
Introduction to 20 Years of Grammatical
Evolution

Conor Ryan, Michael O’Neill, and JJ Collins

Abstract Grammatical Evolution (GE) is a Evolutionary Algorithm (EA) that
takes inspiration from the biological evolutionary process to search for solutions to
problems. This chapter gives a brief introduction to EAs, paying particular attention
to those involved in automatic program generation. We then describe grammars, the
core building blocks of programs, before detailing how GE’s usage of them is one
of the key differentiators between it and other EAs.

We give a brief overview of GE and its use, before looking at some of the key
developments in the past 20 years, along with a detailed look at the chapters in this
book.

1 Evolutionary Computation

Evolutionary Computation (EC) is a machine learning technique inspired by the
manner in which the biological evolutionary process operates. Populations of
individuals, that is, candidate solutions, are evaluated and their performance on
a particular problem scored. The population is replaced with a new one created
by probabilistically recombining the best performing individuals. In this way, the
population slowly evolves towards an optimal or near optimal solution.

Two key factors that limit the sort of problems that can be tackled by EC and,
indeed, any iterated machine learning technique, are representation and fitness.
Representation is concerned with the complexity of the solutions that the system
can evolve and manipulate. As individuals become more complex, it becomes
increasingly more difficult to recombine them with each other.

C. Ryan (�) · JJ Collins
Department of Computer Science and Information Systems, University of Limerick, Castletroy,
Limerick, Ireland
e-mail: conor.ryan@ul.ie; j.j.collins@ul.ie

M. O’Neill
School of Business, University College Dublin, Dublin, Ireland
e-mail: m.oneill@ucd.ie

© Springer International Publishing AG, part of Springer Nature 2018
C. Ryan et al. (eds.), Handbook of Grammatical Evolution,
https://doi.org/10.1007/978-3-319-78717-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78717-6_1&domain=pdf
mailto:conor.ryan@ul.ie
mailto:j.j.collins@ul.ie
mailto:m.oneill@ucd.ie
https://doi.org/10.1007/978-3-319-78717-6_1

2 C. Ryan et al.

Fitness is the ability to measure the quality of an individual, specifically its ability
to solve the problem at hand. If no fitness evaluator exists, creating one can be
prohibitively expensive, as unless they are quick and accurate, they will quickly
become a bottleneck.

EC has been used with considerable success in areas as varied as Bioinformat-
ics [15, 51], Automatic Circuit Generation [42, 94] and Fluid Dynamics [4]—as far
back as the seventies!

Evolutionary Automatic Programming is specifically focused on evolving pro-
grams, and more recently has been referred to as the problem of program synthesis.
The most commonly used approach, Genetic Programming (GP) [41–45] uses
expression trees to represent individuals, as in Fig. 1.

These individuals are recombined with each other using crossover, an operation
that swaps subtrees from the two parent individuals. The subtrees are selected at
random and placed into the corresponding location in the other parent, resulting in
two offspring as in Fig. 2.

GP has enjoyed much success and has been successfully applied to an enormous
number of problem domains. There is, however, no simple way to deal with multiple
types in GP, nor to handle constraints for the manner in which programs are put
together. This is because all GP individuals must obey the closure rule, that is, all
functions must take and return the same type. It is possible to use Strongly Typed
Genetic Programming [50], in which multiple types can be maintained, but this

Fig. 1 GP individuals represented as syntax trees. The individual on the left corresponds to (+ (*
3 Y) (* (/ 6 X) (* X Y))) while the one on the right corresponds to (+ (/ X Y) (* (* X 4) (Sin X)))

Fig. 2 The resulting offspring from crossing over the parents from Fig. 1

Introduction to 20 Years of Grammatical Evolution 3

involves performing constrained crossover, with only those nodes of the same type
being able to be swapped, which reduces the searching abilities of the system.

However, this constrains the search space, and becomes particularly problematic
when dealing with dimensionally aware [37, 38] problems. Furthermore, it also
doesn’t facilitate the passing of information down through the trees as in Attribute
Grammars (AG), which is necessary to generate dynamic types such as those
required in matrix multiplication.

Most users do not use GP with multiple types, however, and standard GP has
achieved extraordinary success across a very wide range of domains.

2 Grammatical Evolution

2.1 Grammars and Evolutionary Computation

All evolutionary systems that produce programs use grammars of one form or
another whether explicitly [49] or implicitly [87]. Grammars describe how programs
can be constructed from constituent parts, i.e. how variables and operators can be
legally combined to create executable code. The sorts of languages that different
kinds of grammars can produce is documented in Chomsky’s well known Hierarchy
of Grammars [7–9]. Most EC systems use Context Free Grammars (CFG), Type-2
grammars.

As noted above, most Evolutionary Automatic Programming (EAP) systems,
including GP, generally considered to be one of the more advanced ones, exclusively
use Closed Grammars [72, 73], which are a special, restricted form of CFGs that
have a single type.

Sometimes these are implicit, as with GP and Gene Expression Program-
ming [23], while other systems are more explicit, such as GE, G3P [95–98], etc.
The main trade-off between implicit and explicit grammar usage is speed and
expressiveness. We refer the interested reader to two relatively recent syntheses
of grammars and genetic programming [49], and more broadly in the context of
developmental systems [5].

GE, on the other hand, employs simple linear strings (typically binary or integer)
as genotypes, using a mapping scheme to map them onto arbitrarily complex
structures. The mapping scheme takes the form of a CFG, which specifies legal
relationships between terminals (items which can appear in the final structure) and
non-terminals (interim values to help link terminals together). CFGs enable one to
evolve considerably more complex structures than standard GP, because they permit
multiple types.

GE has a modular nature, see Fig. 3, meaning that everything from the problem
being tackled to the language being used and even the search algorithm being
employed can easily be swapped out. Section 4 describes how this modular nature
has lead to a massive community effort in further developing GE.

4 C. Ryan et al.

Fig. 3 The modular nature of Grammatical Evolution. Everything from the fitness function to the
grammar and even the search engine can be modified or replaced

3 Crash Course in Grammatical Evolution

GE traditionally uses an evolutionary algorithm comprising a variable-length
linear genome encoding of a computer program. The genotype-phenotype mapping
(mapping) takes as input the linear genome and a grammar, and outputs a sentence in
the language described by the grammar, with context-free grammars being the most
often used. To drive search the quality of the each individual (that is, a sentence
from the language) needs to be assigned a measure of quality.

GE individuals are usually executable entities, but can be any structure rep-
resented by a grammar; for example, Chapter 13, “Design, Architecture, and
Engineering with Grammatical Evolution” in this book describes the GENR8 [30]
system that uses GE and Autodesk’s Maya CAD tool to evolve digital surfaces.

When the sentence is in the form of code, it is usually embedded in some wrapper
code to manage its execution. The result of the execution of the code is used as its
measure of fitness.

We illustrate the mapping process using a simple example grammar to generate
strings of characters, vowels and consonants. We first specify the grammar of the
output language, which describes all possible sentences that can be generated.

The sentences generated by the example grammar below are of type string,
which are comprised of one or more letter’s. A letter is allowed to be one of
our primitives, that is, either a vowel, consonant or character.

A convenient formal notation for grammars, often employed by GE, is Backus
Naur Form (BNF). BNF is comprised of the tuple {N, T, P, S}, where N is the set of
intermediary symbols called non-terminals, which are mapped to the set of terminal
symbols (T) according to P, the set of production rules. The terminal set consists of
items that can actually appear in legal sentences for the grammar. The final item, S,
is a special non-terminal start symbol, from which all derivation sequences begin.

Introduction to 20 Years of Grammatical Evolution 5

For example, in this particular grammar the terminals are neatly described by
three types: vowel, consonant and other character. We use the following
sets for N and P .
N = {<string>, <letter>, <vowel>, <consonant>, <character>}, and
T = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, ", ?, ’,’, ., ;, :, ’ ’}.

That is, the terminal set consists of letters, spaces and punctuation symbols, while
the non-terminal set consists of the three types noted above, along with string,
the start symbol, and letter. letter is a non-terminal that will be used to help
group various vowels, consonants and characters together. The production rules for
this grammar can be specified as follows:

<string> ::= <letter>|<letter><string>
<letter> ::= <vowel>|<consonant>|<character>

<vowel> ::= a|e|i|o|u
<consonant> ::= b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z
<character> ::= "|*|?|Ă|@|,|.|;|:|’ ’

Thus, the above grammar contains the set of all possible primitive symbols of
the sentences, and the structural rules, which govern the generation of syntactically
legal sentences. For example, the following is an example of a sentence generated
by this grammar, with a partial derivation tree shown overleaf in Fig. 4:

to evolve or not to evolve, that is the question.

3.1 Mapping

GE individuals describe a derivation sequence through a grammar. They do so by
selecting choices from the production rules at every derivation step, for example,
whether to choose a vowel, consonant or letter from letter.

The linear genome is interpreted as 8 bit codons, i.e. the smallest functional unit
in GE. Each time a choice needs to be made in the derivation sequence a codon is
taken and the mod of the number of available rules calculated, which is then used to
select the appropriate rule. If, for example, we were choosing a production rule for
letter we would mod the codon by 3 because there are three production rules.

The process continues as described in Fig. 5, consuming a codon for each choice
in the derivation sequence, until the full derivation tree has been produced. If there
are unconsumed codons remaining, these are said to be the tail of an individual
and do not contribute to the mapping. In the event that the individual has not fully
mapped and all the codons are consumed, either the individual is simply abandoned
and assigned the lowest possible fitness or is wrapped, meaning that the first codon is
reused. In these cases, an upper limit is placed on the number of times an individual
can be wrapped.

Although this can lead to more successful mappings, particularly early in runs,
results have been mixed [89] and the ability for wrapping to help evolution is often

6 C. Ryan et al.

<string>

<string><letter>

<string><letter>“

<string><letter>t

<string><letter>o

<string><letter>‘ ‘

<string><letter>e

<string><letter>v

<string><letter>o

<string><letter>l

<string><letter>e

Etc.

Fig. 4 Partial derivation of the sentence “to evolve or not to evolve, that is the question.” from the
example grammar

Fig. 5 GE generating a derivation and corresponding parse tree from a binary string. The numbers
indicate the order of the mapping was done; circled nodes labelled with letters indicate terminals

Introduction to 20 Years of Grammatical Evolution 7

dependent on the grammar being used. Many researchers have found that removing
wrapping doesn’t have a major detrimental effect.

3.2 Alternative Grammars

With the exceptions noted here, GE and, indeed, virtually all other grammar based
systems, predominantly use CFGs which, although expressive enough for GE to be
a very broadly applicable system [3, 24, 61, 71], is limited to regular and context
free languages.

Alternative grammars, which have been employed with GE include Attribute
Grammars (more details below in Sect. 3.2.1), Shape Grammars [77], L-
Systems [66] and Map L-Systems [83], logic grammars [39], graph grammars [47],
meta-grammars (albeit CFG) [63, 70] and Tree Adjoining Grammars [54, 56, 58].

3.2.1 Attribute Grammars

Attribute Grammars (AG) can be used to expand the expressive power of GE
by attaching attributes (pieces of information) to the symbols in a grammar [10,
11, 35, 36, 75, 84]. These entities can interpret and generate attributes; attributes
are generated either passed down (inherited) or passed up (synthesized), although
default attributes can also be created and passed around as in Fig. 6. Attributes
can take any form, from simple atomic forms to arrays or lists. These attributes
can be used by a developing structure in AGE to pass information about various
parts of the structure to other parts. AG facilitates the manipulation and exploitation
of contextual information, which can be about other parts of the solution or the
problem. For example, in the context circuit design, attributes could be used to pass
information about which input pins have already been processed.

A B C D E F G H I J 1

2

3 4

Rest of
Derivation Tree

(nodes 5+)

1 2 3 4 5 61 2 3 4

Codons

Codon usage

Node Codons Effect

1 2 Production + Default Attribute

2 1 Production

3 1 Production

4 2 Production + Default Attribute

Codon Effects

Inherited attributes Synthesized attributes Default attributes

Fig. 6 The GE mapping process augmented with AG. Individuals are mapped from simple binary
strings (codons) to high level structures using arbitrarily complex grammars, including attribute
grammars, which can pass contextual information around

8 C. Ryan et al.

4 Twenty Years of Grammatical Evolution

As shown in Fig. 3, the genotype-phenotype mapping of GE provides the advantage
of a modular framework to approach Genetic Programming. The main components
of this framework are the search engine, the mapper, the grammar, and the fitness
evaluation. Activities over the past 20 years can be described in terms of these
components, see Fig. 7 for an overview.

Research in the search engine revolves around understanding the impact of
the genome encoding [34], initialisation [59, 86], modularity [29, 33, 82, 90–
93], crossover [27, 48, 69, 72], the impact of dynamic environments [13, 79], the
behaviour of search operators of crossover and mutation, proposing alternative
search operators [6, 17, 25, 28, 52, 62, 76] to replacing the traditional evolutionary
algorithm with alternatives such as Particle Swarm Optimisation [65, 74], Simulated
Annealing [85], Differential Evolution [64] and even random search [85]. Continu-
ing this vein of research Chapter 7, “Geometric Semantic Grammatical Evolution”
outlines a geometric semantic search operator approach to GE, and in Chapter 3,
“On the Non-uniform Redundancy of Representations for Grammatical Evolution:
The Influence of Grammars” we see an emphasis on analysing the locality of the
GE mapping and some of its genetic search operators.

The mapping process itself has been a target for investigation with a number
of alternatives having been proposed in part to gain a deeper understanding of
the generative process and in attempts to make improvements by, for example,
complexifying the mapping by bringing it closer to its biological counterpart
[1, 16, 40]. Chapter 4, “Mapping in Grammatical Evolution” provides an overview
and highlights key studies in this area.

At the heart of GE is the grammar and while the majority of papers adopt CFGs,
we noted earlier in this chapter (Sect. 3.2) the variety of grammars which have been
adopted with a GE mapping is impressive, including shape, logic, attribute, meta,
graph and tree adjunct grammars to prefix, infix and postfix encoding [31]. This
line of research continues to this day, and Chapter 2, “Understanding Grammatical
Evolution: Grammar Design” provides a critical analysis on the importance of
grammar design in the successful application of GE.

Part of the attraction of genetic programming algorithms such as GE are their
flexibility of application. As such, GE has enjoyed application to a wide set of
problems areas. Part II of this book contains a selection of chapters highlighting
some of these including Financial Modelling (Chapter 11, “Grammatical Evolution
in Finance and Economics: A Survey”), Medicine and Bioinformatics (Chapter 15,
“Identification of Models for Glucose Blood Values in Diabetics by Grammatical
Evolution” and Chapter 16, “Grammatical Evolution Strategies for Bioinformat-
ics and Systems Genomics”), Architecture and Design (Chapter 13, “Design,
Architecture, and Engineering with Grammatical Evolution”), Business Analytics
(Chapter 19, “Business Analytics and Grammatical Evolution for the Prediction
of Patient Recruitment in Multicentre Clinical Trials”), Computational Creativ-
ity (Chapter 14, “Grammatical Evolution and Creativity”) and Game Artificial

Introduction to 20 Years of Grammatical Evolution 9

F
ig

.7
So

m
e

of
th

e
ke

y
re

se
ar

ch
ar

ea
s

in
G

E
.N

ew
to

pi
cs

,e
sp

ec
ia

lly
ap

pl
ic

at
io

ns
ar

e
be

in
g

ad
de

d
al

lt
he

tim
e

10 C. Ryan et al.

Intelligence (Chapter 18, “Evolving Behaviour Tree structures using Grammati-
cal Evolution”). Other examples include communication networks [19, 20, 32],
search-based software engineering [12] and program synthesis [67, 68, 80], sport
analytics [81], eco-system modelling [14, 60], and animation [53, 55, 57].

Matlab1 and more recently in Python with PonyGE2 [21, 22] with the majority
of these employing an integer genome encoding as standard.

Finally, as noted in Sect. 5.4, a large number of variants of GE have appeared.
These include position independent approaches such as Chorus and πGE [2, 16, 88],
context-sensitive approaches such as Adaptive Logic Programming [39], TAGE [56]
and DTAGE [58], to a novel 3D MAP L-system GENr8 [83], and exploiting meta-
grammars for Grammatical Evolution by Grammatical Evolution [70].

5 The State of the Art

As noted in the foreword, as the authors of the original GE paper, one of the
most rewarding things we have experienced is how it has been taken up by other
researchers. The state of the art in 1998 was easy to articulate; there were only three
researchers, three problem domains and one system. Twenty years of evolution have
had their impact on the sort of applications that GE can be applied to. It is important
to note that it isn’t possible to definitively state what set up is the best GE, mainly
because of the hugely broad spectrum of uses. Instead, we focus in this section on
the sorts of choices that need to be considered when tackling a problem with GE,
and discuss how various characteristics of problems influence these choices.

5.1 Grammars

AGs are more expressive than CFGs and can be used to enforce constraints and
pass context information around derivation trees, as in Fig. 6. The key advantage for
CFGs is their simplicity, and mappers using CFGs are generally faster than their AG
counterparts, but at the cost of sacrificing expressiveness. Several chapters in this
book look in detail at grammar design and our advice is to use the most powerful
grammar necessary, but no more.

1http://ncra.ucd.ie/Software.html.

http://ncra.ucd.ie/Software.html

Introduction to 20 Years of Grammatical Evolution 11

5.2 Genetic Operators

The genetic operators are generally inherited from whatever underlying GA or
search engine is driving GE, but early work analysing the operation of single point
crossover [72] showed that, when compared to other crossover operators, including
highly tuned homologous2 operators, actually performed surprisingly well, giving
a very good performance-to-cost ratio. More recent work, such as Chapter 7,
“Geometric Semantic Grammatical Evolution” in this book, has examined semantic
crossover operators, and show some very promising results.

For a simple GE, set up we recommend what has become known as effective
crossover, that is, to simply ensure that at least one crossover point is selected within
the coding part of an individual as described in Fig. 8. This is simple to implement
and dramatically increases the probability that at least one of the offspring will be
phenotypically different from the parents.

5.2.1 Initialisation

Originally, we used random initialisation for the GE population. However, as
noted in [18, 26, 86], random initialisation can lead to very heavily biased initial
populations. Consider the simple grammar below:
< S >::=< op >< v >< v > | < v >

< op >::= +| − | ∗ |/
< v >::= x|y

Fig. 8 The three distinct crossover regions for Grammatical Evolution. The solid area in each
parent represents the coding regions, while the diagonal lines represent regions that were not used
in the mapping. When each crossover point occurs within these regions, the operation will simply
result in two offspring identical to the parents. When the points are in either of the other two
regions, the crossover operation is said to be effective

2Crossover operators that attempt to swap functionally similar sections from parents.

12 C. Ryan et al.

Fig. 9 Creating derivation trees in Sensible Initialisation. The production rule number at each
step is noted and will subsequently be used in the following “umod” step. Each individual has a
sequence of choices associated with it. In this case the sequence is 0210

Uniform random initialisation will create a population in which 50% of the
individuals consist of just one item, due to the < S >:==< v > production; of
these, approximately half will be x and the rest y. Clearly this compromises the
variation in the initial population, making evolution towards a useful product more
difficult than it needs to be.

Thus, it is important to ensure a spread of individuals in the first generation.
Sensible Initialisation [86] takes the ramped-half-and-half approach often used in
GP and uses it for GE. Sensible initialisation operates by creating a population of
derivation trees of various shapes and sizes and performing an “unmod” operation
on them to generate linear strings that can subsequently be processed by GE.

When creating each individual in the initial population, first a derivation tree
of a particular size is generated. Figure 9 gives an example of a derivation tree of
depth 3. The choice made at each step is noted, for example, the initial step used
the production rule < S >::=< op >< v >< v >, which is choice 0 from those
available for < S >. Similarly, when mapping < op >, choice 2 is made from the
available productions rules, that is, < op >::= ∗.

Each individual in the initial population has a list of these choices, which can
be used to quickly identify duplicates. Once we are satisfied that the population
consists of unique genotypes, the final “unmod” step can be performed.

Unmod produces the actual codons that will be used and essentially performs the
opposite operation to mod, returning a number that, when divided by the number of
choices available for the particular non-terminal, will return the choice made. In our
example, we wish to perform 2 unmod 0 for the first production rule, meaning that
we require a number that, when modded by 2 will yield 0.

This means that any even number between 0 and 255 will suffice. Similarly, in
the second production rule, we perform 4 unmod 2 as there are four choices and our
tree used the second one. Any number in the set {2, 6, 10..} will give the necessary
number.

Clearly, unmod is a stochastic operator and, while its output doesn’t impact
the initial generation in any way, it is crucial to introduce variation so that when
individuals from the first generation are crossed over with each other, codons that

Introduction to 20 Years of Grammatical Evolution 13

end up being used for different production rules than they originally were, will not
bias the choices made.

More recent work on initialisation includes that of Nicolau, who demonstrated
that across the problems examined in their study, a variant of Harper’s PTC2 consis-
tently outperforms other initialisations [59], as well as the work of Lourenco [46],
which is further advanced in Chapter 6, “Structured Grammatical Evolution: A
Dynamic Approach”.

What is crucial though, is to put some effort into ensuring good variation in that
initial population, and to avoid simple random initialisation.

5.3 Parameter Settings

As with all EAs, GE has a number of parameter settings, such as population size,
mutation rates and the like. There is a vast amount of literature in the field about
how to set these parameters, but suffice it to say that population size is the most
sensitive, and that more difficult problems generally require larger populations. It
is important to turn this knob carefully though, as grammars and initialisation also
play a part.

5.4 Variants

As described earlier in Sect. 4, not only has there been considerable research
into the use of GE and analysis into its operations, there have also been quite a
number of variants. It would take a whole other book to exhaustively test these
against each other on a broad enough range of problems to be able to make any
sort of recommendations, but readers are encouraged to investigate these variants,
particularly those that have been shown to outperform GE on problems related to
their own.

6 Contents of This Book

The book is divided into two key sections, Analysis and Applications. Rather
appropriately, we start in the applications section with two chapters on grammar
design. In Chapter 2, “Understanding Grammatical Evolution: Grammar Design”,
Nicolau and Agapitos present some domain-independent guidelines for designing
grammars, and, in Chapter 3, “On the Non-uniform Redundancy of Representations
for Grammatical Evolution: The Influence of Grammars”, Schweim, Thorhauer
and Rothlauf present a fascinating study on the impact of grammar design and
redundancy on the creation of biased trees.

14 C. Ryan et al.

These are followed up by a trio of chapters on mapping in GE. Starting with
a comprehensive survey in Chapter 4, “Mapping in Grammatical Evolution” by
Fagan and Murphy, we then move to a contribution by Hemberg, Chapter 5,
“Theory of Disruption in GE” in which he formalizes and analyzes the mapping
process. This leads nicely into Chapter 6, “Structured Grammatical Evolution:
A Dynamic Approach” by Lourenco et al., in which they further develop their
Dynamic Structured Grammatical Evolution (DSGE) system, a version of GE that
employs a different mapping to improve the power of the genetic operators.

Similar motivations are evident in Chapter 7, “Geometric Semantic Grammatical
Evolution” and Chapter 8, “GE and Semantics”, by Moraglio et al. and Echeandia
et al., respectively, the former which develops a semantic crossover operator for GE
and the latter employs grammars to enable semantics, giving an excellent review of
related work as it does so.

This section of the book is rounded out by two final chapters. Chapter 10,
“Comparing Methods to Creating Constants in Grammatical Evolution” by Azad
and Ryan tackles the issue of constant generation, highlighting the pros and
cons of the more well-known methods, while Dufek et al. describe a parallel
implementation of GE in Chapter 9, “Multi- and Many-Threaded Heterogeneous
Parallel Grammatical Evolution”, which yields hugely impressive results.

We then switch gear to applications and provide seven radically different
problems that have been tackled by experts in the field. Starting with a survey of
financial applications in GE in Chapter 11, “Grammatical Evolution in Finance and
Economics: A Survey” by Brabazon, we move to parallel program generation in
Chapter 12, “Synthesis of Parallel Programs on Multi-Cores” by Chennupati et al.

The creative side of GE is explored in the next two chapters, starting with Fenton
et al. in Chapter 13, “Design, Architecture, and Engineering with Grammatical
Evolution”, who use GE to evolve physical designs, and then with Loughran in
Chapter 14, “Grammatical Evolution and Creativity” who, in a very philosophical
paper, uses GE to evolve music. There then follow two chapters from medical
domains; first Hidalgo et al. use GE to generate models for glucose blood values
in Diabetics in Chapter 15, “Identification of Models for Glucose Blood Values
in Diabetics by Grammatical Evolution”, while Moore and Sipper give a thorough
review of the use of GE in bioinformatics and systems genomics.

7 Summary

We hope this book provides useful snapshots of research and applications in
Grammatical Evolution which has taken place over the past 20 years since the
original work was published in EuroGP 2008, and presents some of the state of the
art and current thinking in this field. Grammatical Evolution as a form of Genetic
Programming in particular in its application to automatic programming or program
synthesis has still a lot of open issues to address [78] and we hope to witness and
be involved in the continued development of this exciting field of research for some
time to come.

Introduction to 20 Years of Grammatical Evolution 15

References

1. R.M.A. Azad, A position independent evolutionary automatic programming algorithm - the
Chorus system, in Graduate Student Workshop, New York, 8 July 2002, ed. by S. Luke,
C. Ryan, U.-M. O’Reilly (AAAI, Menlo Park, 2002), pp. 260–263

2. R.M.A. Azad, A position independent representation for evolutionary automatic programming
algorithms - the Chorus system. Ph.D. Thesis, University of Limerick, Ireland, Dec. 2003

3. R.M.A. Azad, A.R. Ansari, C. Ryan, M. Walsh, T. McGloughlin, An evolutionary approach to
wall sheer stress prediction in a grafted artery. Appl. Soft Comput. 4(2), 139–148 (2004)

4. H. Beyer, H. Schwefel, Evolution strategies - a comprehensive introduction. Nat. Comput.
1(1), 3–52 (2002)

5. A. Brabazon, M. O’Neill, S. McGarraghy, Natural Computing Algorithms (Springer, Berlin,
2015)

6. J. Byrne, E. Hemberg, A. Brabazon, M. O’Neill, A local search interface for interactive
evolutionary architectural design, in Proceedings of the 1st International Conference on
Evolutionary and Biologically Inspired Music, Sound, Art and Design, EvoMUSART 2012,
Malaga, Spain, 11–13 Apr. 2012, ed. by P. Machado, J. Romero, A. Carballal. Lecture Notes
in Computer Science, vol. 7247 (Springer, Berlin, 2012), pp. 23–34

7. N. Chomsky, Three models for the description of language. IRE Trans. Inf. Theory 2(3),
(1956)

8. N. Chomsky, On certain formal properties of grammars. Inf. Control (2), 137–167 (1959)
9. N. Chomsky, M. Schutzenberger, On certain formal properties of grammars, in Computer

Programming and Formal Languages (North Holland, Amsterdam, 1963)
10. R. Cleary, Extending grammatical evolution with attribute grammars: an application to

knapsack problems. Master of science in computer science, University of Limerick, Ireland,
2005

11. R. Cleary, M. O’Neill, An attribute grammar decoder for the 01 multiconstrained Knapsack
problem, in Evolutionary Computation in Combinatorial Optimization – EvoCOP 2005,
Lausanne, Switzerland, 30 Mar.–1 Apr. 2005, ed. by G.R. Raidl, J. Gottlieb. Lecture Notes
in Computer Science, vol. 3448 (Springer, Berlin, 2005), pp. 34–45

12. B. Cody-Kenny, M. Fenton, A. Ronayne, E. Considine, T. McGuire, M. O’Neill, A search for
improved performance in regular expressions, in Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’17, Berlin, Germany, 15–19 July 2017 (ACM, New York,
2017), pp. 1280–1287

13. I. Dempsey, M. O’Neill, A. Brabazon, Foundations in Grammatical Evolution for Dynamic
Environments. Studies in Computational Intelligence, vol. 194 (Springer, Berlin, 2009)

14. S. Donne, M. Nicolau, C. Bean, M. O’Neill, Wave height quantification using land based
seismic data with grammatical evolution, in Proceedings of the 2014 IEEE Congress on
Evolutionary Computation, Beijing, China, 6–11 July 2014, ed. by C.A. Coello Coello, pp.
2909–2916

15. J.A. Driscoll, B. Worzel, D. MacLean, Classification of gene expression data with genetic
programming, in Genetic Programming Theory and Practice, ed. by R.L. Riolo, B. Worzel,
chap. 3 (Kluwer, Boston, 2003), pp. 25–42

16. D. Fagan, Analysing the genotype-phenotype map in grammatical evolution. Ph.D. Thesis,
University College Dublin, Ireland, 30 Oct. 2013

17. D. Fagan, E. Hemberg, M. O’Neill, S. McGarraghy, Fitness reactive mutation in grammatical
evolution, in 18th International Conference on Soft Computing, MENDEL 2012, Brno, Czech
Republic, 27–29 June 2012, ed. by R. Matousek (Brno University of Technology, Brno, 2012),
pp. 144–149

18. D. Fagan, M. Fenton, M. O’Neill, Exploring position independent initialisation in grammatical
evolution, in Proceedings of 2016 IEEE Congress on Evolutionary Computation (CEC 2016),
Vancouver, 24–29 July 2016, ed. by Y.-S. Ong (IEEE Press, New York, 2016), pp. 5060–5067

16 C. Ryan et al.

19. M. Fenton, D. Lynch, S. Kucera, H. Claussen, M. O’Neill, Multilayer optimization of
heterogeneous networks using grammatical genetic programming. IEEE Trans. Cybern. 47(9),
2938–2950 (2018)

20. M. Fenton, D. Lynch, S. Kucera, H. Claussen, M. O’Neill, Multilayer optimization of hetero-
geneous networks using grammatical genetic programming, in Proceedings of the Genetic and
Evolutionary Computation Conference Companion, GECCO ’17, Berlin, Germany, 15–19 July
2017 (ACM, New York, 2017), pp. 3–4

21. M. Fenton, J. McDermott, D. Fagan, S. Forstenlechner, E. Hemberg, M. O’Neill, Ponyge2:
Grammatical evolution in python, in Proceedings of the Genetic and Evolutionary Compu-
tation Conference Companion, GECCO’17, Berlin, Germany, 15–19 July 2017 (ACM, New
York, 2017), pp. 1194–1201

22. M. Fenton, J. McDermott, D. Fagan, S. Forstenlechner, M. O’Neill, E. Hemberg, Ponyge2:
grammatical evolution in python. arXiv, 26 Apr. 2017

23. C. Ferreira, Gene expression programming and the automatic evolution of computer programs,
in Recent Developments in Biologically Inspired Computing, ed. by L.N. de Castro, F.J. Von
Zuben, chap. 6 (Idea Group Publishing, Boulder, 2004), pp. 82–103

24. D. Gavrilis, I.G. Tsoulos, E. Dermatas, Selecting and constructing features using grammatical
evolution. Pattern Recogn. Lett. 29(9), 1358–1365 (2008)

25. R.T.R. Harper, Enhancing grammatical evolution. Ph.D. Thesis, School of Computer Science
and Engineering, The University of New South Wales, Sydney 2052, Australia, 2009

26. R. Harper, Ge, explosive grammars and the lasting legacy of bad initialisation, in IEEE
Congress on Evolutionary Computation (CEC 2010), Barcelona, Spain, 18–23 July 2010
(IEEE Press, New York, 2010)

27. R. Harper, A. Blair, A structure preserving crossover in grammatical evolution, in Proceedings
of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK, 2–5 Sept. 2005, ed.
by D. Corne, Z. Michalewicz, M. Dorigo, G. Eiben, D. Fogel, C. Fonseca, G. Greenwood, T. K.
Chen, G. Raidl, A. Zalzala, S. Lucas, B. Paechter, J. Willies, J. J. M. Guervos, E. Eberbach,
B. McKay, A. Channon, A. Tiwari, L. G. Volkert, D. Ashlock, M. Schoenauer, vol. 3 (IEEE
Press, New York, 2005), pp. 2537–2544

28. R. Harper, A. Blair, A self-selecting crossover operator, in Proceedings of the 2006 IEEE
Congress on Evolutionary Computation, Vancouver, 6–21 July 2006, ed. by G.G. Yen,
L. Wang, P. Bonissone, S.M. Lucas (IEEE Press, New York, 2006), pp. 5569–5576

29. R. Harper, A. Blair, Dynamically defined functions in grammatical evolution, in Proceedings
of the 2006 IEEE Congress on Evolutionary Computation, Vancouver (IEEE Press, 2006), pp.
9188–9195. https://doi.org/10.1109/CEC.2006.1688638

30. M. Hemberg, U.-M. O’Reilly, P. Nordin, GENR8 - a design tool for surface generation, in
2001 Genetic and Evolutionary Computation Conference Late Breaking Papers, San Francisco,
California, USA, 9–11 July 2001, ed. by E.D. Goodman, pp. 160–167

31. E. Hemberg, N. McPhee, M. O’Neill, A. Brabazon, Pre-, in- and postfix grammars for symbolic
regression in grammatical evolution, in IEEE Workshop and Summer School on Evolutionary
Computing, University of Ulster, Derry, Northern Ireland, 18–22 Aug. 2008, ed. by T.M.
McGinnity, pp. 18–22

32. E. Hemberg, L. Ho, M. O’Neill, H. Claussen, A comparison of grammatical genetic program-
ming grammars for controlling femtocell network coverage. Genet. Program. Evolvable Mach.
14(1), 65–93 (2013)

33. E. Hemberg, C. Gilligan, M. O’Neill, A. Brabazon, A grammatical genetic programming
approach to modularity in genetic algorithms, in Proceedings of the 10th European Conference
on Genetic Programming, Valencia, Spain, ed. by M. Ebner, M. O’Neill, A. Ekárt, L.
Vanneschi, A.I. Esparcia-Alcázar. Lecture Notes in Computer Science, vol. 4445 (Springer,
Berlin, 2007), pp. 1–11. https://doi.org/10.1007/978-3-540-71605-1_1

34. J. Hugosson, E. Hemberg, A. Brabazon, M. O’Neill, Genotype representations in grammatical
evolution. Appl. Soft Comput. 10(1), 36–43 (2010) https://doi.org/10.1016/j.asoc.2009.05.003

35. M.R. Karim, C. Ryan, A new approach to solving 0-1 multiconstraint knapsack problems
using attribute grammar with lookahead, in Proceedings of the 14th European Conference

https://doi.org/10.1109/CEC.2006.1688638
https://doi.org/10.1007/978-3-540-71605-1_1
https://doi.org/10.1016/j.asoc.2009.05.003

Introduction to 20 Years of Grammatical Evolution 17

on Genetic Programming, EuroGP 2011, Turin, Italy, 27–29 Apr. 2011, ed. by S. Silva, J.A.
Foster, M. Nicolau, M. Giacobini, P. Machado. Lecture Notes in Computer Science, vol. 6621
(Springer, Berlin, 2011), pp. 250–261

36. M.R. Karim, C. Ryan, On improving grammatical evolution performance in symbolic
regression with attribute grammar, in GECCO Comp’14: Proceedings of the 2014 Conference
Companion on Genetic and Evolutionary Computation Companion, Vancouver, BC, Canada,
12–16 July 2014, ed. by C. Igel, D. V. Arnold, C. Gagne, E. Popovici, A. Auger, J. Bacardit,
D. Brockhoff, S. Cagnoni, K. Deb, B. Doerr, J. Foster, T. Glasmachers, E. Hart, M.I. Heywood,
H. Iba, C. Jacob, T. Jansen, Y. Jin, M. Kessentini, J.D. Knowles, W. B. Langdon, P. Larranaga,
S. Luke, G. Luque, J.A.W. McCall, M.A. Montes de Oca, A. Motsinger-Reif, Y. S. Ong,
M. Palmer, K.E. Parsopoulos, G. Raidl, S. Risi, G. Ruhe, T. Schaul, T. Schmickl, B. Sendhoff,
K.O. Stanley, T. Stuetzle, D. Thierens, J. Togelius, C. Witt, C. Zarges (ACM, New York, 2014),
pp. 139–140

37. M. Keijzer, Scientific discovery using genetic programming. Ph.D. Thesis, Danish Technical
University, IMM, Institute for Mathematical Modelling, Digital Signal Processing group, DK-
2800 Lyngby, Denmark, Mar. 2002

38. M. Keijzer, V. Babovic, Dimensionally aware genetic programming, in Proceedings of the
Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, 13–17 July 1999,
ed. by W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, R.E. Smith,
vol. 2 (Morgan Kaufmann, Burlington, 1999), pp. 1069–1076

39. M. Keijzer, V. Babovic, C. Ryan, M. O’Neill, M. Cattolico, Adaptive logic programming,
in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001),
San Francisco, California, USA, 7–11 July 2001, ed. by L. Spector, E. D. Goodman, A. Wu,
W.B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M.H. Garzon, E. Burke
(Morgan Kaufmann, Burlington, 2001), pp. 42–49

40. M. Keijzer, M. O’Neill, C. Ryan, M. Cattolico, Grammatical evolution rules: The mod and the
bucket rule, in Genetic Programming, Proceedings of the 5th European Conference, EuroGP
2002, Kinsale, Ireland, 3–5 Apr. 2002, ed. by J.A. Foster, E. Lutton, J. Miller, C. Ryan, A.G.B.
Tettamanzi. Lecture Notes in Computer Science, vol. 2278 (Springer, Berlin, 2002), pp. 123–
130

41. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural
Selection (MIT Press, Cambridge, MA, USA, 1992)

42. J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs (MIT Press,
Cambridge MA, 1994)

43. J.R. Koza, D. Andre, F.H. Bennett III, M. Keane, Genetic Programming III: Darwinian
Invention and Problem Solving (Morgan Kaufmann, San Francisco, 1999)

44. J.R. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec, J. Yu, G. Lanza, Genetic Programming
IV: Routine Human-Competitive Machine Intelligence (Kluwer Academic, Norwell, 2003)

45. W.B. Langdon, R. Poli, Foundations of Genetic Programming (Springer, Berlin, 2002)
46. N. Lourenco, F.B. Pereira, E. Costa, SGE: a structured representation for grammatical

evolution, in Artificial Evolution, Lyon, France, 26–28 Oct. 2015, ed. by S. Bonnevay,
P. Legrand, N. Monmarche, E. Lutton, M. Schoenauer, Lecture Notes in Computer Science,
vol. 9554 (Springer, Cham, 2015), pp. 136–148

47. J. McDermott, Graph grammars for evolutionary 3D design. Genet. Program. Evolvable Mach.
14(3), 369–393 (2013). Special issue on biologically inspired music, sound, art and design.

48. J. McDermott, M. O’Neill, A. Brabazon, Interactive interpolating crossover in grammatical
evolution, in 2010 IEEE World Congress on Computational Intelligence, Barcelona, Spain,
18–23 July 2010 (IEEE Computational Intelligence Society/IEEE Press, New York, 2010), pp.
3018–3025

49. R.I. McKay, N.X. Hoai, P.A. Whigham, Y. Shan, M. O’Neill, Grammar-based genetic
programming: a survey. Genet. Program. Evolvable Mach. 11(3/4), 365–396 (2010). Tenth
Anniversary Issue: Progress in Genetic Programming and Evolvable Machines

50. D.J. Montana, Strongly typed genetic programming. Evol. Comput. 3(2), 199–230 (1995)

18 C. Ryan et al.

51. J.H. Moore, J.S. Parker, L.W. Hahn, Symbolic discriminant analysis for mining gene expres-
sion patterns, in Machine Learning: EMCL 2001, 12th European Conference on Machine
Learning, Freiburg, Germany, September 5–7, 2001, Proceedings, 2001, pp. 372–381

52. A. Moraglio, J. McDermott, M. O’Neill, Geometric semantic grammatical evolution, in
Semantic Methods in Genetic Programming, Ljubljana, Slovenia, 13 Sept. 2014, ed. by
C. Johnson, K. Krawiec, A. Moraglio, M. O’Neill. Workshop at Parallel Problem Solving
from Nature 2014 conference.

53. J.E. Murphy, Applications of evolutionary computation to quadrupedal animal animation.
Ph.D. Thesis, School of Computer Science and Informatics, University College Dublin,
Ireland, Mar. 2011

54. E. Murphy, An exploration of tree-adjoining grammars for grammatical evolution. Ph.D.
Thesis, University College Dublin, Ireland, 6 Dec. 2014

55. J. Murphy, M. O’Neill, H. Carr, Exploring grammatical evolution for horse gait optimisation,
in Proceedings of the 12th European Conference on Genetic Programming, EuroGP 2009,
Tuebingen, Apr. 15–17 2009, ed. by L. Vanneschi, S. Gustafson, A. Moraglio, I. De Falco,
M. Ebner. Lecture Notes in Computer Science, vol. 5481 (Springer, Berlin, 2009), pp. 183–
194

56. E. Murphy, M. O’Neill, E. Galvan-Lopez, A. Brabazon, Tree-adjunct grammatical evolution,
in 2010 IEEE World Congress on Computational Intelligence, Barcelona, Spain, 18–23 July
2010 (IEEE Computational Intelligence Society/IEEE Press, New York, 2010), pp. 4449–4456

57. J.E. Murphy, H. Carr, M. O’Neill, Animating horse gaits and transitions, in Eighth Theory
and Practice of Computer Graphics TPCG 2010, Sheffield, UK, 6–8 Sept. 2010, ed. by
J. Collomosse, I. Grimstead. Eurographics

58. E. Murphy, M. Nicolau, E. Hemberg, M. O’Neill, A. Brabazon, Differential gene expression
with tree-adjunct grammars, in Parallel Problem Solving from Nature, PPSN XII (part 1),
Taormina, Italy, Sept. 1–5 2012, ed. by C.A. Coello Coello, V. Cutello, K. Deb, S. Forrest,
G. Nicosia, M. Pavone. Lecture Notes in Computer Science, vol. 7491 (Springer, Berlin, 2012),
pp. 377–386

59. M. Nicolau, Understanding grammatical evolution: initialisation. Genet. Program. Evolvable
Mach. 18(4), 467–507 (2017)

60. M. Nicolau, M. Saunders, M. O’Neill, B. Osborne, A. Brabazon, Evolving interpolating
models of net ecosystem co2 exchange using grammatical evolution, in Proceedings of the 15th
European Conference on Genetic Programming, EuroGP 2012, ed. by A. Moraglio, S. Silva,
K. Krawiec, P. Machado, C. Cotta. Lecture Notes in Computer Science, vol. 7244, Malaga,
Spain, 11–13 Apr. 2012 (Springer, Berlin, 2012), pp. 134–145

61. M. O’Driscoll, S. McKenna, J.J. Collins, Synthesising edge detectors with grammatical
evolution, in GECCO 2002: Proceedings of the Bird of a Feather Workshops, Genetic and
Evolutionary Computation Conference, New York, 8 July 2002, ed. by A.M. Barry (AAAI,
Menlo Park, 2002), pp. 137–140

62. C. Oesch, D. Maringer, A neutral mutation operator in grammatical evolution, in IEEE
Conference on Intelligent Systems (1), ed. by P.P. Angelov, K.T. Atanassov, L. Doukovska,
M. Hadjiski, V.S. Jotsov, J. Kacprzyk, N. Kasabov, S. Sotirov, E. Szmidt, S. Zadrozny.
Advances in Intelligent Systems and Computing, vol. 322 (Springer, Berlin, 2014), pp. 439–
449

63. M. O’Neill, A. Brabazon, mGGA: the meta-grammar genetic algorithm, in Proceedings of the
8th European Conference on Genetic Programming, Lausanne, Switzerland, 30 Mar.–1 Apr.
2005, ed. by M. Keijzer, A. Tettamanzi, P. Collet, J. I. van Hemert, M. Tomassini. Lecture
Notes in Computer Science, vol. 3447 (Springer, Berlin, 2005), pp. 311–320

64. M. O’Neill, A. Brabazon, Grammatical differential evolution, in Proceedings of the 2006
International Conference on Artificial Intelligence, ICAI 2006, Las Vegas, Nevada, USA, June
26–29 2006, ed. by H.R. Arabnia, vol. 1 (CSREA Press, Athens, 2006), pp. 231–236

65. M. O’Neill, A. Brabazon, Grammatical swarm: the generation of programs by social
programming. Nat. Comput. 5(4), 443–462 (2006)

Introduction to 20 Years of Grammatical Evolution 19

66. M. O’Neill, A. Brabazon, Evolving a logo design using Lindenmayer systems, postscript and
grammatical evolution, in 2008 IEEE World Congress on Computational Intelligence, Hong
Kong, 1–6 June 2008, ed. by J. Wang (IEEE Computational Intelligence Society/IEEE Press,
New York, 2008), pp. 3788–3794

67. M. O’Neill, C. Ryan, Automatic generation of caching algorithms, in Evolutionary Algorithms
in Engineering and Computer Science, Jyväskylä, Finland, 30 May–3 June 1999, ed. by
K. Miettinen, M.M. Mäkelä, P. Neittaanmäki, J. Periaux (Wiley, New York, 1999), pp. 127–134

68. M. O’Neill, C. Ryan, Evolving multi-line compilable C programs, in Genetic Programming,
Proceedings of EuroGP’99, Goteborg, Sweden, 26–27 May 1999, ed. by R. Poli, P. Nordin,
W.B. Langdon, T.C. Fogarty. Lecture Notes in Computer Science, vol. 1598 (Springer, Berlin,
1999), pp. 83–92

69. M. O’Neill, C. Ryan, Crossover in grammatical evolution: a smooth operator? in R. Poli,
W. Banzhaf, W.B. Langdon, J.F. Miller, P. Nordin, T.C. Fogarty, Genetic Programming,
Proceedings of EuroGP’2000, Edinburgh, 15–16 Apr. 2000. Lecture Notes in Computer
Science, vol. 1802 (Springer, Berlin, 2000), pp. 149–162

70. M. O’Neill, C. Ryan, Grammatical evolution by grammatical evolution: The evolution of
grammar and genetic code, in Genetic Programming 7th European Conference, EuroGP 2004,
Proceedings, Coimbra, Portugal, 5–7 Apr. 2004, ed. by M. Keijzer, U.-M. O’Reilly, S.M.
Lucas, E. Costa, T. Soule. Lecture Notes in Computer Science, vol. 3003 (Springer, Berlin,
2004), pp. 138–149

71. M. O’Neill, J.J. Collins, C. Ryan, Automatic generation of robot behaviours using grammatical
evolution, in Proceedings of the Fifth International Symposium on Artificial Life and Robotics,
Oita, Japan, 26–28 Jan. 2000, ed. by M. Sugisaka, H. Tanaka (2000), pp. 351–354

72. M. O’Neill, C. Ryan, M. Keijzer, M. Cattolico, Crossover in grammatical evolution: the search
continues, in Genetic Programming, Proceedings of EuroGP’2001, Lake Como, Italy, 18–20
Apr. 2001, ed. by J.F. Miller, M. Tomassini, P.L. Lanzi, C. Ryan, A.G.B. Tettamanzi, W.B.
Langdon. Lecture Notes in Computer Science, vol. 2038 (Springer, Berlin, 2001), pp. 337–347

73. M. O’Neill, C. Ryan, M. Keijzer, M. Cattolico, Crossover in grammatical evolution. Genet.
Program. Evolvable Mach. 4(1), 67–93 (2003)

74. M. O’Neill, A. Brabazon, C. Adley, The automatic generation of programs for classification
problems with grammatical swarm, in Proceedings of the 2004 IEEE Congress on Evolutionary
Computation, Portland, Oregon, 20–23 June 2004 (IEEE Press, New York, 2004), pp. 104–110

75. M. O’Neill, R. Cleary, N. Nikolov, Solving Knapsak problems with attribute grammars, in
GECCO 2004 Workshop Proceedings, Seattle, Washington, USA, 26–30 June 2004, ed. by
R. Poli, S. Cagnoni, M. Keijzer, E. Costa, F. Pereira, G. Raidl, S.C. Upton, D. Goldberg,
H. Lipson, E. de Jong, J. Koza, H. Suzuki, H. Sawai, I. Parmee, M. Pelikan, K. Sastry,
D. Thierens, W. Stolzmann, P.L. Lanzi, S.W. Wilson, M. O’Neill, C. Ryan, T. Yu, J.F. Miller,
I. Garibay, G. Holifield, A.S. Wu, T. Riopka, M.M. Meysenburg, A.W. Wright, N. Richter, J.H.
Moore, M.D. Ritchie, L. Davis, R. Roy, M. Jakiela (2004)

76. M. O’Neill, A. Brabazon, E. Hemberg, Subtree deactivation control with grammatical genetic
programming in dynamic environments, in 2008 IEEE World Congress on Computational
Intelligence, Hong Kong, 1–6 June 2008, ed. by J. Wang (IEEE Computational Intelligence
Society/IEEE Press, New York, 2008), pp. 3768–3774

77. M. O’Neill, J. McDermott, J.M. Swafford, J. Byrne, E. Hemberg, A. Brabazon, E. Shotton,
C. McNally, M. Hemberg, Evolutionary design using grammatical evolution and shape
grammars: Designing a shelter. Int. J. Des. Eng. 3(1), 4–24 (2010)

78. M. O’Neill, L. Vanneschi, S. Gustafson, W. Banzhaf, Open issues in genetic programming.
Genet. Program. Evolvable Mach. 11(3/4), 339–363 (2010). Tenth Anniversary Issue: Progress
in Genetic Programming and Evolvable Machines.

79. M. O’Neill, M. Nicolau, A. Brabazon, Dynamic environments can speed up evolution
with genetic programming, in GECCO’11: Proceedings of the 13th Annual Conference
Companion on Genetic and Evolutionary Computation, Dublin, Ireland, 12–16 July 2011, ed.
by N. Krasnogor, P. L. Lanzi, A. Engelbrecht, D. Pelta, C. Gershenson, G. Squillero, A. Freitas,
M. Ritchie, M. Preuss, C. Gagne, Y.S. Ong, G. Raidl, M. Gallager, J. Lozano, C. Coello-
Coello, D.L. Silva, N. Hansen, S. Meyer-Nieberg, J. Smith, G. Eiben, E. Bernado-Mansilla,

20 C. Ryan et al.

W. Browne, L. Spector, T. Yu, J. Clune, G. Hornby, M.-L. Wong, P. Collet, S. Gustafson, J.-P.
Watson, M. Sipper, S. Poulding, G. Ochoa, M. Schoenauer, C. Witt, A. Auger (ACM, New
York, 2011), pp. 191–192

80. M. O’Neill, M. Nicolau, A. Agapitos, Experiments in program synthesis with grammatical
evolution: a focus on integer sorting, in Proceedings of the 2014 IEEE Congress on Evolu-
tionary Computation, Beijing, China, 6–11 July 2014, ed. by C.A. Coello Coello (2014), pp.
1504–1511

81. M. O’Neill, A. Brabazon, D. Fagan, An exploration of grammatical encodings to model
six nations rugby match outcomes, in Proceedings of 2016 IEEE Congress on Evolutionary
Computation (CEC 2016), Vancouver, 24–29 July 2016, ed. by Y.-S. Ong (IEEE Press, New
York, 2016), pp. 4429–4436

82. M. O’Neill, C. Ryan, Grammar based function definition in grammatical evolution, in
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000), Las
Vegas, NV, ed. by D. Whitley, D. Goldberg, E. Cantu-Paz, L. Spector, I. Parmee, H.-G. Beyer
(Morgan Kaufmann, San Francisco, 2000), pp. 485–490

83. U.-M. O’Reilly, M. Hemberg, Integrating generative growth and evolutionary computation for
form exploration. Genet. Program. Evolvable Mach. 8(2), 163–186 (2007). Special issue on
developmental systems.

84. A. Ortega, M. de la Cruz, M. Alfonseca, Christiansen grammar evolution: grammatical
evolution with semantics. IEEE Trans. Evol. Comput. 11(1), 77–90 (2007)

85. J. O’Sullivan, C. Ryan, An investigation into the use of different search strategies with
grammatical evolution, in Genetic Programming, Proceedings of the 5th European Conference,
EuroGP 2002, Kinsale, Ireland, 3–5 Apr. 2002, ed. by J.A. Foster, E. Lutton, J. Miller, C. Ryan,
A.G.B. Tettamanzi. Lecture Notes in Computer Science, vol. 2278 (Springer, Berlin, 2002), pp.
268–277

86. C. Ryan, R.M.A. Azad, Sensible initialisation in grammatical evolution, in GECCO 2003:
Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation
Conference, Chicago, 11 July 2003, ed. by A.M. Barry (AAAI, Menlo Park, 2003), pp. 142–
145

87. C. Ryan, M. O’Neill, How to do anything with grammars, in GECCO 2002: Proceedings of the
Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference, New York,
8 July 2002, ed. by A.M. Barry (AAAI, Menlo Park, 2002), pp. 116–119

88. C. Ryan, M. Nicolau, M. O’Neill, Genetic algorithms using grammatical evolution, in Genetic
Programming, Proceedings of the 5th European Conference, EuroGP 2002, Kinsale, Ireland,
3–5 Apr. 2002, ed. by J.A. Foster, E. Lutton, J. Miller, C. Ryan, A.G.B. Tettamanzi. Lecture
Notes in Computer Science, vol. 2278 (Springer, Berlin, 2002), pp. 278–287

89. C. Ryan, M. Keijzer, M. Nicolau, On the avoidance of fruitless wraps in grammatical evolution,
in Genetic and Evolutionary Computation – GECCO-2003, Chicago, 12–16 July 2003, ed. by
E. Cantú-Paz, J.A. Foster, K. Deb, D. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish,
G. Kendall, S. Wilson, M. Harman, J. Wegener, D. Dasgupta, M.A. Potter, A.C. Schultz,
K. Dowsland, N. Jonoska, J. Miller. Lecture Notes in Computer Science, vol. 2724 (Springer,
Berlin, 2003), pp. 1752–1763

90. J.M. Swafford, M. O’Neill, M. Nicolau, A. Brabazon, Exploring grammatical modification
with modules in grammatical evolution, in Proceedings of the 14th European Conference
on Genetic Programming, EuroGP 2011, Turin, Italy, ed. S. Silva, J.A. Foster, M. Nicolau,
M. Giacobini, P. Machado. Lecture Notes in Computer Science, vol. 6621. (Springer, Berlin,
2011), pp. 310–321. https://doi.org/10.1007/978-3-642-20407-4_27

91. J.M. Swafford, E. Hemberg, M. O’Neill, A. Brabazon, Analyzing module usage in grammatical
evolution, in Parallel Problem Solving from Nature, PPSN XII (part 1), Taormina, Italy, ed. by
C.A. Coello Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, M. Pavone. Lecture Notes in
Computer Science, vol. 7491 (Springer, Berlin, 2012), pp. 347–356. https://doi.org/10.1007/
978-3-642-32937-1_35

92. J.M. Swafford, E. Hemberg, M. O’Neill, M. Nicolau, A. Brabazon, A non-destructive grammar
modification approach to modularity in grammatical evolution, in Gecco’11: Proceedings of

https://doi.org/10.1007/978-3-642-20407-4_27
https://doi.org/10.1007/978-3-642-32937-1_35
https://doi.org/10.1007/978-3-642-32937-1_35

Introduction to 20 Years of Grammatical Evolution 21

the 13th Annual Conference on Genetic and Evolutionary Computation, Dublin, Ireland, ed.
by N. Krasnogor, P.L. Lanzi, A. Engelbrecht, D. Pelta, C. Gershenson, G. Squillero, A. Freitas,
M, Ritchie, M. Preuss, C. Gagne, Y.S. Ong, G. Raidl, M. Gallager, J. Lozano, C. Coello-
Coello, D.L. Silva, N. Hansen, S. Meyer-Nieberg, J. Smith, G. Eiben, E. Bernado-Mansilla,
W. Browne, L. Spector, T. Yu, J. Clune, G. Hornby, M.-L. Wong, P. Collet, S. Gustafson, J.-P.
Watson, M. Sipper, S. Poulding, G. Ochoa, M. Schoenauer, C. Witt, A. Auger (ACM, New
York, 2011), pp. 1411–1418. https://doi.org/10.1145/2001576.2001766

93. J. Swafford, M. Nicolau, E. Hemberg, M. O’Neill, A. Brabazon, Comparing methods for
module identification in grammatical evolution, in GECCO’12: Proceedings of the Fourteenth
International Conference on Genetic and Evolutionary Computation Conference, Philadelphia,
PA, ed. by T. Soule, A. Auger, J. Moore, D. Pelta, C. Solnon, M. Preuss, A. Dorin, Y.-S. Ong, C.
Blum, D.L. Silva, F. Neumann, T. Yu, A. Ekart, W. Browne, T. Kovacs, M.-L. Wong, C. Pizzuti,
J. Rowe, T. Friedrich, G. Squillero, N. Bredeche, S.L. Smith, A. Motsinger-Reif, J. Lozano, M.
Pelikan, S. Meyer-Nienberg, C. Igel, G. Hornby, R. Doursat, S. Gustafson, G. Olague, S. Yoo,
J. Clark, G. Ochoa, G. Pappa, F. Lobo, D. Tauritz, J. Branke, K. Deb (ACM, New York, 2012),
pp. 823–830. https://doi.org/10.1145/2330163.2330277

94. A. Thompson, Silicon evolution, in Genetic Programming 1996: Proceedings of the First
Annual Conference, Stanford University, CA, USA, 28–31 July 1996, ed. by J.R. Koza, D.E.
Goldberg, D.B. Fogel, R.L. Riolo (MIT Press, Cambridge, 1996), pp. 444–452

95. P.A. Whigham, Grammatically-based genetic programming, in Proceedings of the Workshop
on Genetic Programming: From Theory to Real-World Applications, Tahoe City, California,
USA, 9 July 1995, ed. by J.P. Rosca (1995), pp. 33–41

96. P.A. Whigham, A schema theorem for context-free grammars, in 1995 IEEE Conference on
Evolutionary Computation, Perth, Australia, 29 Nov.–1 Dec. 1995, vol. 1 (IEEE Press, New
York, 1995), pp. 178–181

97. P.A. Whigham, Grammatical bias for evolutionary learning. Ph.D. Thesis, School of
Computer Science, University College, University of New South Wales, Australian Defence
Force Academy, Canberra, Australia, 14 Oct. 1996

98. P.A. Whigham, Search bias, language bias, and genetic programming, in Genetic Programming
1996: Proceedings of the First Annual Conference, Stanford University, CA, USA, 28–31 July
1996, ed. by J.R. Koza, D.E. Goldberg, D.B. Fogel, R.L. Riolo (MIT Press, Cambridge, 1996),
pp. 230–237

https://doi.org/10.1145/2001576.2001766
https://doi.org/10.1145/2330163.2330277

	Introduction to 20 Years of Grammatical Evolution
	1 Evolutionary Computation
	2 Grammatical Evolution
	2.1 Grammars and Evolutionary Computation

	3 Crash Course in Grammatical Evolution
	3.1 Mapping
	3.2 Alternative Grammars
	3.2.1 Attribute Grammars

	4 Twenty Years of Grammatical Evolution
	5 The State of the Art
	5.1 Grammars
	5.2 Genetic Operators
	5.2.1 Initialisation

	5.3 Parameter Settings
	5.4 Variants

	6 Contents of This Book
	7 Summary
	References

