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Abstract A frequently overlooked consideration when using Grammatical Evo-
lution (GE) is grammar design. This is because there is an infinite number of
grammars that can specify the same syntax. There are, however, certain aspects
of grammar design that greatly affect the speed of convergence and quality of
solutions generated with GE. In this chapter, general guidelines for grammar design
are presented. These are domain-independent, and can be used when applying GE
to any problem. An extensive analysis of their effect and results across a large set of
experiments are reported.

1 Introduction

One of the attractive aspects of Grammatical Evolution (GE) is how it can be easily
applied to a multitude of problem domains: just design a grammar specifying the
syntax of potential solutions, and supply a fitness function to evaluate them.

Easily and just are large over-simplifications. While specifying the syntax of
solutions with a context-free grammar is a relatively simple task, depending on
the problem domain (a multitude of grammars exist in the literature for symbolic
regression applications, for example), there is an infinite number of grammars that
can specify the same syntax. But not all of them are adequate for use with GE.

In fact, the effectiveness of a grammar is deeply tied to GE’s mapping process,
and its effect on the search operators. In this study, this effect is analysed, and
general guidelines are provided, with the aim of improving GE’s search process.

There are many aspects to consider, when designing a grammar for use with
GE. Some of these include which and how many non-terminal symbols to use,
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recursiveness, mapping probabilities, symbol biases, length of derivation sequences,
prefix vs. infix vs. postfix notation, readability/understandability/maintenance of
grammars, and many more.

These topics are analysed in this chapter, in terms of initial search space sampling
(i.e. their combined effect with initialisation), search effectiveness (combined effect
with the search operators), and quality of final solutions (fitness and size of final
solutions). A large set of experiments are also executed, for empirical evidence. The
results obtained confirm and highlight just how much grammar design can affect the
performance of GE.

Based on these findings, a set of general grammar design guidelines are proposed
for GE with linear genome representations. Although the resulting grammars can
be substantially larger and more complex, most of these transformations can be
automatically applied to well-designed base grammars.

2 Previous Work

Although a large volume of work exists in the literature on grammar design,
particularly in linguistics and computer science, it almost exclusively relates to their
use in parsing applications, i.e. syntax verification, compiler design, text mining, etc.
In GE, on the contrary, grammars are used in a constructive manner, which, when
combined with linear numerical sequences (genotypes) to determine derivation
sequences, creates a mostly unique role for grammars.

There is surprisingly little work in the literature on the design of grammars for
GE. This is probably due to the remarkable resilient nature of the evolutionary
search process: given a correct and reasonably designed grammar, GE tends to
produce a working solution. This is not always ideal, however, both in terms of
the search effort required, and also the quality of the final solutions produced.

One of the earliest studies of the influence of grammar design on the performance
of GE [22] looked specifically at reducing the number of non-terminal symbols in
grammars, and proposed an automatic process of achieving this. This resulted in a
small increase in performance across all problems attempted.

Hemberg et al. [11] studied the design of grammars using prefix, infix and postfix
notation, and their relative performance on a series of symbolic regression problems.
The most relevant conclusion is indeed that “the choice of grammar can produce
performance advantage”.

One of the most comprehensive analysis of the influence of grammar design in
the performance of GE is found in Hemberg’s doctoral thesis [10]. By allowing the
grammar to evolve at the same time as the linear genome structures, knowledge is
uncovered about the influence of different grammars on the performance of GE.
Not surprisingly, it was again concluded that the choice of grammar can influence
the performance of GE, for the problems examined.

Byrne et al. [1] analysed two types of mutation events in GE, structural or nodal
in nature, and showed how these can be related to exploration and exploitation,
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respectively. These mutation events are directly dependent on the design of the
grammars used.

Harper [9] highlighted the problem of having more production rules adding non-
terminal symbols to the mapping sequence than removing them, and the negative
impact of this on the performance of GE, if using linear genomes. Nicolau et al.
[26] also analysed the effect of grammar design, focusing on the issue of mapping
termination. Both studies highlighted the importance of good grammar design.

Grammar design, and its corresponding effect in representational bias, can also
greatly influence the size of the resulting solutions. In Genetic Programming (GP),
a possible outcome of this is bloat, i.e. a substantial growth in solution size, with
negligible effect in performance increase [20]. Although bloat in GE is not quite as
prevalent, studies have shown how grammar design directly influence the generation
of very small [25] or very large [9] solutions.

More recently, work has been made on the design of grammars for sorting
networks [6] and automatic program synthesis [7], although the results obtained
only apply to grammar-based genetic programming systems using derivation trees.

All these studies have a common theme, which is how grammar design in GE
can greatly affect its performance. The following section takes this into account,
and presents a series of grammar design guidelines, or transformations for existing
grammars, aimed at improving the performance of GE in different levels.

3 Grammar Design

A series of grammar transformations are presented in this section. To illustrate their
application, Grammar 0 (G0) is used as a starting point. This is a typical grammar for
symbolic regression applications with GE, slightly simplified (no unary operators)
to illustrate the design techniques presented.

<s> ::= <e>
<e> ::= <e> <o> <e>

| ( <e> <o> <e> )
| <f> ( <e> , <e> )
| <v>

<o> ::= + | - | *
<f> ::= pdiv
<v> ::= x | 1.0

Grammar 0 Simple arithmetical expressions grammar. Division uses a protected implementation,
termed pdiv (more details in Sect. 5.3)
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3.1 Balanced Grammars

In order to generate variable-length, unbounded phenotype solutions for any
problem, GE makes use of two components:

– Variable-length genotype structures1;
– Recursively-defined grammar rules.

Both conditions are required, in order to generate phenotype solutions of any size.
If genotypes are unbounded but the grammar has no recursively defined symbols,
a phenotype solution is only as large as the largest sequence of terminal symbols
generated by the longest derivation path through the grammar (some studies [18] use
this as both a means to limit solution size, and also to ensure validity of mapping,
by always using genotype strings sufficiently long to terminate any derivation
sequence).

If on the other hand the grammar is recursive, but the genotype is a fixed-
length structure (of length l), the maximum phenotype solution length is the longest
derivation path through the grammar smaller or equal to l mapping steps (unless
wrapping is used).

The use of recursiveness in grammars with GE appears right from its first
publication [38], although some interesting GE applications make use of non-
recursive grammars, defining either fixed-length solutions (such as the design of
a genetic algorithm using GE [28]), or maximum-length bounded solutions (such as
the design of an ant-colony optimisation algorithm using GE [40]).

Recursiveness should be applied with care, however. Single levels of recursive-
ness are easy to implement and understand (see e.g. the second line of G0), but
multiple recursive symbols or multiple line recursiveness easily become hard to
design and/or understand. See for example the history of attempts at solving the
Santa Fe Ant Trail Problem [15] with GE, from the original incorrect grammar [29],
to a first [35] and then second [9] correction, and its analysis [26]. And yet, recent
publications [17, 18, 21, 42] still use incorrect grammars, not respecting the original
problem syntax.

The influence of grammar recursiveness in the ability to terminate mapping,
and thus in the effectiveness of GE, has been studied as early as 2003 [39], where
productions were categorised based on whether they added, maintained or reduced
the number of non-terminal symbols left to map, when applied.

A way to label productions as recursive or not was proposed by Ryan and Azad
[37], within the context of initialisation. Subsequently, Harper [9] labelled grammars
as explosive or balanced, depending on whether there is a higher probability of
adding non-terminal symbols during mapping over adding terminal symbols.

1Technically, genotypes used with GE are length-bounded, in the sense that they cannot be smaller
than zero, or larger than what the memory of the machine running the experiments can hold. This
maximum size is, however, a technical limitation, rather than a conceptual bound.
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<s> ::= <e>
<e> ::= <e> <o> <e> | <v>

| ( <e> <o> <e> ) | <v>
| <f> ( <e> , <e> ) | <v>

<o> ::= + | - | *
<f> ::= pdiv
<v> ::= x | 1.0

Grammar 1 Balanced recursion grammar

These analyses are all related. In this chapter, we define as explosive grammars
where at least one symbol has more recursive productions than non-recursive. An
example is grammar G0: the symbol <e> has three recursive productions associated,
and a single non-recursive production. This kind of grammar is explosive, and has
a low probability of generating a fully mapped phenotype string, when used in
conjunction with a randomly-generated genotype string.

For a grammar to be balanced, each recursive production should have a
corresponding “consuming” production. Grammar 1 (G1) achieves this, by having
a non-recursive production for every recursive production associated with <e>.

Note that this does not alter any biases, other than that of replacing <e> using a
recursive or non-recursive production. There is also a downside: G1 now has a 50%
probability of generating expressions consisting solely of either x or 1.0.

3.2 Unlinked Productions

When using GE with a linear genome, if the grammar has several non-terminal
symbols, the function of a codon (the production it will choose) is dependent on the
non-terminal symbol to be mapped, at a given stage of the mapping process. This
means that, when crossover occurs, the function of a codon might change.

The potential destructive nature of such changes is addressed in Sect. 3.3, by
reducing the number of non-terminal symbols. But if several non-terminal symbols
are needed, production rules associated with different symbols can be functionally
linked, in the sense that all codon values that choose a specific production for a
symbol, if used to make a choice for a different symbol, will always choose another
specific production.

Take grammar G1 as an example. Symbol <e> has six associated productions,
which is a multiple of both the number of productions associated with <o> (three)
and <v> (two). So if codon values transforming <e> into <e> <o> <e> are used
to choose a production for <o> or <v>, they will always transform them into + and
x, respectively. Table 1 illustrates this.

This can introduce biases in the exploration of the search space. As individuals
grow in size (only achievable in standard GE through the use of the crossover
operator), a larger proportion of even codon values are required at the start of the
genome (see Table 1), and a larger proportion of odd values towards the end (to
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Table 1 Functionally-linked productions of grammar G1: codon values transforming <e> into
<e> <o> <e> will always transform <o> into + and <v> into x; by contrast, <o> and <v> are
unlinked, as codon values transforming <o> into + can transform <v> into either x or 1.0

Codon values Parity <e> <o> <v>

0,6,12,. . . Even <e> <o> <e> + x

1,7,13,. . . Odd <v> - 1.0

2,8,14,. . . Even ( <e> <o> <e> ) * x

3,9,15,. . . Odd <v> + 1.0

4,10,16,. . . Even <f> ( <e> , <e> ) - x

5,11,17,. . . Odd <v> * 1.0

terminate the recursion of the <e> symbol). However, this will also result in a
higher proportion of symbol x at the start of the genome, and of 1.0 towards the
end. Only through later specific mutation events can suitable proportions of x and
1.0 be evolved, assuming the unbalanced solution will survive until then. In other
words, the structural function of the <e> symbol, and the nodal content function of
the <v> symbol are linked.

The link between <e> and <o> is less obvious, but biases also exist: a solution
requiring only the use of the +, - and * operators will be biased towards + and *,
when solutions grow in size (first and third productions associated with <e>).

Note that these biases can be either beneficial or detrimental, depending on the
problem domain. But for a black-box approach, with no domain knowledge, it is
desirable to explore the search space in the most unbiased way.

An example is the typical grammar used with GE for the Max problem [8].
Inconsistent results were obtained with different GE mapping orders [4], and further
analysis [5] produced no clear explanations for this issue; it was subsequently shown
[26] that the grammar used in those experiments suffered from functionally linked
productions.

The problem of linked productions was identified as early as 2002 [13]. The
solution proposed then was the adoption of a different mapping procedure, called the
Bucket Rule. However, it was later shown [26] that these biases can also be removed
without modifying the standard GE mapping process, through careful grammar
design.

Grammar 2 (G2) illustrates how to achieve this, through production rule repeti-
tion. In this case, six copies of each production associated with <o> are introduced
(for a total of 6 ∗ 3 = 18 productions), whereas 18 copies of each production
associated with <v> are used, for a total of 18 ∗ 2 = 36 productions. Note that
sufficiently large codon value ranges are required, when using this technique, to
ensure minimal production choice biases, but this is good GE practice anyway [31].
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<s> ::= <e>
<e> ::= <e> <o> <e> | <v>

| ( <e> <o> <e> ) | <v>
| <f> ( <e> , <e> ) | <v>

<o> ::= + | + | + | + | + | +
| - | - | - | - | - | -
| * | * | * | * | * | *

<f> ::= pdiv
<v> ::= x | x | x | x | x | x

| x | x | x | x | x | x
| x | x | x | x | x | x
| 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0
| 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0
| 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0

Grammar 2 Unlinked productions grammar

3.3 Reduced Non-terminals

The use of linear genomes and a one point crossover with GE leads to what has been
termed the ripple effect [32]. This means that, when viewed at a derivation tree level,
crossover removes several sub-trees from each parent, which are filled with genetic
material from the other parent. Given that the exchanged genetic material consists
of a numerical sequence, the actual phenotypic material received may or may
not correspond to the original phenotypic material from the other parent: codons
reinterpreted under different derivation tree nodes (i.e. non-terminal symbols) will
generate different, potentially never-seen before phenotypic material.

This change of interpretation of genetic material can be very damaging to the
already fragile locality of crossover in GE [36]. However, many grammars in the
literature define more non-terminal symbols than strictly required, creating further
cases of reinterpretation of exchanged genetic material.

A solution is thus to reduce the number of non-terminal symbols as much as
possible [22]. In fact, for symbolic regression (the most common application domain
of GP-like systems [43]), grammars with a single non-terminal symbol can be used
(effectively single-type languages, corresponding to GP’s closure requirement).

Grammar 3 (G3) shows a single non-terminal symbol version of G1 (using G1 or
G2 as a base is irrelevant, given that a single non-terminal symbol remains, <e>, so
no linked productions will occur). This process works by replacing non-recursively
defined non-terminal symbols by all of their productions, wherever they are used,
while keeping the biases of the original grammar. A more detailed description and
step by step illustration can be found in the relevant publication [22].
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<e> ::= <e> + <e> | <e> - <e> | <e> * <e>
| <e> + <e> | <e> - <e> | <e> * <e>
| x | x | x
| 1.0 | 1.0 | 1.0
| ( <e> + <e> ) | ( <e> - <e> ) | ( <e> * <e> )
| ( <e> + <e> ) | ( <e> - <e> ) | ( <e> * <e> )
| x | x | x
| 1.0 | 1.0 | 1.0
| pdiv ( <e> , <e> ) | pdiv ( <e> , <e> )
| pdiv ( <e> , <e> )
| pdiv ( <e> , <e> ) | pdiv ( <e> , <e> )
| pdiv ( <e> , <e> )
| x | x | x
| 1.0 | 1.0 | 1.0

Grammar 3 Single non-terminal grammar

<e> ::= ( <e> + <e> )
| <e> + <e>
| ( <e> - <e> )
| <e> - <e>
| ( <e> * <e> )
| <e> * <e>
| <e> pdiv <e>
| ( <e> pdiv <e> )
| x | x | x | x
| 1.0 | 1.0 | 1.0 | 1.0

Grammar 4 Corrected-biases grammar

3.4 Grammar Biases

Grammars such as G0 are common in the literature. However, it has a 66.666% bias
towards the use of one of the operators (+, -, *), resulting in a 22% bias for each,
and a 33.333% bias towards the use of pdiv, which may not be desired.

To ensure an unbiased exploration of the search space, all four operators should
have the same biases. This also makes the search space more comparable to that of
GP. Grammar 4 (G4) shows a transformation of G3 to take this into account.

3.5 Infix/Prefix Notation

From a mathematical point of view, using a single non-terminal symbol grammar,
a prefix or postfix notation will essentially produce the same performance (subject
to the stochastic nature of the search process), as they explore the same (inverted)
syntax space. However, infix will not, if used both with and without parenthesised
expressions. For example, a prefix expression *xx may become *x+xx, if the
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<e> ::= + <e> <e>
| - <e> <e>
| * <e> <e>
| pdiv <e> <e>
| x | x
| 1.0 | 1.0

Grammar 5 Prefix-notation grammar

<e> ::= + <e> <e>
| - <e> <e>
| * <e> <e>
| pdiv <e> <e>
| <v>
| <v>
| <v>
| <v>

<v> ::= x | x | x | x | x | x | x | x
| 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0

Grammar 6 Compromise transformations for a compact, understandable grammar. Note that
unlinking of productions associated with <e> and <v> was required

codon encoding the second argument is mutated; with infix notation, however, x*x
can become either x*(x+x), which is equivalent, or x*x+x, which is not.

There is no obvious choice to make here. Infix provides a more connected
search space, but at the expense of further loss of locality for the genetic operators;
prefix/postfix do the opposite. They also provide a more comparable search space to
that of tree-based GP. Grammar 5 (G5) shows a prefix version of G4.

3.6 Compromise Grammars

Although the transformations presented can be achieved through an algorithmic
process (and thus automated), the resulting grammars can easily grow exponentially
in both size and complexity, and become very hard to understand or modify. The
addition of a carefully chosen single non-terminal symbol (<v> in this case) is often
enough to maintain the readability of a grammar, at the expense of a slight worsening
of crossover locality. Grammar 6 (G6) illustrates this. Although not apparent when
compared to G5, in problems with large numbers of operators and variables, this can
drastically reduce the number of productions in a grammar (see Table 5, grammars
G5 (5625 productions) and G6 (17 productions)).
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4 Transformations Analysis

A series of detailed experiments were performed, using grammars G0–G6, to
analyse the effect of grammar design on search space biases, size, termination,
repetition, and performance. Table 2 shows the experimental setup used.

Populations were initialised using Random Initialisation (RND) (random integer
strings), or using a depth-less variant of Probabilistic Tree Creation 2 (PTC2) [19,
23]. These were chosen as many recent publications still use RND initialisation
[17, 21], whereas PTC2 was chosen for its proven performance [23]. Depending on
the grammar used, the specified number of codons/expansions for initialisation is
sufficient to generate expressions of up to a corresponding syntax tree depth of 5.

4.1 Initialisation Biases

This first experiment analyses the initial populations generated using the two
initialisation methods. The proportion of each phenotypic symbol (+, -, *, pdiv,
1.0 (const) and x (var)) in all successfully mapped individuals was recorded, along
with measures related to the mapping process: average phenotype length, number
of invalid (non-mapping) individuals generated, and number of repeated (valid)
phenotypic solutions. Figure 1 shows the results obtained, for 100 independent runs.

The top half of the figure illustrates how grammar design affects the initial
sampling of the search space. G0–G3 exhibit a bias towards the use of division. In
the first three grammars, this is because 2/3 of the recursive definitions of the <e>
symbol use a function of the set (+, -, *), whereas 1/3 use division; this results in a
biased sampling of 2/3 ÷ 3 = 2/9 for each of (+, -, *), and 3/9 for division. These
biases are held with the reduction of non-terminal symbols used in G3.

Table 2 Experimental setup Population size 500a

Number of generations 50

Random initialisation genome length 31

PTC2 max expansions 31

Maximum genome length −
Selection tournament size 1%

Elitism (for generational replacement) 1%

Crossover ratio 50%

Average mutation events per individual 1

Max wrapping events 0
a200 for Shape Match (Easy and Medium) (see
Sect. 5); 1000 for V4, K12, Housing, EPar5 and
Mux11 (see Sect. 5); 2000 for Dow (see Sect. 5)
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Fig. 1 Symbol frequency proportions (top) in the initial populations (measured over all success-
fully mapped solutions), and mapping process related statistics (bottom), using RND (left) and
PTC2 (right). Results obtained from 100 independent runs

Other biases are seen in this figure. G0–G2 and G6, due to their larger number
of non-terminal symbols, generate smaller expressions than the other grammars,
when provided with the same number of genes (RND) or expansions (PTC2); this
explains their slightly smaller frequency of functions, and higher frequency of terms
(1.0 and x). In any case, all grammars exhibit a larger proportion of terms in
their phenotypes, when using RND; this is due to the very high probability of
transforming an <e> symbol into a term (1/4 for G0, and 1/2 for all the other
grammars), meaning many solutions will consist of a single term. The use of PTC2
substantially reduces the appearance of such solutions.

The bottom half of the figure shows statistics related to the mapping process. The
average length is a ratio of the average number of functions/terms in the generated
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phenotypes (e.g. 1.0 + x and (1.0 + x) both have length 3) over 31. RND
creates much shorter solutions than PTC2, due to the 50% probability of creating
very short solutions. As for G0, although it is biased towards larger solutions, it
usually cannot create such solutions, due to its reduced probability of terminating
the mapping process. In any case, G0–G2 and G6 create shorter phenotypes, due to
the intermediate symbols used during the mapping process.

When using RND, the proportion of non-mapping individuals is alarmingly high
for explosive G0. Although far lower, G1, G2 and G6 also have some difficulty
to map integer strings, due to the number of derivation steps required to terminate
the mapping process (a problem shared with G0). G3–G5 map around 85% of the
random integer strings. Naturally, all phenotypes generated by PTC2 are valid.

Within the successfully-mapped individuals, there is a very high proportion
of repeated solutions with RND, again a consequence of the high probability
of generating single term solutions. This is slightly higher for G0, due to the
increasing difficulty in successfully mapping long individuals. PTC2, ramping by
size, generates longer solutions, and thus generates less repetition.

4.2 Random Walk Biases

This second experiment tests the effect of recombination and mutation on the initial
populations seen in the previous experiment. To this end, 50 generations were
performed in each run, but all individuals (mapping or not) were assigned the same
flat fitness. This effectively means random walks are performed, biased both by
grammar design, and by the genetic operators used (linear crossover and integer
mutation). Figure 2 shows the results obtained, at the last generation.

The top half of the figure shows no major differences between RND and PTC2.
There is an even stronger bias towards using + and 1.0, due to shorter solutions
being generated. However, the biases introduced by grammar design are still quite
present, particularly towards division, in G0–G3.

The bottom plot shows that grammar design affects the dissemination of illegal
individuals by a large amount: by generation 50, over 90% of individuals in runs
using G0 are invalid, due to its non-terminating bias. G1, G2 and G6 exhibit ≈
70% invalids, suffering from their complex, many non-terminal symbols mapping
(a problem shared with G0). G3–G5 have an expected 50% chance of generating
mapping individuals under random search. This is the case using both RND and
PTC2, which shows that this bias exists irrespective of the starting population.

Finally, there is a huge amount of repetition in the (valid) solutions generated.
The majority are short, single term solutions, as they are more likely to survive
unharmed (and unchanged) genetic operators applied with no fitness pressure.
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Fig. 2 Symbol frequency proportions (top) in the final populations (measured over all successfully
mapped solutions), and mapping process related statistics (bottom), using RND (left) and PTC2
(right). Results obtained from 100 independent runs

4.3 Termination Biases

Mapping termination has always been a hotly debated topic in GE. This third
experiment investigates how it is influenced by grammar design. The experimental
setup is the same as in the previous sub-section, except that non-mapping individuals
are assigned a very bad fitness score (the usual way of dealing with non-mapping
solutions in GE [30]), whereas all others are assigned a fixed (good) fitness. The
results obtained are shown in Fig. 3.

The top half of the figure shows once again that, irrespectively of using RND or
PTC2, symbol biases are practically the same. The previously analysed bias towards
division is still visible in G0–G3. Particularly worrying is the high bias of 1.0 over
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Fig. 3 Symbol frequency proportions (top) in the final populations (measured over all successfully
mapped solutions), and mapping process related statistics (bottom), using RND (left) and PTC2
(right). Results obtained from 100 independent runs. Non-mapping solutions were assigned the
worst possible fitness

x in G0 and G1. This is a direct reflection of the propagation and recombination
of mapping individuals, in combination with linked grammar productions. In G0, a
large amount of codons with a value ci%4 = 3 are required, to choose the recursion
stopping production “<e> becomes <v>”; but those same codons, when interpreted
under the context of <v>, will choose the term 1.0. The same effect is seen in
G1: odd codon values are required to stop recursion of the <e> symbol, but these
will choose the symbol 1.0 over the symbol x (see Table 1). These problems are
removed by unlinking production choices (grammars G2–G6).

The use of bad fitness for non-mapping individuals is effective at reducing the
number of illegal solutions, without requiring the propagation of extremely small
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solutions. There is still a large proportion of repetition, driven in this case by genetic
drift: similar individuals undergoing crossover are less likely to produce illegal
offspring, leading to increased repetition in the final population. Finally, note the
smaller difference between RND and PTC2 at the end of these runs.

4.4 Performance Biases

To test how these findings affect performance, a series of symbolic regression
experiments were ran with all seven grammars, to solve the following problems:

1. Quartic Polynomial: x4 + x3 + x2 + x;
2. Sextic Polynomial: x6 + x5 + · · · + x2 + x;
3. Octic Polynomial: x8 + x7 + · · · + x2 + x;
4. Dectic Polynomial: x10 + x8 + · · · + x2 + x.

These problems are easy to solve, with a controlled degree of difficulty, and can
be correlated to the effects of symbol biases. Note that fully configured GE runs
were performed; this included the use of tails [26] at a 50% ratio at initialisation,
for better mapping termination. Figure 4 shows the measured biases and statistics
for the quartic and dectic polynomial, using PTC2 (RND results were similar).

There is a clear bias towards the use of multiplication (mostly), addition, and x,
the symbols required to solve the problem. The smaller uses of division, subtraction,
and 1.0 are mostly due to non-effective code (bloat). It is interesting to observe
that a bias towards division is still found when using G3. Solution length is short, a
reflection of GE’s mapping process and also the easy nature of the problems, with
the downside of still a large amount of repetition in the last generation (due both to
genetic drift and to smaller solutions being generated). Finally, experiments using
G0 still generate a large amount of illegal solutions.

Figure 5 plots the results obtained. Most configurations solve the easier problem
on every run, but as the polynomial degree increases, performance slowly worsens.
Results using PTC2 are better than those using RND, as expected [23].

The graphs also illustrate how grammar design can affect (or not) the perfor-
mance of GE. The most obvious observation is that the reduction of grammar
complexity and the associated termination biases can vastly improve performance:
setups using G0–G2 are consistently worse than all other setups. Also interesting
is how the bias of G2 and G3 towards the use of division has almost no effect
on performance. This is because division can be used almost as effectively as
multiplication to increase the degree of the polynomial (x × x versus x

1/x
).

Finally, the relative differences between grammars are consistent across the two
initialisers, apart from G0: the lack of invalid solutions in the initial population of
PTC2, along with its larger initial solution size (see Fig. 1), substantially improve
the final performance of runs using G0.
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Fig. 4 Symbol frequency proportions (top) in the final populations (measured over all successfully
mapped solutions), and mapping process related statistics (bottom), using PTC2, on quartic (left)
and dectic (right) polynomial. Results obtained from 100 independent runs

5 Performance Analysis

5.1 Problems

To measure the effect of grammar design on the final outcome of GE’s evolutionary
process, a series of experiments were ran across several problem types. These
include regression, classification and design problems, across several application
domains and difficulty ranges. Table 3 lists all the problems attempted.
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Fig. 5 Mean best individual fitness for the polynomial regression experiments, using RND (left)
and PTC2 (right), averaged across 100 independent runs; error is measured as RMSE. Shades
indicate 95% confidence intervals about the mean. Cyan and blue lines (where visible) show the
RMSE of a constant predictor (mean of the train response variable) and a linear regression model
of the training set, respectively
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Table 3 Benchmark problems; if specified, E[a, b, c] means a grid of points evenly spaced with
an interval of c, from a to b inclusive, whereas U [a, b, c] means c uniform random samples drawn
from a to b inclusive; the specified type is regression (R), classification (C#) (# = number of
classes), or image matching (IM)

Training set

Name Vars. Data source Type Test Set

Keijzer-6 (K6) [12]
1 y = ∑x

i
1
i

R
E[1, 50, 1]
E[1, 120, 1]

Pagie-1 (P1) [34]
2 y = 1

1+x−4
1

+ 1
1+x−4

2
R

E[−5, 5, 0.4]
E[−5, 5, 0.1]

Vladislavleva-4
5 y = 10

5+∑5
i=1(xi−3)2

R U [0.05, 0.05, 1024]
(V4) [41] U [−0.25, 6.35, 5k]
Tower [41]

5 Gas chromatography data R
4721 points

278 points

Korns-12
5 y = 2 − 2.1cos(9.8x1)sin(1.3x5) R

U [−50, 50, 10k]
(K12) [14] U [−50, 50, 10k]
Forest [2]

12 Forest Fires data R
414 points

103 points

Housing [16]
13 Housing values R

354 points

152 points

Dow Chemical
57 Chemical process data R

747 points

(Dow)a 319 points

Even-parity 5
5 Parity of boolean inputs C2

32 points

(EPar5) [15] –

Multiplexer 11
11 Boolean multiplexer C2

2048 points

(Mux11) [15] –

Breast Cancer
9 Diagnostic data C2

400 points

Wisconsin [16] 283 points

Wine Quality:
11 Physicochemical test data C10

1000 points

red [3] 599 points

Wine Quality:
11 Physicochemical test data C10

3000 points

white [3] 1898 points

Shape Match
– Generated 250x250 shape IM

–

(Easy) [33] –

Shape Match
– Generated 250x250 shape IM

–

(Medium) [33] –

Shape Match
– Generated 250x250 shape IM

–

(Hard) [33] –
aSource: http://gpbenchmarks.org/symbolicregressioncompetition/

http://gpbenchmarks.org/symbolicregressioncompetition/
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5.2 Grammars

For every problem attempted, seven grammar versions were designed, G0–G6,
as detailed in Sect. 3. Each of the grammars respects as much as possible the
original function and terminal sets as defined in their original publications; this
is important for benchmarking purposes, as attempting to solve a problem using
different functions can severely alter the difficulty of the benchmarks [27]. For
all problems, constants were created using digit concatenation, with 100 possible
values within the range [0.0 . . . 9.9], and a step of 0.1.

Each of the problems was attempted using both RND and PTC2, over 100
independent runs. To illustrate the grammar transformation process, and its impact
on the search effectiveness of GE, three problems are examined in detail: Keijzer-6,
Vladislavleva-4, and Shape Match (hard).

5.2.1 Keijzer-6

The Keijzer-6 (K6) problem [12], also known as the Harmonic function, is a single-
variable problem, using only addition, multiplication and three unary functions. A
typical GE grammar defining possible solutions for this problem is shown in Table 4,
cell G0. The symbol <e> has more productions creating new <e> symbols rather
than mapping them to something else, so the G1 version addresses this, by having a
“|<v>” production for each production replacing one <e> symbol with two. There
are two sets of non-terminal symbols with linked productions: <o> with <v>, and
<e> with <d>. This is addressed in G2, through repetition of productions.

G3 reduces the number of non-terminal symbols to a single one, while main-
taining the biases of G1 and G2. This results in a much larger grammar, with 3000
production rules. Grammar G4 addresses the slightly higher bias towards use of the
operators + and ∗ over the functions inv, neg and sqrt .

Grammar G5 is a conversion to prefix notation, which considerably reduces
the complexity of the grammar, by removing bracketed versions of the + and ∗
operators. Finally, G6 separates the definition of functions and terminals into two
symbols (<e> and <v>), resulting in a very compact grammar, but without the
extra complexity of grammars G0–G2.

5.2.2 Vladislavleva-4

The Vladislavleva-4 (V4) problem [41], also known as the UBall5D function, is a
five-variable problem, and its function set, as defined in its original publication, is
extensive:

– Functions: +,−, ∗, /, square, xreal , x + real, x · real

– Terminals: x0, x1, x2, x3, x4
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Table 4 Grammars used for the Keijzer-6 (K6) problem, versions G0–G6; a set of productions
followed by {n} means they are repeated n times, whereas the notation α| . . . |δ is shorthand for
a production for each of the elements in the sequence [α..δ]; constants in G6 are created using
GECodonValue [24]

G0 G1 G2

<s>::=<e> <s>::=<e> <s>::=<e>

<e>::=<e><o><e> <e>::=<e><o><e> <e>::=<e><o><e>

|(<e><o><e>) | <v> | <v>

| <f> (<e>) |(<e><o><e>) | (<e><o><e>)

| <v> | <v> | <v>

<o>::= +|∗ | <f> (<e>) | <f> (<e>)

<f>::= inv|neg|sqrt <o>::= +|∗ <o>::= +|+
<v>::=<d>.<d> <f>::= inv|neg|sqrt | ∗ |∗

|x0 <v>::=<d>.<d> <f>::= inv|neg|sqrt

<d>::= 0|1|2|3|4|5|6|7|8|9 |x0 <v>::=<d>.<d>

<d>::= 0|1|2|3|4|5|6|7|8|9 | x0
<d>::= 0|0|0|0|0|1|1|1|1|1

|2|2|2|2|2|3|3|3|3|3
|4|4|4|4|4|5|5|5|5|5
|6|6|6|6|6|7|7|7|7|7
|8|8|8|8|8|9|9|9|9|9

G3 G4 G5

<e>::=<e> + <e> {300} <e>::=<e> + <e> {300} <e>::= + <e><e> {100}
| <e> ∗ <e> {300} | <e> ∗ <e> {300} | ∗ <e><e> {100}
| x0 {300} | x0 {300} | x0 {100}
| 0.0| . . . |9.9 {3} | 0.0| . . . |9.9 {3} | 0.0| . . . |9.9
| (<e> + <e>) {300} | (<e> + <e>) {300} | inv(<e>) {100}
| (<e> ∗ <e>) {300} | (<e> ∗ <e>) {300} | neg(<e>) {100}
| x0{300} | x0{300} | sqrt (<e>) {100}
| 0.0| . . . |9.9 {3} | 0.0| . . . |9.9 {3}
| inv(<e>) {200} | inv(<e>) {300}
| neg(<e>) {200} | neg(<e>) {300}
| sqrt (<e>) {200} | sqrt (<e>) {300}

G6

<e>::= + <e><e> | <v>

| ∗ <e><e> | <v>

|inv <e> |neg <e> |sqrt <e>

<v>::= x0| <GECodonV alue{0.0 : 9.9 : 0.1}>

This results in a complex base grammar, shown in Table 5, cell G0. The definition
of the <e> symbol has a heavy bias towards growth, which is addressed in G1. It
also has a more complex set of linked production, between the symbols <a> (five
productions), <v> (five productions) and <d> (ten productions); G2 addresses this
by introducing 10 copies of each original production associated with <a>, and 50
copies of each original production associated with <v>.

As before, G3 reduces the number of non-terminal symbols to just one, but to
ensure the same bias choices as G1 and G2, and due to the required combinations
of 5 variables and 100 constants for certain operators, it defines 17,498 production
rules.2 Grammar G4 balances the bias between all four binary operators (+,−, ∗, /),
with 1250 productions using each (625 bracketed and 625 non-bracketed), and
the single unary operator, square (625 productions); the resulting grammar, while
smaller, still contains 10,625 productions.

2The required number of 2500/3 copies of each of the productions using the operators +,−, ∗
were rounded to 833, resulting in a negligible bias.
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Table 5 Grammars used for the Vladislavleva-4 (V4) problem, versions G0–G6; a set of
productions followed by {n} means they are repeated n times, whereas the notation α| . . . |δ is
shorthand for a production for each of the elements in the sequence [α..δ]; constants in G6 are
created using GECodonValue [24]

G0 G1 G2

<s>::=<e> <s>::=<e> <s>::=<e>

<e>::=<e><o><e> <e>::=<e><o><e> <e>::=<e><o><e>

|(<e><o><e>) | <a> | <a>

| <f 1> (<e>, <e>) |(<e><o><e>) |(<e><o><e>)

| <f 2> (<e>, 2) | <a> | <a>

| <a> | <f 1> (<e>, <e>) | <f 1> (<e>, <e>)

<o>::= +| − |∗ | <a> | <a>

<f 1>::= pdiv | <f 2> (<e>, 2) | <f 2> (<e>, 2)

<f 2>::= pow <o>::= +| − |∗ <o>::= +| − |∗
<a>::= pow(<v>, <d>.<d>) <f 1>::= pdiv <f 1>::= pdiv

|(<v> + <d>.<d>) <f 2>::= pow <f 2>::= pow

|(<v> ∗ <d>.<d>) <a>::= pow(<v>, <d>.<d>) <a>::= pow(<v>, <d>.<d>){10}
| <v> |(<v> + <d>.<d>) |(<v> + <d>.<d>){10}
| <d>.<d> |(<v> ∗ <d>.<d>) |(<v> ∗ <d>.<d>){10}

<v>::= x0|x1|x2|x3|x4 | <v> | <v> {10}
<d>::= 0|1|2|3|4|5|6|7|8|9 | <d>.<d> | <d>.<d> {10}

<v>::= x0|x1|x2|x3|x4 <v>::= x0|x1|x2|x3|x4{50}
<d>::= 0|1|2|3|4|5|6|7|8|9 <d>::= 0|1|2|3|4|5|6|7|8|9

G3 G4 G5

<e>::=<e> + <e> {833} <e>::=<e> + <e> {625} <e>::= + <e><e> {625}
| <e> − <e> {833} | <e> − <e> {625} |− <e><e> {625}
| <e> ∗ <e> {833} | <e> ∗ <e> {625} |∗ <e><e> {625}
|(<e> + <e>) {833} | <e> pdiv <e> {625} |pdiv <e><e> {625}
|(<e> − <e>) {833} |(<e> + <e>) {625} |pow <e> 2 {625}
|(<e> ∗ <e>) {833} |(<e> − <e>) {625} |pow x0 0.0 | . . . |pow x0 9.9
|pdiv(<e>, <e>) {2500} |(<e> ∗ <e>) {625} |pow x1 0.0 | . . . |pow x1 9.9
|pow(<e>, 2) {2500} |(<e> pdiv <e>) {625} |pow x2 0.0 | . . . |pow x2 9.9
|pow(x0, 0.0)| . . . |pow(x0, 9.9) {3} |pow(<e>, 2) {2500} |pow x3 0.0 | . . . |pow x3 9.9
|pow(x1, 0.0)| . . . |pow(x1, 9.9) {3} |pow(x0, 0.0)| . . . |pow(x0, 9.9) {2} |pow x4 0.0 | . . . |pow x4 9.9
|pow(x2, 0.0)| . . . |pow(x2, 9.9) {3} |pow(x1, 0.0)| . . . |pow(x1, 9.9) {2} | + x0 0.0 | . . . | + x0 9.9
|pow(x3, 0.0)| . . . |pow(x3, 9.9) {3} |pow(x2, 0.0)| . . . |pow(x2, 9.9) {2} | + x1 0.0 | . . . | + x1 9.9
|pow(x4, 0.0)| . . . |pow(x4, 9.9) {3} |pow(x3, 0.0)| . . . |pow(x3, 9.9) {2} | + x2 0.0 | . . . | + x2 9.9
|(x0 + 0.0)| . . . |(x0 + 9.9) {3} |pow(x4, 0.0)| . . . |pow(x4, 9.9) {2} | + x3 0.0 | . . . | + x3 9.9
|(x1 + 0.0)| . . . |(x1 + 9.9) {3} |(x0 + 0.0)| . . . |(x0 + 9.9) {2} | + x4 0.0 | . . . | + x4 9.9
|(x2 + 0.0)| . . . |(x2 + 9.9) {3} |(x1 + 0.0)| . . . |(x1 + 9.9) {2} | ∗ x0 0.0 | . . . | ∗ x0 9.9
|(x3 + 0.0)| . . . |(x3 + 9.9) {3} |(x2 + 0.0)| . . . |(x2 + 9.9) {2} | ∗ x1 0.0 | . . . | ∗ x1 9.9
|(x4 + 0.0)| . . . |(x4 + 9.9) {3} |(x3 + 0.0)| . . . |(x3 + 9.9) {2} | ∗ x2 0.0 | . . . | ∗ x2 9.9
|(x0 ∗ 0.0)| . . . |(x0 ∗ 9.9) {3} |(x4 + 0.0)| . . . |(x4 + 9.9) {2} | ∗ x3 0.0 | . . . | ∗ x3 9.9
|(x1 ∗ 0.0)| . . . |(x1 ∗ 9.9) {3} |(x0 ∗ 0.0)| . . . |(x0 ∗ 9.9) {2} | ∗ x4 0.0 | . . . | ∗ x4 9.9
|(x2 ∗ 0.0)| . . . |(x2 ∗ 9.9) {3} |(x1 ∗ 0.0)| . . . |(x1 ∗ 9.9) {2} |x0|x1|x2|x3|x4 {100}
|(x3 ∗ 0.0)| . . . |(x3 ∗ 9.9) {3} |(x2 ∗ 0.0)| . . . |(x2 ∗ 9.9) {2} |0.0| . . . |9.9 {5}
|(x4 ∗ 0.0)| . . . |(x4 ∗ 9.9) {3} |(x3 ∗ 0.0)| . . . |(x3 ∗ 9.9) {2}
|x0|x1|x2|x3|x4 {300} |(x4 ∗ 0.0)| . . . |(x4 ∗ 9.9) {2}
|0.0| . . . |9.9 {15} |x0|x1|x2|x3|x4 {200}

|0.0| . . . |9.9 {10}
G6

<e>::= + <e><e>

|− <e><e>

|∗ <e><e>

|pdiv <e><e>

|pow <e> 2
|pow <v><GECodonV alue{0.0 : 9.9 : 0.1}>
|+ <v><GECodonV alue{0.0 : 9.9 : 0.1}>
|∗ <v><GECodonV alue{0.0 : 9.9 : 0.1}>
| <v>

| <v>

| <GECodonV alue{0.0 : 9.9 : 0.1}>
| <GECodonV alue{0.0 : 9.9 : 0.1}>

<v>::= x0|x1|x2|x3|x4
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The conversion to a prefix notation in G5 further reduces complexity, but it
still contains 5625 productions. Finally, the separation of variables to a different
symbol (<v>) removes the complexity of variable and constant combination, and
the resulting grammar is far more compact and understandable.

5.2.3 Shape Match (Hard)

The Shape Match problem [33] was setup as a demonstration of the use of shape
grammars with GE. The objective is to match a pre-defined image, defined in a
250x250 binary pixel matrix, using a sequence of shape creation and manipulation
instructions. It was defined using three variants, easy, medium and hard, with
increasingly more complex target images. The drawing functions available are as
follows: s0 moves the shape right 10 pixels; s1 moves the shape down 10 pixels;
s2 moves the shape left 10 pixels; s3 moves the shape up 10 pixels; gro doubles
the size of the shape; shrnk halves the size of the shape; [ and ] push and pop the
pen’s state (position where it will draw next) onto and off the stack. Finally, sqr
draws a square, and crcl draws a circle.

Table 6 shows the original grammar [33] as G0, with a call to a Python interpreter.
It has no recursively defined binary operators: a single call to <p>::=<e> stops
recursion of symbol <p>, and likewise, a single call to <e>::=<v> terminates the
recursion of <e>. As such, G1 is identical to G0. There are, however, two sets of
non-terminal symbols with linked productions: <p> with <v>, and <e> with <o>.
G2 addresses this, through the explained approach of repetition of productions.

G3 reduces the number of non-terminal symbols to three. Although the first
symbol (<s>) is of minor importance (it has a single associated production, so no
codon is used, and it appears only once, at the start), the recursive nature of symbols
<p> and <e> in G0–G2 requires the presence of both. Also, after the incorporation
of symbols <o> and <v> into <e>, the resulting number of productions is even,
which links them with those associated with <p>, so the explained unlinking
process was employed. G4 is similar, but reduces the bias of the [] operator to that
of all other transformations.

G5 replaces [] with a prefix equivalent operator, pushed. This allows the
definition of what is essentially a single non-terminal symbol grammar (not counting
the <s> symbol, as explained above). The exact biases of G4 are impossible to keep,
so a compromise was chosen. Finally, G6 uses three symbols, <p>, <o> and <v>,
to create a compact and highly readable grammar.

5.3 Experimental Setup

The experimental setup used was the same as in Table 2, but using 50% non-coding
tails at initialisation [26]. Also, as seen in Sect. 4.1, different grammars will generate
different solution sizes at initialisation, with direct influence in their initial fitnesses.
In order to properly analyse the effect of grammar design in the search capability
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Table 6 Grammars used for the Shape Match (hard) problem, versions G0–G6; a set of produc-
tions followed by {n} means they are repeated n times, whereas the notation α| . . . |δ is shorthand
for a production for each of the elements in the sequence [α..δ]; constants in G6 are created using
GECodonValue [24]

G0 G1 (same as G0) G2

<s>::= python hard.py <p> <s>::= python hard.py <p> <s>::= python hard.py <p>

<p>::=<e> <p>::=<e> <p>::=<e>

| <e><p> | <e><p> | <e><p>

<e>::=<v> <e>::=<v> <e>::=<v>

| <o><e> | <o><e> | <o><e>

| [<e>] | [<e>] | [<e>]
<o>::= s0 <o>::= s0 <o>::= s0|s0|s0

| s1 | s1 | s1|s1|s1
| s2 | s2 | s2|s2|s2
| s3 | s3 | s3|s3|s3
| gro | gro | gro|gro|gro

| shrnk | shrnk | shrnk|shrnk|shrnk

<v>::= sqr <v>::= sqr <v>::= sqr|sqr

| crcl | crcl | crcl|crcl
G3 G4 G5

<s>::= python hard.py <p> <s>::= python hard.py <p> <s>::= python hard.py <p>

<p>::=<e> {18} <p>::=<e> {42} <p>::= sqr {7}
| <e><p> {18} | <e><p> {42} | crcl {7}

<e>::= sqr {3} <e>::= sqr {7} | s0 <p> {2}
| crcl {3} | crcl {7} | s1 <p> {2}
| s0 <e> | s0 <e> {4} | s2 <p> {2}
| s1 <e> | s1 <e> {4} | s3 <p> {2}
| s2 <e> | s2 <e> {4} | gro <p> {2}
| s3 <e> | s3 <e> {4} | shrnk <p> {2}
| gro <e> | gro <e> {4} | pushed <p> {2}
| shrnk <e> | shrnk <e> {4} | sqr <p> {7}
| [<e>] {6} | [<e>] {4} | crcl <p> {7}

G6

<s>::= python hard.py <p>

<p>::=<v> | <t><p> | <v><p>

<o>::= s0 s1 | s2 | s3 | gro | shrnk | pushed

<v>::= sqr | crcl

Table 7 Genome length (for RND) and min/max derivation steps (for PTC2) used during
initialisation, for the three problems analysed

Problem Parameter g0 g1 g2 g3 g4 g5 g6

Keijzer6 Genome length 30 30 30 15 15 15 23

Min. der. steps 3 3 3 1 1 1 2

Max. der. steps 31 31 31 15 15 15 23

Vladislavleva4 Genome length 54 54 54 15 15 15 31

Min. der. steps 4 4 4 1 1 1 2

Max. der. steps 55 55 55 15 15 15 31

Shape Match (hard) Genome length 24 24 24 14 14 14 23

Min. der. steps 4 4 4 3 3 2 3

Max. der. steps 25 25 25 15 15 16 24

of GE, experiments using different grammars were setup such that they generate
similarly sized phenotype solutions at initialisation. As such, RND and PTC2 were
setup as shown in Table 7. Finally, protected versions of some operators were used,
such as division (1.0 if divisor < 1e − 5), inversion (1.0 if argument < 1e − 5), and
square root (

√|x|).
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5.4 Results

Figure 6 plots the mean best train results for the K6, V4 and Shape Match (hard)
problem, using RND and PTC2 initialisation.3 All grammar variants find similarly
good solutions for the K6 experiment at the 50th generation, using PTC2, but much
larger differences are found between the results obtained with grammars G0–G2
versus those with grammars G3–G6, when using RND. A similar result is observed
for the V4 experiment, except that in this case, the difference between G0–G2 and
G3–G6 is more evident when using PTC2.

Finally, the Shape Match (hard) experiments again show a large difference
between both clusters of grammars, along with the positive effect in convergence
of removing the high bias towards the [] operator in G4–G6 (applying it more than
once has no practical effect). Although there is a very marked change in the speed
of convergence towards an optimal solution, particularly with the reduction of non-
terminal symbols, eventually all grammar solutions find similarly good solutions.

5.4.1 Significance and Test Results

In order to quantify the effect of each grammar design on the search effectiveness
of GE, two-sample Mann-Whitney U-tests were calculated for final median best fit
results, for all grammars. The results are shown in Table 8.

These are similar to what was observed in the K6, V4 and Shape Match problems.
Overall, runs using G3–G5 are significantly better than all others. Small differences
between G3–G5 are mostly problem domain specific. G0–G2 are often significantly
better only amongst themselves, with the exception of a few noisy real-world
datasets, such as Tower and Wine Quality. G6 seems to provide a compromise
between performance and complexity of grammar. As before, G0 does particularly
bad with RND initialisation, and differences between different grammars are less
evident when using PTC2.

Regarding test performance, no validation or early-stopping approaches were
employed in these experiments, so it is not unreasonable to expect some level of
overfitting, particularly from approaches with very good training performance. The
statistical significance results are shown in Table 9.

As expected, the test results are far less clear cut. Results are still better
when using G3–G5, but are very problem-dependent. This mostly results from
problems such as K12: it is such a hard problem to solve using the original
function and terminal set [14] (which uses no trigonometric functions), that any
small improvement in training performance invariably led to a degradation in test
performance.

3As the focus of this study is on grammar design, no regression performance improving techniques
such as linear scaling [12] or cross-validation were used.
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Fig. 6 Mean best train scores for the K6 (top), V4 (middle) and Shape match (hard) (bottom)
experiments, using RND (left) or PTC2 (right), averaged across 100 independent runs; error is
measured as the Root Mean Squared Error (RMSE) for K6 and V4, or the number of mismatched
pixels for shape matching. Shades indicate 95% confidence intervals about the mean. Cyan and
blue lines (where visible) indicate the RMSE of a constant predictor (mean of the train response
variable) and a linear regression model of the training set, respectively
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Table 8 Mann-Whitney U-tests of final median best training fit results, for all problems attempted;
each number is a count of all grammars against which a significantly differently better performance
was measured (results across 100 independent runs)

G0 G1 G2 G3 G4 G5 G6
RND BreastCancerW 0 0 0 5 3 0 0

Dow 0 0 0 3 3 3 3

EvenParity5 0 0 0 4 4 4 0

Forest 0 1 1 4 4 5 1

Housing 0 1 1 3 3 3 3

Keijzer6 0 0 0 3 4 4 3

Korns12 0 0 0 3 4 6 4

Multiplexer11 0 1 1 3 3 1 4

Pagie1 0 0 0 4 4 4 0

Tower 0 2 2 4 5 2 1

Vladislavleva4 0 0 0 4 0 4 3

WineQualityRed 0 1 1 5 5 2 2

WineQualityWhite 0 1 1 3 3 3 3

ShapeEasy 0 0 0 0 0 0 0

ShapeMedium 0 0 0 0 0 0 0

ShapeHard 0 0 0 0 0 1 0

Sum 0 7 7 48 45 42 27

Mean 0 0.438 0.438 3 2.812 2.625 1.688

Median 0 0 0 3 3 3 1.5

Std. dev. 0 0.6292 0.6292 1.633 1.797 1.857 1.580
PTC2 BreastCancerW 0 0 0 4 4 1 0

Dow 0 0 0 2 0 2 3

EvenParity5 0 0 0 1 1 4 1

Forest 0 0 0 2 4 1 0

Housing 0 0 0 3 2 2 2

Keijzer6 0 0 0 3 4 4 0

Korns12 0 0 0 3 4 5 6

Multiplexer11 0 1 0 0 0 0 4

Pagie1 0 0 0 4 4 4 2

Tower 0 0 1 1 3 1 1

Vladislavleva4 0 0 0 3 3 3 3

WineQualityRed 1 1 0 2 2 0 0

WineQualityWhite 1 1 3 2 1 0 1

ShapeEasy 0 0 0 0 0 0 0

ShapeMedium 0 0 0 0 0 0 0

ShapeHard 0 0 0 0 0 0 0

Sum 2 3 4 30 32 27 23

Mean 0.125 0.188 0.25 1.875 2 1.688 1.438

Median 0 0 0 2 2 1 1

Std. dev. 0.342 0.403 0.774 1.408 1.713 1.778 1.788
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Table 9 Mann-Whitney U-tests of final median best test fit results (of best training solutions), for
all problems with a test set; each number is a count of all grammars against which a significantly
differently better performance was measured (results across 100 independent runs)

G0 G1 G2 G3 G4 G5 G6
RND BreastCancerW 0 0 0 0 0 1 0

Dow 0 0 0 4 2 2 0

Forest 6 2 1 0 0 0 3

Housing 0 1 1 3 3 3 3

Keijzer6 0 0 0 2 4 4 3

Korns12 3 3 6 3 0 0 1

Pagie1 0 0 0 4 4 4 0

Tower 1 0 0 0 0 0 1

Vladislavleva4 0 1 1 0 0 0 1

WineQualityRed 0 1 1 5 5 2 2

WineQualityWhite 5 0 0 0 0 0 0

Sum 15 8 10 21 18 16 14

Mean 1.364 0.727 0.909 1.909 1.636 1.455 1.273

Median 0 0 0 2 0 1 1

Std. dev. 2.248 1.009 1.758 1.973 2.014 1.635 1.272
PTC2 BreastCancerW 0 0 0 0 4 4 0

Dow 0 0 0 1 2 0 0

Forest 1 0 0 0 0 0 1

Housing 0 0 0 3 2 2 2

Keijzer6 1 0 0 1 2 2 0

Korns12 4 3 3 3 2 0 0

Pagie1 0 0 0 4 3 4 2

Tower 1 0 0 0 0 0 1

Vladislavleva4 1 1 0 0 0 0 1

WineQualityRed 0 1 0 2 1 0 0

WineQualityWhite 0 0 0 0 0 0 0

Sum 8 5 3 14 16 12 7

Mean 0.727 0.455 0.273 1.273 1.455 1.091 0.636

Median 0 0 0 1 2 0 0

Std. dev. 1.191 0.934 0.905 1.489 1.368 1.640 0.809

5.5 Analysis

The results obtained show just how much the design of a grammar can affect
the search capability of GE. The most obvious performance improvements come
from the construction of balanced grammars, and the reduction of the number
of non-terminal symbols. These come at a price, however, particularly the latter:
the complexity of the generated grammars can make them particularly hard to
read and/or modify by hand. However, the application of these transformations
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is a deterministic process, meaning that they can be applied automatically: this
allows manual grammar modifications to be applied to the simpler versions of the
grammars, with subsequent application of automatic transformations. In any case,
even a partial (manual) application of some of these modifications can be of use, as
seen with the results for G6 variants.

The usefulness of some of these applications is problem-dependent. This is par-
ticularly the case of bias-related transformations, expressed in the results obtained
with G2 and G4. For the problems attempted, the unlinking process employed
with G2 grammars does not seem to confer any performance advantage when
compared to G1 grammars. Likewise, the removal of biases towards certain
operators employed in G4 grammars does not seem to confer any advantage, in
the problems attempted. Finally, the switch from infix to prefix notation only makes
a small difference for a few problems (for better or worse).

It is worth pointing out again that these results relate only to GE using a linear
genome representation. Derivation tree based approaches make use of different
search operators, and as such, the effect of grammar design is markedly different.

Another observation is the need to understand grammar design, when setting up
any initialisation procedure (even something as simple as RND initialisation). The
size of genotype structures required to generate certain solution (phenotype) size
ranges needs to be adapted, depending on the grammar used.

6 Conclusions

Grammar design is one of the main tasks in GE: in order to write a good grammar,
deep knowledge in both GE and the application domain are required. The experi-
ments examined in this chapter, however, show that this is not necessarily always
the case: there are specific grammar design principles that can be applied when
attempting to solve any problem using GE, which do not require domain knowledge.
Of the transformations analysed, the creation of recursion-balanced grammars and
the reduction of the number of non-terminal symbols are particularly useful for
improving the performance of GE, when using a linear genome representation.

Fixing symbol biases does not necessarily lead to better performance: this is
completely problem dependent, and it can both degrade or improve performance.
But it does affect search space exploration, as shown in the experiments conducted.
This leads to two recommendations:

– When designing a GE grammar to compare its performance with systems such
as GP, respect the symbol biases of the original system;

– When applying GE to a real-world problem, where symbol biases are known,
use this knowledge to bias the exploration of the search space.

GE is like any other search algorithm, and in fact like any tool: it has its
advantages and disadvantages, and will only provide its best performance if
correctly used. There has been a recent surge of publications criticising GE’s
performance [17, 18, 21, 42], some even deeming that its performance “resembles
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that of random search” [42]. But most of the results provided were the result of using
badly designed grammars, and poor experimental setup. The analysis and results
presented in this chapter aim to provide another step towards achieving the goal of
Understanding Grammatical Evolution.
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