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Abstract. Proliferative activity of cells is one of the most critical factors
in breast cancer diagnosis. It is used to evaluate tumor cell progression
and to predict treatment responses in chemotherapy. Ki-67 is a nuclear
biomarker commonly used to measure cellular proliferation rate. The
ratio between the number of Ki-67 positive tumor nuclei and all tumor
nuclei defines Ki-67 index. However, manual cell counting is tedious and
time consuming because hundreds of nuclei must be labeled. To speed
up the analysis process, nuclei can be segmented automatically and then
classified based on staining color. Unfortunately, segmentation of indi-
vidual nuclei is a big challenge because they often create complex clusters
comprised of many touching and overlapping nuclei. To deal with com-
plexities and ambiguities of cytological material we propose a generative
model which approximates nuclei using ellipses. We assume that the pro-
cess of generating a cytological sample has stochastic nature. Therefore it
is possible to reconstruct this process using marked point process tuned
according to observed cytological sample. To verify the potential of the
proposed method, we applied it to determine Ki-67 index in breast can-
cer immunochemistry samples. The results of experiments have shown
that Ki-67 indices determined by proposed approach correlate well with
those computed manually.
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1 Introduction

Biological material necessary for immunochemical examination is taken from
affected breast tissue using needle biopsy. The material is then subjected to an
immunochemical processing, fixing and staining. Ki-67 positive nuclei are stained
c© Springer International Publishing AG, part of Springer Nature 2018
I. Rojas and F. Ortuño (Eds.): IWBBIO 2018, LNBI 10814, pp. 151–162, 2018.
https://doi.org/10.1007/978-3-319-78759-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78759-6_15&domain=pdf


152 M. Kowal et al.

by diaminobenzidine (DAB) and have a brown color; negative nuclei appear as
blue due to hematoxylin (H) dye. Finally, slide glass with stained material is
scanned and evaluated by the pathologist. Ki-67 index is calculated as a ratio
between brown-colored nuclei and all nuclei. Individual cases of breast cancer
are classified using a fixed cut-off point for the Ki-67 index. During the 2011
St. Gallen International Breast Cancer Conference agreed a cut-off value of 14%
based on the study by Cheang et al. [5]. The recommendation had changed in
2013 when most of the panels of St.Gallen conference suggested a threshold of
20%. Finally, the 2015 consensus suggested that cut-off value should be tuned
separately for each laboratory based on median value from local results.

The main problem when determining the Ki-67 index is that many patholo-
gists do not have time to visually count the cell nuclei. This process is extremely
time-consuming because it requires choosing the most active areas in prolifera-
tive rate (hotspots) and then pathologists have to mark manually few hundreds
of nuclei. Counting by visual inspection is highly subjective because it is linked
to interpretation. Many studies report that inter-observer variability in deter-
mining the Ki-67 index is high [16].

Automatic nuclei counting would have allowed avoiding tedious and in fact
unnecessary work for pathologist. Also, the process would become free from the
subjective assessment of the pathologist. However, we must remember that the
accuracy of nuclei segmentation is critical to performance of Computer-Aided
Cytology (CAC). Unfortunately, immunochemical images of cytological material
are rather challenging for existing object detection methods. In hotspots, they
usually create complex, random and heterogeneous structures like clumps and
nests. Nuclei are often overlapping and touching. A number of scientific centers
conduct an intensive research to develop efficient algorithms for object segmen-
tation. The most common approaches are based on the image thresholding, color
deconvolution, data clustering, watershed, active contours and deep learning [4,8].
One of the well-known systems for determining Ki-67 index is ImmunoRatio [15].
This system estimates the Ki-67 index as the ratio of the brown-colored area of
the image to the brown- and blue-colored area of the image. Staining compo-
nents (DAB and H) are separated using H+DAB color deconvolution technique
and intensity thresholding [12]. For the ImmunoRatio to be effective, it must be
appropriately calibrated for data from a specific laboratory. There are a lot of
reports in the literature about the high accuracy of this system [18]. Saha et al.
proposed deep learning framework for hotspots detection and proliferation scoring
[13]. They achieved 93% precision, 0.88% recall and 0.91% F-score value. In addi-
tion, in their work, we can find a comprehensive list of methods used for estimating
the Ki-67 index. In [1] a classifier based algorithm was proposed for Ki-67 scoring
in BC tissue microarray images. Proposed approach reached 90% classification
accuracy with 0.64 kappa concordance. Xing et al. applied boundary delineation
algorithm to localize tumor and nontumor cells for automatic Ki-67 counting [17].
Their algorithm shows promising performance measure in comparison with other
popular Ki-67 scoring techniques. Here, we can also find an overview of the other
methods used to estimate Ki-67 index.
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The aim of our research is to develop and test the new method of Ki-67 scoring
based on stochastic geometry. Stochastic geometry is a branch of probability
theory that deals with the analysis of random spatial patterns [6]. They are
successfully applied wherever there are heterogeneous structures whose spatial
distribution is random [7,10]. We can observe such distribution for cytological
material in immunochemical images.

The idea of our approach is to transform H+DAB stained image into a model
build up with ellipses which vary in the location, size and orientation. The goal
is to find such configuration of ellipses that fit the image data best without
violating a priori preferences regarding the distribution of nuclei. The next step
is to divide ellipses into two classes due to the color of actual nuclei. This step
was carried out with the help of color deconvolution, which allowed us to discover
DAB staining areas and H staining areas. The ellipses are by default classified
to blue-colored (H) objects and then they are changing their assignment if they
are touching the brown-colored (DAB) area. Finally, nuclei models are counted
in order to determine Ki-67 index.

To verify the effectiveness of proposed approach, it was applied to estimate
Ki-67 index for cytological images of breast cancer. The obtained results were
compared with the reference results obtained for manual segmentation and with
the results coming from ImmunoRatio.

The remainder of this paper is organized as follows. Section 2 gives the
description of methods applied to determine Ki-67 index. Results of experiments
are presented in Sect. 3. Concluding remarks are given in Sect. 4.

2 Method

2.1 Method Overview

Before it is possible to build immunochemical models of actual images, pre-
processing must be applied to these images to separate the areas stained by H
and DAB. To achieve this, the RGB image is subjected to H+DAB deconvolution
using the procedure implemented in ImageJ plugin [12]. Three separate intensity
images are created as a result. The first represents how much of H has been
deposited in nuclei, second how much of DAB has been deposited in nuclei,
and third residuals (see Fig. 1). For further processing, we are using the image
of H density and DAB density. Next step is carried out to determine binary
masks of H area and DAB area. Both masks are determined based on intensity
thresholding. The H mask is combined with the DAB mask using AND logic
operator. As an effect, we are obtaining H+DAB mask used by stochastic based
algorithm to detect elliptical objects which resemble the nuclei. The DAB mask
alone cannot be used to segment Ki-67 positive nuclei because in some cases
only small part of the nucleus is colored by DAB but anyway this means that
the nucleus should be counted as Ki-67 positive. Therefore, H+DAB mask is
used to segment all nuclei using stochastic geometry approach, and then DAB
mask is used to indicate Ki-67 positive nuclei by checking which ellipses overlaps
with the area of the DAB mask. The entire procedure is illustrated in Fig. 1.
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Fig. 1. Overview of the method

The crucial step of the proposed strategy is to find a proper configuration
of ellipses that fit the H+DAB mask. Stochastic geometry based approach is
trying to cover as many as possible pixels of nuclei area on H+DAB mask using
a collection of ellipses of different size and orientation [2,9]. At the same time, the
algorithm is trying to avoid to cover background pixels. Of course, there are many
different collections of ellipses that fit well to the given H+DAB mask. To choose
the best configuration, we need a prior knowledge about preferable configurations
of nuclei. For this purpose, we control pairwise interactions between ellipses to
limit the number of overlaps between objects. Thus, configurations with a large
number of overlapping ellipses are less likely than those that have less overlaps.

2.2 Marked Point Process

In the considered approach nuclei segmentation in H+DAB image boils down
to finding the configuration of ellipses varying in size, location and orientation
which covers precisely the H+DAB mask and follows the distribution given by
aprior model. To find such a configuration of ellipses, we had to assume that the
image generation process can be described using marked point process (MPP). So
the crucial element necessary to reconstruct the input image is the knowledge of
conditional probability mass function (pmf) p(x|y) which governs such process:

p(x|y) ∝ f(y|x)p(x), (1)
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where likelihood term f(y|x) evaluates the consistency of ellipse configuration
x = {x1, . . . , xn} respect to H+DAB mask y and a prior term p(x) reflects
constraints on pairwise interactions between ellipses within configuration x [2]:

p(x) = αβn(x)
∏

xi∼xj

h(xi, xj), (2)

where α, β > 0 are constants, n(x) is the number of disks in configuration x, h
is the interaction function and ∼ is a symmetric and reflexive relation describing
ellipse overlaps.

If we assume that variables representing mask values yt ∈ {0, 1} are condi-
tionally independent given configuration x then f(y|x) takes the following form:

f(y|x) =
∏

t∈S(x)

b(yt; pN )
∏

t∈S\S(x)

b(yt; pB), (3)

where b(yt; pN ) and b(yt; pB) are Bernoulli pmf’s:

b(yt; pN ) =
{

1 − pN if yt = 0
pN if yt = 1,

(4)

b(yt; pB) =
{

1 − pB if yt = 1
pB if yt = 0.

(5)

They are used to evaluate the likelihood of pixels on H+DAB mask y within
nuclei region S(x):

S(x) =
n⋃

i=1

S(xi), (6)

and background region S \ S(x) respectively, where S is a pixel lattice of mask
H+DAB and S(xi) is the silhouette of the ellipse xi. Parameter pN describe a
probability of occurring actual nuclei pixel within nuclei region S(x) on H+DAB
mask y, and pB is a probability of occurring actual background pixel within
background S \S(x). Both parameters were chosen arbitrarily and are shown in
Fig. 2.

Fig. 2. Probability distributions for S(x) and S \ S(x) regions
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Finally, we choose Strauss process to implement interaction model [3,14]:

p(x) = αβn(x)γr(x), (7)

where α, β, γ > 0 are constants, n(x) is the number of ellipses in configuration
and r(x) is the number of pairwise overlaps in configuration x. For 0 < γ < 1,
model exhibits repulsive forces between ellipses and this prevent an excessive
number of overlaps in ellipse configurations.

2.3 Optimization

Finding proper configuration of ellipses boils down to optimization problem
where Ω is a set of all possible configurations x. To solve the problem of nuclei
segmentation, we must find in Ω a configuration x that fit the image best without
contravene a prior interaction constraints. In Bayesian framework this problem
can be viewed as a maximum a posterior estimation problem:

x̂ = arg max
x

f(y|x)p(x). (8)

Unfortunately, direct sampling from f(y|x) and p(x) is not straightforward.
But, the problem becomes much more tractable if we deal with the following
proportion [2,9]:

w = ln

(
f(y|xk+1)p(xk+1)

f(y|xk)p(xk)

)

=
∑

t∈SN

(
ln

(
b(yt; pN )

) − ln
(
b(yt; pB)

))

+ ln
(
γ
)(

r(xk+1) − r(xk)
)

+ ln
(
β
)
,

(9)

where xk is the current configuration, xk+1 is the new prospective configuration
and SN =

(
S(xk+1) ∪ S(xk)

) \ (
S(xk+1) ∩ S(xk)

)
. If we limit the ways the

new configurations xk+1 can emerge by allowing only to add single ellipse u or
delete single ellipse u from the current configuration xk then it becomes possible
to apply steepest ascent procedure to find the local maximum. Algorithm is
always choosing new configuration xk+1 to maximize proportion w. Therefore,
probability never decreases at any stage and eventual convergence is guaranteed.
However, algorithm usually stuck in nearest local maxima. The pseudocode of
this procedure is presented in Algorithm 1.

2.4 Ki-67 Scoring

Ki-67 index is computed as the ratio between brown-colored nuclei and all
nuclei. Steepest ascent procedure segments nuclei and returns the configura-
tion of ellipses that approximates actual nuclei but it is not able to distinguish
Ki-67 positive nuclei form Ki-67 negative nuclei. To tackle this problem, we are
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Initialization: x0 = ∅ ;
for i = 0, 1, ...; do

for All u do
if u /∈ xk then

xtest = xk ∪ u;

w(u) = ln
(

f(y|xtest)p(xtest)
f(y|xk)p(xk)

)
;

else if u ∈ xk then
xtest = xk \ u;

w(u) = ln
(

f(y|xtest)p(xtest)
f(y|xk)p(xk)

)
;

end
find ellipse umax which maximizes w(u);
if w(u) > 0 then

if umax /∈ xk then
xk+1 = xk ∪ umax;

else if umax ∈ xk then
xk+1 = xk \ umax;

else
Return xk;

end
Algorithm 1. Nuclei segmentation using Steepest Ascent procedure

marking all ellipses which are within the DAB mask as Ki-67 positive (see Fig. 1).
Finally, we can quickly count all nuclei by checking how many nuclei are in the
found configuration x̂. The estimate of Ki-67 index is computed as the number
of positive ellipses to the number of all ellipses.

3 Results

The proposed approach was applied to estimate Ki-67 index in 20 test cases
of breast cancer. Immunochemical examinations were obtained for 20 patients
from the University Hospital in Zielona Góra, Poland. Immunochemical slides
were digitized into virtual slides using the Olympus VS120 Virtual Microscopy
System. Selected fragments (size 500 × 500 pixels) of these slides were used
in experimental studies (see Fig. 3). Each test image contains from 100 to 400
nuclei. All images were manually marked to get the reference results of Ki-67
scoring. The accuracy of the proposed method was compared with the accuracy
of ImmunoRatio system.

To compute Ki-67 index we need segmented nuclei. In our approach stochastic
geometry is responsible for extracting nuclei models in the form of ellipses. The
method requires an atlas of predefined models of nuclei. In this experiment, we
have used atlas comprised of 240 ellipses which vary in sizes and orientations.
Each ellipse is described using 3 parameters: major axis length rM ∈ [6, . . . , 15],
minor axis length to major axis length ratio rR ∈ [0.5, 0.65, 0.8, 1] and orientation
o ∈ [0◦, 30◦, 60◦, 90◦, 120◦, 150◦]. The other parameters that must be defined for
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Fig. 3. Input images (Ki-67 positive nuclei have darker color)
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Fig. 4. Segmentation results (Ki-67 positive nuclei are marked with a darker color)
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Fig. 5. Segmentation results for image no. 10

stochastic geometry are β and γ. As a result of the experiments, it was found
that the best results were obtained for ln(β) = −600, and ln(γ) = −700.

Segmentation results for all images are presented in Fig. 4. An illustrative
example of segmentation results for stochastic geometry, ImmunoRatio, and
manual segmentation is presented in Fig. 5. Based on the segmentation results,
we were able to estimate the Ki-67 indexes for all test samples. Table 1 sum-
marizes the results obtained for stochastic geometry, ImmunoRatio system and
manual segmentation. According to St. Gallen consensus in 2011 and 2013 cut-off
points to classify Ki-67 proliferative activity were defined at 14% and 20% levels
respectively. We used these cut-off points to classify our results for stochastic
geometry, ImmunoRatio, and manual segmentation. Classification results based
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Table 1. Results of automatic detection methods in comparison with manual segmen-
tation

Image no. Stochastic geometry [%] ImmunoRatio [%] Ground truth [%]

1 19.66 18.30 19.31

2 17.54 12.40 17.06

3 20.19 23.30 31.42

4 70.50 90.70 62.24

5 48.63 18.00 37.77

6 43.72 28.90 36.94

7 79.47 70.60 65.08

8 27.66 24.00 24.19

9 34.84 25.40 27.20

10 35.47 35.60 36.84

11 17.42 15.00 13.89

12 32.72 25.70 39.02

13 0.64 1.90 1.08

14 9.71 6.50 8.57

15 25.20 31.70 24.50

16 25.44 18.80 21.60

17 5.02 2.90 4.88

18 7.89 16.80 9.02

19 47.86 38.60 45.75

20 17.24 16.20 10.17

Table 2. Confusion matrix (cut-off equal to 14%)

Reference results

Low Ki-67 High Ki-67

Stochastic Low Ki-67 4 0

Geometry High Ki-67 2 14

ImmunoRatio Low Ki-67 3 1

High Ki-67 3 13

on automatic segmentation were compared with the reference results using con-
fusion matrices (see Tables 2 and 3). Moreover, we computed Cohen’s kappa
coefficient κ to measure agreement between automatic and manual approaches.
Stochastic geometry showed high agreement with the reference data because it
obtained κ14 = 0.74 and κ20 = 1 for the 14% and 20% cut-off points respectively.
ImmunoRatio got worse results, κ14 = 0.47 and κ20 = 0.8 respectively.
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Table 3. Confusion matrix (cut-off equal to 20%)

Reference results

Low Ki-67 High Ki-67

Stochastic Low Ki-67 8 0

Geometry High Ki-67 0 12

ImmunoRatio Low Ki-67 8 2

High Ki-67 0 10

4 Conclusions

We proposed a novel method based on stochastic geometry for estimating Ki-67
index. The preliminary results of the experiments carried out are satisfactory.
We showed that this method is more accurate than the approach used in the
ImmunoRatio system. Unfortunately, the number of test images is relatively
small, thus the statistical significance of the results is not satisfactory. To con-
duct more reliable tests, a large number of ground truth images must be pro-
vided. Unfortunately, manual counting is tedious and requires the involvement of
highly qualified medical personnel. For this reason, we decided that the process
of building the reference database will be continuous and experimental results
will be updated with the expansion of this database.

The segmentation method proposed in the work belongs to a group of meth-
ods with high demand for computing power. However, we managed to imple-
ment the presented algorithm with intensive use of convolution operation. This
allowed us to run our method using parallel computing on GPU. Moreover, we
have shown in Eq. 9 that due to iterative nature of the proposed segmentation
method only a small part of the prospective ellipses must be evaluated in the
consecutive steps of the algorithm. Only in the first step, all prospective ellipses
have to be evaluated. Thanks to such manipulations, it was possible to shorten
the time needed to process an image containing approximately 250 nuclei up to
2 min.

Future work will concentrate on building more sophisticated models of nuclei
based on additional information from input images such as edges and textures
[11]. This will allow us to segment the overlapping cell nuclei more accurately.
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tation of cell structures using model-based set covering with iterative reweighting.
In: 2017 IEEE 14th International Symposium Biomedical Imaging (ISBI 2017), pp.
392–396, April 2017

11. Mazurek, P., Oszutowska-Mazurek, D.: From the slit-island method to the Ising
model: analysis of irregular grayscale objects. Int. J. Appl. Math. Comput. Sci.
24(1), 49–63 (2014)

12. Ruifrok, A.C., Johnston, D.A.: Quantification of histochemical staining by color
deconvolution. Anal. Quant. Cytol. Histol. 23(4), 291–299 (2001)

13. Saha, M., Chakraborty, C., Arun, I., Ahmed, R., Chatterjee, S.: An advanced deep
learning approach for Ki-67 stained hotspot detection and proliferation rate scoring
for prognostic evaluation of breast cancer. Sci. Rep. 7(1), 3213 (2017)

14. Strauss, D.J.: A model for clustering. Biometrika 62(2), 467–475 (1975)
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