
Chapter 5
Relation to Complex Dynamics

In this chapter we outline how rotation sets occur in the dynamical study of complex
polynomial maps. Special attention is paid to the relation with the dynamics of
complex quadratic and cubic polynomials. This link provides a geometric realization
of rotation sets under md , whose abstract theory was developed in the previous
chapters.

5.1 Polynomials and Dynamic Rays

We assume the reader is familiar with the basic notions of complex dynamics, as
in [21]. Let f : C → C be a monic polynomial map of degree d ≥ 2. The filled
Julia set K(f ) is the union of all bounded orbits of f , and the Julia set J (f ) is the
topological boundary of K(f ). Both are compact non-empty subsets of the plane.
The complementC�K(f ) is connected and can be described as the basin of infinity
for f , that is, the set of all points whose orbits under f tend to ∞. The Green’s
function of f is the continuous function G : C → R defined by

G(z) = lim
n→∞

1

dn
log+ |f ◦n(z)|,

which describes the escape rate of z to ∞ under the iterations of f . It is easy to see
that G satisfies the relation

G(f (z)) = d G(z)

with G(z) = 0 if and only if z ∈ K(f ). The Green’s function is harmonic in
the basin of ∞, with critical points at all precritical points of f . In other words,
∇G(z) = 0 for some z ∈ C� K(f ) if and only if f ◦n(z) is a critical point of f for
some n ≥ 0.
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There is a unique conformal isomorphism β, defined in some neighborhood of
∞, which is tangent to the identity at ∞ (in the sense that limz→∞ β(z)/z = 1) and
conjugates the action of f to that of the power map z �→ zd :

β(f (z)) = (β(z))d for large |z|.

We call β the Böttcher coordinate of f near ∞. The modulus of β is related to the
Green’s function by the relation |β(z)| = eG(z) for large |z|. It is not hard to check
that β is univalent in the domain {z ∈ C : G(z) > G0}, where

G0 = max{G(c) : c is a critical point of f }.

In particular, if every critical point of f belongs to K(f ), then G0 = 0 and β is a
conformal isomorphism C � K(f ) → C � D. This happens precisely when K(f )

is connected.
In what follows and unless otherwise stated we assume that K(f ) is connected.

In this case the inverse Böttcher coordinate ψ = β−1 : C � D → C � K(f ) is a
conformal isomorphism which satisfies

ψ(zd ) = f (ψ(z)) for |z| > 1. (5.1)

By the (dynamic) ray of f at angle t ∈ T we mean the real-analytic curve

R(t) = ψ
({re2πit : r > 1}).

The functional equation (5.1) shows that

f (R(t)) = R(md(t)) for all t ∈ T. (5.2)

We say that R(t) lands at z ∈ J (f ) if limr→1 ψ(re2πit ) = z. It follows from (5.2)
that if R(t) lands at z, then R(md(t)) lands at f (z). Similarly, if f has local degree
k at w ∈ f −1(z), then there are k preimages {t1, . . . tk} of t under md such that each
R(ti) lands at w. A ray may or may not land, but the set of angles t for which R(t)

lands has full Lebesgue measure on the circle.
The impression R̂(t) of the ray R(t) is the set of all w ∈ C for which there is a

sequence zn ∈ C�D such that zn → e2πit and ψ(zn) → w. It is not hard to check
that R̂(t) is a non-empty compact connected subset of J (f ). Every point of the Julia
set belongs to at least one impression. We say that the impression R̂(t) is trivial if it
reduces to a single point {z}. In this case, R(t) necessarily lands at z (a landing ray,
however, may well have a non-trivial impression). Furthermore, it is easily seen that

lim sup
n→∞

R̂(tn) ⊂ R̂(t) whenever tn → t . (5.3)
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(As usual, the limsup on the left is the set of all p ∈ C such that every neighborhood
of p meets infinitely many of the R̂(tn).) We will also use the following separation
property later on: Suppose the rays R(t ′), R(t ′′) land at z and W is one of the two
connected components of C� (R(t ′) ∪ R(t ′′) ∪ {z}). If a third ray R(t) is contained
in W , then R̂(t) ⊂ W ∪ {z}.

A point z ∈ K(f ) is the landing point of two or more rays if and only if
K(f )� {z} is disconnected. More precisely, z has 2 ≤ n ≤ ∞ distinct rays landing
on it if and only if K(f ) � {z} has n connected components [18]. If z has finite
forward orbit under f , the number of rays landing on it can be arbitrarily large (see
the case of a parabolic fixed point below). But if the forward orbit of z is infinite,
there is an upper bound C(d) for the number of rays that can land at z (one can take
C(d) = 2d , and the bound improves to C(d) = d if z is not precritical [15]).

The multiplier of a fixed point ζ = f (ζ ) is the derivative f ′(ζ ). We call ζ

attracting, repelling, or indifferent, according as the modulus |f ′(ζ )| is less than,
greater than, or equal to 1. An indifferent fixed point is called parabolic if its
multiplier is a root of unity. The multiplier and type of a periodic point ζ of period
n can be defined analogously by treating ζ as a fixed point of the iterate f ◦n.

Suppose the angle t ∈ T is periodic of period q ≥ 1 under md , so t is
rational of the form i/(dq −1). According to the Douady-Hubbard landing theorem
[21], the ray R(t) lands at a periodic point of f with period dividing q , and this
periodic point is necessarily repelling or parabolic. Conversely, every repelling or
parabolic periodic point of f is the landing point of finitely many rays whose angles
are periodic under md of the same period.

As a special case, if ui = i/(d−1) (mod Z), it follows that for each 0 ≤ i ≤ d−2
the fixed ray R(ui) lands at a repelling or parabolic fixed point ζi = f (ζi). When
ζi is parabolic, the multiplier f ′(ζi) is necessarily 1. Of course the fixed points
ζ0, . . . , ζd−2 need not be distinct.

The study of dynamic rays when K(f ) is disconnected is a bit more complicated
(an example of this case will be briefly discussed in Sect. 5.4). In this case at least
one critical point of f escapes to ∞ and the Green’s functionG has infinitely many
critical points outsideK(f ). We can still define the dynamic rays {R(t)}t∈T partially
near ∞ by pulling back the radial lines under the Böttcher coordinate

β : {z ∈ C : G(z) > G0} → {z : |z| > eG0}.

These partial rays are the trajectories of the gradient vector field∇G near∞, so they
can be extended in backward time. Such an extended trajectory either avoids the
critical points of G and tends to K(f ), or it eventually tends to such a critical point
(namely an escaping precritical point of f ). We call the ray smooth or bifurcated
accordingly. For all but countably many t ∈ T the ray R(t) is smooth. In this
case R(md(t)) is also smooth and the relation (5.2) holds. On the other hand, for
a countably infinite set of angles t the ray R(t) is bifurcated. Under the iterations of
f every bifurcated ray eventually maps to a smooth ray passing through a critical
value of f .
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5.2 Rotation Sets and Indifferent Fixed Points

This section will study polynomial maps of degree d ≥ 2 with connected Julia set
which have an indifferent fixed point of multiplier e2πiθ 
= 1. Every such map is
affinely conjugate to a monic polynomial of the form

f : z �→ e2πiθ z + a2 z2 + · · · + ad−1 zd−1 + zd, (5.4)

where the indifferent fixed point is placed at the origin. We consider two cases
depending on the nature of the fixed point 0.

The parabolic case. First suppose 0 is a parabolic fixed point so θ is rational of
the form p/q in lowest terms. Then there are finitely many rays landing at 0, each
being periodic of period q . We can label these rays as

R(t1), R(t2), . . . , R(tNq )

where N ≥ 1 and 0, t1, . . . , tNq are in positive cyclic order. Using the form of the
multiplier, it is easily seen that f (R(tj )) = R(tj+Np), or md(tj ) = tj+Np for every
j , where as usual the indices are taken modulo Nq . It follows that {t1, . . . , tNq }
is the union of N disjoint q-cycles under md , each with the combinatorial rotation
number p/q .

The following lemma ties up the situation with rotation sets:

Lemma 5.1 The set X of the angles t ∈ T for which the ray R(t) lands at 0 is a
rotation set under md with ρ(X) = p/q .

Proof Label X = {t1, . . . , tNq } as above. For 1 ≤ i ≤ N , let Ci denote the q-cycle

ti �→ ti+Np �→ ti+2Np �→ . . . �→ ti+(q−1)Np

under md . Evidently X is the disjoint union of C1, . . . , CN and these cycles are
superlinked in the sense of Sect. 2.3. By Lemma 2.25, X is a rotation set with
ρ(X) = ρ(Ci) = p/q . ��

The deployment invariant of X can be described dynamically as follows. Two
adjacent rays R(tj ) and R(tj+1) together with their common landing point 0 divide
the plane into two open sectors. By definition, the (dynamic) wake Wj is the sector
that contains the rays R(t) with t ∈ (tj , tj+1) (thus, Wj is the sector defined by
going counter-clockwise from R(tj ) to R(tj+1)). The gap Ij = (tj , tj+1) of X

corresponds to the part of the boundary of the wake Wj on the circle at ∞. By
Lemma 2.13, the multiplicity nj of Ij is the number of fixed rays that are contained
in Wj . It is also the number of the critical points of f in Wj (see [12], where this
invariant is called the “critical weight” of Wj , and compare Theorem 5.10 for a
similar case). In particular, Ij is a major gap if and only if Wj contains a fixed point
ζi , or equivalently a critical point. As there are d − 1 fixed rays, there are at most
d − 1 indices 1 ≤ j ≤ Nq for which nj 
= 0. Form the non-decreasing list of
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integers 0 ≤ s1 ≤ s2 ≤ · · · ≤ sd−1 = Nq in which each index 1 ≤ j ≤ Nq appears
nj times. It then follows from Lemma 3.5 that (s1, . . . , sd−1) is the signature s(X)

as defined in Sect. 3.2 and therefore (s1/(Nq), . . . , sd−1/(Nq)) is the cumulative
deployment vector σ(X).

Since the multiplier of the fixed point 0 is a q-th root of unity, the q-th iterate of
f has the local expansion

f ◦q(z) = z + a zm + O(zm+1) for some a 
= 0 and m > 1.

The integer m, the algebraic multiplicity of 0 as the root of the equation
f ◦q(z) − z = 0, is necessarily of the form kq + 1 for some 1 ≤ k ≤ N . According
to Leau and Fatou [21], there are bounded Fatou componentsU1, . . . , Ukq arranged
as kq “petals” around the common boundary point 0. If we choose labeling counter-
clockwise, we have f (Uj ) = Uj+kp for every j , taking indices modulo kq , so the
Uj are permuted with combinatorial rotation number p/q . Every point in the union
U1 ∪ · · · ∪ Ukq has an infinite orbit that tends to 0. Conversely, every infinite orbit
converging to 0 must eventually enter this union. It follows from this local picture
that the petal number kq of the parabolic fixed point is bounded above by the ray
number Nq . The bound N ≤ d − 1 of Theorem 2.27 now shows that

q ≤ petal number kq ≤ ray number Nq ≤ (d − 1)q.

In the quadratic case d = 2 it follows that the petal number and ray number are both
q , while in the cubic case d = 3 these numbers can be q or 2q (see Fig. 5.1 for the
case (k,N) = (1, 1) and (1, 2), and Fig. 5.9 for the case (k,N) = (2, 2)).
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Fig. 5.1 Examples of parabolic points with multiplier λ = e2πi/3 and petal number 3. Left: The
cubic z �→ λz − (0.04 + 0.85i)z2 + z3 with ray number 3. Right: The cubic z �→ λz +
(0.23 − 0.20i)z2 + z3 with ray number 6. The critical points c, c′ are marked as white dots
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The “good” Siegel case. Now suppose 0 is a linearizable fixed point, so it
belongs to a bounded Fatou component Δ in which the action of f is conjugate
to the irrational rotation z �→ e2πiθ z. The domain Δ is called the Siegel disk of f

centered at 0. We will assume that the boundary ∂Δ is a Jordan curve containing
at least one critical point of f . This is certainly the case if θ is an irrational
number of bounded type, that is, if the partial quotients in the continued fraction
expansion θ = [a1, a2, a3, . . .] form a bounded sequence (compare [8] and [31]).1

To avoid topological complications and focus on the combinatorial aspects of the
constructions, we further make the following assumption:

The Limb Decomposition Hypothesis There is a countable collection of disjoint
non-trivial compact connected subsets of K(f ), called limbs, such that

(LD1) K(f ) is Δ union all the limbs,
(LD2) Each limb meets Δ at a single point on ∂Δ called its root,
(LD3) For each ε > 0 there are at most finitely many limbs with diameter > ε.2

We denote by L(p) the limb with root p ∈ ∂Δ.

Lemma 5.2 A point p ∈ ∂Δ is a root if and only if K(f ) � {p} is disconnected.

Proof For every root p the non-empty set L(p) � {p}, which is clearly closed in
K(f ) � {p}, is also open in there by the condition (LD3) above. It follows that
K(f ) � {p} is disconnected. Conversely, if K � {p} is disconnected for some
p ∈ ∂Δ, there are two distinct rays landing at p. These rays together with their
landing point divide the plane into two open sectors, one containingΔ and the other
containing a non-trivial subset of K(f ) which necessarily lies in a single limb. It
easily follows that p is the root of this limb. ��
Lemma 5.3 The set of roots is backward-invariant and therefore everywhere dense
on ∂Δ.

Proof Take a root p and let z be the unique point on ∂Δ such that f (z) = p. There
are small neighborhoodsU of z andU ′ of p such that f : U → U ′ acts as the power
w �→ wk for some k ≥ 1. Take two distinct rays landing at p, take their intersections
with U ′ and pull them back under f to obtain 2k ≥ 2 arcs in U landing at z. Each
such arc is necessarily contained in a ray because of the functional equation (5.1).
It follows that K � {z} is disconnected and therefore z is a root by Lemma 5.2.
This proves backward-invariance of roots. Density of roots is now immediate since
f |∂Δ : ∂Δ → ∂Δ is conjugate to an irrational rotation. ��

Every root p has infinite forward orbit since f |∂Δ is conjugate to an irrational
rotation. It follows that there are at least 2 and at most 2d rays landing at p. These

1It is conjectured that ∂Δ is a Jordan curve containing a critical point for almost every rotation
number θ . This has been proved in the quadratic case in [25].
2The limb decomposition hypothesis is believed to hold for almost every rotation number θ (and
at least for θ of bounded type), but so far this has been rigorously verified only for d = 2 where
the whole Julia set is known to be locally connected; see [23] and [25].
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Fig. 5.2 The wake W(p)

with the root p on the
boundary of the Siegel disk Δ

Δ

p

W (p)

rays together with their landing point p divide the plane into finitely many open
sectors. There is a unique sector that contains Δ which we call the co-wake with
root p and denote by V (p). The complement W(p) = C � V (p) is called the
(dynamic) wake with root p. Thus W(p) is bounded by two rays landing at p and
contains L(p) � {p} (see Fig. 5.2). Notice that distinct wakes are disjoint. Every
point in the plane is either in Δ, or in a unique wake, or else on a unique ray which
is outside all wakes.

Lemma 5.4 Every ray R(t) that is outside all wakes lands at a point z ∈ ∂Δ.
Moreover,

(i) If z is not a root, then R̂(t) = {z}.
(ii) If z is a root, then R̂(t) ⊂ L(z) so R̂(t) ∩ ∂Δ = {z}.
Proof Let us first make the extra assumption that the rayR = R(t) is not a boundary
ray of any wake. Suppose the impression R̂ contains a point z /∈ ∂Δ. Then z belongs
to a limb L(p), and since z 
= p, we have z ∈ W(p). Since by our assumption R

is disjoint from W(p), it must be contained in the co-wake V (p). But then R̂ ⊂
V (p)∪{p}, which implies z ∈ V (p), contradicting z ∈ W(p). This proves R̂ ⊂ ∂Δ.
If the impression R̂ is non-trivial, by connectivity it must contain an open subarc
T ⊂ ∂Δ. By Lemma 5.3, there are distinct roots p,p′ ∈ T . The open set C �

(W(p) ∪ W(p′) ∪ Δ) has two connected components and R is contained in one of
them, say H . It follows that T ⊂ R̂ ⊂ H ∩ ∂Δ. But the intersection H ∩ ∂Δ is one
of the two closed subarcs of ∂Δ with endpoints p,p′, neither of which contains the
open arc T . The contradiction proves that R̂ is a single point on ∂Δ.

Now consider the case where R is one of the two boundary rays of a wake W(z).
An argument similar to the above paragraph shows that R̂ ⊂ L(z) ∪ ∂Δ. If R̂

contained a point of ∂Δ other than z, it would have to contain a non-degenerate
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open arc in ∂Δ. A similar argument as before would then yield a contradiction. This
shows R̂ ⊂ L(z) and completes the proof. ��
Corollary 5.5 Every non-root z ∈ ∂Δ belongs to the impression of a unique ray.
This ray has trivial impression and therefore lands at z.

Proof Let R(t) be any ray whose impression contains z. Then R(t) is outside all
wakes since R(t) ⊂ W(p) would imply R̂(t) ⊂ W(p) ∪ {p} which in turn would
imply z = p is a root. It follows from the previous lemma that R̂(t) = {z}. To see
uniqueness, simply note that if R̂(s) also contained z for some s 
= t , then by the
above observation R̂(s) = {z}. As the landing point of two distinct rays, z would
disconnect K(f ) and therefore would be a root by Lemma 5.2. ��

Let ι : C → Δ be the map that is the identity on Δ, sends every wake to its root
and sends every ray outside all wakes to its landing point (Lemma 5.4).

Lemma 5.6 ι : C → Δ is a retraction.

Proof We need only check continuity of ι at every point z that does not belong
to Δ or any wake. First consider the easier case where z ∈ ∂Δ. Take a sequence
zn /∈ Δ that tends to z. Each zn belongs to a limb L(pn) and we may assume that
these limbs are distinct. Since diam(L(pn)) → 0 by (LD3), it easily follows that
ι(zn) = pn → z = ι(z).

Now consider the case where z belongs to a ray R(t) outside all wakes. Take any
sequence zn → z. For large n, each zn belongs to a unique ray R(tn), where tn → t .
We distinguish two cases:

Case 1 After passing to a subsequence, every ray R(tn) is outside all wakes. Then,
by (5.3) and Lemma 5.4,

lim sup
n→∞

{ι(zn)} = lim sup
n→∞

R̂(tn) ∩ ∂Δ ⊂ R̂(t) ∩ ∂Δ = {ι(z)}.

This proves ι(zn) → ι(z).

Case 2 After passing to a subsequence, each R(tn) lies in some wake W(pn). Then
the impression R̂(tn) is contained in the limb L(pn) whose diameter tends to 0
as n → ∞. Hence lim supn→∞ R̂(tn) coincides with the set of all accumulation
points of the sequence of roots {pn = ι(zn)}. Again, by (5.3) and Lemma 5.4,
lim supn→∞ R̂(tn) ⊂ R̂(t) = {ι(z)}, and we conclude that ι(zn) → ι(z). ��

Recall that for 0 ≤ i ≤ d − 2 the fixed point ζi ∈ J (f ) is the landing point of
the fixed ray R(ui). Let wi = ι(ζi ) ∈ ∂Δ. Since the ζi do not belong to Δ, they lie
in wakes, so every wi must be a root. We call {w0, . . . , wd−2} the marked roots of
f . Take the unique conformal isomorphism h : Δ → D which fixes 0 and sends
w0 to 1. According to Carathéodory, since ∂Δ is a Jordan curve, h extends to a
homeomorphism between the closures [21]. Note that h ◦ f ◦ h−1 : D → D fixes 0
and has derivative e2πiθ at the origin, so by the Schwarz lemma,

h(f (z)) = e2πiθh(z) for all z ∈ Δ.
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We define the internal angle of a point z ∈ ∂Δ as the unique α ∈ T such that
h(z) = e2πiα. By the above conjugacy relation, the internal angle of f (z) will then
be α + θ (mod Z).

Let α1, α2, . . . , αd−1 denote the internal angles of the marked roots
w1, w2, . . . , wd−1 = w0. The following is the analog of Lemma 5.1:

Theorem 5.7 The set X′ of all angles t ∈ T for which the ray R(t) lands on ∂Δ

contains a unique minimal rotation set X for md , with ρ(X) = θ . Moreover, the
cumulative deployment vector of X satisfies

σ(X) = (α1, . . . , αd−1) (mod Z
d−1). (5.5)

The proof will show that the difference X′ � X consists of at most countably
many isolated points.

Proof For each root p ∈ ∂Δ let I (p) be the open interval of angles t ∈ T for
which R(t) ⊂ W(p). Set X = T �

⋃
p I (p). By Lemma 5.4 the compact set X is

contained in X′ and the difference X′ � X consists of the at most countable set of
angles of rays within some wake that land at a root.

Let ψ : C � D → C � K(f ) be the inverse Böttcher coordinate of f

near ∞. Define ϕ : T → T by letting ϕ(t) be the internal angle of the point
ι(ψ(2e2πit )) ∈ ∂Δ. The map ϕ is continuous by the previous lemma, and is
surjective by Corollary 5.5. Using the fact that distinct rays cannot cross, it is
not hard to see that ϕ is monotone of degree 1, with the collection of intervals
{I (p) : p is a root} as its plateaus. If R(t) lands at z ∈ ∂Δ with internal angle α,
then R(md(t)) lands at f (z) with internal angle α + θ . This proves

ϕ ◦ md = rθ ◦ ϕ on X.

Furthermore, if the fiber ϕ−1(α) is non-trivial, then h−1(e2πiα) is a root, so its
preimage h−1(e2πi(α−θ)) is also a root by Lemma 5.3, which proves the fiber
ϕ−1(α − θ) is non-trivial as well. It now follows from Theorem 2.35 that X is a
minimal rotation set for md with ρ(X) = θ , and ϕ is the canonical semiconjugacy
associated with X.

The claim (5.5) on σ(X) follows from Lemma 3.3 since αi , the internal angle of
wi = ι(ζi) = ι(ψ(2e2πiui )), is just the image ϕ(ui). ��

Remark 5.8 The set X′ of all rays landing on ∂Δ is closed and md -invariant, and
every forward orbit in it has the combinatorial structure of an orbit under rθ . Yet X′
may fail to be a rotation set. For example, the cubic polynomial

f (z) = eπi(
√
5−1)z + az2 + z3 with a ≈ 0.44437107− 0.35184284 i
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Fig. 5.3 Left: Filled Julia set of the cubic map f in Remark 5.8 with both critical points c, c′ on
the boundary of the Siegel disk Δ in the center of the picture, where f (c′) = c. Right: A small
perturbation of f in Remark 5.12 for which c′ �→ c′

1 = f (c′) �→ c′
2 = f ◦2(c′) ∈ Δ

has both critical points c, c′ on ∂Δ with f (c′) = c as shown in Fig. 5.3 left. The
critical point c′ is the landing point of four rays at angles t, t + 1

9 , t + 1
3 , t + 4

9 which

map under f to the two rays at angles 3t, 3t+ 1
3 landing at c1. Here t ≈ 0.30762195.

The set X′ in this example is not a rotation set since the complement of these six
rays already fails to contain two disjoint open intervals of length 1

3 (Corollary 2.16).
However, removing t + 1

9 , t + 1
3 and all their preimages fromX′ will yield a minimal

rotation set X.

Remark 5.9 The congruences in (5.5) determine σ(X) uniquely from the knowl-
edge of the internal angles α1, . . . , αd−1 except when αi = 0 (mod Z) for all i.
This corresponds to the case where there is a single marked root w0 = · · · = wd−2
which is necessarily a critical point of local degree d (compare Corollary 5.11
below). This type of ambiguity has already been pointed out in Remark 3.4 and
can now be understood from the dynamical standpoint. For example, when d = 4
and α1 = α2 = α3 = 0 (mod Z), we have the possible candidates

σ(X) = (0, 0, 1) or (0, 1, 1) or (1, 1, 1)

which correspond to quartic polynomials which are conjugate by the 120◦ rotation
around the origin. Dynamically, these cases can be distinguished by the position of
the Siegel disk Δ among the three fixed rays R(0), R( 13 ), R( 23 ) (see Fig. 5.4).

Let us collect some corollaries of Theorem 5.7. As before, let wi = ι(ζi) (0 ≤
i ≤ d − 2) be the marked roots of f . To simplify the notation, we denote the limb
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Fig. 5.4 Filled Julia set of a unicritical quartic polynomial f (z) = z4 + c with a Siegel disk Δ

of the golden mean rotation number. Here the corresponding rotation set X has σ(X) = (0, 0, 1).
Conjugating f with the 120◦ and 240◦ rotations around the origin yields quartics with σ(X) =
(1, 1, 1) and (0, 1, 1). In this example, c ≈ 0.59612528 − 0.46108628 i and ω ≈ 0.68914956

L(wi) by Li , the wake W(wi) by Wi and the gap I (wi) by Ii . The following can be
thought of as the irrational counterpart of a result of Goldberg and Milnor in [12]:

Theorem 5.10 Let X be the minimal rotation set of Theorem 5.7.

(i) I0, . . . , Id−2 are the major gaps of X.
(ii) The multiplicity ni of Ii is the number of fixed rays in Wi . It is also the number

of subscripts 0 ≤ j ≤ d − 2 for which wj = wi .
(iii) The limb Li = Wi ∩ K(f ) contains ni critical points of f counting

multiplicities.

Proof By the proof of Theorem 5.7 every Ii is a gap of X. Since Wi contains the
fixed ray R(ui), the gap Ii contains the fixed point ui of md , so it must be major.
By Lemma 2.13, the multiplicity ni of Ii is the number of fixed rays in Wi or the
number of times wi appears in the list w0, . . . , wd−2. Since there are d − 1 fixed
rays, the sum

∑
ni over distinct Ii ’s is d − 1 so I0, . . . , Id−2 account for all major

gaps of X by Theorem 2.7. This proves (i) and (ii).
The proof of (iii) is based on an idea of [12]. Let Ii = (t, t ′), so Wi is bounded

by the rays R(t) and R(t ′). Let η be a small loop around wi which intersects
each of R(t) and R(t ′) once, say at ψ(r1e

2πit ) and ψ(r1e
2πit ′). Fix a large radius

r2. Construct a positively oriented Jordan curve by going out along R(t) from
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ψ(r1e
2πit ) to ψ(r2e

2πit ), then following the equipotential curve {ψ(r2e
2πis) : t ≤

s ≤ t ′}, then going down along R(t ′) from ψ(r2e
2πit ′) to ψ(r1e

2πit ′), and finally
going counter-clockwise along η from ψ(r1e

2πit ′) back to ψ(r1e
2πit ). Round off

the four corners of this curve to obtain a smooth positively oriented Jordan curve γ .
The number of the critical points of f in Wi is the number of roots of f ′ inside γ .
By the argument principle, this is the winding number of the closed curve f ′ ◦ γ

around 0, which is one less than the number of full counter-clockwise turns that
the tangent vector to image curve f ◦ γ makes when γ is traversed once. By the
construction of γ , this number is at least ni − ki + 1, where ki ≥ 1 is the local
degree of f at wi . Taking into account the fact that wi itself is a critical point of
multiplicity ki − 1 if ki > 1, it follows that the number Ni of the critical points of
f in the limb Li is at least (ni − ki + 1) + (ki − 1) = ni . Since the sums

∑
Ni and∑

ni over distinct Ii ’s are d − 1, it follows that Ni = ni for all i, as required. ��
Corollary 5.11

(i) Every critical point c ∈ ∂Δ is a marked root. Moreover, the algebraic
multiplicity of c (as a root of f ′) is at most the multiplicity of the corresponding
gap I (c).

(ii) Every marked root wi whose corresponding gap Ii = I (wi) is taut must be a
critical point.

(iii) A point on ∂Δ is a root if and only if it is pre-critical.

Proof First suppose c ∈ ∂Δ is a critical point. By Corollary 5.5 the critical value
f (c) is the landing point of at least one ray R(t). As in the proof of Lemma 5.3,
take small neighborhoods U of c and U ′ of f (c) such that f : U → U ′ acts as
the power w �→ wk for some k ≥ 2. The intersection R(t) ∩ U ′ pulls back under
f to the intersection of k rays R(t1), . . . , R(tk) with U , all landing at c, where
t1, . . . , tk are among the d preimages of t under md . This proves that K(f )� {c} is
disconnected, hence c is a root by Lemma 5.2. Moreover, the wake W(c) contains
all R(ti)’s in its closure, so |I (c)| ≥ (k − 1)/d . Hence I (c) is a major gap of X, and
the root c is marked by Theorem 5.10(i). The multiplicity n of I (c) is the integer
part of d |I (c)|, so n ≥ k − 1. (Alternatively, we could invoke Theorem 5.10(iii) to
conclude that n ≥ k − 1.) This proves (i).

To verify (ii), suppose Ii is a taut gap of the form (t, t ′ = t + ni/d). Then wi

is the landing point of the rays R(t), R(t ′). Under f , these rays map to the same
ray R(md(t)) = R(md(t ′)) landing at f (wi). This shows f is not injective in any
neighborhood of wi , which proves wi is a critical point.

For (iii), first note that by part (i) and the backward invariance in Lemma 5.3,
all precritical points on ∂Δ are roots. Conversely, consider any root p so I (p)

is a gap of the minimal rotation set X of Theorem 5.7. Since ρ(X) is irrational,
Theorem 2.10 shows that there is a k ≥ 0 such that g◦k

X (I (p)) = I (f ◦k(p)) is a taut
gap. By part (ii), f ◦k(p) is a critical point. ��
Remark 5.12 Here are three comments related to various parts of the above
corollary: (i) The algebraic multiplicity of a critical point c ∈ ∂Δ can be strictly
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less than the multiplicity of the gap I (c). This happens precisely when the wake
W(c) contains a critical point of f . (ii) If a marked root wi is critical, the gap Ii

may be loose. For example, the cubic map f in Remark 5.8 has both critical points
c, c′ on ∂Δ with f (c′) = c, where I (c) is taut and I (c′) is loose (see Fig. 5.3 left).
(iii) Marked roots can be non-critical. For example, one can perturb the abovemap to
obtain a cubic with c ∈ ∂Δ and f ◦2(c′) ∈ Δ (thus the critical point c′ is “captured”
by the Siegel disk Δ). Here the second marked root f −1(c) ∩ ∂Δ is non-critical.
Figure 5.3 right shows one such perturbation where

f (z) = eπi(
√
5−1)z + az2 + z3 with a ≈ 0.54716981− 0.31132075 i.

The two examples before and after perturbation have identical minimal rotation sets
X. We will discuss this phenomena in more detail in Sect. 5.4.

Corollary 5.13 Suppose all critical points of f are on ∂Δ. Then these critical
points are precisely the marked roots w0, . . . , wd−2, and the algebraic multiplicity
of each wi is equal to the multiplicity of its corresponding gap.

Proof By Corollary 5.11 all critical points of f are marked roots. Let c1, . . . , ck

be the distinct critical points of multiplicities α1, . . . , αk . Let n1, . . . , nk be the
multiplicities of the corresponding gaps. By Corollary 5.11(i), αi ≤ ni for all i.
Hence, by Theorem 2.7, d − 1 = ∑

αi ≤ ∑
ni ≤ d − 1. It follows that αi = ni for

all i and {c1, . . . , ck} = {w0, . . . , wd−1}. ��
It would be interesting to investigate how the preceding constructions should be

modified for indifferent fixed points with arbitrary irrational rotation numbers. The
difficulty arises when the fixed point 0 is the center of a “wild” Siegel disk or is
non-linearizable (a so-called “Ceremer point”). In this case, the natural candidate
for the rotation set X would be the minimal set of angles of dynamic rays whose
impressions meet ∂Δ in the Siegel case and the fixed point 0 in the Cremer case.
But in the absence of some kind of control on the Julia set of such maps, proving
analogous results seems out of reach even for quadratic polynomials.

5.3 The Quadratic Family

This section and the next illustrate the relation between indifferent fixed points
and rotation sets in the low-degree cases d = 2 and d = 3, in both dynamical
and parameter planes. The abstract analyses of these rotation sets, carried out in
Sects. 4.5 and 4.6, come to life in these concrete realizations.

The case d = 2 is more straightforward and rather well-known. Consider the
monic quadratic polynomial

P = Pθ : z �→ e2πiθz + z2 (5.6)
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with an indifferent fixed point at the origin. When θ is rational of the form p/q 
= 0
in lowest terms, the parabolic fixed point 0 is the landing point of precisely q rays
R(t1), . . . , R(tq ), where Xp/q = {t1, . . . , tq} is the unique minimal rotation set
under doubling with rotation number p/q . If as usual we assume 0, t1, . . . , tq are
in positive cyclic order, it follows that the unique critical point c = −e2πiθ /2 lies
in the wake bounded by R(t1), R(tq ), corresponding to the longest gap of Xp/q .
Similarly, the critical value v = P(c) = −e4πiθ/4 lies in the wake bounded by
R(t1+p), R(tq+p), corresponding to the shortest gap ofXp/q (compare Fig. 5.5 left).

When θ is an irrational of bounded type (or more generally belongs to the full-
measure set E in [25]), the Julia set J (P ) is locally connected. In this case the
boundary of the Siegel disk Δ of P centered at 0 is a Jordan curve containing c, and
the limb decomposition hypothesis automatically holds. It follows from the general
results of the previous section that the set of angles of the rays that land on ∂Δ

is precisely the minimal rotation set Xθ under doubling. Note that Xθ is a Cantor
set with a single major gap of length 1

2 bounded by the angles ω,ω′ = ω − 1
2 ,

where 0 < ω = ω(θ) < 1
2 is the leading angle of Xθ as defined in Sect. 4.5. By

Corollary 5.11, both raysR(ω),R(ω′) land at the critical point c which is the unique
marked root. The precritical pointP−n(c)∩∂Δ is then the root whose corresponding
wake defines the gap of Xθ of length 1

2n (see Fig. 5.5 right).
The realization of rotation sets in the dynamical plane allows an alternative route

to Lemma 4.24. The binary expansion 0.b0b1b2 · · · of the leading angle ω = ω(θ)

of Xθ is characterized by the condition bk = 1 if and only if 2kω ∈ ( 12 , 1).
If θ = p/q 
= 0 and Xp/q = {t1, . . . , tq } as above, then 0 ∈ (tq, t1) and

1/72/7

4/7

0

c

v

Δ

ω

ω ′(ω +1)/2

(ω ′ +1)/2

0

c
0

1/2
0

1/2

Fig. 5.5 Filled Julia set of the quadratic polynomial z �→ e2πiθ z + z2 with the corresponding
minimal rotation set Xθ under doubling. Left: The parabolic case θ = 1

3 . Right: The Siegel case

θ = (
√
5−1)
2 . Shown here are the wakes rooted at the critical point c and its first five preimages on

∂Δ, which define the major gap (ω′, ω) of Xθ and the five minor gaps of lengths 2−k for 2 ≤ k ≤ 6
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1
2 ∈ (tq−p, tq−p+1). Hence t1, . . . , tq−p ∈ (0, 1

2 ) while tq−p+1, . . . , tq ∈ ( 12 , 1).
Thus,

2kω = t1+kp ∈
(1
2
, 1

)
⇐⇒ 1 + kp (mod q) is in {q − p + 1, . . . , q}.

This is clearly equivalent to kθ ∈ [−θ, 0).
A similar argumentworks when θ is an irrational and P has a “good” Siegel disk.

In this case, 0 ∈ (ω′, ω) and 1
2 ∈ ((ω′ + 1)/2, (ω + 1)/2), so 2kω ∈ ( 12 , 1) if and

only if 2kω ∈ ((ω + 1)/2, ω′). But the pair R(ω),R(ω′) land at c with the internal
angle 0 and the pair R((ω+1)/2), R((ω′ +1)/2) land at the preimage P−1(c)∩∂Δ

with the internal angle −θ . It follows that 2kω ∈ ((ω+1)/2, ω′) precisely when kθ ,
the internal angle of P ◦k(c), is in the interval (−θ, 0).

The parameter space of quadratic polynomials provides a complete catalog of
all rotation sets under doubling. To see this, it will be convenient to represent our
quadratics in the normal form fc(z) = z2+c where c ∈ C. The connectedness locus

M2 = {c ∈ C : K(fc) is connected},
commonly known as the Mandelbrot set, is non-empty, compact, and full. If
βc denotes the Böttcher coordinate of fc near ∞, the Douady-Hubbard map
Φ : C�M2 → C�D which assigns to each c outsideM2 the Böttcher coordinate
βc(c) of the critical value fc(0) = c, is a conformal isomorphism. By the parameter
ray ofM2 at angle t ∈ T we mean the real-analytic curve

R(t) = Φ−1({re2πit : r > 1}).
We say R(t) lands at z ∈ ∂M2 if limr→1 Φ−1(re2πit ) = z.

Each quadratic Pθ in (5.6) is affinely conjugate to fc with c = c(θ) =
e2πiθ/2 − e4πiθ /4. As θ varies in [0, 1], the image c(θ) traces out a cardioid
on the boundary of M2 that is prominently visible in Fig. 5.6. When θ 
= 0 is
rational, c(θ) is the landing point of the two parameter raysR(2ω),R(2ω′). (Recall
that (ω′, ω) is the major gap of Xθ .) If θ is irrational, then c(θ) is the landing
point of the unique parameter ray R(2ω) = R(2ω′). One may interpret this by
saying that c(θ) is always the landing point of the parameter ray at angle 2ω(θ),
which is a strictly increasing function of θ that jumps by 1/(2q − 1) at every
rational θ = p/q (Corollary 4.26). When θ is rational, the two parameter rays
R(2ω),R(2ω′) together with their landing point c(θ) define the parameter wake
W (θ), characterized by the property that the dynamic rays with angles in Xθ land at
a fixed point of fc if and only if c ∈ W (θ) ∩ M2 (for a detailed treatment see [20]
and compare Fig. 5.6).
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Fig. 5.6 The Mandelbrot set
M2 and its parameter wakes
W ( 13 ), W ( 12 ) and W ( 23 ).
Also shown is the parameter
ray R(2ω) landing at the
quadratic that is affinely
conjugate to e2πiθ z + z2.

Here θ = (
√
5−1)
2 and

ω = ω(θ) ≈ 0.35490172

1/3

2/3

1/7
2/7

6/75/72ω

(1/2)

(1/3)

(2/3)

Remark 5.14 The family of degree d unicritical polynomials z �→ zd + c exhibits
very similar features in relation with rotation sets. As an example, the cubic map
fc : z �→ z3 + c has an indifferent fixed point of multiplier e2πiθ if and only if

c = ±c(θ) where c(θ) = − 1

3
√
3

e3πiθ + 1√
3

eπiθ .

The maps fc(θ) and f−c(θ) are conjugate by the 180◦ rotation z �→ −z. The angles of
the dynamic rays of fc(θ) that land on the indifferent fixed point when θ is rational,
or on the boundary of the Siegel disk when θ is a suitable irrational, form the rotation
set Xθ,1 under tripling. The rotation set associated with the conjugate map f−c(θ)

is of course Xθ,0. As θ varies in [0, 1], the images ±c(θ) trace out an algebraic
curve (a nephroid) on the boundary of the corresponding connectedness locus M3
which bounds the central hyperbolic component containing c = 0. The analog of
the Douady-Hubbard map is a conformal isomorphism C �M3 → C � D, which
can be used to define parameter rays in the c-plane. The boundary point c(θ) is the
landing point of the parameter ray at angle 3ω(θ, 1), which strictly increases from 0
to 1

2 , jumping by 2/(3q − 1) at every rational θ = p/q (Corollary 4.32). Similarly,
−c(θ) is the landing point of the parameter ray at angle 3ω(θ, 0) = 3ω(θ, 1) + 1

2 ,
which strictly increases from 1

2 to 1 with similar jumps at every rational θ . As in the
case of the Mandelbrot set, there is an analogous notion of parameter wakes forM3
and their dynamical characterization (see Fig. 5.7).
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Fig. 5.7 The connectedness locus M3 of the unicritical cubic family {fc : z �→ z3 + c}c∈C, with
selected parameter rays and wakes. Here W (p/q, δ) ∩ M3 for δ = 0, 1 is precisely the set of
parameters c for which the dynamical rays at angles in Xp/q,δ land at a fixed point of fc

5.4 The Cubic Family

This section is somewhat expository and contains outlines of the results. Consider
the space of monic cubic polynomials with an indifferent fixed point of multiplier
e2πiθ at the origin. Each such cubic has the form

fa : z �→ e2πiθ z + az2 + z3 for some a ∈ C. (5.7)

Note that fa and f−a are affinely conjugate by the involution z �→ −z. One could
thus look at the quotient of the a-plane under a �→ −a (equivalently, work with the
parameter a2). However, for our purposes in this section we prefer to treat fa and
f−a as distinct cubics.

The connectedness locus of this cubic family is defined by

M3(θ) = {a ∈ C : K(fa) is connected}.

It is not hard to verify that M3(θ) is a compact, connected and full subset of C
which is invariant under the involution a �→ −a [30].

When a ∈ M3(θ), both critical points of fa belong to the filled Julia set K(fa).
When a /∈ M3(θ), exactly one of the critical points, labeled ca , belongs to K(fa)

while the other, labeled ea , escapes to ∞. The escaping critical value va = fa(ea)



102 5 Relation to Complex Dynamics

has two preimages under fa : the critical point ea itself (with multiplicity 2) and
a regular point êa which we call the escaping co-critical point. The Böttcher
coordinate βa of fa near ∞ is defined and holomorphic in some neighborhood of
êa . The analog of the Douady-Hubbard map Φ : C �M3(θ) → C � D defined by

Φ(a) = βa(êa)

is a conformal isomorphism [6]. We define the parameter ray at angle t ∈ T by

R(t) = {Φ−1(re2πit ) : r > 1}.

We study the realization of rotation sets under m3 in the dynamical plane of fa as
well as the parameter a-plane. The discussion is presented in two cases depending
on whether θ is rational or an irrational of bounded type. We will outline the first
case only briefly, as our main interest is the case of cubics with Siegel disks.

The parabolic case. Let us assume θ is rational of the form p/q 
= 0 in lowest
terms. By the discussion of Sect. 5.2, the q-th iterate of fa has the form

f
◦q
a (z) = z + A(a) zq+1 + · · · + z3

q

.

Here A(a) is a polynomial of degree q in a with simple roots. Moreover, A is an
even function if q is even, and odd function if q is odd. If A(a) 
= 0, the petal
number of the parabolic point 0 is q and its ray number is q or 2q . If, on the other
hand, A(a) = 0, then the above expression reduces to

f
◦q
a (z) = z + B(a) z2q+1 + · · · + z3

q

.

where B(a) 
= 0, so the petal and ray numbers are both 2q . In this case, we say fa

has a degenerate parabolic fixed point at 0.
By Lemma 5.1 the set Xa of angles of the dynamic rays of fa that land at 0

is a rotation set under tripling with ρ(Xa) = p/q , which consists of one or two
q-cycles. The deployment vector of Xa has the form δ(Xa) = (δa, 1 − δa), where
δa ∈ [0, 1] is the deployment probability of fa , i.e., the probability that a dynamic
ray Ra(t) of fa landing on 0 has its angle t in (0, 1

2 ). Note that by symmetry,

δ−a = 1 − δa a ∈ M3(p/q).

First suppose the ray number is q , so Xa is a single q-cycle {t1, . . . , tq }. Thus,
in the notation of Sect. 4.6, Xa = Xp/q,i/q for some 0 ≤ i ≤ q . If we assume
0, t1, . . . , tq are in positive cyclic order, it follows that one critical point of fa

lies in the wake bounded by the dynamic rays Ra(tq), Ra(t1), the other in the
wake bounded by Ra(ti ), Ra(ti+1). Thus, the deployment probability δa = i/q is
determined by the “combinatorial distance” i between the two critical points of fa

(that is, how many wakes they are apart). Figure 5.1 left illustrates this case with
p/q = i/q = 1

3 .
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Next consider the case where the ray number is 2q , so Xa = {t1, . . . , t2q}. Under
tripling, each tj maps to tj+2p so Xa splits into two q-cycles. As these q-cycles are
compatible, Theorem 3.16 shows that

Xa = Xp/q,i/q ∪ Xp/q,(i+1)/q

for some 0 ≤ i ≤ q − 1. Now one critical point of fa lies in the wake bounded
by Ra(t2q), Ra(t1), the other in the wake bounded by Ra(t2i+1), Ra(t2i+2). Thus,
similar to the above case, the deployment probability δa = (2i + 1)/(2q) is
determined by the combinatorial distance 2i + 1 between the two critical points
of fa . Figure 5.1 right illustrates this case with p/q = i/q = 1

3 .
Turning the attention to the parameter space, one can identify the following types

of the interior components forM3(p/q):

• adjacent, where the two critical points belong to the same attracting petal at 0;
• bi-transitive, where the two critical points belong to different attracting petals at

0 in the same cycle;
• capture, where the orbit of one critical point eventually hits the cycle of attracting

petals at 0;
• hyperbolic-like, where the orbit of one critical point converges to an attracting

cycle.

Conjecturally, every interior component ofM3(p/q) is of one of the above types.
In fact, the only possibility to rule out is a “queer” component in a small copy of the
Mandelbrot set inM3(p/q) in which the interior of K(fa) is the basin of attraction
of 0 but the Julia set J (fa) has positive measure and admits an invariant line field.

Let a0, . . . , aq−1 denote the degenerate parabolic parameters, i.e., simple roots
of the equation A(a) = 0. There is a chain of interior components C0, C1, . . . , Cq

ofM3(p/q) such that ∂Ci−1 ∩ ∂Ci = {ai} for 1 ≤ i ≤ q . Here Ci = −Cq−i , with
C0 and Cq of adjacent type and C1, . . . , Cq−1 of bi-transitive type (see Fig. 5.8).
For every parameter a ∈ Ci , we have δa = i/q .

The deployment probability δa can be determined throughout the connectedness
locus M3(p/q). Each degenerate parabolic parameter ai is the landing point of
four parameter rays whose angles are those of the dynamic rays of fai that bound
the Fatou components containing its co-critical points. Using the general results
of Sect. 4.6 it is not hard to find explicit formulas for these angles in terms of the
leading anglesω(p/q, i/q) and ω(p/q, (i+1)/q). An example of this computation
for p/q = 2

3 and i = 0 is shown in Fig. 5.9.
These 4q parameter rays together with their landing points {a0, . . . , aq−1} divide

the a-plane into 3q + 1 parameter wakes W0, . . . ,Wq,Ω±
0 , . . . ,Ω±

q−1. Here Wi

contains Ci and the pair Ω±
i separate Wi from Wi+1 (see Fig. 5.8). We have Xa =

Xp/q,i/q if a ∈ Wi ∩ M3(p/q), and Xa = Xp/q,i/q ∪ Xp/q,(i+1)/q if a ∈ Ω±
i ∩

M3(p/q). Thus,

δa =
{

i
q

if a ∈ Wi ∩ M3(p/q)

2i+1
2q if a ∈ Ω±

i ∩ M3(p/q).
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Fig. 5.8 The parabolic connectedness locus M3(
2
3 ) and the chain of interior components

C0, C1, C2, C3. The twelve parameter rays landing on the degenerate cubics a0, a1, a2 define the
ten wakes W0,W1,W2W3 and Ω±

0 ,Ω±
1 ,Ω±

2 . The deployment probability δa takes the value i/3 on
Wi ∩ M3(

2
3 ) and (2i + 1)/6 on Ω±

i ∩ M3(
2
3 )

A detailed analysis of the landing properties of some of the parameter rays of
M3(p/q) can be found in [3].

The “good” Siegel case. Now suppose θ is an irrational of bounded type, so the
fixed point 0 of fa is the center of a Siegel disk Δa . The boundary ∂Δa is then a
Jordan curve (in fact a quasicircle) passing through one or both critical points of fa .

One can easily identify the following two types of interior components of the
connectedness locusM3(θ):

• capture, where the orbit of one critical point eventually hits the Siegel disk;
• hyperbolic-like, where the orbit of one critical point converges to an attracting

cycle.
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Fig. 5.9 Filled Julia set of the degenerate parabolic fa in M3(
2
3 ) with Xa = X 2

3 , 03
∪ X 2

3 , 13
=

{ 2478 , 51
78 ,

60
78 , 69

78 , 72
78 ,

75
78 } and δa = 1

6 . Here a ≈ 0.68308975 − 1.08669099 i. The ray pairs at

angles ( 7578 , 24
78 ) and ( 2478 ,

51
78 ) bound the Fatou components containing the critical points c and c′,

respectively. It follows that the ray pairs at angles ( 7578 − 1
3 = 49

78 ,
24
78 + 1

3 = 50
78 ) and ( 2478 +

2
3 = 76

78 , 51
78 + 1

3 = 77
78 ) bound the Fatou components containing the co-critical points ĉ and ĉ′,

respectively

As in the rational case, it is conjectured that every interior component ofM3(θ) has
one of these types. In Fig. 5.10 left the capture components are the blue bulbs, while
the hyperbolic-like components are the grey bulbs that belong to a small copy of the
Mandelbrot set.

The following is proved in [30]:

Theorem 5.15 There is a closed embedded arc Γ (θ) ⊂ M3(θ) with the property
that a ∈ Γ (θ) if and only if ∂Δa contains both critical points of fa .

The arc Γ (θ) is clearly invariant under the involution a �→ −a. The endpoints
of Γ (θ) are the parameters ±√

3e2πiθ corresponding to the cubics with a double
critical point. We denote by a0 the endpoint in the lower half-plane, so −a0 is the
other endpoint in the upper half-plane. The midpoint of Γ (θ) is the parameter a = 0
corresponding to the cubic with centered critical points. See Fig. 5.10 right.3

3In [30] the cubics are given in the normal form

z �→ e2πiθ z
(
1 − 1

2

(
1 + 1

c

)
z + 1

3c
z2

)
c ∈ C

∗,
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−a0

a0

0
a1

a2

a3

Fig. 5.10 Left: The cubic connectedness locus M3(θ) ⊂ C. Right: The arc Γ (θ) ⊂ M3(θ). Here

θ = (
√
5−1)
2

The arc Γ (θ) is parametrized by the internal angle between the two critical points
(as defined in Sect. 5.2). More precisely, if a ∈ Γ (θ) and if the internal angles of
the critical points of fa are 0 and τa ∈ [0, 1], where τa0 = 0 and τ−a0 = 1, then the
map a �→ τa is a homeomorphism Γ (θ) → [0, 1].

Here are two alternative characterizations of Γ (θ):

• Γ (θ) is the set of parameters near which the boundary ∂Δa fails to move
holomorphically. In fact, if U is a disk which does not intersect Γ (θ), then
the critical point of fa that lies on ∂Δa depends holomorphically on a ∈ U ,
so its forward orbit moves holomorphically over U . By the λ-lemma [16], this
holomorphic motion extends to a holomorphic motion of the closure of this
forward orbit, which is just ∂Δa . On the other hand, if U is a disk that does
intersect Γ (θ), the critical point on ∂Δa cannot be followed holomorphically in
U , which shows ∂Δa does not move holomorphically over U (although it still
moves continuously in the Hausdorff topology [30]).

• Let rad(a) denote the conformal radius of the Siegel disk Δa relative to its
center 0. The function a �→ log rad(a) is continuous and subharmonic in C

and harmonic off Γ (θ) (see [5] and [32]). The arc Γ (θ) can be described as
the support of the generalized Laplacian 4∂∂ log rad. This has been proved by I.
Zidane and independently by the author (unpublished).

with marked critical points at 1 and c. The punctured c-plane is a double-cover of the a2-plane,
branched at c = ±1. In this normalization, Γ (θ) appears as a Jordan curve passing through these
branch points, and is invariant under the involution c �→ 1/c.
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An adaptation of the work of Petersen in [23], using complex a priori bounds for
critical circle maps, proves that for every a ∈ Γ (θ) the Julia set of fa is locally
connected and has measure zero. Thus, along Γ (θ) the Julia set is tame enough to
allow the general constructions of Sect. 5.2 to go through. In particular, it follows
from Theorem 5.7 that we can assign to each a ∈ Γ (θ) a minimal rotation set Xa

under tripling with ρ(Xa) = θ , consisting of angles of the dynamic rays of fa which
land on ∂Δa . Notice the symmetry

X−a = Xa + 1

2
(mod Z). (5.8)

For each a ∈ Γ (θ) consider the deployment vector δ(Xa) = (δa, 1 − δa), where
δa ∈ [0, 1] is the deployment probability of fa , i.e., the probability that a dynamic
ray Ra(t) landing on ∂Δa has its angle t in (0, 1

2 ). It follows from the symmetry
relation (5.8) that

δ−a = 1 − δa a ∈ Γ (θ).

At the two endpoints a = ±a0 of Γ (θ) the cubic fa has a double critical point
whose wake contains both dynamic rays Ra(0) and Ra(

1
2 ). At any other a ∈ Γ (θ)

the critical points of fa are distinct and we label them as ∗a and ∗′
a by requiring that

the wake W(∗a) contains Ra(0) and the wake W(∗′
a) contains Ra(

1
2 ). Under this

labeling, the internal angle of ∗a will be 0 and that of ∗′
a will be τa .

The following is an immediate corollary of Theorem 5.7:

Theorem 5.16 For every parameter a ∈ Γ (θ), the deployment probability of Xa is
the internal angle between the two critical points of fa:

δa = τa.

Thus, starting at the endpoint a0 of Γ (θ) in the lower half-plane and moving
to the other endpoint −a0, the probability δa increases monotonically and takes
all values between 0 and 1. In particular, the family {Xa}a∈Γ (θ) spans all minimal
rotation sets under tripling with ρ(Xa) = θ .

For each integer n ≥ 1, let an be the unique parameter on Γ (θ) for which δan =
nθ (mod Z) (the first few an are shown in Fig. 5.10 right). Using Theorem 5.16, it is
readily seen that f ◦n

an
(∗an) = ∗′

an
. By Theorem 4.31, the rotation set Xan has a taut

gap of length 1
3 corresponding to the wakeW(∗′

an
) and a loose gap of length 1

3+ 1
3n+1

corresponding to the wake W(∗an) (compare Fig. 5.12). Of course by symmetry the
parameters −an have similar dynamical description, with ∗a and ∗′

a exchanged.
Namely, δ−an = −nθ (mod Z), f ◦n−an

(∗′−an
) = ∗−an , and X−an has a taut gap of

length 1
3 corresponding toW(∗−an) and a loose gap of length

1
3+ 1

3n+1 corresponding

to W(∗′−an
).4

4Each parameter ±an is the “root” of a capture component in which the (n + 1)-st iterate of one
critical point hits the Siegel disk. We will not be using this fact in our presentation.
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We can combinatorially describe Γ (θ) by specifying the angles of the candidate
parameter rays that presumably land on it. This description is related to rotation
sets under tripling, much like what we have seen in the case of the boundary of the
main cardioid of the Mandelbrot set. It will be convenient to use Theorem 5.16 to
parametrize Γ (θ) by the deployment probability. For each δ ∈ [0, 1], let a(δ) ∈
Γ (θ) be the unique parameter with δa(δ) = δ. Thus, a( 12 ) = 0 and in terms of our
previous notation, a(0) = a0, a(1) = −a0, and a(±nθ) = ±an for all n ≥ 1. If
δ 
= nθ (mod Z) for all n, there are two angles − 1

6 < s(δ) < 1
6 and 1

3 < t(δ) < 2
3

such that the parameter rays R(s(δ)) and R(t (δ)) land at a(δ) (thus, in Fig. 5.14,
R(s(δ)) lands at a(δ) from the right side of Γ (θ) while R(t (δ)) lands there from
the left side). These angles can be expressed in terms of the leading angle ω(θ, δ)

of Xa(δ) = Xθ,δ studied in Sect. 4.6:

t (δ) = ω(θ, δ) + 1

3

s(δ) = ω(θ, 1 − δ) − 1

6

This can be seen by examining Fig. 5.11 which illustrates the angles of the dynamic
rays landing at the co-critical points of fa(δ). Notice that by symmetry,

t (δ) = s(1 − δ) + 1

2
.

s 1/3

s+1/3

s

t−1/3

t+1/3

t

∗

∗′
∗̂

∗̂′

Δ

Fig. 5.11 Filled Julia set of a typical cubic map fa with a ∈ Γ (θ), where the critical points ∗, ∗′
have disjoint orbits on ∂Δ. Here the rays at angles t ± 1

3 land at ∗ and those at angles s ± 1
3 land

at ∗′. If δ is the deployment probability of the associated rotation set Xa , we have t − 1
3 = ω(θ, δ)

and s − 1
3 = ω(θ, 1 − δ) + 1

2 . Thus, the rays landing at the co-critical points ∗̂, ∗̂′ have angles
t = ω(θ, δ) + 1

3 and s = ω(θ, 1 − δ) − 1
6 , respectively



5.4 The Cubic Family 109

Recall from Theorem 4.33 that the leading angle δ �→ ω(θ, δ) is a decreasing,
left-continuous function with a jump discontinuity of size 1

3n+1 at δ = nθ (mod Z)

for each n ≥ 0. Moreover,

ω(θ, 0) = ω(θ, 0+) + 1

3
= ω(θ, 1) + 1

2
.

It follows from the above formulas that s(δ) is increasing and t (δ) is decreasing as
a function of δ. For each n ≥ 1 the angle t (δ) has a jump discontinuity of size 1

3n+1

at δ = nθ (mod Z), while s(δ) remains continuous there, and similarly, s(δ) has a
jump discontinuity of size 1

3n+1 at δ = −nθ (mod Z), while t (δ) remains continuous
there. These values of δ correspond to the parameters ±an along Γ (θ) and the
aforementioned discontinuity suggests that every an with n ≥ 1 is the landing point
of three parameter rays at angles

t−n = ω(θ, nθ) + 1

3
− 1

3n+1

t+n = ω(θ, nθ) + 1

3

sn = ω(θ,−nθ) − 1

6

while the parameter −an is the landing point of the three parameter rays at angles

s−
n = ω(θ, nθ) − 1

6
− 1

3n+1

s+
n = ω(θ, nθ) − 1

6

tn = ω(θ,−nθ) + 1

3
.

These computations are illustrated in Fig. 5.12 which shows the angles of the
dynamic rays that land at the co-critical points of fan .

Finally, the endpoint a0 of Γ (θ) is the landing point of the two parameter rays at
angles

t−0 = ω(θ, 1) + 1

2

t+0 = ω(θ, 1) + 5

6
,

while the other endpoint−a0 is the landing point of the two parameter rays at angles

s−
0 = ω(θ, 1)

s+
0 = ω(θ, 1) + 1

3
.

Compare Fig. 5.13 which provides a justification for these formulas.
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t−1/3

t+1/3−1/3n+1

t
t−1/3n+1

s 1/3= 3nt

s+1/3
s

∗′

∗
∗̂′

∗̂

Δ

Fig. 5.12 Filled Julia set of the cubic map fan
, where the n-th iterate of the critical point ∗ hits the

critical point ∗′. Here the rays at angles s± 1
3 land at ∗′ and those at angles t± 1

3 and t± 1
3− 1

3n+1 land
at ∗ (although only two of them, shown in the picture, are present in the rotation set Xan

). We have
t − 1

3 = ω(θ, nθ) and s − 1
3 = ω(θ,−nθ)+ 1

2 . Thus, the ray at angle s = ω(θ,−nθ)− 1
6 lands at

the co-critical point ∗̂′ and the rays at angles t = ω(θ, nθ)+ 1
3 and t − 1

3n+1 = ω(θ, nθ)+ 1
3 − 1

3n+1

land at the co-critical points ∗̂

By Theorem 4.35, the above angles can be expressed rationally in terms of the
(transcendental) base angle ω = ω(θ, 1). It follows that

t+n = (3n + 1)ω + An

2 · 3n
+ 1

3

sn = (3n + 1)ω − Bn

2
− 1

6
,

where An,Bn are the integers defined by (4.16).

Example 5.17 For the golden mean θ = (
√
5−1)
2 , the base angle ω = ω(θ, 1) can be

effectively computed with desired precision using the formula (4.13):

ω ≈ 0.128099593431 · · ·
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Fig. 5.13 Filled Julia set of
the cubic map fa0 with a
double critical point ∗ = ∗′
(which also coincides with
the co-critical points ∗̂ = ∗̂′).
Here the rays at angles
t = ω(θ, 1) + 5

6 and
t − 1

3 = ω(θ, 1) + 1
2 land at ∗

t−1/3

t

∗
Δ

Using the formula (4.16) it is easy to compute the integers An,Bn. Here are the
results for 1 ≤ n ≤ 5:

A1 = 30 = 1 B1 = 0

A2 = 30 + 31 = 4 B2 = 30 = 1

A3 = 30 + 31 = 4 B3 = 31 = 3

A4 = 30 + 31 + 33 = 31 B4 = 30 + 32 = 10

A5 = 30 + 31 + 33 + 34 = 112 B5 = 30 + 31 + 33 = 31.

The corresponding angles are listed in Table 5.1. Figure 5.14 shows selected
parameter rays at these angles.

We can extend this picture to parameters outside the arc Γ (θ). One possible
approach is to show that when θ is of bounded type, the filled Julia sets K(fa) for
a ∈ M3(θ) satisfy the limb decomposition hypothesis in Sect. 5.2 so the rotation
set Xa is well defined. This is already known for many parameters in M3(θ),
including the hyperbolic-like ones, and is surely true for all capture parameters.
An alternative route, which is outlined below, is to approach M3(θ) from outside,
allowing disconnected Julia sets.

Outside the connectedness locus, the filled Julia set K(fa) consists of countably
many homeomorphic copies of the filled Julia set of the quadratic polynomial
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Table 5.1 Angles of some
parameter rays which “land”
on the arc Γ (θ) for

θ = (
√
5−1)
2

Angle In terms of ω = ω(θ, 1) Approximate value

t−0 ω + 1
2 0.628099593431

t+0 ω + 5
6 0.961432926764

t−1
2
3 ω + 7

18 0.474288617843

t+1
2
3 ω + 1

2 0.585399728954

s1 2ω − 1
6 0.089532520195

t−2
5
9 ω + 14

27 0.589684959314

t+2
5
9 ω + 5

9 0.626721996351

s2 5ω + 1
3 0.973831300488

t−3
14
27 ω + 32

81 0.461483739804

t+3
14
27 ω + 11

27 0.473829418816

s3 14ω − 5
3 0.126727641367

t−4
41
81 ω + 253

486 0.585416666634

t+4
41
81 ω + 85

162 0.589531892972

s4 41ω − 31
6 0.085416664004

t−5
122
243 ω + 410

729 0.626727642244

t+5
122
243 ω + 137

243 0.628099384356

s5 122ω − 44
3 0.961483731915

P : z �→ e2πiθ z + z2 and uncountably many points. In particular, the connected
component Ka of K(fa) containing the Siegel disk Δa , called the little filled
Julia set, is homeomorphic to K(P). More precisely, let Ga : C → R be the
Green’s function of fa as defined in Sect. 5.1, and Ua and Va be the connected
components of G−1

a [0,Ga(ea)) and G−1
a [0,Ga(ea)/3) containing Ka , respectively

(recall that ea is the escaping critical point). Then Ua and Va are Jordan domains
with Ka ⊂ Va ⊂ Va ⊂ Ua and the restriction fa : Va → Ua is a degree
2 branched covering (see Fig. 5.15). According to Douady and Hubbard, this
restriction is hybrid equivalent to the quadratic P , namely, there is a quasiconformal
homeomorphism φa : Ua → φa(Ua) which satisfies φa ◦ fa = P ◦ φa in Va , with
φa(Ka) = K(P) and ∂φa = 0 a. e. on Ka (see for example [30] or [6]).

When a is outside M3(θ), it belongs to the parameter ray R(t) for a unique
t ∈ T called the external angle of a. It follows that the dynamic rays Ra(t ± 1

3 )

are bifurcated and crash into the escaping critical point ea . Let Nt be the countable
dense set of angles whose forward m3-orbit hit either of t ± 1

3 . If u /∈ Nt , the ray
Ra(u) is smooth. If u ∈ Nt , the ray Ra(u) is bifurcated and crashes into an iterated
preimage of ea (only once if neither t± 1

3 is periodic underm3, infinitely many times
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1/61/3

2/3 5/6

t+0

s2

s−1

s+1

s1
s−2

s+2s−0

s+0

t2
t−1

t+1
t1 t−2

t+2 t−0

Fig. 5.14 Some parameter rays which “land” on the roots of capture components along the arc

Γ (θ). Here θ = (
√
5−1)
2

otherwise). For each u ∈ Nt we can define the limit rays Ra(u
±) as the pointwise

limits

Ra(u
+) = lim

v→u+
v /∈Nt

Ra(v) and Ra(u
−) = lim

v→u−
v /∈Nt

Ra(v),

with one always turning to the right at a bifurcation point, the other always turning
to the left. Every point of the little filled Julia set Ka is accumulated by at least one
smooth or limit ray. When u ∈ Nt , only one of Ra(u

+) or Ra(u
−) can accumulate

on Ka and we agree to denote this simply by Ra(u).
Consider the compact set

Yt =
{
u ∈ T : m◦i

3 (u) /∈
(
t + 1

3
, t − 1

3

)
for all i ≥ 0

}
.
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Fig. 5.15 Filled Julia set of a
cubic fa outside the
connectedness locus M3(θ).
The restriction fa : Va → Ua

is a degree 2 branched
covering hybrid equivalent to
the quadratic
z �→ e2πiθ z + z2 eaUa

Va
faKa

Δa

It is not hard to show that Yt contains a maximal m3-invariant Cantor set At

characterized by the property that u ∈ At if and only if the (smooth or limit) ray
Ra(u) accumulates on Ka . Every endpoint of a gap of At belongs to Nt and the
inclusion At ⊃ Yt � Nt holds. According to [2], there exists a degree 1 monotone
map h : T → T, with plateaus over the gaps of At , which satisfies

h ◦ m3 = m2 ◦ h on At . (5.9)

The following is a special case of the main result of [26]:

Theorem 5.18 The ray Ra(u) with u ∈ At lands at z ∈ Ka if and only if the ray
R(h(u)) of the quadratic P lands at φa(z) ∈ K(P).

Since K(P) is locally connected [23], it follows that all rays Ra(u) with u ∈ At

land on Ka . In particular, since every point on the boundary of the Siegel disk of
P is the landing point of one or two rays, and since h|At is at most 2-to-1, we see
that every point of ∂Δa is the landing point of at most four (smooth or limit) rays.
An argument similar to Sect. 5.2 for connected Julia sets then shows that the set
of angles of rays landing on ∂Δa contains a minimal rotation set Xa ⊂ At under
tripling, with ρ(Xa) = θ . Let us investigate the relation between the deployment
probability δa ∈ [0, 1] of Xa and the external angle t of a.

We may assume without loss of generality that s+
0 = ω + 1

3 < t ≤ t+0 = ω + 5
6

(the complementary case is treated by symmetry). Then the interval (t + 1
3 , t − 1

3 )

of length 1
3 is contained in the major gap I0 of Xa that contains the fixed point 0.

It will be convenient to first study the case where Xa ∩ Nt 
= ∅, so at least one
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of the angles t ± 1
3 belongs to Xa . Since no angle in Xa is periodic under m3, the

rays Ra(t ± 1
3 ) crash at ea and then join as a single smooth path to land at a point

wa ∈ ∂Δa which is characterized by the property that the internal angle from the
non-escaping critical point ca ∈ ∂Δa to wa is δa . Here are the possibilities:

Case 1. δa = 0. Thenwa = ca . We either have I0 = (t, t− 1
3 )where t = ω+ 5

6 = t+0 ,
or I0 = (t + 1

3 , t) where t = ω + 1
2 = t−0 (see Fig. 5.16a, b).

Case 2. δa = nθ (mod Z) for some n ≥ 1. Then ca = f ◦n
a (wa). We either have

I0 =
(
t + 1

3
− 1

3n+1
, t − 1

3

)
, where t = ω(θ, nθ) + 1

3
= t+n ,

or

I0 =
(
t + 1

3
, t − 1

3
+ 1

3n+1

)
, where t = ω(θ, nθ) + 1

3
− 1

3n+1 = t−n

(see Fig. 5.16c, d which show the case n = 1).
Case 3. δa = −nθ (mod Z) for some n ≥ 1. Then wa = f ◦n

a (ca) and we have
I0 = (t + 1

3 , t − 1
3 ) where t = ω(θ,−nθ) + 1

3 = tn (see Fig. 5.16e which shows
the case n = 1).

Case 4. δa 
= nθ (mod Z) for all integers n. In this case ca and wa have disjoint
orbits on ∂Δa , and we have I0 = (t + 1

3 , t − 1
3 ) where t = t (δa) (see Fig. 5.16f).

Using monotonicity of δ �→ ω(θ, δ), it is easy to see that the above cases classify
Xa for all external angles t except when t ∈ (t−n , t+n ) for some n ≥ 0. As a corollary,
we obtain

Corollary 5.19 If the external angle t of a /∈ M3(θ) lies in (t−n , t+n ) for some n ≥ 0,
then Xa is contained in the set

Yt � Nt =
{
u ∈ T : m◦i

3 (u) /∈
[
t + 1

3
, t − 1

3

]
for all i ≥ 0

}
.

In particular, every dynamic ray Ra(u) with u ∈ Xa is smooth.

It remains to determine Xa when t belongs to such an interval. We will need a
preliminary observation:

Lemma 5.20 Corollary 5.19 holds if we replace Xa with the rotation set Xθ,nθ .

Proof We know that Xθ,nθ has a loose gap I0 = (α + 1
3 − 1

3n+1 , α − 1
3 ) containing

0 and a taut gap (β + 1
3 , β − 1

3 ) containing
1
2 . Here

α = ω(θ, nθ) + 1

3
and β = ω(θ,−nθ) − 1

6
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(a)

Δa

ea ca

t−1/3

t+1/3

t

(b)

Δa

ea

ca
t+1/3

t−1/3

t

(c)

Δa

ea

ca wa

t−1/3

t+1/3

t+1/3−1/3n+13nt

3nt−1/3

(d)

Δa
eaca

wa

t+1/3

t−1/3t−1/3+1/3n+1

3nt

3nt+1/3

(e)

Δa

ea

ca
wa

t−1/3

t+1/3

(f)

Δa

ea

ca
wa

t+1/3

t−1/3

Fig. 5.16 Possible types of cubics fa with a /∈ M3(θ) which have a non-smooth ray landing on
∂Δa . (a) δa = 0, t = t+0 . (b) δa = 0, t = t−0 . (c) δa = nθ, t = t+n . (d) δa = nθ, t = t−n .
(e) δa = −nθ, t = tn. (f) δa 
= nθ, t = t (δa)
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Fig. 5.17 Major gaps of
Xθ,nθ and the proof of
Lemma 5.20

− 1/3

− 1/3− 1/3n+1

+ 1/3− 1/3n+1

+ 1/3

t− 1/3

t+ 1/3

+ 1/3

1/3

01/2

α

α

α

α

β

β

(see Fig. 5.17). We have

t−n = ω(θ, nθ) + 1

3
− 1

3n+1 = α − 1

3n+1 and t+n = ω(θ, nθ) + 1

3
= α,

so the assumption t−n < t < t+n implies [t + 1
3 , t − 1

3 ] ⊂ I0. Since the forward
m3-orbit of every u ∈ Xθ,nθ avoids I0, it must avoid the subinterval [t + 1

3 , t − 1
3 ],

which implies u ∈ Yt � Nt . ��

Theorem 5.21 If the external angle t of a /∈ M3(θ) lies in (t−n , t+n ) for some n ≥ 0,
then Xa = Xθ,nθ .

Proof By Corollary 5.19, Xa ⊂ Yt � Nt ⊂ At . The semiconjugacy h of (5.9)
has plateaus over the gaps of At , so it is injective on Xa . Hence h maps Xa

homeomorphically onto an m2-invariant Cantor set C = h(Xa). If ϕ is the canonical
semiconjugacy associated with Xa , the composition ϕ◦h−1 is a well-defined degree
1 monotone map of the circle since each fiber of h maps to a single point under ϕ.
Since ϕ ◦ h−1 semiconjugates m2|C to the rotation rθ , it follows that C is a rotation
set for m2 with ρ(C) = θ . Similarly, by Lemma 5.20 Xθ,nθ ⊂ Yt � Nt ⊂ At and
an identical argument shows that C′ = h(Xθ,nθ ) is also a rotation set for m2 with
ρ(C′) = θ . By the uniqueness of rotation sets under doubling, C = C′. It follows
from injectivity of h that Xa = Xθ,nθ . ��

Assuming that the rays R(t±n ) in fact land at an, we can define the parameter
wake Wn as the connected component of C � (R(t−n ) ∪ R(t+n ) ∪ {an}) which does
not meet Γ (θ). Using monotonicity of δ �→ ω(θ, δ) it is easy to see that distinct
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parameter wakes are disjoint. Theorem 5.21 can be restated as saying that Xa =
Xθ,nθ whenever a ∈ Wn � M3(θ). We can show that this holds for every a ∈ Wn

(this contains the claim that Xa is well defined for a ∈ Wn ∩M3(θ)). The argument
uses holomorphic motions as follows.

A dynamic ray Ra(u) moves holomorphically over the parameter a ∈ C as long
as it remains smooth (see [6], Proposition 2). Lemma 5.20 shows that every ray
Ra(u) with u ∈ Xθ,nθ is smooth for a ∈ Wn � M3(θ). Since Ra(u) is trivially
smooth for a ∈ M3(θ), it follows that this ray moves holomorphically over the
entire parameter wake Wn. By the λ-lemma, this motion extends to a holomorphic
motion of the closureRa(u) overWn. But for a ∈ Wn�M3(θ) this closure is Ra(u)

union its landing point on ∂Δa . Since ∂Δa also moves holomorphically overWn, it
follows that Ra(u) lands on ∂Δa for every a ∈ Wn, as required.

Away from the endpoints ±a0 of Γ (θ) the critical points of fa can be continued
analytically as a function of a (however, going around ±a0 will swap the two
critical points, so the monodromy is non-trivial). In particular, the escaping and non-
escaping critical points of fa for a ∈ Wn �M3(θ) extend to holomorphic functions
a �→ ea, ca defined for all a ∈ Wn. The preceding paragraph then shows that ea

belongs to the dynamical wake W(f −n
a (ca)) whenever a ∈ Wn. It seems likely that

this property is the dynamical characterization of the parameter wake Wn.
To summarize, we have identified the dependence of δa on a in the following

cases:

• If a ∈ W0, then δa = 0.
• If a ∈ −W0, then δa = 1.
• If a ∈ Wn ∪ R(sn) for some n ≥ 1, then δa = nθ (mod Z).
• If a ∈ −Wn ∪ R(tn) for some n ≥ 1, then δa = −nθ (mod Z).
• If a ∈ R(t (δ)) ∪ R(s(δ)) where δ 
= nθ (mod Z) for all n, then δa = δ.

It is conjectured that an analog of the limb decomposition hypothesis in Sect. 5.1
holds in this cubic parameter space, in the sense that the parameter limbs Ln =
M3(θ) ∩ Wn have shrinking diameters as n → ∞. Under this assumption, the
connectedness locus M3(θ) would be the union of the arc Γ (θ) together with the
parameter limbs ±Ln for all n ≥ 0, and the five cases above would describe δa

(hence Xa) for every a ∈ C.
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