
Chapter 1
Monotone Maps of the Circle

Throughout this monograph the following conventions are adopted:

• The circle is represented as the quotient T = R/Z.
• π : R → T is the canonical projection.
• Three or more distinct points t1, t2, . . . , tk ∈ T are in positive cyclic order if there

are representatives xi ∈ π−1(ti ) such that x1 < x2 < · · · < xk < x1 + 1.
• For a distinct pair t1, t2 ∈ T, the interval (t1, t2) ⊂ T is defined as the set of

all t ∈ T such that t1, t, t2 are in positive cyclic order. We define the intervals
(t1, t2], [t1, t2), [t1, t2] by adding the suitable endpoints to (t1, t2).

• The length of an interval (t1, t2) ⊂ T is always understood as its normalized
Lebesgue measure, that is, the unique representative of t2 − t1 in [0, 1).

Every continuous map g : T → T lifts under the canonical projection π to a
continuous map G : R → R, so π ◦ G = g ◦ π , and G is unique up to an additive
integer. The lift G satisfies G(x + 1) = G(x) + d for some integer d called the
degree of g. We say that g is a monotone map if G is monotone in the usual sense
(non-increasing or non-decreasing).

This chapter studies the dynamics of degree 1 monotone maps of the circle, which
can be thought of as slight generalizations of orientation preserving homeomor-
phisms. It will be convenient to first work with lifts of such maps, i.e., continuous
non-decreasing self-maps of the real line that commute with the unit translation.

1.1 The Translation Number

Suppose G : R → R is a continuous non-decreasing map which satisfies

G(x + 1) = G(x) + 1 for all x ∈ R. (1.1)
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If 0 ≤ x < y < 1, then

(G(x) − x) − (G(y) − y) ≤ (G(y) − x) − (G(y) − y) = y − x < 1

and

(G(x) − x) − (G(y) − y) ≥ (G(0) − x) − (G(1) − y) = y − x − 1 > −1.

Since by (1.1) the function G − idR is 1-periodic, the inequality

|(G(x) − x) − (G(y) − y)| < 1

follows for all x, y ∈ R. The same reasoning applied to the n-th iterate G◦n shows
that

|(G◦n(x) − x) − (G◦n(y) − y)| < 1 for all x, y ∈ R and n ≥ 1. (1.2)

Lemma 1.1 There exists at most one rational number p/q with q > 0 for which
the equation G◦q(x) = x + p has a solution in x ∈ R.

Proof Suppose G◦q(x) = x + p and G◦n(y) = y + m. Then G◦nq(x) = x + np

and G◦nq(y) = y + mq . By (1.2),

|(G◦nq(x) − x) − (G◦nq(y) − y)| = |np − mq| < 1,

which implies np = mq . �	
Consider the sets

Q
−
G =

{p

q
: G◦q(x) > x + p for all x ∈ R

}
,

Q
+
G =

{p

q
: G◦q(x) < x + p for all x ∈ R

}
,

where p, q are integers with q > 0. Evidently Q
−
G and Q

+
G are non-empty disjoint

subsets of the set Q of rational numbers. Furthermore,

1. If p/q /∈ Q
−
G ∪ Q

+
G, both equations G◦q(x) > x + p and G◦q(x) < x + p have

solutions and so does G◦q(x) = x + p by continuity. Applying Lemma 1.1, we
see that the union Q

−
G ∪ Q

+
G can omit at most one rational number.

2. If p/q ∈ Q
−
G and m/n ∈ Q

+
G, then x + np < G◦nq(x) < x + mq for all x, so

p/q < m/n.
3. If p/q ∈ Q

−
G, since the function G◦q − idR is 1-periodic and > p, there is an

ε > 0 such that G◦q(x) > x + p + ε for all x. It follows by induction that
G◦nq(x) > x + np + nε for all x and n ≥ 1, which proves (np + 1)/(nq) ∈ Q

−
G

as soon as n > 1/ε. This shows Q−
G has no largest element. Similarly, Q+

G has no
smallest element.
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Properties (1) and (2) show that the pair (Q−
G,Q+

G) is a “Dedekind cut” of Q and

supQ−
G = infQ+

G.

We call this common value the translation number of G and denote it by τ (G).
It follows from property (3) that

Q
−
G ∪ Q

+
G =

{
Q� {τ (G)} if τ (G) ∈ Q

Q if τ (G) /∈ Q.
(1.3)

The terminology for τ (G) is justified by the following

Theorem 1.2 (Poincaré) For every x ∈ R,

τ (G) = lim
n→∞

G◦n(x) − x

n
. (1.4)

Thus, τ (G) measures the average translation per iterate that each point experiences
under repeated applications of G.

Proof For any integer n ≥ 1 we can find an integer m such that (m − 1)/n <

τ(G) < (m + 1)/n. Then (m − 1)/n ∈ Q
−
G and (m + 1)/n ∈ Q

+
G, so

m − 1

n
<

G◦n(x) − x

n
<

m + 1

n

for all x. This gives the inequality

∣∣∣∣
G◦n(x) − x

n
− τ (G)

∣∣∣∣ <
2

n
for all x ∈ R and n ≥ 1. (1.5)

The result follows by letting n → ∞. �	
Corollary 1.3 The equation G◦q(x) = x + p has a solution in x ∈ R if and only if
τ (G) = p/q .

Proof Evidently G◦q(x) = x + p for some x if and only if p/q /∈ Q
−
G ∪ Q

+
G.

By (1.3), this is equivalent to τ (G) = p/q . �	
Corollary 1.4 Suppose n1, n2,m1,m2 are integers with n1 ≥ 0 and n2 ≥ 0. Then

n1τ (G) + m1 < n2τ (G) + m2 (1.6)

if and only if

G◦n1(x) + m1 < G◦n2(x) + m2 for all x ∈ R. (1.7)
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Proof The case n1 = n2 is trivial, so let us assume 0 ≤ n1 < n2. In this case,
the inequality (1.6) is equivalent to (m1 − m2)/(n2 − n1) < τ(G) which by (1.3)
is equivalent to (m1 − m2)/(n2 − n1) ∈ Q

−
G. The latter means x + m1 − m2 <

G◦n2−n1(x) for all x, which is clearly equivalent to (1.7). The case n1 > n2 ≥ 0 is
treated similarly. �	

1.2 The Rotation Number

Now consider a degree 1 monotone map g : T → T. By definition, this means g

lifts to a continuous non-decreasing map G : R → R which commutes with the unit
translation. All other lifts of g are of the form G + k for some integer k, with the
translation number τ (G + k) = τ (G) + k by (1.4).

Definition 1.5 The rotation number ρ(g) of a degree 1 monotone map g : T → T

is the residue class modulo Z of the translation number τ (G), where G : R → R is
any lift of g.

For convenience, we often identify ρ(g) with its unique representative in [0, 1).
As a main example, for any θ ∈ [0, 1) the rigid rotation rθ : T → T defined by

rθ (t) = t + θ (mod Z)

has rotation number ρ(rθ ) = θ .

Theorem 1.6 Let g : T → T be a degree 1 monotone map with ρ(g) = θ . If the
orbit points r◦i

θ (0), r
◦j
θ (0), r◦k

θ (0) under the rigid rotation rθ are in positive cyclic
order, the same must be true of the orbit points g◦i (t), g◦j (t), g◦k(t) for every t ∈ T.

(If θ is a fraction of the form p/q in lowest terms, we need to assume q > 2 in order
for the theorem to have any content.)

Proof The assumption means that there are integers m1,m2 such that

iθ < jθ + m1 < kθ + m2 < iθ + 1.

If we choose a lift G of g so that τ (G) = θ , Corollary 1.4 shows that for all x ∈ R,

G◦i (x) < G◦j (x) + m1 < G◦k(x) + m2 < G◦i (x) + 1.

Projecting down to the circle, it follows that g◦i (t), g◦j (t), g◦k(t) are in positive
cyclic order for every t ∈ T. �	
Theorem 1.7 For every degree 1 monotone map g : T → T and every integer
k ≥ 0,

ρ(g◦k) = k ρ(g) (mod Z). (1.8)

If g is a homeomorphism, the above formula holds for negative k as well.
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Here g◦0 = id and g◦k means the (−k)-th iterate of g−1 if k < 0.

Proof (1.8) is trivial for k = 0, so let us assume k ≥ 1. For any lift G of g, the
iterate G◦k is a lift of g◦k and

τ (G◦k) = lim
n→∞

G◦kn(0)

n
= k lim

n→∞
G◦kn(0)

kn
= k τ(G).

Taking residue classes modulo Z then proves (1.8). If g is a homeomorphism, so
is G and the inverse G−1 is a lift of g−1. The uniform estimate (1.5) applied to
x = (G−1)◦n(0) gives

∣∣∣∣
(G−1)◦n(0)

n
+ τ (G)

∣∣∣∣ <
2

n

for all n ≥ 1. Letting n → ∞, we obtain τ (G−1) = −τ (G), which proves (1.8) for
k = −1. The general case k < 0 follows from this by iteration. �	
Theorem 1.8 Either of the following assumptions on degree 1 monotone maps
g, h : T → T implies ρ(g) = ρ(h):

(i) g and h agree along some orbit, that is, there is a t ∈ T such that g◦n(t) =
h◦n(t) for all n ≥ 1.

(ii) g and h are semiconjugate, that is, there is a degree 1monotonemap ϕ : T → T

which satisfies the relation ϕ ◦ g = h ◦ ϕ.

Proof

(i) Let tn = g◦n(t) = h◦n(t). We may assume tn �= tn−1 for all n since otherwise
both g, h have a fixed point and ρ(g) = ρ(h) = 0. Pick any x0 ∈ π−1(t0) and
define xn inductively as the smallest element of π−1(tn) that is > xn−1. Thus,
xn−1 < xn < xn−1 + 1 for all n. Take the unique lift G of g that sends x0 to
x1 and let yn = G◦n(x0). Applying G repeatedly on the inequalities y0 < y1 <

y0+1 then shows yn−1 < yn < yn−1+1 for all n, where the inequalities remains
strict by the assumption tn �= tn−1. Since yn is an integer translation of xn and
y0 = x0, it follows that yn = xn for all n. Similarly, the unique lift H of h that
sends x0 to x1 satisfies xn = H ◦n(x0) for all n. It follows from Theorem 1.2
that τ (G) = limn→∞(xn − x0)/n = τ (H), which proves ρ(g) = ρ(h).

(ii) Choose lifts G,H,Φ : R → R of g, h, ϕ such that Φ ◦ G = H ◦ Φ. Then
Φ ◦ G◦n = H ◦n ◦ Φ for all n. Since Φ commutes with the unit translation, the
function Φ − idR is 1-periodic and therefore bounded on R. It follows that

lim
n→∞

H ◦n(Φ(0)) − G◦n(0)

n
= lim

n→∞
Φ(G◦n(0)) − G◦n(0)

n
= 0,

which shows τ (G) = τ (H). �	
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The following can be thought of as an analog of Corollary 1.3 for arbitrary
rotation numbers:

Lemma 1.9 Let g : T → T be a degree 1 monotone map with ρ(g) = θ . Then
g(t) = rθ (t) for some t ∈ T.

Proof Let 0 ≤ θ < 1 and choose a lift G of g with τ (G) = θ . Suppose G(x) > x+θ

for all x ∈ R. Then, since the function G − idR is 1-periodic, there is an ε > 0 such
that G(x) > x+θ+ε for all x. It follows by induction that G◦n(x) > x+n(θ+ε) for
all x and all n ≥ 1. By (1.4) this would imply τ (G) ≥ θ+ε, which is a contradiction.
Similarly, the assumption G(x) < x + θ for all x leads to a contradiction. Thus,
G(x) = x + θ for some x ∈ R. �	

Here is a consequence of the above lemma that will be used in Sect. 4.1:

Corollary 1.10 For every orientation-preserving homeomorphism g : T → T and
every rigid rotation rθ , the commutator [g, rθ ] = g ◦ rθ ◦ g−1 ◦ r−1

θ has rotation
number zero.

Proof By Theorem 1.8(ii), ρ(g ◦ rθ ◦ g−1) = ρ(rθ ) = θ . By Lemma 1.9, there is a
t ∈ T such that (g ◦ rθ ◦g−1)(t) = rθ (t). This means rθ (t) is a fixed point of [g, rθ ],
which proves ρ([g, rθ ]) = 0. �	

We end this section by showing that the rotation number ρ(g) depends continu-
ously and monotonically on g. Observe that the space of continuous non-decreasing
functions R → R which commute with the unit translation is closed in the topology
of uniform convergence on the real line. Hence the space of degree 1 monotone
maps T → T is closed in the topology of uniform convergence on the circle.

Theorem 1.11 The mapping g 
→ ρ(g) is continuous in the topology of uniform
convergence on the circle.

Proof It suffices to check that G 
→ τ (G) is continuous in the topology of uniform
convergence on the real line. This is easy because by (1.5) this mapping is the
uniform limit of the sequence of continuous mappings G 
→ G◦n(0)/n. �	

Now suppose we have a family {gα} of degree 1 monotone maps of the circle
depending continuously on a parameter α which varies in some interval on the real
line. We say that {gα} is a monotone family if it lifts to a continuous family {Gα} of
maps of the real line such that Gα ≤ Gβ whenever α < β. An easy induction then
shows that G◦n

α ≤ G◦n
β for all n, so τ (Gα) ≤ τ (Gβ). This proves

Theorem 1.12 For every monotone family {gα}, the map α 
→ ρ(gα) is monotone.

Of course the rotation number of a monotone family can be constant. Suppose
however that in the above situation Gβ = Gα + 1 for some α < β, so τ (Gβ) =
τ (Gα) + 1. Since the function α 
→ τ (Gα) is continuous by (the proof of)
Theorem 1.11, it assume all values in the interval [τ (Gα), τ (Gα)+1] and it follows
that the translation number is not constant.
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Corollary 1.13 Suppose g0 : T → T is a degree 1 monotone map and

gα(t) = g0(t) + α (mod Z)

for α ∈ T. Then the assignment α 
→ ρ(gα) itself is a degree 1 monotone map.

1.3 Dynamics in the Presence of Periodic Points

We continue assuming that g : T → T is a degree 1 monotone map. It is easy to see
using Corollary 1.3 that ρ(g) = p/q if and only if g◦q(t) = t for some t ∈ T. Here
is a sharper statement:

Theorem 1.14 Suppose g : T → T is a degree 1 monotone map with ρ(g) = p/q

in lowest terms. Then,

(i) g has a periodic orbit of length q .
(ii) All periodic orbits of g have length q .
(iii) If the points of a periodic orbit are labeled in positive cyclic order as

t1, t2, . . . , tq , then g(tj ) = tj+p, where the subscripts are taken modulo q .

Proof By what we have seen, g has a periodic point whose period n divides q . This,
in turn, implies that ρ(g) is a fraction of the form m/n (mod Z). Since p and q are
assumed to be relatively prime, it easily follows that n = q . This proves (i).

To see (ii), let t be a periodic point of g of period n. Take any x ∈ π−1(t)

and a lift G of g with τ (G) = p/q . Then G◦n(x) = x + m for some integer m,
where m/n = p/q by Corollary 1.3. Since p and q are assumed relatively prime,
we have n = kq and m = kp for some integer k ≥ 1. If the minimal period n

were greater than q , then either G◦q(x) > x + p or G◦q(x) < x + p. Since G

is monotone and commutes with the unit translation, it would follow inductively
that G◦iq(x) > x + ip or G◦iq(x) < x + ip for all i ≥ 1. This would contradict
G◦kq(x) = x + kp. Thus n = q .

Finally, (iii) follows at once from Theorem 1.6 since if aj = j/q (mod Z), the
points a1, a2, · · · , aq are in positive cyclic order and form the orbit of 0 under the
rigid rotation rp/q , which sends each aj to aj+p. �	

For convenience we often use the term q-cycle for a periodic orbit of length
q . Part (iii) of the above theorem can be expressed as a semiconjugacy relation as
follows. Suppose we label the points of a q-cycle C of g as t1, . . . , tq in positive
cyclic order. Define the piecewise constant map ϕ : T → T by sending each half-
open interval [tj , tj+1) to the point aj = j/q (mod Z). Then one has the relation

ϕ ◦ g = rp/q ◦ ϕ on C. (1.9)

Note that there are q different ways of labeling the points of C in positive cyclic
order, giving rise to q such semiconjugacies which only differ by a rotation. In
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t1

t2

t3

t4

t5

0/5

1/5

2/5

3/5

4/5

0/5

1/5

2/5

3/5

4/5

5/5

t1 t2 t3 t4 t5 = t0

ϕ
ϕ

Fig. 1.1 Left: The combinatorial semiconjugacy ϕ associated with a 5-cycle C = {t1, . . . , t5}.
Right: The graph of ϕ. Observe that C is the complement of the union of plateaus of ϕ

particular, if we choose the labeling so that 0 ∈ [tq , t1), then ϕ(0) = 0. We call ϕ

normalized this way the combinatorial semiconjugacy associated with the cycle C.
To establish the analogy with the more interesting case of irrational rotation numbers
to be discussed in the next section, let us comment that the cycle C can be described
as the complement of the union of the “plateaus” of ϕ (by definition, a plateau is
a maximal open interval on which the map is constant; see Sect. 1.4 and compare
Fig. 1.1).

Remark 1.15 The relation (1.9) may not hold globally since g may well map a point
in (tj , tj+1) to tj+p+1. However, if g maps each [tj , tj+1) onto [tj+p, tj+p+1), then
(1.9) holds on the whole circle.

The preceding discussion provides a simple characterization for the cycles that
occur as periodic orbits of degree 1 monotone maps of the circle. Let C consist
of q points t1, . . . , tq labeled in positive cyclic order and g : C → C be any
transitive action. We say that C has combinatorial rotation number p/q under
g if g(tj ) = tj+p for all j . In this case, we can extend g to an orientation-
preserving homeomorphism of the circle by mapping each half-open interval
[tj , tj+1) homeomorphically onto [tj+p, tj+p+1). Theorem 1.14(iii) then shows that
ρ(g) = p/q .

Corollary 1.16 A cycle can be realized as a periodic orbit of a degree 1 monotone
map if and only if it has a well-defined combinatorial rotation number.

See Fig. 1.2.
Recall that the omega limit set of a point t ∈ T under the action of g is the set of

all accumulation points of the forward orbit of t:

ωg(t) =
⋂
n≥1

{g◦n(t), g◦n+1(t), g◦n+2(t), . . .}.

It is easy to see that ωg(t) is non-empty and compact, and g(ωg(t)) = ωg(t).

Theorem 1.17 Suppose g : T → T is a degree 1 monotone map with ρ(g) = p/q

in lowest terms. Then ωg(t) is a q-cycle for every t ∈ T.
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Fig. 1.2 Every q-cycle under a degree 1 monotone map of the circle has a well-defined
combinatorial rotation number of the form p/q, where p and q are relatively prime. The 5-cycle on
the left has combinatorial rotation number 2

5 , while the one on the right, having no combinatorial
rotation number, cannot be realized as a periodic orbit of any degree 1 monotone map

Proof Let E = {t ∈ T : g◦q(t) = t}. By Theorem 1.14, E is non-empty and
every t ∈ E has period q , so ωg(t) = {t, g(t), . . . , g◦q−1(t)}. If t /∈ E, then t

belongs to a connected component J of the open set T � E. The iterate g◦q maps
the interval J onto itself, keeping the endpoints fixed but moving all the interior
points (note however that a point in J may map to an endpoint). An easy calculus
exercise shows that one endpoint t ′ of J is attracting under g◦q and the other is
repelling. It follows that g◦nq(t) → t ′ as n → ∞. But then g◦i+nq(t) → g◦i (t ′),
which proves ωg(t) = {t ′, g(t ′), . . . , g◦q−1(t ′)}. �	

1.4 Dynamics in the Absence of Periodic Points

We now turn to the case of irrational rotation numbers.

Theorem 1.18 (Poincaré) Suppose g : T → T is a degree 1 monotone map with
ρ(g) = θ irrational. Then there exists a degree 1 monotone map ϕ : T → T which
satisfies ϕ ◦ g = rθ ◦ ϕ. Moreover, ϕ is unique up to postcomposition with a rigid
rotation.

We call the unique such ϕ normalized by ϕ(0) = 0 the Poincaré semiconjugacy
between g and rθ .

Proof Lift g to a map G : R → R with τ (G) = θ . We will construct a map
Φ : R → R with the following properties:

(i) Φ is continuous and non-decreasing;
(ii) Φ(x + 1) = Φ(x) + 1 for all x;

(iii) Φ(G(x)) = Φ(x) + θ for all x.

The quotient map ϕ : T → T will then have the desired property.
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Consider the set

Λ = {G◦n(0) + m : n,m are integers with n ≥ 0}. (1.10)

Since τ (G) = θ is irrational, Corollary 1.4 shows that each element of Λ has a
unique representation of this form. Define Φ : Λ → R by

Φ(G◦n(0) + m) = nθ + m.

The image Φ(Λ) is dense in R since θ is irrational, and Φ is strictly increasing on
Λ by Corollary 1.4. Extend Φ to the real line by

Φ(x) = sup
y∈Λ∩(−∞,x]

Φ(y).

Clearly Φ is non-decreasing, so it has one-sided limits Φ(x−) ≤ Φ(x+) at every
x. If the inequality were strict at some x, the image Φ(Λ) would omit all points in
the interval (Φ(x−),Φ(x+)), with the possible exception of Φ(x) if x ∈ Λ, which
contradicts density of Φ(Λ). Thus, Φ is continuous everywhere.

Properties (ii) and (iii) clearly hold when x ∈ Λ, and by continuity they hold
when x ∈ Λ. If (a, b) is a connected component of R � Λ, the definition of Φ

shows that Φ is constant in (a, b). If x ∈ (a, b), invariance of Λ under the unit
translation gives

Φ(x + 1) = Φ(a + 1) = Φ(a) + 1 = Φ(x) + 1,

while monotonicity gives

Φ(G(a)) ≤ Φ(G(x)) ≤ Φ(G(b)) �⇒ Φ(a) + θ ≤ Φ(G(x)) ≤ Φ(b) + θ.

Since Φ(a) = Φ(b) = Φ(x), we obtain Φ(G(x)) = Φ(x) + θ . This proves that (ii)
and (iii) hold for all x ∈ R.

Uniqueness follows since Φ is uniquely determined by its values on Λ, which in
turn are uniquely determined by Φ(0). �	

Since the Poincaré semiconjugacy ϕ constructed above is a monotone map, each
fiber Es = ϕ−1(s) is either a point or a closed non-degenerate interval. It follows
that the interior Is of Es is either empty or an open interval. In the latter case we call
Is a plateau of ϕ.1 We can visualize a plateau as a maximal open interval on which
the graph of ϕ is a horizontal line.

1Let us emphasize that our plateaus are open intervals, a convention that is not commonly adopted
in the literature.
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Lemma 1.19 Let ϕ be the Poincaré semiconjugacy between g and rθ , given by
Theorem 1.18.

(i) For every s ∈ T, g−1(Es) = Es−θ .
(ii) If Is �= ∅ then Is−θ �= ∅. Moreover, Is−θ contains the open interval g−1(Is).

By part (ii), the plateaus of ϕ are indexed by a countable union of backward orbits
of rθ . This turns out to be a characteristic property of Poincaré semiconjugacies
(see Theorem 1.22).

Proof Statement (i) follows directly from the semiconjugacy relation ϕ ◦g = rθ ◦ϕ.
For (ii), simply note that Is being a plateau implies that Es does not reduce to a point.
By (i), the same must be true of Es−θ , which shows Is−θ is a plateau. �	

The following theorem is the analogue of Theorem 1.17 for monotone maps
with irrational rotation number. Unlike the rational case, there are now two possible
regimes for the asymptotic behavior of orbits.

Theorem 1.20 Suppose g : T → T is a degree 1 monotone map with ρ(g) = θ

irrational, and ϕ : T → T is the Poincaré semiconjugacy between g and rθ .

(i) If ϕ is a homeomorphism, then ωg(t) = T for all t ∈ T.
(ii) If ϕ is not a homeomorphism, there exists a g-invariant Cantor set K ⊂ T with

the property that ωg(t) = K for every t ∈ T.

The map g is called linearizable or non-linearizable according as case (i) or (ii)
holds. We refer to K in (ii) as the Cantor attractor of g (see Fig. 1.3).

K

ϕ

Fig. 1.3 The Cantor attractor K of some degree 1 monotone map with irrational rotation number,
and the graph of the corresponding Poincaré semiconjugacy ϕ. (Here and elsewhere, we use
hyperbolic convex hulls to make subsets of the circle more visible.) Similar to the rational case, K

can be described as the complement of the union of plateaus of ϕ
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Proof If ϕ is a homeomorphism, then g is conjugate to rθ under which all orbits
are dense, so (i) holds. Let us then assume that ϕ is not a homeomorphism and
define K to be the complement of the union of all plateaus of ϕ. Evidently K is
a compact proper subset of the circle. If g(t) belongs to a plateau Is , Lemma 1.19
shows that Is−θ is a plateau containing t . This proves g(K) ⊂ K . To prove the
reserve inclusion, suppose t ∈ K and take any t ′ with g(t ′) = t . If t ′ ∈ K , then
t ∈ g(K). Otherwise t ′ belongs to a plateau Is . By Lemma 1.19, g(Es) = Es+θ

contains t . Thus, g maps Es either to the single point t , or to the non-degenerate
closed interval Es+θ having t as a boundary point. In either case, monotonicity of g

implies that some endpoint of Is maps to t , proving t ∈ g(K).
To check that K is a Cantor set, first observe that K has no isolated point since

distinct plateaus of ϕ have disjoint closures. If K were not totally disconnected, it
would necessarily contain a non-empty open interval J . As J does not meet any
plateau, ϕ would be one-to-one in J , and the image ϕ(J ) would also be an open
interval. We could then take any plateau Is and an integer n ≥ 1 such that s − nθ ∈
ϕ(J ). Then, Is−nθ , a plateau by Lemma 1.19, would have to intersect J , contradict-
ing Is−nθ ∩ K = ∅.

Next, we show that K is strongly minimal in the sense that if X is non-empty,
compact and g-invariant, then K ⊂ X. Let us verify that every p ∈ K which is
not an endpoint of a plateau belongs to X. Since such p are dense in K , this will
prove K ⊂ X. Pick any t ∈ X and an increasing sequence {ni} of positive integers
such that r

◦ni

θ (ϕ(t)) = ϕ(g◦ni (t)) → ϕ(p). By passing to a subsequence, we may
assume g◦ni (t) → u ∈ X, so ϕ(u) = ϕ(p) by continuity. If p �= u, the fiber Eϕ(p)

would be non-degenerate, hence Iϕ(p) would be a plateau with p as an endpoint,
contradicting our assumption. Hence, p = u ∈ X.

It is now easy to prove that ωg(t) = K for every t ∈ T. If g◦n(t) ∈ K for some
n ≥ 0, then ωg(t) = K follows immediately from minimality. Consider then the
case where g◦n(t) /∈ K for every n ≥ 0. If Is is the plateau containing t , it follows
from Lemma 1.19 that Is+nθ is the plateau containing g◦n(t). The Is+nθ are disjoint
with

∑ |Is+nθ | ≤ 1, so |Is+nθ | → 0 as n → ∞. Therefore the distance between
g◦n(t) and the endpoints of Is+nθ tends to zero. It follows that ωg(t) ⊂ K , and again
by minimality ωg(t) = K . �	
Remark 1.21 The non-linearizable case can always be reduced to the linearizable
case at the expense of working in a quotient dynamical system. Consider the
equivalence relation ∼ on the circle where t ∼ t ′ if and only if ϕ(t) = ϕ(t ′).
Let T̃ be the set of all equivalence classes [t] of ∼. The map ϕ̃ : T̃ → T defined by
ϕ̃[t] = ϕ(t) is clearly a bijection, so it induces a topology on T̃ with respect to which
ϕ̃ is a homeomorphism. The induced action g̃ : T̃ → T̃ given by g̃([t]) = [g(t)]
is easily seen to be well-defined and homeomorphic, and it is linearizable since
ϕ̃ ◦ g̃ = rθ ◦ ϕ̃.

The next result characterizes the monotone maps that arise as Poincaré semi-
conjugacies. It will be used later in Theorem 2.35. We will continue denoting the
interior of the fiber ϕ−1(s) by Is .
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Theorem 1.22 Let θ be irrational and ϕ : T → T be a degree 1 monotone map
with the property that Is �= ∅ implies Is−θ �= ∅. Then, there exists a degree 1
monotone map g : T → T which satisfies ϕ ◦ g = rθ ◦ ϕ.

Observe that any such g has rotation number θ by Theorem 1.8(ii). The map g could
be a homeomorphism even if ϕ has plateaus. This happens when the plateaus of ϕ

are indexed by full orbits of rθ .

Proof It will be convenient to work on the universal cover. Let Φ : R → R be any
lift of ϕ and set Ey = Φ−1(y) for every y ∈ R. By the assumption, if Ey reduces
to a point, so does Ey+θ . Hence there is a unique map G : R → R which sends
each fiber Ey affinely to Ey+θ , preserving the orientation. The relations G(x +1) =
G(x)+1 and Φ(G(x)) = Φ(x)+θ for all x follow immediately. It remains to show
that G is non-decreasing and continuous.

Take any x, x ′ ∈ R with x < x ′. If both x, x ′ belong to the same fiber of Φ,
then clearly G(x) ≤ G(x ′) by the definition of G. Suppose then that x ∈ Ey and
x ′ ∈ Ey ′ , where necessarily y < y ′ since Φ is non-decreasing. Then Φ(G(x)) =
y + θ < y ′ + θ = Φ(G(x ′)), which implies G(x) ≤ G(x ′). This shows G is
non-decreasing. Moreover, every point of R belongs to some fiber Ey , which is
contained in the image of G since G(Ey−θ ) = Ey . Thus G is surjective. Because of
monotonicity, this proves that G is continuous. �	

1.5 Invariant Measures

Let M (T) denote the space of all Borel probability measures on the circle. Every
Borel measurable map g : T → T acts on M (T) by sending a measure μ to its
push-forward g∗μ defined by (g∗μ)(E) = μ(g−1(E)). A measure μ ∈ M (T) is
called g-invariant if g∗μ = μ. According to Krylov and Bogolyubov, there is at
least one g-invariant measure when g is continuous [14]. In fact, if we start with any
μ0 ∈ M (T) and define the sequence μn ∈ M (T) by

μn = 1

n

n−1∑
i=0

(g◦i )∗μ0 n ≥ 1,

then any weak∗ limit of the sequence {μn} will be g-invariant.
A g-invariant measure μ ∈ M (T) is called ergodic if g−1(E) = E implies

μ(E) = 0 or μ(E) = 1. In this case, it follows from Birkhoff’s ergodic theorem
that for every function f ∈ L1(μ),

lim
n→∞

1

n

n−1∑
i=0

f (g◦i (t)) =
∫

T

f dμ
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holds for μ-almost every t ∈ T [14]. If we choose for f the characteristic function
of an interval I ⊂ T, we deduce that

μ(I) = lim
n→∞

1

n
#
{
0 ≤ i ≤ n − 1 : g◦i (t) ∈ I

}

for μ-almost every t ∈ T. In particular, almost every orbit is dense in the support
of μ.

It may happen that g has a unique invariant measure μ ∈ M (T). In this case, μ

is necessarily ergodic and the map g is called uniquely ergodic. A sharper form of
Birkhoff’s theorem then shows that for every continuous function f : T → R,

lim
n→∞

1

n

n−1∑
i=0

f (g◦i ) =
∫

T

f dμ

uniformly on T. If μ has no atoms, we can deduce by a standard approximation
argument that for every interval I ⊂ T and every t ∈ T,

μ(I) = lim
n→∞

1

n
#
{
0 ≤ i ≤ n − 1 : g◦i (t) ∈ I

}
. (1.11)

Now suppose g is a degree 1 monotone map. If ρ(g) is rational of the form p/q

in lowest terms, then g has at least one q-cycle C by Theorem 1.14, and the Dirac
measure μC which assigns a mass of 1/q to each point of C is clearly g-invariant
(in fact, ergodic). Moreover, the combinatorial semiconjugacy ϕ associated with C

(see the end of Sect. 1.3) is related to μC by the formula

ϕ(t) =
∫ t

0
dμC = μC[0, t] (mod Z).

It is not hard to see using Theorem 1.14 that the support of every g-invariant measure
μ ∈ M (T) is contained in the union of q-cycles of g. As the restriction of μ to each
q-cycle is also g-invariant, it must give an equal mass (possibly zero) to each point
of the cycle. In the special case where g has finitely many q-cycles C1, . . . , Cn, it
follows that μ is a convex combination of the Dirac measures μCi , that is,

μ = α1 μC1 + · · · + αn μCn, where αi ≥ 0 and
n∑

i=1

αi = 1.

In this case the space of all g-invariant measures is isomorphic to an (n − 1)-
dimensional simplex. The ergodic measures in this space are μC1, . . . , μCn ,
corresponding to the n vertices of the simplex. Thus, g is uniquely ergodic if
and only if it has a single periodic orbit.
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The situation when ρ(g) = θ is irrational is quite different. It is well known
that the rigid rotation rθ is uniquely ergodic, with Lebesgue measure λ being its
unique invariant measure. In the linearizable case where the Poincaré semiconjugacy
ϕ between g and rθ is a homeomorphism, it immediately follows that g is also
uniquely ergodic, with the unique invariant measure ϕ−1∗ λ supported on the full
circle. In the non-linearizable case a similar construction gives a unique g-invariant
measure μ, supported on the Cantor attractor K , with the property that ϕ∗μ = λ.
In fact, let D ⊂ K be the countable set of the endpoints of plateaus of ϕ, and let
S be the countable set of s ∈ T for which Is �= ∅. Then ϕ : K � D → T � S is
continuous and bijective, and the measure μ can be described as the push-forward
under ϕ−1 of the restriction of λ to T� S. Similar to the rational case, the Poincaré
semiconjugacy ϕ is related to the invariant measure μ by the formula

ϕ(t) = μ[0, t] (mod Z).

In fact, ϕ−1[0, ϕ(t)] ⊃ [0, t] for every t by monotonicity of ϕ. Moreover, the
difference ϕ−1[0, ϕ(t)] � [0, t] is disjoint from K � D, so its μ-measure is zero.
Hence,

ϕ(t) = λ[0, ϕ(t)] = μ
(
ϕ−1[0, ϕ(t)]) = μ[0, t] (mod Z).
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