
Chapter 3
The Deployment Theorem

The main result of this chapter is that a minimal rotation set for md is uniquely
determined by its rotation number together with an invariant called the “deployment
vector” which, roughly speaking, describes how the points of the rotation set are
deployed relative to the d−1 fixed points of md . This was first proved in the rational
case by Goldberg [11] and was later extended to the irrational case by Goldberg
and Tresser [13] using a Farey tree machinery. By contrast, our presentation here
builds upon the ideas developed in the previous chapter and treats both rational
and irrational cases in a unified fashion. Various applications of this result will be
discussed in the next chapter.

3.1 Preliminaries

To begin the discussion, consider a minimal rotation set X for md with ρ(X) =
θ �= 0 and the standard monotone map gX. Let ϕ : T → T be the combinatorial
semiconjugacy between gX and rθ if θ is rational, or the Poincaré semiconjugacy
between gX and rθ if θ is irrational. In either case, we have the semiconjugacy
relation

ϕ ◦ md = rθ ◦ ϕ on X.

Recall that ϕ is normalized by ϕ(0) = 0 and its plateaus are precisely the gaps of
X. We refer to ϕ as the canonical semiconjugacy associated with X.

It follows from the discussion in Sect. 1.5 that there is a unique md -invariant
Borel probability measure μ supported on X. This measure, which henceforth will
be called the natural measure of X, is related to the canonical semiconjugacy by

ϕ(t) = μ[0, t] (mod Z).
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36 3 The Deployment Theorem

If θ = p/q in lowest terms so X is a q-cycle, then μ is just the uniform Dirac
measure on X which assigns a mass of 1/q to each point of X. On the other hand, if
θ is irrational so X is a Cantor set, then μ is the (well-defined) pull-back of Lebesgue
measure under ϕ.

Recall that the d − 1 fixed points of md are denoted by

ui = i

d − 1
(mod Z).

Set

δi = μ[ui−1, ui) 1 ≤ i ≤ d − 1.

Then (δ1, . . . , δd−1) is a probability vector, that is, it belongs to the (d − 2)-
dimensional simplex

Δd−2 =
{
(x1, . . . , xd−1) ∈ R

d−1 : xi ≥ 0 and
d−1∑
i=1

xi = 1
}
.

Definition 3.1 The vector δ(X) = (δ1, . . . , δd−1) ∈ Δd−2 is called the deployment
vector of the minimal rotation set X.

Here is a more explicit description for the components of δ(X). If ρ(X) = p/q

in lowest terms, the component δi is the fraction of points of X that fall between the
fixed points ui−1 and ui :

δi = 1

q
#
{
t ∈ X : t ∈ [ui−1, ui)

}
.

If ρ(X) is irrational, it follows from unique ergodicity that δi is the fraction of time
that the orbit of every t ∈ X spends in [ui−1, ui):

δi = lim
n→∞

1

n
#
{
0 ≤ k ≤ n − 1 : m◦k

d (t) ∈ [ui−1, ui)
}

(compare (1.11)).
Observe that the deployment vectors of the rotation sets

X + 1

d − 1
, X + 2

d − 1
, . . . , X + d − 2

d − 1
(mod Z)

are obtained by cyclically permuting the components of δ(X). For example, if X is
a rotation set under m4 with δ(X) = (δ1, δ2, δ3), then δ(X + 1

3 ) = (δ3, δ1, δ2) and
δ(X + 2

3 ) = (δ2, δ3, δ1).
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Closely related is the cumulative deployment vector σ(X) = (σ1, . . . , σd−1) ∈
[0, 1]d−1 whose components are defined by

σi = δ1 + · · · + δi 1 ≤ i ≤ d − 1 (3.1)

and therefore satisfy 0 ≤ σ1 ≤ · · · ≤ σd−1 = 1. In terms of the natural measure μ,
the number σi is just μ[u0, ui). Whether we use δ(X) or σ(X) is solely a matter of
preference, as each of these vectors determines the other uniquely.

Let

N0 = # {1 ≤ i ≤ d − 1 : σi = 0}
N1 = # {1 ≤ i ≤ d − 1 : σi = 1},

so the components of σ(X) begin with N0 ≥ 0 zeros and end in N1 ≥ 1 ones.
It is easy to check that the major gap I0 of X containing the fixed point u0 = 0
contains precisely the fixed points u−N1+1, . . . , uN0 . It follows from Lemma 2.13
that N0 + N1 is the multiplicity of I0.

Remark 3.2 We can assign a deployment vector to every rotation set X, even if
it is not minimal: If X is rational, consider the finitely many cycles C1, . . . , CN

that are contained in X (Corollary 2.27) and define δ(X) to be the average
(1/N)

∑N
i=1 δ(Ci). If X is irrational, define δ(X) = δ(K), where K is the unique

minimal rotation set contained in X (Theorem 2.33).

Lemma 3.3 Let X be a minimal rotation set for md with σ(X) = (σ1, . . . , σd−1),
and let ϕ : T → T be the canonical semiconjugacy associated with X. Then,

σi = ϕ(ui) (mod Z) for all 1 ≤ i ≤ d − 1. (3.2)

Proof Let μ be the natural measure of X, so ϕ(t) = μ[u0, t] (mod Z) for all t ∈ T.
Since ρ(X) �= 0 by the assumption, X contains none of the fixed points ui , so
μ{ui} = 0 for every i. Hence ϕ(ui) = μ[u0, ui ] = μ[u0, ui) = σi (mod Z), as
required. 	

Remark 3.4 The congruences (3.2) allow us to determine σ(X) from the knowledge
of the d − 1 points ϕ(u1), . . . , ϕ(ud−1) on T except when ϕ(ui) = 0 (mod Z) for
all i because in this case we cannot decide whether each σi is 0 or 1. For example,
when d = 4, each of the vectors

σ(X) = (0, 0, 1) or (0, 1, 1) or (1, 1, 1)

would correspond to a minimal rotation set whose canonical semiconjugacy satisfies

ϕ(u1) = ϕ(u2) = ϕ(u3) = 0 (mod Z).
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This ambiguity can be dealt with, for example, by looking at a lift of ϕ.
Alternatively, we can work with rotation sets for which σ1 �= 0 so every σi lies
in (0, 1]. This condition can always be achieved by simply rotating the set: If the
components of σ(X) begin with a string of 0’s of length N0, replace X by its rotated
copy X − N0/(d − 1).

3.2 Deployment Theorem: The Rational Case

Throughout this section we assume that X is a minimal rational rotation set, that is,
a q-cycle {t1, . . . , tq } under md with ρ(X) = p/q in lowest terms. As usual, we
label the points of X so that 0, t1, . . . , tq are in positive cyclic order (in particular,
0 ∈ (tq, t1)) and the subscripts are taken modulo q .

Lemma 3.5 The interval Ij = (tj , tj+1) is a major gap of X of multiplicity n

if and only if j/q (mod Z) appears exactly n times as a component of σ(X) =
(σ1, . . . , σd−1).

Note that since 0/q = q/q (mod Z), this generalizes our previous observation
that the multiplicity of I0 = Iq is N0 + N1.

Proof According to Lemma 2.13, Ij is a major gap of multiplicity n if and only if it
contains exactly n fixed points. Under the canonical semiconjugacy associated with
X, each such fixed point maps to j/q . The result now follows from Lemma 3.3. 	


The main result of this section asserts that a minimal rational rotation set is
uniquely determined by its rotation number and deployment vector. To motivate
the main idea of the proof, we begin with an example.

Example 3.6 Suppose we want to find a 5-cycle X = {t1, · · · , t5} under m4
with ρ(X) = 1

5 and δ(X) = ( 3
5 , 0, 2

5 ). Let �j denote the length of the gap
Ij = (tj , tj+1). By Lemma 3.5, the knowledge of the cumulative deployment vector
σ(X) = ( 3

5 , 3
5 , 5

5 ) tells us that I3 is a major gap of multiplicity 2, I5 = I0 is a major
gap of multiplicity 1, and the remaining Ij are minor (see Fig. 3.1). Since ρ(X) = 1

5 ,
we know that Ij maps to Ij+1. It follows from Lemma 2.8 that

�2 = 4�1

�3 = 4�2 = 42�1

�4 = 4�3 − 2 = 43�1 − 2

�5 = 4�4 = 44�1 − 8

�1 = 4�5 − 1 = 45�1 − 33.
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Fig. 3.1 The unique minimal
rotation set X under m4 with
ρ(X) = 1

5 and
δ(X) = ( 3

5 , 0
5 , 2

5 ) (angles in
X are given in multiples of

1
1023 ). Here X has cumulative
deployment vector
σ(X) = ( 3

5 , 3
5 , 5

5 ), and major
gaps I3 and I5 = I0 of
multiplicities 2 and 1,
respectively, which are also
the number of fixed points of
m4 (shown as green dots)
they contain

11

44

176

704
770

I2

I3

I1

I5 = I0

I4

The last equation can be solved uniquely for �1, which in turn determines every �j :

�1 = 33

1023
, �2 = 132

1023
, �3 = 528

1023
, �4 = 66

1023
, �5 = 264

1023
.

Since �1 = t2 − t1 = 4t1 − t1 = 3t1, we find t1 and therefore every tj :

t1 = 11

1023
, t2 = 44

1023
, t3 = 176

1023
, t4 = 704

1023
, t5 = 770

1023
.

It is easily checked that this 5-cycle has the required rotation number and deploy-
ment vector. The uniqueness automatically follows from the above computation.

In general, the method of Example 3.6 can be described more formally as follows.
Suppose we are looking for a minimal rotation set X = {t1, . . . , tq} for md with
ρ(X) = p/q �= 0 and δ(X) = (δ1, . . . , δd−1). Let �j denote the length of the
gap Ij = (tj , tj+1). Set nj to be the multiplicity of Ij if Ij is major, and nj = 0
otherwise. Then the relations �j+p = d�j − nj hold for every j (recall that all
subscripts are taken modulo q). Introduce the vectors

� = (�1, . . . , �q ) and n = (n1, . . . , nq)

in R
q and denote by T : Rq → R

q the isometry

T (x1, x2, . . . , xq) = (x1+p, x2+p, . . . , xq+p).
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Notice that T is determined by the rotation number while n is determined by the
deployment vector (Lemma 3.5). The q relations above can then be written as the
non-homogeneous linear equation

T (�) = d� − n (3.3)

which can be easily solved for � by applying T repeatedly on each side and using
the fact that T ◦q = id. The result is

� = 1

dq − 1

q−1∑
i=0

dq−i−1 T ◦i (n). (3.4)

Since n �= 0 and since the addition j �→ j + p (mod q) acts transitively on Zq ,
the right hand sum has strictly positive components, so the above formula gives
a unique solution � of (3.3) with �j > 0 for all j . Once the gap lengths �j are
known, we can find the tj by noting that the counterclockwise distance from tj to
tj+p = dtj (mod Z) is the sum �j + · · · + �j+p−1. The method produces a unique
candidate q-cycle X, but one still needs to verify that this X has indeed the required
rotation number and deployment vector.

There is an alternative way to solve (3.3) which, despite its appearance, will turn
out more advantageous. Write (3.3) as

� = 1

d
T (�) + 1

d
n

which can then be turned into

� = 1

d

( 1

d
T ◦2(�) + 1

d
T (n)

) + 1

d
n = 1

d2 T ◦2(�) + 1

d2 T (n) + 1

d
n.

Continuing this way and using the fact that T ◦k(�)/dk → 0 as k → ∞, we obtain
the series solution

� =
∞∑

k=0

d−(k+1) T ◦k(n). (3.5)

The vectors � and n can be thought of as positive measures supported on the subset

S =
{ j

q
(mod Z) : 0 ≤ j ≤ q − 1

} ∼= Zq

of the circle by identifying �j with �{j/q} and nj with n{j/q}. Under this
identification, � is just the push-forward of Lebesgue measure under the canonical
semiconjugacy associated with X. Lemma 3.5 can then be translated into the
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statement that

n =
d−1∑
i=1

1σi ,

where 1x is the unit mass at x. Thus, for each k ≥ 0,

T ◦k(n) =
d−1∑
i=1

1σi−kp/q

and (3.5) can be written as

� =
d−1∑
i=1

∞∑
k=0

d−(k+1)1σi−kp/q . (3.6)

This means that to find � we start with a point mass 1/d at each σi and spread
it around S by taking pull-backs under the rigid rotation rp/q , each time dividing
the mass by d . The measure �j = �{j/q} is the sum of d − 1 infinite series,
each representing the contribution from the initial mass concentrated at one of the
σi . This slightly disguised form of the solution (3.5) will be used in the proof of
Theorem 3.7 below. Why do we use (3.6) instead of the simpler formula (3.4)?
Because this formulation allows us to construct the cycle explicitly and to verify
that it has the given rotation number and deployment vector. More importantly, it
generalizes without any modification to the irrational case discussed in the next
section, thus allowing a unified treatment of both rational and irrational cases of the
deployment theorem.

Theorem 3.7 (Goldberg) For every fraction 0 < p/q < 1 in lowest terms and
every vector (δ1, . . . , δd−1) ∈ Δd−2 with qδi ∈ Z there is a unique minimal rotation
set X for md such that ρ(X) = p/q and δ(X) = (δ1, . . . , δd−1).

Proof It will be convenient to use the notation ≡ for congruence modulo Z, so we
write md(t) ≡ dt , rθ (t) ≡ t + θ and so on. We may also assume δ1 �= 0; the
general case will follow by cyclically permuting the components of (δ1, . . . , δd−1)

and rotating the corresponding rotation set. Define σi = δ1 + . . . + δi for 1 ≤ i ≤
d − 1. Then 0 < σ1 ≤ σ2 ≤ · · · ≤ σd−1 = 1 and each σi is congruent to some
element of the set S = {j/q (mod Z) : 0 ≤ j ≤ q − 1}. Motivated by (3.6), we
consider the atomic probability measure ν supported on S defined by

ν =
d−1∑
i=1

∞∑
k=0

d−(k+1)1σi−kp/q . (3.7)
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Notice that ν{σi} > 1/d . More precisely, if some j/q ∈ S appears exactly n times
as a σi , then n/d < ν{j/q} < (n + 1)/d . The lower bound is immediate from the
definition. The upper bound holds since the contribution of the remaining terms of
(3.7) to ν{j/q} is at most

(d − 1)

∞∑
k=0

d−(kq+2) = d − 1

d2 · dq

(dq − 1)
<

1

d
.

The same argument also proves that 0 < ν{j/q} < 1/d whenever j/q is not
congruent to any of the σi .

Let, as before, N1 ≥ 1 be the number of indices 1 ≤ i ≤ d − 1 for which σi = 1.
Define

ψj = ν
[
0,

j

q

)
= ν

{ 0

q

}
+ · · · + ν

{j − 1

q

}
1 ≤ j ≤ q, (3.8)

so N1/d < ψ1 < · · · < ψq−1 < ψq = 1. Set

a = N1 − ν[0, p/q)

d − 1
= N1 − ψp

d − 1
(3.9)

and

tj ≡ ψj − a 1 ≤ j ≤ q.

We show that X = {t1, . . . , tq} is the desired rotation set.
The relation

ν
(
B + p

q

)
≡ dν(B) (3.10)

for every set B ⊂ T is easily verified from the definition of ν. It implies

ν
[
0,

j + p

q

)
≡ ν

[
0,

p

q

)
+ ν

[p

q
,
j + p

q

)
≡ ν

[
0,

p

q

)
+ dν

[
0,

j

q

)
,

which yields the relation

ψj+p ≡ dψj + ψp

for all j . Thus,

tj+p ≡ ψj+p − a ≡ dψj + ψp − a

≡ dtj + (d − 1)a + ψp ≡ dtj + N1 ≡ dtj . (3.11)
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Since t1, . . . , tq are in positive cyclic order, this proves that X is a q-cycle under md

with combinatorial rotation number p/q . It follows from Corollary 1.16 that X is a
rotation set with ρ(X) = p/q .

Next, we verify that δ(X) = (δ1, . . . , δd−1) or equivalently σ(X) =
(σ1, . . . , σd−1). First note that ψp > N1/d , so N1 − ψp < N1(d − 1)/d , so
0 < a < N1/d < ψ1. This shows that 0 ∈ (tq, t1). Suppose there is an n-fold
incidence of the form

j

q
= σi = σi+1 = · · · = σi+n−1.

Then, by our earlier remark,

n

d
< tj+1 − tj ≡ ψj+1 − ψj = ν

{ j

q

}
<

n + 1

d
,

which implies (tj , tj+1) is a major gap of multiplicity n, and therefore contains n

fixed points of md by Lemma 2.13. Under the canonical semiconjugacy ϕ associated
with X, these n fixed points all map to j/q . Thus, ϕ maps the fixed point set
{u1, . . . , ud−1} to the set {σ1, . . . , σd−1}, sending n of the ui to the same point j/q if
and only if n of the σi collide at j/q . Since ϕ(0) ≡ 0, it follows from monotonicity
of ϕ that ϕ(ui) ≡ σi for every i. Since every σi lies in (0, 1] by our assumption
δ1 �= 0, Lemma 3.3 proves that σ(X) = (σ1, . . . , σd−1).

It remains to prove uniqueness. Suppose X̂ = {t̂1, . . . , t̂q} is another rotation set
for md with rotation number p/q and deployment vector (δ1, . . . , δd−1). As we have
seen in the discussion leading to (3.4) or (3.5), for each j the gap Îj = (t̂j , t̂j+1) of
X̂ has the same length as the gap Ij = (tj , tj+1) of X. Hence there is a rigid rotation
rα which maps tj to t̂j for all j . We must show that α ≡ 0. The major gaps I0 and
Î0 = rα(I0) contain the same set of fixed points of md since X and X̂ have the same
deployment vector. Since the fixed points of md are 1/(d − 1) apart, it follows that
the distance between α and 0 is less than 1/(d − 1). On the other hand, rα : X → X̂

commutes with md , so d(tj +α) ≡ dtj +α for every j , which implies (d −1)α ≡ 0.
The only solution of this equation whose distance to 0 is < 1/(d − 1) is α ≡ 0, and
the proof is complete. 	

Remark 3.8 The d − 1 solutions for a of the equation (d − 1)a + ψp ≡ 0, which
was key in (3.11), correspond to minimal rotation sets with rotation number p/q

whose deployment vectors are cyclic permutations of (δ1, . . . , δd−1). The particular
choice of a in (3.9) guarantees that this permutation is the identity.

Example 3.9 Let us revisit Example 3.6, this time using the idea of the measure ν in
the proof of Theorem 3.7. Recall that we were looking for the unique 5-cycle X =
{t1, · · · , t5} under m4 with ρ(X) = 1

5 and δ(X) = ( 3
5 , 0, 2

5 ) or σ(X) = ( 3
5 , 3

5 , 5
5 ).

We compute the atomic measure ν on the set S = { 0
5 , . . . , 4

5 }, starting with a mass
1
4 + 1

4 = 1
2 at σ1 = σ2 = 3

5 and a mass 1
4 at σ3 = 5

5 ≡ 0
5 . We then spread the

measure around S by pulling back under the rotation r1/5, each time dividing the
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mass by 4. Since ν{t + 1
5 } ≡ 4ν{t} for every t ∈ S by the transformation rule (3.10),

it suffices to compute ν only at 0
5 :

ν
{0

5

}
=

(1

4
+ 1

46 + 1

411 + · · ·
)

+
( 1

2 · 43 + 1

2 · 48 + · · ·
)

= 264

1023

It follows that

4ν
{0

5

}
= 1056

1023
�⇒ ν

{1

5

}
= 33

1023

4ν
{1

5

}
= 132

1023
�⇒ ν

{2

5

}
= 132

1023

4ν
{2

5

}
= 528

1023
�⇒ ν

{3

5

}
= 528

1023

4ν
{3

5

}
= 2112

1023
�⇒ ν

{4

5

}
= 66

1023

(these are just the gap lengths �j computed in Example 3.6). Thus,

ψ1 = ν
{0

5

}
= 264

1023

ψ2 = ν
{0

5

}
+ ν

{1

5

}
= 297

1023

ψ3 = ν
{0

5

}
+ ν

{1

5

}
+ ν

{2

5

}
= 429

1023

ψ4 = ν
{0

5

}
+ ν

{1

5

}
+ ν

{2

5

}
+ ν

{3

5

}
= 957

1023

ψ5 = ν
{0

5

}
+ ν

{1

5

}
+ ν

{2

5

}
+ ν

{3

5

}
+ ν

{4

5

}
= 1.

Now tj = ψj − a, where a = (1 − ψ1)/3 = 253
1023 . We obtain

t1 = 264

1023
− 253

1023
= 11

1023
t2 = 297

1023
− 253

1023
= 44

1023

t3 = 429

1023
− 253

1023
= 176

1023
t4 = 957

1023
− 253

1023
= 704

1023

t5 = 1023

1023
− 253

1023
= 770

1023
,

which is of course the same cycle obtained by the method of Example 3.6.

Remark 3.10 A different approach to the rational case of the deployment theorem
can be found in the recent work [27] which solves the general problem of realizing
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cyclic permutations of q objects as period q orbits of md . The idea is to reduce the
problem to finding the stationary state of an associated Markov chain, which can
then be tackled by classical Perron-Frobenius theory.

For each q > 0 the number of distinct vectors (δ1, . . . , δd−1) ∈ Δd−2 with
qδi ∈ Z can be computed as the number of ways to deploy q identical balls in d − 1
labeled boxes. This, in view of Theorem 3.7, gives the following

Corollary 3.11 (Goldberg) For every fraction 0 < p/q < 1 in lowest terms, there
are

(
q + d − 2

q

)
= (q + d − 2)!

q!(d − 2)!
distinct minimal rotation sets X under md with ρ(X) = p/q .

For d = 2 this number reduces to 1, proving that there is a unique minimal
rotation set under doubling with a given rational rotation number.

The deployment theorem can be generalized to unions of cycles as follows.
Suppose X is a rotation set for md , with ρ(X) = p/q �= 0 in lowest terms,
consisting of distinct q-cycles C1, . . . , CN (here N ≤ d − 1 by Corollary 2.27).
As in Remark 3.2, we define the deployment vector and the cumulative deployment
vector of X as the averages

δ(X) = 1

N

N∑
i=1

δ(Ci) and σ(X) = 1

N

N∑
i=1

σ(Ci).

Of course the ith components of δ(X) and σ(X) are simply the fraction of points of
X that fall within the intervals [ui−1, ui) and [u0, ui), respectively. Note that these
components are now rational numbers with denominator dividing Nq .

Suppose we are looking for such a rotation set X with σ(X) = (σ1, . . . , σd−1).
Let X = {t1, . . . , tNq }, where the points are labeled so that 0, t1, . . . , tNq are in
positive cyclic order and the subscripts are taken modulo Nq . Since each cycle
in X has combinatorial rotation number p/q = Np/(Nq), the map md acts as
tj �→ tj+Np on X. As in the case N = 1, let �j denote the length of the gap
Ij = (tj , tj+1) and nj be the multiplicity of Ij if Ij is major, and nj = 0 otherwise.
Then the equations �j+Np = d�j − nj for 1 ≤ j ≤ Nq can be written in vector
form as T (�) = d� − n. Here � = (�1, . . . , �Nq) is unknown, n = (n1, . . . , nNq )

is determined by the cumulative deployment vector σ(X), and T : RNq → R
Nq is

the isometry

T (x1, x2, . . . , xNq) = (x1+Np, x2+Np, . . . , xNq+Np)

determined by the rotation number. Since T ◦q = id, the same argument as in the
minimal case gives a unique solution � of this equation which can be expressed in
either of the forms (3.4) or (3.5) or (3.6). If every component of � obtained this way
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is strictly positive, then the gap lengths are uniquely determined and an argument
similar to the minimal case shows that the desired rotation set X exists and is unique.
On the other hand, if the solution � has a zero component, then no X with the
given rotation number and deployment vector can exist. Using the form (3.6) of the
solution, it follows that a necessary and sufficient condition for the existence of X

is that the support of the atomic measure

d−1∑
i=1

∞∑
k=0

d−(k+1)1σi−kp/q

is the set S = {j/(Nq) (mod Z) : 0 ≤ j ≤ Nq − 1}. In other words, each point
of S must belong to the orbit of some σi under rp/q . Using the fact that p, q are
relatively prime, it is easy to see that j/(Nq), j ′/(Nq) ∈ S belong to the same
orbit under rp/q if and only if j = j ′ (mod N). Thus, S is the union of N disjoint
q-cycles under rp/q , indexed by the distinct residue classes modulo N . Consider the
signature s(X) = Nq σ(X), that is the integer vector s(X) = (s1, . . . , sd−1), where
si is the number of points of X in [u0, ui).1 Then the above condition is equivalent
to every residue class modulo N being represented by some si . This proves

Theorem 3.12 (Goldberg) Suppose 0 < p/q < 1 is a fraction in lowest terms,
N ≥ 1 is an integer, and {si}1≤i≤d−1 is an integer sequence such that 0 ≤ s1 ≤
· · · ≤ sd−1 = Nq . Then there is a rotation set X for md with rotation number
ρ(X) = p/q and signature s(X) = (s1, . . . , sd−1) if and only if every residue class
modulo N is represented by some si . Moreover, X subject to these conditions is
unique.

Notice that this result gives an alternative proof for the inequality N ≤ d − 1 in
Corollary 2.27.

Example 3.13 Consider finite rotation sets with rotation number 1
4 under tripling.

According to Theorem 3.12, such a rotation set is either a 4-cycle (where N = 1) or
a union of two 4-cycles (where N = 2), and is uniquely determined by its signature.
For N = 1, all five signatures (s, 4) for 0 ≤ s ≤ 4 can occur; they are realized by
the following rotation sets that we already encountered in Example 2.29:

X s(X) δ(X)

C1 : 1
80 �→ 3

80 �→ 9
80 �→ 27

80 (4, 4) (1, 0)

C2 : 2
80 �→ 6

80 �→ 18
80 �→ 54

80 (3, 4) ( 3
4 , 1

4 )

C3 : 5
80 �→ 15

80 �→ 45
80 �→ 55

80 (2, 4) ( 1
2 , 1

2 )

C4 : 14
80 �→ 42

80 �→ 46
80 �→ 58

80 (1, 4) ( 1
4 , 3

4 )

C5 : 41
80 �→ 43

80 �→ 49
80 �→ 67

80 (0, 4) (0, 1)

1In the terminology of [11], the integers si define the deployment sequence of X.
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However, for N = 2 only the signatures (s, 8) with odd 0 ≤ s ≤ 8 occur. These
are realized by the following four rotation sets, also encountered in Example 2.29
as unions of compatible pairs:

X s(X) δ(X)

C1 ∪ C2 (7, 8) ( 7
8 , 1

8 )

C2 ∪ C3 (5, 8) ( 5
8 , 3

8 )

C3 ∪ C4 (3, 8) ( 3
8 , 5

8 )

C4 ∪ C5 (1, 8) ( 1
8 , 7

8 )

Notice that the signatures (0, 8), (2, 8), (4, 8), (6, 8) cannot occur for the rotation
number 1

4 , although they can be realized by 8-cycles with any of the rotation
numbers 1

8 , 3
8 , 5

8 , or 7
8 .

The above example shows that the cycles Ci and the unions Ci ∪ Ci+1 have
distinct deployment sequences. This is a special case of the following stronger form
of the uniqueness part of Theorem 3.12:

Corollary 3.14 Suppose X,X′ are finite rotation sets with the same rotation
number and deployment sequence. Then X = X′.

Proof Let ρ(X) = ρ(X′) = p/q and suppose X and X′ are unions of N and N ′
distinct q-cycles respectively. Consider the signatures s(X) = (s1, . . . , sd−1) and
s(X′) = (s′

1, . . . , s
′
d−1). The assumption δ(X) = δ(X′) shows that si/N = s′

i/N
′ or

N ′si = Ns′
i for all 1 ≤ i ≤ d − 1.

By Theorem 3.12, sj = 1 (mod N) for some j . It follows from the above equation
that N divides N ′. A similar reasoning shows that N ′ divides N , so N = N ′. It now
follows from the uniqueness statement of Theorem 3.12 that X = X′. 	

Corollary 3.15 For every fraction 0 < p/q < 1 in lowest terms, there are qd−2

rotation sets X for md with ρ(X) = p/q , each consisting of the maximum number
d − 1 of distinct q-cycles.

In particular, the upper bound in Corollary 2.27 is optimal.

Proof By Theorem 3.12 for N = d − 1, such X are in one-to-one correspondence
with signatures s = (s1, . . . , sd−2, (d − 1)q) for which the unordered set A =
{s1, . . . , sd−2} reduces to {1, . . . , d − 2} modulo d − 1. For each 1 ≤ k ≤ d − 2
such A contains exactly one element of the form j (d − 1) + k with 0 ≤ j ≤ q − 1.
Evidently there are qd−2 choices for A, hence for the signature s. 	


Another application of Theorem 3.12 is the following characterization of com-
patible cycles in terms of their signature (compare §2 of [19]). It will be convenient
to use the notation Cd (p/q) for the collection of all q-cycles under md with rotation
number p/q .
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Theorem 3.16 Two distinct cycles C,C′ ∈ Cd (p/q) are compatible if and only if
the non-zero components of s(C) − s(C′) are all 1 or all −1.

Proof First suppose C,C′ are compatible. By Lemma 2.25 C,C′ are superlinked, so
their points alternate as we go around the circle. If μ,μ′ denote the natural measures
of C,C′, it follows that the function

χ : t �→ q
(
μ[0, t) − μ′[0, t)

)

takes values in {0, 1} or in {0,−1}. Thus, the non-zero components (χ(u1), . . . ,

χ(ud−1)) of s(C) − s(C′) are all 1 or all −1.
Conversely, and without loss of generality, assume that all non-zero components

of ε = s(C)−s(C′) are 1. The sum s(C)+s(C′) has both even and odd components,
so by Theorem 3.12 there is a rotation set X of size 2q with ρ(X) = ρ(C) = ρ(C′)
and s(X) = s(C)+ s(C′). Decompose X into the union of two compatible q-cycles
Y, Y ′, where s(Y ) + s(Y ′) = s(C) + s(C′). By the previous paragraph and after
relabeling these cycles if necessary, we may assume that all non-zero components
of ε′ = s(Y ) − s(Y ′) are 1. The relation 2s(C) + ε′ = 2s(Y ) + ε shows that ε

and ε′ have the same support (that is, their non-zero components occur at the same
places), so ε = ε′. It follows that s(C) = s(Y ) and s(C′) = s(Y ′). The uniqueness
part of Theorem 3.12 then shows C = Y and C′ = Y ′, which proves C,C′ are
compatible. 	


The arithmetical criterion for realizability of signatures in Theorem 3.12 has
a geometric interpretation due to McMullen. He comments in [19] that Cd (p/q)

can be identified with the vertices of a simplicial subdivision of a (d − 2)-
dimensional simplex, with compatible cycles corresponding to adjacent vertices
(compare Fig. 3.2). Below we provide a justification for this statement; Lemma 3.18
below will also play a role in the proof of Theorem 4.12 in the next chapter.

In view of Theorem 3.16 we can define a relation ≺ between any two compatible
cycles C,C′ ∈ Cd(p/q) by declaring C ≺ C′ if the non-zero components of s(C′)−
s(C) are all 1. Evidently a collection C1, . . . , Cn in Cd(p/q) are compatible if and
only if they are linearly ordered by ≺.

Lemma 3.17 SupposeC1, . . . , Cn are distinct compatible cycles in Cd (p/q). Then
the deployment vectors δ(C1), . . . , δ(Cn) ∈ R

d−1 are affinely independent.

Proof After relabeling the cycles we may assume C1 ≺ C2 ≺ · · · ≺ Cn. Let
εi,j = s(Cj ) − s(Ci). The cocycle relation

εi,j + εj,k = εi,k

shows that the vectors ε1,2, ε2,3, . . . , εn−1,n have disjoint supports and therefore
are linearly independent in R

d−1. It follows that the vectors

ε1,2, ε1,3 = ε1,2 + ε2,3, . . . , ε1,n = ε1,2 + ε2,3 + · · · + εn−1,n

are also linearly independent.
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(0,4)      (1,4)      (2,4)      (3,4)      (4,4)

(0,0,3)

(0,1,3)

(0,2,3)

(0,3,3)

(1,1,3)

(2,2,3)

(3,3,3)(1,3,3) (2,3,3)

(1,2,3)

(0,0,0,2)

(1,1,1,2)

(0,0,1,2)

(0,1,1,2)

(0,2,2,2)

(2,2,2,2)

(0,0,2,2)

(0,1,2,2)

(1,2,2,2)

(1,1,2,2)

Fig. 3.2 Geometric representation of q-cycles as vertices of a subdivision Δd−2
q of the standard

simplex Δd−2, following McMullen. Here each cycle is labeled by its signature and two cycles
are compatible if and only if they are connected by an edge in Δd−2

q . Left: The five vertices of

Δ1
4 representing 4-cycles under m3 with rotation number 1

4 or 3
4 . Middle: The ten vertices of

Δ2
3 representing 3-cycles under m4 with rotation number 1

3 or 2
3 . Right: The ten vertices of Δ3

2

representing 2-cycles under m5 with rotation number 1
2

To prove δ(C1), . . . , δ(Cn) are affinely independent, it suffices to verify the linear
independence of the vectors {δ(Ci) − δ(C1)}2≤i≤n. If

∑n
i=2 αi(δ(Ci) − δ(C1)) = 0

for some scalars αi ∈ R, then
∑n

i=2 αi(σ (Ci) − σ(C1)) = 0, so

n∑
i=2

αi ε1,i =
n∑

i=2

αi(s(Ci) − s(C1)) = q

n∑
i=2

αi(σ (Ci) − σ(C1)) = 0.

It follows from the previous paragraph that αi = 0 for all i. 	

Recall that Δd−2 is the standard simplex {(x1, . . . , xd−1) ∈ R

d−1 : xi ≥ 0
and

∑d−1
i=1 xi = 1}. Fix a rotation number p/q and consider the finite set V

consisting of vectors (x1, . . . , xd−1) ∈ Δd−2 such that qxi ∈ Z for all i. By
Theorem 3.7, the assignment C �→ δ(C) is a bijection between Cd (p/q) and V .
Let Δd−2

q be the collection of all convex hulls

[δ(C1), . . . , δ(Cn)] =
{ n∑

i=1

αi δ(Ci) : 0 ≤ αi ≤ 1 and
n∑

i=1

αi = 1
}
,

where C1, . . . , Cn are distinct compatible cycles in Cd (p/q). Lemma 3.17 shows
that [δ(C1), . . . , δ(Cn)] is an (n − 1)-simplex in Δd−2.

Lemma 3.18 Suppose C1, . . . , Cn are distinct compatible cycles in Cd (p/q), with
n > 1. Then the interior of the (n−1)-simplex [δ(C1), . . . , δ(Cn)] does not meet V .

Proof We may assume again that C1 ≺ C2 ≺ · · · ≺ Cn. Suppose there is a cycle
C ∈ Cd (p/q) and scalars 0 < α1, . . . , αn < 1 with

∑n
i=1 αi = 1 such that



50 3 The Deployment Theorem

∑n
i=1 αi δ(Ci) = δ(C). Then

∑n
i=1 αi s(Ci) = s(C), so

n∑
i=2

αi ε1,i =
n∑

i=2

αi(s(Ci) − s(C1)) = s(C) − s(C1),

where εi,j = s(Cj ) − s(Ci) as before. Using the relation

ε1,i = ε1,2 + ε2,3 + · · · + εi−1,i , (3.12)

we can rewrite this as

n∑
i=2

βi εi−1,i = s(C) − s(C1),

where 0 < βi = αi + · · · + αn < 1. Since the vectors {εi−1,i}2≤i≤n have disjoint
supports, the components of

∑n
i=2 βi εi−1,i consist of the βi and possibly some 0’s.

This contradicts the fact that s(C) − s(C1) is a non-zero integer vector. 	

Theorem 3.19 Δd−2

q is a simplicial subdivision of Δd−2.

By Corollaries 3.11 and 3.15, Δd−2
q has

(
q+d−2

q

)
vertices and qd−2 top-

dimensional cells. The cases d = 3, 4 produce regular linear and triangular
subdivisions, but the situation for d > 4 is not as symmetric (see Fig. 3.2).

Proof To show Δd−2
q is a simplicial complex, it suffices to check that two simplices

[δ(C1), . . . , δ(Cn)] and [δ(C′
1), . . . , δ(C

′
m)] in Δd−2

q whose interiors intersect must
coincide. The case n = m = 1 is trivial and the cases n = 1,m > 1 or n > 1,m = 1
are already covered by Lemma 3.18, so we may assume n,m > 1. Label the cycles
so that C1 ≺ · · · ≺ Cn and C′

1 ≺ · · · ≺ C′
m. By our hypothesis, there are scalars 0 <

α1, . . . , αn < 1 and 0 < α′
1, . . . , α

′
m < 1, with

∑n
i=1 αi = ∑m

j=1 α′
j = 1, such that∑n

i=1 αi δ(Ci) = ∑m
j=1 α′

j δ(C′
j ). Then

∑n
i=1 αi s(Ci) = ∑m

j=1 α′
j s(C′

j ). Letting
εi,j = s(Cj ) − s(Ci) and ε′

i,j = s(C′
j ) − s(C′

i ), it follows that

s(C1) +
n∑

i=2

αi ε1,i =
n∑

i=1

αi s(Ci) =
m∑

j=1

α′
j s(C′

j ) = s(C′
1) +

m∑
j=2

α′
j ε′

1,j ,

or

n∑
i=2

αi ε1,i −
m∑

j=2

α′
j ε′

1,j = s(C′
1) − s(C1)
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Using (3.12) and the similar relation for the ε′
1,j , we can rewrite the above

equation as

n∑
i=2

βi εi−1,i −
m∑

j=2

β ′
j ε′

j−1,j = s(C′
1) − s(C1), (3.13)

where 0 < βi = αi+· · ·+αn < 1 and 0 < β ′
j = α′

j +· · ·+α′
m < 1. Since the vectors

{εi−1,i}2≤i≤n have disjoint supports, the non-zero components of
∑n

i=2 βi εi−1,i are
precisely the βi . Similarly, the non-zero components of

∑m
j=2 β ′

j ε′
j−1,j are the β ′

j .
It follows that the components of the left hand side of (3.13) lie strictly between −1
and 1. Since the right hand side of (3.13) is an integer vector, the two sides must
vanish. Thus, s(C1) = s(C′

1) and the finite sequences

1 > β2 > · · · > βn = αn > 0 and 1 > β ′
2 > · · · > β ′

m = α′
m > 0

coincide. This implies n = m, αi = α′
i and s(Ci) = s(C′

i ) for all 1 ≤ i ≤ n.
To finish the proof of the theorem, it remains to show that every x =

(x1, . . . , xd−1) ∈ Δd−2 belongs to a simplex in Δd−2
q . Let y = (y1, . . . , yd−1),

where yi = q(x1 + · · · + xi). Then 0 ≤ y1 ≤ · · · ≤ yd−1 = q . Let ti ∈ [0, 1) be the
fractional part of yi . If all the ti are zero, then x ∈ V and we are done. Otherwise,
list the non-zero elements of {t1, . . . , td−1} in decreasing order as

ti1 ≥ . . . ≥ tin , where 1 ≤ n ≤ d − 2.

Here we adopt the convention that if several ti’s are equal, we list them in the order
of decreasing subscripts, that is, if tik = tik+1 , then ik > ik+1. Let e1, . . . , ed−1
denote the unit coordinate vectors in R

d−1 and define

v1 = y − (t1, . . . , td−1)

vk+1 = vk + eik 1 ≤ k ≤ n. (3.14)

It is not hard to check that the components of each vk form a monotonic sequence
of non-negative integers ending in q , and therefore there is a unique cycle Ck ∈
Cd (p/q) with s(Ck) = vk . By Theorem 3.16, C1, . . . , Cn+1 are compatible. Define
the scalars {αk}1≤k≤n+1 by

αk = tik−1 − tik ,

where ti0 = 1 and tin+1 = 0. Note that the αk are non-negative and add up to 1. It
follows from (3.14) that

y = v1 +
n∑

k=1

tik eik = v1 +
n∑

k=1

tik (vk+1 − vk)
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=
n+1∑
k=1

(tik−1 − tik ) vk =
n+1∑
k=1

αk vk =
n+1∑
k=1

αk s(Ck),

so x = ∑n+1
k=1 αk δ(Ck), as required. 	


3.3 Deployment Theorem: The Irrational Case

We now proceed to the irrational case of the deployment theorem. Our approach
closely parallels the one presented for the rational case in the proof of Theorem 3.7.

Theorem 3.20 (Goldberg-Tresser) For every irrational number 0 < θ < 1 and
every vector (δ1, . . . , δd−1) ∈ Δd−2 there is a unique minimal rotation set X for md

such that ρ(X) = θ and δ(X) = (δ1, . . . , δd−1).

Thus, the space of all minimal rotation sets for md of a given irrational rotation
number can be identified with the simplex Δd−2 ⊂ R

d−1. When d = 2, it follows
from this and Corollary 2.38 that there is a unique rotation set under doubling with
a given irrational rotation number.

Proof We continue using the notation ≡ for congruence modulo Z. As in the
rational case, we may assume without loss of generality that δ1 �= 0. Set σi =
δ1 + . . . + δi for 1 ≤ i ≤ d − 1, so 0 < σ1 ≤ σ2 ≤ · · · ≤ σd−1 = 1. We construct a
degree 1 monotone map ϕ of the circle with the following properties:

(i) Is �= ∅ implies Is−θ �= ∅, where Is is the interior of the fiber ϕ−1(s);
(ii) ϕ(dt) ≡ ϕ(t) + θ whenever t is not in the closure of a plateau of ϕ; and

(iii) ϕ(ui) ≡ σi for 1 ≤ i ≤ d − 1.

Properties (i) and (ii) prove that the complement of the union of all plateaus of ϕ is
a minimal rotation set X with ρ(X) = θ (Theorem 2.35), while property (iii) proves
that σ(X) = (σ1, . . . , σd−1) (Lemma 3.3).

Let S be the union of the backward orbits of the σi under rθ :

S = {σi − kθ (mod Z) : 1 ≤ i ≤ d − 1 and k ≥ 0}. (3.15)

Consider the atomic probability measure ν supported on S defined by

ν =
d−1∑
i=1

∞∑
k=0

d−(k+1)1σi−kθ . (3.16)

Observe that ν{σi} ≥ 1/d for every i. More precisely, if some s ∈ S appears exactly
n times in the list {σ1, . . . , σd−1}, then n/d ≤ ν{s} < (n + 1)/d . The lower bound
follows from the definition, whereas the upper bound holds since the contribution
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a

Fig. 3.3 Left: The graph of the map ψ obtained by integrating the atomic measure ν. Right: The
graph of the left-inverse map ψ−1 along with its translation ϕ (in blue). In this example, d = 3,

ρ(X) = (
√

5−1)
2 , and δ(X) = (0.39475, 0.60525). Computation gives a ≈ 0.07713

of the remaining terms of (3.16) to ν{s} is at most

(d − 2)

∞∑
k=1

d−(k+1) = d − 2

d(d − 1)
<

1

d
.

The same argument shows that 0 < ν{s} < 1/d whenever s ∈ S is not congruent to
any of the σi .

The map ψ : T → T defined by ψ(t) ≡ ν[0, t) has degree 1, is strictly
monotone, is continuous on T � S and is discontinuous at every s ∈ S where it
jumps by ν{s}. The left-inverse ψ−1 extends to a continuous degree 1 monotone
map of the circle, with a plateau Is precisely when s ∈ S. Let N1 ≥ 1 be the number
of indices 1 ≤ j ≤ d − 2 for which σj = 1. Set

a = N1 − ν[0, θ)

d − 1
. (3.17)

We show that the map ϕ : T → T defined by ϕ(t) ≡ ψ−1(t + a) has properties
(i)–(iii) (see Fig. 3.3 for a typical graph of ψ and ϕ for the case d = 3).

Property (i) is immediate since s ∈ S implies s − θ ∈ S. The relation

ν(B + θ) ≡ dν(B) (3.18)

for every Borel set B is easily verified from the definition of ν. It implies

ν[0, t + θ) ≡ ν[0, θ) + ν[θ, t + θ) ≡ ψ(θ) + dν[0, t),
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which gives the functional equation

ψ(t + θ) ≡ dψ(t) + ψ(θ).

Applying the left-inverse ψ−1 to both sides, we obtain

t + θ ≡ ψ−1(dψ(t) + ψ(θ)) ≡ ϕ(dψ(t) + ψ(θ) − a).

If t is not in the closure of a plateau of ϕ, then ψ(ϕ(t)) = t + a and it follows that

ϕ(t) + θ ≡ ϕ(d(t + a) + ψ(θ) − a)

≡ ϕ(dt + (d − 1)a + ψ(θ)) (3.19)

≡ ϕ(dt + N1) ≡ ϕ(dt).

This proves property (ii).
To verify (iii), first note that ψ−1(t) ≡ 0 for t ∈ [0, ν{0}]. Since ν[0, θ) >

ν{0} ≥ N1/d , we have N1/d < ν[0, θ) < 1, or 0 < a < N1/d ≤ ν{0}. In
particular, ϕ(0) ≡ ψ−1(a) ≡ 0. By what we have seen above, if there is an n-fold
incidence s = σi = σi+1 = · · · = σi+n−1, the jump � = ν{s} of ψ at s satisfies
the inequalities n/d ≤ � < (n + 1)/d . It follows that ϕ has a plateau of length � on
which it takes the constant value s. This plateau is a major gap of X, so it contains
precisely n fixed points of md by Lemma 2.13. Thus, ϕ maps the fixed point set
{u1, . . . , ud−1} to the set {σ1, . . . , σd−1}, sending n of the ui to the same point s if
and only if n of the σi collide at s. Since ϕ(0) ≡ 0, it follows from monotonicity of
ϕ that ϕ(ui) ≡ σi for every i.

Finally, we prove uniqueness of X. Suppose X̂ is any minimal rotation set with
ρ(X̂) = θ and δ(X̂) = (δ1, . . . , δd−1). Let ϕ̂ be the canonical semiconjugacy
associated with X̂. By Lemma 3.3, ϕ̂(ui) ≡ σi , so ϕ̂ takes the value σi on the
major gap of X̂ containing ui . Moreover, if X̂ has a major gap of multiplicity n,
there will be an n-fold incidence between the σi . Since the gaps of X̂ are precisely
the plateaus of ϕ̂, and since every gap eventually maps to a major gap, it follows
that the values taken by ϕ̂ on its plateaus form the set S in (3.15). It is now easy to
see that the push-forward ϕ̂∗λ of Lebesgue measure is just the measure ν in (3.16).
Since ϕ∗λ = ν also by the construction, the relation ϕ̂∗λ = ϕ∗λ must hold. Let
D ⊂ X be the countable set of the endpoints of gaps, and similarly define D̂ ⊂ X̂.
As the maps ϕ : X � D → T � S and ϕ̂ : X̂ � D̂ → T � S are bijective, the
composition ϕ̂−1 ◦ϕ : X�D → X̂� D̂ defines a bijection t �→ t̂ that preserves the
cyclic order of all triples and commutes with md . Since for every t1, t2 ∈ X � D,

λ((t1, t2)) = ν((ϕ(t1), ϕ(t2))) = λ((t̂1, t̂2)),

it follows that t �→ t̂ is the restriction of some rigid rotation rα to X � D. In other
words, rα maps X � D onto X̂ � D̂ and therefore X onto X̂, and it commutes with
md . To finish the proof, we must show that α ≡ 0. The proof is identical to the
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rational case: Let I0 be the major gap of X containing 0, so rα(I0) is the major gap
of X̂ containing 0 (this follows from the normalization ϕ(0) ≡ ϕ̂(0) ≡ 0). By our
construction, I0 and rα(I0) contain the same set of fixed points of md , namely those
which map under ϕ or ϕ̂ to σd−1 = 1 ≡ 0. Since the fixed points of md are 1/(d−1)

apart, it follows that the distance between α and 0 must be < 1/(d−1). On the other
hand, rα commutes with md , so d(t + α) ≡ dt + α for every t ∈ X, which implies
(d − 1)α ≡ 0. The only solution of this equation whose distance to 0 is < 1/(d − 1)

is α ≡ 0, and the proof is complete. 	

Epilogue To conclude this chapter, let us briefly recap the main constructions
related to a minimal rotation set and how they lead to the proofs of the deployment
Theorems 3.7 and 3.20. Suppose X is a minimal rotation set for md with ρ(X) =
θ �= 0, so X is a q-cycle if θ = p/q in lowest terms, and a Cantor set if θ is
irrational.

• The canonical semiconjugacy associated with X is a degree 1 monotone map
ϕ : T → T, normalized by ϕ(0) = 0, which satisfies

ϕ ◦ md = rθ ◦ ϕ on X.

The plateaus of ϕ are precisely the gaps of X.
• The natural measure of X is the unique md -invariant probability measure μ

supported on X. It is related to the canonical semiconjugacy by

ϕ(t) =
∫ t

0
dμ = μ[0, t] (mod Z).

If θ = p/q in lowest terms, then μ is the uniform Dirac measure on X:

μ = 1

q

∑
x∈X

1x .

If θ is irrational, then μ is the (well-defined) pull-back of Lebesgue measure λ

under ϕ:

λ = ϕ∗μ.

• The deployment vector of X is the probability vector δ(X) = (δ1, . . . , δd−1) ∈
R

d−1 defined by

δi = μ[ui−1, ui) 1 ≤ i ≤ d − 1,

where the ui = i/(d − 1) are the fixed points of md .
• The cumulative deployment vector σ(X) = (σ1, . . . , σd−1) is defined by

σi = μ[u0, ui) = δ1 + · · · + δi 1 ≤ i ≤ d − 1.
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• The gap measure of X is the push-forward ν of Lebesgue measure λ under ϕ:

ν = ϕ∗λ.

The terminology comes from the observation that each gap I of X maps under ϕ

to a single point s with ν{s} = |I |. The gap measure can be expressed in terms
of ρ(X) = θ and σ(X) = (σ1, . . . , σd−1) by the explicit formula

ν =
d−1∑
i=1

∞∑
k=0

d−(k+1)1σi−kθ . (3.20)

In particular, ν is an atomic measure supported on the set

S = {σi − kθ (mod Z) : 1 ≤ i ≤ d − 1 and k ≥ 0},

which is a union of at most d − 1 backward orbits of the rotation rθ . Thus, S

consists of the qth roots of unity if θ = p/q in lowest terms, and is dense if θ is
irrational.

• The minimal rotation set X can be recovered from its rotation number (whether
rational or irrational) and deployment data as follows: Form the gap measure ν

as above, and let ψ(t) = ν[0, t) for t ∈ T which has a well-defined left inverse
ψ−1. Define ϕ : T → T by

ϕ(t) = ψ−1(t + a), where a = N1 − ν[0, θ)

d − 1
.

Here N1 ≥ 1 is the number of indices 1 ≤ j ≤ d − 1 for which σj = 1. Then
ϕ is the canonical semiconjugacy associated with X, so X is the complement of
the union of plateaus of ϕ.
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