
Chapter 2
Rotation Sets

Throughout this chapter d will be a fixed integer ≥ 2. We study certain invariant
sets for the multiplication by d map md : T → T defined by

md(t) = dt (mod Z).

The low-degree cases m2 and m3 are often referred to as the doubling and tripling
maps.

Definition 2.1 A non-empty compact set X ⊂ T is called a rotation set for md if

• X is md -invariant in the sense that md(X) = X,1 and
• the restriction md |X can be extended to a degree 1 monotone map of the circle.

Roughly speaking, the latter condition means that md preserves the cyclic order of
all triples in X, except that it may identify some pairs.

If X is a rotation set for md and g, h are degree 1 monotone extensions of md |X,
then g = h on every orbit in X, so ρ(g) = ρ(h) by Theorem 1.8. This quantity,
which therefore depends on X only, is called the rotation number of X and is
denoted by ρ(X). We refer to X as a rational or irrational rotation set according
as ρ(X) is rational or irrational.

2.1 Basic Properties

Since multiplication by d commutes with the rigid rotation r : t �→ t + 1/(d − 1)
(mod Z), if X is a rotation set for md , so are its d − 2 rotated copies

X + 1

d − 1
, X + 2

d − 1
, . . . , X + d − 2

d − 1
(mod Z).

1Thus, our notion of invariance is stronger than forward invariance md(X) ⊂ X and weaker than
full invariance m−1

d (X) = X.
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Fig. 2.1 The cycle X : 7
26 �→ 21

26 �→ 11
26 under tripling is a rotation set with ρ(X) = 2

3 . Left: A
generic monotone extension of m3|X . Right: The “standard” monotone extension of m3|X (see the
discussion leading to Eq. (2.1))

Moreover, all these sets have rotation number ρ(X) since if g is a monotone
extension ofmd |X, then the conjugate map r◦i ◦g◦r−i will be a monotone extension
of the restriction of md to X + i/(d − 1).

Example 2.2 The 3-cycle X : 7
26 �→ 21

26 �→ 11
26 under tripling is a rotation set

with rotation number 2
3 . Two possible monotone extensions of m3 restricted to this

cycle are shown in Fig. 2.1. The 180◦-rotation of X produces the new rotation set
X + 1

2 : 8
26 �→ 24

26 �→ 20
26 with the same rotation number. On the other hand, the

4-cycle 1
5 �→ 3

5 �→ 4
5 �→ 2

5 under tripling is not a rotation set since it fails to have a
combinatorial rotation number (compare Corollary 1.16).

A rotation set containing periodic orbits is clearly rational. Conversely, every
orbit in a rational rotation set is eventually periodic. Here is a more precise
statement:

Theorem 2.3 Suppose X is a rational rotation set for md , with ρ(X) = p/q in
lowest terms. Then, every forward orbit in X under md is finite. More precisely, for
every t ∈ X there is an integer i ≥ 0 such that m◦i

d (t) is periodic of period q . In
particular, X is at most countable.

Proof Take any t ∈ X and any degree 1 monotone extension g of md |X. We know
from Theorem 1.14 that the sequence {g◦nq(t) = m◦n

dq (t)} tends to a periodic point
t ′ ∈ X of period q as n → ∞. Since the map mdq is uniformly expanding on
the circle, its fixed point t ′ is repelling. Hence m◦n

dq (t) cannot converge to t ′ unless
m◦n

dq (t) = t ′ for some n. 
�
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Remark 2.4 Most periodic orbits of md do not define rotation sets. For each prime
number q the equation m◦q(t) = t has dq − 1 solutions t = i/(dq − 1) (mod Z).
Discarding the d − 1 fixed points of md , it follows that the number (dq − d)/q of
distinct q-cycles of md grows exponentially fast as q → ∞. On the other hand,
the number of q-cycles of md that form a rotation set is precisely (q − 1)

(
q+d−2

q

)
,

which grows like the power qd−1 as q → ∞ (see Corollary 3.11).

Every rotation set is nowhere dense since any open interval on the circle
eventually maps to the whole circle under the iterations of md . By contrast,
Lebesgue measure on the circle is ergodic for md ,2 so a randomly chosen point
on T has a dense orbit almost surely. This proves the following

Theorem 2.5 The union Rd of all rotation sets for md has Lebesgue measure zero.

McMullen [19] has proved the sharper statement that the Hausdorff dimension of
Rd is zero.3 For more on the set Rd , see Sect. 4.3.

To study of the structure of a rotation set, we first look at its complement.

Definition 2.6 Let X be a rotation set for md . A connected component of the
complement T � X is called a gap of X. A gap of length � is minor if � < 1/d
and major otherwise. The multiplicity of a major gap is the integer part of d� ≥ 1.
A major gap is taut or loose according as d� is or is not an integer.

Intuitively, a minor gap is short enough so it maps homeomorphically onto its
image by md . On the other hand, a major gap is too long and wraps around the
circle by md as many times as its multiplicity (see Lemma 2.8 below).

It will be convenient to work with a specific degree 1 monotone extension of
md |X which can be defined whenever X has more than one point. This map, which
we call the standard monotone map of X and denote by gX, is defined as follows:
On everyminor gap, set gX = md . On every major gap (a, a+�) of length 0 < � < 1
and multiplicity n, define

gX(t) =
⎧
⎨

⎩

md(a) t ∈
(
a, a + n

d

]

md(t) t ∈
(
a + n

d
, a + �

) (2.1)

(see Figs. 2.1 and 2.2). The map gX is piecewise affine with derivatives 0 and d ,
so the total length of the plateaus of gX is 1 − 1/d = (d − 1)/d . Since by the

2Assuming m−1
d (E) = E for some measurable set E, the characteristic function χE satisfies

χE ◦ md = χE . Expanding χE into the Fourier series
∑

cne2πint , it follows that
∑

cne2πidnt =∑
cne2πint which implies cn = cdn for all n. Since cn → 0, this can hold only if cn = 0 for all

n �= 0.
3He proves the statement for the closure of the union of all finite rotation sets for md , but an
inspection of his proof shows that it also works for the a priori larger set Rd . The zero dimension
statement for individual rotation sets was known much earlier [29].
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I1 I2 I3 I1

I1
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I3

Fig. 2.2 Left: The standard monotone map gX of some rotation set X for m5. Counting
multiplicities, X has four major gaps, two taut gaps I1, I3 of multiplicity 1 and a loose gap I2
of multiplicity 2. Right: The position of major gaps around the circle. Notice that each major gap
contains as many fixed points of md as its multiplicity, as asserted in Lemma 2.13

construction each major gap of multiplicity n contributes a plateau of length n/d ,
we arrive at the following fundamental fact (compare [2] and [4]):

Theorem 2.7 Every rotation set for md containing more than one point has d − 1
major gaps counting multiplicities.

The following lemma summarizes the mapping properties of gaps:

Lemma 2.8 Let X be a rotation set for md containing more than one point and
I = (a, a + �) be a gap of X. Take any degree 1 monotone extension g of md |X.
(i) If I is a minor gap, the interior J of g(I) is a gap of length d�. Moreover,

md : I → J is a homeomorphism.
(ii) If I is a taut gap of multiplicity n, the image g(I) is the single pointmd(a) ∈ X.

Under md , the point md(a) has n − 1 preimages in I , whereas every point in
T � {md(a)} has n preimages in I .

(iii) If I is a loose gap of multiplicity n, the interior J of g(I) is a gap of length
d� − n. Under md , every point in J has n + 1 preimages in I , whereas every
point outside J has n preimages in I .

Proof For the standard monotone map gX the statements follow immediately from
the definition. For an arbitrary extension g, we can use the fact that g is monotone
and takes the same values as gX on the boundary of gaps to arrive at the same
conclusions. The details are straightforward and will be left to the reader. 
�

The preceding lemma shows that the pattern of how gaps map around is
independent of the choice of the monotone extension g. For any gap I , the image
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g(I) is either a point or a gap J modulo its endpoints. In practice, it is convenient
to ignore the issue of endpoints and simply declare that I maps to J . With this
convention in mind, we see from the above lemma that every minor gap eventually
maps to a major gap I . If I is taut, it maps to a point and the process stops. If I is
loose, it maps to a new gap and the process continues.

Let us collect some corollaries of this basic observation.

Theorem 2.9 A rotation set is uniquely determined by its major gaps.

Proof Let X,Y be rotation sets with the same collection of major gaps. We may
assume neither of X,Y is a single point. Suppose there is some t ∈ Y � X. Then
t must belong to a minor gap I of X. Take the smallest integer i > 0 such that
J = m◦i

d (I ) is a major gap of X. Then m◦i
d : I → J is a homeomorphism, so

m◦i
d (t) ∈ J ∩ Y , which is impossible since J is a major gap of Y as well. This

proves Y ⊂ X. Similarly, X ⊂ Y . 
�
Theorem 2.10 Suppose X is a rotation set containing more than one point and I

is a gap of X. Then either I is periodic or it eventually maps to a taut gap.

Proof Let Ii denote the interior of g◦i
X (I) and assume that Ii is not taut for any i. By

Lemma 2.8 there is a sequence i1 < i2 < i3 < · · · of positive integers for which Iik

is loose. Since there are finitely many loose gaps, we must have Iij = Iik for some
j < k. This proves that I eventually maps to a periodic gap. Since by monotonicity
of gX every gap is the image of precisely one gap, it follows that I itself must be
periodic. 
�
Corollary 2.11 Every infinite rotation set has at least one taut gap.

Conversely, all major gaps of a finite rotation set are loose since in this case md ,
being surjective, must also be injective on the rotation set.

Proof Otherwise every gap would be periodic by the previous theorem, so its
endpoints would be periodic points in the rotation set. By Theorem 1.14 these
infinitely many endpoints would have the same period q > 0 under md . This is
impossible since md has only finitely many q-cycles. 
�
Remark 2.12 Here is an alternative approach to the above corollary (compare [2]):
Lemma 2.8 applied to gX shows that md(t) =md(t ′) for a distinct pair t, t ′ ∈ X

precisely when t, t ′ form the endpoints of a taut gap or more generally when there
is a chain t = t1, t2, . . . , tk = t ′ ∈ X such that each pair ti , ti+1 forms the endpoints
of a taut gap. Thus, if X had no taut gap, the map md : X → X would be a
homeomorphism. Since md is expanding, this would imply that X is finite [21,
Lemma 18.8].

The next result establishes a connection between the major gaps of a rotation set
and the d − 1 fixed points

ui = i

d − 1
(mod Z)
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of the map md . This connection will play an important role in Sects. 3.2 and
3.3.

Lemma 2.13 Suppose X is a rotation set for md with ρ(X) �= 0. Then each major
gap of X of multiplicity n contains exactly n fixed points of md .

Compare Fig. 2.2.

Proof The assumption ρ(X) �= 0 tells us that each fixed point of md belongs to a
gap, which is necessarily major since a minor gap is disjoint from its image under
md . Let I be a major gap of multiplicity n and assume that it contains n+1 adjacent
fixed points ui, . . . , ui+n. Since each open interval (uj , uj+1) contains precisely
one preimage of every fixed point under md , it follows that ui has at least n + 1
preimages in I . By Lemma 2.8, I is loose and ui belongs to the interior of gX(I).
This implies that the closure of I maps onto itself by gX, so the endpoints of I must
be fixed by md , which contradicts the assumption ρ(X) �= 0. Thus, I contains at
most n fixed points of md .

Now let {Ii} be the finite collection of major gaps of X of multiplicities {ni}. We
have shown that the number ki of fixed points in Ii satisfies 0 ≤ ki ≤ ni . Since∑

ki = ∑
ni = d − 1, we must have ki = ni for all i. 
�

To each rotation set X for md we can assign a gap graph ΓX which is a finite
directed (not necessarily connected) graph having one vertex for each major gap of
X, with an edge going from vertex I to vertex J whenever J is the first major gap
in the forward orbit of I . We also assign to each vertex I a weight w(I) ≥ 1 equal
to its multiplicity. Thus, ΓX has the following properties:

(i)
∑

vertices I

w(I) = d − 1.

(ii) The degree of every vertex is either 0 (no edge going out or coming in), or
1 (only one edge going out or coming in), or 2 (one edge going out and one
coming in, possibly a loop).

If X has no loose gaps, ΓX is a trivial graph consisting of at most d − 1 vertices
and no edges. If X is an irrational rotation set, Theorem 2.10 tells us that every
directed path in ΓX terminates at a taut vertex and in particular there are no closed
paths (see Fig. 2.3).

Let us call a finite directed graph admissible of degree d if it satisfies the
conditions (i) and (ii) above. It is natural to ask the following

Question 2.14 Given an admissible graph Γ of degree d , does there exist a rotation
set X for md whose gap graph ΓX is isomorphic to Γ ?

In Sect. 4.2 we will provide the answer to this question in the case Γ has no closed
paths (see Theorem 4.6).
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Fig. 2.3 Possible gap graphs for irrational rotation sets under md for 2 ≤ d ≤ 5. The red and blue
vertices correspond to taut and loose gaps respectively, and the weights denote multiplicities

2.2 Maximal Rotation Sets

Take any collection

I = {I1, . . . , Id−1}

of disjoint open intervals on the circle, each of length 1/d . Consider the set

XI = {t ∈ T : m◦n
d (t) /∈ I1 ∪ · · · ∪ Id−1 for all n ≥ 0}.
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Theorem 2.15 ([4]) XI is a rotation set for md .

Proof First we check thatXI �= ∅. Denote by U the open set I1∪· · ·∪Id−1. Under
md , every t0 ∈ T has d preimages which are a distance 1/d apart, hence at least one
of these preimages, say t1, must be outside U . It follows inductively that there is a
backward orbit · · · �→ t2 �→ t1 �→ t0 such that tn /∈ U for every n ≥ 1. Evidently,
any accumulation point of the sequence {tn} belongs to XI .

It is immediate from the definition that XI is compact and maps into itself by
md . Of the d preimages of any point in XI , at least one lies outsideU and therefore
belongs to XI . This proves md(XI ) = XI . Finally, md restricted to XI can be
extended to a degree 1 monotone map g : T → T by setting g = md outside U and
mapping each interval Ii to a point. 
�
Corollary 2.16 A non-empty compact md -invariant set X is a rotation set if and
only if T � X contains d − 1 disjoint open intervals, each of length 1/d .

Proof Necessity follows from Theorem 2.7. For sufficiency, letI be the collection
of the d − 1 disjoint intervals of length 1/d in T�X. By the above theorem XI is
a rotation set that contains X. Hence X itself is a rotation set. 
�

If Y is a rotation set for md and if X ⊂ Y is compact and md -invariant, then
clearly X is also a rotation set for md , with ρ(X) = ρ(Y ). We record the following
simple lemma for future reference:

Lemma 2.17 Suppose X,Y are rotation sets for md containing more than one
point, and assume X ⊂ Y . Then each major gap of X of multiplicity n contains
n major gaps of Y counting multiplicities.

Proof Evidently each major gap of Y is contained in a major gap of X. Let {Ii}
be the collection of major gaps of X of multiplicities {ni}. The number ki of major
gaps of Y contained in Ii satisfies 0 ≤ ki ≤ ni . Since

∑
ki = ∑

ni = d − 1 by
Theorem 2.7, we must have ki = ni for all i. 
�

Let us call a rotation setmaximal if it is not properly contained in another rotation
set. Theorem 2.15 provides a convenient recipe for enlarging every rotation set to a
maximal one.

Lemma 2.18 Every rotation set is contained in a maximal rotation set.

Proof Suppose X is a rotation set for md . For each major gap (a, a + �) of X of
multiplicity n, consider the n disjoint subintervals (a + (j − 1)/d, a + j/d) for
1 ≤ j ≤ n. Let I denote the collection of the d − 1 disjoint open intervals of
length 1/d thus obtained. The rotation set XI of Theorem 2.15 clearly contains X.
Moreover, the endpoints of the intervals inI map toX undermd , which shows they
all belong to XI . Thus, XI has d − 1 taut gaps of multiplicity 1. By Theorem 2.9
and Lemma 2.17, XI is maximal. 
�
Corollary 2.19 A rotation setX formd is maximal if and only if it has d−1 distinct
gaps of length 1/d . In this case X = XI , where I is the collection of the major
gaps of X.
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The proof of Lemma 2.18 in fact gives the following improved lower bound for
the number Nmax(X) of the maximal rotation sets containing X:

Corollary 2.20 Suppose X is a rotation set for md with loose gaps I1, . . . , Ik of
multiplicities n1, . . . , nk . Then

Nmax(X) ≥
k∏

j=1

(nj + 1).

In particular, X is contained in at least 2k maximal rotation sets.

Proof For each loose gap I = (a, a + �) of X with multiplicity n, there are n + 1
different ways of choosing n disjoint subintervals of length 1/d whose endpoints
map to md(a) or md(a + �) (the one in the proof of Lemma 2.18 was one of these
choices). This leads to

∏k
j=1(nj + 1) different choices for the collection I . 
�

Example 2.21 The 2-cycle X = { 13 , 2
3 } under doubling is contained in precisely

two maximal rotation sets

XI1 =
{1
3
,
2

3

}
∪

{1
3

− 1

3 · 22n−1

}

n≥1
∪

{2
3

− 1

3 · 22n
}

n≥1

and

XI2 =
{1
3
,
2

3

}
∪

{1
3

+ 1

3 · 22n
}

n≥1
∪

{2
3

+ 1

3 · 22n−1

}

n≥1

corresponding to the collections I1 = {( 23 , 1
6 )} and I1 = {( 56 , 1

3 )}. Note that each
orbit in XIi

eventually hits the 2-cycle X, and the intersection of XIi
with the

major gap of X is countably infinite.

The above example is a special case of a count forNmax(X) that we will establish
in the next section for certain rational rotation sets (see Theorem 2.30). These
rotation sets, however, are not typical. In fact,when d > 2 there are rational rotation
sets for md that are contained in infinitely many maximal rotation sets. Here is an
example:

Example 2.22 Consider the 2-cycle X = { 14 , 3
4 } under tripling. Define the

sequences

tn =
n∑

j=0

1

32j+1 + 1

32n+1 · 12

sn = m3(tn) =
n∑

j=0

1

32j
+ 1

32n · 12
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for n ≥ 0. Then 1
3 < t0 < t1 < t2 < · · · with tn → 3

8 and 1
12 = s0 < s1 < s2 < · · ·

with sn → 1
8 . For each n ≥ 0 the collection

In =
{(

tn, tn + 1

3

)
,
(3
4
,
1

12

)}

produces a rotation set XIn
which evidently contains the 2-cycle X. The endpoints

3
4 ,

1
12 map to 1

4 underm3, so they both belong to XIn
. The other endpoints tn, tn + 1

3
have the m3-orbit

tn, tn + 1

3
�→ sn �→ tn−1 �→ sn−1 �→ · · · �→ t0 �→ s0 = 1

12
�→ 1

4

which, by monotonicity of {tj } and {sj }, never meets the pair of intervals in In.
This shows that both tn, tn + 1

3 belong to XIn
. Thus XIn

has a pair of major gaps
of length 1

3 and therefore is maximal by Corollary 2.19.

The situation in the irrational case is different and in fact simpler:

Theorem 2.23 Every irrational rotation set X for md is contained in finitely many
maximal rotation sets. For any maximal rotation set Y ⊃ X and any gap I of X, the
intersection Y ∩ I is finite (possibly empty) and eventually maps into X under the
iterations of md .

Proof Take any maximal rotation set Y ⊃ X. First suppose I is a major gap of X

of multiplicity n. By Lemma 2.17 and Corollary 2.19, Y has exactly n taut gaps of
multiplicity 1 contained in I . We distinguish two cases:

• Case 1: I is taut. Then I has the form (a, a + n/d) and

Y ∩ Ī =
{
a, a + 1

d
, . . . , a + n

d

}
.

This condition uniquely determines the major gaps of Y that are contained in I .
Notice that the inclusion md(Y ∩ Ī ) ⊂ X holds.

• Case 2: I is loose. Consider the standard monotone map gY which is also an
extension of md |X. By Theorem 2.10, there is an i > 0 such that the interior J

of g◦i
Y (I ) is a taut gap of X (there can be no periodic loose gap of X since ρ(X)

is irrational). Note that m◦i
d (Y ∩ I) = g◦i

Y (Y ∩ I) is contained in Y ∩ J̄ which
is uniquely determined by Case 1. Hence the elements of Y ∩ I are among the
finitely many m◦i

d -preimages of Y ∩ J̄ . This gives finitely many choices for the
major gaps of Y in I .

The two cases above show that there are only finitely many choices for the major
gaps of Y , hence for Y itself by Theorem 2.9.

We have shown that for any major gap I of X, the intersection Y ∩ I is finite and
eventually maps into X. Since every minor gap of X maps homeomorphically onto
a major gap under some iterate of md , the result must also hold when I is minor. 
�
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The numberNmax(X) of maximal rotation sets Y containing an irrational rotation
set X depends on the structure of the gap graph ΓX defined in the previous section.
Suppose there is a maximal path in ΓX of the form

Ik → Ik−1 → · · · → I1, with w(Ii) = ni . (2.2)

Since I1 is taut, the major gaps of Y in I1 are already determined. However, there
are

(
n1+n2

n2

)
choices for the major gaps of Y in I2. For each of these choices, there

are
(
n1+n2+n3

n3

)
choices for the major gaps of Y in I3 and so on. This gives the count

Nmax(X) =
∏(

n1+n2
n2

)(
n1+n2+n3

n3

) · · · (n1+···+nk

nk

) =
∏ (n1 + · · · + nk)!

n1! · · · nk! , (2.3)

where the product is taken over all maximal paths in ΓX of the form (2.2) (if there
is no path in ΓX, the product is taken over the empty set and is understood to be 1).

A quick inspection of Fig. 2.3 reveals thatNmax(X) = 1 for d = 2,Nmax(X) ≤ 2
for d = 3, and Nmax(X) ≤ 6 for d = 4, and Nmax(X) ≤ 24 for d = 5. More
generally, we have the following

Theorem 2.24 Nmax(X) ≤ (d − 1)! whenever X is an irrational rotation set for
md .

Proof If the gap graph ΓX has no path, then Nmax(X) = 1 and there is nothing to
prove. Otherwise, let ΓX have p ≥ 1 distinct maximal paths of the form (2.2), where
the weights of the vertices in the i-th path add up to Ni , so N1 + · · · + Np ≤ d − 1.
Then, by (2.3),

Nmax(X) ≤
p∏

i=1

Ni ! ≤
( p∑

i=1

Ni

)
! ≤ (d − 1)!

as required. 
�

2.3 Minimal Rotation Sets

A rotation set is called minimal if it does not properly contain another rotation set.
This section will study the question of existence and uniqueness of minimal rotation
sets that are contained in a given rotation set, in both rational and irrational cases.

Before we begin, a quick comment on topological dynamics is in order. The
simple proof that minimality is equivalent to having all orbits dense requires a slight
modification here, as the closure of an orbit in a rotation set is only forward invariant
and may not be a rotation set.4 Similarly, the standard application of Zorn’s lemma

4In fact, it will follow from the results of this section that for rotation sets minimality is equivalent
to having a single dense orbit, a property that is often called point transitivity.
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to show that every rotation set contains a minimal rotation set needs some care
because the intersection of a linearly ordered family of rotation sets is a priori
forward invariant. This minor problem is addressed by observing that under md ,
every compact forward invariant set contains a compact invariant set. In fact, if Z

is compact and satisfies md(Z) ⊂ Z, the nested intersection K = ⋂
n≥0 m◦n

d (Z) is
easily seen to satisfy md(K) = K .

Let us first consider the rational case, where minimal rotation sets are cycles. Let
C = {t1, . . . , tq} be a cycle of rotation number p/q under md , where the tj are
in positive cyclic order and their subscripts are taken modulo q (see Sect. 1.3). By
Theorem 1.14, dtj = tj+p (mod Z) for every j . The q gaps Ij = (tj , tj+1) are
permuted under any monotone extension g of md |C , so g(Īj ) = Īj+p. Recall that
these gaps are either minor or loose: there can be no taut gap.

It follows from Theorem 2.3 that every rotation setX formd with ρ(X) = p/q in
lowest terms contains at least one q-cycle. But there could be several such minimal
sets in X. For instance, under the tripling map m3, the union X = C1 ∪ C2 of the
3-cycles

C1 : 4

26
�→ 12

26
�→ 10

26
and C2 : 7

26
�→ 21

26
�→ 11

26

is a rotation set with ρ(X) = 2
3 . This can be seen, for example, from Corollary 2.16

since T � X contains the intervals ( 1226 ,
12
26 + 1

3 ) and ( 2126 ,
21
26 + 1

3 ) on the circle. The
general situation can be understood as follows.

We call a collection C1, . . . , CN of distinct q-cycles under md with the same
rotation number compatible if their union C1 ∪ · · · ∪ CN is a rotation set. We say
that C1, . . . , CN are superlinked if for every pair i �= j , each gap of Ci meets Cj .
Geometrically, this means that the points ofCi and Cj alternate as we go around the
circle.

Lemma 2.25 C1, . . . , CN are compatible if and only if they are superlinked.

In follows in particular that a collection of cycles are compatible if and only if
they are pairwise compatible.

Proof First suppose X = C1 ∪ · · · ∪ CN is a rotation set. Consider the standard
monotone map g = gX, which is also a monotone extension of md |Ci for each i.
Pick any pair Ci,Cj . Since these cycles are distinct, there is a gap I of Ci that
meets Cj at some point t . Then for every k ≥ 0, the interior Jk of g◦k(I ) meets
Cj at g◦k(t) = m◦k

d (t). Since J0 = I, J1, . . . , Jq−1 form all the gaps of Ci , we
conclude that Ci,Cj are superlinked.

Conversely, suppose C1, . . . , CN are superlinked and consider the standard
monotone map g = gC1 . Take a gap I of C1 and let J be the interior of g(I).
For 2 ≤ i ≤ N , let Ci ∩ I = {ai} and Ci ∩ J = {bi}. Using the fact that the
Ci have the same rotation number, it is easy to see that bi = md(ai). As the Ci

are superlinked, the points ai appear in the same order in I as the points bi in
J , so there is an orientation-preserving homeomorphism h : I → J such that
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h(ai) = bi for 2 ≤ i ≤ N . Repeating this process for every gap of C1 and gluing
together the resulting homeomorphisms will then yield an orientation-preserving
homeomorphism h : T → T which restricts to md on the union C1 ∪ · · · ∪ CN . 
�
Theorem 2.26 The number of distinct cycles in a rational rotation set is bounded
above by the number of its distinct major gaps.

In view of Theorem 2.7, we recover the following result of Goldberg as a special
case (see [11] for the original combinatorial proof and [2] for an inductive argument
reducing the problem down to d = 2):

Corollary 2.27 A rational rotation set formd contains at most d−1 distinct cycles.

The upper bound d − 1 can always be achieved; see Corollary 3.15.

Proof of Theorem 2.26 Let Y be a rational rotation set for md with ρ(Y ) = p/q

in lowest terms. Suppose C1, . . . , CN are the distinct cycles in Y , all necessarily of
length q . The union X = C1 ∪ · · · ∪ CN is an md -invariant subset of Y , so it is a
rotation set. By Lemma 2.25, the Ci are superlinked. It follows that any gap I of C1
contains precisely N gaps J1, . . . , JN of X. Each Ji is periodic of period q and its
orbit contains at least one major gap of X. Moreover, the orbits of J1, · · · , JN are
disjoint, so they cannot share any major gap of X. It follows that X, hence Y , has at
least N distinct major gaps. 
�
Corollary 2.28 Every rational rotation set under the doubling map contains a
unique cycle.

Example 2.29 Under the tripling map m3 there are five 4-cycles of rotation number
1
4 :

C1 : 1

80
�→ 3

80
�→ 9

80
�→ 27

80

C2 : 2

80
�→ 6

80
�→ 18

80
�→ 54

80

C3 = C3 + 1

2
: 5

80
�→ 15

80
�→ 45

80
�→ 55

80

C4 = C2 + 1

2
: 14

80
�→ 42

80
�→ 46

80
�→ 58

80

C5 = C1 + 1

2
: 41

80
�→ 43

80
�→ 49

80
�→ 67

80

By Corollary 2.27, at most two 4-cycles under tripling can be compatible. By
Lemma 2.25, this happens precisely when the two 4-cycles are superlinked.
Simple inspection shows that (C1, C2), (C2, C3), (C3, C4) and (C4, C5) are the only
compatible pairs (compare Fig. 2.4).
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Fig. 2.4 The five 4-cycles of rotation number 1
4 under tripling, shown in different colors (angles

are given in multiples of 1
80 ). Only the four superlinked pairs (red, blue), (blue, green), (green,

yellow), and (yellow, brown) are compatible cycles

Before moving on to the irrational case, let us use the above ideas to show that
for some rational rotation sets the lower bound of Corollary 2.20 is sharp:

Theorem 2.30 Let X be a rational rotation set for md which is the union of d − 1
distinct cycles. Then Nmax(X) = 2d−1.

Proof By Theorem 2.26 X has d − 1 major gaps, all loose and of multiplicity
1. If ρ(X) = p/q , these major gaps have disjoint orbits which are periodic
of period q . Let Y be any maximal rotation set containing X. Each major gap
I = (a, b) of X contains a single major gap J of Y of length 1/d . We claim
that J = (a, a + 1/d) or J = (b − 1/d, b). Otherwise J = (t, t + 1/d), where
a < t < t + 1/d < b. The standard monotone map g = gY is also a monotone
extension ofmd |X, so g◦q maps I onto itself fixing the endpoints a, b. Moreover, the
gaps g(I), . . . , g◦q−1(I) of X are all minor, so they cannot contain major gaps of
Y ; as such, g acts homeomorphically on them. It follows that g◦q is homeomorphic
on [a, t] ∪ [t + 1/d, b] and collapses J to the single point m◦q

d (t). This image point
necessarily lies in J since g◦q = m

◦q
d is expanding on both [a, t] and [t + 1/d, b].

This is a contradiction since m
◦q
d (t) ∈ Y .
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Thus, there are just two possibilities for each major gap of Y inside a given
major gap of X, hence 2d−1 possibilities altogether for the major gaps of Y , and
therefore for Y itself. This proves Nmax(X) ≤ 2d−1. The result now follows since
Nmax(X) ≥ 2d−1 by Corollary 2.20. 
�

The following corollary immediately follows from the above theorem and its
proof:

Corollary 2.31 Every rotation cycle X under the doubling map is contained in
exactly two maximal rotation sets. Moreover, if (a, b) is the major gap of X, then
the intervals (a, a + 1

2 ) and (b − 1
2 , b) are the major gaps of these maximal rotation

sets.

Compare Example 2.21.

Example 2.32 Consider the 2-cycle X = { 14 , 3
4 } under tripling. We showed in

Example 2.22 that Nmax(X) = ∞. However, the enlarged rotation set Y =
{ 18 , 1

4 ,
3
8 ,

3
4 }, a union of two 2-cycles under tripling, has Nmax(Y ) = 4 by

Theorem 2.30!

We now consider minimal rotation sets in the irrational case.

Theorem 2.33 Every irrational rotation set X for md contains a unique minimal
rotation set K . Moreover,

(i) K is the Cantor attractor of any monotone extension of md |X.
(ii) Each gap of K contains at most finitely many points of X, all of which

eventually map to K under the iterations of md .

Proof Take a monotone extension g of md |X and let K be the Cantor attractor of
g, as in Theorem 1.20. Let Z be any non-empty compact md -invariant subset of X.
By Theorem 1.20, K = ωg(t) ⊂ Z for every t ∈ Z. It follows that K is the unique
minimal rotation set contained in X.

To verify the second statement, let Y be any maximal rotation set containing X

(whose existence is guaranteed by Lemma 2.18). Since Y containsK , Theorem 2.23
shows that for each gap I of K , the intersection Y ∩ I is at most finite and maps into
K under the iterations of md . Hence the same must be true of X ∩ I . 
�

By (the proof of) Theorem 1.20, the gaps of the Cantor attractor of g are the
plateaus of the Poincaré semiconjugacy ϕ between g and rθ . Thus, we have the
following

Corollary 2.34 Suppose X is a minimal rotation set for md with ρ(X) = θ

irrational. Then there exists a degree 1 monotone map ϕ : T → T, whose plateaus
are precisely the gaps of X, which satisfies ϕ ◦ md = rθ ◦ ϕ on X.

Here is the converse statement. Recall that for each point s ∈ T, Is denotes the
interior of the fiber Es = ϕ−1(s).

Theorem 2.35 Let θ be irrational and ϕ : T → T be a degree 1 monotone map
with the property that Is �= ∅ implies Is−θ �= ∅. Denote by X the complement of the
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union of all plateaus of ϕ. If

ϕ ◦ md = rθ ◦ ϕ on X, (2.4)

then X is a minimal rotation set for md with ρ(X) = θ .

Proof The assumptions imply that ϕ has plateaus; otherwiseX = T and (2.4) would
exhibit a global conjugacy between the degree d ≥ 2 map md and the rotation rθ ,
which is impossible.

We invoke Theorem 1.22 to find a degree 1 monotone map g : T → T such
that ϕ ◦ g = rθ ◦ ϕ on T. Then X is the Cantor attractor of g. If t ∈ X is not an
endpoint of a plateau and s = ϕ(t), then Es = {t}, so by the assumption Es+θ is a
singleton {t ′}. The semiconjugacy relation (2.4) for md and the one for g then show
that md(t) = t ′ = g(t). Since the set of such t is dense in X, we conclude that
g = md on X. As the Cantor attractor of g, X is minimal for g and hence for md ,
and md(X) = g(X) = X. This completes the proof that X is a minimal rotation
set. 
�

We conclude this section with characterizations of minimal rotation sets, as well
as those that are both minimal and maximal.

Theorem 2.36 A rotation set for md is a Cantor set if and only if it is minimal and
has irrational rotation number.

Proof The “if” part follows from Theorem 2.33. For the “only if” part, supposeX is
a Cantor set. Then ρ(X) is irrational since a rational rotation set is at most countable
(Theorem 2.3). Let K be the unique minimal rotation set contained in X. If K �= X,
some gap I of K would have to meet X. But then by Theorem 2.33 the intersection
X ∩ I would be finite, consisting of isolated points of X. This would contradict the
assumption that X is a Cantor set. 
�

Let us call a rotation set exact if it is both minimal and maximal.5 Evidently a
rational rotation set can never be exact. In the irrational case, the following criterion
follows immediately from Corollary 2.19 and Theorem 2.36:

Theorem 2.37 An irrational rotation set for md is exact if and only if it is a Cantor
set with d − 1 distinct gaps of length 1/d .

Corollary 2.38 Every irrational rotation set under the doubling map is exact.

Proof Let X be an irrational rotation set under doubling. Then X has a single major
gap I of multiplicity 1 which is necessarily taut by Corollary 2.11. If K is the unique
minimal rotation set contained in X, then K is a Cantor set with a single taut gap of
multiplicity 1 which can only be I . It follows from Theorem 2.9 that K = X, and
then from Theorem 2.37 that X is exact. 
�

5The terminology is meant to suggest that nothing can be added to or removed from such a set
without losing the property of being a rotation set.
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Remark 2.39 The above corollary is false in higher degrees. For example, there are
minimal irrational rotation sets under tripling with a pair of major gaps of lengths
1
3 and 4

9 which therefore are not maximal (compare Theorem 4.31). However, every
irrational rotation set under tripling is either minimal, or maximal, or both. In every
degree > 3, there are irrational rotation sets that are neither minimal nor maximal.

For more on the role of exact rotation sets, see Sect. 4.3.
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