
A BLAS-Based Algorithm for Finding
Position Weight Matrix Occurrences

in DNA Sequences on CPUs and GPUs

Jan Fostier(B)

IDLab, Department of Information Technology,
Ghent University - imec, Ghent, Belgium

jan.fostier@ugent.be

http://idlab.ugent.be

Abstract. Finding all matches of a set of position weight matrices
(PWMs) in large DNA sequences is a compute-intensive task. We propose
a light-weight algorithm inspired by high performance computing tech-
niques in which the problem of finding PWM occurrences is expressed in
terms of matrix-matrix products which can be performed efficiently by
highly optimized BLAS library implementations. The algorithm is easy
to parallelize and implement on CPUs and GPUs. It is competitive on
CPUs with state-of-the-art software for matching PWMs in terms of run-
time while requiring far less memory. For example, both strands of the
entire human genome can be scanned for 1404 PWMs in the JASPAR
database in 41 min with a p-value of 10−4 using a 24-core machine. On
a dual GPU system, the same task can be performed in under 5 min.

Keywords: Position weight matrix (PWM)
High performance computing (HPC)
Basic linear algebra subprograms (BLAS)
Graphics processing units (GPUS)

1 Introduction

Short biologically relevant patterns such as transcription factor binding sites are
often represented using a position weight matrix (PWM), also referred to as a
position-specific scoring matrix (PSSM) [1]. In contrast to consensus patterns, a
PWM can model variability at each position in the pattern. A PWM representing
a pattern of length m is a 4 × m matrix where each matrix element PWM(i, j)
represents the log-likelihood of observing character i (0 = ‘A’; 1 = ‘C’; 2 = ‘G’;
3 = ‘T’) at position j, taking into account the nucleotide composition of the
background sequences. Given a sequence of length m, the PWM score of that
sequence can be computed by summing over the PWM values that correspond to
each nucleotide at each position in the sequence. Higher scores indicate a better
correspondence to the pattern represented by the PWM.

c© Springer International Publishing AG, part of Springer Nature 2018
I. Rojas and F. Ortuño (Eds.): IWBBIO 2018, LNBI 10813, pp. 439–449, 2018.
https://doi.org/10.1007/978-3-319-78723-7_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78723-7_38&domain=pdf
http://orcid.org/0000-0002-9994-8269

440 J. Fostier

Given an input sequence of length n and a PWM of length m, the PWM
matching problem involves the identification of all matches of the PWM,
i.e., subsequences for which the PWM score exceeds a user-defined threshold.
A brute-force approach simply involves the computation of the PWM score at
all positions in the input sequence and hence has a time complexity of O(nm).
More complex algorithms for PWM matching build upon ideas that were initially
developed for exact pattern matching and rely on the preprocessing of the input
sequence and/or the preprocessing of the search matrix. In [2], a suffix tree is
constructed from the input sequence and PWM matches are found using a depth-
first traversal of the tree up to depth m. By using a lookahead scoring technique,
subtrees that contain no PWM matches can be detected and discarded from the
search procedure. A similar methodology has been implemented in PoSSuM [3],
where an enhanced suffix array is used as a more memory-friendly alternative
to suffix trees. Both methods however have the disadvantage of requiring O(n)
memory to build and store the index structure. In [4], the Morris-Pratt and
Knuth-Morris-Pratt algorithms are extended to PWM matching. Similarly, in [5],
the Aho-Corasick, filtration and super-alphabet techniques developed for exact
string matching are generalized to PWM matching and further extended to the
case where matches of multiple PWMs are searched for [6]. These algorithms are
implemented in the MOODS software package [7]. Finally, in [8], some of these
algorithms are implemented on graphics processing unit (GPU) architectures.

Compared with the naive brute-force algorithm, these more complex PWM
matching algorithms reduce the runtime by eliminating parts of the search space
that are guaranteed not to contain matches. As such, their runtime is dependent
on the PWM threshold that is used. The higher this threshold is taken, the more
the PWM matching problem approaches that of exact pattern matching with its
O(n+m) time complexity. Because for most practical problems, m takes values
between 5 and 15 while n is very large, they yield a speedup of approximately
one order of magnitude over the O(nm) brute-force algorithm.

In this contribution, we describe an orthogonal strategy to accelerate the
brute-force algorithm. Our approach does not reduce the search space but rather
improves the speed at which the brute-force algorithm can be evaluated. This
is done by expressing the PWM matching problem in terms of matrix-matrix
products. It is well known that matrix-matrix multiplications can be evalu-
ated very efficiently on modern, cache-based CPUs using highly optimized Basic
Linear Algebra Subroutines (BLAS) library implementations [9]. These BLAS
implementations leverage SIMD (single instruction multiple data) operations
and maximally exploit spatial and temporal locality of reference, thus ensur-
ing that most data accesses are satisfied from cache memory. As such, matrix-
matrix products are among a select class of algorithms that can be evaluated
with a performance that approaches the theoretical peak performance of a CPU.
Optimized BLAS library implementations are provided by all major CPU ven-
dors. Alternatively, open-source implementations such as ATLAS [10] or Goto-
BLAS [11] can be considered. We found that the BLAS-based approach yields a
5× to 6.4× speedup over a naive implementation of the brute-force algorithm.

BLAS-Based Algorithm for Finding PWM Occurrences 441

Additionally, the proposed BLAS-based algorithm has minimal memory require-
ments whereas more complex algorithms may require tens of GBytes of memory
for large problem sizes. Finally, we also present an implementation of the BLAS-
based algorithm that leverages the cuBLAS library to perform the matrix-matrix
multiplications on graphics processing units (GPUs). We demonstrate that on a
dual-GPU system, this yields an additional 10× speedup compared to using a
24-core CPU system. Using this GPU system, we report speedups of up to 43×
compared with the state-of-the-art MOODS software package.

An open-source implementation of the algorithm is available on https://
github.com/biointec/blstools.

2 Algorithm Description

We consider the PWM matching problem in the general case where we have
multiple PWMs over a DNA alphabet. The goal is to recast the naive algorithm
into an algorithm that relies on matrix-matrix multiplications. In essence, this
procedure involves three matrices:

– A pattern matrix P that contains all of the PWMs.
– A sequence matrix S that contains some sequence content.
– A result matrix R that is computed as R = P ∗ sub(S) and that contains

the PWM scores of all PWMs at some positions in the sequence. The routine
sub(.) denotes that a submatrix of S is used.

Below, we describe each matrix in detail. Figure 1 provides an overview of
the algorithm.

2.1 Pattern Matrix P

The pattern matrix P is built once and remains fixed during the course of the
algorithm. Matrix P has dimensions c × 4m where c denotes the total number
of PWMs and m = maxi(mi) refers to the maximum PWM length where mi

denotes the length of PWMi. Every row of P corresponds to a single PWM. The
values in a row of P are obtained by unrolling the values of the corresponding
PWM. For PWMs shorter than m characters, trailing zeros are appended to the
corresponding row in P . Formally:

P (i, j) =

{
PWMi(j mod 4, �j/4�) 0 ≤ j < 4mi

0 j ≥ 4mi
(1)

for all 0 ≤ i < c.
In case PWM occurrences on both strands of the input sequence(s) need to

be identified, an additional c rows can be added to matrix P that represent the
reverse-complement of each PWM.

https://github.com/biointec/blstools
https://github.com/biointec/blstools

442 J. Fostier

Fig. 1. The result matrix R is computed as the matrix-matrix product of pattern
matrix P and a submatrix of sequence matrix S. Each row in P represents a single
PWM. Matrix S represents (part of) the input sequence. Each element in R contains
a PWM score at some position in the input sequence.

2.2 Sequence Matrix S

The sequence matrix S has dimensions 4(h + m − 1) × w where h and w can
be arbitrarily chosen ≥ 1 and where m again represents the maximum PWM
length. The matrix S is used to encode (part of) the input sequence(s) SDNA

of exactly hw + m − 1 nucleotides. First, the string SDNA is converted into an
array Senc of 4(hw + m − 1) zeros and ones by simply replacing character A by
1000; C by 0100; G by 0010; and T by 0001. Formally:

Senc(i) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 SDNA(�i/4�) = A ∧ i mod 4 = 0
1 SDNA(�i/4�) = C ∧ i mod 4 = 1
1 SDNA(�i/4�) = G ∧ i mod 4 = 2
1 SDNA(�i/4�) = T ∧ i mod 4 = 3
0 otherwise

(2)

BLAS-Based Algorithm for Finding PWM Occurrences 443

for all 0 ≤ i < 4(hw +m− 1). The matrix S is constructed from this temporary
array as follows:

S(i, j) = Senc(4hj + i) (3)

for all 0 ≤ i < 4(h + m − 1) and 0 ≤ j < w.
Every column in S contains a contiguous subarray of Senc and thus encodes

a substring of SDNA. The bottom 4(m−1) elements of column j are identical to
the top 4(m− 1) elements of column j + 1. In other words, subsequent columns
of S encode overlapping substrings of SDNA with an overlap of m−1 characters.

2.3 Result Matrix R

The result matrix R had dimensions c×w and is computed as the matrix-matrix
product of matrix P with a submatrix of S. Given an offset o with 0 ≤ o < h,
Ro is computed as follows:

Ro = P ∗ S([4o, 4(o + m)[, :) (4)

where the notation S([4o, 4(o + m)[, :) refers to the 4m × w submatrix of S
where the first row in the submatrix corresponds to row with index 4o in S.
Every element in Ro is thus computed as the dot product of a row in P and
(part of) a column in S. The elements of S (zeros and ones) are multiplied
with the elements of the PWM and thus generate the terms that, when added,
correspond to the PWM score. As such, element Ro(i, j) contains the score for
PWMi at position (hj + o) in SDNA.

Algorithm 1 then provides a complete description of the workflow. In the
outer for-loop, a portion of the input sequence(s) of length hw + m − 1 is read
into SDNA. In the inner for-loop, the PWM scores are exhaustively computed
for all c PWMs at the hw first positions of SDNA. Therefore, the SDNA strings
at consecutive outer for-loop iterations overlap by m − 1 nucleotides.

Algorithm 1. BLAS-based PWM occurrence detection

Input: Sequence Sinput � DNA sequence

Input: PWMs = {PWMi} � Set of PWMs

Input: thresholds = {thresholdi} � Set of thresholds

1: P ← createPatternMatrix(PWMs)
2: for pos = 0 to length(Sinput) − 1 step hw do
3: SDNA ← Sinput[pos, pos + hw + m − 1[
4: Senc ← encodeString(SDNA)
5: S ← createSequenceMatrix(Senc)
6: for o = 0 to h − 1 step 1 do
7: Ro ← P ∗ S([4o, 4(o + m)[, :)
8: reportOccurrences(Ro, o, thresholds)
9: end for

10: end for

444 J. Fostier

Note that in case the input data consists of multiple DNA sequences, these
sequences can be concatenated when generating SDNA. With minimal extra
bookkeeping, one can prevent the reporting of occurrences that span adjacent
DNA sequences.

2.4 Implementation Details

The algorithm is implemented in C++. Multithreading support is added through
C++ 11 threads by parallelizing the outer for-loop in Algorithm1. The BLAS
sgemm routine [9] was used to perform the matrix-matrix multiplications using
single-precision computations.

Recall that PWMs with a length shorter than the maximum PWM length
m are represented in the pattern matrix P by adding trailing zeros to the corre-
sponding row. In case many PWMs have a length that is substantially shorter
than m, a large fraction of P consists of zero elements. In turn, this creates
overhead during the matrix-matrix product when computing the result matrix
R due to the including of many terms with value zero. This overhead can easily
be reduced by representing the PWMs in P in a sorted manner (sorted according
to length). The matrix-matrix product Ro = P ∗ subo(S) can then be computed
as a number of smaller matrix-matrix products as follows:

R([ci, ci+1[, :) = P ([ci, ci+1[, [0, 4mi[) ∗ S([4o, 4(o + mi)[, :) (5)

where the interval [ci, ci+1[corresponds to a subset of the rows in R and P and
where mi denotes the maximum PWM length in that range. When mi < m
overhead is reduced. For the JASPAR dataset (see description below) the idea
is clarified in Fig. 2. The pattern matrix P represents 1404 PWMs with lengths

Fig. 2. Example of a pattern matrix P containing 1404 JASPAR PWMs where many
rows contain trailing zeros because of differences in length of the corresponding PWMs.
Matrix P can be subdivided in a number of smaller submatrices P i (shaded areas) that
each contain less zero fill.

BLAS-Based Algorithm for Finding PWM Occurrences 445

between 5 and 30 and thus exhibits substantial zero fill. By subdividing P in
10 submatrices each representing 140 or 141 PWMs, the number of elements of
P used in the matrix-matrix multiplication is more than halved. Note that the
submatrices P ([ci : ci+1[, [0 : 4mi[) should not become too thin such that the
evaluation of (5) still corresponds to a meaningful matrix-matrix product. In
other words, one could avoid zero fill altogether by subdividing P in c different
vectors, however, this would result in loss of temporal locality of cache and hence,
a considerable loss of speed.

For the same performance reasons, parameters h and w that govern the
dimensions of matrix S should not be chosen too small. In our implementation,
we set h = 250 and w = 1000 such that matrix S corresponds to a 1000 + 4
(m − 1) × 1000 matrix.

Finally, note that BLAS routines have full support to specify submatrix
ranges without any need to explicitly copy these submatrices onto separate data
structures.

2.5 GPU Version

Through the use of the cuBLAS library [12], it is possible to execute the matrix-
matrix multiplication on a graphics processing unit (GPU). The pattern matrix
P is copied to the GPU memory only once, while a new sequence matrix S is
copied during each outer for-loop iteration in Algorithm1. To avoid copying the
entire result matrix Ro from GPU memory to system RAM after each matrix-
matrix product during each inner for-loop iteration, a kernel was developed in
the CUDA language to report only the matrix indices (i, j) for which Ro(i, j)
exceeds the threshold score for PWMi (a task known as stream compaction).
Only those indices are copied from GPU to system RAM, thus minimizing data
movements between GPU and host memory. Occurrences are written to disk by
the CPU. Note that the programming effort to port the BLAS-based algorithm
from CPU to GPU is minimal as most tasks are handled by CUDA library calls
(e.g. copying data between CPU and GPU, calling cublasSgemm,. . .). The only
exception is the stream compaction kernel itself that consists of 7 lines of CUDA
code.

3 Benchmark Results and Discussion

The performance of the BLAS-based algorithm was benchmarked against (i) a
naive, scalar algorithm and (ii) the MOODS software package [7]. To ensure a
fair comparison, the naive algorithm has the same code quality standards as the
BLAS-based algorithm, the only difference being that three nested for-loops are
used to scan for the occurrences: one for-loop over the input sequence, a second
one over the different PWMs and a third for-loop to compute the PWM score.

The C++ source code was compiled against the Intel Math Kernel Library
(MKL) version 2017.1.132 which implements optimized BLAS routines for Intel
CPUs. In all cases, multi-threading within the MKL was disabled. In other words,

446 J. Fostier

individual calls to sgemm were always executed in a single-threaded manner
but multiple calls to sgemm are issued by different threads concurrently. The
CUDA code was compiled with the nvcc compiler and linked against cuBLAS
from CUDA SDK version 8.0.

From the JASPAR database [13], 1404 position frequency matrices were
downloaded. As a sequence dataset, the human genome reference sequence
(HG38) was used from the GATK Resource Bundle. Part of the tests were run
only on chromosome 1 (230 Mbp). We scanned for PWM occurrences on both
strands of the DNA sequences by also including the reverse complements of the
PWM matrices. Thus effectively, 2808 PWM matrices were used in total.

The benchmarks were run on a node containing two 12-core Intel E5-2680v3
CPUs (24 CPU cores in total) running at 2.5 GHz with 64 GByte of RAM. The
CPU is of the Haswell-EP architecture and disposes of AVX-256 instructions that
can deal with 8 single precision floating point numbers in a single instruction.
For configurations with p-value = 10−4, MOODS required >64 GByte of RAM.
Those runs were performed on a single core of a system containing two 10-
core Intel E5-2660v3 CPUs running at 2.6 GHz with 128 GByte of RAM. When
performing the benchmarks with fewer threads than CPU cores, the remaining
CPU cores were idle. The GPU runs were performed on a system with a dual
nVidia 1080 Ti GPU configuration. Runtime (wall clock time) and peak resident
memory use were measured using the Linux /usr/bin/time -v tool.

Table 1 shows the runtime, memory use and parallel efficiency for the differ-
ent approaches when considering chromosome 1 of the human genome as input

Table 1. Benchmark results of the naive algorithm, the MOODS algorithm and the
proposed BLAS-based algorithm (on CPU and GPU). In all cases, the occurrences of
1404 JASPAR PWMs were searched on both strands of human chromosome 1 for two
different PWM thresholds (p-value = 10−5 and 10−4).

No. cores p-value 10−5 p-value 10−4

Wall clock

time

Parallel

speedup

Parallel

efficiency

Memory

(GByte)

Wall clock

time

Parallel

speedup

Parallel

efficiency

Memory

(GByte)

Naive algorithm (24-core CPU system)

1 21 999 s - - 0.01 22 024 s - - 0.01

4 5 495 s 4.0 100% 0.01 5 506 s 4.00 100% 0.01

8 2 752 s 7.99 100% 0.01 2 755 s 7.99 100% 0.01

24 926 s 23.76 99% 0.01 921 s 23.91 100% 0.01

MOODS (CPU system)

1 402 s - - 19.02 1 028 s - - 64.89

BLAS-based algorithm (24-core CPU system)

1 3 441 s - - 0.04 3 582 s - - 0.04

4 871 s 3.95 99% 0.11 889 s 4.03 101% 0.12

8 479 s 7.18 90% 0.20 473 s 7.57 95% 0.22

24 179 s 19.22 80% 0.59 183 s 19.57 82% 0.66

BLAS-based algorithm (dual GPU system)

- 24 s - - 0.49 25 s - - 0.58

BLAS-Based Algorithm for Finding PWM Occurrences 447

dataset. Even though it has perfect scaling behavior with respect to the num-
ber of CPU cores used and negligible memory use, the naive algorithm is also
the slowest. MOODS has very good performance in terms of runtime, espe-
cially when taking into account that the software is single-threaded. However,
it has much higher memory requirements, over 64 GByte of RAM. Additionally,
both the runtime and memory use depend on the PWM thresholds that are
used: more relaxed thresholds (i.e., higher p-values) result in additional resource
requirements. The BLAS-based algorithm also shows very good multi-threading
scaling behavior and outperforms the naive algorithm by a factor between 5×
and 6.4× while still maintaining very low memory requirements. Compared with
MOODS, the BLAS-based algorithm is slower when using only a single thread
but outperforms the latter when using multiple cores. Additionally, like the naive
algorithm, its resource requirements do not depend on the p-value that is used.
Finally, the BLAS-based algorithm attains maximal performance when executed
on the GPU system.

Table 2 shows runtime and memory use when considering the entire human
genome as input dataset. Due to its dependence on the p-value, MOODS has
runtimes ranging from 43 min to 3.5 h and memory requirement ranging from
20 GByte to 103 GByte. In contrast, the BLAS-based algorithm has a runtime
that is nearly constant and requires very little memory. On the GPU system,
the BLAS-based algorithm shows speedups of 9.5× and 43× over MOODS.

Finding the occurrences of a PWM in a sequence can be seen as an imprecise
string matching problem. When only the very best PWM matches are needed
(by using a low p-value and hence, a high PWM score threshold), the prob-
lem eventually approaches that of exact string matching for which very efficient
algorithms have been designed by either indexing the sequence or preprocess-
ing the patterns. These algorithms yield O(n + m) time complexity instead of
the brute-force O(nm). Nevertheless, for less strict p-values, these algorithms

Table 2. Benchmark results of the MOODS algorithm and the proposed BLAS-based
algorithm (on CPU and GPU). In all cases, the occurrences of 1404 JASPAR PWMs
were searched on both strands of the entire human genome for three different PWM
thresholds (p-value = 10−6, 10−5 and 10−4).

No.
cores

p-value 10−6 p-value 10−5 p-value 10−4

Wall clock
time

Memory
use (GB)

Wall clock
time

Memory
use (GB)

Wall clock
time

Memory
use (GB)

MOODS (CPU system)

1 43min 8 s 20.71 71 min 42 s 30.25 3 h 35min 26 s 103.20

BLAS-based algorithm (24-core CPU system)

24 36min 39 s 0.61 37 min 29 s 0.78 40 min 50 s 3.49

BLAS-based algorithm (dual GPU system)

- 4min 29 s 0.51 4 min 33 s 0.73 4 min 57 s 3.86

448 J. Fostier

perform considerably worse because they cannot a-priori eliminate large parts
of the search space. Even though the proposed BLAS-based algorithm does not
reduce the search space it has several advantages:

– The runtime is independent of the chosen p-value and hence of the number
of occurrences that are found, at least for as long as writing the occurrences
to disk does not become a bottleneck of the system.

– The memory use of the proposed algorithm is negligible and again indepen-
dent of the chosen p-value. In our configuration, we effectively use only a few
MBytes of RAM per thread. All matrices involved are thread-local and hence,
the multi-threaded algorithm scales very well to a high number of CPU cores,
even on non-uniform memory architectures (NUMA).

– As the vast majority of the compute time is spent inside the BLAS library the
performance of the code is fully dependent on the quality of the BLAS imple-
mentation. As CPU vendors provide optimized BLAS libraries for their hard-
ware optimal performance is guaranteed on all systems, including future ones.
For example, AVX-512 instructions will be available on next generations of
CPUs and will thus offer doubled performance compared to the AVX-256 sys-
tem used in the benchmarks. Additionally, support for half-precision floating
point computations is increasingly adopted might as also double throughput.

– Arguably, the implementation of the algorithm is very simple.
– The algorithm is easily portable to GPUs, through the use of the cuBLAS

Libra that enables very high-performance matrix-matrix multiplications on
GPUs. As the peak performance of modern GPUs exceeds that of GPUs one
can observe very high performance on GPUs. The same argument holds for
other co-processors/hardware accelerators.

4 Conclusion

We proposed a conceptually simple and easy to implement algorithm to identify
position weight matrix matches in DNA sequences. The algorithm performs a
brute-force evaluation of all PWM matrices at all possible starting positions in
the DNA sequences, however, these evaluations are expressed entirely through
matrix-matrix multiplications. On modern, cache-based CPUs that dispose of
SIMD instructions, matrix-matrix products can be evaluated very efficiently
through the use of highly optimized BLAS libraries. As a consequence, the
BLAS-based algorithm outperforms the naive algorithm by a factor of 5 to 6.4.
The runtime of the proposed algorithm is independent of the p-value and hence
the PWM score threshold that is used and requires only very low amounts of
memory. Additionally, the algorithm is trivial to parallelize and exhibits good
scaling behavior. Compared with the state-of-the-art MOODS software package
which implements more sophisticated online search algorithms that reduce the
search space, the proposed BLAS-based algorithm is competitive in terms of
runtime while requiring less memory. On GPU systems, the BLAS-based algo-
rithm attains maximal performance and outperforms CPU-based algorithms by
a large factor.

BLAS-Based Algorithm for Finding PWM Occurrences 449

Acknowledgments. The computational resources (Stevin Supercomputer Infrastruc-
ture) and services used in this work were provided by the VSC (Flemish Supercomputer
Center), funded by Ghent University, FWO and the Flemish Government – department
EWI.

References

1. Stormo, G.D.: DNA binding sites: representation and discovery. Bioinformatics
16(1), 16–23 (2000)

2. Dorohonceanu, B., Nevill-Manning, C.G.: Accelerating protein classification using
suffix trees. In: Proceedings of the Eighth International Conference on Intelligent
Systems for Molecular Biology, 19–23 August 2000, La Jolla/San Diego, CA, USA,
pp. 128–133 (2000)

3. Beckstette, M., Homann, R., Giegerich, R., Kurtz, S.: Fast index based algorithms
and software for matching position specific scoring matrices. BMC Bioinf. 7(1),
389+ (2006)

4. Liefooghe, A., Touzet, H., Varré, J.-S.: Self-overlapping occurrences and Knuth-
Morris-Pratt algorithm for weighted matching. In: Dediu, A.H., Ionescu, A.M.,
Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 481–492. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00982-2 41

5. Pizzi, C., Rastas, P., Ukkonen, E.: Fast search algorithms for position specific
scoring matrices. In: Hochreiter, S., Wagner, R. (eds.) BIRD 2007. LNCS, vol.
4414, pp. 239–250. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-71233-6 19

6. Pizzi, C., Rastas, P., Ukkonen, E.: Finding significant matches of position weight
matrices in linear time. IEEE/ACM Trans. Comput. Biol. Bioinf. 8(1), 69–79
(2011)

7. Korhonen, J., Martinmäki, P., Pizzi, C., Rastas, P., Ukkonen, E.: MOODS: fast
search for position weight matrix matches in DNA sequences. Bioinformatics
25(23), 3181–3182 (2009)

8. Giraud, M., Varré, J.S.: Parallel position weight matrices algorithms. Parallel Com-
put. 37(8), 466–478 (2011)

9. Dongarra, J.J., Du Croz, J., Hammarling, S., Duff, I.S.: A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Softw. 16(1), 1–17 (1990)

10. Whaley, R.C., Dongarra, J.J.: Automatically tuned linear algebra software. In:
Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, SC 1998.
IEEE Computer Society, Washington, DC, USA, pp. 1–27 (1998)

11. Goto, K., van de Geijn, R.A.: Anatomy of high-performance matrix multiplication.
ACM Trans. Math. Softw. 34(3), 12:1–12:25 (2008)

12. Cook, S.: CUDA Programming: A Developer’s Guide to Parallel Computing with
GPUs, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2013)

13. Mathelier, A., Fornes, O., Arenillas, D.J., Chen, C.Y.Y., Denay, G., Lee, J., Shi,
W., Shyr, C., Tan, G., Worsley-Hunt, R., Zhang, A.W., Parcy, F., Lenhard, B.,
Sandelin, A., Wasserman, W.W.: JASPAR 2016: a major expansion and update
of the open-access database of transcription factor binding profiles. Nucleic Acids
Res. 44(D1), D110–D115 (2016)

https://doi.org/10.1007/978-3-642-00982-2_41
https://doi.org/10.1007/978-3-540-71233-6_19
https://doi.org/10.1007/978-3-540-71233-6_19

	A BLAS-Based Algorithm for Finding Position Weight Matrix Occurrences in DNA Sequences on CPUs and GPUs
	1 Introduction
	2 Algorithm Description
	2.1 Pattern Matrix P
	2.2 Sequence Matrix S
	2.3 Result Matrix R
	2.4 Implementation Details
	2.5 GPU Version

	3 Benchmark Results and Discussion
	4 Conclusion
	References

