
Chapter 4
Applications and Computations

In this chapter we establish further properties of (minimal) rotation sets for md

by exploiting the ideas and tools developed in the previous chapters, most notably
the deployment theorem. We also study minimal rotation sets under doubling and
tripling in some detail and carry out explicit computations. These computations
will tie in with the dynamical study of quadratic and cubic polynomials in the next
chapter.

4.1 Symmetries

It was already observed in Sect. 3.1 that if X is a minimal rotation set for md , the
deployment vectors of the d − 2 rotation sets

X + 1

d − 1
, X + 2

d − 1
, . . . , X + d − 2

d − 1
(mod Z) (4.1)

are obtained by cyclically permuting the components of δ(X). The uniqueness parts
of the deployment Theorems 3.7 and 3.20 show at once that the converse statement
is also true. In particular, if δ(X) is invariant under some cyclic permutation of
its components, then X itself has a corresponding symmetry. Explicitly, suppose
Π : Rd−1 → R

d−1 is defined by

Π(x1, x2, . . . , xd−1) = (xd−1, x1, . . . , xd−2).

Theorem 4.1 A minimal rotation set X for md has the symmetry X = X +
i/(d − 1) (mod Z) if and only if its deployment vector δ(X) is fixed by the iterate
Π◦i .

For example, a minimal rotation setX under tripling is self-antipodal in the sense
X = X + 1

2 (mod Z) if and only if δ(X) = ( 12 ,
1
2 ). Moreover, there is a unique such
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Fig. 4.1 If θ is irrational or rational with even denominator, there is a unique self-antipodal
minimal rotation set X under tripling with ρ(X) = θ . Left: The self-antipodal 4-cycle of rotation

number 1
4 . Right: The self-antipodal Cantor set of the golden mean rotation number (

√
5−1)
2 . Here

ω ≈ 0.25208333 (see Sect. 4.6 for the method of such computations)

X with a given rotation number, which can only be irrational or rational with even
denominator (compare Fig. 4.1).

It turns out that the sets (4.1) are the only copies of X that are rotation sets of the
same rotation number:

Theorem 4.2 Suppose both X and X + α (mod Z) are rotation sets for md with
ρ(X) = ρ(X + α). Then α = i/(d − 1) (mod Z) for some 0 ≤ i ≤ d − 2.

Here the assumption ρ(X) = ρ(X + α) is necessary, as is illustrated by the
rotation sets

X =
{ 5

80
,
15

80
,
45

80
,
55

80

}
and X + 1

4
=

{25
80

,
35

80
,
65

80
,
75

80

}

under tripling for which ρ(X) = 1
4 and ρ(X + 1

4 ) = 3
4 .

Proof Denote the distinct major gaps of X by I1, . . . , In, so I1 + α, . . . , In + α are
the distinct major gaps of X + α. For each 1 ≤ i ≤ n, let Ji be the gap of X which
maps to Ii and Ĵi be the gap of X+α which maps to Ii +α. Evidently a gap of length
� for X or X+α belongs to {J1, . . . , Jn} or {Ĵ1, . . . , Ĵn} if and only if the fractional
part of d� is at least 1/d . It follows that {Ĵ1, . . . , Ĵn} = {J1 + α, . . . , Jn + α}. We
prove that in fact Ĵi = Ji + α for every i.

Consider the standard monotone maps g, ĝ associated with X,X + α and let
ϕ, ϕ̂ be the semiconjugacies between g, ĝ and the rigid rotation rθ , where θ =
ρ(X) = ρ(X + α). Recall that ϕ, ϕ̂ map each gap of their respective rotation set to
a single point. Let ϕ(Ii) = {ti} and ϕ̂(Ii + α) = {t̂i}. Then ϕ(Ji) = {ti − θ} and
ϕ̂(Ĵi) = {t̂i − θ}. Since X +α is a rotation of X and since ϕ, ϕ̂ are order-preserving,
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there is an orientation-preserving homeomorphism h : T → T which maps ti to t̂i
for every i and maps the set {t1 − θ, . . . , tn − θ} onto the set {t̂1 − θ, . . . , t̂n − θ}.
The claim Ĵi = Ji + α is then equivalent to h(ti − θ) = t̂i − θ . This is proved in the
following

Lemma 4.3 Suppose t1, . . . , tn ∈ T are distinct and h : T → T is an orientation-
preserving homeomorphism which maps the set {t1 − θ, . . . , tn − θ} onto the set
{h(t1)−θ, . . . , h(tn)−θ} for some θ . Then h(ti −θ) = h(ti )−θ for every 1 ≤ i ≤ n.

Proof The assumption means that the commutator [rθ , h−1] = rθ ◦ h−1 ◦
r−1
θ ◦ h preserves the finite set {t1, . . . , tn} and therefore has a well-defined
combinatorial rotation number on it, which coincides with the Poincaré rotation
number ρ([rθ , h−1]). By Corollary 1.10, ρ([rθ , h−1]) = −ρ([h−1, rθ ]) = 0. It
follows that [rθ , h−1] acts as the identity on {t1, . . . , tn}. �	

Back to the proof of the theorem, we now know that Ĵi = Ji + α for every i. Let
J1 = (t, s). Then, on the one hand, I1 = (dt, ds) so I1 + α = (dt + α, ds + α).
On the other hand, Ĵ1 = J1 + α = (t + α, s + α) so I1 + α = (dt + dα, ds + dα).
It follows that dα = α (mod Z), or α = i/(d − 1) for some 0 ≤ i ≤ d − 2, as
required. �	
Remark 4.4 The crucial point in the above proof was to use the assumption ρ(X) =
ρ(X+α) to show that rα◦md = md ◦rα holds at some point of X, hence everywhere
on the circle.

The following is an immediate corollary of Theorem 4.2:

Corollary 4.5 For every rotation set X for md , the symmetry group {α ∈ T : X =
X + α (mod Z)} is a subgroup of Z/(d − 1)Z.

4.2 Realizing Gap Graphs and Gap Lengths

As an application of Theorem 3.20, we give a partial answer to the question of
realizing admissible graphs as gap graphs that was raised at the end of Sect. 2.1.

Theorem 4.6 Given an irrational number θ and an admissible graph Γ of degree d

without closed paths, there exists a (minimal) rotation set X for md with ρ(X) = θ

whose gap graph ΓX is isomorphic to Γ .

Proof Suppose Γ consists of α degree 0 vertices of weights n1, . . . , nα and β

maximal paths P1, . . . , Pβ of total weights nα+1, . . . , nα+β (thus, for every α+1 ≤
i ≤ α +β, the number ni is the sum of the weights of the vertices in the path Pi−α).
Then

∑α+β
i=1 ni = d − 1.

Choose α + β distinct points s1 = 0, s2, . . . , sα+β on T subject only to the
condition that their full orbits under the rotation rθ are disjoint. We use the si to
produce a list L of d − 1 not necessarily distinct points in T as follows: For each
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1 ≤ i ≤ α, let L include ni copies of the point si . For each α + 1 ≤ i ≤ α + β,
consider the maximal path Pi−α which has the form

Ik → Ik−1 → · · · → I1 with
k∑

j=1

w(Ij ) = ni, (4.2)

and let L include w(Ij ) copies of the point si − (j − 1)θ for every 1 ≤ j ≤ k.
Represent points of L by numbers 0 < σ1 ≤ · · · ≤ σd−2 ≤ σd−1 = 1 and let X

be the minimal rotation set with ρ(X) = θ and σ(X) = (σ1, . . . , σd−1) given by
Theorem 3.20. Recall that under the canonical semiconjugacy of X, each major gap
of multiplicity n corresponds to an n-fold incidence σi = · · · = σi+n−1. Using this
and the selection of the list L, it is easy to see that ΓX is isomorphic to Γ . �	
Remark 4.7 The above proof shows that we have the freedom of arbitrarily
prescribing the number of iterates it takes to go from each loose vertex of ΓX to
its adjacent vertex. To see this, suppose for each maximal path of Γ of the form
(4.2) and each 2 ≤ j ≤ k we are given an integer Nj , which is to be the number of
iterates it takes to map Ij to Ij−1. Set N1 = 0, modify the list L by including w(Ij )

copies of the point si − (N1 + · · · + Nj ) θ for every 1 ≤ j ≤ k, and construct the
rotation set X as before.

Remark 4.8 We would naturally want to know if every admissible graph can be
realized as a gap graph even when it contains closed paths. It may seem at first
glance that all closed paths of a realizable graph must have the same length, but this
is not the case: Consider the rotation set

X =
{ 17

124
,
18

124
,
23

124
,
53

124
,
78

124
,
79

124
,
85

124
,
90

124
,
115

124

}

under m5 with ρ(X) = 2
3 , which is a union of three compatible 3-cycles. The cycle

of gaps

( 23

124
,
53

124

)

→

(115
124

,
17

124

)

→

( 79

124
,
85

124

)

has two major gaps of multiplicity 1, so it is represented by a closed path of length
2 in ΓX. However, the cycle of gaps

( 18

124
,
23

124

)

→

( 90

124
,
115

124

)

→

( 78

124
,
79

124

)

has only one major gap of multiplicity 1, so it is represented by a closed path of
length 1. This example also shows that the total weights around closed paths of ΓX

can be different.
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We have already described possible gap lengths for rational rotation sets as the
solution (3.4) of some linear equation. Using the above theorem and remark, we can
provide a characterization of gap lengths in the irrational case (compare [2] where a
similar result is sketched via an inductive argument):

Theorem 4.9 A number � > 0 appears as the length of a major gap of an irrational
rotation set for md if and only if it has the form

� =
k∑

j=1

αj

d βj
, (4.3)

where 1 ≤ k ≤ d −1 and {αj }, {βj } are sequences of positive integers which satisfy
k∑

j=1

αj ≤ d − 1 and 1 = β1 < β2 < · · · < βk.

Proof First suppose X is an irrational rotation set for md with a major gap I of
length � and multiplicity n. If I is taut, then � = n/d , which clearly has the form
(4.3). If I is loose, it is represented by a vertex in the gap graph ΓX that belongs to
a path I = Ik → Ik−1 → · · · → I1 where Ij has length �j and multiplicity nj .

For each 2 ≤ j ≤ k, there is an integer Nj ≥ 1 such that Ij−1 = g
◦Nj

X (Ij ). Hence
dNj −1(d �j − nj ) = �j−1. Since I1 is taut, �1 = n1/d . Using these relations, we
can solve for �k to obtain

� = �k = nk

d
+ nk−1

dNk+1 + · · · + n1

dN2+···+Nk+1 ,

which has the form (4.3).
Conversely, suppose � is a positive number of the form (4.3) for some choice

of k, {αj }, and {βj }. Consider the admissible graph Γ of degree d consisting of a
single degree 0 vertex of weight d − 1 − ∑k

j=1 αj , together with a single maximal
path of the form

Ik → Ik−1 → · · · → I1 with w(Ij ) = αk−j+1.

Consider also the positive integers Nj = βk−j+2 − βk−j+1 for 2 ≤ j ≤ k. By
Remark 4.7, there is a minimal irrational rotation set X, with ΓX isomorphic to
Γ , with Nj equal to the number of iterates it takes to map Ij to Ij−1. Then, the
computation in the first part of the proof shows that the major gap Ik of X has
length �. �	
Remark 4.10 When d = 2, the only possible values for the above integers are k =
α1 = 1, confirming what we already know: An irrational rotation set under doubling
has a single major gap of length 1

2 . For d = 3, there are more possibilities: If k = 1,
then either α1 = 1 so � = 1

3 , or α1 = 2 so � = 2
3 . On the other hand, if k = 2, then
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necessarily α1 = α2 = 1 so � = 1
3 + 1

3β2
for some β2 > 1. Compare Theorem 4.31

for a more precise statement.

4.3 Dependence on Parameters

We begin with a preliminary observation on convergence of rotation sets:

Lemma 4.11 Suppose {Xn} is a sequence of rotation sets for md which converges
in the Hausdorff metric to a compact set X. Then X is a rotation set with ρ(X) =
limn→∞ ρ(Xn). If every Xn is maximal, so is X.

Proof Since each Xn is md -invariant and its complement T � Xn contains d − 1
disjoint intervals of length 1/d , the Hausdorff limitX must have the same properties.
By Corollary 2.16, X is a rotation set. The family {gn} of the standard monotone
maps of {Xn} is equicontinuous since each gn is piecewise affine with derivative
bounded by d . After passing to a subsequence, we may assume that gn converges
uniformly to a degree 1 monotone map g : T → T which necessarily extends md |X
(in fact, this shows that the entire sequence {gn} converges and its limit g is the
standard monotone map of X). It follows from Theorem 1.11 that ρ(X) = ρ(g) =
limn→∞ ρ(gn) = limn→∞ ρ(Xn).

The last assertion follows from Corollary 2.19: If the Xn are maximal, they
all have d − 1 major gaps of length 1/d . This property persists under Hausdorff
convergence, so X is maximal as well. �	

Now, let A ⊂ T×Δd−2 be the set of all pairs a = (θ, δ) subject to the restriction
that if θ is rational of the form p/q in lowest terms, then qδ ∈ Z

d−1. For each a =
(θ, δ) ∈ A, let Xa denote the unique minimal rotation set for md with ρ(Xa) = θ

and δ(Xa) = δ, given by the deployment theorem.

Theorem 4.12 The assignment a 
→ Xa from A to the space of compact subsets of
the circle (equipped with the Hausdorff metric) is lower semicontinuous.

Proof Let an = (θn, δn) ∈ A tend to a0 = (θ0, δ0) ∈ A as n → ∞. Suppose Xan

converges in the Hausdorff metric to a compact set Y ⊂ T. We need to show that
Xa0 ⊂ Y . By Lemma 4.11, Y is a rotation set for md with ρ(Y ) = θ0. Moreover, the
proof of that lemma shows that the sequence {gn} of the standard monotone maps
of {Xan} converges uniformly to the standard monotone map g of Y .

Let μn be the natural measure of Xan , that is, the uniquemd -invariant probability
measure supported on Xan . After passing to a subsequence, we may assume that μn

is weak∗ convergent to a probability measure μ. For every continuous test function
f : T → R,

∫

T

f dμ = lim
n→∞

∫

T

f dμn = lim
n→∞

∫

T

(f ◦ gn) dμn = lim
n→∞

∫

T

(f ◦ g) dμn

=
∫

T

(f ◦ g) dμ.
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Here the first and forth equalities hold by the weak∗ convergence μn → μ, the
second equality follows from the gn-invariance of μn, and the third equality holds
since the uniform convergence gn → g implies

∫
(f ◦gn) dμn − ∫

(f ◦g) dμn → 0
as n → ∞. This proves that μ is g-invariant. For the rest of the argument, we
distinguish two cases:

If ρ(g) = θ0 is irrational, it follows from the discussion in Sect. 1.5 that μ is
the unique invariant probability measure supported on the Cantor attractor K of g.
By Theorem 2.33, K is the unique minimal rotation set contained in Y . Let δn =
(δn,1, . . . , δn,d−1) and δ0 = (δ0,1, . . . , δ0,d−1). Since μn → μ and μ{ui} = 0
(recall that ui = i/(d − 1) are the fixed points of md ), it follows that

μ[ui−1, ui) = lim
n→∞ μn[ui−1, ui) = lim

n→∞ δn,i = δ0,i (4.4)

for every i, so δ(K) = δ0. Since ρ(K) = ρ(Y ) = θ0, the uniqueness part of
Theorem 3.20 shows that K = Xa0 . This proves Xa0 ⊂ Y , as required.

In the case ρ(g) = θ0 is rational of the form p/q in lowest terms, we must
modify the above argument. Let K be the support of μ. We know from Sect. 1.5 that
K is a union of q-cycles of g. The Hausdorff convergence supp(μn) = Xan → Y

together with the weak∗ convergence μn → μ show that K ⊂ Y . It follows that K

is a union C1 ∪ · · · ∪ Cn of q-cycles in Y and therefore is a finite rotation set with
ρ(K) = p/q . The measure μ is a convex combination

∑n
i=1 αi μCi of the Dirac

measures along the Ci , where every αi is positive and
∑n

i=1 αi = 1. Since the limit
(4.4) still holds for 1 ≤ i ≤ d − 1, we have

n∑
i=1

αi δ(Ci) = δ0 = δ(Xa0).

By Lemma 3.18, this can happen only if n = 1 and Xa0 = C1 = K . Again, this
implies Xa0 ⊂ Y . �	

Recall from Sect. 2.3 that a rotation set is exact if it is both maximal and minimal.
Such rotation sets are necessarily irrational. Topologically, they are Cantor sets with
d −1 major gaps of length 1/d (Theorem 2.37). The following lemma characterizes
exactness in terms of the cumulative deployment vector:

Lemma 4.13 Suppose X is a minimal rotation set for md with ρ(X) = θ and
σ(X) = (σ1, . . . , σd−1). Then X is exact if and only if σ1, . . . , σd−1 have disjoint
full orbits under rθ .

Proof Recall from the proof of Theorem 3.20 that the lengths of the major gaps of
X are the values ν{σi}, where ν is the gap measure of X defined in (3.20). If the σi

have disjoint orbits under rθ , then θ is irrational and the definition of ν shows that
ν{σi} = 1/d for each i. Conversely, a relation of the form σi = σj − kθ for i �= j

and k ≥ 0 would contribute a mass of 1/dk+1 to ν{σi}, so the corresponding major
gap would have length ν{σi} ≥ 1/d + 1/dk+1 > 1/d . �	
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θ

δ

Fig. 4.2 An attempt to visualize the set of parameters a = (θ, δ) for which the minimal cubic
rotation set Xa is exact. Here the deployment vector (δ, 1− δ) is identified with its first component
δ ∈ [0, 1]. The set of exact parameters is the complement of the union of the lines δ + nθ =
0 (mod Z) over all n ∈ Z

Lemma 4.14 There is a full-measure set of parameters a ∈ A for which Xa is
exact.

Figure 4.2 is an attempt to visualize this set when d = 3.

Proof Take any δ = (δ1, . . . , δd−1) in the interior of Δd−2. Then the δi are positive,
so the numbers σi = δ1+· · ·+δi for 1 ≤ i ≤ d −1 are distinct. There are countably
many θ for which the orbits of the σi under rθ collide. Let Hδ be the complement of
this countable set in T. Then, the union

H =
⋃
δ

(
Hδ × {δ})

has full-measure and for every a ∈ H the rotation set Xa is exact by Lemma 4.13.
�	

The following theorem determines when a minimal rotation set depends con-
tinuously on its rotation number and deployment vector. The possibility of such
characterization was suggested to me by J. Milnor:
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Theorem 4.15 The assignment a 
→ Xa is continuous at a0 ∈ A if and only if Xa0

is exact.

In particular, this assignment is discontinuous at every a0 for which Xa0 is
rational.

Proof First assume a 
→ Xa is continuous at a0 ∈ A. By Lemma 4.14 we can
choose a sequence an ∈ A converging to a0 such thatXan is exact for every n. Since
Xan → Xa0 and each Xan is maximal, Lemma 4.11 shows that Xa0 is maximal. As
Xa0 is minimal by definition, we conclude that Xa0 is exact.

Conversely, suppose Xa0 is exact and take any sequence an ∈ A converging
to a0. After passing to a subsequence, we may assume that Xan converges to a
compact set Y in the Hausdorff metric. Theorem 4.12 shows that Y ⊃ Xa0 . Since Y

is a rotation set by Lemma 4.11, it follows from exactness that Y = Xa0 . �	
Example 4.16 Minimal rotation sets under the doubling map m2 are parametrized
by their rotation number. The assignment θ 
→ Xθ is continuous at every irrational
θ since such rotation sets are exact (Corollary 2.38). To get a feel for the nature of
discontinuity at rational θ , consider the n-cycle

X1/n : 1

2n − 1

→ 2

2n − 1

→ · · · 
→ 2n−1

2n − 1
.

As n → ∞, X1/n does not converge to X0 = {0}, but to the maximal rotation set
{0} ∪ {1/2n}n≥1.

Remark 4.17 Milnor has pointed out to me that one may also study the map from
the union Rd of all rotation sets for md to the set A defined as follows: The forward
md -orbit of every t ∈ Rd eventually lands in a well-defined minimal rotation set Xt

(Theorems 2.3 and 2.33), so we can assign to t the parameter (ρ(Xt ), δ(Xt)) ∈ A.
This map is surjective and clearly discontinuous since Rd is compact (see below)
but A is not.

Let Cd ⊂ Rd be the union of all cycles, and Ed ⊂ Rd be the union of all exact
rotation sets.

Theorem 4.18

(i) Rd is compact.
(ii) Cd and Ed are disjoint and non-compact, with Ed ⊂ Cd .
(iii) Ed is a Cantor set.

Proof Let tn ∈ Rd and tn → t . Take a rotation set Xn containing tn. After passing
to a subsequence, we may assume that Xn converges to a compact set X, which is a
rotation set by Lemma 4.11. Hence t ∈ X ⊂ Rd . This proves (i).

For (ii), first note that Cd and Ed are disjoint since rational rotation sets are never
exact. To see Ed is non-compact, take any sequence {Xn} of exact rotation sets with
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ρ(Xn) tending to some rational number p/q (for example, let an = (θn, δn) where
θn are irrational tending to p/q and δn have rational components, and consider the
rotation sets Xan which are exact by Lemma 4.13). Some subsequence of {Xn}
converges to a compact set X which, by Lemma 4.11, is a (maximal) rotation set
with ρ(X) = p/q . EvidentlyX ⊂ Ed . However,X∩Ed = ∅ since the forward orbit
of any t ∈ X eventually hits a cycle, so t cannot belong to an exact rotation set.

Now suppose X is exact and choose cycles Cn such that ρ(Cn) → ρ(X) and
δ(Cn) → δ(X). Theorem 4.15 then shows that Cn → X, so X ⊂ Cd . This proves
the inclusion Ed ⊂ Cd and also shows that Cd is non-compact.

For (iii), simply note that Ed has no isolated point since it is the closure of a union
of Cantor sets, and it is totally disconnected since it is contained in the measure zero
set Rd (Theorem 2.5). �	
Question 4.19 Does the equality Ed = Cd = Rd hold?

The answer is affirmative when d = 2 (see Theorem 4.28) and is likely to be
so for all d . Indeed, the following sharper statement seems plausible: Given any
maximal rotation set X for md there is a sequence {Xn} of exact rotation sets for md

such that Xn → X in the Hausdorff metric.

4.4 The Leading Angle

A minimal rotation set X is uniquely determined by any of its elements: Simply
iterate any angle in X under md and take the closure of the resulting orbit. This
section will give a recipe for computing a canonical angle in every minimal rotation
set from the knowledge of its rotation number and deployment vector. The particular
choice of this angle is motivated by polynomial dynamics and plays a role in the
representation of rotation sets in both dynamical and parameter planes, as outlined
in the next chapter.

Definition 4.20 Let X be a minimal rotation set for md and I0 = (ω′, ω) be its
major gap containing the fixed point 0. We call the endpoint ω of I0 the leading
angle of X.

Thus, ω is the first point of X that is met when we start at 0 and go counter-
clockwise around the circle. The closed intervals [ω′, ω] and [md(ω′),md(ω)] can
be described as the fibers ϕ−1(0) and ϕ−1(θ) of the canonical semiconjugacy ϕ of
X, where θ = ρ(X). For convenience we identify ω′, ω and their images with the
representatives which satisfy the order relations −1 < ω′ < 0 < ω < md(ω′) ≤
md(ω) < 1 (see Fig. 4.3).

Suppose ρ(X) = θ �= 0 and σ(X) = (σ1, . . . , σd−1). Let ν be the gap measure
of X as defined in (3.20) and N0 ≥ 0 be the number of indices 1 ≤ j < d − 1 for
which σj = 0.
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ω

ω

md(ω )

md(ω )

I0

00

θ

ϕ

rθgX

Fig. 4.3 The major gap I0 = (ω′, ω) containing the fixed point u0 = 0 and the leading angle ω of
a minimal rotation set X. The closed intervals [ω′, ω] and [md(ω′),md(ω)] are the fibers ϕ−1(0)
and ϕ−1(θ), respectively. Here ϕ is the canonical semiconjugacy of X and θ = ρ(X)

Theorem 4.21 The leading angle of X is given by

ω = 1

d − 1
ν(0, θ ] + N0

d − 1
(4.5)

= 1

d − 1

d−1∑
i=1

∑
0<σi−kθ≤θ

1

dk+1
+ N0

d − 1

This formula gives an explicit algorithm for computing the base d expansion of the
angle (d − 1)ω (compare Lemma 4.24 below).

Proof As pointed out in the beginning of Sect. 3.2, if N1 ≥ 1 is the number of
indices 1 ≤ j ≤ d − 1 for which σj = 1, then n0 = N0 + N1 is the multiplicity of
I0 = (ω′, ω) as a major gap of X. Since

ω′ <
−N1 + 1

d − 1
≤ −N1 + 1

d
≤ 0 ≤ N0

d
≤ N0

d − 1
< ω,

the gap I0 already contains the n0 points j/d for j = −N1 + 1, . . . , N0. By
Lemma 2.8, there could be no more preimages of 0 in I0. In particular, ω <

(N0+1)/d , which provesN0 is the integer part of d ω. Sincemd(ω) = dω (mod Z),
it follows that

md(ω) = dω − N0. (4.6)

Now let ϕ : T → T be the canonical semiconjugacy of X and λ be Lebesgue
measure on the circle. Since ϕ∗λ = ν, we have

md(ω) − ω = λ(ω,md(ω)] = λ(ϕ−1(0, θ ]) = ν(0, θ ]. (4.7)
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The result follows by eliminating md(ω) from (4.6) and (4.7). �	
Remark 4.22 A similar argument gives the following formulas for the other angles
involved in Fig. 4.3:

md(ω) = d

d − 1
ν(0, θ ] + N0

d − 1

ω′ = 1

d − 1
ν[0, θ) − N1

d − 1

md(ω′) = d

d − 1
ν[0, θ) − N1

d − 1
.

We point out that the above formulas for ω,ω′ can be used to compute the endpoint
angles of any major gap of X. For example, if Ii is the major gap of X containing
the fixed point ui = i/(d − 1) (mod Z), consider the rotation set X − ui whose
deployment vector is obtained by a cyclic permutation of the components of δ(X)

(see Sect. 3.1), apply the above formulas to compute the endpoints of the major gap
of X − ui containing 0, and rotate them back by rui to find the endpoints of Ii .

4.5 Rotation Sets Under Doubling

In this section we focus on the basic case d = 2. Theorems 3.7 and 3.20 show that
for every 0 < θ < 1 there is a unique minimal rotation set Xθ under doubling with
rotation number θ , which is a periodic orbit if θ is rational and a Cantor set if θ is
irrational. The structure of Xθ in either case can be explicitly described as follows.

Let us first consider the rational case. For every fraction p/q in lowest terms,
Xp/q is a q-cycle of the form {t1, . . . , tq}, where as usual the points are labeled in
positive cyclic order and 0 ∈ (tq, t1), and the subscripts are taken modulo q . Let
�j denote the length of the gap Ij = (tj , tj+1). We can compute the �j explicitly
using the general formulas we developed in Sect. 3.2. Recall that � = (�1, . . . , �q )

and n = (n1, . . . , nq) are the gap length and gap multiplicity vectors of Xp/q ,
respectively. Since Iq = I0 is the unique major gap of Xp/q of multiplicity 1, we
have nq = 1 and nj = 0 for 1 ≤ j < q . According to (3.4),

� = 1

2q − 1

q−1∑
i=0

2q−i−1 T ◦i (n),

where T (x1, x2, . . . , xq) = (x1+p, x2+p, . . . , xq+p). Since T ◦i (n) = (n1+ip, n2+ip,

. . . , nq+ip), it follows that �j = 2q−i−1/(2q − 1), where 0 ≤ i ≤ q − 1 is the
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unique solution of j + ip = 0 (mod q). If 1 ≤ p∗ ≤ q − 1 is the multiplicative
inverse of p modulo q , it follows that q − i = jp∗ (mod q). Thus,

�j = 2〈jp∗〉−1

2q − 1
, where 1≤〈jp∗〉 ≤ q is the unique representative of jp∗ (mod q).

In particular, Ip and Iq = I0 are the shortest and longest gaps of lengths

�p = 1

2q − 1
and �q = 2q−1

2q − 1
.

By (4.5), the leading angle ω = t1 is given by

ω = ν
(
0,

p

q

]
= �1 + · · · + �p =

p∑
j=1

2〈jp∗〉−1

2q − 1
. (4.8)

Example 4.23 Consider the 7-cycle X 3
7

= {t1, t2, . . . , t7} under doubling. Here

q = 7, p = 3 and p∗ = 5. By the above computation, the gap lengths are

�1 = 2〈5〉−1

127
= 16

127
�2 = 2〈10〉−1

127
= 4

127

�3 = 2〈15〉−1

127
= 1

127
�4 = 2〈20〉−1

127
= 32

127

�5 = 2〈25〉−1

127
= 8

127
�6 = 2〈30〉−1

127
= 2

127

�7 = 2〈35〉−1

127
= 64

127
.

(Alternatively, we could start with the minimal gap length �3 = 1
127 and keep

doubling it until all �j are found.) The leading angle t1 is �1 + �2 + �3 = 21
127 ,

which, in view of the relation tj+3 = 2tj (mod Z), leads to the other angles tj :

t4 = 42

127
, t7 = 84

127
, t3 = 41

127
, t6 = 82

127
, t2 = 37

127
, t5 = 74

127
.

Thus,

X 3
7

=
{ 21

127
,
37

127
,
41

127
,
42

127
,
74

127
,
82

127
,
84

127

}
.

When θ is irrational, the unique major gap I0 of Xθ is taut, so it has length 1
2 . For

every n ≥ 1 there is a unique gap of length 1
2n+1 which maps to I0 after n iterates.

The rotation number θ determines the cyclic order of these gaps around the circle.
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Now consider the leading angle ω(θ) of Xθ as defined in the previous section.
The cumulative deployment vector of Xθ is the trivial vector (σ1) = (1). Hence the
formula (4.5) takes the form

ω(θ) = ν(0, θ ] =
∑

0<−kθ≤θ

1

2k+1 . (4.9)

If θ is rational of the form p/q in lowest terms, this sum splits into p geometric
series, each taken over all k ≥ 0 for which −kp/q = j/q (mod Z) for a given
1 ≤ j ≤ p. These p series in effect correspond to the p terms of the sum (4.8).
Table 4.1 illustrates the computation of ω(p/q) using both formulas for all reduces
fractions with denominators up to 8.

Equation (4.9) can be interpreted as a formula for the binary expansion of the
leading angle ω(θ). Consider the intervals

T0 = [0, 1 − θ) T1 = [1 − θ, 1)

on the circle. The binary expansion of ω(θ) is obtained using the itinerary of the
orbit of 0 under the rotation rθ relative to the partition T0 ∪ T1:

Lemma 4.24 The binary expansion

ω(θ) = 0.b0b1b2 · · · (base 2)

is determined by the condition kθ ∈ Tbk for all k ≥ 0.

Note in particular that always b0 = 0.

Proof By (4.5), bk = 1 if and only if −kθ ∈ (0, θ ], which is equivalent to kθ ∈
[1 − θ, 1). �	

We will see a dynamical interpretation of this lemma in the next chapter (see
Sect. 5.3).

The following lemma provides yet another formula for the leading angleω which
already appears in Douady-Hubbard’swork on the dynamics of the quadratic family
and the Mandelbrot set. Although this formula is not computationally as efficient
as (4.9), it greatly facilitates the study of the dependence of ω(θ) on the rotation
number θ :

Lemma 4.25 The leading angle of Xθ satisfies

ω(θ) = 1

2

∑
0<p/q≤θ

1

2q − 1
, (4.10)

where the fractions p/q in the sum are all reduced.
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Table 4.1 The leading angle ω(p/q) of the cycle Xp/q under the doubling map, for denominators
2 ≤ q ≤ 8

p/q Formula (4.8) Formula (4.9) ω(p/q)

1
2

20

22−1

∑∞
j=1

1
22j

1
3

1
3

20

23−1

∑∞
j=1

1
23j

1
7

2
3

21+20

23−1

∑∞
j=1

(
1

23j−1 + 1
23j

)
3
7

1
4

20

24−1

∑∞
j=1

1
24j

1
15

3
4

22+21+20

24−1

∑∞
j=1

(
1

24j−2 + 1
24j−1 + 1

24j

)
7
15

1
5

20

25−1

∑∞
j=1

1
25j

1
31

2
5

22+20

25−1

∑∞
j=1

(
1

25j−2 + 1
25j

)
5
31

3
5

21+23+20

25−1

∑∞
j=1

(
1

25j−1 + 1
25j−3 + 1

25j

)
11
31

4
5

23+22+21+20

25−1

∑∞
j=1

(
1

25j−3 + 1
25j−2 + 1

25j−1 + 1
25j

)
15
31

1
6

20

26−1

∑∞
j=1

1
26j

1
63

5
6

24+23+22+21+20

26−1

∑∞
j=1

(
1

26j−4 + 1
26j−3 + 1

26j−2 + 1
26j−1 + 1

26j

)
31
63

1
7

20

27−1

∑∞
j=1

1
27j

1
127

2
7

23+20

27−1

∑∞
j=1

(
1

27j−3 + 1
27j

)
9

127

3
7

24+22+20

27−1

∑∞
j=1

(
1

27j−4 + 1
27j−2 + 1

27j

)
21
127

4
7

21+23+25+20

27−1

∑∞
j=1

(
1

27j−1 + 1
27j−3 + 1

27j−5 + 1
27j

)
43
127

5
7

22+25+21+24+20

27−1

∑∞
j=1

(
1

27j−2 + 1
27j−5 + 1

27j−1 + 1
27j−4 + 1

27j

)
55
127

6
7

25+24+23+22+21+20

27−1

∑∞
j=1

(
1

27j−5 + 1
27j−4 + 1

27j−3 + 1
27j−2 +

1
27j−1 + 1

27j

)
63
127

1
8

20

28−1

∑∞
j=1

1
28j

1
255

3
8

22+25+20

28−1

∑∞
j=1

(
1

28j−2 + 1
28j−5 + 1

28j

)
37
255

5
8

24+21+26+23+20

28−1

∑∞
j=1

(
1

28j−4 + 1
28j−1 + 1

28j−6 + 1
28j−3 + 1

28j

)
91
255

7
8

26+25+24+23+22+21+20

28−1

∑∞
j=1

(
1

28j−6 + 1
28j−5 + 1

28j−4 + 1
28j−3 +

1
28j−2 + 1

28j−1 + 1
28j

)
127
255
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Proof For each integer m ≥ 1, let km be the largest positive integer for which
m > kmθ . Then 0 < m − kmθ ≤ θ , so −kmθ (mod Z) is in the interval (0, θ ].
Conversely, if −kθ (mod Z) belongs to (0, θ ], there exists an integer m ≥ 1 such
that 0 < m − kθ ≤ θ , so kθ < m ≤ (k + 1)θ , which shows k = km. Thus, by (4.9),

ω(θ) =
∞∑

m=1

1

2km+1
.

To relate this sum to (4.10), we use an idea of Douady (compare [12] and [7]).
Assign to each pair (n,m) of positive integers the weight W(n,m) = 1/2n. Let W

be the total weight of all (n,m) for which m/n ≤ θ . On the one hand,

W =
∞∑

m=1

∞∑
n=km+1

W(n,m) =
∞∑

m=1

∞∑
n=km+1

1

2n
=

∞∑
m=1

1

2km
= 2ω(θ).

On the other hand, computing the total weight along lines with rational slope gives

W =
∑

0<p/q≤θ

∞∑
j=1

W(jq, jp) =
∑

0<p/q≤θ

∞∑
j=1

1

2jq
=

∑
0<p/q≤θ

1

2q − 1
,

and the result follows. �	
Corollary 4.26 The leading angle ω(θ) of Xθ is a strictly increasing function of
0 < θ < 1, with ω(0+) = 0 and ω(1−) = 1

2 . Moreover,

(i) ω has a jump discontinuity at every rational value of θ . In fact, if θ = p/q in
lowest terms, then

ω(p/q) = ω(p/q+) = ω(p/q−) + 1

2(2q − 1)
.

(ii) ω is continuous at every irrational value of θ .
(iii) For every 0 < θ < 1,

ω(θ+) + ω((1 − θ)−) = 1

2
.

Compare Fig. 4.4. There is a well-known connection between the function θ 
→
ω(θ) and the quadratic family {z 
→ z2 + c}c∈C (see Sect. 5.3).

Proof Only (iii) needs a comment, as other properties follow at once from (4.10).
For 0 < θ < 1,

ω(θ+) = ω(θ) =
∑

0<p/q≤θ

1

2q − 1

= 1

2
−

∑
θ<p/q<1

1

2q − 1
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1/2

1/2

1/4

Fig. 4.4 The graph of the leading angle ω(θ) of the minimal rotation set Xθ under doubling, as a
function of the rotation number θ . Notice the jump discontinuities at every rational value of θ and
the symmetry of the graph around the center point ( 12 , 1

4 )

= 1

2
−

∑
0<(q−p)/q<1−θ

1

2q − 1

= 1

2
− ω((1 − θ)−),

as required. �	

Remark 4.27 It follows from Corollary 4.26 that the map θ 
→ ω(θ) has a
left-inverse ω 
→ θ(ω) which maps (0, 1

2 ) monotonically onto (0, 1) and has
non-degenerate fibers over every rational value of θ . It is not hard to check that
θ(ω) is the rotation number of the rotation set consisting of all points in T whose
forward orbit under doubling is contained in the closed half-circle [ω,ω + 1

2 ] (see
Theorem 2.15).

The behavior of θ 
→ ω(θ) makes it possible to answer Question 4.19 when
d = 2:

Theorem 4.28 For every maximal rotation set X under doubling there is a
sequence {Xθn} of exact rotation sets such that Xθn → X in the Hausdorff metric.
In particular, E2 = C2 = R2.

Proof If ρ(X) is irrational, then X itself is exact (Corollary 2.38) and there is
nothing to prove. If ρ(X) is rational of the formp/q in lowest terms, thenX contains
the cycle Xp/q with the major gap

(
ω(p/q) − 2q−1

2q − 1
, ω(p/q)

)
=

(
ω(p/q−) − 1

2
, ω(p/q+)

)
.
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Corollary 2.31 then shows that the major gap of X is one of the intervals

I =
(
ω(p/q+) − 1

2
, ω(p/q+)

)
or J =

(
ω(p/q−) − 1

2
, ω(p/q−)

)
.

Suppose the major gap of X is I . Take a decreasing sequence {θn} of irrational
numbers with θn → p/q . The rotation sets Xθn are exact and their leading angles
ω(θn) tend to ω(p/q+). By Lemma 4.11, any Hausdorff limit of {Xθn} is a maximal
rotation set with rotation number p/q and major gap I , so it must be X. It follows
that Xθn → X. If the major gap of X is J , take an increasing sequence {θn} of
irrationals with θn → p/q , which now has the property ω(θn) → ω(p/q−), and
conclude similarly that Xθn → X. �	

4.6 Rotation Sets Under Tripling

We now consider the case d = 3. Theorems 3.7 and 3.20 show that for every 0 <

θ < 1 and every 0 ≤ δ ≤ 1 there is a uniqueminimal rotation set Xθ,δ under tripling
with rotation number θ and deployment vector (δ, 1 − δ), which is a periodic orbit
if θ is rational and a Cantor set if θ is irrational. Notice that changing δ to 1 − δ

amounts to rotating Xθ,δ by 180◦:

Xθ,1−δ = Xθ,δ + 1

2
.

This means that to study the structure of Xθ,δ we may restrict δ to either of the
intervals [0, 1

2 ] or [ 12 , 1].
First suppose θ = p/q in lowest terms, so δ is of the form s/q for some 0 ≤

s ≤ q . Then Xp/q,s/q is a q-cycle of the form {t1, . . . , tq}, where the points are
labeled in positive cyclic order and 0 ∈ (tq, t1). As before, let �j denote the length
of the gap Ij = (tj , tj+1), and let � = (�1, . . . , �q) and n = (n1, . . . , nq) be the gap
length and gap multiplicity vectors of Xp/q,s/q , respectively. The two major gaps of
Xp/q,s/q are Iq = I0 and Is containing the fixed points 0 and 1

2 of m3, respectively.
We distinguish three cases:

• Case 1. s = q . The cumulative deployment vector in this case is (σ1, σ2) =
(1, 1). Evidently Iq = Is is the unique major gap of multiplicity 2, so nq = 2
and nj = 0 for 1 ≤ j < q . This case turns out to be completely similar to the
doubling case treated in the previous section. A similar computation gives

�j = 2 · 3〈jp∗〉−1

3q − 1
, where 1 ≤ 〈jp∗〉 ≤ q is the unique representative of

jp∗ (mod q).
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In particular, Ip and Iq are the shortest and longest gaps of lengths

�p = 2

3q − 1
and �q = 2 · 3q−1

3q − 1
.

By (4.5) the leading angle ω = t1 is given by

ω = 1

2
ν
(
0,

p

q

]
= 1

2
(�1 + · · · + �p) =

p∑
j=1

3〈jp∗〉−1

3q − 1
(4.11)

which is analogous to the formula (4.8) for the doubling case.
• Case 2. s = 0. The cumulative deployment vector in this case is (σ1, σ2) =

(0, 1). This is similar to Case 1 and can be reduced to it by a 180◦ rotation. It
easily follows that the gap lengths �j are given by the same formulas as above.
However, the leading angle ω = t1 is

ω = 1

2
ν
(
0,

p

q

]
+ 1

2
= 1

2
(�1 + · · · + �p) + 1

2
=

p∑
j=1

3〈jp∗〉−1

3q − 1
+ 1

2
.

• Case 3. 0 < s < q . This time Iq and Is are distinct major gaps of multiplicity 1,
so nq = ns = 1 and nj = 0 for j �= q, s. In this case,

�j = 1

3q − 1

[
3〈jp∗〉−1 + 3〈(j−s)p∗〉−1

]
.

Note that there are now two competing candidates Ip, Is+p for the shortest gap
and similarly two candidates Iq, Is for the longest gap. The choice depends on
the relative size of 〈sp∗〉 and 〈−sp∗〉. In fact, the above formula shows that if
〈sp∗〉 < 〈−sp∗〉, then the minimum and maximum gap lengths are

�s+p = 3〈sp∗〉 + 1

3q − 1
and �q = 3q−1 + 3〈−sp∗〉−1

3q − 1
,

while if 〈sp∗〉 > 〈−sp∗〉, the minimum and maximum gap lengths are

�p = 3〈−sp∗〉 + 1

3q − 1
and �s = 3q−1 + 3〈sp∗〉−1

3q − 1
.

If 〈sp∗〉 = 〈−sp∗〉 = q/2 (so q is even), the minimum and maximum gap
lengths are

�p = �s+p = 1

3q/2 − 1
and �q = �s = 3q/2−1

3q/2 − 1
.
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Whatever the case, the leading angle ω = t1 can still be computed as the sum
ω = ( 12 )(�1 + · · · + �p) which, in view of the relation tj+p = 3tj (mod Z),
would determine every angle tj .

Example 4.29 Consider the 5-cycle X 3
5 , 55

= {t1, . . . , t5} under tripling. Here q = 5,

p = 3, p∗ = 2 and s = 5. By the computation in Case 1, the gap lengths are

�1 = 2 · 3〈2〉−1

242
= 6

242
�2 = 2 · 3〈4〉−1

242
= 54

242
�3 = 2 · 3〈6〉−1

242
= 2

242

�4 = 2 · 3〈8〉−1

242
= 18

242
�5 = 2 · 3〈10〉−1

242
= 162

242
.

The leading angle t1 is ( 12 )(�1 + �2 + �3) = 31
242 . In view of tj+3 = 3tj (mod Z),

we obtain

t4 = 93

242
, t2 = 37

242
, t5 = 111

242
, t3 = 91

242
.

Thus,

X 3
5 , 55

=
{ 31

242
,
37

242
,
91

242
,
93

242
,
111

242

}
.

Example 4.30 Now let us determine the 5-cycleX 3
5 , 25

= {t1, . . . , t5} under tripling.
Here q = 5, p = 3, p∗ = 2 and s = 2. By the computation in Case 3, the gap
lengths are

�1 = 3〈2〉−1 + 3〈−2〉−1

242
= 12

242
�2 = 3〈4〉−1 + 3〈0〉−1

242
= 108

242

�3 = 3〈6〉−1 + 3〈2〉−1

242
= 4

242
�4 = 3〈8〉−1 + 3〈4〉−1

242
= 36

242

�5 = 3〈10〉−1 + 3〈6〉−1

242
= 82

242
.

The leading angle t1 is ( 12 )(�1 + �2 + �3) = 62
242 , which gives

t4 = 186

242
, t2 = 74

242
, t5 = 222

242
, t3 = 182

242
.

Thus,

X 3
5 , 25

=
{ 62

242
,
74

242
,
182

242
,
186

242
,
222

242

}
.
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Unlike the case of the doubling map, irrational rotation numbers under tripling
can have a wider variety of gap lengths depending on their deployment vector:

Theorem 4.31 Suppose θ is irrational.

(i) If δ = 0 or 1, then Xθ,δ has a single major gap of length
2
3 .

(ii) If δ = ±nθ (mod Z) for some positive integer n, then Xθ,δ has a pair of major
gaps of lengths 1

3 and 1
3 + 1

3n+1 .

(iii) For all other choices of δ, Xθ,δ has a pair of major gaps of length 1
3 .

Proof The major gaps of Xθ,δ have lengths ν{δ} and ν{1} = ν{0}, where

ν =
∞∑

k=0

3−(k+1)1−kθ +
∞∑

k=0

3−(k+1)1δ−kθ

is the gap measure of Xθ,δ defined by (3.20). Since θ is irrational, the backward
orbit O1 = {−kθ (mod Z) : k ≥ 0} in the first sum and the backward orbit O2 =
{δ − kθ (mod Z) : k ≥ 0} in the second sum consist of distinct points. However,
for some values of δ the two orbits could collide. If δ = 0 or 1, then O1 = O2
and there is a single major gap of length ν{0} = 2

3 . If δ = nθ (mod Z) for some
positive integer n, then O1 � O2 and ν{0} = 1

3 + 1
3n+1 and ν{δ} = 1

3 . Similarly, if

δ = −nθ (mod Z) for some positive integer n, then O2 � O1 and ν{0} = 1
3 and

ν{θ} = 1
3 + 1

3n+1 . For all other values of δ, O1 ∩ O2 = ∅, so ν{0} = ν{δ} = 1
3 . �	

Let ω(θ, δ) denote the leading angle of Xθ,δ as defined in Sect. 4.4. By the
formula (4.5),

ω(θ, δ) = 1

2

⎡
⎣ ∑
0<−kθ≤θ

1

3k+1 +
∑

0<δ−kθ≤θ

1

3k+1

⎤
⎦ + N0

2
, (4.12)

where N0 = 1 if δ = 0 and N0 = 0 otherwise. One can study the function (θ, δ) 
→
ω(θ, δ) by looking at the one-dimensional slices where θ or δ is kept fixed. The only
values of δ for which θ 
→ ω(θ, δ) is defined for all 0 < θ < 1 are δ = 0 and 1. As
we have noticed before, these are similar to the doubling case. For example, when
δ = 1, the leading angle is given by

ω(θ, 1) =
∑

0<−kθ≤θ

1

3k+1 (4.13)

which is similar to the formula (4.9) for the doubling map. Table 4.2 illustrates the
computation of ω(p/q, 1) using formulas (4.11) and (4.13) for all reduces fractions
with denominators up to 8.
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Table 4.2 The leading angle ω(p/q, 1) of the cycle Xp/q,1 under the tripling map, for
denominators 2 ≤ q ≤ 8

p/q Formula (4.11) Formula (4.13) ω(p/q, 1)

1
2

30

32−1

∑∞
j=1

1
32j

1
8

1
3

30

33−1

∑∞
j=1

1
33j

1
26

2
3

31+30

33−1

∑∞
j=1

(
1

33j−1 + 1
33j

)
4
26

1
4

30

34−1

∑∞
j=1

1
34j

1
80

3
4

32+31+30

34−1

∑∞
j=1

(
1

34j−2 + 1
34j−1 + 1

34j

)
13
80

1
5

30

35−1

∑∞
j=1

1
35j

1
242

2
5

32+30

35−1

∑∞
j=1

(
1

35j−2 + 1
35j

)
10
242

3
5

31+33+30

35−1

∑∞
j=1

(
1

35j−1 + 1
35j−3 + 1

35j

)
31
242

4
5

33+32+31+30

35−1

∑∞
j=1

(
1

35j−3 + 1
35j−2 + 1

35j−1 + 1
35j

)
40
242

1
6

30

36−1

∑∞
j=1

1
36j

1
728

5
6

34+33+32+31+30

36−1

∑∞
j=1

(
1

36j−4 + 1
36j−3 + 1

36j−2 + 1
36j−1 + 1

36j

)
121
728

1
7

30

37−1

∑∞
j=1

1
37j

1
2186

2
7

33+30

37−1

∑∞
j=1

(
1

37j−3 + 1
37j

)
28

2186

3
7

34+32+30

37−1

∑∞
j=1

(
1

37j−4 + 1
37j−2 + 1

37j

)
91

2186

4
7

31+33+35+30

37−1

∑∞
j=1

(
1

37j−1 + 1
37j−3 + 1

37j−5 + 1
37j

)
274
2186

5
7

32+35+31+34+30

37−1

∑∞
j=1

(
1

37j−2 + 1
37j−5 + 1

37j−1 + 1
37j−4 + 1

37j

)
337
2186

6
7

35+34+33+32+31+30

37−1

∑∞
j=1

(
1

37j−5 + 1
37j−4 + 1

37j−3 + 1
37j−2 +

1
37j−1 + 1

37j

)
364
2186

1
8

30

38−1

∑∞
j=1

1
38j

1
6560

3
8

32+35+30

38−1

∑∞
j=1

(
1

38j−2 + 1
38j−5 + 1

38j

)
253
6560

5
8

34+31+36+33+30

38−1

∑∞
j=1

(
1

38j−4 + 1
38j−1 + 1

38j−6 + 1
38j−3 + 1

38j

)
841
6560

7
8

36+35+34+33+32+31+30

38−1

∑∞
j=1

(
1

38j−6 + 1
38j−5 + 1

38j−4 + 1
38j−3 +

1
38j−2 + 1

38j−1 + 1
38j

)
1093
6560

The computations are identical to the doubling case in Table 4.1 once each power of 2 is replaced
by the similar power of 3. In other words, the ternary expansion of ω(p/q, 1) is the same as the
binary expansion of ω(p/q)
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An argument similar to the proof of Lemma 4.25 establishes the alternative
formula

ω(θ, 1) = 2

3

∑
0<p/q≤θ

1

3q − 1
,

which leads to the following analog of Corollary 4.26:

Corollary 4.32 The leading angle ω(θ, 1) of Xθ,1 is a strictly increasing function
of 0 < θ < 1, with ω(0+, 1) = 0 and ω(1−, 1) = 1

6 . Moreover,

(i) ω(θ, 1) has a jump discontinuity at every rational value of θ . In fact, if θ =
p/q in lowest terms, then

ω(p/q, 1) = ω(p/q+, 1) = ω(p/q−, 1) + 2

3(3q − 1)
.

(ii) ω(θ, 1) is continuous at every irrational value of θ .
(iii) For every 0 < θ < 1,

ω(θ+, 1) + ω((1 − θ)−, 1) = 1

6
.

Compare Fig. 4.5. The function θ 
→ ω(θ, 1) is related to the unicritical cubic
family {z 
→ z3 + c}c∈C (see Remark 5.14 at the end of Sect. 5.4).

Now let us fix some irrational 0 < θ < 1. For simplicity, let ω = ω(θ, 1).

Theorem 4.33 The leading angle ω(θ, δ) of Xθ,δ is a strictly decreasing function
of 0 ≤ δ ≤ 1, with ω(θ, 0) = ω + 1

2 and ω(θ, 1) = ω. Moreover,

1/2

1/6

1/12

Fig. 4.5 The graph of the leading angle ω(θ, 1) of the minimal rotation set Xθ,1 under tripling, as
a function of the rotation number θ . Notice the similarity with the graph of the leading angle ω(θ)

under doubling in Fig. 4.4
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Fig. 4.6 Left: The graph of the leading angle ω(θ, δ) of the minimal rotation set Xθ,δ under

tripling, as a function of 0 ≤ δ ≤ 1. Here θ = (
√
5−1)
2 is the golden mean. There is a jump of

size 1/3n+1 at the parameter δn = nθ (mod Z) for every n ≥ 0 (only six such jumps are visible
in the figure). Right: The graph of the leading angle for the rational approximation 21

34 of θ (see
Remark 4.34)

(i) δ 
→ ω(θ, δ) has a jump discontinuity at the points δn = nθ (mod Z) for
integers n ≥ 0. In fact,

ω(θ, δn) = ω(θ, δ−
n ) = ω(θ, δ+

n ) + 1

3n+1 .

(ii) δ 
→ ω(θ, δ) is continuous at every δ �= δn.

Compare Fig. 4.6.

Proof For each 0 < δ ≤ 1 we have

ω(θ, δ) = 1

2
ω + 1

2

∞∑
k=0

εk(θ, δ)

3k+1 ,

where

εk(θ, δ) =
{
1 if δ − kθ ∈ (0, θ ]
0 otherwise.

Since εk(θ, δ′) → εk(θ, δ) as δ′ → δ−, it follows (say, from the dominated
convergence theorem) that ω(θ, δ−) = ω(θ, δ), proving left-continuity at every δ. If
δ �= δn for every n ≥ 0, then δ − kθ ∈ (0, θ) or (θ, 1) for each k ≥ 0. In either case,
we have εk(θ, δ′) → εk(θ, δ) as δ′ → δ+ and right-continuity ω(θ, δ+) = ω(θ, δ)
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follows. However, suppose δ = δn for some n ≥ 1. Then the two orbit relations
δ − nθ = 0 and δ − (n − 1)θ = θ (mod Z) show that

εn(θ, δ+) = 1 > 0 = εn(θ, δ),

εn−1(θ, δ+) = 0 < 1 = εn−1(θ, δ),

εk(θ, δ+) = εk(θ, δ) if k �= n, n − 1,

where the third relation follows from the assumption that θ is irrational. It
follows that

ω(θ, δ) − ω(θ, δ+) = 1

2

(
− 1

3n+1 + 1

3n

)
= 1

3n+1 .

Similarly, if δ = δ0 = 0, then

ε0(θ, δ+) = 1 > 0 = ε0(θ, δ),

εk(θ, δ+) = εk(θ, δ) if k �= 0,

from which it follows that

ω(θ, 0) − ω(θ, 0+) = 1

2
+ 1

2

(
− 1

3

)
= 1

3
.

Finally, observe that for each n the sum δ 
→ ∑n
k=0 εk(θ, δ)/3k+1 is a step

function with discontinuities along {δ0, . . . , δn} where it jumps to a lower value,
hence is decreasing in δ. Letting n → ∞, it follows that the function δ 
→ ω(θ, δ)

is decreasing as well. Since the set {δn}n≥0 is dense in [0, 1], we conclude that this
function must be strictly decreasing. �	
Remark 4.34 The parameters δn are precisely the values of δ ∈ [0, 1) for which the
major gap I0 of Xθ,δ containing 0 has length > 1

3 . A generic perturbation δ = δn+ε

will replace I0 with a major gap of length 1
3 together with a nearby minor gap of

length 1
3n+1 . This gives an intuitive explanation for the nature of discontinuity of the

leading angle at every δn.
It is not hard to check that if θ is irrational and δ �= δn for all n ≥ 0, and

if (pi/qi, si/qi) is a sequence of rational parameters that converges to (θ, δ), then
ω(pi/qi, si/qi) → ω(θ, δ). In view of this, it is natural to expect the discrete graph
of δ 
→ ω(pi/qi, δ) (consisting of qi + 1 points) to resemble the graph of δ 
→
ω(θ, δ) for large i; see Fig. 4.6.
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The next result shows that the values of ω(θ, δ) at the discontinuity points δn =
nθ (mod Z) depend rationally on the “base angle” ω = ω(θ, 1):

Theorem 4.35 Let ω = ω(θ, 1). Then, for every n ≥ 1,

ω(θ, nθ) = (3n + 1) ω + An

2 · 3n
(4.14)

ω(θ,−nθ) = (3n + 1) ω − Bn

2
, (4.15)

where An,Bn are non-negative integers (in fact, sums of distinct non-negative
powers of 3):

An =
∑

1≤k≤n
0<kθ≤θ

3k−1 and Bn =
∑

1≤k≤n
0<(k−n)θ≤θ

3k−1. (4.16)

Proof For simplicity let Z denote the set of integers k such that −kθ (mod Z)

belongs to (0, θ ]. By the definition of ω(θ, δ) and (4.13),

2ω(θ, nθ) =
∑

k∈Z∩[0,∞)

3−(k+1) +
∑

k−n∈Z∩[−n,∞)

3−(k+1)

= ω +
∑

k∈Z∩[−n,∞)

3−(k+n+1)

= ω +
( ∑

k∈Z∩[0,∞)

+
∑

k∈Z∩[−n,0)

)
3−(k+n+1)

= (1 + 3−n) ω + 3−n
∑

k∈Z∩[−n,0)

3−(k+1),

which proves (4.14) with

An =
∑

k∈Z∩[−n,0)

3−(k+1) =
∑

1≤k≤n
0<kθ≤θ

3k−1,

as in (4.16). Similarly,

2ω(θ,−nθ) =
∑

k∈Z∩[0,∞)

3−(k+1) +
∑

k+n∈Z∩[n,∞)

3−(k+1)

= ω +
∑

k∈Z∩[n,∞)

3−(k−n+1)
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= ω +
( ∑

k∈Z∩[0,∞)

−
∑

k∈Z∩[0,n)

)
3−(k−n+1)

= (1 + 3n)ω −
∑

k∈Z∩[0,n)

3−(k−n+1),

which proves (4.15) with

Bn =
∑

k∈Z∩[0,n)

3−(k−n+1) =
∑

1≤k≤n
0<(k−n)θ≤θ

3k−1,

as in (4.16). �	
Remark 4.36 It can be shown that for every irrational θ the angle ω = ω(θ, 1) is
transcendental (see [7] for the quadratic case and [1] for a more general result).
It follows from the above theorem that all the leading angles ω(θ,±nθ) are
also transcendental. These angles appear in the bifurcation loci of certain one-
dimensional families of cubic polynomials (see Sect. 5.4).
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