the performance problem.

To illustrate the negative impact of the VSI-DDoS attack, we compare the
percentile response time serving 3000 concurrent legitimate users by the target
system under attack and without-attack in Fig. 4. The percentile response time
of the system under attack (the red line) uses the same dataset in Fig. 2. This
figure shows that all the requests finish within 200 ms without attack (the black
line). However, in the attacking scenario, the 95th percentile response time of the
target system already exceeds 1 s, clearly showing the long-tail latency problem
caused by the VSI-DDoS attack. Such long-tail latency problem is regarded
as severe performance issue by most web applications, especially modern
e-commerce (e.g., Amazon), as we have introduced in Sect. 2.2.

3 VSI-DDoS Attacks

In this section, we first formally present the adversary’s goal of VSI-DDoS attacks
and then discuss the key technical challenges of effectively launching VSI-DDoS
attacks.

3.1 Goals and Assumptions

In a VSI-DDoS attack scenario the adversary is to create frequent VSBs in the
target web system by sending intermittent bursts of legitimate HTTP requests
to the target system without being detected. So the goal of VSI-DDoS attacks is
not to bring the system down as traditional flooding DDoS attacks do, but rather
to degrade the quality of service by causing frequent and sometimes intolerable
delays for the legitimate users, which will eventually damage the business of the
target system in the long run. Such attacks are stealthy because the target web
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system is in an “unsaturated state”; the duration of each created VSB is very
short (e.g., 50 ms), which can easily escape the detection of normal monitoring
tools adopting coarse granularity statistical analysis (e.g., seconds or minutes).

Fig. 5. An illustration of a VSI-DDoS attack, which consists of burst volume V of
HTTP requests, burst length L, and burst interval I.

To effectively launch a VSI-DDoS attack, we assume that all the bots under
control are coordinated and synchronized so that requests generated by these
bots can reach the target web application at the same time or within a very short
timeframe. This assumption is reasonable because many previous research efforts
already provide solutions, using either centralized [17,33,39] or decentralized
methods [23], to coordinate bots to send synchronized traffic and cause network
congestion at a specific link. Our focus in this paper is how to create frequent
bursts of attacking but legitimate HTTP requests that can effectively trigger
VSBs in the target system, causing long-tail latency of the target web system
while avoiding being detected. We formally propose VSI-DDoS attacks as follows
(Fig. 5):

Effect = A(V,L, I) (1)

where,

– Effect is the measure of attacking effectiveness; we use percentile response
time as a metric to measure the tail latency of the target web system (e.g.,
95th percentile response time >1 s). Effect is a function of V , L, I.

– V is the number (volume) of attack requests per burst. V should be large
enough to temporarily saturate the bottleneck resource in the target system
and trigger VSBs. At the same time, V should be small enough to bypass the
state-of-the-art threshold-based detection tools [30,38].

– L is the length of each burst. The total requests per burst V will be sent
out during the period L. Thus the instant request rate to the target website
during a burst period is V /L. L should be short enough to guarantee high
instant request rate to trigger VSBs in the target system. Contrarily, too short
L will cause large portion of attack requests dropped by the target system
due to instant queue overflow (too high V /L), without causing any damage
to the target system performance.
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– I is the time interval between every two consecutive bursts. I infers the fre-
quency of bursts of HTTP requests to the target system. I should be short
enough so that the attacker can generate bursts of HTTP request frequent
enough to cause significant performance damage on the target system. On the
other hand, too short I makes the attack similar to the traditional flooding
DDoS attacks, which can be easily detected.

We note that all the three components need to be carefully coordinated
and tuned in order to launch an effective VSI-DDoS attack. To evaluate the
effectiveness of such an attack, we measure the tail latency of the target website.
We assume that the attack achieves its goal if the measured percentile response
time under attack exceeds the predefined threshold, which depends on the SLAs
of the target website. Based on this evaluation criteria, we develop an attacking
framework which is able to estimate an optimal value of each parameter using an
empirical approach for an effective VSI-DDoS attack in the following subsection.

Fig. 6. VSI-DDoS attacks framework

3.2 VSI-DDoS Attack Framework

The proposed VSI-DDoS attack framework contains three phases: profiling,
training, and attacking (Fig. 6). The profiling and training phases are to deter-
mine the three parameters of a VSI-DDoS attack. The attacking phase generates
and deploys attacking scripts to distributed bots and launches the actual attack.

Profiling Phase. This phase selects appropriate types of HTTP requests for
attacking in order to create VSBs in the target website with the minimum
cost, meaning the least number of attacking requests for each burst. This phase
includes the following three steps.
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(1) Scanning the supported HTTP requests. To select appropriate HTTP
requests, one challenge is to retrieve representative HTTP requests that cover
all the transaction types supported by the target website, including both static
and GET/POST dynamic requests. Although the requests for static content of a
website are easy to retrieve by using some crawling tools (e.g., scrapy), requests
for dynamic content are more difficult to get. This is because POST requests are
sent out by submitting forms (content is in the body section of a HTTP request),
not through the direct URLs. To solve this issue, we adopt a script-based open
source web browser PhantomJS to retrieve and analyze the form tags inside the
HTTP response for every HTTP request. After the attacker provides some ini-
tial values for associated input boxes (e.g., user-name and password) inside each
form, PhantomJS can submit POST requests automatically. PhantomJS also
supports cookies which allows an attacker to conduct consecutive interactions
with some websites (e.g., Facebook) which require user login before further web-
site navigation. POST requests are important types of attack requests because
they can penetrate Content Delivery Networks (CDN) and attack the original
target website. CDNs are widely used by websites nowadays to improve the web-
site performance by caching static content. Since POST requests are dynamic
requests which typically require to retrieve/write dynamic information from/to
the back-end database, current CDN vendors usually do not support caching
responses for POST requests [29]. Thus POST requests are natural candidates
to launch effective VSI-DDoS attacks for websites with CDN support.

(2) Identifying heavy requests using service time. Once we get enough
supported HTTP requests, the next challenge is to decide which requests con-
sume more bottleneck resource (e.g., Database CPU) of the target web system
than the others. We term the requests heavily consuming the bottleneck resource
as heavy requests (e.g., POST requests), meanwhile, those consuming no or little
bottleneck resource as light requests (e.g., static requests). In this case, heavy
requests are natural candidates to launch a VSI-DDoS attack because a fewer
number of them are needed to trigger VSBs in the target web system than that
of light requests. A low number of attacking requests per burst also make the
attack stealthy because of the low volume of network traffic. The key question
is how do we determine which requests are heavy and which are light?

We use the service time of each type of HTTP requests as a key metric to
distinguish the heavy requests from the light ones. Service time of a HTTP
request is the time serving the request by the target web system without any
queuing delay. Previous research results [35] show that the predominant part of
the service time of a request is spent on the bottleneck resource in the system.
When the target system is at low utilization1, service time can be estimated to
be the end-to-end response time of a request subtracting the network latency
between the client and the target web application. The end-to-end response time
of a HTTP request can be easily recorded using Apache Bench or PhantomJS.

1 Low utilization is to rule out the queueing effect inside the target system.
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Lots of tools can be used to measure the network latency (e.g., the ping com-
mand). We measure the service time of each type of HTTP requests multiple
times and employ the average in order to mitigate influence of network latency
variation.

(3) Selecting candidate requests. A naive strategy to select candidate attack-
ing requests is always choosing the heaviest type of requests. In this case, the
attacker can use the minimum number of requests per burst to create VSBs in
the target web system. However, single type of attacking requests in a VSI-DDoS
attack has the risk to be identified as abnormal by existing DDoS defense tools
using statistical analysis. For example, the defense tool may simply aggregate all
the requests sent out from the same IP and identify that some IPs only send one
type of HTTP requests, which is highly suspicious. To bypass such statistics-
based detection mechanisms [7], an attacker can select a set of top-ranked heavy
requests, which can achieve the same attacking goal with slightly increased cost.
Some more advanced defense mechanisms use machine-learning based techniques
to learn a legitimate user behavior model [32] and infer suspicions requests if the
sequence or the transition probability among them significantly deviates from
the model (judging based on pre-defined thresholds). In this case the attacker
needs to select candidate requests more carefully to make sure that the sequence
of HTTP requests sent from a bot is feasible for a legitimate user. We will discuss
this in more detail in Sect. 5.

Training Phase. This phase is to train the key parameters (V , L, and I) of an
effective VSI-DDoS attack that meets the adversary’s goal (e.g., 95th percentile
response time >1 s).

(1) Training volume. The technical objective of a VSI-DDoS attack is to cre-
ate frequent VSBs in the target web system. Thus a key challenge of VSI-DDoS
attacks is to determine whether a batch of attacking requests are able to create
a VSB in the target system or not. In most cases the attacker has no privi-
lege to monitor the resource utilization of the target system. Thus the attacker
cannot depend on internal resource monitoring to determine the occurrence of
VSBs. However, we know that the occurrence of a VSB will create temporary
request congestion inside the target system; once the queued requests exceed any
system-level queue capacity (e.g., thread pool size), new arriving requests will be
dropped and TCP retransmissions (minimum time-out is 1 s) will happen, lead-
ing to long response time perceived by the end users (see Fig. 2). In this case,
long response time caused by queue-overflow and TCP retransmissions can be
treated as a signal of the occurrence of VSBs. Given such an idea, a VSI-DDoS
attacker can gradually increase the volume of the attacking requests per batch
until the observation of requests with abnormally long response time.
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Fig. 7. Training the lower bound of volume for an effective VSI-DDoS attack for our
RUBBoS benchmark application. We increase the volume of attacking requests per
burst step by step until we observe abnormally long response time of requests sent
from legitimate users (see Fig. 7b).
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Fig. 8. Impact of volume V per burst. This
figure shows the percentile response time of
the target system (serving 3000 legitimate
clients) gets more damages as the attack
volume per burst V increases from 100 to
550 (fixing L = 50ms, I = 7 s).

The minimum volume per burst
that triggers the long response time
requests due to TCP retransmis-
sions is the lower bound Vmin for
the selected attack requests. Figure 7
shows the process of training Vmin

for an effective VSI-DDoS attack for
our RUBBoS website, which is serv-
ing 3000 legitimate users. When burst
volume is only 20, the response time
perceived by all legitimate users is
lower than 250 ms in Fig. 7a. We
increase burst volume step by step
(e.g., 10 or 20) until we observe the
requests sent from legitimate users
experience abnormally long response
time in Fig. 7b. The distinct two-
modal response time distribution indicates that 100 reaches the lower bound.
In practice we set the volume higher than Vmin to guarantee the successful trig-
gering of VSBs in the target system and achieve better attack result as shown
in Fig. 8. On the other hand, the volume should not be too high otherwise it
will trigger the alarm of defense tools (e.g., Snort [7]) deployed in the target web
system. We can increase the number of bots and reduce the number of attack
requests per bot to bypass the state-of-the-art detection mechanisms.

(2) Training burst length. A good burst length L should maximize the impact
of the burst of attacking requests on the requests sent from legitimate users. We
observed that the best L should be the service time of the selected attack-
ing requests. A HTTP request that originates from a client arrives at the web
server, which distributes it among the application servers, which in turn ask the
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database to execute the query. Due to the RPC-style synchronous communica-
tion between consecutive tiers, the processing threads and other associate soft
resources such as database connections of a component server will be occupied
until all the activities in the downstream tiers are done. In order to create the
most soft resource consumption, the burst of attacking requests should arrive
within the service time of the attacking requests. In this case, all the attacking
requests will stay in the target system before any of them finishes processing
and leaves the system. Once any of soft resources in any tier of the system are
exhausted, new requests from legitimate users will be dropped, leading to long
response time requests resulting from TCP retransmissions.
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Fig. 9. Impact of the length L per burst.
The biggest attacking damage (serving
3000 legitimate clients, and fixing V = 200,
I = 7 s) appears when L is 50 ms; the
more the burst length deviates from 50ms,
the weaker the damage caused by the VSI-
DDoS attack is.

Figure 9 shows the impact of the
burst length L on the tail latency
of our RUBBoS website. We choose
the heavy request “ViewStory” as the
attacking requests. The service time
of such heavy request is about 50 ms.
Note that the biggest attacking dam-
age appears when L is 50 ms. Too
short L leads to low effectiveness for
the attacking burst, since most of the
attacking requests will be dropped
due to sudden queue-overflow2, with-
out causing any harm to the requests
from legitimate users. On the other
hand, too long L (e.g., the L = 800ms
case) leads to low instant request rate
(V/L), which may not be able to cre-
ate VSBs in the target system and
lead to inferior attacking results.

(3) Training interval between bursts. By determining V and L of each burst
we can make sure one burst is able to trigger a VSB in the target system. The
final goal of a VSI-DDoS attack is to create the long-tail latency problem of the
target web system. Too small interval between bursts makes it similar as the
traditional flooding DDoS attack, thus can be easily detected. Too large interval
creates insufficient number of VSBs in the target web system, thus unable to
achieve the adversary’s goal. To select a reasonable interval, we start from a
relatively large interval and gradually reduce the interval until the measured tail
latency meets the adversary’s goal. Figure 10 shows such a process of selecting
a reasonable interval for our RUBBoS benchmark. To avoid an obvious burst
pattern of attacking requests, the interval between consecutive bursts is not nec-
essarily assigned with a fixed value. A VSI-DDoS attacker can design the interval
with a random variable following certain statistical distributions, with the mean

2 Short L leads to high instant request rate V/L, OS kernel may not be able to handle
packets promptly due to high overhead of interrupt handling [18].
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to be similar to a normal user’s think time between consecutive requests. Figure 2
in Sect. 2.3 is such an example. The interval between attack bursts follows a nor-
mal distribution with the mean of 2 s.
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Fig. 10. Impact of the interval I between
bursts. This figure shows the percentile
response time of the system (serving 3000
legitimate clients) gets more damages as we
decreases I from 30 s to 5 s (fixing V = 200,
L = 50ms).

Attacking Phase. This phase is
to launch the real VSI-DDoS attack
based on the previous profiling and
training results of V , L, I for request
bursts. Attackers launch the attack by
leveraging the resources of multiple
hosts, especially Botnet. We note that
an attacker should use a probe to con-
tinuously monitor the performance of
the target website, for example, send a
sequence of very light HTTP requests
(e.g., html) at regular intervals and
check the response time distribution.
The profiling and training phase need
to redo once the attacking results can-
not meet the adversary’s goal due to
the change of baseline workload or
system state (e.g., dataset size change).

4 Evaluation

4.1 VSI-DDoS Attacks Under Cloud Scaling

To evaluate the effectiveness of our VSI-DDoS attacks in the real produc-
tion settings, we deploy RUBBoS in a popular NSF sponsored cloud platform-
Cloudlab [5].

Experiment Methodology. In the real production environment, once admin-
istrators pinpoint the performance bottleneck of an n-tier system, they can solve
the issue by scaling the bottleneck tier. One policy is scaling up (updating the
hardware of the bottleneck tier), and the other is scaling out (adding more
machines/virtual machines to the bottleneck tier). For example, Amazon Auto
Scaling [1] can scale out EC2 instances as the demand of an application increases.
We evaluate our attack under both scaling settings. In our experiments, we
assume that the bottleneck is MySQL since the bottleneck typically takes place
in the database due to the high resource consumption of database operations.
To evaluate our attack under the cloud scaling settings, we keep all the software
configuration (e.g., queue size, DB connection pool size) the same to rule out
their impacts to our evaluation. In the scaling up case, we update the hard-
ware unit (1 CPU core and 1 GB Memory) of MySQL from 1 to 4 Units. In the
scaling out case, we increase the number of MySQL VMs from 1 to 4. All the
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Fig. 11. The required burst volume and the CPU utilization of MySQL in scaling
up/out scenarios while achieving our victim goal. Average CPU Usage decreases after
scaled, indicating the scaling mitigates the bottleneck. However, we can still get the
attacking goal by increasing burst volume.

VMs (Xen-based Emulab virtual nodes) are running CentOS 6.5 on 2.10 GHz
Intel Xeon E5-2450 processors. To maximize the impact of our attack, we set
the burst length as the service time of attack requests (e.g., 50 ms.), and set
the burst interval as 2 s. We conduct the attack experiments for 10 min in each
scenario since half of the DDoS attacks last longer than 10 min [31]. Our DDoS
bot farm in Fig. 1 consists of 8 machines, one serves as a centralized controller
that coordinates and synchronizes the other nodes to launch the attacks.

Results. Figure 11 depicts the required burst volume and the relevant usage
of the bottleneck resource at scaling up/out scenarios to achieve our attacking
goal. We can see the average CPU utilization of MySQL reduces from high load
(>80%) to moderate level (<50%) after the bottleneck tier is scaled, indicating
the scaling policies are effective since more CPU cores or VMs can mitigate
the impact of the bottleneck resource to the system performance. However, we
can still reach our attacking goal by increasing attacking volume per burst even
in a large scale scenario, since it requires higher burst volume to trigger VSBs
in the system after the capacity of the bottleneck tier increases. On the other
hand, increasing the attack requests by each bot obviously increases the risk of
detection by the target system, but we can coordinate more synchronized bots to
send higher volume per burst to achieve our attacking goal using decentralized
synchronization mechanism [23]. As such, we can still keep our attacks under
the radar of the state-of-the-art detection mechanism.

Remarks About Cloud Scaling. In real production clouds (e.g., Amazon
AWS), the users can customize some triggering conditions to instruct Amazon
Auto Scaling [1] to scale out/in instances in response to metrics (such as band-
width usage or CPU utilization) monitored by Amazon CloudWatch [2]. The
monitoring granularity of Amazon CloudWatch for premium users is 1 min [2].
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For example, the target system can add more VMs once the average CPU uti-
lization of all the instances exceeds 85% during a 1-min statistical period. From
Sampling Theory, our attack is hard to trigger the scaling plans sampling in
minutes level, since the VSBs usually occur in milliseconds level (more details
about monitoring granularity in Sect. 5). Large-scale web applications typically
adopt dynamic scaling strategy for better resource efficiency and load balancing,
VSI-DDoS attacks can avoid the triggering conditions of the cloud scaling, thus
we expect that the current cloud scaling techniques do not help resolving our
attacks.

4.2 VSI-DDoS Attacks Under Defense Tools

To validate the stealthiness of our attacks under the popular defense mechanisms,
we deploy some defense tools before the web tier in our RUBBoS environments.

Experiment Methodology. Snort is the most widely deployed network
anomaly detection system in the world that is acquired by Cisco Systems
on October 7, 2013, and widely used in practice for DDoS defense [7,8].
Snort.AD [9], extended based on Snort, is a threshold and statistics-based net-
work anomaly detection tool, which can analyze the network traffic based on
different protocols (UDP, TCP, HTTP, etc.) within a certain period. Here, we
take HTTP traffic as a representative metric in Snort.AD to evaluate whether
our attacks break through the cordon, since our attacking requests only involve
the HTTP packets. In the following experiments, we configure 2000 and 4000
concurrent legitimate users as the baseline for low and high background work-
load scenarios. We set 95th, 98th and 99th percentile response time (>1 s) as the
candidate attacking goals, and call them 95th, 98th, and 99th case hereinafter.
To achieve these different attacking goals, we fix the burst length as the service
time of the attacking requests and the burst interval as 2 s, and only tune the
burst volume ((250, 150, 100) and (150, 100, 50) for the 95th, 98th and 99th
case of 2000 and 4000 baseline, respectively). We conduct the experiments in a
10-min period for each scenario. We modify the code of Snort.AD to trace the
number of the HTTP incoming/outgoing packets in a minute interval and the
HTTP incoming/outgoing speed in terms of Mega Bytes per second, to evaluate
whether they exceed the threshold for these cases with different attacking goals
and background workload.

Alert Threshold Setting. How to set the alert threshold is a well-known
challenge for administrators [10,11]: a high threshold may not be able to detect
anomalies; a low threshold may incur a high number of false positive alarms
which an administer tries to avoid in practice. Typically, a widely-adopted set-
ting strategy [10,11] is to set the threshold of each monitoring metric based on
the capacity of the target system. Network security company [10] recommends
that the company‘s IT team should conduct the necessary performance tests to
determine the capacity, and set the threshold lower than the capacity to prevent
resource exhaustion (e.g., define the threshold when reaching 85% bottleneck
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Table 1. Measured HTTP traffic in the cases of 95th, 98th and 99th percentile response
time (>1 s) as candidate attacking goals. All of measured metrics are less than the
predefined thresholds set based on system capacity when the corresponding attacking
goal is achieved.

Metrics Threshold 2000 low load 4000 high load

95th 98th 99th B/L 95th 98th 99th B/L

In. packets (#/min) 299K 158K 119K 111K 99K 224K 214K 208K 201K

Out. packets (#/min) 349K 171K 134K 127K 116K 259K 249K 241K 233K

In. speed (MB/sec) 9.32 4.68 3.96 3.62 3.11 7.08 6.76 6.45 6.23

Out. speed (MB/sec) 17.83 7.62 6.83 6.48 5.94 12.78 12.46 12.12 11.89

In.: HTTP Incoming, Out.: HTTP Outgoing, B/L: Baseline

resource utilization of the web system). We also profile the capacity of the tar-
get system in our experimental environment under a worst-case scenario (when
serving 6000 concurrent users, the bottleneck resource, MySQL CPU utilization,
reaches 85%). In our experiments, we take this widely-adopted strategy to define
the alert threshold listed in Column 2 of Table 1 to capture our attacks.

Results. Table 1 lists the maximal HTTP incoming/outgoing packets and speed
under our attacks for the cases with different attacking goals and background
workload. All of the measured traffic metrics are in the moderate level and far
from the predefined threshold (based on system capacity) when the correspond-
ing attacking goal is achieved, indicating that our attacks create an “Unsaturated
illusion” for Snort. As a result, Snort reports no alert. More importantly, the
increased traffic due to our attacks is small compared to the baseline case, espe-
cially when the attacking goal is less aggressive (e.g., 99th percentile response
time >1 s). For example, an effective VSI-DDoS attack in the 99th case only
incurs 10% more traffic when the baseline workload is 2000, and 4% more traffic
when the baseline is 4000. This result also suggests that an effective VSI-DDoS
attack is easier to achieve as the background traffic increases.

Remarks About Threshold-Based Detection. The fundamental reason
that our attack (in milliseconds level) can invalidate the traditional threshold-
based detection tools (in seconds or minutes level) is their coarse monitoring
granularity. The coarse monitoring granularity is effective for identifying brute-
force DDoS attacks and flash crowds lasting for tens of seconds or minutes [21]
(detailed explanation in Sect. 6), but obviously too long to observe any abnor-
mal behaviors triggered by a VSI-DDoS attack lasting for only tens of millisec-
onds (e.g., the minimum measured rate-interval of the Cisco Adaptive Security
Appliance is 1 s [3], the minimum sampling interval of Snort is 1 min [9], the
sampling interval of BotSniffer’s monitor engine [16] is in seconds level). Indeed,
fine-grained monitoring could mitigate the problem, but with the cost of high
monitoring overhead and potentially high false positive alarms (falsely block
legitimate users), because web application workload is naturally bursty [21]. We
will discuss the impact of monitoring granularity in more detail in the following.



62 H. Shan et al.

5 Discussion of Possible Detection/Defense Mechanisms

Here, we introduce two more candidate countermeasures for VSI-DDoS attacks
and discuss their pros and cons in practice.

(1) Fine-Grained VSBs Detection. A natural way to detect a VSI-DDoS
attack is to detect the occurrence of VSBs in the target web system, and deter-
mine whether they are caused by bursts of malicious HTTP requests. However,
detecting VSBs in the target web system is challenging because they usually
occur in milliseconds level; from Sampling Theory, these VSBs would not be
reliably detectable by normal tools sampling at time intervals from 1 s (e.g.,
Snort, BotSniffer [16], sar, vmstat, top) to several minutes (e.g, CloudWatch).
To reliably detect VSBs and their correlation with a potential VSI-DDoS attack,
we need both the system and application level fine-grained monitoring (millisec-
ond level). System-level monitoring is to detect VSBs by collecting the hard-
ware resource utilization of all component servers in the target system using
fine-grained monitoring tools (e.g., collectl). Application level monitoring is to
collect the request processing logs of each component server in the system and
analyze the performance metrics such as incoming request rate, queue status, and
point-in-time response time in fine granularity. Given the collected fine-grained
monitoring data, we apply a timeline correlation analysis to link the observed
VSBs in system-level monitoring with the application level performance metrics,
as we have illustrated in Sect. 2.3 (see Fig. 2). On the other hand, with “coarse”
monitoring granularity (e.g., 1 s), these metrics only show moderate variations or
non-saturation (see Fig. 3) over time, which will likely not bring any attention to
administrators. Although the fine-grained monitoring approach is conceptually
simple, it requires sophisticated fine-grained monitoring tools. [36] shows that
VSBs can be caused by the temporary saturation of any system resource that is
in the execution path as HTTP requests flow via the system. Specifically, VSBs
caused by a VSI-DDoS attack may not necessarily be in hardware resources, but
in system soft resources (e.g., database locks, thread pool) that are out of the
scope of existing fine-grained monitoring tools (e.g. collectl). We observed this
phenomenon when we deploy Opentaps, a popular open source ERP/CRM web
application, in Amazon EC2 cloud platform. The target Opentaps web appli-
cation shows a significant long-tail latency problem under a VSI-DDoS attack
while collectl reports no saturation of any hardware resources. In addition, mon-
itoring overhead is another big concern of the fine-grained monitoring approach.
In our RUBBoS experiments, we observe that collectl incurs high overhead at
sub-second sampling intervals (about 6% CPU utilization overhead at 100 ms
interval and 12% at 20 ms).

(2) User Behavior Model Validation. Some advanced defense mechanisms
use machine-learning based techniques to learn a normal user behavior model
from web server logs. These user behavior models [32,37] are used to differen-
tiate HTTP requests sent by humans from those sent by bots. For example,
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Oikonomou and Mirkovic [32] model three aspects of human behaviors such as
inter-arrival time of consecutive requests from the same user, choice of content
to access, and ability to ignore invisible content. Such user behavior models
are indeed effective if a VSI-DDoS attacker chooses single type of requests to
attack or a set of heavy requests that have low transition probability among
them. However, the attacker can set the interval between consecutive bursts
in a VSI-DDoS attack similar to the browsing behavior of a legitimate user
(e.g., an average 7-s think time between two webpages). The attacker can also
learn a popular sequence of HTTP requests that a legitimate user will likely go
through when visiting the target website. Then the same sequence of requests
can be selected as the attack requests. Such selection strategy may not be the
most cost-efficient one since not all of the selected requests are heavy, but the
attacker can still achieve the goal by controlling more bots to launch the attack.
Defense mechanisms that adopt user behavior models certainly raise the bar of
our attacks, but they do not suffice to detect and defend such attacks.

6 Related Work

DDoS attack and defense mechanisms have been extensively investigated and
categorized in survey papers [30,38]. In this section, we review the most relevant
work in two aspects: the low-rate network-layer pulsating DDoS attacks and the
low-volume application-layer DDoS attacks [28].

Low-Rate Network-Layer Pulsating DDoS Attacks. Many attack mecha-
nisms in this category [17,22,23,25,27] have been proposed, which send bursts of
TCP packets to cause packet drops, by exploiting deficiencies in TCP retrans-
mission time-out mechanism known as Shrew attack [25], congestion control
response mechanism known as Pulsating attack [23,27], or the transients of the
system’s adaptation mechanisms known as RoQ attack [17]. These attacks share
some similar features with VSI-DDoS attacks, such as the low attacking volume
in Shrew and Pulsating attack, and the QoS degradation in RoQ attack. How-
ever, our work differs from these work in three aspects: (1) all these attacks are
network-layer attacks targeting at network links, while our attacks are at the
application-layer, exploiting the bottleneck resource (e.g., CPU, I/O) and the
complex resource dependencies (e.g., push-back wave [36]) inside the web sys-
tem; (2) these attacks usually require a fixed or crafted burst interval to synchro-
nize the Retransmission Timeout (RTO) duration, while our attacks are more
flexible in selecting burst volume, length and interval, which allows our attack
to be even stealthier; (3) our evaluation metric is based on percentile response
time, representing real user experience and provider’s service level agreements,
which has not been used previously to quantify the attack impact.

Low-Volume Application-Layer DDoS Attacks. One class of low-volume
application-layer DDoS attacks specifically related to our attacks are called flash
crowds [21], which refer to the scenario when thousands of legitimate users



64 H. Shan et al.

intensively browse an e-commercial website due to a hot event (e.g., Black
Friday deals). Previous detection mechanisms are mainly focusing on differentiat-
ing traffic from flash crowds created by legitimate users or application-layer DDoS
attacks [21,34,37], such as using hidden semi-Markov model [37] and session-level
misbehaviors [34] for anomaly detection. VSI-DDoS attacks can be launched with
randomized interval and learn from the user behaviors of a legitimate user, which
invalidates those user behavior model-based application layer detection mecha-
nisms.More importantly,VSI-DDoS attacks exploit very short bottlenecks (VSBs)
as the system vulnerability, VSBs can be much shorter (tens of milliseconds) than
the duration of the traditional application-layer flash crowds traffic (tens of sec-
onds or minutes). Thus, the detection mechanisms of identifying DDoS attacks
from flash crowds can be defeated by our VSI-DDoS attacks.

7 Conclusions

We presented a new type of low-volume application layer DDoS attack, VSI-
DDoS attacks, exploiting a newly discovered system vulnerability (VSBs) of
n-tier web applications. Using concrete experimental results we showed that VSI-
DDoS attacks can be specially effective and stealthy because they can cause an
intolerable long-tail latency issue of the target system while the average usage
rate of all the system resources is at a moderate level (Sect. 2.3). We developed a
VSI-DDoS attacking framework in which an attacker can systematically profile
the target web application and train key attacking parameters for an effective
VSI-DDoS attack (Sect. 3). Through a representative web application benchmark
under realistic cloud scaling settings and equipped with the most popular state-
of-the-art DDoS defense tools, we validated the negative impact and stealthiness
of VSI-DDoS attacks, and confirmed the practicality of our attacking framework
(Sect. 4). We further explored the pros and cons of two possible countermeasures
for our attacks (Sect. 5). VSI-DDoS attack, as a newfound DDoS attack, is an
important contribution to complement emerging DDoS attacks.
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Abstract. As the quantity of data produced is rapidly rising in recent
years, clients lack of computational and storage resources tend to out-
source data mining tasks to cloud service providers in order to improve
efficiency and save costs. It’s also increasing common for clients to per-
form collaborative mining to maximize profits. However, due to the
rise of privacy leakage issues, the data contributed by clients should be
encrypted under their own keys. This paper focuses on privacy-preserving
k-means clustering over the joint datasets from multiple sources. Unfor-
tunately, existing secure outsourcing protocols are either restricted to a
single key setting or quite inefficient because of frequent client-to-server
interactions, making it impractical for wide application. To address these
issues, we propose a set of secure building blocks and outsourced clus-
tering protocol under Spark framework. Theoretical analysis shows that
our scheme protects the confidentiality of the joint database and mining
results in the standard threat model with small computation and commu-
nication overhead. Experimental results also demonstrate its significant
efficiency improvements compared with existing methods.

Keywords: Outsourced k-means clustering · Multiple keys
Cloud environment · Spark framework

1 Introduction

With tremendous amount of data gathered each day, it’s increasingly difficult
for resource-constrained clients (e.g., mobile devices) to perform computationally
intensive task locally. It is a reasonable option to outsource data mining tasks to
cloud service provider which provides massive storage and computation power
in a cost-efficient way [1]. By leveraging the cloud platforms, a great many giant
IT companies have offered machine learning services to facilitate clients to train
and deploy their own models, e.g., Amazon Machine Learning [2], Google Cloud
Machine Learning Engine [3], IBM Watson [4], etc. Despite these advantages,
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privacy issues impede clients from migrating to cloud due to concerns of privacy
breach. For example, by collecting medical health records from multiple patients
and social networks, hospitals may build more accurate models to improve diag-
nosis or to predict disease outbreaks [5]. It is, however, crucial to guarantee the
security and privacy of e-health records which usually contain a lot of sensitive
information, such as personal identity and health condition. A straightforward
solution is allowing patients to encrypt the data with their own keys before
outsourcing. Whereas it still remains a big challenge for current cloud-based
services to perform machine learning operations over encrypted data. Thus, in
this paper, we try to solve the above issues by focusing on privacy protection
techniques regarding a typical data mining algorithm–k-means clustering [6].

Traditional privacy-preserving clustering schemes cannot be directly adopted
to address the privacy issues during outsourcing. Their target is to compute
clusters through interactions among participating data holders without revealing
respective data to others [7,8], whereas in our case, the data are stored and
processed by the cloud rather than clients themselves.

Most existing works on outsourced privacy-preserving clustering require
cloud clients to employ the same key data for encryption [9–11]. It is appar-
ent that the single key restriction has some drawbacks: (1) a compromised data
owner can easily decrypt others’ ciphertexts if they share the identical symmet-
ric or asymmetric keys as methods in [9,10]; (2) without knowing the secret
key, owners cannot retrieve their own data downloaded from the cloud if the
datasets are encrypted under cloud’s public key [11]. To overcome these limita-
tions, data owners should encrypt their datasets with their own keys, which calls
for computation over encrypted data under multiple keys. The recent work [12]
concerning multi-key scenario is built on geometric transformation to preserve
the dot product as KNN scheme [13]. However, this method is weak in security,
for all instances may be recovered if the attacker can setup a group of equations
with enough linearly independent instances. Furthermore, only one or two cloud
servers are adopted in the existing works, the great computing power of dis-
tributed cloud environment is not fully exploited to accelerate the outsourcing
process.

In this paper, we present a method for Privacy-Preserving Outsourced Clus-
tering under Multiple keys (PPOCM), which enables distributed cloud servers to
perform clustering collaboratively over the aggregated datasets encrypted under
multiple keys with no privacy leakage. Specifically, the major contributions of
this paper are three folds.

– Firstly, we propose a set of privacy-preserving building blocks for basic arith-
metic operations. Based on the cryptosystem with double decryption prop-
erty, our schemes allows to evaluate addition and multiplication over inputs
encrypted under different keys. Through these primitives, cloud servers are
able to compute Euclidean distances between records and cluster centers.

– Secondly, as the encryptions are probabilistically randomized and incompara-
ble, we propose an efficient method to compare encrypted Euclidean distances



Outsourced k-Means Clustering Under Multi-keys 69

in a privacy-preserving manner. In addition, clients are not required to par-
ticipate in the comparison operations during k-means outsourcing.

– Thirdly, based on the proposed secure building blocks, we design PPOCM
protocol by taking advantage of a big data analytic framework–Spark and
distributed cloud resources. Theoretical analysis demonstrates the proposed
protocol protects the content of data records, intermediate results as well
as the privacy of clustering result in the semi-honest model. Experimental
results on real dataset shows that PPOCM is much more efficient than existing
methods in terms of computation and communication overhead.

A comparative summary of existing outsourced k-means protocols is pre-
sented in Table 1.

Table 1. Comparative summary of existing solutions for outsourced k-means

Protocol Encryption
type

Data privacy
protection

Multi-key
support

Minimal
owner
participation

Ciphertext
comparison

Big data
engine

Lin’s [9] Symmetric
√ × √ × ×

Liu’s [10] Symmetric
√ × × √ ×

Huang’s [12] Symmetric
√ √ × × ×

Rao’s [11] Asymmetric
√ × √ √ ×

Ours Asymmetric
√ √ √ √ √

The rest of the paper is organized as follows. In Sect. 2, we review k-means
clustering algorithm and the underlying encryption scheme. The system model,
threat model, and design goals are presented in Sect. 3. The design details of our
proposed protocol–PPOCM are described in Sect. 4. We also analyze the secu-
rity of the protocol in Sect. 5. Section 6 shows the theoretical and experimental
evaluations. Section 7 discusses related work. Finally, we conclude the paper and
outline future work in Sect. 8.

2 Preliminaries

In this section, we briefly introduce the typical k-means clustering algorithm and
public key cryptosystem with double decryption mechanism, serving as the basis
of our solution.

2.1 k-Means Clustering

Given records t1, ..., tl, the k-means clustering algorithm partitions them into k
disjoint clusters, denoted by c1, ..., ck. Let μi be the centroid value of ci. Record
tj assigned to ci has the shortest distance to μi compared with its distances to
other centroids, where i ∈ [1, k] and j ∈ [1, l]. Let Vl×k be the matrix defining
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the membership of records, in which Vi,j ∈ {0, 1}, for 1 ≤ i ≤ l, 1 ≤ j ≤ k. Note
that the ith record belongs to cj if Vi,j = 1; otherwise, Vi,j = 0.

Initial k records are selected randomly as cluster centers μ1, ..., μk. Then
the algorithm executes in an iterative fashion. For ti, the algorithm computes
Euclidean distance between ti and every centroid μj , for 1 ≤ j ≤ k, and updates
V according to arg min

j
||ti − μj ||2, i.e., assigns ti to the closest cluster cj . Later,

the centroid μj is derived by computing the mean values of attributes of records
belonging to cj . With the updated c1, ..., ck, the clustering algorithm begins next
iteration. Finally, the algorithm terminates if the matrix V does not vary any
more, or a predefined maximum count of iterations is reached [9].

2.2 Public Key Cryptosystem with Double Decryption

Public key cryptosystem with double decryption mechanism (denoted by PKC-
DD) allows an authority to decrypt any ciphertext by using the master secret
key without consent of corresponding owner. In this paper, we use the scheme
proposed by Youn et al. [14] as our secure primitive, which is more efficient
than the scheme in [15] in that Youn’s approach applies smaller modulus in
cryptographic operations. The major steps are shown in the following.

– Key Generation (KeyGen(κ) → N, g,msk, pk, sk): Given a security param-
eter k, the master authority chooses two primes p and q (|p| = |q| = κ), and
defines N = p2q. Then it chooses a random number g in Z

∗
N such that the

order of gp := gp−1 mod p2 is p. The master secret key msk := (p, q) is known
only to the authority. The public parameters are N, g. A cloud user picks a
random integer sk ∈ {0, 1, ..., 2κ−1 − 1} as secret key and computes pk := gsk

mod N as public key.
– Encryption (Enc(pk,m) → C): The encryption algorithm takes the message

m ∈ ZN and pk as inputs, and outputs ciphertext C = (A,B), where A := gr

mod N , B := pkr · m mod N , and r is a random κ − 1 bit integer.
– Decryption with user key (uDec(sk, C) → m): The decryption algorithm

takes ciphertext C and sk as inputs, and outputs the message m by computing
m ← B/Ask mod N .

– Decryption with master key (mDec(msk, pk, C) → m): Given msk, pk,
and C, the authority decrypts C by factorizing N . The secret key of C can
be obtained by computing sk ← L(pkp−1)/L(gp), where function L is defined
as L(x) = x−1

p . Then, m is recovered by computing m ← B/Ask mod N .

By applying the general conversion method in [16], the scheme was claimed
to be IND-CCA2 secure under the hardness of solving the p-DH Problem [14].
However, Galindo et al. [17] has constructed an attack by generating invalid pub-
lic keys and querying for the master decryption, which may lead to factorization
of N . To solve this, we adopt a slight modification of the scheme by checking
the validity of sk during master decryption proposed in [17]. If sk ≥ 2κ−1, the
master entity outputs a rejection message; otherwise, the decryption proceeds
as usual.
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3 Problem Statement

In this section, we formally describe our system model, threat model and design
objectives.

3.1 System Model

In our system model as depicted in Fig. 1, there are three types of entities,
i.e., Cloud Users, Computation Service Provider, and Cryptographic Service
Provider. Cloud Users consist of Data Owners and Query Clients. Computation
Service Provider is composed of one Coordinating Server and a set of Executing
Servers; Cryptographic Service Provider comprises a Key Management Server
and a set of Assistant Servers.

Fig. 1. System model

1. Data Owner (DO): DO is the proprietor of a large dataset. Due to lack of
hardware and software resources, DO prefers to outsource his data to the
cloud for storage and collaborative data mining. There are DO1,...,DOn in
the system. DOi has dataset Di which contains m attributes and li records,
for i ∈ [1, n]. The total number of records is L =

∑n
i li. Let tij,h be the hth

attribute value of jth record in Di for h ∈ [1,m] and j ∈ [1, L]. We assume
DOi does not collude with the cloud to breach privacy.

2. Query Client (QC): QC is an authorized party requesting k-means cluster-
ing tasks over the aggregated datasets. QC should not involve in outsourced
computation and is able to decrypt the result with his own secret key.

3. Coordinating Server (CS): CS not only stores and manages combined datasets
from multiple DOs, but also deploys cloud computing resources to perform
clustering jobs and returns the final calculated clusters to QC.
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4. Executing Server (ES): ES is the task node that undertakes the workload
assigned by CS. There are ES1, ...,ESθ with massive computing power, making
it feasible to implement parallel processing model like Spark paradigm.

5. Key Management Server (KMS): KMS generates and distributes public key
parameters of the underlying cryptosystem. It holds the master secret key of
PKC-DD, which is used to convert ciphertext’s encryption key.

6. Assistant Server (AS): AS holds decryption key generated by KMS. With that
key, AS assists ES to execute a series of privacy-preserving building blocks.
There are λ ASs, i.e., AS1, ...,ASλ in the system.

The major workflow of PPOCM is summarized as follows. For ∀i ∈ [1, n],
DOi generates its own key pair pki/ski using the parameters produced by KMS,
and encrypts Di with pki before outsourcing to CS. With the joint datasets as
inputs, the distributed cloud servers are scheduled to perform k-means clustering
algorithm in a privacy-preserving manner. The cloud returns QC the encrypted
cluster centers under QC’s public key after clustering iteration terminates.

3.2 Threat Model

In our threat model, all cloud servers and clients are assumed to be semi-honest,
which means that they strictly follow the prescribed protocol but try to infer
private information using the messages they receive during the protocol execu-
tion. DO, QC, ES, AS and KMS are interested in learning plain data belonging
to other parities. Therefore, we introduce an active adversary A in the threat
model. The target of A is to decrypt the ciphertexts from the challenge DO and
challenge QC with the following capabilities:

– A may compromise all the ESs to guess the plaintexts of received ciphertexts
from DOs and ASs during the execution of the protocol.

– A may compromise all the ASs and KMS to guess the plaintext values of
ciphertexts sent from ESs during the protocol interactions.

– A may compromise one or more DOs and QCs except the challenge DO and
the challenge QC to decrypt the ciphertexts belonging to the challenge party.

However, we assume the adversary A cannot compromise two cloud providers
simultaneously; otherwise, A is able to decrypt any ciphertext stored on CS and
ES with secret keys from KMS and AS. In other words, there’s no collusion
between these two cloud providers, whereas servers from the same provider may
collude. We remark that such assumptions are typical in adversary models used
in cryptographic protocols (e.g., [11,20]), in that cloud providers are mostly
competitors and not willing to disclose business info to others. A is also assumed
to have no prior knowledge about samples for unpublished data.

3.3 Design Objectives

Given the aforementioned system model and threat model, our design should
achieve the following objectives:
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– Correctness. If the cloud users and servers both follow the protocol, the final
decrypted result should be the same as in the standard k-means algorithm.

– Confidentiality. Nothing regarding the contents of datasets D1, ...,Dn and
cluster centers μ1, ..., μk should be revealed to the semi-honest cloud servers.

– Efficiency. The most computation should be processed by cloud in a highly
efficient way while DOs and QCs are not required to involve in the outsourced
clustering.

4 The PPOCM Solution

In this section, we first discuss a set of privacy-preserving building blocks. Then
the complete protocol of PPOCM is presented.

Recall that in Sect. 3.1, the semi-honest but non-colluding cloud servers
need to cooperate to perform computation over encrypted data under PKC-
DD scheme. In the first place, KMS takes a security parameter κ as input, and
generates public parameter (N, g) for all parties and master secret key msk for
itself by executing KeyGen(κ). After KMS generates a key pair pku/sku used for
ciphertext transformation, pku is distributed to cloud ES while sku is sent to
cloud AS. With N and g, DOi produces its own public/private key pair pki/ski

and broadcasts pki to cloud servers, for i = 1, ..., n. Hereafter, let Encpk(·) denote
the underlying encryption, uDecsk(·) and mDecsk(·) denote user-side decryption
and master-side decryption, respectively.

4.1 Privacy-Preserving Building Blocks

We present a set of privacy-preserving building blocks in the distributed cloud
environment, aiming at solving basic operations on ciphertexts which include
secure ciphertext transformation, multiplication, addition, Euclidean distance
computation, comparison, etc.

Secure Ciphertext Transformation (SCT) Protocol. Given that CS holds
Encpkx

(m), and KMS holds (msk, pky), the goal of the SCT protocol is to trans-
form encrypted m under public key pkx into another ciphertext under public key
pky. During execution of SCT, the plaintext m should not be revealed to KMS or
CS, meanwhile the output Encpky

(m) is only known to CS. The complete steps
are shown in Algorithm 1.

To start with, CS generates an invertible random number r ∈R ZN , which
denotes r is randomly picked in ZN . Note that the condition r < 2κ−1 ensures r
is invertible in ZN due to |r| < |p|. It’s obvious that the PKC-DD scheme is mul-
tiplicative homomorphic, so we have Encpk(m1) ×Encpk(m2) → Encpk(m1 · m2).
Then we exploit this to blind m so that KMS does not know m even if it is
able to decrypt Encpkx

(r · m) via using msk. Hereafter, “×” denotes multipli-
cation operation in the encrypted domain while “·” represents multiplication in
the plaintext domain. Finally, CS removes the randomness by multiplying the
encrypted inverse of r due to Encpky

(m) = Encpky
(r · m · r−1 mod N).
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Algorithm 1. SCT(Encpkx
(m), pky) → Encpky

(m)
Require: CS has Encpkx(m), pkx, and pky; KMS has msk, pkx, and pky.
1: CS:

a) Generate a random number r ∈R ZN , which satisfies r < 2κ−1;
b) Compute Encpkx(r · m) ← Encpkx(m) × Encpkx(r);
c) Send Encpkx(r · m) to KMS;

2: KMS:

a) Decrypt r · m ← mDec(msk, pkx,Encpkx(r · m));
b) Encrypt Encpky (r · m) ← Enc(pky, r · m);
c) Send Encpky (r · m) to CS;

3: CS:

a) Compute Encpky (m) ← Encpky (r · m) × Encpky (r−1);

Secure Addition (SA) Protocol. It takes Encpku
(m1) and Encpku

(m2) held
by ES and sku held by AS as inputs. The output is the encrypted addition of m1

and m2, i.e., Encpku
(m1 + m2), which is only known to ES. As the encryption

scheme is not additively homomorphic, it requires interactions between ES and
AS. The major steps are shown in Algorithm 2.

In this protocol, cloud server ES first generates a random number r ∈R ZN .
The ciphertexts of m1 and m2 are blinded with r. Using the secret key
sku, AS is able to decrypt the encrypted randomized inputs Encpku

(r · m1),
Encpku

(r ·m2). AS then computes the sum of two decrypted messages denoted by
α, and sends the encryption of α back to ES. Finally, ES obtains Encpku

(m1+m2)
by multiplying Encpku

(α) with Encpku
(r−1) based on multiplicative homomor-

phism, since Encpku
(m1 + m2) = Encpku

((m1 + m2) · r · r−1 mod N).
Note that m1 and m2 are blinded by the same random value, so AS can

easily compute the ratio by m1/m2 ← m1r/m2r, which may be used to distin-
guish inputs. However, our security model is based on the assumption that the
adversary has no background knowledge about the raw data distribution, which
is common for unpublished data. Hence, the adversary cannot deduce sensitive
information about users’ data.

Secure Squared Euclidean Distance (SSED) Protocol. For k-means algo-
rithm, we use squared Euclidean distance to measure the distance between the
data record and cluster centroid, denoted by ||ti − μj ||2. Suppose ES holds the
ciphertext of ith data record ti, and the ciphertext of jth cluster centroid μj ,
while AS holds the secret key sku.

Note that μj is a vector composed of fractional values which may be ratio-
nal numbers. However, ring ZN supports no rational operation, so a new form
of expression is required to represent the cluster center. Let <sj , |cj |> denote
the new form of cluster center, where sj and |cj | represent the sum, the total
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Algorithm 2. SA(Encpku
(m1),Encpku

(m2)) → Encpku
(m1 + m2)

Require: ES has Encpku(m1) and Encpku(m2); AS has sku.
1: ES:

a) Generate a random number r ∈R ZN and r < 2κ−1;
b) Compute Encpku(r · m1) ← m′

1 × Encpku(r);
c) Compute Encpku(r · m2) ← m′

2 × Encpku(r);
d) Send Encpku(r · m1), Encpku(r · m2) to AS;

2: AS:

a) Decrypt r · m1 ← uDec(sku,Encpku(r · m1));
b) Decrypt r · m2 ← uDec(sku,Encpku(r · m2));
c) Compute α ← r · m1 + r · m2;
d) Encrypt Encpku(α) ← Enc(pku, α);
e) Send Encpku(α) to ES;

3: ES:

a) Compute Encpku(m1 + m2) ← Encpku(α) × Encpku(r−1);

number of the records belonging to cj , respectively. It’s easily observed that
sj = ΣL

h=1(Vh,j · th) and |cj | = ΣL
h=1Vh,j , where Vh,j denotes the membership

between th and cj . Ωi,j is defined as the scaled squared distance between ti and

μj , which satisfies that ||ti − μj || =
√

Ωi,j

|cj | . So Ωi,j can be calculated as follows:

Ωi,j = (||ti − μj || · |cj |)2

=
m∑

h=1

(|cj | · ti[h] − sj [h])2,
(1)

where i ∈ [1, L], j ∈ [1, k], and m is the dimension size. Taking Encpku
(ti)

and <Encpku
(sj), |cj |> as inputs, ES and AS jointly execute SSED by invok-

ing SA subprotocol and output <Encpku
(Ωi,j), |cj |>. We omit the implementa-

tion details of SSED since the steps are straightforward. In addition, although
the count of data records is directly revealed to cloud server, the numerator
of average attribute, i.e., sj is still encrypted. Thus it’s impossible to infer the
real centroid value as long as the underlying encryption scheme is semantically
secure.

Secure Distance Comparison (SDC) Protocol. Supposing ES holds
<Encpku

(Ωi,a), |ca|>, <Encpku
(Ωi,b), |cb|> and AS holds sku, where i ∈ [1, L],

a, b ∈ [1, k], a 	= b, the output of SDC is the minimum distance. Since the encryp-
tion scheme is probabilistic and does not preserve the order of plaintexts, ES and
AS should jointly compute the minimum without revealing Ωi,a and Ωi,b to both
parties.
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Our basic idea is to compute the encrypted difference between the two inputs,
based on which AS is able to judge its sign and returns an identifier that indicates
the minimum value. It is commonsense that the maximum size of message is
normally far smaller than modulus N . Let ε be the maximum size of plaintext.
The maximum value is 2ε − 1 and minimum value is −2ε + 1. After modular
computation, the positive difference falls into range [1, 2ε −1] while the negative
difference is in the range [N − 2ε + 1, N − 1]. Normally, if we get a value that is
larger than 2ε −1, then the value can be considered as a negative. The difference
between the two squared Euclidean distances can be calculated as follows:

Encpku

(||ti − ca||2 − ||ti − cb||2
)

= Encpku

(
Ωi,a

|ca|2 − Ωi,b

|cb|2
)

∝ Encpku

(
Ωi,a · |cb|2 − Ωi,b · |ca|2) .

(2)

By observation from Eq. (2), it is only required to determine the sign of Ωi,a ·
|cb|2 − Ωi,b · |ca|2, defined as δa,b. The overall steps are given in Algorithm 3.

As revealing distance difference δ directly to AS may violate privacy, it’s
necessary to blind δ with random number r, which is selected randomly from
a special range. Suppose η is the threshold for sign judgement, which is chosen
according to 2ε − 1 < η < N + 2ε − 1. To preserve the original sign of δ, the
blinding factor r should suffice conditions in Eq. (3). They ensure that the scaled
positive and negative ranges can still be judged with η. It can be verified that
1 < r < min{N − η, �η−φN

2ε−1 �}, where φ ∈ Z.

⎧
⎨

⎩

(2ε − 1) · r mod N < η
(N − 1) · r mod N > η
(N + 1 − 2ε) · r mod N > η

(3)

Secure Minimum Among k Distances (SMkD) Protocol. SMkD aims at
computing the encrypted minimum value from k encrypted Euclidean distances.
Assume that ES holds d1, d2, ..., dk, where dj = <Encpku

(Ωi,j), |cj |>, i ∈ [1, L],
j ∈ [1, k], and AS holds the secret key sku. The output of SMkD is encryption
of the shortest distance among d1, d2, ..., dk. Let dmin = <Encpku

(Ωmin), |cmin|>
represent the minimum. To execute SMkD, we compute the minimum by uti-
lizing SDC with two inputs each time in a sequential fashion. The computation
complexity of this algorithm is O(k).

4.2 The Proposed PPOCM Protocol

In this subsection, we present our proposed PPOCM protocol for the standard
k-means algorithm working in the distributed cloud environment.

The primary goal of PPOCM is to schedule a group of cloud servers to
perform clustering task over the joint datasets encrypted under multiple keys,
meanwhile no information regarding the content of record attributes should be
revealed to the semi-honest servers. In order to improve the performance, we
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Algorithm 3. SDC(ψi,a, ψi,b) →< Encpku
(Ωmin), |cmin| >

Require: ES has encrypted distances ψi,a, ψi,b; AS has sku, where ψi,a =<
Encpku(Ωi,a), |ca| >, ψi,b =< Encpku(Ωi,b), |cb| >.

1: ES:

a) Compute Encpku(Ω′
i,a) ← Encpku(Ωi,a) × Encpku(|cb|2);

b) Compute Encpku(Ω′
i,b) ← Encpku(Ωi,b) × Encpku(|ca|2);

c) Compute Encpku(Ω′′
i,b) ← Encpku(Ω′

i,b) × Encpku(−1 mod N);

2: ES and AS:

a) Compute Encpku(δa,b) ← SA(Encpku(Ω′
i,a),Encpku(Ω′′

i,b));

3: ES:

a) Generate a random number r ∈R ZN according to Eq. (3);
b) Compute Encpku(δ′

a,b) ← Encpku(δa,b) × Encpku(r);
c) Send Encpku(δ′

a,b) to AS;

4: AS:

a) Decrypt δ′
a,b ← uDec(sku,Encpku(δ′

a,b));
b) if δ′

a,b > η then

– Encrypt sn ← EncpkES (1);

c) else

– Encrypt sn ← EncpkES (r′), where r′ ∈R ZN ∧ r′ �= 1;

d) Send sn to ES;

5: ES:

a) if uDec(skES , sn) == 1 then

– Compute Encpku(Ωmin) ← Encpku(Ωi,a), |cmin| ← |ca|;
b) else

– Compute Encpku(Ωmin) ← Encpku(Ωi,b), |cmin| ← |cb|;

leverage a fast engine called Spark for large-scale data processing [21]. Spark
uses a data structure called the resilient distributed dataset (RDD) for data
parallelism and fault-tolerance, which facilitates iterative algorithms in machine
learning. Though it provides a scalable machine learning library MLlib which
includes k-means algorithm [22], it does not take privacy protection into consid-
eration and cannot process encrypted data directly. So it’s necessary to integrate
our proposed building blocks in Sect. 4.1 and the idea of Spark computing frame-
work into designing PPOCM.
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The PPOCM protocol is composed of four phases, namely, Data Uploading,
Ciphertext Transformation, Clustering Computation, as well as Result Retrieval,
the details of which are described in the following.

Data Uploading Phase. To start with, DOi(i ∈ [1, n]) generates its own
public/private key pair, i.e., pki/ski, by using public parameter N, g [14]. DOi

encrypts Di with pki by calculating Enc(pki, t
i
j,h). Recall that tij,h means the hth

attribute value of jth record tij in Di for h ∈ [1,m] and j ∈ [1, L]. Without loss
of generality, we assume the sizes of all datasets are equal to be l, so L = nl.
Let D′

i denote the encrypted Di. After DOi uploads the D′
i to CS for ∀i ∈ [1, n],

the server obtains the joint database D′, where D′ = ∪n
i=1D

′
i. With D′ storing

in the cloud, DOi is able to retrieve its data and decrypt them with its private
key ski, whereas DOi cannot decrypt D′

j without ski for i 	= j.

Ciphertext Transformation Phase. Upon receiving clustering request from
QC, CS initiates ciphertext transformation process which aims at converting
ciphertexts under pki into encryptions under the unified key pku, for i ∈ [1, n]. CS
first replicates D′ into D′

r to ensure DOs’ accessibility to their original dataset.
Then KMS and CS jointly execute SCT subprotocol. The output of converted
dataset (denoted by D′

u) is known only to CS while no privacy is revealed to
KMS. This phase is essential for two reasons: (1) multiplicative homomorphic
operation can be performed by ES independently only under the same key; (2) it
no longer requires the key authority (KMS) to decrypt different ciphertexts for
non-homomorphic operations during the entire outsourcing period, since KMS
may risk broader attack surface and also become the bottleneck for efficiency.

Clustering Computation Phase. With all the converted records Encpku
(ti,j)

held by CS for i ∈ [1, L], j ∈ [1,m], the goal of this phase is to compute the
cluster centroids Encpku

(μ1), ...,Encpku
(μk) and the membership matrix VL×k

without compromising privacy. The outsourcing process is not only protected by
the proposed secure building blocks, but also accelerated by Spark framework.
The phase includes four steps, namely, Job Assignment, Map Execution, Reduce
Execution, and Update Judgement. The last three steps are performed in an
iterative fashion as shown in Fig. 2.

Step 1. Job Assignment. In this step, the CSP assigns various jobs to different
computing nodes according to the cloud resource scheduling policy. First, CS
selects τ minimum computing units (denoted by MCU) from {ES1, ...,ESθ} and
{AS1, ...,ASλ} respectively. In other words, MCU = {ES,AS}. Each unit is able
to perform cryptographic building blocks independently. We assume that each
ES node provides adequate storage space and computation power for its assigned
mission. The set {MCU1, ...,MCUτ} is divided into two disjoint sets, i.e., Map
and Reduce. Without loss of generality, the Map has MCU1, ...,MCUf while
the Reduce has MCUf+1, ...,MCUf+k+1. Then CS divides D′

u into f uniformly
distributed partitions P1, ..., Pf , which are sent to their corresponding MCU
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Fig. 2. PPOCM under Spark framework

nodes in Map. In this paper, we assume the k initial clusters are randomly
selected from D′

u. Therefore, for ∀i ∈ [1, f ], Mapper[i] knows the vector U ′ =
<μ′

1, ..., μ
′
k>, where μ′

j = <Encpku
(sj), |cj |>, for j ∈ [1, k].

Step 2. Map Execution. As for 1 ≤ i ≤ f , given dataset Pi and centroids U ′ as
inputs, Map[i] independently computes encrypted Euclidean distances between
data records and centroids, and outputs a key-value table, in which the key is the
closest cluster id and the value is the encryption of corresponding record. Suppose
Pi has z data records t′1, ..., t

′
z, in which t′j(j ∈ [1, z]) is a m-dimension vector

<Encpku
(tj,1), ...,Encpku

(tj,m)>. The major steps are presented in Algorithm 4.

Algorithm 4. Map(P1, ..., Pf , U ′) → {T1, ..., Tf}
Require: Mappers have P1, ..., Pf and centroids U ′.
1: ∀i ∈ [1, f ], Mapper[i]:
2: for j = 1 to z do
3: for h = 1 to k do
4: Compute dh ← SSED(t′

j , μ
′
h), where dh =< Encpku(Ωj,h), |ch| >;

5: end for
6: Compute dmin ← SMkD(d1, d2, ..., dk), where dmin =< Encpku(Ωmin), |cmin| >;
7: Compute keyj ← Indexof(cmin) and valuej ← t′

j ;
8: end for
9: Send Ti = {< key1, value1 >, ..., < keyz, valuez >} to Reducer[j], for j ∈ [1, k];

Step 3. Reduce Execution. Upon receiving the key-value table from Map
set, Reducer[i] locates the item where key equals index of ci, and computes the
encryption of updated centroid μ′

i for i ∈ [1, k]. The output is μ′
i as long with

an assignment vector VL×1, in which V [j] ∈ {0, 1} indicates whether jth record
belongs to ci for j ∈ [1, L]. The major steps are presented in Algorithm 5.

Step 4. Update Judgement. CS takes cluster centers U ′ = {μ′
1, ..., μ

′
k} and

assignment matrix VL×k = <V T
1 , ..., V T

k > from overall Reducers as inputs. Its



80 H. Rong et al.

Algorithm 5. Reduce(T1, ..., Tf ) → {W1, ...,Wk}
Require: Reducers have T1, ..., Tf .
1: ∀i ∈ [1, k], Reducer[i]:
2: Initialize s′

i ← Encpku(0), |ci| ← 0, Vi ← {0, ..., 0};
3: for j = 1 to f do
4: for h = 1 to z do
5: if Tj [h].key == i then
6: Compute s′

i ← SA(Tj,h[w].value, s′
i[w]), for 1 ≤ w ≤ m; |ci| ← |ci| + 1;

7: Compute Vi[(j − 1) · f + h] ← 1;
8: end if
9: end for

10: end for
11: Send Wi = {μ′

i, Vi} to CS, where μ′
i =< Encpku(si), |ci| >;

target is to determine whether the predefined termination conditions are satis-
fied. In PPOCM, there are two termination conditions: (1) the maximum iter-
ation φmax; (2) the matrix V does not vary any more. Therefore, CS not only
needs to record the iteration count φ during updating clusters each time, but
also judges whether the difference δ = Vφ+1 − Vφ is zero matrix or φ ≥ φmax. If
either termination condition is met, the last phase is activated; otherwise, the
cloud moves onto Step 2 to start next iteration, taking U ′ as inputs.

Result Retrieval Phase. To enable QC to obtain the final clusters, CS and
KMS invoke SCT to compute {<EncpkQ

(si), |ci|>|i = 1, ..., k}, which are sent
back to QC along with V . After that, QC is able to decrypt the result by his
skQ. Since si and |ci| are not real center point, QC calculates the final centroids
by μi ← si

|ci| , where i ∈ [1, k]. Furthermore, the assignment matrix V is in plain
form, which does not require client-side decryption.

5 Security Analysis

We first analyze the security of the privacy-preserving building blocks. Since all
parties are semi-honest, security in this model can be proven under “Real-vs.-
Ideal” framework [23]: all adversarial behavior in the real world can be simulated
by trusted party in the ideal world. We take SDC security proof as an example
and the rests can be proved in a similar way.

Since there are two parties i.e., ES and AS, we need to prove SDC is secure
not only against semi-honest adversary AES corrupting ES, but also against
semi-honest adversary AAS corrupting AS, respectively.

1. Security Against ES. The real world view of AES in SDC includes input
{ψi,a, ψi,b}, a random r, ciphertexts {Encpku

(Ω′
i,a),Encpku

(Ω′
i,b),

Encpku
(δ′

a,b)} and output sn. ψi,a consists of Encpku
(Ωi,a) and |ca|. From

Eq. (1), |ca|2 is the denominator of ||ti −μa||2, whereas the numerator Ωi,a is
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encrypted under pku. Without the decryption key sku, ||ti −μa||2 is unknown
to AES . Likewise, ||ti − μb||2 is not revealed to AES . Note that sn indicates
the minimum of inputs, but it cannot be used to infer the actual distances
directly. Thus, we can build a simulator SES in the ideal world by using
encryptions of values randomly distributed in ZN and sn is selected from
{0, 1} randomly. By the semantic security of the PKC-DD scheme, it’s com-
putationally difficult for AES to distinguish from the real world and the ideal
world.

Idealf,SES
(Encpku

(Ωi,j))
c≈ RealSDC,AES

(Encpku
(Ωi,j)),

where i ∈ [1, L], j ∈ [1, k], and
c≈ means computationally distinguishable.

2. Security Against AS. The real world view of AAS in SDC includes input
Encpku

(δ′
a,b), blinded message δ′

a,b, output sn and randomized Ω′
i,a, Ω′

i,b dur-
ing SA execution. Note that the blinding factors in SA are randomly dis-
tributed in ZN and r in SDC is randomly selected in range according to
Eq. (3), so we can build a simulator SAS to simulate the ideal world view of
AAS by using random values in ZN . Even though AAS is able to judge the
sign of randomized distance, the actual distance and corresponding inputs
are still unknown to AAS . Therefore, AAS is not able to distinguish from the
real world and the ideal world.

Idealf,SAS
(Encpku

(Ωi,j))
c≈ RealSDC,AAS

(Encpku
(Ωi,j)),

where i ∈ [1, L], j ∈ [1, k].

The PPOCM protocol includes 4 phases. In the first phase, Di is encrypted
under pki for i ∈ [1, n]. In the second phase, SCT subprotocol is invoked to trans-
form ciphertexts. During the clustering phase, SA, SSED, SMkD are invoked as
subroutines. At last, the encrypted centroids are converted by SCT. Note that
the data held by parties without secret (i.e., CS and ES) key are encrypted
while the data held by parties with secret key (i.e., KMS and AS) are random-
ized. Since the encryption scheme is semantically secure and blinding factors are
randomly selected, nothing regarding the data content are revealed to the cloud
servers or other owners. Matrix V is known to the server, but it is insufficient to
deduce data records using the assignment membership. According to the Com-
position Theorem [23], the sequential compositions of those phases is secure. In
conclusion, PPOCM is secure under the semi-honest model.

6 Performance Analysis

In this section, we analyze the performance of PPOCM protocol from both
theoretical and experimental perspectives.

6.1 Theoretical Analysis

Let Exp, Mul denote the modular exponentiation and multiplication operations,
respectively. Let |N | represent the key size of the double decryption scheme. The
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encryption of the underlying cryptosystem incurs 2Exp+1Mul. The cost of normal
decryption is 1Exp + 1Mul, while that of authority decryption is 2Exp + 2Mul.
The encryption and decryption of PKC-DD in [14] are claimed to be 3 times
faster than BCP scheme in [15]. We stress that Phase 1 and Phase 2 of PPOCM
protocol are executed only once. These overheads are amortized through a num-
ber of iterations. As for Clustering Computation Phase, the Map and Reduce
steps undertake the most workload, the costs of which in one iteration are given
in Table 2. It can be observed that the number of MCU in Map and Reduce sets
are closely related to the outsourcing costs, that is, the larger the computing
cluster is, the less overheads are exerted on each unit. This is because the Map
and Reduce jobs can be parallelized and boosted under Spark.

Table 2. Computational and communication costs of clustering phase

Algorithm Computational costs Communication costs (in bits)

Map kz(10m + 13)Exp + kz(16m + 20)Mul kz(6m + 9)|N |
Reduce 8fzExp + 11fzMul 6fz|N |

6.2 Experimental Analysis

The experiments are conducted on our local cluster, in which each server running
CentOS6.5 has Intel Xeon E5-2620 @ 2.10 GHz with 12 GB memory. We com-
pare our work with PPODC [11], because the system models are alike, and both
protocols are constructed on public key cryptosystem and achieve the same secu-
rity goals. We implemented all the outsourcing protocols using the Crypto++
5.6.3 library and Spark framework. The key size |N | is chosen to be 1536-bit,
because to achieve the same security level with 1024-bit Paillier encryption used
in PPODC and 1024-bit BCP encryption scheme in [20], |N | of PKC-DD should
be 500–600 bit more than RSA modulus [24].

To facilitate comparisons, we use KEGG Metabolic Reaction Network dataset
[11,25]. The dataset includes 65554 instances and 29 attributes. Before cluster-
ing, all records are normalized into integers to prevent impacts of large unit
values. Note that the first attribute is excluded from tests, since it is just the
identifier of pathway. We assume there are 20 data owners in the system, each
dataset of whom is randomly selected from KEGG dataset. They encrypt their
data using own keys before outsourcing to the servers. There are three major fac-
tors that affect the outsourced clustering performance: (1) the ciphertext trans-
formation scheme; (2) the number of clusters (k); (3) the number of parallelized
MCUs (f).

We first evaluate the performance of transforming encrypted datasets under
owners’ keys into ciphertexts under the unified key. Table 3 shows the ciphertext
transformation time for varying size of aggregated datasets (L) in our PPOCM
scheme and KeyProd in [20]. It can be seen that the cloud running time grows
with increasing value of L. However, our scheme executes about 4 times faster
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than KeyProd in that our underlying cryptosystem is much more efficient than
theirs. Note that [20] aims at privacy-preserving arithmetic operations (i.e., addi-
tion and multiplication) rather than k-means algorithm, while PPODC scheme
cannot be used to cluster data encrypted under multiple keys.

Table 3. Cloud running time for ciphertexts transformation (in min)

Protocol L = 2000 L = 4000 L = 6000 L = 8000 L = 10000

PPOCM 11.6 23.2 35.3 46.5 57.9

KeyProd 43.9 87.9 138.9 175.3 219.4

We then conduct tests on SSED and SMkD to evaluate the performance of
the proposed secure building blocks, which utilize SA and SDC as primitives and
are frequently invoked during k-means outsourcing. Figure 3(a) shows that the
computation cost of both schemes increase with growth of dataset size, but SSED
of PPOCM executes much faster. In addition, the increase of dimension size (m)
has more impact on PPODC. As shown in Fig. (3)(b), it’s observed that with
growth of w, the computation time of SMkD in PPODC grows rapidly, where w
denotes the bit length of plaintext message. The reason is that every ciphertext
should be decomposed into a w-length vector of encrypted bits during execution
of SMIN in [11], whereas in contrast, PPOCM’s comparison operation is much
more efficient by preserving the sign of randomized value.
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Fig. 3. Experiment analysis on SSED and SMkD over samples from the real dataset

Next, we assess the overhead of complete protocols with varying k and m
when L = 2000 and f = 4. PPOCM is compared with the optimized version of
PPODC with 4 parallelized server pairs. The results are given in Fig. 4(a) and
(b). It can be seen that both the computation time and communication cost
grows almost linearly with the count of clusters. It is because more encrypted
Euclidean distances need to be calculated and compared with increasing k. Our
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Fig. 4. Experiment analysis with varying number of clusters (k) over the real dataset

method obviously outperforms PPODC. For instance, when k = 6 and m = 28,
the execution time of PPODC is 469.1 min, whereas that of PPOCM is 51.3 min,
almost 10 times faster. The communication cost of PPODC and PPOCM are
1809.1 MB and 796.1 MB, respectively. Furthermore, the growth of dimension
size also increases the computational and communication overhead.

Moreover, we evaluate the overhead on cloud servers with varying f when
k = 2. As shown in Fig. 5(c), the computation time decreases with the growth
of f . It can be derived that: (1) the more parallelized MCUs or server-pairs
participate in outsourcing, the shorter time it takes both schemes to complete
the entire clustering task; (2) with growing size of dataset, it takes PPODC
longer time to complete the same amount of work. The reason why PPOCM has
better performance should be attributed to the excellent scaling capability of
Spark engine and efficient primitiv. Figure 5(d) shows that the communication
cost of both schemes remain invariable regardless of f . Though each server pair
only handles partial jobs, the total amount of clustering task is fixed. Hence, the
mount of transmitted data remain unchanged. In addition, the communication
cost of PPOCM accounts for 62.2% of that of parallelized PPODC.
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Fig. 5. Experiment analysis with varying number of parallelized MCUs (f) over the
real dataset
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7 Related Work

There have been a lot of works on privacy-preserving distributed k-means clus-
tering [7,8]. These works assume clustering task is performed through interac-
tions among different data holders instead of third parties, resulting in different
security requirements and design goals compared to our work.

As for outsourced clustering, Lin [9] proposed a privacy-preserving method
for kernel k-means based on random linear transformation and perturbation of
kernel matrix. But this scheme is neither fit for the standard k-means with-
out kernel function, nor computes the cluster centers. Works in [10,18] lever-
aged fully homomorphic encryption to perform clustering on a single server and
proposed to compare ciphertexts with trapdoor information, while their app-
roach requires data owner’s participation in each iteration, which affects the
outsourcing performance. PPODC scheme proposed by Rao et al. [11] enables
the cloud to perform clustering over the combined encrypted databases from
multiple users, which is similar with our scheme. However, their solution does
not support database encrypted under multiple keys. Besides, the overhead of
secure comparison is too heavy since each inputs have to be decomposed into
encrypted bits by calling SBD subroutine. As for arithmetic computation over
data encrypted under multiple keys, López et al. [19] studied the FHE under
multiple keys. Unfortunately, the efficiency of their scheme suffers from complex
key-switching technique and heavy interactions among users. The recent work
[20] utilized BCP encryption scheme with double trapdoor decryption [15] to
address basic computations under multi-key setting, which yet cannot be used
to compare ciphertexts. Besides, none of existing works have utilized big data
analytic techniques.

8 Conclusion

In this paper, we proposed an efficient privacy-preserving protocol for out-
sourced k-means clustering over joint datasets encrypted under multiple data
owners’ keys. By utilizing double-decryption cryptosystem, we proposed a series
of privacy-preserving building blocks to transform ciphertexts and evaluate addi-
tion, multiplication, comparison, etc. over encrypted data. Our protocol protects
privacy of the combined database under the semi-honest model and requires no
cloud client’s participation. Another improvement is that the outsourced clus-
tering works under big data processing framework, which significantly boosts
the system performance. Experiments on real dataset show that our scheme is
more efficient than existing approaches. As future work, we will focus on privacy
protection and integrity verification techniques to withstand advanced attacks
under malicious model during k-means outsourcing.
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Abstract. In this paper, we tackle the problem of detecting malicious
domains and IP addresses using graph inference. In this regard, we mine
proxy and DNS logs to construct an undirected graph in which vertices
represent domain and IP address nodes, and the edges represent relation-
ships describing an association between those nodes. More specifically,
we investigate three main relationships: subdomainOf, referredTo, and
resolvedTo. We show that by providing minimal ground truth informa-
tion, it is possible to estimate the marginal probability of a domain or
IP node being malicious based on its association with other malicious
nodes. This is achieved by adopting belief propagation, i.e., an efficient
and popular inference algorithm used in probabilistic graphical models.
We have implemented our system in Apache Spark and evaluated using
one day of proxy and DNS logs collected from a global enterprise span-
ning over 2 terabytes of disk space. In this regard, we show that our
approach is not only efficient but also capable of achieving high detec-
tion rate (96% TPR) with reasonably low false positive rates (8% FPR).
Furthermore, it is also capable of fixing errors in the ground truth as well
as identifying previously unknown malicious domains and IP addresses.
Our proposal can be adopted by enterprises to increase both the quality
and the quantity of their threat intelligence and blacklists using only
proxy and DNS logs.

Keywords: Belief propagation · Big data analysis for security
Graph inference · Malicious domain and IP detection
Guilt-by-association · Graph mining

1 Introduction

In the case of both targeted threats (e.g., social engineering, spear-phishing,
Advanced Persistent Threats, etc.) and mainstream threats (e.g., drive-by down-
load, exploit-kits, malvertising, etc.), there exists an external malicious entity
administered by an adversary that successfully reaches the end client (victim).
The ability to block these entities from reaching the end client is considered
to be an optimum cyber security solution. That’s why so many organizations
heavily invest in blocking these by deploying various security solutions such as
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web application firewalls, proxy servers, email and web security appliance, etc.
The majority of these solutions try to detect the maliciousness by analyzing the
local features of those entities (e.g., URL structure or content of a web page).
However, the problem is that the majority of these features are volatile, hence
giving an advantage to cybercriminals to evade detection.

Consider Exploit-Kits (EK), e.g., Angler and Neutrino [11,14,29]. At high
level internet users are first deceived to visit a previously compromised domain
using techniques such as malvertising or malicious iFrames. Next using tech-
niques such as HTTP POST redirection, domain generation algorithm (DGA),
and HTTP redirects (302 cushioning) the victims are passed through various
gateway pages to finally get to the landing page of the exploit kit. Next the EK
tries to identify any potential vulnerabilities within the visitor’s browser and plu-
gins. Lastly, upon successful exploitation of a vulnerability, the client browser is
silently forced to either download and run a malicious payload (Drive-by down-
loads) or execute shellcodes.

These tools go above and beyond to make it extremely difficult to detect
the malicious entities involved (i.e., domains and IP addresses). For instance, to
evade blacklisting exploit-kits use techniques such as domain shadowing [11], fast
fluxing domains [10], and domain generation algorithm (DGA). In order to evade
static and dynamic analysis of code or content, they use various anti-emulation,
anti-sandbox, obfuscation and encoding techniques and dynamically build unique
content and code for each request. In this regard, neither the maintenance of
blacklists nor dynamic/static analysis of web pages is effective. This is due to
the fact that there is no guarantee that next time the same landing page would
have any local features shared with the previous observation of the landing page
(i.e., different domain name, IP address, content, code, URL structure, etc).
However, despite the fact that these tools are capable of mutating the entire
local features, it is extremely challenging and sometimes costly to change global
features (i.e., attributes shared between different malicious entities), for instance,
the authoritative domain responsible for serving fast fluxing domains, the paths
leading to two different landing page, or the registrar information.

This observation is not limited to exploit kits. Investigating the correlation
between the global features of the previously known indicators of compromise
(IOCs) could potentially allow us to better reason about new entities. In this
paper, we formulate big data analysis for threat detection as a graph inference
problem, with the intuition that malicious entities tend to have homophilic rela-
tionships with other malicious entities. More specifically, we focus on the analysis
of proxy and DNS logs for the purpose of detecting malicious IP addresses and
Domain names based on the relationships observed in those logs and minimal
prior knowledge collected from threat intelligence (TI) sources. We achieve this
by adopting Loopy Belief Propagation from probabilistic graphical models which
allows to propagate the labels from labeled data to unlabeled data using rela-
tionships extracted from proxy and DNS logs.
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1.1 Contribution and Road Map

The contributions of this paper are as follows:

– Proposal of an alternative approach to proxy and DNS log analysis for the
purpose of threat detection using only the information available in those logs.
This approach could be used by enterprises to increase both the quality and
the quantity of their threat intelligence and blacklists.

– The successful adaptation of belief propagation as a graph based inference
algorithm to propagate malicious labels using minimal ground truth to detect
other malicious domains and IP addresses.

– Evaluation of the proposed approach on one day of proxy and DNS logs col-
lected from a global enterprise, and demonstrating its capability to correct the
inaccuracy in the original ground truth but also detect previously unknown
malicious domains and IP addresses.

The rest of this paper is organized as follows. First, we provide some necessary
background information while covering the most influential literature. In Sect. 3,
we introduce our approach for detecting malicious entities. Section 4 provides an
overview of our implementation. Section 5 describes our dataset and the exper-
imental setup. Section 6 focuses on the evaluation and discussion. Section 7 dis-
cusses the limitation of our work and the potential directions for the future work,
and finally, we conclude this paper in Sect. 8.

2 Background and Related Work

2.1 Proxy and DNS Logs

Nowadays, the majority of organizations, collect and store event logs generated
by different components in the organization’s premises such as firewalls, operat-
ing systems, proxy and DNS servers. Although traditionally the primary usage
of these event logs was troubleshooting problems, nowadays they are collected
due to mostly regulatory compliances and posthoc analysis. Two most valuable
sources of event logs collected by many enterprises are DNS and proxy logs.
While grasping the functionalities of proxy and DNS servers are beyond the
scope of this paper, we will briefly cover the value of the logged events in the
context of security analytics, and we would like to refer the reader to [13,22,23]
to learn more about proxy servers and Domain Name System (DNS) respectively.

Due to the fact that web traffic is typically allowed by most of firewalls,
HTTP, HTTPS, and DNS traffic is extensively abused by cybercriminals to reach
the end users (e.g drive-by download, phishing website, bots communication with
command-and-control servers, infrastructure management using fast fluxing [10],
etc.), hence leading to the popularity of proxy and DNS log analysis in the
security domain.

In this regard, Manners [19] discusses how it is possible to detect malicious
entities based on abnormal or rare user agent string. Oprea et al. [25] address
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the problem of detecting suspicious domains (associated with C & C) using fea-
tures extractable from proxy logs. These features include domain connectivity
(the number of hosts contacting to a domain), the referrer string, the user-agent
string, access time correlation (domain visited by the same client within a rela-
tively short time period), and IP space proximity. Ma et al. [16,17] discuss the
detection of malicious websites based on lexical and host-based features of their
URL (e.g., number of dots) with the intuition that malicious URLs exhibit cer-
tain common distinguishing features. Zhang et al. [36] use term frequency/inverse
document frequency (TF-IDF) algorithm to tackle malicious URL detection, and
Zhao et al. in [37] tackle the same problem using Cost-Sensitive Online Active
Learning (CSOAL).

One of the first studies that explore DNS traffic analysis is [31] which pro-
poses the construction of a passive DNS database by aggregating and collect-
ing all unique, and successfully resolved DNS queries. This database is widely
referred to as pDNS and is greatly adopted and researched in the security com-
munity. In this regard, Bilge et al. [3] introduce EXPOSURE, a system that
employs large-scale, passive DNS analysis to detect malicious domains using
features such as the number of distinct IP addresses per domain, number of the
domains sharing an IP, average TLL, the percentage of numerical characters. In
a similar research, Antonakakis et al. [1], propose Notos by focusing on the detec-
tion of agile malicious usage of DNS (e.g., fast-flux, disposable domains) using
pDNS analysis. Notos distinguish itself by not only analyzing those features used
in EXPOSURE, but also harvesting and analyzing complementary information
such as the registration, DNS zones, BGP prefixes, and AS information. Later
Antonakakis et al. [2] propose another system called Kopise. In contrast to Notos
and EXPOSURE which analyze the traffic captured from local recursive DNS
servers, Kopis monitor the traffic at the upper level of DNS hierarchy which pose
its advantages and disadvantages. Perdisci et al. [27] investigate the detection of
malicious flux service networks, and Yadav et al. address the problem of detect-
ing algorithmically generated domain names used in domain and IP fluxes by
looking at distribution of alphanumeric characters as well as bigrams of domains
that are mapped to the same set of IP-addresses [34].

Our approach is fundamentally different to those mentioned above as those
mostly target local features presented in proxy and DNS logs whereas we are
interested in global features. We focus on identifying connected malicious entities
based on their traces presented in those logs. We shall discuss our approach
further in Sect. 3.

2.2 Graph-Based Inference

Inference refers to the process of reasoning about a variable based on a set of
observations and evidence related to that variable. In this regard, graphs are
ideal for capturing the correlation and dependency among different variables.
That is the main reason why graph-based inference has been widely adopted in
different research areas to tackle various inference problem with the intuition
that neighboring nodes influence each other and this influence can be either
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homophily (i.e., nearby nodes should have similar labels) or heterophily (i.e.,
nearby nodes should have different labels).

The most notable and popular graph based inference techniques are graph-
based Semi-Supervised Learning, Random Walk with Restart, and Belief Propa-
gation.

Random Walk with Restarts (RWR) is initially introduced as the underlying
algorithm for Google’s famous PageRank [4]. At high level, PageRank algorithm
uses link information to assign global importance scores to all pages on the web
(a web page can be considered as important if other important pages point to it).
Similarly, TrustRank introduced by [9] adopts PageRank with different random
walks to detect web spams by propagating trust label rather than importance.
Other researchers have also built on top of TrustRank with minor changes intro-
ducing Distrust Rank and SybilRank [5,32].

Semi-Supervised Learning (SSL) techniques adopt the inference problem in
machine learning to utilize unlabeled data with the intuition that similar data
points connected by edges which represent their similarity should have same
labels (also known as label propagation). Zhu et al. [38] introduce one of the
pioneer works in graph-based SSL. The authors formulate the learning problem
in terms of a gaussian random field on a graph in which vertices are labeled
and unlabeled data and the edges are weighted similarities between vertices.
Understanding the graph-based SSL is beyond the scope of this paper, to learn
more, we refer the reader to [39].

Finally, Belief Propagation (BP) originally proposed by Pearl [26] also known
as sum-product is one of the most efficient and popular inference algorithm used
in probabilistic graphical models such as Bayesian Networks and Markov Ran-
dom Fields. BP has been successfully applied to various domains such as image
restoration [8], error-correcting [21], fraud detection, and malware detection [6].

For the purpose of this research, we have adopted BP due to its scalability
and its success in other fields. In this regard, although there are still several
important literature to cover for other graph inference techniques, the rest of
this paper we will focus only on BP and the most influential literature that
have adopted BP for the purpose of threat detection. To better understand
the difference between the described graph-based inference techniques we would
like to refer the reader to [15] where Koutra et al. compare graph-based Semi-
Supervised Learning, Random Walk with Restart, and Belief Propagation, as this
task is also beyond the scope of this paper and perhaps left to our future work.

2.3 Belief Propagation

Marginal probability estimation in graphs is known to be NP-complete, however,
belief propagation provides a fast approximate technique to estimate marginal
probabilities with time complexity and space complexity linear to the number
of edges in a graph.

At the high level, BP infers a node’s label from some prior knowledge about
that node and other neighboring nodes by iteratively passing messages between
all pairs of nodes in the graph. In this regard, in each iteration t every node i



Guilt-by-Association: Detecting Malicious Entities via Graph Mining 93

generates its outgoing messages based on its incoming messages from neighbors
in iteration t − 1. Given that all messages are passed in every iteration, the order
of passing can be arbitrary.

Let mij denote the message sent from i to j which intuitively represents
i’s opinion about j’s likelihood of being in state xj . This message is a vector
of messages for each possible class, i.e., mij (xj = malicious) and mij (xj =
benign). Mathematical determined as follows:

mij(xj) ←
∑

xi∈X

φ(xi) ψij(xi, xj)
∏

k∈N(i)\j
mki(xi) (1)

where N(i) is the set of nodes neighboring node i, and ψ(xi, xj) is the edge
potential which indicates the probability of a node i being in class xi given that
its neighbor j is in class xj . φ(xi) is called the node potential function which
denotes the prior knowledge about a node, i.e., the prior probability of node i
being in each possible class (in our case malicious and benign classes). And xi

represents a state from state space X.
The message passing phase terminates when messages do not change sig-

nificantly between iterations, i.e., given a similarity threshold, the difference
between the message sent from node i to node j at the iteration t and t − 1 is
less than the threshold, or when the algorithm reaches a predefined maximum
number of iteration. At the end, each node will calculate its belief which is an
estimated marginal probability, or formally bi(xi)(≈ P (xi)) which represented
the likelihood of random variable Xi to take value xi ∈ {xmal, xben} determined
as follows:

bi(xi) = kφ(xi)
∏

xj∈N(i)

mji(xi) (2)

where k is a normalizing constant to ensure the node’s beliefs add up to 1 [35].
The original belief propagation algorithm proposed by Pearl [26] was designed

to operate on singly connected networks (tree-structured graphical models), and
provides an exact inference with all nodes’ beliefs converging to the correct
marginal in a number of iterations equal to the diameter of the graph (at most
the length of the longest path in the graph). Although the presence of loops will
cause the messages to circulate indefinitely hence not allowing the convergence to
a stable equilibrium, it is possible to apply the algorithm to arbitrary graphical
models by ignoring the presence of any potential cycles in the graph. This is
typically referred to as loopy belief propagation (LBP) [24]. The convergence of
loopy belief propagation is not guaranteed and the results are considered to be
approximate, however, in practice, it often arrives at a reasonable approximation
to the correct marginal distribution.

We shall later describe how we have adopted and tailored LBP to incorporate
our domain knowledge which through the remainder of this paper will be referred
to as BP algorithm.
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2.4 Threat Detection via Belief Propagation

Malware detection is one of the areas that have successfully adopted BP. In
this regard Polonium [6] is one of the first works tackling the problem of mal-
ware detection using large-scale graph inference with the intuition that good
applications are typically used by many users, whereas, unknown (i.e., poten-
tially malicious) applications tend to only appear on few computers. To test this
hypothesis, the authors generated an undirected, unweighted bipartite machine-
file graph, with almost 1 billion nodes and 37 billion edges. The graph vertices
are of two types: machine and file vertices and the edges indicate the observa-
tion of a file on a machine. Polonium was not only evaluated using a prepared
validation set but also tested in the-field by Symantec. In this regard accord-
ing to Symantec’s experts, Polonium has significantly lifted the detection rate
by 10 absolute percentage points while maintaining 1% false positive rate when
compared to other existing methods. This is arguably one of the most successful
research adaptation of BP and graph inference in the security domain showing
the potentials of this approach.

In a similar research, Tamersoy et al. [30] propose Aesop, a very similar
system, that tackles the same problem. In this regard, Aesop utilizes locality
sensitive hashing to measure the similarity between files to eventually construct
a file to file graph to infer the files’ goodness based on belief propagation. while
Polonium is more concerned with the observation of malicious files on malicious a
machine (i.e., file to machine relationship), Aesop is concerned with the similarity
of files (file to file relationship).

Manadhata et al. [18] adopt BP and graph inference to detect malicious
domains using enterprise’s HTTP proxy logs. This is achieved by running BP on
a host-domain graph which captures the enterprise’s host connection to exter-
nal domains. The authors estimate the marginal probability of a domain being
malicious based on minimal ground truth. The intuition in this research is that
infected hosts are more likely to visit various malicious domains whereas user
behavior on benign hosts should result in benign domain access. The authors
run BP on a constructed host-domain graph showing their approach capability
to classify malicious domains with 95.2% TPR with a 0.68% FPR using 1.45%
ground truth (blacklisted and whitelisted entities).

Our approach described in the next section is very similar to the one described
by Manadhata et al., however, while Manadhata et al. are interested in machine
to domain relationship, we are interested in domain to domain, domain to IP, and
IP to IP relationships. More specifically while they mine proxy logs to construct
a graph based on the relationship between internal entities and external entities
(i.e., connections from client machine to external domains), we mine both proxy
and DNS logs to construct a graph based on the relationships between external
entities themselves (e.g., domain resolving to an IP address, or domain name
referring to another domain name).

Other similar research includes [40] which takes a similar approach to [18]
while focusing on DNS logs rather than proxy logs. In his regard, the authors
focus on three main relationships extractable from DNS logs: (1) connectsTo
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which indicates enterprise’s host connected to a domain, (2) resolvedTo (DNS
record type A) which indicates a domain resolving to an IPv4 address, and (3)
CNAME which indicates a domain being an alias for another domain. [12] inves-
tigates the connection between domain, IP and URL. Oprea et al. [25] address
early-stage APT detection using BP on host-domain graph extracted from proxy
logs. And Rahbarinia et al. [28] propose Segugio to detect new malware-control
domains based on DNS traffic analysis with a very similar intuition to [18].

3 Our Approach

3.1 Problem Description

Formally we formulate our inference problem as follows:

Given:

– An undirected graph G = (V,E) where V corresponds to the collection of
domain names and IP addresses, and E corresponds to the set of relationships
between those domain and IP nodes. V and E are extracted from events in
proxy and DNS Logs.

– Binay class labels X ∈ {xmal, xben} defined over V , where xmal represents
malicious label, and P (xmal) the probability of belonging to class malicious.
Note that P (xmal) and P (xben) sums to one.

Find: The marginal probability P (Xi = xmal), i.e., the probability of node i
belonging to class malicious.

3.2 Graph Construction

The graph G = (V,E) is constructed from events in the proxy and DNS logs.
The set of vertices V consists of two types of nodes: domain names and

IP addresses. Domain names are valid parts of a fully qualified domain name
(FQDN) excluding the top-level domain (TLD). For instance, considering
x.example.com as a given FQDN, we then take example.com as the second-
level domain and x.example.com as the third-level domain. Domain names are
extracted from destination URLs in proxy logs, and the query section of A
records presented in DNS logs. IP addresses are validated IP version 4 addresses
observed in DNS logs (A records), and occasionally in proxy logs (sometimes the
URL contains an IP address rather than a FQDN, also some proxy servers log
the resolved IP address).

The set of edges E expresses three distinct relationships: subdomainOf,
referredTo, and resolvedTo. In this regard, the subDomainOf relationship cap-
tures the dependency between different level of a FQDN, e.g., x.example.com is a
subDomainOf example.com. This relationship is extracted from any valid FQDN
logged in DNS or proxy logs. referredTo captures the connection between two
domain/IP nodes if one has referred to the other one. This feature is extracted
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from the referer field in HTTP request-header logged in proxy logs. And finally,
resolvedTo captures the DNS resolution of a domain name to an IPv4 address,
which is presented in DNS logs and occasionally in proxy logs. Figure 1 shows
the graph constructed from raw events presented in DNS and proxy logs, and
illustrates different type of nodes and relationships used in graph G.

Fig. 1. Domain-ip graph constructed from a sample of raw events in DNS and
proxy logs showing the association between domain and IP nodes using subdomainOf,
referredTo, and resolvedTo relationships

Our Intuition for These Three Relationships is: First, the usage of subdomains is
one of the simplest yet effective techniques used by cyber criminals (e.g., DGA
and domain shadowing) to evade blacklisting. Intuitively, different levels of a
FQDN should belong to the same class. For instance, if x.example.com is listed
as a malicious entity by a threat intelligence feed, it is likely that example.com
and any other k-level domain under example.com (e.g., y.example.com) is also
malicious. Second, the majority of the malware serving networks are composed of
a tree-like structure in which the victims are usually redirected through various
hops before landing on the main distribution site [20]. Although different victims
might land on totally different sites, the redirection paths are usually overlapped.
Furthermore, the HTTP referrer is also set while a domain (e.g., a website)
is loading its modules from potentially different servers, therefore, indicating
association among different domains. In this regard, the HTTP referrer can be
used to infer the probability of a node being malicious based on the neighboring
malicious nodes that have referred to it or it has referred to. One could also
expand the referrer list by implying “referring” based on the correlation among
different requests presented in proxy logs (e.g., requests from the same client in a
short period of time) And finally, if a domain is listed as a malicious, intuitively
we could assume that the resolved IPv4 address of that domain should also be
labeled malicious at least for the duration of that resolution and vice versa.

3.3 Adaptation of BP

In this section, we describe our adaptation of BP algorithm described in Sect. 2
while incorporating domain knowledge, ground truth, and relationship weights.
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Node Potential: As previously explained the node potential represents the
prior knowledge about the state of each node. In this regard, we will assign
different node potential to domain and IP nodes based on the ground truth. For
example, we assign a prior P (Xi = xmal) = 0.99 to the node i, if i is presented
in the collected malicious domain/IP list, or assigning P (Xi = xmal) = P (Xi =
xben) = 0.5 for the nodes that are neither in the malicious list nor in the benign
list (i.e., they are equally likely to be malicious or benign). Note that we avoid
assigning a probability of 1 to any nodes to account for possible errors in the
ground truth. Table 1 shows the node potentials assigned to each vertex on the
graph, based on the prior knowledge (belief).

Table 1. Node potential based on the original state

Node P (malicious) P (benign)

Malicious 0.99 0.01

Benign 0.01 0.99

Unknown 0.5 0.5

Edge Potential: We will adjust the edge potential matrices to capture the
intuition that neighboring nodes are more likely to have the same state due to
a homophilic relationship.

Moreover, due to the fact that our graph consists of three unique edge types
(referredTo, resolvedTo, subDomainOf) it is important to introduce a way to
incorporate edge weight (importance). For example, two neighboring nodes that
are connected via resolvedTo relationship should influence each other more than
two nodes that are connected via referredTo. This edge weight is also incorpo-
rated in the edge potential. Table 2 shows the adjusted edge potential matrices.

Table 2. Edge potentials matrices

ψij(xi, xj) xj = benign xj = malicious

xi = benign 0.5 + wε 0.5 − wε

xi = malicious 0.5 − wε 0.5 + wε

We experimented with different edge potential (adjusting ε) and although we
noticed changes in final probability distributions, the end results were compa-
rable as long as the weights captured the importance of different relationships.
After experimenting with different w and ε and we appointed them as follows:
wreferredTo = 0.5, wresolvedTo = 1.5, wsubdomainOf = 1.5, and ε = 0.1. It is
worth to mention that although the edge weights seem trivial in this research,
they will have a much higher impact when adding more edge types, therefore we
will investigate them further in our future work.
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Message Passing. There are two variants of message updating and passing
protocol in BP: asynchronous and synchronous. At high level, in asynchronous
BP, also known as sequential updating scheme, messages are updated and passed
one at a time, whereas, in synchronous BP, also known as parallel updating
scheme, messages are updated and passed in parallel.

Although BP is computationally efficient, i.e., the running time scales linearly
with the number of edges in the graph, it is not sufficient to run it in the
asynchronous mode for a graph of billion nodes and edges. Therefore, for large
graphs, it is crucial to adopt parallel BP which can utilize multi-core architecture
and parallelly execute the message updates and beliefs calculations.

4 Implementation

Due to the scalability requirements, we have implemented the BP algorithm
with parallel updating scheme using Apache Spark framework. Apache Spark,
the successor to Hadoop MapReduce is one of Apache’s open-source projects
that has gained so much momentum in both industry and academic due to its
power of handling big data analytics. We have not only implemented the BP
algorithm in Spark but also the extract, transform, load (ETL) modules as well
as the graph itself. This design makes it possible to not only scale up (i.e., take
advantage of more powerful hardware) but also scale out (i.e., distributing all
modules to different machines).

Our implemented system is composed of five modules: (1) Extraction, (2)
Transformation, (3) Ground Truth Construction (GTC), (4) Loading, and (5)
BP as shown in Fig. 2. In summary, the extraction module, preprocesses the
DNS and proxy logs by extracting, parsing, and validating the fields of interest
as described in the previous sections. Then the transformation module converts
the extracted values into unique vertices and edges. The ground truth construc-
tion (GTC) module is responsible for combining and adjusting the collected
list of malicious/benign domain and IPv4 addresses, removing duplicate and
the unmatched entities (malicious and benign entities that are in ground truth
but not observed in the event logs). This module is also responsible for care-
fully selecting the validation set. The loading module receives the output of the
transformation and GTC modules to construct a property graph and labeling
each vertex based on ground truth (malicious, benign, unknown). And finally,
BP module converts the constructed graph to Markov Random Field with the
provided node and edge potentials, then runs the implemented BP algorithm to
compute the beliefs following the procedure described in the previous section.
In order to avoid numerical underflow (zeroing-out values), the whole math per-
formed by BP module is carried in the log domain.
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Fig. 2. System architecture diagram

5 Experimental Setup

5.1 Dataset Description

For the purpose of this research, we had access to one-day proxy and DNS logs
collected from a large global enterprise. More specifically, 0.74 TB (terabytes) of
proxy logs and 1.2 TB of DNS logs containing DNS requests and responses.

There is a total of 0.91B (billion), and 0.35B events in DNS and proxy logs
respectively. After running ETL modules on those events we were capable of
extracting approximately 1.89M (million) unique vertices and 4.29M unique
edges.

5.2 Ground Truth Description

To assign priors to domain and IP vertices, a ground truth set was prepared by
collecting a list of known malicious domain and IP addresses from both a com-
mercial threat intelligence platform and various freely available sources including
(but not limited) to Google Safe Browsing, AlienVault Open Threat Exchange,
malwaredomainlist.com, malwaredomains.com. Similarly, we obtained a list of
known benign domains from Cisco Umbrella (top one million most popular
domains).

Ultimately, we were capable of collecting approximately 1M (million) unique
malicious domains, 1M unique malicious IP addresses, and 1M unique benign
domains. Once we checked those against our event logs we had a total of 2.12K
(thousand) matched malicious entities and 0.29M (million) matched benign enti-
ties. This large gap and bias in the ground truth are due to the fact that it is
quite unlikely for the enterprise hosts to be massively infected, i.e., the domains
visited by the client were more likely to be benign rather than malicious. There-
fore we had to adjust the benign data set to hold a balance between malicious
and benign entities.

https://www.malwaredomainlist.com
https://www.malwaredomains.com
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5.3 Hardware Setup and Runtime

Due to the fact that the entire modules are implemented in Apache Spark, it
is possible to run the proposed approach on any configuration of hardware. In
this regard, for the purpose of this research, we ran our experiment on a Spark
cluster configured with 28-core 2.00 GHz linux machine with 100 GB of RAM.

Although, investigating the efficiency and the performance of the modules
is beyond the scope of this research, to get a grasp of its performance, using
the dataset and the hardware described above, the Extraction, Transforma-
tion, Ground Truth Construction, and Loading Modules all together take almost
50 min. In other words, 50 min to read the raw proxy and DNS logs as well as the
collected GT, preprocess them, and write a parquet file containing the prepared
unique vertices and unique edges. Then the BP module takes almost 90 min to
read that parquet file, construct the Markov network and run 7 iterations of the
described BP.

As discussed before, since there is no guarantee of BP convergence, it is
important to introduce a convergence threshold. During our experiments, we
noticed that 7 to 10 iterations were sufficient to get a reliable estimate. That
means after 10 iterations the difference between the messages sent from i to
j in iteration t compared to t − 1 was negligible. It is worth to mention that
the definition of negligible (i.e., convergence threshold) must be proportional
to the edge potential matrices. In this regard, trying to spot small convergence
threshold while assigning large values to w, or ε will produce many unnecessary
iterations. In our experiment we set it to 0.01. This is due to the fact that our
choice for the edge potential metrics forced a high influence.

It also worth to mention that despite our effort to adopt various techniques
and design patterns to increase the performance of our modules, we noticed some
idle time in the BP module which we suspect is due to our setup. In this regard
our hardware setup with 100 GB of memory seems to be insufficient to hold the
whole graph while running the BP and therefore causing SWAPs, IOs, as well
as heavy garbage collection. It is possible to greatly improve the above numbers
using various techniques suggested by Apache Spark1 to tune the performance
even on the same hardware setup.

6 Results and Discussion

In this section, we describe the evaluation of our approach based on the data
set, ground truth and the experimental setup described above.

6.1 Validation

As mentioned before, one the GTC module’s tasks is to carefully select a list
of samples for the purpose of validation. In this regard, after constructing the
ground truth which consists of a balanced number of matched malicious and
1 http://spark.apache.org/docs/latest/tuning.html.

http://spark.apache.org/docs/latest/tuning.html
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benign entities (i.e., domains and IP addresses), the GTC module carefully marks
n samples for validation and the rest for training. Then the BP module uses the
training set to set up the priors and assigns an unknown prior to nodes marked
for the validation.

This validation set must be chosen carefully as it is quite likely that a node
presented in the validation set would have no path to any node presented in the
training set therefore not allowing us to properly evaluate our system. This is
due to the fact that it is quite rare to find two connected malicious entities both
presented in a blacklist or a TI feed (e.g., finding a domain and its resolved IP
address both listed in a retrievable list). The majority of these feeds, only list
the malicious entities they have observed (e.g., the IP address of the phishing
site, or the domain name for a malware hosting domain).

Hence, before taking the samples, we had to calculate the connected com-
ponents in our GT and choose the validation samples from those. For example,
if we take node i as a malicious node for validation, it must have a path to
at least another malicious node within the constructed graph. Furthermore, to
hold a balance between benign and malicious nodes, we took half of the samples
from malicious connected components and the other half from benign connected
components.

We present our detection capability as Receiver Operating Characteristic
(ROC) plot as shown in Fig. 3. This is achieved by thresholding malicious belief
of nodes presented in the validation set. For instance, given a threshold t, and a
node i, if i’s malicious belief, P (Xi = xmal) > t, then we predict i as malicious;
else benign. This prediction is then compared to the i’s original label to determine
this detection as false positive, true positive, false negative, or true negative.
After repeating this procedure for all the nodes in the validation set, it is possible
to compute FPR and TPR for a given threshold t. And finally, plot the ROC
based on different selections of t in the range of [0,1].

Fig. 3. Receiver Operating Characteristics (ROC) plot
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As we can see the area under the ROC curve (AUC) is 91% (the higher the
AUC, the better the classification), while we achieve 96% TPR with an 8% FPR.

6.2 Analysis of False Positives and False Negatives

To better understand the classification accuracy and the reason for the high
FPR, we investigated the false positives (FPs) and the false negatives (FNs), i.e.,
benign domains that were wrongly classified as malicious and malicious entities
that were wrongly classified as benign. We noticed the following observation
when investigating these entities.

The majority of the FNs were entities associated with either cloud-based or
online advertising services which introduce a significant challenge to our app-
roach. For instance, we noticed that although some services were marked mali-
cious in our ground truth, after running BP they were classified as benign due
to their association with more benign entities. This decision making is reason-
able as it does not fully make sense to mark an advertising platform completely
malicious due to one malicious ad. Other FNs were malicious IP addresses that
our system classified as benign, once investigated, we realized that although they
may have been malicious at some point, that was no longer true. This classifica-
tion can also be explained as these IP addresses were managed by cloud-based
services that have reassigned those IP address.

FPs fell into two groups, first, entities that were classified wrongly due to
a bad report from a TI source. For example, we noticed that there were some
sub-domains that had their top-level domain wrongly blacklisted by Cisco Web
Security Appliance2 and therefore propagated to one of the threat intelligence
sources we consumed, causing the subDomainOf relationship to overpower all the
other referredTo relationships and eventually be classified as malicious. Second,
entities that system correctly identified as malicious despite the fact that they
were labeled benign in GT. For instance, we were able to identify 6 entities that
had turned malicious just recently and the system was capable of detecting those
based the referredTo relationship to other malicious entities.

In summary, the FNs and FPs were mostly the result of bad GT (inaccurate
threat intelligence), and the attempt of the system to correct that inaccuracy.
This investigation shows that although it is better to validate the crawled and
consumed threat intelligence, it is not crucial as such system with more paths
could potentially correct the TI inaccuracy.

6.3 Previously Unknown Malicious Entities

We also investigated the ability of our approach to detect new malicious entities
(i.e., entities that were not presented in the ground truth). After running the
BP, we selected the top 100 entities that were assigned a high probability of
belonging to class malicious and did not exist in the GT.

2 https://www.cisco.com/c/en/us/products/security/web-security-appliance/index.
html.

https://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html
https://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html


Guilt-by-Association: Detecting Malicious Entities via Graph Mining 103

Although validating these entities is a challenging task (i.e., how one decides
maliciousness), for the purpose of this research we manually validated those
entities and concluded maliciousness if we observed a reputable threat intelli-
gence source (e.g., VirusTotal3, URLVoid4, AlienVault Open Threat Exchange5)
reporting on that entity. It is also worth to mention that for this task, we dis-
carded the indicator’s time stamp (i.e., the time in which that entity was seen).
This is due to the fact that, investigating and validating the maliciousness period,
is itself an extremely challenging task.

74% of those entities were, in fact, malicious entities that did not exist in
our GT, but have been reported as malicious by several other TI sources. These
entities were mostly domains and IP addresses associated with services running
on CloudFront6. 9% were entities that we could not find any information about.
They seem to be either services that were active for a short period of time
and detected to be malicious based on their previous association with malicious
entities, or the result of DGA. However, we could not validate those intuitions
as there was no trace of them on the internet. And the rest were entities that
were classified wrongly.

In summary, investigating previously unknown malicious entities showed that
our approach was capable of detecting new malicious entities that were not pre-
sented in our ground truth. And despite the fact that there were some misclas-
sified entities (FPs), this approach is still extremely effective as blocking these
FPs would not have a drastic effect, due to the fact that the main reason for
classifying them as malicious, was, not being associated with major benign enti-
ties.

7 Future Work

One of the limitations of our work is the experimental setup. In this regard, we
only had access to one day of proxy and DNS logs. It could be interesting to
investigate how increasing the volume of the event logs will affect the detection.
One could expect to have a better detection accuracy, as there will be more
paths within the graph.

Next, there was a time gap of 6 months between our ground truth preparation
and events collected by the enterprise’s servers, i.e., the event logs were already 6
months old by the time we got access to them. This could potentially introduce
various errors into our detection capabilities as usually threat intelligence feeds
are time sensitive. It would be interesting to evaluate this system on live event
logs and based on more accurate ground truth.

The next limitation of this system as in its current status is the fact that a
malicious entity (e.g., a malicious domain) is capable of defeating the system by

3 https://www.virustotal.com.
4 http://www.urlvoid.com.
5 https://otx.alienvault.com/.
6 https://aws.amazon.com/cloudfront.

https://www.virustotal.com
http://www.urlvoid.com
https://otx.alienvault.com/
https://aws.amazon.com/cloudfront
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referring to many benign entities. Although it is quite unlikely that this is cur-
rently happening, to prevent such scenario, one could adjust the edge potential
to only allow propagation in one direction. We plan to investigate this behavior
in our future work.

Furthermore, in this paper, we only focused on three main relationships that
directly connect domain names and IPv4 addresses. However, one could investi-
gate indirect relationships such as nameServerFor, mailServerFor, aliasFor, with
the intuition that cyber criminals tend to reuse infrastructure for their malicious
entities. Additionally, it is also possible to take other host-based relationships
into consideration (e.g., user agent, IP address, MAC address), thus enabling
the propagation of the client machines’ reputation to domains and IP addresses
(a similar approach to [18,40]).

In addition, it is also possible to look into enriched relationships such as
registrar information, IP ranges, ASN, and BPG in order to construct a larger
graph with a higher connectivity. Antonakakis, et al. [1] make use of BGP, AS,
and registration features as part of their feature set to detect malicious domains.
[25] uses IP space proximity to measure the similarity between domains, [7,33]
investigate features such as name servers, and registrant information to detect
malicious domains. In this regard, the investigation of these combined relation-
ships pose an interesting direction for the future work.

Finally, one could combine the global features (i.e., the features that would
allow us to either directly or indirectly connect two entities) together with local
features, such as, URL structure, port number, request/response length, and
etc. This combination of global and local features should, in theory, improve the
accuracy.

8 Conclusion

In this paper, we tackled the problem of detecting malicious domains and IP
addresses by transforming it into a large-scale graph mining and inference prob-
lem. In this regard, we proposed an adaptation of belief propagation to infer
maliciousness based on the concept of guilt-by-association using subdomainOf,
referredTo, and resolvedTo relationships between IP and domain nodes. We eval-
uated our approach by running an adaptation of loopy belief propagation on a
graph constructed from 2TB of proxy and DNS logs collected from a global
enterprise. The results showed that our system attained a TPR of 96% at 8%
FPR. While investigating the FP and FN we noticed the mistakes in the GT
which was corrected by our system. We also investigated the system’s ability to
detect previously unknown malicious entities and demonstrated its capability to
extend threat intelligence and blacklist by detecting new malicious entities.
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Abstract. Keeping track of financial transactions (e.g., in banks and
blockchains) means keeping track of an ever-increasing list of exchanges
between accounts. In fact, many of these transactions can be safely
“forgotten”, in the sense that purging a set of them that compensate
each other does not impact the network’s semantic meaning (e.g., the
accounts’ balances). We call nilcatenation a collection of transactions
having no effect on a network’s semantics. Such exchanges may be
archived and removed, yielding a smaller, but equivalent ledger. Moti-
vated by the computational and analytic benefits obtained from more
compact representations of numerical data, we formalize the problem of
finding nilcatenations, and propose detection methods based on graph
and lattice-reduction techniques. Atop interesting applications of this
work (e.g., decoupling of centralized and distributed databases), we also
discuss the original idea of a “community-serving proof of work”: finding
nilcatenations constitutes a proof of useful work, as the periodic removal
of nilcatenations reduces the transactional graph’s size.

Keywords: Nilcatenation · Subset-sum problem · Lattices · LLL

1 Introduction

Transactional ledgers are a staple of modern technology—whether it is data,
value or goods being tracked, concrete implementations require strong consis-
tency guarantees and efficient data structures. Furthermore, it may be useful to
perform sanity checks on data, such as in bank ledgers for instance, to ensure that
an account’s balance is legitimate (i.e., the amount can be explained as an inflow
of money, whose source can be tracked). In another setting, namely centralized
DBMS, it is typical to undergo high volumes of concurrent queries; auditing
data causes extra pressure on the various locking strategies. Moreover, in some
blockchains/distributed ledgers, the ledger keeps track over time of all individ-
ual transactions, and these transactions are atomic: they cannot be merged or
split. As time passes, the number of transactions grows, and so do the storage
requirements.

To give an intuition of the network and storage requirements, the full Bitcoin
blockchain claimed (as of June 2017) more than 120 GB [1]. Hopefully, most
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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Fig. 1. Decoupling a transactional multigraph into the cleansed part (left) and the
nilcatenation (right).

users do not need to archive the full database, and Bitcoin proposes a form of
compressed partial storage.1 That being said, even with Bitcoin’s Merkle-tree-
based mechanism, there is considerable stress on the network, in particular when
users need to access historic data.

Nevertheless, we think it is important to look for generic solutions beyond
this particular case, and these motivational examples highlight the realisation
that storage requirements will only grow. This calls for a research into how
information can be efficiently stored or cleansed, i.e., represented. Such a rep-
resentation should be semantically preserving, at least to the extent that the
effect of no transaction is lost in the process.2 In many cases, some details might
become irrelevant (e.g., the precise number of successive transactions between
two parties) and it might be possible then to clump some events together into a
more compact form. Finding efficient representations of transactional graphs is
the main purpose of this work.

The Nilcatenation Problem. Throughout the following sections, we will consider
a set of accounts, and the transactions between them represented as labeled
edges between nodes in a graph G. More precisely, G is a multigraph, as multiple
transactions are allowed between users. See AppendixA for precise definitions
of these standard notions.

The “nilcatenation problem” (NCP) on G consists in constructing a trans-
action graph G′ which is smaller than G, but provably semantically equivalent.

1 So do a few other cryptocurrencies, such as Ethereum.
2 Which is very different from “that no transaction is lost in the process”.
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That the new and old information coincide should be easy to verify, and the
shorter (“purged”) graph makes duplication and checking easier. Concretely,
this consists in identifying a subgraph that can be removed without affecting
any account’s balance (see Fig. 1). The notion of nilcatenation is generic, in that
it applies to any graph labeled with numbers3, and therefore bears applications
in many situations.

Applications. In the context of distributed (anonymous) cryptocurrencies and
distributed ledgers, we point out that identifying nilcatenations can be seen as a
service to the community, and therefore be rewarded... in coins, just as any other
proof of work. In that respect, the perspective of a cryptocurrency allowing users
to mine by nilcatenation is not unrealistic, and we discuss it in Sect. 5.

Alternatives. The problem of bookkeeping is certainly not new, and many solu-
tions have been proposed to address storage requirements. In the traditional
(centralized) setting, complete archiving is the de facto solution.

As we mentioned above, trying to avoid the perpetual duplication of history
was an early concern of cryptocurrencies, starting with Bitcoin’s Merkle-based
fast transaction checking [13]. With this scheme, it is possible to verify that a
transaction has been accepted by the network by downloading just the corre-
sponding block headers and the Merkle tree. Nodes that do not maintain a full
blockchain, called simplified payment verification (SPV) nodes, use Merkle paths
to verify transactions without downloading full blocks. Other cryptocurrencies
use forgetful mechanisms (e.g. Ethereum and [5,6]). Such approaches prevent
auditability, insofar as the origin of old enough transactions is lost.

Related Work. In general, constructing a useful proof-of-work (PoW) is a hard
problem. One direction, mentioned in [2], is to use the PoW mechanism to
solve specific problems having a well-investigated computational complexity (e.g.
orthogonal vectors). Some cryptocurrencies, such as Primecoin, propose PoWs
challenging the workers to find chains of prime numbers. A different working
thread relies on proofs-of-storage, where a prover needs to demonstrate to a ver-
ifier that it stores a specific file. Filecoin is a recent, incipient proposal where the
miners get rewarded by the amount of data they store. To the best of our knowl-
edge, no prior work attempted to introduce of PoW for finding nilcatenations in
a multigraphs, aiming to compress data.

1.1 Contributions

– We introduce and formalise the nilcatenation problem, phrased in terms of
weighted multigraphs. We show—via a reduction to the (multi-dimensional)
subset-sum problem—that NCP is NP-complete (Theorem 1).

3 It may be possible to extend our work to some more general algebraic structures.
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– Our main contribution is the introduction of efficient algorithms to find nil-
catenations (Sect. 4), which is optimal when the underlying subset-sum prob-
lem has a low enough density (Theorem 3). This is expected to be realis-
tic, assuming maximal transactions are in the order of billions of economical
units. Our approach is based on a combination of graph-theoretical and lattice
reduction techniques, as explained in Sect. 3.3.

– As a complement, we explore the possibility of using NCPs as proofs of work,
to be used in cryptocurrency-like settings (Sect. 5). Reward models are pre-
sented and the practical precautions needed to correctly fine-tune the result-
ing incentive are also discussed. We analyse cheating strategies and provide
countermeasures. Along the way, we point out several interesting questions
raised by the analysis of this problem.

2 Preliminaries

Notations. We will make use of the following standard notations: [n] denotes
the set {1, . . . , n}. For a set S, we denote by s ←$ S the action of sampling s
uniformly at random from S, and by |S| the cardinality of S. PPT stands for a
“probabilistic polynomial time”. Polynomial-time reductions are written as ≤P .
We use standard notations for (multi)graphs, which are detailed in AppendixA.

2.1 The Subset-sum Problem

We recall the well-known definition of the subset-sum problem (SSP, [10]):

Definition 1 (Subset-sum Problem). Given a finite set A ⊂ Z, and a target
value t ∈ Z, find a subset S ⊆ A such that

∑
s∈S s = t.

We denote by the size of the instance the cardinality of A. The SSP is known
to be NP-complete [9]. The multi-dimensional case considers p “parallel” SSP
instances under the constraint that an index-set solution to one problem remains
a solution to the other p − 1. The density of a particular SSP instance of size
n is defined [11] as: d = n/

(
maxa∈A log a

)
. While generic SSP instances are

hard to solve, low-density instances can be solved efficiently using approximation
techniques or lattice reduction [7,11]. We also quickly consider:

Definition 2 (0-target Subset-sum Problem, or 0TSSP). Given a vector
A ∈ Z

n, find a vector ε ∈ {0, 1}n, ε �= 0, such that 〈A, ε〉 = 0, where 〈·, ·〉 denotes
the inner product.

Proposition 1 (SSP ≤P 0TSSP). Let O be a 0TSSP oracle. There exists a
PPT algorithm A that solves an instance of an SSP problem within n calls to
O, where n denotes the size of the instance.

Proof (Intuition). Let an SSP problem be defined by A = {a1, . . . , an} and
target sum t. We assume ai �= 0,∀i ∈ [n] and t > 0.4 If all ai > 0 (or ai < 0), we
4 If t < 0, we obtain an equivalent problem by changing the sign for each element ai

and for the target t.



112 R. Géraud et al.

create a new 0TSSP instance of size n + 1, A′ = {a1, . . . , an,−t}, and query O:
a solution for A′ trivially provides a solution to the original SSP instance (A, t).

When some ai < 0, we set d ← ∑
ai>0 ai, e ← ∑

ai<0 ai and construct n new
0TSSP instances:

Bi = {b1, . . . , bn,−t − i · f}, t′′i = 0, ∀i ∈ [n]

where bi ← ai + f and f ← |d| + |e| + t. Observe that bi > 0,∀i ∈ [n].
If the original problem has a subset sum t, then one of the new 0TSSP

instances will have a solution. On the other hand, if one of these n 0TSSPs has
a solution, the original SSP has a solution as well.

Let S be a solution to the i-th 0TSSP Bi, then
∑

j∈S bj = t+i·f . Equivalently,
j · f +

∑
j∈S aj = t + i · f , which is

∑
j∈S aj = t + (i − j) · f .

– If i > j, then we get that
∑

j∈S aj > d + e, which cannot be true.
– If i < j, then we get that

∑
j∈S aj ≤ −d − e, which again cannot be true,

since we assumed that all ai cannot be negative.

Thus, we are only left with the possibility that i = j, and thus
∑

j∈S aj = t. ��
Remark 1. In fact, the polynomial reduction shown in the proof of Proposition 1
shows that SSP is equivalent with its 0 target version, both being NP-complete.
Indeed, we trivially have 0TSSP ≤P SSP.

3 Formalising the NCP

3.1 A First Definition

In all that follows, the history of transactions is assumed to form a multigraph
G = (V,E, φ), where the vertices V correspond to accounts, and a labeled edge
e = a

u−→ b corresponds to a transaction from a to b of amount u, denoted as
φ(e) = u.

The balance b(v) of an individual account v is given by the difference between
incoming transactions and outgoing transactions, i.e., b(v) =

∑
e:•→v φ(e) −∑

f :v→• φ(f), where (• → v) denotes all incoming edges, i.e. all the elements in
E of the form (w, v) for some w ∈ V ; similarly (v → •) denotes all outgoing
edges. Let b(G) denote the vector {b(v) : v ∈ V }, which we refer to as the graph’s
semantics.

Definition 3 (Nilcatenation Problem, NCP). Given a weighted multigraph
G = (V,E, φ), find Ẽ ⊆ E, Ẽ �= ∅, such that b(G) = b(G − G̃), where G̃ =
(V, Ẽ, φ). We call (G̃,G − G̃) the nilcatenation of G.

Remark 2. In other terms, finding a nilcatenation consists in finding edges that
can be removed without impacting anyone’s balance—i.e., that preserve the
graph’s semantics. By definition, for every vertex ṽ ∈ G̃, we thus have b(ṽ) = 0.



Twisting Lattice and Graph Techniques to Compress Transactional Ledgers 113

3.2 NCP and SSP

Definition 4 (NCP, Alternative Definition). Let G = (V,E, φ) be a
weighted multigraph. Write V = {v1, ..., vn}, and represent an edge e : vi

r−→ vj

as the vector r · eij ∈ Z
n where eij is the vector of Z

n with 1 in position j,
−1 in position i and 0 in the remaining components. This defines a bijection
between E and G’s adjacency matrix E. The matrix E is a list of m such vec-
tors E = (e1, . . . , em). The nilcatenation problem consists in finding a non-zero
ε ∈ {0, 1}m such that

m∑

i=1

εiei = 〈E, ε〉 = 0,

where we have extended the notation 〈·, ·〉 in the obvious way. The nilcatenation
of G is then defined as (G̃,G−G̃), where G̃ = (V, Ẽ, φ) and Ẽ = {ei ∈ E, εi = 1}.
Remark 3. In many cases, we are chiefly interested in the largest ε (in terms of
Hamming weight), because these result in the largest nilcatenations.

Figure 2 illustrates on a toy example the matrix E and identifies a nilcatenation.

Fig. 2. A simple support example, depicting a multigraph with a nilcatenable subgraph.
E� is the transpose of the adjacency matrix introduced in Definition 4, corresponding
to the multigraph (middle); the multigraph on right stands for the nilcatenation.

Remark 4. Definition 4 makes clear the parallel between the NCP and the multi-
dimensional version of the SSP (Definition 2). For n = 2, the NCP problem
consists of a 2 × m matrix with no 0 entries, the goal being to find an index
subset for the columns that sum up to the all-zero column. Thus, the NCP and
0TSSP are exactly the same problem when n = 2.

In fact, more is true: NCP can be seen as a multi-dimensional variant of the
subset-sum problem with zero as target, where the entries belong to Z

|V | instead
of Z. Note however that NCP is a remarkably sparse special case of that multi-
dimensional SSP.
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Theorem 1 (NCP ≡P 0TSSP)

Proof (Intuition). By the above discussion, a 0TSSP oracle provides a solution
to any NCP instance. Vectors of Z|V | can be described as integers using a base
|V | encoding. Therefore we have a reduction from 0TSSP to NCP.

Conversely, assume an NCP oracle, then we can construct an NCP instance
with all zeros except in two columns (in effect, this is an n = 2 instance). Then,
by the remark made above, the NCP oracle solves a 0TSSP instance. ��
Corollary 1. NCP is NP-complete.

Proof. This follows from the fact that SSP is NP-complete, then SSP ≡P 0TSSP
by Proposition 1, and NCP ≡P 0TSSP by Theorem 1. ��

3.3 Solving a Generic NCP Instance

Following the previous observation, one may be tempted to leverage known SSP
solving techniques to tackle the NCP. However, the reduction from NCP to SSP
is not very interesting from a computational standpoint: coefficients become very
large, of the order of Bbn, where B is the upper bound of the representation of
E, and b is the chosen basis. This encoding can be somewhat improved if we
know the bounds B±

i for each column, because we can use better representa-
tions. However, in practice it becomes quickly prohibitive; even brute-forcing
the original NCP is less computationally demanding—the subset-sum problem
can be solved exactly (classically) in worst-case time O(2m) by brute-forcing all
combinations, and even state-of-the-art algorithms only have marginally better
complexity, namely O(2m·0.291...) [3,8].

If we wish to tackle the NCP directly, for n > 2, the meet-in-the-middle
approaches inherited from subset-sum solvers do not apply, as in that case
there is no total order on Z

n. Instead we will leverage the famous LLL lat-
tice reduction algorithm [12]. Given as input an integer d-dimensional lattice
basis whose vectors have norm less than B, LLL outputs a reduced basis in time
O(d2n(d + log B) log Bf) [14], where f stands for the cost of d-bit multiplication.

To see why lattice reduction would solve the problem, first note that E can
be represented as an n × m matrix with rational (or integer) coefficients. It is a
sparse matrix, having (at most) two non-zero entries per column, i.e. (at most)
2m non-zero entries out of nm. Let In be the n × n identity matrix and let
E = (In|E) be the result of concatenating the two blocks: E is an n × (n + m)
matrix, having at most n + 2m non-zero elements out of n(n + m).

Now if there is a solution to the NCP, then it belongs to the lattice generated
by E . In particular this is a short vector: if this is the shortest vector, then LLL5

will find it with overwhelming probability. The question of solving the NCP from
a solution to the shortest-vector problem (SVP) depends on the density, topology
and weights’ probabilistic distribution of the multigraph. A proof of optimality
for some graph families (denoted “hub graphs”) is worked out in Sect. 3.4.

5 Or BKZ [17], or one of their variants. We use these algorithms here as SVP oracles.
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In practice, however, using this technique directly is impractical. The main
reason is that LLL’s complexity on a large graph is dominated by m3, and real-
world ledgers handle many transactions, with m being of the order of 108 per
day. Therefore this intuition needs improvements to become practical, as we
discuss in Sect. 4.

3.4 Solving NCP Using a Single SVP Oracle Query

The algorithm we propose in Sect. 4 relies on LLL as an SVP-oracle, to find a
short vector and solve the given NCP instance. In other terms, we claim that
specific NCP instances can be solved, with overwhelming probability, using a
single query to an SVP-oracle.

We also extend the work of [7,11,15] where similar proofs are laid out for
SSP and multi-dimensional SSP (henceforth MDSSP) instances with uniformly
sampled entries. As a starting point, we recall the following result:

Theorem 2 (Pan and Zhang [15]). Given a positive integer A, let aji where
j ∈ [n], i ∈ [m] be independently uniformly sampled random integers between
1 and A, e = (e1, e2, . . . , em) be an arbitrary non-zero vector in {0, 1}m and
sj =

∑m
i=1 ajiei, where j ∈ [n].

If the density d < 0.9408... then with overwhelming probability the multi-
dimensional subset sum problem (MDSSP) defined by aji and s1, . . . , sn can be
solved in polynomial time with a single call to an SVP oracle.

One can attempt to reduce the NCP instance to an MDSSP one; however, the
impeding issue is the distribution of aji, which is not uniform in general, so
the above result does not apply directly. However, we may hope to get a useful
result, based on the crux point that we are working with sparse subsets of aji

(as defined by the edge multiset E of our multigraph). Here, by a sparse subset,
we mean one where at least half of the elements are 0.

We use the following notion: call a “hub multigraph”, one that contains a
vertex directly connected to all the other nodes (we call this vertex a “hub
vertex”). For such graphs, we can prove the following:

Theorem 3 (NCP for Hub Multigraphs). Given A ∈ N, let aji where
j ∈ [n], i ∈ [m] be a sparse set of independently sampled (not necessary uniform)
integers between 0 and A, e = (e1, e2, . . . , em) be an arbitrary non-zero vector in
{−1, 0, 1}m and sj =

∑m
i=1 ajiei = 0, where j ∈ [n].

If the density d < 0.488... and if there exists i such that ∀j ∈ [n], aji �= 0,
then the MDSSP defined by aji and s1, . . . , sn can be solved in polynomial time
with a single call to an SVP oracle.

Proof. We follow closely the proof of [15], and diverge in the last part of their
demonstration, i.e., in obtaining the probability for an SVP-oracle to return an
accurate answer, given a uniform, low density instance of the MDSSP.

The multigraph is finite, therefore at a given point in time, the maximum
number of arcs connecting one vertex with another one is bounded by M , thus
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∀i : deg+(vi) ≤ M ∧ deg−(vi) ≤ M . Let m = M · n · (n − 1)/2 and let e be the
solution to the SSP problem.

We begin by defining an appropriate basis for a lattice. The idea is to write
the basis as

B =
(
Im|N · Et

bm+1

)

where Im stands for the identity matrix, E is the multigraph’s adjacency matrix
(as described in Definition 4) and N >

√
(m + 1)/4. The last component of the

basis, namely bm+1, will be a special vector of the form:

bm+1 = (12 , 1
2 , . . . , 1

2 , 1
2 , 0, 0, 0, . . . , 0, 0)

Let L be the lattice generated by b1,b2, . . . ,bm+1. We can observe that e =
(e1 − 1

2 , e2 − 1
2 , . . . , em − 1

2 , 0, 0, . . . , 0) ∈ L. We define X as the set of vectors
different by ±e (with a smaller norm) that belong to L:

X = {v ∈ L : ‖v‖ ≤ ‖e‖ and v �∈ {±e,0}}
Roughly, we want to prove that with overwhelming probability, the problem has
a unique solution, which is given by ±e. We make two remarks and prove the
second one:

1. If X = ∅, then ±e are the only short non-zero vectors in L.
2. X = ∅ with probability exponentially close to 1.

The crux part in the proof is bounding the value of Pr[X = ∅]. Let v ∈ X such
that v =

∑m+1
i=1 (zi ·bi), having zi ∈ {−1, 0, 1}. Since N >

√
(m + 1)/4, the last

n elements in v must be 0. Hence, we set up v as follows:

vi = zi +
1
2
zm+1, for i ∈ [m]

vm+1 =
1
2
zm+1,

vm+1+j = N ·
( m∑

i=1

zi · aji

)
= 0 for j ∈ [n]

By using the previous notations, we now rewrite the condition as:
m∑

i=1

aji(vi − vm+1) =
m∑

i=1

ajizi = 0,∀j ∈ [n].

Then, following the same technique as in [15], we let

D =
{

v ∈ Z
n+1

∣
∣
∣
∣∃(z1, . . . , zm+1) ∈ Z

n+1 s.t. vi = zi +
1
2
zm+1 ∧ vm+1 =

1
2
zm+1

}

and bound the required probability:

Pr[X �= ∅] ≤ Pr

[
m∑

i=1

aji(vi − vm+1) = 0 : j ∈ [n] ∧ v �∈ {0,±e}
]

× |{v ∈ D | ‖v‖ ≤ ‖e‖}|
(1)
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– If zm+1 is even, then ‖v‖ =
√

m+1
4 , implying |{v ∈ D | ‖v‖ ≤ ‖e‖}| = 2m.

– If zm+1 is odd, the cardinality of the second expression in Eq. 1 corresponds
to the number of points with integer coordinates in the m + 1 dimensional

ball centered at the origin and having radius
√

m+1
4 , which is bounded by

21+(m+1)c, where c is a constant described in [11] (c = 2.047 . . . ).

Thus we get that |{v ∈ D | ‖v‖ ≤ ‖e‖}| ≤ 2c. All that remains is to approximate
the first term in Eq. 1.

We now diverge from the original proof and investigate what happens if the
aji are not sampled uniformly at random, but rather form a sparse set, following
some unknown distribution. This observation is related to the way in which aji

are induced by the multigraph in the blockchain we described. Thus:

Pr

[
m∑

i=1

aji(vi − vm+1) = 0 : j ∈ [n] ∧ v �∈ {0,±e}
]

≤ Pr

[
m∑

i=1

ajizi = 0 : j ∈ [n]

]

=
n∏

j=1

Pr

[
m∑

i=1

ajizi = 0

]

(2)
We stress that the form of zi obtained in [15] differ from the form of zi we
use, due to the fact that in our version of the problem, the target sum in the
MDSSP is 0. As an observation, the previous probability bound we obtain in
Eq. 2 can be equivalently stated: Pr[

∑m
i=1 zi ·aji = 0] ⇐⇒ Pr[zt ·aj = 0], where

aj = (aj1, . . . , ajm).
Let Et be the matrix defined by aji (example given in Fig. 2). The condition

Pr[zt · aj = 0] states that z is in the left nullspace of the matrix Et (which is
sparse, given that the aji form a sparse set). Because e is already in the left null-
space (et · Et = 0t), the problem to solve becomes now to find the probability
that z exists and that it is shorter than e.

If the matrix Et has rank n − 1 then the dimension of the left nullspace is 1
(following from the Rank-Nullity theorem); hence z is an integer multiple of e,
thus failing to have a shorter norm than ±e. Finally, we estimate the probability
of rank(Et) < n − 1. Observe the form of Et, as the matrix associated to a
random “hub” multigraph (∃i such that ∀j, aji �= 0). If there exists a row j for
which aji �= 0, then we can apply elementary matrix operations, such that Et

will have a sub-matrix of size n − 1 which is diagonal.
Hence, we used the hypothesis to prove that Pr[zT · aj = 0] = 0, which

is equivalent to the claim that there is no shorter vector than ±e in L, when
L = (Im|Et), with E being the matrix of a “hub” graph. As shown above, for
such graphs, Pr[X = ∅] = 1, which completes the proof. ��

4 Faster NCP Solving

While the lattice reduction approach discussed in Sect. 3.3 cannot be efficiently
applied directly on a large multigraph to find a solution to the NCP, it can
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work on small multigraphs. We describe in this section a simple pruning algo-
rithm that reduces the problem size dramatically. This algorithm breaks down
the NCP instance into many smaller NCP sub-instances, which can be tack-
led by LLL. Furthermore, each instance can be dealt with independently, which
makes our approach parallelizable. Importantly, nothing is lost in this divide-
and-conquer strategy: any solution in the original instance can be found in the
pruned instance(s).

In other terms, we first leverage the particular form NCP—namely the graph-
related properties—to conservatively reduce problem size. This is possible thanks
to the following two observations:
1. We only need to consider strongly connected components. Indeed, if v, w ∈ V

belong to two different strongly connected components of G, then by definition
there is no path going from v to w and back. Therefore any amount taken
from v cannot be returned, so that the balance of v cannot be conserved.
Thus, all the edges of Ẽ are contained in a SCC of G.

2. Let H be a nilcatenation of G. Then H must satisfy a “local flow conservation”
property: the flow (Definition 6) through any cut of H is zero; equivalently,
the input of each vertex equates the output. Subgraphs failing to satisfy this
property are dubbed obstructions and can be safely removed.

Definition 5 (First-Order Obstruction). Let G = (V,E, φ) be a weighted
multigraph. A vertex v ∈ V is a first-order obstruction if the following conditions
hold:
– The in-degree and out-degree of v are both equal to 1.
– The weights of the incoming and the outgoing edges are different.

We may define accordingly “zeroth-order” obstructions, where the minimum of
the in- and out-degree of v is zero (but such vertices do not exist in a strongly
connected component), and higher-order obstructions, where the in- or out-
degree of v is larger than 1, still satisfying the local-flow conservation property:

Definition 6 (Local conservation SSP). Let v ∈ V , let EI the multiset of
v’s in-edges, and EO the multiset of v’s out-edges. The local conservation SSP is
the problem of finding SI ⊆ EI , SO ⊆ EO such that

∑
e∈SI

φ(e) =
∑

f∈SO
φ(f).

4.1 Strongly Connected Components

It is straightforward to see that a partition of G into k strongly connected com-
ponents corresponds to a partition of E into (k + 1) multisets: each strongly
connected component (SCC) with its edges, and a remainder of edges that do
not belong to SCCs. As explained above, this remainder does not belong to Ẽ.

The partition of a graph into strongly connected components can be deter-
mined exactly in linear time using for instance Tarjan’s algorithm [18]. To each
component, we can associate a descriptor (for instance a binary vector defining a
subset of E), and either process them in parallel or sequentially, independently.

This corresponds to reordering V so that E is a block diagonal matrix, and
working on each block independently.
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4.2 The Pruning Algorithm

We can now describe the pruning algorithm (Fig. 3), that leverages the observa-
tions of this section.

Fig. 3. The pruning algorithm, used to split components which fail to satisfy the local
flow conservation property.

The algorithm works as follows: (1) decomposes the graph into its SCCs; then
(2) removes first-order obstructions6 in each component. Removing obstructions
may split a strongly connected component in twain (we can keep track of this
using a partition refinement data structure), so we may repeat steps (1) and (2)
until convergence, i.e., until no obstruction is found or no new SCC is identified.
This gives the obvious recursive algorithm RecursivePruning.

Complexity Analysis. The average-time complexity of this algorithm depends a
priori on the graph being considered, and in particular on how many SCCs we
may expect, how probable it is that an obstruction creates new SCCs, how fre-
quent obstructions are, etc. If we turn our attention to the worst-case behaviour,
we can in fact consider a multigraph for which this algorithm would take the
most time to run.

Tarjan’s algorithm has time complexity O(n + m), and first-order obstruction
removal has time complexity O(n). Thus the complete pruning’s complexity is
determined by the number of iterations until convergence. The worst graph would
thus have one obstruction, which upon removal splits its SCC in two; each sub-
SCC would have one obstruction, which upon removal splits the sub-SCC in two,
6 Higher-order obstructions can also be removed, although there is a trade-off to con-

sider, see Remark 5.
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etc. Assuming that this behaviour is maintained all the way down, until only
isolated nodes remain, we see that there cannot be more than log2 n iterations.

Each iteration creates two NCP instances, each having n/2 vertices and
around m/2 edges. Thus the complete pruning algorithm has worst-case com-
plexity O((m + n) log n).7

Remark 5. If we now extend the pruning algorithm to also detect higher-order
obstructions, say up to a fixed order d, then the obstruction removal step costs
O(2dn) = O(n) since 2d is a constant. Thus the asymptotic worst-case complex-
ity is not impacted. However the constant term might in practice be a limiting
factor, especially since higher-order obstructions may be rare. Making this a pre-
cise statement requires a model of random multigraphs (see the open questions
in Sect. 6). To compensate for the extra cost of detecting them, order-d obstruc-
tions should be frequent enough: we conjecture in an informal manner that this
is not the case, and that there is no gain in going beyond the first order in most
practical scenarios.

4.3 Fast NCP Solving

Fig. 4. The complete fast NCP solving algorithm.

We can now describe in full
the fast NCP solving algo-
rithm in Fig. 4. It consists
in first using the pruning
algorithm of Sect. 4.2, which
outputs many small NCP
instances, and then solving
each instance using an SVP
oracle (in practice, a lat-
tice reduction algorithm) as
described in Sect. 3.3.

Remark 6. For completeness,
we mention that the algo-
rithm in Fig. 4 is theoretically guaranteed to return a result if the density of
each problem defined by Gk and used to feed the SVP oracle is small, and Gk

defines a hub-graph.

If we are only interested in the largest connected nilcatenation, as will be the case
in the following section, then only the largest subgraph needs to be returned.

5 NCP-Solving as a Proof of Work

A proof of work is a computational problem whose solution required (extensive)
computation. Such constructions were first introduced to fight against e-mail
spam, but they are increasingly popular at the heart of distributed cryptocur-
rencies, since the inception of the Bitcoin blockchain [13].
7 We ignore the fact that each subproblem can be worked on independently in parallel.
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In almost all cases however, computing a proof of work requires operations
that, as such, are useless. We think that this waste of energy is unnecessary, and
that to a certain extent it is possible to use alternative mechanisms to achieve
“community-serving” proofs of work.

The idea in what follows is to recognise as a valid proof of work the result of
ledger nilcatenations. As we discussed above, the NCP is hard, and intuitively,
larger nilcatenations would require more work to be found. Rewarding nilcate-
nations would encourage users to look for them and publish them (in the form,
maybe, of “nilcatenation blocks”, NCB); as a result, all users would benefit from
a more compact representation. We stress here that this is only a possibility,
and that there are implementation details to be accounted for, if this idea is
integrated in any existing blockchain.

To give a flavour, we distinguish between unpermissioned and permission-
based blockchains. In the former case, a typical scenario consists of an anonymous
user owning multiple public/private key pairs for the transactions in which he/she
is involved. Suppose the execution of a transaction involves sending an amount to
an address identified through the hash of a fresh public-key; then the addresses
(accounts) are not repeated multiple times. In such a case, the multigraph repre-
sentation of the transactional ledger contains no loops, resulting in trivial, empty
nilcatenations. In the latter case—permission-based blockchains—the accounts
represented via addresses can be reused and therefore a representation of the set
of transactions via a multigraph is possible. This enables a PoW implementation
based on the NCP problem.

Theorem 4 (Proof of Work). Let B = [B1, . . . ,Bn] stand for a transactional
blockchain, blocks Bi being generated by a (deterministic) function fn : X1 ×
· · · × Xn → Xn+1 sampled from a family {Fn}, for n ≥ 1. Let G = (V,E, φ) be
the multigraph representation of the transactions and (G̃,G−G̃) a nilcatenation.
There exists a blockchain B′ for the multigraph (G−G̃, E−Ẽ, φ) and a blockchain
B′′ for (G̃, Ẽ, φ), both obtained through {F}.
Proof (Intuition). The proof is straightforward. If the transactional multigraph
can be decoupled into its nilcatenation and cleansed multigraph, two ledgers
B′,B′′ can be generated (through the means of f) for each of these components,
and the union of their transactions in B′,B′′ can be used to check the validity
against B. If the number of transaction in a block is fixed, dummy exchanges
with a value of 0 can be artificially added. ��
Concretely, an NCB is similar to “standard” blocks, but checked in a different
way. Instead of containing only transactions, NCBs also contain a description
of the nilcatenation. Users responsible for publishing NCBs get rewarded as a
function of the size of their nilcatenations. Users receiving nilcatenation blocks
would check them and accept them only if they are valid.8

8 Note that NCBs need not be removed from the blockchain.
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Cheating Strategies. Before NCBs can be used as a proof of work, however, we
must consider cheating strategies and fine-tune the incentives, so that honest
computation and quick dissemination are the rational choices for miners. We
identify two cheating strategies, dubbed ghost cycles and welding, for which we
suggest countermeasures. We then discuss the question of how to reward NCBs.

The following subsections clarify these points; as a summary, to use NCP as
a proof of work, one should: (1) require that nilcatenations obey the ghostbust-
ing rules of Sect. 5.1, i.e., belong to a randomly-sampled subgraph of a snap-
shot of the transaction multigraph; (2) only accept connected nilcatenations as
explained in Sect. 5.2; (3) be rewarded linearly in the size of the nilcatenation,
as described in Sect. 5.3.

5.1 Ghost Cycles

Ghost Cycle Creation. One attack is the following: a cartel of users may
create many transactions with the sole intent to make nilcatenation easier. They
may create cycles or cliques of transactions, then reap and share the reward for
“finding” this removable set. In fact, they merely need to graft their transactions
to an existing, large enough sequence of transactions. Such a strategy could take
the following form:

1. Find the longest path of identical transactions that point to the controlled
node: write them vi

r−→ vi+1, with i = 0, . . . , n and vn+1 being the nodes
under adversarial control. Note that r is fixed. Searching for such a cycle can
be done by starting from vn+1, and performing a depth-first search on the
transaction graph.

2. Compute the expected gain of a nilcatenation-based proof of work that
removes (n+1) transactions: call it Gn+1. Such a quantity would be publicly
known, and we may assume for simplicity that Gn > Gm whenever n > m.

3. If Gn+1 > r, make a new transaction vn+1
r−→ v0; then send the nilcatenable

cycle {v0, . . . , vn+1} as a “proof of work”.

By using several accounts, artificially-long chains can be created by a user, only
to be immediately “found” and removed. We dub these “ghost cycles” (this
includes cliques and other structures as well), and this form of cheating is of
course highly undesirable.

Fig. 5. Concatenation of three
independent nilcatenations.

Ghostbusting. There are two (complementary)
ways to combat ghosts. An economical approach,
discussed in Sect. 5.3, consists in making ghosts
unprofitable. A technical countermeasure, called
ghostbusting is described in AppendixB, ensures
that ghosts cannot be leveraged, except perhaps
with negligible probability. The rationale is to ask
for miners to solve the NCP on a randomized
subset of the transaction graph, where it is very
unlikely that they have enough accounts to con-
struct ghost cycles.
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5.2 Welding Nilcatenations

Another interesting question, motivated by the increased number of cryptocur-
rency miners who parallelize their work, is to measure how much parallel com-
putation helps in solving the NCP. As described previously (see Sect. 4), the
pruning algorithm generates many small graphs that can be dealt with indepen-
dently.

In our scenario, after gathering enough nilcatenations published by peers, a
user could assemble them into a single, larger instance and claim the rewards for
it. From a theoretical standpoint, a large, disjoint nilcatenation satisfies Defini-
tion 4.

However the incentive there would be to produce quickly many small nilcate-
nations. This is, again, highly undesirable.

As a first countermeasure, users reject disconnected nilcatenations (this is
easy to check), i.e., only accept connected ones. This encourages miners to look
for larger nilcatenations, and also limits the efficiency of miner pools.

Such an approach does not prevent, in theory, users from joining together
partial nilcatenations into a larger one. Consider for instance the graph of Fig. 5,
where user 1 finds a nilcatenation 10–10, user 2 finds 20–20, and user 3 finds
30–30. Then they may collude to generate a larger, connected nilcatenation.

However, we conjecture that it is a hard problem in general to assemble nil-
catenations that are not disjoint into a larger one; or at the very least, that this
is as expensive as computing them from scratch. Furthermore, the ghostbust-
ing constraints reduce the possibilities of collusion by preventing adversarially-
controlled nodes from participating in the nilcatenation graph.

5.3 Determining the Reward

Using the NCP as a proof of work, we reward users that computed a valid
nilcatenation. The exact reward should be finely tuned to provide the correct
incentives. Note that this depends on whether or not the cryptocurrency applies
transaction fees.

Transaction Fees. If such fees apply, then creating a ghost is a costly operation
from an adversarial point of view. The system should set the reward for a nil-
catenation with m edges, denoted reward(m), to be lower than or equal to the
cost of creating a ghost of size m, which we may assume is m · c where c is the
transaction fee. We may settle for reward(m) = m · c. Similar techniques may
apply where a larger spectrum of transaction fees are available.

Note that using a sub-linear reward function is counter-productive, as it
encourages producing many small nilcatenations, rather than a large unique
one. Conversely, using a super-linear reward function, while encouraging larger
nilcatenations, also makes ghosts profitable above a certain size.
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No Transaction Fees. If there are no transaction fees, then the aforementioned
method does not apply (since c = 0). For cryptocurrencies that do not use
transaction fees, ghostbusting (Sect. 5.1) limits the creation of ghost cycles. In
such cases, the reward function may be an arbitrary affine function in the size
of the nilcatenation.

6 Conclusion and Open Questions

We initiate the problem of nilcatenation, a soon-to-be pressing question for trans-
actional graphs and distributed ledgers of appreciable size. This problem, dubbed
NCP, is formalised and shown to be NP-complete. We introduce an algorithm,
based on a combination of graph and lattice reduction techniques, that finds
nilcatenations on a given transactional graph in most practical settings (and
approximations thereof in other cases). Since nilcatenations are hard to find,
easy to check, and useful, we suggest using them as community-serving proofs
of work. We discuss the precautions and incentives of doing so, and discuss how
nilcatenation blocks may complement the incentives of cryptocurrencies.

To the best of our knowledge this is the first community-serving proof of
work w.r.t. ledger compression to be described and analysed in the literature.

Future Research Directions. As regards future research directions, this work
opens many interesting questions in both the theoretical and practical fields:

– What are the graph-theoretic properties of transaction ledgers? Only very
few studies address this question [16]. In particular, what would be a realistic
“random labeled multigraph” model? Can anything be said about its strongly
connected components?

– What is the typical size of an SCC after having run the pruning algorithm?
– How frequent are higher-order obstructions, and what is the most efficient

way to detect them?
– Given measurable properties of a transaction ledger (density, degree distri-

bution, etc.), what is the probability that our algorithm returns the optimal
result? In other terms, how can the results of Sect. 3.4 be extended to more
general settings?

– Are there profitable cheating strategies that work in spite of the proposed
countermeasures?
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able comments. Roşie was supported by EU Horizon 2020 research and innovation pro-
gramme under grant agreement No H2020-MSCA-ITN-2014-643161 ECRYPT-NET.

A Graphs and Multigraphs

We will make use of the following standard definitions: A graph G = (V,E) is
the data of a finite set V and E ⊆ V × V , called respectively the vertices and
edges of G. A sequence of edges (s1, t1), . . . , (sn, tn) such that ti = si+1 for all
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1 ≤ i < n is called a directed path from s1 to tn. The degree of a vertex v ∈ V
is the number of edges connected to v. The in-degree (resp. out-degree) of v is
the number of edges ending at (resp. starting at) v. In this work we consider
an extension of graphs where edges can be repeated and are labeled: A labeled
multigraph is denoted by G = (V,E, φ) where now E is a multiset of couples from
V × V (not just a set), and φ : E → Z gives the label associated to each edge9.
We will use the following notation: If e = (a, b) ∈ E, and r = φ(e), we represent
the edge e by writing a

r−→ b. The definition of strongly connected components is
given below and it naturally extends to multigraphs. In particular, any strongly
connected component is connected; the converse does not hold.

Definition 7. If G = (V,E) is a graph, then a strongly connected component
(or SCC) of G is a maximal subgraph of G such that for each two distinct nodes
x and y, there exists a directed path from x to y, and a directed path from y to x.

B Ghostbusting

A natural idea to fight ghost cycles could be to restrict which part of the trans-
action graph can be nilcatenated. It could be restricted in “time”, or in “space”,
but straightforward approaches are not satisfactory:

– For instance, if Bt denotes the blockchain at a given time t, we may only
consider a threshold time T , and only accept nilcatenations for Bs, where
t − s > T . However this does not prevent an adversary from creating ghost
cycles over a longer period of time.

– Alternatively, observe that since the transaction that “closes the cycle” origi-
nates from the cheater, we may require that the nilcatenation doesn’t contain
this node. This countermeasure is easily bypassed by creating a new account
whose sole purpose is to claim the rewards from the associated proof of work.

What the above remarks highlight is the need that nilcatenations are computed
on a graph that is not under the adversary’s control.

Fig. 6. The ghostbusting procedure creates a
subgraph SG by hashing the defining block
bt. Miners are required to find nilcatenations
in SG.

Using the procedure described in
Fig. 6, we can sample a subgraph SG
uniformly in the transaction graph.
This procedure relies on the idea
that a block on the chain depends
on its ancestors, because it carries
digests from all the preceding blocks
(as per the blockchain mechanism).
The principle of ghostbusting is that
only nilcatenations among the nodes
of SG should be accepted.

9 We may equivalently replace Z by Q. Since we know that, in practice, transactions
have a finite precision, we may always think of them as integers.
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Note that the sampling procedure must be deterministic, so that verifiers can
ensure that the nilcatenation indeed belongs to the authorised subgraph, and so
that miners all address the same task.

Here we use a pseudorandom function H for which computing preimages is
difficult, i.e. given y it should be hard to find x such that H(x) = y. Most stan-
dard cryptographic hash functions are believed to satisfy this property—however
we should refrain from specifically using SHA-256 itself, because Bitcoin’s proof
of work results in blocks whose SHA-256 hash has a large known prefix.

A simple workaround is to use for H a function different from standard SHA-
256, e.g. H(x) = SHA-256(0‖x).

The subgraph SG is obtained via SubGraphGen by selecting nodes (i.e.
accounts, which may be under adversarial control), and all edges between these
nodes. To be accepted, a nilcatenation should only contain nodes from this sub-
graph.

Proposition 2. Assuming that the adversary has control over k out of n nodes,
and that the sampled subgraph contains � nodes, with k < n/2, the probability
that at least m ≤ � of these nodes are under adversarial control is

1
2k − n

· km

n�

(
k�+1−m − (n − k)�+1−m

)
.

In the limit that k � n, this probability is approximately (k/n)m, which does not
depend on the choice of �.

Proof. We assume that H is a random oracle [4]. Thus SG is sampled perfectly
uniformly in G. Thus, a given node will have probability k/n to be controlled
by an adversary. There are � nodes in SG, hence the probability of choosing at
least m adversarial nodes is 0 if m > � and Pr[C≥m] = Pr[Cm] + Pr[Cm+1] +
· · · + Pr[C�] otherwise, where Cp is the event where exactly p chosen nodes are
under adversarial control. Since the nodes are picked uniformly at random,

Pr[Cp] =
(

k

n

)p (

1 − k

n

)�−p

.

Therefore,

Pr[C≥m] = Pr[Cm] + · · · + Pr[C�] =
�∑

p=m

(
k

n

)p (

1 − k

n

)�−p

=
1

2k − n

(

k

(
km

nm

(

1 − k

n

)�−m

+
k�

n�

)

− km

nm−1

(

1 − k

n

)�−m
)

=
1

2k − n
· km

n�

(
k�+1−m − (n − k)�+1−m

)

Assuming k � n, we can use a series expansion in k/n of the above to get:

Pr[C≥m] =
(

k

n

)m (

1 +
k

n
(m − � + 1) + O((k/n)2)

)

,

and in particular the result follows. ��
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Hence, the probability that an adversary succeeds in creating a large ghost
cycle when the ghostbusting procedure is used gets exponentially small.

As regards how the “seed block” bt should be chosen, we only require that
all miners and verifiers agree on a deterministic procedure to decide whether bt

is acceptable. For simplicity, we suggest to instantiate bt as the last block in the
blockchain.
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Abstract. Searchable Symmetric Encryption (SSE) which enables keyword
searches on encrypted data, has drawn a lot of research attention in recent years.
However, many SSE schemes do not support privacy-preserving relevance
ranking which is a necessary feature for users to quickly locate the needed
documents in a large number of retrieved documents. In this paper, we proposed
two Privacy-Preserving Relevance Ranking (PPRR) schemes based on RSA
encryption and ElGamal encryption. The proposed PPRR schemes preserve rank
privacy and reduce storage cost at server side. Furthermore, we integrate PPRR
with current multi-keyword SSE algorithm to achieve multi-keyword ranked
search on encrypted data. Computation complexity, storage complexity and
security of composite schemes are verified with an experiment on real-world
dataset.

Keywords: Searchable symmetric encryption
Privacy-preserving relevance ranking � Cloud storage

1 Introduction

With wide deployment of cloud storage services, more and more users outsource their
data to cloud server. However, a major concern of cloud storage service is privacy of
personal data. On one hand, cloud storage service provider (CSSP) may be malicious
and trade personal data for profit. On the other hand, CSSP may be compromised by
attackers. Worse still, successive data breach events deepen users’ concern about data
privacy. To protect confidentiality of data, users usually encrypt their data before
outsourcing them to cloud server. However, classical cryptographic algorithms disable
information retrieval technique. For example, users cannot perform keyword search
query on encrypted data to quickly retrieve the documents they want.

In recent years, many Searchable Symmetric Encryption (SSE) schemes [1–6] have
been proposed to solve the problem of keyword search on encrypted data. These
schemes used symmetric encryption primitives to protect the keywords and files.
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Many SSE schemes support retrieving documents containing query keywords from the
cloud server. However, returned documents of these schemes are not ranked by their
relevance with search query, which poses a big challenge for users to find their doc-
uments from large set of search result. This problem motivates researcher’s interest in
designing SSE schemes supporting relevance ranking.

Wang et al. [7] proposed ranked search symmetric encryption (RSSE) based on
Order-Preserving Encryption. However, due to the limitation of OPE, their scheme
cannot be extended to multi-keyword search setting. In [14], A fully homomorphic
encryption (FHE) method is used to achieve privacy-preserving relevance ranking at
server side. However, their scheme was inefficient due to high computation complexity
of FHE algorithm.

Cao et al. [8] proposed the first scheme supporting privacy-preserving Multi-
Keyword Ranked Search on Encrypted data (MRSE). Based on the innovative work in
[8], many practical schemes [9–12] have been proposed to solve the problems such as
accuracy, index updates and search efficiency. These creative achievements promote
the application of SSE schemes in real-word cloud storage service. However, the
storage cost of encrypted indexes of MRSE-based schemes is proportional to the
product of dictionary size and file collection size. The size of encrypted indexes will
increase quickly with size of the dictionary and file collection.

Besides, many above-mentioned schemes supporting ranked search do not protect
rank privacy, i.e. rank order of search result is disclosed to server. A malicious server
can correlate same queries based on rank order of search results, then crack the query
based on some background knowledge of dataset, such as statistical distribution of
document frequency.

In this paper, we propose two Privacy-Preserving Relevance Ranking (PPRR)
schemes which has lower storage overhead and protects the rank privacy of search
results. The proposed PPRR schemes utilize Term Frequency(TF)-Inverse Document
Frequency(IDF) method to capture the relevance between query and documents. The
relevance scores are computed in an encrypted manner on the server side. Result
ranking is done at client side to protect rank privacy. In order to keep the value of TF
and IDF secret, RSA encryption and ElGamal encryption are used. Based on multi-
plicative homomorphism of both algorithms, relevance scores are computed securely
and accurately at the server side. Randomness is introduced into PPRR-2 scheme to
confuse distribution of TF and IDF values. Furthermore, we integrate PPRR schemes
with current multi-keyword SSE scheme to support multi-keyword ranked search on
encrypted data.

The main contribution of this paper is summarized as follows:

(1) Two privacy-preserving relevance ranking algorithms are proposed. Both of
PPRR schemes can protect the rank privacy and resist statistical attack in a strong
threat model.

(2) We integrate PPRR schemes with a state-of-art multi-keyword SSE scheme. The
composite scheme has sublinear search efficiency, low storage overhead and
supports dynamic index updates.
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2 Related Work

2.1 Searchable Symmetric Encryption

Song et al. [1] proposed the problem of keyword search on encrypted data for the first
time. They designed a SSE scheme based on string matching to solve the problem.
However, their scheme needs a sequential scan of all encrypted data to find matched
documents. Curtmola et al. [2] proposed a formal definition and security notion of
searchable symmetric encryption. They also constructed two SSE schemes based on an
inverted-index structure. In order to keep keyword privacy and document privacy,
symmetric encryption is used to encrypt the indexes. Following their work, some SSE
schemes [3, 4] have been proposed to handle index updates. Kamara et al. [3] used a
XOR-based private key encryption to modify encrypted pointer when dealing with
linked list node addition. File deletion is handled by using a deletion array which marks
deleted files. Stefanov et al. [4] designed a dynamic searchable encryption scheme with
a novel hierarchical index structure. Their scheme achieves logarithmic search effi-
ciency. However, these SSE schemes mentioned above only support single-keyword
search.

Cash et al. [5] proposed the first SSE schemes supporting multi-keyword search and
sublinear search efficiency. The main idea of multi-keyword search of the proposed
OXT protocol is that the server firstly retrieves documents containing one keyword in
query and then decides whether the other keywords of query occurs in these documents
or not. To protect data privacy, they devised an oblivious shared computation protocol
between client and server based on blinded exponentiation. Furthermore, in [6] they
proposed several efficient single-keyword SSE constructions which can be used as
components in OXT protocol. Their scheme used a dictionary structure which supports
dynamic updates. They also identified the locality issue of search performance of SSE
schemes and gave their solutions to fix this issue.

2.2 Searchable Encryption with Relevance Ranking

Wang et al. [7] designed an order-preserving encryption method which ranks search
results based on order-preserving-encrypted TF values in single-keyword ranked search
setting. Cao et al. [8] first proposed a privacy-preserving Multi-Keyword Ranked
Search on Encrypted data (MRSE). Their scheme is based on vector space model, and
utilizes the “coordinate matching” to capture the relevance between documents and
queries. Secure kNN algorithm is used to encrypt the indexes. However, their scheme
needs to sequentially scan all the encrypted document vectors to find search results.
Based on MRSE architecture, many enhanced schemes [9–12, 15] have been proposed
in recent years. A multi-dimensional tree is used by Sun et al. [9] to improve the search
efficiency. Chen et al. [15] designed a hierarchical cluster index to speed up searches on
the cloud server. Xia et al. [10] construct a tree-based index structure and propose a
“Greedy Depth-first Search” algorithm to provide efficient multi-keyword ranked
search. Li et al. [11] proposed an enhanced MRSE scheme supporting logic search
query, they also employed classified sub-dictionaries technique to enhance search
efficiency.

130 P. Shen et al.



In order to achieve accurate relevance evaluation at the server side, Shen et al. [14]
used fully homomorphic encryption (FHE) to encrypt TF and IDF values of keywords.
They also integrate their FHE scheme with OXT protocol to achieve the multi-keyword
ranked search semantics. In 2017, Song et al. [12] proposed a privacy-preserved
full-text retrieval algorithm over encrypted data. They used hierarchical bloom filters as
their encrypted index and proposed the concept of membership entropies of index
words to calculate relevance between query and documents on cloud server. Jiang et al.
[13] modified Cash’s OXT protocol to support top-k search. They precomputed the
multiplication of TF and IDF values in index-building phase, then incorporated the
result into the index to support relevance score computation on the server side. In order
to protect privacy of TF*IDF values and rank order, they utilize the additive homo-
morphic property of paillier cryptosystem. However, their scheme doesn’t support
TF/IDF updates well.

3 Problem Specification and Prerequisite

3.1 Notations and Symbols

We list some notations which will be used in the following sections:
F – File collection
Fj – the j-th file in file collection or the file with an identifier j
jFjj – the number of unique keywords in Fj

w – keyword
F wð Þ – identifiers of files containing keyword w
n – number of documents in file collection
D – dictionary composed of all keywords extracted from file collection
m – number of keywords in dictionary
Q – query
TQ – the trapdoor of query Q
k – security parameter
K – secret key
TFw;j – the term frequency of keyword w in j-th file
DFw – the document frequency of keyword w
IDFw – the inverse document frequency of keyword w
I – encrypted index
RQ – the search result of query Q
NQ – number of files in the search result of query Q
PRF – pseudo-random function
ajb – concatenation of string a and string

3.2 System Model and Searchable Encryption Definition

We design our SSE scheme in system model which is depicted in Fig. 1. Two entities
are involved in this scenario: cloud server and data owner. Data owner generates index
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and encrypt files and index before outsourcing them to the cloud server. To perform a
keyword search, the data owner generates the corresponding trapdoor and send it to the
cloud server. Once receiving this trapdoor, the cloud server searches index for matched
document and calculates relevance score of returning documents. At last, the sorted
search results are returned to the data owner. We define searchable encryption as
follows:

(1) Keygen is a key generation algorithm run by data owner. It takes a security
parameter k, and returns a secret key K.

(2) Build_Index is an algorithm run by data owner to generate the encrypted index. It
takes a secret key K and file collections F, returns the encrypted index I.

(3) Trapdoor is run by data owner to generate a trapdoor for a given query. It takes a
secret key K and a query Q, returns trapdoor TQ.

(4) Search is a run by the cloud server in order to find documents containing query
keywords. The documents are ranked by their relevance to the query keywords. It
takes encrypted index I and trapdoor TQ, returns the result set of documents.

3.3 Threat Model

In this paper, we suppose cloud server is “semi-trusted” which means the cloud server
can dutifully execute the computation and storage operations in daily work. However,
it’s curious about the file content and index information, so it may try to deduce some
information from the encrypted data. In this paper, we adopt the same threat model as
[8]. In this model, the server not only knows the content of encrypted index and
trapdoors, but also knows some background knowledge about the file collection, such
as TF/DF statistical distribution.

Semi-trusted cloud server

Semi-trusted cloud server Query

Result

Encrypted docs and indexes

Fig. 1. System model
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3.4 Assessment Criteria

We will evaluate our scheme in three aspects: computation complexity, storage com-
plexity and security.

Computation Complexity: practical multi-keyword SE scheme should achieve log-
arithmic (sublinear) search efficiency which is essential in real-world scenario.

Storage Complexity: As far as we know, SSE schemes in [5, 6] have the optimal
storage overhead O

P
w2D DFw

� �
which is linear to total number of document-keyword

pair.

Security: Security of SSE schemes mainly refers to index privacy and query privacy.
Index privacy denotes the privacy of information such as keywords in the document,
number of documents, document length and so on. Query privacy refers to privacy of
keywords in the search query. If SSE scheme supports TF-IDF based relevance
ranking, privacy of TF and IDF should be protected in the construction of SE scheme.
Besides, rank privacy should also be considered in threat model.

3.5 TF-IDF Relevance Evaluation Method

In information retrieval community, Term Frequency-Inverse Document Frequency
(TF-IDF) method is widely used to calculate the relevance score between a document
Fj and a query Q:

Score Q;Fj
� � ¼

X

w2Q TFw;Fj � IDFw ð1Þ

idf ¼ log
n
dfw

ð2Þ

In detail, TF is abbreviation of Term Frequency which is the number of occurrences
of keyword w in document Fj. DF demotes Document Frequency which is the number
of documents containing keyword w. IDF is the inverse value of DF.

3.6 Rivest-Shamir-Adlema (RSA) Encryption

RSA encryption is an asymmetric encryption algorithm proposed by Rivest, Shamir
and Adlema in 1977. It’s widely used in today’s information systems and network
infrastructure. It can be used for encryption, digital signature method, key distribution
and so on. RSA algorithm works as follows:

Enc: c ¼ mKpub mod nð Þ;Dec:m ¼ cKpri mod nð Þ ð3Þ

n ¼ p � q; Kpub � Kpri ¼ 1 mod u nð Þð Þ ð4Þ
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In Eq. 4, p and q are big primes. u nð Þ denotes Euler function. RSA algorithm is
homomorphic in multiplication:

c1 � c2 ¼ mKpub

1 � mKpub

2 ¼ m1 � m2ð ÞKpub mod nð Þ ð5Þ

3.7 ElGamal Encryption

ElGamal algorithm is an asymmetric encryption. It works as follows:

KeyGen: h ¼ gd mod pð Þ ð6Þ

Enc: c1 ¼ gr mod pð Þ; c2 ¼ mhr ¼ mod pð Þ ð7Þ

Dec:m ¼ c2 cd1
� ��1

mod pð Þ ð8Þ

In above equations, p is a big prime. g denotes a generator of a multiplicative group
Z�
p ¼ 1; . . .; p� 1f g. 0\d\p� 1 is secret key, h is public key. m 2 Zp is plaintext,
c1; c2ð Þ is ciphertext. The ElGamal algorithm is homomorphic in modular
multiplication:

Eðm1Þ ¼ gr1 ;m1h
r1ð Þ mod pð Þ; Eðm2Þ ¼ gr2 ;m2h

r2ð Þ mod pð Þ ð9Þ

Eðm1Þ � E m2ð Þ ¼ gr1 þ r2 ;m1m2h
r1 þ r2ð Þ ¼ gr3 ;m1m2h

r3ð Þ ¼ Eðm1 � m2Þ mod pð Þ ð10Þ

4 Privacy-Preserving Relevance Ranking Scheme

4.1 General Idea

In this section, we present the design rationale of privacy-preserving relevance ranking
(PPRR) algorithm. Following previous SE schemes supporting relevance ranking, we
adopt TF-IDF method to evaluate relevance between query and documents. Our design
goal is to construct a privacy-preserving TF-IDF evaluation method in client-server
model. As we know, fully homomorphic encryption meets this requirement. However,
FHE algorithm is impractical in real-world scenario due to its high computation
complexity. Inspired by the fact that a major part of computation complexity is caused
by multiplication in TF-IDF algorithm, we calculate the multiplication of TF and IDF
values in an encrypted manner at the server-side, leaving the decryption and addition of
intermediate results at the client. We choose RSA encryption and ElGamal encryption
because of their multiplicative homomorphism.

In our first scheme, TF values are encrypted by RSA while in our second scheme, it
is encrypted by the ElGamal. In both schemes, the encrypted TF values are outsourced
to cloud server along with the encrypted index. When user submits a search query, IDF
values of query keywords are encrypted in the same way as TF values and inserted into
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trapdoor. After receiving the trapdoor, the cloud server multiplies encrypted TF with
encrypted IDF to get encrypted relevance score for each query keyword. These
intermediate results are returned to client. The client decrypts these intermediate scores
and sum them up to get the final relevance score. By this way, the result ranking is done
by client and rank privacy is protected. In Fig. 2, we demonstrate the architecture and
working steps of PPRR scheme.

In PPRR schemes, encrypted TF and IDF are leaked to server. If these values are
encrypted deterministically, the distribution of encrypted values remains same as plain
values. As a result, a malicious server can deduce plain values based on data collec-
tion’s statistical knowledge [7, 16]. In order to resist possible statistical attack, the
encryption method needs to be a probabilistic one. Because ElGamal encryption is a
probabilistic encryption method, PPRR-1 avoids this problem. However, RSA
encryption is deterministic. In order to solve this problem, we introduce randomness
into PPRR-2 algorithm to protect the privacy of TF/IDF values. In detail, TFw;j is
multiplied by a random integer R j0½ � before encrypted where j0 ¼ j mod Tð Þ and T is a
modular parameter. Therefore, TF values of same keywords in different files are
multiplied with different random numbers and TF distribution is confused. In consid-
eration of large size of document collection, we introduce a modular parameter T to
restrict the size of random array R. T is a trade-off between storage space and security.
Similarly, IDF values of keyword w is multiplied by R0 w½ � before encrypted where R0 is
an array which stores a random integer for each keyword in query. R0 is reset for each
new search request. As a result, query unlinkability is realized and IDF distribution of
certain keyword is confused.

4.2 PPRR-1 Description

Detailed description of PPRR-1 scheme is shown in ALGORITHM 1. PPRR-1 uses
ElGamal algorithm to encrypt TF values.

Intermediate result

Trapdoor

Encrypted Index

( w , TF )

DF table

Fj

1         1

( w , TF )2         2

( w , TF )k         k

.

.

.

( tag  , Enc(TF  ) )1                    1

( tag  , Enc(TF  ) )2                    2

( tag  , Enc(TF  ) )k                    k

.

.

.

( w , IDF )i             i ( tag  , Enc(IDF  ) )i                       i

Query

( w , w )i          j 

i            i

i

Enc(IDF  * TF  )

j            jEnc(IDF  * TF  )

i            iIDF  * TF  

j            jIDF  * TF  
ScoreQ, Fj

Parsing file

Encrypted Index

( tag  , Enc(TF  ) )1                    1

( tag  , Enc(TF  ) )2                    2

( tag  , Enc(TF  ) )i                    i

.

.

.

.

.

.

( tag  , Enc(TF  ) )j                    j

( w , IDF )j             j ( tag  , Enc(IDF  ) )j                       j

Encryption

Encryption

DecryptionAddition

Build Index

Retrieve DF Compute IDF

Modular 
Multiplication

Retrieve  tag

Index uploading

Enc(IDF) 

Enc(TF) 

Client        Server

Fig. 2. Illustration of PPRR scheme.
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4.3 PPRR-2 Description

The detailed description of PPRR-2 scheme is shown in ALGORITHM 2 which is
based on RSA encryption.
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4.4 Index Updates

A practical PPRR scheme should be able to handle index updates in case of document
updates. When the file content updates, TF and IDF values needs updates too. TF
values are updated in an encrypted manner while IDF values are directly updated at
client side. We explain how encrypted TF values are added, deleted or modified:

TF Addition: If a keyword w was added to the document for the first time, we need to
generate a pair tag; yð Þ which stores encrypted TF values of keyword w. then the pair is
outsourced to cloud server and inserted into index ITF .

TF Deletion: If all of keyword w was deleted in the document. We need to calculate
the tag and send it to cloud server. The server deletes the pair matching tag or uses
deletion array ITF�D to mark which TF values have been deleted.

TF Modification: TF modification can be viewed as a combination of TF node
deletion and TF node addition.

Because DF values change frequently in case of file updates, we maintain an array
which stores DF values for each keyword at the client side. By this way, the trapdoor is
generated based on the latest DF values in case of frequent document updates.

4.5 Security Analysis

In PPRR scheme, the cloud server is assumed to be “honest but curious”, which means
it will execute protocol honestly and try to learn significant information without
breaking the protocol. Note that in our security analysis when we say query we mean
the encrypted IDF part. Similarly, the ciphertext means the encrypted TF part.

Lemma 1: In PPRR-2, if scalar factors are selected uniformly random for each search
query, the query unlinkability is achieved.

Proof Sketch: In the trapdoor generation, each IDF is multiplied by a random number
r which is uniformly distributed over range [0, n] where n is modulus of RSA algo-
rithm. So same IDF is encrypted to same ciphertext with possibility of 1

n which is
negligible. Therefore, lemma 1 is proved.

Lemma 2: If the Elgamal encryption is sematic secure, the adversary has negligible
advantage in distinguishing any two ciphertext or queries.

Proof Sketch: Assume there is an adversary that is able to distinguish two ciphertext
or queries. Based on the sematic security definition, we can know the encryption
algorithm is not sematic secure. However, in our scheme, both TF and IDF are
encrypted by Elgamal encryption which is known for semantic secure. Therefore, any
two ciphertext or queries are undistinguishable, which is contradict with the assump-
tion. Therefore, lemma 2 is correct.
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5 Multi-keyword SSE Scheme Supporting Relevance
Ranking

5.1 General Idea

In this section, in order to achieve a practical multi-keyword searchable encryption
method supporting relevance ranking, we integrate PPRR algorithms with OXT pro-
tocol [5] which is an efficient multi-keyword SSE scheme. The integration is conducted
in a keyword search-first, relevance ranking-second manner. A straightforward way of
integration is executing OXT protocol firstly and the server returns file identifiers of
documents which contains query keywords set. Then the client decrypts the interme-
diate result and uses it to generate trapdoor of PPRR protocol. The server executes the
PPRR search and returns the set of encrypted scores. Finally, the client decrypts these
scores and add them up to get the final scores. However, this method needs two round
of communication between client and server.

In order to realize the multi-keyword ranked search in one communication round,
we move the computation task of tftag from client to server. By this way, the server can
retrieve encrypted TF values from ITF with tftag which is computed by himself. In
detail, PPRR scheme is changed as follows:

1. Build_Index phase, the client uses PRF function to encrypt the query keyword w.
File identifier is encrypted by symmetric encryption in OXT protocol. Then the PRF
is applied to both encrypted values to generate the search tag of encrypted TF.

2. In trapdoor phase, client computes PRF-encrypted keywords and put it into
trapdoor.

3. In search phase, cloud server computes tftag based on PRF-encrypted keyword in
trapdoor and Encrypted file identifier in execution result of OXT search.

5.2 OXT-PPRR Scheme Description

In this section, we demonstrate our OXT-PPRR scheme. Because the PPRR-1 and
PPRR-2 are integrated in a similar way, we only demonstrate OXT-PPRR-1 scheme in
Algorithm 3.
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5.3 Computation Complexity

In this section, we analyze the computation complexity of OXT-PPRR scheme. We
take OXT-PPRR-1 as example.

Build_Index:
The complexity of Build_Index is O

P
w2D DFw

� �
. For each keyword-file pair, four

PRF encryption, two modular multiplication, one ElGamal encryption, one modular
exponentiation and one symmetric encryption are needed to encrypt the file identifier
and TF value.

Trapdoor:
The query complexity composes of trapdoor complexity, search complexity and
post-processing complexity. Trapdoor complexity is O Qj j � DFwð ÞþO Qj jð Þ where Qj j
is number of keywords in query Q and DFw is number of document containing key-
word w. Major part of trapdoor complexity is caused by computing OXT trapdoor. It’s
proportional to DFw. For each query keyword and file in F wð Þ, two PRF encryption
and one modular exponentiation are needed.
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Search:
Search phase composes of OXT search and PPRR relevance computation. Complexity
of OXT search is O Qj j � DFwð Þ. For each query keyword and file in F wð Þ, one modular
exponentiation and one Bloom Filter retrieval are executed. Complexity of PPRR
relevance computation is O Qj j � NQð Þ where NQ is number of files in the search result
of query Q. For each query keyword w and file Fj in search result, one PRF encryption,
one modular multiplication and one array retrieval are needed to compute the relevance
between keyword w and file Fj.

Post-precessing:
Complexity of post-processing phase is O Qj j � NQð Þ. For each query keyword w and
file Fj in search result, one symmetric decryption and one ElGamal decryption are
needed to get final relevance scores. The time complexity of addition and scores
ranking is negligible.

5.4 Storage Complexity

Encrypted index at server-side is comprised of three parts: I ¼ IS; IX ; ITFð Þ. IS and IS is
inherited from OXT protocol while ITF is generated by PPRR-1. Encrypted index ITF
contains encrypted TFw;j for each file Fj containing keyword w. So storage space of
encrypted index is O

P
w2D DFw

� �
. Because storage complexity of IS and IX is also

O
P

w2D DFw
� �

. Then the overall storage complexity of server in OXT-PPRR-1 scheme
is O

P
w2D DFw

� �
.

In OXT-PPRR-1, The client stores DF table. So the storage complexity of client is
O(m) where m is number of keywords in dictionary D. In OXT-PPRR-2, the client
keeps DF table, an array storing T random factors and an array storing Qj j random
factors. So the storage cost of client is Oðmþ T þ Qj jÞ.

5.5 Security Analysis

In the integrated scheme, OXT protocol and PPRR protocol are loose-coupled with
each other. The majority of composite scheme remains the same as OXT protocol and
PPRR protocol except for moving the calculation of search tag of encrypted TF values
to the server side. In order to keep privacy of query keyword, we use PRF-encrypted
keyword as trapdoor. The cloud server cannot deduce the keyword information from
encrypted keyword. As a result, the security of our composite scheme is based on the
security of OXT scheme and PPRR scheme.

6 Experiment

Our experiment is implemented in JAVA on a machine equipped with Intel I7-4790
CPU and 16G memory. We choose 5000 documents from 20 newsgroups [17] as our
dataset. The dictionary contains 6000 keywords. We compared OXT-PPRR schemes to
EDMRS scheme [10] which is a MRSE-based scheme supporting multi-keyword
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ranked search. In OXT-PPRR-1, we implement ElGamal encryption using Elliptic
Curve with 224 bit-length key. In OXT-PPRR-2, we use 1024 bit-length key for RSA.

Storage Space Comparison:
Because DFw\n, O

P
w2D DFw

� �
\O mnð Þ, the index of OXT-PPRR schemes con-

sume less storage space than EDMRS does. This is verified by our experimental result
shown in Fig. 3. We can see that our scheme needs less storage space than EDMRS
when dictionary size is 1000 and 2000. Because the index size of EDMRS is pro-
portional to dictionary size, we can infer that OXT-PPRR scheme achieves better
storage efficiency than EDMRS when dictionary size is larger than 1000.

Trapdoor Comparison:
Time consumption of OXT-PPRR’s trapdoor generation is mainly decided by DFw,
which varies based on query keywords and is uncertain. So we won’t make
comparison.

Index Build Time Comparison:
Time consumption of three schemes are compared in Fig. 4. Index build time of
OXT-PPRR schemes is linear to the size of document collection. Due to high com-
putation overhead of matrix multiplication, EDMRS scheme consumes more time than
OXT-PPRR schemes.

Search Time Comparison:
From Table 1, we can see that computation complexity of OXT-PPRR search is linear
to least document frequency of all query keywords. Computation complexity of
OXT-PPRR post-processing is linear to size of search results. Figure 5 shows search
time of three schemes with different collection size. It’s worth noting that search time of
OXT-PPRR scheme includes duration time of search phase and post-processing phase,
while search time of EDMRS scheme only includes duration time of search phase.

Table 1. Comparison between OXT-PPRR and EDMRS. TEC E denotes encryption time of
elliptic curve. TEC D denotes decryption time of elliptic curve.TRSA E is encryption time of RSA
algorithm. TRSA D is decryption time of RSA algorithm.
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Because DFw and NQ increase much slower than collection size n, the search time of
OXT-PPRR is sublinear to collection size. The tendency of curves in Fig. 5 confirms
our judgement. However, due to the fact that RSA decryption and ElGamal decryption
is a little time-consuming, OXT-PPRR schemes need more search time than EDMRS
does. Besides, Fig. 6 verifies that search time of three schemes are all linear to the size
of search results.
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7 Conclusion

In this paper, we propose two privacy-preserving relevance ranking (PPRR) algo-
rithms. Both schemes utilize multiplicative homomorphic encryption algorithms to
protect TF/IDF and rank relevance scores at client-side in order to protect rank privacy.
Besides, randomness is introduced into PPRR-2 to resist possible statistic attack in a
strong threat model where attacker may be equipped with TF/IDF distribution
knowledge. Furthermore, we incorporate PPRR schemes into Cash’s OXT protocol to
achieve practical multi-keyword ranked search on encrypted data. Finally, we analyze
computation complexity, storage complexity and security of our scheme and experi-
ment result confirms efficiency of our composite scheme.
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Abstract. The distribution of passwords has been the focus of many
researchers when we come to security and privacy issues. In this paper,
the spatial structure of empirical password sets is revealed through the
visualization of disclosed password sets from the website of hotmail,
12306, phpbb and yahoo. Even though the choices of passwords, in most
of the cases, are made independently and privately, on closer scrutiny,
we surprisingly found that the networks of passwords sets of large scale
individuals have similar topological structure and identical properties,
regardless of demographic factors and site usage characteristics. The
visualized graph of passwords is considered to be a scale-free network
for whose degree distribution the power law is a good candidate fit. Fur-
thermore, on the basis of the network graph of the password set we
proposed, the optimal dictionary problem in dictionary-based password
cracking is demonstrated to be equivalent in computing complexity to
the dominating set problem, which is one of the well-known NP-complete
problems in graph theory. Hence the optimal dictionary problem is also
NP-complete.

Keywords: Computer security · Visualization · Password sets
Power-law distribution · Scale-free network · NP-complete

1 Introduction

Textual password has been a ubiquitous way to access resources and web services
since 1960s and the attempts of password cracking have never stopped ever
since. Especially in recent years, the leakage of massive password sets repeatedly
reminds us of the urgency of password sets security enhancement. While at the
same time, what we can do or what we have done to protect the privacy of users
and to assure the security of the system seems plausible but far-fetched. Why?
As some researchers pointed out, users remain to be the weakest part of the
whole password security system and the answer lies in password itself.

While different password cracking techniques have been adopted in prior
works, dictionary based password cracking remains to be the most common way
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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in numerous attacks nowadays. Conventional dictionary based password crack-
ing techniques, such as the statistical guessing attack, usually start with a pre-
processed dictionary and might involve some modification during the guessing
process. Related research has been made by MSRA [1]. While due to the vari-
ations of original data set and dictionary size, the performance differs from one
to the other. Bonneau made the first comparison in [2]. Nevertheless, dictionary
based cracking techniques were proved effective and feasible in practice.

Dictionary based password cracking technique was first proposed by Morris
and Thompson in their seminal analysis of 3,000 passwords in 1979 [3], and the
two approaches, password cracking and semantic evaluation, were widely used
ever since, even after Markov and PCFG based password crackers were intro-
duced. Even though dictionary based cracking techniques distinguish themselves
with feasible performance in practice and play a role of benchmark in a variety of
password cracking implements, the reason why they work well remains unknown.

Meanwhile, even though a great deal of works have been done on password
creation policy and password strength meters, the gap between our understand-
ing of the security of one single password and the security of a whole password
set was rarely discussed. To prevent a password from being compromised, prior
works have focused on two metrics: improving the strength of one single pass-
word and blocking out passwords whose usage frequency exceed a particular
threshold, which is intuitively reasonable but far from perfect.

For the former approach of assuring security, the first question is the defi-
nition of strong passwords, i.e. how to measure the security of a password and
how to decide whether a password is strong or weak. Bonneau made a survey
of related literature and proposed the concept of guessing entropy, α-guess-work
[2]. Common practice is the requirement of the length and the variety of charac-
ters in a password, such as having at least 8 characters, one lower case character,
one capital letter and one number, etc.

For the latter approach of maintaining a blacklist of popular passwords, it
seems to be a game of cat and mouse. For every password that is blocked, the
user could always make a way out by performing a minor modification on it,
for instance, by adding some characters at the rear, changing one or two digits,
switching the first character into upper case, or simply using some other weak
password that is not included in the list. The minor modifications not only make
the blacklist useless, but also leave a potential threat to the entire system. For
the same blacklist, if everyone makes his or her own minor modification based
on a group of popular passwords, the results could be different but similar to
each other. For example, if we all submit “password” as our password and it was
blocked, the possible choices after minor modification might be “password1”,
“password12”, “password123”, “p@ssword”, “Password”, etc. As we will dis-
cuss in this study, the leakage of one single vulnerable password could lead the
compromise of password one after another, thus creating a chain reaction and
endanger numerous accounts.

Our first contribution is the visualization of several empirical password sets
including the leakage of 12306 (the official website of China Railway Customer
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Service Center), hotmail, phpbb and yahoo1. We build networks based on the
interconnection of the passwords. To our knowledge, this is the first visualization
of large scale password sets in the form of networks. Through the graph of the
data, we reveal what the topological structure of a whole password set is like in
the complete password space.

The second contribution is the exploration of the spatial structure of the
data sets we have. The discussion will shed some light on the distribution of
passwords, which has been the concern for many years. Malone and Maher [4]
investigated frequency distributions of passwords, they pointed that rather than
a theoretically desirable uniform distribution, Zipf model usually provides better
predictions than a simple uniform model. Malone et al. claimed that the Zipf’s
Law is a good candidate for modeling the frequency of users-chosen passwords.
While the frequency of passwords only indicates the distribution of identical
passwords, in this paper, our results support the claim that the visualized graph
of passwords is a scale-free network, because the power law distribution is a
good estimation of the degree distribution of a password set’s visualized graph.
Unlike the frequency of passwords, the degree distribution indicates the density
of interconnection within the password set. Furthermore, the intriguing struc-
tural characteristics provide a possible explanation of the diminishing returns in
cracking curves, which is a phenomenon observed in most attacking results over
decades [8].

Our final contribution is the model of statistical guessing attack. Based on
the proposed model, we focus on the optimal dictionary problem, which aims
at cracking a password set with the minimized size dictionary needed. With the
knowledge of password distribution, we manage to map the problem of password
cracking to the dominating set problem on the graph we visualized and give
a theoretical upper bound of the success rate an attacker could ever possibly
achieve. Meanwhile, we also demonstrate that the optimal dictionary problem is
equivalent to one of the classic NP-complete problems, the minimum dominating
set problem, and the complexity for an attacker to find an optimal dictionary is
therefore NP-complete.

2 Visualization of the Empirical Password Sets

2.1 Previous Password Set Analyzing Metrics

Characteristics Description. In most cases, the way of presenting the pass-
word sets is a list of the characteristics information of the passwords. For
instance, many works on password data sets mentioned the top 10 (or higher)
most popular passwords of the data involved. Some of descriptions are linguis-
tic classification, in which passwords are classified into different categories such

1 These data sets were disclosed after a series of serve leakages and were collected
subsequently. Each one of the data sets has been mentioned at least once in previous
literature. For instance, hotmail in [4], 12306 in [5], phpbb in [6], yahoo in [7]. Details
are omitted to conserve space.
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as words, places, names, movie lines, email, phone number, home address, etc.
Others may focus on common attributes of passwords, like password frequency,
length, character composition including but not limited to the occurrence num-
ber of digits, lower or upper case letters, special characters and so on. Relevant
examples could be found in [9–12] and many others. The major breakthrough
comes with the probabilistic password cracking models, including Markov mod-
eling techniques from natural language processing by Narayanan and Shmatikov
[13] in 2005 and, later in 2009, the Probabilistic Context-Free Grammars model
by Weir et al. [14]. The statistical guessing model is a great leap for password
cracking.

Word Cloud of Password Sets. Word cloud is another option when visual-
izing words. According to the homepage introduction of Wordle2, which is an
online word cloud service provider, the word clouds generated from original text
give greater prominence to words that have higher frequency in the source text.
Note that the fonts, layouts and color schemes can be tweaked by the users.

Fig. 1. The word cloud of 12306’s top 100 mostly used passwords. (Color figure online)

In [15], Wordle was set up to reveal features in the password set of Rockyou,
such as the mixed numeric and text dates. Figure 1 is a simple word cloud of the
top 100 mostly used passwords in 12306’s data set3.

This method gives more straightforward and obvious information about the
password set than the characteristics descriptions. Through the contrast in size,
the more important password distinguishes themselves from the ones that weight
less. The variations in color also make the visualized data more friendly than a
simple list of numbers. Furthermore, some patterns and features of the data stand
out easily with the help of word cloud. For example, sequences like “123456”,
“qwer” (which is a sequence of keys on a standard keyboard), “123” and “woaini”
appear frequently in the given data set.

2 http://www.wordle.net/.
3 The 12306’s data set is one of the data sets used in this paper. Refer to the subsequent

sections for more details about the data sets.

http://www.wordle.net/
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2.2 The Definition of Distance Between Passwords

Since we are trying to figure out the relations between passwords, the first thing is
to define the relationship of two passwords. In the literature, there seems to be no
general definition of the similarity or dissimilarity between two passwords. Before
we make decisions in real life, we usually estimate the pros and cons. Likewise,
when we try to compare passwords, we measure the similarity or dissimilarity.
Hence, what is the difference of two passwords? How to measure the degree of the
dissimilarity? Passwords, as we know, are strings of letters, numbers and special
characters. The natural choice is, therefore, the way we measure the similarity
or dissimilarity of two strings. In this study, we choose edit distance for the
measurement of dissimilarity between passwords.

Edit distance is a way to quantify the dissimilarity of two strings (e.g., words)
by counting the minimum number of operations required to transform one string
into the other. We use one of the most common and well-known variants called
Levenshtein distance, which was named after Levenshtein [16]. Levenshtein dis-
tance could also simply be referred to as “edit distance”, even though several
variants exist [17].

The widespread usage of edit distance is a plus, not to mention the cor-
responding efficient algorithms for utilization. The computing of the edit dis-
tance between passwords is based on an improved version of dynamic program-
ming algorithm, which is commonly credited to Wagner and Fischer [18] and
has approximately linear time complexity. The computing efficiency is a non-
negligible factor to take into account when processing the data, especially when
the quantity of the data accumulates to 6 or higher in order of magnitude.

Moreover, edit distance was chosen for the measurement of dissimilarity
between passwords because its definition is in accordance with the standard
practice of mangling in dictionary based password guessing. The significance of
mangling rules has been highlighted and verified by the famous password crack-
ing tool John the Ripper and many experts [2,6,8,11,12,14,19] in the field. The
aim of our work is to broaden the knowledge of organization and spatial struc-
ture of password sets. As shown in the following sections, the visualization of
password networks is based on edit distance between passwords. Thus the net-
works are in some sense the reflection of connections between passwords when
they are under attack.

2.3 The Method of Visualization

The procedure to build the graph of a given data set is as follows:

i Each unique password is represented by a single node, also known as a vertex,
in the graph;

ii Add an edge between two nodes if the distance D(i,j ) between two corre-
sponding passwords is less than a threshold;

iii Repeat step (ii) until every pair of two passwords in the data set has been
compared;

iv Reorganize the graph and output the layout of the graph.
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The threshold of distance between passwords is on the basis of practical
metric and the computing capacity available when dictionary based cracking
happens. We choose the threshold of 1, 2, 3 in this paper on account of the fact
that the computing complexity becomes unacceptable when the edit distance is
larger than 3. Note that the computing complexity we are addressing here is not
the complexity of computing the edit distance between two passwords, but the
computing complexity when an attacker attempt to crack as many accounts as
possible within distance less than the threshold. Though the number of nodes
is fixed for a given data set, which is equal to the number of unique passwords,
the larger threshold means more edges and a graph with higher density.

Meanwhile, for sake of space complexity, we compute the distance between
every two passwords and store them in form of adjacent table, instead of adjacent
matrix.

2.4 A Simple Example of Our Visualization

To make the procedures of our visualization clear and easy to follow, again,
we take the top 100 mostly used passwords of the 12306’s data as an example.
Table 1 is the source data of the passwords. The password number in the table is
usually referred to as the frequency of a password, i.e., the number of the same
password occurs in the data set. For instance, there are 392 users of website
12306 use “123456” as their passwords and 165 users choose “123456a”.

The adjacent table is taken as input for Gephi (an open-source network
analysis and visualization software [20]) and the output is the graph of the
network within the distance of 1, 2 and 3 separately. The visualization of 12306’s
top 100 mostly used passwords is shown in Fig. 2a, b, and c. Figure 2a is the
graph of the top 100 mostly used passwords within edit distance 1 in 12306
while Fig. 2b and c are the graphs within distance 2 and 3 separately.

Although a graph within edit distance 3 or 2 is obviously much better con-
nected than a graph within edit distance 1, we stop at distance 3 because of
computing complexity. The computing complexity grows exponentially when the

(a) edit distance 1. (b) edit distance 2. (c) edit distance 3.

Fig. 2. The graph of 12306’s top 100 mostly used passwords within edit distance 1, 2
and 3. (Color figure online)
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Table 1. 12306’s top 100 mostly used passwords and the corresponding frequency

Password Password number Password Password number

123456 392 a123456 281

123456a 165 5201314 161

111111 157 woaini1314 136

qq123456 98 123123 98

000000 97 1qaz2wsx 93

1q2w3e4r 83 qwe123 80

7758521 76 123qwe 68

a123123 63 woaini520 56

123456aa 55 100200 52

1314520 52 woaini 51

woaini123 50 123321 50

q123456 49 123456789 49

123456789a 48 5211314 48

asd123 48 a123456789 48

z123456 47 asd123456 47

a5201314 45 zhang123 42

aa123456 41 123123a 40

aptx4869 38 1q2w3e4r5t 37

1qazxsw2 37 5201314a 36

1q2w3e 35 aini1314 35

woaini521 34 31415926 34

q1w2e3r4 34 123456qq 34

1234qwer 33 520520 33

a111111 33 110110 29

123456abc 29 111111a 29

7758258 28 w123456 28

abc123 28 159753 26

iloveyou 26 qwer1234 25

a000000 25 123654 24

123qweasd 24 zxc123 24

qq123123 23 123456q 23

abc123456 23 qq5201314 22

12345678 22 000000a 21

456852 21 1314521 20

666666 19 asdasd 19

as123456 19 112233 19

521521 19 zxc123456 19

q1w2e3 18 abcd1234 18

aaa123 18 11111111 17

aaaaaa 17 qazwsx123 17

qaz123 17 123000 17

12qwaszx 17 a123321 17

caonima123 16 asdasd123 16

1123581321 16 110120 16

584520 16 zxcvbnm123 16

753951 16 159357 16

nihao123 16 5845201314 16

wang123 16 love1314 16

s123456 16 147258 16

hao123 15 123456asd 15
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distance expands. Actually, it is nearly impossible to reach a full estimation of
distance 4, according to our result. It is worth mentioning that we also use the
variance of size and color of vertex to deliver a better view. In Gephi, the size of
vertex is set to be directly proportional to the frequency of a password. In other
words, the size of vertex grows when the frequency of a password increases.

From the example of the top 100 mostly used passwords of the 12306, we
expose the evolution of the password network within the distance 1, 2, and 3
and visualize the spatial structure of an empirical password set.

As observed in the graph, some nodes in the network are adjacent to a large
number of nodes while some other nodes have only a few edges. In particular, a
portion of nodes in the graph are isolated. In other words, they are not connected
to anyone.

(a) 12306 (b) hotmail

(c) phpbb (d) yahoo

Fig. 3. The visualized graph of 12306, hotmail, phpbb, yahoo’s data sets within edit
distance 1.
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To further analyze the structure of the graph, we take the community and
clustering method to separate the network apart and give a more clear vision
of the structure of the data set. The network can be partitioned into different
communities, depending on their interconnection. The implementation of com-
munity detection in Gephi is based on [21]. Different communities are represented
in distinct colors, ranging from dark red to light green. Internal nodes in each
community (or group) are linked more closely, which means they have more edges
among them, while nodes between the communities contact sparsely. To put it
another way, there are less edges between communities. Again, we take the top
100 mostly used passwords of 12306 as the example in Fig. 2c. To our surprise,
like the social network of human beings, passwords have their own community
and social network. As shown in Fig. 2c, the nodes in different “community” are
displayed in different colors.

Figure 3a, b, c, d are the graphs of 12306, hotmail, phpbb and yahoo’s pass-
word sets within edit distance 1 separately. As shown in the graphs above, the
distribution of passwords tends to form communities and clusters. To put it
another way, some passwords are closer to other passwords and the whole data
set is split into different parts. Table 2 gives the number of nodes and edges in
the graph.

Fig. 4. The visualized graph of 12306’s password set within edit distance 3.



156 X. Guo et al.

To make our observation convincing and solid, we further visualize other
data sets avail. Figure 4 is the graph of the full 12306’s data set within edit
distance 3 after clustering. It is obvious that the drifting isolated nodes is a
single community when being analyzed.

Due to a limited number of pages allowed, we only present part of the graphs.
Full coverage of graphs on the four data sets ranging from distance 1 to 3 will be
available on arXiv4 with the same paper name and the author’s github reposi-
tory5.

3 Statistical Analysis on the Visualized Password
Networks

The study of networks originates in the ancient graph theory and has become a
crucial area in both theoretical research and empirical applications. The electric
power grid, the WWW [22] and the pattern of air traffic between airports are
early examples of networks in real life. We make friends with others and our
friends have friends of their own, so the social network is generated. The boom
of social networks in the last decades has made a big step forward in the under-
standing of social science, as well as the networks of movie actors and scientific
collaboration.

Networks are everywhere. As far as we are concerned, the networks that have
been studied so far are, to a certain extent, public. The initial motivation of the
network is to share or transit information, goods and sorts of data, from one
to the other. As the key to access resources or accounts, password, however, is
meant to be private in the first place. Unlike the components like people, airports,
routers on the Internet that consist of various networks, passwords are chosen
independently and are supposed to be personal and private. Unfortunately, it
turns out that the passwords generate networks that we have never imagine and
that pose inevitable threats for numerous accounts and organizations.

3.1 Statistical Characteristics of the Data

Although not every one of the graphs is displayed in Sect. 2, we conduct a
thorough investigation into every result of our visualization. Table 2 is a brief
overview of the number of nodes and edges in the graphs of password data sets
with the corresponding edit distance ranging from 1 to 3.

As shown in Table 2, the quantity of nodes and edges in the graphs varied
from one to the other. For the graph within different distance threshssold, the
deviation of the number of edges could be up to 1 or 2 orders of magnitude.

4 https://arxiv.org/.
5 https://github.com/googlr/.

https://arxiv.org/
https://github.com/googlr/
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Table 2. The number of nodes and edges in the graphs of password sets within edit
distance 1, 2 and 3.

Password set Number
of nodes

Number of edges
within distance 1

Number of edges
within distance 2

Number of edges
within distance 3

Hotmail 8, 930 742 6, 107 45, 896

12306 117, 808 51, 299 676, 011 5, 311, 460

Phpbb 184, 341 81, 220 1, 206, 322 13, 849, 678

Yahoo 342, 510 144, 209 1, 477, 190 13, 691, 942

3.2 Hypothesis of the Degree Distribution in the Networks

The distribution with which passwords are chosen has been an intriguing topic
for the researchers in the field. The reason is simple: with a sound knowledge
of the distribution of human-chosen passwords, we could utilize the statistical
techniques to get a better performance in password cracking, like the PCFG
or Markov models. In fact, numerous previous works have made such attempts
in revealing features and patterns in password creation and distribution. Mal-
one and Maher [4] claimed that Zipf’s law is a good candidate to describle the
frequency distribution of password choices, which was later endorsed by Wang
in [12]. Now that we have obtained the structure of password data sets, the
structural characteristics were further explored in the remaining sections.

Given that the structure of the data sets takes the form of a network and our
focus is the interconnection of nodes, the degree of nodes, which is the number
of nodes adjacent to the node, incorporates more substantial information. The
degree distributions of the visualized graphs of the data sets are shown in Fig. 5.
On a typical log-log axes, Fig. 5a, b, c and d are from data set of hotmail, 12306,
phpbb and yahoo respectively. The plots of degree distribution are generated
by R [23], which is a free software environment and comprehensive language for
statistical computing and graphics, and ggplot2 [24] package.

To make a solid statistical analysis of the data and reduce the deviation
brought in by randomness and skewness of sampling, if not mentioned particu-
larly, we choose the networks of data sets within edit distance 3 as the source
input of the analysis. Large data sets are normally preferred in statistics, because
natural noise of sampling and insufficiency of sample size are considered the
major shortage of smaller data sets which lead to inaccurate analysis.

In any statistical analysis, it is non-trivial to fit a certain distribution to given
data and to measure the goodness of the fit as well. Multiple aspects of the data,
including the domain-specific characteristics, should be taken into consideration
in particular circumstances, otherwise the fitting could be inaccurate.

Conventionally, the standard statistical method for fitting a common distri-
bution consists of three basic steps: visualizing, fitting, and evaluating [25]. The
result of visualizing step is in Fig. 5. In subsequent parts of this section, the
fitting step is in Sect. 3.3 and the evaluating step is in Sect. 3.4.
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Fig. 5. The degree distributions of the visualized graphs of the data sets within edit
distance 3.

3.3 Fitting to Power Law and Estimating of the Scaling
Parameter α

Generally speaking, the first problem, when describing empirical data, is to make
a hypothesis of the distribution to which the data may follow. This problem is of
such vital significance that it directly determines the accuracy of the fitting and,
on the other hand, is sometimes quite tricky. As Alstott et al. pointed out in [25],
it is possible that, for the given data set, there is more than one distribution fits
well, in which case we for some reason choose one as the hypothesis instead of
the other. To make things worse, the distribution that fits the data best might
occasionally fall into the alternatives and thus slip out of our scope without being
noticed, especially when the one we choose could pass the hypothesis test as well.
In consequence, with so many candidate distributions to choose from, it usually
requires observations from initial tests and experience to make a decision.

From the plots in Fig. 5, each source of the data could be approximated
linearly and has a heavy tail, meaning the tail of the data contains a great
deal of probability. On the basis of observations and initial tests, we made the
assumption that the degree distribution follows the power law. In this section,
we will estimate the parameters of the fitting distribution.

The power law distribution, which is sometimes referred as Pareto distribu-
tion, is a probability distribution known for its frequent appearance in natural
and man-made phenomenon, as well as its complicated properties. The form of
power laws is

p(x) ∝ x−α (1)

Mathematically, α, known as the exponent or scaling parameter, is a constant
parameter of the distribution in Eq. 1.
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The fitting is performed with the open-source software package powerlaw
developed and maintained by Alstott et al. [25], which is a Python implementa-
tion of the principled statistical framework proposed by Clauset et al. in [26].

Before fitting, we’d like to go over a few crucial points about the fitting
techniques. According to Clauset et al. [26], the approach combines maximum-
likelihood fitting methods with goodness-of-fit tests based on the Kolmogorov-
Smirnov statistic and likelihood ratios. In practice, power law distribution, in
most of the cases, only covers a portion of the data in the tail. In other words,
the power law behaviour holds merely on a range of given data and the starting
point of the range is referred as xmin. When fitting a power-law distributional
model to data, the approach6 estimates alpha for each possible xmin and select
the value that gives the minimum value of Kolmogorov-Smirnov statistic D as
the ultimate estimate [25].

The results of estimation are shown in Table 3. In the second and third column
of Table 3, est. alpha is the fitted parameter α and sigma is its standard error.
Note that this procedure gives estimate of fitted parameters, and the validity of
the fit will be covered in the next section.

It is often the case that a line is add to show how close the fit is to the data.
While, as Clauset et al. [26] pointed out, the conclusion of such observations is
more or less objective and should not be trusted, especially when large scale of
fluctuation lies in the tail of empirical data.

3.4 Testing the Power-Law Hypothesis

The goodness of fit of hypothesis distribution must be evaluated before coming
to the conclusion that the hypothesis distribution is a good description of the
data. As a consequence of fluctuations in sampling, the data collected from a
non-power-law process might happen to fit the power law distribution, on the
other hand, the data drawn directly from a power law distribution could fail the
power law hypothesis test. In the view of Clauset et al. [26], it is recommended
that one should prefer large statistical samples to reduce the odds of test failure,
as which dwindle with increasing sample size.

When it comes to the techniques of goodness-of-fit tests, there are two
options: (1) consider the goodness of fit for each distribution individually, in
which case a p-value for the hypothesis is generated by using bootstrapping and
the Kolmogorov-Smirnov test, and then check the significance level; (2) compare
the candidate hypothesis with alternative distributions by using loglikelihood
ratios and identify which one is better. Alstott et al. [25] suggest the latter one,
the comparative tests.

Table 4 shows the goodness-of-fit between power law and other widespread
heavy-tailed distributions. The list of alternative distributions are the exponen-
tial distribution, the lognormal distribution, the lognormal-positive distribution,
the stretched exponential (Weibull) distribution and the truncated power law
(power law with cut-off) distribution. LR is the loglikelihood ratio between the

6 http://tuvalu.santafe.edu/∼aaronc/powerlaws/.

http://tuvalu.santafe.edu/~aaronc/powerlaws/
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two candidate distributions. This number will be positive if the data is more
likely in the first distribution, and negative if the data is more likely in the
second distribution. The significance value for the preferred distribution is p.

As usual, the significant level of p is 0.05. From Table 4, the results denoted
in bold fail (p < 0.05) the test and are, therefore, ruled out. From the statistic
in the second column, the exponential distribution is not considered to be a
proper model. In the third column, there is a fierce competition between the
power law distribution and the lognormal distribution. The value of LR is so
close to 0 that it is hard to make a trade-off on the sign of LR, which indicates
that two distributions are quite close. Or put it in another way, power law is a
model that is at least as good as the lognormal model. In the fourth column,
the power law model is relatively a better fit than the lognormal-positive model,
except a close match for phpbb, in which case power law model is no worse than
the lognormal-positive model. In the fifth column of the table, the situation is
similar to that of the fourth column and the power law model wins.

Table 3. The estimation result of fitting degree distribution to power law.

Password set est.alpha sigma xmin D

Hotmail-3 1.8532 0.0909 8.0 0.0536

12306-3 1.7573 0.0240 6.0 0.0311

Phpbb-3 2.1541 0.1542 439.0 0.0492

Yahoo-3 2.2636 0.2694 2307.0 0.0343

When it comes to the last column, the truncated power law, also known as
power law with a cut-off model stands out except a close match for yahoo. At
this point, it seems that we have made the wrong choice of hypothesis. As Alstott
et al. noted in [25], those two-parameter distributions, like the truncated power
law and the alternative heavy-tailed distributions, have a natural advantage
over the power law, which actually has only one degree of freedom for fitting.
However, as long as the model describe the data in a sound and solid way, we say
it is a good fit. Actually, we could always find a model with enough parameters
to describe the data and eventually trap ourselves into overfitting. Moreover,
according to the definition, the truncated power law has the power law’s scaling
behavior over some range but is truncated by an exponentially bounded tail.
It does not make sense to claim that the power law model is a worse fit than
the truncated power law model when the latter is a nested distribution of the
former. By the way, note that when the indicated conclusions contradict each
other, we tend to trust the result on larger sample size.

In conclusion, the power law model is a good fit for the degree distribution of
the source data. Meanwhile, the scale-free property is that the degree distribution
of complex networks is in accordance with the power-law distribution, and a
small number of nodes in the network have a large number of edges. So the
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topological distribution of the password sets could be described as a scale-free
network, which is naturally true by definition. Results of other data sets agree
with the conclusion we made here.

Until now, the conclusion matches with our common sense that popular pass-
words are widely used and a great number of users tend to use at least similar
passwords. From previous works, we have realized that individuals tend to choose
same passwords. In this literature, the networks of passwords reveal the fact that
users tend to choose similar passwords in a much higher chance. If considered
carefully, it does make sense. Though we are individuals and we choose our
passwords independently, if we tend to choose same passwords, the odds that we
choose passwords that slightly differ from each other is much higher than that
we choose the same passwords. Therefore, the security of one single account and
the security of the whole system are no longer isolated and, moreover, are con-
nected for the first time. That is generic mechanism from where the network of
our passwords begins.

Table 4. Comparison between power law and alternative distributions.

Data set Exponential Lognormal Lognormal-
positive

Stretched
exponential

Truncated
power law

Hotmail LR=97.4145 LR=−0.0020 LR=2.5885 LR=0.8370 LR=−0.0859

p=0.0045 p=0.6368 p=0.2035 p=0.4253 p=0.6785

12306 LR=1315.1101 LR=0.0089 LR=30.5096 LR=7.8778 LR=−1.7073

p = 5.9110e−11 p=0.7689 p = 1.3775e−05 p=0.0199 p= =0.0646

Phpbb LR=21.9523 LR= -0.0836 LR= -0.0459 LR=−0.0213 LR=−0.1468

p=0.0730 p=0.8064 p=0.9382 p=0.9755 p=0.5880

Yahoo LR=10.0664 LR=0.0004 LR=0.1109 LR=0.1378 LR=−0.0089

p=0.07295 p=0.8953 p=0.7108 p=0.6878 p=0.8939

4 The Statistical Guessing Model

4.1 A simple model of password guessing

With the knowledge of the entire targeted password set, it is possible to trace the
process of a dictionary based password guessing on the graph and to estimate
the maximum success ratio.

To estimate the number of potential maximum successful guesses, the concept
of neighborhood is introduced. In graph theory, the neighborhood of a vertex
v, denoted as N(v), is the set of adjacent vertices of G consisting of all vertices
adjacent to v in graph G(V,E). Note that the concept of neighborhood we discuss
in this paper is the closed neighborhood, in which v itself is included. There is
another version of neighborhood is called open neighborhood when v itself is not
included [27].
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The concept of neighborhood of one vertex can be naturally extended to a
set of vertices Vs, which is the union of all the neighborhoods of the vertices in
set Vs, meaning that each of the vertices in the original graph is adjacent to at
least one member of Vs. Denoted as N(Vs) and we have

N(Vs) = ∪|Vs|
i=1N(vi) (2)

in which |Vs| is the number of vertices and vi is the i -th vertex in Vs.
Given a dictionary of n passwords Dict = {p1, p2, . . . , pn−1, pn}. The pass-

words are arranged in decreasing order of frequency, i.e.

f(p1) > f(p2) > · · · > f(pn−1) > f(pn),

where f(pi) is the frequency of the password pi in the targeted password set T.
As shown previously, we could build the graph of any specified password data

sets. In the corresponding data set, if the attacker guesses one password right, the
vertex for which the compromised password stands is covered by the attacker’s
dictionary. For each vertex that is directly adjacent to the compromised vertex,
the attacker could cover them all within affordable time. More details about
this one to one mapping mechanism will be stated afterwards in the optimal
dictionary problem.

Then for an attacker with dictionary Dict, the maximum set of vertices could
be covered in the graph of target T is the union of passwords that Dict covered
and their neighbors in the graph of T, which is

N(Dict) = ∪n
i=1N(pi). (3)

Thus the total number of corresponding maximum successful guesses is∑
p∈N(Dict) f(p). The upper bound of the success ratio using dictionary Dict

is the accumulation of the frequency of the node and its neighbors. Of course
the attacker can start multiple rounds by searching the closure of the compro-
mised data, but the overall time cost could be intolerable.

4.2 The Optimal Dictionary Problem

In conventional password cracking, the size of dictionary has a significant impact
on the success rate of the cracking. The primary reason that attackers prefer large
dictionary is straightforward: a larger dictionary means the higher probability
of covering more passwords in the targeted set. Meanwhile, due to the efficiency
of time and space, all results show diminishing returns as the dictionary size
swells [8]. The diminishing guessing curves have been observed in almost every
previous attempt to crack as more accounts as possible.

Klein [28] made the first attempt to identify the higher efficient subdictionary.
J Bonneau define a success rate α when introducing α-guesswork to evaluate the
number of guesses of an attacker [2]. And Mónica and Ribeiro [29] discussed the
compression ratio in the implementation of Self-Organizing Maps (SOM) model
which preserves the topological position of passwords.
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Since we have built a graph of the password set, the search for better subdic-
tionary becomes easier. Our goal is to find a subset of strings to cover as more
passwords as possible. Considering we are dealing with this problem on a graph,
if we paraphrase the problem a little bit, the goal is to find a subset of nodes
that all the other nodes in the graph of the target are adjacent to at least one
member of this subset. That is exactly the definition of dominating set in graph
theory. Given a graph G = (V, E ), a dominating set for a graph G is a subset
D of V that every vertex in V is either in D or adjacent to at least one member
of D. The number of vertices in a smallest dominating set for G, γ(G), is known
as the domination number. Refer to [30] for more details of the definition.

To be mathematically precise and concise, we proposed the reductions below
to show the equivalence of the optimal dictionary problem of password guessing
and the minimum dominating set problem.

For any password set S = {p1, p2, . . . , pn}, we can construct the graph
G = (V,E) within certain distance threshold through the steps in Sect. 2, which
mainly involves in generating the edges and takes polynomial time.

Note that there is a one-to-one mapping between the passwords in S and the
nodes in G. Let D̂ be an instance of the optimal dictionary of S, meaning that
D̂ is a minimum subset that is able to recover S. In graph G, the set of nodes
which represents the elements of D̂ is denoted by D. Now consider the situation
in G, we have V ⊆ N(D), in which case D is a dominating set of G.

The next step is to validate that D is a minimum dominating set of G. Assume
that D is not a minimum dominating set of G, which indicates that either D
is not a dominating set of G or D is a dominating set but not the smallest.
In the former situation, at least one node, say pk, neither belongs to D nor is
adjacent to any member of D. Backing to the source data set, the password that
pk represent is neither in D̂ nor recoverable by D̂, which is contradiction to the
our proposition that D̂ is a dictionary of S. While in the latter situation that
D is not the smallest dominating set, suggesting that at least one node pt could
be removed from D and D∗ = {D − pt} serves as a smaller dominating set of G.
Then if we remove the password that pt represent from D̂, D̂∗ = {D̂−pt}, which
is smaller than D̂ and could also recover S, leads to a contradiction that D̂ is
not optimal. To summarize, D is a minimum dominating set. Likewise, we can
generate an optimal dictionary with a given minimum dominating set of G. As
a result, given an instance of the optimal dictionary problem, we can construct
an instance of the minimum dominating set problem and vice versa.

The complexity of transformations are polynomial time. In other words, the
minimum dominating set problem and the optimal dictionary problem are equiv-
alent in terms of computing complexity. The minimum dominating set problem
is a well-known NP-hard problem, which is proved by Garey and Johnson in [31].
Hence the minimum size of the dictionary to cover the targeted password set, i.e.
its lower bound, equals γ(G). Note that this conclusion also applies to other vari-
ants of dictionary based cracking techniques, provided that the corresponding
method to build the graph is properly redefined.
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5 Conclusion

In this paper, we provide a novel presentation of empirical password sets in the
form of networks from scratch. The spatial structure of the password sets is
discussed for the first time and is considered to be a scale-free network.

The high density of interconnections between passwords provides a candidate
explanation of the diminishing returns observed in previous literature. While
many users choose the same password in reality, It went unnoticed that more
users tend to choose similar passwords. To make things worse, the difference
between those passwords is usually negligible against the computing capacity
nowadays and even the strong password could not resist when the chain reaction
of leakage started.

Furthermore, at the basis of the network graph of password set we proposed,
we give the upper bound of the maximum password attacking success rate based
on a certain dictionary. Under the assumption of an attacker who has high
performance computing resource, we demonstrate the equivalence of the optimal
dictionary problem and the dominating set problem in computing complexity.
Therefore the optimal dictionary problem is also NP-complete.
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Abstract. Smartphones store a plenitude of sensitive data. This data
together with high values of smartphones make them an attractive target
for physical theft. Clearly, the device owner would like to regain the
device in such a case. Also, the information should be protected from
illegitimate access.

In this paper, we present the first anti-theft solution that effectively
handles these issues. Our proposal is based on a novel concept of an anti-
theft honeypot account that protects the owner’s data while preventing a
thief from resetting the device. Thus, a stolen device can be regained by
the device owner with high probability, while information leakage to the
thief is prevented. We implemented the proposed scheme and evaluated
it through an empirical user study with 35 participants. In this study, the
owner’s data could be protected, recovered, and anti-theft functionality
could be performed unnoticed from the thief in all cases.

Keywords: Anti-theft · Data protection · Information hiding
Privacy

1 Introduction

Smartphones play a vital role in everyone’s life. Their contribution is significant
in every day to day activity. Nowadays, smartphones are used for various activi-
ties such as capturing pictures, browsing the internet, and using online banking.
However, these great advantages come at a price. If the device gets in the wrong
hands, the device owner does not only lose the device but also a great amount
of personal data. A thief getting hold of personal data and trying to exploit it
may result in fraud or blackmailing. It is of utmost importance to provide some
mechanism to protect the theft of smartphone devices and the personal data on
them. These device protection mechanisms are called anti-theft mechanisms.

At present, the smartphone market ranges from around 50 USD to 1000 USD.
Loss or theft of a phone does not only result in financial deprivation but also of
the personal data which is stored on the device. According to a study [17], the
number of stolen smartphones rose to 3.1 million in 2013. Another study [14]
reveals that victims are willing to pay 500 to 1000 USD to regain their personal
data including photos and videos.
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The Android market share is continuously increasing [13] and it dominates
the smartphone market with a share of 86.8%, by the end of Q3 2016. Taking this
into the consideration, we targeted the Android platform for the implementation
of our approach. At present, there are two possible anti-theft mechanisms:

1. Anti-theft applications: Most of the anti-theft applications provide the func-
tionality to lock the phone, erase it or triggering an alarm from remote.
Unfortunately, anti-theft applications do not work if they do not have an
active network connection e.g., if the SIM card was removed from the device.

2. Google Device Protection: Starting from Android version 5.1, Google released
a new feature called “Device Protection” [18]. This anti-theft feature makes it
impossible for a thief to use a stolen phone after it was factory reset. However,
this feature is only available for a small number of devices, which are capable
of running Android version 5.1 or greater. More than 45% of the Android
phones use a lower Android version [11].

In the majority of these cases, device owners permanently lose their smartphone
together with their personal data, which is even worse. As a remedy, we propose
a mechanism where a device owner has the option to configure an anti-theft
honeypot account, which resembles the owner’s regular account except for some
modifications. A person that is not the device owner can never distinguish inter-
acting with the anti-theft account or the real account. The anti-theft account
hides the personal data of the device owner and performs hidden anti-theft func-
tionality while the thief uses the device. One important feature of this framework
is that when the thief performs a factory reset, our approach only gives the illu-
sion that a factory reset is being done, while in reality all of the owner’s data is
preserved. After a fake factory reset the device hides the owner’s account com-
pletely but still executes the anti-theft functionality. The thief will then start
using the smartphone as a new device, unaware of anti-theft functionality exe-
cuting in the background. It is likely that after the fake factory reset a thief
will establish an internet connection by inserting a SIM card or establishing a
WIFI connection. At this point of time the hidden anti-theft functionality can
for example send identifying information of the thief to the device owner or start
listening for remote commands from the device owner. So the device owner likely
will be able to recover the device and the personal data. The key benefit of this
approach is that it improves chances of identifying the thief and regaining the
stolen phone as well as the personal data.

Our Contributions. In this paper we propose ThiefTrap, an anti-theft framework
that uses the Android account feature as a security measure to protect against
device thieves. We are the first to use this feature in that we set up a honey-
pot account simulating the device owner’s account. Technically, we provide the
following contributions:

1. ThiefTrap. We propose ThiefTrap, a novel concept, using a honeypot account
for the purpose of theft protection. This concept is the first anti-theft solution
that at the same time protects the confidentiality of the owner’s user data,
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prevents loss of this data and provides the full functionality of every anti-
theft solution. An important benefit of the proposed approach compared to
existing anti-theft solutions is that a device instrumented with our approach
is indistinguishable from an ordinary device. Our approach ensures that the
device and the personal data on it can be regained with high probability.

2. Implementation. We implemented our concept in the latest version of Android
(7.1 r1 Nougat) of the Android Open Source Project.

3. Evaluation. We evaluated our approach in the form of an empirical user study.
Our study with 35 participants, showed that in all cases our approach pre-
vented loss of owner’s personal data and performed the required anti-
theft functionality . In the very vast majority of cases the potential thief
was completely oblivious to our approach.

2 Background

Android. Android is the world’s most popular mobile operating system. Figure 1
depicts the internal structure of Android OS.

Fig. 1. Android architecture [9]

The Android framework can be best described in the form of different lay-
ers. The lowest layer, a customized Linux Kernel, is used for drivers and hard-
ware support. The subsequent hardware abstraction layer (HAL) provides a
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standard interface for exposing the hardware capabilities to the higher-level
Android frameworks. HAL implementations are built into shared library modules
(.so files).

Android applications are compiled to a specific bytecode format (DEX)
designed specially for Android. The Android runtime (ART) provides a Dalvik
virtual machine, which is similar to the standard Java virtual machine, but
designed and optimized for Android.

The Android framework layer provides many higher-level services in the form
of an API to the Application layer. These APIs act as the building blocks to
create Android applications. Application developers utilize these APIs in their
applications. Most of our changes are implemented in this layer.

The topmost layer, the application layer, provides different applications to
be used by end users, such as alarms, browser, calculator etc. Google provides
a central store, for developers to publish their applications, called the Google
play store. As of December 2016, the Google play store included over 2.5 million
apps.

Anti-theft Mechanisms. Anti-theft mechanisms are supposed to prevent
device theft or mitigate the damage in case a device gets stolen or is lost. One
kind of anti-theft solutions tracks information of the device after it was stolen
and provides the information to the device owner. Several anti-theft solutions
rely on providing location information and remote administration functionality
to the device owner. Some of them also provide the possibility to recover per-
sonal data or remotely wipe the device. At present, there are two options for
Android owners to protect their device against theft. The first option is to use
the Android device theft protection feature (available for devices capable of sup-
porting Android version greater than 5.0). The second option is to use an third
party anti-theft application.

– Android built-in anti-theft mechanisms: Starting from Android version 5.1,
Google released a new feature called “Android Device Protection” [18,26].
This anti-theft feature prevents a thief from using a stolen phone that has been
wiped. However, more than 45% of the Android phones use a lower Android
version [11]. In addition, this feature will not work without a proper setup.
For example, the user needs to log into a Google account on the device. Then,
if a device supports this feature, Android Device Protection is enabled as soon
as the user enables a locking mechanism. Figure 2 explains the activation of
this feature while enabling a device locking mechanism.
After a factory reset, Android Device Protection requires the user to enter
the Google account credentials on which the device was previously configured.
This renders the device unusable to the thief even after a factory reset was
performed. However, an unlocked bootloader still allows to flash a binary on
the device, thus this feature is not available for devices with an unlocked
bootloader.

– Anti-theft Applications: There is a multitude of third-party anti-theft appli-
cations available in the app stores. These applications provide features like
locating the device, remotely administrating the device etc.
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Fig. 2. The Android Device Protection feature [26]

The anti-theft features of these applications heavily rely on a network con-
nection. These applications are mostly not functional if the SIM card was
removed from the device. A thief is likely to remove the SIM card from a
stolen device and to turn it off, such that the device loses its network con-
nections. Later, in order to reconfigure the device as new, a thief is likely
to perform a factory reset, so the anti-theft application is removed from the
device, leaving it unprotected. Additionally, the personal data of the device
owner is lost unrecoverable.

3 Methodology

When a device is stolen there are two possibilities depending on whether the
device is protected by a locking mechanism or not. In case the device is not
protected by a locking mechanism, a thief immediately has unlimited access to
the device owner’s data and may result in abuse of the user data on the device
(e.g. credentials) to inflict further harm to the device owner. If the device is
locked, it is of no use to the thief as long as the locking mechanism is in place.
For this reason it is likely that the thief will factory reset the device, in which
case all user data on the device is ultimately lost. Modern smartphones store a
lot of valuable private data. Additionally, installed anti-theft applications will be
removed from the device so chances are minimal that the device can be retrieved
by the device owner. Both of these scenarios are unsatisfying. Therefore, there
exists a need for a solution that protects the confidentiality of the user data,
while it prevents the device from being factory reset illegitimately. In this work



172 S. Groß et al.

Fig. 3. Workflow of a device instrumented by ThiefTrap

we propose the first approach that can protect the confidentiality of the device
owner’s user data, while preventing a thief from factory resetting the device and
thus removing installed anti-theft applications.

We propose the concept of a honeypot account for theft protection. We
leverage the Android guest account feature to implement the honeypot account.
Android’s multi-account feature was introduced in Android version 4.2. Accord-
ing to statistics provided by Google [12], this feature is supported by 95.8% of
devices. The idea of this concept is that it pretends to be the account of the
device owner, while it actually is an isolated honeypot account and prevents
any access to the user data of the device owner. A thief logging into the device
using the home button or power on button, is logged into the honeypot account,
which pretends to be the device owner’s account. Therefore the honeypot account
tricks a thief into believing that he/she is interacting with an unprotected device
in an ordinary way, while actually interacting with the honeypot account. The
device owner can log into the real account using a hidden mechanism e.g., using
fingerprint lock. This mechanism can be configured by the device owner.

Using the proposed concept of a honeypot account, the privacy of the user
data is protected. At the same time, in our approach a factory reset initiated
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from the honeypot account is simulated s.t. the thief believes that the factory
reset is being performed, while in reality the owner’s data is preserved. After
this simulated factory reset, the thief is presented a new account as expected.
However, this new account is a customized honeypot account, which runs an anti-
theft mechanism in the background hidden from the thief. The great strength
of this concept becomes notable when it is combined with existing anti-theft
solutions. As the device owner knows that a honeypot account is installed on
the phone, he/she will not log into the honeypot account of that device. For this
reason it is likely that a user interacting with the honeypot account for some
time is not authorised to do so. Therefore, in our approach an anti-theft solution
is installed and will be triggered whenever an user interacts with the honeypot
account for some time. This anti-theft solution can then for example collect data
of the thief and send them to the device owner, who can use them for regaining
the device. Figure 3 shows the described workflow.

We would like to stress that there exist numerous ways to implement the
concept of an anti-theft honeypot-account on various platforms. We choose to
implement our approach on the Android operating system. We use the uncus-
tomized version 7.1 r1 from the Android Open Source Project [10]. At the time
of this writing, Android is the most used mobile operating system with over 1.4
billion devices in usage and version 7.1 r1 is the latest version of Android.

3.1 HoneyPot Account, A Simulation of the Owner’s Account

The honeypot account is an Android’s empty guest account with some modifi-
cations. The idea of the honeypot account is to deceive the thief into the belief
that he/she is interacting on the real account. Therefore, it is important to pro-
vide the illusion of user data in the honeypot account. In principle any concept
for simulating user data can be used. In our approach, the applications in the
honeypot account are protected by an application called AppLock1. AppLock is
an ordinary Android application that protects other Android applications by a
locking pattern. So, every access to an app is protected by a locking pattern.
The thief is under the illusion that there is some data on the device, and it is
protected. This step is necessary to convince the thief that the owner’s account is
being used with some defense mechanism installed. Figure 4 shows the AppLock
functionality. This simulates the owner’s account, while it frustrates the thief
and tricks him/her into performing a factory reset.

It should be mentioned that the mechanism of simulating the owner’s user
data is independent of the concept of a honeypot anti-theft account. An alterna-
tive would be to define some plausible but fake data that is presented whenever
applications are opened in the honeypot account.

In the case of a theft, all interactions will inevitably be performed in the
honeypot account. In this case, the device should be modified in a way such that
it executes anti-theft functionality in the background. It is open to the users and

1 https://play.google.com/store/apps/details?id=com.domobile.applock.

https://play.google.com/store/apps/details?id=com.domobile.applock
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(a) AppLock protect-
ing the Gallery appli-
cation

(b) AppLock privacy
setting

(c) AppLock privacy
setting

Fig. 4. AppLock protection

deployers of our techniques to customize the functionality of the anti-theft appli-
cation. Possible functionalities for an anti-theft application here would be the
collection of information of the device and the thief, remote backup functionali-
ties as well as other remote administration functionalities that can be performed
hidden from the thief. In our scenario, we implemented the anti-theft application
as an Android application that silently tracks and logs the device location.

3.2 Instrumentations

When a device is stolen, chances are high that a factory reset is performed. This
is usually done to make the device more usable, and to destroy any evidence of
theft. A device can either be factory reset via the Android menu or by pressing a
special key combination during the boot procedure. In order to save the owner’s
data and keep track of the thief, the factory reset is faked in both cases. This
means that the device shows a realistic simulation of a factory reset and presents
an empty account after the fake factory reset. The thief is in the illusion that
all potential tracking mechanisms are removed and the device can now be use in
an ordinary manner. Use of the device now inevitably stores the thief’s personal
information, which will be forwarded by the installed anti-theft application to
the device owner.

We implemented the simulation of a factory reset for both mechanisms
by instrumenting the Android source code. For preventing the factory reset
from the Android settings menu, we instrumented the RecoverySystem2 and

2 /frameworks/base/core/java/android/os/RecoverySystem.java .
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RecoverySystemService3 classes in such a way that when a user triggers the
factory reset, the device shows the default factory reset animation for a real-
istic amount of time. We instrument the rebootWipeUserData function in
RecoverySystem.java2 file. In this function, a call to the bootCommand func-
tion is made. One of the arguments of the bootCommand function, specifies the
intent of operation e.g., –wipe data is used to wipe the data partition. Techni-
cally, when a factory reset is triggered from the honeypot account, we substitute
the argument –wipe data by –wipe cache. This prevents the removal of the user
data. Wiping the cache only removes the temporary saved files, e.g., temporary
browser files. Thus, it does not affect the device owner in a negative way. Addi-
tionally for preventing data loss in case of a factory reset that was triggered
during the boot process, we instrumented the recovery system4.

During the reset, we programmatically remove the AppLock application. We
instrument the setupOrClearBcb function in the RecoverySystemService.java file
to achieve this. Since the honeypot account does not have any data, an empty
account is presented to the user, that is functionally equal to a factory reset
phone.

When a thief has logged into the honeypot account and potentially “factory
reset” the device (which was simulated by our instrumentation), tracking infor-
mation should be collected and forwarded to the device owner. In our approach,
this is done by an anti-theft application. It is obvious that a thief should not
notice that an anti-theft application is gathering information or even notice that
it is installed. For this reason, in the honeypot account, the used anti-theft appli-
cation is hidden from the list of installed applications in the settings menu as
well as in the Android launcher. In Android there exist places where users can
list the installed applications e.g., the Android Launcher and the settings menu
in the category “Apps”. We have instrumented these5 such that the installed
anti-theft application is hidden from a potential thief, and there are no possi-
ble traces of any installed anti-theft application anymore. For example, in the
ManageApplications.java5 file, we instrument the onRebuildComplete function
such that the anti-theft application is removed from the list of displayed appli-
cations.

4 Evaluation

4.1 Evaluation Criteria

For evaluating our approach we determined a set of evaluation criteria that each
determines the quality of one central aspect of our approach. We identified the
following set of evaluation criteria (EvCrit) that together verify our approach:
3 /frameworks/base/services/core/java/com/android/server/RecoverySystemService.

java.
4 /bootable/recovery/device.cpp, /bootable/recovery/recovery.cpp.
5 /packages/apps/Launcher2/src/com/android/launcher2/AllAppsList.java, /pack-

ages/apps/Settings/src/com/android/settings/applications/ManageApplications.
java.
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EvCrit 1 - Simulating Factory Reset. The first advantage of our approach
is that it prevents a thief from performing a factory reset on the stolen device.
This has two major benefits: First, it prevents the highly valuable personal user
data from being deleted. Second, it prevents an installed anti-theft application
from being uninstalled. During the evaluation we encouraged the participants to
factory reset the device by every way they know. Each time after a participant
finished the study, we checked whether any of the device owner’s data had been
deleted (e.g. by the factory reset).

EvCrit 2 - Successfully Executing the Anti-theft Application. The sec-
ond advantage of our approach over every other approach is that it enables the
device owner to execute an anti-theft application while the device is used by the
thief. For each participant we checked whether an installed anti-theft solution
was successfully executed while the participant interacted with the device and
even after a “fake” factory reset.

EvCrit 3 - Indistinguishability from an Uninstrumented Device. A
central property of our approach is that a thief should never notice that he/she
is interacting with an instrumented device. More precise: our device should be
indistinguishable from a regular stock device. For this reason we checked for both
of our instrumentations whether any of them was detected by the participants.
This implies the following sub-evaluation criteria:

EvCrit 3a - Hiding the Faking of the Factory Reset. As mentioned,
during the study we motivated the participants to perform a factory reset. For
every participant that performed the factory reset, we checked whether he/she
was convinced that the factory reset was actually performed or experienced any
irregularities (hints on the faking of factory reset).

EvCrit 3b - Hiding the Anti-theft Application, Running in the Back-
ground. While a potential thief interacts with the device it is crucial that there
are no traces of running anti-theft applications. For this reason we motivated
the participants to note every protection mechanism installed on the device. We
asked them whether the device can be used by a thief after a factory reset (implic-
itly asking for the presence of an installed anti-theft application) and motivated
every participant to note every observed irregularity. As an evaluation for this
subcriteria we inspect the number of participants that expressed by any means
the presence of an installed anti-theft application.

4.2 Evaluation Procedure

We performed the evaluation in the form of an empirical user study. In this user
study we gave each participant a Nexus 6P device that was instrumented by the
implementation of ThiefTrap. As in production, our approach would be combined
with any authentication mechanism for account switching, we could evaluate our
approach on the main account of the device without loss of validity. Additionally,
an anti-theft tracking application was installed on the device that continuously
tracked the device location. Together with this smartphone, we handed out a
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questionnaire that asked several questions about the user’s opinion of the phone.
The participants were given 60 min time to complete the questionnaire.

In total we evaluated the answers of 35 participants. All of the participants
were either students or university graduates. The majority of the participants
were Master students, while also some PhD students and Bachelor students par-
ticipated. While the participants studied various disciplines, the biggest group
studied computer science or some computer science related studies (12 partici-
pants). One of the requirement to participate in the study was to have precise
knowledge of the Android OS. We verified this via oral inquiry. The survey
participant’s knowledge ranged from average to expert.

4.3 Results

For each participant, we performed the described evaluation procedure and eval-
uated the answers for the mentioned questions. We inspected the device state
as additional evaluation results. In the following we will discuss each of the
mentioned evaluation criteria:

EvCrit 1 - Simulating Factory Reset. We checked for every participant that
performed the factory reset (21 out of 35) that the factory reset did not lead to a
loss of any user data. The participants triggered the factory reset via the settings
menu from within the operating system, as well as during the boot process via
a special key combination. In all inspected cases the deletion of user data had
been prevented.

EvCrit 2 - Successfully Executing the Anti-theft Application. To evalu-
ate whether the installed anti-theft application was successfully executed in the
background, we implemented an anti-theft tracking application that tracked the
location of the device. For every participant we checked whether the anti-theft
application was executed and whether it successfully tracked the device during
the study. The installed anti-theft application was successfully executed in every
case independent of the user interaction. This result proves the robustness of our
approach. It should be stressed that our approach is independent from the used
anti-theft application. Instead of the used tracking anti-theft application every
possible anti-theft application can be silently executed using our approach.

EvCrit 3 - Indistinguishability from an Uninstrumented Device. As
described, we enquired for the both places where participants could potentially
detect the instrumentation, whether we successfully hide the instrumentation
from the users.

EvCrit 3a - Hiding the Faking of the Factory Reset. For evaluating
whether we could convince the participants that a factory reset was actually
performed (while in reality it is just faked) we asked the following question to
the participants: “Do you think, it is possible for this person [a malicious person
e.g. a thief ] to completely reset the phone, in order to wipe all the owner’s data,
e.g. to sell the phone?”
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20 of the participants answered that they were able to perform a regular
factory reset and so the device can be used by a thief. 11 participants answered
that they were not able to factory reset the device as they did not know how to
do it, but persons with more technical knowledge can (or could potentially) reset
the device. 3 participants answered that it would not be possible to factory reset
the device. When orally asked about their answers after the study, all of the
participants answered that they did not know that the possibility of a factory
reset exists.

One participant was not convinced of the factory reset. Due to limitations
of the used AppLock application, this participant managed to access the apps
before the factory reset. Thus he detected the inconsistency after the factory
reset and was not convinced of the factory reset. This problem was not caused
by our factory reset instrumentation but, by an implementation flaw of the
used locking application. We would like to stress that the locking application is
not part of our scientific contribution, but a tool we used in order to deceive a
thief to believe that he/she is interacting with the real user account of the device
owner. This mechanism can be replaced by every other mechanism or application
that fulfills this requirement (e.g. simply filling the honeypot account with fake
information).

EvCrit 3b - Hiding the Anti-theft Application, Running in the Back-
ground. A core feature of our approach is to hide the existence of an installed
anti-theft solution. It is necessary that a thief is not aware that an anti-theft
application is running on the device (even after triggering the factory reset).
For this reason, we directly asked in the questionnaire whether the study par-
ticipants were able to detect any protection mechanism in the device (“Do you
think that there is a protection mechanism installed to protect the user’s data?
Please explain.”) In their responses to this question the 33 out of 35 asked par-
ticipants answered that the only protection mechanism that is used in the device
is the locking application. One participant answered that there is no protection
mechanism used. Due to the mentioned limitations of the AppLock app, it was
possible for one participant to disable the AppLock app, and enter the protected
applications. This participant found these applications empty and implied that
there is a second protection mechanism present. First, it should be stressed that
he did not imply that there is an anti-theft solution running. Second, the mech-
anism that simulates the owner’s account is not part of our contribution and
can be substituted by any other mechanism (e.g. another locking application,
operating system instrumentations or simply filling the honeypot account with
fake data).

Lastly, we provided space in the questionnaire to the participants where they
could provide additional comments. We encouraged the participants to note
every unusual observation. None of the participants noted that they observed an
anti-theft application, tracking application or similar application running in the
background.

To summarize the evaluation results, we found every evaluation criteria very
satisfactory fulfilled. Evaluation criteria 1 and 2 were fulfilled in every case.
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For evaluation criteria 3a just one participant out of 35 did recognized the fake
factory reset. For evaluation criteria 3b only one out of 35 participants implied
that another protection mechanism is in use while he did not detected the anti-
theft application. Both of these cases were caused by an implementation flaw of
the used locking application. As mentioned, this locking application is not part
of our contribution and can be substituted by any other protection mechanism.

5 Discussion

The proposed concept of an anti-theft honeypot account is novel. It provides a
combination of valuable security properties that are not given by any existing
approach. These security properties are the maintenance of user data (preventing
user data from being deleted), the confidentiality of user data (preventing a
thief with physical access to the device from reading out user data) and the
accessibility of the device (enabling any remote access mechanism for the owner
while the device is physically under the control of the thief). While there exist
various anti-theft solutions, none of them can fulfill all of these properties.

An important benefit of the proposed approach compared to existing anti-
theft solutions is that a device instrumented with our approach is indistinguish-
able from an ordinary device. A thief can never tell whether he/she has stolen an
ordinary device or a device instrumented with the anti-theft honeypot account.
Studies [6] have shown that 34 % of Android devices are not protected by a
locking mechanism, so there is no way for a thief to determine whether our
mechanism is used or not. Also a noticeable proportion of devices are protected
by the app locking mechanism that we use to protect user app data initially. So
from the existence of a locking app, a thief can never imply the existence of an
anti-theft honeypot account. Another aspect that plays a role in this matter is
the flexibility of our approach. A locking app is just one mechanism for faking
the honeypot account. An alternative for future work is the creation of fake user
data. This data will then simulate the user data of the owner, while protecting
his privacy. This data can be created either by the deployers of the anti-theft
honeypot account, the users or both of them in cooperation.

Device theft is a serious problem with a rapidly growing number of reported
cases. Studies [14] reported that in 2013 more than 3 million devices have been
stolen. For this reason Google has taken steps to mitigate damage in case of
a device theft. The two most important measures to mention here are the
Android Device Protection mechanism [8] and anti-theft functionalities within
the Android Device Manager [7]. The Android Device Protection mechanism
requires that after a factory reset, a user logs into the device with the creden-
tials of his primary Google Account. As a thief can not know these credentials,
even after a factory reset, the stolen phone is of no use. The Android Device
Manager can be used to track a phone and to remotely wipe. Compared with
the combined usage of these two native Android tools, our approach has two
advantages: First, it prevents the deletion of user data. Nowadays, a plenitude
of valuable user data is stored on modern smartphones. In the vast majority of
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cases, the user data on such phones is hard to recover or even irreplaceable. In
contrast to the mentioned Android tools, our approach can prevent the loss of
this data. The second advantage is that any anti-theft application and function-
ality can be executed while the device is stolen. In contrast, the Android Device
Manager just supports tracking and wiping functionalities.

Physical access to a device enables a number of novel attacks, so called hard-
ware based attacks. In the context of Android smartphones prominent examples
of these attacks are that by Cannon and Bradford [4] and the work of Ossmann
and Osborn [16]. Cannon and Bradford used a so called white card, a special
SIM card that authorizes flashing of a custom ROM on a device. Among others,
from such a ROM it is possible to read out user data. Also Ossmann and Osborn
proposed a hardware based attack with which it is possible to read out user data.
By connecting to the Micro USB connector via UART with TTL logic they could
connect to an integrated debugger, which enabled them to activate the Android
Debugging Bridge functionality and so gain access to the device. Relating to
our work it should be mentioned that in principle such hardware attacks might
also be possible on devices with our instrumentations in place. Still, it should be
stressed that hardware attacks like these require expert knowledge of the used
hardware technologies and an existing vulnerability in the smartphone device.
It is unlikely that both of these factors apply in the average case of a stolen
device and so the impact of hardware based attacks on our proposed approach
is negligible.

Another factor that should be discussed in the context of hardware attacks
is the confidentiality of user data saved on a SD card in the device. While the
AppLocking mechanism protects the confidentiality of user data on the SD card
from access within the smartphone, the SD card can also be extracted from the
device and read within another device. To protect the confidentiality of user data
in this scenario it is necessary to encrypt the content of the SD card. Such an
encryption of the SD card is orthogonal to our approach and can be implemented
as completion to this approach.

We implemented our changes into the AOSP (Android Open Source Project).
Additionally, our changes are portable, generic and thus can be easily integrated
with every vendor specific build.

The usability of a device instrumented with our approach may differ from
the normal device in terms of logging into the real account. For devices with
a fingerprint scanner, the usability is not affected because the login procedure
to the real account is equal to an ordinary login. Devices without a fingerprint
scanner will require users to enter a pattern in the Honeypot account. This
pattern can be configured by users. It is similar to unlocking a device using a
pattern or a PIN. Hence, the usability impact is negligible.

Lastly, we would like to stress the flexibility of this approach. The concept
of an anti-theft honeypot account can be applied orthogonally to any existing
anti-theft mechanism. The honeypot account is responsible for protecting the
user data while simultaneously any anti-theft mechanism is implemented. The
benefit of the proposed concept is that in contrast to other approaches where a
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thief will quickly factory reset the device, in this approach it is likely that he/she
will even establish an internet connection and so enabling the remote access for
the installed anti-theft solution.

6 Related Work

While the idea of a honeypot account for theft protection is novel, there has been
extensive research in other theft protection mechanisms in Android. In case of a
theft it is likely that a potential thief will remove the SIM card from the device
and factory reset it. At the time of this writing, no existing anti-theft mechanism
can protect the user’s privacy, maintain his data and keep good chances that the
device will be found again at the same time.

Dhanu et al. [21] created a software for theft protection. After the theft
protection software was installed and configured, it waited for a replacement
of the SIM card. Once the SIM card was replaced, it started collecting video
material, location information, and sent them via MMS to a phone number
previously configured by the device owner.

Also Shetty [20] proposed an anti theft software that was triggered by a
replacement of the SIM card. Whenever this event occurred, the software sent
a notification SMS to a preconfigured number. From that point of time, it was
possible for the device owner to retrieve the current location of the device via a
SMS request.

Chouhan et al. [5] created a theft protection software in the form of a web
based remote administration tool. Over a web interface the device owner could
request the current location of the device. The software also enabled the device
owner to record voices of the thief, wipe his/her private data and read the web
history from the thief. In addition, the software notified the device owner about
replacements of the SIM card.

The work of Al Rassan and Al Sheikh [1] proposed an anti-theft system
that was supported by SMS. After being activated by a specially crafted SMS,
an application, that was previously installed on the stolen phone could either
broadcast its location or lock personal data that was stored on the phone. This
data included media and log files, as well as SMS and MMS records.

Kuppusamy et al. [15] proposed a system for theft protection that could also
be used as simple remote administration tool. Via SMS messages it was possible
to locate the device, erase critical data, trace calls, manage incoming SMS and
system access.

Yu et al. [27] proposed a system for remotely wiping stolen phones. This
system worked in a way that a device owner could register his/her phone at the
emergency call service provider. He could now from any point of time report the
phone as stolen to the emergency call service provider. Additionally a background
application was installed on the phone. Whenever the SIM card of the phone
was removed, the application sent a wipe request to the emergency call service
provider. If the device was stolen, the emergency call service provider answers
this request with a modified call declined request, after which the phone would be
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wiped by the application. This scheme had the benefit that it neither requires a
WIFI connection, nor an inserted SIM card to trigger the device wiping. However,
the personal data and device was lost.

In all of the mentioned work, the thief has initial access to the user data
until the anti-theft mechanism is triggered either automatically after a certain
event occurs or manually by the device owner. The even more severe limitation
of the mentioned approaches is that none of them prevents resetting the device.
For this reason in each of this work, after the thief has triggered a factory reset,
the anti-theft mechanisms are deleted and there are no chances that the device
owner can regain his/her device.

Apart from academic work, there exist commercial solutions for locating and
securing a lost or stolen device. Examples for these products are Apple’s “Find
My Device” [2], Avast’s “Free Mobile Security” [3] or Symantec’s “Norton Anti-
Theft” [24]. These solutions can lock the device, locate it and provide additional
functionality for mitigating damage in case of loss or theft. Additionally to the
limitations mentioned previously, these solutions suffer from permission restric-
tions that are imposed by the Android Security Model. These restrictions lead to
severe flaws. This insight is supported by the work of Simon and Anderson [22]
that have examined various mobile anti-virus solutions for Android. They discov-
ered failures in the implementation of the remote lock and wipe functionalities
of these applications. Beside the restrictions imposed by the Android Security
Model, they see the reasons for these flaws in certain vendor customizations.

Schneider [19] developed a password manager that uses a similar approach
for another domain. This password manager returns fake password information
when a wrong master password is used.

Srinivasan and Wu [23] proposed a mechanism that primarily prevented the
smartphone from being turned off or being silenced in case of a theft. This
approach was implemented by protecting the called functionality with passwords.
Additionally, their proposed mechanism could wipe the device after a certain
amount of failed password guesses. They rely on a password for preventing the
thief accessing sensitive data. This measure is good for protecting the user’s
privacy but will at the same time trigger the thief to factory reset the device.
After the factory reset, the anti theft mechanism will be deleted and there will
be no chances for the owner to regain his/her device.

Another approach for protecting the privacy of user data in the case of a
device theft was proposed by Tang et al. [25]. In their approach sensitive user
data was encrypted and saved in the cloud. Their goal was to minimize the
amount of sensitive data that was stored on the phone. The access to this cloud
storage could now be restricted by any means, such as access rate limits, complete
blocking as soon as the device was reported stolen and logging access. This
approach focuses on protecting sensitive data of the user. Unfortunately, it could
not help the owner regain his/her device.
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7 Conclusion and Future Work

In this work we have proposed ThiefTrap, a novel concept using a honeypot
account for the purpose of theft protection. Using this concept it is possible to
protect sensitive user data while retaining high chances to regain the device.
Our novel approach is the first that can achieve this combination of desired
properties. We implemented our approach as modifications on the latest version
of the Android operating system, the most used operating system in mobile
devices at the time of this writing. Based on this implementation we successfully
evaluated our approach in an empirical user study including 35 participants.
The results of our study show that for a user it is not possible to distinguish the
honeypot account from a regular unlocked device. Additionally we could retrieve
information of the participants that in a real world application could be used to
regain the device. It should be mentioned that the proposed concept is universal
and can be customized on various scenarios and platforms.

While this approach is an important step in the development of anti-theft
mechanisms, it can be further extended in the future. Potential extensions
include the protection of alternative storages of private user data, such as the
SIM card and the device settings. In our approach, these storages were excluded,
as the SIM card is rarely used today for storing personal information and the
device settings do not contain highly sensitive information. Still, there are some
users that would like also to protect these places. A further point of future work
is the creation of alternative mechanisms that simulate the owner’s account data
from within the honeypot account. These mechanisms can include the automatic
or semi-automatic generation of fake data.
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References

1. Al Rassan, I., Al Sheikh, M.A.: Securing application in mobile computing. Int. J.
Inf. Electron. Eng. 3(5), 544 (2013)

2. Apple: Find my iPhone, iPad, iPod touch, or Mac. www.apple.com/support/
icloud/find-my-device/

3. Avast: Avast free mobile security, June 2017. http://www.avast.com/en-us/free-
mobile-security

4. Cannon, T., Bradford, S.: Into the droid: gaining access to Android user data. In:
DefCon Hacking Conference (DefCon 2012), Las Vegas, Nevada, USA (2012)

5. Chouhan, J.G., Singh, N.K., Modi, P.S., Jani, K.A., Joshi, B.N., et al.: Camera
and voice control based location services and information security on Android. J.
Inf. Secur. 7(03), 195 (2016)

6. CNBC: CNBC study. http://www.cnbc.com/2014/04/26/most-americans-dont-
secure-their-smartphones.html

7. Google: Android device manager, June 2017. https://www.google.com/android/
devicemanager

www.apple.com/support/icloud/find-my-device/
www.apple.com/support/icloud/find-my-device/
http://www.avast.com/en-us/free-mobile-security
http://www.avast.com/en-us/free-mobile-security
http://www.cnbc.com/2014/04/26/most-americans-dont-secure-their-smartphones.html
http://www.cnbc.com/2014/04/26/most-americans-dont-secure-their-smartphones.html
https://www.google.com/android/devicemanager
https://www.google.com/android/devicemanager


184 S. Groß et al.

8. Google: Android device protection, June 2017. https://support.google.com/nexus/
answer/6172890

9. Google: Android internals, February 2017. https://source.android.com/source/
index.html

10. Google: Android open source project, June 2017. https://source.android.com
11. Google: Android OS version usages, January 2017. https://developer.android.com/

about/dashboards/index.html
12. Google: Android version usage, 6 July 2017. https://developer.android.com/

about/dashboards/index.html
13. IDC: Worldwide smartphone OS market share, November 2016. http://www.idc.

com/promo/smartphone-market-share/os;jsessionid=6A0934D1434A49DBFFE74
D63DA2C595B

14. Insider, B.: IDG research, May 2014. http://www.businessinsider.com/
smartphone-theft-statistics-2014-5?IR=T

15. Kuppusamy, K.S., Senthilraja, R., Aghila, G.: A model for remote access and pro-
tection of smartphones using short message service. arXiv preprint arXiv:1203.3431
(2012)

16. Ossmann, M., Osborn, K.: Multiplexed wired attack surfaces. In: BlackHat USA
(2013)

17. Reports, C.: Consumer reports, May 2014. http://www.consumerreports.org/cro/
news/2014/04/smart-phone-thefts-rose-to-3-1-million-last-year/index.htm

18. Ruddock, D.: Anti-theft. http://www.androidpolice.com/2015/03/12/guide-what-
is-android-5-1s-antitheft-device-protection-feature-and-how-do-i-use-it/

19. Schneider, D.M.: iMobileSitter, March 2014. http://www.imobilesitter.com/
20. Shetty, A.: Mobile anti theft system (MATS) (2012)
21. Dhanu, S., Shaikh, A., Barshe, S.: Anti-theft application for Android based devices.

Int. J. Adv. Res. Comput. Commun. Eng. (2016)
22. Simon, L., Anderson, R.: Security analysis of consumer-grade anti-theft solutions

provided by Android mobile anti-virus apps. In: 4th Mobile Security Technologies
Workshop (MoST). Citeseer (2015)

23. Srinivasan, A., Wu, J.: SafeCode – safeguarding security and privacy of user data
on stolen iOS devices. In: Xiang, Y., Lopez, J., Kuo, C.-C.J., Zhou, W. (eds.) CSS
2012. LNCS, vol. 7672, pp. 11–20. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-35362-8 2

24. Symantec: Norton mobile security. https://us.norton.com/anti-theft/
25. Tang, Y., Ames, P., Bhamidipati, S., Bijlani, A., Geambasu, R., Sarda, N.:

CleanOS: limiting mobile data exposure with idle eviction. In: Presented as part of
the 10th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 12), pp. 77–91 (2012)

26. Whitwam, R.: Anti-theft (2015). http://www.greenbot.com/article/2904397/
everything-you-need-to-know-about-device-protection-in-android-51.html

27. Yu, X., Wang, Z., Sun, K., Zhu, W.T., Gao, N., Jing, J.: Remotely wiping sensi-
tive data on stolen smartphones. In: Proceedings of the 9th ACM Symposium on
Information, Computer and Communications Security, pp. 537–542. ACM (2014)

https://support.google.com/nexus/answer/6172890
https://support.google.com/nexus/answer/6172890
https://source.android.com/source/index.html
https://source.android.com/source/index.html
https://source.android.com
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
http://www.idc.com/promo/smartphone-market-share/os;jsessionid=6A0934D1434A49DBFFE74D63DA2C595B
http://www.idc.com/promo/smartphone-market-share/os;jsessionid=6A0934D1434A49DBFFE74D63DA2C595B
http://www.idc.com/promo/smartphone-market-share/os;jsessionid=6A0934D1434A49DBFFE74D63DA2C595B
http://www.businessinsider.com/smartphone-theft-statistics-2014-5?IR=T
http://www.businessinsider.com/smartphone-theft-statistics-2014-5?IR=T
http://arxiv.org/abs/1203.3431
http://www.consumerreports.org/cro/news/2014/04/smart-phone-thefts-rose-to-3-1-million-last-year/index.htm
http://www.consumerreports.org/cro/news/2014/04/smart-phone-thefts-rose-to-3-1-million-last-year/index.htm
http://www.androidpolice.com/2015/03/12/guide-what-is-android-5-1s-antitheft-device-protection-feature-and-how-do-i-use-it/
http://www.androidpolice.com/2015/03/12/guide-what-is-android-5-1s-antitheft-device-protection-feature-and-how-do-i-use-it/
http://www.imobilesitter.com/
https://doi.org/10.1007/978-3-642-35362-8_2
https://doi.org/10.1007/978-3-642-35362-8_2
https://us.norton.com/anti-theft/
http://www.greenbot.com/article/2904397/everything-you-need-to-know-about-device-protection-in-android-51.html
http://www.greenbot.com/article/2904397/everything-you-need-to-know-about-device-protection-in-android-51.html


BluePass: A Secure Hand-Free Password
Manager

Yue Li1(B), Haining Wang2, and Kun Sun3

1 College of William and Mary, Williamsburg, VA 23187, USA
yli@cs.wm.edu

2 University of Delaware, Newark, DE 19716, USA
hnw@udel.edu

3 George Mason University, Fairfax, VA 22030, USA
ksun3@gmu.edu

Abstract. With the growing number of online accounts a user pos-
sesses, managing passwords has been unprecedentedly challenging. Users
are prone to sacrifice security for usability, leaving their accounts vul-
nerable to various attacks. While replacing text-based password with a
new universally applicable authentication scheme still seems unlikely in
the foreseeable future, password managers have emerged to help users
managing their passwords. However, state-of-the-art cloud based pass-
word managers are vulnerable to data breach and a master password
becomes a single point of failure. To address these security vulnerabili-
ties, we propose BluePass, a password manager that stores the password
vault (i.e., the set of all the encrypted site passwords of a user) locally
in a mobile device and a decryption key to the vault in the user com-
puter. BluePass partially inherits the security characteristics of 2-Factor
authentication by requiring both a mobile device and a master password
to retrieve and decrypt the site passwords. BluePass leverages short-
range nature of Bluetooth to automatically retrieve site passwords and
fill the login fields, providing a hand-free user experience. Thus, BluePass
enhances both security and usability. We implement a BluePass proto-
type in Android and Google Chrome platforms and evaluate its efficacy
in terms of security, usability, and overhead.

Keywords: Password manager · Two-factor authentication

1 Introduction

Text-based password still dominates online authentication despite that it has
long been plagued by a well-known and long-standing problem: the wide use of
weak password. Due to limited human memory, users tend to choose weak pass-
words [3,5]. However, weak passwords are easy to guess and thus are vulnerable
to a variety of attacks [4,19,22,28,32]. Today’s increasing number of accounts
a user possesses even worsen the problem since the user poorly manage their
passwords. For example, on average users may reuse one password for as many
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as 3.9 online accounts [11]. As such, instead of impractically expecting users to
select a strong password for each account, password managers are developed as
built-in or standalone gadgets to help users manage their credentials. A password
manager includes a vault that stores all encrypted passwords of a user, and the
user only needs to remember one master password, which is used to generate the
decryption key to the vault, to access all the passwords in the vault. To support
user authentication on different devices, password managers usually synchronize
the vaults to their own servers and provide a downloading service to their users.
However, a password manager has its own security and usability problem. For
example, password managers usually synchronize the local vault to the remote
server, which makes data breach possible [2]. Furthermore, to enhance usability,
many browser built-in password managers do not necessarily need a master pass-
word, which makes it vulnerable to unauthorized use and meanwhile sacrifices
portability. Even being used, a master password becomes a single point of fail-
ure. Usability issues of a password manager may even lead to reduced security,
stemming from incomplete user mental models [7].

For critical online services, users may desire more secure authentication than
merely password. Toward this end, two-factor authentication (2FA) is proposed
to include another layer of protection to user accounts. Nowadays many leading
service providers such as Google and Microsoft, have integrated 2FA into their
online systems. However, 2FA suffers from limited adoption due to undesired
extra burden on users. It is estimated that in 2015, only around 6.4% of Google
users are using 2FA [24]. In order to improve usability, transparent 2FA has
been proposed [8,23] by leveraging additional devices (mainly user smartphones)
to automatically complete the enhanced authentication procedure without user
involvement. However, these approaches are hard to deploy because of imperative
modifications at both the web server and the client sides.

In this paper, we propose BluePass, an enhanced password manager that par-
tially inherits the security benefit of 2FA to improve the security and usability of
existing password managers. One of the key features of BluePass is to isolate the
storage of the password vault from that of the decryption key. Here the password
vault is the set of all the encrypted site passwords of a user. Specifically, the pass-
word vault is stored locally in a mobile device (e.g., a user’s smartphone) and
the decryption key is stored in the BluePass server, which can be accessed and
downloaded only once to a computer after authentication through a master pass-
word. The mobile device communicates with the computer using Bluetooth in a
transparent manner. When a user needs to log in a website, the computer will
automatically request the site password from the mobile device. The encrypted
site password will then be delivered through Bluetooth. Afterwards, the com-
puter is able to decrypt the site password using the local decryption key and
auto-fill the web forms for the user. BluePass relies on Bluetooth for communi-
cation rather than other channels, because Bluetooth can be both transparent
to users and a subtle indicator of co-location of the user mobile device.

BluePass is secure since it does not store password vaults on a server and is
not vulnerable to massive password breach. Furthermore, a server data breach



BluePass: A Secure Hand-Free Password Manager 187

is likely to leak both password vaults and hashed master passwords. By cracking
the master password table offline, it is almost guaranteed that most master
passwords can be craked out, given today’s computing power and the weakness
of user-selected passwords. Attackers are given direct access to password vaults
under such a case, since the vault decryption key is generated from the master
password. By contrast, in BluePass, the password vault and its decryption key are
stored separately, and decryption key is not generated from master passwords,
losing one of them will not practically leak any password.

While BluePass itself uses 2FA, it does not require any modifications on the
website servers. Thus, the underlying password framework remains unaltered,
i.e., logging into a website still only needs one site password. BluePass is also
usable since it demands little effort to configure on the computer and no extra
effort from a user to authenticate afterwards.

We implement a BluePass prototype in Android and Google Chrome and
evaluate its efficacy in terms of security, overhead, and usability. First, we
conduct a comprehensive security analysis to demonstrate that BluePass can
defend against various attacks. Then we evaluate the auto-fill time latency of
BluePass by recording the time between login forms being detected and the
forms being automatically filled. We also run a series of experiments, in which we
retrieve passwords under different frequencies, to measure the energy overhead of
BluePass. Based on our experimental results, BluePass is energy efficient while
automatically filling in the login forms with user-unperceived latency. After-
wards, we conduct a user study including 31 volunteers to examine the usability
of BluePass. The results show the test subjects regard BluePass as both secure
and usable. Moreover, the majority of testers report that they are willing to use
BluePass to manage their passwords.

The remainder of the paper is organized as follows. Section 2 elaborates the
system overview and threat model. Section 3 details the system architecture of
BluePass and Sect. 4 conducts security analysis on BluePass. Section 5 illustrates
the prototype implementation of BluePass. We evaluate BluePass in Sect. 6 and
present a user study in Sect. 7. Section 8 discusses BluePass-related issues and
its limitation. Section 9 surveys related work and finally, Sect. 10 concludes this
paper.

2 System Overview and Threat Model

Before presenting the BluePass system, we first introduce important BluePass
notations for clarification purposes.

– BluePass server: a server that is mainly responsible for registering users and
distributing keys to user computers.

– Key pair (K1,K2): a pair of RSA keys that are used by the mobile device
and the computer to encrypt/decrypt site passwords. K1 is only stored in the
mobile phone while K2 is stored in the BluePass server for re-distribution. We
manage to use only one pair of keys to protect bi-directional communication,
and the details can be found in Sect. 8.1.
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Fig. 1. BluePass authentication.

– Master password (MP): a user uses its master password to authenticate itself
to the BluePass server and retrieve its own decryption key K2. A master
password is the only password a user needs to remember.

– Site password (SP): passwords to access online services, which will be
encrypted by K1 and then stored in the BluePass mobile application.

– Trusted computer: a computer that the user trusts, such as the user’s personal
computer. It stores the decryption key K2 for a long term.

– Untrusted computer: a computer that the user does not trust, such as a
library computer. The decryption key K2 must be retrieved from the BluePass
server every time a browser is opened in the untrusted computer. K2 is only
temporarily stored in a browser instance, and is removed when the browser
instance is terminated.

– Client-side (computer/browser) application: the user installs it on the com-
puter, which is in charge of detecting and auto-filling login forms, communi-
cating with the mobile device, and decrypting the received site passwords.

– Mobile application: the user installs the app on its mobile device. The app
stores the encrypted site passwords and delivers the encrypted site passwords
to the user computer through Bluetooth.

2.1 System Overview

BluePass works on two premises. First, a site password can only be recovered
by having both the encrypted site password EK1(SP ) that is only stored in
the mobile device and the corresponding decryption key K2 that is distributed
through the BluePass server. Second, the encrypted site password EK1(SP ) can
only be retrieved from the mobile device to the user computer through Bluetooth,
which requires the proximity of the two devices. The flow chart of BluePass
password authentication is shown in Fig. 1.

The working mechanism of BluePass mainly includes three phases, which are
detailed as follows.

Phase 1: Registration is a once-in-a-lifecycle operation, in which a user needs
to register for the BluePass service. The user installs the BluePass mobile app on
its mobile device and uses its master password to log into the BluePass account.
The mobile device is then initialized with an empty password vault.
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Phase 2: Configuration is to install and configure the user devices. First, a
client-side application needs to be installed on the user computer. Then, the
user will log into the BluePass server and download the decryption key K2 into
the computer. The user will store the key either for a long term or temporar-
ily, depending on whether the computer is trusted or untrusted. Note that the
installation of the client-side application on a computer is also a one-time oper-
ation. The retrieval of K2 from the BluePass server is needed each time opening
a browser only when the user is on a untrusted computer.

Phase 3: Authentication is almost transparent to the user. In a trusted device,
the user only needs to carry the registered mobile phone and wait for the pass-
words being automatically filled. In a untrusted device, the user needs to re-enter
the master password every time a new browser instance is opened since the key
K2 is deleted when a browser instance is closed.

2.2 Threat Model

Attackers aim at stealing one or (preferably) all site passwords in the password
vault. In the design of BluePass, all the site passwords of a user are encrypted
and stored in the user’s mobile device. We assume that the attacker cannot access
the encrypted site passwords in the mobile device and knows the decryption key
from the computer at the same time.

All attacks can be classified into two categories: co-located attacks and remote
attacks. A co-located attack can only happen within the Bluetooth communica-
tion range of the user mobile device, while a remote attack can be launched from
anywhere. In a co-located attack, since the attacker could access the encrypted
site passwords through sniffing, we must prevent the decryption key from falling
into the hand of the attacker. Therefore, both the BluePass server and the master
password cannot be compromised. Moreover, the communications for key distri-
bution must be protected. By contrast, in a remote attack, since the attacker
cannot access the mobile device through Bluetooth, either the BluePass server
or the master password could be compromised. Also, no secure communication
is required for key distribution. As the Bluetooth reachability is very limited (33
feet for class 2 Bluetooth devices), a co-located attack is much more difficult to
launch than a remote attack.

3 System Architecture

3.1 Core Functions

As mentioned in Sect. 2.1, BluePass mainly consists of three phases. The first two
phases, registration and configuration of BluePass, are mostly one-time effort;
however, the third phase, authentication, will be triggered each time a user needs
to log in a website. Figure 2 illustrates BluePass architecture and the data flow
of these three phases.
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Fig. 2. BluePass architecture

Registration. The black dotted lines in Fig. 2 show the registration process. To
register a BluePass service, the user only needs to download a BluePass appli-
cation to the mobile phone and create a master account on the BluePass server.
The creation of the master account is similar to the creation of an account in
any website. Upon logging into the master account on the mobile app, the user
can choose to bind the mobile device. The binding process should follow a tra-
ditional 2FA mechanism. Namely, the user re-authenticate herself with another
authentication factor, for example, a sms. Afterward, the device information,
specifically, the MAC address of the device Bluetooth, will be uploaded to the
BluePass server. The MAC address is used for the client-side application to
automatically locate the associated mobile device without user involvement. For
a newly associated device, the BluePass Server generates a pair of asymmetric
keys (K1,K2). It then distributes K1 to the mobile phone and keeps only K2 on
the server side. We list the database of the BluePass server in Table 1 and that
of the mobile device in Table 2 populated with made-up data. The registration
should only be done once on the mobile device. After registration, the mobile
device is initialized as a password vault. Note that the key pair of (K1,K2) is
not used as a conventional public-key pair, where the public key is known to all
and the private key is kept in secret. Instead, the key pair is used for a two-way
communication channel and both of them should be kept in secret.
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Table 1. Server side data

Username Salt H(MP + Salt) K2 Device MAC address

Alice ifu92@fb a4f3b3c9e61b838f8cda07 . . . V DSnrzjqFBy9 . . . BC:F5:AC:9D:9A:57

Bob 01dm.a<w daa4a403bfec911a3ef199 . . . yKhTC3dNAkE . . . BC:F5:AC:9D:9A:58

Table 2. Mobile device data

Domain Username K1 EK1(Password)

*.yahoo.com/* aliceweb1 AoGAKooOHMT . . . Encrypted Password1

*.yahoo.com/* aliceweb2 V N9SdOeFbo4w . . . Encrypted Password2

*.google.com/* aliceweb2 B1FUeDXiqv4j . . . Encrypted Password3

After registration, the user has initialize a password vault in its own mobile
device and associated the BluePass account with this device.

Configuration. The computer needs to be configured to run BluePass, which
is shown in the dashed black lines in Fig. 2. The user installs and runs a client-
side application, and then logs into the BluePass server to fetch the Bluetooth
MAC address of the mobile device and K2 generated during the registration. At
this point, the user can choose whether the computer is trusted or not. If the
computer is trusted, the Bluetooth MAC address and K2 will be stored in the
browser for a long term. Otherwise, they will be deleted after the user closes the
current browser instance. Knowing the device Bluetooth MAC address enables
the computer to pair with the device automatically by using RFCOMM insecure
mode, in which the Bluetooth data is broadcasted and the target MAC address is
specified in the data. BluePass does not rely on secure Bluetooth communication.
Using RFCOMM insecure mode enhances usability while not degrading security.

Authentication. The authentication phase is the only phase that a user will
constantly experience during use of Bluepass. The solid lines in Fig. 2 show the
data flow of BluePass authentication process. First, the user directs the browser
to a website it wants to login. The BluePass client-side application will examine
the Document Object Model (DOM, which is a tree structure representing the
webpages) of the returned page and check the existence of a login form. If a login
form is present, the application requests the corresponding credentials from the
mobile phone using Bluetooth. After receiving the request, the mobile application
returns the encrypted credentials. If no related credential exists, BluePass will
instead respond with a “NO PASSWORD” flag. We realize that auto-filling in
a non-HTTPS environment is vulnerable to JavaScript injection attacks [26],
so we only do auto-filling for websites that are based on HTTPS. For other
websites, BluePass will pop up a window for a user’s consent before filling the
login form. Note that none of the above steps require any user interactions. This
fully automated authentication enables users to login a website in a hand-free
manner. When there exists more than one account for a specific website, the
browser will let the user choose an account to be decrypted and automatically
filled in the forms since there is no way to predict which account will be used.
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3.2 Account Management

Account management is essential to a password manager. Users should be able
to add, edit, or delete the credentials in BluePass. These functions must be
correctly designed to guarantee the security of BluePass.

The addition of an online account into BluePass can be done when a user
has manually inputted the login credentials into a new website. BluePass adopts
a similar approach just as current browser built-in password managers. If the
“NO PASSWORD” flag is sent back, the browser knows that no login creden-
tials are associated to this particular website. If the user manually inputs the
credentials, the browser will capture the value in the form before submission and
prompt a non-intrusive dialog window, asking whether the user wishes to store
the login information into BluePass. Specifically, there are three options: “yes”,
“not this time”, and “never”. If “yes” is chosen, the browser will encrypt the cre-
dentials using key K2 and send it to the mobile device (see Fig. 2). The mobile
device will decrypt the information using K1 and encrypt it again using K1.
Mathematically the process is denoted as EK1(DK1(C)), in which C = EK2(SP ).
Then the encrypted credentials are stored in the BluePass database.

The edition of an online account is similar to the addition process. The
browser monitors if the user has modified the value in the login form when
being submitted. If the password is changed, the browser will prompt a dialog
that asks for user permission to update the login credentials in BluePass. Upon
user consent, the browser will send the updated values in an encryption and
decryption procedure similar to that of adding a new account. Note that the
chosen option of “never” should also be recorded in the password vault, which
prevents the dialog from prompting repeatedly. In this case, the password vault
records the domain name and the username without storing a password. When
an empty password is passed back, the application is acknowledged that the user
does not wish to store the login credentials. The revocation of the “never” status
can be done in the administration page in the mobile applications.

The deletion of login credentials can also be done on the mobile application’s
administration page. The mobile application shows a list of websites whose site
passwords are stored in the mobile phone. The user can choose to delete one
of the websites’ login credentials. However, the user needs to manually input
the website’s URL and login credentials. Before the deletion is granted, the user
must input the correct master password. This will prevent an attacker from
manipulating the user’s online accounts.

3.3 Recovery

When using a cloud-based password manager, users can backup their password
vaults on the server side. On the contrary, BluePass is de-centralized and stores
local copies on mobile devices. Though users usually do not lose their mobile
devices quite often, it is essential for BluePass to back up and recover the pass-
word vault when the mobile devices are lost, which is illustrated with red lines
in Fig. 2.
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Users can choose to back up their vaults to an external storage including a
portable hard disk, a USB, or a cloud storage. If a user loses the mobile device,
it can recover the vault from the external storage. Backing up the vault to a
user-owned physical device may require the user to periodically back up and
synchronize the password vault to the external storage device. Alternatively,
BluePass allows users to synchronize their password vaults to a cloud drive
provider. Nowadays many large drive providers, such as Google Drive or Drop-
box, have published APIs to facilitate data synchronization. Note such design
still ensures the 2FA design of BluePass – an attacker needs to breach both the
BluePass Server and the cloud provider server to collect the two necessary pieces
of secret.

4 Security Analysis

BluePass is secure in a sense that as long as a user does not lose two factors
at the same time, the user’s login information is safe. We conduct a security
analysis on BluePass to verify the robustness of BluePass against various attack
vectors.

4.1 Two-Factor Security

We have introduced that BluePass relies on the premise that two factors need
to be possessed to derive a site password. The two factors are user mobile device
and a master password. Now we discuss the security of BluePass when one of
the factors is compromised.

Master Password. An attacker may be able to compromise the master password
of a user, which can be done through different ways such as guessing, phishing,
shoulder-surfing, etc. The compromisation of a trusted computer is also equiva-
lent to losing the master password because the only purpose of having the master
password is to retrieve K2 from BluePass server, which can be directly extract
K2 from a trusted computer. In such scenarios, the attacker is able to obtain
key K2. However, if the attacker does not have the password vault of the user,
K2 is merely a meaningless token and the security of BluePass holds. Besides,
the user is able to change the master password and re-generate a new key pair.

Mobile Device. If an attacker gains access to the mobile device by either compro-
mising the device or stealing the device, it may be able to access the encrypted
password vault and the encryption key K1. However, without the decryption key
K2, the attacker cannot decrypt the site passwords from the encrypted password
vault. Unlike cloud-based password managers, BluePass does not keep master
password and the vault on the same storage, thus obtaining K2 together with
the password vault is not practical. Moreover, the mobile phone itself may have
its own protection, such as an unlock code or fingerprint verification, and remote
data erasal.
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4.2 Data Breach and Brute-Force Attacks

A serious threat to a password manager is data breach. Under this scenario, the
attacker may be able to mount a brute force attack against the master pass-
word of a user. In a normal password manager such as LastPass or 1Password,
the loss of a master password also means the loss of an entire password vault,
namely, when an attacker successfully mounts a brute force attack against the
master password, it can also retrieve all the passwords from the password vault
since the key used to encrypt the vault is derived from the master password.
Again, BluePass does not centralize the password vault storage. Instead, the
password vault of a user is stored locally in its own mobile device. A server data
breach would at most leak the user master passwords and then further leak the
decryption keys. However, as the password vault of each user is not stored at the
BluePass server, a data breach at the BluePass server cannot break BluePass.

On the other hand, assuming that a password vault is lost from a user’s
mobile device, we believe that brute-force cracking such an encrypted password
vault is impractical given the current computing power. We emphasize that the
password vault is protected by K1, which is 2048-bit long randomly generated
RSA key. Cracking K1 is much harder than cracking a master password, which
is generated by a human user within limited and predictable password space.

4.3 Broken HTTPS or Bluetooth

If an attacker compromises the HTTPS communication, it will be able to steal
the encryption/decryption key pair (K1,K2) of a user. However, K1 and K2 are
only transmitted through the web when a user installs BluePass on its mobile
device (K1) or when the user log on BluePass from a new computer (K2), which
makes the attack strictly time sensitive. Even though, having the key pair does
not help the attacker to identify any of the user’s site password, unless the
attacker can also eavesdrop on the Bluetooth connection (i.e., co-located attack)
to capture the encrypted password in transmission. On the other hand, eaves-
dropping Bluetooth alone does not compromise BluePass either, since the con-
tent is encrypted.

To succeed, the attacker needs to compromise both HTTPS and Bluetooth
communications to steal site passwords from users. However, such a successful
attack is very difficult to launch, due to time (to steal the keys) and location
(to eavesdrop the Bluetooth) constraints. Furthermore, a large scale attack is
infeasible since Bluetooth signals can only be sniffed within a short range.

5 Implementation

BluePass consists of three major components that cooperate with each other
on user authentication, namely, a BluePass server for user registration and key
distribution, a BluePass client application on the laptop for detecting and auto-
filling the website login forms, and a BluePass app on the mobile phone serving
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as the password vault and administration console. We build the BluePass client
application in a Macbook Air running OS X 10.10.4 and Chrome 46.0.2490.80.
We implement the BluePass app on a Nexus 5 running Android version 4.4.2.

5.1 BluePass Server

We implement a BluePass server using Cherrypy [13], a python web framework.
We use self-signed certificate in https to protect communication. The key pair
(K1,K2) is generated using Pycrypto1 on the server side. Sqlite database is used
to store user data (see Table 1 for detail). When registering to the service, we do
not use the standard 2FA to verify the phone number since it is not necessary for
evaluation and user study. After registration, the user needs to log in BluePass
on both mobile application to upload mobile phone Bluetooth MAC address
and download K1 and client-side application to download K2 and Mobile phone
Bluetooth MAC address.

5.2 BluePass Client-Side Application

We build the BluePass client-side application on Chrome platform, which con-
sists of 2 modules: one Chrome application for Bluetooth communication and one
Chrome extension for password auto-filling. We use two modules because cur-
rently Chrome extension does not support Bluetooth API while Chrome appli-
cation does. However, only Chrome extensions allow reading and modifying the
DOM of web pages, which unavoidably makes us separate client-side application
functionality into 2 modules. Chrome application is more like a native appli-
cation, but it is built on Chrome platform to deliver content in HTML, CSS
and Javascript (e.g., Google Doc, Google Drive). It uses the chrome.Bluetooth
API to connect to the Bluetooth device and then communicate with the smart
phone through Bluetooth. The Chrome extension is responsible for detecting
the authentication form and automatically fill the form after decrypting the site
password from the mobile application.

The communication between the Chrome application and the chrome exten-
sion is implemented through Chrome External Messaging2. Specifically, this
extension specifies the Application ID, which is a unique identifier for the Chrome
application. After Chrome extension delivers the data to the application that
is binded to the ID and has a pre-added listener, the listener can extract the
data. The communication from Chrome application to Chrome extension works
similarly.

Our prototype implements the BluePass client on the Chrome platform to
simplify the communications among different modules; however, the framework
of BluePass can be widely deployed on more platforms as long as both the com-
puter and the mobile device have Bluetooth support and the browser extension

1 https://www.dlitz.net/software/pycrypto/.
2 https://developer.chrome.com/extensions/messaging.

https://www.dlitz.net/software/pycrypto/
https://developer.chrome.com/extensions/messaging
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is able to communicate with local applications on the computer. First, Blue-
tooth has become a standard device on modern computers and smartphones.
Second, communication between browser extensions and native applications has
been supported by most modern browsers, including Internet Explorer, Chrome,
Firefox, Safari, Opera, etc.

5.3 BluePass Mobile Application

The BluePass mobile application starts a BluePass service, which runs in the
background of Android and has a dedicated thread to listen to the incoming
Bluetooth connection, which helps transparently authenticate a user to a regis-
tered website. The BluePass service inherits from the Service class in Android
and keeps running until the user explicitly stops the service.

BluePass mobile application has a simple and clear user interface, which
shows the status of the background BluePass service, either “running” or “sus-
pended”. The user can easily change the service status by clicking “Start
BluePass Service” or “Stop BluePass Service” buttons. When the service status
is running, the Bluetooth listener starts listening and remains active even the
mobile device turns off the screen and goes to sleep. Whenever users would like
to stop the service, they just need to open the application and click the “Stop
BluePass Service” button.

We use RFCOMM Bluetooth protocol to establish communication between
the mobile phone and the computer, since RFCOMM is widely supported and
provides public APIs in most modern operating systems. Android supports two
modes of RFCOMM connections, secure mode and insecure mode. The secure
mode requires successful pairing before any RFCOMM channel can be estab-
lished while the insecure mode allows connection without pairing two devices.
Secure mode RFCOMM adds another layer of encryption. However, as BluePass
communication is secured by (K1,K2) so that it does not rely on Bluetooth
security. While insecure mode may fit better since it saves a pairing step from
the user, Chrome application does not support insecure RFCOMM communica-
tion due to security concern. Therefore, we use the secure RFCOMM connection
mode. Consequently, in the registration phase, the user also needs to pair the
mobile phone and the computer first if they have never been paird before. Note
that pairing only needs to be done once in a computer unless the user manually
deletes paird devices on the mobile phone or computer.

6 Evaluation

6.1 Comparative Evaluation Framework

We use the comparative authentication scheme evaluation framework [6] to com-
pare BluePass with other related authentication schemes. The results are sum-
marized in Table 3. We can see that BluePass is physically-effortless since the
entire authentication process is transparent to the user and Quasi-Nothing-to-
Carry since users still need to carry their mobile phones though they carry
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Table 3. BluePass scheme evaluation

them anyway. BluePass is accessible since it does not require the cellphone to
have signal or cellular data. BluePass is Quasi-Resilient-to-Throttled-Guessing
and Quasi-Resilient-to-Unthrottled-Guessing. Although BluePass itself does not
enhance the security of the underlying password mechanisms, it can help defend
throttled and unthrottled guessing by generating long random passwords for
users and motivating users to use more secure passwords since they do not need
to remember the passwords.

Bonneau et al. [6] points out that the framework does not describe all pos-
sible properties of an authentication scheme. Besides these factors, BluePass
also keeps a simple and clean user mental model, which is highly suggested
since wrong mental models easily make user passwords weaker [7]. Furthermore,
BluePass strengthen usability by not requiring users to delete their password
traces after use on a untrusted computer as other password manager (e.g., log
out master account or delete local password vault).

6.2 Password Auto-Fill Latency

For a usable password manager, the time required to fill the password field should
be short. We record the delay between the time that the password input form
is detected and the time that the form is automatically filled (denoted as Tbp).
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Fig. 3. BluePass latency

Table 4. Delay statistics

Median Mean SD Skewness

Tbp 778.0 814.6 158.3 1.6

Tload 599.5 837.6 691.3 2.6

Tbp (removed) 775.0 812.5 155.2 1.6

Tload (removed) 570.0 631.4 259.8 2.6

Since the delays on different websites may be different due to the specific website
design, we choose 20 major providers from Alexa Top 100 website [30]. For each
site, we make up a username/password pair and test the pair of credentials for at
least 50 times. The password of each site is a randomly generated 16 byte string
composed of all 4 characters types (Uppercase character, lower case character,
digit, and special character).

Besides the Bluetooth communication latency, we also measure the loading
time (denoted as Tload) for a website since page rendering (bottleneck to load
a page) and Bluetooth communication tasks are running in parallel, indicating
that the actual latency a user is experiencing is roughly Tbp −Tload, which is the
time difference between BluePass running time and page loading time. Tload is
measured by injecting a piece of javascript code, which measures the time when
all javascripts on the webpage that need to run immediately are being executed
subtracting the time that the browser is ready to send the HTTP request.

The results for all 20 sites are shown in Fig. 3. Figure 3 does not show the Tload

results for two web services, Tumblr and mail.ru, that have much higher Tload

(averaged 2,700–2,800 ms). Generally the BluePass delay time (Tbp) is slightly
higher than the page loading time (Tload). To illustrate the extent of the time
gap, we show statistical analysis in Table 4. In the last two rows, we do not
include Tumblr and mail.ru in our analysis since they have significantly higher
Tload that are not representative for normal cases. With the two sites excluded,
the average Tbp is 814.6 ms, which is short enough to be acceptable by most
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users. Furthermore, the actual delay that a user experiences is Tbp−Tload, which
is only 181.1 ms in average. The standard deviation for Tload is higher than Tbp.
The loading time Tload could be different under various factors, such as network
condition, website implementation, etc. Since Tload highly depends on the website
implementation, heavy javascript use in a site could largely contribute to a high
Tload.

On contrast, Tbp is relatively stable since Bluetooth communication and
mobile device computing are almost the same in each login attempt. Since the
delay caused by BluePass is bounded by Tbp − Tload, BluePass imposes a very
low latency on the password auto-filling process. According to our user study,
users can hardly notice the latency.

6.3 Power Consumption

One major concern of BluePass usage is the power consumption overhead on the
mobile device, since BluePass requires the mobile device serve as a Bluetooth
server that keeps listening to incoming connections. We measure the extra power
consumption imposed by BluePass through monitoring the power levels of the
mobile device when running BluePass password retrieval process in different
frequencies. For comparison, we also record the power level of the device when
Bluetooth is turned off (we call it a clean state).

To monitor the current battery level of the mobile device, we register a broad-
cast receiver in a simple battery monitoring application on the mobile device to
listen to battery level changing event, upon which the current battery level and
the timestamp are recorded. We tune the login frequency in the browser side (by
refreshing a webpage in different frequency) to evaluate different use cases.

Except for the login frequency and BluePass on/off status, we keep all other
settings exactly the same, such as installed and running application on the device
as well as the network status (e.g., Wifi connection is turned off). We use a
Nexus 5 mobile phone for evaluation, which has 2100 mAh battery capacity. As
it takes a long time to use up the battery that has been fully charged, we run each
experiment for 10 h before charing the phone and running the next experiment.
Though the granularity of battery usage broadcasting is in percentage level that
may not be highly accurate, it is sufficient to evaluate the power efficiency of
BluePass in a 10-h test period.

Figure 4 illustrates the battery level dynamics through time under different
experiment setups. “On” means the Bluetooth is turned on and “off” means the
Bluetooth is turned off. Other lines represent the Bluepass log-in frequency. A
reasonable frequency of login attempted by a normal user should not exceed 100
times a day, which means that the login frequency should lie around 0–10 times
per hour. With 10 logins per hour, the power consumption is only 1% more
than a clean state. We believe it is an unnoticeable overhead for users, given
that almost 90% of users charge their phone more frequently than once per 2
days [27]. Besides, we can see that a significant power overhead is only incurred
when the user tries to log in very frequently (17% when trying to log in every
2 s). However, normal users would not try logging in at such a high frequency.
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Fig. 4. BluePass power consumption
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In our experiments, the mobile phone is in a state that does not receive
cellular or wifi signal, so the battery drains very slowly. When the mobile phone
is in normal daily usage, the battery usage becomes much higher. However, the
BluePass power consumption remains the level of 1% of total power with 10 h
use.

7 User Study

To verify how real users rate the security and usability of BluePass, we con-
duct a user study to gather feedback and comments from normal users. Upon
approval of IRB of our institution, we recruit 31 volunteers to use and comment
on BluePass. The volunteers include 16 males and 15 females. As the study
is only in a school scale, most of them age 20–30 years old. Besides, most of
them have a bachelor degree. In order to spread our study of different computer
expertise, we deliberately recruit volunteers from 10 fields of study.

We ask each of the volunteer to finish a series of tasks. They are (1) reg-
ister to BluePass server and configure BluePass, (2) create a new account in
our self-deployed test site, (3) log in the test site (Migrate password), (4) try
using BluePass to log in again (Log in from a primary computer), (5) change
the current password and try using BluePass to log in (Change Password), (6)
configure BluePass in another computer and log in (Log in from another com-
puter), (7) turn off BluePass and try logging in, and (8) turn on BluePass and
try logging in. We also create a test website that has only login and changing
password functions for the volunteers to operate on.

After finishing the tasks, the testers take a post-study questionnaire. The
questionnaire mainly uses 6-point scale rating where 1 point means strongly
disagree and 6 point means strongly agree. The results are shown in Fig. 5.
Testers generally think the concept of BluePass is understandable and it is fairly
easy to set up. 87% of testers (27 out of 31) agree that BluePass is more usable
than any other password manager they have used before.

BluePass motivates the testers to increase password security. More than 70%
(22 out of 31) of the testers state they are motivated to choose more secure
passwords and less likely to re-use existing passwords, thus making their pass-
words stronger. However, though the testers report they are motivated to use
more secure passwords, we notice that only 4 testers have tried using random
passwords generated by BluePass to create/change their passwords, which may
result from the fact that users feel “unsafe” to use a non-memorable password.

The majority of testers (94%) expresses willingness to use BluePass to man-
ager their passwords. We also ask the testers to compare BluePass to other
favorite password managers they have used, and testers show large preference
to BluePass over existing password managers. To summarize, BluePass is gen-
erally considered more secure and usable than existing password managers by
the testers. Most of them show preference to BluePass and willingness to use
it. Thus, it is reasonable to conclude that BluePass does help users secure their
passwords.
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8 Discussion

8.1 RSA Key Pair

BluePass can use only one RSA key pair (K1,K2) to achieve bi-directional com-
munication between the mobile phone and the computer. We must guarantee
that the compromise of K1 will not lead to the compromise of K2, and vice
versa. We know that all public key cryptography algorithms ensure that it is
hard to derive the private key from the public key, but not vice versa. For
instance, given an ECC private key, it is easy to derive the ECC public key,
since public key = private key ∗ G. However, for RSA, in theory, it is hard to
derive either e or d from knowing the other one. Therefore, we can use only one
pair of RSA keys with careful parameter settings.

There are two minor things to notice in the detailed RSA implementation.
First, in practice e is usually chosen a small/fixed number, but this should be
avoided. Second, RSA private keys are often stored in their “Chinese Remainder
Theorem” form, which includes the two secret numbers often denoted p and
q, from which the totient is computed. With totient and the private exponent,
the public exponent is quickly computed. Therefore, BluePass cannot use the
Chinese Reminder Theorem to speed up the calculation.

8.2 BluePass Limitations

BluePass has several limitations. First, a user has to carry a powered-on mobile
phone to make BluePass work; otherwise, BluePass falls back to conventional
ways that users remember and input passwords. Second, BluePass cannot work
well when the mobile device or the computer does not support Bluetooth com-
munication. In those cases, the hand-free benefit cannot be offered by BluePass.
Instead, the users have to use their phones to display their site passwords after
inputting their master passwords.

9 Related Work

Password is criticized to be insecure along its survival [17,21,22,31]. It is gener-
ally believed that there exists a general trade-off between security and memora-
bility [32].

Whereas numerous evidences show that “easy” passwords are insecure, users
generally do not follow advices from security experts and are inclined to choose
weak passwords or reuse passwords [1,9,11]. Given a plethora of attack vectors,
following security advice that specifically aims to defend against just one or
few types of attacks becomes unrealistic for users. Therefore, it is crucial for a
website to carefully manage its security policies, even allowing slight security
sacrifice [12].

Due to various drawbacks of password authentication, many alternative
schemes has been proposed to replace passwords [10,15,16]. However, Bonneau
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et al. [6] evaluated all mainstream alternative schemes and concludes that none
of them is able to replace the dominating status of password authentication.

Facing the dilemma of not being able to replace passwords, many works
focus on helping users manage and remember their passwords, which indirectly
enhance password strength due to decreased memorability requirement. In con-
sequence, password manager earns its prosperity. Despite ubiquitous “memo-
rize and fetch” type of password managers such as browser built-in password
managers or LastPass, researchers also proposed password managers that can
enhance password security in addition to usability [14,20,25,29].

Password manager significantly reduce the memory burden on users. How-
ever, it has its own usability and security problems [18]. Severe security issues
may also be introduced due to the fact that users failed to capture the correct
mental model [7]. Silver et al. [26] demonstrated that careless auto-filling policy
on non-https websites could make passwords be extracted directly from the web
form by an attacker.

10 Conclusion

This paper introduces a hand-free password manager called BluePass for achiev-
ing both strong security and high usability. BluePass attains the security level of
two-factor authentication by storing password vaults in a mobile device and the
decryption key in the user computer separately. Exploiting the automatic blue-
tooth communication between the mobile device and the computer, BluePass
enables a hand-free password retrieval process for users. BluePass also places
the decryption keys to remote servers to support password portability while de-
centralizing the storage of password vaults to prevent a single point of failure.
We implement a BluePass prototype on Android and Google Chrome platforms.
Through system evaluation, we show that the password retrieval latency a user
experiences is less than 200 milliseconds on average, and BluePass only con-
sumes a negligible 1% battery power with 10 h normal use on a mobile device.
Through a user study comprising of 31 testers, we demonstrate that BluePass
does motivate users to choose stronger passwords and less likely to reuse existing
passwords.
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Abstract. With the rise of increasingly advanced reverse engineering
technique, especially more scalable symbolic execution tools, software
obfuscation faces great challenges. Branch conditions contain important
control flow logic of a program. Adversaries can use powerful program
analysis tools to collect sensitive program properties and recover a pro-
gram’s internal logic, stealing intellectual properties from the original
owner. In this paper, we propose a novel control obfuscation technique
that uses lambda calculus to hide the original computation semantics and
makes the original program more obscure to understand and reverse engi-
neer. Our obfuscator replaces the conditional instructions with lambda
calculus function calls that simulate the same behavior with a more com-
plicated execution model. Our experiment result shows that our obfusca-
tion method can protect sensitive branch conditions from state-of-the-art
symbolic execution techniques, with only modest overhead.

Keywords: Software obfuscation · Control flow obfuscation
Reverse engineering · Lambda calculus

1 Introduction

As binary analysis techniques keep advancing, reverse engineering is becom-
ing more effective than ever before. Consequently, malicious parties are able to
employ the latest binary analysis techniques to identify exploitable software vul-
nerabilities for injecting malicious code into legit applications. Binary analysis
tools can also get misused to reveal important internal logic of the distributed
software copies, potentially leading to intellectual property thefts and therefore
severe financial loss to the original developers.

One of the protection techniques that prevents undesired reverse engineering
is software obfuscation. Generally, software obfuscation are program transforma-
tions that make software more complicated than its original form and difficult for
adversaries to understand and analyze, while preserving the program’s original
semantics [24].

In this paper, we propose a novel obfuscation method, called lambda obfus-
cation, that utilizes the concept of lambda calculus, a powerful formal compu-
tation system widely adopted by the programming language community. The
main idea of our approach is to utilize the unique computation model of lambda
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calculus, which is vastly different from the widely used imperative program-
ming paradigm, to simulate the security-sensitive parts of the original programs.
Instead of imperatively performing computation with data and control step by
step, lambda calculus is entirely based on function application and reduction.
The concept of control flow becomes insignificant in lambda calculus, and all
data structures, including primitive data types like integer, are represented as
high-order functions, potentially making conventional information flows implicit.
When this highly abstract computation model is implemented and deployed with
low-level machine code, a huge semantics gap emerges and imposes great chal-
lenges on manual and automated program analysis, therefore hindering reverse
engineering.

Being Turing complete and considered as the smallest universal program-
ming language [21], lambda calculus is capable of expressing all kinds of compu-
tation patterns available with a typical imperative programming language, e.g.,
C, Pascal, and Fortran. If the simulated computation is free of side effects, the
source-level conversion can be fairly straightforward, yet the resulting program
binary after transformation will become much more complicated and obscure.

To demonstrate the feasibility and practicality of lambda obfuscation, we
implemented a prototypical lambda obfuscator based on the LLVM compiler
infrastructure [13]. The obfuscator transforms qualified branch conditions into
lambda calculus terms that simulate their original behavior. In order to return
the simulation results, an interpreter that evaluates the lambda calculus is
linked to compiled binaries including the procedures and intermediate values
for computing the heavily obfuscated results. We comprehensively evaluated
our obfuscation technique in four aspects, namely potency, resilience, cost, and
stealth. The evaluation result indicates that our method can make the obfus-
cated programs more obscure and prevent automatic software analyzers from
revealing possible execution paths. In particular, we assessed lambda obfusca-
tion’s resilience against KLEE, an advanced symbolic execution engine [3] and
obtained promising results.

The rest of the paper is organized as follows. We first discuss historical work
on control flow obfuscation in Sect. 2. We then briefly introduce the basics of
lambda calculus, followed by the design of lambda obfuscation in Sect. 3. The
technical details of the implementation are presented in Sect. 4. Section 5 evalu-
ates the performance of our approach. Some research questions are discussed in
Sect. 6 and we finally conclude the paper in Sect. 7.

2 Related Work

Software obfuscation techniques can be divided into four major categories,
namely layout obfuscation, preventive obfuscation, data obfuscation, and control
obfuscation [2]. Arguably as the most popular one, control obfuscation focuses on
concealing and complicating control flow information of the program. There has
been a large volume of research striving to develop effective control obfuscation
techniques from different angles.
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One of the classic approaches to achieving control obfuscation is by designing
resilient opaque predicates. A predicate is opaque if it evaluates to a predeter-
mined constant regardless of its input, while this invariant is hard to reveal
through static analysis [30]. Most opaque predicates are derived from number-
theoretic theorems [17], e.g., the quadratic residue lemmas [1]. One of the funda-
mental drawbacks of employing opaque predicates is that they always evaluate
to the same value at run time, thus vulnerable to dynamic analysis. The invari-
ant nature of opaque predicates can result in a likely detection by adversaries
through sophisticated program analysis. In order to overcome this disadvantage
of invariant opaque predicates, Palsberg et al. [18] introduced dynamic opaque
predicates in which a family of correlated predicates whose evaluation results
are only invariant in specific execution contexts.

Sharif et al. [22] proposed a conditional code obfuscation technique that
leverages the inconvertibility of cryptographic hash functions to protect branch
conditions. They used the hash functions to obfuscate the value of variable for
which the branch condition can be satisfied. Because of the preimage resistance
properties of these cryptographic hash functions, it is not practically feasible for
static analyzers to reconstruct the values that satisfy the condition and the con-
trol flow logic information is therefore concealed and protected. However, their
approach is only applicable to branch conditions evaluated through the equality
relation, while it fails to protect conditions that contain inequality relations.

There is a line of research on building obfuscation techniques based on code
mobility [7,20,28]. These approaches only deploy partial and incomplete applica-
tion code on the local machine and retrieve the rest of binary instructions from a
remote trusted server. While these obfuscation techniques can reduce attacker’s
visibility to the software semantics, they also heavily rely on the availability of
network communications and remote servers, which limits the application sce-
narios of their techniques.

Control flow obfuscation can also be implemented by introducing exotic
computation gadgets and paradigms. Ma et al. [15] proposed to replace impor-
tant branch conditions with trained neural networks that simulate the program
behavior when the branch conditions are triggered. Their approach can protect
program against concolic testing due to the complexity of neural networks. How-
ever, it is required to train corresponding neural networks in advanced based on
the target branch conditions. Their approach becomes less flexible and tedious
to deploy when the number of branch conditions requiring obfuscation increases.
Wang et al. [25] introduced another obfuscation framework called translingual
obfuscation. They proposed to translate programs written in imperative pro-
gramming languages, which are relatively easier to reverse engineer, to lan-
guages of different paradigms. In particular, they demonstrated the feasibility
of obfuscating C programs with Prolog, a logic programming language based
on first-order logic resolution. Due to the vastly different execution models of
the original and target languages, traditional binary analysis methods have diffi-
culty in countering translingual obfuscation. Another obfuscation method, called
Turing obfuscation [27], augmented the concept of translingual obfuscation by
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transforming C programs into compositions of primitive Turing machines rather
than programs written in another language. Our research shares a similar idea
with Turing obfuscation, while we adopt lambda calculus as the foundation of
obscurity, which is a more heterogeneous computation model.

3 Design

The basic idea of lambda obfuscation is to leverage the unique computation
model of lambda calculus for protecting the relatively straightforward impera-
tive computation procedures in common programs. Even though different pro-
gramming languages adopt different execution models, it is considered relatively
easier to reverse engineer imperative languages whose computation schemas align
the best with the underlying hardware. Typical imperative languages include C,
Fortran, and Pascal. On the contrary, execution models of functional languages,
such as lambda calculus, result in greater differences between the source code
and compiled binary code, which can increase the difficulty of de-obfuscation.
Therefore, we can translate and implement functionalities of a program using
different programming languages to mix execution models and conceal sensitive
program information. In this paper, our lambda obfuscation technique embeds
functional execution model of lambda calculus into C programs that use imper-
ative execution model. It translates the path condition instructions in original
compiled binary code into function calls that are implemented using lambda cal-
culus. In this way, we are able to make the execution model of the obfuscated
programs more complicated, thus hindering reverse engineering.

3.1 Lambda Calculus Basics

Lambda calculus is a formal system that uses the basic operations of function
abstraction and application to describe computation [19]. The basic building
blocks of lambda calculus are expressions called lambda terms. There are three
types of lambda terms, namely variable, abstraction, and application, the syntax
of which is defined by the following BNF specifications:

〈expression〉 ::= 〈variable〉 Variable

| λ〈variable〉.〈expression〉 Abstraction

| 〈expression〉〈expression〉 Application

A variable in lambda calculus is an arbitrary identifier. An abstraction can
be viewed as a notation for defining anonymous functions. For example, lambda
term (λx.e) defines an anonymous function whose parameter is the variable x and
the function body is another lambda term e. An application term captures the
action of applying a function to its arguments. For example, lambda expression
(f t) means applying function f to an expression t, which is provided as the
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argument to f . All valid lambda terms can be formed by repeatedly combining
the three basic lambda terms. Below are some examples of valid lambda terms:

x A variable x
λx.x An identity function
(λx.x) y Applying identity function to variable y
λp.λq.p q A function applying its first argument to the second one

When the λ symbol precedes a variable, it binds all the occurrences of this
variable in the abstraction body. A variable is called a bound variable if its name
is associated with a λ symbol. Other variables in the function body are called
free variables [11]. For example, in the following expression, variable x is a bound
variable while variable y is a free variable.

λx.x y

Reduction. The meaning of lambda calculus is defined by how lambda calculus
can be reduced [6]. This reduction process is achieved by substituting all free
variables in a way similar to passing the defined parameters into the function
body during a function call [23]. The main rule to perform reduction in lambda
calculus is called β-reduction, which can be defined as follows:

(λx.e1) e2 ⇒ e1[x → e2]

where notation e1[x → e2] denotes substituting all free occurrences of the vari-
able x with e2 in e1. β-reduction captures the essence of function application
and can be used to simplify and evaluate lambda terms. During the reduction
process, all intermediate function applications are carried out and eliminated.
The reduction process stops when β-reduction rule cannot be performed any
more. Here are several β-reduction examples.

(λx.x) y ⇒ y

(λx.x)(λy.y) ⇒ λy.y

(λx.x x)(λy.y) ⇒ (λy.y)(λy.y) ⇒ λy.y

3.2 Church Encoding

In lambda calculus, abstracts, or functions, is the only primitive type that is nat-
urally available. Therefore, to perform meaningful computation that resembles
what a modern programming language is capable of, it is imperative to find an
encoding scheme to express basic data types like integer and operators in lambda
calculus. For the purpose of lambda obfuscation, we employ Church encoding to
represent natural numbers and operators to implement lambda obfuscation. In
this section, we briefly introduce the basics of Church encoding.

Firstly developed by Alonzo Church, Church encoding describes the value of
a natural number as the number of times for which a function is applied to an
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argument. Natural numbers expressed this way are called Church numerals. For
example, when encoded as a Church numeral, the natural number 2 is a lambda
abstraction that applies its first argument to its second argument twice. The
Church numerals can be defined as follows:

0 ≡ λf.λx.x

1 ≡ λf.λx.f x

2 ≡ λf.λx.f (f x)
3 ≡ λf.λx.f (f (f x))
n ≡ λf.λx.fn x

As the definition indicates, the Church numeral n can be viewed as a high-
order function that takes a input function f and applies it to a value x for n
times. Therefore, a successor (SUCC) operator that takes a Church numeral n
and returns n + 1 essentially is appending another application of function f to
Church numeral n, which is defined as follows:

SUCC = λn.λf.λx.f (n f x)

Within this context, the addition operator can be accordingly defined as a
lambda expression. Conceptually, adding m to n is equivalent to adding 1 to
n for m times. Therefore, a PLUS operator that adds m to n is identical to
applying SUCC operator to n for m times. Therefore, PLUS operator can be
defined using SUCC operator as follows:

PLUS = λm.λn.m SUCC n

The predecessor (PRED) operator that takes a Church numeral n and returns
n − 1 is more complicated to define, but conceptually it is still equivalent to
getting the high-order function that applies its argument one less time than
Church numeral n. Similarly, subtraction (SUB) operator can be defined based
on PRED operator. Other important operators and logical predicates are defined
as follows:

PRED = λn.λf.λx.n (λg.λh.h (g f)) (λu.x) (λu.u)
SUB = λm.λn.n PRED m

TRUE = λx.λy.x

FALSE = λx.λy.y

ISZERO = λn.n (λx.FALSE) TRUE
LEQ = λm.λn.ISZERO(SUB m n)
GEQ = λm.λn.LEQ n m

Note that the PRED and SUB operators defined above are “truncated”, mean-
ing the decrementation stops at 0. This is expected since we have not defined
negative integers yet, which it is entirely feasible in lambda calculus. Due to
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limited space, we do not list the complete definitions of all primitives employed
lambda obfuscation. If interested, readers can find the corresponding information
in many materials on programing languages and logic1.

Through implementing the Church encoding of necessary operators, we are
able to perform basic arithmetic operations in lambda calculus, including addi-
tion, subtraction, multiplication, and division. We can also simulate equality and
all kinds of inequality comparisons, e.g., greater than, smaller than. For example,
0+1 is equivalent to perform reduction on the following lambda term in lambda
calculus:

PLUS 0 1 ≡ (λm.λn.m SUCC n)(λf.λx.x)(λf.λx.f x)
≡ (λm.λn.m (λn.λf.λx.f (n f x)) n)(λf.λx.x)(λf.λx.f x)

In other words, the Church encoding provides the lambda calculus terms with
which we can simulate the computation of path conditions in typical C programs.

From the perspective of program obfuscation, the Church encoding “acciden-
tally” possesses the capability of eliminating explicit control flows. As an exam-
ple, the ISZERO lambda term simulates a typical branch operation in impera-
tive programming. However, the computation, or more precisely the reduction,
of ISZERO does not contain any explicit decision making. Therefore, no logic-
significant control flows can be observed, which is one of the major advantages
of lambda obfuscation over traditional techniques.

3.3 Data Structures

To implement lambda obfuscation, we need to first design the data structure to
represent lambda terms. As introduced earlier, a lambda term can be one of the
variable type, abstraction type, and application type. Naturally, we use enum
structure to enumerate all three types, namely Tvar, Tlam, and Tapp. Because
lambda terms are defined inductively, the data structure we use needs to refer
and link to other lambda terms recursively. We define a C struct called term
including two main fields, i.e., type and data. The type field stores the type of
lambda terms. The data field stores different information based on the type of
the lambda term. For a variable, it only stores the identifier, which is a char.
For the abstraction structure, it includes a char to store the variable and a term
pointer as the function body. An application consists of two term pointers to link
the two expressions. Figure 1 presents the SUCC operator and Church numeral
2 using the data structures described above.

The benefit of representing lambda calculus with the term data structure is
twofold. Firstly, our data structure, along with the computation model of lambda
calculus, makes the execution flow more complicated for analysis tools to reason
about. In the imperative execution model, computation is conducted through

1 Our current implementation does not support floating point numbers and arithmetic,
but it is feasible and can be added into the implementation with more engineering
effort.
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Fig. 1. SUCC operator and Church numeral 2 in term structure

series of explicit instructions that modify memory states [4]. While in lambda
obfuscation, computation is conducted through manipulating term objects, such
as creating new term objects, changing term pointers, modifying variable identi-
fier, and removing existing term objects. Thus, it requires analysis tools to trace
the modifications of every intermediate steps to understand the internal logic
which is not only resource-intensive but also time-consuming. Our data struc-
ture and unique execution model and lambda calculus significantly increase the
cost and difficulty for binary analysis tools to reveal the internal logic of obfus-
cated programs. Secondly, the Church encoding, and our implementation of it
using term, is “unnatural” by itself in the first place. The encoding adopts a sig-
nificant different approach to encode natural numbers and other data types that
are mostly primitive in a traditional imperative computation model. Instead,
numbers become a link of term objects. As such, there are no more clear indica-
tions on what numbers the computation is operating on. This notably increases
the cost to trace a value in lambda calculus because it now requires adversaries
to trace the whole link of term objects to identify the number. Moreover, with
Church encoding, every expression can is represented as a function, making data
and operation much less distinguishable. In particular, the Church numerals are
simply high-order functions that take functions as arguments and return func-
tions as results. From this point, Church numerals are no different than other
lambda calculus operators, such as PLUS operator or SUB operator. During the
evaluation process, data and operator logic are mixed together. In summary,
leveraging this simple data structure we design to represent lambda calculus in
our implementation can make the obfuscated programs more obscure for attack-
ers to reverse engineer.
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3.4 Lambda Obfuscation

Theoretically, the lambda calculus is mostly as powerful as a modern program-
ming language, due to its Turing completeness. However, obfuscating the entire
program is usually against the common software engineering practices due to
considerable performance and maintenance cost. Therefore, software develop-
ers usually have to manually pick the part of code they consider sensitive and
vulnerable as obfuscation candidates.

To demonstrate the value of lambda obfuscation, we particularly pick path
conditions as the targets to apply obfuscation to. To be specific, we re-implement
the computation of path predicates with lambda calculus. Path conditions, in
most software, are the crux of understanding program behavior and computation
logic. By focusing on this part, we are able to evaluate lambda obfuscation
without domain-specific knowledge about the software we obfuscate.

Branches are usually implemented through comparison. To obfuscate a path
condition instruction, we combine the corresponding lambda comparison oper-
ator with the compared parameters which are both encoded as lambda terms,
forming a lambda expression that represents the path condition computation.
At run time, the lambda expression is evaluated to a form that cannot be fur-
ther reduced. This irreducible lambda term, namely the computation result,
will be decoded back to the imperative value it represents. Typically, a boolean
value will be returned to guide the execution of following branching instruction.
In this way, the branch information gets protected by lambda obfuscation and
many potential leakages of sensitive information to adversaries can be prevented.

4 Implementation

We implement lambda obfuscation based on LLVM, a architecture-independent
compilation framework supporting flexible program transformations. As shown
in Fig. 2, our obfuscation work-flow is divided into three stages. The first step
is preprocessing. In this stage, we compile all source code to be obfuscated into
the LLVM intermediate representation (IR). The next step is transformation,
in which the obfuscator identifies all eligible instructions used for path condi-
tion computation and translate these instructions into lambda calculus terms.
These instructions will then be replaced by trampolines to a lambda calculus
interpreter that accepts the generated lambda calculus terms as input. In the
last compilation stage, the obfuscated IR code are compiled to machine code and
linked into an executable binary. The lambda calculus interpreter is implemented
with 736 lines of C code2. We elaborate on the details of each stage below.

4.1 Preprocessing

In LLVM, the majority of program analysis and optimization phases are con-
ducted at the LLVM IR level. In order to leverage the strength of the transforma-
tion framework, we compile the source code into LLVM IR code. The compilation
2 For more implementation details, please refer to an extended version of this

paper [12].
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Fig. 2. The work-flow of lambda obfuscation

is conducted without any optimization so the IR code captures the unmodified
behavior of the original program. The input source code comprises not only
source code of the program to be obfuscated but also the implementation of our
lambda calculus interpreter. However, only the LLVM IR code generated from
the target program source code will be obfuscated in the transformation stage.
Because we select C programs to evaluate the effectiveness of our obfuscator,
we use clang as our front-end compiler to generate LLVM IR code during our
preprocessing stage.

4.2 Transformation

LLVM provides an easy-to-extend pass-based transformation framework. Users
can customize and implement passes at different program level based on their
needs and requirements. We implement a function pass that processes each func-
tion in a compile unit to identify instructions that are suitable for obfuscation.

Identifying Instruction Candidates. After the preprocessing stage, LLVM
IR code generated from the source is fed into another LLVM pass for analysis.
Every IR instruction is analyzed to determine whether it meets our obfuscation
requirement. In theory, lambda obfuscation is capable of obfuscating all kinds
of computation. At this point, our prototype obfuscates path conditions which
serve as crucial parts forming the control flows of a program. As for the types of
instruction, the pass selects the following six types of instructions that compute
different path conditions: equal, not equal, greater than, greater or equal, less
than, and less or equal. To allow users to control the strength of obfuscation,
the pass picks instruction candidates randomly based on a percentage specified
by users.

Transforming Instructions. After identifying the candidates for obfuscation,
a translation pass performs lambda transformation for these instructions. Path
conditions are replaced by the corresponding lambda calculus function calls to
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Fig. 3. LLVM code of a C program before and after obfuscation

lambda calculus interpreter with proper input parameters, including the type
of comparison operators and operands. The lambda calculus interpreter simu-
lates the computation of the path condition and returns the result to a register
which is send back to the original program as the computed path condition.
Figure 3 shows the LLVM IR code of a example C program before and after our
obfuscation.

4.3 Compilation

In the final stage, we compile the obfuscated IR code and the IR code of our
lambda calculus interpreter into native machine instructions. It is worth noting
that since we implemented the lambda calculus interpreter in C, no additional
runtime environment is required to execute the obfuscated binary. This imple-
mentation decision also increases the stealthy of our obfuscation approach.

5 Evaluation

We evaluate lambda obfuscation in four aspects, i.e., potency, resilience, cost,
and stealth, which are firstly proposed by Collberg et al. [5]. Potency measures
how complicated and unintelligible the program has become after obfuscation.
Resilience indicates how well the obfuscated program can withstand automated
reverse engineering. Cost measures how much the software is slowed down as the
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cost of obfuscation. Stealth describes to what extent the obfuscated program
resembles the original program such that the presence of obfuscation is hard to
detect.

For the purpose of evaluation, we picked two open source C programs to
obfuscate using our lambda obfuscation prototype. The two programs are bzip2,
a file compressor, and regexp, a regular expression engine. Both applications
contain many integral path conditions therefore enough obfuscation candidates.

In the evaluation, the obfuscation strength is described by a metric called
obfuscation level, which is defined as the percentage of obfuscated path con-
ditions with respect to all qualified obfuscation candidates. For example, an
application obfuscated at the 20% obfuscation level indicates that the 80% of
the original integral path conditions remain unmodified while the rest 20% are
transformed into lambda calculus terms. To avoid being biased in the experi-
ments, we randomly select path conditions to obfuscate. In reality, however, the
program components to protect are usually identified by developers with care to
achieve the highest possible cost-effectiveness.

5.1 Potency

In order to quantify the potency of lambda obfuscation, we first measured three
basic software complexity metrics that are derived from call graphs and control
flow graphs before and after transformation. The metrics are the number of edges
in the call graph, the number of edges in the control flow graph, and the number
of basic blocks. With the help of IDA Pro, a disassembler widely used in the
industry, we generated call graphs and control graphs from binaries compiled
from original and obfuscated LLVM IR code.

In addition to these basic metrics, we also calculated two advanced indicators
of software complexity which have long been utilized by the software engineering
community, i.e., the cyclomatic number [16] and the knot count [29]. The cyclo-
matic number is defined as E − N + 2 where E is the number of edges and N is
the number of vertices in the program’s control flow graph. The knot count, on
the other hand, is the count of intersections among the control flow paths when
all basic blocks in the function are linearly aligned.

Table 1 presents the potency-related statistics of the two evaluated applica-
tions before and after obfuscation, at the obfuscation level of 30%. As can be

Table 1. Program metrics before and after obfuscation at obfuscation level 30%

bzip2 Obfuscated bzip2 regexp Obfuscated regexp

# of call graph edges 620 1049 144 380

# of basic blocks 2590 2839 392 643

# of CFG edges 3795 4155 562 883

Knot count 3162 3304 482 616

Cyclomatic complexity 1207 1278 172 242
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seen through the results, the complexity of both applications has increased by a
significant amount after being obfuscated indicating that lambda obfuscation is
able to make programs more difficult for attackers to reverse engineer.

5.2 Resilience

For resilience evaluation, we performed concolic testing on an arbitrary C pro-
gram before and after obfuscation using our approach. Concolic testing is initially
a software verification technique combing concrete execution of a program with
symbolic execution. Concolic testing aims to cover as many feasible execution
paths of a program as possible [10]. However, attackers can use concolic testing
to reveal sensitive control flow information of a program and learn about pro-
gram semantics. By performing concolic testing experiment, we tried to imitate
a reverse engineering attack on programs protected by lambda obfuscation. We
picked a popular concolic testing tool, KLEE, which is capable of automatically
generating test cases and achieving a high coverage of possible execution paths
[3]. The program used for testing the matchup between KLEE and lambda obfus-
cation is the obfuscated binary of a simple C program shown in Fig. 4. We used
this extremely simple program to rule out irrelevant factors that can possibly
affect the performance of KLEE.

Fig. 4. C program to be obfuscated in KLEE experiment

With the experiment, we found that KLEE could successfully finish concolic
testing on the unobfuscated binary. To be specific, KLEE succeeded in discov-
ering both paths of the C program and generating test cases for the original
program. In contrast, KLEE failed to generate any possible paths for the obfus-
cated binary. The topmost issue that caused the failure was that there were
too many possible states for KLEE to explore and reason such that KLEE kept
hitting the maximum memory capacity and eventually stopped without return-
ing any possible paths. This result indicates that lambda obfuscation makes an
extremely simple program so complicated that KLEE can no longer reveal any
useful control flow information of the protected program.
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5.3 Cost

The major source of performance overhead introduced by lambda obfuscation
comes from the encoding and decoding translation process and the reduction
time of lambda calculus. In order to measure the cost of our technique, we
applied obfuscation to bzip2 and regexp at the obfuscation level of 30%. The
test input used for the experiments are the original test cases shipped with the
source code. Each application was executed 10 times and the average run time
is presented with the slowdown.

Table 2. Overhead of lambda obfuscation on bzip2 and regexp

Interpreter
invocations

Average time
(original)

Average time
(obfuscated)

Overhead

bzip2 375,351 0.0625 s 15.574 s 41.492µs

regexp 822,873 0.413 s 28.716 s 34.89µs

Table 2 compares the execution time of both applications before and after
obfuscation. We also recorded how many times was our lambda calculus inter-
preter invoked during each application’s runtime and we calculated the average
overhead. As Table 2 shown, on average every single call to our lambda calcu-
lus API requires 38.19µs. We believe the cost is moderate and comparable to
normal function calls. Besides, we argue that the overhead of our lambda cal-
culus obfuscation is reasonable and can be reduced. Since we chose our path
condition instruction candidates totally at random, some of the obfuscated path
condition instructions resided in hot spots and these path condition instructions
were being intensively called and used during runtime. For example, some of the
path condition instructions we obfuscated in bzip2 resided in for loops which
eventually accumulated to slowdown the program. In such cases, the overhead
introduced by lambda obfuscation is inevitable and forgivable. In practice, users
can obfuscate path conditions that are sensitive while less intensively-used to
gain the maximum benefit from lambda obfuscation.

5.4 Stealth

To measure how stealthy lambda obfuscation is, we collected the distribution of
instructions in the obfuscated sample C programs and compared them with that
of the original binary.

Figures 5 and 6 show the instruction distribution of the original and obfus-
cated programs at obfuscation level of 30%. As we can see from the figures, the
distribution of our obfuscated programs is very similar to their original distri-
butions. In this case, we believe that the behavior of the obfuscated programs
resembles their original one and it would be very difficult for adversaries to
detect the presence of lambda obfuscation through the statistical features of the
protected binaries.
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6 Discussion

6.1 Countering Dynamic Monitoring

Opaque predicates and many other control flow obfuscation methods are inher-
ently vulnerable to dynamic analysis, i.e., attackers monitoring the execution of
the obfuscated software and checking control flows at run time. Lambda obfus-
cation may face similar challenges when only partially applied to protecting
branch conditions. Learning from previous work, we find that there are several
ways to alleviate this issue. One possible countermeasure is to blur the bound-
aries between lambda simulation and the original program code, using heuristics
like function inlining and jumps across functions [14].

6.2 Potential Extensions

Currently, lambda obfuscation is only applied to the computation of integral path
conditions. The limitation of our technique is caused by the fact that Church
encoding is only capable of encoding natural number instead of real number.
According to Church-Turing thesis, any data types can be encoded using lambda
calculus [8]. One way to encode real number is using a Cauchy sequence of
rational numbers [9]. After properly encoding real number in lambda calculus,
we can extend our approach to obfuscate instructions involving real number.

Lambda calculus can also be extended to obfuscate other instructions besides
path condition instructions that we currently focus on. Lambda calculus inter-
preter is capable of handling multiple arithmetic operations, such as addition,
subtraction. Our obfuscator can be applied to any instructions containing such
operations. In order to obfuscate these instructions, we can extend our LLVM
obfuscator to identify suitable instructions and replace them with corresponding
lambda calculus function calls.

Another way to enhance the obfuscating effect is to implement indirect con-
trol transferring similar to the obfuscation schema proposed by Ma et al. [15].
Currently, our obfuscator replaces path condition instructions with lambda func-
tion calls that return boolean signals to guide following conditional jump instruc-
tions. Instead of returning boolean signals, the obfuscator can return instruc-
tion addresses and we can modify following conditional jump instructions to be
unconditional jump instructions that take instruction addresses. In this way, we
can transform conditional logic into unconditional control transfer to make the
obfuscated programs even more confusing for attackers to make sense.

We are also envisioning that obfuscating effect can be notably enhanced by
“recursively” applying the proposed technique. That means, we first obfuscate
the input program with our Lambda obfuscator, and further re-obfuscate the
first round product with our technique. As discussed by existing research [26],
such recursive process can even be launched for hundreds of iterations, which
could largely increase the program complexity to defeat adversary analysis.
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6.3 Combining with Other Obfuscation Methods

In this paper, we implement the lambda transformation at LLVM IR level using
pass framework. In LLVM, every pass can be considered as an independent opti-
mization of the original program and multiple different passes can be applied if
needed. Therefore, lambda calculus is compatible with other obfuscation tech-
niques if they happen at source code level or at LLVM IR level. Lambda calculus
obfuscation can serve as an extra obfuscation layer to be applied before compila-
tion of the program with other obfuscation techniques to make the program more
obscure and secure. Besides, lambda obfuscator comes with reduction rules to
evaluate lambda calculus which means the obfuscated program can run without
an extra runtime environment. It can independently encode and decode lambda
numerals and perform the whole evaluation process. This independent character-
istic makes lambda calculus obfuscation less possible to affect other obfuscation
techniques if applied together.

6.4 Obfuscating Complete Branch Predicates

Currently, in the obfuscated program, path condition instructions are replaced
with lambda calculus function calls with instruction type and operands as input
parameters. In order to further limit adversaries’ knowledge to program seman-
tic, we can further obfuscate instruction information. One possible solution is
to encode all instruction information using lambda calculus and combine them
into one single lambda term. Every instruction can be transformed into a dif-
ferent lambda calculus function which encapsulates the lambda calculus term
that represents the instruction type and operands. By calling every instruction-
specific function, our lambda calculus evaluator can still simulate the behavior
of each obfuscated instruction. In this way, the instruction information is con-
cealed through lambda calculus encoding and less program semantic is leaked to
attackers.

7 Conclusion

In this paper, we propose a novel obfuscation technique based on lambda cal-
culus. The behavior of path condition instruction is simulated using lambda
calculus while sensitive instruction information is concealed. The complicated
execution model of lambda calculus makes the obfuscated programs more
obscure for the adversaries to make sense and reverse engineer. We implement a
lambda obfuscator that transforms path condition instructions into correspond-
ing lambda calculus function calls. A lambda interpreter is also implemented to
evaluate lambda calculus function calls and return boolean signals to guarantee
the behavior of original path condition instructions is still preserved. We evaluate
our prototypical implementation of lambda obfuscation with respect to potency,
resilience, cost and stealthy. The experiment result shows that our obfuscation
technique can make the program more obscure with only modest overhead.
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8. Pérez, Á.G.: Operational aspects of full reduction in lambda calculi. Ph.D. thesis,
E.T.S. de Ingenieros Informticos (UPM) (2014)

9. Geuvers, H., Niqui, M., Spitters, B., Wiedijk, F.: Constructive analysis, types and
exact real numbers. Math. Struct. Comput. Sci. 17(1), 3–36 (2007)

10. Giantsios, A., Papaspyrou, N., Sagonas, K.: Concolic testing for functional lan-
guages. In: Proceedings of the 17th International Symposium on Principles and
Practice of Declarative Programming (PPDP 2015), pp. 137–148 (2015)

11. Hudak, P.: Conception, evolution, and application of functional programming lan-
guages. ACM Comput. Surv. (CSUR) 21(3), 359–411 (1989)

12. Lan, P.: Lambda obfuscation. Master’s thesis, The Pennsylvania State University
(2017)

13. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: Proceedings of the International Symposium on Code
Generation and Optimization (CGO 2004), pp. 75–86, March 2004

14. Ma, H., Li, R., Xiaoxu, Y., Jia, C., Gao, D.: Integrated software fingerprinting via
neural-network-based control flow obfuscation. IEEE Trans. Inf. Forensics Secur.
11(10), 2322–2337 (2016)

15. Ma, H., Ma, X., Liu, W., Huang, Z., Gao, D., Jia, C.: Control flow obfuscation using
neural network to fight concolic testing. In: Proceedings of 10th International Con-
ference on Security and Privacy in Communication Networks (SECURECOMM
2014), pp. 287–304 (2014)



224 P. Lan et al.

16. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. SE-2(4), 308–320
(1976)

17. Myles, G., Collberg, C.: Software watermarking via opaque predicates: implemen-
tation, analysis, and attacks. Electron. Commer. Res. 6(2), 155–171 (2006)

18. Palsberg, J., Krishnaswamy, S., Kwon, M., Ma, D., Shao, Q., Zhang, Y.: Experience
with software watermarking. In: Proceedings of 16th Annual Computer Security
Applications Conference (ACSAC 2000), pp. 308–316 (2000)

19. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
20. Rauti, S., Laurén, S., Hosseinzadeh, S., Mäkelä, J.-M., Hyrynsalmi, S., Leppänen,

V.: Diversification of system calls in linux binaries. In: Yung, M., Zhu, L., Yang,
Y. (eds.) INTRUST 2014. LNCS, vol. 9473, pp. 15–35. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-27998-5 2

21. Rojas, R.: A tutorial introduction to the lambda calculus. CoRR, abs/1503.09060
(2015)

22. Sharif, M.I., Lanzi, A., Giffin, J.T., Lee, W.: Impeding malware analysis using
conditional code obfuscation. In: Proceedings of the 15th Annual Network and
Distributed System Security Symposium (NDSS 2008) (2008)

23. Slonneger, K., Kurtz, B.L.: Formal Syntax and Semantics of Programming Lan-
guages. Addison-Wesley Longman Publishing Co., Inc., Boston (1995)
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Abstract. Obfuscation is an important technique to protect software
from adversary analysis. Control flow obfuscation effectively prevents
attackers from understanding the program structure, hence impeding a
broad set of reverse engineering efforts. In this paper, we propose a novel
control flow obfuscation method which employs Turing machines to sim-
ulate the computation of branch conditions. By weaving the original pro-
gram with Turing machine components, program control flow graph and
call graph can become much more complicated. In addition, due to the
runtime computation complexity of a Turing machine, program execution
flow would be highly obfuscated and become resilient to advanced reverse
engineering approaches via symbolic execution and concolic testing.

We have implemented a prototype tool for Turing obfuscation. Com-
paring with previous work, our control flow obfuscation technique deliv-
ers three distinct advantages. (1) Complexity: the complicated structure
of a Turing machine makes it difficult for attackers to understand the
program control flow. (2) Universality: Turing machines can encode any
computation and hence applicable to obfuscate any program component.
(3) Resiliency: Turing machine brings in complex execution model, which
is shown to withstand automated reverse engineering efforts. Our evalu-
ation obfuscates control flow predicates of two widely-used applications,
and the experimental results show that the proposed technique can obfus-
cate programs in stealth with good performance and robustness.

Keywords: Software security · Control flow obfuscation
Reverse engineering · Turing machine

1 Introduction

Most software exploitation and hijacking attacks start by identifying program
vulnerable points (e.g., buffer overflow). To launch attacks directly towards exe-
cutable files, attackers usually need to first perform reverse engineering activities
and recover the control flow structures of the victim programs. Moreover, we also
notice that automated software analyzers can leverage advanced symbolic and
concolic testing techniques to explore execution paths and hence revealing hid-
den vulnerabilities in binary code [6,12,20]. Typical concolic engines [5,11] could
yield inputs which lead to new execution paths by solving branch conditions as
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constraints, and such technique has been proved as very effect in understanding
program structures [19].

A lot of software security research has focused on preventing reverse engi-
neering activities on program control structures and execution paths [18,21,26,
27,29]. Control flow obfuscation is one of these cutting-edge techniques to com-
bat both static and dynamic reverse engineering tools. Control flow obfuscation
largely changes the program control flow structures, and it has been shown as
effective to hide path conditions and complicate the execution flow of a pro-
gram. By rewriting or adding extra control flow components, the program path
conditions become difficult or even impossible to analyze.

In this paper, we propose a novel control flow obfuscation method which
leverages Turing machine to compute path conditions. The Church-Turing the-
sis [9] states that the power of Turing machines and λ-calculus is the same as
algorithms, or the informal notion of effectively calculable functions. Formally,
Turing computable, λ-computable, and general recursive functions are shown to
be equivalent, and informally, the thesis states that they all capture the power of
algorithms or effectively calculable functions. This means any functional compo-
nent of software can be re-implemented as or transformed into a Turing machine;
the replaced code component and its corresponding semantic equivalent Turing
machine is called Turing Equivalent.

Our method is to simulate important branch condition statements in a pro-
gram with semantic equivalent Turing machines. A Turing machine behaves as
a state machine which brings in extra control flow transfers and basic blocks
to the overall program control flow graph. Moreover, a typical Turing machine
leverages transition tables to guide the computation, and such transition table-
based execution would introduce complicated execution model and make the
program execution much more challenging to analyze. We envision the proposed
technique would largely complicate the protected program, and also bring in new
challenges for reverse engineering analyzers. In addition, since Turing machine
can represent the semantics of any program computation, our method is funda-
mentally capable of obfuscating any functional component.

To obfuscate a program through the proposed Turing obfuscator, we first
translate the original program source code into a compiler intermediate repre-
sentation. Our Turing machine obfuscator then selects branch condition state-
ments (i.e., branch predicates) for transformation; the transformed statements
will invoke its corresponding Turing machine component, which is semantic
equivalent to the original branch conditions. After finishing the execution in
the Turing machine “black box”, the execution flow returns back to the original
program point, with a return value to determine the branch selection. Consistent
with existing work [8], we evaluate our obfuscator regarding five aspects, namely
functionality correctness, potency, resilience, cost, and stealth. Results show that
the proposed Turing obfuscator can effectively obfuscate commonly-used soft-
ware systems with acceptable cost, and impede reverse engineering activities
through an advanced symbolic execution analyzer (i.e., KLEE [5]).
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The rest of this paper is organized as follows. Section 2 discusses related works
on obfuscation, especially control flow obfuscation. Section 3 presents the overall
design of Turing machine obfuscator. Obfuscator implementation is discussed in
Sect. 4. Section 5 presents the evaluation result of our proposed technique. We
further give discussions in Sect. 6, and conclude the paper in Sect. 7.

2 Related Work

In general, reverse engineering techniques can be categorized into static and
dynamic approaches. To impede static reverse engineering, researchers essen-
tially focus on hardening disassembling and decompiling process. To combat the
dynamic reverse engineering techniques such as concolic testing, sensitive con-
ditional transfer logic is proposed to be hidden from adversaries. Control flow
obfuscation has been proved effective in this scenario.

Sharif et al. [21] propose a technique to rewrite certain branch conditions and
encrypt code components that are guarded by such conditions. Branch condi-
tions that are dependent on the input are selected and branch condition outputs
are transformed with a hash function. Moreover, the code component which is
dependent on a transformed condition would be encrypted; the encryption key
is derived from the input which satisfies the branch condition. In general, their
technique focus on selectively translate branch conditions that are dependent on
the input, which could leave many branch conditions unprotected. Also, since the
branch condition statement itself is mostly untouched (only the boolean output
is hashed), the original branch condition code is still in the obfuscated program,
which could be leveraged to reveal the original semantics.

Popov et al. [18] propose to replace unconditional control transfer instruc-
tions such as jmp and call with “signals”. Their work is used to impede binary
disassembling, the starting point of most reverse engineering tasks. Moreover,
dummy control transfers and junk instructions are also inserted after the replaced
control transfers. This method is effective in fooling disassemblers in analyzing
unconditional transfers but it could become mal-functional when the conditional
transfers need to be protected as well. Another related work proposes to protect
control flow branches leveraging a remote trusted third party environment [26].
In general, their technique mostly introduces notable network overhead and also
relies on trusted network accessibility which may not be feasible in practice.

Ma et al. [15,16] propose to use neural network to replace certain branch
condition statements; the propose technique is evaluated to conceal conditional
instructions and impede typical reverse engineering analysis such as concolic test-
ing. While the experimental results indicate the effectiveness to certain degree,
in general neural network-based approach may not be suitable for security appli-
cations. To the best of our knowledge, neural network works like a black box;
it lacks a rigorous theoretical foundation to show a correct result can always
to generated given an input. In other words, neural networks may yield results
which lead to an incorrect branch selection. We also notice some recent work
proposing to translate program components implemented in imperial language
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(C/C++) into languages of other computation paradigms. It is argued that by
mixing languages of different execution model and paradigms, the complexity of
software systems grows and reverse engineering becomes more difficult. Wang
et al. [23] presents a general framework to translate C statements into a logic
statements written in Prolog. Lan et al. [13] proposes to obfuscate program
control flow predicates with functional programming language statements.

3 Turing Obfuscation

3.1 Design Overview

In a program, a branch condition statement compares two operands and selects
a branch for control transfer based on the comparison result. As aforementioned,
Turing machine has been proved to be able to simulate the semantics of any func-
tional component of a program. Hence, any program branch condition statement
can be modeled by a Turing machine. Taking advantage of its powerful compu-
tation ability as well as execution complexity, we propose to employ Turing
machine to obfuscate branch condition statements (the branch condition state-
ment is referred as “branch predicate” later in this paper since its output is
usually a boolean value) in a program. A Turing machine obfuscated branch
condition statement is shown in Fig. 1. Instead of directly computing a boolean
value through a comparison instruction, we feed a Turing machine with the
inputs (the value of operands) and let the Turing machine to simulate the com-
parison semantics.

Fig. 1. Obfuscate a branch condition statement through a Turing machine.

3.2 Turing Machine

As shown in Fig. 2, a typical Turing machine consists of four components:

– An infinite-long tape which contains a sequence of cells. Each cell holds a
symbol defined in the tape alphabet (the alphabet is introduced shortly).
In this work, our proposed Turing machine obfuscator would dynamically
allocate new tape cells to construct an infinite tape to store intermediate
results.



Turing Obfuscation 229

– A tape head which could perform read, write, move left and move right
operations over the tape.

– A state register used to record the state of the Turing machine. Turing
machine states are finite and defined in the transition table.

– A transition table that consists of all the transition rules defining how a
Turing machine transfers from one state to another.

Although simple, a Turing machine model resembles a modern computer in
several ways. The head is I/O device. The infinite tape acts like the memory.
The transition table defines the functionality of this Turing machine which is
comparable to the application code.

* . . . . . * . * *

S1

State Register

Infinite Tape

Transi on Rule 1

Transi on Rule 2

Transi on Rule 3

...

Transi on Table

Head

Fig. 2. Turing machine components.

Transition Table. A transition rule could be represented by a five-element
tuple (Sc, Tc, Sn, Tn,D) where:

– Sc is the current Turing machine state.
– Tc is the current tape cell symbol read by the head.
– Sn is the new Turing machine state.
– Tn is the symbol head writes to the current tape cell.
– D is the direction towards which the head should move (i.e., “left” or “right”).

In general, every five-element tuple represents a transition table rule shown
in Fig. 2.

Turing Machine Encoding. Initially, Turing machine is at the “start” (S0)
state and tape records the Turing machine input. Consistent with existing Tur-
ing machine simulator project [22], blank symbol is denoted as “*” on the tape,
while the length of “·” is used to encode an operand. For instance, integer 5 is rep-
resented as five continuous “·” on the tape. Note that a Turing machine could be
encoded with various of ways, and our prototype represents only one of them. Tur-
ing machine with different encoding strategies operates with totally distinct execu-
tion patterns. This also makes Turing machine obfuscation difficult to be analyzed.
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In general, our Turing machine tape alphabet includes two symbols, i.e.,
{·, ∗}. The tape in Fig. 2 shows an initial state of a Turing machine. The head
of the Turing machine is placed on the leftmost cell. Different operands are
separated by a blank symbol “*”. Operands encoded on the tape in Fig. 2 are
five and one. When Turing machine starts to run, the head reads the current
tape cell, combines with the current state register to locate a transition rule in
the transition table, and then moves to the next state, accordingly.

Turing Machine Execution. The Turing machine keeps running step by step
directed by the transition table until it reaches a Halt state. Nevertheless, Turing
machine may also keep running forever since the process of solving some problems
cannot terminate. In our research, we implement a Turing machine to simulate
branch predicates so it should always reach a Halt state. When reaching the Halt
state, the machine stops running and the computation result is shown on the
tape. Table 1 shows a transition table example, which guides a Turing machine
for the addition (i.e., add) operation in our implementation.

Table 1. Transition table of the add operation in a Turing machine.

Current state Current symbol New state New symbol Direction

S0 * S0 * Right

S0 . S1 . Right

S1 * S2 . Right

S1 . S1 . Right

S2 * S3 * Left

S2 . S2 . Right

S3 * S3 * Left

S3 . S4 * Left

S4 * Halt * -

S4 . S4 . Left

Addition Turing Machine. In this section, we elaborate on the design of
the addition Turing machine; this machine simulates the semantics of the add
operation. Other Turing machines (e.g., subtraction and multiplication Turing
machines) used in this research are designed in a similar way. Figure 2 presents a
sample initial stage of a tape, and the corresponding addition transition rules are
shown in Table 1 (this table will be explained shortly). After a sequence of read
and write operations based on the transition table, left operand (integer value
5) and right operand (integer value 1) that are separated by a blank symbol “*”
are merged into a long series of “·” cells on the tape. The length of the output
dot cells is 6, which represents the integer value 6 as shown in Fig. 3.
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* . . . . . . * *

Fig. 3. Execution result of the add Turing machine.

Interpreting a transition table could be difficult for a human being. To repre-
sent an understandable description on how the addition transition table works,
we summarize the transition table rules in an algorithm description. Algorithm1
describes the transition table of the addition operation; it states a method to
combine two sequences of dot cells on the tape into a longer sequence of cells.
Following this algorithm, the isolator cell (i.e., the blank symbol) is written to
“·” when Turing machine terminates at the “Halt” state.

Algorithm 1. Description of the add transition table.
1: procedure
2: head ← the blank cell before the left operand starting cell
3: while head != the blank cell after the right operand do move right

4: move left
5: the last dot cell of the right operand ← blank symbol
6: while head != the blank cell within these two operands do move left

7: the blank cell ← dot
8: while head != the blank cell before the left operand do move left

9: Halt;

Turing Machine of Other Operations. Besides the aforementioned addition
operation, we also implement transition tables of other arithmetic operations. In
particular, we construct three more transition tables for subtraction, multipli-
cation and division operations. Their transition tables are relatively more com-
plex than Table 1. Actually in our implementation, we build transition tables of
16, 34 and 80 transition rules for subtraction, multiplication and division Tur-
ing machines, respectively. Comparison operations in a branch predicate (e.g.,
≤,≥, �=) is built on the basis of the subtraction Turing machine, and all the
arithmetic operations are used to simulate “dependences” of the comparison
operations on the IR level (details are given in Sect. 4.3). In sum, we construct
4 transition tables, with overall 140 transition table rules in total.

3.3 Universal Turing Machine

While a Turing machine could perform powerful algorithm simulation, its com-
putation ability is bounded by its initial tape state and embedded transition
table. For instance, a Turing machine capable of doing addition operation could
only simulate the add operation since other operations would have very different
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Transi on rule 1

Transi on rule 2

Transi on rule 3

...

Turing Machine Encoding Inputs Output

HeadTape

Scanned Symbol

Current State

Transi on Table

Fig. 4. Universal Turing machine.

transition rules. That means, an add Turing machine could not represent the
subtract operations. Also, since the initial state needs to be encoded on the
tape before the computation, a Turing machine encoded with 2 + 3 could not
conduct represent 5 + 6.

In non-trivial programs, branch predicate could include various arithmetic
and comparison operations, and many of these expressions would lead to differ-
ent Turing machines. Hence, we need a unified translator to represent arbitrary
computations. Universal Turing machine is designed to simulate arbitrary com-
putations. As shown in Fig. 4, the typical design of a Universal Turing machine
stores all the transition tables and one table is selected each time according to
the semantics of the upcoming computation (e.g., add). To maintain the input
data, Universal Turing machine dynamically allocates memory cells to initialize
one tape before computation. Hence, all the information needed for arbitrary
computations exists in the Universal Turing machine.

Universal Turing machine bears the essence of the modern computer which is
being programmable. Through storing different transition tables and inputs on
the tape, a universal Turing machine can actually perform semantic equivalent
computation to represent arbitrary programs; as aforementioned, such Universal
Turing Machine and the replaced expression are Turing Equivalent. In our Turing
machine obfuscator design, all the branch predicates invoke a unified interface
towards a Universal Turing machine, where a transition table is selected accord-
ing to the opcode of the obfuscated instruction, and a tape is constructed to
represent the input value.

4 Implementation

Our proposed obfuscator consists several components including a universal Tur-
ing machine model and several transformation passes based on the LLVM com-
piler suite [14]; As shown in Fig. 5, our Turing obfuscator performs a three-phase
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process to generate the obfuscated output. The first step translates both target
program and the universal Turing machine source code into the LLVM interme-
diate representation (IR). The obfuscator then iterates IR instructions to iden-
tify obfuscation candidates (the second phase). After that, we then perform the
obfuscation transformation towards all the candidates or a randomly-select por-
tion (the third phase). The instrumented IR code is further compiled into the
final obfuscated product. We implement the universal Turing machine model
with in total 580 lines of C code and LLVM passes with 341 lines of C++ code.1

We now elaborate on each phase in details.

Universal Turing 
machine 

Subject Program

C

C

IR

IR

Clang

Clang

LLVM-Linker

Analysis 
pass

OBJ
llc

Binary
gcc

IR IR IR

Transforma on 
pass

Fig. 5. Workflow of the Turing machine obfuscator.

4.1 Phase One: Translate Source Code to IR

As aforementioned, we first compile the target source program into LLVM IR;
the obfuscation transformation is performed on the IR level. Considering a broad
set of front end compilers provided by LLVM which can turn programs written by
various programming languages into its IR, this IR-based implementation could
broaden the application scope of our tool comparing with previous work [15,16,
26]. Since we employ C programs for the evaluation, Clang (version 5.0) is used
as the front end compiler in this paper.

4.2 Phase Two: Collect Transformation Candidate

The LLVM Pass framework is a core module of the LLVM compiler suite to
conduct analysis, transformation and optimization during the compile time [14].
In this step, we build a pass within this framework to iterate and analyze every
IR instruction in each module of the input program. During the analysis pass,
our Turing machine obfuscator locates all the transformation candidates on the
IR instruction level.

Locate Candidate Predicates. While the proposed technique is fundamen-
tally capable of obfuscating any program component, the implementation cur-
rently focuses on branch predicates since control-flow obfuscation is effective to
defeat many reverse engineering activities (Sect. 1). In general, the transforma-
tion candidate set includes 10 kinds of branch predicate instructions as: equal,
1 Please refer to an extended version of this paper for more implementation details [25].
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not equal, unsigned less than, unsigned greater than, unsigned less or equal,
unsigned greater or equal, signed less than, signed greater than, signed less or
equal, signed greater or equal.

4.3 Phase Three: Obfuscation Transformation

The second phase provides all the eligible transformation candidates. In this
step, We build another transformation pass within the LLVM Pass framework
to perform the obfuscation transformation. As shown in Fig. 6, predicate instruc-
tions are obfuscated; we rewrite instructions into function calls to the universal
Turing machine. The computation of the branch predicate is launched inside the
Turing machine, and the computation result is passed to a register which directs
the associated path selection. Our technique is able to obfuscate all the branch
predicates in a program or only transform a subset of (security sensitive) candi-
dates. Such partial obfuscation is denoted as “obfuscation level”, which will be
discussed shortly.

...

%77 = load i32, i32* %14, align 4

%78 = load i32, i32* %17, align 4

%79 = add nsw i32 %77, %78

%80 = load i32, i32* %9, align 4

%81 = icmp slt i32 %79, %80

br i1 %81, label %82, label %318

...

...

define zeroext i1 @UTM(i32, i32, i32, i8*, i8*) #0 {

%6 = alloca i1, align 1

%7 = alloca i32, align 4

%8 = alloca i32, align 4

%9 = alloca i32, align 4

%10 = alloca i8*, align 8

...
%81 = call i1 (i32, i32, i32, ...) @UTM(i32 39, 

i32 %79, i32 %80)

%79 = call i1 (i32, i32, i32, ...) @UTM(i32 2, i32 
%77, i32 %78)

Use-def 
Chain

Fig. 6. Obfuscation transformation for an icmp instruction. “UTM” standards for uni-
versal Turing machine.

For an obfuscated predicate, our current “transform to function call” imple-
mentation utilizes a boolean return value to select a branch to transfer. On the
other hand, we notice existing work (e.g., [15,16]) leverages a cross-procedure
jump at this step; an indirect jump from the black box of the obfuscation compo-
nent to a selected branch. We present further discussion on both control transfer
strategies in Sect. 6.

Operand Type. In general, a branch predicate instruction can have either
pointer or numerical data types (i.g., integer or float types). While the proposed
technique is generally capable of translating branch predicate of any operand
type, considering processing operands of pointer (and float) type would bring in
additional complexity, our current prototype is designed to only handle operands
of integer type. Actually our tentative study shows that most of the branch pred-
icate instructions would have operands of integer type, hence, our implementa-
tion choice is indeed capable of handling most of the real-world cases. On the
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other hand, we emphasize extending our technique to handle other cases is only
a matter of engineering effort. We leave it as one future work to provide such
functionalities.

Def-Use Chain Analysis. Since our analysis is performed on IR expressions
of the three-address form, one branch predicate in the original program shall
be translated into a sequence of IR instructions. Hence, to perform a faithful
obfuscation of one branch predicate, we need to first identify a “region” of IR
instructions that is translated from one branch predicate.

As shown in Fig. 6, we perform def-use analysis to recover such “region”
information. In particular, given a comparison IR instruction (which indicates
one branch predicate and the end of the corresponding “region”), we calculate
the use-def chains of its two operands, respectively. The identified instructions
which provide the “definition” information of these two operands will be included
in the “region”. After the def-use analysis, we translate arithmetic instructions
in the “region” into function calls to the Turing obfuscator.

Obfuscation Level. Obfuscation level is an indicator which weighs how much
of a program is transformed by the obfuscation pass. Consistent with previous
work [23], the obfuscation level is defined as the ratio between the obfuscated
instructions and the total candidates:

O = M/N

M is the number of instructions transformed by the obfuscation pass. N
is the number of all the transformable instructions (i.e., the branch predicate
instructions identified in Sect. 4.2).

5 Evaluation

Inspired by previous research [8,15,16], we evaluate our Turing machine obfus-
cator based on four metrics which are potency, resilience, stealth and cost,
respectively. Potency weighs the complexity of the obfuscated programs, while
resilience measures how well an obfuscated program can withstand automated
deobfuscation techniques. Stealth is evaluated to show whether the obfuscated
programs are distinguishable regarding its origins, and cost is naturally employed
to measure the execution overhead of the obfuscation products. In addition, we
also evaluate the functionality correctness of the obfuscated binaries.

Two widely-used open source programs are employed in our evaluation: com-
pression tool bzip2 (version 1.0.6) [1] and regular expression engine regexp (ver-
sion 1.3) [4]. As aforementioned, obfuscation level is an index which stands for
the ratio of obfuscated instructions regarding all the candidates. In our experi-
ments, the ratio is set as 50% unless noted otherwise which means half candidates
are randomly selected and obfuscated.
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5.1 Functionality Correctness

Both programs evaluated in our research (bzip2 [1] and regexp [4]) are shipped
with test cases to verify the functionality of the compilation outputs. In partic-
ular, the bzip2 test cases deliver 3 compression samples and 3 decompression
samples, while the regexp test cases contain 149 samples of various regular
expression patterns. We leverage those shipped test cases to verify the function-
ality correctness of our obfuscated programs. For all the evaluated obfuscation
levels (i.e., 30%, 50%, 80% and 100%), we report all the obfuscated programs can
pass all the test cases, hence preserving the original semantics after obfuscation.

5.2 Potency

Control flow graph (CFG) and call graph represent the general structure of a
program and they are the foundation for most static software analysis. With the
help of IDA Pro [2], a well-known commercial binary analysis tool, we recover
CFG and call graph information from both original and obfuscated binaries.
By traversing those graphs, we calculate the number of basic blocks, number
of call graph and control graph edges. We use these information to measure the
complexity of a (obfuscated) program, which is aligned with previous research [7].
Analysis results are shown in Table 2. Comparing the original and obfuscated
programs, it can be observed that program complexity is increased in terms of
each metric.

Table 2. Potency evaluation in terms of program structure-level information.

Program # of CFG edges # of basic blocks # of function

bzip2 3942 2647 78

obfuscated bzip2 4195 2828 134

regexp 906 619 25

obfuscated regexp 1122 773 43

We further quantify the Turing machine obfuscated programs in terms of the
cyclomatic number and knot number (these two metrics are introduced in [17,
28]). Cyclomatic metric is defined as

Cyclomatic = E − N + 2

where E and N represent the number of edges and the number of nodes in a CFG,
respectively. Knot number shows the number of edge crossings in a CFG. These
two metrics intuitively measure how complicated a program is in terms of logic
diversion number. Results in Table 3 shows that knot and cyclomatic number
notably increase for both cases after Turing machine obfuscation. Overall, we
interpret Tables 2 and 3 as promising results to show programs become much
more complicated after obfuscation.
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Table 3. Potency evaluation in terms of knot and cyclomatic numbers.

Program # of cyclomatic # of knot

bzip2 1297 5596

obfuscated bzip2 1369 5720

regexp 289 478

obfuscated regexp 351 1068

Besides picking 50% as the obfuscation level in this evaluation, we also
conduct experiments with obfuscation levels as 30%, 80% and 100%. Figure 7
presents the number of call graph edges with the increase of obfuscation levels.
Observation shows that with a higher obfuscation level, the number of call graph
edges increases. Naturally, obfuscated programs can become more complicated
with the growing of obfuscation levels.

5.3 Resilience

In addition to complicate program structures, a good obfuscation technique
should be designed to impede automated deobfuscation tools as well. As afore-
mentioned, symbolic and concolic testing tools are leveraged in automated soft-
ware analysis to explore the program paths and reveal hidden vulnerabilities.
Hence in this evaluation, we adopt a cutting-edge symbolic engine (KLEE [5])
to test the resilience of the obfuscated programs. Ideally program obfuscation
brings in new challenges in reasoning path conditions, and hence would impede
symbolic tools from finding new paths. In this evaluation, we use KLEE sample
code [3] as the test case (the sample code is shown in Fig. 8).

KLEE could detect three paths in the original test case as expected. Actually
based on different value of x, this program may traverse branches in which x
equals 0, x is less than 0 or x is greater than 0, respectively. In contrast, we report
KLEE could only reason one path condition for the obfuscated program. Due
to limited information released by KLEE, we could not reveal the underlying
reason that leads to the failure of the other two path conditions. Nevertheless,
since Turing machine obfuscator makes the branch predicates more complicated,
we envision that the internal constraint solver employed by KLEE is unable to
yield a proper symbolic input which could “drill” into the branches protected
by our tool. In sum, we interpret that Turing machine obfuscator can impede
automated program analyzers from exploring the program paths.

5.4 Stealth

To evaluate the stealth of the obfuscated programs, existing work [23] propose to
compare the instruction distributions of the original and obfuscated programs.
If instruction distribution of the obfuscated program is distinguishable from its
origin (e.g., call or jmp instruction proportions are abnormally high), it would
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Fig. 7. Number of call graph edges in terms of different obfuscation levels.

Fig. 8. KLEE sample code used in our evaluation. All the path conditions are obfus-
cated.

be an indicator that the program is manipulated. In this evaluation, we adopt
this metric to measure the stealth of our Turing obfuscator.

Consistent with previous research [23], we put assembly instructions into 27
different categories. Figures 9 and 10 present the instruction distribution of the
original and obfuscated programs (bzip2 and regexp). Experimental results
indicate that the instruction distribution after obfuscation is very close to the
origin distribution. In sum, small instruction distribution variation is a promising
result to show the proposed technique would obfuscate programs in a stealthy
way.
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Fig. 9. bzip2 instruction distribution comparison.
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Fig. 10. regexp instruction distribution comparison.

5.5 Cost

Performance penalty is another critical factor to evaluate an obfuscation tech-
nique. In most obfuscation research work, execution cost is inevitably increased
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because obfuscation would bring in extra instructions. Measuring the execution
time is a convincing way to evaluate the cost.

In our evaluation, both original and obfuscated programs are executed on a
server with 2 Intel(R) Xeon(R) E5-2690 2.90 GHz processors and 128 GB sys-
tem memory. bzip2 is used to compress three different sample files and regular
expression engine regexp runs 149 samples provided in its shipped test cases.
We run each program three times and calculate the average execution cost.
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Fig. 11. Execution overhead in terms of different obfuscation levels.

Figure 11 presents the execution overhead results. For both cases, the execu-
tion time slowly grows with the increase of the obfuscation levels. As expected,
program takes more time to execute when more instructions are obfuscated.
Nevertheless, we interpret the overall execution overhead is still confined to a
reasonable level. We also notice that there exists a difference between slopes
of the two curves. Some further study on the source code shows that regexp
employs more recursive calls than bzip2, thus may lead to more invocations of
the Turing machine component and contribute to the performance penalty.

6 Discussion

In this section we present the discussion of the proposed Turing machine obfus-
cation technique.
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6.1 Complexity

In general, Turing machine model is a powerful but complex calculator that is
capable of solving any algorithm problem. Note that even a simple operation
(e.g., “add”) may lead to the change of Turing machine states for hundreds of
times. Hence, it is hard—if possible at all—for adversaries with manual reverse
engineering efforts to follow the calculation logic without understanding the tran-
sition table rules and state variables. In addition, automated binary analyzers
(e.g., KLEE) can also be impeded due to the runtime complexity of a Turing
machine. As shown in our resilience evaluation (Sect. 5.3), the constraint solver
of KLEE failed to yield proper inputs to cover two of three execution paths.

To further improve the complexity, a promising direction is to perform “recur-
sive” obfuscation towards the input program. That is, we employ the Turing
obfuscator for the first round obfuscation, and further re-apply Turing obfusca-
tor to obfuscate the Turing machine inserted in the first round. Existing work has
pointed out that such “recursive” obfuscation approaches can usually improve
the program complexity, while may also bring in non-negligible execution over-
head [24]. We leave it as one future work to study practical strategies to recur-
sively apply our technique for obfuscation.

6.2 Application Scope

Previous obfuscation work [21] usually targets one or several specific kinds of
predicate expressions. Also, most of them performs source code level transfor-
mations for specific kind of program languages [23]. Turing obfuscator broadens
the application scope to any kind of conditional expression. In addition, it works
for programs written in any language as long as they could be transformed into
the LLVM IR. Considering a large portion of programming languages have been
supported by LLVM, we envision Turning machine obfuscator would serve to
harden software implemented with various kinds of programming languages.

6.3 Branch Selection Techniques

As previously presented, our current implementation rewrites path condition
instructions to invoke the Turing machine component. While it is mostly impossi-
ble for attackers to reason the semantics of the Turing machine code, return value
of the obfuscator is indeed observable (since obfuscated branches are rewritten
into function calls to the Turing obfuscator). Certain amount of information
leakage may become feasible at this point.

We notice that existing work [15,16] proposes a different approach at this
step; control flow is directly guided (via goto) to the selected branch from their
obfuscator. While this approach seems to hide the explicit return value, we argue
such technique is not fundamentally more secure since the hidden return value
can be inferred by observing the execution flow. Another solution that may be
employed to protect the predicate computation result is to use matrix branch
logic [10]. Suppose we model a branch predicate with a Turing machine function,
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the general idea is to further transform Turing machine into a matrix function,
and then randomize the matrix branching function. The involved matrix branch
logic and randomness shall provide additional security guarantees at this step.
Overall, we argue the current implementation is reasonable, and we leave it as
one future work to present quantitative analysis of the potential information
leakage and countermeasures at this step.

6.4 Execution Overhead

During the Turing machine computation, frequent state change would indicate
lots of read and write operations. Also, since tape is infinite in Turing machine
model, it needs to allocate enough memory to accommodate complex computa-
tions. In general, the complexity of Turing machine may serve as a double-edge
sword; it impedes adversaries and potentially increases execution overhead as
well. As reported in the cost evaluation (Fig. 11), we observed non-negligible per-
formance penalty for both cases. One countermeasure here is to perform selective
obfuscation; users can annotate sensitive program components for obfuscation.
Such strategy would improve the overall execution speed without losing the
major security guarantees.

7 Conclusion

In this paper, we propose a novel obfuscation technique using Turing machines.
We have implemented a research prototype, Turing machine obfuscator, on the
LLVM platform and evaluated on open source software with respect to func-
tionality correctness, potency, resilience, stealth, and cost. The results indicate
effectiveness and robustness of Turing machine obfuscation. We believe Tur-
ing machine obfuscation could be a promising and practical obfuscation tool to
impede adversary analysis.

Acknowledgment. We thank the anonymous reviewers for their valuable feedback.
This research was supported in part by the National Science Foundation (NSF) under
grant CNS-1652790, and the Office of Naval Research (ONR) under grants N00014-13-
1-0175, N00014-16-1-2265, and N00014-16-1-2912.

References

1. bzip2 (2017). http://www.bzip.org
2. IDA (2017). https://www.hex-rays.com/products/ida/
3. Klee sample (2017). http://klee.github.io/tutorials/testing-function/
4. slre (2017). https://github.com/cesanta/slre
5. Cadar, C., Dunbar, D., Engler, D.R., et al.: KLEE: unassisted and automatic

generation of high-coverage tests for complex systems programs. In: Proceedings
of 8th USENIX Conference on Operating Systems Design and Implementation
(OSDI 2008), pp. 209–224 (2008)

http://www.bzip.org
https://www.hex-rays.com/products/ida/
http://klee.github.io/tutorials/testing-function/
https://github.com/cesanta/slre


Turing Obfuscation 243

6. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: automat-
ically generating inputs of death. In: Proceedings of 13th ACM Conference on
Computer and Communications Security, CCS 2006 (2006)

7. Chen, H., Yuan, L., Wu, X., Zang, B., Huang, B., Yew, P.-C.: Control flow obfus-
cation with information flow tracking. In: Proceedings of 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (Micro 2009), pp. 391–400 (2009)

8. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: Proceedings of 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 1998), pp. 184–196
(1998)

9. Copeland, B.J.: The church-turing thesis. Stanford encyclopedia of philosophy
(2002)

10. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: Pro-
ceedings of 2013 IEEE 54th Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2013 (2013)

11. Godefroid, P., Levin, M.Y., Molnar, D.: Automated whitebox fuzz testing. In:
Proceedings of 15th Annual Network and Distributed System Security Symposium
(NDSS 2008) (2008)

12. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

13. Lan, P., Wang, P., Wang, P., Wu, D.: Lambda obfuscation. In: Proceedings of 13th
EAI International Conference on Security and Privacy in Communication Networks
(SECURECOMM 2017) (2017)

14. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: Proceedings of International Symposium on Code Gen-
eration and Optimization (CGO 2004), pp. 75–86, March 2004

15. Ma, H., Li, R., Yu, X., Jia, C., Gao, D.: Integrated software fingerprinting via
neural-network-based control flow obfuscation. IEEE Trans. Inf. Forensics Secur.
11(10), 2322–2337 (2016)

16. Ma, H., Ma, X., Liu, W., Huang, Z., Gao, D., Jia, C.: Control flow obfuscation using
neural network to fight concolic testing. In: Proceedings of 10th International Con-
ference on Security and Privacy in Communication Networks (SECURECOMM
2014), pp. 287–304 (2014)

17. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. SE–2(4), 308–320
(1976)

18. Popov, I.V., Debray, S.K., Andrews, G.R.: Binary obfuscation using signals. In:
Proceedings of 16th USENIX Security Symposium on USENIX Security Sympo-
sium (USENIX Security 2007) (2007)

19. Sen, K., Agha, G.: CUTE and jCUTE: concolic unit testing and explicit path
model-checking tools. In: Proceedings of 18th International Conference on Com-
puter Aided Verification, CAV 2006 (2006)

20. Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for C. In: Pro-
ceedings of 10th European Software Engineering Conference Held Jointly with 13th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE 2013), pp. 263–272 (2005)

21. Sharif, M.I., Lanzi, A., Giffin, J.T., Lee, W.: Impeding malware analysis using con-
ditional code obfuscation. In: Proceedings of 15th Annual Network and Distributed
System Security Symposium (NDSS 2008) (2008)

22. SingleTape: Turing machine (2017). http://turingmaschine.klickagent.ch/

http://turingmaschine.klickagent.ch/


244 Y. Wang et al.

23. Wang, P., Wang, S., Ming, J., Jiang, Y., Wu, D.: Translingual obfuscation. In: Pro-
ceedings of 2016 IEEE European Symposium on Security and Privacy (EuroS&P
2016), pp. 128–144 (2016)

24. Wang, S., Wang, P., Wu, D.: Composite software diversification. In: Proceedings
of 33rd IEEE International Conference on Software Maintenance and Evolution
(ICSME 2017) (2017)

25. Wang, Y.: Obfuscation with Turing machine. Master’s thesis, The Pennsylvania
State University (2017)

26. Wang, Z., Jia, C., Liu, M., Yu, X.: Branch obfuscation using code mobility and
signal. In: Proceedings of 2012 IEEE 36th Annual Computer Software and Appli-
cations Conference Workshops (COMPSACW 2012), pp. 553–558 (2012)

27. Wang, Z., Ming, J., Jia, C., Gao, D.: Linear obfuscation to combat symbolic exe-
cution. In: Proceedings of 16th European Conference on Research in Computer
Security, pp. 210–226 (2011)

28. Woodward, M.R., Hennell, M.A., Hedley, D.: A measure of control flow complexity
in program text. IEEE Trans. Softw. Eng. 5(1), 45–50 (1979)

29. Xu, D., Ming, J., Wu, D.: Generalized dynamic opaque predicates: a new control
flow obfuscation method. In: Proceedings of 19th Information Security Conference
(ISC 2016), pp. 323–342 (2016)



All Your Accounts Are Belong to Us

Vlad Bulakh1(B) , Andrew J. Kaizer1, and Minaxi Gupta2

1 Indiana University, Bloomington, IN 47405, USA
{vbulakh,akaizer}@indiana.edu

2 Edmodo Inc., San Mateo, CA 94403, USA
minaxi@edmodo.com

Abstract. Over the last several years, there have been a number of high
profile and well-publicized data breaches. These breaches led to the theft
of personal, financial, and health information from users who are often
only notified of such breaches well after they occur and the damage has
already been done. Cyber criminals use account cracking tools, which
are software programs that help miscreants gain access to users’ online
accounts, to perform credential stuffing attacks against the credentials
exposed by these breaches.

In this paper, we study underground forums where intelligence related
to popular account cracking tools is exchanged and investigate miscre-
ants’ motivations to use such tools to break into accounts. We also study
six free and paid cracking tools used to steal user accounts and develop
machine learning classifiers capable of detecting network packets gener-
ated by them. Organizations maintaining user accounts can utilize our
classifiers to identify traffic related to cracking tools and defend against
their attacks.

Keywords: Data breach · Underground forum · Credential stuffing
Account cracking · Credential verification · Cracking tools
Sentry MBA · Account Hitman · AIOHNB · Vertex · Classifier
Supervised machine learning · Random Forest

1 Introduction

Over the past several years, there has been an alarming increase in the number
of data breaches throughout the world. The victims of these cyber criminals
include prominent firms such as the Red Cross [17], Yahoo [21], ClixSense [56],
Ubuntu Forums [41], Interpark [44], the Democratic National Committee [39],
and Mossack Fonseca [12]. As a result of these breaches, millions of consumers’
personal, financial, and medical information has been exposed to cyber criminals,
who can use the information for financial, political, and social gains.

One key factor that has led to these breaches is the growing number of mali-
cious tools that miscreants have at their disposal, including malware, credit card
skimmers, and online account cracking tools such as Sentry MBA and Account
Hitman. In this paper, we gain a better understanding of the online “cracker”
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community and investigate defenses against such attacks. In particular, we con-
centrate our efforts on several popular underground forums specializing in crack-
ing tools, which are computer programs that can be used to gain unauthorized
access to other people’s online accounts. The forums we analyzed contain con-
figuration files, which are text files with website-specific settings for cracking
tools. For example, a Facebook configuration file for the Sentry MBA tool might
contain a custom User-Agent header field and an HTTPS address of the user
login page, which helps the tool avoid being blocked by Facebook by making
the traffic appear to be from a legitimate browser user. Configuration files also
allow developers and users to keep their software up to date without modifying
the source code and recompiling the program, providing an accessible approach
for changing targets.

In addition to studying the configuration files exchanged in underground
forums, we studied the cracking tools to examine their behaviors and identify
defense mechanisms. This included fairly sophisticated cracking tools, including
ones that could check the validity of existing/stolen credentials on popular web-
sites such as Gmail, Amazon, eBay, PayPal, Steam, and others. Some tools could
also be used to discover username and password combinations through brute
force attacks, which use automated means to guess such information through trial
and error. Criminals, however, appear to be using them primarily for checking the
validity of breached credentials, also known as a credential stuffing attack [58].

Detecting these cracking tools then becomes a critical task to mitigate the
risk they pose to an organization’s users. Although identifying such attacks from
the server side is no trivial matter, by analyzing the packets generated by both
paid and free cracking tools, we devise a system capable of detecting up to 100%
of attacks.

Our contributions in this study are threefold:

1. Characteristics of underground forums dealing with cracking tools: We reg-
istered on four underground forums – webcracking.com, nethingoez.com,
nulled.to and cracking.org – where members discuss cracking tools and
exchange information about them, among other illicit discussions related to
hacking tutorials or finding serial numbers to popular video games. We then
analyzed these forums by scraping information about the number and length
of threads and posts, user location, user join date, and user activity. Interest-
ingly, we found that very few people actually ask for help on these forums.
Instead, the majority of the posts are non-informative and made only because
gaining access to the shared content required posting. Furthermore, judging
from the users’ browsing and posting habits, we find these forums to be niche
places aimed at a fairly narrow, albeit loyal, audience.

2. Comparison of popular paid and unpaid cracking tools: We compare and con-
trast the features and performance of some of the most popular free and
paid crackers, including Sentry MBA [1], Account Hitman [30], Vertex [11],
AIOHNB [14], vCrack [16], and Multi-Hacker [25]. Surprisingly, we discovered
that the free tools contained more features and performed in a similar capac-
ity, indicating that miscreants who pay for crackers may not be deriving any

https://www.webcracking.com
https://nethingoez.com
https://www.nulled.to
https://cracking.org
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additional value beyond free tools. We also found both free and paid cracking
tools to have a significant number of bugs and glitches, which is surprising
considering how mature some of these tools are.

3. Defending against identity theft: Finally, we use the knowledge gained from
our contributions to develop several machine learning algorithms that compa-
nies maintaining user accounts can use to detect when crackers are accessing
their websites. Our classifiers rely on the features extracted from the net-
work packets, such as packet size, HTTP version, and HTTP Connection
and Accept-Language header fields, so companies can identify such threats
before processing their requests.

2 Analysis of Cracking Forums

Analyzing the users, topics, and posts of these underground forums can provide
valuable insight into some of the motivations and trends behind the cracking
culture. In particular, we find that forums may share some high level properties
– such as bursts of activity and a small core group of posters – but that the
config files discussed on each website tended to focus on different targets – e.g.
gaming versus file sharing websites. Before continuing with the analysis, a brief
discussion of terminology and data collection is necessary to contextualize the
problem space.

2.1 Terminology

An administrator (also called admin) is a forum member who has elevated
privileges. Among other things, a typical forum administrator can: edit other
members’ posts, remove individual messages and complete threads, and issue
warnings to and ban misbehaving forum members.
A configuration file (also called config) is a text file containing website-specific
settings for a cracker. For example, an Amazon config file for Sentry MBA might
contain a custom Referer field and an Amazon-specific timeout. A snippet from
a Sentry MBA configuration file for Instagram can be seen below:

Credential stuffing (also called credential checking and credential verifi-
cation) is an attack in which cyber criminals load breached username/password
combinations into a cracking tool like Sentry MBA and try to take over other
people’s online accounts by having the cracking tool check the supplied creden-
tials against the target website.
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A forum (also called a message board) is a website where people can commu-
nicate with each other by posting messages. The content of messages can include
text, emotions, pictures, and videos.
An original post (often abbreviated as OP) is the first post in a continuous
sequence of postings.
A post is a message in a form of text, emotions, pictures, etc. posted on the
forum.
A subforum is located inside another forum. Subforums are often used to divide
a single forum into specific discussion topics. For example, an underground forum
might have a cracked programs subforum for cracking tools.
A topic (also called thread) is a sequence of posts/messages posted in the
response to the original post.
A topic starter (often abbreviated as TS) is the person who posted the first
message in a continuous sequence of postings (i.e. original post). A topic starter
can also be called original poster and abbreviated as OP.

2.2 Data Collection and Methodology

The websites studied covered four of the most popular cracking forums:
webcracking.com, nethingoez.com, nulled.to, and cracking.org. As of May 2017,
all these websites are highly ranked by Alexa, with nulled.to, cracking.org,
webcracking.com, and nethingoez.com having global ranks of 25K, 121K, 275K,
and 300K, respectively.

We collected complete snapshots of webcracking.com, nulled.to, cracking.org,
and nethingoez.com on December 19, 2015, July 8, 2016, September 12, 2016, and
August 29, 2016, respectively. The scraping process focused on the subforums
dealing with configuration files for the most popular cracking tools, such as
Sentry MBA, Account Hitman, AIO Checker, and Vertex. For each snapshot,
we collected the threads, posts, and users across all config file subforums. This
ensures a complete overview of the subforums at that particular point in time.

Data Cleaning
We saw a number of inconsistencies in the collected data, even when that data
was from the same underground forum, that could undermine data analysis if
not accounted for. For example, the cracking tool field could say “SentryMBA,”
“Sentry MBA proxyless,” “SentryMBA proxylexx,” “Sentry,” “Sentary MBA,”
“SMBA,” “SenMBA,” and “S. MBA,” all of which refer to the same cracking
tool – Sentry MBA1. We also saw a number of incorrect entries and labels.
For example, a thread might be located in the Vertex subforum, but have tags
corresponding to other cracking tools, e.g. “Account Hitman.”

Due to these factors, considerable effort was spent on data sanitization.
About 10% of the data we collected had to be cleaned, which involved standard-
izing the names of the cracking tools (e.g. both “Hitman” and “Acc Hitman”
1 Although it is possible that some of those could be referring to different Sentries,

such as the original Sentry [46], which is the predecessor of Sentry MBA [19], a
manual analysis of 25 threads revealed that all of them were about Sentry MBA.

https://www.webcracking.com
https://nethingoez.com
https://www.nulled.to
https://cracking.org
https://www.nulled.to
https://cracking.org
https://www.webcracking.com
https://nethingoez.com
https://www.webcracking.com
https://www.nulled.to
https://cracking.org
https://nethingoez.com
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became “Account Hitman”), inferring missing information (e.g. determining the
cracking tool from the first post in the thread) and ignoring invalid entries. Over-
all, approximately 2% of all threads and 4% of all posts have been discarded
through this process.

2.3 Users

Looking at the number of users who posted at least one message in the config file
subforums across all websites, we observe that nulled.to leads with 14,446 unique
users and is followed by cracking.org, webcracking.com, and nethingoez.com with
7,500, 2,720, and 1,719 unique users, respectively. This indicates that the degree
of popularity for cracking activities varies widely across various underground
forums.

Interestingly, we see that all forums have small-to-large gaps between user
registration dates that could last from several days to several weeks – except
cracking.org which did not show the registration date at the time of data col-
lection. For example, although 721 people created new accounts on nulled.to
between April 25–May 5, 2016, with no day having fewer than 24 new registra-
tions, no new accounts were created from May 6–June 23, 2016. Such large gaps
could be either due to the websites’ doing user registrations in batches or service
availability issues.

Additionally, webcracking.com showed a user-supplied location during our
data collection period, which, admittedly, could be falsified. Of those users who
did specify their location, most came from the United States, followed closely
by the United Kingdom, Germany, France, Canada, Italy, Spain, Turkey, India,
and Brazil. Notably absent from this list are some of the well-known countries
that engage in more insidious forms of consumer-oriented cybercrime, such as
Russia or China. A focus on the top countries may indicate a proclivity towards
a less tech-savvy, more “script kiddie”-oriented audience.

Also, when we cross-reference user account names across the config file sub-
forums of each underground forum, we see that the overwhelming majority of
account names can only be found in one of the four forums, with 3.2% instances
of an exact account name match on two different forums, 0.4% matches on three
different forums, and only 0.08% matches across all four forums. This implies
that either miscreants utilize separate identities on each forum or that they tend
to use only one source for their cracking needs.

Furthermore, looking at the average number of active users across all four
underground forums, we see that, on a per-hour basis, there are 682 mem-
bers and 604 guests active on nulled.to, 50 members and 95 guests active on
nethingoez.com, and 19 members and 180 guests active on cracking.org. For
webcracking.com, we were only able to get the daily statistics, which showed
that an average of 271 members and 1,169 guests are active on any given day.
Compared to popular, legitimate forums such as reddit.com and 4chan.org, which
can have hundreds of thousands of active users at any given time with many of
them having posted dozens and even hundreds of thousands of messages, these
underground forums appear to be niche places aimed at a very narrow audience.

https://www.nulled.to
https://cracking.org
https://www.webcracking.com
https://nethingoez.com
https://cracking.org
https://www.nulled.to
https://www.webcracking.com
https://www.nulled.to
https://nethingoez.com
https://cracking.org
https://www.webcracking.com
https://www.reddit.com
http://www.4chan.org
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2.4 Threads

When looking at the number of active threads that share and discuss con-
figuration files, cracking.org takes the first place with 3,197 threads – despite
having the second-fewest active members at any given hour amongst the four
forums. It is followed by nulled.to (833 threads), nethingoez.com (708 threads)
and webcracking.com (698 threads), which each have a comparable number of
threads. Also, the overall number of threads is disproportionately large compared
to the number of websites targeted by the config files. This is due to the fact
that once a config-breaking change is made to the target website, some forum
users tend to post a new config file thread instead of updating the old one.

The situation is slightly different when we look at the number of views that
each thread receives. A typical config file thread on nulled.to gets 1,044 views,
while threads created on cracking.org, nethingoez.com, and webcracking.com
average 620, 236, and 234 views, respectively. Looking at the number of replies
to each configuration file thread, we see that nulled.to leads with 56 replies per
thread with nethingoez.com, cracking.org, and webcracking.com taking the sec-
ond, third, and fourth places with 21, 18, and 10 replies per thread, respectively.
More details can be seen in Table 1.

Table 1. Cracking forum threads and posts

cracking.org nethingoez.com nulled.to webcracking.com

Number of config file
threads

3,197 708 833 698

Average number of
config file thread views

620.15 235.71 1,044.39 233.90

Average number of
config file thread replies

18.24 20.58 55.79 9.50

Number of config file
subforum posts per user

8.21 8.86 3.24 2.69

Num. of unique users in
config file subforums

7,500 1,719 14,446 2,720

Exploring the number of unique threads created by each topic starter –
including website administrators – in the config file subforums, we observe the
following: webcracking.com leads with 11.6 threads per user, second place is
occupied by cracking.org with 7.2 threads per user, and nethingoez.com and
nulled.to are last with 6.6 and 2.1 threads per user, respectively. On the other
hand, when it comes to the number of thread creators in the configuration file
subforums, cracking.org leads with 446 unique users and is followed by nulled.to,
nethingoez.com, and webcracking.com with 390, 107, and 60 unique thread cre-
ators, respectively.

https://cracking.org
https://www.nulled.to
https://nethingoez.com
https://www.webcracking.com
https://www.nulled.to
https://cracking.org
https://nethingoez.com
https://www.webcracking.com
https://www.nulled.to
https://nethingoez.com
https://cracking.org
https://www.webcracking.com
https://www.webcracking.com
https://cracking.org
https://nethingoez.com
https://www.nulled.to
https://cracking.org
https://www.nulled.to
https://nethingoez.com
https://www.webcracking.com
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Further, we observe a small but extremely active set of users, most of whom
are website administrators, on all four web forums. Combined, the config file
threads created by those users are as numerous as all config file threads created
by 98% of users across all four underground forums. In other words, the vast
majority of thread creators in the configuration file subforums tend to create
very few threads – between one and 19 – while a few select users are responsible
for the creation of dozens and even hundreds of different threads.

Interestingly, the thread posting activity is somewhat similar across all
forums in that there are short periods of high activity, such as 10–20 new threads
posted in a 24–48 hour period, followed by several weeks of moderate to low
activity with only a few config file threads posted per day.

2.5 Posts

When looking at the posting activity on the config file subforums, we see that a
typical nethingoez.com user2 has 8.9 posts/messages under their belt, followed
by cracking.org, nulled.to, and webcracking.com users with 8.2, 3.2, and 2.7
posts, respectively (Table 1). In other words, it is safe to say that a typical user
downloads between 2.7 and 8.9 config files since one has to post a reply before
being able to access the thread attachments such as configuration files, and there
is very little incentive for the posters to keep posting in the same config file thread
once they have gained access to the attachments except to report an error, which
we observed very rarely. If we expand the search to include all messages posted
by the config file subforum posters on the four underground forums, we observe
that nethingoez.com leads with 272 posts per user, followed by cracking.org (94
posts), nulled.to (71), and webcracking.com (67).

If we look at the individual users who post in the config file subforums, we
see 7,500 unique users on cracking.org, 80 of which have more than 100 posts
each, and nine have more than 200 posts each. The statistics are even grimmer
for the other three forums: out of 1,719 nethingoez.com users, only five have
made more than 100 posts, none have made more than 200 posts. None of the
14,446 nulled.to users have more than 100 posts under their belts, and only two
out of 2,720 webcracking.com users have made more than 100 posts. Also, if we
include all messages posted by the same users and not only those in the config
file subforums, we see that only 22 nethingoez.com users, 20 cracking.org users,
three webcracking.com users, and two nulled.to users have posted more than
2,000 messages each, with the vast majority of all users having posted fewer
than 200 messages. Essentially, this continues to highlight how although a small
core are very active, the vast majority of users are generally content to interact
infrequently on each website. Our observations coincide with previous studies on
the subject [36].

2 In this Section we are looking at the users who posted at least one message in the
config file subforums since we are unable to get the data on those who do not post
any messages.

https://nethingoez.com
https://cracking.org
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https://www.webcracking.com
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2.6 Post Content

When looking at the messages posted by users, we observe that the vast majority
of the posts are non-informative and appear to have been made to satisfy web
forums’ requirements for accessing the content attached to the original posts
(OP). Examples of such messages include: “thanks man,” “thank for sharing,”
“thanks bro,” “thxxxxxxxxxxxxx,” and “thank for share.” We also saw several
instances of posters asking for help or reporting a config file that is no longer
working due to the recent changes made by Facebook/eBay/etc. However, more
often than not, such posts were left un-addressed. This further solidifies our view
that most users on these websites are in the “script kiddie” mold of miscreant
rather than a more nefarious and skilled hacker.

3 Cracking Tools

All cracking tools that we tested work in a similar manner. First, the user must
configure the tool, which typically includes loading the config file (or specify-
ing the parameters manually), selecting the word list to use (which is a text
file containing username/password combinations), specifying the keywords for
success and failure, loading the proxy list, and selecting the number of threads
to use. The tool then sets up the connection by completing the three-way TCP
handshake and starts to send HTTP or HTTPS packets to the target website
(usually to the login page) with the credentials from the word list. After that,
the cracking tool parses the HTML response it receives from the target website
and determines whether the credentials are valid or not by looking for success
and failure keywords specified earlier.

3.1 Cracking Tool Popularity

Looking at the number of threads dedicated to each cracking tool, we see that
Sentry MBA is the most popular one across all forums. This makes sense based
on the fact that it is free, relatively stable, has an intuitive graphical user inter-
face, and is one of the oldest crackers in our test, with the first beta version
of the original Sentry, the predecessor of Sentry MBA, dating back to April
25, 2003 [45]. Vertex, Account Hitman, and Apex occupy the second, third,
and fourth places, interchangeably. Interestingly, all paid cracking tools that we
tested – AIOHNB, vCrack, and Multi-Hacker – are orders of magnitude less
popular than their free counterparts. One reason for this could be that both
AIOHNB and Multi-Hacker do not support config files and, compared to Sentry
MBA and Account Hitman, it is considerably more difficult to create a con-
fig file for vCrack. In addition, although we were not able to identify cracking
tools’ names in most of the nulled.to threads, a manual analysis of a 50-thread
sample suggests that 98% or more of them are Sentry MBA. More details can
be seen in Table 2. Also, due to the underground forums’ structure, we had to
group several cracking tools, namely EZLeecher, Forum Leecher, ZLeecher, and
Fj Leecher, into one supergroup called “Leechers”.

https://www.nulled.to
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Table 2. Cracking tool threads

Cracking tool cracking.org nethingoez.com nulled.to webcracking.com

Sentry MBA 2,500 579 157 374

Vertex 196 – – 72

Account Hitman 113 60 – 60

Apex 72 – – 46

AIO Checker 40 – – 66

AIOHNB 26 – – 25

Leechers 16 – – 27

E.F.R Checker 37 – – –

Sparta 31 – – –

Other 52 1 1 26

Unknown 114 68 675 2

3.2 Websites Targeted by the Config Files

An analysis of thread titles and attachments across all forums reveals that
file sharing and downloading services, such as uploaded.net, 1fichier.com,
and real-debrid.com are the most popular targets for the configuration files.
Gaming websites and distribution platforms such as leagueoflegends.com,
store.steampowered.com, and origin.com take a distant second place. Third place
is occupied by adult-oriented websites. More details can be seen on Fig. 1.

When looking at each forum individually, we observe that, contrary to the
other three forums, gaming website config files are much more popular on
nulled.to than any other category. In contrast, file sharing and adult config file
threads are the most pandered about on nethingoez.com and webcracking.com.
The gaming website threads are few and far between. Another interesting find-
ing was that fast food restaurants had more config file threads created for them
than security software and financial services websites.

At first glance, one might be surprised that shopping and payment/financial
services websites such as amazon.com, ebay.com, paypal.com, and wellsfargo.com
are not very popular on these forums even though they [arguably] provide the
highest return on investment. However, a brief look over several cracking tool
discussion subforums would explain such low popularity of config files for pay-
ment and financial services websites – apparently, unlike most file sharing and
adult sites, large banks and online shopping websites go after the miscreants who
use cracking tools against their websites. In fact, a more in-depth search reveals
a few posts by people who allegedly served time in jail for trying to brute-force
online banking accounts.

Also, it must be noted that although we were able to categorize the majority
of websites targeted by the configuration files, approximately 43% of thread titles
could not be easily converted to one of the categories. Consequently, such thread

https://uploaded.net
https://1fichier.com
https://real-debrid.com
http://leagueoflegends.com
http://store.steampowered.com
https://www.origin.com
https://www.nulled.to
https://nethingoez.com
https://www.webcracking.com
https://www.amazon.com
https://www.ebay.com
https://www.paypal.com
https://www.wellsfargo.com
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Fig. 1. Websites targeted by the config files

titles had to be omitted. Still, we believe the results reported in this section are
representative of the population of websites that crackers target.

3.3 Overview of Cracking Tools’ Functionality

To gain a better understanding of cracking software, we created fake accounts
on several online social networks and used the most popular free and paid crack-
ing tools to crack them. We chose not to test cracking tools on websites such
as bankofamerica.com and ebay.com because, as discussed earlier, there have
been several reports in underground forums of banks and large corporations
pursuing individuals who tried to brute-force their customers’ accounts. The
free crackers studied include Sentry MBA, Account Hitman, and Vertex, which
are the top three most popular cracking tools. The paid cracking programs were
AIOHNB, vCrack, and Multi-Hacker. Similar to other cracking/hacking tools
found in underground forums and marketplaces, the crackers we tested are for
Microsoft Windows operating systems only. Also, at the beginning of our study,
both AIOHNB and vCrack were paid tools. However, starting with version 2.7.0,
the former appears to no longer require paid online activation [14] and the latter
became open source on April 22, 2016 [16].

Furthermore, although most of the cracking tools we tested have a wide
range of features, such as the ability to test proxy servers, check the validity
of email accounts, and even optical character recognition (OCR) functionality
to bypass CAPTCHAs, we concentrated our efforts on testing their abilities to
check credentials.

Our first observation is that neither free nor paid cracking tools are particu-
larly user friendly. One free and one paid cracking tool – Vertex and AIOHNB,
respectively – refused to run unless additional files were downloaded (Fig. 2b, c

https://www.bankofamerica.com
https://www.ebay.com
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and d). Interestingly enough, initially AIOHNB refused to work claiming that
it required additional ‘framework’ files to operate. The cracker prompted us to
install the said files (Fig. 2b), which implies there is a possibility that the mis-
creant could be downloading malicious files targeting themselves. Once all the
required files for Vertex and AIOHNB were installed, we were able to start their
graphical interfaces. This is a lot of trouble to go through when another cracking
tool could be utilized instead.

Upon launching the cracking programs, we observed that half of them try
to listen on a local port or issue HTTP GET requests. For example, Sentry
MBA sends TCP packets to dyndns.com on port 80 to determine the exter-
nal IP address of the machine. Account Hitman, on the other hand, does not
send outgoing packets and only attempts to listen on TCP port 13121. Finally,
AIOHNB tries to connect to cpc-prod3.canardpc.com on TCP port 80. Vertex,
vCrack, and Multi-Hacker neither attempted to listen on a local port nor sent
any outgoing packets.

3.4 Issues Encountered

At a glance, both free and paid cracking tools appear to have nice, clean, easy-
to-use interfaces. Additionally, they feature a wide array of settings and features
ranging from the ability to use regular expressions to extract desired information
from brute-forced accounts, such as street addresses and phone numbers, to
automatic configuration file downloads directly from the graphical interface.

However, appearances can be deceiving. Upon closer examination, we found
advertised features to be broken and others not operating as expected. During
our testing, Account Hitman crashed on regular basis, an example of which can
be seen on Fig. 2a. Vertex, on the other hand, refused to download updates or
configuration files (Fig. 2e). A sleek UI cannot cover up the inability for these
tools to function reliably.

In addition, despite being the most polished and widely used of the bunch,
Sentry MBA had issues using custom HTTP headers, which require critical
updates to circumvent server-based defense mechanisms. Fields such as Ref-
erer, Accept-Language, and Cookie could be easily changed via Sentry MBA to
match those of any browser. However, using a custom Accept-Encoding header
field breaks the TCP packet generated by Sentry MBA. Furthermore, we had
to restart Sentry MBA several times during testing since it would sometimes
refuse to use newly changed settings and would keep resetting itself to the old
configuration. In all cases, a restart would solve such problems.

The paid cracking tools were not much better. vCrack for example, refused
to work unless the number of threads numbered in the double digits. That is,
it would not work with 1, 2, or 3 threads, but would run with 01, 02, and
10 threads. In addition, although vCrack would issue an HTTP GET request
once we specified the correct thread number, it would not work as intended and
would always claim that it verified the credentials for 0 user accounts even when
supplied with valid username and password combinations. Further, although
AIOHNB was the most feature-rich paid tool in our test with URL grabbing,

http://www.dyndns.com
http://cpc-prod3.canardpc.com
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(a) Account Hitman runtime error (b) AIOHNB requires additional files

(c) Vertex requires comdlg32.ocx (d) Vertex requires Mswinsck.ocx

(e) Vertex is unable to download config files (f) Vertex cannot handle HTTPS

Fig. 2. Cracking tool crashes, errors, and notifications

proxy testing, and email checking modules, it had its fair share of issues – such
as poor or missing translation, one example of which can be seen on Fig. 2b –
even though it required additional files to “run” as described in Sect. 3.3.

Multi-Hacker was also not without its faults. When we tried to crack our
Skype account, it claimed that the crack was successful despite the fact that
we supplied it with invalid account names. We believe that an outdated Skype
module of Multi-Hacker is to blame since Multi-Hacker actually worked on our
Facebook and Instagram accounts.

3.5 Feature Comparison

Sentry MBA, Account Hitman, and Vertex all have very similar features, includ-
ing multithreading support, the ability to use proxies, the ability to use and
edit custom configuration files, and the ability to change the User-Agent HTTP
header field. However, there are quite a few differences between these free crack-
ing tools – some of which we believe to be responsible for that particular cracking
tool’s popularity (or lack thereof) – that warrants an explanation.

Despite being the most popular and stable of the bunch, Sentry MBA is
the only free cracking tool in our test that does not check for updates, whether
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automatically or via a button click. Although Vertex has the least number of
features compared to other free tools, it is the only cracker that supports direct
download of configuration files from the underground forum nethingoez.com.
Unfortunately, this feature was not working in our test (Fig. 2e), most likely due
to the fact that nethingoez.com made several changes to its website during our
data collection period.

When looking at the software’s ability to create and edit configuration files,
we found Sentry MBA’s configuration file editor and creator more sophisticated
than the one in Vertex, although we felt that it was not as intuitive to use as
Account Hitman’s.

While testing three crackers against our fake accounts, we noticed that there
was virtually no difference in speed between them, and both Sentry MBA and
Account Hitman correctly reported the results when supplied with both valid
and invalid credentials. Vertex, on the other hand, reported all supplied user-
name/password combinations as valid, despite the fact that half of them were
invalid. Furthermore, Vertex refused to work with HTTPS websites (Fig. 2f),
which, combined with the previously mentioned issues, make it the most buggy
free cracking tool in our test.

Overall, out of free cracking tools, only Sentry MBA and Account Hitman
were able to successfully verify credentials to our fake user accounts. They
are also somewhat more polished and offer more features than the rest, which
explains their popularity. However, it has to be mentioned that a large number of
posters in underground forums have had success with Vertex, even though we did
not. One possible explanation for this split could be that it needs the access to
nethingoez.com in order to function properly. In addition, Vertex had not been
updated recently, which, combined with the fact that all but one underground
website in our data set had either changed domain names or modified their code
during the data collection period, could have resulted in the cracker’s failure
that we encountered during testing as the program was looking for information
that had either been moved or deleted.

Interestingly, we found most paid cracking tools lacking in features com-
pared to their free counterparts. For example, basic functionality such as User-
Agent selection and pre- and post-login page actions were nowhere to be
found in vCrack and Multi-Hacker. Furthermore, although both AIOHNB and
Multi-Hacker feature a number of pre-built modules for popular websites like
reddit.com and instagram.com, they neither support the external config files nor
allow users to make any changes to the built-in modules, which will render the
current tool versions useless once the target websites change their login pages.
vCrack is the only paid tool in our test that supports the addition of external
modules, although the process of creating a new module is much more involved
compared to creating a config file for a free cracking tool. In our opinion, one of
the very few advantages of the paid cracking tools over their free counterparts
is the simplicity of use – one simply has to select the desired module, load the
credential list, and click Start.

https://nethingoez.com
https://nethingoez.com
https://nethingoez.com
https://www.reddit.com
https://www.instagram.com
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We were also surprised that the paid tools we tested had as many issues
as the free cracking tools. Not only that, but vCrack was unable to verify any
credentials in our tests, which might explain why the developer has chosen to
make it open source.

In addition, it has to be mentioned that we tested all cracking tools on a small
set of online social network websites to avoid unpleasant conversations with the
authorities. As a result, it is possible that some cracking tools in our test would
perform significantly better on websites like ebay.com, bankofamerica.com, and
origin.com.

4 Detecting Cracking Tools

The best way to detect cracking tools attempting to access a website is to inspect
the packets created by the crackers. Unfortunately, to an administrator or a secu-
rity specialist who monitors the target website’s traffic, the packets generated
by the cracking tool would look almost identical to the packets generated by the
popular browsers. Another method involves analysis of traffic and behavioral
abnormalities, such as a large number of packets being sent from the same IP
addresses over a short period of time and disproportionate number of login page
requests from the same IP address compared to other web pages. Unfortunately,
there are two disadvantages to such approaches. First, a miscreant can easily
modify the timeout settings in the cracking tool and, instead of sending a packet
every 30 seconds, the tool would wait for several hours in between the requests,
which would make it very difficult to detect. Second, even if one could somehow
find the pattern in the packet timestamps or user behavior, there would be no
way for them to tell whether those requests were generated by a cracking tool
or by a browser automator like Selenium.

In this study, we use a modification of the first approach – we capture the
packets generated by the cracking tools and use the data from several protocol
layers to differentiate between the cracking and legitimate packets. By being
more detailed, our methodology focuses on identifying specific differences that
can enable operators to flag cracking traffic over legitimate traffic.

4.1 Experimental Setup

A brief analysis of the packets generated by the cracking tools showed very little
variation in terms of size and header values between each tool. Furthermore,
there were not any noticeable differences when we compared them to the packets
generated by several popular Internet browsers. Clearly, a more in-depth analysis
was called for.

We started by creating a simple website with an HTML login form which
would accept only one value for username and a password. If the supplied cre-
dentials are correct, the website would show fake user information, including
name, address, and a phone number; otherwise, a short error message would be
displayed on the HTML page. We then hosted this website on our own server

https://www.ebay.com
https://www.bankofamerica.com
https://www.origin.com
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and made sure that a Wireshark [22] instance was running in the background
collecting packets.

We wanted to get both HTTP and HTTPS packet samples, which meant
decrypting SSL/TLS data. To achieve this, several modifications had to be made.
First, the Apache server had to be forced to use the weakest possible encryption
by modifying the SSLCipherSuite parameter in the configuration file. Wireshark
settings also had to be changed so that it would use the Apache’s private RSA
key to decrypt all HTTPS traffic.

4.2 Cracking Tool Packet Capture Methodology

All cracking tools were tested on a 64-bit version of Windows Vista SP2. Unfor-
tunately, we were not able to test the three paid tools since all of them come with
a pre-defined number of modules for popular websites like Facebook, Twitter,
and Instagram, which makes it very difficult (impossible in the cases of Multi-
Hacker and AIOHNB) to add a new website module. Using the existing modules
would not work since all of them are for pre-defined HTTPS websites only. As a
result, we were left with Sentry MBA, Account Hitman, and Vertex for packet
generating purposes.

For each cracking tool, we changed the settings in such a way that we would
get as many different packets as possible. For example, if a cracking tool worked
with SSL, had several pre-defined User-Agent fields, and supported both GET
and POST HTTP requests, then we would generate the packets for all possible
combinations, such as HTTP POST request over an SSL connection with the
first pre-defined User-Agent, HTTP GET request over a non-secure connection
with the second pre-defined User-Agent field, and so on.

To get a wide range of packet samples from organic traffic, we used sev-
eral versions of seven popular browsers and five different computers and virtual
machines to simulate traffic of an average Internet user. The operating sys-
tems used ranged from Windows XP to Windows 10 to GNU/Linux, while the
browsers included Firefox, Opera, Chrome/Chromium, Internet Explorer/Edge,
SeaMonkey, K-Meleon, and Midori.

Overall, we captured 39 cracking packets generated by the cracking tools
and 39 legitimate packets from the browsers, yielding 78 packets for subsequent
analysis.

4.3 Packet Comparison

At first glance, the packets generated by the cracking tools look virtually identi-
cal to each other and to the packets created by the browsers. However, a closer
examination reveals several differences between the legitimate and cracking pack-
ets.

We observe that, on average, the packets created by the cracking tools are
28% smaller than their legitimate counterparts. This difference is mostly due to
the smaller HTTP payload in the cracking packets.
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Moving down the layers, we see that both Ethernet and IP packet headers
generated by the three cracking tools are virtually identical to each other as
well as to the legitimate packets (with the exception of the IP length header
field, which was explained above), which is what one would expect as developers
generally let the networking libraries handle lower level packet creation.

Looking at the TCP header, we see that all packets are very similar with the
exception of the source port numbers, options, and window size. Of these, only
the last two are of interest to us. The difference in TCP options comes from the
fact that, contrary to all cracking tools and browsers running on Windows, all
GNU/Linux browsers in our test chose to set TCP option 8 (Timestamp). As for
the TCP window size, most cracking tools in our test preferred values of 16,425,
65,040, and 65,700, while the browsers used a variety of different values, ranging
from 229 to 65,568.

The most noticeable differences between the packets generated by the crack-
ing tools and the Internet browsers are in the application layer, namely in the
HTTP header. The first difference is that, in some instances, Sentry MBA uses
HTTP version 1.0 while all browsers and the rest of the cracking tools use ver-
sion 1.1. Furthermore, we observe that although all browsers in our test set
the Connection field to keep-alive, both Account Hitman and Vertex set it to
close. In addition, the Accept-Language header field varied significantly across
the browsers and cracking tools, but it was also completely omitted in all packets
generated by Sentry MBA. Also, the User-Agent field widely differed not only
between legitimate and cracking packets but also between each browser instance.
Finally, the HTTP Pragma header field was set in all packets generated by Sentry
MBA while only two browser instances out of 39 used it.

When looking at the HTTP header fields which were exclusive to either crack-
ing or legitimate packets, we observe that all browsers set the Accept-Encoding
field while none of the cracking tools did. Further, Accept-Charset, Upgrade-
Insecure-Requests, and Cache-Control header fields were set by six, 11, and five
browser instances, respectively, while none of the cracking tools used them.

4.4 Classifier Training

Using either Accept-Encoding or User-Agent features for classifier training would
give us a perfect accuracy in most machine learning algorithms since they are
either unique to all approaches or provide a perfect split between browsers and
cracking tools. However, we will not use them since Accept-Encoding and User-
Agent header fields could be either patched by cracking tool authors or manually
edited by advanced users.

Table 3 shows the features that were used to train the classifiers, which
denotes that the top three most discriminating features according to both Chi-
square and Information Gain tests are Accept-Language HTTP field, Pragma
HTTP field, and packet size. Accept-Charset and Cache-Control HTTP header
fields appear to be the least useful features according to both metrics.

Next, we used the RapidMiner data mining environment [43] to train sev-
eral supervised machine-learning-based algorithms. For each classification exper-
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Table 3. Classifier feature importance

Feature name Chi-square Information gain
HTTP Accept-Language 1.00 1.00
HTTP Pragma 0.61 0.62
Packet size 0.50 0.42
HTTP version 0.25 0.29
HTTP Upgrade-Insecure-Requests 0.13 0.15
TCP options 0.10 0.12
HTTP Connection 0.08 0.10
HTTP Accept-Charset 0.02 0.02
HTTP Cache-Control 0.0 0.00

Table 4. Classifier accuracy

Classifier Accuracy FP rate FN rate
Random Forest 100.00% 0.00% 0.00%
J48 100.00% 0.00% 0.00%
PART 100.00% 0.00% 0.00%
CART 100.00% 0.00% 0.00%
Logistic Regression 98.72% 2.56% 0.00%
Neural Network 98.72% 2.56% 0.00%
Naive Bayes 75.64% 48.72% 0.00%

iment, we used a 20-fold cross-validation with stratified sampling. In a 20-fold
cross-validation, the sample is divided into 20 parts: 19 parts are used as a train-
ing dataset, and the remaining part is used to test the classifier. This process is
repeated 20 times, producing 20 results. The results reported subsequently are
averages of the 20 runs.

The best performing algorithms were Random Forest, J48, PART, and
CART, all of which had perfect accuracies. They are followed by Logistic Regres-
sion, Neural Network, and Naive Bayes, with the accuracies of 98.72%, 98.72%,
and 75.64%, respectively. More details can be seen in Table 4. Also, although we
do not know the exact reasons for such poor performance of the Naive Bayes
classifier, one explanation could be that some of the features we used are not
independent of each other given the class label, which could result in suboptimal
probability estimates and wrong decisions [63].

When using AdaBoost to reduce the bias and improve the classifier accuracy
even further, we observe that all classifiers’ accuracies stay the same. Further-
more, in most cases the boosting was not possible due to the fact that only one
classifier was used.

5 Related Works

There have been a number of studies on underground marketplaces and their
economies. In what appears to be one of the first studies of modern cyber-
crime [35], Mann and Sutton analyzed Internet newsgroups, which are online,
forum-like discussion groups where like-minded people can communicate with
each other by posting messages. Mann and Sutton concentrated their efforts
on two particular newsgroups: one with discussions on hacking encrypted satel-
lite signals and another one on lock picking, safes, and other security devices.
During the course of their study, the authors classify newsgroup members into
categories, such as hacker gurus, parasites, information providers, and money
makers. They also investigate the supply of and demand for illicit goods and
services, and look into how newsgroup users with different levels of expertise
interact with each other. This is in contrast to our study, where we target the
subforums of four popular underground forums dedicated to cracking tools used
to brute force user accounts and test stolen credentials.
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A 2007 measurement study by Franklin et al. [23] focused on underground
marketplaces and touched on some topics covered by our work. The authors
used publicly posted IRC (Internet Relay Chat) messages to study malicious
activities, such as spamming, online credential theft, and the sale of compromised
hosts. They also proposed simple, low-cost countermeasures which could be used
to disrupt the operations of such marketplaces. Similar studies shortly followed,
with works by Cymru [15], Herley and Florêncio [26], and Fallmann et al. [20]
concentrating their efforts on studying illegal IRC marketplaces. Unfortunately,
not only have IRC chat rooms lost popularity among Internet users since that
time, but underground black markets have also evolved from chaotic, difficult-
to-control entities where there was little incentive for the miscreants not to scam
each other to more orderly and better regulated marketplaces [5]. Further, the
majority of these works looked at underground marketplaces as a whole. We
focus on several smaller subforums, which allows for an in-depth analysis.

In [65], Zhuge et al. perform a measurement study on the underground econ-
omy within the Chinese Web. In the course of their study, the authors concen-
trate their efforts on underground marketplaces and their participants, which
allows them to create a model describing the Chinese underground economy.
Several similar and complementary studies followed, including the papers by
Motoyama et al. [37], Christin [13], Yip et al. [60–62], Stone-Gross et al. [52],
Garg et al. [24], Holt and Lampke [29], McCoy et al. [36], Radianti [42], Allodi
et al. [6], Holt [27,28], and Sood and Enbody [51]. Our work is somewhat similar
to those studies in that we also study underground marketplaces in the example
of Web forums. However, unlike these works, which primarily focus on inves-
tigating the structure and organization of the underground forums as well as
social interactions among their members, we look into the configuration files for
cracking tools and user accounts used to share and download them.

Several studies propose various strategies for fighting cybercrime, ranging
from making it more difficult and costly for the miscreants to operate to com-
pletely taking down underground communities. In [33], Leontiadis analyzes var-
ious types of online criminal networks, including underground forums and mar-
ketplaces, from both technical and economical perspectives. Leontiadis’ study
reveals that online criminal networks tend to have weak links, or choke points,
which are critically-important components of online criminal networks. The
author argues that targeting such components will increase criminal operational
costs and reduce online crime. A somewhat similar strategy was proposed by
Nadji et al. in [38] where the authors used two graph measures – graph density
and eigenvector centrality – to investigate the structure of networks involved
in criminal activities. The authors also analyzed different take-down strategies
that could be used to shut down sophisticated criminal networks and determined
that, in most cases, shutting down a few domain names would remove critical
network links, thus, taking the whole criminal network down. Our work is similar
to these and other studies [3,34,53,55] in that we also come up with ways to
make it more difficult for the miscreants to engage in illegal activities. However,
our work differs in that we are not really interested in taking down criminal net-
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works; instead, we analyze the tools used by the criminals and develop machine
learning classifiers that could be used by companies to make it more difficult
and costly for the miscreants to attack them.

Furthermore, some studies survey existing methods and suggest new strate-
gies for detecting and preventing attacks on computer networks and Web appli-
cations. Papers by Sommer and Paxson [50], Lee and Stolfo [32], and others
discuss and propose data mining and machine-learning-based approaches for
network intrusion detection. Other studies, such as those by Douligeris and
Mitrokotsa [18], Kumar and Selvakumar [31], and Bhuyan et al. [9], investi-
gate defense mechanisms against distributed denial of service attacks. Further,
some papers, such as the ones by Wang et al. [57] and Abreu [2], propose to
use Web pages with dynamically changing content to make it more difficult
for the miscreants to perform automated attacks on Web applications. Finally,
there are studies that discuss the effectiveness of existing techniques for stopping
automated attack tools [40]. Although our study is similar to all these papers
in that we investigate automated attacks carried out with the help of computer
networks, our work differs in that, in addition to the analysis of underground
subforums, we concentrate our efforts on detecting network packets generated
by the popular cracking tools, which, to the best of our knowledge, is the first
work of its kind.

There are also articles and white papers that talk about credential stuff-
ing attacks and cracking tools like Sentry MBA and suggest defense mecha-
nisms, such as using complex passwords, avoiding password recycling, employing
JavaScript anti-bot challenges, monitoring the traffic for specific HTTP User-
Agent fields, and paying special attention to IP addresses responsible for a large
number of failed logins [4,8,10,47,54,64]. Our study differs in that, in addition to
config file subforum analysis, we go much deeper in our investigations of cracking
tools as well as develop classifiers capable of detecting cracking packets.

Finally, there are also a number of short papers and articles, such as an article
by Shulman [49] and a paper by Yip et al. [59], which provide a brief background
on the operations of underground credential markets and give insights into their
economies. In addition, a recent study found that cybercrimes are similar to
violent crimes in that they both carry significant indirect and defense costs [7].
This is in contrast to traditional non-violent crimes, like car theft or tax fraud,
which usually carry high direct costs, such as the price of a car, and relatively
low indirect costs, such as psychological trauma and lost output. Further, Shin
et al. [48] studied forum automators, which the miscreants use to spam legiti-
mate forums with unrelated messages promoting their own websites. Shin et al.
discovered that forum spam automators are fairly sophisticated and include a
number of features – such as the ability to automatically solve CAPTCHAs and
use anonymizing proxies – which help miscreants circumvent spam prevention
mechanisms and avoid blacklisting. Although not directly related to our work,
such articles and papers provide valuable insights into the underground cracking
economy, some of which we indirectly use in our study.
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6 Discussion

6.1 Data Collection Difficulties

One of the consistent traits encountered throughout this study is the large degree
of paranoia that forum operators were operating under. In particular, one of
our attempts at collecting data from webcracking.com was upended when our
registered user was banned from the forums for “leeching,” even though we were
not downloading or posting cracking configuration files. We were only browsing.
Such actions clearly impact our ability to collect data in a timely and complete
manner but also point to a culture of distrust on these communities.

To try to avoid these arbitrary bans, we attempted to utilize a VIP mem-
bership, where premium content and laxer rule enforcement were supposedly
benefits. In order to gain access to the VIP section, a user must send a monthly
‘donation,’ e.g. of $9.95, to the head administrator of webcracking.com. For this
paper, we paid for one month worth of VIP access to determine if our data
collection efforts could continue or if we would still be subjected to losing our
accounts to bans.

We quickly discovered that the VIP membership was subjected to similar
restrictions as the free membership, even though the advertisement promised
the lifting of all restrictions. Furthermore, even though we strictly adhered to
the specified restrictions, our account was temporarily banned for 10 days for
downloading too many configuration files. Once the ban was lifted, we reduced
the number of files downloaded to one file per 2–3 days. However, the admin-
istrators still permanently banned our account and the associated IP address
for downloading too many files without uploading any in return, even though
nowhere in the rules did it say that we had to upload any content in addition to
paying for the VIP access.

6.2 Classifier Feature Selection

It could be argued that the features we used for classifier training – most of
which come from the HTTP header – could be circumvented by the cracking
tool authors, rendering our classifiers out-of-date. Although it is true that a
developer could modify the packets created by their cracking software to make
them virtually indistinguishable from those generated by a modern browser,
we find it hard to believe that this thought had not crossed the minds of the
cracking tool authors, especially considering that the free cracking tools that we
tested were relatively mature with numerous versions released in the past several
years. If the developers wanted the HTTP headers in their software’s packets to
resemble those of the popular browsers, they would have done so already.

6.3 Packet Samples

We also had to create our own config files, which we did without modifying the
pre-defined HTTP header fields in any of the cracking tools. As a result, it is

https://www.webcracking.com
https://www.webcracking.com
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possible that the use of some config files for twitter.com, facebook.com, and other
popular websites would result in mildly different packets than the ones we used in
this study. Additionally, due to the difficultly of decrypting SSL traffic, we were
unable to identify the encrypted payloads being sent to certain websites. Based
on this shortcoming, we used our own website to get samples of legitimate and
cracking packets, which we believe is representative of the packets that would
be observed at encrypted websites, although we cannot know with absolutely
certainty that this is the case.

6.4 Ethical Issues

In order to gain access to configuration file subforums, we had to post several
messages from our underground forum accounts. In addition, for each down-
loaded configuration file, we were required to post at least one message and/or
click on the thank you button. We strongly believe that none of these actions
had a measurable effect on the underground forum economy.

On the other hand, paying $9.95 for one month worth of VIP access certainly
did affect the underground forum economy – it made the cyber criminal(s) run-
ning the webcracking.com underground forum $9.95 richer. Furthermore, we
violated the terms of use of several legitimate websites by creating fake accounts
and carrying out credential stuffing attacks against them. Although these actions
might be viewed as unethical, they were paramount to this study. Our actions
could be compared to doctors and scientists running experiments on animals –
although the lab animals suffer and often die painful deaths, the results of such
experiments are used to save and improve human lives, which most consider a
fair trade-off. Similarly, although it is unfortunate that we violated the terms of
use of several websites and made the cyber criminals $9.95 richer, we feel that
the benefits of our work far outweigh any moral or ethical concerns raised by it.

6.5 Future Work

Due to the difficulty and risks of collecting a large sample of cracking tools’
packets, we were not able to test our classifiers on the real-world data. To rectify
this, in the future we contemplate purchasing a dozen more cracking tools as well
as downloading older versions of Sentry MBA, Account Hitman, and Vertex. For
legitimate packets, we are considering including mobile browsers’ packets as well
as adding more flavors of GNU/Linux operating systems to our tests. Finally,
we are planning on contacting Twitter, Instagram, and Facebook and asking for
access to their decrypted traffic. This should give us a much larger sample of
both cracking and legitimate packets, and allow us to test the performance of
our machine learning algorithms in the wild, which appear to be very promising
in preventing cracking tool based threats.
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Abstract. Software-Defined Networking (SDN) is a core technology.
However, Denial of Service (DoS) has been proved a serious attack in
SDN environments. A variety of Intrusion Detection and Prevention Sys-
tems (IDPS) have been proposed for the detection and mitigation of DoS
threats, but they often present significant performance overhead and long
mitigation time so as to be impractical. To address these issues, we pro-
pose KernelDetect, a lightweight kernel-level intrusion detection and pre-
vention framework. KernelDetect leverages modular string searching and
filtering mechanisms with SDN techniques. By considering that the Aho-
Corasick and Bloom filter are exact string matching and partial matching
techniques respectively, we design KernelDetect to leverage the strengths
of both algorithms with SDN. Moreover, we compare KernelDetect with
traditional IDPS: SNORT and BRO, using a real-world testbed. Compre-
hensive experimental studies demonstrate that KernelDetect is an effi-
cient mechanism and performs better than SNORT and BRO in threat
detection and mitigation.

Keywords: Aho-Corasick · Bloom filters
Intrusion detection system · Security
Software Defined Networking (SDN)

1 Introduction

Software-Defined Networking (SDN) has played a key role in Science DMZ
(demilitarized zone). SDN grants an open-source asset and a great tool for devel-
opers and researchers to design and discover new solutions to networking chal-
lenges such as end-to-end delay minimization, traffic management, and network
attack detection. However, SDN itself is vulnerable to various adverse attacks.
Hong et al. [34] identified threats including Denial of Service (DoS) in SDN and
examined DoS attacks under the environment of eight different SDN controllers,
but there remain grand challenges to detect and mitigate them.

This research considers an environment like Science DMZ where there is
a need to high-speed network access to computation and storage for science
research. As mentioned before, Hong et al. [34] have presented DoS threats and
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proved that the exploitations are serious attacks in an SDN environment. Tradi-
tional network approaches to detect and mitigate DoS threats is through the use
of Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS),
but they present serious concerns including system performance [19], network
communication constraints [28], and detection validity [32]. Additionally, IDS
detection methods present a critical flaw to identify new or unknown network
attacks due to limiting threat signatures and comparison approaches. Recent
studies have suggested a variety of threat mitigation and detection solutions
including FloodGuard [19], SPHINX [28], and an entropy-based solution [32],
but none of them, to the best of our knowledge, has studied a modular kernel-
level IDPS approach within SDN environments.

In this paper, we propose KernelDetect, a lightweight modular-based filtering
approach inspired by Amann and Sommer [21] and Mekky et al. [18], to detect
and mitigate threats within an SDN environment. Specifically, KernelDetect is
an independent application-plane network Test Access Point (TAP) approach
using Switch Port Analyzer (SPAN) interfaces [20] on SDN switching devices.
Moreover, by using a modular approach as a key component, KernelDetect can
interchange the technique for string matching in addition to updating its sig-
natures while providing threat mitigation capabilities within a kernel space. As
we know, IDS signature methods are to compare a list of given strings or a
set of rules with incoming network traffic signatures. In this paper, the pro-
posed KernelDetect provides the ability to dynamically update the rule set in
SDN environments in which we can optimize traffic inspection when detecting
network threats.

To examine KernelDetect, we utilize Global Environment for Network Inno-
vations (GENI) [27] to conduct our real-world experimental evaluation. Addi-
tionally, we comparatively examine KernelDetect to the popular IDS solutions:
SNORT [29] and BRO [39] where KernelDetect leverages the Aho-Corasick [26]
algorithm and Bloom filter [11] with SDN. To provide hybrid network commu-
nications, we utilize D-ITG [33] and iPerf [14] as traffic generation software for
normal user data in the SDN experiments. To mix normal user traffic with mali-
cious ones, we implement DoS attacks [32] in our threat detection and mitigation
experiments. We further implement KernelDetect in an environment driven by
Floodlight [3] using Representational State Transfer (REST) Application Pro-
gram Interface (API) as our method of communication for KernelDetect to mit-
igate adverse threats and attacks.

KernelDetect resides on each switching device within an SDN environment
and offers management controls using REST API calls. Such controls provide
the ability to apply Access Control List (ACL) rules to SDN switches from a
controller to mitigate an adverse threat. To be concise, KernelDetect listens to
traffic on respective switching devices, and if a threat is detected, then mitigation
occurs by informing the controller of the actions needed to thwart the attack. We
further comparatively examine KernelDetect over traditional IDPS technologies
–SNORT and BRO for the detection and mitigation of DoS attacks in a real-
world testbed environment where we test various numbers of packets ranging
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from 100K to 500K and examine SYN flooding attack with different packet sizes
and sampling times. In our extensive experiments, we measure the average load
of system resources, inspection time, mitigation time, true positive, false positive,
and false negative.

To summarize, we make the following main contributions in this research:

– DoS has been identified as a serious attack in an SDN environment [34]. We
present KernelDetect, a lightweight kernel-level IDPS approach to thwart-
ing DoS threats with the ability to interchange string matching detection
mechanisms between the Aho-Corasick algorithm [26] and the Bloom filter
algorithm.

– Existing IDPS tools such as SNORT and BRO utilize a culmination of user
and kernel space due to the necessary user interaction needed to configure
both solutions. Contrary to existing conventional studies, KernelDetect is a
pure kernel-space solution. Furthermore, the default installations of SNORT
and BRO provide many detection rules for their respective systems. The more
number of rules we use, the more performance overhead is added. KernelDe-
tect has a much less overhead compared to SNORT and BRO.

– We leverage the common architecture of Science DMZ with SDN technologies
to develop KernelDetect. Thus, KernelDetect applies to Science DMZ, and it
can enhance data-driven research in academia and national laboratories, and
other related applications in industry and government agencies.

– As SNORT [29] and BRO [39] are traditional IDS solutions, we experimen-
tally evaluate KernelDetect against the two well-known kernel-space and user-
space detection tools in a real-world testbed, whereas many existing studies
are evaluated either through a simulator such as Mininet [4] or in a lab envi-
ronment whose results are often away from realistic.

The rest of this paper is organized as follows. Section 2 provides the back-
ground and challenges of our research problem. Section 3 discusses related work.
While Sect. 4 presents threat models and attack vectors, Sect. 5 outlines the
architectural design of the proposed solution. In Sect. 6, we give the experimen-
tal setup of KernelDetect evaluation with results. Lastly, Sect. 7 concludes our
study and gives future work.

2 Research Background and Problem

In this section, we provide a brief background of kernel-space detection tech-
niques and outline our research challenges.

2.1 Kernel-Space Detection Background

Kernel-space detection is a vital catalyst for intrusion detection systems due to
its fundamental view of high-performance computing and minimal overhead. The
use of deploying such a space/region has limited visibility as a traditional IDS
utilizes user and kernel-spaces [28]. Moreover, system applications and services
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utilize both the regions of computing, but only using one region for such processes
is not a common approach. Within SDN, there are numerous IDS solutions, but
many utilize a culmination of kernel and user spaces to identify their respective
adverse threats. Moreover, SDN switching software such as Open vSwitch (OVS)
attaches itself to both user and kernel-spaces and it requires packet data from
raw sockets on their respective operating systems to carry appropriate network
traffic to the SDN switching service. Using a kernel-space provides capabilities
for high-performance and a low overhead but presents a concern due to the
instability of a kernel panic, resulting in the following challenges.

2.2 Research Challenges and Assumption

Common approaches to detect and mitigate adverse threats is through the use of
an IDPS. One major issue of such a technique is through user-space utilization.
Moreover, numerous IDS solutions rely on user-space interfaces to allow admin-
istrators to manage and maintain the various services that are implemented
to identify and thwart malicious attacks. (1) Kernel Panic: The first challenge
through the use of a kernel space is when a system is panic. Commonly, when a
kernel module or a kernel-space application generates an erroneous issue such as
a programming bug or a buffer overflow, a panic occurs such that the operating
system is no longer function to provide service to the end user. When such an
event occurs, a sequence of recovery mechanisms is executed such as memory
dumping and a total system restart. We identify this challenge as a significant
area to address as KernelDetect resides purely on a kernel-space. We identify
this challenge as a significant area to address as the operation of KernelDetect
resides purely in kernel-space and that if KernelDetect malfunctions or gener-
ates a programmatic error, a kernel panic would occur. (2) Root Access and
System Vulnerability: Using kernel-space detection requires a significant level of
system access to identify such malicious traffic. This level of access is known as
root-access and proposes a serious challenge if the IDPS solution [15] were to
be compromised or exploited. Moreover, to both inspect traffic and determine
adverse behaviors, elevated access is required on such service to gain a control of
raw sockets on an operating system. Using traditional IDS solutions such as BRO
and SNORT, service accounts are created to secure the system from exploitation
through techniques such as chroot and jailing. These concerns present the second
challenge.

For the first challenge, the IDPS solution [16] should be robust from tech-
niques such as a buffer overflow, resilient to obfuscated attacks, and exploitation
schemes [24]. Using the operating system’s raw socket feature provides the abil-
ity to handle and evaluate the large quantity of network traffic in an efficient
manner. During a scenario of a DoS [42], excessive packet drops would occur as
the system would be unable to handle the quantity properly. Additionally, the
overhead and congestion presented from a DoS would create a significant delay
as the inspection system would place each packet into a queue for evaluation.
Overtime, this queue would significantly increase and may present a concern for
a buffer overflow if mishandled incorrectly. The simple solution to prevent an
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overflow would be to drop packets aggressively to prevent resource exhaustion
on the inspection system. One concern for this procedure will be if the network
traffic has a level of urgency or priority regarding guarantee delivery [5,10], but
this situation would heavily depend on the configuration and design of a network.
A more serious concern for the use of kernel space detection is the configura-
tion that the application requires root-level privilege on the IDPS system and
presents a concern if the system becomes compromised.

The second challenge of the proposed kernel-space IDPS solutions requires
an elevated user or root-access to gain accessibility to a variety of raw socket
communication to collect and inspect network traffic [35]. Although such access is
necessary for inspection purposes, it raises a potential concern for an emerging
threat vector. Moreover, a compromised switching device draws a significant
concern as network visibility becomes large such that a threat actor gains a
larger attack surface to identify potential targets. One approach to attaining
such access is through a vulnerability in the inspection step of our IDPS solution
such that a malicious payload may be misinterpreted [1].

In this research, we assume that the implementation of KernelDetect is bugs
free on a secure kernel where OVS is also secure.

3 Related Work

A common technique to identify adverse behaviors within network traffic is
through the use of string matching techniques. Such identification has been
examined using approaches such as Bloom filters [11] and Aho-Corasick [26].
There have been numerous studies to comparatively identify each string match-
ing approach [11,26] for performance evaluation, but these studies lack in the
identification of kernel-space detection. Furthermore, there have numerous devel-
opments of IDS solutions [6–8,16,19,28,31,36] to deter malicious traffic, but they
heavily rely on user-space detection. Examination of IDS solutions in kernel-
space detection has been evaluated through research work [17,23] but their
approaches do not address traffic dynamics.

In this research, we introduce SDN to address this concern. As SDN has
been widely used to improve network management, performance, and usabil-
ity, FloodGuard [19], SPHINX [28], and FortNOX [31] employed SDN for attack
detection and mitigation. Scott-Hayward et al. [35] summarized recent studies on
the vulnerabilities of existing approaches in an SDN environment. FortNOX [31]
addressed an SDN tunneling attack and solved the rule conflicts of an SDN flow
table. Furthermore, Mahout [13] introduced a solution to improve the preven-
tion mechanism for flooding attacks in an OpenFlow environment. SPHINX [28]
attempted to detect attacks that contravene learning-based flow graphs and
modules by designing a network flow graphs-based prototype. RAID [21] also
introduced a control prototype to monitor the network systems passively and to
target operational exploitation in a large-scale environment, but the effective-
ness of this prototype was assessed only through OpenFlow backed connecting
to three hardware switches. Moreover, Wang et al. [32] considered DoS attacks
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and gave an entropy-based solution to check detection validity. FRESCO [37]
suggested a framework to simplify the scheme for the composition of security
applications.

TopoGuard [34] considered the security of SDN controllers where TopoGuard
attempts to capture attack poison in an SDN environment (i.e. the holistic vis-
ibility of a network environment and topology) based on security omission’s
fixation. Rosemary [38] adopted a practical approach to addressing the issue
of control layer resilience through an extension of a NOS design. While their
efforts have primarily focused on protecting the data plane of SDN from mali-
cious applications, our proposed solution will have the ability to dynamically
update the rule set in SDN environments and optimize traffic inspection when
detecting network threats.

Furthermore, existing studies often suggested to combat one type of threats
using SDN techniques, e.g., Wang et al. [32]. SDNScanner [40] and AVANT-
GUARD [36] introduced solutions to detect and mitigate saturation attacks
(data-to-control plane saturation) by altering flow management at a switch level,
but their approaches are limited to TCP saturation attacks. Furthermore, they
exposed only those flows that complete a TCP handshake based on a SYN proxy
implementation.

Moreover, VeriFlow [25] detached a holistic network environment into sub-
classes that have exactly similar forwarding behaviors exploiting a multi-
dimensional prefix tree so that all forwarding policies and determined poli-
cies would be checked in live time whenever a network update occurs. Net-
Plumber [30] proposes a real-time policy verification tool based on Header Space
Analysis (HSA). NICE [16] introduces an approach to detecting network software
bugs in OpenFlow applications based on symbolic execution and model check-
ing. While FAST [9] identifies areas in conducting a forensic study on switching
devices.

To the best of our knowledge, KernelDetect gives the first kernel-level solu-
tion instead of traditional user-space IDPS ones. It is a lightweight kernel-level
detection mechanism. Contrary to the existing conventional work, we investigate
IDPS on a kernel space that overcomes the implementation difficulty of a kernel
space (e.g., SoftFlow [12]). As Snort and Bro are popular tools in this area, we
choose them in our comparison study.

Likewise, most existing evaluation techniques deploying SDN for detection
and mitigation, for example, TopoGuard [34] prototype evaluation is based on
Mininet [4] - a simulator whose results may be practically far from real-world
scenarios. Instead, KernelDetect is evaluated on GENI, a real-world testbed.

4 Threat Models and Attack Vectors

This research examines adverse users within an SDN environment where a series
of normal traffic will communicate with normal users (or called clients). While
SDN is widely used in traffic management, a variety of serious attacks such
as DoS [32], LDS [34], and MITM [34] have been found in SDN. That is, the
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threat model includes the methodologies of launching DoS attacks using research
work [32,34]. Although KernelDetect can be used for the detection and mitiga-
tion of other emerging network threats, we specifically consider DoS as our attack
vector for this paper. To be concise, we will periodically implement our methods
of DoS attacks on GENI as described in Sect. 6. Although a threat actor can
launch any methods of attacks in a series or simultaneously, we will examine
the effects of each threat individually for the performance evaluations and detec-
tion validity of KernelDetect. Trust needs to be identified in our SDN topology
where we outline a variety of weaknesses in our infrastructural design to establish
threat detection. To clarify, we assume that all SDN controllers and switching
devices are safe from a threat actor, but leave end devices vulnerable to attacks.
Mitigation is a critical factor to thwart an attack, and to prevent false positive
events carefully; whitelisting will be required.

Whitelisting is a common approach to safeguarding mitigation faults such as
disabling the WAN interface at an edge router and a network link to a known
trusted computing device. In our threat detection approach, we do not imple-
ment any whitelisting for end devices attached to SDN switches as all users can
be adverse at some point of time. Moreover, using KernelDetect, we implement
detection on each suitable switching device for inspection purposes that will be
further described in our experimental evaluation. Inter-switch links, commonly
identified as a shared network link between two switching devices, contain a
variety of network traffic intent from malicious to a normal user. Moreover, if
these links were to be disabled through mitigation techniques, network opera-
tions would potentially fail. We inter-switch links to prevent mitigation faults
from occurring. Although safeguarding inter-switch links provides reassurance
from mitigation faults, a compromised end device has a greater potential to
establish a significant threat to an SDN environment.

Lastly, we treat KernelDetect trustworthy even though adverse users can
potentially obfuscate, exploit or overfill buffers specific to IDS solutions in addi-
tion to our string matching methods, Bloom filter, and the Aho-Corasick algo-
rithm. We will identify an attack method in our experimental evaluation of
Sect. 6. Following our evaluation, we have also investigated an IDS solution for
other threats. However, we only present our study for DoS in this paper due to
the page limit.

5 Design of KernelDetect

This section presents the architectural design of KernelDetect with discussions.
We further discuss a threat signature structure for our proposed detection solu-
tion.

5.1 KernelDetect Placement and Architecture

The placement of KernelDetect is critical to detection and mitigation timings of
an emerging threat. Before we present the architectural design of KernelDetect,
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Fig. 1. The placement and functionality of KernelDetect for network traffic flow.

Fig. 1 shows the location and functionality of KernelDetect whose implementa-
tion is done in a configuration that operates in tandem with an SDN switching
device.

Traffic duplication occurs within KernelDetect as both KernelDetect and
OVS utilize raw socket communications in the back-end of the software system.
The SDN Controller receives REST API calls from each switch when identifying
a threat for mitigation. In this research, we use Floodlight as the controller
software due to its REST API features. Figure 2 provides an architectural design
of KernelDetect for both traffic inspection and signature matching with decision-
making processes.

Let kds be a KernelDetect score, a an administrative-set incremental value
for adverse traffic, b a decremental value for trustworthy traffic, and kdt a thresh-
old value to determine whether such traffic should be placed in an inspection
through either the Aho-Corasick algorithm or Bloom filter, called Aho-Corasick
inspection or Bloom filter inspection, respectively. M simply denotes the match-
ing scheme for KernelDetect.

When traffic enters an interface on a respective switch, the value is temporar-
ily stored, and the information is forwarded to OVS and KernelDetect for their
appropriate purposes of forwarding and inspecting traffic, respectively. During
the initial state of KernelDetect, that is, when the service begins, an administra-
tive configuration is examined to verify if a secure mode is enabled. We define the
secure mode as a parameter such that if the placement of the switching device
is in a critical data region, KernelDetect will enforce a detailed inspection using
Aho-Corasick. If the placement does not have severe inspection approaches, then
KernelDetect may use Bloom filter for detection. During the inspection process,
we identify and examine to see whether the traffic has malicious intent through
signature matching. If the intent is considered trustworthy, then we simply for-
ward the traffic and decrease kds by a value of b, and add a when the intent
is not trustworthy. Using a threshold condition of comparing kds to kdt, we
examine whether future traffic should remain in Aho-Corasick or Bloom filter
inspection. If the traffic has a malicious intent, we simply drop the packet from
the raw socket and inform the SDN controller using REST API calls to block
the adverse threat.
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Fig. 2. The architectural design of KernelDetect consisting of four states: “Initialize,”
the beginning state of the SDN switch operations, “Inspection,” a real-time inspection
of traffic obtained from the raw socket of the operating system, “Mitigation,” a critical
step to thwart an attack and to prevent false positive events carefully, and “Evaluation,”
the examination of incoming traffic through ‘Aho-Corasick’ or ‘Bloom filter’ with a
global view of the network.

5.2 Threat Signature Structure

Identifying adverse network traffic could be challenging as it depends on IDS sig-
natures and threat identification markings. Particularly, two common approaches
are considered to identify traffic threat through string-based matching, and traf-
fic over time where an observation of a pattern of network packets occurs in
a given period. As mentioned before, although KernelDetect applies to various
attacks, this paper focuses on a DoS attack vector due to the page limit.

DoS: The identification of a DoS attack can be a challenge in an at-scale net-
work. There are multiple methods to create a DoS attack from TCP SYN-
flooding to other detailed approaches such as OSI Layer 7-based flooding.
Like [32], we can identify a traffic pattern over an interval of time to deter-
mine if there is a DoS attack. That is, if the quantity of traffic exceeds a given
threshold, KernelDetect considers that a DoS attack occurs, and it raises an
alert. This threshold is a fixed value among all the approaches studied in our
experiments later. The correlation with signature matching relates towards the
frequency of alerts that is, KernelDetect raises an alert when a match occurs.
The observation of a threat can originate from one or multiple sources where the
attacker may spoof the source address of the DoS. Based on this given knowledge,
KernelDetect accounts for such threats.

Signature-based matching may not be the appropriate tool to detect DoS
attacks where the adversary can often insert arbitrary data into a packet payload.
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This approach renders signature-based detection ineffective. In some cases, DoS
attacks may not have any form of data for its payload, such as a low-profile TCP
SYN flood attack. However, KernelDetect, considers matching the header infor-
mation of a network packet rather than its packet payload, which increases the
performance of threat detection. Below is the algorithm for KernelDetect where
TH and THP are threshold values for time and packet intervals, respectively.

P = PACKET_IN
while P do

TS = TIMESTAMP
if P.TYPE == ICMP then

Q{P.SRC_ADDR}++
if P.SRC_ADDR NOT IN S then

S{P.SRC_ADDR} = TS
else

if TS - S{P.SRC_ADDR} > TH then
if Q{P.SRC_ADDR} > THP then

REST API Call to SDN Controller
else

S{P.SRC_ADDR} = TS
end if

end if
end if

end if
end while

6 Experimental Evaluation

We have carried out the comprehensive evaluation of KernelDetect by choosing
different experimental parameters such as the varying number of packets and
threshold time. This section summarizes the evaluation of KernelDetect and
presents a part of experimental results. For this purpose, we start with the
topology design of our experiments using GENI.

6.1 Experimental Topology Design

To measure the effectiveness of KernelDetect, we utilize GENI [27] for exper-
imental evaluation. GENI is a real-world heterogeneous virtual testbed with
networking capabilities including SDN. To evaluate KernelDetect, we construct
a topology with the following three constraints: (1) An adverse user attached to
a single network link identifying major areas of mitigation. (2) A shared network
link used by both a normal user and an attacker. (3) An edge network link that
carries both normal and attack traffic. This edge link has limited SDN controller
management. Figure 3 gives a visual view of the experimental topology that con-
siders the previous research challenges where the locations of adverse users are
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Fig. 3. GENI experimental topology for evaluation where KernelDetect is only imple-
mented in switches B and D as depicted in the diagram. Moreover, CTRL links are
the communication medium between each SDN switch and their respective controller.
Lastly, our experimental evaluation interchanges KernelDetect-enabled switches with
SNORT and BRO for our comprehensive study.

explicitly labeled. For presentation purpose in this paper, we give a relatively
simple topology for our evaluation as shown in Fig. 3. However, KernelDetect is
applicable to any complex network topology.

Although client nodes may have the potential to be compromised, we do
not evaluate this scenario as we do not utilize any white listing techniques to
safeguard end-devices from our mitigation approach. Specifically, normal users
could have the potential to be prone to mitigation techniques depending on IDS
signatures and rule sets.

6.2 Detection Rules in BRO and SNORT

For a detection system to identify adverse traffic, rules are necessary for network
traffic evaluation. The following demonstrates the rule to identify a DoS attack
for SNORT where an alert is raised once 70 packets are sent within a 10 second
interval that is TCP-SYN flagged.

alert tcp any any -> $HOME_NET 80(flags:S;

msg:"Possible TCP DoS is Detected !!";

flow: stateless; detection_filter: track by_dist, count 70,

seconds 10; sid 10001;rev:1;)

6.3 Traffic Generation Techniques

To mix normal traffic into the grand scheme of our experiments, we utilize
iPerf [14]. Although we cannot fully emulate a normal user, we believe that
iPerf should provide a fundamental approach to measuring our solution. The
main reason for such an approach is that iPerf provides the ability to saturate a
network link in addition to real-time network throughput analysis. To be concise,
we configure iPerf with the default parameters for operational use.
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6.4 Experimental Results

In the evaluation of KernelDetect, we study its inspection time, mitigation time,
detection accuracy, and system resource consumption comparatively compared
to SNORT and BRO.

Inspection Time. Packet inspection time is critical to the mitigation of threat
actors and adverse network traffic. Specifically, as packets arrive at an IDS, the
information is placed in a buffer and waits for inspection. This waiting time
increases the time needed to mitigate the adverse threat if the packet has mali-
cious intent. To measure such inspection time, we established a near-equal con-
figuration for each IDS solution with the quantities of threat signatures in each
respective database for measurement purposes. We establish this approach to
examining the effectiveness of each solution to have near mirror-like configura-
tions and to examine the performance of each IDS solution closely.

To measure inspection time, we establish communication between two devices
using hping3 where we transmit low packet size with the large quantity of traffic
at one nanosecond interval of time, achieving a link saturation. We evaluate three
threshold values of 5, 10, and 15 s for detection. In this evaluation, we run all the
experiments 10 times and then averge their results. Figure 4 shows the average
inspection time for 10-second thresholds. Our experimental results demonstrate
that KernelDetect has an overall lowest average inspection time compared to
SNORT and BRO.

Table 1. A comparison of the average inspection time in seconds among KernelDetect,
SNORT and BRO under various traffic loads of 100K, 200K, and 500K SYN flagged
packets using detection thresholds of 5, 10, and 15 s.

Traffic load (K) 100 200 500

Threshold (Sec.) IDS

5 KernelDetect 0.0048 0.0047 0.0109

SNORT 0.0033 0.0186 0.0319

BRO 2.1264 1.5187 2.3996

10 KernelDetect 0.0106 0.0111 0.0112

SNORT 0.0128 02686 0.0643

BRO 2.2656 1.1270 4.3337

15 KernelDetect 0.0067 0.0070 0.0069

SNORT 0.0067 0.0243 0.0172

BRO 1.9113 1.3433 2.5786

Table 1 demonstrates that KernelDetect has lower inspection time aver-
age comparatively to BRO and SNORT while Table 2 describes a 95% confi-
dence interval statistic. In Table 2, we only compare KernelDetect with SNORT
because BRO has much higher inspection time than KernelDetect and SNORT
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Fig. 4. A comparative analysis of the inspection time for each IDS under 100K, 200K
and 500K SYN flagged packet DoS attack using a 10 s threshold signature.

as shown in Table 1 so that it would not be helpful even if we included a 95%
confidence interval statistic for BRO in the table. Furthermore, although Ker-
nelDetect has some confidence interval overlap with SNORT, it is demonstrated
in Table 2 that KernelDetect is still a clear winner in comparison to SNORT
under various traffic loads with different signature threshold values regarding
inspection time.

Mitigation Time: Mitigation time is the time between an alert raised and
the threat stopped. It is key to ensuring the safety and well-being of a network
at scale. Although each IDS solution presents its unique attributes to detect
an adverse threat, we measure the effectiveness of KernelDetect by studying
threat mitigation. To measure the mitigation time, we examine the time between
the initiation of each network attack and compared it to the time needed to
rectify the threat as expressed in Fig. 5, represented in Table 3 as an average,
and described using a 95% confidence interval in Table 4. Table 3 depicts that
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Fig. 5. Threat mitigation time for each IDS under 100K, 200K and 500K SYN flagged
packet DoS attack using a 10 s threshold.

Table 2. A 95% confidence interval statistic for inspection time (seconds) between
KernelDetect and SNORT where L and U represent their lower and upper bound,
respectively.

Traffic load (K) 100 200 500

Threshold (Sec.) IDS Stdev L U Stdev L U Stdev L U

5 KernelDetect 0.0142 0.0024 0.0031 0.0025 0.0037 0.0056 0.2009 0.0066 0.0150

SNORT 0.0229 0.0027 0.0039 0.0624 0.0162 0.0211 0.3644 0.0170 0.0470

10 KernelDetect 0.1711 0.0038 0.0174 0.0183 0.0103 0.0119 0.0186 0.0104 0.0120

SNORT 0.2309 0.0082 0.0173 0.2217 0.2549 0.2824 0.2566 0.0592 0.0690

15 KernelDetect 0.0522 0.0037 0.0068 0.0602 0.0051 0.0088 0.0654 0.0055 0.0080

SNORT 0.0558 0.0050 0.0083 0.0984 0.0195 0.0253 0.1205 0.0137 0.0210
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Table 3. The average mitigation time in seconds for KernelDetect, SNORT and BRO
under various traffic loads of 100K, 200K, and 500K SYN flagged packets using detec-
tion thresholds of 5, 10, and 15 s.

Traffic load (K) 100 200 500

Threshold (Sec.) IDS

5 KernelDetect 0.0036 0.0074 0.0123

SNORT 0.0056 0.0012 0.0130

BRO 0.0060 0.0100 0.0108

10 KernelDetect 0.0060 0.0054 0.0044

SNORT 0.0055 0.0065 0.0078

BRO 0.0074 0.0080 0.0118

15 KernelDetect 0.0042 0.0049 0.0086

SNORT 0.0071 0.0101 0.0200

BRO 0.0096 0.0635 0.1254

Table 4. A 95% confidence interval measurements for mitigation time (seconds)
between KernelDetect and SNORT where L and U represent their lower and upper
bound, respectively.

Traffic load (K) 100 200 500

Threshold (Sec.) IDS Stdev L U Stdev L U Stdev L U

5 KernelDetect 0.0141 0.0032 0.0040 0.0376 0.0063 0.0087 0.0966 0.0097 0.0149

SNORT 0.0424 0.0044 0.0067 0.1137 0.0078 0.0167 0.0820 0.0094 0.0166

10 KernelDetect 0.0302 0.0051 0.0068 0.0355 0.0045 0.0063 0.0230 0.0038 0.0050

SNORT 0.0542 0.0027 0.0037 0.0530 0.0026 0.0037 0.0190 0.0081 0.0093

15 KernelDetect 0.0267 0.0035 0.0060 0.0656 0.0030 0.0067 0.0629 0.0068 0.0104

SNORT 0.0494 0.0058 0.0085 0.0921 0.0065 0.0137 0.0932 0.0096 0.0240

KernelDetect has a similar mitigation time as SNORT, it is superior to BRO and
is still slightly better than SNORT on average. Furthermore, similar to Table 2,
we do not include BRO in Table 4 for the same reason. As shown in Table 4,
KernelDetect has better performance than SNORT when comparing their con-
fidence intervals. Figure 5 depicts a series of DoS attacks executed in the SDN
environment where each solution provided necessary alerting and mitigation pro-
cedures. The mitigation technique for each solution utilizes the same function
such that when an alarm rose, the message presented will be used to block the
respective address. Figure 6 provides the clarity of mitigation time using 10 s
threshold, which demonstrates that KernelDetect is the best solution.

True Positive and False Positive. False positive and erroneous threat
detection can lead to significant downfalls of network communication. Figure 7
presents the use of Receiver Operating Characteristic (ROC) curve techniques
for KernelDetect SNORT and BRO. Notably, the curve demonstrates our detec-
tion matching sensitivity for our experimental evaluation where we identify the
accuracy of each system. BRO demonstrated to have the poorest accuracy rate
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Fig. 6. Threat mitigation for each IDS under 100K, 200K, and 500K SYN flagged
packet flood attack using 10 s threshold detection technique and represented as a box
plot.

Fig. 7. ROC Curve for threat detection for each IDS under 100K Packets SYN flood
attack using various thresholds of 5, 10 and 15 s for threat signatures of a DoS attack.

in comparison to KernelDetect and SNORT where KernelDetect presented the
most accurate results based on the analysis of the experimental results.

System Resource Utilization. The performance of an IDS/IPS solution is crit-
ical to counter adverse network threats and specifically—threat actors. As traf-
fic flows from one host to another, congestion and computational bottlenecks can
occur within a network environment in addition to an IDS solution. Inspection
and the level of detail in examining the content of the packet can produce resource
strain on a computing device. Figure 8 provides the average system resource uti-
lization for each IDS solution under a variety of network attacks for purposes of
evaluating the performance constraint. Samples of system resource utilization are
used to measure averaging CPU usage in a kernel space. As shown in experiments,
BRO demonstrated a higher-level system resource utilization in comparison to
KernelDetect and Snort. Although CPU utilization is critical to examine, mem-
ory resource consumption is vital in the operation of an SDN device.

Memory is a critical segment for resource examination as network packets
traverse between two devices. The information is stored in a buffer, waiting
for inspection and forwarding purposes. In Fig. 9, we express our findings for
memory usage under a 100K SYN flagged packet attack.
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Fig. 8. System usage at 100K, 200K, and 500K packets (Pkt.) loads of SYN flood
attack (Atk.)

Memory utilization increases during the events of a DoS attack where Ker-
nelDetect is more efficient than SNORT and BRO in the events of a post-DoS
scenario. To be concise, once the DoS attack ends, both BRO and SNORT main-
tain constant memory resource utilization while KernelDetect’s usage reduces to
the lowest percentage rate.

Discussions. A kernel panic is one serious challenge in the use of kernel-space
detection for a security apparatus such as KernelDetect. Moreover, if a kernel
panic would occur to an SDN device, practical and operational usage would be
lost. Additionally, the library functions that are implemented and imported into
the design of KernelDetect may propose a vulnerability that could be haphaz-
ardous to the SDN environment. In the design of KernelDetect, this research
treats all utilized libraries as trusted modules in the implementation such that
the discovery of a serious vulnerability would be well-known and urgent for
patching purposes. One configuration that may be sub-optimal for an SDN envi-
ronment is to implement KernelDetect on an independent computing system
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Fig. 9. Memory utilization for each IDS under the scenario of a single attack with
100K SYN flagged packets (Pkt.) using a 10 s threshold detection rate. Additionally, a
full-link saturation is achieved during the attack in this evaluation.

that is attached to a port mirroring interface using a SPAN/TAP configuration
such that if kernel panic would occur, SDN switching operations would continue
to function. Lastly, KernelDetect utilizes raw socket information to read incom-
ing packets. This read procedure could be insufficient for the switching operation
such that OVS could process the raw socket information at a faster rate than
KernelDetect. We experimented by creating a low packet size full link satura-
tion scenario, but we were unable to emulate the concern. Our belief to such an
event would potentially be plausible in a large network throughput interfaces
such as 100Gbps. However, our evaluation was limited to only 1 Gbps speeds.
Peformance modeling like [41] is helpful to such studies.

7 Conclusions and Future Work

In this paper, we have proposed KernelDetect, a modular countermeasure app-
roach in an SDN environment. It is a new lightweight kernel-level intrusion detec-
tion and prevention approach where we have leveraged modular string searching
and filtering mechanisms with SDN controller techniques. While KernelDetect is
applicable to deal with a variety of adverse network threats, we have specifically
explored the events of a DoS attack in an SDN environment.

To combat the above attack, we have considered the Aho-Corasick algo-
rithm that is an exact string matching technique, and Bloom filter that is a
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partial matching algorithm. In KernelDetect, we have further dynamically lever-
aged the strengths of the Aho-Corasick algorithm and Bloom filter with SDN
controllers. Moreover, we have conducted extensive experiments on GENI, a
real-world testbed infrastructure where we have varied the number of network
packets ranging from 100K to 500K and launched SYN flooding attacks with
different packet sizes and sampling times. We have measured the average load of
system resources, inspection time, mitigation time, true positive, false positive,
and false negative among 10-run experiments. Section 6 has reported the partial
results of our comprehensive experimental evaluation. Through a comparative
analysis of KernelDetect with traditional IDS solutions of SNORT and BRO,
we have demonstrated that KernelDetect is an effective and efficient solution to
detect and mitigate adverse attacks.

We have utilized our inspection approach to detecting network threats within
the data plane of an SDN environment. In our future work, we plan to identify the
potential areas of threat detection in control plane communications. Moreover,
we have stuided DoS attacks in an SDN environment. We plan to examine other
adverse threats such as malware where a deep packet inspection is required, and
therefore KernelDetect needs to be modified for addressing such threats.
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Abstract. Android enables inter-app collaboration and function
reusability by providing flexible Inter-Component Communication (ICC)
across apps. Meanwhile, ICC introduces serious privacy leakage problems
due to component hijacking, component injection, and application collu-
sion attacks. Taint analysis technique has been adopted to successfully
detect potential leakage between two mobile apps. However, it is still
a challenge to efficiently perform large-scale leakage detection among a
large set of apps, which may communicate through various ICC channels.
In this paper, we develop a privacy leakage detection mechanism called
LinkFlow to detect privacy leakage through ICC on a large set of apps.
LinkFlow first leverages taint analysis technique to enumerate ICC links
that may lead to privacy leakage in each individual app. Since most ICC
links are normal, this step can dramatically reduce the number of risky
ICC links for the next step analysis, where those ICC links are matched
among leaky apps. We develop an algorithm to identify privacy leakage
by analyzing ICC links and the associated permissions. We implement a
LinkFlow prototype and evaluate its effectiveness with more than 4500
apps including 3014 benign apps from five apps marketplaces and 1500
malicious apps from two malware repositories. LinkFlow can successfully
capture 6065 privacy leak paths among 530 apps. We also observe that
more than 400 benign apps have vulnerabilities of privacy leakage in
inter-app communications.

Keywords: Android · Privacy leakage · Large-scale detection

1 Introduction

As an open platform, Android allows users to install apps from the Google
Play Store and third-party app marketplaces. Inter-Component Communication
(ICC) mechanism enables communication between two components belonging
to two different apps, and it allows developers to reuse another app’s func-
tionality without reinventing the wheel. However, the easy-to-use ICC can be
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misused in application collusion attacks [42] to bypass Android’s permission-
based security model, which only independently restricts individual apps from
accessing sensitive resources. Therefore, malicious app developers may deliber-
ately develop multiple apps that may collude via ICC to achieve permission
escalation [19,24,27,31].

Researchers have developed a number of effective mechanisms to detect ICC-
based privacy leakage between two apps [20,21,23,26,29,32,34,34,38,38,41,44,
46,49,50]. However, it is difficult to directly apply those approaches in a large
scale detection, since it is very time-consuming to check each pair of apps among
the huge number of apps in one app marketplace. For example, according to the
existing studies [26,29,34,38,52], it takes at least 5 min for the-state-of-the-art
mechanisms to detect privacy leakage between two apps. Thus, when detecting if
there exists privacy leakage among 500 apps, it will take more than 10 thousand
hours (about 400 days) to analyze each pair of the 500 apps. Such a long detection
delay is not acceptable.

There are two main challenges to efficiently detect the inter-app privacy
leakage vulnerabilities among a large set of apps. First, we should be able to
precisely resolve ICC APIs in each app and then identify inter-apps data flows
through those APIs. Currently Intent can use about 40 ICC APIs to exchange
information [9]. Moreover, we need to harvest the ICC parameters from the
app bytecode and track inter-app data flows by matching ICC channels among
different apps. For simplicity, we call those ICC channels as ICC links. Second,
since there will be a huge number of ICC links among a large set of apps, it is
difficult to enumerate all possible ICC links among those apps. Therefore, we
should be able to reduce the scale of ICC link analysis without introducing false
negative detection results.

In this paper, we propose a large-scale privacy leakage detection mechanism
called LinkFlow that can efficiently detect privacy leakage through ICC among
a large set of apps. Our mechanism is based on one key observation that the
most of ICC links among all apps in one app marketplace are benign links.
Therefore, instead of detecting leakages in all ICC links, we focus on identifying
the ICC links among the app components that may leak information, so we can
dramatically reduce the scale of targeted ICC links and significantly decrease
the detection delays.

LinkFlow uses static taint analysis to filter out the leaky components that
may lead to privacy leakage for each individual app. Next, we propose an effi-
cient ICC match algorithm to quickly mine out all the ICC links among those
leaky components. We then separate the flows in the leaky components into
two component sets, namely, OutFlow set and InFlow set, based on its leaky
flow and use an ICC matching algorithm to find out ICC links between the two
component sets. A privacy leakage vulnerability can be identified if an ICC link
really delivers sensitive information. Our mechanism also supports incremental
analysis when a new app is submitted to the app market. The analysis results
generated by LinkFlow not only identify privacy leakage among the existing
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apps, but also provide guidelines for app developers to mitigate leakage during
app development.

We implement a prototype of LinkFlow and evaluate it with 3014 real-world
benign apps and 1500 malicious apps. It successfully identifies 6065 privacy leak-
age paths among 530 apps. It detects 4622 abnormal data flows among 87 apps,
which introduce privacy leakages among their inter-apps data flows. LinkFlow
only takes around 5 min to analyze one app against the remaining apps; most
time is consumed by the taint analysis and the ICC extraction, which are one-
time operations. It takes about 10 s to detect if there exists privacy leakage
between an app and the rest 4513 apps, which is efficient in large scale detec-
tion.

In summary, this paper makes three folds of contributions.

– We propose a large scale app detection framework to efficiently detect vul-
nerable inter-app data flows that may lead to privacy leakages.

– We propose an ICC matching algorithm that searches the ICC links and
identifies sensitive inter-app data flows in order to detect privacy leakage.

– We implement a LinkFlow prototype and use it to study the privacy leakage in
real app stores. The experimental results show that it can finish the detection
quickly and effectively identify the vulnerable ICC links among apps.

2 Background

Android apps usually consist of multiple reusable components that can com-
municate with each other either internally or externally via Inter-Component
Communication (ICC) mechanisms. There are four types of components, namely,
Activities, Services, Content Providers, and Broadcast Receivers.

Android provides flexible APIs for components to exchange data or share
services through ICC. Components use Intent messages or URI to describe the
corresponding components. Intent can be either explicit or implicit [7], where
explicit Intent requires setting package names and component names of the recip-
ient components in the Intent messages and implicit Intent needs to define its
type by specifying the actions, the categories, and other flags. Using implicit
Intent, one component that has registered Intent Filters to handle one Intent
can receive and respond to the Intent message.

Android is a permission based operating system and restricts resource
accesses by declaring different security level permissions. The protection levels
can be one of four levels: normal, dangerous, signature, or signatureOrSystem.
In particular, the later three levels are used to protect resources of apps. Apps
declare their permissions in the Manifest.xml files with different protection levels,
and these permissions are granted forever upon the apps’ installation. The usage
of ICC also introduces potential privacy leakages that can bypass the permission
system [23,34,38,40,41]. For instance, if one component with the permissions to
access sensitive data is exported and not protected by signature level permission,
it may be misused by another component in a privilege escalation attack. Our
work focuses on detecting potential ICC privacy leakages among a large number
of apps.
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3 Threat Model

The component reuse via ICC on Android poses serious security problems against
the permission-based security model. Malicious apps may misuse the components
in other benign apps to grasp the corresponding permissions, or they can collude
to accumulate permissions that will not be granted to a single app.

Component Hijacking. When the exported components of benign apps can
be leveraged by malicious apps, sensitive information may be leaked out from
the benign apps. For instance, GoMsg is a popular app with over a million
downloads for sending messages and making phone calls. Its message sending
component is exported and can be used by any other apps without permission
check. Therefore, malicious apps such as SmsZombie [11] can leverage GoMsg to
send premium-SMS. Such component hijacking attacks have been identified in
a number of built-in and third-party apps, including Activity Hijacking, Service
Hijacking, and Broadcast Theft [23,41].

Component Injection. When benign apps send Intent to the corresponding
components that have been replaced by components of malicious apps, ICC
is manipulated by the malicious apps and ICC information will be leaked to
malicious apps [39]. For instance, One-Password is a popular password store
app, which uses Dropbox SDK to implement the OAuth login function. However,
malicious apps can register the same Intent Filter as One-Password to intercept
the OAuth access token [14] or return the fake token to One-Password to log in
with the attacker’s account.

Application Collusion. Since permission model focuses on restricting the
access capability of an individual app, it cannot detect application collusion
attacks that malicious apps may collude via ICC to achieve permission escalation.
For instance, SoundComber [47] is a sound-based Trojan that uses sound sensors
to record user’s keyboard input and other audio data such as phone conversa-
tions. Android security protection may deny the installation of apps requesting
both sensitive sensors and network permissions. However, SoundComber does
not requires the network permission, since it can use ICC to transfer the sensi-
tive data to another colluding app that has the network permission to send the
data to a remote server.

In this paper, we focus on developing an efficient approach to detecting inter-
app privacy leakage incurred by ICC channels. Privacy leakages incurred by
other interfaces (e.g., interfaces defined by Android Interface Definition Lan-
guage (AIDL)) are not the focus of our paper [20,42].

4 LinkFlow Overview

In this section, we present an overview of LinkFlow architecture that aims to
detect privacy leakage across multiple apps on a large scale. It is built upon
the following two key observations, which have been correctly verified by our
experimental results.
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Fig. 1. LinkFlow architecture

Observation 1: Not all components of an app interact with the other compo-
nents of the app or other apps, and thus they will not leak privacy. One compo-
nent cannot be accessed by any other components (of the app or other apps) if
it does not communicate with them via ICC. Therefore, we only need to ana-
lyze the code of app components that interact with the other components of the
same app or other apps. In other words, we focus on the components that may
transfer data out of the app.

Observation 2: Only a small portion of ICC links are leaky, and the most of
ICC links are benign. Thus, we can identify privacy leakage by analyzing ICC
links that deliver sensitive information, which is protected by the permission
level at Dangerous, Signature, or SignatureOrSystem.

Figure 1 shows the architecture of LinkFlow, which consists of three major
components Taint Analyzer, ICC Extractor, and ICC Link Analyzer. Given a set
of apps, these three components run in sequence to identify potential ICC-based
leakage among all the apps. First, the taint analyzer performs static taint analysis
on each app to identify flow paths that may leak sensitive information. Second,
ICC extractor is responsible for extracting and resolving ICC methods and the
parameters in ICC links according to flow paths generated by taint analyzer,
and generates two sets of components for outgoing flows and incoming flows,
respectively. By leveraging the flow paths, ICC extractor significantly reduces
the number of ICC links for analysis. Finally, ICC link analyzer matches the ICC
links of apps to find out the abnormal data flows that may incur privacy leakages
among apps. The first two steps can precisely screen out the leaking components
in apps and the ICC APIs used in those components. Based on the reduced ICC
links, the third step identifies the leaking ICC links and can generate an ICC
link graph to better illustrate the leaking paths.

4.1 Taint Analyzer

The usage of taint analysis is to detect the leaky components that contain ICC-
based leaky data flows. A leaky data flow is a path starting from the source API
that accesses the sensitive data to the sink API that sends this data out of the
application or device. We inspect all leaky flows that send data to ICC APIs
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(e.g., Intent.putExtra) that are called ICC-Sink or read data using ICC APIs
(e.g., Intent.getExtra) that are named ICC-Source in this paper.

4.2 ICC Extractor

We use ICC extractor in the second step to extract the parameters of Intents, the
ICC APIs, the components’ Intent Filters and other necessary messages. Since it
only extracts the ICC APIs that match the flows in ICC-Sink or ICC-Source and
analyze the components that may communicate with other apps, it dramatically
reduces the number of ICC links under analysis. After this step, we can extract
the leaky components and leaky path using ICC APIs in each individual app.
We define a tuple A= {C, P, F} for each app to record the analysis results,
where

– C is the set of components in one app. For each component c ∈ C, c contains
the ICC extractor’s analysis results that are extracted from the Manifest and
bytecode. It consists of a set of Intent Filters, a set of permissions used in
the component, and a set of ICC methods. In addition, it also includes Intent
messages that are referred as Exit Points.

– P is the set of total permissions declared in the app’s manifest file.
– F is the set of flows resulted from the static taint analysis.

4.3 ICC Link Analyzer

After obtaining the tuple of an app from ICC Extractor, we perform the ICC
link analysis to analyze all the necessary data of the leaky components and use
a fast ICC matching algorithm to enumerate all ICC links among these apps to
identify privacy leakage. In particular, we accurately infer if ICC links really incur
privacy leakage by evaluating the corresponding permissions that are mapped
from the ICC APIs. After this step, LinkFlow can generate an analysis report
to list all the potential privacy leakage among apps, e.g., among all apps in an
app marketplace. This report provides guidance to mitigate the vulnerabilities
or ban the malicious apps. In particular, it allows app developers to understand
what components could be leveraged by other apps and thus help reduce the
chances of privacy leakage.

5 LinkFlow Design

In this section, we present the design details of LinkFlow. As shown in Sect. 4,
it has three steps to detect privacy leakages.

5.1 Step 1: Taint Analysis for Single App

We leverage static taint analysis to analyze intra-app data flows and trace how
the data is created, modified, and consumed. In Android, app actions are trig-
gered by the user events that are handled by specific callback methods. For
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instance, the onClick method is called when the user clicks a button. One app’s
state is changed by calling the components’ lifecycle callback methods such
as onStart when a component is started or onResume when a component is
resumed. In order to perform control flow analysis, we need to generate calls for
these callbacks that do not have direct calls in the code. LinkFlow generates a
dummy main method to be used as the entry-point and creates direct calls for
those callback methods. Then LinkFlow uses Spark algorithm [36] to construct a
call graph for these methods and perform forward and backward inter-procedural
data flow analysis based on the call graph [45].

After discovering all the sensitive intra-app data flows, we can obtain a set
of paths recording the sensitive data flows as follows:

Flows(app) = {path1: source1 ∼ sink1; path2: source2 ∼ sink2; ...}
Where sources are APIs that return sensitive data of the app or Android

system (e.g., reading contacts) and sinks are APIs that transmit sensitive data
out of the app (e.g., via an HTTP connection). Since we target at identifying
leaky paths that use ICC APIs to obtain and then leak privacy information,
we separate ICC API related sources/sinks from the original sources/sinks and
name them as ICC-Sources and ICC sinks. For simplicity, we call the sources and
sinks excluding ICC sources and ICC sinks as origin-sources and origin-sinks,
respectively.

We focus on two types of leaky paths, origin-source ∼ ICC-Sink and ICC-
Source ∼ origin-sink, since the components with origin-source ∼ ICC-Sink paths
may suffer component injection attacks and the components with ICC-Source
∼ origin-sink paths may suffer component hijacking attacks. When one Intent
is sent out of one app via ICC-Sink, this Intent can only be received by the
components using the targeted ICC-Source. We summarize the ICC-Sinks and
the targeted ICC-Sources in Table 1. Components containing these two types of
leaky paths are considered as leaky components. In this way, LinkFlow can find
out the leaky components that send sensitive data out the app via ICC APIs or
read data in via ICC APIs.

Table 1. ICC-Sinks with targeted ICC-Sources

ICC-Sinks Targeted ICC-Sources

Context: send*BroadCast(Intent,...) BroadcastRecevier: onReceive(Intent)

Activity: startActivity*(Intent, ...) Activity: getIntent()

Context: startService(Intent, ..) Service: onBind(Intent)

ContentResolver: insert, query, delete, update (depend on the URI)

5.2 Step 2: ICC Extraction for Single App

Considering a large number of ICC links among apps and most of them are not
leaky, we can reduce the ICC link scale by only checking the leaky ICC links
among the leaky components and ignoring the normal ICC links, as shown in
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Fig. 2. Instead of inspecting all ICC links among all apps, we only need to check
the ICC links between two leaky components, since our goal is to find out the
leaky ICC links. However, exist ICC leak detection tools such as IccTA [38] and
DidFail [34] need to analyze all ICC links to identify the leaky ones, and most
of the analysis time is consumed by analyzing the normal ICC links.

After identifying all leaky components, we collect the Intent parameters
of the ICC APIs and obtain the Intent Filters of those components. Since
inter-component communications via Intent message mechanism are dynamically
resolved by Android system, it is difficult for static analysis tools to analyze those
links between components. Therefore, to analyze the ICC links among apps, we
need to precisely resolve the ICC methods and the Intent messages. There are
various ICC APIs and a large number of Intent data handling methods such
as intent.getStringExtra, intent.getLongExtra, etc. We extract the Intent Filters
of components from the Manifest.xml and the ICC APIs parameters from the
bytecode.

Fig. 2. Only checking the leaky ICC links (red arrow) among the leaky components.
(Color figure online)

Now we combine the ICC extraction results with the taint analysis results to
obtain the following flow information.

– Method and Class with the full method signature in Soot format [35],
for instance, <android.telephony.TelephonyManager: java.lang.String.get
DeviceId()>.

– Component where the Flows belong to. We need to find out in which com-
ponent the source/sink method is called.

– Category of the source/sink API. The SuSi [43] project provides a detailed
category of the API. As one efficient way to express the behavior of the flows,
it is easy for end users to comprehend how the sensitive data is used.

– Permission associating with the API. We use the relation map provide by
PScout [17] to achieve it.

– Exit Point. An Exit Point is an ICC method used to send Intent and commu-
nication with other components. When apps start a new context in the Exit
Points and the Intent messages are passed by the Android OS, the data-flow
will discontinue. Therefore, we need to extract all Exit Point methods.
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The Component and the Exit Point information are used to identify the ICC-
based leaky paths and obtain the Intent messages’ parameters and the Intent
Filter. The methods, classes, permissions, and categories are used to describe the
sources/sinks and identify the privacy leakage due to the misuse of the sensitive
API.

5.3 Step 3: ICC Link Analysis for All Apps

The first two steps have extracted detailed flow information for each individual
app, and now we can obtain the leaky components, the Intent messages, and the
ICC methods of all the apps to perform ICC link analysis.

We define abnormal data flow as a leaky ICC link that indicates sensitive
data sent out via one ICC-Sink method in App1 and received by one ICC-Source
method in App2. We record one abnormal data flow as A = {App1: outflow ∼
App2: inflow, outflow ∈ OutFlow, inflow ∈ InFlow}, where InFlow is a set of
exported components with an abnormal flow of ICC-Source to origin-sink that
reads data from other components and OutFlow is a set of components (may
not be exported) with an abnormal flow of origin-source to ICC-Sink that sends
data to other components.

We develop an ICC matching algorithm to find out all potential ICC links
among the leaky apps and construct an ICC graph where leaky apps are nodes
and ICC links are links. The ICC matching algorithm is shown in Algorithm 1.
First, we traverse the OutFlow Set and check the ICC APIs and parameters
used in the outFlow to determine if the Intent is implicit or explicit. For explicit
Intent, the receiver components are defined and the destination can be directly
obtained from the parameters of Intent. For implicit Intent, there may exist
multiple receiver components depending on the apps installed in user’s device.
To verify if there is an implicit ICC link between an outFlow and an inFlow,
we need to evaluate the ICC-Sink of the outFlow and the ICC-Sources of each
inFlow : (1) if their methods and target component types are matching (as shown
in Table 1) and (2) if the Intent Filters of the ICC-Sources can receive the Intent
sending by the ICC-Sinks. For instance, to identify the apps that use ICC to
link to Contacts Manager, since Contacts Manager’s ICC-Sink is startService, we
need to check the InFlow set to find out the Service Components with the onBind
ICC-Source. Because we have extracted the action, categories, and flags of the
Intent sent by the ICC-Sink in first two steps, we can check if the Intent Filter
of the ICC-Source component can receive the Intent. Our methods can reveal
all apps that contain services to handle the Intent sent by Contacts Manager
and construct an ICC link graph to save these leaky links and the corresponding
apps.

By traversing the ICC link graph, we can obtain the linked apps of each app
and then generate a leaky report for each app. The report for an app can tell
which apps use ICC to communicate with it and may cause privacy leakage. The
report also provides the detailed leaky path, the potential privacy leakages, the
potential permission leakages, and the risk level. We can determine the severity
of these leaky API by using the categories of these APIs that are summarized
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Algorithm 1. The ICC Matching Algorithm
Require: InFlowSet, OutFlowSet;
Ensure: LinkedFlowSet: linked ICC flow;
1: graph ← initLinkGraph()
2: for inflow ∈ InF lowSet do
3: intent ← inflow.ICCSink.intent
4: if isExplicitIntent(intent) then
5: app ← getAppByPackage(intent)
6: addEdge(graph, app, inflow.app)
7: else
8: for outflow ∈ OutF lowSet do
9: intentF ilter ← outflow.intentF itler

10: if intentF ilter.canReceive(intent) then
11: addEdge(graph, outflow.app,
12: inflow.app)
13: LinkedF lowSet.add(inflow,
14: outflow)
15: end if
16: end for
17: end if
18: end for

by SuSi [43]. We leverage PScout [17] to map APIs to their corresponding per-
missions. Then we can confirm if there are permission leaks by checking if the
InFlow app contains the permission required by the origin-sink in the OutFlow
app. If not, it means the InFlow app can leverage the permissions of the OutFlow
app and the privilege escalation happen. In general, the report can help both
app developers and users to mitigate the vulnerabilities or ban the malicious
apps.

6 LinkFlow Implementation

LinkFlow extends FlowDroid [16] to implement the Taint Analyzer that provides
precise taint analysis to efficiently identify all suspicious ICC flows. In particular,
it leverages PScout [17] and Susi [43] to generate the required parameters for
the taint analysis. Moreover, LinkFlow utilizes ICC Extractor to precisely infer
the ICC parameters, e.g., the type of Intent values and the parameters of Intent
Filters. LinkFlow significantly reduces the number of ICC links based on the
flow taint analysis results.

6.1 Taint Analyzer

Our Taint Analyzer constructs a call graph for apps and then performs forward
data flow analysis to find paths from the source API to the sink. Next, it per-
forms backward dependence analysis to exclude the paths that do not have any
dependence on the source APIs.
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Fig. 3. Implementation of LinkFlow

As shown in Fig. 3, besides leveraging the basic taint analysis functionalities
provided by FlowDroid [16], we extend FlowDroid in three First, we extend the
source/sink analysis module to identify and analyze sensitive ICC source/sink,
which is critical for reducing the complexity of the later ICC analysis. Second,
we identify the callbacks of all four types of components and analyze source/sink
to find out all non-isolated components that interact with other components. It
can reduce the code base to be analyzed. Third, we extend FlowDroid to analyze
Service and BroadCast Receiver.

Specifying Source/Sink APIs. Since taint paths start from a source API
that read or generate private data and end in sink APIs that may leak privacy,
we modify the FlowDroid’s source/sink manager to analyze two specific types
of flows, namely, flows from Origin-source to ICC-Sink and flows from ICC-
Source to Origin-Sink. As shown in Fig. 3, we leverage Susi [43] to generate
a detailed list of sources/sinks APIs with the API category information, and
utilize PScout’s [17] to associate APIs with the permissions they require. Thus,
LinkFlow can accurately obtain sensitive source/sink APIs and track the data
flow of these APIs. Note that, by analyzing two specific flows, we further improve
the performance of LinkFlow by reducing the workload of backward flow analysis.

Analyzing ICC Parameters and Excluding Isolate Components. We
need to identify components that contain ICC-sink methods may leak data,
and thus we need to precisely extract the ICC parameters so as to analyze the
Intent receiver components and what data they send. To achieve this goal, we
traverse entire app packages by using Soot to analyze the usage of ICC APIs in
all components. To reduce the code base under analysis, we need to exclude non-
isolated components in LinkFlow. First, during traversing app packages, we also
enumerate components that do not have ICC-sink methods. Second we analyze
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Intent Filters in the Manifest.xml file to find out all public components. These
two type components are non-isolated components that need no further analysis.
Therefore, we only add these components’ lifecycle methods as entry points to
the dummyMain methods.

Constructing Call Graph. We extend FlowDroid to construct call paths for
all components. In particular, FlowDroid cannot analyze Service and Broadcast
Receiver as they use different callback methods. It cannot generate the callback
method information in the dummyMain methods so that these methods will not
be added to the call graph and cannot be analyzed. Our taint analyzer performs
callback resolution analysis to find out the Messenger and Handler used by the
Binder interface of Service and the dynamic lifecycle callbacks of Receiver so
that they could be added into the dummyMain methods.

6.2 ICC Extractor

The essence of ICC extractor is to precisely extract the ICC parameters. We
analyze Intent or URI to obtain detailed ICC parameters since ICC methods
use them to set the target components in ICC. The ICC target components can
be defined in the two ways, namely, directly set in Intent by using package names
or Java.lang.class as the parameters, or set URI by using a permission string.

We can directly obtain ICC parameters by analyzing URI if the ICC methods
use URI. For example, an app can use URI.parser(“smsto:phone”) to call the
sending message API, and ContentProvider always uses URI to locate resources.
URIs use strings with the special format to describe the resources. In particu-
lar, custom URIs are hard-coded in apps’ code and system URIs are a limited
number of common strings. Therefore, we can extract these URI prefixes via
regular expression. In terms of Intent analysis, we need to deal with a serial of
Intent related APIs, such as put*Extra, setData*, get*, send*Broadcast*, star-
tActivity* that are capable of reading from, writing to, sending, or receiving
Intent.

To extract the parameters, we first perform forward data flow to find the
usage of ICC APIs that use Intent to send messages. Then, we do backward
intra-procedural data flow analysis to find all callers of Intent. We define a model
for Intent to include all the methods of Intent. For each method, we extract the
corresponding parameters based on the definitions of Intent methods.

ICC can be explicit and implicit. Explicit ICC methods directly set detailed
target components, while implicit ICC methods use IntentFilter to filter the
Intent. Explicit ICC can be resolved based on the component setting in the
Intent’s parameters. For implicit ICC, we set constraints to check if the fields of
IntentFilter contain the Intent’s parameters.

6.3 ICC Link Analyzer

We implement Algorithm 1 according to the results of ICC Extractor. ICC Link
Analyzer constructs an ICC graph and enumerates ICC links that may leak pri-
vacy. It generates an ICC link graph and identifies privacy leakage by matching
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ICC links in the graph according to the analysis results and the permissions
mapped to the ICC APIs. The computed ICC link graph is stored in an Mon-
goDB database [8] for privacy leakage query and incremental analysis.

7 Performance Evaluation

We implement a LinkFlow prototype on Ubuntu server 14.04. We perform the
experiments on a server with 4 Intel Xeon CPU 2.49 GHZ cores and 14 GB mem-
ory. We collect top 1000 popular real world apps from each of five popular apps
marketplaces and repositories including Google play [5], APKPure [2], Hiapk [6],
Tencent marketplace [12], and F-Droid [4]. We also collect 1500 malware from
malware repositories including the MalGenome Project [56] and VirusShare [13].
Then we evaluate if there exists privacy leakage among all those apps. We remove
the duplicated apps and the apps that cannot be correctly processed by Flow-
Droid, and the final number of benign apps tested by LinkFlow is reduced to
3014. Due to the limitation of FlowDroid [16], we set the flow taint analysis time
to five minutes for each app. Our experiments show that when the taint analysis
process cannot finish within five minutes, the server has run out of memory and
failed to process the app.

We first investigate the privilege escalation problems in ICC links to verify
that LinkFlow can identify privacy leakage by analyzing ICC links among a set
of apps. Then, we use LinkFlow to analyze real world apps to identify the leaky
ICC links among these apps. Finally, we measure the performance of LinkFlow
and its scalability on incremental detection.

7.1 Impacts on Privilege Escalation

Android apps tend to be over-privileged especially when they use many
SDKs [30]. We study the usages of permissions over 4000 apps and find only
17 components in apps are protected by permissions. Unfortunately, almost all
leaky components are not protected by permissions. This means the exported
leaky components can be easily exploited by malicious apps. Based on the per-
missions map computed by PScout [17], we investigate sensitive APIs used by
these apps and observe that 1106 permission leaks among 530 apps. On aver-
age each leaky app has two permissions that could be exploited by other apps
via ICC links. Therefore, to detect permissions that are susceptible to privilege
escalation, we can analyze ICC links among apps and find out the exploitation
paths in the ICC links.

We also study the privilege escalation problem incurred by app collusion. By
analyzing the combined permissions of two linked apps and trace the data flow of
their ICC links, we successfully identify 4622 suspicious data flows among those
apps. The details of API usage are shown in Table 2. According to the study of
Elish et al. [25], the existing dynamic taint analysis mechanisms are unable to
detect privacy leakage incurred by app collusion. Based on the ICC link analysis
results of all apps, LinkFlow generates a report that lists all potential ICC-based
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collusion among apps. It can guide app developer to avoid component misuses
with leaky ICC links.

7.2 Effectiveness of Privacy Leakage Detection

LinkFlow identifies 417 benign apps with 1723 component leakages. We find 4012
abnormal flows generated by those components. We also find 113 malicious apps
with 471 component leakages, and those malicious apps are inclined to use ICC
at a higher frequency with 2043 abnormal flows. Those abnormal flows may be
triggered by two types of attacks: component hijacking and component injection.
We classify these two types of vulnerabilities based on the types of components in
the InFlow and OutFlow sets. As shown in Fig. 4, the leaky paths in OutFlow set
mean that these components use the ICC APIs in Table 1 to send sensitive data
to other apps and may suffer component injection. The leaky paths in InFlow set
means these components may suffer from component hijacking attack via Intent
spoofing, which leads to privacy leakage.
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Fig. 4. The number of components included in the InFlow set and OutFlow set

We also study the privacy leakage types. LinkFlow measures the frequency of
the sensitivity flows generated by benign apps and malicious apps. The mostly
used source category is database information, followed by contact information,
network, and location information. Also, we observe three types of sinks in benign
apps: log, intent, and storage. In malicious apps, the top sinks are telephone,
storage, intent, log, and network. We examine all these apps to obtain their ICC
usages. The top five original sources and sinks methods we collected in the benign
apps are shown in Table 2.

We observe that most ICC links are using implicit Intent to perform inter-
apps communications. Thus, these apps’ components may not be safe if they
contain abnormal flows. Indeed, the unsafe usage of ICC results in vulnerabilities
that can be easily exploited by malware. By performing flow analysis, we find 530
apps with abnormal flows. We verify the exploitability of all those leaky paths
by using the ICC matching algorithm and find out all 530 apps have vulnerable
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Table 2. The mostly used original sources/sinks

Sources type Category Permission Count

Airpush: onReceive Message Push - 1292

ContentResolver: query SQLite 1097

LocationManager: getLastKnownLocation Location ACCESS LOCATION 861

TelephonyManager: getDeviceId Indeifier READ PHONE STATE 477

FileInputStream: read Read File EXTERNAL STORAGE 319

Sinks type Category Permission Count

SharedPreferences: putString Write XML EXTERNAL STORAGE 1422

Log:i Log - 1035

OutputStream: write IO - 531

HttpClient: execute Network ACCESS NETWORK 353

ContentResolver: insert SQLite - 254

components. We identify 87 apps that incur privacy leakage through ICC links
and 4622 ICC paths among those apps. Typically, the sensitive data is sent to
other apps and leaked via log or network.

The number of linkable apps for each app (i.e., the apps that an app can
generate data flows with) varies from 20 to 56. On average, each app has three
linkable apps. To evaluate the potential impacts of these links, we combine the
OutFlow and InFlow sets of each app and map the API to permissions. Then
we obtain pairs of linkable flows and linkable permissions that indicate that real
flows between the apps and the permissions are enforced on the flows.

We manually confirm the apps incurring privacy leakage. We find that a large
number of apps receive Intent messages and leak their data. In particular, most of
apps (more than 80% apps) leak their data to logcat, such as Android Guard [1]
and Ditty by Zya [3]. These leaky apps leaks device ID, phone numbers, contacts,
locations, or SMS Messages. For instance, SMS Popup [10] writes phone numbers
and messages to the system log messages that can be directly accessed via ICC.

7.3 Detection Delays of LinkFlow

The delays of flow analysis and ICC analysis are shown in Fig. 5(a). The flow
analysis delays increase with the increase of the numbers of sources/sinks num-
bers, and the ICC analysis delays vary according to the numbers of components.
For each app, the total abnormal flows extraction delays are about two minutes.
We also evaluate the delays of ICC link analyzer. On average, it takes less than
1 min, which is relatively stable. It is scalable even if the InFlow set and OutFlow
sets contain millions of flows. Note that, existing tools such as IccTA [38] cannot
work well on a large scale, since they rely on ApkCombiner [37] to combine the
bytecode of two apps and then perform ICC analysis. Due to the limitation of
FlowDroid, the code size cannot be too large. Also, they can only combine two
apps at most. For the current app set with 4514 apps, the analysis time is about
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848k hours (
(
4514
2

)
* 5 min). In contrast, it takes less than 1 min for the ICC link

analysis of LinkFlow to analyze all 4514 apps.
The total analysis delay of LinkFlow on analyzing 4514 apps is about 377 h,

including 4514 * 5 min for flow analysis, ICC extractor, and saving to database
plus 1 min for ICC link analysis. Our tool supports efficient detection on newly
added apps. When a new app is submitted, IccTA needs to run over 377 h to go
through the ICC links between the new app and each of the existing apps. This
cost is unacceptable as everyday thousands of new apps have been developed
and added. In contrast, our taint analysis only needs to run once for each app,
so we only need 5 min for taint analysis and ICC extract of the new app plus
20 s for ICC link analysis.

We conduct two experiments to evaluate the scalability of LinkFlow. The
first experiment is to evaluate LinkFlow with different number of apps ranging
from 500 to 12000. For an app marketplace with millions of apps, there are
over ten thousand leaky apps. We randomly select apps from all these 530 leaky
apps and repeat 500–12000 times, and obtain different sizes of app sets that
contain 500–12000 apps. As shown in Fig. 5(a), on average, LinkFlow takes less
than 2 min to detect privacy leakage. Note that, since different apps may have
different numbers of non-isolated components, the delays may vary even with
the same number of components in the leaky app.

The second experiment is to evaluate the incremental analysis delays. We
generate a large set of apps based on the real apps data. The numbers of the
newly submitted apps are set to 5, 50, and 100. As shown in Fig. 5(b), when the
apps number is over 10k, if we do not use the incremental analysis, the detection
delays are about 15 min. However, if we use incremental analysis, it takes less
than 1 min. The reason is that we only need to match flows in three flow sets,
i.e., matching flow pairs that from new OutFlow set to old InFlow set, from old
OutFlow set to new InFlow set, and from new OutFlow set to new InFlow set.
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8 Discussions

ICC Analysis Across Multiple Apps. Though LinkFlow can effectively
detect privacy leakage by analyzing leaky ICC links between two apps in a large
set of apps, current version cannot detect leakages with leaky ICC links con-
structed by more than two apps. Fortunately, it can be extended to analyze ICC
links among more than two apps, e.g., more than two apps collude to deliver
sensitive data. Since we construct the ICC link graph for all apps, we can obtain
the privacy leakage chain of multiple apps. Then, we can perform further anal-
ysis and check if these apps are colluding. For instance, app A has an ICC link
delivering data to app B, while app B has an ICC link to app C, where A does
not have direct links with C. LinkFlow can still check whether C can access A’s
data or permissions by performing taint analysis on app B and detecting if the
data from A is delivered to C. To address this issue, we can leverage IccTA [38]
together with ApkCombiner [37] in LinkFlow so that LinkFlow can combine
bytecode of the three apps (A, B, C) and then analyze the data flows between
A and C.

Apps Collusion Detection. LinkFlow can be applied to detect leakage
incurred by collusion among multiple apps. However, it can only detect the
collusion attacks constructed via ICC. We notice that many e-book apps use the
same ad lib (com.waps.OffersWebView) to write sensitive data to SD Card and
then transfer data to the Internet. These e-book apps have been granted with a
large set of different permissions, such as installing app, reading SMS, reading
location, and reading contacts. It is clear that these permissions are not directly
used in their code but in the ad lib they used. LinkFlow cannot detect such app
collusion because the leakages in these attack scenarios are not incurred by the
ICC channels. Instead, they deliver sensitive data on the server and then steal
them there. We consider it as a future work.

Limitation of Taint Analysis. The taint analyzer of LinkFlow is built upon
FlowDroid. Due to the limitations of FlowDroid, LinkFlow may fail to analyze
some apps. For instance, taint analysis may run out of memory if apps are
implemented with huge bytecode or privacy leakage is constructed by native
code. Moreover, current LinkFlow design does not address the class name with
obfuscating strings, which is an interesting topic for our future work.

9 Related Work

Android Static Analysis. Static analysis has been extensively studied on
Android for privacy leakage detection [28,33,39,41,51,54]. ComDroid [23],
CHEX [41], and AppSealer [55] applied static analysis approaches to automat-
ically evaluate component hijacking vulnerabilities of apps. FlowDroid [16] and
Amandroid [52] provide context sensitive taint analysis to detect privacy leakage
on Android. FlowDroid is the-state-of-art analyzer for taint analysis on Android.
It is built on Soot [35] and Dexpler [18] to decompile and analyze the bytecode to
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detect leakage. DidFail [34] and IccTA [38] were built upon FlowDroid to detect
privacy leakages of ICC. However, they cannot efficiently analyze a large set of
ICC links among a huge number of apps. DroidSafe [29] identifies malicious flows
by combining Android runtime analysis and static analysis. Its detection delays
are ten times more than FlowDroid. LinkFlow can address this issue by reducing
the number of suspicious ICC links before analyzing the leaky ICC flows.

Android Dynamic Analysis. By monitoring the states of the running pro-
cesses, dynamic analysis can detect privacy leakages missed by static analysis.
TaintDroid [26] implemented dynamic taint tracking for Android by modifying
the Dalvik virtual machine to track sensitive data. XManDroid [20,21] monitored
different communication links between apps in runtime to detect privilege esca-
lation. API call monitoring mechanisms [44,46,50] dynamically monitored the
Android system API calls to reconstruct the behavior of apps. FLEXDROID [48]
provides an isolation mechanism to enforce in-app privilege separation. Blue-
seal [32,49] extended the existing permission mechanism by providing runtime
flowing permission checking. Afonso et al. [15] performed a large-scale study on
the usage of native code and generated native code sandboxing policies to limit
malicious behaviors. Dynamic analysis typically is typically time-consuming, so
it has the limitation to be applied to large scale leakage detection. In contrast,
static taint analysis mechanisms can quickly analyze the codes of a large number
of apps, so we leverage static taint analysis in LinkFlow.

Android Permission Analysis. Since Android’s permission-based security
mechanism cannot prevent privacy leakage from privilege escalation attack [24,
27,31], researchers proposed new mechanisms to solve this problem [22,53]. Flex-
Droid [22] extended the Android security architecture to enforce privacy protec-
tion policies. IntentFuzzer [53] leveraged fuzzy test to generate different Intent
messages to connect components of Android System apps. It requires modifi-
cations of the Android framework to log the actually used permissions of the
components. Therefore, it can capture which permissions in these apps may be
exploited by other apps. LinkFlow leveraged PScout [17] to statically map ICC
APIs to the corresponding permissions. It can accurately verify potential per-
mission leakages by checking if the permissions of the APIs are actually used by
the suspicious flows.

10 Conclusion

This paper proposes LinkFlow to provide large-scale privacy leakage detection
among Android apps that communicate via Inter-Component Communication
(ICC). It addresses the challenge of identifying ICC-based leaky data flow among
a large set of apps by only analyzing ICC links among the leaky components.
LinkFlow first enumerates all leaky components of apps that may incur privacy
leakage and then performs a fast ICC matching algorithm to identify all privacy
leakages. We implement a LinkFlow prototype and evaluate our tool over 5000
apps and find out 530 leaky apps. Among these leaky apps, we discover 4622
ICC links among 87 apps that may lead to severe data leakages.
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Abstract. Despite security shields to protect user communication with
both the radio access network and the core infrastructure, 4G LTE is still
susceptible to a number of security threats. The vulnerabilities mainly
exist due to its protocol’s inter-layer communication, and the access tech-
nologies (2G/3G) inter-radio interaction. We categorize the uncovered
vulnerabilities in three dimensions, i.e., authentication, security associ-
ation and service availability, and verify these vulnerabilities in oper-
ational LTE networks. In order to assess practical impact from these
security threats, we convert these threats into active attacks, where an
adversary can (a) kick the victim device out of the network, (b) hijack
the victim’s location, and (c) silently drain the victim’s battery power.
Moreover, we have shown that the attacker does not need to communi-
cate with the victim device or reside at the device to launch these attacks
(i.e., no Trojan or malware is required). We further propose remedies for
the identified attacks.

Keywords: LTE security · LTE protocol interactions
LTE interaction with 2G/3G networks

1 Introduction

The fourth-generation (4G) Long Term Evolution (LTE) technology offers wide-
area mobile and wireless access to smart-phone and tablet devices. LTE is a
complex network technology consisting of multiple subsystems – designed to
provide undisrupted connectivity and backward compatibility to legacy 3G/2G
networks. The operations of these subsystems are standardized [1]. These stan-
dards ensure interoperability between the device and the network. From the
security perspective, LTE employs mechanisms to ensure authentication, autho-
rization, access control, and user data confidentiality between the device and the
network.
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Although both control and data planes in LTE adopt security measures,
we have found that security is preserved only for end-to-end user communica-
tions. Device operations are carried out by transferring the control-plane pack-
ets between different layers of LTE protocols. Similar to the Internet and WiFi
designs, LTE protocol layers are functionally independent. Yet these layers com-
municate with each other to facilitate device operations. Potential loopholes arise
when LTE security mechanisms do not guard such inter-layer traffic flows. Cer-
tain device control-plane messages may escape authentication and authorization
verifications at these layers in the network.

Our study reveals that the LTE network is not secure along the following
three dimensions:

1. [Weak Authentication] Some messages sent from the LTE network to the
device, soon after the device recovers from its idle mode, are executed without
any authentication. This gives an adversary a chance to kick the victim out
of the network.

2. [Weak Security Association] On inter-radio interactions, the target net-
work incorrectly assumes that device has already been authenticated and
authorized by the source network. During inter-radio interactions, the adver-
sary can hijack the device location registration procedure and register wrong
victim location at the network. The victim device consequently becomes
unreachable from the network.

3. [Lack of Access Control/Non-authorization] The adversary is autho-
rized to communicate with the victim without having its consent. This vul-
nerability allows an adversary to drain the victim device’s battery by sending
periodic control messages.

These security weaknesses arise when (1) different LTE protocol layers com-
municate with each other, and (2) LTE protocol communicates with its legacy
technology, such as WCDMA/3G, and GSM/2G. In the end-to-end protocol
interactions, intermediate protocol layers (either at the local device or the remote
network) act as forwarding layers. They forward the packets to the layer above
or below without inspecting the contents of the forwarded packets. Hence, packet
forwarding blindly facilitates such protocol interactions.

Furthermore, LTE protocol layers perform atomic network operations to
interact with one another. These interactions happen without any integrity check
between these layers. This signifies that the trust among these protocol layers is
unconditional.

We also found that certain control messages are accepted at the network
before the device security mechanisms kick in. LTE network assumes that cer-
tain control messages after the device’s idle state are legitimate. These messages
specify the device’s intent for different types of services, e.g., voice or data service,
and set up the network resources accordingly. The device can misuse network
resources by generating fake control messages.

Moreover, when the LTE protocol communicates with its legacy technology
(such as 3G or 2G), it transfers the user session and security keys to the legacy
network. The legacy network does not perform any authentication procedure
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Table 1. Summary of findings

Capability Vulnerabilities Loophole Attacks Root cause Defense solution

Authentication Blind execution
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Network
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The device
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ACL should be
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with the device. Instead, it assumes that the device has already been authenti-
cated at the time of registration with the LTE network. It is possible that the
device’s native security context gets expired and becomes invalid. This poten-
tially creates two conflicting security setup views at the device and the legacy
network. Therefore, the device can trick the legacy network by believing that its
native security context is valid.

Attacks and Impact. Once we have confirmed the vulnerabilities through ana-
lyzing LTE standards, we validate them in operational LTE networks. We thus
use the LTE modem diagnostic tool, the non-volatile memory manager, and
TeraTerm [2], to capture and analyze traces. After validation, we convert these
vulnerabilities into attacks by using our testbed and exploit these weaknesses
to compromise the network security. For example, an adversary sends a wireless
connection request to the LTE base station and piggybacks the network join
request message destined for the LTE core network. Upon receiving the mes-
sage from the legitimate base station, the core network marks the join request
message as being valid and executes it. This procedure can be exploited by an
adversary that can make a legitimate wireless connection with the LTE base
station but sends unauthorized device messages (e.g., device power-off notifica-
tion) by impersonating the victim device to the core network. Consequently, the
core infrastructure wrongly executes the message (e.g. closes the victim device
session).

The potential impacts from such vulnerabilities are quite high. The adversary
can kick the victim out of the network, hijack the victim’s device location update
procedure and register wrong location of the victim at the network, and silently
drain the victim’s battery. To make things worse, the attacker does not need
to interact with the victim device to launch these attacks, (i.e., no Trojan or
malware is required). We have summarized our key findings in Table 1.

Prior Studies. Our work differs from existing research efforts that seek to
challenge the resilience of LTE security mechanisms under various conditions.
Shaik et al. [3] show that a device location can be leaked within 2 km2. They
have also demonstrated the Denial of Service (DoS) attack when the LTE device
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accepts the message from rogue LTE base stations and de-registers from the
network. They assume LTE device will send non-integrity Tracking Area Update
Request message, which is replied by the rogue LTE base station.

Jover [4] present LTE DoS attacks through radio signal jamming and ampli-
fication, and subscriber database saturation. In a separate work [5], they argue
that attacker can use the LTE System Information Blocks, and Management
Information Blocks to craft jamming attacks. Patrick [6] shows that compromis-
ing physical radio access network can reveal user traffic sent over unencrypted
link between the radio access network and the core. Tu et al. [7] and Huang
et al. [8] show that LTE protocol interactions are common and can result in
performance issues. They have shown how abnormal LTE protocol interactions
can degrade quality of service, e.g., the device does not transition from 3G to
4G after making a circuit-switched voice call, the device registration procedure
is delayed because of location update, etc. Contrary to previous studies, our
work focuses on LTE security weaknesses arising from standardized specifica-
tions; especially at LTE protocol inter-layer and inter-radio communications.
Moreover, we demonstrate a different set of attacks not revealed by earlier stud-
ies. We have challenged the fundamental security principles of the LTE network
and expose the vulnerabilities that lead to active attacks.

Scope. We believe, LTE standard body has well thought all LTE operational
scenarios and may not have left any obvious mistakes while defining standards.
In this paper, we focus on studying corner cases in LTE operations that may
not be commonly observed, but could weaken the LTE security. We limit our
scope in studying these cases within the relatively less explored area, i.e., LTE
protocol inter-layers, and inter-radio interactions.

2 Background

We provide background on LTE protocol inter-layer interaction1, and access
technologies (4G/3G/2G) inter-radio interactions.

2.1 LTE Protocol Inter-layer Interaction

LTE protocol’s functionality is divided across different layers, where each layer
is designed to carry out a specific function [9]. Figure 1 shows layered LTE proto-
col at the mobile device (known as User Agent - UE), LTE base-station (known
as evolved NodeB - eNodeB), and LTE core-network entity (known as Mobil-
ity Management Entity - MME). The design goal of layered LTE protocol is:
(a) to simplify communication design by dividing it into functional layers, and
(b) assigning independent tasks to each protocol layer. Although, the layers
execute their independent tasks, the successful execution of operations lie in
frequent interactions among the protocol layers. Such protocol layer interac-
tions take place within the device, and across the device with the network. For

1 Such interaction can occur within, and across the device and network elements.
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example, two procedures known as Hybrid Automatic Repeat Request (HARQ),
and Automatic Repeat Request (ARQ) are proposed at Medium Access Con-
trol (MAC) layer and Radio Link Control (RLC) layer of LTE protocol stack,
respectively [10]. The combination of these two protocol layers (i.e. MAC and
RLC) can be viewed as inter-layer protocol interaction. MAC and RLC protocols
coordinate back and forth in a feedback channel loop to achieve reliable data
transmission, (as shown in Fig. 1).

Fig. 1. LTE protocol layering and interaction at device and network side

Another example of LTE protocol inter-layer interaction is shown in Fig. 1,
when Radio Resource Control (RRC2) layer at UE is communicating with Non-
Access Spectrum (NAS3) protocol at MME. The RRC layer is responsible for
securing radio connection between UE and eNodeB, whereas the NAS ensures
secure data connection between UE and MME. Although, RRC and NAS func-
tion independently, these two layers coordinate frequently in order to perform
certain device/network level operations. One such operation is device registration
procedure (i.e. Attach Request message) with the network. In this, RRC layer at
UE first establishes the radio connection with eNodeB, and then NAS layer at
UE registers it with MME. Since NAS operation immediately follows the success-
ful RRC connection, NAS message piggybacks the last successful RRC message
[10], to reduce the signaling overhead and, speeds up the device registration
procedure [11].

We show that LTE protocol’s inter-layer interaction is the culprit of bypass-
ing security setup. For example, LTE core network processes Attach Request
message, without even authenticating the device. Similarly, device Power-off,
Location Update procedure, device Idle to Connected Mode operation, and many
other messages can be executed without authentication due to inter-layer com-
munication.

In this paper, we show how seemingly innocuous protocol interaction can
cause serious security threats to users’ activity in the network. We have found
that the vulnerabilities arise when different layers (1) accept the messages from
each other without inquiring the true identity of the sender and network func-
tions, (2) execute the message without establishing the authenticity of the mes-
sage, and (3) do not validate the packets that were sent before the authentication
was established.

2 The communication between UE and eNodeB is performed by RRC.
3 The communication between UE and MME is performed by NAS.
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2.2 Access Technologies Inter-radio Interaction

Cellular technology evolved from GSM (2G) to WCDMA (3G), and then to LTE
(4G). Since LTE coverage is not universal, most cell phones incorporate 2G and
3G systems along with 4G support. This solution of combining WCDMA-GSM-
LTE (GWL) has indeed many advantages. First, the device can switch to legacy
2G/3G preferred radio access network in the absence of LTE network coverage.
Second, in absence of Voice over LTE (VoLTE) feature, LTE can fallback to
3G/2G voice support over circuit switch (CS).

UE

4G PS-Domain

NAS Bearer

eNodeB

HSS

Gateway

NAS bearer
RRC bearer

MME / LTE
Core Network 

Entity

3G CS/PS-
Domain

NAS Bearer
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HLR

Gateway

MSC / 3G 
Core Network 

Entity

Device Session transfer

Radio Bearer

Fig. 2. Inter-radio access technologies (IRAT) interaction

In order to realize preferred network access, GWL radio technologies need to
interact with each other via handover procedure, where user session should be
seamlessly transferred from one radio technology to the other. Figure 2 depicts
an inter-radio communication scenario. At first, the device is connected to LTE
network. When handover condition to 3G/2G network arises (such as LTE cover-
age becomes weaker than 3G signal strength, or LTE system needs to fallback to
3G for CS call), MME transfers user session to 3G core-network function (known
as Mobile Switching Center - MSC). This user session also includes the device
security vectors on which the device was originally authenticated with the LTE
network. The vulnerability arises when target network (3G in this case) skips
device authentication procedure, believing that the device native security con-
text is still valid.

When the device successfully completes the handover to 3G, it updates its
location at Home Location Register (HLR). This location update procedure is
carried out in order to locate the device during its idle period. Since device
location update procedure is also part of inter-radio switch, the location update
procedure is also exempted from security protection. The attacker tricks the net-
work believing that location update request message is sent by a true originator.
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In the next section, we discuss our experimental methodology that discusses
vulnerabilities validation in operational LTE network, and converting these vul-
nerabilities into attack.

3 Experimental Methodology

To validate each vulnerability, we are required to log complete device traces.
LTE modem vendors (e.g., Qualcomm or Mediatek) let developers collect LTE
protocol traces. Tools such Qualcomm eXtensible Diagnostic Monitor (QXDM)
[12] and MobileInsight [13] help to collect LTE protocol traces in operational LTE
network. The real challenge is the modification of control message contents for
LTE modem. The current modem implementation is hidden and the programmer
does not get any interface to inject his commands. Although, AT commands [14]
are provided to activate/deactivate the device session with the network, the
modem does not allow us to change the contents of these messages (such as
security capabilities). We found that LTE modem’s functionalities are controlled
by non-volatile memory items/NV items. There are around 65535 NV items,
holding values from device capabilities to its functioning parameters. In fact, the
mobile phone vendors change these NV items to restore phone configurations.
Figure 3(left) shows freeware tool that allows us to read/write phone’s NV items.

Fig. 3. NV reader/writer tool that modifies non-volatile memory of device (left), ser-
vice programmer that helps to launch attack from device (center), and our testbed
consisting of commodity hardware and open source platform (right) that helps to val-
idate vulnerabilities at the network side

We validated the existence of vulnerabilities by modifying the Non-Volatile
Memory of the LTE modem. Then we used Qualcomm’s service-programmer
tool (QPST Service Programmer) [15], and AT-command tool (TeraTerm) [2] to
communicate with the device chipset. For example, we first let the device enter
into sleep mode and then issued “Detach Request (power-off)” message using
AT-command. Section 4 explores this type of attack.

In order to understand how different protocol layers communicate in a
feedback loop, we parse the traces and analyse to confirm LTE standard
vulnerabilities.

Last, we assess the practical implication of vulnerabilities by converting them
into attacks. We launched the attacks either using Qualcomm service program-
mer [15] or deploying our testbed. The Qualcomm service programmer helps
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modify device parameters. By changing these parameters, the adversary can
impersonate victim device. Since certain messages are accepted without integrity
check, the network believes as if it is talking to the actual device. For some
other type of attacks, we are required to provide proof of concept model using
a testbed. There are a number of 3GPP compliant open source LTE imple-
mentations, such as OpenEPC [16], OpenAirInterface [17], and OpenLTE [18].
Our testbed setup includes gateways (Serving-GW and PDN-GW), LTE core-
network entity (MME), subscriber information database (HSS), and external
network proxy – all implemented in software, as well as an eNodeB. We have used
two Android phones (i.e. Samsung S4 (with Qualcomm’s LTE modem MDM-
9215 chipset), and S5 (with Qualcomm’s LTE modem MDM-9635 chipset))
with USIM cards programmed with the appropriate identification name and
secret code to connect with the base-station. Figure 3 (right) gives a snapshot of
our testbed that consists of commodity hardware devices including two smart-
phones, 3G femto-cell, power monitor tool, and a laptop.

The following sections dig deep into the root causes of major exposed vul-
nerabilities, reveal how these security loopholes arise, and what special attacks
can be launched to exploit the LTE protocol’s weaknesses.

4 Weak Authentication: Non-authentic Messages
Are Accepted

LTE employs power saving mechanisms in which device enters into RRC Idle
state when it has nothing to send/receive any data (CS or PS). In RRC Idle state,
the UE releases its radio connection and deactivates the security connection with
eNodeB. When UE has some data to send/receive, the UE establishes its radio
connection with eNodeB and switches to RRC Connected state. After moving to
RRC Connected state, the device renews its RRC security with eNodeB. How-
ever, a threat exists when the UE is able to communicate with the network
before activating its radio security procedure. In fact it is allowed by the net-
work to boost device performance by preparing network resources for the UE
beforehand.

4.1 Vulnerabilities

When the device enters into connected state, the protocol layers interact to
facilitate each other’s functions to improve the response time from the network.
Issues arise when these protocol functions are used to carry unauthorized traffic.

In the following subsections, we discuss how such protocol interaction can be
vulnerable when the security shield is not yet in place.

Blind Forwarding. The logical division of protocols into different layers pro-
vide distributed functionality for complex LTE operation. A single protocol can-
not perform any functionality without communicating with layers above and
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below. Such interaction is divided into two different parts where, (1) one layer
communicates with the layer immediately above or below, and (2) a layer com-
municates with another layer which is either significantly far in the protocol
stack or located at remote host. In case of (2), the intermediate layers simply
relay anonymous packets. For example, a mobile device establishes RRC layer
connection with eNodeB while the device forms NAS layer connection with MME
through the eNodeB (refer to Fig. 1). The eNodeB relays NAS messages to MME
without looking into the message contents [19]. Such an implementation removes
security threats between the device and core-network communication, in case
the eNodeB is compromised. Hence, message forwarding without any inspection
across different layers of protocols is rooted in the design.

Disjoint Identifications. There are a number of different identities used in
LTE, grouped based on their function and usage scenarios. For example, IMSI
(International Mobile Subscriber Identity) is a permanent subscriber identity
used by mobile operators to identify the mobile subscribers. Leakage of such
identity can lead to a number of user privacy issues. Therefore, a Temporary
Mobile Subscriber Identity (TMSI) is used instead to ensure the privacy of the
mobile subscriber. The network provides mapping between IMSI and TMSI to
establish on demand network resources for the device.

LTE network further maintains other identities and group them according
to their usage in different network functions. Some of these identities are com-
missioned upon equipment installation, others are provisioned by the operator
before or during service operation, and some are created when user accesses the
network for its services. Table 2 sums up all LTE identities as per their clas-
sification. We find that some of the identities are not mapped with any other
identity in their group. That is, these identities do not hold any identity relation
and remain disjoint. This introduces the potential threat where one part of user
traffic is communicated with its true identity, whereas the rest of communication
is allowed to be carried out by fake identity.

Table 2. Classification of LTE identifications

Group LTE ID name Usage

UE ID IMSI, GUTI, S-TMSI, IP address,
C-RNTI, eNodeB UE S1AP ID,
MME UE S1AP ID, Old UE X2AP
ID, UE X2AP ID

UE, eNodeB and MME

Mobile Hardware ID IMEI UE and MME

Location ID TAI, TAC UE and MME

Session ID PDN ID (APN), EPS Bearer ID,
E-RAB ID, DRAB ID, TEID, LBI

UE and MME
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When the device attaches with the network it receives a number of identities.
The MME assigns TMSI to UE based on which the UE can be uniquely identified
at MME. Similarly, the eNodeB assigns C-RNTI4 to distinguish the devices
within the radio network. The S1AP5 layer handles the control messages between
an eNodeB and an MME. In order to tell which control message is for which UE,
an eNodeB allocates an ID (eNodeB UE S1AP ID) to each UE when it sends the
message for a UE to an MME. Similarly, in order to tell which control message
is for which UE in which eNodeB, the MME allocates an ID (MME UE S1AP
ID) to each UE when it sends the first message for a UE to an eNodeB. Both
eNodeB UE S1AP ID and MME UE S1AP ID have one to one mapping that
distinguishes a UE across MME and eNodeB.

When the eNodeB receives the message, it maps the UE C-RNTI with
eNodeB UE S1AP ID and forwards the packet to MME. The S1AP layer of
MME receives the message and forwards it to the MME core function. The
MME recognizes UE based on IMSI/TMSI and performs the desired action.

UE

4G PS-Domain

eNodeB

MME

Fig. 4. Different identities are used at various network functions

A potential vulnerability occurs due to the missing mapping between MME
UE S1AP ID and IMSI. As shown in Fig. 4, the device generates the NAS mes-
sage by putting victim’s IMSI and sends this to eNodeB. When the eNodeB
receives the message from the device, it correctly maps the device C-RNTI and
its associated S1AP ID pair, and forwards the message to MME. The MME
S1AP layer removes the S1AP header and forwards the actual message to MME
core function. The MME core function does not have any mapping between
S1AP ID and associated IMSI, therefore, it takes action based on provided IMSI
without checking whether the originator of the message is genuine subscriber or
not.

Blind Execution of Messages. As stated earlier, when the device switches
from idle state to connected state, it is required to establish radio security. Before
such security messages exchange take place, certain messages need to be executed
first. These messages are (1) type of operation the device has requested (2) the
network resources that the device operation may need, etc. Such messages are
exchanged between the device and the network, which are executed at both sides
in order to establish the type of activity to be performed next.
4 Cell Radio Network Temporary Identifier (C-RNTI) identifies UE over the air.
5 S1AP facilitates control-plane traffic between eNodeB and MME.
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To take an example, NAS Service Request message informs MME about the
type of service (such as, PS data or CS call etc.) the UE needs imminently. To
prepare the resources that the UE requires, eNodeB forwards such request to
MME before initiating RRC security procedure6. When MME receives the NAS
message, it executes the message even if message authentication code included in
the message fails the integrity check or cannot be verified (Sect. 4.4.4.3 Integrity
checking of NAS signalling messages in LTE NAS specification [19]). Such
actions help network to quickly prepare network resources for device but comes
at the cost of security risks where an attacker can get unauthenticated mes-
sages executed at MME. There exists a vulnerability when the attacker makes
MME processes non-integrity protected message. For example, the attacker sends
a non-integrity protected Service Request message to MME and puts victim’s
TMSI in the message. MME first receives and then processes the NAS Service
Request message where it finds the message to be non-integrity protected. The
MME generates Service Reject message by rejecting the request with cause “UE
identity cannot be derived by the network” and sends this message to victim UE.
On receiving Service Reject message, victim device enters into deregistered state
and initiates the attach procedure. In short, an attacker can exploit those NAS
messages which are processed by MME even if these messages are not integrity
protected.

4.2 Attacks and Validation

The three vulnerabilities explained above are rooted in the LTE protocol design
and can be exploited even when LTE security shields are well in place. We assume
that all components function normally without any misconfiguration, malware,
or intrusion. We further assume that all other mechanisms in cellular networks
and at other mobile clients work properly. Irrespective of such measures, the
attacker can still leverage improper operations at network function to launch
attacks against victim.

The attacker connects to radio network as a legitimate user. Once the radio
connection has been setup, it announces victim’s identity in the NAS message
and requests radio layer (RRC) to forward it to MME. The MME receives the
message from eNodeB and assumes that the message is part of the chain of steps
needed for specific device operation. The MME then executes the message and
sends back an acknowledgement to the victim.

This threat becomes more powerful when the attacker is able to execute the
message on behalf of victim without asking for an acknowledgement.

6 Section 5.3.3 RRC connection establishment procedure and Sect. 5.3.4 Initial security
activation in LTE RRC specification [20]. Note that initial NAS message (such as
Service Request) is sent as a piggybacked message with RRCConnectionSetupCom-
plete message that eNodeB forwards to MME. However, SecurityModeCommand
message is sent thereafter.
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, ,

Fig. 5. (a) The victim’s identity can be obtained from broadcast paging message (b)
Detach message is created by using victim’s identity

Detach a Victim from the Network Through Spoofed Message. In this
exploit, the attacker can detach any device from the network. This attack is
launched when RRC layer at device communicates with the NAS layer at MME.
When the device switches from idle state to connected state, it first establishes
the RRC connection. The device is allowed to send piggybacked NAS message
with the acknowledgement of radio connection setup (i.e. RRC Setup Complete
message). The attacker takes advantage of this and sends UE Detach Request
message with an action of power-off to MME by putting victim’s identity in the
message. Once the MME receives the message, it first verifies the integrity of
the message by checking message authentication code of the message. Because
this message is not originated from legal subscriber, the integrity check fails
at MME. However, LTE standard mandates the Detach Request message with
power-off type should be processed by MME even if its integrity check fails or
even the message does not include message authentication code (Sects. 4.4.4.3
and 5.5.2.2.2 in [19]). Once the MME receives the message, it takes an action
for power-off request by releasing victim’s network resources. Note that the
device power-off reason does not trigger acknowledgement from the network to
the victim device (Fig. 5.5.2.2.1.1: UE initiated detach procedure in LTE NAS
specification [19]) that makes victim device wrongly believe that MME is out
of service. The victim device remains out-of-service until victim performs hard-
reboot on device or uses airplane mode feature to initiate the device attach
procedure.

In order to launch this attack, the adversary needs to expose the victim’s
identity, which can be obtained from the following procedure.

Exposing Victim’s Identity. When the device attaches with the network,
it is assigned with TMSI. All the communication between the device and the
network is based on TMSI. The TMSI is valid until the UE remains within the
reach of serving MME – which typically handles all the devices within a large
metropolitan city [21].

The device enters into idle state when it has nothing to send or receive. If a
PS data or CS call is destined for the device during idle state, the MME sends
paging-message7 to that device. On receiving this paging message, the device

7 Paging message is a control beacon sent from LTE network to a device, when packet
switched (PS) data, or circuit switched (CS) call is impending at LTE core network.
These paging messages are sent when device is in RRC Idle state.
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enters into connected state and receives the traffic. Since the device has no
active connection with the network during idle period, the paging-messages are
broadcast in nature. All the neighboring devices receive the paging message and
discard it if their identity is not listed in the message. Note that the attacker is
a legitimate device connected with LTE network which also receives the paging
messages destined for other devices. The attacker can simply get the TMSI of
the victim out of the paging message.

The attacker can also originate a paging message towards the victim device. It
should be recalled that whenever the device receives an incoming voice call during
idle state, it is paged by the core-network. Therefore, simply calling victim’s
phone number and then hanging up even before the phone rings, triggers a
paging message. The attacker gets hold of this paging message (because paging
messages are broadcasted within MME tracking area8) and maps the victim’s
TMSI value with its phone number.

We run device traces and get victims identity through paging message (as
shown in Fig. 5a). Then the adversary generates Detach request message (Fig. 5b)
piggybacked over RRC (Fig. 6).

Fig. 6. The RRC layer helps to deliver NAS message when RRC protocol interacts
with NAS protocol

To launch this attack, we first register the victim device (Samsung Galaxy
S4 smartphone), and the attacker device (Samsung Galaxy S5 smartphone) with
our LTE testbed platform. Once both victim device and attacker are registered,
the attacker sends Detach Request message (i.e. AT + CFUN = 0) in device RRC
idle mode, as shown in Fig. 7. Note that in this detach request message, attacker
can masquerade victim device identity (TMSI). On receiving the detach request
message, the MME finds the detach-request type as Power-off and immediately
releases the associated device connection with Serving GW and PDN GW. We
captured wireshark logs (as shown in Fig. 8) that reveal on receiving the detach-
request, the UE connection is cleared by MME, serving GW and PDN GW. The
associated device is said to be “detached” and “deregistered” from core-network’s
view.

8 The tracking area is a logical concept of an area where a user can move around
without updating the MME. In operational network, one tracking area spans to a
number of eNodeBs.
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AT+CFUN=0
OK

Fig. 7. The device logs showing that the detach procedure is invoked over unsecured
channel

Fig. 8. The victim device is detached from the network on receiving detach request
from attacker.

Detach Multiple Victims from the Network Through Broadcast Mes-
sage. The UE monitors a paging channel during RRC idle state to detect its
pending notification. The UE can be paged through either of its identities, i.e.
TMSI or IMSI. The LTE standard makes distinction between paging messages
generated with TMSI and with IMSI. Paging using IMSI is defined as abnormal
procedure used for error recovery in the network (Sect. 5.6.2.2.2 Paging for EPS
services through E-UTRAN using IMSI in LTE NAS specification [19]). The
network may initiate paging using IMSI (as shown in Fig. 9) if the TMSI is not
available due to a network failure. Upon reception of a paging using IMSI, the
UE locally deactivates any bearer context(s), detaches itself locally from LTE
network and changes the state to Network DEREGISTERED. After performing
the local detach, the UE then performs an attach procedure.

Fig. 9. The device detach procedure is invoked over insecure channel



326 M. T. Raza et al.

In our attack model, the attacker uses this abnormal condition to its advan-
tage and kicks victim out of the network. Because the paging messages are in
plain text and broadcast in nature, these messages cannot be secured. Further-
more, the device executes such messages while it has not maintained any connec-
tion with the network (as it has torn down secure connection with the network
before entering into idle mode). This fact brings security vulnerability where
an attacker can detach the device by simply generating paging messages using
IMSI as device identity. The impact of such vulnerability is enormous where an
attacker can take down all of the devices connected to one eNodeB [19].

Exposing Victim’s IMSI Identity Through Side Channel. The network
operator allocates a unique IMSI to each subscriber, and embeds it to customer
USIM card. In order to support the subscriber identity confidentiality, the MME
allocates TMSI to mobile subscribers, when the mobile device establishes a new
connection with MME. Thereafter, TMSI is used as UE identity for all subse-
quent messages exchange between UE and MME.

Therefore, finding the IMSI of the victim is a challenging task. Although,
previous studies [22,23] have used special hardware [24], to expose the IMSI of a
device, we discovered a new method to obtain the device IMSI using commodity
hardware, i.e. 3G femto-cell.

We discover whenever the 3G femto-cell is brought within the proximity of
a UE, this UE detaches from its LTE eNodeB and camps with 3G femto-cell.
This is because the UE finds femto-cell signal strength higher than the serving
LTE eNodeB and performs handover to femto-cell. We noticed that during this
handover messages exchange, the 3G core-network sends an identity request mes-
sage to the device, where UE responds with its IMSI. We observe this behavior
because femto-cell and the eNodeB do not have any direct link with each other.
As a consequence, the LTE MME does not send device security keys to 3G core-
network, and let the 3G network re-authenticate the user. In order to derive
the security keys, the 3G core-network needs to expose IMSI of the device and
generate challenge/response messages as part of UE authentication procedure.

Note that identity request/response message exchange occurs prior to estab-
lishment of device security. This makes these message exchange non-encrypted
and can be logged at femto-cell. Since the femto-cell is a closed 3G base-station,
we hacked the femto-cell and defeated its in-place hardware and software security
mechanisms9.

Once we espied victim (connected to operational LTE network carrier) IMSI
through side channel, we now require the victim device to perform cell reselec-
tion to our testbed eNodeB. LTE defines priority-based cell reselection in which

9 Because femtocells are part of operator network, therefore, operators take both hard-
ware and software security measures to secure it. Therefore, as shown in Fig. 3 (right),
we only broke small part of femtocell cover, just to access the debugging pins (JP1,
JP2, JP5, JP6, PL2, etc.). We used screen command to dump femtocell memory
image. Then uncompressed it, reversed the kernel image, and looked for user infor-
mation in /etc/passwd file. We then applied brute force technique to decode the
password string within 7 days.
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Fig. 10. The network and UE logs show that the paging message with victim’s IMSI
can detach the victim device from the network

the device in Idle state periodically monitors its neighboring cells. The priority
based cell reselection ensures that the device always stay connected with higher
priority cell [25]. The operational LTE eNodeB informs its associated devices
about cell priorities through broadcast SIB messages. We sniff SIB4 and SIB5
parameters that define Intra-frequency and Inter-frequency LTE neighboring
cells priorities [20] and configure our testbed eNodeB accordingly. We configure
our eNodeB’s cell as of higher cell priorities as compared to operational LTE
eNodeB. This tricks victim device to camp over our testbed eNodeB cell. Once
the victim device is camped with our eNodeB cell, we generate paging message
(where we put UE identity as IMSI) towards the victim device. The victim device
treats forged paging message as if it is coming from legitimate eNodeB. Soon
after sending paging message, we turn-off our configured eNodeB. This is an
important step that makes victim device to camp on operational eNodeB cell
that forwards device attach message to operational MME. It is possible that the
victim device goes through Radio Link Failure (RLF) as it was disconnected
from our testbed eNodeB cell when it initiated the Attach Request message
(after detaching locally). On re-establishing the radio connection (RRCConnec-
tionRestablishment procedure), the victim device re-sends the Attach Request
message (when it does not receive the reply to its first Attach Request message).
We show this in Fig. 10, on receiving the paging message with IMSI, the vic-
tim device detaches and sends a new Attach Request message to LTE network
operator.

Impact and Limitation. In first variant of UE detach attack, the attacker
can kick victim device out of the network without raising any alarm at victim
device. The victim will observe out-of-network-service symbol until reboot. We
believe that the victim will not reboot his device thinking that his mobile device
will recover from network outage automatically. We must point out that any
implementation that binds the device across all its identities (such as binding of
eNodeB UE S1APID, MME UE S1AP ID, and device IMSI/TMSI) can restrain
the attack. We discuss this in Suggested Remedies Sect. 7.

In our second variant of the attack, we can generate one paging control mes-
sage, and can potentially take down all the devices connected within the tracking
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area (e.g. a shopping mall or an office space etc.). The paging message allows the
network to address multiple recipients by putting their identities (IMSI/TMSI)
in one paging message body. Such paging message is sent to all eNodeBs defined
within one tracking area. This can potentially cause network outage to all the
UEs connected to these eNodeBs. The impact of this attack is limited because
the device automatically reconnects with the network after detaching. Neverthe-
less, an attacker can keep generating paging messages with IMSI as UE identity
that will keep UE barred from accessing network services.

5 Weak Security Association: Security Handshake is
Skipped on Inter-radio Communication

In this section, we disclose weaknesses of inter-radio interactions. Although, each
radio access technology (RAT) (e.g. 4G/3G/2G) is secured when working stand-
alone but breaks security mechanisms when these RATs interact with each other.
We find that such weaknesses pose serious threats to user privacy and security.

5.1 Vulnerabilities

The handover procedure is initiated when UE’s RAT source coverage starts
fading and neighboring RAT coverage starts getting better. The Inter-RAT han-
dover is also triggered when the device initiates or receives a circuit switched
call. Once the handover decision is made by the source eNodeB, the handover
preparation phase is started at the target base station (3G/2G). During this
phase, the target network prepares the resources for an incoming connection.
Once the target base station is ready to serve the mobile UE’s PS/CS func-
tionality, the source eNodeB transfers the device context to the target network.
This also includes the transfer of UE security keys, which basically allows the
target network and UE to use old security context and avoid lengthy AKA proce-
dure [26]. This security context is transferred once the network can use mapped
security context for follow-up communication.

The use of old security session, potentially leads to serious vulnerability,
where the unauthenticated messages are accepted by the network, believing that
the source device is secure.

Network Accepts Location Area Update (LAU) Request Before Con-
firming Device Identity. Once a device is in 2G/3G network, it sends the
LAU request message to its network. Its possible that the device’s temporary
identity (TMSI/GUTI) has expired at the network. In this case, the network ini-
tiates the identification procedure by sending an Identity Request message to the
mobile device. Upon receiving the Identity Request message, the mobile device
sends back an Identity Response message containing device identification param-
eters. Because the device identity was unknown when the network received the
original LAU request message, any security context should be considered void.
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But we have found that the network accepts the LAU request message after
receiving the Identity Response and does not ask the device to authenticate
itself. The root cause of this issues lies in the way legacy networks treat two
procedures. In this case, Identity Request and LAU procedures are treated inde-
pendently (Sects. 4.7.8 and 4.4.4 of Core Network Protocols specification [27]
define Identity and LAU procedures, respectively). As a result, LAU procedure
resumes after getting device identity; and do not authenticate the device that
has responded the Identity Request message.

There is a potential for an attacker to send masqueraded LAU request mes-
sage where the network asks the attacker to verify its identity without authen-
ticating it. Figure 11 shows the logs for a device sending LAU request message,
and the network does not ask for any authentication.

Fig. 11. Location Area Update procedure is accepted without authenticating the
sender

Inter-RAT Switch Can Circumvent Location Update Procedure. LTE
to WCDMA handover is a frequent phenomena, where device moves from LTE to
WCDMA for CS voice call, and comes back to LTE from WCDMA for PS data
access after voice call. We find that on successful handover to LTE network, the
device does not perform the LAU procedure - known as Tracking Area Update
(TAU) in LTE. This is contrary to the switch from LTE to 3G/2G where the
LAU is mandatory.

In fact, this is an accepted operation defined in LTE standard. It is stated
that when LTE MME has native security context for the UE and does not receive
a TAU request within a certain period of time, after the inter-RAT switch, it
“shall assume” that UE and MME share a native security context (Sect. 9.2.2
From UTRAN to E-UTRAN in [28]). Furthermore, a separate LTE specification
mandates the TAU request procedure as optional when the inter-RAT switch
does not induce the device location change (such as user makes a voice call
within its tracking area) (Sect. 5.3.3 in [29]). These two statements from two
different standards are conflicting, where the device although has changed its
tracking area but does not send TAU request, making MME wrongly believe
that the device’s tracking area has not changed.
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5.2 Attacks and Validation

We have shown how an attacker can hijack the LAU request message and can
render victim device unreachable from the network. This location hijacking does
not raise any alarm at the network, and it believes that the device is not reachable
because it is either out of coverage or powered off. On the other hand, the victim
device does not make any effort to re-establish the connection with the network,
believing that it has correct location registered and currently does not have any
data pending from the network to be delivered.

Hijacking Location Update. In this attack, the attacker hijacks the vic-
tim location by artificially making the victim device do inter-RAT switch. The
attacker ensures that the attack remains unnoticed even when the victim moves
back to its original RAT (usually LTE network). Figure 12 shows the steps to
launch the attack. First the attacker establishes legitimate radio connection with
3G base station (steps 1 and 2) and artificially induces the inter-RAT switch
handover (HO) at victim device, registered with LTE network, (step 3). The
attacker can simply do it by dialing a phone call towards the victim device and
then hanging it up. Upon receiving the voice call, victim device switches to 3G
RAT and sends the LAU request to 3G network (step 4). At the same time,
the attacker generates LAU request NAS message by putting victim TMSI and
wrong location area code in the message body (step 5) and sends it to 3G base
station. The 3G base station will forward this message without looking its con-
tent to 3G core-network (step 6). Now 3G core-network has received duplicate
LAU messages (but with different location identities) for the same victim device,
and updates the device location mentioned in the latter message [30]. When the
attacker hangs up the call, victim device again performs the switch back to
LTE network. Because the victim device has not moved since it has received
the phone call, and its location area code has not changed, it does not need to
perform TAU procedure with the LTE network [28]. Therefore, the user context
including its location will be propagated to LTE network from 3G/2G network.
This will result in an unreachable LTE network (because the LTE system will
page the UE at wrong location).

We validated the attack through emulation mode [31]. The device is first
attached with LTE core network where device initiates handover to 3G MSC.
During LAU procedure, we modify the location area code of the device and

5

Fig. 12. Location Area Update hijack attack
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confirm the device successfully performs handover to 3G (with wrong location
area code). On handover from 3G to 4G, the device does not trigger TAU proce-
dure. Afterwards, device initiates the data traffic to confirm 3G to 4G handover
was successful.

Impact and Limitation. The attack leaves the victim device in a state in
which it can neither receive voice call nor incoming data traffic. The impact
of this attack vanishes when both of these conditions are met: (1) the device
switches back to LTE from 3G/2G RAT, and (2) the Periodic TAU timer has
expired at device. The Periodic TAU is used to notify the availability of UE to
network periodically. The procedure is controlled by UE through periodic track-
ing area update timer, which was sent by the network during device registration
procedure. Once periodic TAU timer expires, UE establishes the secure network
connection and notifies its location, which results in correct UE location to be
updated at the network.

However, the timer value is carrier network dependent, which can also be
defined as zero (i.e. periodic TAU is deactivated at the device) [26]. In normal
operational network, it is defined to be few hours [32].

The second limitation of this attack is related to timing of the attack. The
attacker needs to generate a fake LAU request message soon after the victim
device has sent out his LAU request message. We believe such timing interval
is easy to observe as the attacker can calculate inter-message delay by logging
cellular traces prior to launching the attack.

6 Lack of Access Control/Non-authorization

The operators need to deploy servers that keep track of millions of their sub-
scribers, and provide adequate mechanisms for service provisioning, billing, and
other services that are available to the subscribers. Once the user is authenti-
cated, the first job of these servers is to identify whether the user is authorized
to access certain service or not. In short, the network deploys authorization
mechanism even for an authenticated user.

However, LTE standard does not define an authorization procedure at the
UE. If the authentication is successful with the network, the device deem all the
communication from the network authorized. The authorization measures are
also missing for base station (eNodeB). We found that the device subscription
and permission control actions are taken only at core-network (MME). When a
device fails these checks, it is not allowed to access core-network functions, but
this device can still keep its radio connection with eNodeB.

6.1 Vulnerabilities

When the UE is relying on authentication to ensure that the network is autho-
rized to send packets, things change dramatically in the absence of such authen-
tication.
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Unconditional Trust Across Protocol Layers. In order to perform an
atomic operation, LTE protocol layers need to carry each other messages. There
is no defined security mechanism for such inter-layer communication. Thus, the
trust model between protocol layers is unconditional.

For example, during RRC idle state operation, the UE is paged by MME
via eNodeB. These paging messages contain information which the core-network
wants to convey to the device and are used to instruct the device for a particular
action. In Fig. 5a, the paging message includes the device identity, recognized by
MME, and an action to be taken (cn-domain PS, i.e. PS data is waiting for
the device). Hence, UE blindly authorizes such inter-layer functions to deliver
messages. It has been assumed that each link from MME to eNodeB, and from
eNodeB to UE is trusted while forwarding the packets to the next link. In this
way, the attacker establishes trusted link with eNodeB and injects malicious
traffic to the UE and MME.

Permission Control Decisions Are Not Disseminated Across Network.
The device authorization procedure is divided into two parts, whether the device
is allowed to (1) access particular operator network, and (2) use network services.

When a device powers on, it determines Mobile Network Code (MNC)10

from USIM and performs cell selection procedure. After appropriate cell selec-
tion, the device camps on that cell. Thereafter, UE establishes radio connection
with eNodeB. This access control procedure ensures that the device connects to
allowed network operator’s eNodeB.

If the user is allowed to access network radio resources, it sends NAS control
messages to initiate core-network services. On receiving first NAS control mes-
sage (Attach Request message), the HSS authenticates the device and populates
device permission control list to MME. In case the device does not have any per-
mission to access the network, the MME refuses the connection request. Since
UE and MME communicates over NAS, the eNodeB remains unaware that UE
connection has been rejected by MME. As a result, the device radio connection
between UE and eNodeB remains alive and the unauthorized device can launch
radio attacks. We have found that this vulnerability arises if the MME does not
tear down UE connection with eNodeB. In principle, when the UE breaks its con-
nection with MME (such as through Detach Request message), the MME prop-
agates UE connection release message to eNodeB (UE Context Release (MME
initiated) procedure in S1AP specification [33]). Then the eNodeB releases the
device radio connection. But access control verification failure does not trigger
UE connection release message from MME to eNodeB. This allows the device to
keep only RRC connection even in the absence of NAS connection. It violates
the LTE design principle where the device in connected state should keep both
connections (RRC and NAS).

10 MNC uniquely identifies a mobile network operator.
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LTE Service Request

LTE Service Request

LTE Service Request

LTE Service Request
LTE Service Request
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Fig. 13. The paging broadcast message can be used to drain batteries of multiple
devices

6.2 Attacks and Validation

This vulnerability is explored through an attacker that can successfully commu-
nicate with the device without its consent. Since there is no authorization or
access control at UE side, the UE can always be tricked into processing unau-
thorized packets.

Silently Draining Victims’ Battery. In order to save battery power, the
mobile device enters RRC idle state by switching off its transceiver. In idle
state, the device observes Discontinuous Reception (DRX). The DRX duty cycle
is divided into DRX active and DRX idle states. On DRX active, the UE lis-
tens to the radio channel to receive the control signals from the network. On
pending CS call/PS data, the device is instructed (through broadcast paging
messages) to secure its connection with the network. When the device finds its
TMSI in the paging message, it sends the Service Request11 message in plain-
text to the network. Thereafter, the security setup procedure starts and device
delivers/receives its data.

As shown in Fig. 13, the attacker gets benefit of the fact that device takes
action on its paging message. The adversary generates a paging message by
addressing multiple victims about their pending CS/PS data. On receiving this
message, all addressed victim devices will send Service Request message to the
network. These devices will stay awake for a configurable amount of period
(usually 10 s) [20]. By sending this paging message to these victim periodically,
the attacker can never let these victim devices enter into RRC idle state. This
single paging message can drain battery power of multiple mobile devices.

For our validation, we logged LTE packets and ensured the victim UE enters
in RRC idle state. The victim UE which is also connected with Monsoon power
monitor [34] is placed under good radio coverage (i.e. around −90 dBm). This
ensures the device remains in idle state and does not perform any radio mea-
surements for handover procedure.

Once the phone is in idle state, the attacker generates the paging message
for the victim. To do so, the attacker dials a voice call to the victim phone, but
11 Service Request establishes UE connection with MME, when uplink/downlink data

is to be sent/received at device idle state.
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Fig. 14. The energy consumption from idle to connected state transition and then
staying in connected state

hangs-up before the phone even rings. We noticed that dialing a call for a couple
of seconds, triggers a paging message with cn-domain CS (i.e. the device should
wake-up to receive CS call).

On receiving the paging message, the victim device enters into RRC con-
nected mode and generates Service Request message to MME. The MME first
authenticates the UE and then establishes the requested core network resources.
After few seconds, when MME does not receive any data activity from the victim
device, it requests eNodeB to release radio resources for the connected UE. The
device enters into idle mode after receiving the radio connection release message
from eNodeB.

Figure 14 shows power trace for the victim UE under attack. We can see
when the device is in idle state, it observes DRX idle and DRX active states
by consuming 500 mW and 1300 mW power values, respectively. But as soon as
the phone receives a paging message, it ramps up its radio and sends Service
Request message that brings the power consumption to as high as 3500 mW.
After sending the Service Request message, the UE exchanges authentication
messages with MME (which is marked by two other high power consumption
peaks in Fig. 14) and keeps connected to the radio network. In Fig. 14, we can
also see that the overall power consumption in RRC Connected state is 3X-4X
higher compared to RRC Idle state. Therefore, by generating paging broadcast
messages, the attacker can silently drain the victim battery power.

We drained victim’s device battery by generating paging request messages
in an interval of 10 s. Note that, on the expiration of device inactivity timer at
MME (which is 10 s), the MME releases the device bearers and device switches
back to idle state. In this attack, we aim to bypass the victim device’s inactivity
timer by generating paging messages every 10 s.

7 Suggested Remedies

In this section, we suggest some remedies to address the discussed vulnerabilities.
Our proposal seeks to mitigate the impact from the attacks, within current LTE
standard (i.e. 3GPP standard). We should point out that the device, eNodeB,
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and core-network entities are 3GPP compliant and any vendor specific imple-
mentation, conflicting with the LTE standard, may fail inter-operability between
devices and the network functions. Therefore, these vulnerabilities need to be
discussed in the 3GPP standard for a permanent solution. Below, we propose
some quick fixes for the discussed attacks.

Detach Attack Prevention. Once the operator receives the non-integrity
protected “power-off” request message from the device, it should consult its
database to resolve device identity (IMSI or TMSI) to eNodeB-S1AP-ID. If the
received and look-up eNodeB-S1AP-IDs do not match, the network should dis-
card the “power-off” message.

In order to address device detach using paging message, the device vendor
should keep the counter value for “paging using IMSI” request messages. If
the counter value exceeds a threshold defined by the vendor, the device should
discard any follow-up paging request messages. Note that, in this attack, the
adversary needs to periodically send “paging using IMSI” request messages to
refrain UE from gaining network resources.

Location Update Hijack Attack Prevention. TAU procedure must always
be executed whenever the device changes its RAT. We believe this security solu-
tion should not impact device performance, because the TAU procedure only
generates 2 signaling messages (TAU Request and TAU Reply messages). Since
the TAU request message is always sent as integrity protected, the attacker can-
not generate TAU request message on behalf of victim device.

Moreover, the network must not accept LAU request message for a device
whose identity is unknown. In case the network needs to resolve the device
identity (by sending identity request message), the security setup procedure must
be executed before the LAU request message is accepted at the network.

Battery Drain Attack Prevention. The device should keep a mapping
between paging request and gaining network resource. That way, no resources
are reserved by the network when the adversary is sending fake paging request
messages. Therefore, the device can easily count how many fake paging messages
it has received. Once the number of fake paging request messages exceed vendor
specific counter value, the device should drop subsequent messages.

8 Related Work

Closest to our work are [3,7]. [7] disclose performance issues on inter-protocol
communication in operational LTE network. However, we discover security vul-
nerabilities that are rooted in LTE standard and do not discuss any perfor-
mance bottlenecks. [3] discusses privacy attacks in which signalling information
is leveraged to infer user privacy information. Moreover, such attacks are only
possible if network operator disables integrity and ciphering protection. For LTE
DoS attacks, [3] assumes the attacker can change the message contents (such as
device capabilities in Attach Request) for non-integrity protected Attach Request
message. In contrast, this paper discloses security weaknesses of common device
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operations even if all LTE security mechanisms are well in place. [35] studies
how to block the CS service caused by the unwanted traffic in the PS domain.
[36] shows that current cellular infrastructures exhibit security loopholes (off-
path TCP hijacking) due to their NAT/firewall settings. These contributions
exploit operational network configuration issues, which can only be local to a
specific operator. [37] proposes a denial-of-service attack on cellular networks
by consuming the radio resources of control channels via significant spamming
SMSs. However, the attack may not be applied to 4G LTE networks, since SMSs
can be delivered to 4G LTE users by PS traffic as Whatsapp without 3G↔4G
switches. [38] discloses a attack model to drain the battery of mobile phones via
low-rate of retrieval of malicious MMS. However, this attack is not valid when
the victim device black list the attacker device phone number. Security on mobile
devices and their applications focus on permission control [39], inter-application
communication [40,41], plagiarizing applications [42] and leaking privacy infor-
mation [43] by smartphones. Our attack models do not depend on any given
mobile data application.

9 Conclusion

In this work, we have uncovered new vulnerabilities in the current LTE security
measures. We learn several lessons from our study. The unsecured messages
should not be executed unless the device message integrity procedures are in
place. The broadcast messages must also be integrity protected. Since all devices
are connected to the same core infrastructure, the core-network messages can
also be integrity protected using the public-private key pair.
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Abstract. This paper proposes an efficient scheme, named CPSS, to
perform privacy-preserving proximity detection based on chiphertext of
convex polygon spatial search. We consider a scenario where users have
to submit their location and search information to the social application
server for accessing proximity detection service of location-based social
applications (LBSAs). With proximity detection, users can choose any
polygon area on the map and search whether their friends are within
the select region. Since the location and search information of users are
sensitive, submitting these data over plaintext to the social application
server raises privacy concerns. Hence, we propose a novel method, with
which users can access proximity detection without divulging their search
and location information. Specifically, the data of a user is blurred into
chipertext in client, thus no one can obtain the sensitive information
except the user herself/himself. We prove that the scheme can defend
various security threats and validate our scheme using a real LBS dataset.
Also, we show that our proposed CPSS is highly efficient in terms of
computation complexity and communication overhead.

Keywords: Location-based social application · Proximity detection
Privacy-preserving · Convex polygon spatial search

1 Introduction

Nowadays, with the flourish of the location-based service (LBS) and social net-
working, location-based social applications (LBSAs) have attracted considerable
interest. These applications enormously benefit people in a variety of contexts
ranging from their work to personal life. For example, when a individual is
traveling in a strange place, LBSAs can help her/him meet with friends in the
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Which friends are within the 
polygon range 

Fig. 1. Conceptual architecture of proximity detection.

surroundings [1–4]. Proximity detection is a high level location based service of
LBSAs, which enables a user to choose any range on the map, and search which
friends of her/his are within this region, as shown in Fig. 1. Proximity detec-
tion with polygon spatial search has been one of the most popular features of
LBSAs [5–9].

Although LBSAs benefit people by providing convenient lifestyle, its devel-
opment still faces severe challenges due to the sensitivity of users’ location infor-
mation [10–16]. For example, users’ sensitive information could be analyzed or
revealed by LBSAs server easily. Once these sensitive information is obtained
by attackers, mobile users may be harmed economically, physically, and legally.
Therefore, when users use social applications (such as Wechat, Facebook, Twit-
ter and so on) for location search, their sensitive search and location information
cannot be leaked. However, most LBSAs rely on the fact that users submit accu-
rate location over plaintext to the social application server, then the server pro-
vides LBS for them. Thus, how to provide accurate LBS search results without
divulging users’ sensitive information has become a hot spot of LBS research.

Aiming at these above challenges, in this paper, we propose an efficient and
privacy-preserving proximity detection scheme for social applications, named
CPSS. Specifically, main contributions of this paper are as follows.

– First, the proposed CPSS provides a privacy-preserving proximity detection
framework for LBSAs. With CPSS, a user can keep her/his search and loca-
tion information secret from social application servers and other users. Specif-
ically, in our novel CPSS scheme, users’ search and their location data are
transformed into chipertext with random masking technique in client, thus
social application servers cannot obtain any sensitive information of users.
Meanwhile, no one but the user knows her/his own sensitive information.
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Moreover, based on social applications, users are authenticated when login,
therefore, it is impossible for an attacker to disguise a legitimate user to
execute a search.

– Second, the proposed CPSS provides accurate spatial search service for users.
We construct an convex polygon spatial search algorithm based on improving
an efficient and privacy-preserving cosine similarity computing protocol [17],
named PSS, which can provide high-precision convex polygon spatial search
while protecting users’ privacy.

– Third, CPSS provides proximity detection service in the real environment
efficiently. We evaluate the performance of the proposed CPSS in terms of the
computation complexity and communication overhead, and deploy CPSS in
smart phones and workstation with a real LBS dataset. Extensive experiment
results demonstrate that CPSS is highly effective in the real environment.

The rest of this paper is organized as follows: we review the related works
in Sect. 2. The efficient and privacy-preserving cosine similarity computing pro-
tocol and the strategy of point in convex polygon are reviewed as the prelimi-
naries in Sect. 3. In Sect. 4, we formalize the models, design goal, and propose
our privacy-preserving proximity detection scheme with convex polygon spatial
search followed the security analysis of the proposed scheme in Sect. 5. Perfor-
mance evaluation in Sect. 6. Conclusions are discussed in Sect. 7.

2 Related Work

The field of privacy-preserving spatial search has witnessed several different tech-
niques those have been proposed to protect users’ privacy ([18–22] and reference
therein). In this section, we review some of them resumptively.

K-anonymity [23] is a traditional technique to perform privacy-preserving
spatial search. There are few works have been proposed in this direction [18,19,
24]. In 2011, [18] presented a new multidimensional k-anonymity algorithm
based on mapping and divide-and-conquer strategy. The work in [18] maps
the multi-dimensional to single-dimensional and performs much better than k-
anonymity in privacy protection. In [19], Sharma and Shen et al. utilized the
k-anonmity mechanism with an entropy factor to check the possible probability
of detecting a subscriber in a region by an adversary based on previous traces.
In their work, they aimed to maximize the entropy based on a random mobil-
ity pattern before generating a new cloaking region. Gedik and Liu et al. [24]
proposed a location privacy architecture which use a flexible privacy personal-
ization framework to support location k-anonymity for a wide range of mobile
clients with context-sensitive privacy requirements. This framework enables each
mobile client to specify the minimum level of anonymity. However, k-anonymity
requires that the anonymous region where the user resides should contain at least
other k-1 users, if k users are in the same location, their location information
may also be leaked, and it brings heavy communication overhead to users.

Spatial cloaking technique is widely used to ensure users’ privacy through
masking the user accurate location into a cloaked spatial regions [20,21,25]. The
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schemes in [21] proposed to enable mobile users to obtain location-based services
without revealing their exact location by designing a spatial cloaking algorithm,
which is suitable for mobile peer-to-peer environment. In 2015, [20] proposed
a new spatial cloaking technique to hide a user’s location with a cloaking of
the serving based station. Different from the most existing approaches, the work
in [20] selects a properly chosen dummy location from real locations of eNodeBs
to minimize side information for an adversary. Wang et al. proposed an in-device
spatial cloaking algorithm in [25] to achieve processing data in client. The work
in [25] is modified from traditional approaches. However, in general, the schemes
using spatial cloaking technique return a list of candidate search answers instead
of the exact answer, which brings heavy communication overhead to users.

In order to mitigate the heavy communication overhead involved with the k-
anonmity and spatial cloaking, homomorphic encryption technique is commonly
used to achieve privacy-preserving spatial search. In 2016, [22] proposed a solu-
tion for mobile users to preserve their location and query privacy in approximate
k nearest neighbor (KNN). The work in [22] is built on the Paillier public-key
cryptosystem, and can provide both location and query privacy security. In [26],
Mu and Bakiras proposed a novel privacy-preserving spatial query approach
using Paillier and ElGamal. In their work, a mobile user is allowed to define
an arbitrary convex polygon on the map, and test whether her/his friends are
within the polygon. The methods in [27] proposed for secure distance computa-
tion over encrypted data, in their work, the underlying security is ensured by the
homomorphic encryption scheme which support computation on encrypted data.
Thomas et al. using homomorphic encryption proposed a secure point inclusion
protocol in [28]. They determined the relationship of a point and the polygon
by angles. Nevertheless, most homomorphic encryption schemes require massive
resource-consuming computation, which brings heavy computation complexity.

These above-mentioned schemes are not very suitable for mobile devices.
Hence, in this paper, we use a new but lightweight technique to construct an
efficient and privacy-preserving proximity detection scheme with convex polygon
spatial search. Our approach is highly efficient in terms of computation complex-
ity and communication overhead. Most importantly, our scheme doesn’t reduce
the search accuracy due to the privacy-preserving requirements.

3 Preliminaries

Recently Lu et al. [17] proposed an efficient and privacy-preserving cosine simi-
larity computing protocol and in 1995, Feito et al. [29] proposed the cross product
(point in convex polygon strategies). In this section, we review theses as the basis
of our scheme.

3.1 Efficient and Privacy-Preserving Cosine Similarity Computing
Protocol

Given a vector of PA, a = (a1, a2, . . . , an) ∈ Fn
q and a vector of PB, b =

(b1, b2, . . . , bn) ∈ Fn
q , we can directly calculate the cosine similarity cos(a,b)
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in an efficient and privacy-preserving way. The main calculation process is as
follows.

Step1: (performed by PA) Given security parameters k1, k2, k3, k4, choose
two large primes α, p such that |p| = k1, |α| = k2, set an+1 = an+2 = 0. Choose
a large random s ∈ Z

∗
p and n + 2 random numbers |ci| = k3, i = 1, 2, . . . , n + 2.

Then PA calculates

Ci =
{

s(ai · α + ci) mod p, ai �= 0;
s · ci mod p, ai = 0;

and A =
∑n

i=1 a2
i . What’s more, PA should keep s−1 mod p secret. After these

operations, <α, p, C1, . . . Cn+2> will be sent to PB.
Step2: (performed by PB) Set bn+1 = bn+2 = 0, random numbers |ri| = k4,

then calculate

Di=

{
bi · α · Ci mod p, bi �= 0;
ri · Ci mod p, bi = 0;

B =
∑n

i=1 b2i and D =
∑n+2

i=1 Di mod p. After this PB sends <B,D> back to
PA.

Step3: (performed by PA) Compute E = s−1 ·D mod p, a ·b =
∑n

i=1 ai · bi =
E−(E mod α2)

α2 and cos(a,b) = a·b√
A·√B

.
During the above calculation, it can be figured that the vectors of PA and

PB are confidential to each other.

3.2 Cross Products - Point in Convex Polygon Strategies

Given a convex polygon P with n edges and a point p, the vertices P1P2

. . . Pn are named in anticlockwise direction. Assume that the coordi-
nates of the vertexes and the point are defined as <(x1, y1), (x2, y2),
. . . , (xi, yi), (xi+1, yi+1), . . . , (xn, yn)> and (xs, ys), respectively. The point in
convex polygon cross product is the protocol to determine whether the point p
is within the convex polygon P . We can solve this problem by calculating points
orientation [29]. As shown in Fig. 2, the triple points <Pi+1, p, Pi> consist of
two vertices of the convex polygon and a point p, we defined their orientations
as follows.

P
p

p
p

(a) Positive orientation (a) Zero orientation (a) Negative orientation

Fig. 2. Orientation of point p and polygon vertex.
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– Positive orientation: <Pi+1, p, Pi> is a counterclockwise turn.
– Negative orientation: <Pi+1, p, Pi> is a clockwise turn.
– Zero orientation: <Pi+1, p, Pi> is collinear.

The orientation of the < Pi+1, p, Pi > can be computed as follows.

Si =

∣∣∣∣∣∣
xi+1 yi+1 1
xs ys 1
xi yi 1

∣∣∣∣∣∣ = (xs ·yi+ys ·xi+1+xi ·yi+1)−(xs ·yi+1+ys ·xi+xi+1 ·yi)

Next, for the given convex polygon P and point p, whether the point is within
the convex polygon can be determined by the following protocol.

– Let i ∈ {1, 2, . . . , n}, i′ = (i + 1) mod n, then compute Si of the triple points
<Pi′ , p, Pi>, where the vertex Pi is visited in an anticlockwise order.

– If all Si > 0, the point p is within the convex polygon P ; else, point p is
outside the convex polygon P .

4 Models, Design Goal and Proposed CPSS Scheme

4.1 Models and Design Goal

Let us consider that the system model consists of three parts: Social Application
Server (SS), Search User (SU) and Search User’s Friends (UF), as shown in
Fig. 3.

 Search user s friends (UF)

Initialization
Search and Response

(2) Encrypted search information

(3) Encrypted search result

Social application server (SS)

Search user (SU)

Fig. 3. System model under considered.

– We consider a server of a LBSA as SS, which provides users with various of
services including proximity detection. Users registered in SS are allowed to
search approximate location of their friends with proximity detection. In our
system, SS is responsible for forwarding data among users and protecting the
integrity of data.

– A user who wants to execute a search and has already registered in SS is
represented by SU. Based on social applications, SU can generate her/his
friend list. Then she/he can choose any polygon range on the map, and search
which friends of her/his are within the selected region.
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– UF present online friends of SU. In the process of polygon spatial search,
UF receive blurred search information from SU, then each UF does a hybrid
calculation with the blurred search data and her/his own position coordinate
to obtain search results, which can only be analyzed by SU with further
calculating. Since most calculations are done in client, the computational
efficiency of our privacy-preserving scheme should be guaranteed.

Within the system model, let us introduce the threat model and define the fol-
lowing security requirements of the proposed work. In the threat model, we con-
sider that SS is credible-but-greedy, SU and UF are honest-but-curious. Specif-
ically, SS will not be fraudulent, but want to get the sensitive information of
users from search requests and result responses. SU and UF will not send false
information, nevertheless, both of them want to obtain each other’s sensitive
information through the blurred data. Meanwhile, attackers may tamper and
modify the data, or impersonate a legitimate user to execute a search. Consider-
ing above security issues, the following security requirements should be satisfied.

– Privacy. On one hand, protecting user’s search and location information secret
from SS and other users, even if SS can obtain all requests and responses
from users, it still cannot identity user’s search polygon range and location
information accurately. On the other hand, the privacy requirements also
include search results, i.e., only the legal SU can decrypt them.

– Authentication. Authenticating that an encrypted proximity detection search
request is really sent by a legal SU and not modified during the transmis-
sion, i.e., if an illegal user forges a search, this malicious operation should
be detected. That is, only correct search requests can be received by UF,
meanwhile, responses from UF should also be authenticated, so that SU can
receive the reliable search results.

Under the aforementioned system model and security requirements, our
design goal is to develope an efficient and privacy-preserving proximity detec-
tion scheme with accurate search results for social applications. Specifically, the
following three objectives should be achieved.

– Security should be guaranteed. Once the security of the proposed is not
achieved, users’ sensitive information (i.e., search and location data) could
be disclosed, which may harm users severely. In this way, it is hard for LBSA
to step into its flourish. Therefore, achieving the confidentiality and authen-
tication simultaneously is the primary goal of CPSS.

– Accuracy of polygon search results should be guaranteed. It is significant that
applying the privacy-preserving strategy cannot compromise the accuracy.
Therefore, the proposed framework should also provide the same search result
as that of the scheme unusing privacy-preserving technique.

– Low computation complexity and communication overhead should be achieved.
Considering the batteries of mobile devices are very limited today. The pro-
posed scheme should enhance the computational efficiency to reduce the
energy consumption in mobile devices. As a result, CPSS should have low
overhead in terms of computation and communication.
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4.2 Proposed CPSS Scheme

The proposed efficient and privacy-preserving proximity detection scheme mainly
consist of two parts: system initialization and privacy-preserving convex polygon
spatial search. Detailed explanation is as follows.

System Initialization. SS first chooses system security parameters
p1, p2, p3, p4, a secure symmetric encryption E(), i.e., AES, a secure asymmetric
encryption algorithm E′(), i.e., ECC and a secure hash function H(). Then SS
generates its private key skSS and public key pkSS . SS keeps skSS secret, and
publishes the system parameters <E(), E′(),H(), p1, p2, p3, p4, pkSS>.

When registering in SS, SU sets her/his password, and generates pri-
vate key skSU and public key pkSU . When logging in, SU is authorized with
<password, SU, pkSS , E′()>. Meanwhile, a temporary session key kSU is gen-
erated through the key negotiation. The authentication scheme of register and
login for social applications is sophisticated [30]. After this, SU chooses two large
primes such that |β| = p1, |α| = p2, a large random number u ∈ Z

∗
p and random

numbers |vin| = p3, where i is the number of polygon edges, n = 1, 2, · · · , 6.
UF represent online friends of SU. For the sake of simplicity, we first consider

that only one friend of SU is online, which is represented by UFj . During the
initialization process, UFj generates a session key kUFj

with SS, and chooses
random numbers |wi| = p4, where i is the number of polygon edges.

Privacy-Preserving Convex Polygon Spatial Search. At the beginning,
we design the PSS algorithm for the proposed scheme, which mainly consists
of three functions: SearchGeneration, ResultGeneration and ResultReading. The
description of the functions is as follows.

– SearchGeneration(α, β, u, V,D): The function takes as input two big primes
α and β, random number u, an array V with elements vin and vertexes
of the search polygon D. It outputs the blurred data of the search poly-
gon, which is presented by Q. Assume that the vertexes of the polygon are
<(xq1, yq1), (xq2, yq2), . . . , (xqm, yqm)> in anticlockwise order. Detailed calcu-
lations of this function are as follows.

Q = Q1 ‖ Q2 ‖ · · · ‖ Qi ‖ · · · ‖ Qm

Qi = Qi1 ‖ Qi2 ‖ Qi3 ‖ Qi4 ‖ Qi5 ‖ Qi6

Qi1 = u(xqi · α + vi1) mod β

Qi2 = u(yqi · α + vi2) mod β

Qi3 = u(xqi′ · α + vi3) mod β

Qi4 = u(yqi′ · α + vi4) mod β

Qi5 = u(xqi · yqi′ · α + vi5) mod β

Qi6 = u(xqi′ · yqi · α + vi6) mod β,
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where i = 1, 2, ...,m, i′ = (i + 1) mod m. The process is conducted by SU,
after this, the data of the search polygon are blurred into chipertext Q.

– ResultGeneration(α, β,W,Q,C): This function is executed by UFj . It out-
puts the search result R with the inputs α, β,W,Q and C, where α and β
are two big primes, W is an array with elements wi, Q is the blurred polygon
information and C is the location coordinate of UFj . Assume that the location
coordinate of UFj is <xj , yj>. Specific computing process is as follows.

R = R1 ‖ R2 ‖ · · · ‖ Ri ‖ · · · ‖ Rm

Ri = Ri1 ‖ Ri2

Ri1 = wi · α(xj · Qi4 + yj · Qi1 + Qi6) mod β

Ri2 = wi · α(xj · Qi2 + yj · Qi3 + Qi5) mod β,

where i = 1, 2, ...,m. Note that in the operation R = R1 ‖ R2 ‖ · · · ‖ Ri ‖
· · · ‖ Rm, the order of i should be rearranged. After this process, the search
result R is generated, which can only be decrypted by legitimate SU.

– ResultReading(β, u,R): This function takes as input the big prime β, random
number u and search result R. It decrypts R and outputs the judgement J ,
which shows whether UFj is with the polygon area. Concretely, the operations
are as follows.

Ji1 = u−1 · Ri1 mod β

= u−1 · wi · α(xj · Qi4 + yj · Qi1 + Qi6) mod β

= u−1 · wi · u[α2(xj · yqi′ + yj · xqi + xqi′ · yqi)
+ α(xj · vi4 + yj · vi1 + vi6)] mod β

Ji1
′ =

Ji1 − (Ji1 mod α2)
α2

= wi(xj · yqi′ + yj · xqi + xqi′ · yqi)

Ji2 = u−1 · Ri2 mod β

= u−1 · wi · α(xj · Qi2 + yj · Qi3 + Qi5) mod β

= u−1 · wi · u[α2(xj · yqi + yj · xqi′ + xqi · yqi′)
+ α(xj · vi2 + yj · vi3 + vi5)] mod β

Ji2
′ =

Ji2 − (Ji2 mod α2)
α2

= wi(xj · yqi + yj · xqi′ + xqi · yqi′)

Ji = Ji2
′ − Ji1

′

= wi[(xj · yqi + yj · xqi′ + xqi · yqi′)
− (xj · yqi′ + yj · xqi + xqi′ · yqi)]

For i = 1, 2, ...,m, if all of the Ji > 0, this function outputs that J is true,
Otherwise, outputs J is false.
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Algorithm 1. PSS
procedure judge(UFj) � Whether UFj is within the

for i = 1 to i = m do polygon
SU computes Q;
UFj computes R;
SU computes Ji;
if Ji <= 0 then

return J is false; � UFj is outside the polygon
end if

end for
return J is true; � UFj is within the polygon

end procedure

Correctness of the PSS. As the calculation presented above, PSS should meet
constraints wi·α2(xj ·yqi′ + yj ·xqi + xqi′ ·yqi), wi·α2(xj ·yqi + yj ·xqi′ + xqi·yqi′)<β
and α(xj · vi2 + yj · vi3 + vi5), α(xj · vi2 + yj · vi3 + vi5)<α2. Since the values of
coordinates are not very big, we can choose applicable security parameters easily
(such as p1 = 512, p2 = 160, p3 = 75 and p4 = 75). Note that the expression
Ji = wi[(xj · yqi + yj · xqi′ + xqi · yqi′) − (xj · yqi′ + yj · xqi + xqi′ · yqi)], which
is formed by two divisors, one is random wi, and the other is the cross product
of <Pi′ , p, Pi>. Since wi is a positive number, the sign of the cross product is
clear. Then we can find out whether the point is within the polygon through
orientations of <Pi′ , p, Pi>, where i = 1, 2, ...,m.

Next, based on PSS algorithm, we propose the efficient and privacy-
preserving proximity detection scheme with convex polygon spatial search, and
illustrate it in Fig. 4. The detailed procedure is described as below.

(1) Generate the search request : Based on social applications, SU executes the
system initialization to generate random numbers α, β, u, V , and chooses
vertexes of the search polygon D. Then she/he generates the search data Q
by calling SearchGeneration(α, β, u, V,D), and creates the message authen-
tication code MACSU = EkSU

(H(α ‖ β ‖ Q ‖ SU ‖ TS)), where TS is cur-
rent time to resist the potential replay attack. Finally, SU keeps u−1 mod β
secret, and sends <α ‖ β ‖ Q ‖ SU ‖ TS ‖ MACSU> to SS.

(2) Verify the search request and forward : SS first checks TS and MACSU to
verify the validity of data, i.e., verify whether EkSU

(H(α ‖ β ‖ Q ‖ SU ‖
TS)) = MACSU . If it does hold, the packet is valid. Then SS computes
MACSSq

= EkUFj
(H(α ‖ β ‖ Q ‖ SS ‖ TS)), and sends < α ‖ β ‖ Q ‖

SS ‖ TS ‖ MACSSq
> to UF j .

(3) Generate the search response: UFj checks the time stamp TS and MACSSq

to verify the validity of data. Then UFj executes the system initialization
to generate random numbers W , and generates the search result R by calling
ResultGeneration(α, β,W,Q,C), where C is the location of UFj . Finally,
UFj computes MACUFj

= EkUFj
(H(R ‖ UFj ‖ TS)), and sends <R ‖

UFj ‖ TS ‖ MACUFj
> to SS.
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(4) Verify the search response and forward : SS first checks TS and MACUFj
to

verify the validity of the packet. Then SS computes MACSSa
= EkSU

(H(R ‖
SS ‖ TS)), and returns the search result <R ‖ SS ‖ TS ‖ MACSSa

> to
SU.

(5) Read the search response: After receiving <R ‖ SS ‖ TS ‖ MACSSa
>, SU

first checks its validity, and determines whether UFj is within the polygon
by calling ResultReading(β, u,R).

SU SS UF

1.Generate the 
search request 

2.Verify the search  
packet and forward 

3.Generate the 
search response 

4.Verify the search 
response and forward 

5.Read the 
search response

SU SS UF

1.Generate the 
search request 

2.Verify the search  
packet and forward 

3.Generate the
search response 

4.Verify the search 
response and forward 

5.Read the 
search response

Fig. 4. Proposed CPSS scheme.

5 Security Analysis

Following the security requirements discussed earlier, in this section, we analysis
the security of the proposed CPSS. We will focus on how the proposed CPSS can
preserve the privacy of users, and the authentication during the search process.

5.1 The User’s Sensitive Information is Privacy-Preserving in the
Proposed Scheme

In the proposed CPSS, by using random numbers u and vin, the vertexes of
the search polygon <(xq1, yq1), (xq2, yq2), . . . , (xqm, yqm)> are encrypted in the
form of Q1 ‖ Q2 ‖ · · · ‖ Qi ‖ · · · ‖ Qm, where Qi = Qi1 ‖ Qi2 ‖ Qi3 ‖ Qi4 ‖
Qi5 ‖ Qi6, and Qi1 = u(xqi · α + vi1) mod β, Qi2 = u(yqi · α + vi2) mod β,
· · ·, Qi6 = u(xqi′ · yqi · α + vi6) mod β. Since u and vin are only known by
SU, even if SS and other users are curious about the search information, it is
impossible for them to obtain the accurate search information. Moreover, the
space of search data is increased by random numbers vin to resist the exhaustive
attack. Analogously, UFj computes R = R1 ‖ R2 ‖ · · · ‖ Rm over blurred search
data, where Ri = Ri1 ‖ Ri2, Ri1 = wi · α(xj · Qi4 + yj · Qi1 + Qi6) mod β and
Ri2 = wi · α(xj · Qi2 + yj · Qi3 + Qi5) mod β. Since the location coordinate
<xj , yj> is blurred with random numbers wi which are only known by UFj , SS
and SU cannot obtain the location coordinate accurately. Moreover, the order
of i is rearranged during the operation R = R1 ‖ R2 ‖ · · · ‖ Rm, in this way,
SU cannot infer the location relationship between UFj and any edge of the
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polygon she/he chose on the map. Furthermore, the input values of polygon
vertex coordinates are limited with accuracy of two decimal places to guarantee
that the distance between two polygon vertexes is at least 1 km, thus SU cannot
infer the accurate locations of UF by choosing multiple overlapping polygons
or small range polygons on the map. In addition, due to the users’ data is all
encrypted with random numbers in client, even if attackers can capture users’
data, they still cannot achieve available information.

From the above analysis, we can conclude that user’s search information and
accurate location are secure in the proposed CPSS.

5.2 Authentication is Achieved in the Proposed Scheme

The authentication scheme of register and login for social applications is sophisti-
cated, each registered user generates her/his own private key and its correspond-
ing public key. When the user logs in, mutual authentication and key negotiation
will be performed between the user and SS. Therefore, it is impossible for an
attacker to disguise a legitimate user to forge a polygon spatial search request.
In addition, with the proposed scheme, the message authentication code MAC
is computed with the hash function H(), and is encrypted with the secure sym-
metric encryption algorithm E() in each communication between users and SS.
Therefore, without knowing the session key k, it is impossible for attackers to
modify the data between users and SS. As a result, the search request from the
unregistered user and the modified information can be detected in the proposed
CPSS.

Fig. 5. Implementation of CPSS.

6 Performance Evaluation

In this section, we demonstrate the performance of our scheme in terms of com-
putation complexity and communication overhead of SU and UF by deploying
it in the real environment.
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6.1 Evaluation Environment

In order to measure the integrated performance, we implement the proposed
CPSS in smart phones and workstation. Specifically, smart phones with 2.2 GHz
eight-core processor, 3 GB RAM, Android6.0 and a workstation with 2.0 GHz
six-core processor, 64 GB RAM, Ubuntu are chosen to evaluate SU, UF and
SS, respectively, which are connected through 802.11g WLAN. Based on the
proposed scheme, we construct a social application and install it on smart phones
to evaluate SU and UF, then, we build SS on the workstation. As shown in
Fig. 5, SU can register in SS, search her/his friends, and display result in the
smartphone. In order to evaluate CPSS in the real environment, the street map
in Xi’an is adopted in our application.

Fig. 6. Average running time of CPSS in SU vs PDCP.

6.2 Computation Complexity

The proposed PSS algorithm requires mathematical operations with random
numbers to protect users’ sensitive data from social application servers and
attackers. Hence let us quantify the mathematical operations required for the
proposed algorithm in SU and UF. Specifically, we assume that the number
of search polygon vertexes is n, and SU has m online friends. In the process
of blurring the search polygon data, it requires 14n multiplication operations.
When to generate search result, each UF needs to do 8n multiplication opera-
tions. After receiving the search results from UF, it will cost 4mn multiplication
operations for SU to read them. Let us define the time complexity for one mul-
tiplication as tmul. Therefore, the total computation complexity of SU and UF
are (14n + 4mn) ∗ tmul and 8n ∗ tmul, respectively.

Our PSS algorithm uses lightweight two-party random masking and poly-
nomial aggregation techniques. Different from other time-consumption homo-
morphic encryption techniques, it can largely reduce the encryption times for
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mobile terminals while providing accurate proximity detection results. In the
following, for the comparison with CPSS, we select an enhanced proximity
detection for convex polygons (PDCP) [26], which adopts the same point in
convex polygon strategies as CPSS. Denote that the search domain size is mea-
sured by l and the time complexity of exponentiation operation is presented
by texp. Therefore, for PCDP, the computation complexities of SU and UF are
(3n + 2m + 3mn + 4l ∗ mn) ∗ texp + (8n + 4m + 6mn + l ∗ mn) ∗ tmul and
(12n + 4l ∗ n + l2 ∗ n + 9) ∗ tmul + (4n + 4l ∗ n + 9) ∗ texp, respectively.

Table 1. Computation complexity of CPSS and PDCP

CPSS PDCP

SU (14n + 4mn) ∗ tmul (3n + 2m + 3mn + 4l ∗ mn) ∗ texp + (8n + 4m + 6mn +
l ∗ mn) ∗ tmul

UF 8n ∗ tmul (12n + 4l ∗ n + l2 ∗ n + 9) ∗ tmul + (4n + 4l ∗ n + 9) ∗ texp

Fig. 7. Average running time of CPSS in UF vs PDCP.

Table 1 presents the computation complexity comparison of CPSS and PDCP.
It is obvious that our proposed CPSS can achieve privacy-preserving proximity
detection with low computatuon overhead. We test the computation overhead of
CPSS and PDCP in SU for various number of SU’s friends, and plot the average
running time by varying the input number of search polygon edges from 4 to 12 in
Fig. 6. It can be obviously seen that with the increase number of polygon edges,
the computation overhead of PDCP in SU increase hugely, which is much higher
than that of our proposed CPSS. In Fig. 7, we further plot the average running
time in UF varying with the increasing number of search polygon edges from 4 to
12, from the figure, it can be clearly seen that the computation overhead in UF of
PDCP is much higher than that of our proposed CPSS, and increases extremely,
which verify the above analysis of computation complexity. In conclusion, our
proposed CPSS can achieve better efficiency in terms of computation overhead
in SU and UF.
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Fig. 8. Communication overhead of CPSS vs PDCP.

6.3 Communication Overhead

In order to test the communication overhead, we record the size of search request
packet <α ‖ β ‖ Q ‖ SU ‖ TS ‖ MACSU> and result response packet <R ‖
UFj ‖ TS ‖ MACUFj

> with different number of polygon edges and SU’s friends,
and compare with PDCP in one round. As shown in Fig. 8, with the increase of
the polygon edges, the communication overhead of PDCP significantly increases
and it is much higher than that of our proposed CPSS scheme when the number
of SU’s friends does not change. Although the communication overhead of our
proposed CPSS scheme also increases when the numbers of polygon edges and
SU’s friends are large, it is still much lower than that of PDCP. In addition,
SU needs to interact with UF twice in CPSS, and nine times in PDCP. In
conclusion, our proposed CPSS framework can accomplish better efficiency in
terms of communication overhead.

7 Conclusion

In this paper, an efficient and privacy-preserving proximity detection scheme
with convex polygon spatial search is proposed, which algorithmically improved
the privacy-preserving cosine similarity computing protocol and point in convex
polygon strategies to achieve efficiency and privacy-preserving. The proposed
scheme is based on randomisation technique and only relies on multiplication
and addition. In this scheme, LBSAs users can access proximity detection service
without divulging their privacy. It is proved that our scheme is secure in security
analysis, and extensive experiments show that it is highly efficient in terms of
computation complexity and communication overhead.
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Availability

The implementation of the proposed CPSS scheme and relevant information can
be downloaded at http://xdzhuhui.com/demo/CPSS.
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Abstract. The emerging Software-Defined Networking (SDN) is being
adopted by data centers and cloud service providers to enable flexible
control. Meanwhile, the current SDN design brings new vulnerabilities.
In this paper, we explore a stealthy data plane based attack that uses
a minimum rate of attack packet to disrupt SDN. To achieve this, we
propose the LOFT attack that computes the lower bound of attack rate
to overflow flow tables based on the inferred network configurations. Par-
ticularly, each attack packet always triggers or maintains consumption
of one flow rule. LOFT can ensure the attack effect with various net-
work configurations while reducing the possibility of being captured. We
demonstrate its feasibility and effectiveness in a real SDN testbed con-
sisting of commercial hardware switches. The experiment results show
that LOFT can incur significant network performance degradation and
potential network DoS at an attack rate of only tens of Kbps.

Keywords: Software-Defined Networking · Low-rate attack
Flow table overflow

1 Introduction

By decoupling the control plane and the data plane, Software-Defined Network-
ing (SDN) emerges as a promising network architecture design that provides net-
work with great programmability, flexible control, and agile management. Google
data centers [1] and Microsoft Azure cloud platform [2] have deployed SDN to
innovate their networks. A large amount of SDN applications have been devel-
oped to enable various network functionalities, such as dynamic flow schedul-
ing [3], holistic network monitoring and management [4], and security function
deployment in large networks [5].
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Unfortunately, the SDN design itself has serious security problems. In partic-
ular, the SDN data plane (or SDN switches) is vulnerable to flow table overflow.
First, it is “dumb”, i.e., for a flow that cannot match any installed flow rules in
the switch flow table, the switch will generate packet-in messages to query a logi-
cally centralized controller for a new flow rule. Therefore, an attacker may abuse
it to send crafted packets to trigger new rule installation. Second, most mod-
ern SDN-enabled hardware switches only support a small number of flow rules,
e.g., thousands of rules [6–8], which are stored in power-hungry and expensive
Ternary Content Addressable Memory (TCAM) to achieve high lookup perfor-
mance [6,9]. The limited storage space of TCAM may be easily overflowed.

To effectively overflow SDN switches, existing attacks [10–12] normally gener-
ate a large number of random packets per second, but they can be easily captured
by the existing defenses [10,11,13,14]. Shin and Gu [15] attempted to reduce the
number of the required attack packets; however, since they did not systemat-
ically consider various configurations of flow rules (e.g., lifetime of flow rules),
their attacks can fail in practice. Considering detailed network configurations in
SDN, in this paper, we would like to ask:

• Can we successfully construct a low-rate attack to SDN data plane and
keep the flow table overflowed over time by generating a minimal rate of attack
packets?

Our answer is yes, though it is challenging. To decrease the attack packet
rate, an attacker should craft packets so that each of them can trigger a new
rule installation, which requires the attacker to know precisely what packets will
trigger new rule installation. However, the rule installation logic is decided by
the separated SDN controller, and the attacker usually has no access to those
information. Moreover, flow rules are usually set with timeouts by the controller
and will be removed when they expire. The attackers need to understand the
timeout settings of the flow rules so as to choose the best attack strategies and
decide the minimal attack rate.

To address the above challenges, we present a two-phase low-rate flow table
overflow attack called LOFT, which consists of probing phase and attacking
phase. In the probing phase, it aims to accurately infer network configurations
of flow rules by generating a small number of probing packets. These network
configurations include the match fields along with their bitmasks that indicate
what packets will trigger new rule installation and the timeouts that define
the lifetime of the rules. The key insight behind inferring configurations is that
there exist remarkable forwarding delays for packets that cannot match any
existing flow rules in the switches due to the separation of control plane and
data plane in SDN. Thus, by measuring round-trip times (RTTs) of customized
probing packets, an attacker can accurately infer the settings of the flow rules.
In the attacking phase, LOFT generates low-rate attack traffic to overflow flow
tables according to the inferred network configurations. It crafts different packets
using some specific match fields so that each packet can trigger a new flow rule
installation. Meanwhile, based on the timeout configurations, it can compute the
minimal packet rate to keep flow tables overflowed over time.
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To demonstrate the feasibility and effectiveness of LOFT attack, we con-
duct experiments in a real SDN testbed that consists of commercial hardware
switches. The experimental results show that LOFT can accurately infer flow
rule configurations using a small number of probing packets. In particular, by
generating less than 10 probing packets per second, it can achieve more than 90%
accuracy on probing the detailed timeout settings. During the attacking phase,
it can successfully decrease the available maximum throughput from 850 Mbps
to 10 Mbps for a new flow, and increase RTT from 0.1 ms to above 1000 ms.
Moreover, it incurs a 69% degradation of network throughput at an attack rate
of around 50 Kbps. To summarize, we make the following contributions:

– We propose a low-rate flow table overflow attack called LOFT, which can
effectively degrade the network performance.

– We develop probing algorithms that can accurately infer network configura-
tions of flow rules and compute the minimal feasible attack rate to successfully
launch the LOFT attack.

– We conduct experiments in a real SDN testbed consisting of commercial hard-
ware switches to verify the effectiveness of LOFT attack.

2 Background and Threat Model

2.1 Software-Defined Networking

SDN enables network innovations by decoupling the control plane and the data
plane. The control plane contains a logically centralized controller that takes
the full control of the network. Various applications can be developed atop the
controller to offer complicated network functions, such as traffic engineering. The
SDN data plane consists of SDN switches that conduct packets processing and
forwarding according to the decisions made by the controller.

Nowadays the leading southbound protocol of SDN is OpenFlow [16]. Open-
Flow allows a controller to define various forwarding behaviors of switches by
installing related flow rules. There are two approaches to install flow rules, i.e.,
proactively and reactively. In proactive approach, flow rules are pre-installed
before all the traffic comes. While in reactive approach, flow rules are installed
dynamically. When an OpenFlow switch receives a new packet that can not
match any installed flow rules, it generates a packet-in message to the controller
to request a new forwarding rule. The controller may either send packet-out mes-
sages to the switch for one-time packet processing or send flow-mod messages to
install flow rules in the switches that are among the calculated routing path.

In OpenFlow, each flow rule mainly consists of (i) match fields to match
against incoming packets, (ii) a set of instructions that define how to process the
matching packets, (iii) counters to get flow statistics and (iv) timeouts defining
lifetime of the rule. Particularly, match fields of a flow rule specify what packets
can be handled. According to the OpenFlow Switch Specification 1.3 [9], up to
39 match fields can be added in a rule to provide flexible flow control, such
as MAC source/destination address, IPv4 source/destination address, and TCP
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source/destination port. Each match field in a rule can be exact value, wildcarded
(i.e., matching any value) or in some cases with bitmasks. Note that except the
default table-miss rule aiming at generating packet-in messages, each rule has
at least one match field that conducts exact match with or without bitmasks.
Moreover, each flow rule can be set with two types of timeout, namely, idle
timeout and hard timeout. A flow rule will be automatically removed when either
the hard timeout has passed or the idle timeout has passed without receiving a
packet that matches the flow rule. Both timeouts can be set independently by a
controller or applications on the controller.

2.2 Threat Model

In our threat model, the attacker seeks to infer the network configurations and
launch LOFT attack to effectively overflow the flow tables of victim switches in
a stealthy way. To achieve it, the attacker needs to have (or control) a host that
is attached to the victim network and can send packets to other hosts in the
network. We do not require that the attacker has any prior knowledge on the
network configurations or compromises any switches and controller. Moreover,
we assume that the controller adopts reactive rule installation, which is widely
used in most OpenFlow networks for flexible and dynamic flow control [13,14].

3 Overview of the LOFT Attack

We present an overview of LOFT attack that can efficiently overflow flow tables
of switches by generating a minimum number of packets, which can significantly
degrade the network performance in a stealthy way. It is based on the key obser-
vation that the small-sized flow tables in OpenFlow switches may be easily over-
flowed by malicious traffic flows and leave no space for normal traffic flows, since
the centralized controller treat malicious flows and normal flows equally. This
attack can be launched to overflow flow rules of all switches in a network; how-
ever, in practice, we only need to overflow flow tables of specific switches, for
example, the access switch of a target network server.

LOFT consists of two phases: the probing phase and the attacking phase, as
shown in Fig. 1. The probing phase prepares for the following attacking phase.
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(a) Probing Phase

OpenFlow 
Switches Server 

Host
Adversary 

Host
Access OpenFlow 

Switch of the Server

OpenFlow 
Controller

Finally Overflow 
the Flow Table

trigger rule 
installation

Pkt X

Pkt X

(b) Attacking Phase

Fig. 1. Two phases of LOFT attack.
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In the probing phase, an attacker infers the network configurations of flow rules
with a small number of probing packets. The key insight behind our probing
schemes is that packets matching no flow rules in SDN switches will experi-
ence longer forwarding delays than those matching flow rules. This is because
the switches need to query the controller for the forwarding decisions and rule
installation. Therefore, by carefully crafting probing packets and analyzing the
difference in RTTs between two hosts, the attacker can accurately infer what
packets will trigger rule installation and the related timeouts configurations of
flow rules. In the attacking phase, according to the inferred results on the net-
work configurations, the attacker crafts the minimum number of attack packets
to effectively trigger flow rule installation. Meanwhile, to keep flow tables con-
tinuously overflowed over time, the attacker carefully plots the attack strategies
and calculates the minimal attack rate according to the timeouts configurations.
In the next two sections, we detail the two phases of LOFT attack.

4 The Probing Phase

In this section, we present our probing schemes that aim to infer configurations
of flow rules, particularly, the match fields along with their bitmasks and timeouts
that have direct impact on attack strategies in the attack phase.

4.1 Probing Match Fields

In order to accurately infer what fields in a packet header can be used to trigger
new rule installation, we generate and craft probing packets with various field
values in the packet headers in the network to measure their RTTs. A probing
packet can be any packet that can trigger a response packet from a destination.
We first send a probing packet to a destination to trigger possible flow rule
installation in switches, which ensures that a rule for the packet exists before
inferring RTT. Second, we generate a new probing packet that changes value of
one field of the previous packet to the same destination, and measure the RTT
(denoted by RTT0). Then, we send another probing packet with the same values
of header fields and measure the RTT again (denoted by RTT1). The RTT values
of the later two packets meet the following conditions:{

RTT0 � RTT1, if the changed field triggers rule installation;
RTT0 ≈ RTT1, otherwise.

The first equation indicates that the changed field is in the set of the match
fields, while the second equation denotes that the changed field is not in the set
of the match fields. Based on this, we can enumerate all packet fields and then
infer a complete set of match fields used in flow rules. However, there exist two
challenges to accurately infer match fields.

Match Fields with Bitmasks Interference. OpenFlow protocol allows some
match fields with bitmasks, which can interfere with the probing. For example,
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The last 4 bit in IP

RTT of the 
probing packet t1+t2 t1 t1 t1+t2 t1+t2
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bitmasks ? ? ?? ? ? 0? ? ? 00 ? 1 00 1 1 00

0 1 01 0 1 11 0 1 00 0 0 01 1 1 01

t1: total data plane forwarding time    t2: additional forwarding behavior querying time

Fig. 2. An example of inferring bitmasks.

suppose that the match field is IP address with a bitmask “255.255.255.0”. If we
generate a probing packet with IP address “10.0.0.1” and produce another two
probing packets with IP address “10.0.0.2”. Then, the last two packets will not
trigger new flow rule installation. In this case, we infer that IP address is not in
the match fields by mistake, since the RTTs of the last two packets are close. To
tackle this, we can generate additional probing packets by flipping the values of
each bit in turn and reconstruct bitmasks. As shown in Fig. 2, a single bit in the
bitmasks can be inferred as 1, if the RTT of the corresponding probing packet
is close to the first probing packet. Otherwise, it can be inferred as 0.

Algorithm 1. Probing Match Fields
Input: dst, F, n, α;
Output: a set of match fields M ;
1: M ← ∅;
2: for each field f ∈ F do
3: pkt0 ← build packet(dst, f);
4: for (i = 0 → n − 1) do
5: send packet(pkt0);
6: pkt ← modify field val(pkt0, f);
7: RTT0[i] ← send packet(pkt);
8: RTT1[i] ← send packet(pkt);
9: end for

10: p ← t test(RTT0, RTT1);
11: b ← infer bitmask(f);
12: if ((p < α) or (b �= 0)) then
13: M.add({f, b});
14: end if
15: end for

Network Jitter Interference. Two
RTT values may significantly deviate
even if there is no new rule installa-
tion because of network jitter. We can
apply the t-test method [17] to elim-
inate the impact of network jitters.
In t-test, a significance level α is set
with a predetermined value, and a p-
value p is calculated according to the
data, where p indicates the likelihood
that the two groups of data share the
same distribution. A significant differ-
ence between two groups of data is
accepted if the calculated p-value p is
smaller than α. By changing the val-
ues of the same field several times, two
groups of RTTs before and after the
changes can be obtained. We then can
evaluate if two groups of RTTs are significant different from each other by cal-
culating their p-value. Thereby, we can accurately infer if there exists new rule
installation.

Algorithm 1 shows the pseudo-code of probing match fields. The inputs con-
sist of the IP address of a probing destination dst, a set of fields F to be enu-
merated, the number of probing packets in a group n, and the significance level
of the t-test α. The set of fields F includes typically fields used in flow rules,
such as MAC addresses, IP addresses and port number. The significance level α
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is set to 0.05, which is a typical value and widely used in t-test. As shown in the
algorithm, by conducting several rounds of changing fields, we can infer match
fields and the bitmasks (if they exist) used in the network configurations.

4.2 Probing Timeouts

We need to probe timeout values of flow rules so that we can calculate the
minimal attack rate to keep flow tables overflowed. A packet will experience
remarkable forwarding delay, if the rule matched by the packet is reinstalled by
the controller after timeout expiration. Therefore, we can estimate the timeout
values by measuring the elapsed time between two remarkable delays.

hard timeout

RTT

Probing Time

t1+t2

T T T T

t1: total data plane forwarding time
t2: additional forwarding behavior querying time

t1

(a) Probing Hard Timeout

idle timeout

RTT

Probing Time

T2T T3 Tm

t1: total data plane forwarding time
t2: additional forwarding behavior querying time

t1+t2

t1

(b) Probing Idle Timeout

Fig. 3. Inferring hard and idle timeout values. Note that mutual interference between
timeouts is not considered in the figures.

As shown in Fig. 3(a), to infer hard timeout values, we first send a probing
packet to trigger initial flow rule installation using the inferred match fields in
Algorithm 1. Since there exists a remarkable RTT if a new rule is installed, we can
periodically send the probing packets to the network and measure their RTTs.
If a remarkable RTT appears again, the hard timeout value can be inferred as
the duration since the first probing packet. However, we cannot directly apply
the same strategy to probe idle timeout values. The reason is that idle timeout
of a flow rule will be reset once a packet matches the rule. Thus, as is shown
in Fig. 3(b), we need to generate and send probing packets with increasing time
intervals. Once a remarkable RTT occurs again, we can infer that the idle time-
out value is equal to the time interval between the two successive probing pack-
ets. Here, we need to address the following issues of probing timeout values in
practice.

Mutual Interference Between Timeouts. A flow rule may be configured
with both hard timeout and idle timeout. In such cases, mutual interference
may happen during probing, since a flow rule can be removed because of either
hard timeout or idle timeout. Let us take an example. Suppose that the hard
timeout of a flow rule is set to 15 s and the idle timeout is set to 10 s. In each
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round of probing idle timeout, we increase the time interval by 1s. After 15 s
since we start the probing, a remarkable RTT will occur due to hard timeout.
While the idle timeout has not taken into effect because it is reset by the probing
packets. Thus, we evaluate the idle timeout as 5 s by mistake. Similarly, we may
infer a wrong hard timeout value less than the configured value, if the configured
idle value is smaller than the interval of two successive packets in probing hard
timeout values.

To overcome the problem, we probe hard timeout values first before probing
idle timeout values. We note that all timeout values can only be set to an integer
and the minimal valid value is 1 s. To eliminate the interference of idle timeout,
we send the probing packets in a fixed interval less than 1 s, e.g., 0.5 s. Thereby,
idle timeout will always be reset and will not take into effect. Thus, we can
accurately infer hard timeout values. Moreover, the inferred hard timeout value
is the upper bound of the idle timeout, since an idle timeout value greater than
a hard timeout value in a rule is invalid. Therefore, to avoid the hard timeout
interference during probing idle timeout, we enumerate all possible idle timeout
values from the upper bound in a descending order. Different from the probing
shown in Fig. 3(b), we decrease the time interval by 1 s from the upper bound
in each round of probing idle timeout. The RTTs of two successive probing
packets are close if the probing interval is larger than the idle timeout. They
both experience remarkable delays, since flow rules will be removed due to the
idle timeout. However, once the RTTs of two successive probing packets exhibit
significant deviation, we can know that the idle timeout value is equal to the
time interval between the two successive packets.

Probing Duration. It is time-consuming to probe idle timeout, especially
when a large hard timeout value is set. The total probing time is calculated
as

∑thard

j=tidle
j, where tidle and thard are the configured idle timeout value and

hard timeout value, respectively. For example, if the hard timeout value is set
to 180 s and the idle timeout value is set to 10 s, the total probing time cost is
16,245 s, i.e., around 4.5 h. To effectively reduce the probing duration, we can
apply binary search in probing idle timeout, since we can easily infer if an idle
timeout value is smaller or larger than a given value by measuring RTTs of prob-
ing packet. Note that we also need to eliminate the interference of hard timeout
in binary search. We can achieve this by waiting enough time to ensure removal
of flow rules before sending packets in a new iteration. Thus, a flow rule will be
reinstalled after a probing packet in each iteration. Therefore, the hard timeout
will be reset and will not interfere with probing idle timeout in each iteration.

Network Jitter Interference. Network jitter can interfere with probing time-
outs. To address this issue, we can simply send a group of packets in parallel in
each iteration of probing, and apply t-test mentioned in Sect. 4.1 to determine
if there is a significant deviation between two successive groups of RTTs.

The pseudo-code of probing hard timeout values is shown in Algorithm2. The
inputs consist of the IP address of a destination dst, the match fields M inferred
by Algorithm 1, n packets which will be concurrently sent, the waiting interval
twait, the maximal execution time of the algorithm tmax, and the significance
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level of the t-test α. Note that twait must be less than 1 s, which efficiently
eliminates the interference of the idle timeout. As shown in Algorithm 2, we
generate a group of packets in each iteration to probe the hard timeout value
(see steps 4–9). The hard timeout value will be inferred as 0 when the execution
time reaches to tmax, which indicates the hard timeout is not set in the flow rule
(see steps 10–12). The total number of probing packets per second is n

twait
. In our

experiments, in order to well trade off between probing accuracy and cost, we
set n to 5, twait to 0.5 s, which indicates the algorithm only requires ten packets
per second to probe timeout. Moreover, the significance level α is set to 0.05
which is a typical value and widely used in t-test.

Algorithm 2. Hard Timeout Probing
Input: dst, M, n, twait, tmax, α;
Output: hard timeout thard;
1: pkts[] ← build packets(dst, M, n);
2: tstart ← get clock time();
3: RTT0[] ← send packets(pkts, n);
4: repeat
5: sleep(twait);
6: tend ← get clock time();
7: RTT1[] ← send packets(pkts, n);
8: p ← t test(RTT0, RTT1);
9: until ((tend − tstart > tmax) or (p > α));

10: if (tend − tstart > tmax) then
11: thard ← 0;
12: else
13: thard ← round(tend − tstart);
14: end if

Algorithm 3 shows the pseudo-
code of inferring the idle timeout
values by applying binary search.
The inputs are similar to these
used in Algorithm 2, where tsup
denotes the upper bound of the
algorithm execution time. If the
hard timeout value is not equal
to zero, tsup is set to thard. Oth-
erwise, it is set to a value larger
than the possible idle timeout
value, such as 500 s1. We send two
groups of packets in each itera-
tion of binary search and measure
their RTTs (see steps 3–15). In
particular, step 14 aims to ensure
that flow rules can be removed

after each iteration. Thus, the interference of hard timeout can be eliminated.
According to Algorithm3, we can see that the execution time is equal to
O(tsup log tsup) seconds and each iteration of probing only generates 2 ∗ n pack-
ets. Similar to inferring hard timeout, we set n to 5, which indicates it only
generates 10 packets in each iteration.

5 The Attacking Phase

Now we can launch the attack in this phase according to the inferred results
in the probing phase. In order to increase the attack effectiveness and keep it
stealthy, we generate the minimum number of attack packets that can success-
fully overflow flow tables. Moreover, we carefully use various attack strategies
to overflow flow tables and calculate the minimal attack rates to keep the tables
overflowed over time.

1 According to our observation, idle timeout is usually not set to a large value. Nor-
mally, 500 s is large enough to serve as the upper bound (see Table 1 in Sect. 5.2).
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5.1 Crafting Attack Packets

The key point is to ensure that each attack packet can effectively trigger an
unique rule installation in switches. Since we know the match fields along with
their bitmasks in the probing phase, we can easily achieve it by carefully changing
header field values of each packet. Thereby, the minimal number of packets to
overflow flow tables of a switch is equal to the flow table size. Moreover, attack
packets do not need to include any real payload. We can generate a packet with
64 B, which is the minimum size of Ethernet packets. Thus, approximate 113 KB
traffic can successfully overflow a switch with 1,800 rules. Hence, the volume
of the total attack traffic is small. Note that, we can also use multiple match
fields with different values in the attack packets to disguise the attack packets
as benign packets. For example, if match fields of a flow rule are set with the
IP source address, the IP destination address, and the TCP source port, we can
change the IP source address in some packets while change the TCP source port
in other packets. In addition, we can generate payloads of different sizes in attack
packets and then randomize the packet lengths.

5.2 Calculating the Minimal Attack Rate

Algorithm 3. Idle Timeout Probing
Input: dst, M, n, tsup, α;
Output: idle timeout tidle;
1: pkts[] ← build packets(dst, M, n);
2: l ← 0, r ← tsup;
3: while (l < r) do
4: RTT0[] ← send packets(pkts, n);
5: mid ← (l + r)/2;
6: sleep(mid);
7: RTT1[] ← send packets(pkts, n);
8: p ← t test(RTT0, RTT1);
9: if (p > α) then

10: r ← mid − 1;
11: else
12: l ← mid + 1;
13: end if
14: sleep(r);
15: end while
16: if (tidle ≥ tsup) then
17: tidle ← 0;
18: else
19: tidle ← l;
20: end if

Now we need to compute the minimal
packet rate that can continuously over-
flow flow tables even after flow rules
expire due to hard timeout or idle time-
out. Normally, LOFT generates differ-
ent attack packet rates with respect to
different timeout settings. We classify
the timeout settings into four categories
according to the values of hard time-
out and idle timeout. Here, we assume
x and y are integers, where x > y2.
(I) thard = 0, tidle = 0: a flow rule will
permanently exist in flow tables until
the controller actively removes it;
(II) thard = x, tidle = 0: a flow rule
will be removed from flow tables after
x seconds;
(III) thard = 0, tidle = y: a flow rule
will be removed from flow tables if
the switch does not receive any packet
matching the rule within y seconds;
(VI) thard = x, tidle = y: a flow rule will
be removed from flow tables either after
x seconds or after y seconds without any received packet.
2 As we discussed in Sect. 4, SDN does not set hard timeout values larger than idle

timeout values.
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Among the above four categories, the settings in categories (I) and (II) are
rarely used. If the settings in category (I) are applied, a significant amount of
resources in the controller are required to actively monitor all flow rules such
that flow rules will be removed when there are no matching packets. While the
settings in category (II) cannot ensure that flow rules can be removed in time
if the network does not generate any packets matching the rules, resulting in
the waste of the scarce flow table resources. According to our studies, we find
that the settings in category (III) and (IV) are widely used in default settings of
different controllers (see Table 1). Thus, in this paper, we focus on developing two
attack strategies that use minimal attack rate to overflow flow tables according
to the settings in categories (III) and (IV).

Table 1. Default timeout values in different controllers

Controller Beacon Floodlight Maestro NOX ONOS OpenDaylight POX Trema

Hard timeout 0 0 180 s 0 0 600 s 30 s 0

Idle timeout 5 s 5 s 30 s 5 s 10 s 300 s 10 s 60 s

Attack Strategy with Settings in Category (III). An attacker needs to
fill in the flow table within an idle timeout period, and ensure consumption
of entire flow table after the idle timeout expires. To achieve it, the attacker
can periodically generate C attack packets, where C is the maximum capacity
of the flow table, and evenly distribute them within each idle timeout period
(see Fig. 4(a)). Each packet will trigger a new rule installation if there is any
available space, and the number of rules in the flow table can gradually increase.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Time (s)
: the ith packet 

sent by an attacker

P0 P1 P2 P3 P4 P0 P1 P2 P3 P4 P0 P1 P2 P3 P4

an idle timeout period an idle timeout period Pi

(a) An example to illustrate the attack strategy of category III. Assume that
the flow table can support up to 5 rules, and each rule is configured with 0s hard
timeout and 10s idle timeout.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Time (s)

: the ith packet 
sent by an attacker

P0 P1 P2 P3 P4 P0 P1 P0 P1 P2 P3 P4 P0 P1 P0

an idle timeout period

a hard timeout period
Pi

an idle timeout period

a hard timeout period

(b) An example to illustrate the attack strategy of category IV. Assume that the
flow table can support up to 5 rules, and each rule is configured with 13s hard
timeout and 10s idle timeout.

Fig. 4. Examples of different attack strategies.
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Meanwhile, if the table is overflowed already, the idle timeout timer of each
flow rule can be periodically refreshed within each idle timeout interval, which
ensures flow rules are persistently stored in the flow table.

Now we calculate the average rate of sending attack packets within an idle
timeout period. Here, C denotes is the maximum capacity of the flow table of
a switch, Li denotes the length of the ith packet within an idle timeout period,
and tidle denotes the idle timeout. The average packet rate v can be calculated
by:

v =
∑C−1

i=0 Li

tidle
. (1)

Note that, in order to fully consume flow rules, we need to generate at least C
packets, each of which triggers a new rule installation. Thus, Eq. (1) gives the
minimal attack rate. Any attack rate less than v cannot fully consume the table
and keep the table full over time because of expiration of flow rules incurred by
the idle timeout. According to Eq. (1), we can conclude that the attack rate is
small. For example, assuming the flow table capacity is 1,800 flow rules, the idle
timeout value is set to 20 s, and the size of each packet is 64B, the minimal attack
rate to overflow flow tables is only 46 Kbps. Such low attack rate ensures that
no malicious rules will expire and the attack traffic can be effectively concealed
in the benign traffic.

Attack Strategy with Setting in Category (IV). Given the settings in
category IV, flow rules will be removed when either the hard timeout or the
idle timeout expires. Thus, besides sending packets to gradually overflow flow
tables within an idle timeout period and periodically refreshing the flow rules,
an attacker needs to make a rule reinstalled in time once it is removed due
to hard timeout. Since the timeout settings have been known, an attacker can
easily achieve it. However, to make the attack have a constant attack rate and
easy to be launched, we properly delay the sending time when a rule needs to
be reinstalled. As is shown in Fig. 4(b), the rule triggered by p0 is removed at
13 s due to the hard timeout. We reinstall the rule at 14 s rather than at 13 s so
as to keep the time interval between two successive attacking packets equal. In
this way, the average attack rate is same with that in category III, which can be
calculated by Eq. (1).

We also need to predict the table capacity of the switch to construct the
LOFT attack. We develop an online scheme to infer the table size by gradually
increasing the number of attack packets and checking if the tables are full. At
first, we can construct the attack to occupy n flow rules. After this, we can
infer if the flow tables are full by sending some packets to measure the RTT
differences. If the RTTs of these packets significantly deviate, it indicates that
the flow tables are full since each packet triggers insertion of a new flow rule but
none of them have been successfully installed. Otherwise, we can launch another
round of probing to occupy n′ flow rules. Note that we can not accurately infer
the size of flow table since the flow rules used by benign traffic always change.
However, in practice, we need not to know the accurate table capacity. We can
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increase n using a larger number, such as 2,000. By repeating the procedure
for several times, we can gradually occupy the flow tables until they are all
consumed.

6 Attack Evaluation

6.1 Experiment Setup

Figure 5 shows the topology of our hardware SDN testbed. We use Floodlight [18]
OpenFlow controller running in a Intel Xeon Quad-Core CPU E5504 and 12 GB
RAM machine. The Forwarding application [19] that provides topology discovery
and basic forwarding services runs on the controller by default. Two commercial
hardware OpenFlow switches, EdgeCore AS4610-54T [20], are deployed in the
testbed. Each switch allows 1,800 TCAM-based flow rules and infinite software
flow rules3. An attacker host controlled by an adversary is attached to one of the
switches and generates packets to attack both switches. We implement LOFT
attack program in approximate 2,000 lines of C code. Moreover, to simulate real
network conditions, we deploy one client host that generates background traffic
and one server host that receives the traffic. We use hping3 [21] to generate 200
different benign flows and the rate of a flow is 500 Kbps. Thus, there are total
1,600 flows and 800 Mbps benign traffic in the network.

Server 

OpenFlow 
Controller

Hardware OpenFlow 
Switches

Attacker

Traffic Generator

Fig. 5. Hardware SDN testbed.

6.2 Measuring Attack Rate

In this experiment, we measure the attack rate of LOFT and demonstrate that it
really generates the minimal rate of attack packets. Note that, in order to accu-
rately measure the attack rate, background traffic is not generated in the experi-
ments. As shown in Eq. (1), the minimal attack rate to overflow the flow table is
impacted by the values of idle timeout. Figure 6 shows the theoretical packet rate
we computed and real packet rate with respect to different idle timemout values.
We can observe that the minimal attack rates are below 100 Kbps, which is con-
sistent with the theoretical values. Moreover, we measure the average packet-in
rates at different attack rates before flow table overflow. As is shown in Fig. 7,
the packet-in rate is less than 300 Kbps even when the attack rate is 100 Kbps.
Note that compared to existing overflow attacks [10–13] that can generate tens

3 The performance is not given by EdgeCore but measured in our experiments.
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Fig. 6. The minimal attack rate with
different idle timeout values.

Fig. 7. Packet-in rate with different
attack rate.

of Mbps attack traffic and packet-in traffic, our attack rate is relatively low and
does not incur high packet-in rate. These features increase the stealthiness of
the attack4.

6.3 Evaluation of Attack Effectiveness

We conduct our attack experiments in two typical scenarios to demonstrate the
effectiveness of LOFT: (I) only idle timeout is set; (II) both hard timeout and
idle timeout are set. The idle timeout value is set to 20 s in both two scenarios,
and the hard timeout value is set to 200 s in the second scenario. According
to Eq. (1), we launch LOFT with the average attack rate at 46 Kbps in both
scenarios. Since the attacker does not know the timeouts and match fields of
flow rules in advance, they need to probe the configurations before launching
the attack. We will evaluate the accuracy of probing in Sect. 6.4.

Fig. 8. The number of switch flow rules
under LOFT attack.

Fig. 9. Background traffic throughput
degradation ratio under LOFT attack.

4 We note that lots of benign traffic will be sent to the controller when the table is
overflowed and thus the packet-in rate will significantly increase. However, the attack
has successfully caused remarkable damage when it has some obvious features.
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Impacts on the Number of Flow Rules. We measure the number of flow
rules in the switch that connects to the server with and without the attacks in two
scenarios. Figure 8 shows that the number of flow rules is around 1,600 in absence
of the attack. When the attack is launched at 100 s in both attack scenarios,
the number of flow rules starts to increase. At 600 s, the number of flow rules
reaches to 2,610 and 2,090 in scenario (I) and scenario (II), respectively. Since
the switch can store up to only 1,800 rules in TCAM, these results demonstrate
that our attack can effectively overflow the scarce TCAM resources with low-rate
attack traffic. In addition, we can observe that the number of rules continuously
increases over time in scenario (I). However, the number of rules in scenario
(II) drops at 300 s and tends to convergence after that time. The reason is that
hard timeout is configured as 200 s in scenario (II) and the flow rules that are
installed by attack flows always expire after the hard timeout. These rules are
periodically removed and reinstalled in the switch and the number of them tends
to converge.

Impacts on Throughput Degradation. To quantify the impacts of the attack
on network throughput, we measure the throughput degradation ratio of the
total background traffic in each attack scenario. The degradation ratio is the
fraction of the traffic decreased by the attack over the total traffic without the
attack within a period. Here, for simplicity, we set the period to 50 s. The degra-
dation ratio is shown in Fig. 9. In scenario (I), the ratio continuously increases
and reaches to 69% at 600 s. The results demonstrate that the attack can signif-
icantly degrade the throughput of the network and have accumulative damage
effect on the network over time. In scenario (II), the degradation ratio reaches
36% at 600 s and the throughput degradation is less than that in scenario (I).
Moreover, it decreases at 300 s and increases again at 450 s. The reason is that
flow rules installed by attack packets will be periodically removed and reinstalled
due to hard timeout.

Fig. 10. Maximum throughput of a
new flow with different numbers of flow
rules.

Fig. 11. Average RTT of a new flow
with different numbers of flow rules.
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Impacts on Maximum Throughput of a New Flow. We use iperf [22] to
measure the available maximum throughput for a new flow with different flow
rules in our attack. As is shown in Fig. 10, the available maximum throughput
for a new flow significantly decreases to below 10 Mbps from 850 Mbps when
the number of flow rules exceeds 1,800. The reason is that TCAM is overflowed
and extra new flow rules are stored in software. Note that storing flow rules in
software can not ensure high and stable forwarding performance. These results
demonstrate that our attack can significantly degrade the maximum throughput
of a new flow when the TCAM is overflowed.

Impacts on Forwarding Delay of a New Flow. We use ping to measure
the average RTT of a new flow with different numbers of installed rules in our
attack. 100 rounds of pings are performed for each different numbers of rules
to compute the average RTT. As is shown in Fig. 11, the average RTT of a
new flow significantly increases when TCAM is overflowed. We can see that the
average RTT reaches to approximate 1,000 ms when the number of rules reaches
to 2,100. Compared to forwarding by TCAM, software forwarding introduces
remarkable delay. Moreover, the RTT does not tend to increase at the end. The
possible reason is that we ignore the ICMP packets that are dropped in calcu-
lating the average RTT. Actually, when the number of rules exceeds 2,000, more
ICMP packets are dropped along with the increase of the number of flow rules
in our measurement. These results demonstrate that our attack can significantly
increase forwarding delay of a new flow when the TCAM is overflowed.

6.4 Evaluation of Probing Accuracy

Accuracy of Probing Match Fields. The Forwarding application in Flood-
light controller conducts fine-grained forwarding. By default, the match fields
of it are configured as 〈src mac, dst mac, src ip, dst ip, src port, dst port〉 with-
out bitmasks. To better evaluate match fields probing accuracy, we configure
the match fields as 〈src ip, dst ip〉 with different bitmasks. Algorithm 1 are con-
ducted to measure the accuracy of probing match fields. The results are sum-
marized in Tables 2 and 3. As is shown in Table 2, when we change MAC source
address, TCP source port or UDP source port in the probed packets headers,
both p-values are less than 0.05. However, when we change the IP source address
in the packets headers, the p-value increases and reaches 0.92, which is signif-
icantly large. Thus, we can easily infer that the IP address field is used in the
forwarding rules by evaluating p-value. Table 3 shows the probing accuracy of
different bitmasks. The results demonstrate that Algorithm1 can infer the bit-
masks with more than 90% accuracy. The accuracy is enough for an attacker to
effectively launch LOFT attack.

Accuracy of Probing Timeout Values. We systematically measure the prob-
ing accuracy with different hard timeout and idle timeout settings. 100 rounds of
probing are performed for each different setting to compute the average accuracy.
Figure 12(a) shows the accuracy rate for various hard timeout values. We observe
that hard timeout probing can reach more than 90% accuracy rate with different
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Table 2. p-value for each changed
packet header field.

Changed header field p-value

MAC source address 0.01

TCP source port 0.03

UDP source port 0.01

IP source address 0.92

Table 3. Probing accuracy of different
bitmasks.

configured bitmasks Accuracy

255.0.0.0 91%

255.255.0.0 91%

255.255.255.0 92%

255.255.255.255 94%

hard timeout values. Similarly, Fig. 12(b) shows that idle timeout probing can
also reach more than 90% accuracy rate with different idle timeout values. Note
that the accuracy rate is enough to construct LOFT. We may not be able to
infer correct timeout values with one round of probing. However, we can obtain
the correct results by performing multiple rounds of probing.

7 Possible Defenses

In this section, we discuss possible countermeasures against the LOFT attack.
We can throttle the attack at two phases, i.e., interfering with the probing and
dismissing attack packets.

Thwarting Probing. We could interfere with RTT measurement to thwart the
probing. An SDN controller can generate artificial jitter during delivery of the
very first few packets of flows. For example, the controller does not generate a
flow rule for a new flow immediately once it receives packet-in messages. Instead,
it deliberately waits for a random delay before sending the packets back to the
switches. And it installs the flow rules after receiving several packet-in messages
for the new flow. Therefore, an attacker cannot accurately infer whether there
are new rules installed or not for probing packets. The potential disadvantage
is that the approach also incurs extra forwarding delays for benign packets and
requires the controller to process more packet-in messages.

Another approach could possibly adopt dynamic timeout values. According
to our investigations, we find that almost all applications atop of the same con-
trollers set flow rules with fixed values. We suggest that the applications set
different timeout values once there is a new rule installed or a rule is reinstalled
due to rule expiration. Thereby, an attacker could not easily infer the timeout
values set by the controller. In this case, overflowing the flow table at low-rate
is not likely to succeed due to lacking accurate information of timeout values.

Dismissing Attacks. Significant work exists on taming flow table overflow,
which falls in two categories: mitigating normal flow table overflow triggered by
many benign flows [23,24], and defending against malicious flow table overflow
attacks [10,11,13]. Solutions of the first category assume that there are no over-
flow attacks. They cannot effectively throttle persistent and malicious flow table
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(a) Hard Timeout (b) Idle Timeout

Fig. 12. Average timeout probing accuracy. (a) shows the probing accuracy of hard
timeout with Algorithm 2; (b) shows the probing accuracy of idle timeout with Algo-
rithm 3.

overflow. Solutions of the second category can effectively resist malicious flow
table overflow. However, they are based on the underlying assumption that the
attack rate is high. These defenses are not complete in terms of resisting the
low-rate overflow attack, as (i) they may not detect the attack until the flow
table is overflowed5, and (ii) they lack the ability to accurately identify low-rate
malicious flows so as to throttle them.

In order to specifically defend against the low-rate flow table overflow attack,
a possible countermeasure is to monitor and identify flow table consumption pat-
terns generated by the attack and then flush suspicious flow rules in real time.
As shown in Fig. 8, under the LOFT attack, we can observe that the number
of the installed flow rules continually increase before the table is full, and the
increase rate is slow. These features could be used to capture the attack. Once
the attack is detected, the SDN controller could actively delete such suspicious
flow rules. A suspicious rule could be the rule that is always in the flow table
but forwards very few number of packets per second. Besides, since the attack
periodically generates packets to refresh the rule, the forwarding rate of a suspi-
cious rule could show an periodicity pattern, which could further help to locate
and flush a rule created by the attack packets.

8 Related Work

SDN Probing Techniques. Several SDN probing approaches have been pro-
posed [12,15,25–29]. Shin and Gu [15] present an SDN scanner to infer whether
or not a network is using SDN by observing response time of packets. Cui et al.
[25] further analyze the feasibility of SDN fingerprint in practical SDN deploy-
ments. Achleitner et al. [26] introduce SDNMap to infer the composition of flow

5 The defenses will be enabled only when there are lots of packet-in packets per second.
However, our attack does not trigger high-rate packet-in packets before overflowing
the flow table.
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rules in a network. Klöti et al. [12] identify whether or not there are aggrega-
tion flow rules in SDN by timing the TCP setup. Liu et al. [27] build a Markov
model of an SDN switch which allows attackers to select the best probes to infer
whether a target flow has recently occurred. Sonchack et al. [28] learn host com-
munication patterns, ACL entries and network monitoring settings by injecting
lots of timing pings. Leng et al. [29] design an inference attack that can learn the
approximate table size of an SDN switch, by estimating the significant changes
in response time of requests when flow tables are overflowed. Above work moti-
vates the probing phase of our LOFT attack. However, different from them, we
enable probing to accurately infer detailed timeout configurations of flow rules
and bitmasks in the match fields, which are essential to quantitatively analyze
the minimal attack rate and construct the LOFT attack. Particularly, we can
accurately infer the timeout values even if both the idle timeout and the hard
timeout are set in a flow rule, which is not addressed in [29].

SDN Data Plane Security. There exist several studies on SDN data plane
security [10–12,30]. Antikainen et. al [30] study a wide range of attacks, such
as eavesdropping network traffic and man-in-the-middle attacks. They require a
strong assumption that an attacker can compromise SDN switches. Prior work
[10–12] also studies flow tale overflow threats, which are brute-force and high-
rate attacks. They generate many random packets per second and can be easily
detected by existing defenses [10,11,13]. Different from them, LOFT is a sophis-
ticated attack that infers SDN network configurations in advance and then effi-
ciently overflows flow tables with low-rate traffic in a stealthy way. LOFT may
seem similar to the attack proposed by Shin and Gu [15] that constructs packets
according to the probed configurations. However, their attack can fail in prac-
tice because it does not consider detailed settings of the flow rules, e.g., lifetime
values and bitmasks in the match fields that significantly impacts the effective-
ness of the attack. LOFT systematically measures configurations of flow rules
and generates packets with minimal feasible attack rate according to the probed
configurations such that it ensures the effectiveness of the attack.

SDN Control Plane Security. The security issues of SDN control plane have
been widely studied recently. SDN-Rootkits [31] provides rootkit techniques to
subvert SDN controllers. SDNShield [32] and SE-Floodlight [33] focus on the
application-level security on SDN controllers. These security extensions pre-
vent SDN against malicious or buggy applications. FortNox [34] introduces the
dynamic tunneling attacks that violate security policies and provides role-based
authorization to defend against those attacks. VeriFlow [35] investigates the cor-
rectness of flow rules. AvantGuard [36] and FloodGuard [14] prevent SDN from
saturation attacks against the controller. TopoGuard [37] studied SDN topol-
ogy poisoning attacks. Our paper presents a data plane attack to significantly
degrade the network performance with low-rate attack traffic, which is orthogo-
nal to these previous work.
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9 Conclusion

In this paper, we design and implement a data plane attack called LOFT that
seriously challenges the security of SDN. By accurately inferring the network
configurations of flow rules and plotting the attack strategies in advance, LOFT
can efficiently overflow the flow tables of switches at minimal feasible attack
rate. It can significantly degrade the network performance and incur potential
network DoS at an attack rate of only tens of Kbps. Experiments in a real SDN
testbed consisting of commercial hardware switches demonstrate the feasibility
and effectiveness of the attack.
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Abstract. Modern urban vehicles adopt sensing, communication and
computing modules into almost every functioning aspect to assist
humans in driving. However, the advanced technologies are inherently
vulnerable to attacks, exposing vehicles to severe security risks. In this
work, we focus on the detection of sensor and actuator attacks that are
capable of actively altering vehicle behavior and directly causing dam-
ages to human beings and vehicles. We develop a collaborative intru-
sion detection system where each vehicle leverages sensing data from its
onboard sensors and neighboring vehicles to detect sensor and actuator
attacks without a centralized authority. The detection utilizes the unique
feature that clean data and contaminated data are correlated through
the physical dynamics of the vehicle. We demonstrate the effectiveness of
the detection system in a scaled autonomous vehicle testbed by launching
attacks through various attack channels.

Keywords: Urban vehicular networks · Intrusion detection
Cyber-physical systems

1 Introduction

Modern urban transportation systems are rapidly evolving toward enhanced
intelligence and safety. The evolution has been driven by recent developments in
wireless communication, mobile computing, sensing, autonomous driving, etc. In
particular, vehicle-to-vehicle (V2V) communications [14] are becoming prevalent
in modern vehicles. Real-time traffic information is shared between connected
vehicles and provided to drivers such that they can gather better awareness and
make more informed decisions to increase traffic safety and efficiency. Recently,
major technology companies including Google, Uber and Tesla are leading inten-
sive development of autonomous vehicles [19]. Autonomous vehicles integrate
wireless communication, in-vehicle sensing and computing into almost every
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functioning aspect and provide robust driver-free maneuver in order to handle
exhaustive conditions in urban environments.

While the advanced technologies are dedicated to promoting efficiency and
safety for vehicles and drivers, they also bring security concerns to the com-
munity. Unlike traditional information and communications technology systems
such as computers or mobile phones, vehicles are characterized by a strong cou-
pling of the cyberspace where the software runs and the physical world in which
they operate. Vulnerabilities rooted from either the cyberspace (e.g., driver
backdoor, rootkit) or the physical world (e.g., signal spoofing, wire breakage)
could be intentionally exploited by adversaries. Several researchers [15,30,38]
conducted jamming, spoofing, and replay attacks on multiple driving guidance
sensors including radars, ultrasonic sensors, GPS, etc., on off-the-shelf vehicles.
When corrupted sensors are involved in safety-critical decision making, their
readings could potentially deceive human drivers or autonomous driving sys-
tems and further escalate into disastrous consequences. Furthermore, white-hats
recently launched remote hacks into a Jeep Cherokee [21] and multiple mod-
els of Tesla [1,2]. The hacks demonstrated the possibility to remotely control
vehicular actuators such as steering wheels or gas pedals, which could directly
divert vehicles to crashes or severe damages. Given the substantial role security
plays in the automotive community, it is imperative to study the attacks before
pandemic security problems happen.

In this paper, we focus on the detection of active attacks that are capable of
altering vehicle behaviors and directly causing damages to vehicles or drivers.
Down to attack consequences, active attacks can be classified into sensor attacks
and actuator attacks. Sensor attacks, e.g., GPS spoofing, alter authentic sensor
readings. Actuator attacks, e.g., steering wheel take-over, directly alter control
commands to be executed by vehicle wheels. Passive attacks that aim to steal
information or break other non-safety aspects are out of our scope.

Table 1. Literature categorization in intrusion detection systems.

Intrusion detection has been studied extensively in the past decades. Rel-
evant literature can be partitioned into three categories based on their data
audit sources and detection capabilities, as shown in Table 1. Traditional host-
based IDSs [18,33,36,39] monitor the system behaviors (e.g. filesystem logs, sys-
tem calls) of a single host. Network-based approaches [7,17,29,32,37,42] from
mobile ad hoc networks and wireless sensor networks incorporate networking
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traffic in their detection processes. However, both categories are mostly ded-
icated to the detection of attacks launched within cyberspace. Data corrup-
tion attacks launched through physical channels (e.g. sensor spoofing) cannot
be detected since no abnormal cyberspace behavior would be triggered and cap-
tured. Besides, neither category models the physical mobility of a vehicle, and
thus actuator attacks cannot be detected. Control-theoretic approaches [9,12]
are proposed to complement existing IDSs. In particular, these approaches lever-
age the fact that clean and contaminated sensing data and control commands
are correlated via physical dynamics of a vehicle. Refer to Sect. 6 for a more
comprehensive literature review. A salient limitation of these approaches is that
they require one or multiple sensors of a vehicle to be clean. Powerful attackers
(as demonstrated in [1,2]) could potentially corrupt all sensors of a vehicle. For
instance, an attacker could exploit a backdoor vulnerability in the sensing data
processing library and corrupt all sensor readings in a consistent way to avoid
the detection.

The goal of this paper is to address the limitation identified in the last
paragraph and develop a new IDS for connected vehicles. The key feature of
our proposed IDS is the novel integration of V2V communications and control-
theoretic approaches. Under the context of connected vehicular networks, V2V
communication enables information exchange between nearby vehicles. To our
best knowledge, no prior work studies the benefits of V2V communication in
intrusion detections of connected vehicles. The paper makes the first attempt to
bridge the gap. This paper makes the following contributions:

– We propose a collaborative intrusion detection system, VCIDS, for the detec-
tion of sensor and actuator attacks in connected vehicles. The VCIDS fuses
local sensing information and that from nearby vehicles to enhance detection
capabilities.

– We implement a prototype detection system on a scaled autonomous vehicle
testbed and evaluate the system regarding the effectiveness under different
attacks launched through multiple attack channels. The results demonstrate
detection capabilities under destructive attack cases when all sensors in a
vehicle are compromised.

2 Overview

This section presents background information about modern vehicles and vehicle-
to-vehicle communication. Then we give an overview of our prior work in intru-
sion detection for single host and describe its limitation. Finally, we introduce
the adversary and defender model considered in the paper.

2.1 Modern Vehicle Platform

A modern vehicle is equipped with a rich set of sensors. In this paper, we only
consider the sensors that are related to vehicle motion. Other sensors such as
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thermometer or tire pressure monitoring sensor are out of our scope. The sensors
related to motion fall into two categories according to their functionalities [34].
Navigation sensors such as GPS and inertial measurement units (IMU) serve the
purposes of localization and motion tracking. Observation sensors such as light
detection and ranging sensor (LiDAR) and camera perceive the surroundings of
the vehicle and provide information for short-term maneuver such as collision
avoidance, lane changing, etc. Observation sensors enable the vehicle to recognize
surrounding objects such as nearby vehicles or pedestrians, and measure their
relative positions [4]. In order to handle massive data volume and provide real-
time control, vehicles are equipped with powerful mobile computing devices (e.g.,
Nvidia Drive PX 2 [3]) for complicated functionalities such as object recognition.
The actuators in a vehicle typically include steering, gas pedal, and brake.

Sensors

IDS
Controller

Actuators

Physical world

TCB

Fig. 1. Vehicle modeling.

In a vehicle control iteration (shown in
Fig. 1), the sensors measure the position and ori-
entation of the vehicle and its surrounding envi-
ronment. Then the sensor readings are fed to the
human driver or the controller inside the vehi-
cle1. After that, control commands are gener-
ated and executed by the actuators in the phys-
ical world. Each step from capturing the phys-
ical signals (e.g., electromagnetic waves, acous-
tic waves) to signal digitization, data processing,
and sending the data to the controller/human
driver is prone to data corruption. Analogously,
the execution of the control commands is also prone to corruption.

2.2 Control Theoretic Approach for Single Host

Modern urban vehicles are cyber-physical systems where the cyberspace (i.e., the
computation units) and the physical world in which they operate are strongly
coupled. In our prior work [12], we propose a robot intrusion detection system
(RIDS) for the detection of sensor and actuator attacks in standalone nonlinear
robots. We use a control-theoretic approach and develop a nonlinear unknown
input and state estimation (NUISE) algorithm. NUISE exploits the physical
dynamics of a single mobile robot and detects attacks by comparing data gen-
erated from observed sensor readings and estimates using physical dynamics. In
particular, sensor readings can be utilized to estimate new states, and executed
control commands can be estimated through state transitions. Therefore, actua-
tor attacks can be detected by comparing planned control commands generated
by the controller and executed control commands estimated from sensor readings.
With sensor redundancy, sensor attacks can be detected by cross-validating esti-
mated states across the sensors. For the self-containedness of this paper, NUISE
algorithm is included in Appendix B.

1 We do not differentiate controller or human driver in the rest of the paper and refer
to them as controller.
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In our prior study [12], we evaluate the detection performance of an RIDS
implementation against different combinations of sensor and actuator attacks
launched from different channels including signal interference, sensor spoofing,
logic bomb, etc. The results show that false positive rates and false negative rates
are all below 1%, and detection delays are within 0.4 s on average. Other than
detection, RIDS also identifies attack types and quantifies attack magnitudes.

The RIDS in [12] only considers local information for the detection of attacks.
Hence, it requires that there is at least one clean sensor of each robot. However,
this assumption may not be valid for urban vehicles. As demonstrated by [1],
attackers can successfully achieve access to a vehicle’s Controller Area Network
(CAN) and take over multiple functionality modules of a vehicle by sending
crafted packages.

2.3 Adversary and Defender Models

We consider adversaries that can launch active attacks that can deviate the vehi-
cles from their normal operation. The adversaries can observe real-time vehicle
states and have knowledge about vehicle sensing, actuation, and computing sys-
tems. They are capable of launching sensor attacks and/or actuator attacks
through different channels, including physical damages (e.g., jamming wheels),
signal interference (e.g., GPS spoofing), or cyber breaches (e.g., root-kit) on one
or multiple vehicles in a vehicular network. Nevertheless, we assume that for
each vehicle in a vehicular network, at least one of its neighboring vehicles has
at least one clean observation sensor and a clean localization sensor.

Given the adversary model, the defender has no prior knowledge about the
targets of attacks nor the types of attacks. In contrast to previous works [9,12]
where at least one clean sensor is required to work, the defender does not trust
any particular sensors or actuators nor make assumption on the number of cor-
rupted sensors or actuators on a particular vehicle. As shown in Fig. 1, the con-
troller and the intrusion detection system are treated as a trusted computing
base (TCB), which could reside in an isolated computing space such as a sepa-
rated electric control unit, or be protected with hardware isolation technologies
such as TrustZone. We assume each vehicle has clean readings at the very begin-
ning of a trip, and attacks are launched during a trip. The V2V communication
channel is assumed to be protected and free of attacks. We do not consider
attacks on the communication channel.

2.4 Our Approach: Detection with V2V

V2V is a technology that allows nearby vehicles to exchange assorted informa-
tion for the safety of urban vehicles and the efficiency of urban traffic. There
has been considerable study on applying V2V communication for a variety of
functionalities such as collision avoidance [13] and traffic control [8]. A vehicular
ad hoc network (VANET) is established to connect nearby vehicles in a decen-
tralized and self-organizing manner. Analogous to mobile ad hoc network, when
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a vehicle joins a swarm of vehicles on road, routings are established between the
vehicle and other vehicles in the swarm.

To address the limitation in [12], we leverage the information exchange chan-
nel as an extra vector for detection. Specifically, with the state estimates and
the observations for neighboring vehicles, a vehicle can generate state estimates
for nearby vehicles and broadcast the estimates through V2V communication.
Leveraging this information, a vehicle can further validate its own state estimates
and make salient decisions for itself and other vehicles. Leveraging information
from neighbors, the detection could potentially work even when a vehicle has no
clean sensor.

3 System Design

The proposed vehicle intrusion detection system follows a distributed and col-
laborative design, where each connected vehicle in a formed local network par-
ticipates in intrusion detection without a central authority. The architecture of
VCIDS is illustrated in Fig. 2. Each vehicle consists of an IDS node, which is
responsible for detecting intrusion locally and collaboratively with nearby vehi-
cles. The VCIDS structure can be divided into several modules. In the IDS
node, the monitor collects sensor readings and control commands of the associ-
ated vehicle. Utilizing the physical dynamics of the vehicle, the intra-vehicle IDS
generates vehicle state estimates and local sensor and actuator attack detection
results. Next, the inter-vehicle IDS collects the results from the intra-vehicle IDS
module and data transmitted from nearby vehicles to further confirm and detect
attacks globally. The global detection also relies on the physical dynamics of the
vehicle. In the meanwhile, a secure V2V module transmits and receives informa-
tion between the vehicles. Upon receiving results from both IDS modules, the
decision maker produces conclusive detection results and state estimates for the
vehicle controller.

IDS node

Monitor

Intra-vehicle IDS Inter-vehicle IDS

Vehicle-to-vehicle
Communication

navigation sensor readings,
control commands,

observation sensor readings

neighboring IDS 
nodes

local 
results

global 
results

Decision maker

Controller

IDS

IDS

IDS

IDS

IDS

detection results

Fig. 2. Vehicle collaborative intrusion detection system architecture.
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Fig. 3. Vehicle collaborative intrusion detection system schematics.

The VCIDS works iteratively and generates detection results in each control
iteration using timely data. Figure 3 shows the schematics of the whole detection
system. In the next few subsections, we will first introduce the physical dynamics
of the vehicle, and describe how each module works in details.

3.1 Vehicle Physical Dynamics

A vehicle can be modeled as a nonlinear discrete-time dynamic system. Consider
current iteration k − 1, and let xk−1 be the state at the beginning of the current
iteration. The controller generates control commands uk−1 and the actuators
execute the control commands in the (k − 1)-th iteration. At the beginning of
the k-th iteration, the vehicle reaches the new state xk and obtains new sensor
readings zk. Considering sensor and actuator attacks, the system model can be
described by the following nonlinear equations:

xk = f(xk−1,uk−1 + da
k−1) + ζk−1

zk = h(xk) + ds
k + ξk (1)

where actuator attacks and sensor attacks are modeled as corruptions da
k−1 and

ds
k, respectively. The first equation in (1) is referred to as the kinematic model,

which describes vehicle state transitions driven by control command execution.
The kinematic model specifies the relation between states and control commands
based on the actuator properties, e.g., wheelbase (the distance between the front
wheels and the real wheels), engine horsepower, etc. When actuator attacks are
launched, the executed control commands deviate from the planned control com-
mands. The deviation is denoted by da

k−1. The second equation in (1) is the
measurement model, which describes the relations between sensor readings and
vehicle states. The measurement model is determined by the vehicle sensor set-
tings, such as sensors types, sensor placement, etc. When sensor attacks are
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Fig. 4. Kinematic model of a
rear-wheel-drive vehicle.

launched, the obtained sensor readings deviate
from authentic physical values. The deviation is
denoted by ds

k. Vectors ζk−1 are process noises,
which account for external disturbances in the
kinematic model. Vectors ξk are measurement
noises, which account for sensing inaccuracy. We
assume noise vectors are Gaussian with zero
mean and known covariances Q and R, respec-
tively. The kinematic model for a typical rear-
wheel-drive vehicle is presented in Fig. 4. The
states of the vehicle in a 2D plane include the
location and orientation (x, y, θ). The controls
include longitudinal velocity and steering (v, φ) . The kinematic model for the
vehicle can be described as:

xk = xk−1 + T (vk−1 + dv
k−1) cos θk−1 + ζx

k−1

yk = yk−1 + T (vk−1 + dv
k−1) sin θk−1 + ζy

k−1

θk = θk−1 + T
vk−1

L
tan(φk−1 + dφ

k−1) + ζθ
k−1

where ζk−1 = [ζx
k−1, ζ

y
k−1, ζ

θ
k−1]

T is assumed to be zero mean Gaussian process
noise vector, da

k−1 = [dv
k−1, d

φ
k−1]

T are the actuator attack vectors, L is the
wheelbase, and T is the control iteration interval. The sensor measurement model
of a vehicle depends on specific sensor types and their configurations. We will
introduce the sensor measurement models of our testbed in Sect. 4.2.

3.2 Monitor

In each control iteration, the monitor gathers three types of real-time local data:
navigation sensor readings zk, observation sensor readings zp

k (p ∈ Pk, Pk denotes
the number of nearby vehicles observed at the iteration), and control commands
generated from the controller uk−1 (Algorithm 1 line 3–5).

3.3 Intra-vehicle IDS

The intra-vehicle IDS module uses local data to detect sensor and actuator
attacks, as well as generate state estimates using local data. In particular, the
intra-vehicle IDS applies the multi-mode estimation algorithm (Algorithm 2 in
Appendix B) on the local data collected from the monitor (line 6).

The multi-mode estimation algorithm maintains a set of possible sensor
attack conditions. Each condition is referred to as a mode, which represents a
hypothesis that a particular sensor is free of attacks, and the remaining sensors
are potentially corrupted. The clean sensor is referred to as a reference sensor,
while the corrupted sensors are referred to as testing sensors. Each mode runs a
NUISE algorithm (Algorithm 3 in Appendix B) with the corresponding reference
sensor readings and testing sensor readings in parallel. The mode set is referred
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Algorithm 1. Vehicle Collaborative Intrusion Detection System (VCIDS)
1: Initialize;
2: for k ← 1 to ∞ do
3: Read control commands uk−1;
4: Read navigation sensor readings zk;
5: Read observation sensor readings zp

k, p ∈ Pk;
� Intra-vehicle IDS

6: Run Algorithm 2 with (zk,uk−1, x̂k−1|k−1,M
intra) and generate

(x̂′
k|k, J ′

k, d̂
s′
k,t, t

s′
k , d̂

a′
k−1,t, t

a′
k );

� Inter-vehicle IDS
7: Calculate and broadcast state estimates for neighboring vehicles op

k for p ∈ Pk

using x̂′
k|k and zp

k;
8: Receive state estimates oq

k for q ∈ Qk from neighboring vehicles;

9: Run Algorithm 2 with ([(z
J′
k

k )T , (oq
k)T ]T ,uk−1, x̂k−1|k−1,M

inter
k ) and generate

(x̂k|k, Jk, d̂
s

k,t, t
s
k, d̂

a

k−1,t, t
a
k);

10: Broadcast ts,q
k for q ∈ Qk;

11: Receive ts,p
k for p ∈ Pk;

� Decision maker
12: for each navigation sensor i do

13: if ts,i′
k = true or ts,i

k = true then
14: Sensor attack alarm for ith navigation sensor;
15: end if
16: end for
17: if ∃p ∈ Pksuch thatts,p = true then
18: Sensor attack alarm for observation sensor;
19: end if
20: if ta

k = true or ta′
k = true then

21: Actuator attack alarm;
22: end if
23: Return x̂k|k to the controller;
24: end for

to as M. NUISE generates new vehicle states, attack sizes, and a likelihood for
each mode. Detail descriptions of the NUISE algorithm can be found in our prior
work [12].

After the NUISE algorithm finishes, a mode selector selects the most probable
mode J ′

k with the highest likelihood and uses the state estimates x̂′
k|k from the

selected mode as the new vehicle state estimates. After that, we further conduct
hypothesis testings on the testing sensors and actuators to confirm and identify
the attacks ts

′
k and ta

′
k .

3.4 Inter-vehicle IDS

The inter-vehicle IDS is dedicated to confirming the attacks detected by the
intra-vehicle IDS, and identifying a boarder range of attacks. The key data
source is the observation sensor readings from nearby vehicles. Once the new
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state estimates x̂′
k|k is generated, a vehicle can estimate the state of nearby

vehicles op
k within the range of its observation sensors (line 7). After that, each

vehicle receives the state estimates of itself from nearby vehicles oq
k (line 8).

Note that the number of observed vehicles Pk can be different from the num-
ber of received state estimates Qk. Then, the received state estimates oq

k are
treated as sensor readings from external sources and fed into another round of
multi-mode estimation algorithm execution along with the clean sensor readings
zJ ′

k

k identified by the intra-vehicle IDS (line 9). Finally, the detection results
for the received observations ts,q

k are broadcasted, and each vehicle receives the
corresponding ts,p

k for decision making, accordingly (line 10–11).

3.5 Decision Maker

The decision maker confirms attacks using the detection results generated by the
intra-vehicle IDS and the inter-vehicle IDS (line 12–23). It checks the detection
indexes t generated for navigation sensors, observation sensors, and actuators.
Each navigation sensor i is detected to be clean only when both detection indexes
ts,i′
k and ts,i

k remain negative. An observation sensor can only be declared as
clean when global detection results ts,p

k from all nearby vehicles are not positive.
Actuator attacks are positive as long as either ta

′
k or tak is positive. Under cases

when a vehicle is not connected in a vehicular network, the decision maker still
works independently with local detection results. However, the detection results
only relying on local data cannot make informed decisions under cases when
the observation sensor is corrupted, or all navigation sensors are corrupted with
consistent attack vectors.

4 Implementation

We build a prototype vehicle collaborative intrusion detection system on an
indoor testbed which includes three scaled autonomous vehicles. We elaborate
on the testbed as follows.

4.1 Testbed Implementation

Figure 5(a) shows the scaled autonomous vehicle testbed on which we imple-
ment the VCIDS prototype. Three vehicles are built based on Tamiya TT02
RC car chassis platform [6]. Each vehicle is mounted with a Nvidia Jetson TK1
(Nvidia Cortex-A15) embedded development board [5] as the mobile computing
system. TK1 shares the design architecture of vehicular computing systems such
as Nvidia PX2, which has been adopted by several autonomous driving manufac-
turers such as Tesla and Volvo. Its processor features the ARM Architecture and
a GPU integration for visual processing intensive applications. The TK1 runs the
Robot Operating System (ROS) [31]. Each sensing and actuation module runs
in an isolated ROS node (process) and communicates with each other through
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(a) Scaled autonomous vehicle
testbed with three vehicles.

(b) Indoor experiment environ-
ment with Vicon indoor posi-
tioning system.

Fig. 5. Scaled autonomous vehicle testbed and indoor positioning system.

sockets. The V2V communication is built on a local wireless ad hoc network.
Each vehicle is equipped with a Wifi dongle and joins the ad hoc network after
boot. A ROS module is implemented to broadcast or receive observations and
detection results generated by the IDSs of other vehicles in the network.

Each vehicle is equipped with four types of sensors: two wheel encoders, a
Vicon indoor positioning system (IPS), an IMU (Sparkfun SEN-10736), and two
LiDARs (Hokuyo urg-04lx). Two wheel encoders measure the traveling distances
of the two rear wheels in a short period of time. They are built with optical
sensors fastened on the rear wheels of each vehicle. The optical sensors detect
motion of the wheels and communicate with the TK1 through an Arduino board.
IPS is powered by Vicon motion capturing system (see Fig. 5(b)), which tracks
the position and orientation of each vehicle. An IMU is mounted at the center of
each vehicle and provides inertial navigation data. The wheel encoders, IPS and
IMU serve as the navigation sensors of an vehicle. Two LiDARs are placed on the
top of each vehicle, where one faces the front of the vehicle and the other faces
the rear. Each LiDAR scans laser beams in 240 degrees and receives reflection
to obtain distances from surrounding objects. The LiDARs together serve as
the observation sensors of a vehicle. After processing, they provide a 360-degree
distance information of the surroundings of the vehicle.

4.2 Sensor Measurement Models

At each instant of time, navigation sensor readings include data from three
sensors: zk = [zk,I , zk,W , zk,M ]T , where each vector refers to the sensor read-
ings from IPS, wheel encoders, and IMU, respectively. The observation sensors
(LiDARs) provides relative distances and directions zp

k of nearby vehicles.
Before sensor readings are transmitted to the controller, data go through a

processing phase. Navigation sensor readings are converted into vehicle states,
i.e., vehicle position (x, y) and heading θ. We convert the raw sensor readings of
the wheel encoders and IMU into vehicle states using the measurement models
of each sensor. Details of the data processing can be found in Appendix A.
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As observation sensors, the LiDARs generate relative position and orientation
zp

k for each nearby vehicle p. The raw data from a LiDAR includes points that
record the ranges of the nearest object from different angles. In the indoor envi-
ronment surrounded by walls (shown in Fig. 5(b)), we apply the Hough trans-
formation [10] to filter out the range points for the walls (shown as straight
lines). After that, remaining range points are clustered and recognized as nearby
vehicles. We associate the recognition results with each vehicle using heuristics.

5 Evaluation

In this section, we evaluate the VCIDS on the scaled autonomous vehicle testbed
against various attacks and demonstrate its security capabilities. We intend to
answer two research questions for the detection system: (1) What benefits does
the VCIDS offer in terms of security capabilities? (2) To what extent does the
VCIDS influence the detection performance, i.e., effectiveness and efficiency?
We compare the detection results generated by intra-vehicle IDS and that by
the complete VCIDS.

The three vehicles in the testbed travel in the indoor environment. For the
ease of presentation, we label the three vehicles with fixed numbers. In each
experiment, vehicle 1 and vehicle 2 circle around the environment in a prede-
fined two-lane road with an identical preset speed of 6 cm/s as shown in Fig. 6(a).
Vehicle 3 stays on the roadside without moving, but all onboard sensors are
working. During the mission, the three vehicles communicate through V2V com-
munication and collaboratively detect attacks.

5.1 Attack Scenarios

To demonstrate the effectiveness, we consider the following four attack scenarios
where attacks are launched on different targets of the vehicle system. The attack
scenarios are conducted independently with each other.

Wheel Encoder Logic Bomb and Wheel Jamming. The attack is launched
by replacing the wheel encoder sensor data processing library with a malicious
library in vehicle 1. After being triggered at certain instant of time, instead of
returning states obtained from motion of the wheel shafts, the malicious library
returns the sensor readings with a constant sensor attack vector that shifts the
vehicle by −10 cm on the X axis. A plastic stick is placed in the left rear wheel
of vehicle 1. The stick adds friction in the wheel and slows down the movement
of the wheel (actuator attack).

LiDAR Driver Logic Bomb. Analogous to the wheel encoder sensor logic
bomb attack, we add dozens of code in the LiDAR driver program of vehicle 1.
After triggering, the customized driver returns fake relative distances and angle
measurements of nearby vehicles.

System Hijacking. For advanced attackers, it has been demonstrated that
attackers can hijack into the vehicle system and control several components
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(a) Scaled autonomous vehicle
execution in the indoor envi-
ronment.
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Fig. 6. Experiment setups.

of a vehicle [1,21]. In order to avoid detection, an attacker would modify all
sensor readings in a consistent manner. For instance, an attacker would shift
all sensor readings on Y axis by +10 cm. During the intra-vehicle detection
phase, the multi-mode estimation algorithm does not have a clean sensor as the
reference sensor. Moreover, since the sensor readings are corrupted consistently,
the hypothesis tests would not raise alarm due to the lack of a clean reference.
Here, we launch the attack that corrupts all sensor data in vehicle 1 consistently.

Rogue Nodes. Attackers can setup rogue nodes that broadcast fake messages
to nearby vehicles in order to cause wrong decision making for the vehicles. For
instance, a rogue node can broadcast a phantom vehicle in front of a vehicle
and leads to emergency brakes. In this scenario, we assume that a rogue node
is set up by the roadside which broadcasts fake observations. The rogue node
broadcasts large amount of fake observations of vehicle 1 that contain shifted
observations.

5.2 Detection Results

In order to demonstrate the security capabilities of the VCIDS, we compare the
detection results generated by the intra-vehicle IDS (i.e., a standalone single
host IDS that does not leverage information from neighboring vehicles) and the
complete VCIDS. Table 2 shows the detection results against the four attack
scenarios we launch in the testbed. We observe that the intra-vehicle IDS can
only detect the first attack scenario when a subset of navigation sensors are
under attacks. On the contrary, the VCIDS detects all attack scenarios. When
the observation sensors are under attacks (Scenario 2), state estimates for nearby
vehicles are corrupted. When vehicle 2 and vehicle 3 receive corrupted observa-
tions from vehicle 1, their inter-vehicle IDSs raise sensor attack alarms and send
the results ts,2

k and ts,3
k back to vehicle 1. When all sensor readings in vehicle 1

are corrupted consistently (Scenario 3), the intra-vehicle IDS of vehicle 1 does
not raise any alarm. However, the observations from vehicle 2 (o3k) and vehicle
3 (o3k) used in the inter-vehicle IDS of vehicle 1 are inconsistent during inter-
vehicle IDS execution. Under rogue nodes attack (scenario 4) when fake nodes
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broadcast erroneous observations, the inter-vehicle IDS raises alarms due to the
inconsistencies between observations from other vehicles and the results from
intra-vehicle IDS2.

Table 2. Detection results from intra-vehicle IDS and VCIDS.

Attack scenario Attack type
(channel)

Detected by
intra-vehicle IDS

Detected
by VCIDS

Wheel encoder logic
bomb+wheel jamming

Sensor+actuator
(cyber+physical)

Yes Yes

LiDAR driver logic
bomb

Sensor (cyber) No Yes

System hijacking Sensor (cyber) No Yes

Rogue nodes Sensor (cyber) No Yes
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(c) False negative rate.

Fig. 7. Detection performance comparison between results from intra-vehicle IDS and
VCIDS against wheel encoder logic bomb & wheel jamming attack.

To investigate the detection performance in terms of detection delay and
accuracy, we launch attacks that can be detected by the intra-vehicle IDS and
compare the results. A false positive refers to an instant of time that an alarm
is raised for a clean sensor, and a false negative refers to an instant of time
that alarm is not raised for a corrupted sensor. Figure 7 shows the comparison
for detection delays, false positive rates and false negative rates. We notice that
detection delays for VCIDS are larger since the VCIDS requires more steps after
the intra-vehicle detection. We also notice a slight increases on the false positive
rates and a decrease on the false negative rates. All rates are below 4%.

Sensor noises determine the accuracies of state estimates, attack estimates,
and decision making. In our approach, sensor noises are modeled with unbound
support and propagate along with each calculation step in Algorithms 2 and 3.
2 A detailed explanation on why the NUISE algorithm can determine which mode

reflects the authentic values is provided in [12] Sect. 5.2.
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The detection system makes decisions under certain level of confidence. There-
fore, a vehicle equipped with more accurate sensors could identify attacks with
better performance.

6 Related Works

Intrusion Detection for CPSs. Control theory has been utilized to detect
sensor attacks for linear cyber-physical systems in recent works [9,22–24]. Several
works [11,27,28,40] study both actuator and sensor attacks for linear cyber-
physical systems. In contrast, most real world vehicles are modeled as nonlinear
systems. In [11,23,24,27], processing and measurement noises rooted in actuators
and sensors are not considered or considered with bounded support. In contrast,
real world vehicles are subject to stochastic noises with unbounded support.
Guo et al. [12] propose NUISE that handles sensor and actuator attack for
nonlinear system with unbounded support. However, it requires at least one
clean sensor on a single host. Some works study attack-detection on networked
systems [20,22,25,26,41]. However, these studies either share the limitations in
previously mentioned single host-based solutions or use voting mechanisms in
detection making. For instance, Park et al. [25] use Kalman filter to obtain
estimates of local agent and use t-tester to leverage inter-observations between
neighboring agents to statistically validate estimates. The approach is restricted
to linear systems under sensor attacks without actuator attacks. Moreover, the
t-testers work under the assumption that majority of the agents are attack-free.

Attacks Targeted on Vehicles. Yan et al. [38] successfully conduct jamming
and spoofing attacks on the driving guidance sensors including radars, ultrasonic
sensors and forward-looking cameras on a Tesla Model Petit et al. [30] present
effective jamming, replay, relay, and spoofing attacks on camera and LiDAR
sensors. It has been demonstrated that civilian GPS are vulnerable to spoofing or
jamming [15,35]. Several groups demonstrate the possibility to remotely control
multiple subsystems in latest off-the-shelf vehicle models such as Tesla [1,2] and
Jeep Cherokee [21].

7 Conclusion

The advanced technologies applied in modern vehicles bring both opportunities
and security concerns for the community. In this study, we propose a vehicle
collaborative intrusion detection system (VCIDS) for the detection of sensor
and actuator attacks which target connected vehicles. The detection leverages
the physical dynamics of vehicles and utilizes the correlation between clean and
contaminated data to estimate attacks. We build a prototype system on a scaled
autonomous vehicle testbed and test the system against several types of attacks
launched through different attack channels. The results demonstrate that VCIDS
can achieve better security capabilities over a single host IDS. Leveraging infor-
mation from neighboring vehicles, VCIDS works under destructive attack cases
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even when all the sensors of a vehicle are compromised. VCIDS can promote the
resilience of vehicles against attacks. We plan to investigate intrusion response
strategies for urban vehicles as our future works.

Acknowledgement. This work was supported by NSF CNS-1505664, ARO W911NF-
13-1-0421 (MURI) and ARO W911NF-15-1-0576.

Appendix A Data Processing with Measurement Models

IPS. The IPS sensor directly measures and returns the states of a vehicle.

Wheel encoder. The raw data measured by the wheel encoders are the dis-
tances traveled by each wheel (lL, lR). In data processing phase, we convert them
into vehicle states using previous states xk−1: xk = xk−1 + (lL + lR) cos θk/2,
yk = yk−1 + (lL + lR) sin θk/2, θk = θk−1 + (lR − lL)/R, where R is the distance
between the left and the right wheel.

IMU. The IMU sensor generates a quaternion [q0, q1, q2, q3]T , a 3-D acceleration
alocal

k,M , and a 3-D rotational speed wlocal
k,M on body-fixed coordinate. We first

obtain coordinate transformation matrix from body-fixed coordinate to global
coordinate [16]:

C(q) =

⎡
⎣

q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23

⎤
⎦ .

Acceleration vector and rotation speed on the global coordinate system can be
obtained as C(q)alocal

k,M and C(q)wlocal
k,M , respectively. Vehicle velocity vector can

be updated by: vk = [vx
k,M , vy

k,M , vz
k,M ]T = vk−1+aglobal

k T . Then the state vector
can be calculated by integration as follows: xk = xk−1 + vx

k,MT + 1
2ax

k,MT 2,
yk = yk−1 + vy

k,MT + 1
2ay

k,MT 2, θk = θk−1 + wz
k,MT .

After the data processing phase for each sensor, sensor readings transmit-
ted to the controller are in the form of vehicle states. For navigation sensors,
we have: zk,i = xk + ds

k,i + ξk,i, i = I,W,M , where ds
k,i = [ds,x

k,i , d
s,y
k,i , d

s,θ
k,i ]

T ,
ξk,i = [ξx

k,i, ξ
y
k,i, ξ

θ
k,i]

T refer to attack vectors and measurement noises for each
navigation sensor, respectively.

Appendix B Algorithms

Algorithms 2 and 33 are proposed in the Appendix of [12]. We include them here
to be self-contained.

3 Notations † and | · |+ refer pseudoinverse and pseudodeterminant, respectively.
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Algorithm 2. Multi-mode Estimation Algorithm
Input: Sensor readings zk; control commands uk−1 from control module; previous

state estimates x̂k−1|k−1; mode set M

Output: State estimate; attack vector estimates; mode estimate; confirmed attack
indices ts

k, and ta
k;

1: Set parameters ws, wa, cs, ca, αs, αa;
2: Initialize;
3: for mode j ∈ M do
4: Run NUISE (Algorithm 3) with input (uk−1, x̂k−1|k−1, zj

1,k, zj
2,k, P x

k−1) and

generate (x̂j
k|k, d̂

s,j

k , d̂
a,j

k−1, P x,j
k , P s,j

k , P a,j
k−1, N j

k );

5: μ̄j
k ← max{N j

k μj
k−1, ε};

6: end for
7: for mode j ∈ M do

8: μj
k ← μ̄

j
k

∑|M|
i=1 μ̄i

k

;

9: end for
10: Sensor mode selection Jk ← argmaxjμ

j
k;

11: Obtain estimates and covariance matrices from Jk: x̂k|k ← x̂Jk
k|k, d̂

s

k ← d̂
s,Jk

k ,

d̂
a

k−1 ← d̂
a,Jk

k−1 , P x
k ← P x,Jk

k ;

12: bs
k ← (d̂s

k

T
(P

s,Jk
k )−1d̂s

k > χ2
p=|d̂s

k|(αs));

13: ba
k ← (d̂

a T

k−1(P
a,Jk
k−1 )−1d̂

a

k−1 > χ2
p=|d̂a

k−1|(αa));

14: if bs
k = True and

∑ws−1
i=0 bs

k−i ≥ cs then
15: for each testing sensor t in mode Jk do
16: Sensor attack vector estimate for testing sensor t: d̂

s

k,t =
∑ws−1

i=0 d̂
s

k−i,t/ws;

17: if d̂
s T

k,t (P
s,Jk
k,t )−1d̂

s

k,t ≥ χ2
p=|d̂s

k,t| then

18: ts
k = 1; confirm sensor attack on sensor t;

19: end if
20: end for
21: end if
22: if ba

k = True and
∑wa−1

i=0 ba
k−i ≥ ca then

23: ta
k = 1; confirm actuator attack;

24: end if
25: return x̂k|k; based on the confirmations of attacks, find a new mode Jk; sensor

attack vector estimates d̂
s

k,t with ts
k (t ∈ {testing sensors in mode Jk}); actuator

attack vector estimates with ta
k d̂

a

k−1,t (t ∈ {1, · · · , n});
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Algorithm 3. Nonlinear Unknown Input and State Estimation Algorithm
Input: uk−1, x̂k−1|k−1, z

j
1,k, zj

2,k, P x
k−1

Output: x̂j
k|k, d̂

s,j

k , d̂
a,j

k−1, P x,j
k , P s,j

k , P a,j
k−1 N j

k

1: Initialize;
� Actuator attack vector da,j

k−1 estimation

2: P̃ j
k−1 ← Aj

k−1P
x
k−1(A

j
k−1)

T + Qj
k−1;

3: R̃∗,j
2,k ← Cj

2,kP̃ j
k−1(C

j
2,k)T + Rj

2,k;

4: M j
2,k ← ((Gj

k−1)
T (Cj

2,k)T (R̃∗,j
2,k)−1Cj

2,kGj
k−1)

−1 (Gj
k−1)

T (Cj
2,k)T (R̃∗,j

2,k)−1;

5: d̂
a,j

k−1 ← M j
2,k(zj

2,k − Cj
2,kf(x̂k−1|k−1,uk−1));

6: P a,j
k−1 ← M j

2,kR̃∗,j
2,k(M j

2,k)T ;
� State prediction

7: x̂j
k|k−1 ← f(x̂k−1|k−1,uk−1 + d̂

a,j

k−1);

8: Āj
k−1 ← (I − Gj

k−1M
j
2,kCj

2,k)Aj
k−1;

9: Q̄j
k−1 ← (I − Gj

k−1M
j
2,kCj

2,k)Qj
k−1(I − Gj

k−1M
j
2,kCj

2,k)T +

Gj
k−1M

j
2,kRj

2,k(M j
2,k)T (Gj

k−1)
T ;

10: P x,j
k|k−1 ← Āj

k−1P
x
k−1(Ā

j
k−1)

T + Q̄j
k−1;

� State estimation
11: R̃j

2,k ← Cj
2,kP x,j

k|k−1(C
j
2,k)T + Rj

2,k + Cj
2,kGj

k−1M
j
2,kRj

2,k +

Rj
2,k(M j

2,k)T (Gj
k−1)

T (Cj
2,k)T ;

12: Lj
k ← (Cj

2,kP x,j
k|k−1 + Rj

2,k(M j
2,k)T (Gj

k−1)
T )T (R̃j

2,k)−1;

13: x̂j
k|k ← x̂j

k|k−1 + Lj
k(zj

2,k − hj
2(x̂

j
k|k−1));

14: P x,j
k ← (I − Lj

kCj
2,k)P x,j

k|k−1(I − Lj
kCj

2,k)T + Lj
kRj

2,k(Lj
k)T − (I −

Lj
kCj

2,k)Gj
k−1M

j
2,kRj

2,k(Lj
k)T − Lj

kRj
2,k(M j

2,k)T (Gj
k−1)

T (I − Lj
kCj

2,k)T ;

� Sensor attack vector ds,j
k estimation

15: d̂
s,j

k ← zj
1,k − hj

1(x̂
j
k|k);

16: P s,j
k ← Cj

1,kP x,j
k (Cj

1,k)T + Rj
1,k;

� Likelihood of the mode
17: νj

k ← zj
2,k − hj

2(x̂
j
k|k−1);

18: P̄ j
k|k−1 ← Cj

2,kP x,j
k|k−1(C

j
2,k)T + Rj

2,k − Cj
2,kGj

k−1M
j
2,kRj

2,k −
Rj

2,k(M j
2,k)T (Gj

k−1)
T (Cj

2,k)T ;

19: nj ← rank(P̄ j
k|k−1);

20: N j
k ← 1

(2π)n
j/2|P̄ j

k|k−1|1/2+

exp(− (ν
j
k
)T (P̄

j
k|k−1)

†ν
j
k

2
);
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Abstract. Today botnets are still one of the most prevalent and devas-
tating attacking platforms that cyber criminals rely on to launch large
scale Internet attacks. Botmasters behind the scenes are becoming more
agile and discreet, and some new and sophisticated strategies are adopted
to recruit bots and schedule their activities to evade detection more
effectively. In this paper, we conduct a measurement study of 23 active
botnet families to uncover some new botmaster strategies based on an
operational dataset collected over a period of seven months. Our analysis
shows that different from the common perception that bots are randomly
recruited in a best-effort manner, bots recruitment has strong geograph-
ical and organizational locality, offering defenses a direction and priority
when attempting to shut down these botnets. Furthermore, our study
to measure dynamics of botnet activity reveals that botmasters start to
deliberately schedule their bots to hibernate and alternate in attacks so
that the detection window becomes smaller and smaller.

Keywords: Distributed denial of service · Botnets
Behavioral analysis

1 Introduction

Botnets are collections of networks of infected machines (aka bots) that are
widely used to carry out a variety of malicious activities as instructed by a
botmaster. As a result, botnets are notoriously known as one of the primary
attack and threat vectors utilized against critical infrastructures and services in
activities that include distributed denial of service (DDoS), spam distribution,
phishing, scanning and network exploration, among others. Such malicious activ-
ities utilize vulnerabilities in existing protocols, and capitalize on their power to
disturb large services.

The advent of botnets is often associated with vandalism. However, recent
years have witnessed the rise of other uses of botnets, including “hacktivism” [1]
and “botnet-as-a-service” [5]. Botnets have been used as a mean of promoting
political ends, such as targeting political and ideological opponents, stealing pre-
cious data from their networks, or for bringing their networks down. OpIsrael [2],
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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DarkSeoul [3], and OpUSA [4] are recent prominent examples of hacktivism,
where ideas and political beliefs influenced botnet-based cybersecurity events
and driven them. The rise of such a direction has facilitated a thriving ecosystem
guided by economical profit in what has been coined as botnet-as-a-service [5]. In
such a model, botnets are designed to be “rented” easily to underground users,
where botmasters are reportedly making large sums of money in underground
marketplaces [6].

Understanding botnets through analyses and measurements has been a goal
in the research community since their arrival. Such analyses is geared towards
understanding attacks, guiding defenses, and helping with bots containment and
disinfection by chronologizing their lifecycle. The first and foremost step in the
lifecycle of botnets is to recruit and manage a dedicated pool of bots. Such
step is done by either recruiting a new group of bots via infection or by rent-
ing a network of already infected machines in the botnet-as-a-service market-
place. Once recruited, botmasters utilize their bots (in a given botnet) to launch
attacks. Considering them as valuable resources, botmasters want to maximize
the return on investment by launching as many attacks as possible without being
detected by a defender. To this end, bot scheduling is a critical aspect of bot-
net management, and further insights into how botmasters schedule their bots
could potentially unveil patterns in this ecosystem that could lead to (1) better
understanding of botnets, and (2) guide defenses.

In this paper, we advance the state-of-the-art by analyzing the botmasters
strategies in recruiting and managing bots based on a large workload collected
from more than 300 Internet vantage points across the globe covering 23 most
active botnets for a continuous 7 months. Our study reveals several interest-
ing and previously unreported recruitment strategies by botnets in the wild. A
highlight of the new sophisticated techniques adopted by modern botmasters
includes (c.f. Sect. 5 for implications):

– Our geographical analysis shows that most dedicated bots reside in a small
number of countries and organizations. This provides some helpful insights
for defenses. For example, pushback models [8–10] of defenses can be guided
by this insight in deploying routing-based monitoring closer to the sources of
the attack.

– Bots recruitments are not purely random but rather targeted with per-family
unique characteristics. Further analysis shows that different botnet families
have their unique per-family characteristics (i.e., affinity). This insight can
be utilized in postmortem host cleaning. For example, upon taking down a
botmaster, cleaning disconnected bots becomes a challenge, and knowing the
affinity would guide efforts of disinfection and cleaning.

– Bots are not always active. Instead, they are recruited and used with a clear
alternation pattern, and longer periods of hibernation in between. This can
effectively minimize the detection window of detection tools and thwart them.
This pattern and trend can be utilized to guide defenses: a defense that utilizes
the distribution of activity window of bots is more likely to detect an attack
earlier than one that uses a fixed (and potentially large) time window.
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To the best of our knowledge, many of the recruitment strategies uncovered in
this study are novel and not reported before, making them interesting in their own
right. As we are still unfolding the use of the recruitment strategies, we suggest to
leverage such insights to devise new defense and mitigation schemes. While there
has been a large body of literature on the problem (e.g., [11–20]; c.f. Sect. 6), all
of the prior work draws conclusion on behavior of botnets by analyzing a single
botnet (or a limited number of them). To our knowledge, this is the first study that
tries to understand recruitment and scheduling patterns by performing a meta-
analysis over a large number of botnets and associated behavior.

2 Data and Collection Methodology

Prior work on botnet measurements have mainly focused on their taxonomy and
classification by analyzing botnet behavior and common characteristics, including
architecture, command and control (C2), communication protocols, and evasion
techniques [21,22]. Such efforts have mainly been done via passive measurement
or infiltration, and are usually focused on specific botnets. Different from these
approaches, our work relies on data provided by the monitoring and attribution
unit a DDoS mitigation company, with partnerships of traffic sharing with a large
number of major Internet service providers across the globe. The dataset is pre-
viously utilized by Wang et al. [7] for analyzing trends in DDoS attacks.

2.1 Collection Methodology

The unit constantly monitors Internet attacking traffic to aid the mitigation
efforts of its clients, using both active and passive measurement techniques. For
active measurements and attribution, malware families used in launching various
attacks are reverse engineered, and labeled to a known malware family using best
practices. A honeypot is then created to emulate the operation of the reverse-
engineered malware sample that belongs to a given botnet and to enumerate all
bots across the globe participating in that particular botnet.

As each botnet evolves over time, new generations are marked by their unique
(MD5 and SHA-1) hashes. Traces of traffic associated with various botnets are
then collected at various anchor points on the Internet, via the cooperation of
many ISPs all over the world, and analyzed to attribute and characterize attacks.
The collection of traffic is guided by two general principles: (1) that the source
of the traffic is an infected host participating in a botnet attack, and (2) the
destination of the traffic is a targeted client, as concluded from eavesdropping
on C2 of the campaign using a live sample.

2.2 Botnet Families

There are 23 known botnet families in the wild captured in our dataset. Those
botnet families are (using their publicly known names assigned by antivirus
vendors [7,23]) Aldibot, Armageddon, Asprox , Blackenergy, Colddeath,
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Conficker, Darkcomet, Darkshell, Ddoser, Dirtjumper, Gumblar, Illusion,
Myloader, Nitol, Optima, Pandora, Redgirl, Storm, Tdss, Torpig, Waledac, Yzf
and Zeus. From the dataset multiple botnets are identified for each family, and
each botnet is potentially owned by different botmasters. By tracking bots’ tem-
poral activities, the monitors of the company generate a log dump every hour.
There are 24 hourly reports per day for each botnet family. The set of bots or con-
trollers listed in each report are cumulative over past 24 h. The 24-h time span is
counted from time stamp of last known bot activity and time of log dump. The
log covers the period from 08/29/2012 to 03/24/2013, a total of 207 days.

2.3 Caveats and Comparisons

While the dataset we use in this paper is comparable in size to other dataset
previously used in the literature, it provides a timely insight into the recent state
of botnet operations, as opposed to the state of botnets many years ago. Fur-
thermore, the efforts of identifying malware that is used for operating a botnet
family provide high fidelity: the techniques involve a combination of dynamic
and static analysis utilizing deep understanding and reverse-engineering of the
studied families.

We note that some of the hosts infected by the studied malware families may
not be included in our data for a few reasons. For example, they may not be
included if they do not participate in an attack against a monitored resource, or
if they do not contact the C2 server of the studied family. However, we believe
that those hosts are of less interest, since they are isolated and do not contribute
to the potential attack activity of the botnet. They do not contribute to the
recruitment and scheduling aspects studied in this paper, and their disinfection
and cleaning is a secondary issue to this study.

3 Bots Recruitment

During about 7 months of our data collection and analysis, over 2 million unique
bots across 23 malware families are identified in our dataset. The purpose of
our botnet study is to gain insights into active botnets’ nature so that security
analysts and experts can effectively take down existing botnets by disinfection,
or prevent benign hosts from infections for suspicious sources (as previously done
in other work; e.g., Stone-Gross et al. [24] and Gu et al. [25]).

One of the primary properties of bots that interests us most is their physical
location and how the location shifts in regions across different phases of the
botnet’s life cycles. We are also interested in whether a certain subset of bots
play a more critical role than others in the bots recruitment. Our conjecture is
that bots recruitment as a process may not be purely random but rather targeted
with per-family unique characteristics, and the geographical distribution analysis
confirms our conjecture.

In this section we examine all known bots in our dataset by mapping their IP
addresses to a list of countries where they reside, and identifying organizations
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that such IP addresses belong to. We perform the mapping of the IP addresses
using a highly-accurate commercial grade geo-mapping dataset by Digital Envoy
(Digital Element services [26]), which provides—besides the country—the indi-
vidual city, and organization of each queried IP address.

Addressing NAT Effect. Dynamic IP addresses and NAT constitute a signif-
icant portion of the Internet [24,27], preventing a one-to-one mapping between
bot and IPs. Addressing NAT is a challenging problem, which falls out of the
scope of this work. However, we follow a similar approach to [28] to minimize its
impact on our findings. While the NAT effect leads to undercounting bots, such
undercounting is corrected by churns, resulting in overcounting, due to DHCP.
Thus, in preprocessing, and for each botnet, we aggregate the different bots with
unique IP addresses that have distinct patterns into unique bots. For passive IP
churn using DHCP at the ISP level, we aggregate the unique IP addresses over
shorter hourly time periods to minimize the potential of DHCP churn [28,29].
A recent study [30] shows that the distribution of dynamic IP addresses is not
uniform but rather biased towards regions or ISPs. By analyzing IP addresses
at the country and organization level, we conclude that the estimated number
of bots should be considered as a lower bound, thus minimizing the impact on
our recruitment findings.

3.1 Bots Country Preference

Figure 1 shows the heat map of bots’ geographical distribution. The darker the
color of the country is, the more bots are found to be located in that country.
We can see that those two million bots are widely spread all over the world with
several harder-hit areas in the darker green regions.

Fig. 1. Geographical distribution of bots (Color figure online)
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In Table 1, we list the top 10 countries with most bots. These ten countries
together host 66.3% of all bots in our dataset (i.e., 1,512,377 out of 2,280,389).
One of the surprising findings in the table is that Israel and Switzerland lead the
rank of all countries, with a combined share of 28.0% of bots, despite that they
are neither far-flung countries in area nor large countries in population. A reason-
able explanation is that our data provider might parterner with major ISPs that
have dominant existence in Europe, or during 7-month collection period botnets
from aforementioned countries are involved in active campaigns. Drilling down
to the per-family bots distribution, some per-family unique characteristics of the
country preference are revealed:

Table 1. Top 10 countries with most bots.

Country name Number of bots

Israel 430,715

Switzerland 207,386

U.S.A 187,483

Vietnam 172,066

Brazil 163,983

India 121,949

China 66,742

Russia 59,158

Thailand 54,135

Argentina 48,760

Bots Preferential Attachment. We notice that for most families their bots are
concentrated in a few preferred regions, and those preferred regions tend to vary
significantly across different families. In general, the majority of botnet families
have tangible bots existence in the top countries we listed in Table 1. Interestingly
every family also has their own set of preferred countries. Take the family Optima
as an example, we find that the top 5 countries for Optima’s 343,524 bots are
Israel (21.0%), India (14.5%), United States (12.6%), Switzerland (9.4%), and
Brazil (6.1%). The first three countries in the list contain more than 48% of the
total bots for Optima, and all these 5 countries can also be found on the top 10
overall list—although in different ordering.

Country Preferential Attachment Unveils Activity Correlations. We
observe that for some families bot’s geographical preference is somehow pre-
served at different stages of botnet activities. For example, the activity curve
of Optima highlights three sudden spikes dated at 10/18/2012, 10/29/2012 and
11/10/2013, respectively, which could be attributed to 3 active campaigns that
were launched around that time frame with a large number of bots participation.
Thus, we examine all bots involved in those spike events to expose their pref-
erential attachment. It is evident that 1st and 3rd spike events are correlated,
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because the overwhelmingly majority of bots in these two spike events originate
from Israel, Switzerland, United States, Botswana, and Canada. The high resem-
blance of bots distribution between the 1st and 3rd spikes implies that they are
very likely to be two stages of the same attack. On the contrary, by examining
the bots from 2nd spike we find that its bot distribution is significantly differ-
ent: 37.8% bots (23,499) originate from India and 16.1% (10,027) originate from
United States. This can be explained that the second spike is potentially another
independent campaign launched by a different botmaster.

Another family shows strong activity correlation is Dirtjumper. The top 5
countries of Dirtjumper’s 818,452 bots are Israel (37.5%), Switzerland (15.2%),
United States (10.5%), Brazil (9.9%), India (4.4%). We find two correlated spike
events for this family because they both exhibit the same geographical distri-
bution patterns. The majority of bots in these two spikes originate from Israel,
Switzerland and the United States. The other two countries (Brazil and India)
in the top 5 list did not contribute much to the spike events.

Local Botnets. The geographical distribution of Illusion does not conform to
the all bots distribution chart. Pakistan, which has an unnoticeable presence in
the overall country ranking of most bots, contributes a dominantly large number
of bots to Illusion. This finding strongly suggests that Illusion either prefers to
or gain privileges to recruit most of its bots from Pakistan. Similarly, bots that
belong to Pandora show a significantly biased existence in Mexico and Thailand.

Mobility Within Preferred Regions. We explore how bots of each family
shift over time. In this analysis we aim to identify whether the newly arrived bots
originate from the same country or from different countries. The results show
that the majority of bots only shift within their preferred regions. Left y-axis in
the Fig. 2 represents the shift rate of Conficker within the same country, while

Fig. 2. Bots shift patterns for Conficker
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right y-axis represents the shift rate across countries. For Conficker the arrival
rate of bots from the same country is 20 to 40 times higher than that of bots
from a different country. This localized shift pattern can be further validated by
our bots alternation analysis in Sect. 4.2. The set of active bots controlled by
the same family has a strong location affinity.

Organizations
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

N
u

m
b

er
 o

f 
U

n
iq

u
e 

IP
s

0

e2 

e4 

e6 

e8 

e10

e12

e14

Fig. 3. Number of unique IPs in each organization

2012-08-29 2012-09-28 2012-10-28 2012-11-27 2012-12-27 2013-01-26 2013-02-25 2013-03-24
0

e3 

e6 

e9 

e12

e15

Blackenergy
Dirtjumper

Time (days)
2012-08-29 2012-09-28 2012-10-28 2012-11-27 2012-12-27 2013-01-26 2013-02-25 2013-03-24

0

e2 

e4 

e6 

e8 

e10

e12

Illusion
Optima

Nu
m

be
r o

f U
ni

qu
e 

IP
s

Fig. 4. Activities from top 2 organizations

3.2 Bots Organization Preference

Using the IP mapping dataset, we are also able to identify the organizations that
own the IP addresses hosting the infections, which represent the bots we studied
in our dataset. Across all botnet families, with 2,280,389 unique IPs in our
dataset, we enumerated 9,633 different organizations. We sort the organizations
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in descending order of the number of associated bots and display them in Fig. 3.
The x-axis represents 9,633 organizations, and the y-axis denotes the logarithm
number of unique IPs. We learn from the figure that the distribution is heavy-
tailed, and that the top 20% of organizations in our study contain more than 90%
of all bots. With the impact factor of different organization size considered, we
can still draw the conclusion that bots organizational distribution is not purely
random, certain organizations become easy targets for bots recruitment or at
least are comparably tardy for the mitigation of botnet infection. We list the
top 10 organizations with most bots in Table 2. While some of the organizations
are service providers, we notice that some of the organizations are businesses that
do not provide Internet services to customers–thus highlighting an interesting
dimension in such a distribution.

Table 2. Top 10 organizations with most infected hosts

Organization name Bots

ilan ISP (Israel) 568,200

Switch Swiss Education and Research Network 224,810

Viettel Corporation (Vietnam) 80,872

The Corporation for Financing Promoting Tech. (Vietnam) 79,341

Telebahia (Brazil) 66,154

African Network Information Center (Uganda) 60,403

National Internet Backbone (India) 58,283

Cogent Communications 45,264

Independent Electricity System Operator (Canada) 44,599

China Telecom 37,119

Positive Organization Preference. Similar to the country-level analysis, we
explore organizations-preference. The result is shown in Table 3. We find that
14.3% of the bots of Aldibot are located in Canada-based organizations, for
example, Rogers Cable Communications inc. and Bell Canada. India’s “National
internet backbone (NIB)” is another favorite organizations for 4 botnet families:
Colddeath, Darkcomet, Darkshell and Yzf. For these 4 families, the number of
bots from NIB is in absolute dominance compared to other organizations. We
also find that the organization with most bots for Ddoser is telecom argentina
stet-france telecom s.a., and Nitol is found to have a tendency to recruit bots
from organization te-as. Similarly the Australia-based organization, Telstra Pty
Ltd, owns a large majority of bots for Torpig. Organizations with substantial
bots existence for Zeus are quite a few, and Zeus is the botnet family that is
discovered from most organizations in our study. The total number of organiza-
tions accounted for Zeus botnet activity is as high as 5,541—possibly because
Zeus is a mass-market credential stealing botnet.
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Table 3. Organization-level bots preference

Aldibot Rogers Cable Communications Inc. 1,056

Bell Canada 675

Google Inc. 521

Uninet, S.a. de C.v. (Mexico) 513

Cox Communications Inc. 429

Blackenergy ilan ISP (Israel) 179,619

Viettel Corporation (Vietnam) 62,250

Switch Swiss Education and Research Network 61,739

The Corporation for Financing Promoting Technology (Vietnam) 55,337

Independent Electricity System Operator (Canada) 13,687

Conficker China Telecom 32,477

Data Communication Business Group (Taiwan) 27,036

Telefonica de Argentina 23,013

TM Net (Malaysia) 21,659

Telecom Italia 18,975

Dirtjumper ilan ISP (Israel) 306,144

Switch Swiss Education and Research Network 124,158

Telebahia (Brazil) 50,310

African Network Information Center (Uganda) 27,522

independent electricity system operator 23,943

Illusion ilan ISP (Israel) 7,731

Cyber Internet Services Ltd. (Pakistan) 5,778

Switch Swiss Education and Research Network 5,564

African Network Information Center (Uganda) 2,531

National Internet Backbone (India) 2,076

Nitol Telecom Egypt 6,539

National Internet Backbone (India) 2,417

Tata Teleservices Ltd 533

China Telecom 319

China Networks Inter-exchange 304

Optima ilan ISP (Israel) 71,177

Switch Swiss Education and Research Network 31,750

National Internet Backbone (India) 22,003

African Network Information Center (Uganda) 16,582

VNPT corp (Vietnam) 7,476

Pandora Uninet, S.a. de C.v. (Mexico) 1,284

Cyber Internet Services Ltd. (Pakistan) 1,241

African Network Information Center (Uganda) 1,041

National Internet Backbone (India) 991

San Paulo Research Foundation (Brazil) 522

YZF National Internet Backbone (India) 2,291

Nepal Telecommunications Corporation 462

African Network Information Center (Uganda) 415

Tata Teleservices Ltd 295

Zeus Turk Telecommunications 8,833

Viettel Corporation (Vietnam) 8,663

Maroc Telecom (Morocco) 7,841

Cox Communications Inc. 7,142

The Corporation for Financing Promoting Technology (Vietnam) 6,903
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Organization Preferential Attachment Unveils Activity Correlations.
We choose 5 botnet families that were very active during the 7-month data col-
lection period as our analysis candidates. They are Blackenergy, Conficker,
Dirtjumper, Illusion and Optima. After a closer look, we realize that the
majority of bots that contribute to 4 of those 5 families come from the top
2 organizations we listed in Table 2, Conficker is the only exception due to
the multi-variants nature of the family. Bots owned by Conficker are widely
distributed over 3,522 different organizations and thus it has no clear culprit
organizations. To this end, we plot the activity curve of those 4 families consid-
ering only bots coming from these 2 organizations. As Fig. 4 shows, the bots from
those 2 organizations stay hibernated most of the time during our observation
period. The timing of their sudden wake-up coincides with the peak events of
the botnet families. This evident behavior strongly suggests the bots from these
two organizations are coordinated to perform attacks on purpose. It is very likely
bots in these two organizations are zombies, dedicated machines controlled by
remote attackers to conduct cyber attacks, which explains the fact that they are
infected by multiple instances of botnet families.

4 Bots Scheduling Strategies

In this section, we perform an in-depth study of botnets’ dynamics to expose
the latest bots scheduling strategies with three aims in mind. First, we closely
monitor the bots dynamics in 7-month observation window and conduct a lifes-
pan analysis of all bots in our dataset to understand their involvement in bot-
net activity. Second, we dive deep into exposing unique activity patterns of
short-lived bots, which strongly implies a deliberate action of bots alternation
and re-occurrence when scheduling bots. Last but not the least, we find that a
substantial number of bots are recruited and reused by more than one botnet
families, and we are interested in behind-the-scenes reasons why those bots are
favored by botmasters in recruitment and scheduling.

4.1 Bot Lifespan Analysis

The lifespan of a bot is an important indicator of bots’ involvement in the botnet
activity. To this end, we conduct a weekly pattern analysis for every bot in our
dataset to understand their presence and evolvement. Given the confined context
of our dataset and the fact that mitigation techniques might have already been
in place to take down active bots, it is not far-fetched to speculate that many
bots in the dataset are short-lived, and this will be presented as those bots
active in week i become dormant in week i+ 1. Our speculation is confirmed in
the analysis result that in general less bots are found with longer lifespan. The
number of bots with various lifespan is depicted in Fig. 5 and the short-lived
statement is held true for all botnet families in our dataset.

Besides short-lived bots, our analysis reveals a small but steady group of bots
that stay active for an extended period of time, in many cases several weeks.
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Fig. 5. Bots lifespan analysis

We call them “always-on” bots. For a subset of botnet families we observe,
there exist a very small set of “always-on” bots (i.e., single-digit) whose lifespan
cover the entire data collection period. One exception is Conficker, one of the
largest known computer worm infection [13]. The number of “always-on” bots for
Conficker is approximately 4,400 unique IP addresses, by far the largest among
all families we studied. The fact that Conficker is a very well-represented botnet
with multiple variants in existence, making it difficult to remove from end users’
computers as effectively as done for other families.

The role played by bots with a longer lifespan is possibly different from that
played by bots with a shorter lifespan. A potential role such bots play include
a shadow botmaster (to mitigate failure) and to serve as a dedicated bot. From
a defense perspective, it takes precedence to shut down those long-lived bots
than others when mitigating large-scale botnet activity. Our bot’s lifespan anal-
ysis over the large-scale dataset provides a firsthand information of what bots
defenders should target to remove in priority. However, the assumption that
the consequence of mitigation is the sole reason for many bots’ short lifespan is
doubtful, because this does not explain the existence of in-negligible amount of
long-lived bots, and the number of bots for each family does not always decline
linearly as the lifespan increases in Fig. 5. This raises suspicion that those bots
might be deliberately hibernated by the botmasters as a countermeasure to
thwart detection efforts, thus we will further investigate whether bots hiberna-
tion are scheduled purposely and how in following subsections.

4.2 Bots Fast Recruitment and Active Bots Alternation

As shown earlier, the lifespan of most bots is usually short. Thus, to perform
large-scale attacks, botmasters need to recruit a large number of bots. In our
study, we observe that the majority of bots only appear once in our traces.
The fast bots recruitment for Optima is depicted in Fig. 6, the dotted vertical
line in the figure marks whether corresponding bots from the left y-axis are
active or not at the given day, and the curve in the right y-axis represents the
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Fig. 6. Fast bot recruitment for Optima

total number of active bots at a given day. Note that the bots from the left
y-axis are sorted in the ascending order of their IP addresses. During those 3
peak events tens of thousands of bots suddenly become active and disappear
after the completion of a major campaign. Our bots organizational preference
analysis in Sect. 3.2 confirms that the abrupt surge of bots is primarily due to a
temporary recruitment of bots from other botnets to launch a highly intensive
attack—including the borrowing of dedicated bots found at some organizations
with vulnerable defenses.

Diving deep into the composition of active bots we find a strong level of
bots alternation. We learn from our lifespan analysis that, for all families even
in their seemingly stable periods, in which the total number of simultaneously
live bots does not change much over one or several weeks, the majority of bots
still remain active for less than one week. Analysis results show that the new
bots activated by botmasters compensate the loss of old bots. It is unlikely this
unnatural harmony of bots alternation is merely due to the effectiveness of bots
mitigation, and we believe it is a side effect of countermeasures to defeat defense
that botmasters voluntarily utilize, which is to iterate bots from their pool of
slave bots to complicate the process of take-down mitigations.

4.3 Bots Re-occurrence Patterns

Excluding a small number of “always-on” bots, majority of bots are only
observed once except for a number of bots that consistently reoccur in the 29-
week observation window. To understand the root cause of those bots’ uncommon
behavior, we divide bots into groups by their occurrence count. Note that we
count the weekly occurrence for all bots, and if the same bot occurs in two or
more consecutive weeks, we only count it as one occurrence. As Fig. 7 shows,
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a common patten across all families is that the larger the occurrence count is,
the less number of bots there are. Another pattern is that a proportional rela-
tionship exists across families between bot count per occurrence group and total
bot count in their respective family. Given the current data in hand we’re still
investigating what are the criteria used by botmasters to select bots to occur
more than once in their lifecycle.

We also conduct a per-bot re-occurrence analysis to measure their re-
occurrence distance. The term “re-occurrence” in this context is used to describe
bots that are active in week i, become dormant in week i + 1, but are brought
back to life in week i + j (where j > 1). In this sense, we define j as the re-
occurrence distance. Because our observation window is only 7 months rather
than years, the chance that the same bot is taken down through disinfection,
but becomes re-infected by the same malware, is low. Therefore the impact
of false positives is negligible for this analysis. Bots with longer re-occurrence
distance could be attributed to either dedicated bots or zombie machines that
existing mitigation efforts fail to completely disinfect. As Fig. 8 shows, as the
re-occurrence distance increases the number of bots declines near linearly except
for 2 families, Aldibot and Dirtjumper. A closer look at these 2 families in the
figure reveals that they both own a relatively large number of bots with long
re-occurrence distances compared to others. Dirtjumper has over 1000 bots with
the re-occurrence distance as high as 18 and 21, while Aldibot has a sudden
surge at the re-occurrence distance of 16. The re-occurrence pattern associated
with both families highlights the lack of response to active hosts in malicious
activities, where resources utilized in botnets stay for long time infected—thus
reused after a relatively long time.

Fig. 7. Number of occurrence for bots
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Fig. 8. Bots re-occurrence distance

4.4 Reused Bots Analysis

Another interesting observation we revealed when examining the bots in our
dataset is the presence of a large amount of reused bots – the bots belonging
to multiple botnet families, which could be due to multiple infections or due to
using paid infrastructure (i.e., pay-per-install) [31]. In reality, while one would
expect normally a single host to be utilized for a single malicious activity of a
certain type, we hypothesize that hosts with multiple infections are often uti-
lized by multiple botnets to perform various types of malicious activities and to
participate in many campaigns. This hypothesis, validated through our analysis
results below, is of particular interest to the security community for multiple
reasons. While the understanding of reuse may shed light on the genealogy of
malware and their associations, it most importantly highlights the differential
roles that various types of bots play in the cyber underground world, where
reusable bots may play much bigger roles in cyber attacks launched via botnets.
Host machines that serve as reused bots are more threatening, which means
they could be further leveraged to participate in other campaigns. Also, having
various infections may highlight those hosts tendency not to disinfect from a
compromise over a long period of time (honeypot is an exception). Such nature
of reused bots indicates that they are long-living and possibly a good candidate
to serve as nodes for botnet C&C channels, or “always-on” piece of the botnet
infrastructure. Thus, by correctly identifying those bots, cyber defenders may
leverage such information to effectively defend against cyber attacks by guiding
efforts of disinfection in a feasible way.

4.4.1 Reused Bots Scheduling Strategies. Among the 2,280,389 unique IPs
identified as infected hosts, 320,340 IPs, accounting for roughly 14.0% of total
bots, are confirmed to be reused by at least two families during the 7 months. The
average reuse ratio across different families varies significantly, where statistics
of reuse unveil that some families tend to have a higher reuse ratio of its bots
than other families. The number of reused bots and their shift pattern are an
important metric to measure the collaboration efforts among different botnet
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Fig. 9. Reused bots. (An illustration using the case of Blackenergy and Dirtjumper
botnet families.)

families. It would be crucial to recognize the correlation between the magnitude
of reused bots and the overall activity level of individual families. Thus, in this
subsection we inspect the interactions and collaborations via reused bots between
two specific families over time.

We choose the Blackenergy and Dirjumper since they are two of the most
active families in our dataset. In our data pre-processing step we aggregate
the /24 subnets to group various IP addresses, thus reducing the total num-
ber of addresses in our analysis. Figure 9 shows how the activity level of those
two families correlates with their collaboration. The x-axis and the left y-axis
mark the date and the subnet index, respectively. The right y-axis represents
the total number of active subnet in log scale. The dotted horizontal line rep-
resents whether the corresponding subnet from left y-axis is reused by both
families across time. From the figure it is evident that tens of different sub-
nets are reused by these two families. The three curves represent the number of
active bots for Blackenergy, Dirtjumper, and the reused subnets, respectively.
We observe that when there’re no spike events, the number of active bots for
Blackenergy and Dirtjumper is in the same order of magnitude, and the num-
ber of reused subnets fluctuates roughly in the same pace as that of those two
families. Even when the spike events of either families occur, there are no notice-
able surges of reused subnet count. These similar behaviors between these two
families are less likely to be only coincidental, therefore we infer that the huge
number of new bots in spike events is recruited for one-time use of specific cam-
paigns, while reused subnets are treated as backbone of botnet activities. This
subtle relationship implies that a master-slave relationship might exist between
them.
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5 Insights to Botnet Detection and Defense

In previous sections our in-depth analysis of a large botnet dataset expose some
new bot recruitment patterns and various sophisticated botnet scheduling strate-
gies. By understanding the trending techniques adopted by bot-masters, security
researchers could devise more effective defense mechanisms to detect and miti-
gate botnet attacks.

Prediction of Bots Origins Based on Their Family. In Sect. 3 county pref-
erence study, we learn that many different bot families have their own per-family
unique characteristics regarding recruitment preference. For example, some bot
families tend to concentrate in a few preferred countries, and some bot families
only exist in one or two dedicated countries. These recruitment preference pat-
terns persist during our 7-month data collection period, thus with confidence
we could predict participating bots’ origins for a campaign launched via certain
bot family. This new capability will definitely boost defense to effectively identify
attacking traffics from normal ones. For example, when the host machine detects
itself under DDoS attacks from bots in Illusion, one defense mechanism is to
activate a specific firewall rule to block all connections from Pakistan to alleviate
the system burden, since we know Illusion family exhibits local botnet char-
acteristic. Also, as noted earlier, pushback models, such as the work of Ioannidis
and Bellovin [8], Chen et al. [9] and Kang and Gligor [10], can benefit from this
insight in determining where pushback and filtering (at the Internet-level) are
done.

Vulnerable Organizations. Our organization preference analysis shows that
bots distribution is not purely random, but rather targeted. Some organizations
contain significantly more bots than others, for perhaps having more vulnerable
machines, which makes them easy targets for bot recruitments, or for being
backbone network service providers. With the list of vulnerable organizations,
security researchers can perform a more thorough security audit of host network
environment, and even urge third party organizations to improve their security
guarantees. This insight can be useful in postmortem host cleaning: upon the
take-down of C&C channels, it would be useful to clean hosts. Knowing the
affinity of botnets and certain malware families to certain organization would
guide such cleaning efforts.

Bots Ordering of Severity. In Sect. 4 we discussed the latest bots scheduling
strategies we identified from the dataset. In addition to static attributes such
as bots’ geographic information, these dynamic attributes of bots increased the
complexity of dis-infection efforts. Due to the limited resources and time-sensitive
defense requirements to recover from attacks, it calls for a meaningful ordering
of bots per their severity. We believe long-lived bots could potentially serve as
shadow botmasters (to mitigate failure) or command and control channels for
botnets. Thus when mitigating a large-scale botnet activity, it takes precedence
to shut down long-lived bots. We also learnt that some short-lived bots are bots
shared in a dedicated pool and coordinated by bot-masters to participate in
botnet activities.
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It is essential to enumerate all short-lived bots in the pool and shut down
them all in once, if possible. Those short-lived bots with apparent alternation or
re-concurrence patterns will need to be assigned higher level of severity. Reused
bots are another important and interesting finding in our study. Different botnets
collaborate to some extent to perform malicious actions via reused bots. Taking
down one reused bot would mitigate threats from multiple botnets, thus reused
bots should be given higher level of severity as well when cyber defenders plan
their dis-infection efforts.

6 Related Work

Previous research efforts on botnet measurements have mainly focused on the
taxonomy and classification of botnets by analyzing botnet behavior and com-
mon characteristics, such as architecture, command and control channels, com-
munication protocols, and evasion techniques. These efforts have mainly been
done via infiltration [18], as done by Bacher et al. [32,33] or passive measurement,
as done by Abu Rajab et al. [34]. Many early studies looked at the most common
IRC-based bots relying on a centralized control, as shown by karasaridis et al. [35]
and Barford and Yegneswaran [36]. Later on numerous new botnets began to use
http-based C&C channels and leverage the more stable P2P based communica-
tion architecture, per Wang et al. [17] and Holz et al. [37], to mitigate failure due
to centralization. Other work focused on in-depth case study of individual bot-
net families, as done by Binsalleeh et al. [19], Andrade and Vlajic [14] and Shin
and Gu [38].

Recent work focused on Internet or large scale measurement study of net-
work traffic to develop methods for revealing more properties of botnets, such
as their size [29] and activeness [24,38]. In our work, we analyze the bots’ static
properties and dynamic behaviors from a different angle, focusing on botmaster
strategies behind the scenes. By conducting a large-scale measurement study of
bots activity from multiple well-known botnet families, we uncover several new
bot recruitment and scheduling strategies. To the best of our knowledge, some
of our findings, such as bot recruitment preferences and bot resources schedul-
ing, are not reported before. Similar to our study, Chang et al. [39] conducted
a measurement study of a commercial dataset to reveal the latest botmasters’
strategies. While both works share a common theme of understanding botnets
utilized by DDoS attacks, the focus of each work is different. In particular, Chang
et al. outlined measurement highlights collectively, focusing on botnet collabora-
tion observations. On the other hand, we study the bot recruitment at both the
country and organization levels, and bot scheduling – fast recruitment, bot alter-
nation, bot recurrence – from where we can infer the strategies of botmasters.
Furthermore, our work focuses on bot dynamics, which is a topic of independent
interest.

Although we utilize the same dataset used by Wang et al. [7], our approach of
data analysis is completely different from theirs: the findings and contributions
of our work do not share any common ground with theirs. Wang et al. utilized
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the dataset to understand state-of-the-art of DDoS attacks, while we utilize
it to understand the source and tool used for the attacks; botnets. For this
purpose they analyzed the geo-distribution of attack sources for many DDoS
attacks, the temporal patterns and collaboration trends between botnet families
to launch attacks, etc. On the other hand, whereas we focus on a meta-study of
various botnets, our goal is to reveal both static attributes and dynamic patterns
of all botnets from 23 known families to understand the constantly advancing
strategies adopted by botmasters.

7 Conclusion

Botnets today are responsible for most large-scale attacks on the Internet. Thus,
it is essential to understand their latest behavioral traits for insight into defenses.
In this paper, we have performed a measurement study of bots activity from 23
known botnet families for about 7 months. By conducting a series of in-depth
analysis of bots’ static properties and dynamic behaviors, we have uncovered that
today botmasters have adopted several new strategies to recruit and schedule
bots. As we still investigate the potential consequence of those strategies in
bots recruitment, we suggest to leverage such insights to devise new defense and
mitigation schemes.
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Abstract. This paper presents a study of the Internet infrastructure in
India from the point of view of censorship.

First, we show that the current state of affairs – where each ISP imple-
ments its own content filters (nominally as per a governmental blacklist)
– results in dramatic differences in the censorship experienced by cus-
tomers. In practice, a well-informed Indian citizen can escape censorship
through a judicious choice of service provider.

We then consider the question of whether India might potentially fol-
low the Chinese model and institute a single, government-controlled fil-
ter. This would not be difficult, as the Indian Internet is quite centralized
already. A few “key” ASes (≈1% of Indian ASes) collectively intercept
≈95% of paths to the censored sites we sample in our study, and also to
all publicly-visible DNS servers. 5, 000 routers spanning these key ASes
would suffice to carry out IP or DNS filtering for the entire country;
≈70% of these routers belong to only two private ISPs. If the govern-
ment is willing to employ more powerful measures, such as an IP Prefix
Hijacking attack, any one of several key ASes can censor traffic for nearly
all Indian users.

Finally, we demonstrate that such federated censorship by India would
cause substantial collateral damage to non-Indian ASes whose traffic
passes through Indian cyberspace (which do not legally come under
Indian jurisdiction at all).

Keywords: India · Network monitoring · Anti-censorship

1 Introduction

The current study of Internet censorship is mostly focused on openly censori-
ous countries – China [37,43,52], Iran [34], Pakistan [55], etc. Even world-wide
studies of censorship [32] essentially focus on countries well known for their cen-
sorship. However, in practice, many other countries still implement some form of
censorship, which may even be more insidious because citizens are barely aware
of it (for example, Sweden [6] and France [4]). In this paper, we consider the
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case of India, a major emerging power with over 450 million Internet users [19]
(up from 180 million in 2013, and on track to overtake Europe, which has 520
million users in all). India has been ambivalent about its censorship policy for
years [13] (for example, in August 2015, the government ordered 857 target sites
blocked, then backtracked in the face of public outcry [24]), but in context of
the fact that legally1 the executive branch in India holds unqualified power to
block information, it is natural to be concerned about free speech in India. We
begin by asking what policy, and what mechanism the Indian government cur-
rently employs; how this might change in future; and what unintended effects
such censorship might have on foreign traffic transiting Indian ASes.

Our first step was to formally approach the authorities, by filing a Right to
Information [25] request (RTI), inquiring about the policies and mechanism the
government uses to block content. While the policy itself was confidential, the
government was willing to share that the responsibility for filtering lies with
individual ISPs, and that they could implement any mechanism they choose2,
as long as they uniformly comply with the given censorship policy.

In practice, an ad hoc approach to filtering generally leads to inconsistencies
and errors [54], especially during updates [48]. Our initial experiments suggest
that this is indeed the case; filtering policies are highly inconsistent across ISPs
(see Table 1), contrary to the government’s expectations as stated in the official
response. The current “feudal” approach to policing the Internet in India, viz.
allowing ISPs to implement their own censorship mechanisms (which, as we
show, do not “strictly adhere” to government diktats), results in inconsistent
censorship policy enforcement: for e.g., our findings show that users may be able
to evade censorship more easily when accessing pornographic sites via Airtel, a
large private ISP that screens fewer sites, compared to others such as MTNL.

We next consider the question of how, in future, the government might
enforce a unified censorship policy for the whole country. The usual mecha-
nism to enforce a single policy, is to redirect all Internet traffic through a single
point of control, where all the traffic can be monitored(this approach has been
employed by Iran [34], Venezuela [7], and Saudi Arabia [60]). Even in the case
of China, a whole layer of state-controlled ASes must be used to act as a filter-
ing layer that provides Internet connectivity to other ASes [60]. Nearly all the
filtering is carried out by two Autonomous Systems - AS 4134 and AS 4812 [62].

Can the government, in future, force all networks to re-route their traffic via
a chosen ISP so as to monitor the network? We note that India’s Internet infras-
tructure was grown through a laissez-faire approach (closely correlated with the
cellular networking boom), and now consists of ≈900 ASes (over 170 of which are
ISPs) [28]; it would require a massive effort to redirect all traffic through this new
provider. Quite likely, the amount of disruption caused by such a redirection would
make it difficult for a democratic nation to implement by fiat.

1 Information Technology Act of India 2008 (Section 69A).
2 IP and URL blacklists [38] are common, but ISPs may choose to employ more

invasive techniques, such as DNS Injection Attacks [47] or even IP Prefix Hijack-
ing [35,46].
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Might the government implement filtering with the existing infrastructure,
without necessarily enforcing traffic redirection? For the existing network, is it
possible to find a small set of “heavy-hitter” ASes (and network elements in
these ASes) that can potentially monitor or censor traffic without too much
collateral damage? More formally:

– Is it feasible to filter/monitor India’s Internet traffic? If so, how, and where?
Given that India has over 900 ASes,
1. Are there a small number of key ASes and routers where the government

can intercept most Indian traffic to censored sites?
2. How does the number of censorious ASes required, vary with the censor-

ship technique – e.g. IP blacklisting, DNS Injection, IP Prefix Hijacking?
– How much collateral damage will traffic filtering cause? Internet censorship

by an “upstream” AS can lead to inadvertent traffic filtering for its customers.
How much impact can Indian censorship have on traffic that simply transits
Indian cyberspace?

To answer the above questions, in this paper, we map the AS-level paths from
each Indian AS to the potentially censored websites (our test corpus includes not
only the sites publicly announced as being blocked, but also others from public
resources such as Herdict [12]). We then construct router-level maps within these
ASes, using Rocketfuel [58]. Finally, we identify the “key” ASes and routers,
i.e. those which appear in an overwhelming majority of paths (and which are,
therefore, the logical locations for network filtering).

Our experimental findings reveal that ten ASes cumulatively intercept over
95% of the paths connecting Indian ASes to the sites in our study (i.e. potentially
censored sites). Eight of these key ASes, acting together, can poison ≈99% of the
network paths leading to DNS resolvers in India (as well as other publicly avail-
able services such as GoogleDNS and OpenDNS), thus censoring URL requests.
Even more alarming, when we consider another mechanism of censorship - IP
Prefix Hijacking - we find five ASes, each of which can individually poison the
BGP routes for almost all ASes in the country. Even though the actual number
of routers needed for such efforts varies dramatically (from 7 in some ASes, to as
high as 1782), overall, a total of less than 5000 routers across all the eight ASes
are required for IP or DNS filtering – about 70% of which routers belong to two
large private ISPs and any one of five key ASes is enough, if the government
resorts to more aggressive measures like IP Prefix Hijack.

Finally, we note that paths that transit Indian ASes but originate outside
India form a substantial fraction of the Internet: if India were in fact to adopt a
comprehensive censorship scheme in its key ASes, she would censor about 1.15%
of all Internet paths to the censored sites, worldwide.

Thus, the above findings would indicate that, in fact, ordinary Indian citizens
should be concerned about censorship, and perhaps start to equip themselves
with anti-censorship tools [39].

We begin by discussing the background and related work, in the next section.
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2 Background and Related Work

The interaction of the Internet with government policy (especially censorship
and privacy issues) is a controversial subject [14,15,30]. Our case study in this
paper, India, is a democratic nation, but there is sufficient evidence of Indian cen-
sorship [8,21] that anti-censorship research organizations declare India “partly-
free” [20]. For example, the Indian government officially demands that organi-
zations (e.g. Google Inc., Microsoft etc.) censor pages deemed objectionable [9].

At present, the government delegates the censorship of traffic to ISPs, as per
ambiguous blacklists3. This loose approach to censoring traffic leads to inconsis-
tent filtering across ISPs – some users may be able to evade censorship by virtue
of their provider ISP.

The question arises whether the Indian government can impose a centralized
filter (as seen in e.g. Iran). Creating a new AS and redirecting through it would
have high costs in network disruption, latency, service quality, and so on. But
such a process will not be necessary if the current structure of Indian Internet
is already well suited for monitoring and censorship.

To determine the set of ASes and routers where adversary may install infras-
tructure for censoring large fraction of network paths, as they exist today, we
generated AS and router-level maps of India. We used such maps to identify
such key ASes and routers, and the impact they have.

2.1 Background

Our paper relies heavily on mapping the structure of the Internet, an area
of research called network cartography [44]. The Internet consists of routers
and hosts, but also has some further structure: the routers and hosts belong
to Autonomous Systems, which are independent networks (independent in the
sense, they themselves choose who to exchange traffic with). Consequently, Inter-
net mapping proceeds at two levels:

1. AS-level mapping. For our research, we required Internet maps representing
paths connecting IP address of censored site to various ASes. We thus chose
Qiu and Gao [56] AS path mapping approach. Their technique uses publicly-
available BGP routes (obtained from various Internet Exchange Points across
the globe [31])) and the relationships between the ASes [41], and outputs a
directed graph of the Internet connecting IP prefixes to all ASes of the world.
Other AS-level mapping approaches, such as the CAIDA Ark Project [3] and
iPlane [53], involve traceroute probes from various vantage points to IPs in
different ASes. Such approaches rely on traceroute and are generally limited
by the network locations and availability of the volunteered probing nodes; they
may not provide the AS-level path between any two randomly chosen ASes.

2. Router-level mapping. An AS is not a black box, but contains hosts and
routers. Mahajan et al. [58] show how the internal structure of an AS can be

3 Several authors have mentioned how these blacklists vary over time [1,11].



422 D. Gosain et al.

mapped, by a combination of traceroute probes, IP alias resolution4, and
reverse DNS lookups.

Powers of the Adversary: Our adversary is a censorious government. The adver-
sary aims to filter Internet traffic, and for this purpose may perform IP filtering,
DNS injection/URL Filtering, and IP prefix hijacking attacks. We note that
even a government has limitations; for example, it would prefer to implement
filtering at a small number of locations, rather than at every ISP network in the
nation, because of both various political and technical factors (e.g. if changing
the blacklist implies wide scale router level re-configuration, there will almost
certainly be inconsistencies and failures in enforcement).

2.2 Related Research

Much of the study of modern Internet censorship was developed in the context of
China [49,61–63], particularly the different censorship techniques employed and
the network destinations filtered. For e.g., Winter and Lindskog [61] examine
how the Chinese authorities use DPI-capable routers to detect Tor Bridges.
Others, such as [33], explored the mechanics of DNS filtering and how China is
contributing to collateral damage. A major step forward was made by Verkamp
and Gupta [32], who deployed clients in 11 countries (including India) to identify
their network censorship activities – IP and URL filtering, keyword filtering and
DNS censorship etc. Later authors – Nabi [55] in Pakistan, and Halderman et
al. [34] in Iran – demonstrate different methods of censorship employed by their
respective regimes, as well as different forms of content blocked. Such studies
of censorship in repressive regimes are often limiting, as they require Internet
access from almost all network locations inside the country (Nabi et al. were
able to get access from only five locations, and Halderman from only one).

We take a different direction with this paper. While we begin by examining
instances of network censorship in our target country (India), our main aim is to
determine the potential for censorship, in case the regime decides to become more
censorious. Specifically, how bottlenecked is the Indian Internet? Is it possible
for the adversary to place censors in a relatively small set of ASes and routers,
and still filter a large fraction of network paths (and thus potentially users)? -
if so, this presents a much lower barrier to entry than monitoring in every AS.

The most relevant related work we are aware of, is Singh et al.’s study of how
Internet censorship correlates to network cartography [59]. The authors show a
strong correspondence between the Freedom House Index [5] of a nation and
its Internet topology, and indeed, claim that a nation’s network topology is the
best indicator of a countrys level of freedom. Our work makes use of network
topology as well: we use it to determine the “key” network locations (ASes and
routers) where the adversary (censorious government) would rationally deploy
censorship infrastructure, if its aim was to censor all or almost all Internet traffic
in the country, and the impact of such measures on network paths originating

4 Different interfaces of the same router, with different IPs, are called IP aliases.
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both within and outside the nation (but transiting Indian ASes). We perform
this study for various traffic filtering techniques in the following section.

3 Motivation, Problem Description and Methodology

3.1 Preliminary Findings and Motivation

Well-studied censorious countries, such as China, Iran, and Saudi Arabia, tend
to have a very clear censorship policy. In contrast, India has a rather ad hoc
approach: the government expects all ISPs to (independently) enforce its policies.
We find that in practice, traffic filtering is highly inconsistent across popular
Indian ISPs – the set of blacklisted sites varies by orders of magnitude.

Table 1. Censorship trends in India: some initial results.

ISP Website categories

Escort

(150)

Music

(100)

Porn

(50)

Torrents

(30)

Social

(20)

Political

(20)

Tools

(20)

Misc.

(150)

Airtel 50, 80, 20 82, 6, 12 1, 49, 0 13, 16, 1 8, 10, 2 2, 15, 3 1, 14, 5 80, 41, 29

Vodafone 24, 87, 39 95, 1, 4 2, 45, 3 16, 11, 3 8, 8, 4 0, 13, 7 4, 11, 5 70, 35, 45

Sify 12, 98, 40 1, 75, 24 1, 48, 1 6, 22, 2 0, 16, 4 0, 15, 5 1, 16, 3 11, 75, 64

NKN 11, 105, 34 57, 33, 10 1, 48, 1 10, 16, 4 4, 12, 4 2, 14, 4 1, 14, 5 65, 56, 29

BSNL 41, 69, 40 68, 12, 20 0, 45, 5 12, 14, 4 7, 10, 3 4, 12, 4 3, 14, 3 88, 27, 35

MTNL 27, 98, 25 81, 2, 17 45, 3, 2 15, 12, 3 9, 8, 3 14, 1, 5 2, 12, 6 73, 23, 54

Siti 23, 99, 28 28, 56, 16 44, 4, 2 14, 13, 3 9, 8, 3 1, 14, 5 1, 12, 7 86, 29, 35

Reliance Jio 0, 123, 27 0, 77, 23 0, 38, 12 2, 26, 2 0, 18, 2 0, 16, 4 0, 15, 5 0, 78, 72

To study such inconsistencies, we selected a list of 540 potentially censored
websites, divided into 8 different categories (ranging from escort services, to anti-
censorship tools like Tor [40]). We then systematically observed the censorship
policy in different ISPs, by trying to access our potentially-censored websites
through them.

Table 1 summarizes our findings. The rows represent the ISPs, columns cor-
respond to the category of site which being filtered, and each entry is a 3-tuple
(cn, on, xn) representing the number of each type of response – censored, open,
and inaccessible.5 For example, we probed 150 escort websites through the Airtel
network, and observed 50 to be censored, 80 open, and 20 inaccessible.
5 We explain these terms below.

– Censored: the ISP intercepted the requests, and responded with an HTML iframe
displaying a filtering message (indicating that requested URL had been blocked as
per the directions from the Department of Telecommunication).

– Open: Websites were accessible without filtering.
– Inaccessible: Websites were “down”. There was not enough information to deter-

mine if the sites were inaccessible due to network or system outages, or requests
were deliberately filtered or throttled by the ISP.

.
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We note that the variation of censorship by ISP is quite dramatic: Airtel
blocks only 1 out of the 50 pornographic sites probed, whereas MTNL blocks 45.

It is clearly difficult to get hundreds of independent ISPs to correctly comply
with censorship orders. The question arises whether, if the government decides
to enforce a single policy, it is able to do so. So the question arises, are there a
few key bottlenecks in the existing network, where filtering may be carried out?

3.2 Problem Description

In our research we are particularly interested in finding a small set of key loca-
tions (ASes and routers) that intercept a large fraction of network paths. More
specifically, our questions are as follows.

– Is it possible for the government to monitor/censor a large fraction of Internet
traffic by controlling only a small number of network locations (viz. ASes and
routers)?

– What fraction of traffic could be filtered, and who would be most affected?
– Would such censorship affect users outside the country as well?

3.3 Evaluation Methodology

Identifying Potential Network locations for IP Filtering: In order to estimate
the locations for installing IP filtering infrastructure, we built an AS-level map
using paths in the Internet, then focused on Indian ASes and their connections.
Our map was built using Gao’s algorithm [56], which finds AS-level paths to the
home AS of chosen IP prefixes (in our case, censored sites) from every other AS
in the Internet. The algorithm uses links from known AS paths in BGP routing
tables; we obtained tables from a number of vantage points [31].

Unlike other nations, which have an unambiguous list of blocked sites [55],
India has no clear censorship policy. We created a corpus of sites blacklisted by
various government decrees (as reported by popular media), and also added the
sites reported as blocked in India by the crowd-sourced censorship-reporting sites
like Herdict [12]. These included social media sites, political sites, sites related
to unfriendly nations, and p2p file-sharing sites. Finally, we added to the list the
adult sites popular in India (as per Alexa [2]).

We randomly sampled about 100 sites from this corpus. We then computed
the paths between all Indian ASes and these prefixes. The ASes appearing in
these paths were sorted by frequency of occurrence; we thus selected the few
most frequent ones.

Do these ASes appear in paths to other potentially blocked sites as well? To
answer such questions, we re-estimated our paths with another set of about 220
sites, chosen from the corpus. The heavy-hitter ASes for this new set of paths
were the same as the ones found before.
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Intra-AS Topology Generation: In the second round of experiments, we employed
the Rocketfuel algorithm [58] to compute the router-level paths through 10
heavy-hitter ASes (i.e. major Indian ISPs), then identified the routers which
occur in a large fraction of paths (i.e. the heavy-hitter routers in heavy-hitter
ASes), as follows.

1. Using planetlab nodes, we ran traceroute probes to three representative
IPs in each prefix advertised by the ASes and by their immediate (1-hop)
customer ASes.
Traceroute returned router level paths leading to and out of the said ASes.

2. From the traceroute trace, we chose the sub-paths consisting of router IPs
advertized by the AS under study (i.e. router within the ASes, identified
from [16]).

3. We resolved the aliases (corresponding to the discovered router IPs) with
Midar [18] alias resolution tool.

4. Finally, from the discovered traceroute paths we selected the minimum num-
ber of routers which cumulatively intercept a large fraction of the paths. To
do this we chose the following heuristic:

– If total number of edge routers are less than total number of edge and
core routers that intercept a large fraction of the paths (over 90%), then
we selected the edge routers alone (as the set of edge routers cover 100%
of paths through the AS).

– Else, we selected the “heavy-hitter” (core plus edge routers), appearing
in a very large fraction of the paths (over 90%); not all edge routers
may appear as often as others (edge and core routers appearing in the
discovered paths).

Identifying Potential Sites for DNS Based Filtering: Another common approach
to censorship is to prevent the DNS service from resolving requests. The cen-
sor either instructs DNS servers (within its jurisdiction) to filter requests for
blacklisted URLs, or installs infrastructure to intercept DNS queries on routers
(en-route to DNS servers) and respond with bogus IPs or NXDOMAIN responses
– also referred to as DNS Injection attack.

Filtering DNS requests, either by simply dropping them, or by responding
with bogus responses, could be carried out at the DNS server. However, in a
country like India, hosting more than 55000 DNS servers, distributed across
different networks, reconfiguring all such servers to filter DNS queries for black-
listed sites would not be easy (besides simple disobedience, there would also be
misconfiguration bugs, delays, and network downtime). It would be much more
practical to identify a few ASes (and routers therein), that intercept all or almost
all the network paths connecting DNS servers to all ASes in the country.

To identify key ASes for DNS injection, we began by identifying the DNS
resolvers across all Indian prefixes. We probed IP prefixes of every Indian
AS for available DNS servers (UDP port 53) using nmap [51], and noted
whether the response was open, filtered, or closed. (Closed corresponds to ICMP
‘destination port unreachable’ message responses from the destination.
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Open means the client received a meaningful response. Filtered indicates that
the client received no response6.)

Each IP, for which we obtained a filtered or open response, was sent a request
to resolve the IP address of some popular WWW destinations (e.g. https://www.
google.com). Addresses that allowed resolution were added to our list of publicly
available DNS resolvers.

Finally, using Gao’s algorithm, we constructed a graph of prefix-to-AS paths
connecting the IP prefixes corresponding to DNS resolvers, and all the Indian
ASes. To find the ASes which would be most effective at DNS injection, we
identified ASes at the intersection of a large number of these paths.

Impact of IP Prefix Hijack Based Censorship: In an IP Prefix Hijacking attack,
malicious BGP routers advertise fake AS-level paths7 in an attempt to poison
routes to an IP prefix (see Fig. 1), thus attracting a large volume of traffic [35,
36,42,45,57].

A DB
B
A

C E Pr

Att
F1

Att advertises fake path

<Att--F1--Pr> to B

Victim AS containing 
prefix Pr

Fig. 1. IP Prefix Hijacking: valid path: A − B − C − D − E − Pr. A is the origin
AS and Pr the AS with the destination prefix. Attacker Att advertises a shorter path
Att−F1−Pr, to AS B. If B chooses this path and directs its traffic to Att, the attacker
can censor the traffic.

Prefix hijacking is an extremely aggressive attack, and unlikely to be used
in practice; but it has been used in the wild (e.g. blocking of YouTube by
Pakistani ISPs [23], and also those involving ConEd (US), TTNet (Turkey),
Link Telekom (Russia) among others [46]) and remains viable as an orthogo-
nal way of censoring traffic. So for completeness, we have also considered prefix
hijacking as a potential tool for censoring the Internet in India.

In general, for a successful prefix hijack attack, the malicious AS either broad-
casts a shorter path to the prefix, or claims to own it outright. The attacking
AS advertises fake routes for the targeted prefix to all its neighbors. Ballani
et al. [35] report that receiving ASes accept these advertisements based on the
following heuristics:

1. If there exists a customer path towards the target IP and iff the advertisement
presents a shorter customer path, then choose it, else reject it.

6 This may be due to unavailability or filtering by firewall(s).
7 Alternatively, router misconfiguration can also lead to similar situations [54].

https://www.google.com
https://www.google.com
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2. If there exist a provider path towards the target IP and iff the advertisement
presents a shorter provider path, then accept it. For all other cases, the paths
are accepted without considering the length.

3. If there exist a peer path towards the target IP and iff the advertisement
bears a shorter peer path, accept it. Customer paths are accepted without
length considerations while provider paths are ignored.

Estimating the Impact of Prefix Hijack Attack: To study the potential
impact IP prefix hijacking, we used the previously constructed AS-level topol-
ogy and chose an attacker AS with a high node degree(i.e. the number of ASes
adjacent to the said AS). Inspecting the prefix-to-AS paths, we identified ASes
with which the attacker AS had a business relationship, and applied Ballani’s
heuristics to determine the number of ASes potentially affected by fake adver-
tisements.

Collateral Damage Due to Traffic Censorship: Several non-Indian ASes rely
on Indian ASes for Internet connectivity. Censorship activities in Indian ASes
may potentially filter the traffic of these non-Indian customers as well [33]. For
example, such unintended filtering was reported by Omantel, that peers with the
Indian ISP Bharti Airtel [17]. As one of our research objectives, we try to identify
ASes outside India that may be affected by Indian censorship. We identify paths
which do not originate in India, but pass through or terminate in India. The
non-Indian customers on such paths may face unwanted access restrictions.

4 Experimental Results

Continuing from the description of our experiment in the previous section, in
this section we present our results. First, we consider router-level filtering, and
how many ASes and routers must be selected for effective censorship (in terms
of coverage of paths to filtered destinations). Along similar lines, we identify the
locations where the adversary could launch a DNS injection attack. We go on to
present the results of simulating IP prefix hijack attacks on Indian ASes. Finally,
we report the collateral damage to foreign ASes due to IP filtering in India.

4.1 Network Locations for IP (Router-Level) Filtering

As mentioned earlier, we first obtained paths connecting Indian ASes to about
100 potential target sites (chosen from our corpus). Figure 3 represents the num-
ber of paths an individual AS intercepts; the horizontal axis of the graph indi-
cates the ASes, ranked according to the number of paths each one intercepts.
A small number of Indian ASes appear in the overwhelming majority of these
paths; these ASNs and their owner organizations are presented in the Table 2.

The question remains whether the ASes we observe are simply an artifact
of the 100 target sites we chose. To check whether this is so, we repeated the
experiment with another (non-overlapping) sample of 220 target sites from our
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Table 2. AS Ranks, their ASNs and their owners.

Rank ASN Owner

1 9498 Bharti Airtel

2 4755 Tata Comm.

3 55410 Vodafone

4 9583 Sify Ltd.

5 9730 Bharti Telesonic

6 9885 NKN Internet

7 55824 NKN Core

8 45820 Tata Teleservices

9 18101 Reliance Comm.

10 10201 Dishnet Wireless

Fig. 2. CDF of Indian paths intercepted by ASes.

corpus. The same 10 ASes covered the vast majority of paths to both sets of tar-
get sites, indicating that they are very likely major Indian providers of Internet
infrastructure, and cover a majority of paths to any target sites.

The cumulative results of paths intercepted vs total number of ASes, corre-
sponding to both experiments, is presented in Fig. 2. As evident, we only need 4
ASes to censor over 90% of the paths to the censored destinations, and 10 ASes
for 95% of the paths. Figure 3 represents the number of paths intercepted by
each of these ASes individually.

Intra-AS Topology: We now consider the question of which routers (in our key
ASes) are responsible for carrying the vast majority of Indian Internet traffic. Fol-
lowing Mahajan et al.’s approach [58] (as described previously in Subsect. 3.3),
we create router-level maps of the key ASes, and identify routers that appear on
a large fraction of the paths.
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Fig. 3. Paths intercepted by individual ASes vs AS rank (by path freq.) Total 186679
paths from Indian ASes to 211 prefixes (hosting 320 potentially filtered sites).

Figure 4 shows the fraction of paths these routers cumulatively intercept. (For
privacy concerns, we refrain from revealing the IP addresses of these routers.)

Table 3 represents the number of edge and core routers that cumulatively
appear in over 90% of the traceroute paths. The adversary could choose to
place filters either at these points - heavy hitter routers of the heavy hitter ASes
- or at the edge routers of the ASes, which together see all the traffic that passes
through the AS. We find that the total number of edge routers is less than the
number of “heavy-hitting” edge and core routers, and conclude that the lowest-

Fig. 4. CDF of traceroute paths intercepted by individual routers, sorted by increas-
ing number of paths through each router (for 8 important ASes.)
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Table 3. The total number of edge and core routers in 9 ASes that appear in over
90% of the discovered paths. For eg.,. AS4755 has a total of 8404 routers (1779 edge +
6229 core). However, the total number of edge routers (1779) is less than the number
of heavy hitters (6434).

ASN # of Edge
routers (E)

# of Core
routers (C)

# of Heavy hitter
routers (H)

# of DR’s required
min(E, H)

9498 1782 5321 5192 1782

4755 1779 6229 6434 1779

55410 133 594 634 133

9583 484 4458 4275 484

9730 7 63 62 7

55824 66 325 254 66

45820 193 1147 1132 193

18101 462 2724 2677 462

10201 90 1396 1315 90

cost solution for the adversary is to install censorship infrastructure on the (total
of 4996) edge routers.

We note that, at present, the number of key routers varies significantly across
ASes, from 7 to 1782. In case of the larger ASes, the AS network administra-
tor could likely improve on our figures, by combining our findings with better
information about the router-level topology and setting routing policy to pass
all traffic through a smaller number of routers. Hence our count of 4996 routers
is essentially an upper bound, limited by the policies of the present day.

Collateral Damage: Our graph of paths from censored prefixes to ASes has
186, 679 paths of Indian origin (1.76% of paths). A comparable number - 121, 931
paths of foreign origin (1.15% of paths) - transit through or terminate in
an Indian AS. Censorship by Indian ASes may inadvertently impact a very
large number of unintended customers, across Finland, Hong Kong, Singapore,
Malaysia, the US, and so on.

4.2 Censorship Through DNS Filtering

Using our approach for identifying open DNS resolvers, we identified a total of
55, 234 publicly accessible DNS servers from probing all 12.10 million Indian IPs.

After identifying the prefixes corresponding to these each resolver IP, we
selected one corresponding to each AS8 In all, we selected 355 prefixes, repre-
sentative of 355 unique Indian ASes. Finally, using Gao’s algorithm, we esti-
mated the paths from each Indian AS to the (prefixes corresponding to) DNS

8 For multiple prefixes belonging to same AS, we selected one with most resolvers.
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Fig. 5. CDF of DNS paths intercepted by top 10 Ases.

resolvers in India. Cumulatively, 8 ASes (according to path frequency) can inter-
cept 99.14% of these paths, and potentially launch DNS based filtering or Injec-
tion attacks (see Fig. 5).

We note that these 8 ASes also appear among the 10 top ASes we identified
for IP filtering and IP prefix hijacking. Hence, the same key routers for each
of these ASes (as per Table 3) may be selected for installing infrastructure to
launch DNS injection (or other DNS level filtering schemes). In all, 4906 routers
across the 8 ASes can cumulatively filter DNS traffic for all Indian ASes9.

4.3 Censorship Through IP Prefix Hijacking

For IP prefix hijacking, we chose to simulate attacks from the ASes with high
node degree. Based on our censored-prefix-to-AS topology graph, we identified
the top 10 ASes by node degree, and determined the number of ASes potentially
vulnerable to attacks from each of these ASes. The results of these simulations
are presented in Table 4.

The table shows that a small number of ASes in India can potentially affect
traffic from all Indian ASes, as well as a considerable number of foreign ones. For
example, fake advertisements by AS4755 can impact a total of 955 ASes (896
Indian and 41 others). To effectively launch an IP prefix hijacking attack, the
government needs control over the BGP speakers (which form a small fraction
of all the routers of an AS); for ASes such as AS9730, with 7 edge and 63 core
routers, this number is probably very small.

4.4 Analysis of Results

We observe that a very small number of ASes (less than 10) intercept a large
fraction of AS-level paths connecting Indian ASes to our list of potentially cen-
sored sites (obtained from public announcements of censored sites in India), and
9 As mentioned in the previous sub-section, this number may be further reduced by

routing optimization on the part of the AS network administrator.
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Table 4. IP prefix hijack: a single AS (e.g. AS9498), is well capable of censoring the
traffic of all 896 Indian ASes and few (59) non-Indian ASes through prefix hijack attack.

Owner name Attacking ASN Number of affected AS’es

Indian Non-Indian

Bharti Airtel Ltd. 9498 896 59

Tata Comm. 4755 896 41

Reliance Comm. Ltd. 18101 896 41

Vodafone Spacetel Ltd. 55410 896 42

Sify Ltd. 9583 896 58

Bharti Telesonic Ltd. 9730 749 23

Tata Teleservices 45820 560 1

Host Palace 13329 896 45

Dishnet Wireless Ltd. 10201 896 24

Idea Cellular Ltd. 55644 896 37

that this affects a substantial number of foreign users as well. While this result
is interesting, there remains the question of whether it applies to censored sites
in general, or only the ones in our sample.

Our request to the Indian government, under its own Right to Information
Act [25], for the complete list of censored sites10, was refused by the Indian
Government Department of Telecommunications and IT, citing confidentiality
concerns. Therefore, to cross-validate our results we randomly sampled two sets
of target sites from our corpus, and ran our algorithm on each in isolation. The
same set of key ASes appeared in both sets.11

We believe that DNS filtering is a viable threat. Should the aforementioned
ASes filter DNS requests, they would also impact over 99% of the AS-level paths
connecting Indian ASes to DNS resolvers both within and outside India (par-
ticularly services such as GoogleDNS and OpenDNS). We note in passing that
DNS filtering is more powerful than simple IP filtering: even if a censored site
were hosted in a Content Distribution Network (CDN), a user would be unable
to reach its content on the CDN, as the request would still have the URL of the
origin site, and would thus be filtered.

Finally, while IP prefix hijacking is rarely used (owing to its potential to
cause major network outages - e.g., the Pakistan Government’s blocking of
Youtube [23]), there exist five Indian ASes, each of which could censor traffic for
all (or nearly all) Indian users by launching an IP prefix hijack attack. Moreover,
only a handful of routers in each of these ASes – viz. the BGP speaking routers
may be sufficient for such attacks.
10 RTI number: DOTEL/R/2017/50126.
11 We also note that these ASes are, in fact, partners to foreign network providers,

and provide connectivity for almost every smaller AS in the country. This is perhaps
unsurprising, given the hierarchical nature of the Internet as a whole [41].



Mending Wall: On the Implementation of Censorship in India 433

5 Limitations and Future Work

5.1 Limitations

Our approach in this paper is to generate AS and router-level maps of India,
and identify the key ASes and routers that intercept a large fraction of network
paths. This approach is clearly limited to a snapshot of routing at a moment
in time, and in fact we intend to see how our results vary over several years in
future work. In addition, our AS-level and router-level mapping algorithms have
the following limitations.

AS Path Estimation (Gao’s Algorithm): Our path estimation strategy is
limited by the quality of publicly-available BGP routes.

– Route-collector bias: It has been argued by Gregori et al. that the existing
route collectors (like routeviews [27], BGPmon [29], RIPE [26], PCH [22] etc.)
miss many of the peering relationships between smaller ASes; our map, as it
uses Routeviews data, inherits this weakness.

– Incorrect route advertisements: In general, BGP routes are known contain
artifacts of misconfiguration and bogus advertisements [23,50]. Our estimated
paths may also be contaminated with such artifacts.

Router Level Topology Estimation: The discovered topology may not reveal
the actual router-level paths for packets traveling between the IPs of the probed
AS and the censored websites.

– Router-level path variability: Router-level maps of an AS are far more vari-
able than AS-level maps: the latter rely on AS peering information (which
is based on business relationships, that do not change frequently), while the
former change with network conditions. Routing tables themselves are prone
to inconsistencies and bogus routes [48,54].

– Imperfect coverage by Traceroute: We used a large number of planetlab
nodes to launch traceroute probes12, but there remains a chance that some
routes are simply not covered; further increasing the number of vantage
points, i.e. probing hosts, may improve our topology estimation by discov-
ering new paths.

– Routers filtering traceroute probes: In many cases, routers are configured
to not reply to traceroute probes with the usual ICMP TTL Expired mes-
sages, and remain anonymous, thereby reducing the accuracy of our estimated
router-level topology.

5.2 Future Work

Our study of Internet censorship in India can be directly extended to other
nations; while our case study was done with Indian data, we make use of no
12 The looking-glass servers used by the original authors [58] were unavailable at the

time of our experiments.



434 D. Gosain et al.

features peculiar to India. We are currently extending our analysis to other
countries, and developing metrics for how “centralized” a country is (i.e. how
many key ASes it takes to censor traffic in a country), as well as how “central”
it is in the global Internet (measured by the extent of collateral damage it can
cause). There are several other directions to extend this research, which we will
explore next.

First - objectionable content is frequently hosted on social media sites, or
other sites with apparently benign URLs. Might the government target search
engines and social networking sites as well(as seen in China)? Would this be a
full blacklist, or partial?13 And if so, would our key ASes be different for these
target websites?

There is also the question of whether popular anti-censorship and anonymity
preserving tools like Tor may be attacked by controlling a few network points.
Finally, we also intend to consider the question of policing the cellular data
network14, in our future work.

6 Concluding Remarks

Though the Indian state declares that it has a unified Internet censorship policy,
the current state of censorship (where the responsibility of network filtering is left
to individual ASes) is highly inconsistent. However, our results also show that
if the Indian government wishes to impose a single policy, the structure of the
Indian Internet shows that it would only need to control a small set of locations.
(Furthermore, a significant fraction of network paths from foreign customers,
which transit India, will be collateral damage for Indian censorship.)

1. Though India has ≈900 ASes, 10 ASes cover ≈95% of AS-level paths; a
nationwide censor using IP-filtering functionality would need to control ≈5000
routers – a challenging, but tractable, number. In particular, two private ISP
networks control over 70% of those routers (and may optimize the router
selection further).

2. DNS based filtering requires only eight of these ASes and impacts >99% of
the AS-level paths connecting Indian ASes to the DNS resolvers both within
and outside India (for services like GoogleDNS and OpenDNS).

3. Any one of five ASes is capable of disrupting network connectivity for all
Indian ASes, through IP prefix hijacking attacks.

India, unlike China, is still ambivalent w.r.t. censorship, but the findings in this
paper indicate that ordinary citizens should indeed be concerned (and possibly
start to equip themselves with censorship circumvention techniques), as large
scale censorship would not be very difficult for the government to implement.

13 Semantics-based filtering is very hard; e.g. attempts to block jihadi mouthpiece sites
also block sites that monitor jihad as a threat, such as jihadwatch.org.

14 As per reports published in recent years, India has 860 million cellular users [10].
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Abstract. URL and DNS are two common attack vectors in malicious network
activities; thus, detection for malicious URL and DNS is crucial in network
security. In this paper, we propose an online detection scheme based on character-
level deep neural networks. Specifically, this scheme maps the URL and DNS
strings into vector form using some natural language processing methods. The
CNN (Convolutional Neural Network) network framework is then designed to
automatically extract the malicious features and train the classifying model.
Experimental results on real-world URL and DNS datasets show that proposed
method outperforms several state-of-art baseline methods, in terms of efficiency
and scalability.

Keywords: Network security · Malicious URL detection · Online detection
CNN

1 Introduction

As more of our devices go online, cyber threats seeking to exploit vulnerabilities in
people, process and technologies will be increasingly prevalent [1, 2]. For example, the
recent WannaCry ransomware virus reportedly infected more than 300,000 devices in
at least 150 countries, denying access to data stored on the compromised devices. While
there is a wide range of attack vectors, a common tactic used is to lure users to visit
malicious websites by clicking on a malicious URL. For example, the number of unique
phishing websites detected by the Anti-Phishing Working Group in October 2016,
November 2016, and December 2016 is 89232, 118928, and 69533, respectively [3]. As
explained in the report, “a single phishing site may be advertised as thousands of
customized URLS, all leading to basically the same attack destination”.
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Therefore, one way of reducing phishing and other cyber attacks is to have the capa‐
bility to efficiently detect and block malicious URLs, as well as the capability to circum‐
vent efforts used by cyber attackers such as URL obfuscation techniques.

Conventional malicious URL detection methods generally rely on the features
extracted based on expert input or using machine learning techniques [4]. Such methods
mainly construct massive feature sets, in order to provide a comprehensive coverage.
However, in practice, these methods may have high false alarm rate and have a number
of limitations, such as the following:

(a) A significant increase in the number of websites and size of network traffic compli‐
cate efforts to efficiently and effectively detect malicious URLs (e.g. due to the
presence of a large number of new features required for malicious URL detection).

(b) Imbalanced dataset. In comparison with the total volume of online traffic, the
number of malicious URLs is relatively small (perhaps analogous to the saying
‘finding a needle in the haystack’). Such imbalance (between normal URLs and
malicious URLs) can lead to an unstable classification model.

(c) Constant evolution of attack techniques. Attackers often use a wide range of tech‐
niques to circumvent or avoid existing detection technologies.

Thus, in this paper, we present an online malicious URL detection scheme by
combining deep neural network with natural language processing and threat intelligence.
This allows us to automate the extraction of hidden features within the URL strings.
Specifically, we design a convolutional neural network (CNN) based deep learning
network to train the classification model. In order to map the URL strings into vector,
we use the character-level word embedding method to parse the URL inputs to vectors.
We then demonstrate the utility of our approach using real-world datasets. The detection
scheme combines both deep learning and threat intelligence for malicious URL detec‐
tion. What’s more, the scheme proposed is a general detection scheme for short text
detection problem in the security field such as malicious DNS detection.

In the next section, we review related literature. In Sects. 3 and 4, we present our
scheme for malicious URL detection and evaluate the scheme, respectively. Finally, in
Sect. 5, we conclude the paper and discuss future work.

2 Related Literature

Existing literature on malicious URL detection can be broadly categorized into blacklist
based methods, features sets based methods, and machine learning based methods, as
well as URL based methods and content based methods.

Webpage content is a rich information source that can be leveraged for detection [5].
Content-based methods are useful for offline detection and analysis but are generally
not effective in online detection (e.g. significant latency, as scanning and analyzing page
content is computationally intensive).

In this paper, we focus on online detection of malicious URL. Therefore, we will
now discuss related literature on URL based methods. URL based detection methods
use only the URL structures (e.g. length, domain, name length and number of dots in
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the URL) for detection. Such methods have been widely used due to its efficiency. These
methods usually extract lexical features, either via artificial extraction or automated
extraction. They can be divided into two categories, namely: machine learning based
detection methods and manually constructed feature sets.

For example, McGrath and Gupta [6] analyzed the differences between normal URLs
and phishing URLs to extract features that can be used to construct a classifier for
phishing URL detection. Yadav et al. [7] examined more features, such as differences
in bi-gram distribution of domain names between normal URLs and malicious ones.
These and other related methods require the construction of large feature sets, and the
detection outcome relies on the quality of these features. These features are extracted
manually by experts and updating these feature sets can be challenging and time
consuming. These methods also have a high false positive rate.

To mitigate these two limitations (high false positive rate and difficult to update),
researchers have started examining the potential of using machine learning algorithms.
In such approaches, the malicious detection problem is viewed as a classification or
clustering problem, and machine learning algorithms (e.g. K-means, KNN, decision tree
and SVM [8]) are used to train the classify model and extract relevant features. The
machine learning based methods firstly construct an annotated URL dataset including
both malicious and normal URLs. Then, some machine learning methods are used to
train the classification model. Each algorithm has some specific advantages and weak‐
ness in malicious URL detection, as summarized in Table 1:

Table 1. Comparative summary of machine learning based detection methods [9, 10].

Model Speed Accuracy Interpretability Dataset size Limitation
Bayes High Low Good Large Need to assume

the data is
independent

SVM Low High Pool Small Sensitive to data
and parameters

Logistic
regression

High High Good Large Maybe non-
convergence

In this paper, we use character-level CNN network to automatically extract features
hidden within the URL strings, as deep learning based methods have a strong general‐
ization ability. We will present our approach in the next section.

3 Proposed Approach

In this section, we describe our approach to classify URLs and domain names based on
CNN (Convolutional Neural Network). DNS content can be viewed as URL content, so
we only describe the approach and implementation to classify URL. However, the
proposed system can also be used to classify DNS.

CNN network has been widely used in image recognition [11, 12], perhaps due to
its ability to directly perform some convolution operations on the original pixel binary
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data to find hidden features hidden between pixels. This allows one to extract features
automatically without the need for manual extraction.

We posit that CNN can also be used in word sequence feature mining with neural
language processing, and in our context, both URL and DNS can be viewed as a word
sequence. In other words, malicious URL and DNS detection is similar to sentence
classification. However, we cannot directly use deep learning methods to detect mali‐
cious URLs or DNS without solving the following limitations:

(1) Training time for deep learning model typically ranges from several hours to several
days. Thus, it may not be realistic to constantly update the (deep learning) model.

(2) Construction of URL and DNS are more specific compared to other sentence clas‐
sification scenes. Therefore, the framework for neural network needs to be specif‐
ically designed.

Fig. 1. Proposed online malicious URL detection approach.

In our proposed approach (see Fig. 1) consists of three main components, as follows:

(1) Dataset. The real-world dataset of URLs and DNS can be downloaded (e.g. from
collaborating entities, such as APWG) or crawled from some URL or DNS sharing
websites – see Sect. 3.1.

(2) Deep learning classification model, which consists of five processes such as pre-
processing the input data and training a classification model using deep learning
method – see Sect. 3.2.
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(3) Incremental update, which allows one to periodically and incrementally update the
classification model, based on existing threat intelligence data – see Sect. 3.3.

3.1 Training Dataset

When building the training dataset, we need to define the URL string and its feature, as
well as the evaluation method for our approach.

3.1.1 Data Characteristics
The URL string contains three different semantic segments, namely: domain name,
directory path and file name. The URL and DNS strings consist of numbers, letters and
symbols such as “?”, “=”, and “&”. We define the pattern that could be used to classify
the malicious URLs or normal ones as follows:

A URL string is a tuple p = (h, d, f), where h is a URL segment pattern corresponding
to the domain name, d = {s1, s2, … sn} is a URL sequential patterns corresponding to
the directory path, and f is a URL segment pattern represent the file name. For malicious
URL strings p = (h, d, f) and normal malicious p′ = (h′, d′, f′), if there is a text fragment
pattern t′ or other patterns t″ such as URL length is covered by p but not covered by p
′, then we view t′ and t″ as features which can be used to classify the URL. We seek to
automatically find out these features and use them to build an online detection system.

The following are malicious URL examples:

http://www.aaa.com/1.php?Include=http://www.bbb.com/hehe.php
http://www.sqlinsertion.com/adminlogin.php/**/and/**/1=1.

3.1.2 Model Evaluation
To evaluate the efficiency and accuracy of the detection model, the recalling rate and
precision rate are widely used as metrics as they are simple to interpret [10]. We use the
number of mislabeled URLs and the precision rate to compare the accuracy between our
model and the baseline model. In addition, to evaluate the efficiency of the model, we
compare the execution time of one million URLs detection between our model and the
baseline model. The indicators we used for model evaluation are defined as follows:

FN (False Negatives) denotes the number of URLs that are normal but classified as
malicious, and FP (False Positives) denotes the number of URLs that are malicious but
classified as normal. TN (True Negatives) and TP (True Positives) respectively denote
the number of URLs which are malicious, normal and are correctly classified.

Mislabeled number: FN + FP
Accuracy rate: TN/FN + TN.

3.2 Character-Level Deep Learning Framework

Using some neural language processing method to map the input URL and DNS string
to vector, we design a character-level CNN network to train the classification model (see
Fig. 2). The deep learning model is described in Sects. 3.2.1 to 3.2.3.
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3.2.1 Pro-processing
Since HTTP and HTTPS protocols are often used, the “http://” and https:// could be
safely omitted from the detection. URLs generally consist of numbers, letters and some
symbols. In our approach, we filter special symbols such as “_” and “#” which have
been deemed to have little effect on the classification results. After pro-processing, the
dataset can be more concise to reduce the time and resource requirements in the
following steps.

3.2.2 Embedding
We need to map the input sequence URL to vectors as the start of the deep learning
framework. We use one-hot which is a famous embedding method in NLP. Our model
starts with length L sequence of characters and embeds them into an L * M matrix. Our
model views the input URL or DNS string as characters sequence. Then we transform
the sequence of characters to a sequence of such m sized vectors with fixed length L.
Any character exceeding length L is ignored, and any characters that are not in the
alphabet including blank characters are quantized as all-zero vectors.

The alphabet used in all of our models consists of 50 characters, including letters,
digits and 14 other special characters. The non-space characters are:

abcdefghijklmnopqrstuvwxyz0123456789
-;!?:@#$^*% = <>

Fig. 2. Deep learning model architecture.
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It appears that the value of 256 can capture most of the URL string and considering
the balance between accuracy and efficiency of model training, we set the parameter
L = 256 and M = 50 for our experiment described in Sect. 4.

3.2.3 CNN Framework and Classification Model
The system could automated extract features of the lexical features of these URLs using
CNN layers after we embed the input strings into 256 * 50 matrix. The CNN framework
consists of convolutions layers and pooling layers. The multiple kernel convolutions can
learn the local features and the pooling layer such as Sum pooling layer can aggregate
the results of the multiple convolutions. We initialize the weights using a Gaussian
distribution, and we use layer-wise Batch Norm and Dropout (0.5) between layers to
speed up training time and prevent over fitting. Table 2 shows the configurations for
convolutions layers and pooling layers. The results are then concatenated together into
a 1024 length vector, which represents the feature vector.

Table 2. Convolutional layers used in the experiment.

Layer Feature map size Kernel size Pooling
1 256 5 3
2 256 5 3
3 256 3 N/A
4 256 3 N/A
5 256 3 3

Once we extract the feature vector, we use the full connection layer to classify the
URL. We use two full connection layers, followed by the Sigmoid layer with l = 1024
units. The full connection layer learns a non-linear kernel given the convolution features,
and the sigmoid layer output provides the probability that the input URL is malicious
given the output of the final connection layer.

3.3 Incremental Updating

Because the training process for deep learning model is generally time consuming, the
model is difficult to update for online detection system. However, to keep pace with
advances in techniques used by attackers, it is necessary to update the classification
model regularly (similar to patching for software and applications).

We implement the update process using current threat intelligence such as URL and
DNS blacklists and the incremental learning model. Both URL and DNS blacklists are
updated periodically. The incremental learning method stores information of the
previous training model, which can be rolled back if necessary.

3.4 Discussion

We remark that in developing the deep learning model, other options were considered
but found to be unsuitable. For example, LSTM has been widely used in text processing
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and machine translation [13]. However, LSTM requires significantly more time than
CNN during the training of the classification model and computing [14]; thus, our choice
of CNN.

For the embedding step, we use character-level mapping method instead of word-
level mapping method for improved accuracy. Word-level embedding based deep
learning model learns the associated features between words. However, in our context,
such a model cannot traverse all the words because of the randomly generated URL
strings by techniques used by attackers. Generally, the number of different characters in
the URL string is less than 300. Thus, character-level feature can cover all the possible
features required for effective classification.

4 Evaluations

4.1 Experiment Environment and Baseline

The evaluations were based on the Tensor Flow framework, and the experiment envi‐
ronment and configuration information are as follows.

• Computer Configuration: Ubuntu 16.04, memory 16 GB, CPU i7
• Tensor Flow version: 1.1.0 GPU: GeForce GTX1060, 6 GB Python version: 3.5
• Training Time: 10 h.

We implemented two baseline models. The first baseline model is based on manually
extracted features described in [8], which include URL length, number of “.”, separators
in a URL, and categorical lexical features (e.g. domain name and URL suffix tokens).
These features form a very large, but sparse feature vector. To determine the accuracy
between character-level embedding based deep learning and word-level embedding
based deep learning, we implemented the word-level deep learning framework based
on word embedding method.

4.2 Dataset

We built a large URL dataset that consists of more than 7 million URLs. These URLs were
obtained from online public datasets or crawled from malicious URL sharing websites. For
malicious URLs, we crawled these data from Phish Tank and Virus Total. The normal
URLs were mainly downloaded from some public datasets such as Google and DMOZ.
The training dataset and the test dataset were randomly assigned according to 9:1; we
randomly select ninety percent labeled data for the training dataset, and the other ten
percent data as testing dataset. The distribution of the dataset is shown in Table 3.

4.3 Findings

Figure 3 shows the accuracy of the detection models. The x-axis represents three detec‐
tion models being compared, and the y-axis represents the average number of URLs
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mislabeled for per thousand URLs in the testing dataset. It is clear that our character-
level deep learning model outperforms the other baseline approaches. In addition, the
deep learning method allows good generalization, which can potentially be used to
mitigate techniques used by attackers to avoid detection.

Fig. 3. Accuracy

Figure 4 shows the efficiency of the three detection models being compared. We
used two testing datasets which contain 1 thousand URLs and 2 thousand URLs to
determine the time required for the classification models. The x-axis represents the
detection model with testing dataset, and the y-axis represents the time (in seconds)
required for classification. It is clear that our model is as efficient as other baseline
models. In addition, our approach allows periodic updates. For example, newly detect
malicious URL patterns can be included in the updating model in real-time.

Table 3. Distribution of data

URL type Training dataset
(million)

Testing dataset
(million)

Malicious URL 0.9 0.1
Normal URL 5.4 0.6
Sum 6.3 0.7
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Fig. 4. Efficiency

5 Conclusion

The capability to detect malicious URLs and DNS will be increasingly important in our
Internet-connected society, particularly in Internet of Things deployment.

In this paper, we proposed a character-level CNN based malicious URL and DNS
detection based on the textual patterns of the URL and DNS. We evaluated our approach
using real-world datasets, which demonstrated that our approach is both accurate and
efficient. Besides, the scheme proposed is a general detection scheme for short text
detection problem and has applications in other contexts.

Future research includes deploying the proposed approach in a real-world environ‐
ment for further evaluation and fine-tuning, if necessary.
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Abstract. In recent years, there is a sharp increasing in the number
of malicious APPs on the Android platform, so how to identify new
type of Android malware and its malicious behaviors has been a hot
research topic in the security community. This paper presents a visualiza-
tion framework to help security analysts precisely distinguish malicious
profiles of APPs. By labeling target nodes, adding implicit call edges,
pruning harmless branches, and a few other operations, we generate a
new kind of call graph: PMCGdroid. This graph not only has a sharp
decrease in size comparing to the original APP call graph but also pre-
serves the malicious core of malware well. Based on PMCGdroid, visual
interfaces are designed to assist users in checking the malicious behavior
profile of samples with rich user interactive operations. We study real
world samples to prove the usability and efficiency of our approach.

Keywords: Android malware analysis · Malware visualization
Machine learning · Assisted manual analysis

1 Introduction

Currently Android malwares are widespread and uncurbed. G DATA security
experts have discovered 9 million Android malware samples from 2012 to the first
quarter of 2017 [34]. Meanwhile, new instances are gathered daily, and variants
of existing families appear quickly too. Although researchers have applied multi-
farious automatic Android malware analysis techniques [8–13,18] to confront this
serious security challenge, manual detection methods are still widely needed, for
example, to identify, correct, and disambiguate intermediate results of automatic
analysis tools [24], or to understand the malwares and their nature [21].
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In consideration of the complexity of Android APP, experts bear a huge
burden of work if only manual work used to analyze the samples. Therefore, it
is urgent to explore semi-automated visualization analysis approaches to help
analysts in reducing heavy workload. Visualization analysis tools take mass of
basic trivial analysis works for human and show the machine analytic results in
a visual way. Then the security staff can quickly grasp key information under
the help of the visual displayed graphs or figures and some interactions, use
professional knowledge to deal with something that machine cannot handle, and
make precise judgement efficiently.

Since, there are many essential differences between Android applications and
traditional personal computer applications. A mass of existing PC application
visualization tools [25–31] cannot be directly applied to Android applications
[7,33] and the exploitation of visualization for Android application has just
started, practical tools are scarce [19,22]. Meanwhile, the existing individual
malware visualization analysis methods for PC or for Android platforms rarely
concern the visualization of the malicious code logic structure. However, code
logic structure usually implies the whole picture of the malicious behaviors. It
is worth to be processed and provided to the experts for analysis assistance.

The objective of this paper is providing a malicious code structure and
malicious behavior profile visualization analysis method of Android malware.
By labeling and appending nodes, adding implicit call edges, pruning harmless
branches, and some other operations, we generate a new kind of Android APP
call graph: PMCGdroid. PMCGdroid aims to show the targeted risky code dis-
tribution and correlations inside an Android APP, helps users to figure out the
malicious behaviors set.

We made the following contributions to the visual detection of Android mal-
ware in this paper:

(1) Advance a brand new graph PMCGdroid which is a pruned lightweight
Android APP call graph. Compared to the traditional call graph,
PMCGdroid not only narrows down the manually inspection scope of a
sample but also reserves the core malicious profile effectively.

(2) Design visualization interfaces to display the PMCGdroid graph of samples.
In the interfaces, not only risky code can be figured out from the graph, but
also the complete triggering chain and code logical combinations of such
risky points can be revealed visually. Hence the whole malicious behavior
profile and structure is clear to the users.

(3) Provide automated methods and user interactivity (implicit edges append-
ing, convergence point analysis and subgraph generations etc.) to help the
analysts quickly focus on most suspicious behaviors and explore code details
to make accurate judgements.

We use a case study to illustrate the effectiveness and feasibility of our work.
Through the analysis of a large number of malicious samples from the real world
by using our method, we have a lot of interesting findings, which will be shown
in this paper too.



Visual Analysis of Android Malware Behavior Profile Based on PMCGdroid 451

2 PMCGdroid Generation

2.1 Target Node Labeling

Our visualization analysis framework focuses on how to visually check the key
parts and malicious behavior structure inside the APP’s method call graph.
Given a call graph of a sample APP, the most important inspection target nodes
of it are method nodes that contain risky API calls.

Table 1. Risky APIS and their types

API Occurrence frequency Type

java.net.URL.openConnection 25856 Sink

android.telephony.TelephonyManager.getDeviceId 10478 Source

dalvik.system.DexClassLoader 2957 Suspicious

android.telephony.TelephonyManager.getLine1Number 4279 Source

android.telephony.SmsManager.sendTextMessage 4087 Sink

android.location.LocationManager.getLastKnownLocation 3955 Source

The risky APIs we concerned about are from the following 3 sets: (1) The
key APIs which are restricted by the Android permission mechanism. (2) The
sensitive APIs used by Arp et al. [8] in their machine learning features. (3) A
set of malicious behavior most relevant risky APIs identified by us, based on the
manual analysis of 300 popular malicious samples.

The number of target APIs directly affects the accuracy and complexity of
the experimental results. The more APIs are detected, the more comprehensive
the PMCGdroid is generated, then the result will be more accurate. However,
the cost is to increase the scale and complexity of PMCGdroid. In order to
achieve a balance between the accuracy and complexity, we do a statistics over
the public Drebin Android Malware database [39] to study these APIs’ occur-
rence frequency in malware samples. Based on the frequency we identified 130
APIs as the target set finally, to achieve maximum accuracy while reducing the
complexity of manual analysis.

Furthermore, according to the threat nature of these dangerous APIs, they
are divided into three types: Source, Sink, and Suspicious. “Source” refers to
those APIs that can access sensitive information in Android devices, for example,
the APIs to read SMS, contact information, GPS Location etc. The APIs that
may output sensitive information are “Sink”, for example, the APIs to send out
information by email, SMS, Bluetooth, network, or write information via SQL
database, SharedPreference, file etc. The rest of the APIs are also dangerous
and can be classified as “Suspicious”. For example, DexClassLoader APIs may
be used to execute code which is not installed as part of the application. The
Table 1 lists six sample risky APIs and the category to which they belong.

Correspondingly, we label the nodes that contain the source, sink, or sus-
picious type APIs in their code as API-Source, API-Sink, and API-Suspicious
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node. Some nodes may contain multiple labels at the same time, because they
call different types of APIs in their method code.

Except risky API tagged node, there is another kind of nodes which are
worth being concerned about. They are “third-party library” nodes that rep-
resent methods from some popular third party libraries imported by APP in
programming phase, such as from AdMob [44], umeng [42], google map [43],
and so on. The idea behind is to ascertain where the APP’s risky behaviors
inside come from, the APP itself or some third-party libraries. Currently, the
third-party libraries detected by us are mainly advertising libraries. We use the
following methods to identify third-party library code nodes. We collect the Soft-
ware Development Kits of popular third-party libraries, record the key package
names, class names, and method names in these libraries. Then the package
name, class name and method name of every method node of APPs will be
compared with the information recorded above to determine whether the node
belongs to some third-party library or not.

2.2 Implicit Edge Generation

Generating an accurate call graph is crucial for static analysis. Special mecha-
nisms for Android programs, such as Inter-Component Communication (ICC),
component lifecycle, multithreading, etc., can cause discontinuities in the appli-
cation method call flow. The existing Android or Java call graph generation
tools cannot fill these vacancies. Thus, on the basis of the traditional call graph,
we further add the missing method call flow and build a more complete call
chain to show the whole picture of malicious behaviors. We call the supplemen-
tary edges as implicit edges. There are four kinds of implicit edges considered in
PMCGdroid:

A. ICC Type: Android applications are composed of components. The com-
munication between components utilizes explicit or implicit Intent to perform.
Explicit Intent specifies the component to start by name (fully qualified class
name), hence it connects the caller to the receiver component directly accord-
ing to the specified component name; the implicit Intent passes the information
of the caller component to those components whose Intent Filter declarations
match the implicit Intent’s Action, Category, and Data attribute content.

In order to fill the function call edge missing from ICC, we collect informa-
tion about all the components in APP and their Intent Filter contents, Intent
delivery methods and parameters by utilizing the IC3 [2] tool. Then, based on
the metadata obtained, we simulated the Android system to match the Intents,
both implicit and explicit, discover the call edges between components.

In particular, for the difference of StartActivityForresult [13], we add the call
edge from the setResult of the callee component to the onActivityResult of the
caller component.

B. Lifecycle Callback Type: Implicit call edges associated with the Activ-
ity/Service component lifecycle. Each Activity/Service component in Android
has a full lifecycle, which contains different lifecycle callback methods such as
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onStart, onResume etc [45,46]. The Android framework implicitly calls these
methods to convert the component’s lifecycle state, such as calling onStart to
start the component and call onPause to pause the component. These lifecycle
callback methods are not directly connected in the code, and their calling pro-
cesses are completely dependent on the Android framework, so the call chains
associated with these lifecycle method calls are also missing.

We check the lifecycle transition process of Activity and Service, consider
each state transition process as an implicit call edge, add to our PMCGdroid

graph, so that the code executed in the whole component lifecycle can maintain
coherence in our graphs.

In the life cycle of the activity, we currently ignored three kinds of state
transition, onPause→ onResume, onStop →onRestart, and onStop →onCreate.
In another words, we won’t add implicit edges for these three state transitions.
Although this ignorance will cause a small part of continuity lose, it helps us
reduce many loops.

C. Thread Type: Usually an Android system service creates an auxiliary
thread by two ways: Runnable and Handler [38]. In these two mechanisms there
also exists the control chain missing phenomenon. For example the start method
in the Runnable mechanism is used to start a thread, but the thread does not
run immediately until the run method of the new thread is executed when sys-
tem recourses are distributed to it. As for Handler mechanism, sendmessage
method is used to send a message to handlemessage for processing, but the call
chain from sendmessage to handlemessage does not exist naturally because the
message passed through the framework.

D. Logic Connection Type: This type of implicit call side is primarily related
to intent delivery. We find that the intention of the transfer exists in some method
pairs, such as broadcast receivers and their registration methods. Broadcast
receiver is actually triggered by the broadcast sender via Intent, this relation-
ship is included in ICC Type already. However, broadcast receiver is under the
control of broadcast register. The Register decides which broadcast the broadcast
receiver should be registered to. There is an intension transmission. In order to
complete the malicious behavior call chain, we add the call edge for the method
of passing this intention.

2.3 Branch Pruning

The graphical scale of call graph of an Android APP is usually too huge to
artificial analysis. We decompile 1000 APP’s package files (APK files) whose
size distribution range from 27 kilobytes to 32 megabytes, and calculated their
method numbers one by one. Our statistics shows every 5 megabytes APK file
contains 3702 functions in average. Hence, visually checking the original call
graph is a heavy workload. It is necessary to narrow down the node inspection
scope and reduce unnecessary detections for security analysts.

As we already discussed in Sect. 2.1, nodes containing risky APIs are consid-
ered most relevant to the malicious behaviors, hence we only need to focus on
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the nodes and edges related to target nodes. Our proposal is to trim all nodes
which have no directed path leading to any target risky API nodes. To make
this description more precise, we define a Boolean function Dpath to indicate
whether there is a directed path existing from one node to another node.

Definition 1. For any directed graph (N,E), N is the node set while E is edge
set, Dpath is a function defined over N, Dpath : N ×N → {1, 0}, for ∀ n1, n2 ∈
N :

Dpath(n1, n2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if n1 = n2 or ∃ {e1, e2, . . . , en} ⊂ E s.t.

source(e1) = n1, target(en) = n2,

source(ej+1) = target(ej) for j ≥ 1;
0, otherwise

Here source (e) is the start point of the directed edge e, while target (e)
means the targeted node.

We define all the nodes to be removed from as set TN, while all the edges to
be cut as set TE:

Definition 2. Given a directed call graph: CG= (Nm, Em), TN is the greatest
subset of Nm, s.t. for ∀ni ∈ TN, for ∀nj ∈ Nm where label(nj) ∈ {API −
Source,API − Sink,API − Suspicious}, Dpath(ni, nj) = 0.

Definition 3. Given a directed call graph: CG= (Nm, Em) and TN, TE is
the greatest subset of Em, s.t. for ∀ej ∈ TE,∃ni ∈ TN s.t. target(ej) =
ni|source(ej) = ni.

2.4 Convergence Point Discovery

We detect three kinds of Convergence Point (CPoint) to help analysis potential
information leak in an APP automatically.

Independent CPoint: such CPoint node directly or indirectly calls an API-
source node and an API-sink node concurrently. More strictly speaking, it should
be the nearest CPoint for at least one pair of (API-Source, API-Sink). The
CPoint may call API-Source to get sensitive info and send out by API-Sink
node.

API-Sink Node as CPoint: if one node containing data sending code
directly or indirectly calls a API-Source node, it may get the sensitive data first
from the API-Source node, then send out by itself.

API-Source Node as CPoint: if one node containing data getting code
directly or indirectly calls a API-Sink node, it may send out the sensitive data
collected by the get information API of itself.

2.5 Splitting Shadow Node

It is a common phenomenon that nodes may be tagged with a variety of labels.
Actually we want to set every kind of node an independent color to assist users’
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analysis in our visualization tool. So in the last step of generating PMCGdroid,
we introduce the concept of shadow nodes to ensure that each node has only one
label. If a node contains N labels, the node is divided into N nodes, by keeping
one main node in the original call chains of the method and adding N− 1 shadow
nodes which have and only have bi-directional edges with the main node. That
means, the main node maintains the call relationships with the other nodes in
the original call chains, while shadow nodes just represent N− 1 labels of the
main node.

2.6 PMCGdroid Definition

By labeling and appending nodes, adding implicit call edges, pruning harmless
branches and shadow node splitting, we generate a new kind of Android APP
call graph: PMCGdroid. The PMCGdroid graph is defined by a quintuples =
(Np, Ep, Label, fl, fc), where Np is the set of nodes in the graph and Ep =
{(ni, nj)} is the set of edges/connections between nodes. The adjacency matrix
ij indicates that an explicit or implicit call exists from ni to nj ( ij = 1) or that
the call is absent ( ij = 0).

In our default PMCGdroid version, Label is a string set with five values
which is “API-Sink”, “API-Source”, “API-Suspicious”, “third-party library”,
and “normal”, because in the PMCGdroid, there are five types of nodes, API-
Sink, API-Source, API-Suspicious, third-party library, and normal (any nodes
that are not tagged to the first four types are normal nodes). Label is used to
label the nodes with function fl. That is to say, fl maps elements in the set Np

to a value in set Label. fc is a Boolean function defined over Set Np, it maps
every node to Boolean value 0 or 1. It indicates whether a node is a convergence
point or not.

3 Visualization

For helping manual analysis, a set of interfaces are built to present the
PMCGdroid.

3.1 Visualization Encode

In order to show the relationship between these nodes in PMCGdroid, we dis-
tinguish the nodes in various colors and sizes, while arrows in different colors
and types representing different types of calling. As we can see in Fig. 1(b), we
use green circles to represent the third-party libraries and gray circles to rep-
resent the normal nodes. Besides, we mark the API-sink and API-source nodes
with red and brownish red colors respectively. We use yellow circles to repre-
sent API-Suspicious nodes. Black one-way arrows and red one-way arrows stand
for explicit call edges and implicit call edges individually, and blue bidirectional
arrows represent shadow link nodes. For further pushing convergence points for-
ward, we set them two times the sizes of the normal ones.
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Fig. 1. System interface (a, c and d) and visualization encode (b). Main workspace view
(a), including PMCGdroid panorama with default force-directed layout (a1), APP basic
information (a2) and node detail information overview (a3). The interaction methods of
a1 (c) including mouse move, single, and double click. Primary and secondary subgraph
view (d).

3.2 Integrated Visualization Interfaces

Based on PMCGdroid, we develop integrated visualization web interfaces (as
Fig. 1 shown) to help users to inspect malicious behaviors from Android APPs.

Users can upload their own APP to check the APP’s PMCGdroid graph in
the interface. The result is presented in the workspace area of the interface as
shown in Fig. 1(a1). Figure 1(a3) shows the details of nodes including method
name, class name and tag information. Inside the workspace area of Fig. 1(a1),
tag details of every node will be shown when the mouse is moved near to it.
When double clicking on the node, there would be a message popping up and
showing the source code of the node.

In order to help visualization analysis, it is necessary to annotate the key
information for each node, so we have defined four kinds of tag information: the
first one is correlated to implicit call edge. If the node is a caller correlated to
an implicit call edge, the tag of the node shows the method name the node call
and corresponding parameters. If the node is a callee correlated to an implicit
call edge, the tag shows its own method name and class name. Specially, if the
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callee is triggered by implicit Intent, its tag also shows the value of the Intent
Filter.

The second kind of tag information shows the third-party libraries the node
belongs to if it is a third-party library node. Third, for API-Sink, API-Source,
and API-Suspicious nodes, their tags show the sink APIs, source APIs and sus-
picious APIs they call respectively. Finally, for all kinds of nodes, some other
information they contains could be risky, such as URL and telephone number,
so the last type of tag shows constant string like this.

3.3 Subgraph

Although the scale of PMCGdroid has been decreased greatly, when a malware
contains numerous risky behaviors, the graph is still too complicated to analysis.
Therefore, we further propose a risky behavior slice function to separate the
PMCGdroid graph into several subgraphs (Fig. 1(d)) for analysts to view.

There are two kinds of subgraphs as Fig. 1(d) shown. The first four graphs
are the primary subgraphs of PMCGdroid. They are independent of each other
and there are no edges between them. Analyst can only focus on a single primary
subgraph rather than the entire PMCGdroid.

The graphs on the right side are the secondary subgraphs which only shows
the risky paths around one single convergent point. The second subgraph is
generated from each CPoint. For each CPoint, find all the API-Sink and API-
Source nodes it can reach in the directed graph. The nodes and edges on the
path from the CPoint to its reachable API-Sink or API-Source nodes make up
a secondary subgraph relevant to this CPoint.

4 Case Study

In this section, we demonstrate the effectiveness and feasibility of our interfaces
with a case study. The case study discusses how to reveal the malicious behavior
profile of a special malware sample in a public family. Then, we present some
other findings based on our large scale analysis.

4.1 Reveal Malware’s Malicious Behaviors

We randomly choose a sample from a popular malware family named Fakeinst.
Then we found the description about Fakeinst malware family in f-secure website
[40]. It says: “Fakeinst malware appear to be installers for other applications;
when executed however, the malware send SMS messages to premium-rate num-
bers or services.”

However, we still do not know exactly what malicious behaviors will be trig-
gered by the APP and how. Now we open our visualization interface to see
what its real behaviors are. By using our tool to generate the PMCGdroid, the
PMCGdroid and nodes’ label information are shown in Fig. 2. The PMCGdroid

is much smaller than the traditional call graph in the lower left corner in size,
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decreasing by 96.1%. To simplify the introduction, we removed a few nodes
which are irrelevant to the malicious behaviors. Based on the Fig. 2, we start the
research work.

No. Node Label Information

16 Suspicious API: android.app.admin.DevicePolicyManager.isAdminActive

15 startActivityForResult: action= android.app.action.ADD DEVICE ADMIN

0 Activity: class name= com.msae.rebt.MainActivity

Activity: action= android.intent.action.MAIN

2 startService: target name= com.msae.rebt.sgter

1 Receiver: class name= com.msae.rebt.BCRcer

Receiver: action= android.intent.action.BOOT COMPLETED

startService: target name= com.msae.rebt.sgter

3 Service: class name= com.msae.rebt.sgter

4 registerReceiver: action= android.provider.Telephony.SMS RECEIVED

5 Receiver: class name= com.msae.rebt.SgterMesReceiver

Receiver: action= android.provider.Telephony.SMS RECEIVED

String: 18569400320

17 Suspicious API: android.content.BroadcastReceiver.PendingResult.abortBroadcast

6 Source API: android.telephony.SmsMessage.getMessageBody

Source API: android.telephony.SmsMessage.getOriginatingAddress

11 sendMessage: class name= android.os.Handler

12 handleMessage: class name= com.msae.rebt.SgterMessageHandler

String: 18569400320

14 Sink API: android.telephony.SmsManager.sendTextMessage

Fig. 2. Case 1 (package name: com.message.send, MD5: 4E850BF087512F14A7A
EA84909982569)

We start from node 0 which is the entry node of the program. At first, we come
to inspect the short call chain 0 → 15 → 16. Node 16 calls android.app.admin.
DevicePolicyManager.isAdminActive. It determines whether the given adminis-
tration component is currently active in the system. Node 15 calls startActivity
with the Intent action value android.app.action.ADD DEVICE ADMIN to reg-
ister the device manager. By checking the code we confirm that the APP will
be registered as a device manager when it starts, which makes it difficult to
uninstall the APP.

Next, we investigate the call chains: 0 → 2 → 3 → 4 → 5 → 10(7/8/9) →
11 → 12 → 14 and 5↔6, 5↔17. These call chains can be further divided into
four stages: stage A: 0 → 2, stage B: 3 → 4, stage C: 5 → 10 → 11, 5↔6 and
5↔17, and stage D: 12 → 14. Every two adjacent stages are connected by an
implicit call edge.

Stage A starts the service (node 3) in stage B by calling function start-
Service with an explicit Intent. Stage B registers a broadcast receiver (node 5
in stage C) which monitors android.provider.Telephony.SMS RECEIVED. This
allows the APP to directly receive incoming SMS messages. Node 6, 17 are
shadow nodes split from node 5. Based on the information of the nodes 6, 17 in
the table on the right side of the Fig. 2, it can be seen that on the one hand,
it gets the contents of the SMS message and the sender’s mobile phone num-
ber; on the other hand, the node 5 aborts the current broadcast to prevent
any other APPs from receiving the SMS message. Then, the stage C sends
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the sensitive data to the stage D through the Handler mechanism. Finally,
stage D sends the data to the telephone number “18569400320” via function
android.telephony.SmsManager.sendTextMessage.

Furthermore, by checking the node 5 and 17’s code, we find the node 5 also
checks whether the received message is from a specific attacker. If the answer
is positive, it will call 17 to block this message and do things according to the
attacker’s indication. This action is remotely controlled by the attacker.

Last but not least, in the upper right corner, node 1 is a broadcast receiver
which monitors the phone’s boot broadcast intent.action.BOOT COMPLETED.
According to the call chain 1 → 3, node 1 also starts the service node 3. So the
APP will start the malicious service when phone boots up automatically.

Fig. 3. Other interesting findings. (a) Weak connection structures imply repackage
possibilities. (b) It is easy to distinguish which risk is induced by third-party libraries.
(c) PMCGdroid graphs resemble each other in same family, and differ between different
families.

4.2 Other Findings

Besides the abilities above, we analyze a large number of samples in the virus
database by using our method, we also find out some interesting phenomenon
that could be considered as visual signal tips to help the experts with their
analysis.
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The first tip is when the connection between two complicated areas is weak
and only built by few of nodes and edges, there is a possibility of repackaging.
For example, Fig. 3(a) shows the PMCGdroid of a confirmed repackaged APP.
The malicious methods which are inserted into the original APP mainly con-
centrate in the red circle. This malicious part connects to the original code only
through two nodes. This kind of connection is apparently a “weak” connection.
The second one is when a API-Suspicious node and a third-party library node
appear in pair, it means that the risk is introduced by third-party library (as
Fig. 3(b) shown). And the most interesting one is this: for parts of malware fam-
ilies in Drebin [39] and Malgenome database [37], we found their PMCGdroid

graphs resemble each other in same family and differ with other families quite
a lot. This implies that users may visually compare newly emerged malicious
samples with existing samples to simply identify and classify them for these
families. For example, in Fig. 3(c), we list four of such kind of families from
Drebin database: GinMaster, FakeInstaller, FakeDoc, and BaseBridge. The find-
ing makes us believe that we can further our work to use PMCGdroid as an
effective visual feature for malware family identification.

5 Evaluation of the Tailored Malicious Profile

In this section, we evaluate the performance of PMCGdroid as a malicious profile
tailored from the original APK. We conducted two experiments to check its
following capabilities comparing to the original call graph: size sharply decreased
and malicious core reserved.

Our data set consists of 4910 malware (M-set) and 4979 benign software
(N-set). Among them, the M-Set comes from the previously mentioned Drebin
Android malware set, while the benign APPs in N-set are collected from Google
Play. All applications in N-set were submitted and detected by VirusTotal [41]
before April 1, 2017, and no virus was reported by any Antivirus engine in
VirusTotal. Based on this dataset, we conduct the following experiments.

5.1 Scale Reduction Experiments

In order to prove that the PMCGdroid graph can effectively reduce the size
of APP’s call graph, we use 173 malware families in M-set, and pick 100
benign APPs from N-set as a benign family. Then we generate call graphs and
PMCGdroid graphs for all APPs in these families. After that, we do a statistics
over the scale of them, calculate the average node and edge difference in number
between the two kinds of graphs of each family.

From the Table 2, we can see that for malware, the number of nodes in
PMCGdroid is reduced by 94.4% from the number of nodes in the traditional
call graph on average, and the number of edges decreases by 96.3%. That is to
say, the PMCGdroid graphs are not bigger than 5.6% of the original call graphs
usually. The number of nodes in benign family is down by 92.0% and edges are
down by 94% in average. We also show the top 3 and last 3 node and edge
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number difference of malware families in the Table 2. For example, the family
Gasms’s difference is (97.0%, 97.9%), while the former number stand for node
difference and the later one stand for edge difference.

Among them, the family Gasms achieves the highest node average reduce
proportion of 97.0%, while the lowest family CellShark also reached 69.0%. For
edges, the highest decreasing proportion reaches 98.0%, the lowest is 75.7%.
Hence, PMCGdroid graph can greatly reduce the scale of call graph.

5.2 Malicious Core Reservation Experiments

In order to verify that the PMCGdroid still retains the core of malicious behavior
in the software, we conducted a machine learning experiment. In this experiment,
we extract features from PMCGdroid graphs to see if they can be used to auto-
matically distinguish between malware and benign applications. The Table 3
shows all the feature sets we extracted, where F1 and F2 represent the total
number of nodes and edges in the PMCGdroid respectively. F3 represents the
diameter of the PMCGdroid graph G, that is, the length of the longest call chain.

F4 is a set of features that represent the number of nodes per kind of Label.
F5 represents the average of the degrees of each label type of node. The degree of
the node is defined as the number of other nodes connected to the node. In the
directed graph, the degree of the node is divided into indegree and outdegree.
Outdegree refers to the number of edges pointing from the node to other nodes,
and indegree refers to the number of edges pointing from the other nodes to
the node. Correspondingly, F6 and F7 represent the average of outdegree and
indegree of each type of node, respectively.

F8 represents the average reversal ripple degree of all nodes. In the directed
unweighted graph, the number of all nodes that can be reached in the reverse
direction from the node V is called the reversal ripple degree of the node V.

The F9 feature set represents the number of occurrences of the 130 risky
APIs we selected in the nodes of the PMCGdroid graph. Considering that most
of the risky APIs need to apply for specific permissions can we use, we will apply
the permissions as a feature set F10.

Table 2. The top/last 3, benign and average difference

1 2 3 1 2 3 Average

Node

top 3

Gasams

(97.0%,

97.9%)

Fakeview

(96.8%,

97.8%)

Generic

(96.6%,

97.7%)

Node

last 3

Mobilespy

(71.2%,

81.3%)

Flexispy

(70.0%,

81.9%)

CellShark

(69.0%,

77.5%)

Benign

(92.0%,

94%)

Edge

top 3

Jifake

(95.3%,

98.0%)

Gasms

(97.0%,

97.9%)

GlodEagl

(95.3%,

97.9%)

Edge

last 3

CgFinder

(76.4%,

78.8%)

CellShark

(69.0%,

77.4%)

FakePlayer

(76.2%,

75.7%)

Malware

(94.4%,

96.3%)

Based on the feature set of F1-F10, We selected the random forest classifi-
cation algorithm to classify. In the classification process, we use ten-fold cross-
validation to obtain more accurate results. The result of this experiment is shown
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Table 3. PMCGdroid features and classification results

Features of PMCGdroid: G= (Np, Ep, label, fl, fc)

F1: |Np| F2: |Ep| F3: Diameter(G)

F4: {|Nodelabel|} F5: {AvgDegree(Nodelabel)} F6: {AvgOutdegree(Nodelabel)}
F7: {AvgIndegree(Nodelabel)} F8: AvgRRDegree(G) F9: {OccurenceNum(riskyAPI)}
F10: {AppliedPermission}
Classification results

Method (data set) TPR FPR

PMCGdroid (PMCGdroid data) 96.2% 1.1%

Drebin (PMCGdroid data) 98.2% 2.6%

Drebin (Drebin data) 94% 1%

Fig. 4. ROC curve of PMCGdroid

in Fig. 4 as ROC curve. It detects 96.2% of the malware samples at a false-positive
rate of 1.1%.

We compare the performance of the PMCGdroid machine learning approach
with related machine learning approaches for Android malware. So far, we know
the best way to classify the results is Drebin, which in its own data set achieves
TPR 94%, FPR 1% results, significantly outperforms the other approaches.
Before it, approaches such as kirin [4], Peng et al. [17] provide a detection rate
between 10%–50% at such false-positive rate. Since Drebin did not publish the
benign application set it used, we used Drebin’s feature extraction method and
classification algorithm to classify our data set to compare our results. The exper-
imental results are shown in Table 3. Drebin in our data set, still performed well,
achieves TPR 98.2%, FPR 2.6%.

Hence, our classification results are very close to Drebin. Considering that
our feature set dimension is only 1571, which is much lower than Drebin, we have
reason to believe that though pruned large scale of nodes and edges, PMCGdroid

still gains a good performance in the automatic distinction between malicious
and benign applications. This result confirms its retention of malicious core parts
of malware.
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6 Related Work

6.1 Android Malware Automatic Analysis

A large body of research has studied methods for analyzing and detecting
Android malware. These methods can be roughly categorized into static analysis,
dynamic analysis, and machine learning.

Static and dynamic methods intend to identify anomaly behaviors of suspi-
cious samples by checking package code or runtime feature patterns. For exam-
ple, Zhou et al. [3] extract permissions from APP packages, and then propose a
permission-based behavioral footprint scheme to detect new samples of known
Android malware families. SCanDroid [11] uses the data flow analysis method for
static analysis and detects whether the data flow is consistent with the permis-
sions automatically. AndroidLeaks [12] creates a call graph of an application’s
code and then perform a reachability analysis to determine if sensitive informa-
tion may be sent over the network. Droidchecker [36] uses control flow search
and stain analysis to automatically analyze possible sensitive data leaks from
high permission store to low permission store. They and other static analysis
approaches such as [2,23,38] all cannot tell what the whole malicious behavior
picture is when they detected an abnormal signal.

Dynamic analysis approaches [5,18,33] monitor the behavior of applications
at run-time. They usually suffer from a significant overhead. Among them, only
DroidScope [33] is focused on revealing APP’s malicious intent and inner work-
ings by collecting detailed native and Dalvik instruction traces, profile API-level
activity, and tracking information leakage. However, these data are too fragmen-
tal. Users need to use their own imagination to mosaic them into a full picture
as shown in their case study.

As for recognizing malware automatically using learning methods, lots of
methods have been proposed. Peng et al. [17] apply probabilistic learning meth-
ods to the permissions of applications for detecting malware. Puma [6] extracts
static features based on permissions’ usage, and evaluates the effectiveness of
different classifiers, including random trees, random forests, naive Bayesian,
and Bayesian networks. Similarly, the methods Crowdroid [16], Droid-Mat [15],
MAST [14], Drebin [8], and AMDHunter [50] use features statically extracted
from Android applications as there feature vectors. Although the classification
effect is getting better and better, most of them cannot help explaining what
makes a malware. Only Drebin can infer the risky combination of static prop-
erties. But that is still not very clear how the malicious behavior happens for
every APP.

Among the existing automated analysis methods, some of the static anal-
ysis methods focus on the implicit call study such as [9–11,49,51]. Arzt et al.
[9] provide a precise model of Android’s lifecycle allows the analysis to prop-
erly handle callbacks invoked by the Android framework. Cao et al. [51] have
done further research on detecting implicit control flow transitions through the
Android framework. Reina et al. [10] dynamically observe interactions between
the Android components and the underlying Linux system to reconstruct
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higher-level behavior. Zhang et al. [49] also contributed to broken links con-
nection when generating call graphs. The detail of these approaches provides
lots of references and tools for us in matching the implicit edges. Fuchs et al.
[11] provide another tool for reasoning about data flows in Android applications.
It focuses on not only the-component but also the inter-APP data flow. We think
it is possible for us to try connecting PMCGdroid graphs of two APPs together
for conspiracy analysis in the future.

Besides, large body of Android data leak research work [12,13,18] help us
consider the sources (API-Source type) and sinks (API-Sink type) more com-
prehensively. For example Enck [18], Beresford et al. [1] only take network sinks
of data into considerations. Droidtrack [22] focuses on the message outlet. In
SCandal [48], API calls that can transfer data to the network, file or SMS are
considered as sinks. Then in our design, we take all the above sinks into consid-
erations and add Bluetooth, email, and multimedia message outlet to make our
detections more complete.

6.2 Malware Visualization Work

In 2015, Wagner et al. [24] provide a systematic overview and categorization of
malware visualization systems from the perspective of visual analytics. Current
individual malware analysis visualizations referred in this paper [25–32,47] are
all personal computer platform malware checking methodologies.

What’s more, most of the sample features considered in these approaches for
building visualization systems, such as the network activity of a malware sam-
ple [31], system calls issued over time [27], reversed bytes/byte segments/the
repeated bytes sequences of the sample file [25,32], dynamically captured sys-
tem activities [47], are not logical structure features embedded in the source
or decompiled code. Only approaches of Quist, Chan et al. [26,29,30] are a lit-
tle similar to our approach in constructing structural code profiles. Quist et al.
[26,29] monitor and track program execution to construct a directed graph of
all the basic blocks of an executable. Chan et al. [30] construct sample mini-
graph, which is a static control flow graph, to help monitoring and visualizing
the dynamic executive path of binary creature. They use their graphs in the
reverse engineering process to aid the Run-time debugging of malware, instead
of directly helping understanding the malware behaviors.

As for visualizations aiming at supporting the Android malware analysis, the
research has just started. Park et al. [20] focused on the checking visual similarity
among Android malwares and deciding the degree of similarity. González et
al. [21] apply neural projection architectures to analyze malware APPs data
and characterize malware families. Both of them aim at analyzing the Android
malware family similarity rather than individual malware checking. Androgurad
[35] provides a basic generation and view function for Android call graph and
control flow graph. However, it does not provide further capability of malware
profile detection. Thus, it is more like a data provider rather than a visualization
tool. Oscar else [19] proposed a tool to view a list of restricted API functions
used at runtime of the application, but they cannot show the full calling chain for
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that API and the correlation. Base data of [19,22] is dynamic monitored, which
is not as comprehensive and informative as static code since dynamic executions
cannot cover all the code paths.

7 Conclusion and Future Work

In this paper, we present a visualization analysis method to help Android security
experts to study the structural malicious profiles of APPs. Our method is mainly
based on a brand new kind of lightweight APP call graph PMCGdroid. This
graph not only restores the malicious core of malwares for visually checking,
but also behaves well in machine learning classification as feature sources. By
designing visual interfaces with rich interactions, we show how to assist users in
checking the APP’s malicious behaviors and their entire triggering paths.

Our current work mainly focuses on sensitive APIs as target objects. In other
scenarios, users can set their own targets, for example, code about encryption
and decryption (may be used for shelling and shelling-off), advertisements, reflec-
tion calls and so on, to meet different security analysis needs or visual needs.
Our framework is extensible to meet these requirements just by modifying some
labeling rules.

Although we can detect the behavior of developers trying to dynamically
load code by detecting related APIs such as “DexClassLoader”, our current
approach does not work on dynamically loaded code. Meanwhile, though our
image similarity results inside same malware family indicate that PMCGdroid

may be suitable for clustering analysis of malware, we have not done this work
yet. We will study them in the future.

In the future, we will further expand the visualization and artificial analysis
assistance capability of PMCGdroid. Also we will study how to visualize the
C/C++ code threats inside APPs.
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PUMA: permission usage to detect malware in android. In: Herrero, Á., et al. (eds.)
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Abstract. Although mobile shopping has risen rapidly as mobile
devices become the dominant portal to the Internet, it remains chal-
lenging for a developer of mobile shopping Apps to implement a correct
and secure payment protocol. This can be partly attributed to the misun-
derstanding, confusion of responsibility and implicit assumptions among
multiple separate participants of the payment protocols, which involve
at least users, merchants and third-party cashiers (e.g., PayPal). In addi-
tion, the documentation of the payment SDK which is written in informal
natural languages is often inaccurate, ambiguous and incomplete, such
that the developers might be confused. In this paper, we seek to infer the
correct usage and hidden assumptions of the most commonly used mobile
payment libraries, i.e., PayPal and Visa Checkout. Our approach starts
with building mobile checkout systems strictly following the documents
of PayPal SDK and Visa Checkout SDK. Afterwards, we propose an algo-
rithm to automatically generate test cases embedding different attacker
models to check the correctness and security of the payment procedure.
During the testing, our algorithm analyzes the security violations so as
to infer the correct usage of these payment libraries. Using our approach,
we have successfully found several non-trivial hidden assumptions and
bugs in these two payment libraries.

Keywords: Mobile payment · Payment protocol · Protocol extraction

1 Introduction

Mobile shopping is becoming increasingly popular as it brings great convenience
to people and it has become an indispensable part of their daily lives [9]. Numer-
ous merchants start providing mobile shopping Apps as their main portals [12].
Mobile payment, which allows users1 to pay remotely on their mobile devices,
is a critical procedure in mobile shopping. A small vulnerability in the payment
1 User of the merchant App, i.e., customer.
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protocol may cause severe financial lose for users and merchants, as revealed by
previous research [14,15,17].

Existing studies on online payment mainly focus on the desktop platform
rather than the mobile platform. We highlight that online payment protocols
intended for desktop platform cannot be directly applied to mobile platform,
due to the disparity of these two platforms, especially w.r.t. security [13]. First,
mobile devices have limited computation capability and battery power, and thus
it is hard to deploy a malware detection system as powerful as on the desktop.
Second, mobile devices are small in screen size, such that particular information
on security may be omitted for the sake of usability. For example, the users may
not realize that the website they are browsing is not the intended one as the
browser often hides the address bar to save space. Third, desktop has deployed
well-evolved security mechanisms to control access to security-critical resources,
whereas few similar mechanism has been built on mobile platform.

Mobile payment normally involves multiple parties, including at least cus-
tomers, merchants and third-party cashiers (TPC for short hereafter) such as
PayPal. These parties interact with each other following the underlying payment
protocol, which is typically designed by the TPC. The problem is that the mer-
chant App2 developers and the protocol designers are usually different parties.
Misunderstanding to certain steps in the protocol, confusion of responsibility
and wrong assumptions on the responses from other parties are unavoidable.
For example, to facilitate use of the payment protocol, the TPC usually pro-
vides App developers with an SDK encapsulating the protocol implementation.
This eases the use, but it may exacerbate misunderstanding because the details
of the protocol are hidden. Even worse, the documentation of the SDK, which
is often written in natural languages, may be inaccurate, ambiguous and incom-
plete. Consequentially, it is highly likely that the merchant developers fail to
correctly implement the payment protocol.

In this paper, we propose a systematic approach to identify the correct usage
and the implicit assumptions which the developers of merchant Apps must fol-
low and be aware of to implement a secure payment system. To this end, for
each payment SDK, we first build a testbed shopping system which includes
both a front-end merchant App embedding the SDK, and a back-end merchant
server which processes the payment issued from the App. To minimize the bugs
caused by our mis-integration, the testbed system is built by strictly following
the official documents and TPC’s sample code. By applying protocol extraction
techniques [6,20] on the testbed systems, we infer implementation-level pay-
ment protocols. These protocols are used to automatically generate test cases
for dynamic testing. During the testing, we check whether the payment is secure
by observing the integrity of four key elements in a payment, given that the
integrity is the key property of a payment protocol [17]. Whenever the integrity
is violated, we manually study the test cases and execution traces to learn the
cause of the violation. Through the analysis, we are able to infer the correct

2 In this paper, we use merchant App to indicate the front-end App running on cus-
tomer’s mobile device and merchant server the back-end server.
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usage and hidden assumptions to build a secure payment system. By applying
our approach on the Android SDKs of two widely-used TPCs, i.e. PayPal and
Visa Checkout, we have successfully found several non-trivial usage rules and
hidden assumptions. Our approach detects three bugs in these two payment
libraries.

We summarize our contributions as follows.

– We extract PayPal and Visa Checkout’s mobile payment protocols which can
be a reference for other researchers.

– By applying our approach, we have found and reported three confirmed bugs
in PayPal SDK.

– We summarize three rules and five implicit assumptions in using PayPal
and Visa. These are beneficial to the merchant App developers in building a
secure payment system.

2 Background

To ease the understanding, this section briefly introduces the background in
mobile payment.

2.1 A General Process of Mobile Payment

Although different TPCs may have different payment protocol implementations,
they generally follow a similar process in terms of mobile payment. In this section,
we use PayPal payment as an example to introduce such a mobile payment
process, as shown in Fig. 1.

Fig. 1. Correct process to capture
payment

Fig. 2. Dangerous process to capture
payment

S1. After ordering, the user clicks on the “Checkout” button to initiate a check-
out process (step 1).
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S2. The merchant client invokes the PayPal SDK and passes it the payment
details (step 2).

S3. PayPal SDK shows a login dialog for the user to login (step 3).
S4. After receiving login credentials, PayPal SDK sends them along with the

payment details to PayPal server for verification. After verification, PayPal
server creates the payment and sends it back to the PayPal SDK, which
then shows the user a button for payment authorization (step 4).

S5. The user confirms the payment details (e.g., amount) and authorizes the
payment (step 5).

S6. Upon receiving authorization, PayPal SDK forwards it to PayPal server
and the PayPal server sends the payment result back to PayPal
SDK (step 6).

S7. The PayPal SDK sends the payment info to the merchant client (step 7).
S8. The merchant client sends (optional) the payment information to its mer-

chant server (step 8).
S9. The merchant server captures the payment with PayPal server using the

payment information from merchant App (step 9).
S10. PayPal server replies merchant server with payment completed

response (step 10).

2.2 Special Features of PayPal SDK

Despite of the general payment process, each TPC may have special features. In
this section, we introduce such special features in PayPal SDK which are relevant
to the security of the protocol. PayPal’s mobile payment process can be further
divided into the following three types, depending on the timing of authorizing
the payment and the timing that the merchant captures3 the payment.

Single Payment. It represents a one-time payment. The single payment can
be further divided into three categories.

– Immediate payment, where the user authorizes the payment immediately and
the merchant captures the payment immediately.

– Authorization payment, where the user authorizes the payment immediately
and the merchant may capture it later.

– Order payment, which is used in the case that the user authorizes the payment
in advance when the actual item for sale is not ready yet. Once the item is
received by the user, the merchant can capture payment at any time.

Future Payment. It allows the user to authorize the merchant to create and
capture payment in the future. In other words, once authorized, the merchant
can create and capture payment for multiple times.

Profile Sharing. It is used to share user’s profile information in PayPal server
to the merchant App. This seems not a payment feature. However, as we show
in Sect. 8, this feature actually allows the merchant to capture payment from
user’s account.
3 Capture is a term used in the PayPal documentation, meaning that the merchant

completes/cashes the payment.
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2.3 An Example of Dangerous Usage

Although the processes of the all three types of single payment in PayPal’s
Android SDK are the same, there are subtle differences among them. For exam-
ple, in both authorization payment and order payment, after the user authorizes
a payment, the protocol requires the merchant to immediately capture the pay-
ment, whereas in the immediate payment, the merchant does not have to do so.
Therefore, to guarantee the payment is captured successfully, the following rule
must be complied by the merchant.

#1. For authorization payment and order payment, the merchant server must
subsequently capture the payment from the merchant server4.

Following this rule, the merchant server needs to actively perform step 9 and step
10 as shown in Fig. 1 to ensure the authorization or order payment is completed
correctly.

A dangerous usage of the protocol example is shown in Fig. 2. In that scenario,
the payment capturing request is performed by the App, while it should be done
by the merchant server as shown in Fig. 1. The reason is that the environment
in which the merchant App resides is out of the control of the merchant, and
thus it should be considered as insecure. This is a case that developers without
security domain knowledge may not be aware of. If rule #1 is not followed, an
attacker could intercept the messages sent from the merchant App to TPC and
forges a response from the TPC. Compared to the App side, the merchant server
is normally under control of the merchant, and thus performing the payment
capturing request on the server side is relatively more secure.

The cause of this security issue is as follows. PayPal may assume that it is the
merchant’s responsibility to ensure the capturing request is sent from merchant
server, while the merchant may assume that the protocol is secure and he/she
may not realize it is dangerous to capture payment from merchant App.

Fig. 3. Method overview Fig. 4. Testbed mobile checkout sys-
tem with proxy server

4 We find that this rule also applies for Visa Checkout, in which there is no immediate
payment, and the merchant is required to actively capture the payment.
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This example demonstrates that, because of such hidden assumptions and
confusions of responsibility among participants of the mobile payment protocol,
security problems in this scenario are inevitable. This motivates us to identify
the hidden assumptions and the correct usage of a payment protocol.

3 Method Overview

In this section, we introduce our overall method. As shown in Fig. 3, our method
includes the following steps.

System Building. Taking the documentations from TPC and the sample
code (with SDK provided by TPC) as input, we first build the testbed pay-
ment systems following the instructions from documents. We mainly need to
incorporate two parts - the merchant and the TPC server. For the TPC server,
we use the sandbox environment, for example [3], to avoid finance cost to any
real merchants during testing. We remark that the sandbox environment is a sep-
arate server that provides mirrored functionalities of the live environment that a
TPC server uses for real-world applications. All the functionalities needed in this
work from live environment can be found in the sandbox environment. Hence,
the rules inferred in the sandbox environment are also applicable to the live
environment. For the merchant, following the work flow introduced by the offi-
cial documents, we build both merchant App and merchant server with essential
functions needed to accept payment.

Protocol Extraction. In order to understand how the TPC SDKs create a pay-
ment and what information is necessary for creating a payment which the SDKs’
documents do not cover, we need to perform the protocol extraction to infer the
underlying payment protocols. These protocols specify the exact actions of each
participant. They are used for generating test cases under different attacker
models.

Test-based Rules Summarization. In this step, we infer rules during the
dynamic testing. To this end, we propose an algorithm to guide the testing pro-
cess. The algorithm generates different test cases incorporating various attacker
models. It then drives execution of the system by feeding it the generated test
cases. The essential idea of the algorithm is to enumerate what an malicious
participant can do. When executing each test case, the protocol may either ter-
minate or end normally. In the former case, the attack may have been prevent
by the protocol, so we do not further examine it. For the latter case, we check
the integrity after the execution finishes. If the integrity is breached, there may
be a flaw in the system, and we manually examine it to figure out the cause of
the problem and then summarize protocol usage rules or assumptions.

4 System Building

In this section, we introduce the testbed system building. The architecture of
the testbed system is shown in Fig. 4. It includes a merchant App including the
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merchant client and a TPC SDK, a merchant server and a TPC server. We set up
two sets of testbed systems integrating respectively PayPal and Visa Checkout
SDK.

Merchant App. For each of the merchant Apps, we reuse most of the code from
the samples provided by TPC. To simplify the merchant App, we omit the item
selection process and provide just two buttons representing two different items
with different prices. When one of the buttons is clicked, the user is redirected
to TPC SDK to finish the rest of payment protocol. After that, the merchant
client5 receives the payment information returned from TPC SDK and it can
either send the information to the merchant server, or perform capture directly
depending on the test case. For example, if it is the single payment in PayPal,
the merchant client transmits the payment ID back to the merchant server,
whereas if it is the future payment, it transmits the authorization code back to
the merchant server.

Merchant server. In different test case, the merchant App may send different
payment information to the merchant server, which then accordingly perform
one or more of the following actions.

For PayPal:

– Doing nothing. This action represents that the merchant server does not need
to perform any further action. This may happen if the merchant client has
captured the payment.

– Retrieving payment details. This action represents that the merchant server
queries the detailed payment information from the PayPal server, such as
amount and capturing status.

– Verifying payment information. This action represents that the merchant
server validates the payment information retrieved from the PayPal server.

– Capturing payment. This action represents that the merchant server cap-
tures the payment with PayPal server by providing the payment information
received from the merchant client.

For Visa Checkout:

– Doing nothing. This action represents the same as in PayPal.
– Retrieving payment details. This action represents that after receiving pay-

ment ID from merchant client, the merchant server uses it to retrieves the
encrypted payment information from Visa server.

– Decrypting payload. This action represents that the merchant server decrypts
the encrypted payment information returned from Visa server.

– Updating payment information. This action represents that the merchant
server updates the payment information to the Visa server after validation.

5 The portion of code that is implemented by merchant developers which is represent-
ing with a carte label in Fig. 1.
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We create a profile for each of the two merchant Apps in the respective TPC
servers. The TPC servers generate two unique artifacts for each of the Apps:
shared secret and merchant ID (They may be named differently in different
TPCs). The shared secret is used to authenticate the merchant and the merchant
ID is used to identify the merchant App. In summary, we build two sets of
systems which incorporate PayPal SDK and Visa Checkout SDK, respectively.
We remark that these testbed systems are representative as we build them based
on the official documentations and sample code which can reflect the actual
situations where developers are facing as they develop Apps that integrate TPCs.

5 Protocol Extraction

In order to generate test cases for the testbed system, we need to extract the base-
line payment protocol from PayPal SDK and Visa Checkout SDK to understand
how the payments are created and completed by the protocols. Our approach
extracts the protocol from the messages exchanged by the participants during
the protocol execution. The messages we take as input include application-layer
messages, such as HTTP messages and HTTPS messages. In a nutshell, our
extraction approach works as the following steps.

– Protocol Message Capturing. During protocol execution, messages are
exchanged through the network channels. We capture these messages as traces
from our testbed systems for our analysis.

– Trace Refinement. The raw traces captured are typically complicated and
contain many redundant parameters which are not relevant to our analysis.
Therefore, in this step, we remove redundant parameters to get refined traces.

– Protocol Interpretation. After trace refinement, we get the baseline pay-
ment protocols. However, the concrete semantics of the messages are still
unclear for us to understand the precise behaviors of the SDKs. For exam-
ple, some messages stand for payment creation while some stand for payment
update. Therefore, in this step, we aim to identify the semantics of these
messages by manual analysis.

5.1 Protocol Message Capturing

To capture the raw protocol messages in the network channels, we need to deploy
a proxy server in the network channels intercepting the messages coming in and
going out from merchant App. The proxy is not part of our testbed mobile
checkout systems, but it facilitates protocol refinement and can simulate the
network attacker during the dynamic testing.

Figure 4 shows the testbed mobile checkout system with the proxy deployed.
The proxy server is deployed between the merchant App and the two
servers (merchant server and TPC server) such that all messages sent out by
merchant App can be captured and even changed (for trace refinement). In this
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Fig. 5. Trace refinement procedure (The sub-procedure on the right side is the detailed
procedure for the “Refine” procedure on the left.)

Fig. 6. Single payment protocol (I: The first stage of creating and user consenting the
payment. II: The second stage that merchant server verifies or captures the payment.)

work, we only consider the attacks which can control the client-side Apps and
communication channels. Therefore, we skip the communication between the
merchant server and the TPC server.

After the deployment of the proxy server, once the protocol is executed,
all the communications coming in and going out of the mobile device can be
recorded by our proxy server. We execute all possible payment methods in PayPal
and Visa Checkout such that enough information regarding the protocol can be
preserved in the captured traces.
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5.2 Trace Refinement

The trace refinement procedure is shown on the left hand side of Fig. 5. The pro-
cedure takes the raw protocol messages as input and then outputs the refined
traces without redundant parameters. The concrete message refinement proce-
dure is shown on the right hand side of Fig. 5. By using our proxy, we keep
replaying every message with one parameter temporarily removed. If the mod-
ified message leads to the same response as the original message, the removed
parameter is a redundant parameter to the protocol. Hence, we can remove per-
manently that parameter. We keep doing it until we cannot remove any remain-
ing parameter. The final message therefore is a concise message which excludes
all redundant parameters while still produces the same response as the original
message.

We iterate the refining procedure on all the raw messages and obtain their
refined versions. Eventually, all the messages refined make up the refined trace.
In some cases, a replayed message is not accepted when the message carries a
parameter that can only be used for once, e.g. timestamp. To address this, we
repeat the whole protocol in order to fuzz for the single non-repeatable message.

5.3 Protocol Interpretation

After refining the protocol messages, we then analyze the purpose of each mes-
sage. Messages sent to different url endpoints with different parameters corre-
spond to invoking different APIs/commands in TPC server to log user in, create
or update payment.

We summarize the identified TPC API endpoints from messages of TPC
SDKs and messages of the merchant server. We find that different API endpoints
serve as different purposes/commands in the protocols.

From the communication trace between PayPal SDK and PayPal server, we
observe that different payment methods in single payment use the same set
of API endpoints and follow the same sequence when invoking the APIs. We
also observe that future payment and profile sharing share the same set of API
endpoints and also follow the same sequence. The difference is the intent of the
final consent made by future payment and profile sharing. For future Payment,
the consent is to authorize the merchant to make payment in the future, whereas
profile sharing authorizes the merchant to retrieve personal information from
PayPal.

The final outputs of protocol inference are the baseline protocols for different
payment methods in PayPal and Visa Checkout. We summarize them as follows.
In the protocol, we denote merchant App as APP C, PayPal SDK as PayPal C,
PayPal server as PayPal S, the merchant server as APP S, Visa checkout SDK as
Visa C, Visa server as Visa S.

– Single Payment. As shown in Fig. 6, the first stage of authorization payment
and order payment are the same. There is subtle difference at the second stage.
In the immediate payment, the merchant server does not have to capture the
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Fig. 7. Future payment protocol

payment. Rather, it only has to verify whether the payment details are correct.
To this end, it uses its merchant ID and the shared secret to obtain an access
token and makes a direct server-to-server API request to check if the payment
details are exactly the same as the one returned from the merchant App.

– Future Payment. The procedure of future payment is shown in Fig. 7. We
highlight that whenever the refresh token which the merchant obtains using
the authorization code is still valid, it can be used by the merchant to create
and capture payment. From the official document on PayPal SDK, we know
that although the authorization code is short-lived, the refresh token is long-
lived and lasts for 10 years [2]. That means that when the refresh token is
obtained, the merchant can create and capture the payment within 10 years.

– Profile Sharing. The procedure for profile sharing is highly similar to that of
future payment. The difference only occurs at the last step. Merchant server
makes request to different API endpoints to retrieve user’s profile information
rather than to create and capture payment as in future payment.

– Visa Checkout. As shown in Fig. 8, most steps of Visa Checkout are similar
to PayPal’s immediate payment. However, in the last two steps (step 9 and
step 10), apart from the callID, Visa also returns the encKey and encData
which are encrypted data containing the payment details. Merchant needs to
first decrypt the encKey using the shared secret and then uses the decrypted
encKey to decrypt the encData to get the payment details.

6 System Testing

Based on the extracted protocols, we can generate test cases to dynamically test
our testbed systems. During the test case generation, we consider two types of
attackers, i.e., the malicious user and the malicious merchant, each of which has
specific attack capabilities. Given that the integrity is the predominant property
in payment protocols, our dynamic testing mainly targets this property.
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Fig. 8. Visa checkout protocol

6.1 Attacker Models

During the test case generation, we consider the following two attacker models.

Malicious User. The malicious user stands for such a attacker that controls the
mobile device where the merchant App is running on. This attacker attempts to
shop for free or pays less for the order6, and the victim of this attacker model is
the merchant. We list the capabilities of this attacker as follows.

– To control the network channels of the merchant App such that it can change
parameter(s) in protocol messages coming in and going out from the device.

– To record, interrupt and replay the messages sent and received by the mer-
chant App.

– To forge a message to merchant server, merchant App or TPC server.

Malicious Merchant. The malicious merchant stands for such a attacker that
controls the merchant App and the merchant server. This attacker attempts to
overcharge the user, charge the user without authorization and obtain the profile
information of user from the TPC. The victim of this attacker model, thus, is
the user. We list the capabilities of this attacker as follows.

– To tamper the total amount in the order or user’s authorization.
– To abuse obtained token, e.g., invoke particular APIs out of user’s intention.
– To inject malicious code in the merchant client and the embedded TPC SDK.

6.2 Integrity of Payment

A payment consists of the following four elements. (1) the User who initiates a
payment, (2) the Order placed by the user who initiates that payment, (3) the
Payment made by the user, and (4) the Merchant which the order is placed

6 The order contains the items the user has ordered and the prices of the items.
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Algorithm 1. Test case generation algorithm
1: procedure Test Case Generation
2: FOR M ∈ attack models
3: Bool ENDNORMAL == TRUE
4: FOR P ∈ protocols
5: FOR step S ∈ P
6: A = M .ChooseActions()
7: R = S.GetActiveRole ()
8: IF R = M .GetRole()
9: A = R.GetProtocolAction()

10: A.Perform()
11: ELSE A = M .GetRole().GetAction()
12: A.Perform()
13: IF P .CanProceed()!=TRUE
14: ENDNORMAL == FALSE
15: BREAK
16: ENDIF
17: ENDIF
18: ENDFOR
19: IF ENDNORMAL == TRUE
20: CheckIntegrityOfPayment()
21: ENDIF
22: ENDFOR
23: END

in and the user should pay. We represent the association of Payment, Order,
U ser and M erchant as POUM. This association specifies the fact that a user
makes a payment for the order to the merchant. Essentially, each transaction
can be abstracted as such an association.

To ensure that a payment is conducted in a correct and secure way, the
integrity of the POUM must be guaranteed. In other words, the integrity of
the POUM implies that the user has made a payment with correct amount for
the intended order to the right merchant. Therefore, after executing the system
on each test case, we check the payment’s POUM from perspective of different
parties to ensure that the POUM has not been changed by any participant.

6.3 Testing and Evaluation

The algorithm for generating test cases under the above attacker models is shown
in Algorithm 1. As shown in the algorithm, during the protocol execution, an
honest participant always follows the protocol, while a malicious attacker enu-
merates the actions it is able to conduct under the capabilities we define in
Sect. 6.1. For the malicious user attacker model, we consider user and merchant
App as the same role in the protocol execution, given that the mobile device
is under the malicious user’s control. Therefore, the merchant App in this case
should be considered as part of the malicious user. In the malicious merchant
attacker model, both merchant server and the merchant App are considered
malicious. During the action conducting, the algorithm checks if the protocol
can proceed to next step, because the participants may reject the unexpected
messages and terminate the protocol. At the end of each protocol execution, we
check the integrity of POUM to decide whether the test case has revealed a
problem of the protocol implementation.
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7 Problems Identified and Correct Usages

In this section, we report the identified bugs during system testing and then
discuss the correct usages that are summarized from the bugs.

7.1 Identified Bugs

PayPal Android SDK. We find three bugs (shown in Fig. 9) in PayPal pay-
ment when we test the system with test cases incorporating the attacker which
has compromised the communication channel between the PayPal SDK and Pay-
Pal server. This attacker represents several practical system and network attacks.
For example, it can be a malicious merchant who incorporates a modified version
of SDK to change the parameters; it can be a malicious App which embeds a net-
work proxy (e.g., [8]) and has been installed on the same device as the merchant
App; it can be a privileged App which is assigned root or ADB priviledge [7]; it
can be a public WiFi hotspot under attacker’s control.

We have reported all the bugs to PayPal who confirmed our findings and
stated that the bugs will be fixed in the later version of PayPal Android SDK.

Payment details being Changed. We find that PayPal SDK accesses an API
endpoint to create payment and delivers the payment details to the PayPal
server. In this step, the attacker modifies the message with different amount and
currency. Later, the PayPal SDK displays the payment details to the user and
waits for the user to authorize the payment. We observe that when applying
the above test case, even after the attacker has changed the payment details
in the transmitted messages, the amount displayed to the user remains the one
before the attacker changes it. In addition, even the merchant client actively
retrieves the payment details by invoking the APIs of the SDK, the returned
payment details remain the same as the unchanged one. This implies that even
after PayPal’s server replies with the changed payment details, PayPal’s SDK
does NOT update the payment information. This flaw is shown by steps labelled
in red in Fig. 9a.

This bug can lead to an attack where a malicious merchant can overcharge
an incautious user. For example, a malicious merchant can change the payment
amount to a higher number. Since the SDK shows the original payment even
after the payment being changed by the merchant App, there is no information
for the user to immediately find he/she has been overcharged.

User Credentials being changed. As shown in Fig. 9b, when a user, e.g.,
Alice, enters her credentials to log into PayPal, the credentials can be changed
to Bob’s username and Bob’s password. In addition, we observe that the Activity
in PayPal SDK still shows the username of Alice. This implies that PayPal server
never verifies whether the payer in the payment details is the same as the user
under authentication.

Although this issue may be less harmful to end users than the previous
issue, we highlight that the PayPal server should be responsible to verify the
consistency of payer and the authenticated user, and the SDK should in all



Inferring Assumptions and Usage of Payment Protocols 483

(a) Payment details transmitted being changed.

(b) Account credential transmitted being changed.

(c) Payee (Merchant) ID transmitted being changed.

Fig. 9. Identified bugs in PayPal SDK.
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cases check and verify the payment details returned by the server and displays
correct information to the end users.

Payee (Merchant) ID being changed. This bug is shown in Fig. 9c. When
a user initiates the login, PayPal SDK accesses to an endpoint with a basic
access authentication header using the merchant ID in base64 encoding [11].
The attacker substitutes the merchant ID with another merchant ID under his
control. Once the user logs in, the PayPal server returns an OAuth bearer token
[10]. This token binds the user to the changed merchant ID, such that the pay-
ment is also associated with the changed merchant. Later, once PayPal SDK
accesses REST API endpoint to create payment with the token, the payment is
paid to the attacker’s merchant ID. We remark that unlike the first issue, the
payee information is not displayed to the user in this case. Our investigation
finds that the payment details returned from PayPal’s server to the SDK does
not include who the payee (merchant) is. The payee information only appears
on the last message from PayPal server, i.e., after the payment is completed.

The above bug can lead to the following scenario. A network attacker might
change the parameters when user is making a transaction with merchant. If the
user does not check who she is paying to, she might pay to a wrong merchant.

Visa Checkout SDK. We also have done the same testbed building and secu-
rity analysis on Visa Checkout SDK. We have found that the Visa Checkout
SDK follows a very strict step-by-step process. It also does not incorporate as
rich functionalities as PayPal, such as the future payment and profile sharing.
Therefore, no problem is found from the Visa checkout SDK, and the security
problems we have found in PayPal do not exists in Visa Checkout SDK.

7.2 Correct Usage Summarization

In addition to the rule shown in the motivating example, we summarize rule #2
and rule #3 from the three bugs in Fig. 9 introduced in Sect. 7.1.

#2. A merchant App should not assume the payment information returned
from PayPal SDK is correct and complete.

As stated in the first bug (Fig. 9a) and the second bug (Fig. 9b), after receiv-
ing payment details which may have been changed by the malicious merchant,
PayPal SDK does not accordingly update the information displayed to the user.

#3. For every payment, the merchant server must verify the payment informa-
tion ( including payer ID, payee ID, amount, currency and fresh-
ness of payment) and the status of the transaction to ensure the correct-
ness of the payment.

This rule applies for both PayPal and Visa. The messages sent to the mer-
chant server from the merchant App may have been tampered by the malicious
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users. Therefore, the merchant server should not trust these messages. Instead,
it should use the Payment ID received from the merchant client to make a direct
API call to the PayPal (or Visa) server to retrieve the detailed payment infor-
mation.

In particular, the merchant should verify the correctness of payer ID, payee
ID, amount, currency and freshness of the payment. In addition, the merchant
should not deliver any service or items to the users before the payment is verified.
Moreover, since the messages out of the device can be changed by the malicious
users, the verification of payment must be performed from merchant server as
specified in rule #1.

8 Ambiguity in Documents

In this section, we report the ambiguities between the interpretation of the doc-
ument and the facts we get from the system implementation.

i. Future Payment allows the merchant to capture 15% more than the amount
in the payment authorized by the user. This should be explicitly displayed to
users when the users check out with PayPal.

This ambiguity is observed from a test case with malicious merchant attacker
model where the malicious merchant successfully changes the amount to a larger
number. Using manual testing, we identify this upper bound of the extra amount
(15%) which the merchant can capture. This is not a bug, since we later find
this policy in one of PayPal’s documents named Authorization & Capture [4]
which is burred deeply among other documents. It states that the merchant
can charge user 15% more with an upper bound of $75. However, since there
is no such statement in the document of PayPal Android SDK, this may cause
confusion in the responsibility between the merchant App developers and PayPal
regarding who should be the party warning user of this policy. An App developer
often only focuses on the functionality implementation of the App, but tends to
overlook the policy issues. Thus, it is likely that the developers only read the
SDK documents, such that they may never notice the policy and let alone to
inform the users.

ii. When a user has authorized the merchant for profile sharing, the merchant
becomes able to charge the user through the future payment, even though the
user has never authorized the future payment before.

This is observed in a test case under malicious user attacker model when the mali-
cious user replaces the future payment authorization code with another autho-
rization code he has obtained for profile sharing. To examine the cause, we sur-
prisingly find that the scope of profile sharing includes the permission of future
payment. This implies that the merchant can wrap the request for permission
of future payment into a request of profile sharing, such that an incautious user
who intends to authorize the profile sharing may actually authorize the future
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payment. In addition, this security-sensitive information on relation of the pro-
file sharing and future payment is not stated clearly in the document of PayPal
Android SDK.

iii. When a user has previously authorized the merchant with future payment, the
authorization code of profile sharing to the same merchant from the same
user automatically enables the merchant to make future payment without
user’s authorization, even if the merchant App does not request the future
payment access in the profile sharing.

This is observed in the test case under malicious merchant where he changes the
future payment code with profile sharing code that a same user has previously
authorized. Contrary to ambiguity ii., if the user has previously authorized the
merchant to make future payment, and later the user also consents the merchant
to do profile sharing without future payment access in the scope. The authoriza-
tion code for profile sharing can be used to cerate and capture a payment.

iv. Although multiple steps are stated necessary by the documents, order pay-
ment in single payment can be captured directly without the following steps.
– executing the order,
– and authorizing the order.

This ambiguity is discovered in a test case under malicious merchant attacker
model where the malicious merchant skips the above mentioned steps and cap-
tures the payment directly, The PayPal SDK document does not detail the order
payment, but only provides a link to a REST API document [1]. In that doc-
ument, an order payment has to take five steps to complete, starting from the
initial step “Create the order”, then “Get customer (user) approval”, “Execute
the order”, “Authorize and order” and lastly to “Capture an order”. However,
based on our testing results, the order payment created from the PayPal SDK
can be captured directly without the “Execute” and “Authorize” steps.

v. Client Metadata ID is not a necessary information for mobile payment pro-
tocol of future payment.

This ambiguity is discovered during the trace refinement. After the client meta-
data ID is removed from the request sending by SDK to the TPC server, the
response from the TPC server does not change. This implies that the client meta-
data ID is not a necessary information at all. This is contradictory to PayPal
SDK’s document [2] which clearly states that Client Metadata ID is necessary.

9 Related Work

Our work is related to the following two areas – third party library analysis
and flaws detection from integrated applications. In this section, we brief related
work in these two areas.
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Third party library. In [19], the authors conduct security analysis on the
China’s mobile payment market. They find security vulnerabilities in different
payment libraries and suggest security rules for developers. Different from it,
this work aims to use a systematic approach to identify hidden assumptions
and ambiguities. In [18], the authors aim to uncover the hidden assumptions for
using the SDKs in secure authentication and authorization. In [15], the authors
leverage black-box testing with known attack patterns to test the security of
multi-party web applications.

Flaws Detection. The other type of related research is detecting flaws in
application implementations. In [6], the authors develop a tool to automatically
extract and translate the protocol into a formal model. Then vulnerabilities of
the protocol can be identified by formally analyzing the extracted model. Similar
to this work, a Single Sign-on (SSO) protocol is extracted from network traf-
fic and formally modeled. Through this, security vulnerabilities are identified
through formally verifying the formal models [20]. While in Pellegrino et al.’s
work [14], the authors use black-box testing to test web applications, aiming
at finding logic flaws. [16] uses a static analysis to identify the vulnerabilities
in e-commerce web applications. Prior to this, [17] studies Cashier-as-a-Service
based web stores and finds that integration of the third-party services might
introduce vulnerabilities into the web applications.

10 Conclusion

We propose a systematical approach to identify correct usage and hidden
assumptions in mobile payment protocols that developers should be aware of.
These identified usage and assumptions urge both the protocol designers and
the TPC SDK developers to provide clearer and well-formed documents. More
techniques [5] should be used to check, and if possible, to formally verify the
security of the payment protocol implementation.
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Abstract. HTTPS has played a significant role in the Internet world.
HSTS is deployed to ensure the proper running of HTTPS. To get a
good understanding of the deployment of HSTS, we conducted an in-
depth measurement of the deployment of HSTS among Alexa top 1
million sites, and investigated bookmarks and navigation panels in dif-
ferent browsers. We found five types of threats, including transmission
errors, redirection errors, field setting errors, the auto completion mecha-
nism in bookmarks and the embedded addresses in navigation panels. To
demonstrate defects we found, we designed an enhanced HTTPS strip-
ping attack, which was upgraded from the original sslstrip attack. Finally,
we gave three effective suggestions to eliminate these defects. This paper
exposed various risks of HTTPS and HSTS, making it possible to deploy
HTTPS and HSTS in a more secure way.

Keywords: HSTS · HTTPS · Stripping attack · Security

1 Introduction

Users value security and privacy more than ever. HTTPS [1], which consists of
HTTP [2] and SSL/TLS [3,4] protocols, is created to provide confidentiality and
integrity of web browsing. Recently, many companies have taken measures to
prompt the deployment of HTTPS. Since 2014, Google has improved rankings
of the websites which deploy HTTPS [5]. Furthermore, in Chrome, the websites
which do not deploy HTTPS can not even make use of geographic location
and the application cache. Eventually they will result in an unsafe symbol in
the address bar of the Chrome browser. In the past, obtaining and maintaining
of the digital certificates would cost a lot. Therefore small companies or big
companies with many domain names might not deploy HTTPS for the cause
of expense. Fortunately, Let’s Encrypt [6], which is a non-profit organization,
provides Domain Validation (DV) certificates for free through a fully automated
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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process. Apart from Let’s Encrypt, several content distribution networks and
cloud service providers, including CloudFlare and Amazon, provide free TLS
certificates to their customers.

However, there are still many HTTP connections that exist in the Inter-
net. To handle the mix of HTTP and HTTPS connections seamlessly is diffi-
cult for browsers due to the stripping attack. HTTPS stripping attacks have
raised widespread concerns since Marlinspike put forward sslstrip at the black-
hat conference in 2009 [7]. Attackers can intercept the communication between
the target website and the client, and change all https into http in the response
packets from the website. Even though this attack violates the rule which states
TLS/SSL should ensure end to end security, neither the client nor the server can
be aware of the attack for the reason that the packets sent from servers are still
encrypted.

To defend against the stripping attack, HTTP Strict Transport Security
(HSTS) [8] protocol was presented in 2012. It defines a mechanism enabling
websites to declare themselves accessible only via secure connections. In con-
sideration of the complexity of protocol and the diversity of communication
platforms, we are concerned about whether the HSTS policy has been under-
stood well. In our work, we conducted a comprehensive measurement about the
deployment situation of HSTS on both PC and mobile websites. Subsequently,
we investigated the bookmarks and navigation panels in browsers. We found five
kinds of risks in the deployment on different platforms, which can be ignored
easily by users or developers. These risks are categorized in Table 1. According
to the risks we found, there is still a great probability of launching a stripping
attack. But after our tests, the old sslstrip tool failed to attack the current
websites. In order to understand the dangers of these risks well, we enhanced
the original stripping attack and implemented a new HTTPS stripping attack
through adding an script. Finally, we launched the attack in a simulative envi-
ronment to test various famous sites, including mail.qq.com, www.amazon.com,
www.baidu.com, taobao.com. The results of stripping attack were all successful
based on the defects we found. The major contributions of this paper are as
follows:

– We conduct an in-depth measurement of HSTS deployment on both PC web-
sites and mobile websites, and the results show that many problems exist in
the deployment, including incorrect setting methods and field setting errors.
Particularly, redirection problems in mobile websites pose a risk to HSTS.

– We perform an investigation about bookmarks and navigation panels in dif-
ferent browsers. Through careful observation, we find that defects of the auto
completion mechanism in bookmarks and the embedded addresses in naviga-
tion panels may lead to a stripping attack.

– We analyze the old sslstrip tool, and find it is not suitable for complicated
webpages. Besides, we implement an enhanced HTTPS stripping attack.
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Based on the defects in browsers and deployment of HSTS, we launch this
attack in several simulative scenarios successfully1.

– We give three kinds of useful suggestions to handle these security threats
above.

Table 1. Five kinds of risks found in the measurement

Incorrect setting method HSTS is set via HTTP

Field setting errors Many field settings in HSTS headers do not
obey the standard

Redirection problems HSTS is not deployed correctly during
redirections

Bookmark in browsers The auto completion mechanism in
bookmarks only provides HTTP

Navigation panels in browsers The embedded addresses in navigation
panels take HTTPS as HTTP

The rest of this paper is organized as follows. Section 2 provides background
information about HTTPS and HSTS. Section 3 details the data collection, and
introduces the data source. Section 4 gives an in-depth analysis of deployment
of HSTS on both PC websites and mobile websites. Section 5 implements an
enhanced HTTPS stripping attack, and demonstrates the attack. Section 6 dis-
cusses possible mitigations. Section 7 surveys related work. And finally, Sect. 8
concludes our work.

2 Overview of Web Security

HTTPS [1] was created in 2000. It describes how to use TLS to secure HTTP
connections over the Internet. In this section, we will give a short introduction
to HTTPS and HSTS, and talk about HSTS security and stripping attack.

2.1 HTTPS and Stripping Attack

A few years ago, HTTPS was deployed only in financial or e-commerce payment
pages or login pages. However, the situation has changed over time. More and
more sites began to deploy HTTPS. One of the reasons is that many studies show
that the site owners should provide HTTPS service on all site pages, including
whole resource files and thus encryption of part of the sites is proven unsafe
[9,10]. Another reason is the emergence of free certificates and TLS accelerator.
The cost to maintain HTTPS service was very expensive, which contained the

1 We conducted the experiment in local computers and network, which formed an
emulated environment.
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cost of applying certificates, the cost of updating certificates, and the perfor-
mance overhead caused by extra encryption or decryption. Fortunately, these
problems have been solved in recent years. Many organizations began to provide
free TLS/SSL certificates and websites greatly benefited from HTTPS.

Nonetheless, HTTPS stripping attack poses a risk to HTTPS. When users
type a domain name without protocol type (HTTP or HTTPS), the default
request type is HTTP rather than HTTPS. Usually, if the server provides
HTTPS service, the server will give a 302 redirection after receiving an HTTP
request. However, the attacker can intercept the traffic through ARP spoofing
and replace all https with http in the response packet. Thus the browser will still
request an HTTP website regardless of the 302 redirection. Again, the attacker
can replace all http with https in the request packet. The attack is shown in
Fig. 1. The communication between the attacker and the server is encrypted,
but the communication between the attacker and the browser is in plaintext.
This attack is called HTTPS stripping attack, which can not be detected by
browsers or servers as it follows the HTTP communication protocol.

Fig. 1. Stripping attack: the attacker can intercept the traffic, establish an encrypted
connection with the server, and communicate with the client via HTTP.

2.2 HSTS Protocol

To avoid the HTTPS stripping attack, HTTP Strict Transport Security (HSTS)
policy was created in 2012 [8]. The policy is declared by websites via the Strict-
Transport-Security HTTP response header field or by other means, such as user
agent configuration. If the server wants to provide HTTPS service all the time,
it will send an HSTS header to the browser. According to the information in
headers, the browser will remember the domains which want to force to be visited
by HTTPS. And when users send an HTTP request next time, the browser
automatically converts HTTP to HTTPS in the background. The HSTS policy
defines the standard of HSTS headers, and the headers mainly consist of three
fields. The first is the max-age field, which means the expiration time and it is
mandatory. The second is the optional includeSubdomains field, which indicates
whether the HSTS policy applies to the subdomains of the domain. The last
one is the preload field and it is also optional. This field indicates whether the
domain has been permanently added into the preload list, which is maintained
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by browser providers. What is essential is that these headers can only be sent by
HTTPS requests, hence the attacker can not arbitrarily tamper with the HSTS
policy to disable it.

2.3 HSTS Security Consideration

Although HSTS policy can defend against HTTPS stripping attacks to a cer-
tain extend, many new security issues still exist. The most common one is the
incorrect configuration as many developers do not have a good understanding of
the HSTS policy. For instance, if the max-age value is set too big or too small,
HSTS policy will be reused or invalid. If the max-age value is too big, the pol-
icy will still work all the time even though the server does not want to provide
HTTPS service anymore, which may cause websites unable to be visited. If the
max-age value is too small, HSTS policy will be invalid in a very short period of
time, which can be used to launch MitM attack by attackers. Besides, misuse of
includeSubdomain and preload field will be vulnerable against DoS attacks. If the
servers are unaware of being added to preload list and do not provide HTTPS
service, the sites will fail to be accessed. In addition, whether the subdomains
have properly deployed HSTS, whether each step in the redirection is deployed
correctly and whether the web application contains any insecure references to
the web application server are all problems concerned. Based on these consider-
ations, we decide to conduct an in-depth measurement about HSTS deployment.

3 Data Collection

We used Python as the programming language in the whole experiment and
we rewrote the urllib2 library so that it could meet our requirements. Not only
did we use urllib2 to send HTTP or HTTPS requests, but also did we record
each HSTS information in the event of redirection. First, we surveyed www sub-
domains of top 1 million sites [11] with PC user-agent2. The reason we chose
this user-agent was that Chrome was the main advocate of HSTS. We sent
both HTTP and HTTPS requests for the same domain name and recorded the
response packets in each redirection. Then we sent the same requests to 1 mil-
lion sites, except that mobile user-agent3 was used instead. We repeated this
process for three times to reduce the influence caused by network performance.
In total, we sent out 1 million HTTP requests and 1 million HTTPS requests
(like http://www.example, https://www.example4). Finally, we successfully vis-
ited 937,430 sites with HTTP requests and 631,833 sites with HTTPS requests,
respectively, using PC user-agent. For mobile-agent, the number of successfully
accessed sites is 936,268 and 635,041, respectively. Because of several sites which
2 Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/54.0.2840.59 Safari/537.36.
3 Mozilla/5.0 (Linux; Android 5.0; SM-G900P Build/LRX21T) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/55.0.2883.95 Mobile Safari/537.36.
4 Here example refers to a domain name.
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failed to respond, the number of responses is less than that of requests. As for
HTTPS requests, many servers neither provided HTTPS service, nor provided
a 302 redirection after receiving an HTTPS request. Based on these facts, many
websites could not be visited when we sent an HTTPS request directly. All
experiments were conducted in February 2017 and websites may adopt different
policies over time.

4 Current Deployment Measurement

There are two ways to deploy HSTS policy. The first one is preload list, which is
inserted into the browsers, and the other is dynamic HSTS, which is deployed by
HTTP header. Kranch and Bonneau [12] has studied the preload list carefully.
Therefore in this paper, we point out several problems about preload list which
was not found in their work. What should be emphasized is that our work is
completely different from Kranch’s. We explain the reason why the maintenance
of preload list is risky. Besides, we first conduct the measurement on mobile sites
and analyze the redirections problems in detail. Moreover, we list the specific
field setting errors and study the deployment in various browsers.

4.1 Preloaded HSTS

If domain has been added into the preload list, the browser will automatically
convert HTTP requests for the domain to HTTPS requests in the background.
We discovered a few new problems in preload list. The first one was sites added
into the preload list do not send HSTS header. Sites with preload list need to
set HSTS header as well since not all browsers support preload list. Users would
be hijacked easily when they visit these sites on browsers which do not support
preload list.

The maintenance of preload list is a hidden risk as well. Google has provided
a website [13], which is used to submit domains for inclusion in Chrome’s HTTP
Strict Transport Security (HSTS) preload list. However, the requirements of
submission are very strict and the sites must satisfy all requirements. If a site has
been added into preload list before, but later it does not satisfy all requirements
anymore, Chrome will delete it from preload list without notification [14]. As
a website owner, one will not be visiting the HSTS preload page every week
so the site may just be removed from the preload list without warning and the
owner may not even notice it until many months later. Moreover, requirements
for preload list are always changing. The website’s owner has to pay attention
to the state of preload list all the time.

Last but not least, sites in preload list have many setting errors and incor-
rect deployments [14]. For example, many redirections occur when we visit the
HTTPS sites, but HSTS is not properly deployed in each event of the redi-
rections. Not all subdomains support HTTPS and many HSTS headers do not
contain preload or includeSubdomain field.
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4.2 Alexa Top Million Websites with Dynamic HSTS

We wanted to know if the redirection was different across different platforms, so
we conducted the test on both PC and mobile clients. In the rest of the paper,
we use PC sites to mean the visit to the websites with PC user-agent, and use
mobile sites to mean the visit to the websites with mobile user-agent.

Table 2. Successful responses of 1 million requests

Request type HTTPS responses HTTP responses Total

PC-HTTP 170,883 766,547 937,430

PC-HTTPS 529,555 102,278 631,833

Mobile-HTTP 171,171 765,097 936,268

Mobile-HTTPS 525,724 109,317 635,041

The Overall Data Distribution. The results of all responses summarized
in Table 2. As mentioned in Table 2, we got 937,430 PC responses and 936,268
mobile responses through the HTTP requests, and got 631833 PC responses
and 635,041 mobile responses through the HTTPS requests. According to the
results, we can know that many sites support both HTTP and HTTPS. Most
PC sites (81.8%) and mobile sites (81.7%) still supported HTTP. We think the
main reason is that many users are still using outdated browsers or systems,
which do not support HTTPS well. Hence, website owners would like to remain
compatible with these users’ web clients and they responded to both HTTP
requests and HTTPS requests. As for HTTPS requests, while more than half
of the sites supported direct HTTPS access, a number of sites which did not
support HTTPS failed to redirect HTTPS requests to HTTP sites. These web-
sites may be vulnerable to DoS attack if the browsers keep sending HTTPS
requests. Consequently, we analyzed the deployment of dynamic HSTS based on
the results of responses. We counted the HSTS settings according to the HTTP
200 OK headers in Table 3.

Table 3. HSTS header setting

Request type Sites with HSTS header

PC-HTTP 36,788 (3.9%)

PC-HTTPS 43,301 (6.9%)

Mobile-HTTP 36,643 (3.9%)

Mobile-HTTPS 43,353 (6.8%)

Two years ago, however, Kranch [12] found just 12,593 sites which attempted
to send an HSTS header. This may imply an increasing number of sites realized
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the significance of HSTS and decided to deploy it. We clearly see the results are
different for HTTP and HTTPS requests. Further analysis shows that 8296 PC
sites deployed HSTS for HTTPS requests but not for HTTP requests. Particu-
larly, when we visited the 8296 PC sites with HTTP requests, we got 8213 HTTP
webpages and 83 HTTPS webpages. This is an interesting phenomenon, since
the 8213 PC sites may support both HTTP and HTTPS to stay compatible with
more users, but the 83 PC sites redirected HTTP requests to HTTPS requests
without HSTS header, which may be a threat. Furthermore, we analyzed the
distribution of HSTS deployments with Alexa ranking in Table 4.

Table 4. Alexa ranking and sites with HSTS

Request type Top10 Top100 Top1W Top10W Top100W

PC-HTTP 7 30 814 5,607 36,778

PC-HTTPS 8 33 866 6,266 43,301

Mobile-HTTP 8 31 812 5,589 36,643

Mobile-HTTPS 8 31 855 6,242 43,353

From Table 4, we can learn the top websites attached great importance to the
deployment of HSTS. More specifically, among the top 10 websites, www.qq.com,
which is a news site, only supports HTTP requests, and www.google.co.in sup-
ports HTTPS but does not deploy HSTS. To our surprise, we found that
www.baidu.com (PC site) took different strategies according to different IPs.
When we sent HTTP request to www.baidu.com from the US, we received the
response without HTTPS deployment, while the response came with HSTS
deployment in China.

Incorrect Setting Method. RFC6797 [8] defines that HSTS can not be set
via HTTP, thus we counted the invalid settings in Table 5.

Table 5. Invalid HSTS setting via HTTP

Request type PC-HTTP PC-HTTPS Mobile-HTTP Mobile-HTTPS

Sites of invalid
HSTS setting

4,299 533 4,211 566

In order to understand the situation of invalid settings better, we have
checked the details of settings. 525 PC sites sent HSTS header for both HTTP
requests and HTTPS requests via HTTP, which means they only provided HTTP
service but deployed HSTS. Particularly, 8 PC sites sent HTTP pages without
HSTS for HTTP requests, and redirected HTTPS requests to HTTP requests of
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another domain, and that domain would send an HTTP page with HSTS header.
For example, for www.andreicismaru.ro, we would get normal HTTP page with-
out HSTS header for HTTP request, but also HTTP page with HSTS header
from http://cetin.ro/ after we sent HTTPS request to www.andreicismaru.ro.
However, if they only provided HTTP service, HSTS policy would be invalid.
These sites’ owners may have a misconception of the HSTS policy. Namely, HSTS
policy does not provide confidentiality of traffic, it just ensures the correct imple-
mentation of the HTTPS.

Errors of HSTS Field Settings. In these detected HSTS headers, we found
various errors that were contrary to the standard protocol. The protocol points
out that max-age is a required field but the results showed that both mobile
sites and PC sites have several max-age setting errors. We took PC websites as
an example to avoid duplication.

First, we found errors in headers which were not properly including max-
age=5. For instance, www.lovdata.no set the field to maxage=31,536,000, which
missed the symbol -. www.mijn-econnect.nl, www.xn—-7sbnackuskv0m.xn–p1ai
and www.bottomline.com all missed the symbol =.

And www.chrcitadelle.be set the field to a single number, like 86,400 .
Then, we checked the headers with max-age=. Unfortunately, many formal

errors exist and we show them in Table 6. Following this, we found a lot of max-
age values were not reasonable. If the value is extremely small, HSTS policy will
soon expire. To our surprise, 1,484 sites deploy HSTS with max-age=0, which
means the HSTS policy is invalid. But the big value is not reasonable as well,
owing to the fact that sites need to update HSTS policy timely if HTTPS service
changes. However, www.cloudup.com set the filed tomax-age=100,000,000,000,
and www.aptopnews.com set the field to max-age=9,223,372,036,854,775,807.
Both of them are more than 1,000 years.

Redirection Problems. Usually, lots of redirections exist during our visit to
many sites. If HSTS deployment in redirections is incorrect, the final HSTS is
equally invalid. We counted the redirection times of the sites where HSTS was
deployed in Table 7.

Here we counted every client request until the final visit succeeded. It can
be seen from Table 7, most sites who deployed HSTS did not have redirections
for HTTPS requests. However, one or more redirections occurred when han-
dling HTTP requests. If the redirections between HTTP and HTTPS did not
deal with HSTS deployments well, the attack will be equally easy despite the
existence of HSTS. We found that 929 PC sites did not fully deploy HSTS
during redirection from HTTP to HTTPS, and the number for mobile sites
is 1106. In order to understand the distinction better, we analyzed the detail
of redirections. A fact we can not overlook is that many sites provided differ-
ent domains for mobile requests and PC requests, like https://m.example and

5 max-age= is the standard format which is defined by RFC document.
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Table 6. Examples of max-age= errors

max-age=expireTime
%E2%80%9Cmax-age=31536000%E2%80%B3
xa8xb9max-age=31536000xa8xb9xb3xacN

max-age=31536000%E2%80%9D
max-age=“157680000”
max-age=“10368000”
max-age=<31536000>
max-age=31536eee
max-age=31556926?

xa8xb9max-age=31536000?
x81gmax-age=31536000x81

max-age=
max-age=0.000001

Table 7. Redirection times of sites with HSTS header

Request type Redirection times

0 1 2 ≥3

PC-HTTP 7.9% 60.7% 27.0% 4.4%

PC-HTTPS 57.8% 34.6% 6.0 % 1.6%

Mobile-HTTP 7.5% 58.3% 28.7% 5.5%

Mobile-HTTPS 55.6% 35.6% 6.8% 2%

https://www.example. However, many mobile servers just deployed HSTS in the
response of https://m.example but not https://www.example. In the end, if we
still send HTTP requests of www.example, HSTS policy would not work. We
show this process in Fig. 2. Besides, the same situation occurred when the www
subdomain did not exist.

Specifically, 12 mobile sites did not deploy HSTS in the first response to
https://m.example. Moreover, 110 sites first gave a response of http://m.example,
and then redirected to https://m.example with HSTS headers. But it was not
enough, for the attacker can hijack the request of HTTP. It needs to be empha-
sized that sites should deploy HSTS in the first response after requesting domain
A, if they want to provide a redirection from domain A to domain B.

4.3 Two Ubiquitous Overlooks

Bookmarks in Browsers. Although many sites have already known the sig-
nificance of HSTS policy, there are still serious problems as described above. In
this section, we investigate two kinds of phenomenas that were easily overlooked.
Bookmarks in browsers are often used to record a website that users would like
to visit later. Sometimes users add the current page being visited to bookmarks,
so the scheme attributes will be preserved. However, if users manually type in
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Fig. 2. Mobile sites redirection problem: server gives two redirections without HSTS
when handling HTTP request from mobile browser in step ❶∼❺, and only deploys
HSTS in the response of mobile domain in step ❻∼❼.

the URL, they may forget to enter the scheme part. The browsers will add the
URL with the HTTP prefix automatically, which means that the browser will
send an HTTP request first when the users click the bookmark. In addition, we
have learned that mobile devices’ bookmarks keep in sync with Safari browser for
iOS users. If there are too many redirections before the final visit to the HTTPS
site, there will be a threat. We have checked different browsers (Chrome, Fire-
fox, Safari) and found the same threat. Bookmarks did not have a mechanism
to check these URLs. Google showed the popular desktop browsers [15] and we
checked the bookmarks and navigation panels of these browsers. Opera, Chrome,
Edge, and Firefox all support adding URL manually and add the HTTP prefix
by default. However, users cannot insert URLs into IE11 and Safari manually.
The users can only add the sites which they are visiting in these two browsers.

Navigation Panels in Browsers. Almost all of the browsers’ home pages
include navigation panels, and websites offer navigation panels services as well.
Unfortunately, after our in-depth investigation, we have found that there is an
error in the built-in URL of the navigation site. Many sites which only support
HTTPS are inserted with HTTP in navigation pages. Users tend to trust the
address of navigation panels and click it instead of typing address in address bar.
Therefore, browsers will send HTTP requests for these sites even they support
HTTPS and it may contain a threat according to the risks mentioned above.
In the next section we will introduce an enhanced HTTPS attack based on the
risks in these findings.
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5 An Enhanced HTTPS Stripping Attack

HSTS allows a web site to opt in to be HTTPS only. For a site with HSTS,
a browser will only send HTTPS requests, eliminating the window of insecu-
rity. Apart from this, HSTS maintains a preload list, which is hard coded into
browsers and is supported by Chrome and Firefox. However, very few websites
have joined the list, and many have chosen to implement dynamical HSTS. The
emergence of HSTS can avoid stripping attacks to a great extent, but we have
discovered the flaws in the HSTS deployment and browsers. Based on these
defects, HTTPS stripping attack can still work. In this section, we will analyze
the reason why original stripping attack tool sslstrip, which was developed by
Marlinspike [7], does not work in new environment. Then, we implement an
enhanced HTTPS stripping attack and verify it on famous sites. We only want
to prove that HTTPS can be downgraded easily based on the defects.

5.1 Original Sslstrip and Inspiration

Plenty of attacking tools have integrated sslstrip, such as bettercap [16], mitmf
[17]. However, through our tests of various websites, we have found that the
success rate of sslstrip was very low. To learn the reason in detail, we studied
the principles of sslstrip. After hijacking the traffic, sslstrip will search the https
strings, and replace all https with http in traffic. Then we analyzed the source
code of webpages and found the answer. Old webpages are usually constituted of
static text, and the replacement of https is simple. However, the web pages have
become more complicated over time, and new webpages contain a large number of
dynamic elements. Besides, many take new methods to detect stripping attack,
like the location in srcipts, but sslstrip does not have any solution to handle
these scripts. Moreover, the time consumption of replacement in sslstrip is very
large for the reason that sslstrip has to wait for all packets and search the target
strings. If too much time has been spent on replacement, the connection will fail.
After our tests, we found that the users can not visit the most webpages when
sslstrip works, indicating that the original sslstrip is not suitable for the current
web pages.

Researchers have pointed out that front-end hijacking is an effective method
in the blog [18]. So in this section, we will take a front-end approach to perform
stripping attacks according to the ideas mentioned in the blog. The main princi-
ple is derived from this blog, but we have improved the method. The differences
between our work and the blog are three-folds: First, we handle the location field,
which can detect the stripping attack. We modify the location field in the script
andmake it invalid. Second,we handle secure cookie. Secure cookiemust be deleted
from response headers so that we can get plenty of privacy information. Finally,
we do a number of tests to verify the effectiveness of the attack. The tests are done
on different browsers and famous websites. In our attack, XSS skill is used, but it
does not mean that the attacker can inject any content all the time. If we do not
downgrade the HTTPS scheme, the following traffic will be encrypted. Actually,
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we only want to show the possibility of HTTPS being downgraded based on the
defects we find. Designing a new attack tool is not our goal.

5.2 Principles of Enhanced Stripping Attack

Precondition of Attack. What needs to be emphasized is that our attack
will be invalid if the first request is an HTTPS request. Also, if the domain has
been added to the HSTS preload list, our attack will not work. However, based
on our previous sections, it is not difficult for us to get HTTP request first. We
summarize the reasons below:

– Firstly, the preload list is so short that it can not include all websites and
many browsers still did not support preload list.

– Secondly, many sites only support HTTPS service but not HSTS, so the
results will be HTTP requests first if the user type the domain name in
address bar without scheme.

– Thirdly, if the users have not visited the site, the first request is still the
HTTP request due to the fact that HSTS policy has not worked yet.

– Fourthly, many redirection problems occur during HSTS deployment accord-
ing to our study. Besides, a mix of HTTP and HTTPS connections exists in
plenty of websites. Both of them responded to the HTTP request.

– Finally, the records in bookmarks and navigations panels remembered the
HTTP request or old domain name.

Therefore, even the sites provided HTTPS service and deployed HSTS policy,
it was not very difficult for the attacker to get HTTP request first. Then the
attacker must act as a proxy in our attack. It was easy for the attacker to get
traffic data by using ARP spoofing or DNS spoofing tools in local area network
or WiFi and the attack is carried out in the process of counterfeiting proxy. What
should be noted is that our attack is not a perfect attack tool for all webpages.
Because our goal is to show the insecurity of incorrect deployment. Hence, our
attack mainly focuses on the common web structures.

Detailed Implementation. The whole idea of attack is ingenious to injecting
a JavaScript script at the beginning of the traffic. If users do not click the https
links, the links will not be effective. Therefore, the key is to replace the link at the
moment of the click. DOM-3-Event is an event capture mechanism, which can
be used to capture the global click event. If the clicks fall on the https hyperlink,
we intercept them and change https to http and the time cost is very small.

As for form submission, we can listen to the submit instead of click, and
change the href to action. For frame pages, this is a problem. We only downgrade
the main page into HTTP version, but the frame address is still the original,
which will cause a cross domain problem for the different protocols. We use
Content Security Policy to avoid the HTTPS framework page. In the response
from our proxy, we added the following HTTP header.
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CSP policy

Content-Security-Policy: default-src *
data: ‘unsafe-inline’ ‘unsafe-eval’;
frame-src http://*

‘unsafe-inline’ allows the page to load inline resource, ‘unsafe-eval ’ allows
the page to load dynamic JS code, and frame-src specifies the frame’s load pol-
icy. However, after our test, we found that many websites use script, namely,
the location attribute of the browser [19], to detect whether the site provides
HTTPS protocol. Here we take mail.qq.com for example. The mail.qq.com loca-
tion program is showed below.

mail.qq.com location

<script>
(function()
{if(location.protocol=="http:"){
document.cookie = "edition=;expires=-1;
path=/;domain=.mail.qq.com";
location.href="https://mail.qq.com";
}
})();
</script>

If the protocol of the site has been changed to http, the cookie and scheme
will be changed back by location. Drawing on the idea of the original sslstrip
attack, we can replace the http with https in the script in the backend proxy. We
only search the http in scripts, thus the cost of replacement can be ignored. We
first search the location in script and then replace the http with https. Even the
protocol scheme is http, the jump will not occur. So the whole idea is consisted of
two parts. The first one is the XSS script of front end, which listens to events and
replaces https with http. The other is the proxy of back end, which can replace
the http in location field to prevent the script from jumping. To launch the
stripping attack successfully, we have to solve two problems, which we summarize
as follows:

(1) The problem is how to let the proxy know whether the request is sent by
HTTPS or HTTP. The proxy actually is a man in the middle. If it modifies
the HTTPS resource, it must restore the HTTPS request to the server,
otherwise the attack will be detected by the server.

(2) Many websites redirect HTTP requests to HTTPS websites through 302
redirection and have deployed HSTS. We need to forward the redirection,
inject the script and delete the HSTS header.

For the first problem, we use the mark method to distinguish whether the
link is replaced. When we replace the HTTPS with HTTP, we can add a mark
in the modified URL at the same time. In order to hide the mark, we can choose
fraudulent marks, like utf-8, ?zh cn, ?ssl. Therefore, when the proxy handles the
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Fig. 3. Proxy mark process: first the XSS script will add a symbol into HTTPS request
and HTTPS will be downgraded to HTTP. Then the proxy will change the HTTP
request to HTTPS request according to the symbol and forward it to remote server.
The HTTP request will be forwarded to the server directly.

URL, it will know how to take measures to forward the requests according to
the mark. The proxy also need to record the https requests and symbols. The
whole processes are described in Fig. 3. For the second problem, we must add
a module in proxy to handle it. In that module, we intercept this redirection,
obtain the content of redirection with HTTPS request, and finally reply the user
with HTTP scheme. The response to the user will include the script and CSP
policy we designed. Besides, if we find HSTS header or secure cookie field in
responses from server, we delete them in proxy quickly. The redirection problem
is handled in Fig. 4.

Fig. 4. Handling redirection: the proxy will forward the http request to remote server
in step ❶∼❷, and then establish a secure connection with the server in step ❸∼❺.
Next, the proxy will modify the location and inject the XSS script in the response
packet. Finally, the proxy will return an HTTP page with script to the user in step ❻.

5.3 Experiment Results

In this section we demonstrate our attack against several popular websites to
verify the defects we found. These websites are shown in Table 8.

Here mail.qq.com represents the qq.com due to the fact that www.qq.com
provides HTTP service6. And m.kaskus.co.id represents mobile sites which did
6 mail.qq.com is one of the most popular Chinese e-mail services and provides HTTPS

services. Although mail.qq.com did not deploy HSTS, it used location to detect
whether the current protocol is downgraded.
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Table 8. Sites to test and relevant security measures

Alexa ranking Domain HTTPS Dynamic HSTS Preload list

4 www.baidu.com Y Y N

6 www.amazon.com Y Y Y

8 mail.qq.com Y N N

12 www.taobao.com Y Y N

335 m.kaskus.co.id Y Y N

not deploy HSTS in the first response to https://m.example. We launched our
attack on different scenarios and different browsers7.

The results of attack are showed in Table 9. Bookmarks and navigation
imply default HTTP requests in these mechanisms. Automatic domain means
that users typed domain manually and the browser complemented a domain
name automatically. These three tests were conducted on Firefox browser,
which supports preload list. We show the examples of www.taobao.com and
www.amazon.com in Figs. 5 and 6, which show the hijacked URLs in address
bars.

Table 9. The results of new stripping attack

Domain Scenarios

Bookmarks Navigation Automatic
domain

Other
browsers

www.baidu.com Y Y Y Y

www.amazon.com N N N Y

mail.qq.com Y Y Y Y

www.taobao.com Y Y Y Y

m.kaskus.co.id Y Y Y Y

According to the results, even the site has deployed HSTS, there is a possi-
bility of being hijacked. As for the websites only provide HTTPS and did not
deploy HSTS, the attack will succeed every time when users visit it with HTTP
request. These websites which have deployed HSTS but were not in the preload
list or did not fully deploy HSTS during the redirection process, will be in danger
as well. And the websites in the preload list would be hijacked in the browser
that did not support preload list.

7 In this test, other browsers means those which did not support preload list, like UC
browser, Sogou browser.

https://www.baidu.com/
https://www.amazon.com/
https://mail.qq.com/
https://www.taobao.com/
https://m.kaskus.co.id/
https://www.baidu.com/
https://www.amazon.com/
https://mail.qq.com/
https://www.taobao.com/
https://m.kaskus.co.id/
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Fig. 5. taobao.com Fig. 6. amazon.com

6 Discussion

To deploy HTTPS and HSTS in a more secure way, we must take measures from
both ends.

6.1 Browser/User

Browsers should provide a mechanism which can check the scheme of domain.
If the response of the real site is contrary to the check, the browser should
give a strict warning and it can prompt the user to manually enter the URL
with scheme so as to avoid be hijacked. A preload list is not enough and it
is so strict that many websites did not meet the requirements. Many serious
problems occur in preload list, so the browsers vendors have to adapt the list to
cope with the dynamic change. The list should be accepted by more browsers.
Apart from these, active defense should be considered by browsers. Browsers
should actively establish a secure bookmark and navigation mechanism. They
can not allow users to modify the bookmarks casually, which has security risks.
The browsers should check whether the scheme in the bookmark has changed
and the navigation in browsers should be updated in time to avoid outdated
URL.

As for users, we strongly recommend that users observe the scheme carefully
when adding a bookmark. Most of times users should not tend to click the
navigation links on unfamous sites, owing to the deceptive attack, particularly
financial and other sensitive sites, like online banking, electronic commerce. Users
should go to the HTTPS version of the site from users’ machine while using a
secure network, and then bookmark that page. Besides, always open the site by
accessing the bookmark whenever users want to visit that page. At the same
time, users should pay attention to the jumps from HTTPS to HTTP or vice
versa. It will do great help for users to install the software plugins, like HTTPS
Everywhere or ForceTLS, which may reduce the occurrence of stripping attack.

6.2 Server/Website

As for sites owners, first, they should enable SSL site wide and use HTTPS as
much as possible. Then the sites should enable HSTS policy and Cert Pinning,
but also be careful when dealing with each step of process, i.e., sites should
better deploy HSTS in every packet of HTTPS response. In order to let HTTPS
and HSTS work better, the sites should enable secure cookies and use mixed
content in HTTPS pages as less as possible. Ensure that all cookies are served
with the secure attribute, so that user’s browsers will only send those cookies



506 X. Li et al.

back over SSL-protected connections and never disclose them over any non-SSL
links. Finally, the sites should use HTTPS everywhere and join the preload list
as soon as possible.

7 Related Work

7.1 HTTPS Security

Many researchers studied about HTTPS security in recent years and most
focused on TLS/SSL security. Client-end TLS software and non-browser soft-
ware have defects on implementation and the root causes of these vulnerabilities
are badly designed APIs of SSL implementations or negligence [20,21]. Great
security threats are present in SSL proxys as well [10,20,22], where proxy can
break the end to end security. Another thing that affects SSL security is the
certificate. Many studies were dedicated to solve the problems of certificate man-
agement, the private key management and certificate validity [23,24]. There are
several evaluations of large-scale SSL deployments problems [25,26]. Warnings
from browsers are pivotal for users to avoid attacks, so several researchers have
investigated the effectiveness of warnings [27,28]. This paper is different from
them and we mainly focus on the threat of HTTPS stripping attack.

7.2 HSTS Security

HSTS was born to ensure that HTTPS performs better. However, many flaws
exist in deployment of HSTS as well. Researchers have found that even though
these protocols are implemented, bad practices prevent them from actually pro-
viding the additional security they are expected to provide [29]. They studied the
implementations of HSTS in Firefox, Chrome and IE, and found several poten-
tial attack scenarios. Kranch and Bonneau [12] have done a measurement about
HSTS and HPKP policy. They mainly found errors for sites with HSTS headers
and analyzed the security of cookies. Our work is largely distinct from them. We
focused on redirection problems and carried on the detailed classification to the
setting errors. Besides, we have done the experiments on mobile platforms and
have found defects in bookmarks and navigations panels.

7.3 Stripping Attack Studies

Since Marlinspike et al. [7] published the sslsttrip attack, researchers have been
working on it for years. To overcome sslstrip attacks, many schemes have been
proposed. ForceHTTPS [30] is a simple browser security mechanism that web
sites or users can use to opt in to stricter error processing, but it needs users to
install extra plugins. Zhao et al. [31] presented a new defense scheme according to
secure cookie as well. However, these defense schemes can only succeed under the
specific environment, which can not defend against the attack we implemented
perfectly. In our paper, we have strengthened the previous sslstrip attack and
successfully launched the enhanced stripping attack to various websites in sim-
ulated scenarios.
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8 Conclusion

In this paper, we have found many sites owner or developers did not understand
the HSTS policy well. We have exposed that a lot of top-ranking sites had
incorrect deployment and redirection problems. Many websites did deploy HSTS
policy, but several redirections occurred when we visited them. Unfortunately,
the HSTS is not fully deployed during the redirections, still left the possibility of
being attacked. In addition, lots of instructions field setting errors were found by
us. Moreover, schemes in bookmarks and navigation are forgotten by users easily.
After our investigation, we found that the default HTTP supplementation mode
of bookmarks has a security problem and the default address in the navigation is
at risk of being downgraded as well. To test the risk of these defects, we designed
an enhanced HTTPS stripping attack, which strengthened the previous sslstrip
attack. The success rate is high based on the pitfalls we found.

In summation, our paper can give some guidance to the sites who want
to deploy HSTS correctly. Besides, due to the fact that the defects we found
contribute to the stripping attack, our work is able to help users to reduce
the risks of being attacked. We hope our research enables HTTPS and HSTS
protocol to provide more efficient service and make users’ information more safe
compared with now.
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Abstract. Environment discrimination—a program behaving differ-
ently on different platforms—is used in many contexts. For example, mal-
ware can use environment discrimination to thwart detection attempts:
as malware detectors employ automated dynamic analysis while run-
ning the potentially malicious program in a virtualized environment,
the malware author can make the program virtual environment-aware
so the malware turns off the nefarious behavior when it is running in
a virtualized environment. Therefore, an approach for detecting envi-
ronment discrimination can help security researchers and practitioners
better understand the behavior of, and consequently counter, malware.
In this paper we formally define environment discrimination, and pro-
pose an approach based on abstract traces and symbolic execution to
detect discrimination in Android apps. Furthermore, our approach dis-
covers what API calls expose the environment information to malware,
which is a valuable reference for virtualization developers to improve
their products. We also apply our approach to the real malware and
third-party-researcher designed benchmark apps. The result shows that
the algorithm and framework we proposed achieves 97% accuracy.

Keywords: Android · Malware detection
Environment discrimination

1 Introduction

In the past decade, the smartphone has replaced the PC as the most frequently-
used Internet access device [1]. Along with the rising popularity of mobile devices,
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malware is also rapidly growing in terms of both quantity and sophistication.
For example, reports show that in the first quarter of 2017, 8,400 new malware
samples were discovered every day [2], which results in the high demanding of
malware detection and analysis. Dynamic analysis is a popular approach for ana-
lyzing application behaviors, and is usually deployed on virtual environments for
performance and security reasons. However, malware authors are only interested
in “real” phones used by actual customers. In contrast to the desktop/server plat-
form, smartphone sandboxes have very limited use on mobile platforms (for both
application development and dynamic analysis) because sensors which drive app
behavior (such as GPS, camera, microphone) have to be mocked, which compli-
cates development and analysis [3]. Thus, malware authors intentionally develop
malware that detects the running environment and adjust malware behavior
accordingly, as shown in Fig. 1, when running on virtual environments, “smart”
malware hides its suspicious behavior to evade dynamic analysis, and such behav-
ior will be exposed when running on a real device. Some imparities between real
devices and virtual machines such as CPU performance and battery consump-
tion are difficult to be eliminated. Furthermore, it is infeasible to enumerate all
heuristics that differentiate real devices and virtual machines. Thus, simple mit-
igation approach such as blacklist filtering is not capable to solve the problem,
and a more fundamental and comprehensive approach is required to mitigate
environment discrimination in Android applications.

Environment discrimination has been used in many other fields, besides
dynamic analysis evasion. For example, some smartphone manufacturers detect
when certain benchmarks are running and drive the CPU to maximum power in
order to reach an edge in their benchmark ratings [4–6]. In another example from
the automotive world, in certain Volkswagen models, the diesel engine controller
software detects whether the car is running on a test bench, and changes engine
parameters accordingly to subvert emission tests [7].

This paper has three major contributions: First, we formally define envi-
ronment discrimination by leveraging the concepts of abstract specification and
trace assertion [8–10]. Secondly, our work use these abstractions to construct an
algorithm that is able to detect both already-known and unknown discriminat-
ing behaviors in linear time. Finally, by combining trace assertion with symbolic
execution, our algorithm efficiently discovers the set of API calls that trigger
environment discrimination: instead of exploring a potentially infinite set of exe-
cution paths as a static approach would do, our technique bounds the exploration
space to permit efficient analysis: O(n), where n is the size of the trace.

The evaluation result shows that the detection accuracy is 100% when the
discrimination is executed during testing, and 97% for all test cases. We also
show that the environment discrimination technique is not widely employed in
the real malware, but as emulation becomes more and more common over time,
we will see more discrimination behaviors in the future.

Note that a program discriminating the environment does not necessarily
imply malicious intent. Benign programs can behave differently in different envi-
ronment as well. For example, Google Maps behaves differently in a virtual
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Applications

Real Device Virtual Machine

API calls 1 API calls 2

Access Contact Info
Access Banking Account
Access SMS
...

Normal Behavior

Fig. 1. Example of an application discriminating between virtual machine and real
device to evade dynamic analysis.

environment compared to a real device due to lack of GPS in a virtual setting.
Accordingly, this paper focuses on detecting environment discrimination, e.g.,
as employed by malware, but we do not attempt to detect malicious behavior
per se.

The rest of this paper is organized as follow: Sect. 2 gives the definition of
environment discrimination and the algorithm in theory. The application of def-
inition and algorithm is illustrated in Sect. 3. Section 4 discusses the time com-
plexity and robustness of our algorithm. Sects. 5 and 6 present related work and
conclude the paper, respectively.

2 Definition of Environment Discrimination

In this section, we first explain the concept of trace equivalence and trace abstrac-
tion, and then discuss the relevance of the two concepts in defining environment
discrimination. Finally, we describe symbolic execution against a trace for finding
discriminating contributors.

This section proposes the theoretical background of the environment discrim-
ination detection of Android app in Sect. 3. However, readers who do not want
to dive into theory may directly jump to Sect. 3 without concern.
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2.1 Trace Equivalence

A trace of a program, which is a description of a sequence of calls on func-
tions starting with the program in initial state, consists of O-functions and
V-functions [8]. V-functions return values that give information about parts of
program, while O-functions only change internal data. To begin, we formalize
function calls F and traces T .

A function call F consists of its name, parameter list, and return values.
Return values are always empty in O-functions. Two calls, F1 and F2, are equiv-
alent if and only if all three parts are exactly the same (denoted as F1 ≡ F2;
we will describe this check in detail in Sect. 2.2). A trace T is described by the
following syntax:

<T> :: = {<subtrace>}.<tailtrace>
<subtrace> :: = {<O−function>}.<V −function>
<tailtrace> :: = {<O−function>}

{∗} represents any number of occurrences of ∗.

Fijk is the kth function call in jth subtrace in ith trace. The definition of the
size of trace T is the number of subtraces and tailtrace, denoted as |T |. S is a
subtrace.

A trace T is legal, denoted λ(T ), if the functions in T will not result in a
trap. Note that an empty trace is always legal (λ( ) = true); and the prefix of
any legal trace is always legal, i.e., λ(T.S) = true => λ(T ) = true.

If λ(T.X) = true, and X is a syntactically correct V-function call, V (T.X)
describes the value returned by X after the execution of T .

Trace specification consists of syntax and semantics. The syntax provides the
name, parameter types and return value types of each function. The semantics
comprises of three types of assertions: (1) legality assertions which describe how
to call functions that will not result in a trap; (2) equivalence assertions which
specify a set of equivalence relations in traces; and (3) V-function assertions
expressed in terms of values returned by V-functions.

We now exemplify these trace concepts by providing Bartussek and Parnas [8]
integer stack specification.

Syntax
PUSH : <integer> × <stack> → <stack>
POP : P <stack> → <stack>
TOP : <stack> → <integer>
DEPTH : <stack> → <integer>

Legality
λ(T )=> λ(T.PUSH(a))
λ(T.TOP )<=> λ(T.POP )

Equivalences
T.DEPTH ≡ T
T.PUSH(a).POP ≡ T
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λ(T.TOP )=> T.TOP ≡ T
Values

λ(T )=> V (T.PUSH(a).TOP ) = a
λ(T )=> V (T.PUSH(a).DEPTH) = 1 + V (T.DEPTH)
V (DEPTH) = 0

The “equivalence” in the above specification is a set of assertions defining
the semantics of the trace specification, while “trace equivalence” in environment
discrimination indicates that the behavior of a program in two environments is
not distinguishable from two traces.

Definition 1. TRACE EQUIVALENCE

Given 2 traces T1 and T2, we claim T1 is equivalent to T2 (denoted as T1 ≡ T2)
when all the following conditions hold:

(1) Both T1 and T2 contain tailtraces or neither one contains a tailtrace.
(2) T1 and T2 have the same number of subtraces n.
(3) For each pair of subtraces in T1 and T2, we formalize subtrace Tij (i = 1 or 2,

1 ≤ j ≤ n) as:
Tij ::=Oij1...Oijk...Oijo−1Vij

where o is the length of Tij , and 0 ≤ k < o.
For each pair of subtraces T1j and T2j , where p, q are the lengths of T1j and
T2j :
(i) λ(T1jp−1.V2j) = true
(ii) λ(T2jq−1.V1j) = true
(iii) V (T1j) = V (T2j)

Ideally, the legality is ruled by a set of assertions so that all λ expressions
above are checked through the pre-defined assertions. However, in practice, it
is infeasible to provide a complete set of legality assertions. Thus, we either
ignore the legality rules above or enforce the name of V-function of subtraces
are identical if the legality assertions are not available. Both approaches admit
that λ(T1jp−1.V2j) and λ(T2jq−1.V1j) are true by default.

We show an example to further illustrate trace equivalence: A stack for integer
values S1 is specified as previously discussed. The other stack S2 is similar to S1.
The only difference between S1 and S2 is the size of each element. Specifically,
the size of each element in S2 is 2 instead of 1:

λ(T )=> V (T.PUSH(a).DEPTH) = 2 + V (T.DEPTH)
Assume that a program P, defined next, runs on S1 and S2, respectively:

1 PUSH (1)

2 PUSH (2)

3 if (TOP == 1)

4 PUSH (3)

5 POP

6 if (DEPTH == 2)

7 PUSH (4)
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8 PUSH (5)

9 TOP

10 DEPTH

11 else

12 PUSH (6)

13 TOP

14 TOP

15 POP

We denote the traces generated by the two executions as T1 and T2:
T1 ::=PUSH(1).PUSH(2).TOP.POP.DEPTH.PUSH(6).TOP.TOP.POP
T2 ::= PUSH(1).PUSH(2).TOP.POP.DEPTH.PUSH(4).PUSH(5)

.TOP.DEPTH.POP

T1 contains 4 subtraces: PUSH(1).PUSH(2).TOP , POP.DEPTH,
PUSH(6).TOP , and TOP along with a tail trace: POP . T2 also contains 4 sub-
traces: PUSH(1).PUSH(2).TOP , POP.DEPTH, PUSH(4).PUSH(5).TOP ,
and DEPTH along with a tail trace: POP . Based on these results, conditions
(1) and (2) in Definition 1 hold. T11 and T21 have the same V-functions and
return values: 2. However, V (T12) = 1 and V (T22) = 2 which violates condition
(3)(iii). The pairs T13 & T23 and T14 & T24 violate condition (3) as well; therefore
T1 �≡ T2.

The definition of trace equivalence reveals the equivalent relation of 2 exe-
cutions from the observation of traces. Note that two equivalent traces are not
necessarily identical. For example if we define
T3 ::=PUSH(1).POP.DEPTH
T4 ::=DEPTH
then T3 ≡ T4 but they are not identical.

2.2 Trace Abstraction and Defining Environment Discrimination

Given two specific traces, Definition 1 is an effective tool for determining execu-
tion equality, or semantic similarity. However, finding a proper trace is a chal-
lenge. Thus, we propose trace abstraction as a procedure for checking T1 ≡ T2

efficiently. Algorithm 1 (described shortly) lists the steps of trace abstraction.
Before introducing the algorithm, the concept of LCCS is introduced.

We first define the longest common call subsequence (LCCS), which is similar
to the longest common substring (LCS) but replaces characters with function
calls. LCCS is defined within the boundary of a subtrace or tail trace (but not
the whole trace). To observe discriminating behaviors, we are interested in how
a program reacts after a particular return value is obtained.

Parameter lists in function calls will be ignored. Consider how parameters
can potentially influence the execution path of a program: given a pair of traces,
if a function call returns the same return value regardless of different parameters,
the parameter has no effect on the execution path by calling functions. On the
other hand, if different parameters cause different return values, we are still able



516 Y. Hong et al.

to observe differences by examining return values. Another question worth taking
into account is where the different parameters come from. One possible answer
is that they are derived from previous different return values. It is interesting
to find that even a randomized program can be reduced to this answer because
the program always has to call a function to derive the random value. Another
possible answer is that the source of different parameters is not captured in the
trace, which is not discussed in this paper. Thus, the partial order in a function
call abstraction is shown below:

ignore return value ≤ ignore function call

The aforementioned partial order indicates that ignoring the function call is
more abstract than ignoring the return value.

Algorithm 1 describes the procedure of trace abstraction: the algorithm takes
two traces T1 and T2 as input and returns a new trace T , which is the abstrac-
tion of the input traces. We use the T1 and T2 from the previous subsection to
illustrate the algorithm.

Algorithm 1. Abstraction for two traces
1: function main(T1,T2)
2: Tsubtrace1 :=get subtrace list(T1)
3: Tsubtrace2 :=get subtrace list(T2)
4: T :=empty trace
5: Tsubtrace :=LCSS(Tsubtrace1, Tsubtrace2)
6: i:=0 � i is the index of Tsubtrace

7: for each pair of subtraces S1, S2 in Tsubtrace do
8: T := T + Abstract(S1, S2)
9: end for

10: Ttail:=LCCS(T1tail,T2tail)
11: T := T + Ttail

12: return T
13: end function
14:
15: function Abstract(subtrace1, subtrace2)
16: T0:=LCCS(subtrace1, subtrace2)
17: subtrace1:=subtrace1-T0

18: subtrace2:=subtrace2-T0

19: T1:=LCCS(subtrace1, subtrace2)
20: T :=in order merge(T0, T1)
21: return T
22: end function

The Algorithm starts with the MAIN() function; lines 2 and 3 cut T1 and T2

into subtraces, splitted by V-functions. Line 5 finds the Longest Common Sub-
trace Subsequence (LCSS) by only matching the function name of V-functions.
In this example, Tsubtrace will be {T11, T21}, {T12, T22}, and {T13, T23}. Subtraces
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that are not in Tsubtrace will not appear in T . The for loop on lines 7–9 calls
Abstract() for each pair of subtraces in Tsubtrace and reassembles them into
T . Lines 10 and 11 find the LCCS for the tail trace and append Ttail to the end
of T .

Abstract() finds the minimal abstraction making two subtraces equiva-
lent. T0 is the LCCS for two traces without ignoring return values or function
calls. In our example, when subtrace1 and subtrace2 are T13 and T23, T0 =
PUSH. Lines 17 and 18 remove the function calls which appeared in T0. Thus,
subtrace1 = TOP and subtrace2 = PUSH.TOP after line 17 and 18 are exe-
cuted. T1 is the LCCS ignoring return values, T1 = TOP . Line 20 merges T0 and
T1 in order, Abstract() returns subtrace: PUSH.TOP . Similarly Abstract()
returns PUSH.PUSH.TOP for {T11, T21} and POP.DEPTH for {T12, T22}.
Finally, T := PUSH.PUSH.TOP.POP.DEPTH.PUSH.TOP.POP .

Definition 2. ENVIRONMENT DISCRIMINATION

If T1 ≡ T2 under the abstraction of trace T , we say that program P does not
discriminate the two environments under the abstraction of trace T . Program P
does not discriminate both environments when T1 ≡ T2 without any abstraction
(T1 ≡ T2 ≡ T ).

It is clear that T is not guaranteed to hold its original trace specification;
rather it is designed to capture as many common parts in the two executions as
possible.

Finally, we claim that minimum abstraction T gives the lower bound of
abstraction. Thus, the alias of T is Tlow. Any abstraction that is finer grained
(less abstract) than Tlow cannot guarantee the equivalence relation between T1

and T2. The upper bound of abstraction assuring the correctness of detecting
environment discrimination is not ignoring the function calls before p0, denoted
as Tup. Any abstraction T ′ holding Tup ≥ T ′ ≥ Tlow is acceptable to detect
environment discrimination and its contributor.

2.3 Finding Discrimination Contributors with Symbolic Execution

In order to find relevant/discriminating function calls (i.e., calls that expose
environment information leading to programs behaving differently) accurately
and efficiently, we propose the use of symbolic execution against traces.

Symbolic execution [11,12] is widely used in software engineering for generat-
ing test inputs, e.g., to explore different execution paths. One major limitation of
symbolic execution is path explosion. Symbolically executing all program paths
cannot scale to large programs because the number of paths grows exponentially
with the number of conditional statements encountered: Θ(2n), where n is the
number of conditional statements encountered. When applying symbolic execu-
tion to find the subset of {S}, our algorithm matches the execution path with
the trace to avoid path explosion.

We come back to the example of program P in Sect. 2.1 to illustrate sym-
bolic execution against the trace. In order to find the discrimination contribu-
tor, the symbolic executor needs to run against T1 and T2, respectively. When
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the symbolic executor runs against T1, initially, symbolic σ = ∅, path con-
straint PC = true, and a pointer ptr is pointing to the first function call in
trace T1. Whenever a function call is encountered, the algorithm checks the
consistency between the current function call and the function ptr is point-
ing to in T1. If they are consistent, ptr moves one function forward and sym-
bolic execution continues. Thus, after line 2 is executed, ptr → TOP . Every
time a V-function is executed, the return values will be marked as a sym-
bolic variable. TOP in line 3 leads to σ = {TOPline3 → 2}. When if is exe-
cuted, PC → TOPline3 = 1, which is the constraint of basic block on line 4.
PC ′ → ¬TOPline3 = 1, ptr → POP . During the execution of line 4, PUSH
and POP do not match. Thus, the current branch is not executed in the trace.
As a result, PC ′ will be accepted as PC; ptr stays still, and the rest of the
current branch does not need to be executed as well. When line 6 is executed,
PC → DEPTHline6 = 2∧¬TOPline3 = 1, which covers the basic block on lines
7–10. When the program symbolically executes to the diverge point of T1 and T2

(line 7 and line 12 in our example), PCT1 → DEPTHline6 = 2∧¬TOPline3 = 1.
Similarly, PCT2 → ¬DEPTHline6 = 2 ∧ ¬TOPline3 = 1 after running symbolic
executor against T2. The discrimination contributors are the variables in the
pairs of terms that are exactly reversed in 2 path constraints, which is DEPTH
in our example.

The time complexity of the algorithm to detect discriminating behavior and
find contributors is O(n), where n is the size of trace.

3 Detecting Environment Discrimination on Android

In this section, our theory is applied to detect environment discrimination on
the Android platform. Before illustrating our approach, we introduce a proto-
type malware: Pi Calculator. To detect its inappropriate behavior, we first find
an appropriate abstraction of the trace, and by applying the concept of trace
equivalence, the algorithm is able to determine whether an application is behav-
ing differently in two environments. Finally, with the help of symbolic execution,
the algorithm finds discrimination contributor.

The procedure of detecting environment discrimination is shown in Fig. 2.
The trace collector first collects traces from the emulator (Temulator) and the
real device (Tdevice), then checks their equivalence under proper abstraction (dis-
cussed in detail in Sect. 3.2). If Temulator �≡ Tdevice, the discrimination contribu-
tor is found by performing symbolic execution against Temulator and Tdevice.

3.1 Pi Calculator: An Environment-Discriminating Malware

We have developed a prototype malware, Pi Calculator, that discriminates envi-
ronments. It is a CPU benchmark application that evaluates CPU single-core
performance by recording the time it takes to calculate π to 5,000, 10,000, 15,000,
or 20,000 digits (Fig. 3).
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Fig. 2. Overview of our approach.

Fig. 3. Pi Calculator screenshot.

Device performance is reflected in the duration of the calculation (a slower
device takes longer to compute π), which is uploaded to a remote database. We
compute a device score by dividing the number of devices slower than current
device by the number of all devices in the database. However, as a malware,
Pi Calculator also uploads contact information to the server without informing
the user. This application has bypassed the security check provided by one of
the major Android markets. Due to privacy concerns, we only upload the first 5
digits of phone numbers (we do not upload the actual contact’s name).

Table 1 presents the calculation time on various devices. Note that the CPU
performance of the Android emulator is much higher than that of ARM-based
real devices. As we mentioned before, dynamic analysis is usually performed
on virtual machines. To evade dynamic analysis, Pi Calculator takes advantage
of this phenomenon and determines its running environment as a real device
if it takes more than 2, 6, 15, 25 s to compute π to 5,000, 10,000, 15,000, and
20,000 digits, respectively. The app will access the contact list and upload all
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Table 1. Pi Calculator calculation time. Note that real devices are much slower than
the emulator.

Device 5,000 digits 10,000 digits 15,000 digits 20,000 digits

Avg (s) StDev (s) Avg (s) StDev (s) Avg (s) StDev (s) Avg (s) StDev (s)

Emulator (Linux) 1.258 0.020 4.937 0.007 10.044 0.016 17.521 0.023

Mi Note Pro (5.0.2) 2.317 0.058 9.246 0.040 21.193 0.159 39.428 0.235

Google Nexus 6 (5.0.1) 4.304 0.017 18.335 0.022 41.352 0.179 74.398 0.538

Meizu MX3 (5.0.1) 4.970 0.168 19.916 0.480 48.055 1.112 85.559 0.841

information to remote server only when a real device is detected but will not
collect contact information when a virtual environment is detected.

The rest of this section explains how our algorithm detects the discrimination
behavior employed by Pi Calculator in detail.

3.2 Detecting Environment Discrimination and Contributors

Selecting a proper trace is a key factor that determines the success and efficiency
of discrimination detection. Our trace collector collects 3 kinds of function calls:
application internal function calls, application calling API, and API internal
function calls. Removing API internal calls is important because API internal
calls may introduce non-determinism. Application internal call is also removed
because it is not our interest. The two generated trace are denoted as Tdevice

and Temulator.
Instead of applying minimum abstraction T , we abstract Tdevice and Temulator

by ignoring all method return values, denoted as T ′, and then check trace equiv-
alence. Accuracy is guaranteed because Tup ≥ T ′ ≥ Tlow. Almost all Android
API calls have return values. So we regard all API calls in application level as
V-functions. To apply the definition of environment discrimination, we need to
check the definition of trace equivalence (Definition 1): Condition (1) of trace
equivalence holds because both traces do not have a tail trace. Condition (2) is
determined by whether two traces have the same size. The legality conditions
((i) and (ii)) in condition (3) are always true because there is no O-function
in the trace. Thus, the trace equivalence check in our case simply reduces to
comparing whether two traces call the same functions in order.

Now we consider composing symbolic execution with traces. As shown in
Fig. 4, despite different approaches, in order to discriminate, a program first
collects information about its environment and determine the environment based
on the collected data. Next, the program will behave differently according to
the environment, which is the diverge point. We emphasize that information
collection and computation are not necessarily in order, and can even be mixed.
Thus, we split the trace into two parts. The first part is information collection
and computing, and the second part is the divergent part. In this section, we
only focus on the first part, that is, T→p0. Specifically, the symbolic executor
runs against Tdevice→p0 and Temulator→p0.
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Diverge Part

Information collection and computation

T->p0

Temulator p0->end Tdevice p0->end

p0Divergence point

Fig. 4. Relationship between execution and trace.

The following rules describe the process of execution.

· Initially, ptr points to the first call in Tdevice/Temulator.
· Whenever symbolic execution encounters an API call, the algorithm checks

if the API is the same to the API that the pointer is pointing to in
Tdevice/Temulator. If not, it indicates this particular branch is not executed in
trace, and we mark the PC belonging to that branch as false. If yes, we move
the pointer to the next API call and continue executing.

· In Tdevice and Temulator, the first pair of API calls after T→p0 actu-
ally are the first pair of API calls in two branches resulting from envi-
ronment discrimination. Thus, symbolic execution runs until reaching p0.
(Tdevice→p0/Temulator→p0)

· The discrimination contributors are the variables in the pairs of terms that
are exactly reversed in PCTdevice→p0 and PCTemulator→p0

We use Pi Calculator as an example to illustrate the procedure of finding
discrimination contributor in detail.

In Fig. 5, each box is an API method call. In each call, the first field is
the method name, the second field is the method ID, and the third field is
the class name the method belongs to; <init> indicates a constructor call. We
are not able to locate a unique function call solely by method name because
different classes might have methods that have the same method name, so
method ID and method declaring class help us recognize a unique method call.
During one execution, each method has a unique method ID. However, the
same method usually owns a different ID in two executions. We determine a
method call in different traces by matching both the method name and method
declaring class. For instance, <init>(0x70c25f20, GetT ime.java) is called twice
in Tdevice, and this constructor is also called in Temulator, which is <init>
(0x70ab5c20, GetT ime.java), although the method ID is different. The algo-
rithm determines that Pi Calculator discriminates the environment by finding a
different pair of method calls: <init>(0x75471a58, ContactsContract.java) and
<init>(0x708e92b0,DefaultHttpClient.java), which is where p0 located.

Below is the code segment from Pi Calculator. During the course of symbolic
execution against Tdevice→p0, symbolic state σ and path constraint PCdevice are
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<init> / 0x70c25f20 / GetTime.java

getCurrentNetworkTime / 0x70c25e70 / GetTime.java

<init> / 0x70ab5c20 / GetTime.java

getCurrentNetworkTime / 0x70ab5c70 / GetTime.java

getCurrentNetworkTime / 0x70ab5c70 / GetTime.java

Tdevice

…...

<init> / 0x70c25f20 / GetTime.java <init> / 0x70ab5c20 / GetTime.java

getCurrentNetworkTime / 0x70c25e70 / GetTime.java

setText / 0x70b05f18 / TextView.java

<init> / 0x7074c2b0 / DefaultH pClient.java

<init> / 0x75471a58 / ContactsContract.java

<init> / 0x7074c2b0 / DefaultH pClient.java

…...

setText / 0x70ca2f18 / TextView.java

Temulator

…...

…...

<init> / 0x708e92b0 / DefaultH pClient.java

<init> / 0x708e92b0 / DefaultH pClient.java

…...

<init> / 0x7074c2b0 / DefaultH pClient.java

p0

…...

…...

…...…...

…...

Fig. 5. Two traces generated from Pi Calculator.

maintained. All return values from API call will be marked as symbol. When line
4 and 5 are executed, σ = {start time → start time0, end time → end time0}.
start has not been added to σ until line 7 because it receives a return value
from getCurrentNetworkT ime. At the end of line 12, σ = {start time →
start time0, end time → end time0, start → start0, end → end0, result text →
null, time → start0 − end0}, and PCdevice = φ. Note that symbolic execution
does not execute a path that is not reflected in trace. In our example, lines 4 and
5 match the first two method calls in the trace. Similarly, lines 7 and 10 match
the third and fifth calls in the trace. Line 9 matches the fourth call but we assign
result text as null because setText does not have a return value. As mentioned
before, all API calls are regarded as V-functions. Assigning null to setText does
not influence the result. 0x7074c2b0 is recorded from line 45 that is called from
line 13. In line 14, PCdevice is updated to PCdevice = {end0 − start0 > 2000},
corresponding to the basic block on line 15. The if branch line 19 is satisfied. Line
32, called by line 20, matches <init>(0x75471a58, ContactsContract.java) in
Tdevice. The symbolic execution stops because 0x75471a58 is where p0 located.
PCdevice = {end0 − start0 > 2000 ∧ real device = true} Similarly, after run-
ning symbolic execution against Temulator, PCemulator = {¬end0 − start0 >
2000 ∧ ¬real device = true}. Following the rules in Sect. 2.3, discrimination
contributors are 2 calls to: getCurrentNetworkTime(). Specifically, Pi Cal-
culator determines its running environment by measuring the time it takes to
calculate π. If the calculation takes less than 2 s, Pi Calculator regards its envi-
ronment as an emulator. The execution tree is illustrated in Fig. 6.
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time > 2000

realdevice = true

new 
DefaultHttpClient()

…...

realdevice
== true

falsetrue

new 
Contacts()

PC unsatisfiable

falsetrue

…...

realdevice
== true

falsetrue

…...

Tde vice

Temulator

PC unsatisfiable

Fig. 6. Execution tree of Pi Calculator.

1 public class option extends ActionBarActivity {
2 private void clicked (int digit) {
3 ...
4 GetTime start_time = new GetTime();
5 GetTime end_time = new GetTime();
6 boolean realdevice = false;
7 start = start_time.getCurrentNetworkTime();
8 String pi = my_calculator.get_pi(digit);
9 result_text.setText(pi);
10 end = end_time.getCurrentNetworkTime();
11 time = end - start;
12 if (digit == 5000) {
13 new upload_score_5000().execute();
14 if (time > 2000) {
15 realdevice = true;
16 }
17 }
18 else {...}
19 if (realdevice == true) {
20 readAllContacts();
21 }
22 lower = new grab_lower_score().execute((long)digit, time).get();
23 }
24 private class upload_contacts extends AsyncTask<Contacts, Void, Void> {
25 protected Void doInBackground (...) {
26 HttpClient httpclient = new DefaultHttpClient();
27 ...
28 }
29 }
30 public void readAllContacts() {
31 while (cursor.moveToNext()) {
32 Contacts cur = new Contacts();
33 ...read each contacts info...
34 new upload_contacts().execute(cur);
35 }
36 }
37 private class grab_lower_score extends AsyncTask<Long, Void, Integer> {
38 protected Void doInBackground (...) {
39 HttpClient httpclient = new DefaultHttpClient();
40 ....
41 }
42 }
43 private class upload_score_5000 extends AsyncTask<Score, Void, Void> {
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44 protected Void doInBackground (...) {
45 HttpClient httpclient = new DefaultHttpClient();
46 ....
47 }
48 }
49 }

Note that the key advantage of combining symbolic execution with trace
is that this combined analysis shrinks down the time complexity of symbolic
execution since we do not execute branches that do not appear in the trace.

4 Evaluation and Discussion

4.1 Practical Malware Evaluation

We apply the framework described in Sect. 3 to 18 real world malware. They
come from 10 different apps along with their variants. The result shows that
none of the 18 apps discriminates the virtual machine and real device before
exposing anomalous behavior, which indicates that the discrimination technique
has not been widely applied by the malware developers. Even though discrim-
ination behaviors cannot be found in a while, as emulation becomes more and
more common over time, we will see more discrimination behaviors in the future
(Table 2).

Table 2. List of practical malware evaluated

App name Number of variants

DroidKungFu4 3

FakeNetflix 1

Geinimi 1

GGTracker 1

GingerMaster 2

SndApps 2

Tapsnake 2

zHash 2

NickySpy 2

HippoSMS 2

Our detection algorithm is efficient. Checking environment discrimination
behavior is in linear time, O(n), where n is the size of trace. The time complex-
ity of detecting discrimination contributors is also O(n), where n is the number
of lines of code. The reason is that running symbolic execution against trace
matching shrinks down the time complexity of symbolic execution because exe-
cuter will not execute a path if it cannot be found in trace.
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4.2 Benchmark Malware Evaluation

Because environment discrimination is not widely applied in practical malware,
we invite the third party researchers who have no knowledge in our algorithm
injecting the environment discrimination code into the practical malware, and
evaluate the framework against the test bench to perform a blind testing. In
particular, the benchmark contains a set of malware injected with environment
discrimination code with varieties of heuristics and malware that does not have
such behaviors.

Table 3. Benchmark malware set evaluation result

Heuristics # of apps Apps

discriminate

during execution

Detection rate Contributor

detection rate

Accuracy

Property (API) heuristics 5 5 100% 100% 100%

File heuristics 5 5 100% 100% 100%

Component heuristics 5 5 100% 100% 100%

Sophisticated heuristics 5 4 80% 80% 80%

No discrimination 10 0 100% N/A 100%

Overall 30 19 N/A N/A 97%

Table 3 lists the evaluation result. 30 apps contained in the benchmark are
categorized into 5 categories. The property (API) heuristics take advantage of
the API call artifacts such as getDeviceId() and Build.MODEL(). The apps
leveraging file and component heuristics check the existance of a specific file or
hardware component, respectively. Sophisticated heuristics are more difficult to
detect. For example, one app in benchmark tests whether the call log is empty.
Another app checks whether the battery is always charging and remaining at
50%, which is the default configuration in most emulators. The last category is
a set of apps without any discrimination behaviors for us to evaluate the false
positive.

The overall accuracy is 97%, and the only case that fails is an app leveraging
the time bomb to discriminate. The time bomb is not exposed during evalua-
tion, thus it is not captured in the trace. Also, even though the false positive is
0%, it is not guaranteed that some discrimination behavior is not intended to
differentiate the virtual machine and physical device. For example, false positive
may occur when Google Map behaves differently as no GPS signal is found,
and virtual machine usually does not provide location information if not config-
ured. However, in this paper, we do not attempt to differentiate the intention of
discrimination.

The major limitation of this work is that the detection framework will never
be able to detect the discrimination behavior if such behavior is not captured
in trace. For instance, our framework failed to detect the time bomb planted in
one of the benchmark app because the time bomb was not triggered during the
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process of trace collection. Even though the time bomb does not directly dif-
ferentiate the virtual environment from the physical device, malware developers
understand the time of malware being tested by security analysts is significantly
shorter than the time of the app used by a real user. One potential approach to
mitigate this problem is to run static analysis and generate all potential traces.
As a trade off, this approach may bring false positive and the runtime can be
up to O(2n), where n is the length of program.

5 Related Work

5.1 Dynamic and Tainting Analysis

Many dynamic analysis tools have been developed to analyze malware. This
section cites and introduces the dynamic analysis works often used in either
industry or academic. DroidScope [13] is a virtualization-based Android mal-
ware analysis platform, which reconstructs the OS-level and Java-level semantics
seamlessly and simultaneously. Various analysis tools is also developed on top of
DroidScope to collect native and Dalvik instruction traces, profiling API-level
activity, and tainting analysis. TaintDroid [14] is an efficient and system-wide
dynamic taint tracking and analysis system capable of tracking multiple sources
of sensitive data, which leverages different levels of instrumentation to perform
the analysis. Even though TaintDroid introduces only 14% overhead, modifying
the components of Android exposes TaintDroid to some detection and evasion
techniques [15–17]. Andrubis [18] combines static analysis with dynamic analysis
on both Dalvik VM and system level, as well as several stimulation techniques
to increase code coverage, which is built based on TaintDroid [13] and Droid-
Box [19].

Besides the tools introduced above, many other dynamic analysis tools have
been developed to analyze malware, most of which extract API calls or system
calls [20–24]. Several dynamic analysis tools record traces with in-guest tech-
nologies such as Norman Antivirus Sandbox [22] and CSSandbox [20]. Tools
such as Ether [23] and HyperDBG [25] are implemented based on hardware-
supported virtualization technology. However, for convenience and security rea-
sons, more dynamic analysis tools are deployed on virtual environments. For
instance, Google Boucer [26], VMScope [27] and TT-Analyze [21] are based on
QEMU [28], which is a popular virtual machine.

5.2 Virtual Machine Evasion

On traditional platforms such as PCs, dynamic analysis systems are usually
built based on virtualization. Consequently, PC malware developers design mal-
ware that is aware of virtual environments and exhibit benign behavior in such
cases [29–31]. However, virtualization has matured in recent years. Many users
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even migrate physical environments to virtual instances, e.g., as in the Cloud,
hence malware that discriminate virtual environments, stand to lose a large
number of victim systems.

On the other hand, the application of virtualization on mobile platforms is
quite limited. A normal user is very unlikely to run a mobile OS in a virtual
environment but dynamic analysis does, as we mentioned before. Recent work
has shown that malwares on mobile platforms discriminate running environments
to evade dynamic analysis based on virtualization [3,32].

Few efforts have focused on environment discrimination. Morpheus gener-
ates heuristics to detect Android emulators and classifies heuristics as file, API,
and system property [33]. BareCloud automatically detects evasive malware by
using hierarchical similarity-based behavioral profile comparison; profiles are col-
lected by running a malware sample in bare-metal, virtualized, emulated, and
hypervisor-based analysis environments [34]. Balzarotti’s paper is similar to our
project [35], which also collects and compares the trace to find split personalities
in malware. However, our work formally defines environment discrimination and
employs symbolic execution against trace to find the discrimination contributors,
which differentiates from Balzarotti’s work.

6 Conclusion

The concept of environment discrimination has been applied in many areas.
Dynamic analysis is a convenient and efficient approach to analyze program
behavior, but some malware is able to detect the existence of virtual environ-
ments and evade detection. Some detection strategy such as evaluating hardware
performance is infeasible to block in practice.

In this work, we define environment discrimination and an efficient algo-
rithm to detect and describe such behavior. The time complexity to detect dis-
crimination behavior and discrimination contributor is O(n). The framework we
proposed reaches 97% detection accuracy when testing against a malware bench-
mark developed by the third party researchers. We also examine 18 real world
malwares and show that the environment discrimination has not been widely
employed by the malware developers.
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Abstract. While Searchable Encryption (SE) is often used to support
securely outsourcing sensitive data, many existing SE solutions usually
expose certain information to facilitate better performance, which often
leak sensitive information, e.g., search patterns are leaked due to observ-
able query trapdoors. Several inference attacks have been designed to
exploit such leakage, e.g., a query recovery attack can invert opaque
query trapdoors to their corresponding keywords. However, most of these
existing query recovery attacks assume that an adversary knows almost
all plaintexts as prior knowledge in order to successfully map query trap-
doors to plaintext keywords with a high probability. Such an assumption
is usually impractical. In this paper, we propose new query recovery
attacks in which an adversary only needs to have partial knowledge of
the original plaintexts. We further develop a countermeasure to mitigate
inference attacks on SE. Our experimental results demonstrate the fea-
sibility and efficacy of our proposed scheme.

Keywords: Searchable encryption · Inference attacks
Query recovery attacks

1 Introduction

Due to security concerns, sensitive data is often encrypted before uploaded
to cloud service providers (CSPs). Therefore, Searchable Encryption (SE) has
become a critical technique for many secure applications, which allows a user
to securely outsource its data to an untrusted cloud server, while maintaining
various search functionalities.

Two Common SE Models. Currently, SE schemes mostly explore the trade-
offs between query expressiveness, security, and efficiency. Oblivious RAMs
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(ORAM) [1] satisfies security and query expressiveness but incurs many inter-
actions for each read and write, which makes it impractical in deployment.
Recently, many researchers focus on the Encrypted-Index SE model, summarized
as follows. A user first encrypts some documents and generates a corresponding
searchable index; it then uploads the encrypted documents and the encrypted
index to a CSP. To search the documents, the user generates a search trapdoor to
ask the CSP to search on the encrypted index and return corresponding results.
While such a scheme achieves a good balance between security and efficiency,
it loses some query expressiveness [2], and it requires modifying current cloud
Application Programming Interface (API). In addition, most Encrypted-Index
SE schemes leak certain sensitive information to the adversary (i.e., the curious
cloud server) for better performance [3]. In the following, we focus on Encrypted-
Index SE schemes that leak search patterns and access patterns.

On the other hand, to be compatible with legacy systems, SE schemes such
as ShadowCrypt [4] and Mimesis Aegis [5] use the Appended-Token SE model,
which encrypts each document using a conventional encryption method, and
appends a sequence of tokens to the ciphertext. Because a token is determinis-
tically generated by encrypting a corresponding keyword, the search operation
for a keyword is conducted in two steps: generate the token of a keyword and
request the server to search for the token. Many cloud industry solutions (such as
Skyhigh [6], CipherCloud [7]) also advocate this approach. An Appended-Token
SE scheme requires no modification on the CSP side. Because such a scheme
provides no additional protection of token occurrence patterns, once encrypted
documents and tokens are uploaded to a CSP, the count of each indexed keyword,
its co-occurrence probabilities with other keywords, and the similarity between
documents, can be easily learned by the CSP.

Limitation of Existing Query Recovery Attacks. Islam, Kuzu, and Kantar-
cioglu (IKK) [8] analyzed the implications of revealing search patterns and access
patterns in SE. They showed that user queries can be inferred with a high suc-
cess rate when an adversary knows all the original documents. Cash, Grubbs,
Perry, and Ristenpart (CGPR) [9] proposed a simpler count attack, which out-
performed the IKK attack in terms of efficiency and accuracy in the same sce-
narios. However, for a certain size of keyword vocabulary, both the IKK and
CGPR attacks require almost the complete knowledge of plaintexts to achieve
a good recovery rate of queries. For example, when knowing less than 80% of
a document set, both the IKK attack and the CGPR count attack can invert
almost no query trapdoors. In this paper, we focus on this issue and emphasize
attacks with partial knowledge.

Our Contributions. Normally, an adversary rarely knows the entire document
set of a victim, but it usually learns a subset, e.g., some well-circulated emails.
Therefore, we focus on this practical case and develop query recovery attacks
based on partial knowledge. We have made the following contributions in this
paper.
1. Document identification attack on Appended-Token SE schemes. To attack

an Appended-Token SE scheme, we first establish the mappings between the
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known plaintext documents and the encrypted documents of a victim, which
called “document identification attack”. This attack allows us to apply exist-
ing query recovery attack algorithms to invert tokens more accurately.

2. Extended document identification attack on Encrypted-Index SE schemes.
In an Encrypted-Index SE scheme, before queries are issued, an adversary
learns nothing except the sizes of the ciphertexts and the encrypted index.
So, the adversary cannot directly perform the proposed document identifica-
tion attack. However, the adversary can perform this attack in certain situ-
ations with some auxiliary information. For example, if the adversary knows
widely-circulated emails, the document identification attack can be conducted
according to specific protocols and related data items (such as senders and
receivers in emails). With a sequence of query results, an inverted index can
be built between search trapdoors and returned encrypted documents. Then,
the adversary can remove irrelevant encrypted documents from the query
results according to the identified encrypted documents, and use query recov-
ery attack algorithms with prior knowledge to obtain query keywords more
accurately.

3. We propose a simple noise addition technique to mitigate the inference
attacks. We minimize information disclosure by spreading search tokens in the
Appended-Token SE, to break the statistical relations between keywords and
tokens. The proposed model achieves backwards compatibility with legacy
systems. Our experimental results show its effectiveness.

The remainder of this paper is organized as follows. We introduce related
work in Sect. 2, and present the query recovery attacks with partial knowledge
in Sect. 3. We further present our evaluation in Sect. 4. We discuss mitigation
methods in Sect. 5, and conclude this paper in Sect. 6.

2 Background and Related Work

In this section, we first introduce SE basics and common SE schemes, and point
out their leakage models. We then discuss common inference attacks on SE.

2.1 SE Basics

First, we define terminologies and preliminaries used in this paper. Let n be the
total number of documents in a collection D = (D1,D2, ...,Dn). We denote the
identifier of a document Di by ID(Di). Let D(w) be the ordered list consisting
of the identifiers of all documents that contain the keyword w in set D. We
use m to denote the total number of keywords in a dictionary, and use W =
(w1, w2, ..., wm) to denote the set of keywords in a dictionary.

A trapdoor function f takes a keyword w as input, and emits a trapdoor that
enables the server to search on the encrypted index while keeping the keyword
hidden. A search pattern means the information that given two searches with the
same results, we can determine whether the two searches use the same keyword.
An access pattern refers to the information that may be leaked in query results.
The returned results imply the document IDs containing the query keywords.
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2.2 SE Models

In this section, we classify common SE schemes into two models: the Encrypted-
Index SE model and the Appended-Token SE model, as shown in Fig. 1.

Fig. 1. Architecture for searchable encryption models.

Encrypted-Index SE Model. Curtmola et al. [3] first built an encrypted
search mechanism using inverted indexes. For each keyword, it built a linked
list of the IDs of the documents containing the keyword, improved the search
efficiency to sub-linear time, and enhanced the security of SE. We classify this
scheme into the Encrypted-Index SE model. In this scheme, the nodes of every
linked list are encrypted with randomly generated keys and scrambled in a ran-
dom order. A node contains a document identifier, a key used to decrypt the
next node, and a pointer to the next encrypted node. Before queries are issued,
the server learns nothing except the sizes of the documents and the index. For
trapdoors that have been queried, the query results reveal the information about
the occurrence counts of the hidden keywords and the co-occurrence patterns of
multiple keywords. It can only support exact keyword searches and documents
cannot be updated dynamically. Recently, advanced SE functions are further
developed based on the above approach, such as multi-keyword SE [12], fuzzy
keyword SE [13] and dynamic SE [14]. In summary, the Encrypted-Index SE
model improves the search efficiency, but requires modifying current cloud APIs.
After all keywords have been queried, the leakage of Encrypted-Index SE degen-
erates to the same level as the leakage of Appended-Token SE as depicted in the
following section.
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Appended-Token SE Model. As Fig. 1 shows, this model is compatible with
legacy systems: the server can index and search the uploaded tokens. However,
the model provides no additional protection of token occurrence patterns and
gives the server the exact document-token matrix prior to search.

ShadowCrypt [4] and Mimesis Aegis [5] use this model to support SE in legacy
applications. For a given keyword, ShadowCrypt uses a single pseudorandom
function to generate a single search token. After that, it sorted the tokens in
every document to disturb the correspondence between tokens and keywords.
The Mimesis Aegis SE scheme is more secure than ShadowCrypt because it
does not reveal a one-to-one correspondence between keywords and tokens. It
uses Bloom filter and a family of pseudorandom functions to generate k distinct
tokens for each keyword. However, the tokens are deterministically encrypted,
that the server can learn the count of each unique indexed keyword and its
co-occurrence probabilities with other keywords upon uploading (as in Shadow
Nemesis [11]). In addition, the Bloom filter has a small error rate. There may be
potential collisions that some tokens may correspond to more than one keyword.
Due to the simplicity of the Appended-Token SE, several commercial encryption
products from Skyhigh Networks [6], CipherCloud [7], Bitglass [15], and Virtue
[16] use this model (or its variants) to support SE in their cloud services.

2.3 Inference Attacks on SE Models

An adversary can use inference attacks to obtain sensitive information against
SE schemes based on its leakages and the adversary’s prior knowledge.

Adversary’s Prior Knowledge. We classify the adversary’s prior knowledge
into three types. (i) Distributional document knowledge model: The adversary
has no a priori knowledge of the plaintext messages. In this scenario, an adver-
sary may have the contextual information about the documents, such as whether
they are emails or medical documents. (ii) Full document knowledge model: All
documents are known to the adversary. While it is rare, it may happen some-
times, e.g., a user has a large corpus of emails stored at an email service, and
it decides to encrypt all old emails using SE. (iii) Partial document knowledge
model: As it is unlikely that an adversary knows all documents of a victim, it
may only know a subset. In the following, we will focus on the effectiveness of
our attacks in this scenario of partial knowledge.

Attack Modes. We classify attacks in two modes. (i) In a passive attack, the
adversary intercepts communications between a user and a server, to count the
frequencies of query keywords or the co-occurrence patterns of multiple keywords
in a document set by observing query results. With known plaintext documents,
the adversary can map opaque query trapdoors to plaintext keywords. The
IKK attack [8] and the Shadow Nemesis attack [11] use co-occurrence matrixes
and combination optimization algorithms to perform inference. (ii) In an active
attack, an adversary proactively sends the client multiple plaintext documents
with structured contents; the client will then create an encrypted index based
on these documents and upload them to the cloud server. So, the attacker can
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observe the inserted documents contained in the user’s query results to create
mappings between the keywords and search trapdoors. CGPR’s [9] active attack
and ZKP [10] both use this attack mode.

Attack Algorithms. Different attack models are summarized in Table 1. IKK
[8] first studied the empirical security of SE and analyzed the implications of
revealing search patterns and access patterns. Let q be the number of unique
query trapdoors observed. A q× q trapdoor co-occurrence matrix is built as Cq,
where Cq[i, j] represents the number of documents which the i-th trapdoor and
the j-th trapdoor both hit. If the server has the prior knowledge of all indexed
documents, a m × m keyword co-occurrence matrix Cm can be constructed,
where Cm[i, j] represents the number of documents in which the i-th keyword
and the j-th keyword both appear. Then, a simulated annealing algorithm is
used to find the best match of Cq to Cm, thus inverting the corresponding query
trapdoors. When the information about plaintext is not accurate or only partial
plaintext is known, the success rate of IKK query recovery attack is poor.

Table 1. Different attack schemes against SE. EISE represents Encrypted-Index SE,
and ATSE represents Appended-Token SE.

Attack schemes Attack methods Prior knowledge Attack SE

IKK [8] Simulated
annealing

Almost all
documents

EISE and ATSE

CGPR [9] Count or file
injection

Almost all or partial
documents

EISE and ATSE

ZKP [10] File injection No or partial
documents

EISE and ATSE

Shadow Nemesis [11] Graph matching All or auxiliary
documents

ATSE

CGPR [9] presented a simpler count attack without using optimization algo-
rithms. It first calculates the number of documents in the query result of a
search trapdoor, and then finds a unique keyword appeared in the same number
of plaintext documents. If the unique keyword found, the mapping between the
trapdoor and the keyword can be directly established. Based on the mappings,
given an unknown search trapdoor q with a result length, it first selects the can-
didate keywords contained in the same number of plaintext documents. Then, to
determine whether a keyword w in the candidate keyword set is corresponding to
the trapdoor q, for each pair of identified keyword-trapdoor mapping w′ and q′,
it computes the co-occurrence count c1 of w and w′ (the number of documents
in which w and w′ both appear) in known documents, and the co-occurrence
count c2 of q and q′ (the number of documents which both the query q and q′

match) in query results. If c1 is not equal to c2, then w will be removed from the
candidate keyword set. Finally, only one remaining keyword meeting all the con-
ditions can be mapped to the trapdoor q. However, CGPR requires almost the



536 G. Wang et al.

complete knowledge of a victim’s documents to achieve a good query recovery
rate. When only knowing a portion of the document set (e.g., less than 80%),
both IKK and CGPR attacks perform poorly.

The Shadow Nemesis [11] launched inference attacks on the Appended-Token
SE model. The attack creates a keyword co-occurrence matrix graph G and a
token co-occurrence matrix graph H based on the auxiliary information and
target data, respectively. As the Appended-Token SE model leaks the occurrence
count of each indexed keyword and its co-occurrence probabilities with other
keywords, which is sufficient to convert the attack to the well-known Weighted
Graph Matching (WGM) problem. This method did not examine query recovery
attacks with partial knowledge.

ZKP [10] used active attacks to infer query trapdoors. An attacker needs to
inject known documents to a client, while the client must encrypt the received
documents and generate corresponding search indexes. The number of injected
documents is dependent on the size of keyword vocabulary. This assumption is
often difficult to meet when a client only encrypts and indexes its own sensitive
data, as in Virtue [16]. So, we do not investigate the active attack algorithms in
the following.

3 Query Recovery Attacks with Partial Knowledge

In this section, we present our query recovery attacks with partial knowledge
against two SE models.

3.1 Motivation

Although various attacks on SE have been investigated in different settings, there
are still several interesting challenges to be addressed as follows.

(i) To invert the query with a high accuracy, common query recovery attacks
require almost the complete knowledge of a victim’s documents, which is
unrealistic in normal cases. For example, an adversary needs to know almost
all documents to achieve a high success rate in the CGPR [9] count attack.
The IKK [8] attack and the Shadow Nemesis [11] attack consider a more real-
istic scenario, in which an adversary can collect publicly relevant data based
on the distributional knowledge of the victim’s documents. However, the
adversary must have accurate keyword co-occurrence probabilities and cor-
responding keywords, which we believe the knowledge can only be obtained
by an adversary that has access to all the documents.

(ii) The recovery rate of queries is poor when an adversary only has partial
knowledge of documents. In this case, as the statistics of partially known
documents do not match the statistics of query results on all documents,
resulting in a low probability of success. In practice, the adversary usually
has partial knowledge about a victim’s document set. Therefore, we focus
on this issue in our investigation.
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3.2 Query Recovery Attacks Against Appended-Token SE Model

Prior to a search, the Appended-Token SE model leaks the count of each unique
indexed keyword, its co-occurrence probabilities with other keyword, and the
similarity of documents to a cloud server. When having the explicit knowledge
of all documents of a victim, the adversary can get a consistent statistical dis-
tribution about keywords and tokens. The attacker can invert the underlying
tokens to their respective keywords, even when no queries have been issued.

Document Identification Attack. However, if the adversary only has partial
knowledge, as the statistics between keywords and tokens do not match well, it
is very hard to invert the tokens. To address this issue, we first pre-established
the mappings between the known documents and related encrypted documents,
which we called Document Identification Attack. Then, the server can calculate
the count of each token and its token co-occurrence probabilities with other
tokens in the identified encrypted documents. Similarly, in the known documents
corresponding to the identified encrypted documents, the server can obtain the
count of each keyword and its keyword co-occurrence probabilities with other
keywords. Finally, the server can build mappings between opaque tokens and
plaintext keywords accurately.

Next, we describe our document identification attack algorithm in detail. Let
D = (D1,D2, ...,Dn) denote a collection of n plaintext documents. A keyword
extraction algorithm takes a document Di as input and outputs a vector Wi,
where each component is a character string, namely a keyword w. We assume
the keyword extraction algorithm is deterministic and known to the adversary.
Let W = (W1, ...,Wn) be the ordered list of all keyword vectors.

For each known plaintext document Di, we first choose the unique encrypted
document in which the number of tokens is the same as the number of unique key-
words in the keyword vector Wi. We name the mapping between the encrypted
document and its corresponding plaintext document as a base mapping.

If the mapping is not unique, i.e., multiple candidate encrypted documents
have the same number of tokens as the number of unique keywords in a plain-
text document. We filter the candidate encrypted documents of the plaintext
document by comparing the similarity of plaintext documents (i.e., the number
of common keywords in two documents) and the similarity of encrypted docu-
ments (i.e., the number of common tokens in two encrypted documents) with
help of base mappings. Our document identification attack algorithm is shown
in Algorithm 1. In line 2, we build the similarity matrix of partial plaintext doc-
uments, Ck, where Ck[i, j] represents the number of common keywords in two
documents i and j, and the similarity matrix of all encrypted documents, Ct,
where Ct[i, j] is computed by counting the number of common tokens in two
encrypted documents i and j. A document identification example is shown in
Fig. 2, in which PDoc means “plaintext document”, EDoc means “encrypted
document”. First, because only PDoc1 has 101 keywords and EDoc1 has 101
tokens, we have a unique mapping between them. Second, for PDoc2, we have
two candidate encrypted documents EDoc2 and EDoc3. As PDoc2 has 25 com-
mon keywords with PDoc1, we find EDoc3 has the same number of common
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tokens with EDoc1, while EDoc2 only has 20 common tokens with EDoc1. So,
we can determine the mapping between EDoc3 and PDoc2.

Algorithm 1. Document Identification Attack algorithm
input : all encrypted document set e, partial plaintext document set p.
output: mapping set between e and p;

1 initialize the base mapping set K;
2 compute the similarity matrix of partial plaintext documents, Ck, and the

similarity matrix of all encrypted documents, Ct;
3 while size of K is increasing do
4 for each un-mapping plaintext document d ∈ p − K do
5 set candidate encrypted document set S = {s : the token count of s is

equal to the keyword count of d };
6 for s ∈ S do
7 for known base mapping (d′, s′) ∈ K do
8 if Ck[d, d

′] �= Ct[s, s
′] then

9 remove s from S;

10 if one encrypted document s remains in S then
11 add (d, s) to K

12 return the mapping set K;

Based on the document identification algorithm, we can utilize the CGPR
count attack to build more mappings between tokens in the identified encrypted
documents and keywords in the corresponding plaintext documents, which we
called query recovery algorithm, as shown in Algorithm2.

In the proposed query recovery algorithm, we first build a modified inverted
index over the identified known documents. This is an m × n matrix I, where
entry Ii,j = 1 iff document Dj contains keyword wi. All other entries are set to
zero. The rows are indexed by the keyword set, while the columns are indexed
by the document set. In the same way, we build an m × n matrix I ′ for the
identified encrypted documents, where entry I ′

i,j = 1 iff document Dj contains
token ti. All other entries are set to zero. Based on matrix I and I ′, we then
build a m×m keyword co-occurrence count matrix K ′, where K ′[i, j] represents
the number of documents in which wi and wj both appear. Similarly, we build a
m×m token co-occurrence count matrix T ′, where T ′[i, j] represents the number
of encrypted documents in which token ti and token tj both appear.

3.3 Query Recovery Attacks Against Encrypted-Index SE Model

In the Encrypted-Index SE model, before queries are issued, the attacker learns
nothing except the sizes of the documents and indexes. For trapdoors that have
been queried, the query results reveal the information about the query keyword
occurrence count and the keyword co-occurrence count of the queried keywords.



Query Recovery Attacks on Searchable Encryption 539

Fig. 2. An example of document identification attack. There are two known plaintext
documents and three encrypted documents. As a result, PDoc1 is mapped to EDoc1,
PDoc2 is mapped to EDoc3.

Algorithm 2. Query Recovery Attack algorithm
input : Query token set T in identified encrypted documents e′, keyword set

W in identified known plaintext documents p′.
output: mapping set between T and W ;

1 initialize the base mapping set G;
2 compute the token co-occurrence matrix T ′ for T and the keyword

co-occurrence matrix K′ for W ;
3 while size of G is increasing do
4 for each unknown token t ∈ T − G do
5 build candidate keyword set S = {s : the occurrence count of s in p′ is

equal to the occurrence count of t in e′ };
6 for s ∈ S do
7 for known base mapping (t′, s′) ∈ G do
8 if T ′[t, t′] �= K′[s, s′] then
9 remove s from S;

10 if one keyword s remains in S then
11 add (t, s) to G

12 return the mapping set G;

Initially, the attacker (i.e., the cloud server) cannot establish the base map-
pings between a known subset of plaintext documents and all encrypted docu-
ments based on the number of keywords. However, it can establish such mappings
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in specific scenes with auxiliary information, called Extended Document Identi-
fication Attack. For example, in the Enron [17] dataset, the public email con-
tains auxiliary information, such as senders, receivers, and timestamps. If the
attacker knows widely-circulated emails, it can make the association based on
specific protocols and related data items. In this way, the attacker can construct
the mappings between the identified encrypted documents and the correspond-
ing plaintext documents. With the mappings, by counting the trapdoors and
the returned results for a period of time, the attacker can build more mappings
between trapdoors and corresponding keywords than the one without document
identification. In fact, if the adversary intercepts a set of queries Q over a suffi-
cient long period, it has a good chance to count most high-frequency keywords.

For queried trapdoors, the attacker can create an inverted index as shown
in Fig. 3. The document IDs pointed by dotted arrows means that they are
not belong to the constructed mappings of document identification. Then, the
attacker performs document pruning to remove the document IDs that do not
belong to the constructed document mappings. By this way, the attacker can
remove the information that has nothing to do with the known subset of plain-
texts. Finally, after performing the document identification and document prun-
ing steps, the mappings between trapdoors and keywords can be built accurately
using query recovery attack algorithms.

Fig. 3. The inverted index for queried results. Di stands for document ID, Li represents
a linked list for keyword wi.

4 Evaluation

We implemented a prototype system and conducted experiments to validate the
effectiveness of the proposed document identification attacks: (1) in a single user
case and in a multi-user case; (2) the improved success rate of query recovery
attack. The configuration of the testing virtual machine includes an Intel 2.5 GHz
dual-core with 8 GB memory. For each experiment on the Enron dataset [17], it
took less than 5 min to complete, which shows the effectiveness of the proposed
attack model.
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4.1 Experimental Setup

We used the Enron [17] dataset available online as our test data. We chose
emails from the “ sent mail” folder of 73 employees, resulting in a total of 28,657
messages. There are about 49,835 distinct keywords in the whole dataset.

We extracted keywords from this dataset as follows: An email message is
considered as one document. The first few lines of each email usually contain
auxiliary information about the email, such as senders, receivers, and times-
tamps. We strip these lines off in a preprocessing step, because these lines are
not part of the original email. The words in each email were first stemmed using
the standard Porter stemming algorithm [18]; we remove 200 stop words [19]
and duplicate keywords.

Given the set of n documents, the above process produces a set of distinct
keywords for each document, resulting in n keyword sets. Assume there are a
total of M distinct keywords in all the keyword sets, we then establish a fixed-
size keyword vocabulary by taking the most frequent m keywords from these
sets.

In our experiments, the adversary only knows a subset of emails. The leaked
emails of different users are expected to vary significantly. Therefore, it is hard
to adopt a methodology to capture which messages are more likely to be leaked.
Without losing the generality, we randomly selected a subset of emails as the
known documents for each setting. We present the concrete effect of document
identification attack with partial knowledge against the Appended-Token SE
model in the following. When attacking the Encrypted-Index SE model, we con-
duct the Extended Document Identification Attack with auxiliary information.

4.2 Effectiveness of Document Identification Attack

To achieve a high success rate, we first perform document identification attack,
which establishes the mappings between the known subset of plaintext docu-
ments and the encrypted documents. We show that the attack works well even
when just a small fraction of documents are known to the attacker. Note that the
result of document identification attack is dependent on the randomly selected
subset of known documents; however, we have repeated the experiments in the
same setting many times, and the results are consistent.

Document Identification Attack in a Single-User Case. First, we consider
the single-user SE scheme, such as in the ShadowCrypt [4] approach, which adds
end-to-end encryption to cloud-based applications. It interposed itself between
the interface of a legacy application and a user. As different users apply different
keys to encrypt data and generate different query tokens, a user can only search
for its documents.

Incidentally, an adversary may have partial knowledge about a victim’s docu-
ments. We randomly selected a user from 73 employees, “allen-p”, as the victim.
There were 602 emails in its “ sent mail” folder. While 69% of the emails contain
less than 44 distinct keywords, only 8% of emails contain the unique number of
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keywords (mostly more than 100 keywords). The emails are named with differ-
ent index numbers. We choose a proportion of the emails as partially known
documents.

The experimental results of document identification attack in the single-user
case are shown in Fig. 4, with different subsets of known documents. The x-
axis represents the percentage of known documents, and the y-axis represents
the number of documents that have been identified. The top (green) line with
triangle markers represents the number of documents known to the attacker;
the middle (red) curve with square markers represents the number of identified
documents after the document identification attack; the bottom (blue) line with
diamond markers represents the number of documents that have been identified
in the base mappings. We can see that only a few documents are identified in
the base mappings; with the proposed attack, we can map a large proportion
of known documents to their corresponding encrypted documents. On average,
we can identify about 81% of known plaintext documents with their encrypted
versions. However, the attack is dependent on that at least one document is
initially identified in the base mappings. This can be resolved by making an
initial guess that maps a document to one in the candidate encrypted document
set, and then runs the remainder of the algorithm. If the guess is wrong, the
document similarity comparison algorithm detects inconsistency, and we then
will try another candidate.

Fig. 4. Document identification results in a single-user case. There are 602 emails
in the sent folder of the user. The top (green) line with triangle markers represents
the number of documents known to the attacker. The middle (red) curve with square
markers represents the number of documents that the attacker can map to specific
encrypted documents. (Color figure online)

Document Identification Attack in a Multi-User Case. In a multi-user
case, we take the Cloud Access Security Broker (CASB) [20] as the defacto
architecture. In a CASB construction, a security control broker sits between
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cloud applications and a group of customers. Before confidential data is passed
into the cloud, the broker intercepts and replaces it with random tokens or
encrypted values. Furthermore, several pioneering companies such as Skyhigh
Networks [6], CipherCloud [7] and Bitglass [15] have launched their commercial
SE products based on CASB.

In this setting, multiple users may share some common documents, and an
administrator allows a group of users to generate search tokens. For different
users in the same group, the broker may use the same key to generate query
tokens. A user query may be performed on the index of documents owned by
the group. Initially, an attacker may have partial knowledge about a victim’s
document set. In the following experiment, assume that the attacker knows the
same percentage of User allen-p’s documents as in the single-user case, but the
encrypted documents include the emails of multiple users. In the extreme setting
with 73 users, there are 28,657 emails; 98% of the emails contain less than 252
distinct keywords, and 117 emails contain the unique number of keywords. The
experimental results of the base mappings in document identification attack were
shown in Fig. 5.

Fig. 5. Base mappings results in a multi-user case. The “3 users base” includes 2825
emails of allen-p, arnold-j and bass-e; the “4 users base” includes 3572 emails of allen-
p, arnold-j, bass-e and farmer-d; and the “all users base” includes 28,657 emails of 73
users.

As shown in Fig. 5, in the settings of different proportions of known docu-
ments of User allen-p, the bars become shorter as more users are considered.
That is, the identified documents in base mappings become fewer as more users
are considered. Under the 73-user setting there does not exist a document in the
base mappings until the attacker knows 60% of User allen-p’s files. From Fig. 6
we can see that, even if the initial base mappings collection contains only one
email, the final identified mappings collection can contain as many documents
as the document identification result of the single-user case.



544 G. Wang et al.

Fig. 6. Results of document identification attack in a multi-user case. Each curve
represents the total number of identified documents in different settings.

4.3 Query Recovery Attacks on SE with Partial Knowledge

In this section, we show the experimental results of query recovery attacks after
the document identification attack on various SE schemes with partial knowl-
edge. Table 2 shows different numbers of keywords in different identified plaintext
documents. In the attack against the Appended-Token SE model that exposing
all the search tokens, we select the first 500 most frequent keywords in different
identified plaintext documents as the keyword universe, and try to find their cor-
responding tokens in the identified encrypted documents. In the attack against
the Encrypted-Index SE model, based on the selected keyword universe, we ran-
domly selected 150 keywords as the query keyword set. Given the trapdoors of
the query keyword set and their query results, we try to find their corresponding
keywords in the keyword universe.

Table 2. Identified documents statistics.

Identified documents number 46 102 156 203 243 277 333 389

Keywords number 842 1554 1928 2164 2412 2756 2992 3292

Attack Against the Appended-Token SE Model. After the document iden-
tification attack, we use the identified encrypted documents and their corre-
sponding plaintext documents to conduct a query recovery attack against the
Appended-Token SE model. As shown in Fig. 7, the x-axis represents the per-
centage of documents known to the attacker. A “base” point at the bottom rep-
resents the number of keywords that have been identified in the base mappings,
and the “identified” point at the top represents the total number of identified
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keywords after applying the keyword co-occurrence comparison algorithm. We
use the first 500 most frequent keywords in the identified documents as our key-
word universe. When we identify 46 documents of 60 known plaintext documents
of User “allen-p”, we can invert 44% (220 out of 500) tokens in the identified
encrypted documents. When we identify 243 documents of 300 known plain-
text documents of the user, we can invert 81% (465 out of 500) tokens. When
we identify 389 documents of 480 known plain documents of the user, we can
invert all 500 tokens. In contrast, without the proposed document identification
attack, the query recovery rates in the settings of different proportional known
documents are all close to zero.

Fig. 7. Invert tokens under the Appended-Token SE model. A “base” point repre-
sents the number of tokens uncovered in the base mappings, and an “identified” point
represents the number of tokens uncovered when 500 tokens are considered.

Attack Against the Encrypted-Index SE Model. In this setting, if the
plaintext content contains timestamps, address or user information, the attacker
can also use such auxiliary information to establish the document mappings. For
example, in the Enron dataset, the public email contains auxiliary information
such as senders, receivers, and timestamps. Since the sender and receiver infor-
mation cannot be encrypted by the client to use the email service, the server
can use this information to build the document identification attack. Using this
extended document identification attack with auxiliary information, in a spe-
cific application such as email service, we can map any known documents to
corresponding encrypted documents. Then, we count the first 500 most frequent
keywords in the identified plaintext documents as the keyword universe. We
refer Rq = {d1, ..., dn} as the result sent by the server in response to a query q,
such that di = 1 iff the i-th document contains the keyword corresponding to the
query q; and di = 0 otherwise. For every di, if it does not belong to the identified
encrypted documents, we set di = 0 to remove it from the query result. Then, for
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every query trapdoor, if the returned result contains a unique number of identi-
fied encrypted documents, the corresponding keyword has the same occurrence
count in the identified known plaintext documents. The server can immediately
invert the trapdoor by finding the keyword w such that count(w) = count(q).
We can then use a co-occurrence comparison algorithm to build other mappings.

As Fig. 8 shows, we randomly select a subset of 150 keywords from the 500
most frequent keywords in the identified plain documents as query keywords.
When we identify 46 documents of known plaintext documents of User “allen-
p”, we can invert about 48% of the 150 trapdoors. When we identify 243 doc-
uments of known plaintext documents of the user, we can invert 93.3% of the
150 trapdoors. Eventually, if we identify 389 documents of known plaintext doc-
uments of the user, we can invert all 150 trapdoors. Note that the success rate
of query recovery attack is dependent on the randomly selected query keyword
set; however, we have repeated the experiments in the same setting many times,
and the results are consistent. On the other hand, the success rates of query
recovery attack in the settings of different proportions of known documents are
all close to zero without the help of our document identification attack, as IKK
and CGPR did.

Fig. 8. Invert trapdoors for the Encrypted-Index SE Model. The “base” point repre-
sents the number of trapdoors uncovered in the base mappings, and the “identified”
point represents the final number of trapdoors uncovered when 150 trapdoors are con-
sidered.

5 Mitigation

Inference attacks often use the frequency of keywords and the co-occurrence
patterns of multiple keywords to guess the meanings of search trapdoors. So,
the protection method needs to disrupt the frequency relationship between key-
words and trapdoors. By adding noise to access patterns or search patterns, the
observable statistics can be perturbed to a certain extent.
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Add Noise to Access Pattern Leakage. To avoid causing an incomplete
search result for a keyword, we cannot simply remove items from the search
index to add noise to access patterns. An obvious way is padding the number
of documents returned for a query. Since we can count the results of queries
and filter out irrelevant documents, padding the index using bogus documents
does not mitigate our attack effectively. IKK [8] uses the (a, 0)-secure index to
thwart inference attacks. It aims to make query responses as similar as possible
at the expense of increased false positives. Qualitatively, the (a, 0)-secure index
guarantees that, for each keyword, there are at least other (a−1) keywords that
have exactly the same query results. However, it incurs extra communication
costs and the client needs to detect and discard the false positives.

Add Noise to Search Pattern Leakage. To obscure the search patterns,
an obvious way is to replace a keyword with multiple trapdoors. Liu et al. [21]
proposed a grouping-based construction (GBC) to thwart inference attacks. In
this scheme, the query generated by the client is a collection of k trapdoors,
which includes one search trapdoor of the real keyword that the client wants to
search for, and (k−1) trapdoors of randomly selected keywords. GBC used “or”
search function, which is not supported in some legacy applications.

Our Countermeasure. We outline an approach to add noises in search patterns
and access patterns, and which can be applied to existing legacy applications.
The basic idea is as follows. Assume we have a collection of documents D to be
encrypted, and a set of keywords W to be queried, and set group size to 2. First,
we sort the keywords in a descending order referring to keyword frequency. We
map the first keyword and the last keyword to the same token T1, the second
keyword and the second-to-the-last keyword to the same token T2, ..., until
mapping the middle of the two to the same token Ti. In this way, the difference
of the frequency of every query token is minimized. So, the adversary cannot
perform the query recovery attack accurately based on the leakage of search
patterns and access patterns. On the other hand, as the query results contain
false positives, we need to filter out extra documents using a secondary map
before returning it to the user. For space and efficiency, we simply mark the
documents that contain at least one keyword of a group using a bitmap to
build the secondary map. For most cloud services, a file often has its uploading
timestamp as its attribute. So we can use this attribute to filter the extra results.
First, in the index building process, we can sort the document set Dg that contain
at least one keyword of a group g in a chronological order. For the group g, we
build a bitmap in which location Li = 01 if the i-th document of Dg only contains
the less frequent keyword, Li = 10 if the i-th document of Dg only contains the
more frequent keyword, and Li = 11 if the i-th document of Dg contains the
two keywords in the group g. So, when querying a keyword belongs to a group,
we can filter extra documents in the returned results based on the timestamps
of the encrypted documents and the bitmap of the group.

Efficiency. We conducted experiments on our prototype to validate the effi-
ciency of our countermeasure. We selected User “allen-p” as the victim. There
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were 602 emails in its “ sent mail” folder. We count the frequency of every
extracted keyword and selected the 500 most frequent keywords as our keyword
universe. We group the first and the last one, the second and the second to the
last, ..., until the middle of the two as a group. For keywords in each group, we
map them to the same token. Then, we perform inference attacks with known
documents and encrypted documents that contain query tokens. If the keywords
of a group both appear in a document, then the count of tokens appended to
the encrypted document is less than the count of keywords in the corresponding
plaintext document, so that the document identification attack does not work
well. The results show that, even if we know all documents, we can invert almost
none of the query tokens. The experimental results show that our protective
measures can effectively prevent query recovery attacks.

6 Conclusion

In this paper, we first introduce two searchable encryption models, including the
Encrypted-Index searchable encryption model and the Appended-Token search-
able encryption model, and related inference attacks. We then present our docu-
ment identification attack and query recovery attack based on partial knowledge.
We show that the attack is effective even when only a small fraction of docu-
ments is known to the attacker. We further design and validate a countermeasure
to address this issue.

We plan to further investigate related query recovery attacks. Because the
mappings in the document identification process can invert some tokens to their
respective keywords, the unknown tokens associated with the remaining cipher-
text can be guessed based on known tokens, related public documents, and co-
occurrence algorithms, in order to invert as many tokens as possible. Moreover,
we will design interactive SE constructions hiding access patterns to prevent
inference attacks. A simple way is to keep the document identifiers encrypted
in the query result of a search trapdoor, and decrypt it on the client side. The
disadvantage is that the client has to spend an extra round-trip time to retrieve
the documents.
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Abstract. HTTP/2, as the latest version of application layer protocol,
is experiencing an exponentially increasing adoption by both servers and
browsers. Due to the new features introduced by HTTP/2, many secu-
rity threats emerge in the deployment of HTTP/2. In this paper, we
focus on application-layer DoS attacks in HTTP/2 and present a novel
H2DoS attack that exploits multiplexing and flow-control mechanisms
of HTTP/2. We first perform a large-scale measurement to investigate
the deployment of HTTP/2. Then, based on measurement results, we
test H2DoS under a general experimental setting, where the server-side
HTTP/2 implementation is nginx. Our comprehensive tests demonstrate
both the feasibility and severity of H2DoS attack. We find that H2DoS
attack results in completely denying requests from legitimate clients and
has severe impacts on victim servers. Our work underscores the emerging
security threats arise in HTTP/2, which has significant reference value
to other researchers and the security development of HTTP/2.

Keywords: Web security · DoS attack · HTTP/2 protocol

1 Introduction

Hypertext Transfer Protocol (HTTP) is a dominant and fundamental applica-
tion protocol, and it powers the data communication on the Internet. Recently,
the latest version of HTTP protocol - HTTP/2 [1] has been standardized and
received much attention as it can reduce the load latency of web pages by address-
ing some performance inhibitors inherent in HTTP/1.1 and HTTPS [8]. HTTP/2
protocol is primarily designed for improving performance by introducing new
features, however, which can result in new and potential security threats. Those
security threats introduced by HTTP/2 may have damaging effects on the Inter-
net in terms of both end users and web servers, because the current HTTP/2
protocol has been adopted by most major browsers and many websites [8]. This
brings up a significant challenge of how to explore new security threats against
HTTP/2, and motivates us to begin the research of this paper.
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The application-layer Denial-of-Service (DoS) attack is a form of DoS attacks
where attackers target at the application-layer of web servers. By exploring char-
acteristics and vulnerabilities of application layer protocols, application-layer
DoS attacks aim to exhaust server resources that the application requires to
function properly [23]. The application-layer DoS has become one of the most
damaging attacks to threat the Internet ecosystem [5] in 2016 and was believed
to increasingly escalate in the future. Since the HTTP/2 protocol is a new and
significant part of web servers in terms of application layer protocols, HTTP/2 is
also supposed to face application-layer DoS attacks. In this paper, we narrow our
research scope and focus on application-layer DoS attacks towards the HTTP/2
protocol. We present a novel H2DoS attack, which is the first real application-
layer DoS attack targeting at HTTP/2-enabled web servers. By exploiting mul-
tiplexing and flow-control mechanisms in HTTP/2, the H2DoS attack can com-
pletely deny legitimate users from accessing the victim server. Moreover, this
attack also inflicts more severe impacts on server resources compared with other
application-layer DoS attacks, which can result in severe damages to web servers.

Concretely, to investigate the potential extent of application-layer DoS
attacks against HTTP/2 protocol in practice, we first perform a large scale mea-
surement to understand the current deployment and implementation of HTTP/2.
We find that 14% of Alexa’s top million websites [11] have already begun to sup-
port HTTP/2 protocol. Moreover, most of these websites adopt nginx [17] as the
server-side implementation, which can be strongly affected by our H2DoS attack.
Then, we analyze two new features introduced by HTTP/2: flow-control and mul-
tiplexing mechanism, and find that both of them are vulnerable to application-
layer DoS attacks. Based on those analyses, we propose the novel H2DoS attack
which exploits both flow-control and multiplexing mechanisms. Our proposed
H2DoS attack can disrupt or even completely deny legitimate user from access-
ing the victim web servers. Next, we examine both the feasibility and severity
of H2DoS attack in our experiments. Our experimental tests show that victim
web servers reply with HTTP 500 (Internal Server Error) code to legitimate
users during H2DoS attack. This result indicates that a real denial of service
takes place on victim web servers. Even worse, we find that H2DoS attack can
massively consume server resources, and compared with other application-layer
DoS attacks, it inflicts more severe impacts on the performance of victim servers.
Overall, the main contributions of this paper can be summarized as follows:

– We provide a comprehensive security analysis of the HTTP/2 protocol speci-
fication, especially focusing on its multiplexing and flow-control mechanisms.
According to our analysis, we find that both multiplexing and flow-control
mechanisms are vulnerable to application-layer DoS attacks.

– We propose a novel application-layer DoS attack against HTTP/2, H2DoS.
H2DoS exploits vulnerable multiplexing and flow-control mechanism of
HTTP/2 protocol, and therefore can result in denial of service on victim
servers.
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– We systematically validate H2DoS attack (feasibility), and evaluate its impact
(severity) by performing extensive experiments, which to the best of our
knowledge is first such an attempt.

The rest of this paper is organized as follows. We first review HTTP/2 and
application-layer DoS attacks in Sect. 2. Next, in Sect. 3 we briefly describe
current deployment and implementation information of HTTP/2 in practice.
Section 4 presents the threat model of H2DoS attack in detail. We examine both
the feasibility and severity of H2DoS attack through extensive experiments in
Sect. 5. We also give further discussions on mitigation for H2DoS attack and
summarize the related works in Sects. 6 and 7. Finally, the work is concluded
and the future work is addressed in Sect. 8.

2 Background

2.1 Application-Layer DoS Attack

Denial-of-service (DoS) attack is one of the most damaging attacks as it intends
to deny legitimate users from accessing network resources and destroy the
Internet ecosystem. Originally, DoS attacks basically mean network-layer DoS
attacks, which mostly abuse TCP, UDP and ICMP protocols to exhaust net-
work resources of the victim (e.g., bandwidth, sockets, etc.) and further deny
its services. However, this kind of DoS attacks has been fully studied for years
and already been mitigated by many industry solutions. In order to evade such
mitigation solutions, DoS attacks have been evolved to sophisticated application-
layer DoS attack [22] as their stealthier appearance and lower attack cost than
traditional network-layer DoS attacks.

Concretely, application-layer DoS attacks focus on disrupting or even com-
pletely denying legitimate users from accessing the victim web server by exhaust-
ing its resources, including not only network bandwidth and sockets, but also
connections, CPU, memory, I/O bandwidth, etc. There are basically two types
of application-layer DoS attacks - HTTP DoS and HTTPS DoS attacks, as both
of them are based on two dominant protocols that used by the application layer.

1. HTTP DoS. HTTP DoS attacks normally exploit seemingly legitimate
HTTP GET/POST requests to occupy all available HTTP connections that
permitted on the web server. Slowloris [6] is one of the most effective HTTP
DoS attacks against many popular types of web server softwares like Apache
and nginx. If an attacker initiates an HTTP request to open several connec-
tions to a server and periodically feeds the server with data before reaching
timeout, the HTTP connection would remain to open until the attacker closes
it. Ultimately, it easily fulfills the maximum concurrent connections of the web
server and takes the server down.

2. HTTPS DoS. HTTPS layers HTTP on top of Transport Layer Security
(TLS), which encrypts all communication data for end-to-end security and
easily evades security managements [13]. Hence, HTTPS DoS can further
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challenge many existing web application firewall detection solutions, as most
of the solutions do not actually inspect encrypted traffics [10]. In addition
to bypassing DoS prevention efforts, as encrypted HTTP attacks add burden
of encryption and decryption, HTTPS DoS can exhaust all server resources
by leveraging all possible approaches [7], such as encrypted SSL floods, SSL
renegotiations and HTTPS floods.

Currently, the application-layer DoS attack increasingly escalates and has
become a significantly severe threat for web servers. According to Radware Emer-
gency Response Team’s (ERT) annual report [5], 63% of its respondents have
experienced application-layer based attacks in 2016, and 43% of experienced an
HTTP flood, while 36% experienced an HTTPS flood.

2.2 HTTP/2 Protocol

Overview. HTTP/2 protocol is the latest version of HTTP protocol that dra-
matically reduces the load latency of web pages by addressing some perfor-
mance inhibitors inherent in HTTP/1.1 or HTTPS. Shortly after being standard-
ized as RFC 7540 [1] in 2015, HTTP/2 is experiencing an exponential growing
industry adoption with both servers and browsers. Originally, HTTP/2 protocol
mainly succeeds to SPDY [2], which is an experimental application-layer protocol
designed by Google as a replacement for more efficient communication transmis-
sion [9]. Basically, HTTP/2 reserves majority of SPDY protocol, except with
several changes, such as a new header compression for HTTP/2 - HPACK [3]
instead of gzip or deflate used by SPDY.

The primary goal of HTTP/2 is to reduce the web page load latency by pro-
viding an optimized communication transmission. HTTP/2 enables fully request
and response multiplexing, minimizes transmission overhead with support of
flow-control and server push, and replaces with a less redundant header field
compression method. Below, we detail three optimized features of HTTP/2 that
related to our study and omit the other features.

1. Frame Unit. HTTP/2 protocol introduces the frame unit as the basic pro-
tocol unit to be exchanged between servers and browsers. There are ten dif-
ferent types of frames used to serve distinct purposes in the establishment
and management of HTTP/2 connections or streams. For instance, WIN-
DOW UPDATE is a frame that used for HTTP/2 flow-control mechanisms.
But in this paper, we will manipulate it and other frames to create a new
application-layer DoS attack against HTTP/2.

2. Multiplexing. HTTP/2 initiates only one single TCP connection to one
domain and multiples HTTP requests and responses. HTTP/2 can dramat-
ically reduce the load latency of web pages, as the multiplexing feature not
only reduces the number of TCP connections but also SSL encryption over-
head at both browser and server sides. For the same reason, the multiplexing
feature also becomes actually an important amplification factor to enhance
the impact of our attack.
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3. Flow-Control. Flow-control is one of the most distinguish features of
HTTP/2, which can be used for both individual streams and the whole con-
nection. The flow-control feature ensures that streams on the same TCP
connection do not negatively interface with each other. The flow-control also
allows customized algorithms to optimize data transmission between servers
and browsers, especially when their resources are limited. This actually poses
a severe security threat that an HTTP/2 connection can demand a greater
resources to operate than an HTTP/1.1 connection.

The above three features of HTTP/2 protocol enable a significant reduction of
page loading time and mitigate some existing security threats [4] to some extent.
However, adopting a new protocol can bring new security threats since new
features of HTTP/2 extend the new attack surface towards clients or servers. In
fact, both multiplexing and flow-control features described above are vulnerable
to the application-layer DoS attack, which motivates us to propose our H2DoS
attack. We will discuss those new features and their potential vulnerabilities in
more detail in Sect. 4.

3 HTTP/2 Current Deployment

To investigate the potential extent of application-layer DoS attacks against
HTTP/2 protocol in practice, a large-scale measurement is performed to inves-
tigate the current HTTP/2 deployment and its implementation. To this end, we
build a measurement platform to conduct real crawling of the exact domain of
all sites provided by Alexa top one million ranking list [11]. In this section, the
Application-Layer Protocol Negotiation (ALPN) extension [12] is first employed
during TLS handshake to measure how many websites adopt HTTP/2. Then,
we extract the HTTP/2 implementation software information within the estab-
lished HTTP/2 connection. Notice that our statistics results are all based on
experiments and observations from January 10th to January 13th in 2017.

3.1 Measurement Setup

Generally, establishing an HTTP connection can be divided into three phrases:
TCP handshake, TLS handshake, and application-layer communication. Figure 1
illustrates the process of HTTP/2 connection establishment. To answer the first
question that how many websites adopt HTTP/2 protocol, we observe the ALPN
extension [12] of TLS handshake within an HTTP/2 connection in step ❸ and
❹ of the Fig. 1. The ALPN extension is used for application-layer protocol nego-
tiation in exchange of Hello message: the client provides a list of optional proto-
cols which it supports and the server can respond with a selected protocol that
want to use. Therefore in this measurement, if a website negotiates “h2” as the
selected protocol within ALPN, we consider that the website adopts HTTP/2
protocol in terms of the application layer.
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Fig. 1. Establishment process of an HTTP/2 connection: TCP handshake is first com-
pleted in step ❶–❸, followed by a TLS handshake in step ❹–❻. Then after step ❼ and
❽, the HTTP/2 connection is finally established.

Another question is how about implementations of websites enabled
HTTP/2. Basically, an HTTP/2 connection starts with sending the connec-
tion preface, called Magic frame and followed by a SETTING frame and/or
WINDOW UPDATE frame in step ❼, which used for flow-control mechanism in
HTTP/2. After that, by sending a HEADERS frame, we could receive a HEAD-
ERS response frame. Normally in HEADERS response frame, we find the exact
implementation software information of the website through HTTP “Server”
header field.
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Table 1. Summary of protocols deployment of Alexa’s top million websites

Protocol Description # %

HTTP/1.x Websites that not support TLS 465,693 46.57%

HTTPS(pure) Websites that purely support HTTP/1.1 over TLS 355,025 35.50%

HTTP/2 Websites that support HTTP/2 over TLS 143,471 14.35%

SPDY Websites that announce support SPDY 25 - - -

Others Websites that cannot accessible or only support
other protocols like QUIC etc.

35,786 3.58%

Fig. 2. Top 15 popular HTTP/2 server implementations

3.2 Measurement Result

HTTP/2 Deployment. Table 1 summarizes the current protocols deployment
of Alexa top million websites, including HTTP/1.x, pure HTTPS, HTTP/2,
SPDY and others. The table shows that there are around 50% websites sup-
porting TLS connection in their web servers, in which 28.78% of websites have
already supported HTTP/2 protocol via ALPN extension in TLS handshake. In
addition, we also report that 14.35% of websites have supported HTTP/2 in top
million websites. It implies that numerous website servers that support HTTP/2
are facing potential security threats including application-layer DoS attacks. We
also believe that there will be more websites adopt HTTP/2 along with more
security threats, which can leads to severe damage to the Internet.

HTTP/2 Implementation. We record HTTP/2 implementation informa-
tion among all HTTP/2-enabled websites via HTTP/2 HEADERS frame in
our measurement platform, in which we observe more than 414 different kinds
of server implementations in total. For visibility, Fig. 2 plots top 15 popular
server-side implementation softwares powering HTTP/2 websites. In spite that
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cloudflare-nginx and nginx are top two that used as implementation softwares
of HTTP/2 websites, other variants like tengine, nginx-reuseport and yunjiasu-
nginx also support thousands of HTTP/2 websites. As nginx community is the
most prevalent HTTP/2 implementation that adopted by websites on the Inter-
net, we choose the latest nginx stable implementation as the server-side HTTP/2
implementation in latter experiments.

4 Threat Model: H2DoS Attack

In this session, we begin with a comprehensive security analysis of HTTP/2
flow-control mechanism and then present our novel H2DoS attack which exploits
multiplexing and flow-control mechanisms of HTTP/2 protocol in details.

4.1 HTTP/2 Flow-Control Mechanism Analysis

Flow-control mechanism is one of the most distinctive features enabled by
HTTP/2 protocol that attempts to optimize the traffic transmission between
browsers and servers. Generally, there are two types of frame that used for
application-level flow-control in HTTP/2 protocol: WINDOW UPDATE and
SETTINGS frame. In an established HTTP/2 connection, the server and the
client exchange configuration parameters including some flow-control parame-
ters in SETTINGS frame, then in more fine-grained frame layer, the window
size of flow-control can be updated by WINDOW UPDATE frame that applied
to a single frame or all frames in the HTTP/2 connection.

SETTINGS Frame. SETTINGS frame, which is used to inform the opposite
(client or server) of configuration parameters, normally follows Magic frame at
the start of an established HTTP/2 connection. If the stream identifier (Stream
ID) of SETTINGS frame is set to be 0× 0, It means that SETTINGS frame will
apply to an entirely HTTP/2 connection instead of a single stream. In HTTP/2
protocol specification [1], there are totally 6 defined configuration parameters,
in which 3 of them related to flow-control mechanism in an HTTP/2 connection.
Table 2 shows the three flow-control related parameters in SETTINGS frame.

WINDOW UPDATE Frame. The primary goal of WINDOW UPDATE
frame is to implement the flow-control mechanism that prevents from exceed-
ing capacity of the receiver in an HTTP/2 connection. WINDOW UPDATE
in HTTP/2 protocol specification [1] has two levels of application, one level
operates in an individual stream with a specific stream ID, while another level
operates in an entire HTTP/2 connection whose stream ID is zero. Basically,
HTTP/2 specification requires that receiver of WINDOW UPDATE frame must
re-calculate the corresponding window size according to the 31-bit “Window Size
Increment” field included in WINDOW UPDATE frame. For instance, if the
server-side advertises its initial window size in SETTINGS frame to be 16 KB
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Table 2. Flow-control parameters in SETTINGS frame

Parameters SETTINGS MAX

CONCURRENT STREAMS

SETTINGS INITIAL

WINDOW SIZE

SETTINGS MAX

FRAME SIZE

Functionality Defining the maximum
number of concurrent
streams that the sender
permits receiver to create in
this HTTP/2 connection

Defining the initial
window size of streams
in this HTTP/2
connection

Defining the maximum
frame payload size
that the sender allows
to receive in this
HTTP/2 connection

Value no limit(0–231 − 1), but
recommended value is ≥10

no limit(0–231 − 1),
initial value is 216 − 1

range(214–224 − 1),
initial value is 214

and sets “Window Size Increment” 5 KB in WINDOW UPDATE frame, then
the window size of server becomes 21 KB. In addition, the window size only
applies to DATA frame, which means that the flow-control mechanism affected
by the window size only constraints DATA frame instead of other frames like
HEADERS frame.

To summarize, both SETTINGS and WINDOW UPDATE frame play an
important role in HTTP/2 flow-control mechanism by means of altering or
updating window size kept by both sides in a stream or connection. Naturally,
“Window Size Increment” field in WINDOW UPDATE frame is used to increase
window size that receiver can process, while sending new SETTING frame with
smaller initial window size can cause window size reduces. Even window size can
be negative because of receiving DATA frame will consume window size, which
can make processes in streams stalled in the end.

4.2 H2DoS Attack Presentation

Conceptually, multiplexing and flow-control are two novel essential mechanisms
of HTTP/2 that introduced to improve web performance, however these excel-
lent mechanisms come at an expense that introducing new security threats
into servers and clients. In order to understand security threats evolved from
HTTP/2, we carry on a comprehensive security analysis of HTTP/2 protocol
specification [1] and find that both multiplexing and flow-control mechanisms
are vulnerable to application-layer DoS attacks. If exploiting multiplexing and
flow-control mechanisms, a DoS attack named H2DoS can be easily launched
by one malicious client to attack the victim web server.

The basic idea of H2DoS attack is natural and straightforward: a massive
number of HTTP/2 requests with limited receiving capacity are sent to consume
as many resources as possible, or even result in denial-of-service. To this end,
H2DoS attack exploits two following important amplification factors that derived
from both multiplexing and flow-control mechanisms.

– One amplification factor is to exploit HTTP/2 multiplexing mechanism since
HTTP/2 enables multiplexing vast number of streams over a single TCP
connection. Even though the attacker has to initial as many TCP connections



H2DoS Attack 559

as the victim, in HTTP/2 connection each TCP connection can maintain large
amount of streams to amplify malicious HTTP GET requests.

– Another amplification factor is to limit the receive processing window size to a
small size, which results in stalling all send processes of victim until the entire
response data is transmitted and thus occupying lots of server resources.

Figure 3 presents how a malicious client attack the victim web server by
launching application-level H2DoS attack and its attack proceeds as follows:

Fig. 3. H2DoS: HTTP/2 application-level DoS attack presentation

1. Before H2DoS attack, both TCP handshake and TLS handshake must be com-
pleted within a malicious client (called attacker) and a web server (called vic-
tim), followed by a Magic frame that initialized for establishing an HTTP/2
connection at first.

2. Then, the attacker sends a SETTINGS frame in stream 0. It means that the
SETTINGS frame applies to the entire HTTP/2 connection. Two configura-
tion parameters that mentioned in Table 2 are set up in this attack:
(a) one parameter is SETTINGS MAX CONCURRENT STREAM, which is

supposed to set to a big number as it specifies the maximum number
of streams created by the victim. And also, more streams in a connec-
tion means more threads allocated will be consumed. In fact, the max-
imum number of streams that the attacker can exploit is depend on
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the SETTINGS frame of victim. What attack can do is to acknowledge
the biggest SETTINGS MAX CONCURRENT STREAM value among
all SETTINGS frames and open as many streams as it allows.

(b) another parameter is SETTINGS INITIAL WINDOW SIZE, which
should be set as small as possible that allowed in a specific implementa-
tion software of HTTP/2 protocol in order to make the process of HTTP
response slower or even make the victim stalled.

3. The attacker next constructs an HTTP/2 GET request in stream 1, which
consists of a HEADERS frame and one or more subsequent CONTINUA-
TION frames. For the necessity of the subsequent CONTINUATION frames,
we enable the HTTP/2 GET request with a long header field, only small part
of it is sent in HEADERS frame and the other is sent in one or more CON-
TINUATION frames.

4. Owing to multiplexing mechanism of HTTP/2, we repeat sending carefully
constructed HTTP/2 request streams as above one after the other in odd-
numbered stream ID (1, 3, 5, . . . ).

5. To prevent victim web server from rejecting the HTTP/2 request, attacker
can send WINDOW UPDATE frame in stream 0 periodically with a “Window
Size Increment” field, but with a small size.

6. Since above processes are all in one single TCP connection, we can amplify
the attack consequence by opening more than one single TCP connection.

In short, to create an effective application-layer DoS attack against HTTP/2,
the whole H2DoS attack exploits two amplification factors that derived from
vulnerabilities of HTTP/2 in terms of both multiplexing and flow-control mech-
anisms. As H2DoS attack repeats sending HTTP/2 GET streams to the victim
infinitely, this attack can instantaneously occupy all available connections of the
victim. In theory, the starvation of all available connections is the root cause of
H2DoS attack. In addition, the H2DoS attack can also consume as much server
resources as possible, which further strengthens the effect of DoS attack.

5 Experiments and Results

In this session, we seek to answer two key questions:

– Is H2DoS attack a feasible DoS attack in real attack scenarios?
– Does H2DoS attack have more severe impact on the targeted victim compared

with other popular application-level DoS attacks? That is, can it become an
underlying severe factor of DDoS attack?

The intent of answering above two questions is to demonstrate both the feasibil-
ity and severity of it, respectively. To this end, we first present our experiment
setup, then observe experiment results from our experiments and analyze the
feasibility and severity around them.
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5.1 Experimental Setup

Our experiment setup consists of one victim web server and two clients: attacker
and benign user as shown in Fig. 4, respectively. Both the attacker and benign
user connect to victim server in HTTP/2. The attacker is a client that launches
H2DoS attack with malicious attack scripts, while the benign user is a normal
client that used for testing whether the victim is in service. The victim is the
web server that enabled with an HTTP/2 implementation and can be accessed
in HTTP/2 connections. Table 3 summarizes detail configurations of the experi-
ment environment. As mentioned in Sect. 3.2, nginx is the most widely adoption
in HTTP/2 implementations, therefore we choose the latest nginx stable version
to run on the victim server during the experiment execution.

Table 3. Detail configurations of the experiment environment

Configurations victim attacker benign user

Operating system Ubuntu 16.04.1 LTS Ubuntu 16.04.1 LTS Mac OSX 10.11.6

Processor 2 * Intel(R)
Core(TM) i5-4590
CPU @3.30 GHz

2 * Intel(R)
Core(TM) i5-4590
CPU @3.30 GHz

2.7 GHz Intel Core
i5

Memory 4 GB 4 GB 8GB

HTTP/2
implementation

nginx/1.10.0(stable) Golang standard
http/2 library [16]

Google Chrome 58.0

Others Built with OpenSSL
1.0.2g TLS SNI
support enabled

H2DoS attack
implementation in
Go language

Google plug-in for
connection checking

Figure 4 illustrates a straightforward process of H2DoS attack: the attacker
first launches the malicious attack script towards the victim in step ❶, where
the malicious attack script implements H2DoS attack described in Fig. 3 as well
as other application-layer DoS attacks introduced in Sect. 2.1 for comparison.
In victim server, there is a performance monitor program that used to monitor
the server performances and record them down. Then during the attack, benign
user periodically request to access resources of victim using normal browser in
step ❷. Finally we check what contents that replied in the context of browser
request before in step ❸. If we get errors instead of normal contents from received
contents in benign user, we take it as the Denial-of-Service of victim that attacked
by H2DoS attack.

5.2 Experiment Result and Analysis

To answer the above two questions, we analyze in more detail for both the
feasibility and severity of H2DoS attack based on our observed experimental
results.
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Fig. 4. H2DoS attack experiment setup

Feasibility. We offer evidence of the feasibility of H2DoS attack by checking
whether the victim web server is always available for a benign user during H2DoS
attack. The connection checker illustrated in Fig. 4 is a customized browser plug-
in that used for application-layer connection checking and recording. Once the
H2DoS attack is launched against victim web server, we start to observe and
record what we receive from the web server in the connection checker. More
specifically, if we obtain an entire webpage with HTTP 200 (OK) status code in
responses, we consider the victim web server is available in service. By contrast,
if we obtain any error webpage with HTTP 500 (Internal Server Error) or other
5XX (Server Error) status codes [14], it means that victim itself has an error
and crashes down, which is a kind of Denial-of-Service atta. Figure 5(a) and
(b) visually show the content of benign user that received from victim web
server before and after H2DoS attack, respectively. We observe that the benign
user receives an entire webpage from the victim before H2DoS attack, while
after H2DoS attack the benign user receives an error webpage with HTTP 500
(Internal Server Error) status code. These observations indicate that H2DoS
attack indeed takes effect into the victim web server in terms of denial of service
attacks.

The root cause of application-layer DoS attack is that H2DoS attack can
occupy all available connections of the victim server and all streams are possibly
stuck on exhausted connection or stream windo. Figure 5(c) further depicts that
in our 30-min experiment as long as H2DoS attack starts from attacker client
to victim web server, the HTTP response status code of benign user quickly
changes from 200 to 500. The 500 status code is used for internal server error
when the server suffers from starvation of connections, which prevents the server
from replying any request. From what we have observed and analyzed above, the
feasibility of H2DoS attack is fully demonstrated in our experiments.

Severity. For severity, we measure the impact of H2DoS attack towards victim
web server and in what extent it enhances the severity if H2DoS is converted to
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Fig. 5. Observations on benign user that received from victim during H2DoS attack

Distributed Denial-of-Service (DDoS) attack against victim. Application-layer
DDoS attack generally consumes less bandwidth and are stealthier in nature
compared with other network-based DDoS attacks. Application-layer DDoS
attack mainly focuses on disrupting legitimate user services by exhausting the
server resources [22] like CPU and memory as much as possible.

Hence in the paper, we choose two key factors: CPU and Memory to measure
the application-layer DoS attack impact. We obtain both CPU usage and Mem-
ory usage of victim server with the performance monitor program illustrated in
Fig. 4. And the performance monitor is developed based on psutil [15], a process
and system utilities library in Python. Intuitively, larger CPU or Memory usage
consumption will result in larger probability of denying other benign users as
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Fig. 6. Observations of resources consumption on victim when attacked by H2DoS with
different number of TCP connections.

well as larger attack severity. In this part, we conduct two sets of experiments
and analyze the attack impact of H2DoS attack to confirm the severity intuition.

1. Severe impact of H2DoS attack. In this experiment, we analyze how
severe the impact of H2DoS attack is in terms of CPU and Memory usage.
Once the malicious client attacker begins to launch H2DoS attack against
victim server, the performance monitor is enabled to monitor both CPU and
Memory usage of victim server. Besides, we increase the number of TCP con-
nection within the same H2DoS attack in our experiment, in order to further
observe how the impact of H2DoS attack behaves in regard to TCP connec-
tions.
Figure 6(a) and (b) illustrate that H2DoS attack can maliciously consume
large volume of CPU and memory on the whole. Specifically, as depicted in
Fig. 6(a), the CPU usage is very high in the first several minutes and gradually
stabilizes later. That is because after several minutes the H2DoS attack takes
effect and the victim starts to reply error code instead of real contents, which
result in less CPU usage later. However, as depicted in Fig. 6(b), the Memory
usage is nearly unchanged except for the beginning of H2DoS attack. Further-
more when comparing different number of connections in H2DoS attack, we
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observe that the percentage of CPU consumption increases with the number
of TCP connections in general, while the percentage of Memory consumption
is amplified by connections all the time in our experiment.

2. Severe impact of H2DoS attack Versus Others. As observed
above, H2DoS attack has significantly severe impact on victim server. But
how does H2DoS attack compare with other application-layer DoS attacks is
still a challenge question. To evaluate the impact of H2DoS attack compar-
ing with other application-layer DoS attacks, we first fix the number of TCP
connections at 400 and examine the CPU and Memory usage of victim server
during attack duration in our experiment. Next, we choose slowloris [6], thc-
ssl-dos [7] and our H2DoS attack in regard to application-layer DoS attack
based on HTTP/1.1, HTTPS and HTTP/2, respec. Figure 7(b) and (c) show
the CPU and the Memory usage of above three types of application-layer
DoS attacks. Specifically, we show our results and evaluations in the follow-
ing three aspects that related to the impact on victim:

– Connectivity. Figure 7(a) shows that H2DoS can quickly bring down
the victim web server and replies with status code of HTTP 500 (Internal
Server Error) to the benign user. However, at both slowloris and thc-
ssl-dos attack duration, the victim server provides service with HTTP
200 status code to the benign user all the time. As depicted in Fig. 7(b)
and (c), we observe that while both the CPU and Memory usage of victim
caused by H2DoS attack do not exceed 50% over time in most cases, but
H2DoS leads to a real denial-of-service attack. In fact, either CPU and
Memory usage is not the exclusive reason for denial-of-service, the main
reason is that H2DoS occupies all available connections of the victim and
denies access to legitimate clients.

– CPU usage. As depicted in Fig. 7(b), the H2DoS attack consumes more
CPU than other two attacks on average, even though it decreases grad-
ually after around 10 min and becomes less than slowloris attack at the
end time of attack duration. One possible reason might be that at later
time H2DoS attack makes victim only reply with HTTP 500 error code
and not in the service as H2DoS results in starvation of victim connec-
tions, while slowloris is in the service all the time and maintains the
CPU usage.

– Memory usage. As depicted in Fig. 7(c), the H2DoS attack depletes
around ten times memory more than both slowloris and thc-ssl-
dos attack, because H2DoS can exploit multiplexing mechanism within
HTTP/2 to amplify the power of occupying memory resources on the
victim server.

To summarize, the experiments described above analyze in detail that how the
H2DoS attack takes affect on the performance of victim web server and demon-
strate the feasibility and severity of it in real attack scenarios. From the exper-
iment results, we can conclude that the commercial HTTP/2 implementation
nginx can be exploited and severely impacted by H2DoS attack.
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Fig. 7. Observations of HTTP response on benign user and resource consumption on
victim when attacked by different three kinds of application-layer DoS attacks.

6 Discussion

As we have presented, H2DoS can occupy all available connections of the victim
and completely deny the legitimate user from accessing the victim web servers.
Moreover, H2DoS attack can also consume more server resources than other
application-layer attacks on average in terms of CPU and memory usage. Strictly
speaking, this is an implementation and configuration problem of HTTP/2 spec-
ification in practice. We have measured that there are many top websites have
supported HTTP/2 and therefore the potential impact of the H2DoS attack
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is significant. We suggest that websites with such concerns could minimize the
impact of H2DoS attack by limiting the rate of requests and total number of con-
nections from the same client. As we believe that the starvation of connections
should not be present in any single benign request, we encourage developers of
any deployed website that processes HTTP/2 requests should review their rate
and total number with this threat in mind.

7 Related Work

Application-Layer DoS Against HTTP/2 Protocol. The understanding
and mitigation of security risks of DoS attack have been an active area of research
in recent years as DoS is a continuous critical threat on the current Inter-
net ecosystem. Recently, the research community has gradually shifted their
research interest from traditional network-layer based DoS attacks to escalat-
ing application-layer DoS attacks. There are lots of studies have been done
on application-layer DoS attacks [18–23]. Yi and Yu [18] showed that new
application-layer-based DDoS attacks can utilize legitimate HTTP requests to
overwhelm victim resources and proposed an anomaly detector to detect such
attacks on popular websites traffic. Jazi et al. [23] presented several unique fea-
tures that characterize application-layer attacks and proposed a nonparametric
CUSUM detection algorithm to detect them using found characterizes.

However, previous works of application-layer DoS attacks mostly bases on
HTTP/1.1 or HTTPS protocol as well as their defense mechanisms for mitiga-
tion. To the best of our knowledge, very few studies focus on application-layer
DoS attacks against HTTP/2 protocol and its various implementation softwares.
We describe these studies as below.

A report of Imperva Defense Center [24] releases four high-profile vulnerabili-
ties in total on new implementations of HTTP/2 from the major vendors. One of
the attacks reported is the slow read attack, which exploits a malicious client to
read responses very slowly from HTTP/2-enabled servers. Our work contributes
further in this regard by broadly exploring the possibilities of a more general
DoS against HTTP/2. We exploit both multiplexing and flow-control mecha-
nisms to create such general application-layer DoS attack: H2DoS attack, and
also systematically validate its feasibility as well as evaluate the impact of it.

Adi et al. [25] firstly presented that it is possible to launch a DoS attack using
apparently legitimate but malicious HTTP/2 flash crowd traffic. The malicious
HTTP/2 packets was crafted by exploited the “Window Size Increment” value in
WINDOW UPDATE frame to model flooding-based attack against the HTTP/2
victim web server, as well as performed four investigations to observe the effect
of resource consumption in the victim web server. Unfortunately, they limited
their attacks to WINDOW UPDATE frame and ignored other frames that can
also be exploited to further amplify the impact of their attack. Instead, we take
all frames into consideration and analyze the novel HTTP/2 flow-control and
multiplexing mechanisms in details to construct our H2DoS attack. Moreover,
we conduct a systematically experiment instead of four investigation observations
to present our attack model and demonstrate its feasibility and severity.
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Other Security Threats Against HTTP/2 Protocol. Prior work also has
shown others attacks that exploiting new features introduced in HTTP/2. Even
before HTTP/2 protocol was standardized, Redelmeier et al. [26] systematically
analyzed almost all possible security implications of HTTP/2 and explored a
series of potential or known areas of vulnerabilities for HTTP/2, including cross-
protocol attacks, intermediary encapsulation attacks and cacheability of pushed
resources and so on. (Kate) Pearce and Vincent [29] discussed how we can launch
multiplexing attacks over QUIC1 and within HTTP/2, as well as how to make
sense of and defend against H2/QUIC traffic on their network. It also indicated
that security tools must keep up with technique updating and people should be
aware of. Van Goethem and Vanhoef [28] introduced HEIST techniques and car-
ried out side-channel attacks against SSL/TLS purely in the browser to directly
infer the length of the plaintext message. By abusing new features of HTTP/2,
they found that the attack remained possible and even further increased the
impact of HEIST. Larsen and Villamil [27] introduced threats and vulnerabili-
ties discovered during the course of their research on the HTTP/2 protocol and
released first public HTTP/2 fuzzer - http2fuzz, which intended to find more
security vulnerabilities before HTTP/2 implementations were widely deployed.

8 Conclusion and Future Work

In this paper, we present a novel DoS attack against HTTP/2, H2DoS, which
can result in severe damages to web servers. First, we give the introduction of
several new features of HTTP/2 protocol and present how the current HTTP/2
is deployed in practice by performing a large-scale measurement on Alexa top
million websites. Second, we analyze the flow-control mechanism and propose the
novel H2DoS application-layer DoS attack, which can disrupt or even completely
deny legitimate users from accessing the victim web server. Finally, we conduct
a comprehensive study on the feasibility and severity of H2DoS attack in real
attack scenarios. We demonstrate that the malicious client can easily launch
H2DoS attack against web servers which support HTTP/2 protocol and make
the service unavailable or massively consume server resources. We also compare
our H2DoS attack with other application-layer DoS attacks, which show H2DoS
attack has more severe impact on the same victim web server.

In future work, we plan to explore more other vulnerabilities and attacks
against the HTTP/2 protocol of web security. As new features usually comes
unintentionally at the expense of new or unknown security threats, we believe
that HTTP/2 with new features also brings a lot of new attack vulnerabilities.
Since the proposed H2DoS attack poses serve threats to HTTP/2, we hope our
work will provide insight into those security issues and motivate to study other
potential security threats against HTTP/2. Finally, we also plan to open source
our H2DoS attack implementation to further promote the research on web secu-
rity of HTTP/2 protocol.

1 The QUIC Projects https://www.chromium.org/quic.

https://www.chromium.org/quic
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Abstract. Oblivious RAM (ORAM) is a protocol to hide access pattern
to an untrusted storage. ORAM prevents a curious adversary identifying
what data address the user is accessing through observing the bits flows
between the user and the untrusted storage system. Basically, ORAM
protocols store user’s data in shuffled form on the untrusted storage and
substitute the original access with multiple access to random addresses
to cover the real target. Such redundancy introduce significant perfor-
mance overhead.

Traditional Translation Lookaside Buffer (TLB) exploits temporal
locality hide memory latency in DRAM systems. However, the ORAM
locality is totally different and thus traditional TLB eviction strategy
have a poor performance. In this paper, we propose O-TLB which
exploits ORAM temporal locality and optimized TLB eviction strat-
egy to reduce server-side memory I/O operations. Intuitively, exploiting
locality for performance may expose this locality which breaks oblivious-
ness. We challenge this intuition by exploiting locality based on server-
side ORAM data structures. Unlike previous works, our approach do not
sacrifice any provable security. Specifically, previous optimization works
leaks access pattern through timing channel and do no fit with adap-
tive asynchronous obliviousness (AAOB) in a multiple users scenario.
While in our method, the timing do not vary with locality of program
and O-TLB optimization can be adopted directly keeping AAOB. Our
simulation result show that with O-TLB scheme, the underlying ORAM
server-side I/O performance is improved by 11%.

Keywords: Data outsource · Access pattern privacy
Oblivious RAM · TLB · Temporal locality

1 Introduction

Outsourcing data to cloud storage become popular for its reliability, low cost and
ease of management. Although the service provider can prove that the user’s data
is encrypted and guarantees integrity, users’s access pattern is still exposed. In
another word, how users access their data may lead to sensitive information
leakage.
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Islam et al. [9] proves an attack on searchable encryption scheme by using only
access pattern is feasible. For instance, a user stores a sets of encrypted text on
the cloud and make queries with various encrypted key words. With continuous
observing the addresses touched, the attacker eventually reveals the linkability
between different key words and trapdoors. With enough sample queries and
a few known queries as prior knowledge, the attacker is capable of recovering
a large number of the key words. As a real world example, by observing only
access pattern to an encrypted email repository, an attacker can infer up to 80%
of the queries.

Access pattern privacy leakage is also found in trusted processor and
untrusted memory settings. Shinde et al. [20] show that Intel SGX is vulnerable
to page fault side channel. SGX establishes an “enclaved” environment to protect
user space process from potentially compromised operating system. Although the
underlying OS is not able to hijack control flow of a process inside an enclaved
space or extract plain text directly, the OS still manage page fault exceptions.
Their experiment indicates, 27% on average and up to 100%, encryption key
bits from cryptographic routines in OpenSSL and Libgcrypt can be recovered
by only watching the traffic between enclaved process and memory management
units.

Oblivious RAM (ORAM) is a cryptographic primitive was proposed by Gol-
dreich and Ostrovsky in their ground breaking work [14] in the aspect of software
protection. They claim that access pattern to an external storage may lead to
software theft. Their square-root ORAM protocol is the first non-trivial approach
to make accesses oblivious. The approach requires only O(log(1)) client stor-
age size to keep the protocol flowing but incurs O((logN)3) bandwidth blowup.
Follow-up works [4,6,15,21–24] make efforts to decreasing bandwidth overhead.
Part of the works modify on the ORAM protocol itself, as Path ORAM [21]
substitutes Goldreich’s hierarchical structure with a binary search tree which
shrinks the bandwidth blowup to O(log(N)) and amortize the reshuffling cost
to each ORAM access. SSS-ORAM occupies large amount of server-side storage
but has the best performance and [11] is the best solution for limited resources
and small block size.

Other works refine the protocol in the aspect of implementation. Treetop
caching proposed in [24] moves the hottest part of server-side storage to client
for better performance. Fletcher et al. introduced PLB [4] caching most recent
accessed blocks of recursive position map which dramatically reduces total num-
ber of ORAM accesses with a cost of small extra client storage. As Wang et al.
[23] consider a scenario when oblivious program with intense memory accesses
reside with a non-oblivious program require relatively low bandwidth. The non-
oblivious program cause lots of unnecessary waiting cycles to the oblivious one.
They address this problem by filling these waiting cycles with next ORAM cycles.
Our work also refines the implementation of ORAM to gain practical improve-
ment.

In this paper, we propose “Oblivious Tree-based Locality” which is com-
pletely different from original underlying principle of TLB techniques. We make
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effort to optimizing TLB eviction strategy by exploiting Oblivious Tree-based
Locality from random nature of underling ORAM protocols. However, exploiting
data locality for performance and keep this locality hiding from curious server
seem contradictory. Intuitively, programs with good locality exhibit better per-
formance than those with poor locality which reveals program’s locality to server.
We challenge this intuition by speeding up every programs with equal magni-
tude. In this way, our approach do not sacrifice any provable security of underly
ORAM. And we stress that our approach do NOT leak any information through
timing channel and do not need any kind of timing channel protection. It is very
important since previous optimization leaks programs’ locality through timing
channel. Enabling ORAM timing channel protection lead to heavy response delay
which makes their approaches unpractical. Furthermore, in multiple users set-
ting their approaches break “adaptive asynchronous obliviousness” while ours
can be applied without modification.

Our Contributions, in a Nutshell:

1. Traditional TLB eviction strategy is studied in the context of ORAM. We
made an observation that directly applies traditional temporal locality to
server works poorly.

2. A new concept called Oblivious Tree-based Locality is proposed and we use it
to built O-TLB scheme. The implementation of O-TLB is discussed in detail
Path ORAM.

3. Security of O-TLB scheme is carefully examined including timing channel and
adaptive asynchronous obliviousness. We prove that our scheme achieves the
same level of security as underling ORAM protocols.

The rest of the paper is organized as follows: Sect. 2 gives the threaten model
and settings. Section 3 provides the background knowledge of general ORAM
and Path ORAM in particular. Section 4 studies traditional TLB techniques
for ORAM protocols. In Sect. 5, we propose Oblivious Tree-based Locality and
O-TLB for Path ORAM and discuss how underlying ORAM can benefit from
our scheme. Section 6 security of O-TLB is discussed and compared to related
works. Section 7 presents our evaluation methodology. The simulation result is
exhibited which proves effectiveness and security of our optimization. Section 8
presents our conclusion (Table 1).

2 Threat Model

In this section, we briefly introduce the two settings and threat model for general
ORAM.

2.1 Settings

Client-server setting, which is adopted in this paper, describes a scenario that a
trusted client runs a private or public program on encrypted private data stored
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Table 1. Notations

N Total data block number

B Block size in bit

id Data block logical identifier

pos Data block actual position in server

L Path ORAM tree hight

Z Path ORAM bucket capacity

l Level of a specific node

in remote cloud server. Following other ORAM works, we assume the server is
honest but curious, which means it correctly evaluate the functions and make no
temper with the cipher-text. However, the adversary may continuously observe
and take records on the client access opcode (read/write) and target addresses
combined with cipher-text to deduct client’s sensitive information.

The other setting is trusted processor with an untrusted RAM which is
a Trust Computing Base (usually contains processer alone) operates in an
untrusted environment for a remote user. The program runs on the TCB can
be both private or public but operates on private data. When last-level cache
misses, the processor interact with untrusted external memory (e.g. DRAM).
The private data is encrypted when going out of TCB boundary but adversary
may still tap pins on the memory bus to constantly observe the traffic between
TCB and memory.

2.2 Security Definition

Informally, the security definition demands that the server learns nothing about
the access pattern. Typical access patterns include:

1. whether an access is a read or write
2. which data unit is accessed and timestamp of last accessed
3. Relative between access like, whether two access refer to the same data
4. overall pattern (sequential, random etc.)

Definition 1 (ORAM Definition). Let ←−y = ((op1, addr1, data1), . . . , (opM ,
addrM , dataM )) denote a data query sequence of length M (|←−y | = M), where
opi denotes the opcode of the i-th operation (read or write). And addri denotes
the target address for that operation while datai denotes the data if the opi is
a write. Let ORAM(←−y ) denote the final operation sequence between client and
server under an ORAM protocol which is exposed to the adversary. The ORAM
protocol guarantees that for any ←−y and ←−y ′, ORAM(←−y ) and ORAM(←−y ′) are
computationally indistinguishable when |←−y | = |←−y ′|. Also, for any ←−y the data
returned to the client from ORAM is consistent with ←−y (functionally equal) with
overwhelming probability.
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2.3 Threats Outside of Scope

Timing Channel: Generally speaking, timing channel is not considered in
ORAM studies. This is reasonable when timing change, which related to access
pattern, is negligible. For example, CPU in client may take few more cycles to
access a specific data block locally. This timing change will be overwhelmed by
the unstable network delays. However, obvious timing changes closely couple
with data locality of program is unacceptable. We will discuss this further in
Sect. 6.

Active Adversary: An active adversary can temper with encrypted content
breaking integrity of user data or return incorrect evaluation result to client.
Many extraordinary works have already addressed this problem which is orthog-
onal to our work, like MAC (message authentication code) can ensure integrity
of user data and correctness of function evaluation. In this paper, we only con-
sider a passive adversary with capability of observing the traffic between server
and client.

Total Number of ORAM Accesses: Total number of ORAM accesses nor-
mally is not part of access pattern. For AAOB security, it is not entirely true.
Further discussion can be found in Sect. 6.

Total Server Side Storage Occupation: The server will definitely know the
capacity of ORAM and thus the total ORAM data blocks is not part of access
pattern protection.

3 Background

In section, we present necessary background knowledge of Path ORAM since
it is representative work. Many related works use Path ORAM as underlying
ORAM.

3.1 General ORAM Protocol Introduction

Basically, ORAM substitute an original access with redundant read and write
operations. The ORAM is functionally equal to the original access, as user can
access their data in ORAM transparently just like normal RAMs. The data is
stored in encrypted and shuffled form. Once a data block is accessed by client,
it must be re-encrypted with new randomness and relocate to other positions
in the server and invalidates the old copy. The operation sequence exposed to
server do not varies with client’s input. For example, after a ORAM access is
completed, whatever client’s original access is, the adversary sees only ,say, ten
reads and five writes to pure random addresses.
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Sequential scan and reshuffling are the most fundamental technique for
ORAM. Sequential scan is also referred as trivial ORAM or naive ORAM. To
hide real opcode and operand, the access to a specific element from N incurs
a complete sequential read and write operation to all N elements, thus, the
client have to access 2N (both write and read) data block instead of one. Trivial
ORAM are commonly used by ORAM protocol as component when the scale
is relatively small. Reshuffling means that once a element is accessed, its real
address is exposed to the adversary. It must be relocated somewhere else imme-
diately to prevent the adversary tracing the element. So all ORAM protocols,
except trivial ORAM, maintain a lookup table that mapping data block’s id,
which can be seen by client only, to actual position pos on the server.

Base of ORAM Randomness: Pseudo-Random Functions (PRFs) are used
as the base of ORAM randomness. They provide random numbers for relocating
data block and keys for one time encryption. The most important point is that
the output of these function do NOT vary with user’s input (include write or
read, target address, write data) or else the whole protection falls apart. The
actual outcomes of our O-TLB optimization for one specific access sequence is
wholly decided by output of PRFs and thus have no relationship with user’s
input.

Evaluation Metric: Usually, using ORAM incurs relatively large overhead. To
evaluate the performance of a ORAM protocol, there are two different method.

1. Theoretical Evaluation: Bandwidth blowup and Client Storage are intro-
duced. Basically, bandwidth blowup is how much extra data blocks that the
ORAM have to access to hide access pattern. In trivial ORAM, we say the
protocol incurs a O(N) asymptotic bandwidth blowup. While the client stor-
age overhead refers to the minimum client space to keep the ORAM running.

2. Practical Evaluation: Some works refining the implementation of ORAM usu-
ally do not have an asymptotic improvement. Their optimization is exhibited
in a probabilistic manner [4]. Server responding time are used to evaluate
these improvement as mention in Sect. 1. Our O-TLB is among this type of
work.

3.2 Path ORAM

Path ORAM was introduce by Shi et al. which is adopted by lots of works
as underlying ORAM protocol for its extreme simpleness and low bandwidth
blowup. Path ORAM departures from Goldreich’s square-root ORAM, substi-
tute hierarchical structure with a binary tree for more natural search process.
Another highlight is that Path ORAM couples write back with path fetches
which amortizes the overhead to every ORAM access. We will presents Path
ORAM in two aspect.
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Fig. 1. Path ORAM protocol

Data Organization Protocol: Data Organization Protocol define that how
the algorithm organized the data blocks and stored. Path ORAM organize the
data blocks as a binary search tree. As figure shows in Fig. 1, Path protocol
organizes N blocks to form a complete binary tree with level L = LogN . Each
node of the tree have Z slots and also called buckets. One bucket is capable to
contains up to Z data blocks with a triple of form:

{id||pos||data}

Where id is a private index of a data block revealed only to client, while pos
is a leaf identifier specify the “path” on which the block is located, as data is the
payload. The term “path” refers to all buckets from leaf node to the root, marked
with dash lines in Fig. 1. Finally, Path ORAM maintains a core invariant: If a
data block is stored on the server, it must be found on one bucket from the path
specified by pos.

Data Block Access Protocol: One complete Path ORAM access consists of
tree operations, as indicated in Fig. 1.

1. Relocating: Once the ORAM protocol accepts an access request, the initial
step is to get the mapping from id to pos and immediately substitute it with
a new random pos′.

2. Read Path: With the mapping, the ORAM load all buckets along the path
to stash and decrypt them to find the data block with identifier id. The core
invariant guarantees the designated data block can be found.

3. Write Back: The client re-encrypts all blocks with new randomness key and
evicts all blocks with pos to current path, greedily fill the buckets from leaf to



578 Y. Liu et al.

root. Remember that the target block is relocated to path tagged with pos′,
there is a good chance that pos �= pos′. Such that the block stays in stash
and waits for another access to pos′ to get itself evicted.

Each path have logN buckets and each of them have Z slots such that the
protocol roughly have to access 2Zlog(N) data blocks to ensure obliviousness.
Thus, the asymptotic overhead is O(logN).

4 Traditional TLB on ORAM

In this section, we first review the key points for traditional TLB technique and
discuss the problems if applies it to ORAM directly.

Modern Memory Management Unit (MMU) built an abstract layer called
virtual memory on top of physical memory for easier allocation, management
and security purpose. Before access to a desired physical memory location, MMU
need to look up the page table, which is also a regular chunk of the RAM, to
translate virtual memory to physical memory. This page table walk is recursive
and introduces several extra accesses to the RAM. Since memory access is very
fundamental and frequent, the overhead of page translation is significant.

MMU adopt Translation lookaside buffer (TLB) to reduce the delay taken
to access a user memory location. The TLB caches a fixed number of the most
recent translation result. If a memory location is invoked, the first step is to go
though TLB to find whether there is a corresponding entry. If TLB hits, then
the expensive page walk operation is skipped. Since the size of TLB is small and
fixed, the number of cache entry is very limited. The principle behind the cache
is temporal locality. In another word, reasonable TLB hit rate is based on the
observation that if a location is invoked then there is a good chance it will be
accessed again in short future. This is no longer true if DRAM is substituted by
ORAM.

Recall that reshuffle technique, it ensures even several client queries are point
to the same block with id, the server will see accesses to random position in the
server memory. For traditional TLB in server processor, this is totally against
its anticipation. More generally, higher cache hit rate means the actual access
pattern is very close to the anticipated access pattern which defines the cache
behavior. As such, we make the observation that traditional TLB works poorly
for ORAM.

5 Oblivious TLB

In this section, we propose our ORAM locality definitions and use them to make
optimizations.
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5.1 Oblivious Tree-Based Locality

Based on the observations above we propose Oblivious Tree-based Locality:
Target location of tree-base ORAM is purely random and independent. The

nodes close to the root have good locality while nodes close to the leaves have
poor locality. Equal level nodes have equal locality.
Ongoing Locality is also proposed:

Inside an ORAM access, target eviction path have good locality and will be
accessed in short term.

5.2 O-TLB for Path ORAM

As Fig. 1 shows, since each Path ORAM access loads an entire path from root
to the leaf, the access possibility for touching each node can be denoted by 2−l.
Instead of evict the oldest translation entry, we use a tree level bits to keep track
of which level every page belongs to which tree level.

Please recall Path ORAM protocol steps. It loads a whole path, where the
corresponding page translation entry is cache with TLB, and the path will be
evicted. That means the pages inside the path will be accessed again shortly.
We exploit this locality for performance. We maintain a ongoing bit indicate
whether the page belong to a unfinished path. When a LoadPath operation is
detected, ongoing bit of all TLB entries for this path is set.

When the O-TLB is full and one entry should be evict. O-TLB picks one
entry with lowest value (most close to leaf) and check its ongoing bit. If the
ongoing bit is cleared, then the entry is evicted. Otherwise, O-TLB picks the
second lowest one. Entries with same level bit is chosen randomly, as according
to Oblivious Tree-based Locality, this do not hurt performance.

6 Related Works and O-TLB Security Analysis

In this section, related work is presented and explains how O-TLB achieves same
security of underlying ORAM.

6.1 Dynamic Super Block Technique

Some works [24,26] exploit ORAM spatial locality for performance. They bor-
rowed the memory prefetch technique from model system. Originally, client data
blocks is independent and distribute randomly in the path of ORAM tree stor-
age structure on the server. The key point of their method is that client data
blocks exhibiting spatial locality are united to form super block and stored to
one path as a whole. As such, once a block, which belongs to a super block, is
loaded to the client, other blocks reside in the same super block is loaded as well.
If the program do have spatial locality, then it is very likely that next desired
data block is already loaded by last ORAM access. A reduction of total ORAM
access number surely buys performance gain.
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6.2 Access Pattern Leakage from Timing

Although their improvement is significant, we think their optimization is unre-
alistic. They made a optimization on client side, specifically on client data
blocks which is extremely tightly coupled with access pattern. The timing should
severely varies with locality of program. For example, if the client silent for a
period of time, then the adversary may make a good guess that the client is
running a program with good locality.

Fig. 2. Periotic timing protection

Although they claim periotic ORAM issue can be mounted to protect tim-
ing, we think this incurs too heavy delay as shown in Fig. 2. The idea of periotic
ORAM timing protect is simple that one ORAM access is issue in regular inter-
val. If no request is in the queue then a dummy access is issued. The requests
for client are no long served in a on-demand way, but they have to wait for next
access slot. At present, the research community has turned single client model
to multiple. TaoStore [17] describe a multi-client model with proxy as shown
in Fig. 3. Concurrency leads to a intense ORAM access requests, where periotic
timing protection will incur severe delay. If shorten the interval, lots of resource
is wasted when the clients are idle because of dummy ORAM access. If vary
interval dynamically, this too leaks locality through timing. On the contrary,
our work is a server side optimization. This nature ensures O-TLB improves all
client program equally. Although, the actual performance gain is decide random
number generated by client’s PRFs. However underly ORAM must guarantees
the output of PRFs do not varies with query parameters. This ensures our opti-
mization have no relationship with access pattern.

Fig. 3. TaoStore model
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6.3 Against Adaptive Asynchronous Obliviousness Security

TaoStore propose Adaptive Asynchronous Obliviousness which is first complete
adversary model for multiple-client ORAM model. The relevant key point is once
client issue a request or accept query result the adversary is notified. As such,
Dynamic Super block optimization will cause the number of request of client
differs from the number of proxy request, which immediately leaks the locality.
Because proxy may get some desire data blocks from super block to answer
clients’ request.

While O-TLB only shorten the cost of server PathLoad and Write back pro-
cess and do not vary the total number of ORAM access. So our optimization do
not break AAOB and can be incorporated by multi-client with proxy ORAM
model like TaoStore.

7 Evaluation

In this section evaluation settings is given and simulation result is exhibited
which proves both efficiency and security.

7.1 Methodology

Graphite [10] is used as the simulator in our experiments. The hardware con-
figurations and ORAM settings are listed in Table 2. We choose a ORAM block
size of 1k for simplification, because four 1k blocks form a 4k bucket (Z = 4)
which equal to regular page size. We use Splash-2 benchmark because programs
in the benchmark have different locality to test if our optimization gain varies
with programs locality.

Table 2. Processor core configuration

Core 1GHz in order core

L1 Cache 32 KB 4-way

L2 Cache 512 KB 8-way

Cacheline size 64 bytes

TLB 64 entries 4-way

7.2 Metrics

We stress that we do not test overall completion time of programs. We only test
how many store and load operations the server memory is saving due to O-TLB
hit.

7.3 Result

As Fig. 4 exhibited, the performance gain is around 11% and do not vary with
locality of programs.
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Fig. 4. O-TLB relative performance gain

8 Conclusion

We study and make the observation that traditional TLB works poorly on
ORAM. We propose new locality definitions for ORAM and use it to build O-
TLB. Related works are presented and compared with O-TLB. We prove O-TLB
optimization do not hurt security of underling ORAM in any form, especially
timing channel. Furthermore, O-TLB can be easily adopted with multi-client
settings and varies of tree-like ORAM protocols. Simulation is made and the
result supports our claims.
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Abstract. Mobile devices have been widely used as convenient authen-
ticators for sensitive transactions and user login. It’s a challenge to pro-
tect authentication secrets and code from malicious mobile operating
systems. Although protecting them using hardware privilege isolation
like Trustzone and virtualization is a promising countermeasure, existing
approaches either have large TCBs with lots of applications and services
installed in the privileged software, or provide only coarse-grained isola-
tion unable to prevent intra-domain attacks, or require excessive interven-
tion from the privileged software. We propose a novel mobile authentica-
tion schema called TAuth, which creates isolation execution environments
in Trustzone normal world, so the system TCB in the secure world remains
small and unchanged regardless of the amount of installed authentication
applications. The isolation is also fine-grained which only protects the
security-sensitive components of an authentication program, thus could
defense not only a malicious OS, but also vulnerability threats inside the
same program. Designed closely integrated with the intrinsic property of
user authentication, TAuth solves two significant technique challenges,
including efficient normal world isolation without excessive intervention
into the secure world, and securely using of untrusted external functions
from inside the isolated environment. Finally, we implement the proto-
type system on real TrustZone devices. The evaluation shows that TAuth
can prevent both in-application attacks like HeartBleed and kernel-level
rootkits. It also shows that TAuth achieves much higher system perfor-
mance than previous Trustzone normal world isolation solutions.
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1 Introduction

Mobile devices are increasingly used as authenticators for sensitive transactions
and user login. Software authentication tokens free the users from the burdens
of carrying multiple hardware tokens at all times. Also, communication ability
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with on-board peripherals and sensors allows conveniently enrolling new authen-
tication factors, such as geographical locations and fingerprints. Mobile authen-
ticators achieve both flexibility and low cost, hence are commonly seen as an
ideal substitution of dedicated hardware tokens.

However, as modern commodity mobile operating systems are increasingly
complex with endless kernel vulnerabilities [1], root attackers could easily inter-
cept peripheral channels or compromise the execution of software tokens to steal
authentication secrets, like passwords and private keys. Various attacks to mobile
authentication applications (MAPs) have been reported [6,29], indicating the
serious security challenges.

Researchers have proposed using Trusted Execution Environment (TEE) to
protect sensitive applications against OS compromise. Trustzone [7], the most
widely used mobile TEE technology, creates two separated execution partitions
on ARM devices, the normal world and the secure world. The trusted appli-
cations (TAs) in the secure world enjoy hardware-enforced security capabili-
ties against malware in the normal world OS. Trustzone-based authentication
solutions have been proposed [17,23,27,37] and are integrated into mainstream
authentication specifications like FIDO [8,28].

However, traditional Trustzone solutions face a major challenge, i.e., the
security guarantees will be weakened as the attack surface and TCB size will
increase along with the number of TAs and system services installed in the secure
world. For example, various kernel-level device drivers are integrated into the
secure world to support trusted device I/O, which have enormous code size and
much higher bug rate than other kernel components. Since the secure world has a
higher privilege, a compromised secure world will compromise the whole mobile
device. Recent incidents show that exploiting the secure world’s vulnerabilities
has become a real threat [22,26,30,31,33]. For security concerns, mobile device
vendors usually limit Trustzone resources to their own TAs. This makes it hard
for third-party service providers to deploy their specific Trustzone-based MAPs,
which poses a substantial barrier to their adoptions.

Unlike traditional Trustzone solutions, another kind of virtualization-based
privilege isolation method places the TAs and the untrusted OS in the same
privilege domain (a guest VM). Thus the system TCB won’t increase along
with the number of supported TAs. Such shielding systems [12,15,18] have the
potential to resolve the defects faced by previous Trustzone-based authentica-
tion solutions. However, hardware virtualization is not commonly supported on
mobile platforms and the complex commodity hypervisors are already struggling
with their own security problems [4,5]. Also, they only provide coarse-grained
isolation at an application level, which won’t work well under attacks exploiting
vulnerabilities inside a victim TA. For example, the Heart Bleed attack, which
exploits a memory disclosure vulnerability in OpenSSL, can cause the victim
program to leak critical secrets itself, with no need to directly read its memory.

In this paper, we propose a novel Trustzone-based mobile authentication
schema, TAuth, which achieves two key advantages compared with previous
solutions. First, it creates isolated execution environments in the normal world
for the MAPs. Without concrete applications and system services installed in
the secure world, the system TCB remains small and unchanged. Second, the
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isolation is fine-grained only contains sensitive program components, thus could
defense threatens from both the underlying Rich OS1 and the remaining program
components. TAuth aims at addressing the urgent security issues for increasingly
popular mobile authentication applications. To achieve these goals, we must solve
several challenges.

First, normal world isolation is non-trivial to achieve, given the Rich OS’s role
in memory management for its applications. Shielding systems leverage hardware
MMU virtualization (i.e., the nested page mechanism) to achieve exclusive mem-
ory access control in their hypervisors. However, the Trustzone normal world,
which hosts the Rich OS, has full control over its own resources, including its
MMU. Such control would allow the Rich OS to access any normal world memory
by manipulating its page tables, including the authentication secrets. Therefore,
previous normal world isolation solutions [9,21] require the secure world to inter-
cept frequent page table updates of the Rich OS, which significantly affects the
system performance.

Second, in-program partition may not be easy, as commodity software usually
has complex semantics, internal interactions, and lots of cross-component function
calls. Existing approaches targeting at Pieces of Application Logic (PAL) [19,20]
require the PAL being self-contained, thus not supporting calling external func-
tions, which are not suitable for real authentication MAPs. For example, they
need to call OS services to communicate with I/O peripherals (storage devices,
touch screen, sensors..) to obtain initial authentication secrets. However, under
the assumption that the Rich OS and other program components are untrusted,
how to guarantee the security of these external calls remains a challenge.

TAuth solves all these challenges, based on the intrinsic property of MAPs’
authentication procedure. First, through manual source code analysis and auto-
mated taint analysis of several popular MAPs (e.g., Google Authenticator), we
found that the critical code which controls the authentication secrets only con-
stitutes a tiny fraction of the whole program, and usually follows fixed patterns.
Based on these observations, we propose an efficient isolation mechanism by
pre-loading these tiny components into a continuous memory region. When the
critical part is running, TAuth applies atomicity protection to it, ensuring it’s
execution won’t be unexpectedly interrupted by the untrusted Rich OS. When
it is suspended, TAuth temporarily includes its memory into the secure world
by dynamically setting the Trustzone controller, thus ensuring its isolation with-
out frequently intercepting the Rich OS’s page table updates. Second, according
to execution patterns of the critical authentication code, we divide them into
three categories: the storage code, the I/O code, the computation code. Then we
design a trusted context switch module in the secure world to ensure the securely
calling of necessary external functions from these code. Finally, we apply TAuth
to Google Authenticator (GA), tiqr and OpenSSL, and use HeartBleed attack,
memory disclosure rootkit to demonstrate its effectiveness and security. In sum-
mary, we make the following contributions.

1 Rich OS represents the commodity operating systems like Linux, Android in Trust-
zone normal world.
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– A novel Trustzone isolation architecture in the normal world, with both
enhanced security guarantees and improved efficiency.

– A fine-grained isolation specially designed for mobile authentication applica-
tions, which could defense both in-application and OS-level attacks.

– Thorough evaluations on real authentication software and attack samples,
which confirm the security and efficiency of TAuth.

2 Background

2.1 Trustzone

TrustZone is a CPU security extension defined by ARM. It creates two isolated
execution domains on ARM platforms: the normal world and the secure world.
A new CPU mode called monitor mode is introduced as the only entry point to
the secure world. The normal world code needs to call the Secure Monitor Call
(smc) instruction to enter the secure world. Each world has separated registers
and memory and the secure world has a higher privilege with permissions to
access all the resources of the normal world, but not vice versa. So it has the
potential to control the normal world’s behaviors and enjoys the hardware-based
protections from attacks that compromise the normal world.

Memory Isolation. Trustzone Address Space Controller (TZASC) partitions
continuous physical memory regions into secure or non-secure. Note that the
protection strategy defined by TZASC is more privileged than that defined by
MMU, i.e., the normal world can’t access any secure physical memory even if
it maps the region accessible in its page tables. This is essential to realize the
normal world isolation without intercepting the frequent page table updates.

I/O Isolation. TrustZone Aware Interrupt Controller (TZIC) partitions device
interrupts into secure or non-secure. By configuring TZIC and some related
registers, hardware interrupts can be directly handled in the monitor mode,
thus enabling flexible routing of interrupts to either world, which is essential to
realize dynamic device I/O isolation. By default, TZIC uses Fast Interrupt (FIQ)
as secure interrupt and uses Regular Interrupt (IRQ) as non-secure interrupt.

2.2 Mobile Authentication Applications

We explain the aforementioned three types of authentication code using a real-life
example, Google Authenticator. The app generates One-Time Password (OTP)
tokens using the HMAC-Based (HOTP) and the Time-based (TOTP) OTP gen-
eration algorithms. It uses either QR code scanning or manual input to obtain
an encoded private key issued by Google and stores it in its database. During the
authentication, the key is loaded into memory to calculate a message authen-
tication code (MAC) of a timestamp or a counter to generate OTPs. Then the
OTP is displayed to the user to finish the authentication.

As described in this case, the storage code is used to load or store authenti-
cation secrets in persistent storage, such as the private key. The I/O code is used
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Fig. 1. TAuth architecture.

to import raw I/O secrets, such as the QR code and user inputs via keyboard
or touch screen. It is also used to display sensitive information to the users. The
computation code is used to make computations on the secrets to generate the
authentication response, such as the OTP algorithms.

3 Threat Model and Security Assumptions

TAuth is designed against both malicious operating systems and in-application
vulnerability threatens. TAuth completely removes trust of the Rich OS and
assumes it can behave in arbitrarily malicious ways to disclose the authentication
secrets, including directly accessing the user-level virtual address space, manipu-
lating the page tables, or launching Iago attacks [11] which cause an application
to harm itself by manipulating return values of system calls. It can also hijack or
manipulate I/O communications of peripherals. We also assume the adversary
can exploit in-application vulnerabilities to launch memory over-read attacks
like HeartBleed [2], or control flow hijacking attacks like ROP [32], to disclose
the authentication secrets in the address space of the same application. We don’t
consider complex physical attacks like side-channel attacks, which can’t be pro-
tected by TrustZone. TAuth doesn’t guarantee OS availability. A compromised
OS can simply shut down or refuse to schedule apps. However, these disruptive
behaviors can be easily detected. We assume TAuth is initialized via trusted
booting, so that it can verify its own initial state and bootstrap trustworthy
execution. Finally, we assume the protected critical code is trusted and wont
deliberately send the secrets out. This is usually true for commodity MAPs like
GA as the software itself is designed to keep such secrets.
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Fig. 2. TAuth memory layout.

4 System Design

4.1 System Overview

Figure 1 shows an overview of the TAuth architecture. In the normal world,
the authentication APP is divided into a normal part and several secret parts.
Each secret part comprises several authentication secrets and the corresponding
critical functions manipulating them. The normal part must call into the secret
parts via a trusted context switcher in the secure world. The switcher also allows
the secret parts to call necessary external functions. However, TAuth ensures
that the secrets can’t be accessed by any external entities, including the normal
part, other applications and the underlying Rich OS.

4.2 Basic Memory Isolation

This section details how TAuth achieves the efficient normal world isolation.

Physical Memory Layout. By configuring TZASC, TAuth divides the
whole physical memory into three separated zones, i.e., NORMAL ZONE,
AUTH ZONE, SECURE ZONE. NORMAL ZONE represents the normal world
physical memory holding the Rich OS, the normal APPs and the normal part of
MAPs. AUTH ZONE is used for the secret parts of MAPs. SECURE ZONE is
used for the core components in the secure world. The security states of NOR-
MAL ZONE and SECURE ZONE are always unchanged while AUTH ZONE
will be dynamically configured into either world to achieve the efficient isola-
tion.

Virtual Memory Layout. TAuth maintains separated page tables for each
MAP. The normal page table (NPT) is used for the normal part and the Rich
OS while a secure page table (SPT) is used for every secret part. The overall
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Fig. 3. Context switch actions for efficient isolation.

memory hierarchy is shown in Fig. 2. For data mapping, SPT maps all normal
data as well as the secrets, since a secret part may also access normal data besides
the secrets. All data pages in SPT are set to non-executable so that they cannot
be used to inject malicious code. For code mapping, SPT only maps sensitive
functions which can access the authentication secrets. These code pages are
verified in the setup phase. In NPT, there isn’t any valid mapping of the s-funcs
and the secrets. Separated page tables allow TAuth to intercept all cross-part
control flows, in a way transparent to the MAPs without modifying their source
code. Whenever a cross-part code jump happens, an MMU fault occurs and
traps the execution into the kernel mode, where an smc instruction is invoked
to enter the secure world. Then TAuth performs necessary actions for ensuring
the isolation, which is shown in Fig. 3.

Efficient Isolation. When a normal-to-secret switch happens, AUTH ZONE is
configured as non-secure, so that the secret part will run in the normal world.
However, TAuth applies atomicity protection to it, ensuring it won’t be inter-
rupted unexpectedly. So other untrusted entities are sure to be suspended during
its execution, with no chance to access the secret memory. When a secret-to-
normal switch happens, TAuth modifies TZASC to include AUTH ZONE into
secure world, so that the untrusted running entity can’t access the secret part,
even if it is mapped accessible in NPT. So there is no need to intercept the Rich
OS’s page table updates into the secure world.

Atomicity Protection. In general, the secret part may be unexpectedly sus-
pended in several cases, including hardware interrupts and CPU exceptions. To
prevent the secret part from directly switching into the Rich OS, TAuth main-
tains a secure exception vector table, whose instructions are replaced by smc.
When a normal-to-secret part-switch happens, TAuth activates the secure vec-
tor table to intercept all unexpected events into the secure world. For hardware
interrupts, TAuth simply disables unnecessary ones by configuring TZIC, so that
the secret part won’t be interrupted by them. For CPU exceptions (caused by
undefined CPU instructions, MMU faults, etc.), TAuth checks whether it is an
MMU fault caused by normal secret-to-normal switch. If it is, TAuth performs a
trusted context switch as usual. In other cases, TAuth considers an unexpected
fault happens and simply shuts down the secret part, clears the memory contents
of AUTH ZONE.
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Fig. 4. Secure external function call.

Discussions. Note that both the secure exception vector table and SPT reside
in AUTH ZONE. So they can’t be modified by the Rich OS. They can neither
be deactivated during a secret part’s execution as untrusted entities are all sus-
pended. Malicious OS may try to access the secrets by mapping it into NPT.
However, the dynamic isolation mechanism ensures AUTH ZONE always resides
in the secure world when NPT is activated, thus is always inaccessible to the
Rich OS. The Rich OS may also refuse to invoke smc to deliver a context switch
request to the secure world. This only causes unavailability of the secret part,
whereas the secrets still only reside in AUTH ZONE and won’t be leaked.

Our efficient isolation requires a continuous physical memory region reserved
as AUTH ZONE, because TZASC only supports security separation for contin-
uous regions. This will clash with the traditional memory allocation mechanism
of commodity operating systems like Linux, i.e., the demand paging mecha-
nism, where physical memory pages are dynamically allocated to the processes
in greatest need. A large reserved region will significantly affect the utilization
efficiency of system memory resources, because most of the region may not be
used immediately and can’t be used by other processes either. So our solution
is not suitable for large commodity software. Fortunately, TAuth leverages the
concept of in-application separation and is specially designed for authentication
APPs, whose secret part is usually small, thus won’t incur great performance
overhead to the overall system.
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4.3 Securing External Function Call

TAuth divides MAP’s program logic into sensitive functions and other code
(including application code and OS code). During runtime, functions in the
normal part may call sensitive functions, while sensitive functions may also call
functions outside of the secret part. As mentioned above, TAuth intercepts every
cross-part function call to perform a trusted context switch in the secure world.

Figure 4 shows the whole context switch procedure. When the normal part
calls sensitive functions in the secret part, the entry gate code is triggered. TAuth
first performs the actions mentioned in Sect. 4.2 to ensure the basic isolation.
Then it modifies the statck pointer (the sp register) to point to a secure stack
residing in AUTH ZONE, which is used for the execution of the secret part. If
the parameter number is larger than four, which is the maximum number of
parameters passed via registers, according to AAPCS (Procedure Call Standard
for the ARM Architecture), the remaining parameters should be copied to the
secure stack. Then the real sensitive function is called. When the sensitive func-
tion returns to the caller in the normal part, an MMU fault occurs as the return
address of the normal part is inaccessible in SPT, then TAuth takes over control
again. It clears the contents of the secure stack, modifies sp to point to the origin
stack, writes the function’s return value in it, and finally returns to the caller.

When a sensitive function is executing, it may call functions outside the secret
part, including the ones in the normal part, library calls and system calls of the
Rich OS. For function calls of the normal part, which won’t access the secrets
(otherwise they will be added to the secret part), TAuth performs an exit gate
code, which simply reverses the procedure of the entry gate. However, calling
library functions or system calls faces more challenges, as they may access the
secrets. These untrusted functions usually have complex semantics and imple-
mentations. System calls even involve the execution of the Rich OS. So it’s hard
to guarantee their security. Fortunately, TAuth is specially designed for MAPs
who have fixed execution patterns, thus having fixed security requirements. We
only provide security guarantees for related function calls.

Computation Code. For computation code, library functions for memory oper-
ations are needed to perform the authentication algorithms, such as memcpy,
strlen. As their implementations are simple and don’t rely on the underlying
Rich OS, TAuth simply creates a trusted version of these functions and installs
them in SPT during a secret part initialization. All these calls will be redirected
to the trusted version by TAuth.

Storage Code. For storage code, system functions for file I/O (e.g., read, write)
are needed to load or update persistent authentication secrets, such as private
keys, passwords in file or database. TAuth provides privacy protections for these
secrets. In particular, it ensures they are encrypted using a secure per-device
key and their plaintexts only exist in secure memory of AUTH ZONE. When
the secret part needs to store a secret, TAuth checks whether the external call
(e.g., a write call) belongs to storage code. If it does, TAuth encrypts the secure
buffer containing the authentication secret which is specified in the function
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parameters, and copies it to the OS’s memory page cache, so that external
entities can only get the ciphertexts. When loading a secret, the Rich OS first
reads the encrypted one into its memory cache, and invokes smc to inform TAuth
to copy the ciphertext into the secure buffer and decrypt it. Note that a malicious
OS may read a wrong secret or directly tamper the secret file, which will cause
all authentications unpassed as the secret’s integrity has been broken. However,
this will be easily detected by the users and won’t cause the correct secret being
leaked.

I/O Code. For I/O code, system functions for device I/O (e.g., scanf, printf )
are needed to import raw secrets (password from keyboard, fingerprints, GPS
locations..), or display sensitive information to the users (OTPs, transaction
details). Unlike persistent secrets in files, they can only be obtained from I/O
devices or displayed to the users in the form of plaintext. As these secrets are
transmitted between the MAPs and I/O devices via untrusted device drivers
in the Rich OS, TAuth must intercept all I/O flows passing through the data
boundary of the Rich OS with the MAPs and I/O devices.

When receiving an external function call for raw data input (e.g., obtain
a password from keyboard via scanf ), ATuth sets the corresponding keyboard
interrupt as secure by configuring TZIC. So when a keystroke occurs, the execu-
tion of current CPU will trap into the monitor mode in the secure world, which
allows TAuth to get the real keystroke before the Rich OS. Then TAuth sends
a read instruction to the keyboard to get the key value, stores it in the secure
world, writes a dummy value into the data buffer of the Rich OS’s keyboard
driver, and jumps to the normal interrupt handler of the driver. After the driver
obtains all the dummy inputs, it invokes smc to inform TAuth to copy the real
values into the secure buffer, and configure keyboard interrupt as normal again.

When receiving an external function call for raw data output (e.g., display an
OTP), TAuth changes the buffer address in the function parameter to point to
a shared buffer with dummy outputs. When the driver is ready for the display,
it invokes smc to inform TAuth. Then TAuth sends an write instruction to the
display device with the real outputs, and resumes the execution of the device
driver to finish this function call.

Note that a malicious OS may serve illegally to display wrong outputs, or
simply refuse to deliver the correct smc instructions. Similar with handling the
storage code, this will cause all authentications unpassed as a wrong password or
OTP is being used. However, this will be easily detected by the users and won’t
cause the correct secret being leaked, as Rich OS can only get dummy values.

Discussions. Our method allows securely calling external functions while still
providing privacy protection to the authentication secrets. Particularly, TAuth
creates a trusted data path through the complex device drivers to securely load-
ing or exporting the secrets, with no need to reimplement them in the secure
world, hence significantly reduce the system TCB size. Although the untrusted
Rich OS may serve illegally to break the secret integrity, or simply launch denial-
of-service attacks to block all smc instructions, these disruptive behaviors can
be easily detected and won’t cause any secret leakage.
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4.4 Lifecycle of a Protected MAP

Program Launch. Before deployed into the TAuth system, an MAP must be
divided into a normal part and secret parts, in the form of a configuration file,
including the secret parts’ start virtual addresses, code size, and per-part code
hashvalues. The integrity of the file is protected using the device private key. So
neither the file nor the sensitive code can be tampered or forged by attackers.
The configuration files are loaded and verified in the secure world during system
initialization. When an MAP is launched, the Rich OS first loads all secret parts’
code into its memory caches, then informs TAuth to check their integrity using
the hashvalues. If the check is passed, TAuth moves the code into AUTH ZONE
and installs the corresponding SPT according to the virtual addresses in the
configuration file. Note that it also maps several reserved pages in SPT, which
will be used as secure heap and stack later. Therefore, all sensitive code can be
correctly loaded into AUTH ZONE via the Rich OS’s untrusted file system code
and storage device driver, without reimplementing them in secure world.

Secret Initialization. During a secret part’s initialization, it will allocate a
secure buffer from stack or heap for loading every authentication secret. For
stack allocation, there need no change as the stack pointer (sp register) has
pointed to the secure stack. For heap allocation, which needs assistance from
the Rich OS via malloc, TAuth creates a trusted secure malloc installed in SPT
and redirects all malloc calls to it to allocate pages from the secure heap. The
secrets can be securely loaded via the method described in Sect. 4.3.

Runtime. At runtime, code in the normal and the secret part execute concur-
rently. TAuth ensures that: (1) all authentication secrets and their copies only
exist in SPT mappings, (2) they can only be used during secret parts execution.
Any attempts to access the secrets memory from the normal part will cause an
MMU page fault and will be considered as malicious by TAuth, who takes fur-
ther measures like shutting down the secret part, or notifying the user. Note that
TAuth provides no protections for authentication responses exported from the
secret part, whose security relies on the MAP’s protocol design, such as using a
secure session key shared with the remote authentication server.

Exit. When the MAP exits, authentication secrets should also be cleared. If the
MAP exits normally, TAuth removes the SPT and releases the secure memory.
Even if it exits abnormally or the Rich OS refuses to inform TAuth, the secrets
still only exist in AUTH ZONE and thus won’t be leaked.

Discussions. Our method relies on the correct partition of the MAP’s nor-
mal part and secret parts. This assumption is reasonable as mature works exist
for automated program partition for privilege separation [10,25,35,36]. MAP
providers could leverage these methods to automatically export the configura-
tion file containing a correct and complete closure of all sensitive functions which
may access the defined secrets. Moreover, MAPs usually have unified execution
patterns and fixed security requirements, making their partition even easier. One
of our future work will be integrating automated program partition into TAuth
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architecture to generate the configuration file at runtime, thus eliminating the
extra partition work for MAP providers.

Note that we can also support partition of dynamic libraries, by modifying
Rich OS’s loader. Then the virtual addresses in the configuration file will be in-
application offsets. We do not assume the loader as trusted. Even if it behaves
maliciously by refusing to load sensitive functions or loading them to wrong
locations, the secrets will still not be disclosed, as TAuth can reject to load the
secrets during the integrity checking phase.

5 Security Analysis

TAuth is mainly designed to provide memory, storage, I/O isolation of the
authentication secrets. This section discusses several other typical attacks
beyond the basic isolation.

Cloning Attacks. Cloning attackers aims to impersonate the victims to per-
form illegal authentications by copying the persistent secrets to their devices.
As TAuth encrypts all secrets using a per-device key, they can only be correctly
decrypted on the owner’s device. As a common solution, most commodity mobile
devices equip with a per-device key in hardware secure storage like eFuse, which
can only be accessed in the secure world, making cloning attacks hard to success.

Relay Attacks. A compromised normal part is an ideal man-in-middle attacker,
who monitors and relays the messages between the secret part and the authenti-
cation server to perform unexpected authentications. Such attacks could be pre-
vented by requiring an explicit physical user consent (e.g., a user’s button press)
before any authentication actions. TAuth’s I/O isolation mechanism ensures the
consent can’t be tampered, emulated or masked by the normal world. As the
hardware interrupt of the physical consent will be first captured in the secure
world.

Phishing Attacks. These attacks may display a forged input window to cheat
the user to enter his password. Complementary techniques such as a security indi-
cator controlled by the secure world (e.g., an LED light) can be used. Moreover,
even if the attacker gets the password, they still can’t complete an authentication
process as they cannot forge or emulate a physical user consent.

Rollback Attacks. The attacker may rollback the MAP software and the cor-
responding configuration file to an old version, which still has a valid integrity
value signed by the device key. Such attacks could be prevented using a secure
counter or clock only accessible to the secure world to track the MAP’s states.
Moreover, even if the rollback of a vulnerable version is success, program bugs
are most likely to exist in the normal part, as the secret part often has small
code base and simple logic, especially for MAPs. Exploiting these bugs cannot
disclose the authentication secrets due to the TAuth isolation.

Iago Attacks. Iago attack [11] presents a complete example that the malicious
Rich OS can cause a protected application to behave abnormally by manipulating
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the return values of mmap system calls, and can further conduct return-oriented
programming (ROP) attacks to disclose its secrets. In TAuth, if there is any
system call invocation in the secret part, the return values from the exit gate
will be checked to avoid malicious ones. The check strategy is shared with existing
solutions against these attacks [18].

ROP Attacks. ROP attacks tamper the program control flow to cause unusual
malicious behaviors without modifying the program code, thus could bypass the
code integrity verification. First, there is only very small code base in sensitive
functions for an attacker to construct ROP gadgets. Second, as the secure stack
used by secret parts is isolated, an adversary has no chance to fake a stack to
tamper the control flow. Third, TAuth ensures the secret part can only be called
through designated function entries, making gadgets in normal part can only be
at the function granularity. Even if the attack succeeds in the normal part, the
payload still can’t disclose the secrets due to the TAuth isolation.

6 Implementation

We develop TAuth prototype system on a Trustzone-enabled development board,
Xilinx ZYNQ-7000 AP Soc [34], with a Cortex-A9 dual-core processor, 1 GB
external DDR3 RAM and 256 KB on-chip SRAM.

Normal World. We run Linux 2.6.38 as the Rich OS in the normal world,
with several modifications. (1) We add a kernel parameter auth mem which
indicates the memory region used for MAPs, i.e., the AUTH ZONE. (2) We
change the implementation of the execve system call to add an process creation
routine specially for MAPs, which informs the secure world to perform the MAP
program launching mentioned in Sect. 4.4. (3) We change the implementation of
the fork system call to add an MAP cloning routine, which informs the secure
world to copy the SPT and secure memory to an identical clone. (4) We insert
some smc instructions in the kernel code to perform necessary communications
with the secure world, such as the one in page fault handler for context switch,
and the one in the universal file system component for secure I/O.

We implement a prototype trusted I/O path using an UART port on Zynq-
7000, which can be configured as secure only or shared by both worlds. We
connect a PC to the development board via the UART port, whose keyboard
and screen are used as the I/O peripherals. We use Tera Term, a PC terminal
tool for serial port debugging on PC to transfer the I/O data between them.
Smc instructions are inserted into the kernel’s UART driver code, which inform
TAuth to perform secure I/O transactions for MAP secrets.

Our method requires a little modifications to the kernel code, which may not
be feasible for closed source systems. However, TAuth is designed as a system-
level security solution for device vendors, who usually maintain their own kernel
source code. Also, the modifications contain only about 510 LOC to the kernel,
which is pretty light-weight, making TAuth practical to be deployed.
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Secure World. We build TAuth in a bare metal secure world retrenched from
an open-source secure kernel, Sierra TEE [13], only reserving its boot code. We
modify the boot code to divide the physical memory by configuring TZASC.
TZASC in our ZYNQ development board is implemented as a secure control
register called TZ DDR RAM, which can only be accessed in the secure world
at 0xF8000430. The register divides the 1 GB external RAM into 16 regions (so
each region has 64 MB RAM), using 16 control bits indicating their security
status. TAuth reserves the top 128 MB RAM, the top 64 MB of which is config-
ured as secure for SECURE ZONE. The other 64 MB is for AUTH ZONE. Our
evaluation result proves that the region is enough for the secret parts of most
commodity MAPs.

After system initialization, TAuth boots the normal world’s Linux kernel.
The kernel first loads the MAP configuration files. Then TAuth verifies their
signatures using the device private key and moves them into secure world. During
runtime, TAuth will only approve the creation of a valid MAP process whose
signature has been verified. As the configuration files define all authorized MAPs,
device vendors should sign them in a secure offline environment. Though TAuth
fills the gap of security and openness for Trustzone, how to make it commercially
available to third-party MAP providers concerns business cooperation, which is
out of the scope of this paper.

7 Evaluation

7.1 MAP Examples

We use three real-world MAPs to perform our security and performance evalu-
ations: GA, tiqr and OpenSSL.

Google Authenticator. As mentioned in Sect. 2.2, GA generates One-Time-
Passwords (OTPs) for Google users as a second authenticator in addition to
their username and password to log into Google services or other sites [14]. It
uses a secret key provided by Google (scanned or manually entered) to generate
a sha1 HMAC using the key and a timestamp or a counter as the authentication
OTP. The secret key is stored in the APP’s local database, representing the
authentication secret in TAuth, and the computation code includes the OTP
generation algorithm.

Tiqr. Tiqr is an open-source authentication solution for mobile devices and
web applications [3]. It is based on Open Standards from the Open Authenti-
cation Initiative (OATH). It performs challenge/response authentication using
QR codes. After obtaining the authentication challenge from the QR code, the
user needs to enter a pin code to finish the authentication, which represents the
secret need to be protected by TAuth.

OpenSSL. We also use OpenSSL as a tested MAP for the convenient of security
and performance evaluation, by linking its library into a light-weight embedded
web server (Nginx) to establish SSL network connection. We use OpenSSL RSA
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as the cryptographic scheme. The RSA private key is denoted as BIGNUM
data structure, containing the two large prime numbers (p and q), and the
key’s exponent d. OpenSSL implements its own heap management function
OPENSSL malloc. So all OPENSSL malloc calls for BIGNUM are redirected
to secure malloc in TAuth.

7.2 Secret Part Size

Since TAuth needs to setup a SPT for each secret part, we calculate how much
additional memory is needed for them. First, we use the method introduced in
[35] to divide the three MAPs, which combines the use of static taint analysis and
dynamic execution track. They have integrated the partition method into their
vitalization-based protection architecture and have proved its security. So we
believe our partition result is complete and secure, which is proved in our security
evaluation. Then we modify the definition of the sensitive functions with different
GCC section attribute from .text, so that they will be compiled into separated
sections. Hence, TAuth could protect them in the page granularity. These MAPs
are re-compiled using the arm-linux-gnueabi-gcc cross-compile toolchain to run
on our development board.

The memory consumption depends on how many sensitive functions are
extracted, and how many secure heap and stack pages are reserved, which is
shown in Table 1. The OpenSSL has the biggest secure memory consumption,
which is 32 KB (8 pages). The GA and tiqr require less memory as their imple-
mentation is simpler than OpenSSL. The consumption is negligible compared
with the whole memory, which could hardly affect the system memory utiliza-
tion efficiency.

7.3 System TCB Size

TAuth code in the secure world mainly consists of the boot code, the context
switch code, simple low-level device I/O code, and several function emulation
(memcpy, malloc..), without any concrete applications, OS services or complex
device drivers. As a result, TAuth only has 2200 lines of code. Moreover, the
TCB size doesn’t increase along with the number of supported MAPs, which is
our greatest advantage compared with other Trustzone-based solutions.

Although several library and OS-feature functions are emulated in the secure
world, they will only be called in MAPs after being mapped into their SPTs,
which all run in the normal world. These code won’t increase the system TCB
as they will never be executed in the secure world. TAuch could ensure this by
only mapping them as non-executable in the secure world.

7.4 Security Evaluation

Memory Disclosure Rootkit. We first evaluate to what extent can TAuth
achieve the isolation of authentication secrets against disclosure attackers. So we
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Table 1. Secure memory consumption.

MAP Func num Func page Sec heap Sec stack Total

OpenSSL 20 5 1 2 8 pages

GA 11 2 1 2 5 pages

tiqr 6 1 1 1 3 pages

write a malicious kernel module, which scans the whole normal world memory
and tries to find targeted secrets when running these three MAPs. When running
in the origin Linux system, there are several secret values found in the program
heaps. But when running in TAuth, no secrets could be found. This proves that
our program partition is correct, ensuring that no secret operations reside in the
normal part and the secrets will only exist in the secure part.

In-application Vulnerability Exploit. We use the HeartBleed PoC [2] to
launch RSA key disclosure attack targeted on the Nginx server with a vulner-
able OpenSSL version 1.0.1f. We get private keys after sending 43 HeartBleed
requests when running Nginx in origin Linux. However, when running in TAuth,
no fragment of private keys is leaked no matter how many HeartBleed requests
are sent. The HeartBleed case proves that TAuch could effectively defense attacks
exploiting in-application vulnerabilities.

I/O Hijacking. We implement a POC malware acting as a UART logger, who
tries to steal the tiqr’s pin code entered by the user. It hooks the normal world
UART FIQ interrupt handler, and also periodically queries the UART driver
buffer to intercept any possible I/O data. When running tiqr in origin Linux,
the malware records all the keystrokes. For the TAuth case, the hook code in the
FIQ interrupt handler never get executed and only dummy values are obtained
from the driver buffer.

7.5 Performance Evaluation

System Overhead. As TAuth is designed specially for MAPs. We first eval-
uate whether TAuth has performance effects on other system components. We
run LMBench, a series of microbenchmarks for OS services to measure the over-
all system performance overhead. Table 2 shows the results compared with ori-
gin Linux. We also list LMBench results of another similar system from its
paper, i.e., a Trustzone normal world isolation solution (SecRet [21]). TAuth
produces nearly negligible system performance overhead compared with origin
Linux, which proves that the performance effect is localized, only affecting the
protected MAPs. By contrast, SecRet incurs much higher overhead, as it needs
monitor of global system behaviors, including all page table updates and user-
kernel mode switches, which are all omitted by the efficient TAuth isolation.

World Switch Times. As the normal part and the secret parts may call each
other, we measure the overhead of Trustzone world switches caused by cross-part
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Table 2. LMBench Results (in microseconds).

Syscalls Linux TAuth Overhead SecReT

Null 0.33 0.33 1x 3.9259x

Read 0.42 0.43 1.02x 3.7273x

Write 0.54 0.54 1x 3.7381x

Open/close 6.61 6.69 1.01x 1.6264x

Fork 171.25 173.12 1.01x 1.1819x

Fork+Exec 194.63 201.27 1.03x 1.1791x

Table 3. Trustzone world switch times.

Nginx/req GA/auth tiqr/auth

N→S S→N N→S S→N N→S S→N

64 8 18 21 8 19

function calls. We add a counter in the secure world to record world switch times
during a MAP’s execution. Table 3 shows the total switch times after the Nginx
server processed one request, and GA, tiqr performed one user authentication.
We also evaluate one world switch time by invoking an empty service running in
the secure world, which is about 2 milliseconds (ms). For the Nginx server, the
switch cost is about 144 ms per request, which can be negligible compared with
a normal user authentication procedure. The cost for GA and tiqr is less.

Application Overhead. We measure the runtime overhead of the three MAPs
against running them in origin Linux. We use the standard Apache ab bench-
mark tool to measure the Nginx’s overhead. The tool runs on a different client
machine connected with the development board over 1 Gbps Ethernet. It sends
5000 requests with 50 concurrent SSL connections, each request asks the server to
transfer a 5 KB file. The benchmark result shows that the latency and through-
put overhead is 15% and 21%. We also measure the execution time of one user
authentication for GA and tiqr, which mainly contain an OTP generation, or
a pin code enter. We perform 50 measurements for each case and record the
average value. The runtime overhead for GA and tiqr is 10% and 16%.

TAuth introduces a relatively high MAP runtime overhead, which is not less
than 10%, mainly due to the extra security operations in the secure world. How-
ever, as the whole execution time of one user authentication is usually short, such
overhead won’t cause obvious degradation for user experience. Moreover, given
the high security requirements of MAPs, such performance sacrifice is accept-
able. Moreover, such overhead is localized, which won’t affect the execution of
other system components.
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8 Related Work and Conclusion

Trustzone Authentication Solutions. The OBC system (On-board Creden-
tials) [23] is a TEE-based security architecture for protecting critical user virtual
credentials, which allows anyone to design and deploy new credential algorithms
and secrets. [27] proposes a location-based second-factor authentication solution
for modern smartphones using Trustzone. It is designed for the scenario of point
of sale transactions to detect fraudulent transactions. TrustOTP [17] proposes a
Trustzone-based secure onetime password solution, which achieves various OTP
protections against malicious mobile OS. While these works take advantage of
TrustZone, they all deploy the concrete MAPs and necessary OS services, drivers
in the secure world, which significantly increase the TCB size.

Trustzone Normal World Isolation. Real Trustzone secure world attacks
have energized research into moving Trustzone’s protection domain to the nor-
mal world. TZ-RKP [9] guarantees Rich OS’s code integrity relying on a runtime
kernel monitor in the secure world. Based on TZ-RKP’s kernel protection, SecRet
[21] creates an isolated memory region in a normal world process to protect a
secure communication key. All these works introduce great performance over-
head as they need to intercept frequent global system behaviors, such as page
table updates. TrustICE [16] shares a similar isolation method with TAuth while
doesn’t support securely calling untrusted external functions. Necessary OS ser-
vices and drivers are still implemented in the secure domain and the TCB size is
not effectively reduced. TrustShadow [24] creates zombie processes in the normal
world while runs the real code as shadow TAs in the secure world. With only
a lightweight runtime module in the secure world kernel, the TCB is effectively
reduced but is still threatened by vulnerable shadow TAs.

Virtualization-Based Shielding Systems. Overshadow [12], CHAOS [15]
and InkTag [18] use a hypervisor to isolate application memory and CPU state
from untrusted OS and still support most OS services. However, they all need
frequent encryption and hash operations on the application memory. As virtual-
ization is primarily designed to allow multiple OSs to share the same hardware
platform at a heavy cost for performance and code size, these solutions are not
practical for resource-constrained mobile devices. Also, they only provide coarse-
grained isolation at an application level, which won’t work well under attacks
exploiting in-application vulnerabilities such as HeartBleed.

Automated Program Partition. Program partition for privilege separation
prevents malicious exploitation of applications that run with maximum priv-
ilege. Privtrans requires expert knowledge to specify privileged functions and
variables [10]. It annotates the source code and partitions source program into
only two components: a privileged one and an unprivileged one. [25] develops
an approach for automated partitioning of critical Android applications into
client code running in Trustzone normal world and critical TEE commands run-
ning in the secure world. SeCage [35] combines static taint and dynamic exe-
cution analyses to partition C applications w.r.t. sensitive data, and proposes a
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virtualization-based intra-domain isolation architecture integrating their parti-
tion method, which is not suitable for mobile devices.

Conclusion. We propose a novel Trustzone-based mobile authentication secu-
rity schema called TAuth, which achieves two key advantages compared with pre-
vious solutions, i.e., a normal world isolation with a small and unchanged TCB,
and fine-grained in-application isolation which defenses threatens from both the
underlying Rich OS and in-application vulnerabilities. Designed specially for
MAPs, TAuth solves two significant technique challenges, including efficient iso-
lation without excessive intervention into the secure world, and securely using
untrusted external functions. We deploy the prototype system on real Trust-
zone device, and perform thorough evaluations using real commodity MAPs.
The evaluation results confirm the security and efficiency of TAuth.

Acknowledgements. Our work was supported in part by grants from the National
Natural Science Foundation of China (No. 61602455 and No. 61402455).
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Abstract. A typical program analysis workflow heavily relies on Pro-
gram Manipulation Software (PMS), incurring a high learning curve
and changing to another PMS requires completely recoding. This work
designs a middleware, that sits between the applications and the PMS,
hides the differences of various PMS, and provides a unified programming
interface. Based on the middleware, programmers can develop portable
applications without learning the PMS, thereby reducing the learning
and programming efforts. The current implementation of the middle-
ware integrates Dyninst (static analysis) and Pin (dynamic analysis).
Moreover, we develop five security applications, aiming to prevent sys-
tems from stack overflow, heap corruption, memory allocation/dealloca-
tion flaws, invocations of dangerous functions, and division-by-zero bugs.
Experiments also show that the middleware incurs small space & runtime
overhead, and no false positives. Furthermore, the applications developed
on the middleware require much less code, negligible runtime overhead,
compared with the applications developed directly on Dyninst and Pin.

Keywords: Program manipulation middleware · System security
Unified programming interface · Portable applications

1 Introduction

Program analysis is a fundamental technique for various applications, such as
software optimization [23], understanding [13], verification [22], debugging [3],
testing [17], and software system protection [20]. When developing a particular
application, programmers have to handle the Software Under Analysis (SUA)
in a nontrivial way, e.g., translating the machine/source code into an analysis-
friendly form, extracting control flows, tracking data flows, parsing symbol infor-
mation. To alleviate programmers’ burden, various Program Manipulation Soft-
ware (PMS) [4,25,26,31,32] has been proposed to provide programming inter-
faces. Based on PMS, programmers can handle the SUA by directly invoking
the programming interfaces without the need to parse the SUA by hand.
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However, the current development mode of program analysis applications
has several drawbacks. First, the learning curve of using PMS is high and non-
general, because different PMS has different programming interfaces. Second,
for the same reason, programmers have to completely recode when their appli-
cations are required to change PMS. Different PMS has their own strengths. For
example, both Pin [26] and Valgrind [32] are commonly-used dynamic instrumen-
tation tools for offline binary analysis. Pin runs obviously faster than Valgrind
[26] but demands application developers to handle machine code/assembly state-
ments. However, Valgrind translates machine code into the VEX Intermediate
Representation (IR) which is more analysis-friendly. Hence, the third drawback
is that choosing an adequate PMS before developing is tricky because changing
to another PMS is difficult.

Although many instrumentation languages have been proposed to simplify
program manipulation, they suffer from one or more problems that can limit
their effectiveness and utility in practice. These problems include the incapa-
bility of languages [19,29,34], the restrictions of PMS [8,9,15,19,27,28,34], the
limited kinds of insertion points [8,15,19,27,28,30], the requirement that appli-
cations should be programmed by their proposed languages [8,15,18,19,30], lack
of applications and experiments [27,28,33], and the learning efforts to grasp the
proposed languages [9,18].

To overcome the aforementioned drawbacks, this work firstly designs a mid-
dleware that integrates different PMS, interacts with underlying PMS, handles
the differences of various PMS, and provides an unified programming interface
which is independent with PMS. Second, we propose a quick-start programming
fashion, allowing programmers to execute arbitrary code feeding with various
parameters in specified occasions. Application programmers can benefit from
the two innovations. First, programmers can build their applications on the
middleware without a deep understanding of the underlying PMS. Specifically,
programmers need neither to understand the technical details of PMS nor to
learn how to invoke PMS’s programming interfaces. Second, applications can
change to any other PMS on demand, requiring no modifications to the source
code of applications. Consequently, programmers wouldn’t feel difficult to choose
PMS because porting to another PMS is effortless.

Compared to existing studies, our approach has the following advantages.
First, it is designed to be general enough to support the development of vari-
ous applications. Second, its design puts no restrictions on PMS and the cur-
rent implementation supports a static PMS, Dyninst, and a dynamic PMS,
Pin. Besides, current implementation supports various insertion points that can
manipulate the SUA in different granularities. Furthermore, its effectiveness and
efficiency are validated by several applications and experiments.

Our work has the following contributions.

1. We design and implement a middleware that provides an unified and easy-
to-use programming interface to application developers.

2. On top of the middleware, we implement five applications that intend
to protect systems from stack overflow, heap corruption, memory
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allocation/deallocation flaws, invocations of dangerous functions, and
division-by-zero bugs respectively. For comparison, we also implement those
applications directly on top of Pin and Dyninst [5] respectively.

3. We conduct experiments to validate the effectiveness and efficiency of our
approach. Results demonstrate that the middleware leads to acceptable space
overhead, minimal runtime overhead, and no false positives. Besides, compar-
isons show that the applications developed on the middleware require much
less code and have comparable performance with those developed directly on
Dyninst and Pin. Furthermore, the applications are evaluated to be successful
in protecting systems from CVE-2004-0597 and CVE-2011-3328.

The remainder of this paper is organized as follows. Section 2 introduces
a motivating example. The design & implementation of the middleware are
described in Sect. 3. Section 4 presents five applications for system security built
on the middleware. Section 5 gives experimental results. We introduce the related
work in Sect. 6 and conclude the paper with future work in Sect. 7.

2 Motivating Example

In this section, we use a simple example to illustrate the motivations of our
work. The example application is an instruction logger that records the number
of executed instructions. Figure 1(a), (b), (c) present the logger’s source code
built on Pin, Dyninst and our middleware respectively. Figure 1(d) is the related
configuration to Fig. 1(c). For the sake of presentation, we omit less important
code in Fig. 1(a) and (b), while we show complete code in Fig. 1(c) and (d).

As shown in Fig. 1(a), after initialization (Line 6), the logger registers a call-
back (Line 7), termed by Instruction (Line 3) that will be invoked immediately
before a code sequence is executed for the first time. In Instruction, an analysis
function docount (Line 2) is inserted before each instruction (Line 4), ensuring
that docount will be executed exactly before the execution of each instruction.
The docount just increases the global variable icount by 1, that indicates the
number of instructions has been executed so far. Finally, the SUA will be run
after invoking PIN StartProgram which is a Pin’s API.

The implementation on Dyninst looks more complex (Fig. 1(b)). It firstly
opens the SUA (omitted in Line 8) and then creates an integer intCounter which
can be inserted into the SUA (Line 9). Then the logger enumerates all modules
(Line 10) and further all functions of each module (Line 11). The function rtndeal
is called (Line 12) whenever it finds a function in the SUA. In rtndeal (Line 1),
the logger enumerates all blocks (Line 2) and further all instructions of each block
(Line 3). Afterwards, all insertion points of each instruction are enumerated (Line
4). Then the logger constructs an arithmetic expression addOne (Line 5), that
has the same effect with the C code intCounter++. The constructed expression
will be inserted into each insertion point (Line 6). Finally, the modified SUA
should be written back to the disk (Line 13).

The implementation on our middleware (Fig. 1(c)) is much simpler, that is a
function TargetCount increasing a global variable insnum. To make the code be
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1 stat ic UINT incount=0;
2 VOID docount ( ) { i count++;}
3 VOID In s t r u c t i o n ( INS ins ,VOID ∗v ){
4 INS In s e r tCa l l ( ins , IPOINT BEFORE, docount , IARG END) ;}
5 int main ( int argc , char ∗argv [ ] ) {
6 i f ( PIN Ini t ( argc , argv ) ) return Usage ( ) ;
7 INS AddInstrumentFunction ( In s t ruc t i on , 0 ) ;
8 PIN StartProgram ( ) ;
9 return 0 ;
10 }

(a) Instruction logger built on Pin

1 void r tndea l ( . . . ) {
2 for ( . . . ) //enumerate b locks
3 for ( . . . ) //enumerate in s t ruc t i ons
4 for ( . . . ) {//enumerate in se r t i on points
5 BPatch arithExpr addOne( BPatch assign ,∗ intCounter ,

BPatch arithExpr ( BPatch plus ,∗ intCounter , BPatch constExpr (1 ) ) ) ;
6 addSpace−>i n s e r tSn ippe t (addOne ,∗∗ p o i n t i t e r ) ;}}
7 int main ( int argc , char ∗argv [ ] ) {
8 //open the SUA
9 intCounter=addSpace−>malloc (∗ ( appImage−>f indType ( ” i n t ” ) ) ) ;
10 for ( . . . ) //enumerate modules
11 for ( . . . ) //enumerate funct ions
12 r tndea l (∗ f u n c i t e r ,∗ modu le i t e r ) ;
13 dynamic cast<BPatch binaryEdit∗> ( addSpace )−>wr i t eF i l e ( ”out” ) ;
14 return 0 ;
15 }

(b) Instruction logger built on Dyninst

1 int insnum=0;
2 extern ”C” void TargetCount ( ) {
3 insnum++;}

(c) Instruction logger built on our middleware
1 image a.out function all insnstring all before
2 funcalllib TargetCount

(d) Configuration of (c)

Fig. 1. The source of an instruction logger

interpreted by the middleware, a configuration (Fig. 1(d)) should be prepared,
which is also very simple. It indicates that exactly before each instruction of each
function in the SUA a.out executes (Line 1), a function TargetCount (Fig. 1(c))
should be called (Line 2). The reserved keywords, such as image, function, all are
self-explanatory. The grammar of configuration will be introduced in Sect. 3. The
technical details and differences of various PMS are hidden by the middleware.
For example, application developers need not to write code to enumerate all
functions in this example.

Several interesting observations can be found from the example. First, the
source code of the application on Pin differs greatly from that on Dyninst, indi-
cating that the programmers obeying conventional programming mode have to
completely recode when they prepare to change the underlying PMS. Second,
programmers have to spend a period grasping the programming interfaces of a
particular PMS. Third, based on our middleware, programmers can get start
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to code much quicker, and develop more concise, PMS-independent as well as
PMS-portable applications.

3 Design and Implementation

3.1 Design

Figure 2 shows the high-level architecture of the middleware which sits between
the applications and the PMS. The middleware integrates various PMS (PMS 1
to PMS n), that directly interacts with PMS, and provides a PMS-independent
programming interface to above applications (App 1 to App m). Applications
cannot communicate with PMS directly; instead, they have to delegate the
work of program manipulation to the middleware. This work proposes a uni-
fied and simple programming mode, so programmers just need to learn how to
use the middleware. Programmers need to compile their applications into the
form (always binaries) that the chosen PMS can understand, regardless of the
source code language used. The middleware works like a virtual machine because
it hides the details of the underlying PMS from the upper applications, and it can
seamlessly switch from one PMS to another according to the demand of ana-
lysts. The middleware is designed to be general-purpose, that should support
various applications. We will present several applications that are developed on
the agent in Sect. 4.

The architecture takes inputs as the SUA and a configuration which describes
where is the code specified by programmers and when the code should be exe-
cuted. Take Fig. 1(d) as an example, the configuration can be interpreted as “the
code is in the function TargetCount and the code should be executed exactly
before each instruction of each function in the binary a.out”. The configura-
tion should be provided by application programmers. But as we will show in
Sect. 3.2, the grammar is simple and self-explanatory. The outputs of the mid-
dleware should be the SUA after process or using the application to analyze the
SUA, depending on whether the PMS manipulates the SUA statically or dynam-
ically. Specifically, if a PMS manipulates the SUA when running it, such as Pin,
Valgrind, Qemu [4], the code specified by application programmers will be loaded
into memory at runtime. On the contrary, if a PMS handles the SUA statically,
such as Dyninst, LLVM [25], CIL [31], a modified SUA with the inserted code
will be generated. When executing the modified SUA, the inserted code has
opportunities to run.

The workflow of the middleware is as follows. First, it loads the SUA and the
applications. After that, it parses the configuration to get to know when to exe-
cute the code provided by programmers. Third, it interacts with the underlying
PMS to insert the specified code into right places, ensuring that the inserted code
should be executed at the right time. Finally, it analyzes the SUA or generates
a modified SUA depending on the underlying PMS.
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Fig. 2. Architecture

3.2 Implementation

To validate the proposed middleware can integrate various PMS, we choose a rep-
resentative dynamic PMS, Pin and a representative static PMS, Dyninst. Please
note that, although Dyninst is capable of handling programs dynamically, we
just take advantage of its static manipulation ability. Few additional efforts are
required to extend current implementation to support dynamic instrumentation
of Dyninst, because Dyninst exports the same programming interface for both
static and dynamic instrumentation abilities.

The versions of the integrated PMS are Pin-2.14-71313 and Dyninst 8.1
respectively. But we believe minor revisions are required in the middleware when
porting to other versions, because a PMS usually provides a stable programming
interface among different versions. However, Pin and Dyninst differ significantly
in programming fashion, as shown in the motivating example (Sect. 2). Therefore,
the most coding effort for our implementation is made to handle the differences
of Pin and Dyninst. Both Pin and Dyninst are binary manipulation tools, so the
SUA and the applications should be given in binary form.

Before starting analysis, the SUA and the applications should be loaded into
memory. For Pin, the SUA is specified in the command line, so Pin loads the SUA
automatically. On the contrary, programmers need to invoke BPatch::openBinary
using Dyninst. Pin loading applications is as usual as a normal desktop program
loading dynamic libraries, for example, invoking dlopen. Differently, to load the
applications, Dyninst provides a special API, BPatch binaryEdit::loadLibrary.

The middleware converts the configuration into a special designed structure,
execution bag that consists of multiple execution blocks. One execution block pro-
vides the code specified by programmers, when the code should be executed, as
well as the parameters accepted by the specified code. The specified code should
be in form of a function resided in the loaded application. Programmers should
give the function names so that the middleware can find function addresses. For
Pin, function addresses are found by invoking dlsym; while Dyninst-based appli-
cations should invoke BPatch image::findFunction. The execution bag puts no
restrictions on the number of execution blocks, facilitating application program-
mers to develop complicated applications.
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Table 1. Insertion points supported by the middleware

No. Granularity Description

1 Image level Before image loading

2 Before image unloading

3 Function
level

Before function entry

4 Before function exit

5 Instruction
level

Before execution of instructions with specified opcode

6 After execution of instructions with specified opcode

7 Before calling a specified function

8 After calling a specified function

9 Before execution of instructions with specified number of operands

10 After execution of instructions with specified number of operands

The middleware provides ten types of insertion points (as shown in Table 1)
where programmers can insert their code. We are in process of enriching
the insertion points to enable programmers to control the SUA more flex-
ibly. The current implementation allows the inserted code to run when a
given image is loading (row 1) or unloading (row 2). Programmers should
give the image name in the configuration or ‘all’ indicating all images should
be monitored. When an application chooses to run on Pin, the middleware
registers two callbacks, Imageload and Imageunload respectively by calling
IMG AddInstrumentFunction and IMG AddUnloadFunction. The Imageload will
be invoked whenever an image is loading, while the Imageunload will run when-
ever an image is unloading. When the two callbacks run, they firstly check
whether the loading/unloading image is the desired one; if so, the application’s
code will be invoked. For Dyninst, the middleware firstly enumerates all mod-
ules of the SUA and then inserts application’s code into the entry points (by
invoking BPatch module::insertInitCallback) and the exit points (by invoking
BPatch module::insertFiniCallback) of the specified module respectively.

The current implementation of the middleware also allows programmers to
run their code before (row 3) or after (row 4) the execution of a specified function.
Programmers should give the function name to be monitored or ‘all’. When
using Pin, the Imageload enumerates all functions whenever an image is loading.
Then, a function rtndeal is used to handle each enumerated function. After
that, the rtndeal checks whether the handled function is of interest by invoking
RTN FindByName. If so, the application’s code is inserted into the entry points
or exit points by calling RTN InsertCall with the parameter IPOINT being
IPOINT BEFORE or IPOINT AFTER respectively. The implementation on
Dyninst is similar except that it finds the entry points and exit points of each
function using Dyninst’s APIs BPatch function::findPoint(BPatch entry) and
BPatch function::findPoint(BPatch exit) respectively.
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In instruction level, the middleware allows programmers to handle the SUA
more flexibly, as shown in Table 1 that six types of insertion points are sup-
ported. Programmers can insert application’s code before (row 5) or after (row
6) the instructions with specified opcode. To facilitate programmers, the opcode
can be given in string, such as ‘add’ and ‘div’. Moreover, it allows programmers
to insert code before (row 7) or after (row 8) calling a specified function. This
type of insertion points is useful because function calls are sometimes related
to security bugs, e.g., format string vulnerabilities, insecure string functions,
memory allocation/deallocation, and taint sources/sinks. Programmers need to
give the concerned function name, or simply ‘all’ indicating all function calls
deserve attentions. Furthermore, programmers can specify the operand number,
and insert application’s code before or after the instructions with the specified
operand number (Line 9, 10). The two insertion points can benefit the devel-
opment of data-flow-related applications (e.g. taint analysis) since programmers
can handle different instructions with the same operand number in an unified
way.

To enable instruction-level program manipulation, the middleware invokes
INS InsertCall of Pin. For Dyninst, the rtndeal firstly enumerates all blocks of a
function and then enumerates all instructions of each block, followed by checking
whether the instructions are concerned. If so, the application’s code is inserted
by invoking insertSnippet exported from BPatch addressSpace. To coordinate
different PMS, we do not consider implicit operands. Hence, programmers need
to handle implicit operands in her own way.

The programming mode is designed to be flexible that programmers can
specify a composite insertion point by combing several default ones (one example
is shown in Fig. 1(d)). For instance, one can ask the middleware to insert code
before each call to malloc of a function named main in an image helloworld,
by giving a composite insertion point like ‘image helloworld function main
funcall malloc before’.

The middleware is able to handle the parameters specified by application pro-
grammers, and send the parameters to application’s code. The ability can benefit
programmers because the application’s code usually needs the information from
the SUA, context, and runtime environment, etc. The current implementation
supports seven kinds of parameters as shown in Table 2. The types of parameters
and their usages are easy to understand. We just need to mention that when pro-
grammers specify one operand of an instruction as a parameter, both the type
(i.e., immediate number, register or address) and the value of the operand will
be obtained as two consecutive parameters. We plan to develop a GUI allow-
ing programmers to prepare the configuration by simply choosing and clicking,
thereby removing the requirement of learning the grammar of the configuration.

The middleware provides another functionality that may interest program-
mers when they need to stop the running of the SUA and investigate the runtime
context. For example, if a security bug is discovered, programmers always want
to know how the bug is triggered. The middleware encapsulates the functional-
ity into a function dump, that can be called anywhere in the application. When
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Table 2. Types of parameters supported by the middleware

No. Type Example Parameters

1 Constant Constant 10 Constant value

2 Register Reg eax Register’s value

3 Disassemble Dis Disassemble of the specified instruction

4 String String abc String’s value

5 Funname Funname Function name of specified function

6 Imagename Imagename Image name of specified image

7 Operand Operand 0 Type of operand and the value of the operand

dump is called, the SUA is stopped and the context information including the
current instruction, register values, the call stack etc. is dumped. Section 5.3 will
show that the dump function benefits the localization, analysis and debugging
of software vulnerabilities.

3.3 Future Extensions for Other PMS

Currently, the middleware supports Pin and Dyninst, while the idea and design
are general. We are working to extend our implementation to support more PMS.
From the perspective of implementation, we classify the current PMS into several
categories. Therefore, we can use similar methods to handle different PMS which
belongs to the same category.

The first category is dynamic instrumentation tools, such as Pin, Valgrind,
and DynamoRIO [6] that usually provide explicit programming interfaces. Simi-
lar to what we have done for Pin, we can take advantage of their APIs, so that we
need not care about their internal technical details. The second category is static
instrumentation tools, for example, Dyninst and CIL. Fortunately, existing static
instrumentation tools also provide rich APIs that facilitate program manipula-
tion. We can extend our implementation to other static instrumentation tools in
a similar way with how we deal with Dyninst.

The third category is virtual machines, such as Qemu, Temu [36] and Java
Virtual Machine (JVM), which are able to monitor and modify SUA’s execution
flow. As the current VMs do not often provide explicit APIs, our implementation
needs to embed the middleware into the VM which is responsible for inserting
application’s code into proper places. Alternatively, we can use Virtual Machine
Introspection (VMI) [16] to monitor the SUA out of the box. Although the
implementation for VMs is more tricky than handling instrumentation tools,
the two aforementioned methods have been widely applied in existing VM-based
program analysis techniques.

The last category is complier-like program analysis tools, such as GCC and
LLVM that conduct analysis statically. In this case, our implementation needs
to register the middleware as a plugin (i.e., compiler pass), ensuring that it has
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chances to manipulate the SUA during the compiling procedure. The compiler-
like tools often provide programmer-friendly programming interfaces to develop
plugins (for example, KLEE [7] is a symbolic executor which is a plugin of
LLVM). Hence, it is technically practical to enhance our implementation with
the ability of supporting those compiler-like program analysis tools.

To make our implementation adaptable to various CPU infrastructures (e.g.,
x86, x64, ARM) and different representations of the SUA (e.g. sources, binaries,
bytecodes), the introduction of an Intermediate Representation (IR) can benefit
programmers a lot. In most cases, there is no need to design a novel IR because
existing IRs (e.g. VEX used by Valgrind [32], LLVM-IR proposed by LLVM [25],
and CIL [31]) could be adequate. Next, what we need to do is translating the SUA
into the selected IR. Fortunately, some open-source PMS supports IR translation
that could be directly reused by our middleware. For example, Valgrind can
convert x86, x64, ARM, PPC, MIPS etc. into VEX. LLVM can translate C,
C++, Objective-C, Java and so on into LLVM-IR. As another example, McSema
[14] and S2E [11] can translate x86 binaries into LLVM-IR.

The current implementation does not modify the program logic of the SUA;
instead, it just observes and analyzes. We believe it is not difficult to extend
our implementation for program transformation. In most cases, PMS (e.g., Pin,
Dyninst, CIL, LLVM) has already provided APIs for program transformation. In
the cases that program transformation is not explicitly supported (e.g., VMs),
our implementation can achieve this goal by inserting a jump before the code
needed to be transformed and then inserting the code after transformation into
the jump target.

4 System Security Applications

Various applications can be built upon our middleware, such as instruction trac-
ers, memory operation tracers, code coverage profilers, taint analyzers, concolic
executors. This section describes the implementation of five applications that
aim to protect software systems from stack overflow, heap corruption, memory
allocation/deallocation errors, invocations of dangerous functions and division-
by-zero bugs respectively. We only give the full details related to division-by-zero
bugs, including the configuration and the inserted code due to page limitation.
In the end of the section, we will explain how to implement a taint analyzer
and a concolic executor (two of the most compelling and complicated program
analysis techniques) based on our middleware. The applications can run on var-
ious PMS (Dyninst and Pin of the current implementation) by specifying the
PMS through the command line. That’s to say, there is no need to modify the
applications’ source code and the associated configurations.

4.1 Division-by-Zero Bugs

Figure 3 presents the source code as well as related configuration of division-
by-zero bugs protector. Please note that the configuration should be written
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according to a simple grammar as shown in Fig. 3(b), while the source code
allows any programming languages that can be compiled into binaries. The con-
figuration informs the middleware that the code in function TargetDiv (Line 4)
should be executed exactly before div (Line 1) and idiv (Line 2) in the SUA
a.out. The first operand of div and idiv should be passed to TargetDiv as a
parameter (Line 3). According to Intel instruction manual, the first operand of
div and idiv is the divisor that should be checked in TargetDiv.

1 extern ”C” void TargetDiv ( int type , int opVal ){
2 bool nonZero=(type==ADDR) ? ∗opVal : opVal ;
3 i f ( ! nonZero )dump( ) ;}

(a) Source of the division-by-zero protector
1 image a.out function all insnstring div before
2 image a.out function all insnstring idiv before
3 operand 0
4 funcalllib TargetDiv

(b) Configuration

Fig. 3. Source code and configuration of division-by-zero protector

If the programmer specifies an operand parameter, the type and the value
of the operand will be passed to the target code. As defined, the first operand
of div and idiv can be an immediate number, a register or an address. If the
operand is an address, the value stored will be retrieved. Otherwise, opVal itself
is the divisor. If the divisor is zero, indicating a division-by-zero bug, the appli-
cation invokes dump to stop the execution of a.out and output the vulnerability
information.

4.2 Stack Overflow

The stack overflow protector shares the same idea with TRUSS [35], that is
similar with StackShield [1]. When calling a function, the return address of the
function is stored in a shadow stack. When the function returns, the return
address picked from the runtime stack will be compared with the one in the
shadow stack. If they do not match, an attack will be detected and the SUA will
be terminated. The major difference between TRUSS with our application is that
the former is directly built on DynamoRIO, while our application is developed
on top of the middleware, thus our protector can port to another PMS easily.
StackShield differs a little in idea that it directly restores the return address
from the shadow stack without checking.

To record return addresses, the application’s code should be executed exactly
before the entry points of each function. To compare return addresses, the related
code should run before the exit points of each function. The two types of insertion
points are supported by the middleware (Table 1 rows 3 and 4). However, dur-
ing evaluation, we find that the simple store-match method may introduce high
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false positives due to dynamic loading or compiler optimizations (e.g., setjm-
p/longjmp). As a consequence, modern PMS tries to find all entry points and
exit points of a given function, but success is not guaranteed. To reduce false
positives, when recording a return address, the protector also records the current
stack pointer and the function name (if existed) in the shadow stack. The appli-
cation will report a stack overflow attack only if the stack pointers and function
names match; meanwhile, the return addresses do not match.

4.3 Heap Corruption

The idea to prevent heap corruption is (1) recording the locations and sizes
of allocated heaps; (2) monitoring all heap operations; (3) reporting bugs, if
any operations override the boundaries of heaps. Our heap corruption protector
records the locations and boundaries of heaps by monitoring the invocations of
heap allocation and deallocation functions, such as malloc, calloc, realloc and
free. The protector allows programmers to run specified code before or after
calling a given function (Table 1 rows 7 and 8). Whenever the SUA requests for
allocating memory, the heap location and size are recorded by the inserted code.
After the request, the inserted code checks whether heap allocation is successful.
If not, the related record will be removed. Additionally, after the successful
deallocation of a heap, the related record will also be deleted.

To monitor heap operations, the protector keeps an eye on the invocations of
string and memory functions, such as strcpy, strcat, strncpy, memcpy and mem-
move. To detect heap corruption, some parameters of the monitored functions
are required to be passed to the inserted code. To do so, the application speci-
fies proper registers as parameters, because function parameters can usually be
found in registers or the stack (can be located by the stack register).

4.4 Memory Allocation/Deallocation Errors

The memory allocation/deallocation errors handled in the protector include dou-
ble free, free a non-heap memory location and free a pointer that points to the
middle of a heap and so on (i.e., any memory bugs that deallocate wrong heap
locations). The protector firstly records the addresses and boundaries of allo-
cated memory by instrumenting functions like malloc, calloc, realloc. Then it
checks memory deallocation to ensure that the freed address is the exact address
recorded. Otherwise, the SUA will be stopped and a detailed report will be given.

4.5 Invocation of Dangerous Functions

Detecting the invocations of dangerous functions are similar to the way of detect-
ing the calls of malloc. The protector can detect getpw, gets, random, vfork,
mktemp, mkstemps, and mkdtemp. It is straightforward to enrich the set of dan-
gerous functions by adding a few lines in the configuration, because the appli-
cation handles various dangerous functions in a unified way as follows.
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One kind of functions are dangerous whenever they are invoked. For example,
getpw is extremely dangerous because it gets user names, passwords and other
privacy information from /etc/passwd. For this kind, the application inserts code
before the instructions that call dangerous functions. Whenever a dangerous
function of this kind is invoked, the application can stop the attack immedi-
ately. The other kind can be considered as dangerous under specific context.
For example, mktemp becomes dangerous when the file name is too short. To
detect this kind of dangerous functions, the application passes the demanded
information as parameters to the inserted code.

4.6 Taint Analyzer and Concolic Executor

Taint analysis [12] consists of marking taint sources, tracking taint propagation,
and warning if taints enter taint sinks. Taint analysis has wide applications in
vulnerability detection, malware analysis, privacy protection etc. Programmers
are able to develop a taint analyzer based on the middleware via the simple
programming mode. Taint sources are usually functions that get data from envi-
ronment, such as ReadFile, recv, getenv. To mark taint sources, the taint analyzer
needs to instrument before and after the related functions. To track taint prop-
agation, instruction-level instrumentation is needed that takes responsible for
tainting target operands if source operands are tainted. Taint sinks are usually
special functions which operate on tainted data, such as WriteFile, send, sys-
tem. Therefore, those sensitive functions should be monitored by function-level
instrumentation.

Concolic execution [10] is a variant of traditional symbolic execution [24]
that collects path constraints along with concrete execution, and then explores
other paths triggered by new test inputs that are solved from negated path con-
straints. Concolic execution is an iterative procedure that runs the SUA with
given inputs, symbolizes inputs, tracks symbol propagation, collects constraints,
and then generates new test inputs. Input symbolization is similar with mark-
ing taint sources. However, symbolic inputs could be the parameters of given
functions, register values, memory values etc., that could be specified as param-
eters as shown in Table 2. To track symbol propagation, the application also
needs instruction-level instrumentation. The instrumented code should interpret
instruction semantics, and then compute symbolic expressions of the influenced
operands. The application needs to collect constraints when executing symbol-
related conditional jumps (e.g., jz, jnz, ja, jb). Programmers will feel convenient
to handle specific instructions because the middleware allows programmers to
specify the concerned instructions by giving the string forms of opcodes, as shown
in Table 1 (rows 5 and 6).

5 Experiments

5.1 Research Questions

We attempt to answer the following research questions through experiments.
QA1: Will the SUA modified by the middleware bring about unacceptable
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runtime overhead, space overhead and false positives (Sect. 5.2)? QA2: Can
the application prevent the attacks against real CVE vulnerabilities (Sect. 5.3)?
QA3: Can the middleware facilitate the localization, analysis and debugging of
software defects (Sect. 5.3)? QA4: Can the middleware reduce code amount of
application development (Sect. 5.4)? QA5: Will the middleware lead to obvious
runtime overhead (Sect. 5.5)?

All experiments are conducted on a laptop, equipped with a two-core Celeron
CPU (1.8 GHz), 2 GB main memory and 64-bit CentOS 7.

5.2 Experiments with Benchmark Programs

We select ten daily-used programs in CentOS arbitrarily as a benchmark set
including compilers, compression/decompression software, SSL tools, a multi-
media processing library etc. As shown in Table 4, the sizes of the SUA range
from 7,136 bytes to 772,704 bytes, 385,904 bytes on average (standard devia-
tion is 299,779, indicating significant differences). For convenience, we integrate
the five applications into one multi-functional software protector, and demon-
strate the experimental results when testing the integrated software protector
on Dyninst in Fig. 4.
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Fig. 4. Experimental results with ten benchmark programs

Figure 4 shows the size expansion of the SUA after processing by the mid-
dleware. The space overhead is 2.57x on average, because the software protector
is multifunctional that inserts protection code before all entry points and exit
points of each function, before all div and idiv instructions, before and after
all memory allocation/deallocation functions, and also before all invocations of
dangerous functions. Fortunately, disk space is not as scarce as decades ago, so
nowadays it is worthy of trading space for security. Figure 4 also shows that the
modified SUA runs slightly slower than the original SUA, 1.92% on average.
Furthermore, we find that the runtime overhead has no direct bearing upon the
space overhead, because the former depends on how the SUA is executed, while
the latter relies on how the SUA is processed. No security problems are reported
in those benchmark software, so, there are no false positives.

Hence, we can answer QA1 that the SUA modified by our middleware incurs
acceptable space overhead, minimal runtime overhead, and no false positives.
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5.3 Practical Case Studies

In this section, we will evaluate the effectiveness of the software system security
protector against CVE-2004-0597 and CVE-2011-3328. Please note that both the
two cases are successfully reproduced on Pin and Dyninst, and we get identical
reports regardless of underlying PMS.

CVE-2004-0597. CVE-2004-0597 consists of multiple buffer overflows in libpng
1.25 and earlier, allowing remote attackers to execute arbitrary code via mal-
formed PNG images. We examine our protector by testing with one stack over-
flow vulnerability. The malformed input is shown in Fig. 5(a) that the 48 bytes
starting from offset 0x129 are overwritten with 0x41 (i.e., the letter ‘A’). The
overwritten part is in an IDAT truck that contains the actual image data.

(a) Malformed input
Breakpoint 1, 0x00007f41768dba06 from ./libpng12.so.0 //where to trigger the bug
#0  0x00007f41768dba06
#1  0x4141414141414141
#2  0xe7f7e222fde32333
…
rax 0x1
rbx 0x4141414141414141
…
rbp 0x4141414141414141
…
=> 0x7f41768dba06: retq

0x7f41768dba07: lea -0x324c7d(%rip),%rsi
0x7f41768dba0e: callq 0x7f4176582060 <png_error@plt>
0x7f41768dba13: movzbl 0x276(%rbx),%edx
0x7f41768dba1a: cmp $0x3,%dl
0x7f41768dba1d: jne 0x7f41768db91c
…

Call stack

Regs

Ins

(b) Report

Fig. 5. Test results with CVE-2004-0597

The report (Fig. 5(b)) which is produced by the dump function men-
tioned in Sect. 3.2, consists of four parts. The first part shows the address
(0x7f41768dba06) of the instruction that triggers the vulnerability and the buggy
executable (libpng12.so.0). Part 2 presents the call stack. We can see that the
call stack is corrupted due to stack overflow. That is, the function address with
depth 1 is 0x4141414141414141 (i.e., multiples ‘A’s) which comes from the mal-
formed input. Besides, the function addresses from depth 2 to the bottom are
weird values that should not be function addresses. Part 3 gives register values.
We can find that some registers, especial rbp that involves control flow transfers
are polluted by the input. The final part shows the critical instruction (address
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and disassemble) as well as some instructions after it. As expected, the critical
instruction is retq, before which the protector inserts checking code.

CVE-2011-3328. CVE-2011-3328 is a division-by-zero bug located in the
png handle cHRM function of pngrutil.c in libpng 1.5.4, enabling a denial of ser-
vice attack via a malformed PNG image containing a cHRM chunk. Figure 6(a)
shows a malformed input that triggers CVE-2011-3328. Three DWORD variables
y red, y green and y blue correspond to offset 0x35, 0x3d and 0x45 respectively
in the first cHRM chunk. The sum of y red, y green and y blue will be used as
a divisor. Hence, we set all of them to be zeros.

(a) Malformed input
Breakpoint 1, 0x00007f9280d18b56 from /libpng15.so.15//where to trigger the bug
#0  0x00007f9280d18b56 
#1  0x00007fff9de7f8a0 
#2  0x00007fff9de7f890 
…
rax 0x0
rbx 0x0
rcx 0x0
rdx 0x0
…
=>  0x7f9280d18b56: div %ecx

0x7f9280d18b58: xor %edx,%edx
0x7f9280d18b5a: mov %ax,0x42a(%r15)
0x7f9280d18b62: mov %ebx,%eax
0x7f9280d18b64: shl $0xf,%eax
…

Call stack

Regs

Ins

(b) Report

Fig. 6. Test results with CVE-2011-3328

The report is shown in Fig. 6(b) that the instruction which triggers a division-
by-zero error locates in 0x7f9280d18b56. The vulnerable binary is libpng15.so.15.
We can see that the attack doesn’t subvert the call stack. However, several
registers are polluted, especially rcx whose lower 32 bits (i.e., ecx ) are treated as
a divisor. As expected, the vulnerable software stops before running the division-
by-zero operation, because the protector inserts checking logic before all div and
idiv instructions.

Therefore, we can answer QA2 and QA3 that (1) the application can prevent
software systems from real attacks; (2) the report produced by our middleware
can facilitate the localization, analysis and debugging of software defects.

5.4 Comparison with Dyninst and Pin

This subsection presents the code amount (in lines) of the applications developed
on middleware, and those directly developed on Dyninst and Pin respectively,
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as shown in Table 3. Please note that we implement all five applications directly
on Dyninst and Pin respectively for comparison and the code amount is counted
by SourceCounter [2]. The figures after ‘|’ indicate times. For example, the code
amount of the division-by-zero protector built directly on top of Dyninst is about
30.2 times larger than that developed on our middleware. The last row shows
the averages. The observation is that the applications based on our middleware
require the fewest code lines, answering Q4 that our approach can reduce the
code amount of applications obviously. Second, the code amount for Pin-based
applications is comparable with that for Dyninst-based applications, indicating
that the two PMS encapsulates the manipulations of the SUA in comparable
degrees. We have to remind that the metric, code amount cannot reflect the
learning curve of various PMS. For example, a well-documented PMS is easier
to learn than the PMS with few documents. Besides, code amount can just
partially reflect the developing efforts. For example, a line of code invoking a
complicated API needs more time to debug and test than a line of assignment.

Table 3. Code amount of the applications (LOC) developed on the middleware,
Dyninst, and Pin

Application Agent Dyninst Pin

Division-by-zero 6 181|30.2 130|21.7

Stack overflow 60 169|2.8 174|2.9

Heap corruption 86 279|3.2 272|3.2

Memory allocation/deallocation 41 214|5.2 206|5
Dangerous function 16 133|8.3 159|9.9

Average 41.8 195.2|4.7 188.2|4.5

5.5 Runtime Overhead of the Middleware

Our middleware will lead to runtime overhead for dynamic PMS because it
controls dynamic PMS at runtime. Table 4 answers QA5 that the middleware
incurs minimal runtime overhead (i.e., 1.44% on average). The figures after ‘|’
in the last column indicate the runtime overhead incurred by our middleware,
compared to the application directly developed on Pin. Please note that the
application tested here is the integrated application which consists of all five
functionalities mentioned in Sect. 4.

The overhead incurred by our middleware is negligible, compared to the over-
head incurred by the application. The third column gives the time for running
each SUA in the environment of Pin (i.e., the SUA is loaded by Pin with an
empty application). The figures after ‘|’ in the fourth column present the over-
head caused by the application compared to the time consumption shown in the
third column, which is 31.11x on average. Hence, the middleware just leads to
less than a thousandth of the overhead caused by the application.
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Table 4. Runtime overhead incurred by the middleware

SUA Size (Byte) Baseline (sec) Directly on Pin (sec) On our middleware (sec)

iconv 60320 0.64 5.34|7.37 5.39|0.95%

gpg 749840 2.07 186.73|89.40 186.94|0.11%

openssl 508680 1.24 87.15|69.33 87.74|0.67%

g++ 772704 1.15 53.70|45.54 54.99|2.41%

gzip 100744 0.82 6.21|6.54 6.65|7.06%

python 7136 23.40 26.76|14% 26.85|0.34%

tar 345976 1.38 35.28|24.62 36.03|2.11%

objdump 332248 1.34 41.84|30.17 41.89|0.13%

ffmpeg 212800 131.14 141.47|8% 141.96|0.35%

gcc 768592 1.26 49.19|37.96 49.35|0.32%

Average 385904 17.44 63.37|31.11 63.78|1.44%

6 Related Work

Substantial studies have been made to reduce the difficulty of manipulating the
SUA. However, existing works suffer from a few drawbacks. We just summarize
the drawbacks and describe a few of related works due to page limitation.

First, some proposed languages are incapable of supporting complicated
applications. To name a few, the capability of Atune-IL [34] is restricted due
to the limited expressiveness of #pragma annotations. Metric Description Lan-
guage (MDL) [19] is not general enough for program analysis (MDL is designed
for performance measurement) that supports two types of inserted code only.
Besides, DiSL [29] is a domain-specific instrumentation language for handling
Java program. Several works put restrictions on PMS. Atune-IL [34] can be used
by source-level PMS only. MDL [19], Lynx [15], EBT [27,28], and DTrace [8] are
designed for dynamic binary instrumentation, while MAQAO Instrumentation
Language (MIL) [9] is for static binary instrumentation.

Several studies restrict the types of insertion points [8,15,19,27,28,30]. For
example, [30] does not support instruction-level instrumentation, that would be a
serious restriction for application development. The types of insertion points sup-
ported by DTrace [8] depend on the instrumentation providers (dubbed PMS in
this paper). However, we find that the providers integrated into DTrace are single
functional, such as function boundary tracing, statically-defined tracing, locking
tracing, probably restricting the applications of DTrace. Several works demand
programmers write their applications in the proposed languages [8,15,18,19,30].
For instance, to develop on Sprocket Program Rewriting Interface (SPRI) [18],
programmers should write the code in the Sprocket-based Assembly Language.
As another example, Dtrace [8] requires programmers to develop applications in
the proposed D language.
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Some proposed languages lack applications and experiments [27,28,33]. Con-
cretely speaking, Reiss and Renieris [33] proposed the requirements of a general
dynamic instrumentation language. However, as they admitted, they had not
designed a language that meets the requirements. The EBT language might be
immature because the related papers [27,28] did not present any practical appli-
cations and experimental results based on it, though a motivating example was
given. Several works may result in considerable effort for grasping the features
of their proposed languages [9,18]. SPRI is a low-level language, so it may not
be that easy to use. For example, programmers have to find the addresses where
to insert code through static analysis. MIL is a general language that extends
the syntax of Lua [21]. Consequently, the programmers who intend to use MIL
should be familiar with the rich language features of Lua.

7 Conclusions

This work designs a middleware that hides the differences of PMS and provides
an unified programming interface. Based on it, developers can start to develop
concise, PMS-independent and PMS-portable applications quickly. Besides, we
build five applications on the middleware for protecting system security and
conduct extensive experiments on them. Experiments show that the middleware
leads to reasonable space overhead, negligible runtime overhead, and no false
positives. Then, two practical cases validate that the applications can prevent
real attacks. We plan to improve this work in three directions. First, we are
working to integrate more PMS (Valgrind, CIL etc.) to give programmers more
options. Second, we will enrich the types of insertion points and parameters,
allowing programmers to handle the SUA more flexibly. Third, we plan to write
more applications on the middleware, so that programmers can develop their
applications by reusing our code.
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a language and compiler for dynamic program instrumentation. In: PACT, pp.
201–212. IEEE, November 1997

20. Huang, Y., Yu, F., Hang, C., Tsai, C., Lee, D., Kuo, S.: Securing web application
code by static analysis and runtime protection. In: WWW, vol. 17, pp. 40–52.
ACM, May 2004

21. Ierusalimschy, R., Figueiredo, L.D., Filho, W.C.: Lua-an extensible extension lan-
guage. Softw. Pract. Exper. 26(6), 635–652 (1996)
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Abstract. In this paper, we investigate severe cross-site input inference
attacks that may compromise the security of every mobile Web user,
and quantify the extent to which they can be effective. We formulate
our attacks as a typical multi-class classification problem, and build an
inference framework that trains a classifier in the training phase and pre-
dicts a user’s new inputs in the attacking phase. To make our attacks
effective and realistic, we design unique techniques, and address major
data quality and data segmentation challenges. We intensively evaluate
the effectiveness of our attacks using keystrokes collected from 20 par-
ticipants. Overall, our attacks are effective, for example, they are about
10.8 times more effective than the random guessing attacks regarding
inferring letters. Our results demonstrate that researchers, smartphone
vendors, and app developers should pay serious attention to the severe
cross-site input inference attacks that can be pervasively performed, and
should start to design and deploy effective defense techniques.

Keywords: Mobile · Web · Cross-site input inference · Motion sensor

1 Introduction

Smartphones have been severely targeted by cybercrimes, and their sensors have
created many new vulnerabilities for attackers to compromise users’ security and
privacy. One typical vulnerability is that high-resolution motion sensors, such
as accelerometer and gyroscope, could be used as side channels for attackers
to infer users’ sensitive keyboard tappings on smartphones. Such input infer-
ence attacks are feasible because motion sensor data are often correlated to the
tapping behaviors of users and the positions of keys on a keyboard.

Some researchers have studied the effectiveness of input inference attacks
performed by malicious native apps on smartphones, but their threat models
and focuses are completely different from ours, and their attacks are not as
challenging as ours (Sect. 2). While input inference attacks can be performed
by malicious native apps, they can indeed be more pervasively performed
by malicious webpages to cause even severer consequences to mobile Web
users [8] who interact with webpages through either mobile browsers or WebView
components of native apps. On both iOS and Android platforms, JavaScript code
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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on regular webpages can register to receive device motion events and access
motion sensor data. This access does not require a user to explicitly grant any
permission, install any software, or perform any configuration, and it can even
be performed cross sites to create a powerful side channel to bypass the
fundamental Same Origin Policy [9] that protects the Web [8].

In this paper, we investigate such severe cross-site input inference attacks
and quantify their effectiveness. We formulate our attacks as a typical multi-
class classification problem, and build an inference framework that takes the
supervised machine learning approach to train a classifier in the training phase
for predicting a user’s new inputs in the attacking phase. However, two major
challenges need to be addressed to make our attacks effective and realistic. The
first is on data quality , i.e., the quality of the collected motion sensor data
for certain keystrokes could be low. The second is on data segmentation ,
i.e., the key down and up events cannot be obtained in the attacking phase to
accurately segment motion sensor data for individual keystrokes because cross-
site (or origin) collection of key events is prohibited by the Same Origin Policy [9].

To address the data quality challenge, we designed two main techniques:
training data screening and fine-grained data filtering. To address the data seg-
mentation challenge, we designed a key down timestamp detection and adjust-
ment technique. To evaluate the effectiveness of our cross-site input inference
attacks, we collected keystrokes on 26 letters, 10 digits, and 3 special charac-
ters from 20 participants. On average, our attacks achieved 38.83%, 50.79%, and
31.36% inference accuracy (based on F-measure scores) on three charsets lower-
case letters, digits together with special characters, and all the 39 characters,
respectively. Intuitively, on the letter charset, our attacks are about 10.8 times
more effective than the random guessing attacks. Our training data screening
technique improved the inference accuracy against all participants by 8.03%,
9.93%, and 7.21% on the three charsets, respectively; our fine-grained data fil-
tering technique improved the inference accuracy against the majority of partic-
ipants by 1.14%, 1.76%, and 1.27% on the three charsets, respectively. Our key
down timestamp detection and adjustment technique achieved 86.32% accuracy
on keystroke data segmentation.

2 Threat Model and Related Work

The basic threat model in our attacks is that malicious JavaScript code can
collect smartphone motion sensor data and train a machine learning classifier to
infer a user’s sensitive inputs cross websites, thus bypassing the security protec-
tion of Same-Origin Policy [9]. Especially, two types of cross-site input inference
attacks, parent-to-child and child-to-parent, can occur as proposed by Yue [8].
In the parent-to-child cross-site input inference attacks, a parent document col-
lects motion sensor data to infer users’ sensitive inputs in a child (e.g., iframe)
document [8]. In the child-to-parent cross-site input inference attacks, a child
document collects motion sensor data to infer users’ sensitive inputs in a parent
document [8]. On both iOS and Android platforms, these attacks do not require



Cross-site Input Inference Attacks on Mobile Web Users 631

a user to explicitly grant any permission, install any software, or perform any
configuration. Collecting training data is feasible because attackers can trick
a user to type specific (i.e., labeled) non-sensitive inputs on their webpages –
attackers can collect the motion sensor data as well as the corresponding key
down and up events from the same webpages to accurately segment these data.

Some researchers have studied the effectiveness of input inference attacks on
smartphones. However, the threat models and focuses of the existing efforts are
different from ours, and their attacks are not as challenging as ours. First, they
mainly focused on investigating the attacks performed by the native apps [1,2,7],
and assumed that malicious apps have been installed on users’ smartphones to
access the motion sensor data. Second, they mainly focused on investigating the
attacks that target at touchscreen lock PINs [1,7], which could be valuable only
if they are reused by smartphone owners on online services or if the smartphone
itself is stolen. Third, they often used apps’ built-in keyboards [1,7] and/or large
digit-only keyboards [1,7] to collect motion sensor data and perform experiments,
and did not study the attack effectiveness using real alphanumeric keyboards.
Fourth, they often collected the key down and up events to accurately segment
motion sensor data (i.e., identifying the start and end time) to infer individual
keystrokes [1,7]; however, in reality smartphone platforms do not allow the cross-
app collection of key events for security reasons.

3 Design of Cross-site Input Inference Attacks

3.1 Overview of the Framework

We formulate our attacks as a typical multi-class classification problem, and
build a framework that takes the supervised machine learning approach to train
a classifier in the training phase for inferring a user’s new inputs in the attack-
ing phase as shown in Fig. 1. The framework consists of six components. The
sensor data segmentation component segments motion sensor data for individ-
ual keystrokes. The training data screening component calculates the character-
specific quality scores for individual keystrokes and selects the motion sensor
data of good-quality keystrokes into the training dataset. The fine-grained data
filtering component selects user-specific frequency bands with varying lengths
for reducing the noise in the motion sensor data. The feature extraction compo-
nent statistically derives both time-domain and frequency-domain features from
the filtered motion sensor data. The model training component trains a machine
learning classifier from the extracted features. The prediction component uses
the trained classifier to predict new characters tapped by a user.

In the training phase, attackers are capable of using JavaScript code to collect
both motion sensor data and key events (i.e., key down and up) at the client
side on a user’s smartphone; these data are then sent to an attacker’s server,
and further segmented, screened, and filtered for extracting features to train a
classifier. By leveraging the corresponding key events for identifying the start
and end time, this motion sensor data segmentation for individual keystrokes in
the training phase can be accurately performed. By selecting the motion sensor
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Fig. 1. The framework for cross-site input inference attacks

data of good-quality keystrokes and by further filtering out the noise at a fine
granularity, the classifier can be better trained for performing the attacks.

In the attacking phase, attackers are only capable of collecting motion sensor
data because cross-site (or cross-origin) collection of key events is prohibited by
the Same Origin Policy; the motion sensor data are then sent to the attacker’s
server, and further segmented and filtered for extracting features to predict the
tapped characters using the trained classifier. Due to the lack of key events in the
attacking phase, accurate motion sensor data segmentation becomes very chal-
lenging and an effective technique must be designed. Character-specific quality
scores cannot be calculated in the attacking phase because the tapped characters
are unknown and are indeed the targets of the inference attacks. Therefore, our
framework currently does not include data screening in the attacking phase.

3.2 Motion Sensor Data Segmentation

Figure 2 illustrates the algorithms used for sensor data segmentation in the two
phases. The Identify-Keystroke-TimeWindows subroutine accepts a sequence of
key down timestamps T as the input and returns a sequence of keystroke time
windows W as the output. For each key down timestamp Tj , the timestamps
Tj −offset start and Tj +offset end are identified as the start and end of the cor-
responding keystroke time window, respectively. This time window identification
method has been commonly used by researchers in input inference attacks [1,3,7].
They often use 100 and 150 ms as the values of offset start and offset end, respec-
tively, based on their observations on the time relationship between motion sen-
sor data and key events; we have the similar observation, and thus used the same
offset values in this subroutine.
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// S = (St1 , St2 , · · · , Stn ): motion sensor data from time t1 to tn

// Sti
= (xti

, yti
, zti

, αti
, βti

, γti
): motion sensor data at time ti, where xti

, yti
, zti

represent
acceleration forces on axes x, y, z, and αti

, βti
, γti

represent rotation rates on axes z, x, y
// T = (T1, T2, · · · , Tm): a sequence of m key down timestamps
// W = (W1, W2, · · · , Wm): a sequence of m identified time windows,

where Wi = (W S
i , W E

i ) represents the start and end time of a window

Segment-SensorData-With-KeyEvents (T ) // Used in the training phase
1 W = Identify-Keystroke-TimeWindows (T )
2 W = Adjust-Keystroke-TimeWindows (W )
3 return W

Segment-SensorData-Without-KeyEvents (S) // Used in the attacking phase
1 T = Detect-KeyDown-Timestamps (S)
2 W = Identify-Keystroke-TimeWindows (T )
3 W = Adjust-Keystroke-TimeWindows (W )
4 return W

Detect-KeyDown-Timestamps (S)
1 S = Filter-Data (S, start frequency, end frequency)

2 MA = MR = () // Magnitude for acceleration forces and rotation rates
3 for t in t1 : tn

4 MA
t =

√
xt

2 + yt
2 + zt

2; MR
t =

√
αt

2 + βt
2 + γt

2

5 T A = Find-Peak-Timestamps (MA); T R = Find-Peak-Timestamps (MR)

6 T = Merge-Peak-Timestamps (T A, T R)
7 return T

Identify-Keystroke-TimeWindows (T )
1 for j in 1 : m

2 W S
j = Tj − offset start; W E

j = Tj + offset end
3 return W

Adjust-Keystroke-TimeWindows (W )
1 for j in 1 : m − 1

2 overlap = W E
j − W S

j+1 // Overlap between two keystrokes
3 if overlap ≤ 0 // No overlap
4 // Do nothing

5 else if overlap > ((W S
j+1 + offset start)−

(W E
j − offset end)) × overlap threshold // Heavy overlap

6 mark Wj and Wj+1 as heavily overlapped time windows
7 else // Slight overlap, split the overlapped region

8 W E
j = W E

j − overlap/2; W S
j+1 = W S

j+1 + overlap/2
9 remove the marked heavily overlapped time windows from W
10 return W

Fig. 2. Sensor data segmentation algorithms in the two phases

The Detect-KeyDown-Timestamps subroutine accepts the motion sensor data
S from timestamp t1 to timestamp tn as the input, finds their peak values, and
returns a sequence of key down timestamps T as the output. The subroutine
first applies a band filter from start frequency to end frequency on the sensor
data S at line 1. Because the peak values of sensor data are often well captured
by their high frequency components, using a filter with a high-pass band (e.g.,
from 10 Hz to 30 Hz in our case) here can help us accurately detect the key
down timestamps. To comprehensively consider acceleration forces and rotation
rates along all the three axes, the subroutine computes the Euclidean magnitude
values MA

t (for acceleration forces) and MR
t (for rotation rates) at line 4 for each

timestamp t. At line 5, the peak values in MA and MR are identified using a
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sliding window based on the average keystroke duration observed in the training
data, and their timestamps are saved to the sequences, TA and TR, respectively.
Because TA and TR may not always properly align their timestamps, they are
further merged at line 6 by including their distinct timestamps and combining
their common ones. The merged timestamps are returned for segmenting motion
sensor data in the attacking phase.

Many researchers assumed the availability of key events and did not address
the data segmentation challenge in the attacking phase; in other words, they
only used the Identify-Keystroke-TimeWindows subroutine to perform motion
sensor data segmentation in the training and attacking phases [1,3,7]. Cai and
Chen used a library of keystroke motion waveform patterns to perform sensor
data segmentation in the attacking phase [2]. However, this method requires a
library to be pre-built; its accuracy depends on the quality of the library and
the applicability of those patterns to different users.

The Adjust-Keystroke-TimeWindows subroutine adjusts the identified
keystroke time windows in both training and attacking phases because some
adjacent time windows may overlap and incur accuracy. For every two adja-
cent time windows Wj and Wj+1, the subroutine calculates the overlap between
them at line 2. If they heavily overlap (i.e., the overlap region is greater than a
certain percentage threshold, overlap threshold, of the timespan between their
corresponding key down events at line 5), the subroutine marks both of them
as heavily overlapped time windows at line 6. If they slightly overlap, the sub-
routine adjusts their boundary to be the middle of the overlapped region at line
8. Finally all the heavily overlapped time windows are discarded at line 9, and
the remaining time windows are returned at line 10. This adjustment step was
not considered in any existing work; however, we observed in our experiments
that about 5% of the identified time windows (either with or without using key
events) heavily overlap (with overlap threshold = 80%), and this adjustment can
indeed improve the overall inference accuracy (Sect. 4.4) by approximately 1%.

3.3 Training Data Screening

Training data screening is one key technique that we designed to address the data
quality challenge in cross-site input inference attacks. It calculates character-
specific quality scores for individual keystrokes, and only uses the motion sensor
data of good-quality keystrokes to train the classifier. In signal processing, the
signal to noise ratio (SNR) is a commonly used quality estimation metric. Calcu-
lating SNR requires the characterization of the noise based on either the standard
deviation of the random noise or the power spectrum density of the non-random
noise. However, motion sensor data in input inference attacks may contain mixed
random and non-random noises which are introduced from multiple sources such
as human body movements. Therefore, there is no standard way to characterize
the noises, and computing SNR in input inference attacks will not be reliable.

We propose a unique motion sensor data quality estimation algorithm
Estimate-Keystroke-Data-Quality for screening the training data as shown in
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Fig. 3. Overall, given m keystrokes of a specific user for a specific key, the algo-
rithm first calculates their mean values of acceleration forces and rotation rates
to obtain six averaged waveforms c for c ∈ {x, y, z, α, β, γ} at line 1; it then com-
pares the waveforms of each individual keystroke with the averaged waveforms
to calculate a quality score for the keystroke from line 3 to line 7. While it is
not reliable to directly compute SNR, averaging m measurements of a signal can
ideally improve the SNR in proportion to the

√
m [4]. This is the reason why

our algorithm uses the averaged waveforms as the reference to calculate quality
scores. In more details, at line 4, the algorithm computes cross correlation values
sci between each individual keystroke Ki and the averaged waveforms c for each
c to represent their level of similarity. Then at line 5, it computes weights wc

for each c by averaging the cross correlation values of m keystrokes. At line 6
and line 7, it computes a quality score Qi for each keystroke Ki by adding its
weighted cross correlation values on x, y, z, α, β, and γ.

Estimate-Keystroke-Data-Quality (K)
// K = (K1, K2, · · · , Km): m keystrokes of a user for a specific key
// Ki = ((xi

tn
, yi

tn
, zi

tn
, αi

tn
, βi

tn
, γi

tn
), (xi

tn+1
, yi

tn+1
, zi

tn+1
, αi

tn+1
, βi

tn+1
, γi

tn+1
), · · · ,

(xi
tn+j

, yi
tn+j

, zi
tn+j

, αi
tn+j

, βi
tn+j

, γi
tn+j

): acceleration forces x, y, z

and rotation rates α, β, γ of the i-th keystroke from time tn to tn+j

// Q = (Q1, Q2, · · · , Qm): quality scores for m keystrokes in K
1 calculate each c = (ctn , ctn+1 , · · · , ctn+j

) for c ∈ {x, y, z, α, β, γ}
where ctk

=Mean (c1tk
, c2tk

, · · · , cm
tk

)

2 s = () // Cross-correlation values of m keystrokes for x, y, z, α, β, γ
w = () // Weights for x, y, z, α, β, γ

3 for each Ki in (K1, K2, · · · , Km)

4 calculate each sc
i = Cross-Correlation ((ci

tn
, ci

tn+1
, · · · , ci

tn+j
), c̄) for c ∈ {x, y, z, α, β, γ}

5 calculate each wc = Mean (sc
1, sc

2, · · · , sc
m) for c ∈ {x, y, z, α, β, γ}

6 for each Ki in (K1, K2, · · · , Km)

7 Qi = sx
i × wx + sy

i × wy + sz
i × wz + sα

i × wα
i + sβ

i × wβ + sγ
i × wγ

8 return Q

Fig. 3. Keystroke data quality estimation algorithm

This algorithm does not rely on any special heuristic or threshold, and it
can be executed online efficiently with polynomial time complexity. Using this
algorithm, the training data screening component computes quality scores of
individual keystrokes of a user for a specific key, and ranks the keystrokes based
on their quality scores. Later, only a certain percent of top-quality keystrokes
will be selected for further processing and for training a classifier.

3.4 Fine-Grained Data Filtering

Fine-grained data filtering is the other key technique that we designed to address
the data quality challenge in cross-site input inference attacks. It selects fre-
quency bands for data filtering at a fine granularity to reduce the noise in the
motion sensor data. As shown in Fig. 1, this filtering technique is applied to the
screened data in the training phase to identify the most effective filters, which
are used to reduce the noise in both the training and attacking phases.
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Frequency domain data filtering is a commonly used noise reduction tech-
nique. In the context of input inference attacks, researchers applied filters with
fixed bands [2], used interpolation-based data smoothing methods [3], or used
Discrete Fourier Transformation (DFT) and inverse DFT methods [1]. All these
methods essentially discard high-frequency components and are equivalent to
using certain fixed-band low-pass filters; however, it is not shown in these stud-
ies that a fixed-band low-pass filter is most appropriate and effective.

We propose a fine-grained data filtering technique, in which the frequency
bands are selected with varying lengths instead of being fixed, for example, to
a low-pass or high-pass band; meanwhile, different frequency bands are selected
to effectively attack different users. Specifically, our technique divides the entire
frequency band into multiple finer-granularity sub-bands, iterates all the consec-
utive concatenations of one or multiple sub-bands, and selects the concatenated
band that performs the best as the frequency band for a particular user.

One typical band division method is the 1
n Octave method [6], which first

divides an entire frequency band into two halves, then recursively divides the low
frequency half multiple times in the same manner, and finally further equally
divides each current sub-band into n new sub-bands. The 1

n Octave method
favors low frequency components by dividing them into finer-granularity sub-
bands, and it is often used in processing audio data that are dominated by low
frequency components [6]. We use the 1

2 Octave method to divide the entire
frequency band (i.e., 0 Hz to 30 Hz, which is the mirrored first half of 60 Hz
sampling frequency in Google Chrome used for collecting our motion sensor
data) into ten sub-bands (four recursive divisions and one final 1

2 division), but
merge the first two low-frequency sub-bands into one due to their small sizes;
the second column of Table 1 lists the nine final Octave sub-bands. Alternative
division methods exist, for example, a straightforward method is to divide the
entire frequency band into sub-bands with an equal size; we also use this method
to derive nine equal sub-bands as shown in the third column of Table 1 as a
comparison.

Table 1. Nine 1
2

Octave and nine equal sub-bands

Sub-band index 1/2 Octave sub-bands (Hz) Equally divided sub-bands (Hz)

1 0–1.88 0–3.33

2 1.88–2.65 3.33–6.67

3 2.65–3.75 6.67–10

4 3.75–5.3 10–13.33

5 5.3–7.5 13.33–16.67

6 7.5–10.61 16.67–20

7 10.61–15 20–23.33

8 15–21.21 23.33–26.67

9 21.21–30 26.67–30
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From the nine sub-bands divided using either method, we further derive 45
consecutively concatenated bands from nine length-one concatenations, eight
length-two concatenations, and finally to one length-nine concatenation. All
these 90 bands together with a commonly used simple (less configuration effort)
yet efficient Infinite Impulse Response filter [6] are applied individually and
independently to our screened motion sensor data; later, the band for the best-
performing classifier is selected as the most effective frequency band for a par-
ticular user, and will be used in the attacking phase.

3.5 Feature Extraction and Model Training

As shown in Table 2, we use 30 types of raw and derived motion sensor data
of a given keystroke to extract statistical features. Sixteen types of data are
singletons, and fourteen are pairs. The 16 singletons include acceleration forces
(x, y, z), rotation rates (α, β, γ), the magnitude of acceleration forces (MA), the
magnitude of rotation rates (MR), and all their first differences (D(x), D(y),
D(z), D(α), D(β), D(γ), D(MA), D(MR)). The 14 pairs include three pairs of
acceleration forces ((x, y), (y, z), (z, x)), three pairs of rotation rates ((α, β),
(β, γ), (γ, α)), one pair of the magnitudes of acceleration forces and rotation
rates ((MA,MR)), and seven pairs of their corresponding first differences.

From the 16 singletons, the feature extraction component extracts (from
both time and frequency domains) nine types of statistical features: maximum
value, minimum value, mean value, variance, standard derivation, root mean
square (RMS), skewness, kurtosis, and area under curve (AUC); as a result,
16×2×9 = 288 features are extracted from the 16 singletons. Given the motion
sensor data of a keystroke in the time domain, the maximum and minimum
values are the peak and valley values; the mean value is the averaged ampli-
tude; the variance, standard deviation, and RMS measure the deviations on
amplitude; the skewness measures the symmetry of the motion sensor data; the
kurtosis measures whether the motion sensor data are heavily or lightly tailed
in comparison to a normal distribution; the AUC measures the power of the
motion sensor data. In the frequency domain, all these nine features statistically
measure the distribution of frequency components of the motion sensor data.
From the 14 pairs, the component extracts their 14 cross correlation values in
the time domain. Therefore, in total, 288 + 14 = 302 statistical features are
extracted from the motion sensor data of a keystroke, and are used in training
and prediction.

In the model training, we experimented with a variety of machine learn-
ing algorithms using Weka [10], and observed that using the default Sequential
Minimal Optimization (SMO) [5] for training a Support Vector Machine (SVM)
classifier (with default parameters and the default linear kernel) outperforms all
the other algorithms (with their default configurations) in inference accuracy. We
only present the evaluation results of using SMO for SVM in the next section.
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Table 2. Extracted statistical features

Data (16 singletons and 14 pairs) Domain Extracted features Number of features

x D(x) Time
&
Frequency

Max, Min,
Mean,
Variance,
Standard deviation,
Root mean square,
Skewness,
Kurtosis,
Area under curve

2 × 2 × 9 = 36

y D(y) 2 × 2 × 9 = 36

z D(z) 2 × 2 × 9 = 36

α D(α) 2 × 2 × 9 = 36

β D(β) 2 × 2 × 9 = 36

γ D(γ) 2 × 2 × 9 = 36

MA D(MA) 2 × 2 × 9 = 36

MR D(MR) 2 × 2 × 9 = 36

(x, y) (D(x), D(y)) Time Cross correlation 2 × 1 × 1 = 2

(y, z) (D(y), D(z)) 2 × 1 × 1 = 2

(z, x) (D(z), D(x)) 2 × 1 × 1 = 2

(α, β) (D(α), D(β)) 2 × 1 × 1 = 2

(β, γ) (D(β), D(γ)) 2 × 1 × 1 = 2

(γ, α) (D(γ), D(α)) 2 × 1 × 1 = 2

(MA, MR) (D(MA), D(MR)) 2 × 1 × 1 = 2

*D() is the first differences of a sequence, e.g., D(x) = (x2 − x1, x3 − x2, · · · , xn − xn−1).

4 Evaluation

4.1 Data Collection

Participants: With the IRB approval from our university, we recruited 20 adults
for data collection. We asked all the participants to use their own or our provided
Android smartphones, and use the Google Chrome Web browser with the default
Google Keyboard to perform input tasks. In the recruitment process, potential
participants were administered the informed consent.

Websites Setup: We created two websites: one of them (i.e., the “malicious”
website) uses JavaScript code to perform cross-site motion sensor data collection
from the other website (i.e., the “victim” website). From the “victim” website
that we own, we were also able to collect the key events for segmenting the
motion sensor data, and the tapped characters for labeling the corresponding
individual keystrokes. The “victim” website contains four webpages. Each web-
page displays a different letter pangram and a different digit pangram, and asks
our participants to type the two pangrams in two input fields, respectively. As
shown in Table 3, each letter pangram is a sentence using every letter of the
alphabet exactly once so that a participant does not need to type a longer sen-
tence in each input field. Each digit pangram contains ten unique digits, and
three special characters at the left, middle, and right parts of the keyboard.

Procedure and Dataset: We asked every participant to perform four tasks by
visiting the four webpages and typing the displayed pangrams in each session. We
asked each participant to complete a total number of 26 sessions in two weeks,
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Table 3. Pangrams used in the study

Webpage Letter pangrams Digit pangrams

1 cwm fjord bank glyphs vext quiz @83294&60571)

2 squdgy fez blank jimp crwth vox &56920)71438@

3 tv quiz drag nymphs blew jfk cox )45372&80916@

4 q kelt vug dwarf combs jynx phiz @28513)97604&

but allowed them to do so at any places; therefore, we were able to collect a rel-
atively large amount of data from participants in their real daily environments
without any restriction. Overall, we collected 4 × 26 = 104 keystroke samples
for each of the 39 characters (lower-case letters, digits, and three special char-
acters) from each individual participant. Due to the error correction in typing,
our participants indeed contributed 17,571 additional keystroke samples in their
sessions. As a result, the total number of keystroke samples in our final dataset
is 104 × 39 × 20 + 17, 571 = 98, 691.

4.2 Accuracy Metrics and Evaluation Methodology

To evaluate the accuracy of a trained multi-class classifier, we first count the
true positive (TP), false positive (FP), true negative (TN), and false negative
(FN) numbers. For a given class (e.g., letter “a”), a true positive is an instance
correctly predicted as belonging to that class (e.g., letter “a” is correctly pre-
dicted as “a”), a false positive is an instance incorrectly predicted as belonging
to that class (e.g., letter “b” is incorrectly predicted as “a”), a true negative is
an instance correctly predicted as not belonging to that class (e.g., letter “b” is
correctly predicted not as “a”), a false negative is an instance incorrectly pre-
dicted as not belonging to that class (e.g., letter “a” is incorrectly predicted not
as “a”). We further calculate false positive rate (FPR), precision, recall (i.e., true
positive rate, or TPR), and F-measure accuracy metrics for each class, and aver-
age their corresponding values across classes as the accuracy for the multi-class
classifier. The F-measure metric is the harmonic mean of precision and recall;
thus, we mainly present and analyze the results based on this metric.

In the evaluation, our classifier is trained and assessed using the 10-fold
cross validation, and we run the cross validation for 5 rounds and present their
averaged results. We evaluate the inference accuracy explicitly on all the three
charsets: the letter charset (i.e., 26 lower-case letters), the digit charset (i.e., 10
digits together with 3 special characters), and the mixed charset (i.e., all the 39
characters). This is because in real scenarios, an attacker may know the type
information of an input regarding if it is a letter or digit, and can directly use a
classifier specific to the inference of either letters or digits.
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4.3 Overall Accuracy with Training Data Screening

We evaluate the overall accuracy of our inference attacks with the focus on quan-
tifying the extent to which our training data screening technique can improve
the accuracy. We use the keystroke data quality estimation algorithm (Fig. 3)
to rank the keystrokes of a given participant for each specific key, and select a
certain percent of top-quality keystrokes for training a classifier and performing
the 10-fold cross validation. Specifically, we choose 10 percentage values from
0.1 (i.e., 10%), 0.2 (i.e., 20%), . . . , to 1.0 (i.e., 100%). In particular, the 100%
value means that all the keystrokes will be used in training, and the corre-
sponding inference accuracy serves as the baseline in our accuracy comparison.
Given a specific percentage value and a specific charset, we ensure that the sam-
ple sizes are roughly equal for different characters to avoid training a classifier
using unbalanced data. Eventually, the percentage value that yields the highest
inference accuracy will be selected for each participant as the best percentage
value for screening the training data. In this percentage value selection process,
fine-grained data filtering is turned off to avoid circular dependency.

Figures 4(a), (b), and (c) illustrate the overall inference accuracy for the 20
participants on the three charsets, respectively. In each subfigure, we compare
the inference accuracy (i.e., F-measure) for each participant between that from
the baseline (i.e., 100%) and that from his or her best percentage value. Regard-
ing the inference accuracy from the baseline, the F-measure scores for the 20
participants vary from 12.97% to 58.14% with the average at 30.12% for the
letter charset, from 21.21% to 66.91% with the average at 39.71% for the digit
charset, and from 9.17% to 46.97% with the average at 23.45% for the mixed
charset. By using training data screening with the best percentage values, the
F-measure scores for the 20 participants are improved (upon those of the base-
line) from 3.41% to 20.45% with the average at 8.03% for the letter charset,
from 1.96% to 18.75% with the average at 9.93% for the digit charset, and from
2.8% to 16.96% with the average at 7.21% for the mixed charset. The inference
accuracy is improved for all the 20 participants, demonstrating that our training
data screening technique is indeed effective.

Two additional observations from Fig. 4 are worth mentioning. One is that
for almost all the participants, the corresponding inference accuracy on the digit
charset is higher than that on the letter charset, which is further higher than that
on the mixed charset. For example, for participant P12, the inference accuracy on
the digit, letter, and mixed charsets is 49.13%, 38.63%, and 31.29%, respectively.
The other observation is that the relative inference accuracy differences among
the participants are highly consistent across the three charsets. For example, the
inference accuracy for participant P7 is the lowest among all the participants
across the three charsets, while that for participant P17 is always the highest.

4.4 Overall Accuracy with Fine-Grained Data Filtering

Our fine-grained data filtering technique (Sect. 3.4) improves the inference accu-
racy for the majority of the participants; meanwhile, the 1

2 Octave method per-
forms better on the digit charset, while equally dividing the entire frequency band
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(a) Letter charset (b) Digit charset

(c) Mixed charset

Fig. 4. Overall accuracy on letter, digit, and mixed charsets

performs better on the mixed charset. With this further improvement, our input
inference attacks overall (1) achieve 2.45%, 39.74%, 38.77%, and 38.83% regard-
ing FPR, precision, recall (TPR), and F-measure, respectively, on the letter
charset, (2) achieve 4.1%, 51.45%, 50.75%, and 50.79% regarding the four met-
rics, respectively, on the digit charset, and (3) achieve 1.81%, 32.04%, 31.42%,
and 31.36% regarding the four metrics, respectively, on the mixed charset. Note
that a smaller training dataset can still achieve good inference accuracy. For
example, using 41 keystroke samples for each character in 10-fold cross valida-
tion (thus less than 37 samples for training) can still give us a 33% F-measure
score for the letter charset.

4.5 Further Overall Accuracy Comparison and Analysis

Because our trained classifier (using SMO for SVM) is a probabilistic classifier
that predicts the probabilities over a set of classes, we further consider the top-
n predicted results and define the hit probability as the probability that the
ground truth is among them. This hit probability corresponds to the probability
of hitting the ground truth in at most n tries of the top-n results. Figure 5
illustrates the hit probability curves from one try to four tries, for our input
inference attacks denoted by the solid lines and for the random guessing attacks
denoted by the dashed lines. The hit probability increases with the increase of
the number of tries. For example, it increases from 41.5% in one try to 79.52%
in four tries for our input inference attacks on the letter charset. Note that these
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numbers are averaged over all the predictions across the participants. Our input
inference attacks are much more effective than the random guessing attacks. For
example, on the letter charset, our attacks are about 10.8 times and 5.2 times
more effective than the random guessing attacks (i.e., guessing a letter from 26
possibilities) in one try and four tries, respectively.

Fig. 5. Hit probability in one to four
tries for three charsets

Fig. 6. Overall data segmentation
accuracy

4.6 Accuracy of Sensor Data Segmentation Without Key Events

In this subsection, we evaluate the accuracy of the Detect-KeyDown-Timestamps
subroutine by comparing its detection results with the collected ground-truth
key down timestamps. This accuracy determines the accuracy of the Segment-
SensorData-Without-KeyEvents algorithm shown in Fig. 2.

For the purpose of this evaluation, we need to define a new set of accuracy
metrics. If a time window (identified by the Identify-Keystroke-TimeWindows
subroutine in Fig. 2) for a detected key down timestamp contains any ground-
truth key down timestamp, a true positive (TP) is counted; otherwise, a false
positive (FP) is counted. If a ground-truth key down timestamp is not in any
of those identified time windows, a false negative (FN) is counted. However, we
are not able to count true negatives because they are simply not definable.

Because Google Chrome on Android does not report the key down and up
events of special keys (e.g., caps lock key, keyboard switching key, and enter key)
to the JavaScript code on regular webpages, we do not have the ground-truth
to exclude the keystrokes for special keys, and our false positive numbers are
unavoidably over-counted in this evaluation. Therefore, to represent the accuracy
of the key down timestamp detection, it is more reasonable for us to use the recall
(TPR) scores instead of the precision or F-measure scores (which are affected
by the over-counted false positives).

Figure 6 illustrates that the recall scores are above 80% for the majority of the
participants, demonstrating that our Segment-SensorData-Without-KeyEvents
algorithm is indeed effective in segmenting sensor data for true keystrokes. In
real attacks without key events, the overall input inference accuracy depends on
the data segmentation accuracy, and thus could be slightly reduced.
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5 Conclusion

We investigated severe cross-site input inference attacks that may compromise
the security of every mobile Web user, and quantified the extent to which they
can be effective. We formulated our attacks as a typical multi-class classification
problem, and built an inference framework that trains a classifier in the training
phase and predicts a user’s new inputs in the attacking phase. We addressed the
data quality and data segmentation challenges in our attacks by designing and
experimenting with three unique techniques: training data screening, fine-grained
data filtering, and key down timestamp detection and adjustment. We intensively
evaluated our attacks and found they are effective. Our results demonstrate
that researchers, smartphone vendors, and app developers should pay serious
attention to the severe cross-site input inference attacks that can be pervasively
performed, and should start to design and deploy effective defense techniques.

Acknowledgment. This research was supported in part by the NSF grant DGE-
1619841.
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Abstract. Traditional PKIs face a well-known vulnerability that caused
by compromised Certificate Authorities (CA) issuing bogus certificates.
Several solutions like AKI and ARPKI have been proposed to address
this vulnerability. However, they require complex interactions and syn-
chronization among related entities, and their security has not been val-
idated with wide deployment. We propose an accountable, flexible and
efficient decentralized PKI to achieve the same goal using the blockchain
technology of Bitcoin, which has been proven to be secure and reliable.
The proposed scheme, called BKI, realizes certificate issuance, update
and revocation with transactions on a special blockchain that is man-
aged by multiple trusted maintainers. BKI achieves accountability and
is easy to check certificate validity, and it is also more secure than cen-
tralized PKIs. Moreover, the certificate status update interval of BKI
is in seconds, significantly reducing the vulnerability window. In addi-
tion, BKI is more flexible than AKI and ARPKI in that the number of
required CAs to issue certificates is tunable for different applications. We
analyze BKI’s security and performance, and present details on imple-
mentation of BKI. Experiments using Ethereum show that certificate
issuance/update/revocation cost 2.38 ms/2.39 ms/1.59 ms respectively.

Keywords: Blockchain · PKI · Security

1 Introduction

Public key infrastructure (PKI) plays a critical role for network security, e.g.
SSL/TLS for secure web communication, public key crypto-based security proto-
cols. The security of the PKI is of paramount importance to applications relying
on it. However, traditional PKIs suffer from a well-known vulnerability in case
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of compromised or malicious CAs. That is, a compromised or malicious CA may
issue a certificate for some domain, which can use it to launch impersonation or
Man-in-the-Middle attacks.

Many attacks have demonstrated the serious vulnerability of traditional
PKIs. Recently, fraudulent certificates have been issued for domains of
Google.com, Yahoo.com, mozilla.org from well-known CAs [1]. Such bogus cer-
tificates may have been used by the adversary to eavesdrop communication. This
vulnerability is because current PKIs lack mechanisms to detect and prevent CA
misbehavior.

To counter against this problem, different approaches have been proposed
recently to make certificate issuance transparent and accountable. Among them,
the public log-based schemes have been the most effective approach to achieve
this goal. Recent advanced proposals, AKI [1], ARPKI [2], EICT [3] and DTKI
[4], all follow this methodology. Schemes including ARPKI and DTKI even have
formal proofs to ensure their security. Although these solutions have solved the
vulnerability of traditional PKIs to some extent, they have several drawbacks
for their complex operations and interactions. To prevent misbehavior, CAs and
other entities (e.g. log servers) need to monitor each other’s activities, incurring
too much communication cost for the PKI system.

We turn to Bitcoin [5] for a better solution for this problem. Bitcoin has
proved itself an overwhelming success over other alternatives as a digital cryp-
tocurrency. The underlying blockchain technology of Bitcoin has gained tremen-
dous attention, and it has been used in many different fields, ranging from decen-
tralized storage, crowd funding, equity trading to notary services.

Observing the similarity between the PKIs with a public log as in AKI and
ARPKI and the Bitcoin system, we take advantage of the blockchain technology
to design a full-fledged decentralized PKI, referred to as BKI. In our design,
the certificate issuance for one’s public key is realized by creating a transaction.
Since for each transaction to be valid, it must be signed by the senders. This is
similar for CAs to certify a public key by generating signatures over the public
key along with other related data.

To reduce trust on a single CA as AKI, a user can request certificates from
multiple CAs and combine the certificates together to obtain his final certificate.
The user needs to choose at least k CAs he trusts to certify his public key, where
k is the minimum number of CAs needed for generating a valid certificate and
it can be set as a system-wide parameter. With the blockchain technology, this
can be implemented with a transaction which has multiple CAs as the senders
and the certificate applicant as the receiver. The first advantage is BKI has
a smaller certificate status update interval, which is determined by the block
generation speed. For blockchain like Ethereum [6,7], a block is generated every
12 s, which is much smaller than the update interval in AKI or ARPKI. Secondly,
BKI has a special Merkle Patricia Tree used for certificate status checking. This
makes BKI more efficient than AKI and ARPKI in terms of certificate storage
cost and verification cost. Thirdly, system parameters in BKI like the number
of required CAs to issue a certificate are tunable according to different security
requirements.
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Contributions. In this paper we propose a novel solution for the vulnerability
of PKIs based on the blockchain technology of Bitcoin [5] to deliver an account-
able and efficient decentralized PKI. Our proposal, called BKI, takes advantage
of the blockchain technology to implement a decentralized certificate log, on
which it gracefully achieves certificate issuance, revocation and update. Main
contributions of our work include:

– We propose BKI, an accountable and decentralized PKI built from the
blockchain technology of Bitcoin to conquer the vulnerability of traditional
PKIs. BKI achieves short certificate status update interval of tens of seconds,
as compared to 1 h update interval in AKI/ARPKI, significantly reducing
the vulnerability window and improving security. In addition, BKI is flexible
in that system parameters like the number of CAs to issue a certificate are
tunable.

– A detailed comparison between AKI and BKI is provided to highlight the
advantages of our proposal. We also give a detailed discussion and a thorough
analysis of BKI on its security, efficiency and flexibility.

– A prototype of BKI is implemented using Ethereum blockchain for per-
formance evaluation. Experiments show that certificate issuance/update/
revocation cost 2.38 ms/2.39 ms/1.59 ms respectively.

Organization. The rest of the paper is organized as follows. Background knowl-
edge about log-centric PKIs and blockchain are presented in next section. Then
We define the problem to be solved in this paper in Sect. 3. After that, we
describe BKI in detail in Sect. 4, followed by discussion and analysis on security,
efficiency and availability of BKI. Details on the implementation of the proto-
type of BKI are described in Sect. 6, and we also evaluate its performance there.
Finally, concluding remarks are given in the end.

2 Background

Quite a few schemes have been proposed to deal with the vulnerability in current
PKIs. Readers are referred to [2] for a comprehensive review of these works, which
are categorized into client-centric, CA-centric, and domain-centric approaches.
However, there is a special group of schemes built on the certificate log idea,
which should be categorized as the log-centric approach. Here we review the
schemes from the log-centric approach since they are very close to our proposal.

Log-centric PKIs. Certificate transparency (CT) [8] employs the Merkle hash
tree structure to build an append-only log to record all registered certificates.
After registering one’s certificate with the log server, each domain is given a non-
repudiable audit proof that its certificate is on the append-only log. This audit
proof and the certificate are both provided to the client for validation. However,
CT is only designed to make certificate issuance transparent, and it does not
has revocation function. Hence it cannot detect or prevent registration of bogus
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certificates generated by compromised CAs. To amend this problem, Revocation
Transparency (RT) [9] was proposed to implement certificate revocation.

Enhanced Issuance and Revocation Transparency (EICT) [3] combines the
idea of CT and RT to achieve a more efficient transparent PKI. Although EICT
can detect bogus certificates issued by compromised CAs, it cannot prevent them
from happening as it lacks monitoring mechanisms. DTKI [4] further extends
EICT by using multiple logs and maintainers, and web users collectively monitor
the logs to detect misbehavior. Although the public logs are monitored by web
users, it is still possible that some fraudulent certificates escape monitoring and
stay on the logs for quite some time. Sovereign Keys (SK) [10] uses a timeline
server to maintain an append-only and read-only certificate log, and that log is
mirrored to avoid performance bottleneck. However, SK cannot prevent attacks
due to compromised sovereign keys. Meanwhile, the mirrors is assumed to be
trusted, which is a strong assumption.

Accountable Key Infrastructure (AKI) [1] intends to solve the single point
of failure of CAs with public certificate logs. The log is organized using a lex-
icographic Merkle tree, such that certificate revocation can be done efficiently.
Meanwhile, CAs and other entities monitor each other frequently to detect and
prevent misbehavior. Attack Resilient PKI (ARPKI) [2] enhances AKI with
stronger security guarantees and formal treatment. Using a system model similar
to AKI, ARPKI specifies more details about log synchronization, validation and
monitoring.

Bitcoin and Blockchain. Bitcoin [5] is a completely decentralized digital cur-
rency without relying on any trusted party. All participants of the Bitcoin system
are connected by Internet and form a P2P network. They follow a suite of pro-
tocols to maintain coin generation, coin transmission, transaction verification
and data synchronization etc. More importantly, the underlying technology of
Bitcoin, called blockchain technology, has been a very useful tool in many areas,
like decentralized storage, crowd funding, equity trading, notary services etc.
This work is also an example of application of the blockchain technology in a
new area (Fig. 1).

Blockchain. The blockchain is the core data structure of Bitcoin, containing all
coin generation and transaction information. As its name implies, it is a chain of
blocks, starting from the very first block with ID number 0 to the latest block.
This chain of blocks serves as the decentralized ledger and it is maintained by
peers of the Bitcoin P2P network. Each block is chained to the previous block by
containing a hash of the previous block, and it also contains some transactions
in its header.

A blockchain can be permissionless like Bitcoin or Ethereum [6,7], or can be
permissioned like Hyperledger [11], which is maintained by privileged parties.
Permissionless blockchains can use consensus mechanisms like Proof of Work
(PoW), Proof of Stake (PoS) [12,13] and Delegated Proof of Stake (DPoS)
[14], while permissioned blockchains can use Practical Byzantine Fault Toler-
ance (PBFT) [15], which is more scalable and efficient.
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Fig. 1. Blockchain of Bitcoin: a block header contains a hash of its previous block
header, a time stamp, a Merkle root computed from all transactions in this block, the
current difficulty, a nonce which is the proof of work.

Transaction. A transaction is defined as follows:

T X = {TX ID, TX IDold; Input : S1,S2, . . . ,Sk;
Output : PKR1 ,PKR2 , . . . ,PKRk

},

where TX ID is the identity of this transaction, TX IDold is the preceding
transaction from which the Bitcoins are from, Si is the sender of the transaction,
Ri is the receiver and PKRi

is Ri’s public key. Each transaction references a
previous transaction from which it spends Bitcoins to new destinations. Our
certificate transaction has at most one preceding transaction, and it extends the
Bitcoin transaction with two fields: domain name and expiry time. All senders
must sign the transaction so as to be verified successfully by others.

3 Problem Definition

We attempt to tackle the vulnerability of single point of failure in traditional
PKIs using the blockchain technology. The new PKI should be able to effectively
detect misbehavior of compromised CAs and thereby prevent further damages. It
should also be simple and efficient in certificate maintenance. More importantly,
it must be highly secure since it is the basis for PKC-based security protocols.
In this section, we first describe the system model, assumptions and the adver-
sary model of our PKI system. Then the design goals of our proposed PKI are
presented.

System Model. In BKI there are four types of participants: CAs, blockchain
log maintainers (BLMs), certificate owners and clients. Figure 2 illustrates the
system architecture of BKI and their interactions in certificate management.

– Certificate Authorities. CAs are responsible for identity verification and
certificates issuance for users. Similar to ARPKI and DTKI, CAs are not
fully trusted and compromised CAs may generate fraudulent certificates to
impersonate users.
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Fig. 2. BKI system architecture and certificate management

– Blockchain-based Log Maintainers (BLMs). Blockchain-based log
maintainers (BLMs) are responsible for maintaining the blockchain, and each
transaction in the blockchain-based log is a certificate transaction. Just like
the Bitcoin blockchain, our blockchain-based log is also an append-only log,
and the log is synchronized among BLMs to ensure it is up to date.

– Certificate Owners. Certificate owners can be of any type user of the PKI,
e.g. domain owners or PGP users. They are also referred to as the users of the
PKI. They need to provide their credentials to the CAs to obtain signatures
for their public keys. Once the user certificate is added into the blockchain-
based log, the user can use it to construct secure connections.

– Clients. Clients are those who need to verify validity of certificates. For
example, a browser that needs to verify a SSL certificate when it visit a
SSL-secured web site is a client of BKI.

Adversary Model. We assume that the adversary has full control over the
communication channels between infrastructure entities of the PKI and users,
i.e. the adversary can eavesdrop, modify and inject any message in the system.
Furthermore, it can compromise and control some infrastructure entities, e.g.
CAs or log maintainers. But the number of CAs compromised by the adversary
is limited to a threshold k. However, the adversary is assumed to have limited
computation resources and cannot break the cryptosystem used in our proposal.
For the same reason, the adversary cannot produce proofs of work with extraor-
dinary speed, and thus cannot generate new blocks as many as possible.
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Design Goals. Our proposed scheme aims to achieve the following design goals:

– Resilience. The security of the new PKI should not rely on a single entity,
and any entity is not completely trusted unconditionally. In the case of any
entity being compromised, the new PKI should be able to detect its misbe-
havior immediately, and henceforth prevent any attacks, e.g. damages due to
fraudulent certificate issued by compromised CAs.

– Accountability. All certificate operations are public and accountable, and
everyone (users and certificate authorities) can check the blockchain to mon-
itor certificate issuance, update and revocation.

– Efficiency. Communication efficiency is of importance for delay-sensitive
applications such as web browsing. Hence it is important to reduce com-
munication delay for operations including certificate verification.

– Flexibility. CA selection and security parameters should be flexible in the
new PKI, so that the user can choose what they trust and prefer in certificate
management.

4 BKI: The Blockchain-Based Decentralized PKI

In this section, we first give an overview of the proposed scheme, which helps
readers to understand the underlying design principles. Then we describe our
BKI in detail.

4.1 The Design of BKI

BKI consists of the following algorithms: initialization, certificate issuance, cer-
tificate verification, certificate update, and certificate revocation.

Initialization. In the initialization phase, each CA generates its own public
key and private key pair (PKCA, SKCA), and publishes its public key on its
website (or other secure places) such that every user can verify its pubic key.
Blockchain log maintainers form a peer-to-peer network to maintain a blockchain
which contains transactions about certificates, just like the Bitcoin system.

Similar to the peer-to-peer network of the Bitcoin system, the P2P network in
our BKI has a specific communication protocol to exchange data on transactions,
blocks and the blockchain. It enables BLMs, CAs and users to verify transactions,
construct blocks and synchronize the blockchain with each other. The blockchain
in BKI is open to everyone, so that anyone can monitor the activities of BLMs
and any misbehavior will be detected at once.

Certificate Issuance. Certificate issuance is implemented by signing a trans-
action for a certificate requester, and this type of transaction is referred to as
certificate issuing (CI) transaction. Specifically, a user u first generates his own
public key and private key pair (PKu, SKu), and then request a certificate by
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asking k CAs to sign a transaction containing the public key PKu for him. k can
be system-wide parameter or a number chosen by u. A larger k means better
security, so it is required that k ≥ 3 for security.

An unsigned CI transaction is defined as follows:

CI = {TX ID,NULL,DN,ET; Input : CA1,CA2, . . . ,CAk;
Output : PKu} or {PKCA1 ,PKCA2 , . . . ,PKCAk

}tk},
(1)

where CAi is the identity of a CA, PKu is the public key of user u, DN is the
domain name and ET is the expiry time. DN and ET are not allowed to be
modified in any case. TX IDold is set to NULL as it is the first transaction. For
this transaction to be valid in a blockchain, all senders must sign the transaction.
The actual effect is that all CAs sign user u’s public key with their private keys,
meaning that the user’s public key is certified by these CAs. To this end, u
needs to approach each CA with his credential and each CA should check the
credential before signing the transaction. This can be done with a secure out-of-
band channel. The outputs include public keys, domain name and expired time
of user u and t CAs. It is demanded that either user u or any t out of the k
CAs can “spend” the output of this transaction. When the certificate needs to
be revoked, any t of the k CAs can do it since they are in the output of the CI
transaction.

The certificate issuing process proceeds as follows:

– Step 1. User u selects k CAs as his certificate issuing authorities. Then u
creates an unsigned version of the CI transaction of (1), and sends it to each of
the k CAs along with his credential cre for certification using an out-of-band
channel.

CI, cre (2)

– Step 2. Upon receiving the request from u, CAi verifies u’s credential, signs
the transaction with its private key, and then returns the signed transaction
to u.

SigCAi
(CI) (3)

– Step 3. After collecting all k signed transactions, u can merge SigCAi
(CI), i =

1, 2, . . . , k into a final CI transaction as showed below:

CI, {SigCAi
(CI)}ki=1. (4)

Then u publishes the CI transaction to the P2P network for verification.
– Step 4. If CI is verified successfully, BLM will check whether the domain

name is registered in the blockchain, and update the state of MPT by check-
ing new transactions in this new block only when the domain name is not
occupied, then CI will be added into a new candidate block waiting for con-
firmation by some consensus algorithm.
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– Step 5. Then the block containing the CI transaction will be appended into
the blockchain after successful consensus, and the block will be synchro-
nized throughout the P2P network. Subsequently, everyone can check the
blockchain and verify the CI transaction of u.

– Step 6. Finally, the BLM contacted by the user sends a response back to
the user. If the domain name is not occupied, this response will include the
header of the block containing CI and a proof-of-existence of CI in the block.
The proof-of-existence consists of the hash values on the Merkle tree which
can prove that CI is on the Merkle tree. Otherwise, user will receive an error
message.

Certificate Verification. This step utilize MPT [16] combines the advantages
of Patricia tree and Merkle tree. It can not only perform efficient keyword query
like Patricia tree, but also implement efficient verification of data at leaf nodes
like Merkle tree. Ethereum’s MPT uses the public keys of accounts as keys and
treat balances as values at leaf nodes, while we use SHA256(DomainName) as
keys, and treat the public keys and the expiration time as values at leaf nodes.

After a user, e.g. a domain owner, gets his certificate issued by BKI, the
certificate issuance is also recorded on the blockchain maintained by BLMs. If
a client intends to establish a secure connection with the domain server, then
he needs to ensure that: (1) the certificate is indeed recorded on the blockchain;
(2) the certificate has not been revoked. To this end, he follows the procedure
below:

– Step 7 and 8. The client sends a request to the certificate owner, who will
respond with the domain name of the domain owner. But whether this domain
is valid or has been revoked is unknown, so the client needs to contact BLMs
to verify this.

– Step 9 and 10. The client contacts BLMs to verify that a certificate corre-
sponding to the domain name is on the blockchain and has not been revoked.
On receiving the request, any BLM can check the MPT on whether a cer-
tificate corresponding to the domain name is on the MPT, and whether the
certificate is revoked or not. Finally, the BLM returns a proof-of-status of the
domain certificate to the client. The proof-of-status consists of the domain’s
certificate along with the hash values on the MPT which can prove that the
certificate is on the MPT.

Certificate Update. The user can update his certificate whenever he feels
necessary, without requesting help from any CA. This is achieved by the user
generating a certificate update (CU) transaction, which “spends” the output of
his CI transaction to his new public key. In order for the CAs to revoke the
updated certificate, the output of the newly generated CU transaction should
contain the same k CAs as the user’s CI transaction.
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Suppose user u has the following CI transaction:

CI = {TX ID,NULL,DN,ET; Input : CA1,CA2, . . . ,CAk;
Output : PKu or {PKCA1 ,PKCA2 , . . . ,PKCAk

}tk}
Then the CU transaction is as follows:

CU = {TX ID′, TX ID,DN,ET; Input : u;
Output : PK′

u or {PKCA1 ,PKCA2 , . . . ,PKCAk
}tk}

The transaction CU references the transaction ID, i.e. TX ID, of the trans-
action CI, indicating it updates the public key PKu in CI to PK′

u. Note that
there is only one sender u in the input of CU . The output must contain the
same CAs as those in CI, so that the same CAs can collaborate to revoke CU .
Furthermore, user u can continue to update his public key by creating a new CU
transaction in the same way.

Whenever the user’s public key is updated, his old pubic key is invalidated
and can not be used anymore. All the user’s public keys and their update ordering
are recorded in the blockchain. Anyone can check the blockchain to obtain one’s
latest public key.

Certificate Revocation. Certificate revocation is necessary when a user’s pri-
vate key is compromised. In this case, an adversary may use the user’s private
key for malicious purposes, or update the user’s public key to a new one so that
the user’s old public key certificate is invalidated. Thus, the user should seek the
help of CAs to revoke the old public key certificate.

At least t CAs from the output of the CI or CU transaction should col-
laborate to accomplish the revocation task. Suppose the t CAs that decide to
revoke the user’s old public key are CAi1 , CAi2 ,. . . , CAit , where i1, i2, . . . , it ∈
{1, 2, . . . ,m}. They generate the following certificate revocation (CR) transac-
tion to revoke the user’s certificate in CI:

CR = {TX ID′′, TX ID,DN,ET; Input : CAi1 ,CAi2 , . . . ,CAit ;Output : NULL}

5 Discussion and Analysis

In this section, we first compared BKI with ARPKI and AKI, and then analyze
its security.

5.1 Comparison with ARPKI and AKI

There are some similarities between BKI and AKI (also ARPKI). Both BKI
and AKI are based on a synchronized certificate log to manage certificate; both
utilize multiple CAs to reduce trust on a single CA and remove single point
of failure in CAs; Both employs multiple signatures to generate certificates for
users. However, there are a number of differences in design making BKI more
preferable.
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Certificate Management. Merkle hash trees (forming a chain) are used by
AKI and ARPKI to manage certificates, while certificate operations are recorded
as transactions on blockchain in BKI. AKI relies on the Merkle tree to add new
certificate, remove certificate and produce proof of absence of a certificate. In
BKI, the Merkle hash tree is only used to obtain the Merkle root of transactions
in a block, and Merkle hash trees from different blocks are independent from
each other.

Another difference between BKI and AKI is that revoked certificates are
removed from the latest Merkle hash tree in AKI, while revocation is realized as
a revocation transaction in BKI. In order to make certificate verification more
efficient, BKI employs Merkle Patricia Tree (MPT) to record the latest status
of certificates. Therefore, it is more efficient to check certificate validity in BKI.
Moreover, a complete life cycle of a certificate can be easily obtained from the
blockchain in BKI.

Trustworthy Timestamping. BKI also inherits one additional advantage of
the blockchain technology, trustworthy timestamping. Each block is generated
by the consensus algorithm in fixed intervals, thus all transactions in that block
are timestamped accordingly. These timestamps are trustworthy and can be used
to prove when a certificate is issued, updated or revoked. The Merkle hash tree
update interval in AKI is about one hour, while the block generation interval
can be seconds in BKI, i.e. the timestaming precision can be seconds in BKI.

Flexibility. BKI is more flexible than AKI and ARPKI in that parameters can
be chosen by certificate owners. The least number of CAs required for certificate
issuance is variable for different applications in BKI. The number needs to be
higher for sensitive applications like online banking, and it can be smaller for
online forums. The least number of CAs required for certificate update can also
be chosen differently for different applications.

5.2 Security Analysis

Due to space limit, we provide here an informal discussion on security of our
proposed scheme from the following aspects. Rigorous formal treatment of BKI
is left as our future work.

Compromise of CAs. We assume that a user must obtain k signatures from k
different CAs of the n CAs in the system. Suppose the adversary can compromise
a CA with probability p. Then the number of compromised CAs X follows
binomial distribution B(n, p). Then the probability of X ≥ k is as follows:

P (X ≥ k) =
n∑

m=k

Cm
n pm(1 − p)n−m
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The relationship between P and n, k is showed in Fig. 3. We can see that,
for any n, one can choose an appropriate k such that the P (X ≥ k) can be as
small as possible. Actually, the probability of that a CA is compromised is far
less than 0.05 in real life. So the security of BKI is guaranteed in the case of
comprised CAs when we choose multiple CAs to manage certificates.

Fig. 3. The probability of forging a valid certificate by compromising at least k CAs
for CA compromise probability p = 0.05.

Compromise of BLMs. The consensus algorithms used by BLMs in BKI have
significant impact on security of BKI. Accordingly, the adversary can take dif-
ferent attack strategy against different consensus algorithms. For the Proof of
Work (PoW), the adversary can launch “51%” attack only if he has more than
50% computation power of the whole system. For Practical Byzantine Fault Tol-
erance (PBFT), the adversary needs to compromise more than (N − 1)/3 BLMs
among all N BLMs. And when BKI uses Proof of Stake (PoS) or Delegated PoS
(DPoS), the adversary can launch the “51%” attack, which requires more than
50% resources of the system or controlling more than 50% delegators. Compared
with the attacks against CAs, these attacks may incur big cost, resulting less
economic incentives for the adversary. So the adversaries may mainly aim at
attacking CAs instead of BLMs.

Vulnerability Window. Vulnerability window is determined by the certificate
status update interval (i.e. ILS update interval in AKI or ARPKI). When the
certificate private key is leaked or the adversary succeeds in forging the certificate
with the help of enough compromised CAs, the system should revoke the bogus
certificate as soon as possible to reduce losses during revocation The vulnerability
window in BKI is determined by block generation frequency, which can be only
10 min with Bitcoin or 12 s with Ethereum. From this perspective, BKI is more
secure than AKI or ARPKI in that certificate status can be updated in seconds.

6 Implementation and Performance Evaluation

In this section, we describe our implementation of BKI and evaluate its perfor-
mance. We implement our proposal using Ethereum, an open-source blockchain
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Table 1. Average processing
time(in ms) for certificate opera-
tions (k = 3, t = 2).

Time Issue Update Revoke

TotalTime 2.385 2.387 2.386

SignTime 0.752 0.753 0.753

VerifyTime 1.633 1.633 1.633

Table 2. Average processing time(in ms)
for certificate operations with different
threshold.

Threshold Issue Update Revoke

k = 3, t = 2 2.385 2.387 1.593

k = 5, t = 3 3.997 4.006 2.391

k = 7, t = 4 5.766 5.766 3.190

k = 9, t = 5 7.413 7.408 3.990

k = 10, t = 8 8.007 8.003 6.386

system that extends Bitcoin blockchain with smart contract functionality, which
enables a simple and convenient implementation of BKI.

Implementation. BKI is implemented on Ethereum as a smart contract using a
special javascript-like language called Solidity. A user initiates the smart contract
to register with CAs, while CAs interact with the smart contract by sending
certificate issuance, update and revocation transactions.

Our implementation supports multiple CAs (CA1, CA2, ..., CAn) that pro-
vide certificate services to users. Each CA or user is represented by an address
associated with a public/private key pair. With the smart contract implementa-
tion, a CA can generates a certificate issuance, update or revocation transaction
that interacts with the smart contract. Note that each transaction is signed by
its originator, so the user’s certificate is issued, updated or revoked if enough
transactions are received by the smart contract.

Preliminary Experiment Results. We evaluate the performance of our pro-
posed scheme based on our implementation. Extensive experiments are con-
ducted on a laptop with Intel Core i5-4200U 1.60GHz*4 and 4GB RAM running
64bit Ubuntu 16.04. In each experiment, a user request his certificate from a
given number of CAs, which generate appropriate transactions for the user. The
time for certificate issuance, update and revocation is measured for evaluation,
while transmission time is not considered. We run the experiments for 100,000
times and average measurements are presented in the following two tables.

In Table 1, the average processing time shows the time for CAs to
issue/update/revoke a public key certificate for k = 3 and t = 2. k and t (t < k)
denote the threshold operated certificate, and k is used for Issue and Update,
and t is used for Revoke. TotalTime denotes the average time spent on signatures
and verifications. SignTime denotes the average time spent on signatures, and
VerifyTime denotes the average time spent on verification. Issue, Update, and
Revoke are the certificate operations k (or t) CAs execute. From the table, we
can see that a certificate operation (issue/update/revoke) requires around 2ms.

We provide results for the different value of k and t and give measurements as
the average over 100,000 runs. And we present the result in Table 2. The average
processing time shows the time for CAs to issue/update/revoke a public key
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certificate for different k and t. As k and t increase, the time cost also increases
accordingly, approximately linear to k.

Figure 4 shows the total time cost for certificates issued, updated or revoked
with different value of k and t for the different number of users. The abscissa rep-
resents the number of users, and the ordinate represents the total time required
for the corresponding number of certificate operations. For given k and t, as
the number of users grows, the total time required for certificate operation is
growing linearly.

(a) Certificates Issued (b) Certificates Updated (c) Certificates Revoked

Fig. 4. The total time that CAs operate certificates.

7 Conclusion

We have proposed BKI, a PKI built from the blockchain technology of Bitcoin to
address the vulnerability of traditional PKIs. We have provided in-depth discus-
sion and analysis on security and performance issues of BKI. A prototype of BKI
has been implemented on Ethereum blockchain, and comprehensive experiments
have been conducted to evaluate its performance. It has showed that certificate
operations can be accomplished in about 2 ms. We plan to work out a formal
security proof for our proposed scheme as the future work.
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Abstract. Return-oriented programming (ROP) and jump-oriented
programming (JOP) are two most common control-flow hijacking
attacks. Existing defenses, such as address space layout randomization
(ASLR) and control flow integrity (CFI) either are bypassed by informa-
tion leakage or result in high runtime overhead. In this paper, we propose
FRProtector , an effective way to mitigate these two control-flow hijack-
ing attacks. FRProtector shuffles the functions of a given program and
ensures each function is executed from the entry block by comparing the
unique label for it at ret and indirect jmp. The unique label is generated
by XORing the stack frame with return address instead of with a random
value and it is saved in a register rather than on the stack. We imple-
ment FRProtector on LLVM 3.9 and perform extensive experiments to
show FRProtector only adds on average 2% runtime overhead and 2.2%
space overhead on SPEC CPU2006 benchmark programs. Our security
analysis on RIPE benchmark confirms that FRProtector is effective in
defending control-flow hijacking attacks.

Keywords: Control flow hijacking · Control flow protection
Function-level randomization · Code reuse attack

1 Introduction

Control-flow hijacking [1] is one of the most common attack method today, which
modifies the target of control flow transfer instruction (e.g., indirect jump, func-
tion return instruction) to the code carefully crafted by the attacker. The tra-
ditional control-flow hijacking [1], code injection attack, redirects the control
flow to the code snippet (shellcode) which is injected by the attacker through
memory corruption vulnerabilities. This attack has been defeated by data execu-
tion prevention (DEP) [2]. Today, attackers are widely using code reuse attacks
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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(CRA) [3,4], which re-construct code snippets (gadgets) that already exists in
code segments to achieve the malicious purpose.

To counter control-flow hijacking, several hardening techniques have been
widely adopted, including stack guard (GS) [5], address space layout randomiza-
tion (ASLR) [6] and control flow integrity (CFI) [7–11]. Stack guard inserts an
unpredictable number between return address and local variables. This unpre-
dictable number is obtained by XORing a random value with the stack frame
value. ASLR increases the entropy of the process by randomizing the base
address of the memory segment. CFI constructs the control flow graph (CFG)
of the program statically and forces the program to comply with the rules of the
CFG. It marks the valid targets of indirect control flow transfers with unique
labels. Before each transfer instruction of the program, CFI checks whether the
label of the destination address is the same as expected.

However, the first two can be bypassed by BlindROP [12] or information dis-
closure [13], and the last one usually brings expensive runtime overhead. More-
over, having an accuracy static analysis is known to be hard. In this paper,
we present FRProtector , a more effective way to counter control-flow hijack-
ing. The purpose of FRProtector is to make it hard for attackers to guess the
expected code location and to ensure each function is executed from the entry
block. FRProtector first reorders the locations of functions. But this function-
level randomization is a mitigating method that can not provide deterministic
defense. Sometimes, it can be bypassed by well-structured information disclosure.
In order to obtain better security, for each function, a unique label is generated
by XORing the stack frame pointer with the return address. Then, FRProtector
adds runtime checks into the program to check whether the label generated at
the ret and indirect jump instruction is the same one.

FRProtector is similar to GS in some respects, but it achieves better security.
First, FRProtector can effectively detect attacks that do not leverage stack buffer
overflow to overwrite the return address as it uses return address to generate the
label, while GS cannot defend this kind of attack. In addition, FRProtector stores
the label in the register rather than storing it onto the stack, which increases
the difficulty for the attacker to obtain it. Finally, FRProtector also checks the
label before indirect jump instructions to defend control-flow hijacking attacks
that modify the registers used in indirect jump instructions.

Although the idea sounds simple, the key to a successful defense that can
gain acceptance by developers is a low runtime overhead in the resulting binary
executable. To achieve this goal, we have implemented FRProtector on LLVM
3.9. The extensive experiments show that FRProtector results in a small run-
time overhead of 2% and space overhead of 2.2% on average. FRProtector is
effective as it prevents all attacks that overwrite the return address in the RIPE
benchmark [14].

In summary, this paper makes the following contributions:

1. We propose FRProtector , an effective control-flow hijacking defense that
reorders the locations of functions and ensures a function is executed from
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the entry block by comparing the unique label for it at ret and indirect jump
instruction.

2. We perform extensive experiments to show FRProtector results in low run-
time and space overhead.

3. We compare FRProtector with CFI and GS. FRProtector achieves similar
security compared to CFI. While comparing with GS, FRProtector provides
better security.

The paper is organized as follows. Section 2 introduces the background
of control-flow hijacking attack and the thread model. Section 3 presents the
FRProtector. Section 4 describes the implementation of our solution on LLVM.
We demonstrate the efficiency of FRProtector with extensive performance eval-
uations and present the security analysis in Sect. 5. Section 6 compares FRPro-
tector with CFI and Stack Guard. Related work and conclusion are presented in
Sects. 7 and 8.

2 Background

In this section, we start with a brief summary of control-flow hijacking and then
define our threat model.

2.1 Control Flow Hijacking

Control flow hijacking is a kind of memory corruption attack. The attacker
redirects the program’s code pointer to the location of the shellcode or gadgets.
Shellcode is used for the code injection attack, while gadgets for CRA.

Code Injection Attack. The attacker can inject malicious code into the mem-
ory, and then redirect the control flow to the memory address of malicious code
through memory vulnerabilities. For example, an attacker controls the area near
the overflow area through a stack overflow vulnerability, and injects malicious
code into this area, then modifies the return address to the first instruction of the
malicious code. Now, it can be defeated by Data Execution Prevention (DEP).

Code Reuse Attack. Code Reuse Attacks (CRA) use code in the program or
libraries to construct code snippets (called gadgets), each of which has a specific
feature (e.g., writing a specified value to a fixed register). A gadget is a small
sequence of binary code that ends in an indirect instruction. By chaining dif-
ferent functional gadgets, an attacker can construct a code execution sequence
that implements the same functionality as malicious code. For example, by con-
structing the appropriate parameters, the return-into-libc attack, a kind of CRA,
redirects the control flow to the standard libraries to call a library function. At
this stage the most popular code reuse attacks are Return-Oriented Program-
ming (ROP) [3] and Jump-Oriented Programming (JOP) [4].
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ROP is an exploit technique that has evolved from stack-based buffer over-
flows. In ROP exploits, gadgets end in ret instructions. By carefully crafting a
sequence of addresses on the software stack, an attacker can manipulate the ret
instruction to jump to arbitrary addresses that corresponding to the beginning
of gadgets. ROP has proved to be Turing complete. JOP is similar as ROP,
excepting that JOP uses the indirect jump instructions to modify the program’s
control flow.

To complete the CRA, one of the challenges is to identify the exact address
of each gadget in the memory space. ASLR makes the attacker harder to get
these accurate addresses by randomizing the base address of the target program.
But information disclosure [13] or brute force can assist the attacker to find
the accurate address. For instance, Just-In-Time Code Reuse [15] uses memory
disclosure to bypass ASLR, and Blind-ROP [12] uses brute force.

2.2 Threat Model

The proposed defense, FRProtector , is aimed to protect a vulnerable application
against control-flow hijacking attacks, including ROP and JOP attacks. The left
of Fig. 1 shows an example of ROP attack. Function 1 has the input instruction,
and the attacker uses it to push the payload into the stack. Function 2 has an
overflow vulnerability, in which the attacker can modify the return address to the
payload. So, if Function 1 is called before Function 2, the attacker will hijack the
control flow successfully. An example of modifying the stack frame to construct
CRA is shown in the right of Fig. 1. Function 3 is similar to Function 1. Function
4 has a vulnerability which modifies the register of stack frame to the payload.
So, when Function 4 is called, the control flow will be transferred to the address
where the payload pointing to.

It seems that Stack Guard (GS) can counter both attacks mentioned above.
But if the attacker just overwrites the return address without the overflow vul-
nerability, GS cannot defend it. Moreover, such as func5 in Fig. 1, attackers can
modify the registers that are used in indirect jump instructions to point to the
location where the control flow will be transferred to. It is out of the range that
GS can protect. These four kinds of exploitations need to be considered. We can
divide them into three categories.
– The return address is redirected to the gadget address. It can be achieved by

stack buffer overflow or by modifying the return address directly.
– The stack frame is modified to the address where the payload (gadgets chain)

located in.
– The register used in the indirect jump instruction is modified to the gadget

address.

On the other hand, we assume attackers cannot modify the code segment,
because the corresponding pages are marked read-executable and not writable.
This assumption ensures the integrity of the original program code instrumented
at compile time. Meanwhile, the attacker cannot examine the memory dump of
the running process and is unaware of how exactly the code is randomized. Our
assumptions are consistent with prior work in this area.
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Fig. 1. Control-flow hijacking

3 FRProtector Design

To show how FRProtector achieves its objects in defending against control-flow
hijacking attacks, we present our design of FRProtector , an effective way to
detect the anomaly of control flow. In this section, we will begin with the design
overview, and then present its detailed design.

3.1 Design Overview

We design FRProtector to support multiple security mechanisms to defend
against control-flow hijacking attacks. The first one is function-level random-
ization. Under this mechanism, FRProtector reorders the locations of functions
to increase the entropy of the program code segment in memory. FRProtector
also supports control flow transfer protection. Randomization is a mitigating
method which can be bypassed by some well-structured information disclosure,
so we provide control flow transfer protection for deterministic defense. Under
such mechanism, FRProtector marks each function with a unique label gener-
ated by XORing the stack frame pointer with the return address. Before the
control flow transfer instruction (ret and indirect jmp) is executed, the program
calculates the unique label with the same method, and then checking whether
the two label is same. The overhead is lower if we compare the return address
and the stack frame respectively. But taking into account the information disclo-
sure, if the attacker gets the value of stored return address or stack frame in the
register, then he can carefully build comparison labels to bypass the defense. But
with the XOR method, it is very challenging that an attacker needs to change
the value of the stack frame and the return address at the same time to meet
the label which is calculated in the beginning of the function.

3.2 Function-Level Randomization

Today, most of the operating systems use ASLR to increase the difficulty of
attackers to guess the layout of memory space. ASLR changes the base address
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of the memory segment, making it difficult for an attacker to write the exploits
directly with the results of static analysis. However, with the information dis-
closure, the attacker can bypass the ASLR through a memory address leakage.
Function-level randomization achieves a more fine-grained code space layout
randomization granularity, making the attacker to get the entire memory layout
from memory leakage difficult. Thus, it mitigates the possibility of constructing
a CRA with the slightest disclosure of information and static analysis.

Function-level randomization is mainly to reorder the location of functions.
In an executable file, the code is stored in the code segment. When executing the
file, the entire contents of a segment are stored in the (virtual) memory space.
With ASLR, the offset of the code segment is different for every execution, but
the relative locations of functions in memory do not change at all. With the
function-level randomization, the relative orders of the functions will be dis-
rupted, and function-level randomization may add some irrelevant instructions
between functions such as NOP , which makes the entropy of the program to be
further increased. Figure 2 shows an example of function layout in memory after
function-level randomization. Therefore, with the help of function-level random-
ization, the gadget location obtained in the static analysis is no longer applicable.
Attackers need to use other means (such as a lot of information disclosure) to
get the gadgets.

Fig. 2. Function-level randomization

There is a trade-off between security and performance when choosing at
what time to do function randomization – reordering functions at loading time
gives better security in that every execution of the program results in a different
process memory image, but also adds more runtime overhead and bigger memory
usage. FRProtector chooses to shuffle functions at compile time as we do not
only depend on function randomization to defend against control-flow hijacking
attack.

3.3 Protection of Control Flow Transfer

Now researchers mainly use CFI to prevent control flow hijacking. But CFI has
been cautious about the problem of identification inaccuracy, compatibility and
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overhead. FRProtector does not need to construct the CFG of a given program
and it does not involve the correlation between functions, so that there is no
compatibility problem between protected function and unprotected function.

In order to protect the control flow, FRProtector uses two mechanisms.
First, in many cases, the attacker will hijack the control flow by modifying the
return address, so the first mechanism is to detect whether the return address is
changed. On the other hand, since the attacker may use other methods to hijack
the control flow such as modifying the destination of indirect jump, FRProtector
detects whether a function’s internal execution flow is from the starting point of
the function to the control flow transfer instruction.

Internal Control Flow Validation. As we know, a function consists of many
basic blocks. There is a control flow transfer instruction at the end of each basic
block. A function is executed from the entry block, and then the control flow is
transferred to other basic blocks or functions. The mechanism for the internal
control flow validation is to detect whether the control flow of the function
is performed from the entry block. Therefore, we insert a random value that
uniquely identifies the function at the entry block of the function, and check
whether the re-calculated random value at ret and indirect jmp equals to the
random value we inserted.

The random value is generated by XORing the stack frame pointer with
the value of the return address rather than with a random value that is imple-
mented in Stack Canaries [5]. This is because the control flow between functions
is affected by the return address, and the return address can be used as a factor
to see if the control flow is hijacked by modifying the return address.

Figure 3 shows the example that how function’s internal control flow is pro-
tected. First, when Function 2 is called, FRProtector gets the value of the stack
frame pointer and moves it into the register, and then XORs it with the value of
the return address at the entry block of Function 2. Then it fetches and stores
the value of the return address in another register and XORs it with the value
of the stack frame before ret. Finally, FRProtector verifies whether the two reg-
ister value are consistent. If true, the control flow will execute the ret, else the
check fail function will be executed. The detection point of this mechanism is
before ret and indirect jmp, so it can detect both ROP and JOP.

4 Implementation

We have implemented FRProtector on top of the LLVM 3.9.1 compiler infras-
tructure [16]. FRProtector works on unmodified programs and supports Linux
in 32-bit modes.

4.1 Function-Level Randomization

We implement the function-level randomization for FRProtector as an LLVM
pass. The LLVM pass operates on the LLVM Intermediate Representation (IR),
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Fig. 3. Function’s internal control flow detection

which is a low-level strongly-typed language-independent program representa-
tion. Although if we disrupt the location of the basic block the IR layer, the
binary program will not change with the back-end compiler optimization. But
the disruption of the location of the function will not be affected.

The function CloneFunction provided by LLVM can copy the information
of a function into another function. Therefore, we randomize the order of the
functions by copying them into other functions, deleting the original ones and
then re-creating the new ones. We use a replacement algorithm to reorder the
functions. For every function, a random number is created to decide the function
that exchanges to.

This kind of randomization mechanism can be used to cloud environment.
Multi-version of the randomization can make the applications have different
memory layouts between offline version and the server side version. Therefore,
it is harder for attackers to guess the addresses of gadgets.

4.2 Control Flow Transfer Protection

For control flow transfer protection, we use functions llvm.returnaddress and
llvm.frameaddress to get the return address and the value of the stack frame
pointer respectively. When using llvm.address instructions twice in ONE basic
block, llvm’s back-end always reuses the first address value that the llvm.address
has generated instead of getting the value from the stack twice. So in the imple-
mentation of this mechanism, we make a constant true transfer after retrieving
the value generated by XORing the return address with the stack frame.

For example, the verify password function has an unrestricted strcpy func-
tion, which can cause a buffer overflow to hijack control flow of the program.
This function with FRProtector shown in Fig. 4 adds a check operation to see
whether the XOR value is consistent with the value calculated at the beginning
of the function before the return instruction. As the buffer overflow can modify
the return address, so with our check at the end of the basic block the process
will find errors and jump to exit() to quit execution for avoiding further losses.
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entry:
 %0 = call i8* @llvm.returnaddress(i32 0)
 %1 = ptrtoint i8* %0 to i16
 %2 = call i8* @llvm.frameaddress(i32 0)
 %3 = ptrtoint i8* %2 to i16
 %4 = xor i16 %1, %3
 %5 = icmp ne i16 %4, %4
 br i1 %5, label %6, label %7

T F

%6:

 call void bitcast (void (i32)* @exit to void ()*)()
 unreachable

%7:

 %password.addr = alloca i8*, align 4
 %authenticated = alloca i32, align 4
 %buffer = alloca [44 x i8], align 1
 store i8* %password, i8** %password.addr, align 4
 %8 = load i8*, i8** %password.addr, align 4
 %call = call i32 @strcmp(i8* %8, i8* getelementptr inbounds ([8 x i8], [8 x
... i8]* @.str, i32 0, i32 0))
 store i32 %call, i32* %authenticated, align 4
 %arraydecay = getelementptr inbounds [44 x i8], [44 x i8]* %buffer, i32 0,
... i32 0
 %9 = load i8*, i8** %password.addr, align 4
 %call1 = call i8* @strcpy(i8* %arraydecay, i8* %9)
 %arraydecay2 = getelementptr inbounds [44 x i8], [44 x i8]* %buffer, i32 0,
... i32 0
 %call3 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([3 x i8],
... [3 x i8]* @.str.1, i32 0, i32 0), i8* %arraydecay2)
 %10 = load i32, i32* %authenticated, align 4
 %11 = call i8* @llvm.returnaddress(i32 0)
 %12 = ptrtoint i8* %11 to i16
 %13 = call i8* @llvm.frameaddress(i32 0)
 %14 = ptrtoint i8* %2 to i16
 %15 = xor i16 %12, %14
 %16 = icmp ne i16 %15, %4
 br i1 %16, label %17, label %18

T F

%17:

 call void bitcast (void (i32)* @exit to void ()*)()
 unreachable

%18:

 ret i32 %10

Fig. 4. verify password function with FRProtector

5 Evaluation

In this section, we perform a number of experiments to demonstrate the effec-
tiveness and efficiency of FRProtector . We experimentally show that FRProtec-
tor can effectively prevent all attacks that overwrite the return address in the
RIPE benchmark. We evaluate the efficiency of FRProtector on SPEC CPU2006,
and find average runtime overhead and space overhead are about 2% and 2.2%
respectively.

All experiments were performed on a desktop computer with i7-4770 CPU
running the x86 version of Ubuntu 16.04.

5.1 Effectiveness on the RIPE Benchmark

Runtime Intrusion Prevention Evaluator (RIPE) [14] is a benchmark test that
detects all buffer overflow attacks. The goals of these attacks are to create files,
Returntolibc and ROP. We find that there are 10 attacks which overwrites the ret
instruction can be successfully launched with ASLR. When we use FRProtector ,
we find that all these 10 attacks are not available. So, we can effectively prevent
the attack which overwrites the return address.
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According to the design of FRProtector, the ret and indirect jump are both
protected. So, if the attacker hopes to modify the destination address of the ret
or indirect jump instruction in the middle of a function, FRProtector can detect
it successfully.

5.2 Efficiency on SPEC CPU2006 Benchmarks

In this section, we evaluate the space overhead and the runtime overhead of
StackGuard (GS ) and FRProtector . We report numbers on SPEC CPU2006
benchmarks written in C and C++.

Space Overhead. Figure 5(a) shows the space overhead of our experiments
with the benchmark programs. As shown, GS and FRProtector have nearly the
same space overhead for most programs, it’s for two reasons. First, both GS
and FRProtector only insert several (about 4) instructions in a function, so the
variation of the program is hairlike. Second, FRProtector protects more function
than GS, but GS needs a function to create the random number. So, wane and
wax, the space required is similar. The average space overhead of FRProtector is
about 2.2%. For most programs, the space overhead experienced by FRProtec-
tor can be ignored. But some programs, such as astar and omnetpp, the space
overhead is more than 6%. There are two reasons. First, we add instructions in
every function, so the number of functions is an important factor. On the other
hand, the checking instruction is inserted before every ret and indirect jump
instruction, so the number of the transfer instructions also affects the space
overhead.

(a) Space overhead of FRProtector (b) Runtime performance of FRProtector

Fig. 5.

Runtime Overhead. The runtime overhead of FRProtector is shown in
Fig. 5(b). Results show that the average runtime overhead is about 2%. In [17],
we know that the average performance overhead should be less than 5% when
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the new method hopes to be used in industry. So, FRProtector could be adapted
to industry requirements. Astar experiences much higher runtime overhead than
other programs. We find this is due to the large number of short basic blocks
it has makes the number of checking instructions increase. Meanwhile, the two
registers FRProtector used to save the XOR value may reduce the number of
registers available in a function. However, in the 64-bit program, the number of
registers is increased, so the runtime overhead may be reduced.

Compared with GS, the runtime and space overhead of FRProtector only
increased by about 1%. But with the disassembly file of the program, we find
that GS protects less functions than FRProtector . It’s due to GS is designed to
protect functions that may have a stack vulnerability, while FRProtector hopes
to check every function. FRProtector is less expensive than GS when adding
protection to the same number of functions as FRProtector doesn’t need to
generate a random number and adds the similar number of instructions.

6 Discussion

In this section, we first compare FRProtector with CFI and Stack Guard, and
then discuss the compatibility and limitations of FRProtector .

6.1 Comparison with CFI

FRProtector can be seen as one CFI method by enforcing policies for indirect
jmp and ret instructions. For indirect jmp, FRProtector ensures the target
of indirect jumps can be the entry of any functions by validating the control
flow of a function must start from the entry block. The coarse-grained CFI
has the same policy too. For ret, FRProtector ensures it must return to the
corresponding caller by checking whether the target of a ret is overwritten.
Therefore, FRProtector can achieve similar security compared with existing CFI
approaches. Moreover, FRProtector does not need to analyze the source code or
binary of a given program statically to compute the CFG.

6.2 Comparison with Stack Guard

Both FRProtector and stack guard (GS) introduce a random number. However,
the role and the generation of the random number are different. Stack guard
get the value by XORing a random number with the stack pointer, then the
value is put between the return address and local variables in stack to detect
whether the local variables’ overflow overwrites the return address. The random
number in FRProtector is the value generated by XORing the return address
and the stack frame, then storing it in the register only. It can detect any attacks
which change the return address, not just overflow. In addition, FRProtector also
checks whether a function is executed from the entry basic block. GS just protects
functions that may have buffer overflow vulnerabilities, while the protection is
provided to all functions by default by FRProtector . FRProtector stores the



670 J. Fu et al.

label in the register to increase the difficulty for the attacker to find it instead
of storing it onto the stack. Finally, FRProtector also checks the label before
indirect jump instructions to defend control-flow hijacking attacks that modify
the registers used in indirect jump instructions.

6.3 Compatibility and Limitations

FRProtector is written on the IR layer of LLVM, and has nothing to do with
source code. So it is source-level compatibility. It means that the problems caused
by binary level protection such as function pointer errors do not occur in FRPro-
tector . Since the function is the base unit for FRProtector in which FRProtector
only checks whether the control flow is transferred from the first block, so it can
be compatible with legacy libraries, functions and programs that do not enforce
FRProtector.

The main limitation of FRProtector is it cannot defend against the control-
flow hijacking that does not use the return or indirect jump instructions. For
example, Counterfeit Object-Oriented Programming (COOP) [18] and Call Ori-
ented Programming (COP) [19,20] use virtual functions and function calls
respectively to achieve control flow hijacking. We leave it our future work –
a more complete mechanism to defend against control flow hijacking.

7 Related Work

7.1 Function-Level Randomization

We implement function-level randomization in LLVM to mitigate the informa-
tion disclosure and change the function’s address for randomizing the return
address. There are several techniques which have implemented function-level ran-
domization. Marlin [21] is a bash shell that can randomize the target executable
before launching it. It shuffles the functions in the executable code. Bin FR [22]
randomizes the binary directly, which adds random padding between functions
and randomizes the order of functions. The advantage of Bin FR is that it does
not rely on the source code.

7.2 Compiler Techniques Counter Control Flow Hijacking

Lots of compiler techniques have been published to defend control-flow hijacking,
especially to defend ROP. StackGuard [5] is an oldest method to prevent buffer
overflow attacks by inserting a canary (random number) between the return
address and local variables. G-free [23] is a compiler-based approach against
ROP which uses the return address or indirect call/jump. Return-less [24] is a
technique that aims to defend return-oriented rootkits (RORs). It replaces the
return address in a stack frame into a return index and disallows a ROP to
use it. It also proposes register allocation and peephole optimization to prevent
legitimate instructions that happen to contain return opcode from being misused.
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The stack pivot is an essential component in most ROP by modifying a stack
pointer to point to the payload. PBlocker [25] is a technique which asserts the
sanity of stack pointer whenever the stack pointer is modified to denial of stack
pivot. But the stack pivot check can be bypassed by an attack mentioned in [26].

8 Conclusion

In this paper, we present FRProtector, a novel defense against control-flow
hijacking. FRProtector implements the function-level randomization to increase
the difficulty of the attacker to guess the code layout and also to change the
return address of functions. On the other hand, FRProtector implements the
control flow transfer protection by checking whether the address of transfer
instruction has been modified, which can effectively protect the control flow
of the program. FRProtector has implemented in LLVM. We evaluate FRPro-
tector on SPEC CPU2006 and show that the average runtime overhead is 2%
and the space overhead is 2.2% on average.

Acknowledgment. Supported by the National Natural Science Foundation of China
(61373168, U1636107), and Doctoral Fund of Ministry of Education of China
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Abstract. Users are often educated to follow different forms of advice
from security experts. For example, using a password manager is consid-
ered an effective way to maintain a unique and strong password for every
important website. However, user surveys reveal that most users are not
willing to adopt this tool. They feel uncomfortable or even threatened,
when they grant password managers the privilege to automate access to
their digital accounts. Likewise, they are worried that individuals close
to them may be able to access important websites by using the password
manager stealthily.

We propose VaultIME to nudge more users towards the adoption of
password managers by offering them a tangible benefit with minimal
interference with their current usage practices. Instead of “auto-filling”
password fields, we propose a new mechanism to “auto-correct” pass-
words in the presence of minor typos. VaultIME innovates by integrat-
ing the functionality of a password manager into an input method edi-
tor. Specifically, running as an app on mobile phones, VaultIME remem-
bers user passwords on a per-app basis, and corrects mistyped passwords
within a typo-tolerant set. We show that VaultIME achieves high lev-
els of usability and security. With respect to usability, VaultIME is able
to correct as many as 47.8% of password typos in a real-world pass-
word typing dataset. Regarding security, simulated attacks reveal that
the security loss brought by VaultIME against a brute-force attacker is
at most 0.43%.

Keywords: Password manager · Auto-correction · IME
Usable security

1 Introduction

To keep their digital accounts safe, Internet users are advised to adopt strong
passwords that are hard to crack and guess [14]. However, long and random pass-
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words are also difficult for users to remember [11]. Further, the sizable number
of online accounts users need to manage has introduced an additional burden [5].
Using a password manager (e.g., 1password, lastpass and keepassdroid), which
saves user credentials into a database, is a highly recommended approach by
security experts. Contents in the credential database are encrypted for data
protection, where the encryption/decryption key is generated from a master
password only known to the user [5].

Unfortunately, adoption of password managers is behind expectations despite
the benefits apparent to security experts: (1) enhancing convenience by “auto-
filling” password fields on behalf of the user [14], and (2) improving security by
allowing for long and complex passwords. In addition, a password manager would
reduce the perceived need for insecure practices such as storing passwords in
clear-text as a memory help etc. Nevertheless, surveys indicate adoption figures
as low as 6% [2] and at most as high as 21% [4], which leave a lot to be desired.
Further, since password manager adopters are generally more security-savvy [4],
this leaves behind those users who would most benefit from the technology.

Prior survey research has shown a split between the perceptions of adopters of
password managers and those that hesitate [4]. While adopters echo the security
benefits lauded by experts, 78% of non-adopters perceive “some” or “a lot” of
individual risk from using a password manager [4]. Some factors for hesitation
are quite reasonable, and hard to address. For example, some people simply do
not trust providers of password managers [19], and software vulnerabilities may
lead to exposure of all user passwords to hackers [6].

Other impeding factors are more amendable to solution approaches. Specif-
ically, the threat of a lost phone or merely unmonitored access to the phone
may be perceived quite disconcerting if high value data and important services
such as social networking and online banking are left more vulnerable due to the
stored credentials in a password manager. In fact, otherwise trusted individuals
such as family members are often the cause of such invasions [18]. According to
a Javelin Research study, in 2014, there were 550,000 reports of identity theft
caused by someone the victim knew [7]. Taking advantage of the bond of trust,
individuals are able to more easily access family members’ digital accounts and
use the stolen identities to gain financial benefits [7,12,18]. Further, trust is
especially impeded when the provider stores the password file on the cloud [19],
rather than on the user’s machine. In addition, empirical work shows that people
prefer a high degree of control when completing form-fields with personal infor-
mation over having the same done by auto-fill [10]; we anticipate that a similar
finding could be made in the highly related context of passwords.

With our work, we want to provide a stepping stone to nudge people towards
adopting a password manager by providing an easy-to-understand benefit, while
limiting interference with their habituated usage practices. Further, we target
adoption hesitation due to the aforementioned reasons by allowing for a higher
degree of control by the user.

Concretely, we propose a mechanism to auto-correct passwords in the pres-
ence of minor typo errors by utilizing a client-side password vault. While the
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user is still required to input a “near correct” password to activate the auto-
correction feature, the approach allows users to apply longer and less trivial
passwords. At the same time, user frustration can be substantially reduced by
a tangible reduction of failed attempts. In this sense, our solution provides a
potentially sensible middle-ground for the adoption of password managers by
leaving full control over authentication in the hands of the user, and reducing
the threat of stolen data when a mobile device is lost or individuals with access
to the device betray the trust of the user.

While the first systematic work of password auto-correction appears in [3],
it is implemented on the server-side with the purpose of increasing the password
acceptance rate. The authors found that almost 10% of failed login attempts are
caused by simple, easily correctable typos that should otherwise be accepted.
Following this observation, the authors proposed an auto-correction framework
that can be integrated into existing password-based authentication systems on
the server-side. In particular, a set of correctors1 are first defined, and a received
password is adjusted by each of the correctors to generate a set of candidate
passwords. The login attempt is granted provided that at least one of the can-
didate passwords results in a password hash value that matches the one stored
on the authentication server. When it comes to the security of the typo-tolerant
authentication scheme, the authors show that it does not downgrade the security
of user passwords by offering a formal proof of a free correction theorem.

Different from previous server-side auto-correction, we aim to provide added
convenience of password typing on the client-side to further enhance user control.
We propose VaultIME, a mobile-centric password manager granting users control
of password input. VaultIME integrates the functionality of a password manager
into an Input Method Editor (IME), which is an app that displays a software
keyboard and enables users to enter text. In particular, VaultIME remembers a
user password on a per-app basis. If a password input interface is detected, the
auto-correction feature is activated, which replaces a mistyped password (within
an acceptable set) with the correct one.

The design goals of the new password manager are as follows. First, to mean-
ingfully reduce user frustration, the auto-correction mechanism should cover a
wide range of mistypes. Second, our mechanism should not downgrade pass-
word security even if an attacker has access to the phone and could perform a
brute-force attack to stored passwords. To achieve the first goal, we conducted
a mobile-centric password typing analysis. Based on it, we developed a new set
of password correctors, which differ from the previous work [3] and cover 26.3%
more typos. To achieve the second goal, we designed VaultIME to be compatible
with the free auto-correction theory of [3], which states that with a certain fil-
ter policy, auto-correction introduces zero security loss. To measure the security
loss, we ran simulation attacks to our auto-correction scheme. In the worst case,
we show that the security loss is 0.43%, assuming that a brute-force attacker has
10 tries. When configured with the filter complying with the free auto-correction
theory, VaultIME introduces zero security loss as expected. We have developed

1 For example, switching caps status, removing the last character, etc.
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a proof-of-concept prototype of VaultIME. With reasonable optimization, the
prototype results in no user-perceivable delay when auto-correcting passwords.
However, interface features could be added to increase awareness of the benefits
of auto-correction.

Contributions. Our work provides the following key contributions:

1. We propose a design for password managers addressing user concerns substan-
tiated in related work. Without losing control to the login process, our design
ameliorates users’ concerns for using password manager in a “too open” way
and maintains users’ habituated login process.

2. To cover a maximum range of typos, while maintaining tight control over
security, we analyze the nature of typos on a mobile platform in a systematic
way. Based on the analysis results, we develop a new set of correctors, and
run simulation attacks to measure the security loss introduced by VaultIME.

3. We implement a prototype of VaultIME as a normal Android IME app. There-
fore, VaultIME can be instantly deployed on existing mobile platforms.

2 Background

This section explains the concept and design of the input method framework in
the Android mobile OS as well as password managers.

Input Method Editor. Since API level 3.0, Android, the most popular mobile
operating system, provides an extensible input-method framework. By extend-
ing the InputMethodService class, developers are able to implement a cus-
tomized soft keyboard for better experience and capabilities. Besides, extending
the KeyboardView class allows for the rendering of a personalized keyboard lay-
out. These classes are packaged together to compose an Input Method Editor
(IME) which provides user control to enable users to enter text.

When a user inputs text for an app, the default IME pops up. The framework
allows an IME to completely control user input, including reading current input,
and making arbitrary modifications. These functions are supported by operat-
ing on an InputConnection class. In particular, method getTextBeforeCursor
and getTextAfterCursor can be invoked to read input before and after the
current cursor, while an app ultimately receives an input string determined by
the commitText methods.

Password Managers. Memorizing passwords has become a significant challenge
for users. Although difficult to crack by attackers, strong passwords that are
sufficiently long and random are also hard for users to remember [11].

Using a password manager is one of the most recommended approaches that
can free users from the duty of memorizing lots of complex passwords. Mainly
developed as a plug-in for web browsers, or as stand-alone web/smartphone
applications, password managers save user credentials into a database, and later
automatically auto-complete requests for the credentials on behalf of users [14].
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In order to ensure security of the credential database, a user controls access to
the password manager database via a master password. Specifically, contents
in a credential database are typically encrypted for data protection, where the
encryption/decryption key is generated from a master password [5].

3 Server Side Typo-Tolerant Checking Scheme

To allow for a direct comparison, our work follows the formalization of a pass-
word authentication system proposed in [3], and also applies the same model for
evaluating security loss in the presence of a brute-force attacker. To begin with,
we review some of the important concepts and notations.

3.1 System Model

Checking Passwords. Two phases are involved in a password authentication pro-
cess. In the registration phase, a user registers his password, e.g., w, with the
server, and the server stores another string, s, derived from a hash function mix-
ing a random salt value and w. In the checking phase, a user submits a password,
w̃, to the authentication server, and the server verifies the request by calculating
on w̃ and the stored value s. The request is granted only if it returns true. In an
exact checker (ExChk), the checker returns true only if the typed password w̃ is
exactly equal to w, i.e., w̃ = w.

Typo-tolerant Scheme. Contrary to an exact checker ExChk, a typo-tolerant
scheme runs a relaxed checker, which may return a true value for multiple strings
other than w. When a user submits w̃, the authentication algorithm, instead of
only examining w̃, examines a set of strings neighboring w̃. This set is repre-
sented by a ball of w̃ denoted by B(w̃). If any element in the ball passes the
exact checker ExChk, w̃ is accepted. Formally, the ball is derived by applying a
set of correctors (or transformation functions) C = {f0, f1, .., fc} to w̃.

Brute-force Attacker and Security Loss. Before formalizing a brute-force
attacker, we first model the password distribution and typo distribution. The
theoretical analysis of security loss introduced by a brute-force attacker against
a relaxed checker assumes an attacker with exact knowledge of these distribu-
tions.

We associate a distribution p to a set of all possible passwords. Therefore,
p(w) is the probability that a user selects a string w as a password. A user with
password w may type a password w̃ upon authentication. The probability of this
event is represented by τw (w̃). If w �= w̃, a typo occurred. Furthermore, we say
w̃ is a neighbor of w if τw (w̃) > 0.

Let {w1, w2, w3, ...} be a non-increasing sequence of passwords ordered
by their probabilities. λq =

∑q
i=1 p(wi) is called the q-success rate. The suc-

cess rate of an attacker A trying to guess a user’s password is denoted by
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Att(checker,A,q), in which checker is the checking algorithm, and q repre-
sents the maximum number of tries attacker A can make. For an exact checker,
it is obvious that Att(ExChk,A,q) ≤ λq. To achieve λq, a brute-force attacker
must choose the password with the highest probability in each round.

Regarding a relaxed checker, we define an optimal attacker to be able to
achieve the maximum password guessing probability. Formally, the probability
that an optimal attacker successfully guesses a password in q time is denoted
by λfuzzy

q = max
A

Att(Chk,A, q). Similar to the case of an exact checker, where

the attacker chooses the passwords with the highest probabilities, an optimal
attacker against a relaxed checker tries to guess a password w̃, so that the cor-
responding ball B(w̃) has the highest aggregate probability in each round. The
construction of such an optimal attacker is NP-hard. However, in [3], the authors
proposed a greedy algorithm to realize this attacker in practice. As a result, the
security loss caused by such a greedy attacker against a relaxed checker can be
calculated by Δgreedy

q = λgreedy
q − λq.

3.2 Secure Typo-Tolerant Checker

The näıve relaxed checker downgrades the security of an authentication system
in the presence of an optimal attacker, i.e., Δq > 0. However, there exists an
optimal relaxed checker, OpChk, that avoids causing security degradation (free
corrections), i.e., Δq = 0 [3]. When a user submits a string w̃ as password, the
relaxed checker creates a set of candidate passwords based on a set of correctors
C, and thereby a candidate set B̂(w̃) = {w′|w′ = fi(w̃), p(w′)τw′(w̃) > 0, fi ∈
C}. To guarantee security, the optimal checker OpChk further rules out some
of the candidate passwords by solving an optimization problem with a brute-
force algorithm. OpChk maximizes the password acceptance rate without losing
security. For the detailed explanation of the algorithm see [3, Sect. V.D].

3.3 Limitations of Server-Side Password Auto-Correction

Previous work is invaluable as it provides a theoretical basis for a secure typo-
tolerant authentication scheme, in contradiction to the common belief that
accepting more than the one correct password would significantly degrade secu-
rity. However, as shown in the paper, the proposed scheme cannot handle prox-
imity typos, which, however, are the most prevalent form of all typos (21.8%).
Their occurrence is even more pronounced for mobile clients (29.6%). Proximity
typos occur when a user accidentally hits a key adjacent to the intended one
(e.g., hitting an ‘a’ instead of an ‘s’). The reason for this limitation is that cor-
recting a proximity typo necessitates the coverage of a larger space of possible
passwords, and running the hash-based authentication algorithm for each possi-
ble password requires considerable computational resources. For enterprises, this
requires more infrastructure investments to enhance computing capability. For
customers, the introduced latency can be unacceptable.

Drawing on the specific situational context of the mobile environment and
ecosystem, we design VaultIME to overcome innate limitations of the previous
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work, and enable VaultIME to cover more typos. Specifically, implemented as a
password manager on smartphones, VaultIME is aware of the correct password.
Therefore, checking a candidate password is as simple as performing a string
matching, as opposed to the complex hash calculations needed by previous work.
Since computationally intensive hash computation is avoided, covering proximity
typos becomes possible.

4 Empirical Study of Typos on Mobile Devices

Prior studies have shown that strong passwords are difficult to type [8,9,16].
For example, users could easily mistype a character by slipping to an adjacent
position on the keyboard, or they may forget to switch off the caps lock status.
These human problems are further exacerbated on mobile devices. In particular,
the cramped, and less tactile virtual keypad, which is widely used on today’s
mobile phones, has a negative influence on error-free typing [13,15]. As a result,
it has been reported that the error rate is 8% higher for text typed on virtual
keypads than for physical keyboards [13].

To understand the most frequent types of typos on mobile devices, we need
to analyze a sizable number of real-world password-typing observations. For
this purpose, we work on publicly available password-typing datasets from the
previous work [3], and particularly focus on the data collected on touchscreen
mobile devices.2 In this section, we first briefly introduce these datasets. Then,
we present our analysis results. Our results uncover several new findings, which
guide us in designing new mobile-centric auto-correction schemes.

4.1 Password-Typing Dataset on Touchscreens

In [3], the authors carried out two experiments on the Amazon Mechanical Turk
(MTurk) platform to collect typo records during the entering of passwords. One
experiment collected data from either PC or mobile platforms, while the other
only collected data from mobile devices with touchscreens. In collecting the latter
dataset, human-intelligence tasks (HITs) were assigned to participants over the
web, where each participant was required to type 10–14 passwords in an HTML
password input box within 300 s. The participants could only use touchscreen
mobile devices. The results were later verified by the user-agent field in the
HTTP header of the workers’ browsers. The passwords were sourced from the
RockYou password leak [17], one of the largest leaked password databases. In
total, 24,000 password-typing records were collected by 1,987 HITs.

4.2 Understanding Typos on Mobile Devices

In this section, we explain our findings by analyzing the dataset mentioned above.
We first list top typos and their corresponding correctors in Table 1. A corrector
2 The dataset collected on touchscreen devices can be downloaded from https://www.

cs.cornell.edu/∼rahul/data/mturk15-touchonly.json.bz2.

https://www.cs.cornell.edu/~rahul/data/mturk15-touchonly.json.bz2
https://www.cs.cornell.edu/~rahul/data/mturk15-touchonly.json.bz2
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Table 1. Top typos and their corresponding correctors.

Typo explanation Typo Corrector

Proximity errors, i.e., hitting an adjacent key regardless of
the intended keyboard statusa, e.g., typing an ‘a’ as an
‘S’

proxb n/a

Proximity errors with correct status, i.e., hitting an
adjacent key in the same keyboard status with the
intended one, e.g., typing an ‘a’ as an ‘s’

prox-rs rep-prox-rs

All letters are flipped swc-allb swc-all

First letter is flipped swc-firstb swc-first

An extra character is added to end ins-lastb rm-last

An extra character is added to front ins-firstb rm-first

Forget pressing shift for symbol at the end n2s-lastb n2s-last

Miss a character at an arbitrary location rm-any ins-any

Insert an extra character at an arbitrary location ins-any rm-any

An arbitrary letter is flipped swc-any swc-any

a: The keyboard statuses are “normal”, “capitalized”, and “symbolized” in the AOSP
keyboard.
b: The definition of the typo is also used in [3].

Table 2. Top typos that occur in the mobile dataset and general dataset.

Environment Typo percentages

Any prox swc-all ins-last swc-first ins-first n2s-last others

21.8 10.9 4.6 4.5 1.3 0.2 56.6

Mobile prox-rs rm-any ins-any swc-all swc-any ins-last others

21.4 20.4 10.8 8.0 7.6 1.2 32.6

1. The “Any” row covers the results drawn directly from [3]. The dataset is
collected from participants with PC or mobile devices.
2. The “Mobile” row covers the results obtained from mobile devices only.
3. The sum of all items in the mobile environment is greater than 1. This is
because our definitions of typos are not exclusive. For example, ins-last is a
special case of ins-any.

is the reverse operation of the corresponding typo. It returns a set of passwords
that could potentially contain the intended one. For example, corrector rm-last
removes the last character in the received password, which effectively corrects
typo ins-last. While the definitions of many correctors can be found in work [3],
the newly introduced ones are quite self-explanatory. For example, rep-prox-rs
means for each character, replace it with each of the adjacent ones in the correct
keyboard status.

In Table 2, we show top typos that occur in both the mobile and general
datasets. Let us first have a look at the “any” row drawn directly from previ-
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ous work [3]. Their solution can handle all typos except for prox and others,
resulting in a coverage rate of 21.5%. However, prox alone contributes 21.8% of
all typos, which the previous solution does not address. We have discussed the
reason why previous work cannot handle proximity errors in Sect. 3.3.

We independently conducted a typo distribution analysis on the mobile
dataset, the results of which are shown in the “Mobile” row in Table 2. Our
study differs from the previous work as we are more concerned with specifics
in the mobile environment. We differentiate between a virtual keyboard and a
physical one, and pay more attention to the respective influences on typing.

We explain our new findings in the following. First, we find that PC users
frequently make proximity typos with incorrect keyboard status, such as typing
‘a’ as ‘S’. This can be explained by the combined effect of finger slipping and
unnoticed caps status. However, mobile users seldom make such mistakes. The
reason is that a virtual keyboard typically reflects the keyboard status directly on
the display of each key, which a user is likely to notice. Therefore, we define a new
mobile-centric proximity error, i.e., prox-rs. The difference to the general prox
is that prox-rs only considers proximity errors with correct caps and symbol
status.3 Therefore, typing ‘a’ as ‘S’ or ‘@’ is not considered as a proximity error
in our analysis4.

Apart from proximity errors, we found that mobile users frequently miss
(20.4%) or insert (10.8%) a character at arbitrary locations. In addition, they
may also ignore capitalization, either completely (8.0%) or only for a single letter
(7.6%). Compared with the “any” environment, where the users frequently add
an additional character, mobile users are more likely to miss a character. Indeed,
unintentional extra key-strokes can happen due to inertia in high-speed input
on physical keyboards. Among these typos, we found that correcting a missing
character is challenging, i.e., a huge number of password candidates would need
to be examined. This number is roughly estimated as the number of all possible
characters (over 100) multiplied by the length of a password. Therefore, we do
not consider this kind of typo in this work. It is also interesting to mention that
both of swc-all and swc-any contribute substantially to mobile typos. While
the previous work only handles swc-all, we argue that people are equally likely
to flip only one letter, which has already been validated by our experiments.
In the next section, we show how we auto-correct these typos. In total, our
correctors can handle as many as 47.8% of the typos, which is the union of typos
of type prox-rs, ins-any, swc-all, and swc-any.

5 Password Auto-Correction for Mobile

VaultIME implements a password auto-correction scheme on the mobile client
side. Instead of letting the authentication algorithm on the server judge whether
3 In the default AOSP keyboard layout, there are three statuses (“normal”, “capital-

ized”, and “symbolized”), which map the letter ‘a’ to ‘a’, ‘A’, and ‘@’ respectively.
4 As a result, the results of the previous work exhibit a higher proportion of proximity

error (29.6%) than measured with prox-rs (21.4%) on the same raw data.
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a password should be accepted or not, VaultIME directly auto-corrects the pass-
words on the mobile client’s side if only minor typos occur. To achieve this,
VaultIME, as a special IME, stores the correct password for users on a per-app
basis, and runs a password checker as defined in Sect. 3. Before a typed pass-
word is fed to the corresponding app, the checker checks the received input. If
the checker returns true, the stored correct password is forwarded to the app,
otherwise, the received input is forwarded as is.

More specifically, after the user is done with password input, the checker
in IME first checks the received password w̃. If it matches with the correct
password, w, recorded in the password vault, the IME leaves the password as is
and returns. Otherwise, a ball B(w̃) of candidate passwords is derived from a
predefined transformation function set C = {f1, ..., fc}, where fi is a corrector
defined in Sect. 4. Then, w is compared with each element in the ball. If a match
is found, w̃ is replaced by w; otherwise, w̃ is left as is.

This section first defines the used transformation function sets. Then, we
present how these functions influence the ball size under different checking poli-
cies. A checking policy is a filter applied to the candidate ball obtained by the
näıve relaxed checker. A stricter filter leads to a reduced ball size, but retains
more security of the password. Our results show that the optimal checker, OpChk,
does not reduce the ball size significantly. Since OpChk has been proven to lose
zero security of a password, our system can achieve both high security and high
usability. Finally, we also run simulation experiments to demonstrate that our
scheme is secure against a greedy attacker.

5.1 Transformation Function Sets

A transformation function is also called a corrector, which is the reverse opera-
tion of a typo, and can be used to recover the correct password. We have listed
top-rated mobile correctors in Table 2. Based on their capabilities (i.e., coverage
of typos) to correct typos, we define four transformation function sets. They are
Ctop1 = {rep-prox-rs}, Ctop2 = Ctop1 ∪ {rm-any}, Ctop3 = Ctop2 ∪ {swc-all},
and Ctop4 = Ctop3 ∪ {swc-any}, respectively.

5.2 Ball Size Estimation

Table 3. Average ball size for all RockYou
passwords over different checker policies and
transformation function sets.

Ctop1 Ctop2 Ctop3 Ctop4

Chk-All 59.25 69.61 70.54 79.16
Chk-wBL 59.24 69.60 70.53 79.14
Chk-AOp 53.80 58.77 57.87 64.06

In [3], three checking policies are
discussed. In Chk-All, the algo-
rithm tries all the derived pass-
words in the ball B(w̃). In Chk-wBL,
the ball is filtered by a predefined
blacklist that is comprised of a set
of frequently used passwords. In
Chk-AOp, based on empirical distri-
butions of passwords and typos (p, τ), a brute-force algorithm is executed to
filter the ball. The algorithm maximizes the password acceptance rate without
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losing security against a greedy attacker who knows both the distribution (p, τ)
and the algorithm of the checker.

To understand the effect of policies applied to the ball, we run a simulation
to calculate the averaged ball size after filtering. As shown in Table 3, the ball
size decreases when policies are applied (Chk-All can be viewed as an all-pass
policy), and increases as more transformation functions are added to the set
C. Each increase is a reflection of the added corrector. From Ctop1 to Ctop2, we
observe an increment of around 10, indicating that rm-any produces 10 password
candidates, which conforms to the length of a password. From Ctop2 to Ctop3, only
one new password is produced. This is expected because swc-all is a one-to-
one mapping. Lastly, swc-any produces less than 9 new passwords as there are
around 9 letters in a password on average.

Statistically, all the checkers in Table 3 significantly increase the number of
candidate passwords to be checked. On the one hand, this indicates that our
checkers could achieve a high auto-correction rate, because more passwords are
examined in each query. On the other hand, security could be degraded because
an attacker gains more information about the real password in each query. Inter-
estingly, from Chk-All to Chk-AOp, we do not observe an abrupt shrinkage of
the ball size. Since Chk-AOp leaks no more information about the real password
than an unmodified exact checker leaks to an optimal brute-force attacker, this
proves that our checker can achieve both a high auto-correction rate and a low
security loss. In the next section, we show results from our simulation experi-
ments. We emulate a greedy attacker who has complete knowledge about the
implementation details of the used typo-tolerant checker.

5.3 Security Evaluation

We begin by clarifying the threats we consider in this work. Then, we show the
measured security losses under a set of simulated attacks.

Threats in Scope. We consider an attacker who has physical access to an unlocked
victim phone. This is particularly likely to happen considering an in-house
betrayer. However, we do not consider a fully compromised mobile OS. In a com-
promised mobile OS, the attacker may retrieve user’s credential data (including
all keystrokes) remotely.

We consider a brute-force attacker who is given q chances to query the authen-
tication system. Such an attacker has been formalized in Sect. 3.1. Specifically,
the attacker follows the greedy algorithm mentioned in Sect. 3.1, and the security
loss can be represented by Δgreedy

q = λgreedy
q − λq.

Results. In Fig. 1, we show the security loss of each checker for different query
numbers. We set the upper bound of q to 10, because it is a reasonable upper
bound for queries given observations in practice before a device is locked. Mobile
devices often enforce a long waiting time if consecutive failed login attempts are
detected.
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(b) Chk-wBL.

Fig. 1. Security loss measured for different checkers and query numbers. Note that the
security loss for Chk-AOp is zero, so we omit it for the sake of fine typography.

It is obvious that the security loss increases with q. However, Chk-AOp remains
zero throughout our experiments, because it is an optimal checker that suffers no
security loss in theory. For Chk-All and Chk-wBL shown in the figure, there is a
clear gap between the transformation function set Ctop1 and others. This indicates
that the security loss caused by applying rep-prox-rs alone can be quite limited
– as low as 0.085% (λgreedy

q = 0.02937 and λq0.02852) in the worst case when
q = 10 using checker Chk-All. This can be explained by the fact that a proximity
typo often leads to low probability passwords, which do not increase the overall
aggregate probability of the attacker’s ball. For example, when checking the
password ‘password’, rep-prox-rs will derive a huge ball containing candidate
passwords such as ‘oassword’ and ‘psssword’, which are rarely used by humans.
On the other hand, applying swc-all will obtain ‘PASSWORD’, which is also a
frequently used password. In the worst case, the security loss is 0.427% (λgreedy

q =
0.03279 and λq = 0.02852) when q = 10 and using checker Chk-All under the
transformation function set Ctop4.

6 Implementation

We have implemented a proof-of-concept prototype of VaultIME for the Android
OS. A user is able to customize the transformation function set ranging from
Ctop1 to Ctop4, and the checking algorithms among Chk-All, Chk-wBL, and
Chk-AOp.

The prototype uses the standard QWERTY US keyboard layout. It auto-
matically detects the attribute of the current TextView, and inserts an “AuCo”
key in the bottom right of the keyboard for the YPE TEXT VARIATION PASSWORD
and YPE TEXT VARIATION VISIBLE PASSWORD input types. VaultIME records a
new password entry when the “AuCo” key is pressed. We use the package name
of a login app and the account information as the key to index the password.
Once a correct password has been recorded, subsequent login attempts will go
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through the typo-tolerant checker to auto-correct possible typos. As with tradi-
tional password vaults, the file storing passwords is encrypted by a secure master
key [1]. The master key is randomly generated, and managed by the Android
KeyStore provider.

7 Future Work

In the future, we plan to conduct user studies to investigate the usability of the
VaultIME app as well as adoption intentions in detail. Specifically, by empirically
evaluating how users interact with our system, we aim to deliver a more usable
and secure user experience for mobile phone users. Moreover, we are interested
to learn to which degree users prefer our method to the traditional auto-fill
password manager, whether users feel less threatened, have less frustration, and
whether the correction process fits users’ habituated login process.

In evaluating the security loss imposed by VaultIME, we mainly focus on a
brute-force attacker who attempts to maximize the possibility coverage in each
guessing. However, given that some personal data is publicly available (e.g., user
name, birthday, etc.), particularly to family members or close friends, a tar-
geted guessing attack could be more efficient [20]. Building an attack model
which incorporates personal information into the on-line guessing and designing
a new free auto-correction schema specific to this model constitutes an interest-
ing research topic.

8 Conclusion

In this paper, we present VaultIME, a new password auto-correction scheme for
mobile platforms. Our work ameliorates concerns of password manager users that
they lack control over the use of their credentials. We achieve this by requiring
the user to type a “near correct” password, which is automatically replaced with
the correct one.

In designing the auto-correction policies, we conduct a mobile-centric pass-
word typo analysis, and are able to categorize the observed typos occurring
while using virtual keyboards. Based on these empirical observations, we are
able to develop a customized set of password correctors, which can cover as
much as 47.8% of the detected password typos on mobile systems. This sub-
stantial coverage is made possible through a client-side implementation of our
password-correction scheme as an app which allows for the treatment of the
most common typographical errors, i.e., proximity typos. Moreover, the pro-
posed auto-correction scheme is secure against a brute-force attacker under the
formal model proposed in [3]. Our experimental results reveal that in the worst
case, our scheme causes a security loss of 0.43%, indicating our auto-correction
scheme has a high level of security robustness.
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Abstract. Multi-layer distributed systems, such as those found in cor-
porate systems, are often the target of multi-stage attacks. Such attacks
utilize multiple victim machines, in a series, to compromise a target asset
deep inside the corporate network. Under such attacks, it is difficult
to identify the upstream attacker’s identity from a downstream victim
machine because of the mixing of multiple network flows. This is known
as the attribution problem in security domains. We present TopHat,
a system that solves such attribution problems for multi-stage attacks.
It does this by using moving target defense, i.e., shuffling the assign-
ment of clients to server replicas, which is achieved through software
defined networking. As alerts are generated, TopHat maintains state
about the level of risk for each network flow and progressively isolates
the malicious flows. Using a simulation, we show that TopHat can iden-
tify single and multiple attackers in a variety of systems with different
numbers of servers, layers, and clients.

Keywords: Multi-stage attacks · Attack attribution
Software defined network · Moving target defense

1 Introduction

Multi-stage attacks (MSA) have plagued distributed system administrators for
decades. In these attacks, multiple computers are used simultaneously to breach
a particular target, and attackers often rely on a series of privilege escalation
attacks to circumvent access controls protecting assets. One of the most chal-
lenging aspects of MSA comes as an attribution, mixing, or traceability problem
[4]. Defenders wish to know what particular network traffic resulted in a privi-
lege escalation, to prevent it in the future, but from a network perspective, the
traffic output at each stage is not associated with any particular input. Conse-
quently, defenders cannot distinguish legitimate from malicious network traffic,
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and identifying or disrupting vulnerabilities remains a daunting task. In this
paper we present TopHat (TOPology-based Host-level ATtribution), a tech-
nique for identifying malicious users and their network traffic.

Multi-stage attacks operate on top of distributed systems where each dis-
tributed layer has different access privileges to sensitive business assets. An
attacker must penetrate multiple layers to access some protected information, a
crown jewel. As the attacker progresses, she generates some intrusion alerts due
to some traffic with a malicious signature passing through intrusion detection
systems (IDS). These alerts, while useful for finding single stage attacks, are less
useful in the MSA because the {source, destination} pairs are both machines
inside of the distributed system, instead of an external attributable source (as
would be the case for an Internet-facing web server, for example). Consequently,
there is no obvious relationship between alerts deep in the distributed system
and the outsider, and this problem is referred to as the attribution, traceback
or un-mixing problem [3,20]. In this context, an attributable alert is one which
identifies an external source directly, and an unattributable alert is one which
identifies no source or identifies an internal or intermediate source, which cannot
actually be the attacker.

Existing solutions [1,2,5,14–16,19] to the attribution problem have a few
common shortfalls that TopHat addresses. First, solutions such as [1,14,16]
rely on attack graphs to perform alert inferencing, where existing relationships
between alerts are known via expert system knowledge. For example, an expert
would claim that a port scanning alert deep in the distributed system follows
from a wrong password alert in the Internet-facing layers. In practice, such rela-
tionships are complex, numerous, and difficult to derive. Furthermore, it is chal-
lenging to keep such information updated because systems are dynamic with
new vulnerabilities being discovered, new digital assets being brought online,
and new users being added. TopHat solves this issue without relying on attack
graphs, thus providing a more general, robust, and adaptive solution to solv-
ing the attribution problem. Second, solutions such as [2,5,15,19] rely on causal
links between stages or layers of the MSA. For example, inside the system, it is
known that input I1 causes output O1, and these relationships are logged and
analyzed so that network traffic can be effectively tagged and tracked in the
system. This approach relies on application support, however, to provide the
causal links. TopHat does not rely on such information from the underlying
application and can identify attackers without this causality link.

TopHat is a network-based solution to the attribution problem. We rep-
resent incident flows from external clients to alert sources in a directed acyclic
graph, where each node in the graph models the mixing property of intermediate
servers and softwares. Some of these flows are malicious, and they generate one
or more alerts at various nodes, and at various depths, on its path. For each alert,
we generate and track partial attribution for all clients that can reach the alerted
node as a stateful metric called risk factor, or equivalently, risk value. TopHat,
taking into consideration current risk for each network flow, adjusts the servers
that the flow will pass through, using a process called shuffling [10]. Through
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the shuffling process, TopHat isolates the suspect flows and keeps adjusting the
risk factor. With a sufficient number of shuffles, the risk factor of the malicious
flows exceeds a user-set threshold, i.e., the cumulative partial attributions for an
attacker reaches a level of complete attribution, and the attacker is identified.1

In TopHat, we utilize detection techniques that resemble moving target
defenses (MTD) [8], through our shuffling algorithms. Using software defined
networks (SDN) [12], TopHat is able to manipulate or re-route the network
flows to desired nodes that in turn helps in identifying the attacker in the dis-
tributed system. Using SDN-based load balancers [18], entering flows from exter-
nal clients are mapped to any replica of an entry-level server in the distributed
system. Then, whenever an alert is generated, by an IDS placed at a replica of
any server in the system, some risk is attributed to all flows that are passing
through that server replica. Using two different approaches corresponding to two
different variants of TopHat, it tracks this risk and assigns clients so that the
malicious flows have progressively increasing risk factor. Finally, those with risk
values above a user-settable threshold can be isolated, blocked, or studied in a
honey-pot.

Using this approach, TopHat is able to identify a single attacker in a sys-
tem of 1000 clients and 3 servers at the entry layer in 6 shuffles, requiring 1000
seconds whenever the attacker repeats the attack for approximately every 150
seconds. In the same system with 4 attackers, all of the attackers are identified
in 27 shuffles. We also show that the same system with 10 attackers, the shuffling
mechanism requires the attacker to repeat their exploits over 1000 times before
gaining access to the crown jewel, thus significantly increasing the attacker’s
efforts under TopHat. Finally, we demonstrate how TopHat impacts the legit-
imate clients, showing that after 3–4 shuffles a majority of clients can retain
continuous connectivity while the attacker is still identified.

The main contributions that we present in this paper are:

1. TopHat can attribute multi-stage attacks on a distributed system to a single
external source, without relying on attack graphs or modifying the server
softwares.

2. The MTD-style defense significantly increases attacker’s effort, and can sup-
port identification of multiple simultaneous attackers.

3. TopHat can support high availability for legitimate clients while still iden-
tifying attackers in the system.

2 Background and Assumptions

2.1 System Model

TopHat is designed to protect a distributed system where servers exist at mul-
tiple layers in a distributed system as shown in Fig. 1. Each layer has multiple

1 Terminology clarification: In this paper, we will use the term “attacker” synony-
mously with “attacking flow” or “malicious flow”.
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instances of one specific kind of server for load balancing and is connected to
the next layer by an open flow switch and managed by a SDN Controller [6].
As a running example, we consider a web-based e-Commerce system operated
by a publicly traded company. External clients access a web front end instance
(layer 1) that connects to a database back end to store orders, interact with
inventory, and otherwise manage transactions. In layer 3, a corporate reporting
server analyzes the database to create sales reports, track hot products, and
manage inventory at a macro level. It interfaces with the database layer and
stores reports on layer 4, the corporate file servers. Inside of the corporate file
server is an upcoming earnings statement for the next quarter (the crown jewel),
and its early release would allow for insider trading since the company’s perfor-
mance, relative to projections, can have a significant impact on stock prices. The
attacker(s) wish to ex-filtrate the earnings report.

Fig. 1. A sample distributed system that can be protected by TopHat.

2.2 Network Structure

At its core, TopHat relies on intrusion detection systems to provide the alerts
that drive its identification techniques. In this paper we make a simplifying
assumption that each server instance has an IDS to remove resource management
constraints.

Legitimate Client Model: We define a legitimate client as a system user
that has no malicious intent and is using the target application for its designed
purpose. The client connects to the application by sending a request to the
outward facing service IP address. Further details on this process are described
in Sect. 4.4.

Attacker Model: The attacker begins as a normal client and starts exploring
for vulnerabilities in the outward facing layer 1. Once an exploit is found in
layer 1, the attacker stages an attack on layer 2 by leveraging elevated access
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privileges that she has gained at the outer layer 1. If an ongoing attack is flagged
by an IDS at any layer then TopHat is activated. If the attack is undetected
by any of the IDS, then it may proceed to the next layer, until reaching the
crown jewel. TopHat works by making a few assumptions about the nature of
the multi-stage attackers:

– Persistent Attacks (PA) if a server is reset, or the attacker connects to a
new server, then the attack must be repeated.

– Strong Alerts (SA) the attacker will generate at least one strong alert
during a MSA for which TopHat responds. The strong alert is known to be
part of an attack with high certainty (e.g., brute force attacks, known exploit
signatures, or other high priority2 alerts).

3 Solution Overview

TopHat utilizes software defined networks (SDN) and intrusion detection sys-
tems (IDS) to monitor and attribute alerts to specific attackers. At its core,
TopHat sits along side a SDN controller such as an OpenDaylight [13] where it
can observe the network flows and make decisions about changes to the network.
The algorithm chooses which clients will be connected to which outward-facing
servers, and which downstream servers are connected to which upstream servers
in the distributed application. TopHat’s algorithm operates by maintaining a
risk factor for each connected client and then modifying that risk factor when-
ever alerts are generated. As more alerts are generated, the attacker’s stateful
risk factor is increased until she can be discriminated from the other connected
clients. Whenever an alert is generated, the risk is increased for all the flows that
are passing through the alerting service. The clients are then shuffled based on
their risk so that over time, the attacker ends up with the maximum risk. The
risk factor is initialized to zero for all clients and this monotonically increases
with alerts in the system, till the attacker is identified and isolated. Then the
risk factors of all the clients that are found to be legitimate in retrospect are
reduced (Risk Rebalancing as explained in Sect. 4.3). We classify our protocol
as an instantiation of Moving Target Defense (MTD), though it is somewhat
different from the traditional notion of MTD. Here we are moving the clients
and the assignment of flows to servers, while in traditional MTD, the protected
system is “moved”, i.e. reconfigured [7].

3.1 TopHat’s Intuition

Several challenges exist in protecting a distributed system that has the structure
shown in Fig. 1. First, alerts generated at any layer (i + 1) look as if they are
coming from layer i, not from an external attacker. This argues against the
2 http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node31.html#

Snort Default Classifications in Snort, rules are tagged with priority where “high”
priority correlates with strong in our solution.

http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node31.html#Snort_Default_Classifications
http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node31.html#Snort_Default_Classifications
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simple solution of blocking flows from a particular source because that would
create a service interruption—if a server in layer (i+1) blocks a server in layer i,
then the application stops working for all the clients connected to that particular
server in layer i. TopHat overcomes this limitation by attributing an attack to
all clients that are connected to the alerting server in layer i and then stopping
the ongoing attack using the MTD approach. When an alert event happens,
all of the clients are disconnected from the servers in layer 1 (for purposes of
randomization), assigned to new servers, and the alerting server is refreshed to a
clean state and restarted. TopHat then constantly tracks the attack history of
each client with the help of the risk factor as we describe in detail in Sect. 4, so
that the attacker is identified due to multiple alerts, which in turn is due to the
persistence of the attack (as assumed in our attack model). The persistent attack
property fundamentally allows TopHat to converge given a sufficient number
of alerts.

3.2 Legitimate Client Impacts

The SDN-based shuffling in TopHat can have some negative impacts on legit-
imate client connections. First, whenever a shuffle involves a client, the client’s
connection is reset. This overhead cannot be avoided since the attackers and
legitimate clients share the same network flow paths—a connection reset that
disrupts an attacker’s flow also disrupts the legitimate client’s flow. Its impact
can be mitigated, however, with state management approaches [17]. Second,
when a server is being reset and restarted (to clear the infected status), the
clients assigned to that server cannot function. This case can be minimized by
using fast restart hardware or by keeping hot spares for the server instances.

4 Detailed Design of TopHat

TopHat probabilistically identifies attackers in the system by repeatedly
attributing alerts to suspect sets until the likelihood of a client being the attacker
is sufficiently large to certify identification. In the case of multiple attackers, this
process is repeated so that multiple identification events occur until all of the
attackers are exhausted.

Alert Group Attribution: In TopHat, there always exists a mapping between
a server in any particular layer and the clients that, through any possible path,
have access to that server. For example, if clients 1–5 are assigned to server S1 in
layer L1, and S1/L1 is connected to S2/L2, then an alert sourced from S2/L2 will
be attributed to all the clients 1–5. The relationship of how any given flow passes
through the servers at the different layers is itself controlled by the SDN con-
troller and thus this relationship is always known to our algorithm. Now we define
a term client group. Consider that an alerting server has flows F1, F2, ..., FNG

going through it. By tracing each flow back to layer 1 servers, we can map each
flow Fi to the client generating that flow Ci. The clients C1, C2, ..., CNG

form
the client group here. Each such client has its stateful parameter, risk factor,
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increased by 1
NG

, where NG is the number of clients in that particular group. In
the earlier example, each client would have its risk increased by 1/5.

Likelihood of a Client Being the Attacker: We define the likelihood as
follows:

P (Ci = A) =
R(Ci)∑

R(Cj) ∀ R(Cj) ≥ R(Ci)
(1)

where Ci is client i, Ci = A is the indicator that Ci is an attacker, R(Ci) is the
risk factor of client i, and ∀ R(Cj) ≥ R(Ci) implies that client j has a risk factor
at least as large as client i, and i = j is allowed. When a client has the highest
risk factor of any client, then this probability value becomes 1. The control and
convergence of TopHat is discussed in detail in Sect. 4.1 in [9].

4.1 Uniform Assignment Algorithm (“Uniform”)

The uniform assignment algorithm is responsible for assigning arriving client
flows to different servers at layer 1. There are NS assignment pools available,
where NS is the number of servers in layer 1. For each client i, an assignment is
made: A : Ci → [1, NS ] such that the imbalance in risk between any two servers is
minimized. At the beginning of the operation of the system, each client will have
the same risk factor and so this will be a uniform random assignment. However,
in subsequent mappings (which happen after an alert arrives at TopHat) the
risk factors will be different and the mapping A will be a weighted random
assignment, using the risk factors as the weights. The goal is to balance the
aggregate risk at any of the servers in level 1. The assignment process proceeds
as follows:

1. A client seeks an assignment, either when it is connecting to the protected
system for the first time, or in response to a disconnection forced by TopHat.

2. The client is given the assignment to [1, NS ] according to the assignment
function A.

3. When a new alert is received, the assignments between clients and servers are
reset, and all clients return to step 1 and re-assigned to new servers.

This algorithm effectively assigns clients such that there is a uniform aggre-
gate risk assigned to any particular server. Each attribution event reduces the set
of ties (NT = |∀ R(Cj) ≥ R(Ci)|) to NT

NAS
, where NAS is the number of servers in

the alert layer. For example, if there are 100 clients and 4 alert groups and every
client has a risk of 1, then by Eq. 1, P (Ci = A) = 1

100 ∀ i. After an attribution
event, given uniform assignment (each server having balanced risk of 25, thus 25
clients per server), then the likelihood for those 25 becomes 1.04

1.04×25 because the
25 clients that were attributed with risk have an additional 0.04 added. The size
of the set |R(Cj) ≥ R(Ci)| is now 100

4 = 25, following the reduction.

4.2 Low-Risk Isolation Algorithm (“LRA”)

This variant of the algorithm shelters low risk clients into a safe zone, defined as
a set of servers in layer 1 such that clients which are assigned to this set are not
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shuffled around by TopHat. These clients do not suffer from any disconnections,
and their risk factors do not change. Each alert/attribution event tells TopHat
something about who may be the attacker, but it can also indicate who is not
an attacker. In the uniform case, the legitimate clients are mixed in with the
attackers, and this causes them to rise in risk, whenever they share a server with
the malicious clients. It also dilutes the attribution power of a single attack since
NG remains near-constant. The LRA variant avoids this issue by placing some
portion of the clients with the lowest risk into a safe zone:

1. Clients are assigned as in the uniform risk case, except for clients that exist
in a safe set SS , initialized as empty.

2. After an attribution event a portion of the clients, IR, IR ∈ (0, 1), is moved
from the active set SA to the safe set SS . The |SA| · IR clients with the lowest
risk are moved to SS .

3. The assignment of the safe clients SS is fixed to a particular server, and
then the clients in the active set SA are redistributed among the remaining
NS − Nsafe servers using the uniform risk approach. Nsafe is the number of
servers used for the safe zone.

4. In the event an alert is generated from any of the SS clients, then the entire
set of clients is moved back to the SA set.

Much less risk is assigned to the legitimate clients in the system using LRA
with a single attacker. Additionally, uninterrupted connection paths to the pro-
tected application are provided, decreasing the probability of failed transactions.
The convergence condition for both of the algorithms are explained in detail in
Sects. 4.2 and 4.3 in [9].

4.3 Risk Rebalancing Approach (“RRB”)

Once one of the attackers is identified by using any one of the above described
algorithms, the risk factor of the remaining clients are updated using Risk Rebal-
ancing (RRB) technique in order to speed up identification of the remaining
attackers. Each alert attribution is stored in the SDN controller that contains
the list of clients and the amount of risk factor attributed to each client due
to that particular alert. Whenever an attacker is identified, the list of alerts
is searched, and the set of alerts that involved the attacker are collected. The
accumulated risk for each client due to each alert in that list is removed because
of the insight that the alert is attributable to the now discovered attacker and
not the other clients. Thus, legitimate clients have their risk lowered leading to
faster identification of the other attackers.

4.4 End-to-End Workflow

We detail the end-to-end workflow of TopHat in the context of the SDN-based
system:
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1. Initial: The SDN switch at ingress node forwards each new client’s request
to the SDN controller as the flow table will be initially empty. TopHat,
which is installed as an application over the SDN controller, stores the asso-
ciated risk and the server allocated at each layer for all the clients.

2. Server Assignment: TopHat assigns each client to a particular server at
layer 1 as described in Sects. 4.1 and 4.2. Then the corresponding flow rules
are installed at the SDN switch in layer 1 and subsequent layers. The initial
risk factor of all the clients are set to 0. (TS : Time for server assignment).

3. Connection Establishment: Each client establishes a connection with the
servers at layer 1 using TCP 3-way handshake. At this point, all the clients
except the attackers can access the servers in subsequent layers using their
respective access privilege. (TC : Time to establish connection).

4. Attacker Exploration: In order to get access to the subsequent layers,
the attackers have to explore the layer 1 server for vulnerabilities and then
exploit a vulnerability. Let Tx denote the time to exploit a server at a par-
ticular layer. Tx varies across different layers and across different attackers.

5. Alert Generation: The attacker continues to compromise the servers at
subsequent layers until an IDS detects a malicious action (e.g., port scan,
known CVE, etc.) or alert correlation from multiple IDS alerts generates a
strong alert. Let TA be the time to generate a strong alert.

6. Connection Termination: The strong alert is sent to the SDN controller,
which initiates the shuffling by disconnecting the clients from the servers in
layer 1 (except those in the safe set for LRA) and reassigning them.

7. Risk Updation: The risk factor of the clients are updated according to
either the Uniform or the LRA scheme. Let TRA be the time to update risk
values.

8. Attacker Identification: After the risk updation, the probability of each
client is calculated using Eq. (1). The clients with a probability P (Ci =
A) ≥ τ (τ : user settable threshold) are identified as attackers and isolated.

9. Risk Rebalance: After the attacker is identified, TopHat rebalances the
risk factor of all the remaining clients (Sect. 4.3).

10. Server Reset: TopHat instructs the SDN controller to reset all the active
servers in the network by broadcasting a control message which ensures that
the attackers need to exploit it again, in order to re-initiate the MSA. (TR:
Time to reset a server).

11. Connection Re-establishment: All the clients including the attackers will
re-initiate connections to the servers in layer 1 and the steps repeat.

4.5 Multiple Attackers

Multiple simultaneous attackers can be handled by TopHat, without any modi-
fication. We model multiple attackers as each having independent, random times
to exploit (TX), where a successful exploit results in an alert being generated. If
one attacker is more aggressive (smaller TX), then alerts will be generated due
to this attacker and this attacker will be identified by TopHat before moving
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on to the next attacker. This essentially makes the process of identifying multi-
ple attackers sequential. If on the other hand, there are multiple attackers with
similar TX values, then it will be a matter of chance which attacker gets identi-
fied first. But the risk factor of the other attackers will be retained in TopHat,
thereby helping in the convergence time for the subsequent attackers.

False Positives and Mitigation: It is possible for TopHat to generate false
positives with multiple attackers present that have similar TX . For example, if
there are four clients C1-C4, of which C2 and C4 are malicious and two servers
S1 and S2. In the first round, C1 and C2 are assigned to S1 and C3 and C4
to S2. C2 alerts resulting in reshuffling. In the next round, C1 and C4 happen
to be assigned to S1 and C2 and C3 to S2. Now C4 alerts and as a result, the
legitimate client C1 is falsely flagged. This is a relatively rare occurrence and we
show the false positive rate in Experiment 3 (it is below 5% even in the most
pathological case).

5 Experimentation

5.1 Model System

The SDN Network used for evaluation is described in the Fig. 2. All the exper-
iments are evaluated using the default values given in Tables 1 and 2 unless
otherwise specified. As shown in Fig. 2, for the sake of simplicity we consider
that each server in layer i has a stove piped connection or one-one connection
(represented by different colors) to any server in layer i + 1 in order to avoid
mixing of network flows at later stages. The experiment 4 shows the conver-
gence for non-stove piped case. In LRA approach, the server 3 is considered to
be safe server and the clients in active set SA are shuffled between the server 1
and server 2.

Fig. 2. SDN model system considered for the evaluation.



TOPHAT: Attribution 697

Table 1. Default network and time parameter values.

Notation Meaning Default value

NC No. of clients 1000

NA No. of attackers 4

NS No. of servers at layer 1 3

NL No. of layers 4

Lalert Strong alert layer number 2

IR Ratio of clients moved from active set to safe set 0.25

TS Server allocation time 1 ms

TC Connection establishment time 30 ms

TA Alert generation time 1 ms

TRA Risk assignment + attacker identification time 1 ms

TR Server reset time 45 s [11]

TX Attacker exploit time Normal distribution

Table 2. Default attacker exploit time TX for 4 attackers.

Attacker no. TX at layer 1 TX at layer 2

Mean (s) Variance (s) Mean (s) Variance (s)

1 20 5 30 5

2 40 5 60 5

3 10 2 15 2

4 80 5 80 5

Simulation Environment: Along with TopHat, the SDN environment is
modeled using the network and time parameters in C++3. Each event in the SDN
environment is represented by a corresponding time component as described in
Sect. 4.4. The clients are assigned to the available servers using uniform random
distribution and the attacker’s exploit time is modeled based on normal distri-
bution as in Table 2. For each attacker, the exploit time varies by mean across
each layer and varies by variance across different iterations or shuffles. For some
experiments, where multiple simulations can be aggregated, we take the median
of 20 runs to provide data smoothness with respect to the random attack times.

Evaluation Parameters: For simplification, we assume all the clients send
requests to the servers at layer 1 at the same time. All the experiments described
below are evaluated using the following parameters:

1. Experiment Time: The time at which particular event like server assign-
ment or alert generation happens.

3 https://github.rcac.purdue.edu/DependableComputingSystemsLab/TopHat.

https://github.rcac.purdue.edu/DependableComputingSystemsLab/TopHat
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2. Convergence Time: The time at which single attacker or all the attackers
are found.

3. Probability of Attacker found (PA): The probability of client being iden-
tified correctly as an attacker given by Eq. 1.

4. Percentage of Failed Transactions (PFT): The number of client disrup-
tions during the time of attacker identification. It is a function of time given
by

PFT (t) =
No. of Failed Transactions

Total No. of Transactions
(2)

where we model client transactions as continuous time event for simplicity.
We aggregate PFT across clients and all time to compute a cumulative PFT
for the purpose of comparing per-simulation metrics. Note that the PFT is
per-client, and not all clients are disrupted simultaneously during a shuffle
event in TopHat.

5.2 Experiment 1: Convergence over Time

The experiment 1 demonstrate TopHat’s operation in the time domain for
both single and multiple attackers. During each attack, the two primary metrics
(PFT and PA) are collected based on the experiment time at which an alert is
generated. Default values are used for all parameters except NA. Figure 3 shows
the results from our simulation and the results are explained in the next sections.

Convergence: In case of single attacker, the convergence is given directly by
PA and for two attacker’s case, it is given by average probability. At each alert
generation, the probability is updated, and the value for the attacker increases
as shown in the figures. The uniform algorithm converges more quickly in both
cases primarily because it has 3 servers to use for risk attribution while LRA
reserves a server for the safe pool and uses only 2 servers for risk attribution.
The step function increases as the number of ties are broken, and the attacker
is repeatedly involved in high-risk attribution events.

In the case of multiple attackers, one attacker has a faster exploit time than
the other. Since shuffles occur on the fast attacker’s alert, the slow attacker is
statistically unlikely to ever generate an alert until the fast attacker has been
disrupted. This causes a time-domain crowding of alerts early in the simulation
until the first attacker is identified, and then the alerts become more spaced
out as opposed to an independent case where the alerts would be interleaved.
Upon close inspection, one of the LRA’s potential weaknesses can be seen in
that it is using more shuffles to identify the attacker in the two attacker case.
Furthermore, because the slow attacker has low risk, she can be placed in the
safe zone, and it is more likely that a slow attacker can generate an alert inside
of the safe area–something that does not happen in this experiment, but will in
a later experiment.

PFT: The PFT shows how clients are impacted through time. In all cases, the
width of the PFT bar represents the reset time for cleaning impacted servers
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Fig. 3. The convergence of TopHat is shown for the single attacker and two attacker
cases with both the uniform and low-risk assignment (LRA) algorithms.

in the system TR. For the uniform algorithm, all clients are re-assigned and all
servers on the attack path are cleaned, resulting in outages for all of the clients,
hence the peak is always at 100. In the LRA case, only those clients remaining
in the active set are impacted for each attack. This results in a decaying PFT
over time as the low risk clients are assigned to the safe server at the rate IR.
Consequently, system operators have a choice between faster convergence and
attacker identification (the Uniform variant) or slower convergence with better
client access (the LRA variant).

For multiple attackers, in the Uniform case the PFT follows the single
attacker profile, but it is repeated for the second attacker with a higher width
due to TX . For the LRA case, since less shuffling servers are available, it takes
more alerts to converge and thus more shuffles, and more period of high PFT.
The impact of all the parameters on the convergence time and PFT is explained
in detail in Sect. 5.3 in [9].

5.3 Experiment 2: Attacker Effort

In this experiment, we demonstrate how TopHat, by utilizing MTD, is able
to increase the total attack effort that must be expended to compromise the
protected system. We measure attacker effort as the number of times a server
must be compromised, at any layer, by any attacker. This includes the effort
spent exploiting servers that have been reset. We also measure the number of
shuffles or alerts generated in the system, and this metric covers the number of
trials an attacker has at penetrating a system for which the exploit is not known.

Figure 4 shows the effort in these two metrics. In Fig. 4a, the total exploits
goes up with the number of attackers. This process is not linear, however, because
many attackers will be reset even when they do not generate an alert themselves
due to the moving target nature of TopHat. Each attacker may penetrate layer 1
and be shuffled before making an attempt on layer 2, for example. Consequently,
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Fig. 4. Attacker efforts until identified

TopHat is able to make it much more difficult to attack the system when
multiple attackers are present, even if the attacker identification takes some
time. In Fig. 4b, the total number of resets are shown. This scales roughly linearly
with the number of attackers because there is a lower limit to this number until
the attackers can be found, as described in Sect. 4.1. of note here, however, is
that there are a limited number of exploit attempts allowed at layer 2 before
the attackers are identified and a layer 1 patch can be created. These 5–100
alerts will attribute the attacker, and upstream compromises (at layer 1) can be
patched as a result, a key benefit of TopHat.

5.4 Experiment 3: Effect of Risk Re-balancing

For this experiment, we evaluate the impact of the risk re-balancing (RRB)
technique (Sect. 4.3) on the convergence time and the false positives. We stress
the system by having multiple attackers with the same distribution for TX .
Without RRB, when an attacker is identified, the risk for all other clients is reset
to zero. With RRB, when an attacker is identified, only the legitimate clients
that had been mixed in with the identified attacker have their risk reduced, not
reset to zero.

Figure 5a shows the impact of RRB on both the Uniform and the LRA algo-
rithms. In both cases, the use of the RRB speeds up convergence as expected.
The number of false positives is higher for LRA. This is because the placement of
many clients in the safe zone and subsequent alerts from that zone can degrade
the process of identification of the attackers. TopHat is still able to provide
low false positive rates (less than 0.5%) for small numbers of attackers relative
to the total number of clients (10), even in this challenging scenario of similarly
aggressive attackers.

5.5 Experiment 4: Effect of Number of Server Replicas

For this experiment, we use a system with 5 layers having [5, 4, 3, 2, 2] replicas
in the layers, starting from layer 1. The inter-layer connections are uniformly
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Fig. 5. Experiments 3 (left) and 4 (right)

balanced as much as possible. We evaluate the impact of alert depth on the risk
attribution. Figure 5b shows the impact of the alert layer on the convergence
speed of both algorithms. The number of replicas decreases as one goes further
inside the system. This is not uncommon because the number of requests that
touch servers deep inside the enterprise typically decrease. We expect that alerts
deep in the system will provide less discriminating information about the attack-
ers because the shuffling can occur with coarser granularity, thus lumping more
number of clients (legitimate with a few attacking) together on the same server.
In the case of LRA, the safe zone is on a single stove-piped layer while the other
shuffling servers are all connected into the multi-layer system. As the layer deep-
ens, it is similar to reducing NS because the size of the alert group increases and
the number of groups NG decreases. Therefore there is a logarithmic increase in
the convergence time as the depth of the alert layer increases.

6 Conclusion

In this paper, we presented TopHat, a solution to the problem of attribut-
ing an alert to an attacker in a multi-layered system. The problem is challeng-
ing due to the mixing of multiple flows at servers inside the periphery of the
system. TopHat utilizes moving target defense techniques, namely shuffling,
implemented on top of a software defined network infrastructure. We provided
two algorithms for shuffling, one that focuses on convergence speed and another
that focuses on improving client connectivity during attacks. Further, we show
that TopHat increases the attackers effort by requiring multiple re-exploiting
of the target systems. We evaluate TopHat using the metrics of time to detect
and isolate the attackers and the impact on the legitimate clients in the sys-
tem. Using our system, network administrators can begin to attribute alerts and
attacks, to external flows so that they may be blocked or studied for further
defense improvement.
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Abstract. The drastic increase of JavaScript exploitation attacks has
led to a strong interest in developing techniques to analyze malicious
JavaScript. Existing analysis techniques fall into two general categories:
static analysis and dynamic analysis. Static analysis tends to produce
inaccurate results (both false positive and false negative) and is vulnera-
ble to a wide series of obfuscation techniques. Thus, dynamic analysis is
constantly gaining popularity for exposing the typical features of mali-
cious JavaScript. However, existing dynamic analysis techniques possess
limitations such as limited code coverage and incomplete environment
setup, leaving a broad attack surface for evading the detection. To over-
come these limitations, we present the design and implementation of a
novel JavaScript forced execution engine named JSForce which drives an
arbitrary JavaScript snippet to execute along different paths without any
input or environment setup. We evaluate JSForce using 220,587 HTML
and 23,509 PDF real-world samples. Experimental results show that by
adopting our forced execution engine, the malicious JavaScript detection
rate can be substantially boosted by 206.29% using same detection policy
without any noticeable false positive increase.

Keywords: Malicious Javascript · Forced execution

1 Introduction

Malicious JavaScript has become an important attack vector for software
exploitation attacks. According to a recent report from Symantec [3], there are
millions of victims attacked by malicious JavaScript on the Internet each day.
A number of techniques [7–9,12–14,18] have been proposed to detect malicious
JavaScript code. Due to the dynamic features of the JavaScript language, static
analysis [9,10] can be easily evaded using obfuscation techniques [24]. Conse-
quently, researchers rely upon dynamic analysis [8,11,14] to expose the typical
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features of malicious JavaScript. More specifically, these approaches rely on visit-
ing websites or opening PDF files with a full-fledged or emulated browser/PDF
reader and then monitoring the different features (e.g., heap health [18].) for
detection.

However, the typical JavaScript malware is designed to execute within a par-
ticular environment, since they aim to exploit specific vulnerabilities, as opposed
to benign JavaScript, which will run in a more environment-independent fash-
ion. Fingerprinting techniques [22] are widely adopted by JavaScript malware
to examine the runtime environment. A dynamic analysis system may fail to
observe some malicious behaviors if the runtime environment is not configured
as expected. Such configuration is quite challenging because of the numerous
possible runtime environment settings. Hence, existing dynamic analysis systems
usually share the limitations of limited code coverage and incomplete runtime
environment setup, which leave attackers with a broad attack surface to evade
the analysis.

To solve those limitations, we propose JSForce, a forced execution engine for
JavaScript, which drives an arbitrary JavaScript snippet to execute along differ-
ent paths without any input or environment setup. While increasing code cover-
age, JSForce can tolerate invalid object accesses while introducing no runtime
errors during execution. This overcomes the limitations of current JavaScript
dynamic analysis techniques. Note that, as an amplifier technique, JSForce does
not rely on any predefined profile information or full- fledged hosting programs
like browsers or PDF viewers, and it can examine partial JavaScript snippets
collected during an attack. As demonstrated in Sect. 4, JSForce can be lever-
aged to improve the detection rate of other dynamic analysis systems without
modification of their detection policies. While the high-level concept of forced
execution has been introduced in binary code analysis (X-Force [17]), we face
unique challenges in realizing this concept in JavaScript analysis, given that
JavaScript and native code are very different languages by nature.

We implement JSForce on top of the V8 JavaScript engine [5] and evaluate
the effectiveness, and runtime performance of JSForce with 220,587 HTML files
and 23,509 PDF samples. Our experimental results demonstrate that adopting
JSForce can greatly improve the JavaScript analysis results by 206.29% with-
out any noticeable increase in false positives and with reasonable performance
overhead.

Our main contributions are summarized as follows:

(1) We propose JavaScript forced execution technique that forces a JavaScript
snippet to execute along different paths while requiring no inputs or
any environment setup, to overcome the current limitations of existing
JavaScript dynamic analysis techniques: limited code coverage and incom-
plete runtime environment setup.

(2) To enable forced execution of JavaScript, we develop a type inference model
to detect and properly recover from exceptions. We have also developed path
exploration algorithms for malicious JavaScript code analysis.
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(3) We implement the technique with a prototype system, named JSForce, and
evaluate its effectiveness, and runtime performance. Experimental results
show that by adopting JSForce, the malicious JavaScript detection rate
is substantially increased by 206.29% while still using the same detection
policy. This increase comes without any noticeable increase in false positives
and with runtime performance that is very suitable for large-scale analysis.

2 Related Work and Overview

Malicious JavaScript Code. Malicious JavaScript code is typically obfuscated
and will attempt to fingerprint the version of the victim’s software (browser, PDF
reader, etc.), identify vulnerabilities within that software or the plugins that
software uses, and then launch one or more exploits. Figure 1 shows a listing
of JavaScript code used for a drive-by-download attack against the Internet
Explorer browser. Line 1 employs precise fingerprinting to deliver only selected
exploits that are most likely to attack the browser. Lines 5–7 contain evasive code
to bypass emulation-based detection systems. More precisely, the code attempts
to load a non-existant ActiveX control, named UM0QS4dD (line 6). When executed
within a regular browser, this operation fails, triggering the execution of the
catch block that contains the exploitation code (lines 7–14).

Fig. 1. The Malicious JavaScript sample Fig. 2. Syntax of JavaScript types
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However, an emulation-based detection system must emulate the ActiveX
API by simulating the loading and presence of any ActiveX control. In these
systems, the loading of the ActiveX control will not raise this exception. As
a result, the execution of the exploit never occurs and no malicious activity is
observed. Instead, the victim is redirected to a benign page (line 16) if the finger-
printing or evasion stage fails. Attackers can also abuse the function setTimeout
to create a time bomb [6] to evade detection. Detection systems can not afford
to wait for long periods of time during the analysis of each sample in an attempt
to capture randomly triggered exploits.

Challenges and Existing Techniques. Static analysis is a powerful technique
that explores all paths of execution. But, one particular issue that plagues static
analysis of malicious JavaScript is that not all of the code can be statically
observed. For example, static analysis cannot observe malicious code hidden
within eval strings, which are frequently exploited by attackers to obfuscate
their code. Therefore, current detection approaches [8,11,14] rely upon dynamic
analysis to expose features typically seen within malicious JavaScript. More
specifically, these approaches rely upon visiting websites or opening PDF files
with an instrumented browser or PDF reader, and then monitoring different
features (eval strings [11], heap health [18], etc.) for detection.

However, dynamic analysis techniques suffer from two fundamental limita-
tions. The first limitation is limited code coverage. This becomes a much more
severe limitation within the context of analyzing malicious JavaScript. Attack-
ers frequently employ the cloaking [23] technique, which works by fingerprinting
the victim’s web browser and only revealing the malicious content when the vic-
tim is using a specific version of the browser with a vulnerable plugin. Cloaking
makes dynamic analysis much harder because the sample must be run within
every combination of web browser and plugin to ensure complete code coverage.
The widely-used event callback feature of JavaScript also makes it challenging
for dynamic analysis to automatically trigger code. For example, attackers can
load the attack code only when a specific mouse click event is captured, and
automatically determining and generating such a trigger event is difficult.

The second limitation is the complexity of the JavaScript runtime environ-
ment. JavaScript is used within many applications, and it can call the func-
tionality of any plugin extensions supported by these applications. For dynamic
analysis, any pre-defined browser setup handles a known set of browsers and
plugins. Thus, there is no guarantee that this setup will detect vulnerabilities
only present in less popular plugins. While it is possible to deploy a cluster of
machines running many different operating systems, browser applications, and
browser plugins, the exponential growth of possible combinations rapidly causes
scalability issues and makes this approach infeasible.

Rozzle [13] attempts to address this code coverage problem by exploring
environment-related paths within a single execution. For instance, because att
in Fig. 1 depends upon the environment-related API’s output, Rozzle will execute



708 X. Hu et al.

lines 5–15 and reveal the malicious behaviors hidden in lines 8–14 by executing
both the try and catch blocks. But, it requires a predefined environment-related
profile for path exploration. Construction of a complete profile is a challenging
task because of the numerous different browsers and plugins, especially for newer
proposed fingerprinting techniques [15,16,22]. These new techniques do not rely
upon any specific APIs. For instance, the JavaScript engine fingerprinting tech-
nique [16] relies upon JavaScript conformance tests such as the Sputnik [4] test
suite to determine a specific browser and major version number. There are no
specific APIs used for the fingerprinting. Thus, Rozzle cannot include it within
the predefined profile and explore the environment-related paths. Rozzle also
introduces runtime errors into the analysis engine, which may stop the analysis
before any malicious code is executed. In contrast, JSForce does not rely upon
predefined profile for path exploration and handles runtime errors using the
forced execution model presented in Sect. 3.1. By overcoming those limitations
of Rozzle, JSForce achieves greater code coverage.

Revolver [12] employs a machine learning-based detection algorithm to iden-
tify evasive JavaScript malware. However, it requires that the malicious sample
is present within a known sample set so that its evasive version can be deter-
mined based upon the classification difference. By design, it can not be used for
0-day malware detection.

Symbolic execution has also been applied to the task of exposing mal-
ware [6]. This technique, while improving code coverage over dynamic analy-
sis, suffers from scalability challenges and is, in many ways, unnecessarily pre-
cise [13]. Within the context of JavaScript analysis, symbolic execution becomes
more challenging [19]. JavaScript applications accept many different kinds of
input, and those inputs are structured as strings. For example, a typical appli-
cation might take user input from form fields, messages from a server via
XMLHttpRequest, and data from code running concurrently within other browser
windows. It is extremely difficult for a symbolic string solver [21] to effectively
supply values for all of these different kinds of inputs and reason about how
those inputs are parsed and validated. The rapidly evolving JavaScript language
and its host programs (browsers, PDF readers, etc.) make the modeling of the
JavaScript API tedious work. Furthermore, the dynamic features (such as the
eval function) of JavaScript make symbolic execution infeasible for many anal-
ysis efforts.

Overview. JSForce, our proposed forced-execution engine for JavaScript, is an
enhancement technology designed to better expose the behaviors of malicious
JavaScript at runtime. Different detection policies can be applied to examine
malicious JavaScript. While the forced execution concept is first introduced for
binary code analysis (X-Force [17]), we face unique challenges, such as type
inference and invalid object access recovery, in enabling the forced execution
concept for JavaScript.

We now illustrate how the forced execution of JavaScript code works. Con-
sider the snippet shown in Fig. 1. JSForce forces the execution through the
different code paths of the snippet. So, the exploitation code within the catch
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block (lines 7–14) will be executed, no matter how the ActiveX API is simulated
by the emulation-based analysis system. Moreover, JSForce will immediately
invoke the callback function passed to setTimeout to trigger the time bomb
malware.

JSForce’s path exploration forces line 2 to be executed, regardless of the
result of the fingerprinting statement (line 1). Since btt is not defined within
the code snippet under analysis, which is a common scenario because collected
JavaScript code may be incomplete due to multi-stages of the attack, the exe-
cution of line 2 raises a ReferenceError exception when running within a
normal JavaScript engine. When the exception is captured, JSForce creates
a FakedObject named btt, which is fed to the JavaScript engine to recover
from the invalid object access. However, the type of btt is unknown at the
time of FakedObject’s creation. JSForce infers the type based upon how the
FakedObject is used. For example, if this FakedObject is added to an integer,
JSForce will then change its type from FakedObject to Integer. We call this
faked object retyping.

3 JavaScript Forced Execution

This section explains the basics of how a single forced execution proceeds. The
goal is to have a non-crashable execution. We first present the JavaScript lan-
guage semantics and then focus on how to detect and recover from invalid object
accesses. We then discuss how path exploration occurs during forced execution.

3.1 Forced Execution Semantics

The JavaScript Language. JavaScript is a high-level, dynamic, untyped, and
interpreted programming language. At runtime, the JavaScript engine dynami-
cally interprets Java-Script code to (1) load/allocate objects, (2) determine the
types of objects, and (3) execute the corresponding semantics. Given an arbi-
trary JavaScript snippet, execution may fail because of undefined/uninitialized
objects or incorrect object types. For instance, the execution of line 2 in Fig. 1
raises a ReferenceError exception because btt is not defined. To tolerate that,
forced execution must handle such failures.

The basic idea behind forced execution is that, whenever a reference error is
discovered, a FakedObject is created and returned as the pointer of the property.
During the execution of the program, the expected type of the FakedObject is
indicated by the involved operation. For instance, adding a number object to a
FakedObject indicates that the FakedObject’s type is number. When the type
of a FakedObject can be determined, we update it to the corresponding type.

Potentially, we could assign FakedObject with the type Object and reuse
the dynamic typing rules of the JavaScript engine to coerce the FakedObject
to an expected type. Nevertheless, the dynamic typing rules of the JavaScript
engine are designed to maintain the correctness of JavaScript semantics and
do not suffice to meet our analysis goal of achieving maximized execution.
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This can be attributed to two reasons. First, while the JavaScript engine can
cast the FakedObject:Object to proper primitive values, it cannot cast the
FakedObject:Object to proper object types. For instance, when a FakedObject
with the type Object is used as a function object, the JavaScript engine will raise
the TypeError exception according to ECMA specification [1]. Second, the cast-
ing of FakedObject to primitive values by the JavaScript engine can lead to
unnecessary loss of precision. To understand why, consider the following loop:

1c = a /2 ;
2 f o r ( i= c ; i <10000; i++)
3 memory [ i ] = nop + nop + sh e l l c o d e ;

Since a is not defined, a FakedObject will be created. With the built-in typing
rule of the JavaScript engine, c will be assigned the value NaN. The loop condi-
tion i<10000 will always evaluate to false. Thus, the loop body, which contains
the heap spray code, will never be executed. Although the path exploration of
JSForce will guarantee that the loop body will be executed once, without exe-
cuting the loop 10,000 times, it will likely be missed by heap spray detection
tools because of the small chunk of memory allocated on the heap.

Therefore, to overcome the above two issues, JSForce introduces two new
types, FObj and FFun, to the JavaScript type system. The JavaScript type system
defined in [20] is extended to support these two new types. Figure 2 summarizes
the new syntax of these JavaScript types. Type FObj is for FakedObject. At
the moment FakedObject is created, we assign type FObj as the temporary
type of FakedObject. It can be subtyped to any types within the JavaScript
type system. When FakedObject is used as a function object, FakedObject
is casted to FakedFunction with type FFun. The FakedFunction with type
FFun can take arbitrary input and always returns FakedObject:FObj. Following
JSForce’s dynamic typing rules, a in the above loop sample will be typed to
Number because it is used as a dividend. c is then assigned to Number and the loop
body is executed repeatedly until the loop condition i < 10000 is evaluated to
false. By introducing these two new types and their typing rules, JSForce solves
the two issues mentioned in the above paragraph. In the following paragraphs,
we detail the JavaScript forced execution model.

Reference Error Recovery. To avoid ReferenceError exceptions, we introduce
the FakedObject and recover the error by creating the FakedObject whenever
necessary. There are two cases that lead to reference errors. The first case (ER 1)
is a failed object lookup. Every field access or prototype access triggers a dynamic
lookup using the field or prototype’s name as the key. If no object is found, the
lookup fails. Such failures happen when the running environment is incomplete
or some portion of the JavaScript code is missing. For example, a browser plugin
referenced by the JavaScript is not installed, or only a portion of the JavaScript
code is captured during the attack (Fig. 4).

To handle this error, JSForce intercepts the lookup process and a
FakedObject named as the lookup key is created whenever a failed lookup is
captured. The corresponding parent object’s property is also updated to the
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Fig. 3. JavaScript sample Fig. 4. Forced execution of sample in Fig. 3

FakedObject. Line 2 in Fig. 3 presents such an example. The JavaScript engine
searches the current code scope for the definition of c, which is not defined.
JSForce returns the FakedObject as the temporary value of c so that the exe-
cution can continue.

The second case (ER 2) occurs when the object is initialized to the value
null or undefined, but later has its properties accessed. JSForce modifies the
initialization process to replace the null to a FakedObject if an object is ini-
tialized as value null or undefined. For example, the variable a defined on line
1 in Fig. 3 is assigned the value FakedObject instead of null under the forced
execution engine. The variable a may later be updated to another value during
execution, but this does not sabotage the execution of JavaScript code.

Faked Object Retyping. When a FakedObject is used within an expression,
it must be retyped to the expected type. Otherwise, incorrect typing raises
a TypeError exception and stops the execution. JSForce infers the expected
type of FakedObject by how the FakedObject is used. Figure 5 summarizes the
dynamic typing rules introduced by JSForce. The rules are divided into the
following five categories:

(1) R-ASSIGN. This rule deals with assignment statements. When a
FakedObject e0 is assigned to a new value e1, e0 is updated to the new
value e1 with the type τ . The JavaScript engine handles this naturally,
so no interference is required. For example, variable a in Fig. 3 is assigned
FakedObject at line 1 by JSForce. At line 4, the variable a is retyped as a
string object.
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Fig. 5. Typing rules

(2) R-CALL1 and R-NEW. These two rules describe the typing rule for
the scenario when a FakedObject:FObj is used as a function call or
by the new expression. Function calls and the new expression both
expect their first operand to evaluate to a function. So, JSForce updates
the FakedObject:FObj to FakedFunction:FFun for this situation. The
FakedFunction is a special function object which is configured to accept
arbitrary parameters. The return value of the function is set to a
FakedObject:FObj so that it can be retyped whenever necessary.

(3) R-CALL2. This rule describes the case where the callee is a known function,
but a FakedObject:FObj is passed as a function parameter. JSForce types
the FakedObject:FObj to the required type of the callee’s arguments. The
JavaScript language has many standard built-in libraries such as Math and
Date. When a FakedObject:FObj is used by the standard library function,
we update the type based upon the specification of the library function [1].
Currently, JSForce implements retyping for several common libraries (e.g.,
Math, Number, Date).

(4) R-BINOPERATOR1/2 and R-UNARYOPERATOR. These three rules
describe how to update the type if the FakedObject:FObj is involved in an
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expression with an operator. JSForce updates the FakedObject:FObj’s type
based upon the semantics of the operator. For unary operators, it is straight-
forward to determine the type from the operator’s semantics. For instance,
the postfix operator indicates the type as number. For binary operators, the
typing becomes more complicated. If both operands are FakedObject:FObj
and the operator does not reveal the type of the operands, JSForce types
them to number. This is because the number type can be converted to most
types naturally by the JavaScript engine. For example, the number type in
JavaScript can be converted to the string type, but it may fail to convert
a string to a number. Later during execution, if the types can be deter-
mined, JSForce will update the type to the correct type. If only one of the
two operands is FakedObject:FObj, JSForce determines the type based
upon the other operand’s type and the operator’s semantics.

(5) R-INDEX1 and R-INDEX2. These two rules describe how to update the
type when there are indexing operations. A FakedObject:FObj is updated to
an ArrayObject : φo whenever a key is used as an array index to access ele-
ments of the FakedObject. JSForce creates an ArrayObject and initializes
the elements to FakedObject:FObj. The length of the ArrayObject is set to
2*CurrentIndex. If an Out-Of-Boundary access is found, JSForce doubles
the length of ArrayObject. If the array index is FakedObject, JSForce types
it to number and initializes it as 0, which avoids Out-Of-Boundary excep-
tions. If both the index object and base object are FakedObject:FObj, the
R-INDEX2 rule is first applied to update the index object to number, then
the R-INDEX1 rule is applied to update the base object to ArrayObject.

Example. Figure 4 presents a forced execution of the sample shown in Fig. 3.
In the execution, the branch in lines 8–11 is not taken. At line 1, JSForce
assigns a FakedObject:Fobj to a, instead of null. This is because at line
3 the access to property length raises an exception if a is null. At line 2,
we can see a FakedObject:FObj is first assigned to c. Once c is added to 1,
JSForce updates the value of c to a random number. Lines 6 and 7 show that
if a FakedObject:FObj is used in the function call or new expression, JSForce
updates it to FakedFunction:FFun. The return value of the faked function is
still configured to FakedObject:FObj, so that at line 13, d is updated to hold a
random number.

JSForce also automatically recovers from other exceptions by intercepting
those exceptions to eliminate the exception condition. For example, JSForce will
update a divisor to a non-zero value if a division-by-zero exception is raised.

3.2 Path Exploration in JSForce

One important feature of JSForce is the capability of exploring different exe-
cution paths of a given JavaScript snippet to expose its behavior and acquire
complete analysis results. In this subsection, we explain the path exploration
algorithm and strategies.
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Algorithm 1. Path Exploration Algorithm
Definitions: switches - the set of switched predicates in a forced execution, denoted
by a sequence of predicate offsets in the source file(SrcName:offset). For example, t.js :
15 · t.js : 83 · t.js : 100 means the branch in source file t.js with the offset 15, 83, 100 is
switched. EX, WL - a set of forced executions, each denoted by a sequence of switched
predicates. preds : Predicate× boolean - the sequence of executed predicates.

Input: The tested JS

Output: FULL EX

1: FULL EX ← ∅
2: SRC ← {JS}
3: while SRC do

4: WL ← {∅}
5: EX ← ∅
6: js ← SRC.pop()

7: while WL do

8: switches ← WL.pop()

9: EX ← EX ∪ switches

10: (preds, newJS) ← Execute-

Code(js, switches)

11: SRC ← SRC ∪ newJS

12: t ← len(switches)

13: preds ← remove the first t elements

in preds

14: for all (p, b) ∈ preds do

15: if !covered(p, ¬b) then

16: WL ← WL ∪ switches · (p, b)

17: end if

18: end for

19: end while

20: FULL EX ← FULL EX ∪ {EX : js}
21: end while

22: procedure ExecuteCode(JS, switches)

23: preds ← switches

24: CBQ ← ∅

25: newJS ← ∅
26: for all stmt ∈ JS do

27: if isNoneEvalFunctionCallStmt(stmt)

then

28: if CalleeTakesStrings(stmt) then

29: newJS ← newJS ∪
GetJSFromString(stmt)

30: end if

31: if CalleeRegisterCallback(stmt)

then

32: CBQ ← CBQ∪ ExtractCBFunc(stmt)

33: end if

34: else if isBranchStmt(stmt) then

35: if GetSwitch(stmt) ∈ switches then

36: Execute according to switches

37: else

38: preds ← preds·GetPredicate(stmt)

39: end if

40: end if

41: end for

42: for all cb ∈ CBQ do

43: (preds′, newJS′) ← Execute-

Code(cb, ∅)

44: newJS ← newJS ∪ newJS′
45: preds ← preds · preds′
46: end for

return (preds, newJS)

47: end procedure

In practice, attackers constantly adopt the dynamic features of JavaScript
to evade detection. This results in incomplete path exploration under two cir-
cumstances. The first is when strings are dynamically generated. For instance,
document.write is often abused to inject dynamically decoded malicious
JavaScript code into the page at runtime. The second is when event callbacks are
used. As discussed in Sect. 2, attackers can abuse event callbacks to stop the exe-
cution of malicious code. JSForce solves this by employing specific path explo-
ration strategies. Within the execution, if faked functions take strings as input,
JSForce examines the strings and executes the code if they contain JavaScript.
This strategy is only applied on faked functions since original functions (eval)
can handle the strings as defined. JSForce also detects the callback registra-
tion function and invokes the callback function immediately after the current
execution terminates.

JSForce treats try-catch statements as if-else statements, ie., it executes
each try block and catch block separately. Ternary operators are also treated
as if-else statements: both values are evaluated.

There are several different path exploration algorithms: linear search,
quadratic search, and exponential search [17]. The goal of path exploration in
JSForce is to maximize the code coverage to improve the detection rate of mali-
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Table 1. Effectiveness results.

Sample set Total Without

JSForce

With

JSForce

Improvement

Old HTML 66,325 193 357 84.9%

New HTML 106,018 2,250 20,649 817.3%

HTML total 172,995 2,443 21,006 759.8%

Old PDF 22,081 6,306 6,475 2.7%

New PDF 1,428 32 170 431.2%

PDF total 23,509 6,338 6,645 4.8%

Table 2. Num of path exploration
during analysis.
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cious payload with an acceptable performance overhead. Quadratic and expo-
nential searches are too expensive, so JSForce employs the linear search only.

Algorithm 1 describes the path exploration algorithm, which generates a pool
of forced executions that achieve maximized code coverage. The complexity is
O(n), where n is the number of JavaScript statements. n may change at runtime
because JavaScript code can be dynamically generated. Initially, JSForce exe-
cutes the program without switching any predicates since switches is initialized
as ∅ (line 8) for the first time. JSForce executes the program according to the
switches at line 10 and returns preds and dynamically generated code newJS.
In lines 12–17, we determine if it would be of interest to further switch more
predicate instances. Lines 11–13 compute the sequence of predicate instances
eligible for switching. Note that it cannot be a predicate before the last switched
predicate specified in switches. Switching such a predicate may change the con-
trol flow such that the specification in switches becomes invalid. Specifically,
line 16 switches the predicate if the other branch has not been covered. In each
new forced execution, we essentially switch one more predicate.

The procedure ExecuteCode (lines 22–47) describes the execution process. It
collects dynamically generated JavaScript code (lines 28–30) and the executed
predicates (lines 34–38). The new generated JavaScript code, newJS, will be exe-
cuted after the path exploration of the current js finishes. The registered callback
functions (lines 31–33) are also queued and invoked after the current execution
finishes (lines 42–46). As an example, recall the callback function redir() used
in line 16 of Fig. 1. Instead of waiting for the timeout, JSForce will trigger the
redir() function immediately after the current execution finishes.

4 Evaluation

JSForce is implemented by extending the V8 JavaScript engine [5] on the X86-64
platform. It is comprised of approximately 4,600 lines of C/C++ and 1,500 lines
of Python. In this section, we present details on the evaluation of effectiveness
and runtime performance of JSForce using a large number of real-world samples.
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4.1 Dataset and Experiment Setup

Dataset. The dataset used for our evaluation consists of two sets: a malicious
sample set and a benign sample set. For the malicious set, we collected a sample
set with 172,995 HTML files and 23,509 PDF files from various databases. For
the benign sample set, we crawled the Alexa top 100 websites [2] and collected
47,592 HTML files.

Experiment Setup. For JavaScript code analysis, we leverage the jsunpack [11]
tool. Jsunpack is a widely used malicious JavaScript code analysis tool that uti-
lizes the SpiderMonkey JavaScript engine for code execution. For the sake of
our evaluation, we replaced the SpiderMonkey from jsunpack with JSForce and
relied upon the detection policies in jsunpack for malicious code detection. We
conducted our experiments on a test machine equipped with Intel(R) Xeon(R)
E5-2650 CPU (20M Cache, 2 GHz) and 128 GB of physical memory. The oper-
ating system was Ubuntu 12.04.3 (64 bit).

4.2 Effectiveness

For the evaluation of effectiveness, we would like to demonstrate that JSForce
can indeed help the malicious JavaScript code analysis by performing efficient
forced execution. In order to achieve that, we utilize our malicious HTML and
PDF sample sets and run the sample sets against jsunpack both with or without
JSForce for the evaluation. In the interest of showing how useful our faked
object retyping is, we also conduct another experiment that disables the retyping
and only keeps the reference error recovery component and path exploration
component.

Experimental Results. Table 1 illustrates the experimental results for effective-
ness. It demonstrates that JSForce could greatly improve the detection rate for
JavaScript analysis. We can see detection rate improvements of 759.84% and
4.84% for HTML and PDF samples, respectively, when using JSForce-extended
jsunpack instead of the original version for analysis. And all the samples detected
by original jsunpack are also flagged by JSForce-extended jsunpack. We further
break down the numbers into old and new sample sets and perceive that the
extended version could perform much better than original jsunpack in analyzing
new samples. For new HTML samples, jsunpack with JSForce is able to detect
817.3% more samples while for old samples, the number is 84.97%. Similar results
are also observed for PDF samples. After manual inspection, we confirmed that
this is because many of the old samples have been analyzed for quite sometime
and jsunpack already has the signatures stored in its database, leaving only a
small margin for JSForce to improve upon. For the faked object retyping evalua-
tion, we reran the test using 106,018 new HTML malicious samples with retyping
component disabled. The result shows that only 8,677 samples can be detected
by JSForce in contrast to 20,649 with retyping enabled. This result reveals the
usefulness of our faked object retyping component during analysis. Nevertheless,
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through our experiments, we are able to draw the conclusion that JSForce is
quite effective for boosting the effectiveness of JavaScript analysis.

Number of Paths Explored. Potentially, there may be a large number of paths
that exist inside of a single JavaScript program. The effectiveness and efficiency
of JSForce are closely related to the number of paths explored during analy-
sis. Hence, we would like to show some statistics on the number of paths that
JSForce explored during analysis.

The result depicted in Table 2 shows that JSForce is able to detect the mali-
ciousness of samples with a limited number of path explorations. An interesting
observation is that over 96% of the samples were detected by exploring only a sin-
gle path. Even though most of the analysis for detected samples can be finished
by exploring just one path, the path exploration of JSForce is still essential.
Note that 98% of the samples missed by the default jsunpack, but detected by
the JSForce-extended version, explore at least two paths. So, the analysis could
still receive an enormous benefit from JSForce in terms of path exploration. As
for any undetected samples, JSForce will explore the entire code space during
analysis, which requires a larger amount of path exploration and longer analysis
runtime.

4.3 Runtime Performance

In this section, we evaluate the runtime performance of JSForce by using our
malicious and benign datasets with a comparison between the original jsunpack
and the JSForce-extended version.

Runtime for Detected Samples. In this section, we compare the runtime perfor-
mance using the HTML and PDF samples that can be detected by jsunpack both
with and without JSForce. The reason why we chose this sample set is that we
wished to observe whether the JSForce-extended version can achieve efficiency
comparable to the original jsunpack when using a detectable malicious sample.
The results are displayed in Figs. 6 and 7. The results conclude that JSForce-
extended version has better runtime performance than jsunpack for over 90.9%
of HTML and 83.6% of PDF samples. This conclusion is quite surprising as the
JSForce-extended version tends to explore multiple paths while jsunpack only
probes for one.

In theory, jsunpack should have better runtime performance. However, after
investigation, we found that many of the JavaScript samples require specific
system configurations (such as specific browser kernel version) to run. As a result,
when jsunpack performs analysis, it will run the JavaScript programs under
multiple settings. This results in multiple executions, which take additional time
to complete. In contrast, the JSForce-extended version handled this issue with
forced execution, resulting in better runtime performance in practice.

Runtime for Undetected Samples. Figures 8 and 9 show the runtime performance
of JSForce for undetected samples. We empirically set the time limit to be 300
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Fig. 6. Runtime for detected HTML.
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Fig. 7. Runtime for detected PDF.
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Fig. 8. Runtime for undetected HTML.
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Fig. 9. Runtime for undetected PDF.

s in consequence of the fact that experiment shows almost all (99.6%) HTML
and PDF samples can be analyzed within 300 s. As demonstrated in the fig-
ures, the average analysis runtime for HTML and PDF samples are 12.02 and
8.15 s, while the analysis for a majority (80%) of HTML samples and PDF sam-
ples are finished within 8.54 and 7.4 s, respectively. When compared with the
original jsunpack, the JSForce-extended version achieves an average runtime of
16.08 s and 7.97 s for undetected HTML and PDF samples while jsunpack fin-
ishes execution in 1.13 s and 1.37 s, correspondingly. Our conclusion from these
experiments are that the performance overhead of JSForce is quite reasonable
and can certainly meet the requirements of large scale JavaScript analysis.

5 Conclusion

In this paper, we presented the design and implementation of a novel JavaScript
forced execution engine named JSForce which enables non crashable execution
model while ensuring complete code coverage. We evaluated JSForce using a
large number of HTML and PDF samples. Experimental results showed that
by adopting JSForce, the malicious JavaScript detection rate can be greatly
improved without any noticeable false positive increase and the runtime overhead
was generally neglectable.
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Abstract. Software reverse engineering has been widely employed for
software reuse, serving malicious purposes, such as software plagiarism
and malware camouflage. To raise the bar for adversaries to perform
reverse engineering, plenty of work has been proposed to introduce obfus-
cation into the to-be-protected software. However, existing obfuscation
methods are either inefficient or hard to be deployed. In this paper, we
propose an obfuscation scheme for binaries based on Return Oriented
Programming (ROP), which aims to serve as an efficient and deploy-
able anti-reverse-engineering approach. Our basic idea is to transform
direct control flow to indirect control flow. The strength of our scheme
derives from the fact that static analysis is typically insufficient to pin-
point target address of indirect control flow. We implement a tool,
ROPOB, to achieve obfuscation in Commercial-off-the-Shelf (COTS)
binaries, and test ROPOB with programs in SPEC2006. The results
show that ROPOB can successfully transform all identified direct con-
trol flow, without causing execution errors. The overhead is acceptable:
the average performance overhead is less than 10% when obfuscation
coverage is over 90%.

Keywords: Obfuscation · Return-oriented programming
Reverse engineering

1 Introduction

Along with the booming development of software market, illegal reuses of soft-
ware with malicious purposes, such as software plagiarism and malware camou-
flage, bring a lot of negative influence. Software plagiarism happens when the
adversaries develop and release software with components “stolen” from pro-
grams owned or licensed under others’ names. Malware camouflage refers to
cases where the adversaries repackage released software to embed malicious pay-
loads, and then publish the resulted in “malware” with the name of the original
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software. These intentional torts are causing billions of dollars worth of damage
to the software market every year [1].

Commercial softwares always appeal to adversaries for malicious reuse. As
most of them are released in the form of binaries, adversaries can analyse the
binaries to extract their working logic to reuse them. The analysing process
is commonly termed as software reverse engineering. A major line of effort on
preventing software from being reverse engineered is to introduce obfuscation
into software. Basically, obfuscation deliberately transforms readable codes into
obfuscated codes that are difficult for humans or tools to understand, aiming to
conceal the original logics of the software.

Plenty of techniques have been proposed to achieve software obfuscation in
different phases of reverse engineering. Linn and Debray propose to obfuscate
executable code to disrupt static disassembly [2], which is often the first step
of binary reverse engineering. Igor et al. propose to keep control flow under
cover by signal handlers [3]. However, leveraging signal mechanisms to handle
control flow introduces significant overhead (typically higher than 21%). and it
is not thread-safe. Chen et al. leverage the characteristic - information tracking
support of Itanium processor, to obfuscate control flow with exception handling
[4]. This mechanism is more efficient but can only be deployed when the required
processors are available.

Before we introduce our approach, we first briefly explain the concept of
ROP. ROP is a type of advanced code-reuse attack proposed by Hovav Shacham
in [5]. A ROP attack hijacks the control flow to a sequence of code pieces (or
“gadgets”) that end with a return instruction. The ROP attack will pre-set the
return address for the return instruction in each gadget on the stack, to make
sure these gadgets are executed sequentially.

RopSteg [6] is proposed for code protection that attempts to hide selected
instruction sequence by executing their “unintended matches” located elsewhere.
And instruction snippet that they can hide is much smaller than the whole
program.

In this paper, we propose a new ROP-based approach to perform software
obfuscation. The core idea of our approach is to take advantage of ROP to obfus-
cate control flow in basic block granularity as follows. First, we disassemble a
to-be-protected ELF file and divide executable code into basic blocks. Then, do
some instrumentation on basic blocks to convert them into gadgets. We trans-
form all identified direct control flow and hide them by ret instruction. Finally,
add all those gadgets and designed payload into original file and leverage binary
rewrite to produce obfuscated file. Note that the designed payload will be used
for control flow transfers and will be stored in a newly added payload section. As
we use ROP payload and gadgets to complete control flow transfer, static reverse
engineering methods can not find the real control flow, even though they can
disassemble software correctly. And it is a lightweight method to do obfuscation
with ROP. As ROP works only in user space, does not involve signal handler
or other kernel space, the whole process of control flow transfer is quicker than
signal methods theoretically. And ROP method can be thread-safe.
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Our contributions are as follows:

– We propose a novel ROP based approach to achieve control flow obfuscation.
Our experiment proves that this method is effective and practical against
static reverse engineering analysis.

– Our obfuscation approach is efficient and widely deployable.
– We develop a tool ROPOB to implement our approach. Experiment results

show that ROPOB can correctly transform all identified direct control flow.
The average overhead introduced by our obfuscation is less than 10% when
obfuscation coverage is above 90%.

The remainder of this paper is organized as follows. In Sect. 2, we explain
the overview of our approach. Section 3 details our design of ROPOB. Then we
present the evaluation of our approach in Sect. 4. Section 5 summarizes related
work and Sect. 6 discusses some issues. Section 7 concludes this paper with future
work.

2 Overview

Our goal is to convert ELF (Executable and Linkable Format) files to ROP-
obfuscated ones, whose control flow information has been concealed, so that
static de-obfuscation methods will fail to construct the control flow graph (CFG).
The obfuscated files are semantically equal to the original ones. In this section
we will give an overview of our method.

We consider a model, in which the defender develops a commercial software,
prepares to obfuscate and release its binary version, and the adversary aims
to reverse engineer the binary for malicious reuse. The following assumptions
should be satisfied in this model:

– The un-obfuscated binary file is in ELF file format (with or without symbol
information);

– The obfuscated binary file is supposed to run on unmodified Linux systems;
– The adversary only employs static reverse engineering tools, such as IDA Pro

[7], to analyse the obfuscated binary file.

Our approach takes a to-be-protected ELF file as input and outputs the
obfuscated version. The workflow of our approach is shown as Fig. 1(a), which
consists of four major steps:

– Disassemble the text section of an ELF file and divide executable code into
basic blocks;

– Do some instrumentation on basic blocks to convert them into gadgets, which
are ended with ret instruction;

– Write all those gadgets and designed payload into an assembler file and assem-
ble it into a new ELF file. Note that the designed payload is a list of start
address of gadgets. Its function is to guide the execution of all the gadgets.

– Copy text and payload section of new ELF file into original ELF file to pro-
duce our obfuscated file;
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Fig. 1. Workflow of our approach

When the above steps are finished, we wipe out the original text section
from the resulting ELF file. Otherwise the adversary can still recover the control
flow information from this section. Note that all sections copied to the obfuscated
ELF, including the new text section and the payload section, do not overlap with
any previous sections. Notably, we maintain the data section to be intact, which
will be directly reused by the obfuscated code section. Therefore, we essentially
maintain the data integrity.

In summary, all our work is in user space and does not involve kernel space.
Furthermore, our method can invalidate all static de-obfuscation techniques,
because there is no control flow information in static analysis. Meanwhile, it can
increase the difficulty for dynamic de-obfuscation methods. Because there is no
function call in our obfuscated files, it is hard to extract high level semantics,
even when attackers find an execution path dynamically.

The workflow of our approach is straightforward. However, there are multiple
challenges to be tackled in the workflow, which are summarized as follows:

– Basic blocks can’t be partitioned thoroughly. Therefore, some indirect control
flow may jump into the body of basic block (or gadget), rather than the
entrance. That will fail payload entrance check (used for gadget location when
ROP runs).

– Indirect control flow can’t be analysed statically. It is necessary to make
indirect control flow jump to destination correctly. We design a control flow
map table to solve this problem.

– We must keep data access correct, with control flow obfuscated. We design
a reconstruction framework to reuse the whole data sections of original pro-
grams.

Figure 1(b) depicts an instance of our design. The dotted line in this figure
represents there is a control flow path from BBi to BBj in the original file
(BB means basic block). After basic blocks (BB) are transformed to gadgets
(Gadget), we maintain the control flow path from BBi to BBj through designed
payload. Before Gadgeti executes ret, we push the address of Gadgetj onto the
stack. Therefore, we can direct the control flow to Gadgetj .
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3 Design and Implementation

We design our method as a tool, called ROPOB, which takes an ordinary ELF file
as input and generates an ROP-obfuscated ELF file with the same semantic as
output. This tool has a basic reconstruction framework, which supports instru-
mentation works on the input ELF file. Apart from this framework, there are
other challenges needed to be resolved in ROPOB, such as basic block partition
and control flow integrity. We will present all technical details in this section.

3.1 Reconstruction Framework

Our goal is to transform an original ELF file to a ROP-obfuscated one, keeping
the semantics equal. We design a framework to reconstruct an ELF file, and
to support any assembly-level instrumentation, including our ROP-obfuscation
work. This framework mainly analyzes the assembly code, which is obtained
from disassembling the original ELF file, and then recompiles it into a new ELF
file. Our reconstruction framework is shown in Fig. 2.

Fig. 2. Reconstruction framework

Generally speaking, the text section of original ELF file starts from address
0x8048xxx. In our reconstruction framework, we extract the text section from
the original ELF file, disassemble the text section and divide the text section into
basic blocks. Meanwhile the control flow information between basic blocks are
collected. Thus, we can apply any assembly-level instrumentation work on those
basic blocks, such as our ROP obfuscation instrumentation. Then we use the
rewritten basic blocks and previously collected control flow information to write
an assembly file. After recompiling the assembly file, we can get an intermediate
ELF file, whose text section is lowered down to address 0x7000000. The reason
for changing base of text section to 0x7000000 is that we will copy the text section
into the original ELF file as new text section. As we do some instrumentation
works, the scale of text section in intermediate file is larger than that of the
original one. So if we set the base address of text section in intermediate file the
same as that of the original one, some data sections of the original file will be
destroyed, which is not expected. We integrate new text section and some new
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data sections into original file by objcopy tool after recompilation in order to
reuse all data sections from the original file. The last step of our framework is to
modify the program header table to include new text section and data sections,
whose addresses are all above 0x7000000. For some security reasons, we need
to wipe out the original text section in case of control flow information leak.
By means of this framework, we can maintain the same semantics between the
original file and the ROP-obfuscated file.

3.2 Basic Block Partition

It is common sense that control flow information exists in relationship between
basic blocks. A basic block is a straight-line code sequence, with no branches in
except to the entry and no branches out except at the exit. The rules we use to
divide basic blocks are as follows:

– A control flow related instructions, like a jmp/jcc/call/ret instruction, indi-
cates an exit of a basic block. The target operand of a direct jmp/jcc/call
instruction is an entrance of a basic block.

– We ignore the target operand of indirect jmp/jcc/call instructions.
– The next instruction of a jmp/jcc/call/ret instruction is an entrance of a

basic block.

We do not deal with the target operand of indirect jmp/jcc/call instructions
(control flow related instruction, CFRI for short), because the target operand is
unknown in static method. Although it is possible to explore some information
through some data sections, such as finding a jump table in rodata section, it
is hard to locate the boundary of a jump table. However, some basic blocks
cannot divided correctly, for example, an entrance of a jump table is not found.
To deal with this problem, we design a control flow mapping table, which will
be discussed in next subsection.

3.3 Control Flow Mapping Table

The control flow information of direct CFRI is obvious. However, we can’t work
out control flow information of indirect CFRI, whose target operand is often
determined by some data sections during the runtime. As we have mentioned,
we reuse all data sections from original file, and the target addresses computed
by original indirect CFRIs are the same as those calculated by indirect CFRIs
in new text section of ROP-obfuscated file. Under the circumstances, if we make
no change to the target address calculated by indirect CFRI in new text section,
control flow will be guided into wiped text section which will crash the program.
So, we will redirect such addresses and design a control flow mapping table
to solve this problem. Figure 3 illustrates the principle of control flow mapping
table.

There is a basic block (BB1) of bzip2 presented in Fig. 3. After instrumen-
tation, we get Gadget1. 0x804cac4 and 0x7007dff are entrance addresses. The
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Fig. 3. Control flow mapping table

control flow mapping table is in the right side of Fig. 3. If the target of an indi-
rect CFRI is entrance of BB1, we will calculate the target address first and
check control flow mapping table to locate the correct target address 0x7007dff
in Gadget1.

It is tricky to solve the problem presented in Sect. 3.2 by means of control
flow mapping table in Fig. 3. Just thinking that if our basic block partition
misses a basic block, whose entrance is 0x804caca in BB1 and an indirect CFRI
jumps to 0x804caca, we can’t find any table entry to match 0x804caca. But
the offset between 0x804caca and 0x804cac4 equals that between 0x7007e05 and
0x7007dff, with the acknowledgement that we only apply instrumentation at the
end of basic block, rather than in the middle. Therefore we can locate 0x7007e05
correctly.

3.4 ROP Instrumentation

Our goal is to use ROP technique to hide control flow information, so that static
method can’t analyze the control flow information. Control flow from one basic
block to another is completed by ret instruction and ROP payload. The payload
is a list of entries of all generated gadgets, converted from original basic blocks.
We design different instrumentation policy for different control flow cases.

– Case 1: For each basic block ended with non-CFRI (maybe mov or add
instruction), we push the start address of next gadget onto the stack. Note
that the next gadget is transformed from the basic block next to it and its
address is stored in the payload;

– Case 2: For each basic block ended with direct CFRI, there is only one
target address of call/jmp. If the direct CFRI is call/jmp, we push the start
address of next gadget onto the stack like Case 1. But the next gadget is
transformed from the basic block starting from the target address. Figure 3
shows a simple example about direct jmp (Note that [gadget1021] stores the
start address of next gadget). The difference between call and jmp is that for
call instruction, return address is pushed onto the stack at first. If the direct



728 D. Mu et al.

Fig. 4. Jcc transformation

CFRI is jcc with two target addresses, we provide two paths at the end of
gadgets and deal with each path like direct jmp instructions, or we can use
characteristic of ROP to transform two paths into one unified form. We will
discuss this transformation later in this subsection;

– Case 3: For each basic block ended with indirect CFRI, we take advantages of
control flow mapping table to relocate the target address. Then the remaining
work is like Case 2;

– Case 4: For each basic block ended with ret instruction, nothing is to be
done. The return address has been pushed in the stack previously;

Figure 4 tells how we transform jcc instruction into a unified form. There
is a branch from BB1 to two destinations: BB2 and BB3 in program bzip2.
If condition is met at instruction ‘je 0x804da42’ (ZF = 1), control flow goes
to BB3. Otherwise, control flow goes to BB2. Accordingly, there are gadgets,
G2 and G3, in payload. The difference of start address between G2 and G3 in
payload is offset, a parameter shown in Fig. 4. Then we can get the condition flag
and use it to compute the proper target address. For example, we use register eax
to store address of G2 in payload, and then we calculate the target address with
the help of flag and offset. The flag is the conditional judgment bit in eflags.
We ensure that if condition is satisfied, eax points to G3 in payload. Otherwise,
register eax points to G2 in payload.

3.5 Special Case of Data Access

In ROPOB, we reuse all data sections from original file. The major data accesses
are absolute addressing, with addresses in data sections directly. However, there
are special cases - access data with relative addressing. Since we have dropped
the new text section to a low address space - 0x7000000, it is a mistake to access
data relative to instructions in new text section. This problem is addressed in
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Oxymoron [8]. Here we hold the same viewpoint as Oxymoron, where the authors
believe this is not a general case and can be located statically.

4 Evaluation

We tested our method on fourteen programs in SPEC2006, and succeed to obfus-
cate those programs and evaluate our method in three aspects, including control
flow concealing, program size and program execution speed. Our experiments
are performed on CentOS 6.6 x86, with 2G memory and kernel version - 2.6.32.

4.1 Control Flow Concealing

There is no standard for obfuscation strength. But in the aspect of concealing
control flow, we work out two metrics to measure obfuscation degree of our
method. They are CFG-level stealth and instruction-level stealth. We measure
those two metrics on all the fourteen programs in SPEC2006.

CFG-Level Stealth. We choose CFG fragmentation to measure it. Our method
hides paths between basic blocks, so an original big CFG is cut into small pieces.
We use the ratio of independent CFG (a function is an independent CFG) to
measure the degree of fragmentation (DF ).

DF = ObCFG/OrCFG

ObCFG represents the number of independent CFG in obfuscated program.
OrCFG is the number of independent CFG in original program. The bigger DF
is, the more difficult can the reverse engineering analysis dig out control flow
information statically. The result is shown in Table 1. The average DF is 22.79
(from 8.32 to 63.66).

Instruction-Level Stealth. Direct CFRIs are major leakage points of control
flow information. The direct CFRIs between basic blocks must be replaced to
hide control flow information. We check whether direct CFRIs exist in original
and obfuscated programs and analyze those existing cases. The columns jmpdec,
calldec, jccdec in Table 2 represent the decrease degree of CFRIs, which is calcu-
lated by the following formula.

DecCFRI =
OrC(CFRI) − ObC(CFRI)

OrC(CFRI)

OrC(CFRI) represents the number of direct CFRIs in original program and
ObC(CFRI) is the count of direct CFRIs in obfuscated program.

It is obvious to find that there are almost no direct jmp instructions in our
obfuscated programs. While direct call and jcc instructions are still there, these
cases don’t leak any control flow information. Because direct call instructions in
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Table 1. CFG fragmentation

Programs Original Obfuscated DF

astar 97 1367 14.09

bzip2 81 1942 23.98

gobmk 2535 32453 12.80

h264ref 531 14166 26.68

hmmer 501 11451 22.86

lbm 28 233 8.32

libquantum 108 1509 13.97

mcf 33 451 13.67

milc 244 3962 16.24

namd 105 6684 63.66

perlbench 1723 53973 31.33

sjeng 143 4904 34.29

soplex 900 15575 17.31

sphinx3 335 6670 19.91

obfuscated programs all call the same one function, which is used for indirect con-
trol flow redirection. And direct jcc instructions inherit from original programs
but the targets of jcc are inside basic blocks in obfuscated programs rather than
outside basic blocks. So control flow information remains under cover through
our method. The average DecCFRI of jmp is 96.85% and that of call is 94.80%.
The DecCFRI of jcc is negative. Because including inherited jcc instructions,
there are other jcc cases in our inserted functions. If we do not take inherited
jcc instructions into account to measure DecCFRI, the DecCFRI of jcc will be
modified as

DecCFRI =
2 ∗ OrC(jcc) − ObC(jcc)

OrC(jcc)
.

Fig. 5. Size expansion ratio



ROPOB 731

Table 2. CFRI Decrease. jmpor, callor, jccor represents the number of CFRI in
original file; jmpob, callob, jccob represents the number of CFRI in obfuscated file.

Programs Original Obfuscated DecCFRI

jmpor callor jccor jmpob callob jccob jmpdec calldec jccdec jcc real

astar 174 400 587 11 9 595 93.71% 97.74% −1.36% 98.64%

bzip2 356 338 1058 8 30 1065 97.73% 91.10% −0.67% 99.33%

gobmk 4475 9112 13076 17 66 13085 99.63% 99.27% −0.07% 99.93%

h264ref 2575 2729 7346 43 373 7354 98.33% 86.32% −0.11% 99.89%

hmmer 1697 3542 5075 47 41 5082 97.26% 98.85% −0.13% 99.87%

lbm 26 73 83 4 8 90 84.64% 89.06% −8.42% 91.58%

libquantum 252 452 592 3 8 599 98.84% 98.25% −1.16% 98.84%

mcf 64 89 230 3 8 238 95.34% 90.98% −3.47% 96.53%

milc 528 1543 1367 19 17 1374 96.38% 98.90% −0.52% 99.48%

namd 1110 1129 4206 14 23 4213 98.72% 98.00% −0.16% 99.84%

perlbench 10167 13869 25777 25 221 25789 99.75% 98.40% −0.05% 99.95%

sjeng 940 1102 2504 8 24 2511 99.16% 97.85% −0.28% 99.72%

soplex 2881 4210 6011 31 719 6018 98.92% 82.92% −0.12% 99.88%

sphinx3 850 2502 2629 21 12 2637 97.50% 99.52% −0.31% 99.79%

The real DecCFRI of jcc instructions is listed in the last column of Table 2.
The average DecCFRI of jcc instructions is 98.80%.

4.2 Size Measurement

The scales of programs expand in different degrees after being obfuscated by
our method. We measure size of text section and size of ELF file in original and
obfuscated program respectively. Figure 5 describes the expansion ratio of text
section and file size. The mean expansion ratio of text section is 1.81 (from 1.48
to 2.12), and the mean expansion ratio of file size is 2.66 (from 1.46 to 3.42).
There are several factors leading to size expansion. Our instrumentation work
increases the size of text section. Additionally, we integrate some data sections,
such as payload and mapping table, into our obfuscated program, which certainly
increases the file size.

4.3 Overhead

As we translate direct CFRIs into indirect ones, memory accessing time will
increase and CPU pipe-line will be affected and slow down. Theoretically, our
method will increase overhead of programs. We apply our method to those four-
teen programs with 100% obfuscation coverage. The overhead is unacceptable
and is shown in Fig. 6. There are twelve programs’ overhead beyond 200%, with
the highest of 1194.74% (libquantum). The average overhead in Fig. 6 is 524.87%
(from 15.8% to 1194.74%). To cut down overhead, we adopt an optimization pol-
icy of decreasing the obfuscation coverage.

Under our optimization policy, we gain acceptable (overhead,coverage) pairs.
We test our obfuscated programs under four coverage standards (95%, 90%, 85%,
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Fig. 6. Overhead with 100% obfuscation coverage

0%). Our optimization policy works on nine programs, depicted in Fig. 7(a). The
mean overhead of 95% obfuscation coverage is 20.31% (2.0%–69.54%). That is a
great progress, comparing to 100% obfuscation coverage in Fig. 6. When obfusca-
tion coverage is decreased to 90%, the mean overhead is 7.86% (0.91%–31.45%).
And for each program, the overhead is cut down to 10% or less, except mcf,
whose overhead is 31.45%. As obfuscation coverage comes to 85%, all the nine
programs’ overhead are below 8.49%, and some programs’ overhead approximate
to 0%.

Other five programs’ overhead is not shown in Fig. 7(a), as their overhead
is still very high (mean overhead is up to 110.41%, in arrange from 61.9% to
244.61%) even when obfuscation coverage is 0%. These five programs’ overhead
are shown in Fig. 7(b). We analyze these five programs deeply, and find that they
execute indirect CFRIs frequently. Our method utilizes a function to redirect
indirect control flow during the runtime. That is time-consuming. No matter
how low our obfuscation coverage is, the overhead is still high.

(a) Nine optimized programs’ overhead (b) Other five programs’ overhead

Fig. 7. Overhead with four kinds of obfuscation coverage
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5 Related Works

ROP, proposed by Hovav Shacham to enhance return-into-libc attack, is a code-
reuse technique [5]. Its execution unit is gadget, a piece of instruction snippet
ended with ret instruction. ROP uses payload on stack and ret instruction to
organise its control flow. This code-reuse technique is developed by researchers in
many ways. Jiang find gadgets ended with jmp instructions can also be used for
code-reuse attacks [9]. Q is an automatic method to construct ROP payload to
bypass ASLR defense [10]. Printable ROP, whose payload is all printable ASCII
bytes, is another branch of ROP attacks [11]. Although defenses against ROP
vary too much, such as ASLR , new attack methods can still utilize ROP to
launch attacks, such as JIT ROP [12], side channel ROP [13,14]. Not only on
traditional PC platform, but also on mobile devices, ROP is an effective way to
attack [15–17].

Binary obfuscation focuses on fighting against reverse engineering analysis.
Cohen is the first to present binary obfuscation. He changes the layout of instruc-
tions to prevent disassembling [18]. Later Igor finds another way to fool disas-
sembler by inserting junk bytes to replace useless instructions [3]. This way is
based on an assumption of disassembly algorithms, which treats CFRIs and
their targets as hints of instructions’ beginning. Nevertheless, Igor does more
than that. They utilize signal handling mechanism to conceal control flow infor-
mation. Their method is effective for obfuscation. However, overhead of their
method is unacceptable even their obfuscation coverage is 90%.

Control flow obfuscation aims to protect programs’ semantics from being
analysed. One way is to hide control flow information like Igor and Chen [4]. Chen
takes advantages of characters of Itanium processors, which support information
flow tracking. Their method resolves the problem of high overhead but it is not
in common use on x86. Another way is to make CFG complicated, so that reverse
engineering can’t reconstruct high-level program structure. Xin et al. attaches
many useless or semantics-equal paths to CFG [19] and fakes a different CFG.
Thus some analysis methods based on birthmark or pattern matching fail to dig
out real semantics of programs. Control flow flattening also changes the whole
CFG of a program [20]. They obfuscate C++ source code to a large loop, and
use switch statements to judge which case to be executed in each iteration. Yet
their work is based on source code.

ROPSTEG [6], also leverages ROP to perform binary obfuscation, but is dif-
ferent. First, ROPSTEG aims to make use of unintended instructions to hide
sensitive instructions, while our approach takes advantage of ROP payload and
gadgets to hide direct control flow in the form of indirect control flow. And
chaining payloads by gadget and ret instruction is the core idea of ROP, other
than unintended instructions. Consequently, major control flow information can
still be recovered from binary obfuscated by ROPSTEG, which, however, is com-
pletely hidden by our approach. Second, applicability and obfuscation strengthen
of ROPSTEG are restricted by certain properties of the to-be-protected binary,
such as the available unintended instructions. To the contrary, our approach has
no requirements on the binaries.
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Virtualization based methods are also effective for obfuscation. [21–25] men-
tioned, it is possible to use emulated instruction sets to rewrite programs. Pro-
grams’ representation is neither IA32 instructions nor ARM instructions and
becomes difficult to analyze.

On the opposite side, software reverse engineering is to analyse programs
and dig out useful information [26–30]. It can be classified into two kinds, static
method and dynamic method. Static reverse analysis often start with disassem-
bling and translate binary code into high level programs. IDA and Hex-Ray are
practical business de-compiler tools [31]. Phoenix [32] is another state-of-art de-
compiler, which uses semantics-preserving structural analysis, and it can recon-
struct high-level control flow structure. But all those static methods do not work
on control flow obfuscation programs. Dynamic method can find some control
flow paths through execution. TOP reconstructs control flow structures dynam-
ically [33]. However, path coverage is the main limitation of dynamic method,
since execution can’t find out all paths in CFG.

6 Discussion and Limitation

Since gadgets itself is helpful for ROP attacks, it is dangerous to transform
basic blocks of original programs into gadgets. We prevent reuse of generated
gadgets in two aspects. On one hand, our instrumentation design is unfriendly
to ROP attacks, because our generated gadgets all do the same thing, reading
data from memory addresses. On the other hand, we can implement load-time
basic block level ASLR just like binary stirring [34], as our generated gadgets
are independent from each other. Here, we discuss the potential limitations of
ROPOB:

– Dynamic analysis. As discussed in Sect. 1, ROPOB does not hide con-
trol flow information from dynamic analysis as the operand of indirect jmp
instruction will be shown when executing. We have an idea to defend from
dynamic analysis and show it in Future Work.

– Payload hiding. As shown in Sect. 3, ROPOB puts payload into one data
section named “.payload”. As this section is in the binary, it may raise sus-
picion in static method.

– Compatible with ROP Defense. Since ROPOB makes use of ROP to
obfuscate control flow information, our work should be compatible with ROP
defense schemes. Although ROPOB does not make use of “unintended instruc-
tions” in ROPSTEG [6], there are also CFI security policies which ROPOB
violates.

7 Conclusion and Future Work

In this paper, we design and implement ROPOB, a ROP-based binary obfus-
cation scheme that obfuscates the control flow of programs by chaining basic
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blocks as ROP gadgets. We show that ROPOB can protect programs against
static analysis, effectively and practically.

Here we show our work in future in the aspect of reuse or replace gadgets.
Control flow graphs of functions in original program are independent. If we can
reuse gadgets in our obfuscated programs, or replace the gadgets with gadgets
in the libraries just like ROP attacks, the independence of CFGs will be broken,
and code of each function will interweave together. That will make function
extraction difficult. Thus, we need to analyse functionality of each gadget and
automatically construct ROP payload to replace functionality-equal gadgets [10].
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Abstract. Memory Corruption attacks have monopolized the headlines
in the security research community for the past two decades. NX/XD,
ASLR, and canary-based protections have been introduced to defend
effectively against memory corruption attacks. Most of these techniques
rely on keeping secret in some key information needed by the attackers to
build the exploit. Unfortunately, due to the inherent limitations of these
defenses, it is relatively difficult to restrain trained attackers to find those
secrets and create effective exploits. Through an information disclosure
vulnerability, attackers could leak stack data of the runtime process and
scan out canary word without crashing the program. We present Diff-
Guard, a modification of the canary based protections which eliminates
stack sweep attacks against the canary and proposes a more robust coun-
termeasures against the byte-by-byte discovery of stack canaries in fork-
ing programs. We have implemented a compiler-based DiffGuard which
consists of a plugin for the GCC and a PIC dynamic shared library that
gets linked with the running application via LD PRELOAD. DiffGuard
incurs an average runtime overhead of 3.2%, meanwhile, ensures appli-
cation correctness and seamless integration with third-party software.

Keywords: Information leak · Brute-force attacks
Canary-based protection · Canary re-randomization

1 Introduction

Buffer overflows, sensitive data exposure and related memory corruption vul-
nerabilities constitute an important class of security vulnerabilities. According
to the CNNVD Situation Report in 2016 [1], there exists a notable increase in
vulnerability number, from 5128 in 2011 to 8336 in 2016. Buffer overflows remain
the most frequently encountered [2], which brings a huge threat to network and
information security. Over the last years, several techniques have been developed
to prevent adversaries from abusing them. Stack canaries [3–5], Address Space
Layout Randomization [6] and non-executable stack (NX/XD) [7] are widely
deployed due to the low overhead,simplicity and effectiveness. However, none of
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these techniques has fully eliminated stack smashing attacks and several attack
vectors are still effective under all these protections [8–11].

Stack buffer overflows are often used as a stepping stone in modern, multi-
stage exploits like Return-Oriented Programming (ROP) [15]. For instance,
Blind ROP (BROP) [13] attack requires only a stack-based memory corruption
vulnerability and a service that restarts after a crash to automatically construct
a ROP payload. Security researchers believe that only the forked networking
servers are prone to brute force attacks, based on the fact that in forking appli-
cation, all the children processes inherit/share the same memory layout from
the parent process. The attacker can try in bounded time all the possible val-
ues of canary (for SSP) and memory layouts (for ASLR) until the correct ones
are found. There exists a dangerous form of SSP vulnerability, called byte-for-
byte, which allows the attacker to try each byte of the canary independently and
to find the value of the canary with a little number of attempts. There exists
some techniques effectively armoring protections against brute-force attacks on
forking program, but they could not guarantees the correctness of child process
[14]. The different function frames of the process share the same canary word
stored in TLS, which greatly weaken the security of process data. Through CVE-
2012-3569 VMware OVF Tool format string vulnerability [12], we successfully
leaked the runtime stack data and scanned out the canary without crashing the
program.

The severity and plethora of these exploits underline the redesign of canary-
based protections. To address the aforementioned issue, we present a modifi-
cation of the SSP technique, called DiffGuard (Different function frames with
different canaries), which consist of assigning different canaries for different func-
tion frames and setting a number of new canary words for each child process
when the fork() system call is invoked. Specifically, through a lightweight, per-
frame randomizing mechanism, our design smashes the consistency issue of tra-
ditional canary based protections and enables the runtime update of the canary
values in all protected function frames of the running thread, so that newly-
forked processes get a number of fresh canaries, different from the canaries of
their parent process. Contrary to previous work [14,15], our approach makes
the canary of different frames independent of each other in both non-forking
and forking programs and guarantees correctness while preventing brute force
attacks against stack canary protection on forking programs. DiffGuard pro-
vides protection based on source code, which is a compiler-level version of tool,
implemented as a GCC plugin, incurs just 3.2% runtime overhead over native
execution, and is fully compatible with third-party libraries that are protected
with the default canary mechanism.

In summary, the main contributions of this work are the following:

1. We present DiffGuard, a robust solution for obscuring sensitive informa-
tion(canary word) in Canary based Protections.

2. The SSP byte-by-byte attack in forking applications is no longer applicable
to the DiffGuard.
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3. We have evaluated the effectiveness of the recently proposed solution [14,
15] to the problem of identical canary stored in each function frames, and
demonstrate how DyffGuard overcomes its design limitations.

4. We have implemented a compiler-level DiffGuard, demonstrating the practi-
cality of our approach, which incurs a runtime overhead of 3.2% and shows
that it can be easily adopted by popular compiler toolchains to further address
security issues arising from the process creation mechanism of modern OSes.

The rest of the paper is organized as follows. We provide a background on
the existing defenses and review their weaknesses with respect to canary based
protections in Sect. 2. We detail the design of DiffGuard in Sect. 3. We describe
the implementation details in Sect. 4. We evaluate our system in Sect. 5, and we
cover some related work in Sect. 6, and conclude in Sect. 7.

2 Background

In this section, we first introduce simply the stack smashing attack and canary-
based protection. Then we briefly describe the existing work and propose a stack
scan algorithm based on the limitations of existing works bypassing canary based
protections.

2.1 Canary-based Protection and Brute-force Attacks

The general principle of stack smashing attack is to change the control flow
to execute attacker-supplied code. Stack smashing relies on the fact that most
C compilers store the saved return address on the same stack used for local
variables. The common form of buffer overflow exploitation is to attack buffers
allocated on the stack. A well-accepted countermeasure against stack smashing
attacks is the Canary-based Stacking Smashing Protection. The basic idea is
to place a canary right after the return address in stack frame to detect buffer
overflows.

Processes created with fork() are a duplicate of the calling process. Both,
father and child have the same canary value. On a forked server, where the
service is attended by children of the server process, an attacker can build brute
force attacks by guessing the value of the canary as many times as needed.

Bit-by-bit Attack: The frame-canary word is overwritten on each trial. If the
guessed word is not correct then the child process detects the error and aborts.
As consequence, the attacker does not receive a reply, which is interpreted as
an incorrect guess. The guessed value is discarded, and attacker proceeds with
another value until all the possible values are guessed.

Byte-by-byte Attack: The basic idea in leaking canaries with byte-by-byte
attack is to overflow a single byte, overwriting a single byte of the canary with
value x. If x was correct, the server does not crash. The algorithm is repeated for
all possible 256 byte values until it is found (128 tries on average). The attack
continues for the next byte until all 8 canary bytes (on 64-bit) are leaked.
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Table 1 shows the complexity of using bit-by-bit versus byte-by-byte attacks.
Most canary implementations set to zero one of the canary bytes (the most sig-
nificant in x86) for preventing the buffer overflow attacks when the overflow is
performed by a string copy functions. For this reason, the number of bytes needed
to guess is three (for 32-bit systems) or seven bytes (64-bits systems). Statisti-
cally, the bit-by-bit attack is described as a “sampling without replacement”
and since all the values has the same probability (1c ) it is modelled by the uni-
form distribution with a support range of [1, c] and a mean of c+1

2 [14]. With
the standard SSP, bit-by-bit attack needs at most 224 trails to break the system
(and 223 in average) in 32-bit systems. On a byte-by-byte attack, the process of
finding each byte is modelled as a uniform distribution whose mean is 256/2 and
the support range is [1, 256], the attacker needs at most 768 trails to break the
system (and 384 in average) in 32-bit systems. The average requests in 64-bit
systems is calculated as above. With this figures, the standard canary technique
provides a weak protection for this kind of bugs.

2.2 Previous Works

The basic idea of preventing brute force attacks focuses on re-randomizing the
reference-canary of the child right after the fork(). RAF-SSP’renew canary at
fork strategy consist in renew the value of the reference-canary of the child
process right after it is created (forked). The new value is also a random value
and every child process have a different reference-canary. However, this partial
update will result in an abort if execution reaches the frames inherited from
the parent process, as the canary cookies in these frames still hold their old
values [15]. RAF-SSP assumes that a child process never reuses inherited frames
legitimately. DynaGuard use per-thread bookkeeping mechanism to guarantee
program correctness. At a high level, DynaGuard operates as follows: after a fork
system call, and right before any instruction has executed in the child process,
DynaGuard must update the canaries in both the TLS and all inherited stack
frames in the child process.

2.3 Threats

Rather than a detailed explanation on how to bypass the SSP, we will present
only the weaknesses of the existing canary based protections that enables the
possibility of an attack. Basically, there are three ways to bypass the canary:

1. Overwriting the target data (return address, function pointer, etc.) without
needing to overwrite the frame canary.

2. Overwrite the frame-canary with the correct value.
3. Disclosure runtime memory data.

With a view of situation 1, since GCC v4.6.3, local variables are reordered
so that buffers are located first (higher addresses) and below them the function
pointers and the saved registers. Based on this fact, directly overwriting the
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target data could not achieve the goal. We had discussed situation 2 in Sect. 2.1
and introduced existing works which prevent brute force attacks against canary
based protections in Sect. 2.2. So we will focus on the memory data disclosure
against the canary value.

The different function frame shared the same canary stored in TLS, which
greatly weakened the randomness of canary. Through an information disclosure
vulnerability, attackers could leak stack data of the runtime process and scan out
canary word without crashing the program. We proposed a scanning algorithm
to find out canary. The input is runtime-stack data which have been leaked
by program vulnerability(format string, dangling pointer, etc.) and platform
information. The output is the most possible canary words. The intuition here
is that all the function frames of the runtime-stack stored the same canary
words, this consistency allows us to find canary from the disclosure data. In this
algorithm, we set the size of the sliding window to memory address width (e.g.,
4 bytes for a 32-bit operating system). The scan of the runtime stack data starts
from the top of the stack indicated by the value of stack pointer ESP plus an
offset equal to the memory address width (e.g., ESP + 4 for a 32-bit operating
system). We add repeated words which frequency of occurrence is more than
three times in the candidate tag. In order to find out canary from the candidate
collection, We made the following three rules to determine:

1. Terminator value: most canary implementations set the last byte of canary
to the terminator value. the value is composed of different string terminators
(CR, LF, NULL and −1).

2. Randomization: canary is a random value generated by reading the device
/dev/random. Such as 0xAAA0, 0xABA0, 0xAAB0(A and B represent hex-
adecimal numbers) could be directly removed.

3. Function prologue: The prologue of each function is fixed. In GCC version’s
canary based protections, canary is usually stored in the position of EBP + 8.
Through this relative offset, we can further screen out the possible canary.

Through the above rules, We can screen out the canary value. Considering
XOR canaries implemented in Windows, the canary is generated by canaryt ⊗
EBPf , canaryt is the original canary value stored in TLS and EBPf is the
base address of the function frame. Since the upper 2 or 3 bytes are fixed, our
scanning algorithm is still working.

Table 1. Comparison of different canary based protections

Protextion Brute force attack Correctness Consistency

StackGuard F T F

RAF-SSP T F F

DynaGuard T T F

As shown in Table 1, due to the same canary in both parent and child process,
StackGuard [3] is specially prone to brute force attacks in forking applications.
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RAF-SSP could prevent brute force attacks against SSP, but could not guar-
antee correctness of the program. Althrough RAF-SSP and DynaGuard ensure
that parent process has a different canary value with the child process, but the
different frames still store the same canary in a process. These three protections
can not solve the problem of consistency. In the following sections, we discuss
how DiffGuard solves the problems discussed above while preserving application
correctness and preventing brute force attack against canary based defenses.

3 Design

At a high level, DiffGuard operates as follows: (1) for non-forking program,
DiffGuard assigns a separate canary to each stack frame in the process. (2)
for forking program, after a fork system call, and right before any instruction
executed in the child process, DiffGuard must update canaries inherited from
the parent process. Once the canaries have been updated, it can resume the
execution of the child. This runtime update renders byte-by-byte brute-force
attacks infeasible, since every function frame of forked process has a fresh canary.

(a) the canaries stored in random canary
buffer(RCB) are pushed on the stack.

(b) Epilogue check for function can1 succeeds.

Fig. 1. The design of DiffGuard allows for a complete independence of all canaries in
the process.

To the best of our knowledge, current canary protections do not provide mul-
tiple different canaries for different function frames in the process. Therefore,
DiffGuard’s design should allow each running process to generate, access and
modify all of its stack canaries at runtime. To achieve this goal, DiffGuard per-
forms a per-thread runtime randomization of all the canaries that will be pushed
in the stack during execution, using a lightweight buffer allocated dynamically
upon each thread’s creation (this buffer is stored in the heap). Figures 1 and 2
illustrate this scheme in more detail.
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DiffGuard’s random canary buffer (RCB, Fig. 1a) holds all the canaries of
the runtime process. When a function is called, DiffGuard takes a canary word
from the RCB and pushes it on the function frame. As the function execution
is finished, DiffGuard detects the change of the canary word before the function
returns (Fig. 1b). To ensure DiffGuard could prevent brute force attacks against
canary based protections, we refresh the contents of the RCB. When a child
process is forked, the RCB of the parent process is copied to the child process
(Fig. 2a). Before execution starts in the child context, DiffGuard modifies all the
canary values of the RCB excepted the canaries inherited stack frames in child
process (can3). Likewise, whenever a canary-protected frame is pushed onto the
stack, the canary is token from the RCB and, once a canary-protected function
returns, the respective RCB index is diminished (Fig. 2b). The aforementioned
design allows DiffGuard to successfully provide multiple different canaries for
different function frames in the process and to modify the canary values for
newly-created processes (child process). Specially, it allows for a seamless inte-
gration with third-party software and libraries that only support the existing
stack protection mechanisms. In addition, the proposed architecture allows for
the effective handling of stack unwinding, irrespectively of whether the latter
occurs in the context of an exception, due to a signal, or setjmp/longjmp: as
the canary saved in the function frame corresponds to the one in the RCB, We
can determine the position of the canary in the RCB. Thus, DiffGuard can hook
any stack unwinding operation and modify the RCB index accordingly. In this
manner, application correctness is preserved. Apart from ensuring correctness,
the proposed design has the added benefit of not breaking compatibility with
legacy software or current canary protections. Compilers only need to add this
bookkeeping mechanism on top of their current stack canary implementations,
without altering the well-established conventions on the format of the canary
check or a function’s prologue and epilogue.

(a) The per-thread RCB is updated. (b) Epilogue check for function can1 succeeds.

Fig. 2. The design of DiffGuard modifies all the canary values of the RCB excepted
the canaries inherited stack frames in child process.
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4 Implementation

The compiler-based DiffGuard consists of a plugin for the GNU Compiler Col-
lection (GCC) and a position independent (PIC) dynamic shared library that
gets linked with the running application via LD PRELOAD. Combined, they
consist of more than 2500 lines of C++ code. Several requirements must be
accomplished to implementing DiffGuard at the compiler level, while maintain-
ing compatibility with third-party software at the same time:

1. DiffGuard must instrument all the canary push/pop events and perform its
randomization on a per-thread basis;

2. DiffGuard must hook each fork system call and update the canaries in the
child process’ RCB as described in Sect. 3;

3. DiffGuard must intercept all calls related to stack unwinding and ensure that
the RCB index gets updated accordingly.

Fig. 3. Overview of system architecture.

The first requirement is handled by DiffGuard’s GCC plugin. All other
requirements are handled by DiffGuard’s dynamic shared library (runtime),
which ensures the proper management of the RCB for every thread.

The overview of DiffGuard architecture is shown in Fig. 3. To generate a
binary secured against information disclosure vulnerabilities and brute force
attacks, developers should compile the source code of the target program with
DiffGuard. Given the source code, DiffGuard first identifies instructions that
push/pop canary events and then inserts a call to the routine (a static instru-
mentation in Sect. 4.1). At runtime, with the help of instrumented instructions,
DiffGuard initializes a number of random canaries which are stored in RCB for
the function frame being created. On every fork system call, DiffGuard updates
the per-thread RCB (a runtime library in Sect. 4.2). Later in this section, we
describe each component of DiffGuard (the static instrumentation and the run-
time library), and explain how we maintain RCB.
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4.1 Static Instrumentation

The static instrumentation of DiffGuard is performed at the GCC IR [17] level,
registered as an RTL optimization pass and loaded by GCC right after the var-
track pass. The first reason for placing DiffGuard late in the RTL optimization
pipeline is to ensure that most of the important optimizations have already
been performed, and, as a result, DiffGuard’s instrumentation is never added to
irrelevant code. In addition, in this manner, we ensure that all injected instruc-
tions, which performs the necessary randomization, will remain at their proper
locations and will not be optimized by later passes.

The DiffGuard GCC plugin must modify the canary setup and check inside
each canary-protected frame, to prevent the DiffGuard-protected application
from using the standard libc canaries. This is necessary to allow the modifica-
tion of the canary at runtime without affecting any checks in libraries that are
not complied with DiffGuard. The canary initialization that occurs during the
creation of threads and processes is exactly the same in DiffGuard and in glibc,
with the only difference being that the DiffGuard canaries are stored at RCB
and the reference to the RCB is stored at a different location in the TLS area.
Therefore, the entropy of canaries is not affected, but now the TLS holds two
different types of canaries: the standard glibc canary and the DiffGuard canary.
Upon a fork, all DiffGuard canaries excepted the canaries inherited stack frames
in child process get updated without affecting any checks in modules or libraries
that use the legacy glibc canaries.

DiffGuard stores the starting address of RCB, its total size, and its index,
in the TLS. In x86-64, the reserved TLS offsets range from 0x2a0 to 0x2b8. In
particular, %fs:0x2a0 holds the base address of RCB, %fs:0x2a8 keeps the cur-
rent index in the RCB (i.e.,how many function frames are created), and finally,
%fs:0x2b8 stores the reference to the DiffGuard canary which belongs to the
function frame that is currently executing.

Figure 4 shows the canary push/pop instructions inserted by the DiffGuard
GCC plugin. Right after the function prologue, before the canary gets pushed to
the stack, the reference to the starting address of RCB must be read. Initially,
DiffGuard retrieves the address of the RCB from the TLS (1) and the index of
the next element to be written (3). Next, it reads canary from RCB (4) and
increments the buffer index (5). Finally, the canary is fetched from the RCB and
saved onto the stack. For this purpose, if no registers are free, DiffGuard needs to
spill two registers for its push/pop canary events ((1),(6)). Likewise, the canary
check in the function epilogue is modified to check against the DiffGuard canary
instead of the glibc canary (7) and decrease the index in RCB (8).

4.2 Runtime Library

The runtime library of DiffGuard maintains the RCB setup and update, as well as
the hooking of fork system calls and stack unwinding routines. The library (PIC
module) implementing that runtime is loaded via the LD PRELOAD mechanism
into the address space of the runtime application.
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Fig. 4. Assembly excerpt for a binary compiled with -fstack-protector, with and with-
out DiffGuard. The canary randomizing code added by the DiffGuard plugin is shown
on the right (highlighted).

The RCB is allocated in the heap for each thread of the running program. In
order to allocate the RCB before the main thread starts executing, we register-
in the DiffGuard runtime-a constructor routine to be called before the main
function of the application. This routine performs the RCB allocation, gener-
ates a number of random words by reading the device /dev/random and places
them in the RCB. Finally, it sets the reference, size and index of RCB in the
main thread’ s TLS. For all other threads that get created, DiffGuard hooks
the pthread create call and sets the respective TLS entries prior to calling the
start routine of each thread. Finally, a routine to free the allocated RCB for each
thread that finishes execution is registered via the pthread cleanup push(/pop)
mechanism.

To ensure that the canaries in RCB of each thread are sufficient to use,
DiffGuard marks the final page in the RCB as write-only and registers a signal
handler for the SIGSEGV signal. Inside the signal handler, DiffGuard detects
whether the fault is due to DiffGuard’s instrumentation (i.e., when DiffGuard
tries to read a canary out the boundary of the RCB) and allocates additional
memory for the RCB if necessary.

As there may be multiple running threads, and the exception handler may
execute in the context of a different thread than the one that generated the
SIGSEGV, DiffGuard maintains a hashmap of all the running threads and their
TLS entries. Inside the signal handler, DiffGuard iterates through all the threads
in the hashmap and examines whether the memory location that caused the fault
falls within an allocated RCB.

Lastly, in order to ensure that the RCB’ index will correspond to active frame,
DiffGuard checks for any stack unwinding and revises the index of RCB. This is
based on the simple observation that, as the canary saved in the function frame
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corresponds to the one in the RCB, We can determine the position of the canary
in the RCB. DiffGuard hooks the following calls that result in stack unwinding:
cxxabiv1:: cxa end catch and (sig)longjmp. In the cases of siglongjmp and

longjmp, the new value of the stack pointer is retrieved from the contents of the
jmpbuf entry of the jump buffer that is passed to the calls, and we adjust the

RCB index according to the canary in the stack frame pointed to by ESP.
Once all the components for ensuring the correctness of the canary random-

izing are in place, DiffGuard provides different canaries for different function
frames in the process. Meanwhile, DiffGuard registers a hook for the fork sys-
tem call. Once fork is executed, in the context of the child process, and before
fork returns, DiffGuard updates the canaries stored in child process’ RCB except
for the canaries of the function frames inherited from the parent process.

5 Evaluation

In this section we evaluate the performance overhead of DiffGuard and its
effectiveness in protecting against byte-by-byte canary brute-force attacks. For
our measurements we use the SPEC CPU2006 benchmark suite [18], as well
as a series of popular (open-source) server applications. Overall, our GCC-
based implementation of DiffGuard incurs an overhead ranging from 0.454%
to 11.746%, with an average of 3.2%.

5.1 Effectiveness

We evaluate the effectiveness of DiffGuard from the following two aspects:

1. The identity of each function frame: DiffGuard ensure that each stack frame
has its own canary. In order to verify the independence of canary in differ-
ent stack frames, we instrument the SPEC CPU2006 benchmark suite, the
purpose is to create a scan routine which is responsible for disclosing run-
time stack data. Through stack sweeping algorithm introduced in Sect. 2,
we confirmed that DiffGuard defends against the canaries disclosure attacks
perfectly. In the contray, the existing canary based protections are prone to
canaries disclosure attacks, and we have more than 90% probability to find
canary when the number of function frames on runtime stack is greater than
10.

2. Preventing brute force attacks against canary based protections: We con-
firmed that DiffGuard defends against a set of publicly-available exploits
[13,19] targeting the Nginx web server, which rely on brute-forcing stack
canaries using the technique outlined in Sect. 2.

To verify that DiffGuard does not affect software correctness, we evaluated
it over the SPEC CPU2006 benchmark suite, and also applied it to a variety
of popular forking applications, such as the Apache and Nginx web servers, and
the MySQL database servers. We observed no incompatibilities or any altered
program functionality. As a final step of our correctness evaluation, we manually
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stress-tested DiffGuard over a series of scenarios that included combinations of
multi-threaded and forking programs that executed setjmp/longjmp and trig-
gered exceptions. In all cases we verified that DiffGuard successfully randomized
the stack canaries (RCB) for all newly-created processes without causing any
unexcepted behavior.

5.2 Performance

To obtain an estimate of DiffGuard’s overhead on CPU intensive applications, we
utilized the SPEC CPU2006 benchmark suite. The applications were compiled
with the -fstack-protector option enabled. All experiments were performed on a
virtual machine running Debian GNU/Linux v8, equipped with two 3.50 GHz
four-core CPUs and 8 GB of R. Figure 5 summarizes the performance overhead
of our GCC-based implementation of DiffGuard. All binaries were compiled
with the DiffGuard plugin and had the -fno-omitframe-pointer compiler option
asserted. DiffGuard incurs an average slowdown of 3.2% on the SPEC CPU2006
benchmarks. In all cases, the overhead of the GCC implementation of DiffGuard
is below 11.74% for the SPEC CPU2006 benchmarks.

Fig. 5. The runtime overhead of DiffGuard (normalized over native execution).

6 Related Work

Canary-based stack protections were popularized by StackGuard [3]. Subse-
quently, ProPolice [20] introduced a series of GCC patches for StackGuard,
which, among others, reordered the local variables in the stack, placing buffers
after (local) pointers and function arguments in the stack frame. ProPolice was
subsequently integrated in GCC, by RedHat, as the Stack Smashing Protector
(SSP). As modern stack protectors follow a design similar to that of SSP, Diff-
Guard’s architecture can be (easily) adopted by popular compilers due to its low
performance overhead. With respect to preventing canary brute-force attacks,
RAF-SSP [14] and DynaGuard [15], similarly to DiffGuard, aim to refresh stack-
based canaries in networking servers. However, upon a fork system call, RAF SSP
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only updates the canary in the TLS area, ignoring the frames inherited by the
parent process. This design fails to guarantee program correctness. DynaGuard
use per-thread bookkeeping mechanism to guarantee program correctness, but
the function frames of per-thread shared the identical canary word. This kind of
identity makes it possible to be leaked.

A series of mechanisms have been proposed to protect the integrity of return
addresses. RAD [21] is implemented as a compiler patch and creates a safe area
where a copy of the return address is stored. Similar defenses have been imple-
mented at the micro-architectural level [22], using binary rewriting [22], or by
utilizing a shadow stack [23]. Apart from the fact that the previous mechanisms
do not tackle the same problem as DiffGuard, they have not gained traction,
mainly due to compatibility and performance issues (e.g., such mechanisms nul-
lify several micro-architectural optimizations, like return address prediction) [25].
On the contrary, DiffGuard enhances a mechanism that has already seen wide
adoption, without breaking accepted conventions around the format of the func-
tion prologue and epilogue, or the stack layout.

7 Conclusion

In this paper, we address a limitation of the current canary based protection
mechanisms, which allows for brute-forcing the canary, byte-by-byte, in fork-
ing applications and stack-sweeping the canary, via information disclosure in
non-forking applications. We resolve this issue by providing different canaries
for different frames and proposing the dynamic update of the canaries in forked
processes upon their creation. We present a design that utilizes a per-process,
in-memory data structure to update the stack canaries at runtime, and we pro-
totype the proposed architecture in DiffGuard, which is a compiler-based tool
operating at the source code level. We evaluate that DiffGuard incurs an average
overhead of 3.2% and can be easily integrated to modern compiler toolchains.
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Abstract. Using low-rate compressed speech coding for large-capacity
steganography is always a big challenge due to its low redundant infor-
mation. To overcome this challenge, we propose a method of embed-
ding and extracting steganography in low-rate speech coding using
three-dimensional Sudoku matrix. Analysis shows that this method can
enhance the concealment of steganographic information and improve
the steganography capacity of low-rate speech coding. The experimental
results showed that using the current typical low speech coding standard
G.723.1 achieved a steganographic capacity of 200 bit/s and a reduction
of less than 10% in the sensory evaluation value of the speech quality of
the coded speech.

Keywords: Information hiding · Low bit-rate speech codec
Pitch period · Sudoku matrix

1 Introduction

Low-rate speech coding is widely used in mobile communications, voice over IP
(VoIP) and some instant messaging tools, and has become the main data traffic
on the Internet. Due to its wide range of applications, dynamic generation and
interactive transmission, low-rate speech coding is a good carrier for informa-
tion concealment [1–3]. In recent years, there have been many studies exploring
steganography methods for low-rate speech coding. For example, Yuan et al. [4]
proposed a quantization index-modulated steganography based on the multidi-
mensional vector concealment space, Huang et al. [5] proposed an information
concealment method by replacing certain bits of mute frames, and Zhou et al.
[6] proposed an extended Least Significant Bit (LSB) method based on hidden
states.

However, current steganography methods are limited by low embedding
capacity and poor concealment. Additionally, it is often difficult to apply these
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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algorithms in practice due to their low steganographic capacity. Therefore,
improving the concealment of steganography and increasing the steganographic
capacity pose a main challenge in low-rate speech coding steganography.

There have been efforts to utilize Sudoku matrices to enhance concealment
under the conditions of large hidden capacity for image steganography [7,8].
These approaches allow good concealment with high hidden capacity. However,
there have been no reports of low-rate speech coding strategies based on the use
of Sudoku matrices to achieve information steganography.

In this paper, we describe a steganographic method based on three-
dimensional Sudoku matrices by analyzing the characteristics of low-rate speech
coding. The most popular G.723.1 coding was used to verify this method. The
results show that the steganography method proposed in this paper can achieve a
steganographic capacity of 200 bps and provides better concealment performance
in the G.723.1 carrier than other methods.

2 Related Work

2.1 Steganography Methods for Low-Rate Speech Coding

Low-rate speech coding efficiently compresses speech to decrease the redundant
information of the encoded bitstream. Performing steganography using low-rate
speech coding is a challenging task. In [9], the Least Significant Bit (LSB) method
was used according to the anti-noise of the G.729. A coding strategy was pro-
posed in [10], but using the LSB method in the pitch period of the low-rate speech
G.723.1 encoder results in significant speech distortion. In [11], the authors found
that in the LSB-embedding algorithm, better speech quality can be obtained by
adjusting the perceptual weighting filter parameter values. There are also meth-
ods that seek to quantify the index modulation, or Quantization Index Modula-
tion (QIM). For example, the basic concept of the method described in [12] is to
group the quantized codebooks and then to search the quantized codebook pack-
ets according to the concealment information. This method is suitable for digital
audio signals with vectorization and allows small quantization error but has low
hidden capacity. In [13], the QIM information concealment method was proposed
for pitch period prediction of low rate speech G.723.1. This method has a maxi-
mum embedding capacity of 4 bits per frame and small hidden capacity. In [14], a
more secure algorithm was proposed based on the QIM algorithm that uses a key
to control the inversion state of each subtree in the QIM algorithm to improve
security. In [15], matrix coding is introduced into information steganography,
which reduces the amount of bit modification. Additional details about current
approaches in speech steganography are summarized and described in [16].

The Sudoku matrix has been widely used in steganography, encryption
authentication, digital watermarking and other fields. The number of matrices
satisfying the properties of the soliton matrix is very large, nearly 5.525 × 1027.
The application of the Sudoku matrix in information steganography will greatly
improve its security [7,8]. The hidden capacity of a steganographic method based
on the Sudoku matrix can be varied according to the changes of the Sudoku
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matrix size. Additionally, the quantization noise is small and the anti-detection
ability is relatively strong. Image steganography based on Sudoku matrix is of
growing interest, many kinds of Sudoku matrices and their variants have been
tested in information steganography research [17,18]. There are also stegano-
graphic variants of 3D chaotic maps [19]. Overall, image steganography methods
that utilize a Sudoku matrix can improve image quality and enhance the hidden
capacity. However, there are no reported methods for low-rate speech coding
that utilizes Sudoku matrices for information steganography.

The main idea of this study was to exploit the advantages of the Sudoku
matrix for low-rate speech quantization coding with high concealment capacity.

2.2 Analysis of the Pitch Period in Low Rate Speech Coding

The pitch period is the periodicity of the vocal cord vibration that occurs when
sending out voiced sound, a very important parameter for speech signal pro-
cessing. However, it is difficult to predict and detect the pitch period. Existing
methods of pitch detection have limitations and it is hard to predict the exact
value by signal processing. The main difficulties of pitch detection are as follows:

(1) The change of speech signal is very complex and the pitch periodicity is not
completely periodic.

(2) The resonant peak of the sound channel sometimes affects the harmonic
structure of the excitation signal, making it difficult to extract the complete
information about the vibration of the vocal cords.

Fig. 1. The pitch period of low-rate speech sub-frame coding.

Since the existing pitch period detection technique is unable to obtain the
true value of the true pitch period, modification will be tolerable if a slight
modification of the predicted pitch period value is made to embed the secret
information. This will not have a serious impact on the restoration of voice qual-
ity, suggesting that taking the pitch period as a hidden information embedded
point is feasible. In addition, in low-rate speech signal coding, the pitch period
is a common coding parameter, making it a reasonable approach. The low-rate
speech signal coding must be processed by frames, such as with the G.723.1
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encoder, where each speech frame consists of four subframes and each subframe
has its own pitch period, as shown in Fig. 1. As the predicted values of the pitch
period are sequential numbers, it is obvious that the influence of the pitch period
on the quality of speech recovery is monotonically continuous. Thus, the physical
modification is positively correlated to the logical variation.

3 Methodology

3.1 The Overall Framework for Low-Rate Speech Coding
Steganography

Pitch period prediction is one component of low-rate speech coding. In the pre-
diction process, by using a Sudoku matrix, steganography can be achieved by
replacing the optimal pitch period value with the adjacent second best index
value. To better introduce the principle, we next describe G.723.1 coding exam-
ples to illustrate the basic principles of steganography as follows.

Fig. 2. The overall framework of steganography based on G.723.1 encoding.

The G.723.1 coding process is shown in Fig. 2. The speech signal PCM is
divided into frames, and then high-pass filtered and LPC -filtered to obtain
the residual signal. The pitch period of the open-loop is then estimated by the
short-time averaging method, and then the fourth best closed-loop pitch period
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is obtained by searching for close-loop pitch periods. The sum of the second and
fourth closed-loop pitch periods, the first closed-loop pitch period and the third
closed-loop pitch period form a three-dimensional numeric space. The three-
dimensional numeric space composed of the pitch period values and the three-
dimensional Sudoku matrices have a certain mapping relationship. There is secret
information of the four search patterns near the coordinate of the best index
value. By selecting the secret information of the search pattern with the smallest
distance between values and then changing the three best index values to the
coordinate values of the secret information value, the quantization error can be
reduced and the concealment ability can be enhanced. In this way, the final
transmitted signal is the modified closed-loop pitch period information. The
overall scheme of low-rate speech steganography is shown in the portion of Fig. 2
within the dashed line.

As shown in Fig. 2, the most critical component is how to construct a three-
dimensional Sudoku matrix for low-rate speech coding steganography and how
to design embedding and extraction algorithms using the matrix for steganogra-
phy. Previous paper [20] focused on the generation of circulated motions of the
three-dimensional Sudoku matrix. In this paper, we directly apply this three-
dimensional Sudoku matrix to design a steganography method for hidden pitch
features in low-rate speech coding.

3.2 Steganography Embedding Algorithm Based on Sudoku Matrix
Steganography

In the G.723.1 encoding process, the 3D Sudoku matrix is first initialized using
the circulated motion construction method of the 3D Sudoku matrix. Since the
size of the 3D Sudoku matrix using this method is 8 × 8 × 8, the range of the
pitch period is 18–142, the bit allocation is 7 bits and the space size is 128.
The 8 × 8 × 8 Sudoku matrix is then expanded in a periodic manner, to fill the
entire three-dimensional numeric space (0–127). Then, the pitch period values
of the four sub-frames output by the pitch predictor are combined to form three
temporary coefficients in combination, assigned as indexx, indexy and indexz.
These values are then mapped to a three-dimensional Sudoku matrix, searching
for the smallest index value in the four patterns as the final pitch period value.

Let the original 8 × 8 × 8 matrix be represented by the coordinate function,
g = Magic(x, y, z), where x, y and z represent the three coordinate values of the
3D Sudoku matrix and x, y, z ∈ [0, 7], and g denotes the values of 3D Sudoku
matrix, g ∈ [0, 63]. The coordinate function after the periodic expansion is rep-
resented by q = Magic Expand(x′, y′, z′), where x′, y′, z′ ∈ [0, 255], q ∈ [0, 63].
The function obtained after the periodic expansion is shown in Eq. 1:

q = Magic Expand(x′, y′, z′) = Magic(x, y, z),

⎧
⎨

⎩

x = x′ mod 8
y = y′ mod 8
z = z′ mod 8

(1)

During pitch period detection, it is necessary to search for the index value of
the optimal pitch period and then perform the index value replacement based on
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the 3D Sudoku matrix. Therefore, when performing steganographic embedding
for each frame of speech, the following algorithm is performed.

Step 1: Two pitch estimates are calculated for each frame, one for the first
two subframes and one for the remaining two subframes. The open-loop pitch
period estimation LOL is calculated using perceptually weighted speech f [n].
A cross-correlation judgment criterion COL(j) maximization method is used to
determine the pitch period, and the resulting open-loop pitch periods are LOL[0]
and LOL[1], according to the following expression:

COL(j) =
(
∑199

n=0 f [n] × f [n − j])2
∑199

n=0 f [n − j] × f [n − j]
, 18 � j � 142. (2)

Step 2: For sub-frames 0 and 2, the closed-loop pitch lag is selected from the
appropriate open-loop pitch hysteresis in the range ±1 and encoded with 7 bits
(the final transmitted data is a closed-loop pitch period). For subframes 1 and
3, the closed loop pitch lag is differentially encoded using 2 bits (the final trans-
mitted data is the differential coded data) and may differ by only −1, 0, +1, or
+2 from the previous subframe lag. The quantized and decoded pitch lag values
are referred to as Li from this point on, where

⎧
⎪⎪⎨

⎪⎪⎩

L0 ∈ {LOL[0] − 1, LOL[0], LOL[0] + 1}, 18 � L0 � 142,
L1 ∈ {L0 − 1, L0, L0 + 1, L0 + 2},
L2 ∈ {LOL[1] − 1, LOL[1], LOL[1] + 1}, 18 � L2 � 142,
L3 ∈ {L2 − 1, L2, L2 + 1, L2 + 2}.

(3)

Step 3: The values of the four closed-loop pitch periods are combined and the
coefficients of output are indexx, indexy and indexz. The formula is as follows:

⎧
⎨

⎩

indexx = L0 − 18
indexy = L2 − 18
indexz = L1 − L0 + L3 − L2 + 2

(4)

The difference ranges of L1−L0+1 and L3−L2+1 are both 0–3, the addition
of the two can expand the range of indexz to expand the scope of the following
search patterns. Based on the above analysis, we then need to map these values
into the 3D Sudoku matrix and perform the following embedding operation.

Step 4: Preprocess the binary secret information stream and convert it into
decimal key. Convert six consecutive binary numbers to decimal numbers Key.
Key ∈ [0, 63].

Step 5: Search for the Key values in the 3D Sudoku matrix function
Magic Expand(x, y, z) according to the following four patterns. Each of the
search patterns includes a matrix search range, where the matrix range con-
tains 0-63 non-repeating numbers, and the so-called search is to find the Key
value in these element numbers. Obtain the four coordinates of the Key value
(indexx, indexy, indexz), 1 � i � 4. Search for the Key value by looking up the
index table for optimization, which is not described in detail here due to space
limitations.
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⎧
⎨

⎩

x = indexx

indexy − 3 � y � indexy + 4
indexz − 3 � z � indexz + 4

(5)

⎧
⎨

⎩

indexx − 3 � x � indexx + 4
y = indexy

indexz − 3 � z � indexz + 4
(6)

⎧
⎨

⎩

indexx − 3 � x � indexx + 4
indexy − 3 � y � indexy + 4
z = indexz

(7)

⎧
⎨

⎩

�indexx/4� × 4 � x � �indexx/4� × 4 + 3
�indexy/4� × 4 � y � �indexy/4� × 4 + 3
�indexz/4� × 4 � z � �indexz/4� × 4 + 3

(8)

Step 6: Compare the Euclidean distance between the four coordinates and the
original coordinates. Since the smaller the Euclidean distance, the smaller the
quantization error, the coordinates with the smallest Euclidean distance are
selected as the best pitch period after the information concealment. The index
coordinates of the final Sudoku matrix are (bestindexx, bestindexy, bestindexz).
The information embedding is completed.

(bestindexx, bestindexy, bestindexz)

= arg min
i=1−4

[(indexx − indexix)2) + (indexy − indexiy)2) + (indexz − indexiz)2]

3.3 Steganography Extraction Algorithm Based on Sudoku Matrix
Steganography

Extracting secret information is relatively simple compared to encoding embed-
ded secret information. Here, the 8×8×8 Sukodu matrix is periodically expanded
to become a three-dimensional Sudoku matrix of 128×128×128. When the pitch
period values of the four subframes are decoded, the four pitch period index val-
ues are extracted, and the sum of the pitch period values of subframes 1 and
3 and subframes 0 and 2 are converted to three-dimensional coordinates. Then,
the coordinates are mapped in the three-dimensional Sudoku matrix named Key.
The value is the secret information that is then converted into a binary data
stream. The detailed secret information extraction algorithm is as follows.

Step 1: Extract the pitch period value of four sub-frames and assign them to
L0, L1, L2, and L3.
Step 2: Perform the following operations on the four pitch period values,
assigned to (bestindexx, bestindexy, bestindexz).

⎧
⎨

⎩

bestindexx = L0 − 18
bestindexy = L2 − 18
bestindexz = L1 − L0 + L3 − L2 + 2

(9)
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Step 3: Build and initialize the three-dimensional Sudoku matrix. The receiver
shares the sender’s three-dimensional Sudoku matrix. This three-dimensional
Sudoku matrix is written as Magic Expand(x, y, z).
Step 4: Locate the coordinate points into the three-dimensional Sudoku
matrix, obtain the secret information as Key as shown in formula 6, and
then the decoding is completed.

Key = Magic Expand(bestindexx, bestindexy, bestindexz) (10)

4 Results and Analysis

4.1 Concealment Capacity Analysis

To perform the information concealment method based on the 3D Sudoku matrix
for the G.723.1 speech coded stream, the range of pitch period of each frame was
set to [0, 63], implying that 6 bits can be hidden in every frame. The length of
each G.723.1 frame is 30 ms, so the concealment capacity of the concealment algo-
rithm based on the three-dimensional Sudoku matrix is 6 bit/0.03 s = 200 bit/s
in the pitch period. The modification method of the lowest two significant bits of
the method in [10] has 3 sub-vectors for each frame and each sub-vector can hide
2 bits. Therefore, each frame can hide 3 × 2 bit = 6 bit. The overall concealment
capacity of this method is 6 bit/0.03 s = 200 bit/s. In the QIM information
concealment algorithm based on pitch period proposed in [13], the codebook
division method is odd-even division. Each subframe can hide 1 bit hence, each
frame can hide 4×1 bit = 4 bit. So, the overall concealment capacity of proposed
method is 4 bit/0.03 s = 133.3 bit/s. The above concealment capacity analysis
shows that the concealment capacity of this model based on three-dimensional
Sudoku matrix proposed is equal to that of a previously reported method [10]
and 1.5 times better than the method described in [13].

4.2 Concealment Analysis

The concealment of speech carrier steganography can be evaluated by the quality
of speech. There are two evaluation methods of speech quality, i.e., subjective and
objective. The most popular method of subjective speech quality evaluation is
Perceptual Evaluation of Speech Quality (PESQ) and the most popular method
of objective speech quality evaluation is the signal-to-noise ratio (SNR).

Subjective Speech Quality. Multiple speech clips of different speakers were
selected to form the speech sample dataset. Speech clips from 4 categories were
used, i.e., English male voice (EM), English female voice (EW), Chinese male
voice (CM) and Chinese female voice (CW). Each category contains 10 long
samples of 10 ms. Each voice clip is of 8 kHz sampling rate, in 16bit quantized
PCM format. The subjective sampling speech evaluation method uses speech
quality perception to evaluate the PESQ. The values of this test range from 0
to 5, and the higher the value, the better the voice quality.
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Table 1. PESQ values and loss ratios for different hidden algorithms

Scheme CM CW EM EW Average

PESQ Loss PESQ Loss PESQ Loss PESQ Loss

Standard scheme 3.74 - 3.43 - 3.81 - 3.67 - -

Paper [10] scheme 2.40 36.00% 2.51 26.84% 2.92 23.39% 2.33 36.33% 30.7%

Paper [13] scheme 3.69 1.41% 3.34 2.38% 3.79 0.52% 3.60 1.98% 1.57%

Proposed scheme 3.39 9.84% 3.15 8.04% 3.66 4.01% 3.29 10.03% 7.98%

Table 1 shows the comparison of PESQ values for information concealment
for the method of [10], the method of [13] and our method. The influence of
the steganography method on the PESQ of speech is less than that of [10],
which indicates that proposed steganography method is better than the method
presented in [10]. The influence of method [13] on the PESQ of speech is smaller
than that of proposed method, but both values are small. Additionally, the
hidden capacity of our method is 1.5 times that of [13]. The average deterioration
rate of PESQ was 9.84%, 8.04%, 4.01%, and 10.03%, respectively. The overall
mean rate of deterioration was 7.98%, which was within an acceptable range.
Thus, the algorithm meets the requirements of good concealment.

Fig. 3. Comparison of SNR values of three kinds of steganography methods.
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Objective Speech Quality. The objective speech quality evaluation method
uses the SNR and the test results are shown in Fig. 3. By comparing the SNRs
of the three steganography methods for different sample sets, we can see that
in general, the higher the embedding rate of the secret information, the lower
the SNR value is and the higher the quantization noise. For the different sample
sets, the SNR of the steganography method in this paper was larger than that in
[10] for equal concealment capacity, indicating that the quantization noise of our
method is smaller than that of [10]. The SNR of proposed steganography method
was slightly smaller than the SNR of [13], but it should take into consider that
the concealment capacity of proposed method was 1.5 times that of [13].

5 Conclusions

The use of a Sudoku matrix was first introduced for using in a speech-carrier-
based information concealment algorithm. In order to satisfy the specific dis-
tribution characteristic of the speech coding coefficients, the two-dimensional
Sudoku matrix was extended to a three-dimensional Sudoku matrix to further
enhance the speech concealment capacity with maintenance of good perceptual
speech concealment.

The G.723.1 speech coding protocol was chosen as the basic method of infor-
mation concealment. When the pitch period was estimated, the best index was
mapped by using 8×8×8 Sudoku matrices. Using this method, the secret infor-
mation was successfully embedded with an embedding capacity of 200 bit/s.
Finally, a large number of speech samples were used to test and evaluate the
proposed method and compare it to other methods found in the literature. The
speech quality loss was evaluated based on the subjective speech quality per-
ception criterion and the quantization error was evaluated by an objective SNR
method. Results show that the proposed method can provide considerable con-
cealment capacity with better imperceptibility.
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Abstract. Single Sign-on (SSO) protocols, which allow a website to
authenticate its users via accounts registered with another website, are
forming the basis of user identity management in contemporary websites.
Given the critical role they are playing in safeguarding the privacy-
sensitive web services and user data, SSO protocols deserve a rigorous for-
mal verification. In this work, we provide a framework facilitating formal
modeling of SSO protocols and analysis of their privacy property. Our
framework incorporates a formal model of the web infrastructure (e.g.,
network and browsers), a set of attacker models (e.g., malicious IDP) and
a formalization of the privacy property with respect to SSO protocols.
Our analysis has identified a new type of attack that allows malicious
participants to learn which websites the victim users have logged in to.

Keywords: Single Sign-on · Privacy · Formal verification framework

1 Introduction

Single Sign-on (SSO) protocols, which allow users to log in to a website, i.e.,
the relying party (RP), using the accounts registered with another website, i.e.,
the identity provider (IDP), are becoming the cornerstone of user identity man-
agement in contemporary websites. These protocols serve as the safeguard of
various privacy-sensitive web services. Nonetheless, they have been continually
found vulnerable and insecure by previous research [1–6].

Given the critical role that SSO protocols are playing, they deserve a rigorous
security assessment, and formal verification ideally, before they are implemented
and deployed for practical use. However, the challenge on formally verifying SSO
protocols is at least twofold. First, formal verification requires an accurate for-
mal model of the underlying web infrastructure which SSO protocols rely upon.
The web infrastructure is complicated as it involves the server-side infrastruc-
ture (e.g., web servers and SSO SDKs), the client-side infrastructure (e.g., web
browsers) and various communication channels. In addition, SSO protocols often
rely on new techniques and features (e.g., HTML5’s postMessage) to fulfill its
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advanced functions (e.g., cross-domain communication on the client side). These
features increase the complexity of the SSO protocols. For example, misusing
postMessage or client-side storage may lead to credential leakage [1,7].

The second challenge is regarding the comprehensiveness of the attacker
behaviors and the targeted properties. Since SSO protocols rely on web clients,
web servers and various communication channels, they are naturally exposed to
a large attack surface. As a result, the behaviors of malicious participants (e.g.,
malicious IDPs) have to be formalized when analyzing the SSO protocols. As
for the properties, the privacy property – whether an attacker is able to track
which RP a user has logged in to, is becoming a public concern [3]. However,
existing studies have mainly focused on the authentication property [4,5,8].

In this work, we propose a framework for analyzing the privacy property
of SSO protocols. Our framework consists of a formal model of the web infras-
tructure, three types of attacker models and a formal definition of the privacy
property of SSO protocols. We abstract the whole infrastructure into three parts
which are essential in SSO, including the web browser, the network and the web
server. Our attack models contain three types of malicious IDP – the Honest-
But-Curious IDP Server which infers the user’s login information based on his
own knowledge, the Malicious IDP Server which is capable of sending fake infor-
mation to requesters and the Malicious IDP Client which is an IDP’s client-side
web page capable of invoking browser APIs (for example, to request the browser
to open a new window). In our framework, we use the applied pi calculus [9]
as our modeling language, given that it can be automatically verified using the
state-of-the-art verifier ProVerif [10]. The privacy property is thus formalized as
the observational equivalence [11].

We apply our framework to analyze a novel privacy-respecting protocol
named SPRESSO [12]. This protocol is representative and is suitable to test
our framework, because modeling it covers most of the web techniques, includ-
ing end-to-end communication between web servers and the browser, HTML5’s
cross-domain communication, AJAX and so on. We have found that SPRESSO
suffers from a privacy flaw which allows a malicious IDP to abuse two key pairs
to learn which users have logged in to a particular RP.

2 A Verification Framework for SSO

In this section, we present our verification framework for formally analyzing SSO
protocols. First, we introduce the used modeling language. Next, we explain our
web infrastructure model, followed by the three attacker models. Finally, we
present our formalization of the privacy property of SSO protocols.

2.1 The Modeling Language

We use a variant of the applied pi calculus [9] for modeling protocols, attackers
and the privacy property. This calculus assumes an infinite set of names which
are used for modeling communication channels and atomic data, an infinite set
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P ,Q := plain process A,B := extended process
processnull0 P plain process

P | Q parallel composition A | B parallel
!P replication new x ; A variable restriction
new n; P name restriction new n; A name restriction
in(u, x ); P message input {M /x} active substitution
out(u, M ); P message output
if M =E N then P else Q conditional
let x = M in P else Q term evaluation

Fig. 1. Applied Pi syntax

of variables, and a signature Σ consisting of finite number of symbols (with
arity) which are used for modeling cryptographic primitives. Terms are defined
as names, variables as well as function symbols applied to terms. A system is
modeled as a plain process, whose syntax is defined in Fig. 1. The reasoning on
the models in the applied pi calculus is with respect to the built-in Dolev-Yao
attacker model [13] who can block, obtain, tamper and/or insert messages over
public channels. A process is closed if all variables are either bound by restriction
or input, or defined by an active substitution.

Null process 0 does nothing. Process P |Q models two processes P and Q
running in parallel. Process !P models infinite number of process P running
in parallel, capturing unbounded number of sessions. Name restriction new
n; P binds the name n in process P , capturing both fresh random numbers
and private names and channels. Message input in(u, x); P describes that the
process reads a message from channel u and binds the received message to x
in process P. Message output out(u, M); P describes that the process sends
a message M on channel u and runs P afterwards. The conditional evaluation
if M =E N then P else Q runs P when equation M =E N is true under
equational theory E otherwise runs Q. If Q is null, this process can be reduced
to if M =E N then P . The term evaluation let x = M in P else Q bounds x
to M and takes process branch P , otherwise, Q is taken. If Q is null, the term
evaluation can be simplified to let x = M in P . We denote new n1; · · · ;new nm
by new ~n. The extended process {M/x} indicates the substitution of variable x
with term M . An evaluation context is an extended process with a hole which
is not in a scope of a replication, a conditional, an input, or an output.

2.2 Web Infrastructure Model

Figure 2 shows our abstraction of the web infrastructure. In the abstraction,
the web infrastructure consists of three components: the web browsers, the net-
work and the web servers. It represents a common scenario where users use the
browsers to download documents and communicate with the web servers via the
network.
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Fig. 2. Web infrastructure abstraction

Web Browser Model. The web browser model has a list of win-
dows/iframes (denoted by window 1, . . . , window n in Fig. 2) which are con-
tainers for the client-side documents of the websites. In addition, the model
includes the webpage parser/interpreter (denoted by WPI ), the client-side stor-
age (denoted by CSS ), the inter-domain communication (denoted by IDC ) and
the isolation. They are important features for analyzing the privacy property of
SSO protocols.

WPI parses and interprets the programs downloaded from the web servers.
The WPI includes complex functions which may not be relevant to the SSO pro-
tocols, such as page rendering. Therefore, our framework only models the part
that processes the SSO-relevant commands, as shown in the following model.
These commands include open windows OW (line k1–k2), get the parent window
parentOf (line k3), establish http(s) connections http(s)Connect (line k4–k5),
send http(s) messages http(s)Send (line k6–k7) and receive http(s) messages
http(s)Receive (line k8–k9). Note that terms w1 and w2 denote window names,
terms e1, · · · , em denote participants interacting with each other, such as win-
dows and web servers, and terms msg1, · · · ,msgl denote messages. Name priv
denotes the private channel to call the browser commands, and name priv′

denotes the private channel to send and receive the http(s) messages through
the network which is defined later.

WPI := (in(priv, (= OW, w1)); let w2 = Child(w1) in k1
out(priv, (OW, w1, w2)); k2
!in(priv, (= parentOf,= w2));out(priv, (parentOf, w2, w1)))| k3

(in(priv, (= http(s)Connect, e1, e2)); k4
out(priv′, (http(s)Connect, e1, e2)))| k5

(in(priv, (= http(s)Send,msg1, e3, e4)); k6
out(priv′, (http(s)Send,msg1, e3, e4)))| k7

(in(priv′, (= http(s)Receive,msg2, e5, e6)); k8
out(priv, (http(s)Receive,msg2, e5, e6))). k9
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CSS includes both short-term storage (i.e., cookies and SessionStorage) and
long-term (i.e., LocalStorage) storage that can only be accessed by the client-side
web page of the same URL domain. In particular, we explicitly model Local-
Storage because it may store data relevant to the privacy property. For example,
compromising the LocalStorage may disclose the user’s login status at a certain
RP [3]. As shown in the following model, the LocalStorage is modeled as a pro-
cess LS where LSS denotes the command of storing messages and LSR denotes
that of retrieving messages. We do not explicitly model the short-term storage
since it can be recorded in the local variables.

LS := in(priv, (= LSS, (index,msg))); !out(priv, (LSR, (index,msg))).

IDC is mostly achieved by an API called postMessage in HTML5. It is
extensively used in the SSO protocols since the involved participants (at least
RP and IDP) which have to communicate with each other are typically from
different domains. As shown in the following model, the postMessage is modeled
as a process PM where PMS and PMR denote sending and receiving messages
respectively. The sender and the receiver window identities (i.e. w1 and w2) are
required to indicate the two endpoints of the postMessage.

PM := in(priv, (= PMS, w1, w2,msg));out(priv, (PMR, w2,msg)).

Isolation among domains is a security feature (the same origin policy) pro-
vided by the web browsers. This feature ensures the domains at the client side
are isolated such that scripts from one domain cannot access data belonging to
other domains. Since we model the windows as individual and parallel processes,
the documents received by a window cannot be accessed by others. In addi-
tion, cross-domain messaging between different windows is via private channels,
restraining messages only to the intended processes according to the protocol.
Thus, isolation property is implicitly retained in our web browser model.

Network Model. The network model covers both http and https channels
which are the basis for data transmission in the SSO protocols. The network
model in our framework is shown below. The terms e1, · · · , em denote com-
municating participants, while the terms Msg1, · · · ,Msgl denote exchanged
messages.
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HTTPconnect := in(priv′, (= httpConnect, e1, e2));out(c, (e1, e2)). l1
HTTPsend := in(priv′, (= httpSend,Msg1, e3, e4));out(c,Msg1, e3, e4). l2
HTTPreceive := in(c, (Msg2, e5, e6));out(priv

′, (httpReceive,Msg2, e5, e6)). l3
HTTPSconnect := in(priv′, (= httpsConnect, e7, e8)); l4

let k = httpskey(e7, e8) in out(c, (e7, e8)). l5
HTTPSsend := in(priv′, (= httpsSend,Msg3, e9, e10));new nonce; l6

let key = httpskey(e9, e10) in l7
out(c, enc((nonce,Msg3), key), e9, e10). l8

HTTPSreceive := in(c, (EncMsg, e11, e12)); let key = httpskey(e11, e12) in l9
let (Nonce,Msg4) = dec(EncMsg, key) in l10
out(priv′, (httpsReceive,Msg4, e11, e12)). l11

The http channels are not encrypted. Hence, we simply model the http mes-
sages to be sent and received on the public channel c (line l1–l3). The https
channels include two parts: session key establishment which sets up a session
key between the two communicating participants using handshake protocols (line
l4–l5), and message exchange which uses the established session key to protect
the messages. In particular, the message is encrypted when it is sent out (line
l6–l8) and decrypted when it is received (line l9–l11).

Web Servers. Web servers are the server-side SSO participants such as the
RPs and IDPs. Their behaviors need to be manually modeled according to the
protocol specifications.

Table 1. Interfaces: infrastructure inputs

Interfaces Functionality

out(priv,(OW, w1)) Open window request from window w1

in(priv,(=OW, w1, w2)) Return created child window w2 of w1

out(priv,(parentOf, w1)) Request parent window of window w1

in(priv,(=parentOf, =w1, w2)) Return parent window w2 of window w1

out(priv,(PMS, w1, w2, msg) Send postMessage from w1 to w2

in(priv,(=PMR, =w1, msg) Receive postMessage intended for w1

out(priv,(LSS,(index, msg))) Store message msg to LocalStorage

in(priv,(=LSR,(=index, msg))) Retrieve message msg from LocalStorage

out(priv,(http(s)Connect, e1, e2)) Request http(s) connection over e1 and e2

in(c,(e1, e2) Establish http(s) connection over e1 and e2

out(priv,(http(s)Send, msg, e1, e2) Send http(s) message msg from e1 to e2

in(priv,(=http(s)Receive, msg, e1, e2)) Receive http(s) message msg from e1 by e2

In summary, we provide the interfaces listed in Table 1 to facilitate modeling
of the SSO protocols using our web infrastructure. Each interface includes an
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out message representing the command from a client-side process to the web
infrastructure and an in message representing the response from the web infras-
tructure to the client-side process. Overall, the web infrastructure is defined
as a process where all the above processes run in parallel, WebInfra =
WPI |LS |PM |HTTPconnect |HTTPsend |HTTPreceive |HTTPSconnect |
HTTPSsend |HTTPSreceive.

2.3 Attacker Models

In the SSO protocols, the privacy property is violated if the attacker learns which
RPs the users have logged in to. Therefore, we mainly consider the malicious
IDP since the privacy property would be trivially violated if either the user or
the RP is malicious. According to the attacker’s capabilities, we define three
attacker models namely the Honest-But-Curious IDP Server, the Malicious IDP
Server and the Malicious IDP Client.

Honest-But-Curious IDP Server tries to break the user’s privacy based on
its own knowledge. It records messages generated and received by itself and tries
to derive the user’s login information from those recorded messages. This attacker
can be simulated in the applied pi calculus by sending the built-in Dolev-Yao
attacker all the messages of base type (i.e., not of channel type) generated and
received by the IDP, such that the existing reasoning techniques can be reused
to check whether the privacy property is satisfied or not.

Malicious IDP Server can forge messages based on its knowledge and send
them out upon requests in place of the authentic messages from the IDP server.

Malicious IDP Client mainly follows the behavior of an honest IDP’s client-
side web page but contains a malicious iframe. The malicious iframe has the
capability of invoking the web infrastructure interfaces. Take the BrowserID,
which is a well-known SSO protocol, as an example. It suffers from the attack
that when a user logs in, a malicious window can be triggered to inform the
attacker the RP the user has logged in to [2].

2.4 Formalization of SSO Privacy Property

We use the observational equivalence relation defined in the applied pi calcu-
lus [9] to formalize the privacy property. Intuitively, two processes are obser-
vationally equivalent if the Dolve-Yao attacker cannot distinguish the two pro-
cesses. In order to further explain our formalization, we define the generalized
evaluation context of SSO processes in the applied pi calculus as follows.
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Definition 1 (Evaluation Context of General SSO Processes). We define
an evaluation context D as the following SSO process with a hole ([ ]).

D := new ~n;
C(account, rp)σ11 |C(account, rp)σ12 | · · · | [ ] | · · · |C(account, rp)σnm |
!RP1 | · · · | !RPm | !IDP | !WebInfra,

– ~n indicates private channel names and data in this process.
– Process C(account, rp) models the client-side login process including the

behaviors of the client-side RP, the client-side IDP, etc., together with the
user’s behaviors (e.g., input the password). The account and the rp are two
free variables denoting the user account and the RP domain which are instan-
tiated by Accounti and RPnamej respectively using the substitution σij where
σij ={Accounti/account, RPnamej/rp}. There are totally n accounts and m
RP domains, therefore σ is a set σ={σ11, ···, σnm}. The RP1, · · · , RPm and the
IDP are honest RPs and IDP. Any sub-process can be null except WebInfra.

– The hole [ ] can be filled with a process C(account, rp)σij | C(account, rp)σlk

with σij , σlk ∈ σ.

With the evaluation context, we formally define privacy property as follows.

Definition 2 (SSO Protocol Privacy). An SSO protocol preserves user’s pri-
vacy if the following observational equivalence query is true

D[C{Account1/account, RPname1/rp}|C{Account2/account, RPname2/rp}] ≈
D[C{Account1/account, RPname2/rp}|C{Account2/account, RPname1/rp}]

for accounts Account1 and Account2 and RPs RPname1 and RPname2.

In this definition, Account1 and Account2 represent two user accounts, and
RPname1 and RPname2 represent two RP domains. Intuitively, the definition indi-
cates that an SSO protocol respects user’s privacy when Account1 logs in to
RPname1 and Account2 logs in to RPname2 cannot be differentiated from (i.e.,
observationally equivalent to) Account1 logs in to RPname2 and Account2 logs
in to RPname1. Note that two account and two RPs are required in order to define
privacy, given that if there is only one account or RP, the malicious IDP can
trivially know who is logging in to the RP based on the RP-IDP or user-IDP
communication.

3 Case Study

In this section, we use SPRESSO [12] as a case study to illustrate how to apply
our framework to analyze an SSO protocol. The general process of the SPRESSO
protocol is shown in Fig. 3. Following this process, the SPRESSO protocol is
modeled, as shown in Figs. 4, 5 and 6.

Figure 4 shows the overall model of the SPRESSO protocol. The client-
side process is modeled as C(Account, RPname) where Account and RPname are
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Fig. 3. SPRESSO protocol flow chart [12]

SPRESSO proc :=
s1 new skidp; let pkidp = pk(skidp) in
s2 new IDPname; new RPname; new Account;
s3 (!out(c, IDPname) |!out(c, RPname) | C (Account, RPname) |
s4 !IDP proc(IDPname) |!RP proc(RPname) |!WebInfra)

Fig. 4. SPRESSO protocol

instantiations for the free variables account and rp in the process C(account, rp).
The process C(Account, RPname) is comprised of subprocesses namely the
RPdoc proc, the IDPdoc proc and the FWDdoc proc, which represent the
behaviors of the client-side web pages (i.e., the RPdoc, the IDPdoc and the
FWDdoc) of the corresponding web servers. The IDP and the RP servers are
modeled in the IDP proc(IDPname) and the RP proc(RPname). In the rest of
this section, we detail the modeling of the client-side process and the server-side
processes.
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C(account, rp) :=
q1 in(c, IDPname);
q2 let email = (account , IDPname) in
q3 let RPname1 = rp in
q4 new root; out(priv, (OW, root));
q5 in(priv, (= root, rpdoc));
q6 RPdoc proc | IDPdoc proc | FWDdoc proc

RPdoc proc :=
q7 out(priv, (httpsConnect, rpdoc,RPname1));
q8 out(priv, (httpsSend, email , rpdoc,RPname1));
q9 in(priv, (= httpsReceive, (tagkey , fwdomain,

logsesstoken),= rpdoc,= RPname1));
q10 out(priv, (OW, rpdoc)); in(priv, (= rpdoc, rddoc));
q11 out(privrd, (logsesstoken, rddoc));
q12 in(priv, (= PMR, fwdoc,= rpdoc,= ready));
q13 out(priv, (PMS, fwdoc, rpdoc, tagkey);
q14 in(priv, (= PMR,= fwdoc,= rpdoc, (EncIA,

= getrpdomain(RPname1))));
q15 out(priv, (httpsSend, (EncIA, logsesstoken), rpdoc,RPname1));
q16 in(priv, (= httpsReceive,= success, rpdoc,RPname1)).

IDPdoc proc :=
q17 in(privrd, (logsesstoken1, rddoc1));
q18 out(priv, (httpsConnect, rddoc1,RPname1));
q19 out(priv, (httpsSend, logsesstoken1, rddoc1,RPname1));
q20 in(priv, (= httpsReceive, (= rddoc1, tag , fwdomain1,

= email , iakey),= rddoc1,= RPname1));
q21 new idpdoc; out(priv, (httpsConnect, idpdoc, IDPname));
q22 let password = getpss(email) in
q23 out(priv, (httpsSend, (email , password, fwdomain1, tag),

idpdoc, IDPname));
q24 in(priv, (= httpsReceive, ia,= idpdoc,= IDPname));
q25 let EncIA = enc(ia, iakey) in
q26 out(priv, (OW, rddoc1));
q27 in(priv, (= rddoc1, fwdoc1));
q28 (out(privfw, (EncIA, tag , fwdoc1))).

FWDdoc proc :=
q29 in(privfw, (EncIA1, tag1, fwdoc2));
q30 out(priv, (parentOf, fwdoc2));
q31 in(priv, (= parentOf, rddoc2,= fwdoc2);
q32 out(priv, (parentOf, rddoc2));
q33 in(priv, (= parentOf, rpdoc1,= rddoc2);
q34 out(priv, (PMS, fwdoc2, rpdoc1, ready));
q35 in(priv, (= PMR,= fwdoc2,= rpdoc1, tagkey1));
q36 let (RPdomain1,nonce4)= dec(tag1, tagkey1) in
q37 out(priv, (PMS, fwdoc2, rpdoc1, (EncIA1,RPdomain1))).

Fig. 5. The client-side process
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3.1 Client-Side Process

The model of the client-side process of the SPRESSO protocol is shown in Fig. 5.

RPdoc proc models the RP login page, i.e., the RPdoc in Fig. 3. We assume the
user has an account (account) from the IDP (IDPname) (line q1–q2 in Fig. 5)1. If
the user wants to log in to the RP (RPname1) (line q3), he opens the RP’s login
page, i.e. the RPdoc, by sending the OW command to our framework (line q4–q5).
The RPdoc sends a login request and establishes an https connection with the
RP server by sending the httpsConnect command to our framework in ((1,2),
line q7). Then the RPdoc sends the email address to the RP server by sending the
httpsSend command to our framework ((2,3), line q8) and receives the response
by waiting for the message marked by the httpsReceive command from our
framework ((6), line q9). Next, the RPdoc opens the window RPRedirectDoc
(line q10) and passes the loginsesstoken and the RPRedirectDoc identity rddoc
via a private channel privrd ((7), line q11). Then the RPdoc receives the ready
from its grandchild window FWDdoc via postMessage by waiting for the mes-
sage marked by the PMR command from our framework (line q12), and replies the
received tagKey back via postMessage by sending the PMS command ((16), line
q13). Then, the RPdoc delivers the encrypted identity assertion (EncIA) from
the FWDdoc ((18), line q14) to the RP server by https ((19), line q15). Then the
RPdoc waits for the successful login notification ((22), line q16).

IDPdoc proc models the IDP login page, i.e., the IDPdoc in Fig. 3. The pre-
viously created window RPRedirectDoc redirects itself to the IDPdoc ((8), line
q17–q20). This step is to avoid the identity leak of the RP to the IDP due to the
referrer header set by the browser. Since our browser model does not include
the referrer header, we can simply continue the IDPdoc process right after the
RPRedirectdoc process (line q21–q28). The IDPdoc extracts the IDP domain
from the received email address and establishes an https connection with the
IDP server ((8), line q21). The user sends his credentials (i.e., email address and
password) to IDP server ((9, 10), line q22–q23). Next, the IDPdoc receives the
identity assertion ia ((12), line q24) and generates an encrypted identity assertion
(EncIA) with iakey ((13), line q25). Finally, the IDPdoc opens a new window
FWDdoc (line q26–q27), and passes the EncIA, the tag and the FWDdoc identity
fwdoc1 to the FWDdoc ((14), line q28).

FWDdoc proc models the FWDdoc in Fig. 3. The FWDdoc is a proxy within
the browser to transfer information between windows, hiding the identity of the
RP from the IDP. The FWDdoc first receives the encrypted identity assertion
(EncIA1), the tag (tag1) and the FWDdoc identity (fwdoc2) from its parent
IDPdoc (line q29). Then he identifies its grandfather window rpdoc1 by sending
the parentOf command to our framework (line q30–q33). Next the FWDdoc
sends the ready to its grandfather window rpdoc1 and receives the tagkey1 via

1 For simple reference to the same information in different figures, we use the following
format ((k), line xj) to represent the step k in Fig. 3, line xj in Fig. 5 (when xj is a
qj) or Fig. 6 (when xj is a pj).
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postMessage (line q34–q35). Finally, the FWDdoc decrypts the tag with the
tagkey1 to extract the RPDomain1 (line q36) and sends the EncIA back to the
RPdoc specified by the RPDomain1 ((17,18), line q37).

3.2 Server-Side Processes

RP proc( RPname) models the RP server in Fig. 6. The RP establishes an https
connection with the RPdoc upon the request (line p1) and receives an email
address ((3), line p2). The RP extracts the IDP domain name from the received
email address and requests the public key from the corresponding IDP ((4), line
p3–p4). Next, the RP generates the following session sensitive values: a nonce
(nonce3), a symmetric key to encrypt the identity assertion (iaKey1), a key to

RP proc(RPname2) :=
p1 in(c, (rpdoc2,RPname2));
p2 in(priv, (= httpsReceive, (account2, IDPname2),= rpdoc2,= RPname2));
p3 out(priv, (httpsConnect,RPname2, IDPname2));
p4 in(priv, (= httpsReceive, pkidp,= RPname2,= IDPname2));
p5 new nonce3; new iakey1; new tagkey2; new logsesstoken2;
p6 new fwdomain2;
p7 let RPdomain2 = getrpdomain(RPname2) in
p8 let tag2 = enc((RPdomain2, nonce3), tagkey2) in
p9 out(priv, (httpsSend, (tagkey2, fwdomain2, logsesstoken2),

rpdoc2,RPname2));
p10 in(c, (rddoc2,= RPname2));
p11 in(priv, (= httpsReceive,= logsesstoken2,= rddoc2,= RPname2));
p12 out(priv, (httpsSend, (rddoc2, tag2, fwdomain2,

(account2,IDPname2), iakey1), rddoc2,RPname2));
p13 in(priv, (= httpsReceive, (EncIA2,= logsesstoken2),

= rpdoc2,= RPname2));
p14 let ia2 = dec(EncIA2, iakey1) in
p15 let (= tag2,= (account2,IDPname2),= fwdomain2) = getmsg(ia2, pkidp) in
p16 (out(priv, (httpsSend, success, rpdoc2,RPname2)))
p17 else(out(priv, (httpsSend, retry, rpdoc2,RPname2))).

IDP proc(IDPname3) :=
p18 in(c, (RPname3,= IDPname3));
p19 out(priv, (httpsSend, pkidp,RPnanme3, IDPname3));
p20 in(c, (idpdoc1,= IDPname3));
p21 in(priv, (= httpsReceive, (email2, password1,

fwdomain3, tag3),= idpdoc1,= IDPname3));
p22 if password1 = getpss(email2) then
p23 let ia3 = sign((tag3, email2, fwdomain3), skidp) in
p24 out(priv, (httpsSend, ia3, idpdoc1, IDPname3)).

Fig. 6. The server-side processes
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encrypt the tag (tagKey2) and a login session token (logsesstoken2) (line p5)
and chooses a forward domain (fwdomain2) (line p6). The RP generates the
tag (tag2) by encrypting the nonce3 and its domain name RPdomain2 using the
tagKey2 ((5), (line p7–p8)). The tagKey2, the fwdomain2 and the logsesstoken2
are sent to the RPdoc ((6), line p9). Then the RP receives the logsesstoken2
from the RPRedirectDoc (line p11). Finally, the RP receives the encrypted inden-
tity assertion (EncIA2) together with the logsesstoken2 from the RPdoc (line
p13), after which it extracts the identity assertion (ia2) (line p14) and checks the
signature of the IDP as well as the signed messages ((20), line p15). Upon suc-
cessful checks, the RP sends the success to the RPdoc. Otherwise, the retry
is sent ((21), line p16–p17).

IDP proc( IDPname) models the IDP server in Fig. 6. The IDP establishes an
https connection with the RP upon the request and passes its public key ((4), line
p18-p19). Next, the IDP establishes an https connection with the IDPdoc upon
the request and receives the email address (email2), the password (password1),
the forward domain (fwdomain3) and the tag (tag3) from the IDPdoc ((10),
line p20-p21). The IDP checks the validity of the password associated with the
email address (line p22). Once succeeds, the IDP generates an identity assertion
(ia3) by signing the tag3, the email2 and the fwdomain3 with its private key
(line p23), and sends the identity assertion to the IDPdoc ((13,14), line p24).

3.3 Verification Results

We transform the IDP proc into the honest-but-curious attacker and query
the privacy property in ProVerif. Next we add the malicious IDP client to the
SPRESSO proc and query the privacy property. The verification results show
that SPRESSO preserves the privacy property against the above two attacker
models. Finally, we transform the IDP proc into the malicious IDP server and
query privacy. The verification result shows that SPRESSO does not preserve
privacy property against the malicious IDP server. By analyzing the trace gen-
erated by ProVerif, we summary the following attack.

A Logic Flaw in SPRESSO. When a victim user uses his/her account
Account which is registered from a malicious IDP to log in to an RP, the RP
server requests a public key from the malicious IDP server. At this step, for a
particular RP RPi, if the malicious IDP wants to learn its login users, the IDP
can issue a fake public key pkIDPi to it ((4) in Fig. 3); for other RPs, the IDP
issues the normal public key pkIDP. Later in identity assertion (IA) generation,
the IDP always uses the private key corresponding to pkIDP ((11) in Fig. 3). As
a result, a failure is caused when RPi verifies the IA using the public key pkIDPi
it fetched previously ((20) in Fig. 3). This implies that the user is successfully
logged in to the IDP, but actually fails to log in to the RP. We assume that the
user will log in again upon receiving a login failure notification, which is common
in reality. Upon receiving the second log in request ((10) in Fig. 3), the malicious
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IDP knows the identity of the user who wants to log in to RPi. This sabotages
the declared privacy property of SPRESSO.

4 Related Work

SSO Privacy Property has drawn little attention until recently. Not much
work has been done on the SSO privacy checking and verification. BrowserID
developed by Mozilla is claimed to preserve the SSO privacy that prevents IDPs
from learning which RP a user is trying to log in to. Fett et al. [2,3] have analyzed
the privacy property of BrowserID manually by trace indistinguishability with a
comprehensive protocol model and have found an attack. In our work, we have
discovered a new privacy attack which is not considered in their analysis.

Web Infrastructure Modeling is also a relatively new research area with
few models incorporating crucial web mechanisms. Previous work associated
with SSO web security analysis [5,8,14,15] only considers a very limited web
model. TrustFound [16,17] has proposed a model for network attacker. Akhawe
et al. [18] have built a general model of the web and have verified the model
using an automatic verification tool Alloy. Bansal et al. [19,20] have proposed a
more comprehensive web infrastructure model WebSpi in the applied pi calculus
and have analyzed the authentication property of OAuth2.0 using WebSpi. Fett
et al. [2,3,12] have built and applied a complex and complete web infrastructure
model that closely follows the published standards and specifications for the web.
Compared to this work, our web infrastructure model is compact and specific to
SSO protocols, which can successfully run on ProVerif.

5 Conclusion

In this paper, we present a formal framework consisting of a web infrastruc-
ture formal model, three attacker models, and the formalization of the privacy
property. We have analyzed SPRESSO using our framework and have detected a
previously-unknown flaw which allows a malicious IDP to use an incorrect public
key to differentiate the users which log in to a particular RP.

Acknowledgment. This research is supported by the National Research Foundation,
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Abstract. Provenance of system subjects (e.g., processes) and objects
(e.g., files) are very useful for many forensics tasks. In our analysis and
comparison of existing Linux provenance tracing systems, we found that
most systems assume the Linux kernel to be in the trust base, making
these systems vulnerable to kernel level malware. To address this prob-
lem, we present HProve, a hypervisor level provenance tracing system
to reconstruct kernel malware attack story. It monitors the execution of
kernel functions and sensitive objects, and correlates the system subjects
and objects to form the causality dependencies for the attacks. We eval-
uated our prototype on 12 real world kernel malware samples, and the
results show that it can correctly identify the provenance behaviors of
the kernel malware.

Keywords: Provenance tracing · Kernel malware
Forensic investigation

1 Introduction

Nowadays, enterprises are suffering from rapidly increasing serious attack
threats, especially Advanced Persistent Threat (APT). Compared to traditional
attacks, APT attacks are stealthier and more sophisticated by employing multi-
step intrusive attacks. This kind of attacks would impose disastrous impacts on
the systems if the associated attack vector aims at kernel [1]. Detecting such
attacks is an urgent matter in enterprise environments, but is far from enough.
In addition to detecting the existence of the attacks, deep investigation should
be performed to find out where the attacks are, how the attacks are derived,
and when they are introduced. For instance, a kernel mode attack can modify
kernel objects or entities, which is potentially more dangerous. Acquiring such
details about how the kernel objects and entities are manipulated is crucial to
understand the attack for forensic investigations.
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Provenance tracing [4,12,16–18,25] is an efficient approach to address these
challenges since it can associate these events together to find the causality depen-
dencies among them. The provenance records provide the holistic view of the
whole system, thus can be well suited to system forensics. Even though the sys-
tem is subverted by malware, provenance points out the possibility to restore
the victim system to a good state in confidence. For a provenance system, the
provenance information should be complete and faithful to provide the holistic
view of the events occurred in the system for forensic applications. If the investi-
gator fails to foresee the need for a particular kind of provenance information to
be captured, then it would be difficult to rebuild the complete causality depen-
dencies. Whereas an untrusted kind of provenance information could infer an
innocent source.

State-of-the-Art: Lots of existing works employ audit logging to record events
(e.g., memory reads and writes, process reading a file, messages being sent
or received, etc.) during system execution and then correlate these events for
building the causality dependencies during investigation [4,12,16–18,25]. These
systems assume the Linux kernel to be in the trusted computing base (TCB),
making these systems vulnerable to kernel malware. If an intruder employs a
kernel malware to compromise the kernel, it is trivial to cheat or even under-
mine the audit logging, thus leading to inaccurate provenance results. However
this assumption does not hold in practical settings in the examples of kernel
malware.

Our Approach: The key to solve the above problem is to backtrack an
untrusted kernel using an external monitor. Thus, we choose to employ virtual-
ization techniques to exclude the kernel from our TCB to keep the provenance
information secure and complete. In specific, we present a hypervisor level prove-
nance tracing system, HProve, to address the above problems and complement
existing provenance systems. On one hand, HProve ports the logging module to
the hypervisor to keep the log recorded trustworthy, especially for kernel mal-
ware. On the other hand, in order to obtain complete provenance information,
HProve employs lightweight record and replay techniques to record the whole
execution of system and replay the system meanwhile instrumenting hypervisor
for provenance. For efficiency, execution traces recorded do not include the state
of emulated hardware devices focusing on the provenance tracing process rather
than replaying a generic VM. HProve is able to replay and analyze a trace with-
out having access to the VM image that was used for recording. Meanwhile to
reduce runtime overhead, the instrumentation code is inserted into the hypervi-
sor only when necessary during replay. After obtaining the execution traces, the
backtracking technique is applied to the kernel APIs to find out the caller-callee
chain using function call convention. HProve achieves this by our provenance tap
points uncovering technique. In summary, we make the following contributions:

– We present HProve, a hypervisor level provenance tracing system that can
replay kernel level malware attack to acquire accurate provenance details.

– To provide valuable insights about how kernel malware impacts on the kernel
internals, we devise a novel approach to backtrack the kernel for acquiring
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caller-callee chain of kernel functions reversely and correlate malware behav-
iors with tampered kernel objects to explore the causality dependencies.

– We have built a proof-of-concept prototype of HProve to demonstrate the fea-
sibility of our approach. We have conducted extensive experiments with a vari-
ety of representative malware samples collected in the wild, and demonstrated
that our system could correctly build the causality dependencies within the
victim system.

2 Motivation

Fig. 1. An abstract diagram to illustrate a
scenario that needs kernel malware attack
provenance. W denotes write operation, R
denotes read operation and K.x denotes
kernel object x. The end that the dash line
points to is the source of the data read by
benign LKMs.

Kernel malware is considered as one
of the most stealthy threats in com-
puter security field and becomes a
major challenge for security research
communities [3,5,23] since it has the
equal privilege as the kernel and often
higher privileges than most security
tools. We collect a variety of kernel
malware samples and manually ana-
lyzed them. In summary, there are
several categories that kernel mal-
ware falls into: system service hijack-
ing (e.g., hooking system call table entries and replacing system call table),
dynamic kernel object hooking (KOH, e.g., VFS hooking) and DKOM [20,23].
Recently lots of work were proposed to tackle this attack: kernel rootkit detec-
tion [10,19,24], kernel rootkit prevention [14,20,21] and kernel rootkit pro-
filing [11,15,22,26]. However, detection is done after the victim system has
been attacked, but the malware behaviors may have been missed. Prevention
is adapted to detection systems, which is mainly to enforce kernel integrity,
whereas it lacks the understanding of what had happened in the past. Profiling
is capable of producing malware traces, such as hooking behavior, target kernel
objects, user-level impact and injected code [26], whereas it fails to obtain the
connections among these traces. These systems do not meet the goal of compre-
hensively revealing the causality dependencies among kernel malware behaviors
and impacts on the victim system. For this goal, we need to solve three key
challenges: (1) What kernel functions, kernel APIs and system calls have been
called by malware?, (2) What kind of kernel objects (e.g., pointer fields and data
values, etc.) have been accessed or damaged by malware?, (3) How to connect
kernel malware behaviors and impacts on the victim system?

Scenario. Suppose a user wants to install a kernel driver and downloads a
loadable kernel module (LKM) without being aware that it is malicious. The
malicious LKM subverts important kernel objects (e.g., K.x, K.y and K.z as
shown in Fig. 1) to hide itself and transfers confidential information. The system
investigator inspects the victim system and starts scanning and monitoring work
as usual. But nothing has been detected for some days which may raise questions
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Fig. 2. System overview of HProve. PTP
in the causality dependences denotes prove-
nance tap points defined in next section.

to the administrator. Also the user
may download more than one mali-
cious LKM which manipulates mul-
tiple kinds of kernel objects. What
the system investigator needs to
know is which LKM tampered with
what kind of kernel objects. He has
to design some investigation tech-
niques to detect dependences among
LKMs, files, kernel objects and mem-
ory accesses or even instructions and
build causality dependencies through
causal analysis of the historical events. Figure 1 shows that three different kernel
malware issue malicious activities (e.g., hide processes, hide files and directories,
etc.) by tampering with kernel objects (e.g., x, y, z, etc.) at different time t1, t2
and t3 respectively. At time t4, t5 and t6, the benign LKMs begin to read the
tampered objects as usual. How the investigator knows where the kernel objects
read by the benign LKMs come from? Have they been modified by the mali-
cious LKM A or B or C? All these questions can be answered by kernel malware
provenance (Fig. 2).

3 System Overview

3.1 Scope, Assumptions and Threat Model

In this paper, we do not differentiate the terms of kernel malware and kernel
rootkit. Both of them represent the kernel-mode components of malicious behav-
iors. They may issue malicious activities in different ways, but the essence is the
same: they need to tamper with kernel objects. Regarding the scope of different
categories of kernel malware and to focus on the provenance problem itself for
kernel malware, system call hooking is our initial implementation decision for a
prototype and our approach can be extended with other approaches which han-
dle DKOM and VFS hijacking. Once the detection of DKOM and VFS hijacking
is included [27], our method can perform provenance tracing from there.

We assume we can acquire the knowledge of kernel APIs, e.g., the kernel
object allocation functions (e.g., kmalloc/kfree, vmalloc/vfree, kmem cache alloc/
kmem cache free, etc.) so that we can instrument and track the creations and
deletions of the kernel objects, and the kernel APIs as well as the function
arguments. In addition, we assume that we can get knowledge of the system call
table and the corresponding entries so that we can locate them in memory and
reveal each access on them. Meanwhile, we assume the function call conventions
is not variable so that we can infer the caller of kernel APIs accurately. As
HProve is implemented on Linux, these assumptions are reasonable and practical.

We define a threat against HProve as any way of compromising the fidelity or
completeness of the provenance information collected. HProve guarantees that
even though the kernel is compromised by the adversaries, we can track the
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tampered objects and further conduct provenance tracing. The hypervisor level
attack is out of scope of HProve, and we can employ hypervisor integrity check-
ing techniques such as [21] to ensure the intactness of the hypervisor before
conducting provenance tracing.

3.2 Overview

HProve is designed to comprehensively reveal the causality dependences among
kernel malware behaviors and impacts on the victim system. It is capable of
obtaining a deep insight on what kind of behaviors kernel malware may conduct.
HProve ports the logging module to the hypervisor to keep the log recorded trust-
worthy, especially for kernel malware. In order to obtain complete provenance
information, HProve employs lightweight record and replay techniques to record
the whole execution of system and replay the system meanwhile instrument-
ing hypervisor for provenance. In particular, the kernel functions being tracked
include those being executed by the kernel from loading the kernel malware to
allocating memory for them. With the captured execution traces, the backtrack-
ing technique is applied to the kernel functions to find out the caller-callee chain
using function call convention in runtime. Meanwhile, HProve records memory
accesses to sensitive kernel objects (e.g, system call table, etc.) that kernel mal-
ware may tamper with. HProve correlates these events happened within the ker-
nel to reconstruct the attack story. For efficiency, execution traces recorded do
not include the state of emulated hardware devices focusing on the provenance
tracing process rather than replaying a generic VM. HProve is able to replay and
analyze a trace without having access to the VM image. Meanwhile to reduce
runtime overhead, the instrumentation code is inserted into the hypervisor only
when necessary during replay.

4 Design and Implementation

In this section, we first present several definitions used in our approach. Then
we describe the design and implementation of HProve in details.

4.1 Definitions

Provenance Tap Points. We define a provenance tap point, an execution point
[7] in the kernel at which we wish to capture a set of function callers. It is defined
as a four-tuple: (call site, func entry, func arg, func ret val), where func entry is
the kernel function whose caller to be tracked, func arg refers to the argument of
the function, func ret val is the return value of the function and call site denotes
the caller of the function entry.
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Memory Access Trace. Memory Access Trace is used to connect the kernel
events and function calls within the kernel, where each access m is formatted
as a four-tuple: m=(addr, data, type, program counter). Addr is the address of
memory being accessed. Data is the amount of data written or read. Type is the
type of the memory access (either a read or a write). Program counter is the
address of the instruction invoking the access.

4.2 Recording Non-deterministic Events

HProve leverages Panda [6], built atop on QEMU to record the non-deterministic
events. Panda extends the original recording process of the QEMU and the
recorded information can be replayed deterministically for the entire execution
at any later time. Since the execution traces recorded do not include the state of
emulated hardware devices, it does not support the execution of device code dur-
ing replay. Fortunately, this feature satisfies our requirements. Eliminating the
execution traces of device code helps to reduce the logging overhead significantly.

4.3 Instrumentation During Replay

QEMU Translation Block. The guest code is split into “translation blocks”
(corresponds to a list of instructions terminated by a branch instruction). QEMU
then translates them into an intermediate language using TCG (Tiny Code Gen-
erator), which provides the APIs to insert additional code. This intermediate
translated block is converted into a corresponding basic block of binary code
that can be directly executed on the host. Figure 3 shows how the guest code is
transformed into translation blocks.

Instrumentation Before/After Execution. HProve instruments analysis
code during replay to obtain the Provenance Tap Point and Memory Access
Trace. As seen in the dashed translation block shown in Fig. 3, analysis code
can be instrumented before or after the execution of each translation block by
the instrumentation engine. We take LKM kernel malware as an example for
describing our techniques. At the conceptual level, HProve works as follows.

First, it conducts off-line analysis of the typical execution route of kernel
malware and reveals the common characteristics of them. We found that before
loading a LKM malware, it is inserted into the kernel using utilities such as
insmod or modprobe. Then the kernel initializes the LKM through system calls,
calls load module function to load the LKM, and allocates memory space for it.
We set the insmod or modprobe operation as the start point and the allocating
memory operation as the end point of the work done by kernel for all the LKMs.
We define the timeline between the start point and the end point as Top-Half,
and the timeline after the end point is defined as Bottom-Half. The analysis of
the events ocurrs during Top-Half and Bottom-Half is completed by Provenance
Tap Point Uncovering and Memory Access Tracing respectively.
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Fig. 3. Illustration on how our instrumen-
tation engine works during replay

Uncovering Provenance Tap Points.
No matter what kind of objects will
the kernel malware manipulate, its
execution file should be allocated into
the memory. Since HProve records
whole execution of the running ker-
nel, it instruments analysis code into
the recorded traces to track the kernel
allocation/deallocation related func-
tions (e.g., kmalloc/kfree, vmalloc/vfree). Whenever these kinds of alloca-
tion/deallocation events occur at runtime, HProve replays the execution for cap-
turing the allocated address range and location of the code that calls the mem-
ory allocation function. HProve determines the call site, func entry, func arg,
func ret val for Provenance Tap Point in the replay phase. HProve instruments
provenance code before (after) the execution of each basic block during replay
as depicted in Fig. 3. Take an allocation function (e.g.,vmalloc) as a func entry,
the address of objects being allocated can be determined by the func arg, and
the size of object can be determined by func ret val.

Take a deallocation function (e.g., vfree) as a fuc entry, the address of objects
being deallocated can be determined by the func arg. Call site determines which
function calls the func entry. Each item of the Provenance Tap Point can be cap-
tured by analyzing function call conventions within the hypervisor. To capture
the call site, HProve uses the return address of the call to func entry. In the
instruction stream, the return address is the address of the instruction after the
CALL instruction. Func arg and func ret val can be captured through the stack
or registers. Integers up to 32-bits as well as 32-bit pointers are delivered via
the EAX register. Func arg is delivered through the EBP with corresponding
offsets. Func arg and func ret val are only available when func entry returns to
the call site. In order to capture func arg and func ret val at the correct time,
HProve uses a shadow stack to store these values. Specifically, HProve checks if
it ends with a CALL instruction after each basic block executes during replay.
If so, the return address is pushed into a shadow stack. Correspondingly, before
execution of each basic block, HProve checks whether it matches a return address
on the shadow stack; If so, we know that the current function has returned, thus
HProve pops it from the shadow stack and captures the return value from the
EAX register as well as the function arguments from EBP with corresponding
offsets. Then HProve reads the value from the registers and memory addresses
using the introspection technique [8]. The obtained values of provenance tap
points will be stored in the form of (calle site, func entry func arg,func ret val).

Memory Access Tracing. After malware being allocated into the memory, it
is able to start carrying out malicious activities. These events occur in the phase
of Bottom-Half. Typically, LKM malware would try some tricks (e.g., bypass
CR0 protection and search for System.map file) to get the entry address of
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Fig. 4. Building causality dependencies
among kernel malware behaviors and
impacts on the victim system. PTP denotes
provenance tap point

system call table, and manipulate the
relative system call entries for differ-
ent purposes. SYSTEM keeps track of
the changes of these entries, obtains
the allocated memory region of the
system call table and records memory
access of the memory region. Fortu-
nately, there are a few hundreds of
entries in the system call table (e.g.,
350 and 312 entries in Linux 3.2 ker-
nel for 32-bit and 64-bit respectively),
thus only a few hundreds of memory
addresses are to be tracked by HProve.
Note that the writes to system call table entries make the relative system call
service routine points to the malicious function in kernel malware, which are
considered as suspicious. Specifically, if there is a write, HProve records the PC
that initiates the write operation. The retrieved values of memory access traces
will be stored in the form of m=(addr, data, type, program counter).

4.4 Causality Dependencies

To build causality dependencies, HProve uncovers the connections among the
events occurr in the Top-Half and Bottom-Half. When the allocation function
allocates memory for LKM malware, HProve acquires the address range that is
being allocated by interpreting the func arg. Then HProve gets a address range
that is being allocated for the LKM malware. Once the PC is captured during
Memory Access Tracing, HProve checks whether the pc locates within one of the
address range that has been allocated for malware. If so, HProve correlates the
writes on system call entries with the func entry that execute the allocation.
Then HProve determines the call site of the func entry that executes the alloca-
tion by the Provenance Tap Point Uncovering technique. Through backtracking
successively, HProve acquires the complete call site to determine the original
malware source that initials the write operation on system call entries (Fig. 4).

5 Evaluation

In this section we present the effectiveness of using HProve to build causal-
ity dependencies among kernel malware behaviors and impacts on the system.
Then we evaluate HProve’s efficiency to show that our approach does not incur
significant overheads. In our experiments, the host machine is an Intel Core i5
desktop running Ubuntu 12.04. We use Linux kernels as the guest VM. To vali-
date our experiments results with the ground truth, we have collected 12 kernel
malware samples that contain a mix of malicious capabilities found in the wild,
including 10 system services hijacking malware (e.g., kbeast, xinqyiquan, etc.), 1
DOH malware (e.g., adore-ng-.0.56), and 1 DKOM malware (e.g., hp rootkit).
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5.1 Effectiveness

To evaluate the effectiveness of our system, we should obtain provenance tap
points and memory access traces of the targeted kernel objects accurately with
HProve. In the experiment setup, HProve loads 12 kernel malware samples and
6 benign LKMs into the guest kernel. Once all of these modules are loaded into
the kernel, HProve starts recording whole execution of the guest kernel with the
lightweight recorder. Then the recorded traces are instrumented with provenance
code during its replay to obtain provenance tap points, and memory access traces.
After that provenance information is retrieved to build the causal dependencies.

Provenance Tap Points. The utilities that insert LKMs encapsulate sys init
module which performs initialization and calls the load module function. This
function is responsible for loading the LKM from the user space to the kernel
space. First, it calls the copy and check function which calls the vmalloc function
to allocate temporary memory for copying the LKM file into the memory region.
Second, the load module function calls layout and allocate to allocate the final
memory for a specific section of the LKM (e.g., core space, .init.text, etc). The
remaining caller-callee relationship chain is shown as below:

layout and allocate−→move module−→module alloc update bounds

−→module alloc−→ vmalloc node range.

After initialization, allocation and relocation are finished, and the LKM can exe-
cute as expected. With this prior knowledge, HProve treats these functions as the
function entry of one of the provenance tap points. Take vmalloc node range
as an example, it is used for allocating specific pages in physical memory for
LKMs. We can infer other items of provenance tap points (e.g., call site, func-
tion argument, function return value) with provenance tap point uncovering and
memory introspection techniques [8]. Specifically, once we have inferred mod-
ule alloc update bounds, HProve acquires the allocation information of LKMs
including the address range from the provenance tap point. The address range
is critical for HProve to link the causality dependency between Top-Half and
Bottom-Half as discussed in Sect. 4.4. In our experiments, HProve uncovers
provenance tap points for all kernel malware samples. The address range allo-
cated for each malware sample is shown in Table 1. Since DKOM type malware
are loaded into kernel in terms of /dev/kmem, we do not list it in the table.

Memory Access Traces. Before building the complete causality dependen-
cies, the memory region which the LKMs belong to needs to be identified.
HProve achieves this by recording the memory access to the system call table
for the running malware. We then build the Memory Access Trace tuple for
each system call entry manipulated by each kernel malware. In the tuple, PC is
critical field to determine which LKM is manipulating the relative system call
entry. As discussed above, HProve acquires various memory regions that are allo-
cated for the LKMs loaded into the kernel. If PC follows in one of the memory
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Table 1. Allocated start address range for each kernel malware

Address

range

Kbeast Xingyiquan Suterusu Knark Enyelkm Synapsys Rial Kis Kbdv3 Adore-

0.42

Adore-

ng0.56

Start

address

0xf86-

73000

0xf86-82000 0xf86-

85000

0xf86-

83000

0xf86-

75000

0xf86-

77000

0xf86-

71000

0xf86-

89000

0xf86-

68000

0xf86-

79000

0xf86-

64000

Size/

bytes

215 308 276 413 356 218 196 525 298 418 382

regions, then the two events are correlated. A table for the Memory Access Trace
tuples is constructed for each kernel malware sample. Table 2 shows one of the
results obtained by HProve. As we can see, in the second row, NR open entry
is located at 0xc1541234 and has been written by PC 0xf867445f. HProve refers
to the result of Table 1 and determines that this PC and other PCs in Table 2
belong to the memory region allocated for Kbeast.

After correlating memory access traces with provenance tap points, HProve is
able to identify which malware manipulates which kind of kernel objects. Table 3
shows the system call entries that are manipulated by kernel malware sam-
ples of system services hijacking we collect. For instance, Kbeast tampered with
NR open, NR read, NR write, NR rmdir, NR unlink, etc. We also analyze
the source code of all the malware samples for the validation purposes, and it
turned out that the entries discovered by our provenance tracing method cor-
rectly matched the malware behaviors in the source code.

5.2 Efficiency

We conduct several experiments to evaluate the efficiency of HProve. In the first
experiment setup, we insert all the LKM samples, including the malicious and
benign ones into the guest kernel and start HProve. Once the kernel begins to load
these samples, HProve records the execution once, and then replays it multiple
times for different provenance requirements. In the following experiments, we
insert one malware sample into the kernel at a time and repeat 10 times. For
each case, we report the recording time, the size of a record, the size of a memory
trace, and the replay time in Table 4. The second column of Table 4 presents the
recording time of the sample’s execution. The third column shows the size of
impact traces that are recorded by the lightweight recorder of HProve. The forth
column lists the size of memory access traces of the system call entries. The fifth
and sixth columns present the replay time for Provenance Tap Points Uncovering
and Memory Access Tracing respectively.

As we can see, a record size in the table is at most 30 MB for the evalu-
ated LKM samples, which is acceptable for these samples executing millions of
instructions. Since there are only a few hundreds of memory addresses to be
tracked, the size of memory traces is at most 17 KB. The duration of replaying
Memory Access Tracing for all LKM samples is 113 min and the average dura-
tion of replaying Memory Access Tracing for each malware sample is 32.2 min.
Replaying for uncovering Provenance Tap Points took 62 min for all LKM sam-
ples and 11.8 min for each malware sample in average.
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Table 2. One of memory access trace table obtained by HProve.

Data Addr Type PC

NR open 0xc1541234 W 0xf867445f

NR read 0xc154122c W 0xf86743b4

NR write 0xc1541230 W 0xf86743c9

NR rmdir 0xc15412c0 W 0xf867411

NR unlink 0xc1541248 W 0xf86743f9

NR rename 0xc15412b8 W 0xf8674447

NR kill 0xc15412b4 W 0xf8674477

NR getdents64 0xc1541590 W 0xf86743e1

NR unlinkat 0xc15416d4 W 0xf867442c

NR delete module 0xc1541424 W 0xf86743d4

Table 3. Manipulated system call entries. ‘
√
’ denotes that the entry has been manip-

ulated.

System call entry Kbeast Xingyiquan Suterusu Knark Enyelkm Synapsys Rial Kis Kbdv3 Adore-0.42

NR open
√ √ √ √ √ √

NR read
√ √ √ √

NR write
√ √ √ √

NR rmdir
√ √ √

NR mkdir
√

NR unlink
√ √ √

NR chdir
√ √

NR kill
√ √ √ √ √ √

NR fork
√ √ √ √

NR ioctl
√

NR close
√

NR clone
√ √ √ √ √

NR exit
√

NR execve
√

NR rename
√ √ √

NR utime
√

NR unlinkat
√

NR socketcall
√

NR getdents
√ √ √ √

NR gentdents64
√ √ √

NR getuid
√

NR getuid32
√

NR gettimeofday

NR quiry module
√ √

NR init module
√

NR delete module
√

NR stat
√

NR lstat
√
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6 Discussion

HProve employs Panda [6] to record the whole execution of system, it shares the
overhead with Panda for keeping track of instructions and the program counter
at the instruction level. On average, for every 1 min of recorded execution, the
replay takes 30 min It so far is not easy to port it to real systems even though the
replay phase could be done off-line. We consider to use introspection technique
with hardware virtualization instead of record-and-replay (e.g., PANDA) to keep
track of a series of kernel functions (e.g., kmalloc, vmalloc, load module, etc.).
However, Jain et al. [9] had shown that there are non-trivial challenges associated
with introspection because of the strong semantic gap problem without trusting
the kernel. Regarding the scope of different categories of kernel malware and to
focus on the provenance problem itself for kernel malware, system call hooking
is our initial implementation decision for a prototype. HProve can not deal with
all the types of kernel malware (e.g., DKOM and VFS hijacking). The system
will fail if an object that are not being tracked is modified (e.g., the malware
creates new kernel objects with altered semantics). We have tested a type of
DKOM and VFS hijacking malware (e.g., hp rootkit, adore-ng-0.56 ) that can
elude our system. But our approach can be easily extended with other approaches
which handle DKOM and VFS hijacking. Once the detection of DKOM and VFS
hijacking is included [2,27], our method can perform provenance tracing from
there. Other than system call table, we can keep track of other sensitive kernel
objects that DKOM or VFS hijacking malware may manipulate. We leave the
above limitations of HProve to our future work.

Table 4. Evaluation for space and time for provenance

Sample Recording
time

Record
size

Memory
traces size

Replaying time

Provenance
tap points

Memory
access tracing

Kbeast 1.2min 26MB 11KB 13min 50min

Xingyiquan 0.8min 17MB 7KB 12min 33min

Suterusu 0.2min 4MB 2KB 10min 10min

Knark 1.1min 24MB 10KB 13min 45min

Enyelkm 0.3min 6MB 3KB 10min 12min

Synapsys 1.1min 25MB 12KB 14min 51min

Rial 0.4min 9MB 3KB 11min 13min

Kis 1.5min 30MB 17KB 14min 78min

Kbdv3 0.3min 5MB 2KB 10min 9min

Adore-0.42 0.6min 14MB 5KB 11min 21min

All LKMs 11min 148MB 80KB 62min 113min
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7 Related Work

Kernel Malware: Many researchers have studied the behaviors of kernel mal-
ware and proposed lots of effective approaches to detect their existence. Hook-
Finder [15] identifies all the impacts made by the malicious code and keeps
track of the impacts flowing across the system to identify the hooking behavior
of a rootkit in the kernel execution. HookMap [24] employs a more elaborate
method to identify all potential hook in the execution path of kernel code that
could be utilized by the kernel level malware. K-Tracer [11] discovers informa-
tion about rootkit capabilities through its data manipulation behavior to help
defend against rootkit as well as user-level malware that gets help from them.
PoKeR [22] is a kernel rootkit profiler that generates multi-aspect kernel rootkit
profiles (e.g.,hooking behavior, targeted kernel objects, user-level impacts and
injected code) during rootkit execution. Rkprofiler [26] is also a kernel malware
profiler that can track both pointer-based and function-based object propaga-
tion, while PoKeR only tracks the pointer-based object propagation. To com-
plement these work, our work analyzes the behavior of kernel malware reversely
(from bottom to top and from impact to cause) which is orthogonal to theirs.

Provenance Tracing: Provenance tracing provides the ability to describe the
history of a data object, including the conditions that led to its creation and the
actions that delivere it to its present state. Hi-Fi [18] leverages Linux Security
Module to collect a complete provenance record from early kernel initializa-
tion through system shutdown. It maintains the fidelity of provenance collection
under any user space compromise. BEEP [12] instruments an application binary
at the instructions and use the Linux audit system to capture the system calls
triggered by the application for investigating which application brings the mal-
ware into the system for provenance. LogGC [13] employs the garbage collection
method to prune some system objects such as temporary files that have a short
life-span and have little impact on the dependency analysis to save space. Pro-
Tracer [16] proposes to combine both logging and unit level tainting techniques,
aiming at reducing log volume to achieve cost-effective provenance tracing. Bates
et al. [4] proposes Linux Provenance Module, a generalized framework for the
development of automated, whole-system provenance collection on the Linux.
However, these systems rely on the safety of provenance collector (e.g., Linux
audit system, Linux Security Module). In the events of kernel malware, the
adversary is able to compromise the provenance collector or even the kernel,
which makes the provenance results untrusted. Our contribution is to comple-
ment these techniques by porting the provenance collector as well as the analysis
module into the hypervisor for the resistance to kernel level malware.

8 Conclusion

We develop HProve, a hypervisor level provenance tracing system that can back-
track the causality dependencies among impacts on a victim system and kernel
malware behaviors. It is capable of understanding the kernel APIs triggered
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and the objects manipulated by kernel malware. HProve is a new system that
provides the capability of replaying kernel malware attack story for provenance
tracing. Such hypervisor level technique is needed in current cloud computing
environment. Due to the limitations of HProve discussed in Sect. 4, more efficient
designs for kernel malware provenance are still highly needed.
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Abstract. The threats of caching poisoning attacks largely stimulate
the deployment of DNSSEC. Being a strong but demanding cryptograph-
ical defense, DNSSEC has its universal adoption predicted to go through
a lengthy transition. Thus the DNSSEC practitioners call for a secure
yet lightweight solution to speed up DNSSEC deployment while offer-
ing an acceptable DNSSEC-like defense. This paper proposes a new
On-Demand Defense (ODD) scheme against cache poisoning attacks,
still using but lightly using DNSSEC. In the solution, DNS operates in
DNSSEC-oblivious mode unless a potential attack is detected and trig-
gers a switch to DNSSEC-aware mode. The modeling checking results
demonstrate that only a small DNSSEC query load is needed by the
ODD scheme to ensure a small enough cache poisoning success rate.

Keywords: DNS Security Extensions · DNS cache poisoning
Model checking · Query load · Success rate

1 Introduction

The Domain Name System (DNS) is today ↪aŕs largest name resolution system in
use. As a critical component in networking infrastructure, the DNS is becoming
an increasingly lucrative target for adversaries. However, the early design of
DNS did not pay sufficient attention to its security in 1980s. One major progress
on securing DNS is DNS Security Extensions (DNSSEC) [1,2] as a set of core
specifications agreed by IETF in 2005. DNSSEC provides security capabilities
by digitally signing DNS data using public-key cryptography.

DNSSEC deployment was essentially motivated as a response to the Kamin-
sky vulnerability [3] which allows attackers to inject bogus DNS responses with
a considerable success rate. While DNSSEC convincingly secures the DNS from
the Kaminsky attacks, the concerns over DNSSEC overheads have posed big
obstacles to its adoption. The impacts of DNSSEC on DNS performance are
multi-facet:
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• The number of queries required by DNSSEC-aware resolution is amplified [4].
• The average packet size generated by DNSSEC is enlarged [6].
• The query processing cost at both authoritative servers and recursive servers

is increased by DNSSEC [5,7].

Hence DNSSEC deployment commonly means heavy investments, great
efforts, and stability risks for DNS operators and DNS service providers. Such
concerns may best explain the fact that the universal DNSSEC adoption is still
very far from completion despite of the prominent demands for DNS security.

One promising way of promoting DNSSEC deployment is to limit DNSSEC
overheads in order to make DNSSEC more affordable for DNS operators and
DNS service providers. Perhaps the most obvious way to cut DNSSEC costs is to
limit DNSSEC transactions between authoritative servers and recursive servers.
That is, minimizing DNSSEC-enabled queries issued from recursive servers and
processed by authoritative servers. Admittedly, the tradeoff between DNSSEC
usage and security capability always stands. Nevertheless, an efficient use of
DNSSEC, hopefully, mitigates DNS servers loads while offering an acceptable
DNSSEC-like defense.

The defense proposed in this paper, namely ODD (On-Demand Defense),
basically secures recursive resolvers against any off-path cache poisoning attacks.
It still uses but lightly uses DNSSEC in a bid to lower its DNSSEC overheads.
ODD makes full use of the detection capability of recursive resolvers to take
up DNSSEC whenever needed. The rest of this paper is organized as follows.
Related work is presented in Sect. 2. The ODD scheme is elaborated in Sect. 3.
In Sect. 4, we present the performance analysis of the ODD scheme. Section 5
evaluates the ODD scheme through model checking. Finally, Sect. 6 concludes
the paper.

2 Related Work

Before or in parallel with the DNSSEC rollout, there have been some propos-
als attempting to address the DNS cache poisoning risks in a light-weight way.
As a non-DNSSEC solution to the DNS security, Fan et al. [8] proposed pre-
ventions embedded in security proxies. But their deployment costs are fairly
high because security proxies need to be deployed at both authoritative servers
and recursive resolvers to support packing and unpacking of all DNS packets
with security label. Schomp et al. [9] proposed to remove shared DNS resolvers
entirely and leave recursive resolution to the clients. That radical change fails
to account for the complexity of DNS clients, the intranet attacks, and the
overwhelming pressure on the DNS service providers. Sun et al. [10] proposed
DepenDNS as a countermeasure which query multiple resolvers concurrently to
verify a trustworthy answer. The reliability and availability of history response
data used by DepenDNS is a great concern. Besides, the performance concern
about DepenDNS is when the queries are multiplied, their processing overheads
will also be multiplied. An extension to DNSSEC was proposed in [15], making
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the trust islands verifiable through extended chain of trust. Nevertheless, the
overheads of DNSSEC are not lessened by the extension.

Shulman and Waidner [11] performed a critical study of the prominent
defense mechanisms against poisoning attacks by off-path adversaries, conclud-
ing that existing easy-to-deploy defenses are not so reliable and thus transition
to DNSSEC deserves the efforts. The capability of the DNS cache poisoning
attacks was studied in [12,13], which are helpful to better understand our pro-
posed defense.

3 The ODD Defense

To “condense” DNSSEC as best as possible while retaining its security capability
against cache poisoning attacks, we propose that DNSSEC can coalesce with
attack detection to lower its overheads.

3.1 Attack Detection

Off-path cache poisoning attacks are characterized by massive guessing attempts.
Cache poisoning is where the attacker manages to inject bogus data into a recur-
sive resolver’s cache with carefully crafted and timed DNS packets. A cache
poisoned resolver will response with its wrongfully accepted and cached data,
redirecting its clients to the bogus and possibly malicious sites. For the sake of
being accepted by the target resolver, bogus responses have to guess the trans-
action ID, port number, and source address of their genuine counterparts.

For one DNS question, an unmatched response satisfies:

(a) It matches the DNS question (or precisely the triple < qname, qtype,
qclass >) of the outstanding queri(es). Note that attackers may exploit mul-
tiple outstanding queries for the same question to significantly increase the
success rate of caching poisoning. This is referred to as “birthday attack”.
In that case, more than one outstanding queries may share one question.

(b) If (a) holds, it mismatches at least one item among transaction ID, port
number, and source address of the outstanding queri(es).

A number of unmatched responses with wrong guessing are expected to be
found by the target resolver before one bogus response may accidentally succeed.
So we propose that presence and accumulating of unmatched responses can be
treated as indicator of possible cache poisoning attacks. As a means of attack
detection, the recursive resolver counts the incoming unmatched responses for
each outstanding DNS question. When the count amounts to a threshold of
defense (ToD), the attack traffic is identified and the attack response is triggered.

The appropriate setting of ToD should consider: on one hand, a too large
value will result in a non-negligible increase of cache poisoning success rate ahead
of any defense in place. e.g., the number of forgery responses is in the order
of ten thousands to ensure a 50% chance of compromise in most cases of DNS
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Fig. 1. The responding process of the DNSSEC-aware mode.

operations [12,13]; on the other hand, a too small value will too readily trigger the
defense. Problem of false positive stands here when non-malicious or negligent
users may unintentionally create a small amount of malformed responses which
are identified as unmatched responses. Another exploit of a small threshold is
that adversaries may deliberately feed a few unmatched responses on the target
resolver in a bid to overload it with excessive defenses.

3.2 DNSSEC-Oblivious Mode

The DNSSEC-oblivious mode lets recursive resolver refrained from sending out
DNSSEC-enabled requests nor validating responses unless explicitly required by
the client (which sets the DO bit). More than the simple DNSSEC-oblivious
DNS, a resolver in the DNSSEC-oblivious mode should perform attack detec-
tion and switch to the DNSSEC-aware mode once caching poisoning attack is
detected. Therefore the costs of the DNSSEC-oblivious mode are comparable to
the simple DNSSEC-oblivious DNS. As long as no caching poisoning attack is
detected, the DNSSEC-oblivious mode continues as a normalcy.

3.3 DNSSEC-Aware Mode

The DNSSEC-aware mode uses DNSSEC transactions to authenticate suspicious
responses to any potentially targeted DNS question. The responding process of
DNSSEC-aware mode is illustrated in Fig. 1. When the count of unmatched
bogus responses reaches ToD, the recursive resolver should immediately initiate
a separate DNSSEC request for that targeted DNS question. If validated, the
response, which is called “validating response” hereinafter, is taken as the trust-
worthy authority for that question. Thus all valid responses arriving prior to
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the validating response are hold on rather than accepted. Note that the hold-on
responses may include the genuine response and one or more bogus responses
which look like genuine because they totally matches the outstanding question.

3.4 Integration of the Two Modes

We present in detail how the two modes are integrated to defend against cache
poisoning attacks. In particular, our example in Fig. 2 shows the defense proce-
dure under the most mighty version of Kaminsky class attacks:

1© The attacker client sends the target resolver a query for the IP
address of “asq50pn.foo.com” below the target domain “foo.com”. The domain
“asq50pn.foo.com” is delicately crafted with random characters so that it is likely
to miss the resolver’s cache to trigger an outstanding query.

2a© The forgery authoritative server tries to send cache poisoning attempts
to the target resolver guessing the transaction ID, etc. of the genius response.
Each unmatched response may, e.g., guess a wrong transaction ID, and intends
to inject the IP address of the forgery authoritative server, say “Y.Y.Y.Y”.

2b© Roughly in parallel with (2a), the target resolver in the DNSSEC-
oblivious mode sends a request to the real authoritative name server for
“asq50pn.foo.com”.

3a© When the attack detection count the unmatched responses to ToD, the tar-
get resolver switches to the DNSSEC-aware mode and sends a DNSSEC request
for “asq50pn.foo.com”.

3b© Perhaps at the same time as (3a), the genuine response arrives at the
target resolver informing the IP address of the real authoritative server, say
“X.X.X.X”. However, as the DNSSEC-aware mode is already turned on, the
response is hold on rather than simply accepted.

3c© The target resolver may still persistently be fed with cache poisoning
responses in the DNSSEC-aware mode. And the continuous response guessing
efforts do have a chance of being holding on.

4© When the validating response is obtained by the target resolver, the rele-
vant records in the validating response are subject to DNSSEC validation using
the verified public key. That DNSSEC validation may render further DNSSEC
transactions such as step (5) and (6) because some signatures (RRSIG records)
over the interested data may be absent from the original validating response.

5© The target resolver initiates a new DNSSEC transaction to validate the
IP address of the authoritative server (“ns.foo.com”).

6© The new validating response contains a RRSIG record over the A type
(IP address) record of “ns.foo.com”. By then, the validating response can be
validated.

7© By checking the hold-on list against the validating response, the IP address
of “ns.foo.com”, namely “X.X.X.X”, is identified as genuine and “Y.Y.Y.Y” as
bogus. The validated record can thus be used by the target resolver in the final
answer as well as in the cache.
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Fig. 2. An example of the integration of the two modes.
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3.5 Caching and Proactive Updating of Validating Response

(a) Caching of Validating Response
To overcome the short-lived protection, we propose that recursive resolver

should retain validating responses in cache for a long-lived defense rather than
just use them once.

The signed records contained in the validating responses and validated by
the recursive resolver should be regarded as more trustworthy than the unsigned
records in the valid but unsigned responses. Similar to conventional DNS caching,
those validating records should be cached by the recursive resolver for a period
of TTL (Time-To-Live). Hence the recursive resolver can first search its cache for
any relevant validating records before it has to solicit the authoritative servers.
Nevertheless, the caching of validating responses differs from conventional DNS
caching in the following:

• The validating records are given a priority over the unsigned records, and
thus they are stored in a priority cache other than a normal cache. Here
“priority” means: a record in the priority cache can overwrite its unsigned
counterpart in the normal cache if any conflict exists between them; in turn,
a record in the priority cache cannot be overwritten by any unsigned record
in a more recent unsigned response; any record in the priority cache can only
be replaced by a more recent validating response.

• The records in the priority cache are basically used for validating unsigned
responses. When an unsigned response arrives with any record conflicting
with the priority cache, the recursive resolver should not accept the response.
Instead it waits for its possible successor consistent with the priority cache
until timeout.

(b) Proactive Updating of Validating Response
The problem of cache consistency arises if simply respecting the priority of

validating records in cache. Consider a more recent unsigned response containing
up-to-date records Ru, and the virtually outdated validating records Rv in cache,
which conflict with Ru, would deny Ru because Rv are more trustworthy.

For the sake of maintaining strong priority cache consistency, the recur-
sive resolver should seek to proactive update validating response in case of
cache inconsistency. The hold-on mechanism specified in DNSSEC-aware mode is
slightly changed for caching of validating response. That is, the responses incon-
sistent with the priority cache are temporally hold on rather than discarded.
Because the inconsistent responses may include the genuine response due to
cache inconsistency, they are reserved for further validation. To still obtain up-
to-date validating records in cache when timeout (indicating the possibility of
cache inconsistency), the resolver should acquire a fresh validating response. The
new validating response will have two usages: validating the hold-on responses
and then returning the validated response if any; updating the corresponding val-
idating records in cache. The responding process for aggressive use of validating
response is detailed in Fig. 3.
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Fig. 3. The responding process of the DNSSEC-aware mode with caching and proactive
updating of validating response.

4 Performance Analysis

4.1 Overheads of DNSSEC Transactions

ODD never initiates DNSSEC transactions unless possible cache poisoning
attack is detected at the target resolver. Thus for a vast majority of recur-
sive resolvers which are not constantly targeted by cache poisoning adversaries,
ODD is lightweight in terms of name resolution cost at both recursive resolvers
and authoritative servers in comparison with the existing DNSSEC deployment
strategy.

Consider the worst case of cache poisoning attack. That is, the attacker
continuously sends caching poisoning responses at a high rate towards the target
resolver. A DNSSEC transaction is generated by the target resolver if and only
if:

• The validated records expire from cache so that an immediate flurry of caching
poisoning responses triggers the switch to DNSSEC-aware mode.

• No validated response is found until timeout because of the updated author-
itative record.

To investigate the event of DNSSEC transactions, we first discuss the events
of TTL expiration and the events of authoritative record updating separately.
Without loss of generality, we assume the TTL of any validated record follows
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a probability distribution function. If the target record is heavily requested, the
times between successive events (queries) can be approximated by the value of
TTL at the instances of events. Let the TTLs or the successive inter-event times
are independently and identically distributed. Then we have

Assumption 1. There is a renewal process in operation for TTL-expiration-
triggered DNSSEC transactions.

Assume that the successive times between the updates of authoritative
records are independently and identically distributed. Then we have

Assumption 2. There is a renewal process in operation for authoritative-
update-triggered DNSSEC transactions.

The process of DNSSEC transactions initiated by ODD is obtained by super-
posing the two renewal processes assumed above. However, we can prove the
following theorem.

Theorem 1. The two renewal processes are NOT independent of each other.

Proof: No matter how long the validating record’s TTL elapses, every
authoritative-update-triggered DNSSEC transaction should be initiated imme-
diately after the instance of authoritative update (given the intense enough
cache poisoning attempts). So the renewal process of authoritative-update-
triggered DNSSEC transactions is independent of that of TTL-expiration-
triggered DNSSEC transactions. Nevertheless, the renewal process of TTL-
expiration-triggered DNSSEC transactions is dependent of that of authoritative-
update-triggered DNSSEC transactions. For example, if there is no authoritative
update between two successive TTL-expiration-triggered DNSSEC transactions,
the inter-even time between the two DNSSEC transactions is roughly TTL; but
if there is one authoritative update between them, the residual TTL is renewed
to a full TTL at the instance of authoritative update, and so their inter-even
time is prolonged to be a full TTL plus a residual TTL; further, if there is more
than one authoritative update between them, the residual TTL is renewed more
than one time and their inter-even time becomes a full TTL plus more than one
residual TTL. �

Given Theorem 1, the process of DNSSEC transactions initiated by ODD
cannot be considered to be formed by superposing the two individual renewal
processes. Instead, we describe the process of DNSSEC transactions using the
codes in Fig. 4.

4.2 Cache Poisoning Success Rate

In Kaminsky cache poisoning attacks, an attacker can balance between the num-
ber of outstanding requests and the number of bogus response attempts at will to
achieve maximum efficiency [12]. Because the number of effective bogus response
attempts is limited by ODD, the attacker often exploits duplicate requests in a
bid to increase the probability of successful compromise. However, the number
of outstanding requests are bounded by two aspects in practice:
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Fig. 4. The process of DNSSEC query event by ODD.

• The maximum number of outstanding requests is set as a default configura-
tion in some widely used authoritative server implementations. Authoritative
servers thereby discard excessive outstanding requests surpassing the config-
ured limit, say La. So any efforts of producing more than La outstanding
requests will prove fruitless [13].

• The window allowed to persistently elicit outstanding requests is bounded
by the response time Tr perceived by the target resolver. Let the average
query sending rate of attacker be R. The window can be converted to the
number of outstanding requests roughly as Tr/R. In summary, the maximum
number of outstanding requests D is the minimum of the two limits, namely
D = min{La, Tr/R}.

Within one round of ODD validation, there are at most ToD-1 bogus response
attempts left for effective cache poisoning. Letting H =ToD-1, we can express
the cumulative probability of cache poisoning failure in all attempts up to and
including the H th attempt as

PD(H) = P (the 1st attempt misses, the 2nd attempt

misses, ..., the H th attempt misses | D

identical outstanding queries)
(1)

Suppose the number distinct IDs available I, the number of ports used P , and
the number of authoritative servers for a domain N . If H � (I +P )∗N , PD(H)
can be written as

PD(H) = (1 − D/((I + P ) ∗ N))H (2)

The worst case of ODD validation is when no relevant validating record is
available at cache and thus a DNSSEC transaction is initiated for it. And then
the validating record fetched is cached for it TTL to protect from any further
cache poisoning attempts. Being the minimum window of opportunity for H
attempts, the interval can be approximated by two response times, one for the
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proceeding non-DNSSEC response and the other for the following validating
response, plus the TTL of validating record. So we have

TH = 2 ∗ Tr + TTL (3)

where TH denotes the minimum window of opportunity for H attempts and TTL
denotes the TTL of validating record. That is, one round of ODD validation takes
at least two response times plus one TTL to obtain a success rate of 1−PD(H).
The success rate of cache poisoning within i rounds of cache poisoning attempt
is 1 − PD(H)i.

As illustrated in Fig. 4, the duration of defense by validating record in cache
may be further prolonged to more than TTL. That extension to the window of
opportunity occurs if authoritative update is identified by the resolver to refresh
the validating record in cache before its TTL expires. In such case, the continuous
elapse of TTL is interrupted by any authoritative update which renews the
residual TTL to a full TTL. Therefore the effects of window extension are better
pronounced for more frequent authoritative update, which provides a better
chance of repeated TTL renewals.

Table 1. Parameters and their settings.

Parameter Setting

Number distinct IDs available (I) 65536

Number of ports used (less than 1024 are unavailable) (P ) 64000

Number of authoritative servers for a domain (N) 2.5

Response time (Tr) 0.02 s

Number of identical outstanding queries (D) 20

Query sending rate from resolver to authoritative server 100 qps

Query responding rate from authoritative server to resolver 100 qps

Query sending rate from attacker to resolver (R) 1000 qps

ToD 3

Bogus responding rate from attacker to resolver 100

Minimum window of opportunity for H attempts (TH) 10 h

5 Model Checking Results

Probabilistic model checking is one of the most commonly used formal verifica-
tion technique for the modeling and analysis of stochastic systems. We model
Kaminsky cache poisoning attack as a continuous-time Markov chain (CTMC)
using PRISM [14]. In modeling the attack, we assume that the queries originated
from the attacker look up a random generated domain such that they will never
hit the target resolver’s cache. We also assume that the IP addresses of the target
domain’s authoritative servers are always in the cache of the target resolver.
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5.1 Results of Query Load

To investigate the combined effects of TTL expiration and authoritative update
on the inter-time of DNSSEC queries, we generate a sequence of authoritative
update events following a probabilistic distribution while setting the TTLs in the
DNSSEC responses as constant and probabilistic values respectively. The inter-
time of authoritative updates follows exponential distribution. We use Monte
Carlo method to estimate the mean of inter-times of DNSSEC queries. In each
experiment, 100,000 times of authoritative updates are generated from an expo-
nential distribution. A number of TTLs, taking either constant values or prob-
abilistic values, are also produced to cover the same time span at the instances
when the predecessor TTL expires or authoritative update takes place.

Figure 5 illustrates how DNSSEC query intervals change with authoritative
update intervals. We can see that a very small authoritative update interval has
almost the same DNSSEC query interval because TTL expiration rarely hap-
pens. But for a larger authoritative update interval, the effect of TTL expiration
is better pronounced because a TTL has more chance of being smaller than an
authoritative update interval thus more chance of expiration. Random TTLs,
though have the same mean as constant TTLs, tend to cause a slightly larger
DNSSEC query intervals and thereby a smaller DNSSEC query load on author-
itative servers. The ratio of TTL-expiration-triggered queries is illustrated in
Fig. 6. We can see that the ratio of TTL-expiration-triggered queries grows as
the mean of update intervals increases. But authoritative update tends to pro-
nounce more than TTL expiration on triggering DNSSEC queries even if they
share the same mean interval. As shown in Fig. 7, when both update interval
and TTL take a mean of 1000s, TTL-expiration-triggered DNSSEC queries only
account for about 36% of the total. That can be explained by the fact that the
event of authoritative update is independent of and never superseded by the
event of TTL expiration while the arrival of TTL expiration may be interrupted
and renewed by authoritative updates.

Fig. 5. DNSSEC query
intervals vs authorita-
tive update intervals.

Fig. 6. Ratio of TTL-
triggered queries vs
authoritative update
intervals.

Fig. 7. TTL expiration
intervals vs authoritative
update intervals.
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It is obvious that DNSSEC query interval will be larger if authoritative
update and TTL expiration are independent. So in order to examine the lower
bound of DNSSEC query interval or the upper bound of DNSSEC query rate,
we assume that authoritative update and TTL expiration are independent. Then
the mean DNSSEC query interval can be written as

Ioverall =
Iupdate ∗ Ittl

Iupdate + Ittl
(4)

where Iupdate and Ittl represent authoritative update interval and TTL respec-
tively. As illustrated in Figs. 5 and 6, we conclude that the maximum DNSSEC
query rate of ODD under intense cache poisoning attempts is of the same order
as the minimum of authoritative update rate and the reciprocal of TTL.

5.2 Results of Cache Poisoning Success Rate

We configure the default values in Table 1 for the parameters in the model check-
ing unless their values are otherwise defined.

First, we illustrate the time needed for a 50% success rate under different min-
imum window of opportunity in Fig. 8 (ToD=3). We can see that the time cost
of cache poisoning roughly grows linearly with minimum window of opportunity.
For a minimum window of opportunity above 10 h, the time required for a 50%
success rate amounts to no less than 2 years. This is because the longer are the
validating records available in cache to defend against cache poisoning attacks,
the longer does an attacker have to wait to embark the next round of cache poi-
soning attempts (if the current round fails). As the TTLs of many authoritative
records are set in the order of days or even weeks, it is very hard in practice to
compromise them through cache poisoning attacks. Figure 8 also shows creating
more identical outstanding queries may dramatically decrease the difficulty of
cache poisoning. Thus in the defense, the resolver should not allow excessive
identical outstanding queries in order to prevent an unacceptable success rate of
cache poisoning.

Fig. 8. Time needed for a 50% success
rate vs minimum window of opportu-
nity (ToD= 3).

Fig. 9. Time needed for a 50% success
rate vs minimum window of opportu-
nity (ToD= 2).
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Second, we investigate the impacts of ToD on the success rate. In Fig. 9, the
time needed for a 50% success rate is shown when the ToD is lowered to 2. We
can see that limiting ToD helps significantly to suppress the success rate of cache
poisoning. Since ToD defines the maximum number of forgery responses (ToD-1)
allowed without defense, a larger ToD means more chance of guessing attempts
thus a larger success rate. To ensure the efficacy of ODD, ToD should be set as
a sound small value.

Third, we study how the cache poisoning success rate evolves over time. In
Fig. 10, we can see that the success rate over time grows like a stair-step shape.
In the curve, each step virtually represents a cache poisoning attempt in time
and an accumulation of ToD-1 forgery responses in success rate. And the width
of each stair-step is dominated by minimum window of opportunity. When ToD
is three in Fig. 10, there are two forgery responses aggregated in a round of cache
poisoning attempts to increase the overall success rate.

Fig. 10. Cache poisoning success rate
vs time (ToD= 3).

Fig. 11. Cache poisoning success rate
vs time (ToD= 5).

Fourth, how the setting of ToD impacts the cache poisoning success rate is
studied. As illustrated in Fig. 11, the increase of ToD from 3 to 5 will lessen
the defense of ODD against cache poisoning attacks. While the width of each
stair-step stays the same as Fig. 10, the jump of each stair-step in the success
rate is doubled. So the overall success rate grows much faster than Fig. 10. This
shows again that a large ToD may undermine the defense capability of ODD.

6 Conclusions

DNSSEC deployment suffers from its significant costs which slow its progress. To
speed up DNSSEC adoption, a lightweight DNSSEC solution was proposed. The
proposed ODD defense greatly lowers the DNSSEC overheads while reserving
the DNSSEC defense capability against cache poisoning attacks. Because of its
efficiency and efficacy, ODD can serve as an interim mechanism for speeding
DNSSEC adoption over a long-term transition to DNSSEC.
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Abstract. Order-preserving encryption (OPE) has been proposed as
a privacy-preserving query method for cloud computing. Existing
researches of OPE diverge into two groups. One group focuses on sin-
gle data provider scenarios and achieves strong security notion such as
indistinguishability under ordered chosen plaintext attack (IND-OCPA).
Another group of research designs multi-provider schemes and provides
weaker security guarantees than those of single provider schemes. In
this paper, we propose a novel security notion for multi-provider sce-
nario, indistinguishability under multi-provider ordered chosen plaintext
attack (IND-MPOPCA), which guarantees equivalent security level as
IND-OCPA while hiding the frequency of plaintexts and enabling multi-
provider data submissions and queries. We develop a multi-provider ran-
domized order technique to construct our MPOPE scheme to achieve the
IND-MPOPCA security notion. We also conduct extensive experiments
to prove the practicality and efficiency of our proposed scheme.

Keywords: Order-preserving encryption · Multiple data provider
Cloud security

1 Introduction

The flexibility of storing data on a cloud and making queries anywhere in the
Internet is attractive. While the risk of data privacy breach severely weakens
the desire of uploading data to the cloud [1]. With such a contention, a common
solution is to encrypt data before uploading to the cloud. However, it becomes
complicated to query the encrypted data, and even more difficult to hide the
queries from being understood by the semi-trusted cloud.

Various methods had been proposed for privacy-preserving cloud queries,
such as keyword query, fuzzy query, range query, etc. [2]. Among these categories
of privacy-preserving query methods, range query gains the most research efforts
because it is arguably the most promising direction to provide practically efficient
and accurate solution for the privacy-preserving query problem [3–6].
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Order-preserving encryption (OPE) is the main technique used in range query
schemes. The plaintext and ciphertext are kept in the same order under some
value-mapping function [7,8]. Although a significant amount of work on OPE has
been proposed, most of these works focus on the single data provider scenario,
such as [3–6,9]. Since collecting and storing a large amount of data provided by
multiple data providers is a common work-flow for many cloud storage applica-
tions, these single data provider schemes are not widely applicable. Single data
provider scheme are more of theoretic attempts to push the security notions
to the limit, such as indistinguishability under ordered chosen plaintext attack
(IND-OCPA).

On the other side, multiple data provider schemes (or abbreviated as multi-
provider schemes or multi-user schemes), such as [10,11], focus on the practi-
cality and achieve weaker security notions than IND-OCPA, which had been
implemented in many single-provider order-preserving encryption schemes, such
as [3–5]. Also, a common foe to the multi-provider schemes is frequency analysis
attack. As a comparison, the security feature of frequency hiding had been imple-
mented in Kerschbaum’s single-provider scheme [5] but not in any of existing
multi-provider scheme.

Therefore, it is desirable to design a multi-provider scheme that achieves
security notion as strong as IND-OCPA in the single-provider schemes and ensure
such a scheme also stands against frequency analysis attacks.

In this paper, we propose multi-provider randomized order technique for
increasing the security of multi-provider order-preserving encryption. We pro-
pose a new security notion for multi-provider order-preserving encryption. We
also develop a novel multi-provider order-preserving encryption scheme under
this security notion.

We summarize our contributions as follows.

– We propose a stronger security notion for multi-provider order-preserving
encryption than IND-OCPA: indistinguishability under multi-provider ordered
chosen plaintext attack (IND-MPOCPA).

– We develop a novel multi-provider order-preserving encryption scheme under
IND-MPOCPA by implementing the multi-provider randomized order.

– We provide theoretical analyses and experimental evaluation for our scheme.

2 Definitions

2.1 Definitions for Our Scheme

We provide Table 1 to summarize notations and their definitions for our scheme.
Our (stateful) multi-provider order-preserving encryption (MPOPE) can be
defined below:

– MPOPE.KeyGen(N) → T : initialize the secret state T .
– MPOPE.Enc(T,DETcipherk,DPk, nk) → T ′, C: Compute an OPE cipher-

text set C after encrypted nk DETcipher, and update the state T to T ′.
– MPOPE.Dec(T, ci) → DETcipher: Find the corresponding DETcipher for

the OPE ciphertext ci based on state T .
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Table 1. Summary of notations and definitions

Notation Definition

S The cloud server

K The number of data providers

DPk The k th data provider, k = 1, 2, ..., K

nk The number of plaintexts provided by data provider DPk

Pk The plaintext set with nk values provided by DPk

pk,i A plaintext provided by data provider DPk, i = 1, 2, ..., nk

D The plaintext domain, namely, ∀pk,i ∈ [1, D]

DET A deterministic encryption scheme, which satisfies DET = (DET.KeyGen,
DET.Enc, DET.Dec)

skk The DET symmetric key generated by DPk

DETcipherk The corresponding DET ciphertext set of Pk encrypted by DPk, i.e.,
DETcipherk = {DETcipherk,1, DETcipherk,2, . . . , DETcipherk,nk

}
DETcipherk,i The corresponding DET ciphertext of pk,i

HOM A homomorphic encryption scheme, which satisfies HOM =
(HOM.KeyGen, HOM.Enc, HOM.Dec)

PK The public key of HOM published to each data provider

SK The secret key of HOM generated by S

MPOPE Our (stateful) multi-provider order-preserving encryption

T The secret state of MPOPE

N The number of distinct ciphertexts

C The OPE ciphertext set with N values

ck,i An OPE cipher provided by DPk, i = 1, 2, ..., N

M The ciphertext domain of our order-preserving encryption scheme, namely,
∀ck,i ∈ [0,M ]

2.2 Model

System Model. Our system model involves multiple data providers (multi-
provider) and a semi-trusted cloud. As is shown in Fig. 1, multiple data providers
outsource their data to the cloud server in the encrypted form, which still enables
comparison operation.

Threat Model. In our threat model, an honest-but-curious adversary will fol-
low our protocol honestly but try to analyze and extract information about
data. Both the cloud server and the data providers are considered as honest-
but-curious adversary.

We consider about three types of attacks:

1. Type 1: Ordered Chosen Plaintext Attack. The cloud server try to extract
relation between plaintexts and ciphertexts by asking the challenger to
encrypt plaintext sequences [12].

2. Type 2: Frequency analysis. The cloud server try to confirm some plaintexts
by observing the distribution of ciphertexts [5].
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3. Type 3: Analysis between data providers. A data provider try to detect
whether other providers encrypted the same data by observing the cipher-
texts.

The Cloud Server

Encrypted Data

Mul ple Data Providers

Outsource

Fig. 1. Our system model

2.3 Security Definition

In order to resist those three types of attacks in our threat model, we pro-
pose a novel security notion for multi-provider order-preserving encryption:
indistinguishability under multi-provider ordered chosen plaintext attack (IND-
MPOCPA). Previous IND-OCPA security notion for order-preserving encryption
is secure against Type 1 attack [8]. However, it has not considered about both
Type 2 and Type 3 attacks. We define a multi-provider randomized order to
enhance the ideal-security notion and resist both two attacks.

Definition 1 (Multi-provider randomized order). Let the plaintexts pro-
vided by different data providers are integrated into a sequence W =
{w∗,1, w∗,2, . . . , w∗,n} with n not necessarily distinct plaintexts, where ∗ denotes
any data provider. A multi-provider randomized order Π = {π∗,1, π∗,2, . . . , π∗,n}
of W which satisfies that ∀i ∈ [1, n], π∗,i ∈ [1, n] and ∀i, j ∈ [1, n], i �= j ⇒ π∗,i �=
π∗,j , holds that

∀i, j . w∗,i < w∗,j ⇒ π∗,i < π∗,j
and

∀i, j . π∗,i < π∗,j ⇒ w∗,i ≤ w∗,j

Our multi-provider randomized order is a permutation of the order of not
necessarily distinct plaintexts uploaded by different data providers. Namely, the
multi-provider randomized order not only preserve the order of distinct plain-
texts but also randomize the order of identical plaintexts provided by different
data providers. Therefore, the multi-provider randomized order can perfectly
resist Type 2 and Type 3 attack.

Our IND-MPOCPA security game involves an adversary, a challenger, and
K data providers. The adversary generates two n value sequences W 0 =
{w0

∗,1, w
0
∗,2, . . . , w

0
∗,n} and W 1 = {w1

∗,1, w
1
∗,2, . . . , w

1
∗,n}, which have the same

order relation (namely, ∀i, j ∈ [1, n], w0
∗,i < w0

∗,j ⇔ w1
∗,i < w1

∗,j). Therefore,
those two sequences have at least one common multi-provider randomized order.
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IND-MPOCPA Security Game.

(1) The adversary sends W 0 and W 1 to the challenger.
(2) The challenger chooses a random bit b ∈ {0, 1}.
(3) The challenger and the set of providers engage in n rounds. At round i:

(a) The challenger sends wb
k,i to DPk, where k denotes any provider who

provides the i-th plaintext and is defined by the adversary.
(b) DPk returns ck,i = MPOPE.Enc(wb

k,i) to the challenger.
(4) The challenger returns the corresponding OPE ciphertext sequence C =

{c∗,1, c∗,2, . . . , c∗,n} to the adversary, where ∗ denotes any provider from the
provider set DP1,DP2, . . . , DPk, . . . , DPK .

(5) The adversary outputs b′, its guess for b.

We say that the adversary wins the game if his guess is correct, i.e., b′ = b.
Let winA be the random probability that indicates the success of the adversary
wins the above game. We define the indistinguishability under a multi-provider
ordered chosen plaintext attack (IND-MPOCPA) notion below:

Definition 2 (IND-MPOCPA: indistinguishability under multi-provider ordered
chosen plaintext attack). A multi-provider order-preserving encryption scheme is
IND-MPOCPA secure if for all p.p.t. adversaries, Pr[winA] ≤ 1

2 .

Since the multi-provider randomized order only leaks the order of data and
permutates the order of identical plaintexts provided by different data providers
randomly, our IND-MPOCPA is secure against Type 1, Type 2, and Type 3
attack. Since the IND-OCPA security notion can only resist Type 1 attack, IND-
MPOCPA security is strictly stronger than IND-OCPA security. Therefore, our
IND-MPOCPA security notion is an enhancement of IND-OCPA security notion
for multi-provider order-preserving encryption.

3 Our Scheme

We propose a secret state, which implements the multi-provider randomized
order technique, to achieve this goal. Later, we construct a novel multi-provider
order-preserving encryption scheme based on the secret state.

Our comparing protocol is the key technique to implement the multi-provider
randomized order technique. The goal of our comparing protocol is: (1) to com-
pare values from multiple data providers secretly, (2) to randomize the compar-
ison result of two identical plaintexts provided by different data providers, and
(3) to achieve IND-CPA security notion.

Our comparing protocol is a secure three-party computation protocol. We
utilize Paillier cryptosystem [13] to construct it. We use E() and D() to denote
HOM.Enc() and HOM.Dec() respectively. We provide our comparing protocol
in Algorithm 1.

In Algorithm 1, DPi uses bi to randomize the compare result R. We show the
relation between bi and R in Table 2. Since DPi chooses bi randomly, the com-
pare result R of two identical data is randomized. In our three-party comparing
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protocol, DPi uses ri and r′
i to randomized the ciphertext of (−1)bi ·(pi,x−pj,y),

DPj uses bj , rj , r′
j to re-randomize the result. Therefore, S cannot recover

(−1)bi · (pi,x − pj,y) by decrypting v2,3.

Algorithm 1. Comparing Protocol
Input: DPi, DPj , S, DETcipheri,x, DETcipherj,y.
Output: A compare result R
initialization: The cloud server runs HOM.KeyGen(). Data provider DPi and DPj

decrypt DETcipheri,x and DETcipherj,y and obtain the corresponding plaintexts pi,x
and pj,y respectively.

1: DPi computes E(pi,x).
2: DPj computes E(−pj,y), and sends it to DPi.
3: DPi computes a vector V = (v1,1, v1,2, v1,3) and sends it to DPj . Firstly, he flips a

random coin bi ∈ {0, 1}. Secondly, he randomly chooses two large random numbers
ri and r′

i, which satisfy ri > r′
i. Then he calculates:

v1,1 = E(1)

v1,2 = E(0)

v1,3 = (E(pi,x) · E(−pj,y))
(−1)bi ·ri · E(−r′

i)

= E(ri · (−1)bi · (pi,x − pj,y) − r′
i)

Finally, he sends V to DPj .
4: DPj re-randomized the vector V = (v2,1, v2,2, v2,3) and sends it to S. Firstly, he

flips a random coin bj ∈ {0, 1}. Secondly, he randomly selects two large numbers
rj and r′

j which satisfy rj > r′
j . Then he calculates:

v2,1 = v1,1+bj · E(0)

v2,2 = v1,2−bj · E(0)

v2,3 = v
(−1)

bj ·rj
1,3 · E((−1)1+bj · r′

j)

= E((−1)bj · (rj · v1,3 − r′
j))

Finally, he sends V to S.
5: S decrypts the vector V . If D(v2,3) < 0, then the cloud server sends D(v2,1) to

DPi. Else, the cloud server sends D(v2,2) to DPi.
6: DPi calculates R = D(v2,k) xor bi, where k = 1 or 2.

We proceed as our secret state construction. Our secret state refers to an
AVL tree T with a set of nodes {t}, which should be shared to the cloud server
and multiple data providers. We show and explain the data structure of our AVL
tree in Table 3. Then we provide a protocol to initialize and refresh the state of
our scheme in Algorithm 2.
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Table 2. A description of Algorithm 1

Case

pi,x < pj,y pi,x = pj,y pi,x > pj,y

bi R bi R bi R

0 1 0 1 0 0

1 1 1 0 1 0

Table 3. Parameters and explanation for tree node structure

Parameters Explanations

Int providerid A data provider, for example, DPk

ElementType DETcipher A DET ciphertext encrypted by providerid

ElementType OPEcipher The OPE ciphertexts

AVLNode ∗left A pointer point to the left child

AVLNode ∗right A pointer point to the right child

Algorithm 2. Refreshing the secret state REFRESH
Input: An AVL tree T with nodes {t}, DPk, DETcipherk, S.
Output: An AVL tree T ′ with nodes {t} ⋃{DETcipherk}.
Initialization: Create an empty AVL tree.

1: for i = 0 to nk do
2: if DETcipherk,i was not in the set {t}. then
3: DPk asks the server for the root node of the AVL tree.
4: S returns a node r to DPk.
5: if The node r was provided by DPk. then
6: DPk decrypts both r.DETcipher and DETcipherk,i, and compare the cor-

responding plaintexts pr with pk,i.
7: else if The node t was not provided by DPk. then
8: DPk invokes the comparing protocol (Algorithm 1) to compare pk,i with pr

secretly.
9: end if

10: If pk,i < pr, DPk asks S for the left child node; If pk,i > pr, DPk asks S for
the right child node.

11: if S does not arrive at an empty spot in the AVL tree. then
12: S returns the next node based on DPk’s information, and goes back to step

4.
13: end if
14: S inserts the new node into the AVL tree and balances the AVL tree.
15: end if
16: end for
17: The algorithm outputs a new AVL tree T ′.
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In Algorithm 2, we initialize and refresh the secret state by constructing an
AVL tree. Each node in our AVL tree is arranged based on the order of the plain-
text value. The AVL tree is constructed and stored on the cloud server. Multiple
data providers help the cloud server to find the location for his plaintexts in the
tree as well as to construct the AVL tree by using the DET ciphertexts.

We provide Algorithm3 to produce OPE ciphertexts by utilizing the secret
state. We initialize the lower and the upper bounders Min and Max in Algo-
rithm3 to be −1 and M respectively. Each node’s OPEcipher is the mean value
of Min and Max, and is generated by recursion. Note that the update algorithm
is run on the cloud server S. We provide our multi-provider order-preserving
encryption scheme in Algorithms 4 and 5.

Algorithm 3. Update UPDATE
Input: S, AVLNode ∗t, Min, Max.
State: The AVLTree T of nodes {t}.

1: if T �= NULL then
2: t.OPEcipher = �Max+Min

2
�

3: Update(t.left,Min, t.OPEcipher)
4: Update(t.right, t.OPEcipher,Max)
5: end if

Algorithm 4. MPOPE Encryption ENCRYPTION
Input: DPk, S, nk, DETcipherk.
State: The AVL tree T of nodes {t}.

1: DPk invokes Algorithm 2 to refresh the secret state.
2: S invokes Algorithm 3 to update the OPE ciphertexts.

Algorithm 5. MPOPE Decryption DECRYPTION
Input: OPEcipher.
Output: DETcipher.
State: The AVL tree T of nodes {t}.

1: Search OPEcipher on the AVL tree.
2: if t.OPEcipher = OPEcipher then
3: return t.DETcipher
4: end if

We provide an example to describe our scheme in Fig. 2. In Fig. 2, DPA,
DPB , and DPC provide plaintexts {15, 19, 81}, {3, 1, 14}, and {91, 15, 15} respec-
tively. Later those three data providers use DET encryption scheme to encrypt
their data respectively. Then each data provider helps the cloud server to con-
struct the secret state (the AVL tree) by invoking the REFRESH Algorithm
(Algorithm 2). Note that DPC only insert {91, 15} in the secret state because
repeated plaintext 15 only insert once. In the secret state, we can find that
identical plaintexts 15 provided by DPA and DPC have different position in
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OPEcipher

15
19
81

3
1

14

91
15
15

Plaintext

6
10
12

2
1
4

14
8
8

Data Provider DPA

Data Provider DPB

Data Provider DPC

DETcipher

0xefd9c2
0xf97016
0x107eda

0x4c93ae
0xe652af
0xe652af

Secret State

0xe652af
15 8

0x107eda
14 4

0x067c9b
81 12

0xefd9c2
3 2

0x97bcd7
15 6

0xedde43
19 10

0x4d36a4
91 14

0xf97016
1 1

Interac on

Mul ple Data Providers The Cloud Server

0x97bcd7
0xedde43
0x067c9b

DETcipher

0xefd9c2
0xf97016
0x107eda

0x4c93ae
0xe652af
0xe652af

0x97bcd7
0xedde43
0x067c9b

Fig. 2. Overview of our MPOPE scheme. Our MPOPE scheme involves 3 steps: Firstly,
each data provider uses DET encryption to encrypt their data. Secondly, data providers
help the cloud server to construct the secret state, which only involves the DET cipher-
texts. Thirdly, the cloud server generates the OPE ciphertexts by using the secret state.
Note that the left rectangles in the node of secret state denotes the plaintext provided
by data providers, but there are not stored in the cloud server.

the AVL tree because our comparing protocol randomize the compare result of
15 provided by different data provider. After constructing the secret state, the
cloud server invokes the UPDATE Algorithm (Algorithm3) to generate the OPE
ciphertexts. Finally, we can find that the corresponding ciphertexts of plaintexts
{15, 19, 81, 3, 1, 14, 91, 15, 15} are {6, 10, 12, 2, 1, 4, 14, 8, 8}.

4 Theoretical Analysis and Discussion

4.1 Security Analysis

Security Proof. We assume that DET encryptions are computationally indis-
tinguishable from random values. Recall our security notion defined in Sect. 2.3.
We provide the security goal of our scheme in Theorem 1.

Theorem 1. Our multi-provider order-preserving encryption scheme is secure
against multi-provider ordered chosen plaintext attack. Namely, our scheme is
IND-MPOCPA secure.

Proof. Due to space constraints, we provide a formalized proof in our extended
paper, and we provide intuition here.

We prove Theorem 1 by induction. Consider that when no value was
encrypted, then our scheme starts with the same initial state which is inde-
pendent of the bit b. Then we assume that it holds for i encryptions. In the
(i + 1)-th encryption, we assume that c∗,i+1 was produced by DPk and hence
c∗,i+1 is cDPk,i+1. We have three possibilities.

The first one is wb
DPk,j

= wb
DPk,i+1 and j < i + 1. The secret state of both

sequences will not change, and the OPE cipher of wb
DPk,i+1 will equal to wb

DPk,j
.

Since cDPk,j is independent of b, cDPk,i+1 is independent of b.
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The second is wb
DPk,i+1 = wb

DPt,j
, and j < i+1. Then the secret state will be

refreshed, and the result of refreshment is depended on a random coin bk. Since
bk is randomly chosen by DPk and is independent of b, cDPk,i+1 is independent
of b.

The last is that plaintext wb
DPk,i+1 has not been encrypted. DPk interacts

with the cloud server and refreshes the secret state. Since W 0 and W 1 have the
same order relation, the secret state of both plaintexts are the same. Therefore,
cDPk,i+1 is independent of b.

Therefore, our encryption algorithm produces the same OPE ciphertext
sequence in both cases, and hence our scheme is IND-MPOCPA secure. �

4.2 Theoretical Performance Analysis

We analyze the time complexity of our scheme.

Key Generation. In our scheme, the secret state plays a role as the key of our
encryption scheme. Hence, the complexity of our key generation algorithm is the
complexity of the initiation of secret state, which requires O(1).

Encryption. The encryption involves Algorithms 2 and 3. Algorithm 2
requires to refresh distinct plaintexts. Kerschbaum and Schroepfer [4] inves-
tigated the expected number of distinct plaintexts, and we restate it in
Theorem 2.

Theorem 2. Let D be the number of distinct plaintexts in the plaintext
domain. For a uniformly chosen plaintext sequence of size n with S distinct
plaintexts, the expected number of distinct plaintexts is

E[S] = D(1 − (
D − 1

D
)n) (1)

Let N be the total number of values in the secret state. We conclude the
expected value of N in Lemma 1 by using the Eq. 1.

Lemma 1. The expected number of N is

E[N ] =
K∑

k=1

D(1 − (
D − 1

D
)nk) (2)

Since the secret state is an AVL tree, which has logarithmic height, the time
complexity of Algorithm 2 is O(log N). The update Algorithm (Algorithm 3) is
a pre-order traversal of the AVL tree, and hence the time complexity of it is
O(N log N). Since Algorithm 2 requires 8 times modular exponentiation compu-
tation per comparison, each secret state refreshment requires log N times com-
plex computation, which requires more time than the operation of OPE ciphertext
update. Hence, our encryption requires O(log N) complex computation.

Decryption. The decryption algorithm is to find the corresponding DET cipher-
text of an OPE ciphertext in the AVL tree and decrypt the DET ciphertext.
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Assume that there are N values in the AVL tree, the time complexity of the
decryption algorithm is O(log N).

Hence, the time complexity of our key generation algorithm, encryption algo-
rithm, and decryption algorithm are O(1), O(log N), and O(log N) respectively.

4.3 Ciphertext Domain

The ciphertexts of our scheme are generated by the secret state with N values.
Let H be the height of an AVL tree, then M = 2H . Foster [14] has investigated
the relation between N and H, and we restate his work in Theorem 3.

Theorem 3. N and H satisfy the following inequality:

H <
3
2

log2(N + 1) − 1 (3)

Then, we can conclude that:

Lemma 2. In order to store N values in an AVL tree, the minimum height of
the tree is Hmin = 
 3

2 log2(N + 1) − 1�.
Lemma 2 shows that the minimum bit length of a ciphertext is Hmin. Hence,

for N plaintext values, the ciphertext space M should not less than 2Hmin . For
simplicity, We define that M = 2�Hmin�.

5 Experiments

We evaluate the efficiency and the statistical security of our scheme (MPOPE).
We use DOPE and FHOPE to denote the scheme in [4] and the scheme in [5]
respectively. The result of our experiments answer the following questions:

– How is the MPOPE encrypting time affected by the number of data providers
and the number of plaintexts?

– How does the encryption time of MPOPE compare with DOPE and FHOPE?
– How does the statistical security of MPOPE compare with DOPE and

FHOPE?

We implement our experiments in Java 1.6. Our experiments are carried
out on a 64-Bit workstation with an Intel Xeon E-1226 CPU with 3.30 GHz
and 32 GB RAM. We set D and M to be 16000 and 225 respectively. In our
experiments, each data provider encrypts the same number of plaintexts. We set
the key length of Paillier cryptosystem to be 1024 bits.

5.1 The Encrypting Time of Our Scheme

We evaluate the average encrypting time when 2, 4, 8, 16, 32 data providers
encrypt 4000, 16000, 64000 total plaintexts in Fig. 3a. Figure 3a depicts that
when the number of providers grows, the average encrypting time grows slightly.
We also measure the average encrypting time when 2, 8, 32 data providers
encrypt 4000, 8000, 16000, 32000, 64000 total possibly identical plaintexts in
Fig. 3. Figure 3b depicts that the average encrypting time firstly increases and
then decreases when the total number of plaintexts increases.
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Fig. 3. (a) and (b) depict the encrypting time of MPOPE affected by the number of
data provider and the number of plaintext respectively.

5.2 A Comparison to Previous OPE Schemes

We extend DOPE and FHOPE to the multi-provider environment by using
our comparing protocol. We use the AVL tree as the state of those schemes
to improve the efficiency of insertion and searching.

We compare the average encrypting time of MPOPE with DOPE and
FHOPE. We evaluate the average encrypting time of those three schemes when 1,
2, 8, 32 data providers encrypt 4000, 8000, 16000, 32000, 64000 possible repeated
plaintexts in Fig. 4a, b, c, and d respectively.
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Fig. 4. (a)–(d) depict a comparison of encrypting time between MPOPE, DOPE, and
FHOPE in 1, 2, 8, 32 data provider environment respectively.
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Overall, those figures depict that the time overhead of MPOPE is lower than
FHOPE but higher than DOPE. Therefore, the efficiency of MPOPE is better
than FHOPE but worse than DOPE.

5.3 Statistical Security

We measure the effectiveness of statistical attack for our scheme by estimat-
ing the Pearson correlation coefficient between plaintexts and ciphertexts. The
smaller the correlation, the more secure against statistical cryptanalysis.

We make 300 experiments to evaluate the Pearson correlation coefficient for
4000, 8000, 16000, 32000, 64000 plaintext-ciphertext pairs. We compute the 90%
confidence intervals as error bars. We compare the Pearson correlation coefficient
of the plaintext-ciphertexts pairs generated by MPOPE to DOPE and FHOPE.
The compare results in 1, 2, 8, 32 data provider environment are depicted in
Fig. 5a, b, c, and d respectively. Overall, we find that the confidence intervals
of the correlation coefficient for each different cases clearly overlap. Hence, we
can conclude that MPOPE is no weaker than DOPE and FHOPE under the
statistical attack.
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Fig. 5. (a)–(d) describe a comparison of Pearson correlation coefficient of the plaintext-
ciphertexts pairs generated by MPOPE, DOPE, and FHOPE in 1, 2, 8, 32 data provider
environment respectively.
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6 Conclusions

We propose the IND-MPOCPA security notion for multi-provider order-
preserving encryption. Moreover, we construct MPOPE which captures IND-
MPOCPA. In summary, our scheme is a new option for order-preserving encryp-
tion in the cloud, which provides strong security guarantee with operation effi-
ciency for cloud applications with multiple data providers.
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Abstract. Vehicular Ad-hoc Networks (VANETs) show a promising
future of automobile technology as it enables vehicles to dynamically
form networks for vehicle-to-vehicle (V2V) communication. For vehi-
cles to securely and privately communicate with each other in VANETs,
various privacy-preserving authentication protocols have been proposed.
Most of the existing approaches assume the existence of Road-Side Units
(RSUs) to serve as the trusted party during the authentication. How-
ever, building RSUs is costly and may not be able to capture the speed
of the deployment of the VANETs in the near future. Aiming at mini-
mizing the reliance on the infrastructure support, we propose a Secure
and Lightweight Identity Management (SLIM) mechanism for vehicle-
to-vehicle communications. Our approach is built upon self-organized
groups of vehicles which take turns to serve as captain authentication
unit to provide temporary local identities for member vehicles. While
ensuring the vehicles’ identities are verifiable to each other, we also pre-
vent any vehicle in VANETs including the captain authentication unit
from seeing the true identities of other vehicles. The proposed authen-
tication protocols leverage the public key infrastructure in a way that
the key generation workload is distributed over time and hence achieve
authentication efficiency during the V2V communication. Compared to
the previous related work, the proposed SLIM mechanism is more secure
in that it can defend more types of attacks in VANETs, and is more
efficient in that it requires much shorter response time for identity veri-
fication between vehicles.

Keywords: VANETs · Privacy · Authentication · Lightweight
Vehicle-to-vehicle communication

1 Introduction

Vehicular Ad-hoc Networks (VANETs) are being touted as the crux of the
future of automobile technology. In VANETs, vehicles can leverage onboard
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
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computing and communication devices to form dynamic networks for vehicle-
to-vehicle communication. This technology would foster a variety of new and
interesting applications such as obtaining real-time road safety and traffic infor-
mation from peer vehicles, and sharing files among neighboring vehicles similar
to that in Internet. Almost all the major automobile manufacturers have invested
heavily on research regarding VANETs. Current prototypes like NOW (Network
on Wheel) [2] and SeVeCom [16] have already provided workable testing-models
for real-world use.

Since many VANET applications are based on vehicle-to-vehicle (V2V) com-
munication, it is critical to ensure the integrity and authenticity of the messages
exchanged by vehicles. Meanwhile, it is also important to preserve the privacy of
the vehicle owners during the communication. This is not only because people
may not feel comfortable to disclose their true identities to strangers, but also
because a series of attacks (such as impersonation) may be easily launched when
true identities are disclosed. In order to achieve secure and private V2V commu-
nication, various privacy preserving authentication protocols have been proposed
[6,9,23]. Most of the existing approaches assume the existence of Road-Side Units
(RSUs) to serve as the trusted party during the authentication. However, build-
ing RSUs is costly and may not be able to capture the speed of the deployment
of the VANETs in the near future.

Aiming at minimizing the reliance on the infrastructure support, we propose
a Secure and Lightweight Identity Management (SLIM) mechanism for V2V
communications. Specifically, the SLIM scheme has an initial registration phase
where the vehicles only need to contact a central authority once the first time
they log on VANETs to obtain a global identity. This global identity is tied to
the vehicle’s identification number (VIN) without explicitly revealing this infor-
mation. Then as vehicles move around, they self-organize into groups of similar
interest or destinations using our previously proposed moving-zone forming pro-
tocols [11]. Inside each moving zone, vehicles take turns to serve as the captain
authentication unit (CAU) who will be in charge of generating a temporary local
identity for each member vehicle to communicate with peers. The local identi-
ties are computed from the vehicle’s global identity, and do not reveal the true
identity of vehicles to the CAU or peer vehicles. Moreover, the SLIM mechanism
also support traceability in that the true identity of a malicious vehicle can be
recovered through the collaboration between other peer vehicles and the central
authority. We have implemented our approach and compared the performance
with the most related V2V-based authentication approach [22]. The experimen-
tal results show that the SLIM is much faster during the V2V authentication.

The proposed SLIM mechanism has the public key infrastructure as the build-
ing block similar to many existing works. However, compared to the existing
works, the SLIM has three major advantages:

1. The SLIM mechanism does not rely on infrastructure support during V2V
communication.
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2. The SLIM mechanism is more secure than other V2V-based authentications
such as [22] in that the SLIM can defend more types of attacks as discussed
in Sect. 5.

3. The SLIM mechanism is more efficient for V2V authentication by distributing
the authentication workload such as the key generation over time.

The rest of the paper is organized as follows. Section 2 reviews related works
on privacy-preserving vehicle authentication. Section 3 introduces the threat
model, design goals and notations. Section 4 presents the details of the proposed
SLIM scheme. Section 5 discusses the reaction of the SLIM scheme to various
attacks in VANETs. Section 6 reports the experimental results. Finally, Sect. 7
concludes the paper.

2 Related Work

There have been lots of efforts in developing privacy-preserving authentication
protocols in VANETs, which can be roughly classified into two main categories
based on the fundamental techniques: (i) pseudonym-based and (ii) group-based
approaches. An early work on pseudonym-based authentication protocol is by
Raya and Hubaux [19]. They allow vehicles to randomly select a private key
from a huge pool of certificates issued by the authority and use this private
key to verify the vehicle’s identity. However, the vehicles may need to check
a long list of revoked certificates when verifying a received signed-message,
which could be very time consuming. Raya et al. in [20] proposed efficient
revocation schemes. However, these schemes do not preserve the location pri-
vacy [12] and are subject to a movement tracking attack. Later, more works
[10,21,23,30] have been proposed to further improve the key revocation efficiency
when using pseudonyms. Rajput et al. proposed a hierarchical privacy preserv-
ing pseudonym-based authentication protocol [18] that the primary pseudonyms
were issued by a central authority, and the secondary pseudonyms were issued
by RSUs. Yet another recent work called RAU (Randomized AUthentication)
by Jiang et al. [8] proposed to use two cloud servers to generate any number of
pseudonyms for vehicles.

The group-based protocols [5,14,26] may look more similar to our proposed
scheme in the sense that they also group vehicles before authentication. Many
group-based protocols leverage the group signature scheme, ring signature or
blind signature [24,28,29]. Under the group signature scheme, vehicles can only
verify that the messages are from a valid group member but do not know who
is the actual sender. In our proposed SLIM scheme, message receivers know
the anonymous ID of the sender vehicles and vehicles are also traceable in the
case of dispute. More recently, Whyte et al. [27] presents a security creden-
tial management system for V2V communication by implementing a Public-Key
Infrastructure (PKI) with additional new features. It issues digital certificates
to vehicles to establish trust among them. Hasrouny et al. [7] also proposed
a group-based V2V authentication and communication solution. They assume
the mutual authentication were done by RSUs and decentralize their system via
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group leaders to make the system more efficient. Want et al. [25] proposed a two-
factor lightweight privacy-preserving authentication scheme which employs the
decentralized certificate authority (CA) and biological-password-based authen-
tication. Their protocol depends on the RSUs which are responsible for message
forwarding and key updating.

Most existing privacy preserving authentication schemes such as those dis-
cussed in the above, all heavily rely on some sort of infrastructure such as RSUs.
However, RSUs would be expensive to deploy and are not expected to be widely
available anytime soon. Very few works provide privacy preserving authentica-
tion based on pure V2V communication. One representative work could be the
PAIM scheme proposed by Squicciarini et al. [22]. Since our work will be com-
pared with PAIM, we provide more detailed review of this system as follows.
The PAIM protocol dynamically constructs groups via pure vehicle-to-vehicle
communication, and leverages Pedersen commitment and secret sharing scheme
to achieve anonymously authentication of vehicles. The biggest drawback of the
Pedersen commitment scheme is that it is malleable. A commitment scheme
is non-malleable [1,3,4] if one cannot transform the commitment of another
person’s secret into one of a related secret. Unfortunately, this property is not
achieved by Pedersen commitment scheme [17] because it is only designated to
hide the secret. Compared to PAIM, the SLIM scheme also has the concepts
of global identities and local identities. However, the protocols to generate the
global and local identities are totally different, which makes the proposed SLIM
scheme more secure and more efficient during the V2V authentication.

3 Threat Model and Design Goals

3.1 Threat Model

Our proposed SLIM scheme aims to defend the following attacks in VANETs as
some are also pointed out in [13]:

– Eavesdropping Attack: The attacker can eavesdrop on any communication
in the VANET.

– Impersonate Attack: Attackers may pretend to be another vehicle in the
network to fool the others.

– Movement Tracking: An adversary who constantly eavesdrops messages
exchanged in VANETs and therefore tracks other vehicles’ travel routes.

– Message Replay Attack: Replay the valid messages to disturb the traffic.
– Man-In-The-Middle Attack: Attackers may relay and alter the messages

during the transmission between two vehicles who believe they are communi-
cating with each other directly.

– Denial of Service (DoS) Attack: The attacker may send a large amount
of junk messages to prevent legitimate users from accessing other vehicles’
computing and communication resources.
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3.2 Design Goals

Our proposed SLIM aims to achieve the following design goals:

– Data Origin Authentication and Integrity: Every exchanged message
should be unaltered during the delivery and can be authenticated by the
receiver. Authentication and integrity of the messages must be verified [15].

– Anonymous User Authentication: The process of authenticating the
vehicle should not reveal the vehicle’s real identity to other peer vehicles.

– Vehicle Traceability: In case there is any dispute, the authority should be
able to reveal the real identity of the suspect vehicle.

– Message Unlinkability: Observers can not link messages observed in differ-
ent groups to the same vehicle so that observers cannot track other vehicles.

We list the description of the notations used throughout this paper in Table 1.

Table 1. Notations and definitions

Notation Definition

vi Vehicle i

IDi Vehicle’s identity encrypted by DMVpubkey

CAU j Captain authentication unit of zone j

GIT i Global identity token for vehicle i

LIT j
i Local identity token for vehicle i for a specific zone j

{...}key Encryption using key

Sign(...)key Generate signature using key

keyi,k Session key between two vehicles vi and vk

Ri Role of vehicles i (government car, emergence car, etc.)
ri Nonce generated randomly by CAU j for vehicle vi

4 Secure and Lightweight Identity Management Scheme

In this section, we present the details of the proposed Secure and Lightweight
Identity Management (SLIM) scheme in VANETs. The SLIM scheme is built
upon moving zones self-organized by vehicles using the zone forming protocols
in [11]. Each self-organized moving zone is formed by a group of vehicles with
similar movement patterns or social interest. These moving zones are dynamic
and will change as vehicles move. Each zone has a captain vehicle which helps
pass messages among member vehicles. In SLIM, we assign the captain vehicle a
new task to serve as the authentication unit and name it captain authentication
unit (CAU) similar to [22]. The SLIM scheme ensures that the vehicles’ identities
are verifiable to each other while preventing any vehicle in the VANET including
the CAU from seeing the true identities of other vehicles.
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Procedure 1. Registration
Each Vehicle vi executes the following steps

Generate global key pair Gpubkeyi and Gprikeyi
Encrypt IDi = {Identityi, V IN}DMVpubkey

Generate signature rsi = Sign(IDi, Gpubkeyi)Gprikeyi

vi
{IDi||Gpubkeyi||rsi}IDMCpubkey−−−−−−−−−−−−−−−−−−−−−−→ IDMC

IDMC executes the following steps
Decrypt using IDMCprikey

Verify signature rsi using Gpubkeyi
Verify vi’s identity IDi with DMV
IF vi’s identity is verified

Generate a random number ri
Generate signature si = Sign(ri, Ri, Gpubkeyi)IDMCprikey

Generate GITi = 〈ri, Ri, Gpubkeyi, si〉
IDMC

{GITi}Gpubkeyi−−−−−−−−−−→ vi
ELSE Reject Request

Each Vehicle vi executes the following steps
Verify signature si using IDMCpubkey and obtain GIT i

The SLIM scheme is composed of three phases: Registration, Inner-zone
Authentication and Peer-to-Peer Communication. During the registration phase,
a vehicle will contact Identity Management Center (IDMC) to be verified and
then obtain a global identity that does not reveal the vehicle’s real identity.
During the authentication phase, vehicles will send its global identity to the
CAU to obtain a local identity. This local identity is later used for communica-
tion among vehicles in the same moving zone. In what follows, we elaborate the
detailed algorithms for generating the global and local identities.

4.1 Registration

Procedure 1 presents the registration phase of our proposed scheme. This phase
is executed only once for each new vehicle joining the VANET. The first time
that a vehicle vi logs onto the VANET, it will communicate with the IDMC to
obtain a global identity token GIT . Specifically, before logging onto the VANET,
vi need to generate a pair of global keys Gpubkeyi and Gprikeyi, encrypt its IDi

using DMVpubkey and generates a digital signature rsi. The first time that vi
enters the VANET, it sends a encrypted registration request to IDMC.

When receives the registration request, the IDMC decrypts it and verifies vi’s
signature rsi to make sure that the message is sent by vi who owns Gprikeyi.
Then the IDMC verifies the received encrypted identity information IDi with
DMV (Department of Motor Vehicles). Since the verification message can only
be decrypted by DMV, the IDMC will only know whether vi has a valid identity
but don’t know what this true identity is. In this way, the vehicles’ privacy is
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Procedure 2. Joining Existence Zone j
Each Vehicle vi executes the following steps

Generate local key pair Lpubkeyji and Lprikeyji
Generate signature vsi = Sign(GITi, Lpubkey

j
i )Gprikeyj

i

vi

{GITi||Lprikeyj
i ||vsi}CAU

j
pubkey−−−−−−−−−−−−−−−−−−−−−→ CAU j

CAU j executes the following steps
Decrypt using CAU j

prikey

Verify IDMC’s signature on GITi

Verify signature vsi using Gpubkeyji
IF verified

Generate timestamp Tc

Generate signature csi = Sign(Ri, Tc, Lpubkey
j
i )CAUj

prikey

Generate LIT j
i = 〈Ri, ri, Lpubkey

j
i , csi〉

CAU j
{LIT j

i }Lpubkey
j
i−−−−−−−−−−→ vi

ELSE Reject Request
Each Vehicle vi executes the following steps

Verify timestamp Tc and signature csi using CAUpubkey

Obtain LIT j
i

also protected against the IDMC. Only if the validation result is true, for vi,
the IDMC generates a global identity token GIT i. Upon receiving the GITi, vi
decrypts and verifies it to ensure that the GITi was issued by the IDMC and
has not been altered. At this point, vi has a global identity token that does not
reveal any sensitive information about its actual identity.

4.2 Inner-Zone Authentication

After vehicle vi obtains the global identity token, it can use this token to be
authenticated in any moving zone that it belongs to during the movement.
Specifically, when vi joins a new moving zone Zj , it will contact the captain
authentication unit CAU j to obtain a local identity token LIT j

i . This local
identity LIT j

i will only be used within this zone. When vi moves to another
zone, it will need to seek another local identity so that it would not be easily
tracked by observers. Procedure 2 illustrates how the local identity tokens are
issued.

In Procedure 2, vehicle vi first randomly generates a pair of local keys
Lpubkeyji and Lprikeyji during any free time before vi wants to enter a new
zone so that the generation procedure would not affect the authentication time.
Then, vi computes a digital signature vsi and sends a join request to CAUj .

When receives the join request, the CAU j decrypts it using its private key,
extracts vi’s global identity token GITi and verifies IDMC’s signature si in GITi
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Procedure 3. Peer-to-Peer Communication (vi, vk) within Zone j
Vehicle vi executes the following steps

vi
LIT j

i−−−→ vk
Vehicle vk executes the following steps

Verify CAU j ’s signature on LIT j
i

IF Verified
Generate session key keyi,k
Generate signature tsk = Sign(LIT j

k , keyi,k)Lprikeyj
k

vk
{LIT j

k , keyi,k, tsk}
Lpubkey

j
i−−−−−−−−−−−−−−−−−−→ vi

ELSE Reject Request
Vehicle vi executes the following steps

Decrypt using Lprikeyji and extract LIT j
k

Verify CAU j ’s signature on LIT j
k

IF Verified
vi and vk authenticate each other and both share the session key keyi,k

ELSE Reject Request

to validate this global identity. The CAU j also verifies vi’s signature vsi to ensure
that this GITi belongs to vi. Only if the verification results are true, the CAU j

generates a randomized number ri, issues a local identity LIT j
i and sends this

local identity to vi.
Once receives the response from CAU j , vehicle vi will extract and verify the

authenticity and integrity of this response. At this point, vi has obtained a local
identity token LIT j

i until it leaves current moving zone.

4.3 Peer-to-Peer Communications

After vehicle vi obtains the local identity LIT j
i , it is now ready to securely com-

municate with any other vehicles in the same zone. As illustrated in Procedure 3,
in particular, when vi intends to establish a fresh session communication channel
with another vehicle (say vk), the first step is to generate a session key between
them. For this, vi first send a session request along with its local identity LIT j

i to
vk. When receives this request, vk first verify the validity of vi’s local identity by
checking the CAU j signature in LIT j

i and generate a random session key keyi,k
and a signature tsk. Then, encrypts the following message using vi’s local pub-
lic key so that attackers can neither eavesdrop or modify it: {LIT j

k , keyi,k, tsk}.
After that, sends it to vi. Once receives this response, vi will decrypt the message
and verify the identity of vk in the same way that vk just did.

After the above peer-to-peer authentication, vi and vk are able to communi-
cate securely by encrypting the messages using the session key in the following
form: {LIT j

vi
,msg}keyi,k

. It is worth noting that as long as vi and vk stay com-
municating with each other, the peer-to-peer authentication between these two
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vehicles just need to conducted once. If more security is desired, the two vehicles
can change the session keys over time.

To sum up, the SLIM scheme involves one-time communication between the
IDMC and the vehicle, and vehicles can have different local identities in different
moving zones for privacy preserving.

5 Security Analysis

In this section, we analyze the reactions of our proposed SLIM scheme to common
attacks in the VANETs.

Eavesdropping Attack: With our SLIM scheme in place, any outside attacker
cannot obtain any sensitive identity information of vehicles by eavesdropping the
VANETs. When sending the registration request to IDMC, the vehicle’s identity
information was encrypted by DMVpubkey, and the whole request was encrypted
by IDMCpubkey too. It is impossible for any attacker to decrypt the registration
message because they do not have the required private keys. For the same reason,
outside attackers cannot eavesdrop any valuable private information during the
peer-to-peer authentication and communication.

Considering inside attackers, the IDMC can only verify vi’s identity with
DMV without knowing any detail personal information because only DMV can
extract the private information from IDi. Moreover, the CAUs cannot eavesdrop
their member vehicles’ communication either. This is because CAUs do not know
the session keys established between member vehicles.

Impersonation Attack: In SLIM, a vehicle vi cannot be impersonated because
no other vehicles knows vi’s Gprikeyi or Lprikeyi. Thus, it is impossible for other
vehicles to generate vi’s signature or decrypt the messages received by vi. More
specifically, during the peer-to-peer communication, suppose that an attacker
knows vi’s LITi and plans to impersonate vi. When the attacker sends this local
identity to another vehicle vk in the same moving zone, vk will generate a session
key encrypted using vehicle vi’s Lpubkeyi and send it back to the attacker. Since
the attacker does not possess vehicle vi’s local private key, it would not be able
to decrypt the message received from vk and hence cannot pretend to be vi.

Movement Tracking: As previously mentioned, any outside attacker cannot
see sensitive ID information by eavesdropping the network that is using the
SLIM scheme. Thus, outsiders would not be able to find out the traveling routes
of vehicles. Considering the insider attacks, we separate the cases of CAU and
member vehicles. Any member vehicle only knows the local identities of vehicles
in the same zone that communicates with it, but does not know the global
identity of these vehicles. Thus, member vehicles may only be able to track the
vehicles who are communicating with it within the same zone, but will not be
able to keep tracking the same vehicle which has moved to another zone. Note
that member vehicles even do not know if they are communicating with the same
vehicle that they have met in the past since the same vehicle will use a different
local identity in a different zone.
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As for CAUs who know the global identities of its member vehicles, the CAU
may be able to track the same vehicle whenever the vehicle enters its moving
zone. However, this risk can be mitigated by a proper CAU election which forbids
a vehicle to serve as a CAU continuously and frequently. This can be achieved
since member vehicles know the CAU’s global identity and they can verify if the
same vehicle wants to serve CAU again when they move along together from
one zone to another. On the other hand, a normal CAU may not want to serve
as CAU frequently either since in that way it exposes its global identities for a
long time for others to track.

Message Replay Attack: In our system, if an attacker replays a registration
or inner-zone authentication request sent by vehicle vi, it would not be able to
decrypt the response messages from IDMC or CAU without knowing the private
keys obtained by vi. Also, if an attacker replays a message sent by vi to vj , it
would not be able to know the content of the response sent back by vj since
the attacker does not know the session key used by vi and vj . As a result, the
attacker would not be able to continue meaningful conversation with vj further.

Man-In-The-Middle Attack: All the messages in our SLIM scheme are either
signed or encrypted, which prevents attackers to modify or reuse. Specifically,
the global identity GITi cannot be modified by other vehicles because it’s signed
by the IDMC. Vehicle vi’s inner-zone authentication request can only be verified
by Gpubkeyi which is included in GITi. Thus, any other entity cannot modify
this request and regenerate the signature without knowing vi’s Gprikeyi. Also,
attackers cannot put itself into the communication between vehicles. When vi
communicates with the IDMC, its message is encrypted using the IDMC’s public
key and hence only the IDMC can open it. When the IDMC responds to vi,
the message is encrypted using vi’s public key and hence only vi can open the
message. The case with the CAU is similar.

During the peer-to-peer communication, when vk received the local identity
LIT j

i from vi, a possible attack that it may conduct is to pass this local identity
to another vl and try to play a middle role in this communication. However, the
vl’s response will be encrypted by Lpubkeyji . Since vk does not know the local
private key of vi, vk would not be able to decrypt the message sent back by
vl and obtain the session key inside the message. Also, vk cannot generate new
response to vl since vk is not able to produce vi’s signature.

Denial of Service (DoS) Attack: In the SLIM system, outside attackers’ mes-
sages can be filtered because they do not have valid identity tokens. When they
try to replay the registration or inner-zone authentication request, the IDMC
or CAUs can reject those messages because the Gpubkey or Lpubkey have been
used in the previous requests. The inside attackers also will eventually be caught
as they have been authenticated and will leave all these malicious behavior in
records.
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6 Performance Study

We now move to evaluate SLIM’s efficiency in the authentication process.
We compare its performance with the most related V2V-based authentica-
tion scheme – PAIM [22]. The implementations are conducted using a machine
equipped with an Intel Core i7 at 2.6 GHz with 16 GB of RAM running UNIX
system. Each procedure in the program has been run 1000 times and the mean
values are reported in milliseconds.

The network simulation was conducted using the Network Simulator NS-3
(version 3.26) and vehicular mobility simulator SUMO (version 0.23.0). Vehicles’
movements along with the main roads of three real maps: Manhattan (4.5 km ×
5.5 km), Chicago (6 km×7 km) and Los Angeles (5 km×4.5 km). Vehicles’ speed
ranging from 30 to 60 miles/h. In NS-3, the maximum transmission range is
set to 100 m, the network delay is 10 ms, and the wireless transmission rate is
6 Mbps. Unless noted, otherwise we use the Manhattan map and set the number
of vehicles to 800. The simulation was run for 15 s to insert all vehicles, then
begin registration phase. After 60 s, at random time, each vehicle become group
manager respectively, select up to 10 vehicles over a range of 80 m and start
Inner-Zone Authentication. The simulation time is 120 s.

6.1 Registration Phase Performance

In the first round of experiments, we measure the average time needed for a vehi-
cle to register at the IDMC using the SLIM and the PAIM scheme respectively.
As shown in Fig. 1(a), the average registration time per vehicle under SLIM is
about 40 ms, which was faster than PAIM’s 80 ms. This could be attributed to
the efficient protocol of SLIM which does not need extra rounds to establish
a session key between the IDMC and the vehicle. Note that the vehicles’ pri-
vate/public key pairs in SLIM scheme can be generated during the vehicle’s free
time and hence would not affect any authentication performance.
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Fig. 2. Time performance during inner-zone authentication on three maps
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Fig. 3. Communication cost during inner-zone authentication

6.2 Inner-Zone Authentication Phase Performance

Next, we measure the performance of the inner-zone authentication for both the
SLIM and the PAIM schemes. Figure 1(b) shows the total inner-zone authen-
tication time at the CAU side when the number of vehicles in its zone varies
from 1 to 50. Observe that SLIM is clearly faster than the PAIM. With the
increase of the number of vehicles in the zone, the performance gap between the
two approaches widened. Specifically, when there are 50 vehicles, our proposed
SLIM scheme is more than 3 times faster than PAIM. In Fig. 2, with the increas-
ing of the number of vehicles, the time raises due to more packets, larger network
delay and heavier workload, and our SLIM protocol is obviously performs better
than PAIM. This is because the SLIM scheme requires much fewer rounds of
message exchanges to generate a local identity for a vehicle as shown in Fig. 3.

6.3 Peer-to-Peer Communication Performance

Finally, we compare the efficiency of the two approaches in terms of peer-to-peer
communication. Figure 4 presents the time performance of these two protocols on
three maps. In SLIM scheme, the time taken for two vehicles to mutually validate
each other’s local identity is only 3.5 ms excluding network delay. However, in
PAIM, since two vehicles need to conduct the zero-knowledge proof which could
take as long as 13.6 ms, it is clearly much slower than the SLIM scheme.
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Fig. 4. Communication cost during peer-to-peer communication

7 Conclusion

In this paper, we proposed a lightweight privacy preserving vehicular authentica-
tion protocol SLIM, which alleviates the reliance on infrastructure support. The
SLIM scheme leverages the PKI in an efficient way to create anonymous global
identity and then local identities for vehicles to preserve their privacy when
communicating with other vehicles. The SLIM is not only robust against various
types of attacks but also very efficient as compared to the state-of-the-art.
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Abstract. Tor is the most popular anonymous communication system.
In Tor, each user chooses onion routers (ORs) to construct a circuit to
relay the traffic. The final OR of the circuit, called exit node, forwards
regular traffic for the Tor user to the destination. As a result, the exit
nodes are often accused of the anonymous users’ illegal activities. In this
paper, we propose an extension for Tor, called A-Tor, to provide account-
able anonymity. A-Tor protects the exit nodes with verifiable evidences
that the illegal or malicious packets are originated from the certain users
but not the exit nodes. An A-Tor user firstly constructs a Tor circuit to
apply for an anonymous certificate. Then, a second Tor circuit is con-
structed to access the destination server as in Tor, and the anonymous
certificate is presented as a credential to the exit node; otherwise, the
exit node refuses to forward his/her packets. A-Tor provides anonymity
with the same level of assurance as Tor, and cooperative ORs are able
to trace the anonymous A-Tor user (when illegal or malicious packets
are detected in the future). Moreover, non-repudiation is achieved in the
revocation of anonymity; that is, during the application of anonymous
certificates and the subsequent anonymous communications through Tor
circuits, a chain of evidences are generated by the A-Tor user and the
ORs, and these evidences cannot be forged by collusive ORs. The per-
formance overhead introduced by the A-Tor extension is also evaluated.

Keywords: Tor · Accountability · Revocable anonymity

1 Introduction

Tor is the most popular anonymous communication system in the Internet [11].
Anonymity is critical for personal privacy, but the Internet does not provide
anonymity by default. So several anonymity networks such as Tor [10], Mixmin-
ion [8], Mix-master [19], and PipeNet [4,7], are designed and implemented to
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unlink a communication party from his/her network activities. Tor balances
anonymity, usability and efficiency well, and is deployed all over the world. Cur-
rently there are more than 2,000,000 Tor users, and the peak number is nearly
6,000,000 in 2013 [23].

A Tor user chooses a sequence of onion routers (ORs) to construct a circuit,
and each OR in the circuit only knows its predecessor and successor. Encrypted
packets sent by the user are wrapped by a symmetric key at each OR, and the
final OR (or the exit node) forwards plaintexts IP packet to the destination
server. Network packets from the destination server are iteratively encrypted by
each OR and relayed to the next node, and the Tor user finally decrypts the
packets with all symmetric keys.

Due to its excellent anonymity and general availability, Tor is misused to
launch network attacks. As a result, the exit nodes are often accused of the
anonymous Tor users’ illegal network activities by law enforcement agencies.
For example, Rapid7 revealed a botnet called SkyNet, which adopts Tor for the
command-and-control communications [2]. Austrian seized computers from the
owner running a Tor exit node because cyber crimes were committed through this
exit node, and announced that it is illegal to run Tor exit nodes [3]. Moreover, the
insufficient protection and possible liability burden of Tor exit nodes discourage
volunteer ORs to be exit nodes; then, if there are only a very limited number of
exit nodes, it becomes easier to associate an anonymous Tor user with his/her
network packets by traffic analysis [10,21].

With the original anonymity functionality of Tor, it is extremely difficult
for the exit nodes to prove that the IP traffic is originated from other nodes;
otherwise, the anonymity will be degraded somehow. Some extensions for Tor
are proposed to protect the exit nodes, by enforcing exit policies [10,22] or
appending specific packet headers [10]. These extensions offer options for exit
nodes and ORs, but such packet headers are not verifiable and cannot disclose
the Tor user’s identity such as its IP address. Trusted third parties are introduced
[6,15] to escrow the Tor user’s identity before the anonymous communications
and revoke the anonymity when necessary; however, the extra trust on the third
party degrades the anonymity of Tor, because a single compromised party is able
to reveal the user’s identity. A reputation system is designed for exit nodes to
rank the anonymous Tor user’s activities [12], and the users with low reputation
will be marked. This scheme depends on the intrusion-detection capability of
exit nodes, and brings a significant overhead to the exit node.

In this paper, we propose A-Tor, accountable anonymity in Tor, which pro-
tects exit nodes with verifiable evidences to revoke the anonymity of Tor users.
A-Tor designs a two-phase protocol. In the first phase (called the anon-cert
phase), an A-Tor user firstly constructs a Tor circuit to apply for an anonymous
certificate from the last OR (called the certification node in this paper). A chain
of evidences is generated by the user and the ORs during the application, and
these evidences will be used to trace the A-Tor user based on the anonymous
certificate. Then, in the second phase (called the anon-comm phase), a second
Tor circuit is constructed to access the destination server, and this certificate is
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presented as a credential to the exit node; otherwise, the exit node refuses to
forward his/her IP packets to the destination. The forwarded packets are signed
by the anonymous user, and verified by the exit node using the anonymous
certificate before sent to the destination server.

In summary, A-Tor achieves accountable (or revocable) anonymity with the
following properties:

– It is built on top of Tor, and the anonymity of Tor is not degraded. In the
anon-cert phase, the anonymous certificate is generated through a Tor circuit,
with the same level of assurance as Tor. The anonymous certificate is visible
only to the A-Tor user, the certification node and the exit node. In the anon-
comm phase, the certificate is presented as an anonymous credential to the
exit node, and no any other identity information is transmitted on the second
Tor circuit. The anonymity would be broken, only if (a) the ORs of the anon-
comm Tor circuit, or (b) the ORs of the anon-cert Tor circuit and the exit
node of the anon-comm Tor circuit, collude to link the A-Tor user to his/her
network activities.

– Non-repudiation is achieved in the revocation of anonymity. In the application
of anonymous certificates, a chain of evidences are generated by the A-Tor
user and the ORs, and each evidence is signed by the generator and sent to in
the next node of the anon-cert Tor circuit. During the anonymous communi-
cation, the network packets to the destination server are signed and verified
by the exit node using the anonymous certificate. Therefore, these evidences
are also verifiable to law enforcement agencies, and could not be forged by
malicious ORs cooperatively against an innocent user.

– A-Tor is an extension of Tor, and interoperable with the existing Tor ORs. No
additional component is needed in A-Tor, compared with Tor. A-Tor exten-
sion functions are implemented by Tor ORs, and transparent to the destina-
tion servers. An anonymous user may enable the A-Tor extension or use the
original version of Tor, to construct the anonymous communication circuits.
Then, the exit node chooses to forward or reject the packets, according to its
own policy.

2 Background and Related Work

Various schemes are proposed to protect the exit nodes in Tor. [10,22] provide
mechanisms for exit nodes to limit the relayed traffic. That is, each node may
specify its exit policy to describe the addresses and ports that it will connect
to; the exit node uses port restrictions for certain services (e.g., HTTP, SSH
and FTP). However, it does not provide a complete protection for exit nodes, as
most of the abuse cases are based on the protocols widely supported. [10] allows
an OR to add specific information in the header of the forwarded messages, to
indicate that the traffic is originated from some users of the anonymity service.
However, the auditor cannot distinguish whether the traffic was truly originated
from an anonymized user, or from a malicious exit node which added fake header
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attributes to its own messages. A reputation system is built based on the activi-
ties of anonymous users, and the exit node may reject an anonymous user based
on its history [12].

Different accountable anonymity schemes in Tor have been proposed by intro-
ducing trusted third parties. [6] requires a trusted party to generate a blind sig-
nature as the ticket for the anonymous user to access the anonymity services, and
the user’s anonymity is revoked with the ticket and the trusted party. The ticket
plays the similar role as the anonymous certificate in A-Tor, but the trusted
party is able to reveal the user’s identity [6] while the certification node in our
scheme cannot without the cooperation of ORs in the anon-cert circuit. The
directory server is utilized as the verifier of message transmitted from anony-
mous Tor users [15]. A Tor user divides its IP address into multiple shares, and
the directory server signs a ticket for the shares and the hash value of messages to
be transmitted. Then, the IP address shares are distributed to Tor ORs, and the
signed ticket is presented as a credential to relay the messages. The IP address
shares are collected to revoke the user’s anonymity when necessary. These two
schemes degrade the anonymity of Tor, as the trusted party or the directory
server may collude with the exit node to break the users’ anonymity.

Different mechanisms are also proposed to incentivize ORs to relay Tor traffic.
When a well-behaving OR, acts as a Tor user to construct a circuit, the traffic
of this circuit will be relayed with higher priority [20]. BRAIDS [14] motivates
anonymous users to relay Tor traffic by introducing generic tickets for service
accounting. The ticket is generated using blind signatures, which ensures the
ticket signers do not know the ORs chosen by the user. These schemes work
compatibly with A-Tor.

Anonymous blacklisting schemes [17,18,24,25] are proposed to prevent future
abusive anonymous access. These schemes are classified into two classes: one [17,
25] depends on trusted third parties to provide tokens for users to access the
service providers (i.e., destination servers), while in the other schemes [18,24],
each user presents the proof that it is not blacklisted. However, the identities of
abusive users are not revealed in these schemes.

There are also revocable anonymity schemes, not designed for Tor. In [9],
each user registers with the trusted authority and a chosen registration node, to
link its unique identifier to an identification pseudonym, and the identification
pseudonym to another pseudonym for anonymous services. The two pseudonyms
are verifiably encrypted using the public key of Judge, who identifies the initia-
tor of the malicious traffic, based on the information from the exit node of
the anonymity network, the register node and the trusted authority. THEMIS
[26] relies a trusted key generator to achieve accountable anonymity and non-
frameability based on proxy re-encryption. The trusted key generator who does
not know the user’s identifier, distributes an anonymous certificate and the cor-
responding index to the user and the identity database, respectively. The coop-
tation between the trusted key generator and the identity database will combine
the anonymous certificate with the user’s identity.
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In [16], each user firstly connects to a group of servers (called anonymisers)
to obtain an encrypted identity, and applies for an anonymous certificate signed
by blind signature algorithms to bind the encrypted identity to a key pair that is
used in anonymous communications. When necessary, a threshold atomic proxy
re-encryption is triggered at the chosen anonymisers to transfer the user’s iden-
tity encrypted using the auditor’s public key. Compared with [16], A-Tor also
utilizes anonymous certificates to support accountable anonymity; but A-Tor
seamlessly integrates the application of anonymous certificates into Tor so that
the anonymity is evaluated explicitly.

To protect Tor gainst abuse by botnets, one possible medium-term response
is to deanonymize the command and control (C&C) server [13]. The Tor Project
attempts to discover the entry nodes of the C&C server, by repeatedly changing
their availability (e.g. by rotating identity keys), and eventually learn the IP
address of the C&C server. However, it will pose significant organizational and
engineering challenges [13], while A-Tor finds the malicious Tor user with fewer
overhead as described in Sect. 4.3.

3 Overview of A-Tor

3.1 Threat Model and Design Goal

A-Tor follows the same assumptions as Tor [10]. A great number of ORs run
over the Internet, each of which maintains a key pair by itself. The public key
of an OR is published in directory servers, and then known by all users and
other ORs. A correct OR follows the protocol strictly and compromised ORs
behave arbitrarily. We assume that the ORs of a Tor circuit are not compromised
simultaneously; so a user will increase the number of ORs in a circuit, to enhance
the assurance level of anonymity.

A-Tor attempts to prevent attackers from linking a pair of communication
parties (i.e., an A-Tor user and the destination server) or from linking multiple
communications to or from a single user as Tor does, while provides verifiable
evidences to link (the packets of) a specified communication to an anonymous
user when enough ORs cooperate. The anonymity of an A-Tor user is compro-
mised only if a certain number of ORs are compromised to link his/her activities,
and this number is specified by each user according to his/her own security con-
cern. These evidences are stored on multiple ORs for the period of time specified
in data retention laws, and presented together to reveal the user’s identity of a
specified communication when a law enforcement agency requires the ORs to do.
Moreover, malicious ORs could not collude to forge a complete chain of evidences
against an innocent user.

Finally, because A-Tor attempts to provide verifiable and unforgeable evi-
dences to reveal the user identity, we assume that each A-Tor user has an identity
credential (e.g., a non-anonymous X.509 certificate to certify his/her IP address
or other alternative identity), which is verifiable to the ORs. More discussions
about this credential are included in Sect. 6.
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3.2 Basic Idea

The basic idea of A-Tor is, (a) in the anon-cert phase, an A-Tor user constructs
a Tor circuit to apply for an anonymous certificate from the last OR (or the
certification node), and (b) in the anon-comm phase, the anonymous certificate
is presented as a credential to the exit node of the second Tor circuit.

In the anon-cert phase, the A-Tor user constructs the anon-cert Tor circuit.
Then, the user sends the credential of his/her identity to the first OR of the anon-
cert Tor circuit (called the registration node). After verifying the credential, the
OR signs an anonymous-certificate request, encrypts the message by the public
key of the next OR of the circuit, and sends it. Then, after decrypting the
message and verifying the signature, the receiver OR signs, encrypts and sends
it to the next OR, until the anonymous-certificate request is transmitted to the
certification node. Finally, the certification node signs the anonymous certificate,
and it is relayed to the A-Tor user. The certificate is encrypted iteratively by
each OR as regular Tor packets. Note that the A-Tor’s identity is not included
in either the anonymous-certificate request or the certificate. The signed request
messages are stored on the receiver ORs as verifiable evidences to reveal the
A-Tor user’s identity in the future.

Next, after constructing the anon-comm circuit as Tor, the A-Tor user sends
the anonymous certificate to the exit node, and the exit node verifies that the
certificate is signed by another OR. Then, each relayed packet is signed by the A-
Tor user, and the exit node verifies the signature using the anonymous certificate
before forwarding it to the destination server. These signatures are stored on the
exit node as verifiable evidences. The anonymous certificate and the signatures
are invisible to other ORs of the anon-comm Tor circuit. Signing every packet
one by one is expensive, and optimizations are discussed in Sect. 6.

No additional component is needed in A-Tor, compared with Tor. Each OR
of A-Tor is first an OR of Tor, and the A-Tor functions are extended on the ORs
of the anon-cert Tor circuit and the exit node. Anonymous-certificate request
messages and signed network packets are transmitted by extended commands in
the Tor circuit [10].

4 The A-Tor Protocol

This section describes the A-Tor protocol in details, including the steps to apply
for anonymous certificates, to perform anonymous communications, and to link
the anonymous communication to the A-Tor user.

These notations are used in this paper:

– IDOR
i , PKi, SKi: the identity, the public key and the private key of ORi.

– PKu, SKu: an ephemeral key pair generated by the user.
– IDc

i : the connection identity between the user and ORi in the Tor circuit.
– EncK [e], DecK [e]: encrypt and decrypt message e by key K.
– SignK [e]: sign message e by key K.
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4.1 Anonymous Certificate

As shown in Fig. 1, the A-Tor user constructs the anon-cert Tor circuit consisting
of m ORs, denoted as ORi and 1 ≤ i ≤ m. OR1 is the registration node, and
ORm is the certification node. After the circuit is constructed, the user shares
a secure connection with ORi, which is identified as IDc

i . The detailed steps to
construct a Tor circuit is described in [10].

Then, the user generates an ephemeral key pair (PKu, SKu), constructs an
anonymous certificate request ACertReqm+1 = SignSKu

[PKu, Ts, Te], and com-
putes ACertReqi = IDOR

i ||EncPKi
[IDc

i , ACertReqi+1] iteratively, where (Ts,
Te) is the period of validity and 1 ≤ i ≤ m. The certificate requests are also
encrypted like the layers of an onion. Next, the user sends ACertReq1||cred to
OR1, where cred is a credential of his/her identity.

Upon receiving ACertReq1||cred, OR1 verifies cred and decrypts it to
obtain ACertReq2. Then, it sends SignSK1 [ACertReq2] to OR2. Upon receiv-
ing SignSKi−1 [ACertReqi], ORi verifies the signature and decrypts it to obtain
ACertReqi+1, until ORm obtains ACertReqm+1. At the same time, ORi stores
SignSKi−1 [ACertReqi] as a verifiable evidence.

ORm signs the certificate ACertu,m = SignSKm
(PKu, ID

OR
m , Ts, Te). This

anonymous certificate is relayed back to the user through the Tor circuit,
encrypted iteratively by ORs.

Anon-Comm Tor Circuit

User

OR OR OR...

OR OR OR...

Registration Node Certification Node

Anon-Cert Tor Circuit

Trust

Exit Node

OR Destination

Fig. 1. The A-Tor protocol.

4.2 Anonymous Communication

The steps to perform anonymous communication in A-Tor is almost the same as
those in Tor, except that the relayed network packets are signed by the A-Tor
user and verified by the exit node.

As shown in Fig. 1, an A-Tor user constructs a Tor circuit consisting of n
ORs, denoted as ORj and 1 ≤ j ≤ n. ORn is the exit node, and no OR is in the
anon-cert Tor circuit and the anon-comm Tor circuit at the same time. After
the Tor circuit is constructed and before any packet to the destination is sent,
the A-Tor user sends ACertu,m to the exit node through the circuit. The exit
node verifies that the certificate is signed by another OR, and in its period of
validity, and replies with an acknowledgement. Otherwise, it rejects to forward
any packet.
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Then, the user begins to send packets through the Tor circuit. It signs every
packet using SKu and transmits the signed packet to the exit node. The exit
node forwards a packet (without the signature) to the destination server, only if
it is sent along with a valid signature. The Tor circuit shall be closed before the
anonymous certificate expires. The certificate and signatures are stored by the
exit node as verifiable evidences in the future.

4.3 Accountable Anonymity

If the traffic forwarded by the exit node is detected to be illegal or malicious, an
auditor who is authorized by law enforcement agencies, performs the following
steps to reveal the user’s identity.

The auditor brings the illegal or malicious packets to the exit node, and
the exit node will present the corresponding certificate ACertu,m and signa-
tures. After verifying the certificate and signatures, the auditor requires ORm

to present SignSKm−1 [ACertReqm]. Otherwise, if the certificate or any signature
is invalid, the exit node is liable for these illegal or malicious packets.

ORm decrypts ACertReqm+1 from ACertReqm, and the auditor checks
whether the anonymous-certificate request message ACertReqm+1 matches the
certificate ACertu,m or not; if they match, the auditor verifies the signature by
ORm−1 and then requires ORm−1 to present SignSKm−2 [ACertReqm−1].

The auditor finds out the ORs one by one in the anon-cert Tor circuit and
finally the registration node presents ACertReq1||cred. The user’s identity is
revealed in cred verifiably. In the above steps, if any OR cannot present a valid
certificate request message, the OR is liable for these illegal or malicious packets.

5 Security Analysis and Performance Evaluation

This section analyzes the accountable anonymity of A-Tor. We first evaluate the
assurance level of anonymity, the verifiable evidences to reveal the A-Tor user’s
identity, and the performance overhead of A-Tor. Finally, some optimizations
and extended discussions are presented.

5.1 Anonymity

A-Tor provides anonymity with the same level of assurance as Tor. Firstly, in the
anon-comm phase, all steps of A-Tor are the same as those of Tor, except that
an anonymous certificate is transmitted to the exit node. Because there is no
identity in the anonymous certificate and no OR of the anon-comm Tor circuit
is involved in the steps to apply for anonymous certificates, attackers cannot
obtain more information than a Tor circuit to break the anonymity. Secondly, no
(anonymous) communication with destination servers is performed in the anon-
cert phase, so attackers cannot obtain any information by only compromising
the ORs of the anon-cert Tor circuit.
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Next, let’s consider the scenario that some ORs of two Tor circuits were
compromised, and assume that the certification node runs independently of the
exit node. Because the certificate requests are also encrypted like the layers of
an onion, only when all ORs of the anon-cert Tor circuit collude, they reveal the
user’s identity and link it to the anonymous certificate; and only the exit node
is able to link the anonymous certificate to the network activities. So, only if all
ORs of the anon-cert Tor circuit and the exit node of the anon-comm circuit are
compromised, they are able to collude to link the A-Tor user to his/her activities.

Compared with Tor, there are two sequences of ORs that are able to link the
communication to an A-Tor user: one is composed of the ORs in the anon-comm
Tor circuit, and the other is the ORs of the anon-cert Tor circuit and the exit
node. Therefore, m = n − 1 is reasonable (provided that the certification node
runs independently of the exit node), and two sequences establish equal difficul-
ties for attackers to break the anonymity. Moreover, in the second sequence, each
OR only knows its predecessor and successor as that in the first sequence, except
that the certification node does not know its successor (i.e., the exit node). Note
that the anonymous certificate is transmitted as ciphertext always to the exit
node through two Tor circuits.

As for other passive attacks, active attacks and directory attacks, A-Tor
provides the same protections as Tor [10]. A-Tor constructs two Tor circuits
to generate verifiable evidences for accountable anonymity, and the accountable
anonymous communications are wrapped as regular Tor packets.

A-Tor does not introduce additional traffic patterns, compared other appli-
cation protocols on top of Tor. Passive attackers cannot distinguish an A-Tor
user from Tor users, because the additional anon-cert phase works over regular
Tor circuits. Active attacks do not have more attack opportunities, because the
ORs in A-Tor do not have more security assumptions than Tor. Each OR holds
its key pair, and only know its predecessor and successor in the two Tor circuits.
Finally, directory servers maintain the same information as those in Tor.

5.2 Verifiable Evidences

The verifiable evidences are composed of: (a) the certificate and signatures stored
on the exit node, and (b) the certificate requests stored on the ORs of the anon-
cert Tor circuit. Section 4.3 shows that, the A-Tor user’s identity will be revealed,
if the auditor follows the evidences to find out the ORs one by one.

Next, we will show that, (a) nobody can forge such a chain of evidences,
unless the A-Tor user and ORs involved in the accountable-anonymous com-
munications, and (b) the ORs cannot misguide the auditor to innocent ORs or
users, either intentionally or unintentionally.

As all evidences are signed messages, nobody can forge these evidences unless
a private key was compromised. In particular, in the trace path to reveal the A-
Tor user’s identity, the exit node is located by the IP address of packets. Then,
the signatures of forwarded packets and the anonymous certificate are signed
by the A-Tor user and the certification node, respectively. The anonymous-
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certificate requests are signed by the ORs one by one in the anon-cert Tor circuit,
and ACertReq1 is sent along with cred, which is also verifiable and unforgeable.

When ORi decrypts ACertReqi+1 from ACertReqi, a malicious OR might
present an unrelated anonymous-certificate request signed by ORk, but inten-
tionally output ACertReqi+1. Note that, the private key of ORi shall not be
disclosed to the auditor, so the decryption is performed by ORi itself. Then, the
auditor will mistakenly require ORk instead to present valid certificate request
messages, and ORk will be liable for the illegal or malicious packets for it is
unable to do so. Therefore, the public-key encryption algorithm shall be deter-
ministic but not probabilistic, and the auditor needs to check whether the plain-
text (i.e., ACertReqi+1) and the ciphertext (i.e., ACertReqi) match or not. If a
probabilistic public-key encryption algorithm such as RSA or ECIES, is adopted,
ACertReqi is revised to IDOR

i ||EncKi
[IDc

i , ACertReqi+1]||H(Ki)||EncPKi
[Ki]

and signed by ORi−1, where H() is a one-way hash function and Ki is a one-time
session key of symmetric encryption algorithms. Therefore, when Oi outputs Ki,
the auditor firstly checks whether Ki and H(Ki) match or not and then decrypts
ACertReqi+1 by itself.

5.3 Performance Evaluation

We evaluated the performance overhead introduced by the A-Tor extension, by
measuring the average processing time for the circuit establishment and the
network packet relay. The same as the lastest version of Tor [1], we adopt ECC-
Curve25519 [5] and SHA-256 for key negotiation. In details, we use the imple-
mentation of Curve25519 and Ed25519 in Tor for key negotiation and signature
generation. For symmetric encryption and hash function, we adopt AES-128 and
SHA-256 in OpenSSL v1.01f. The process in each node is implemented using
C++. The numbers of ORs in the anon-cert Tor circuit and the anon-comm
Tor circuit satisfy the equation m = n − 1. All experiments ran with one user.
These nodes were deployed on the identical workstations with an Intel i7-3770
(3.4 GHz) CPU and 12 GB of memory. The operating systems of all the nodes
are CentOS v6.6. We measured the average processing time by constructing a
Tor circuit and sending a cell 100 times.

To construct a circuit, a Tor user negotiates a symmetric key with each OR
in the circuit. The A-Tor user needs to construct two Tor circuits. The anon-
comm Tor circuit is constructed as the original Tor circuit. The anon-cert Tor
circuit construction includes the following processes: the A-Tor user negotiates
the symmetric key with each OR, constructs the anonymous-certificate request
and binds its credential (in our experiments, a signature of the transmitted mes-
sage using its long-term private key); the registration node checks the user’s
credential and generates the signature of the transmitted messages; the other
OR except the certification node verifies the received signature and generates a
new one for its transmitted message; and the certification node constructs the
anonymous certificate after verifying the received signatures. In our implemen-
tation, as described in Sect. 5.2, IDc

i and ACertReqi are encrypted using the
symmetric key shared with each OR, and the digest of the symmetric key is
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Fig. 2. Circuit establishment.
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Fig. 3. Anonymous cell processing.
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Fig. 4. Anonymous cell processing (accumulatively signed).

included in ACertReq. From Fig. 2, we find that when n ≤ 20, the time to con-
struct the two Tor circuits (the anon-cert circuit and the anon-comm circuit) is
about 2.049 times of the one to construct the original Tor circuit.

After establishing the circuits, the user begins to send the network packets to
destination servers. In Tor, the traffic is split into cells of 512 bytes, while the size
of A-Tor cell is at most 498 bytes. In addition to AES encryption/decryption,
each A-Tor cell involves two extra processes: the user generates the signature
(64 bytes) of the cell, and the exit node verifies the signature. From Fig. 3, we
find that the ratio of anonymous cell processing in A-Tor to that in Tor decreases
with the number of ORs, from 12.207 (n = 2) to 2.555 (n = 20). The primary
overhead is caused by the signature generation (0.05521 ms) and verification
(0.13239 ms).

We adopt the optimization described in Sect. 6.1 to reduce the overhead of
anonymous cell processing in A-Tor. That is, instead of generating and verifying
the signature for each cell, we accumulatively compute the digest of these cells,
generate and verify the signature of these digests. From Fig. 4, it is found that,
the average overhead of A-Tor reduces with the number of cells for accumulative
digests, and is reduced to 0.01254 ms when the number of cells is 20, which is
modest compared to the processing time (0.01674 ms) for one cell in original Tor
when the number of ORs is 2.
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6 Extended Discussion

6.1 Signing and Verification in the Anonymous Communication

It is very expensive to sign and verify each packet one by one in the anony-
mous communication. The following optimizations of coarse-grained evidences
are designed to reduce the overheads. Firstly, the A-Tor user may only sign
a description file on his/her visit to the destination server. The description
includes, for example, the destination server, the port, the duration, and the
accessed web pages, but not any specific packets.

Or, after verifying the certificate, the exit node randomly sends some packet-
signing commands through the Tor circuit to the A-Tor user during the anony-
mous communication. The A-Tor user signs the next packet, once it receives a
signing request from the exit node. A portion of signed packets in the attack traf-
fic shall be enough to play as verifiable evidences, and the frequency of signing
requests is determined by the exit node.

Another optimized mode is as follows. The A-Tor keeps sending packets and
the exit node forwards these packets while accumulatively computing the digest
of these packets, until a threshold of sent-but-unsigned packets is triggered and
the exit node sends a sign-all-packet command. Then, the A-Tor user signs all
sent-but-unsigned packet as a whole, and sends the signature to the exit node.
Next, unsign packets are forwarded again. The maximum count (or length) of
sent-but-unsigned packets also depends on the policy of exit nodes.

6.2 Credential of the User’s Identity

In Sect. 4.1, we assume that the A-Tor user has an identity credential verifiable to
the registration node. A typical example is an non-anonymous X.509 certificate,
and the A-Tor user signs the anonymous-certificate request as the verifiable
credential. Or, the registration node cooperate with ISPs to verify the A-Tor
user’s identity.

Because A-Tor attempts to provide unforgeable evidences to reveal the user
identity but the default identity in the Internet (i.e., IP address) can be forged,
an extra trusted identity shall be presented to the registration node.

6.3 Key Revocation of ORs

The key pair (PKi, SKi) of ORi might be revoked due to security incidents. The
revoked key pair may be needed for the auditor to reveal the malicious user’s
identity. Therefore, the directory server should record the revoked public key
and the corresponding period of validity correctly, while each OR maintains the
corresponding private key. The storage period should be no less than the one
specified in data retention laws.

An OR in the anon-certificate Tor circuit or the exit node, should check
the validity of public keys when receiving certificate requests and anonymous
certificates, and reject any message signed using a revoked key pair; otherwise,
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it will be accused instead of the OR whose key pair has been revoked at the
directory server.

7 Conclusion

In this paper, we propose A-Tor, an extension of Tor, protecting the exit nodes
in Tor by verifiable evidences. An A-Tor user firstly applies for an anonymous
certificate through a Tor circuit, and the anonymous certificate is used as cre-
dentials in another Tor circuit for the next anonymous communications to des-
tination servers. A-Tor provides anonymity with the same level of assurance as
Tor, and cooperative ORs are able to trace the anonymous user (when illegal
or malicious packets are detected in the future). The Tor circuit of anonymous
certificates does not cut down the attack difficulties to break the anonymity, and
the same number of ORs shall be compromised as in Tor before the attacker links
an A-Tor user to his/her network activities. A chain of verifiable evidences are
generated during the application of anonymous certificates and the anonymous
communications, and non-repudiation is achieved.
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