
Chapter 6
Mesoscopic Models

Mesoscopic traffic flow models were developed to fill the gap between the family
of microscopic models that describe the behavior of individual vehicles and the
family of macroscopic models that describe traffic as a continuum flow. Traditional
mesoscopic models describe vehicle flow in aggregate terms such as in probability
distributions. However, behavioral rules are defined for individual vehicles. The
family includes headway distribution models, cluster models, gas-kinetic models
and macroscopic models derived from them. Most recently, hybrid mesoscopic
models have appeared as a new branch on the tree: they combine microscopic and
macroscopic models.

After reading this chapter, the reader will understand the basics of the traditional
mesoscopic models: headway distribution models, cluster models and gas-kinetic
models. Furthermore, they will understand the basics of hybridmodelling, including
interfacemodelling and the moving coordinate system applied to hybridmodels, and
are able to argue about its advantages.

6.1 Headway Distribution Models and Cluster Models

Headway distribution models calculate traffic flows using time headways. The time
headways are identically distributed independent random variables. The models are
part of the mesoscopic family because they describe the distribution of headways of
individual vehicles, while they do not explicitly trace the individual vehicles. These
models are particularly well-suited to describe stochasticity (Li and Chen 2017).
Examples are Buckley’s semi-Poisson model (1968) and the generalized queueing
model (Branston 1976).

Cluster models describe traffic flow as a flow of clusters of vehicles. Each cluster
consists of multiple vehicles and within each cluster flow properties such as velocity
and headway are assumed to be homogeneous. Clusters can emerge, for example,
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as an accumulation of vehicles behind a slow vehicles when overtaking possibilities
are limited. Clusters can grow or decay. The most popular and famous cluster model
is the one by Mahnke and Kühne (2007).

Since both headway distribution models and cluster models do not seem popular
nowadays, we do not go into more detail here.

6.2 Gas-Kinetic Models

Gas-kinetic models were developed in analogy to models describing the motion of
large numbers of small particles (atoms or molecules) in a gas. When applied to
traffic flow, these models describe the dynamics of velocity distribution functions
of vehicles. Prigogine and Andrews (1960), Prigogine (1961) first introduce gas-
kinetic models describing traffic flow by the following partial differential equation:
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with ρ̃ the reduced phase-space density which can be interpreted as follows. At time
t , the expected number of vehicles between location x and x + dx that drive with
a velocity between v and v + dv is the integral of the reduced phase-space density
over this two-dimensional area:
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where the approximation holds in the limit for an infinitesimal area with dx → 0 and
dv → 0. Or, in other words, the reduced phase-space density is the expected number
of vehicles in a small interval around location x, that travel with speed close to v at
time t . The left-hand side of (6.1) consists of a time derivative and an advection term
describing the propagation of the phase-space density with the vehicle velocity. At
the right-hand side there is an acceleration term describing the acceleration towards
the equilibrium velocity. The other term at the right-hand side is an interaction term,
or collision term, describing the interaction between nearby vehicles.

6.2.1 Generic Gas-Kinetic Model

Paveri-Fontana (1975) improves this gas-kinetic model by relaxing the assumption
that the behavior of nearby vehicles is uncorrelated, which results in an adapted



6.2 Gas-Kinetic Models 101

interaction term. In the mid 1990s a revival of gas-kinetic models started with the
development of multi-lane, multi-class and generic models (Helbing 1997; Hoogen-
doorn and Bovy 2001). The generic model includes a distinction between lanes,
user classes, state-of-driving (free flow or platooning), flow direction, destination,
desired speed, angle of movement and acceleration time). As such, the authors claim
that it can also be used to model other types of particle flow, including (multi-
dimensional) pedestrian flows.

We limit ourselves to the generic model as proposed by Tampère et al. (2003).
It includes the reduced phase-space density as in (6.2) but more variables are
considered. S = (s1, s2, . . . , sn) is the state vector and could include, not only
velocity and position, but also any of the other variables mentioned before such
as lane, user class, desired velocity, etc. The generic dynamical equation for the
reduced phase-space density is:
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with the nabla operator on the state vector:
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The reduced phase-space density ρ(t, S) ·dS can now be interpreted as the expected
number of vehicles in a state ‘close to’ S.

6.2.2 Continuum Gas-Kinetic Models

Gas-kinetic models are usually not applied in simulations as such because they are
computationally expensive. Instead, a continuum traffic flow model is derived and
simulations are based on this continuum model.

The method of moments uses integration of the gas-kinetic traffic flow model
(6.1) to find a continuum model. The reformulation in a continuum model, reduces
some of the accuracy of detail in the model. However, its main advantage is the
relative ease with which numerical simulations can be built, once the model is
reformulated as a continuummodel. Methods for higher order models introduced in
the previous chapter can be applied to continuum models derived from gas-kinetic
models.

A detailed discussion of continuum gas kinetic models or of the method of
moments is out of the scope of this chapter, but we refer the interested reader to
Hoogendoorn (1999) for a derivation of a continuum traffic flow model from a
gas-kinetic model. Furthermore, Tampère et al. (2003, 2005) propose a continuum
gas-kinetic model that explicitly includes a simple car-following model.
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6.3 Hybrid Models

Hybrid models combine modelling approaches from different branches into a new
model. Most hybrid models combine a car-following model with a continuum
model, and are also referred to as multi-scale models. They typically apply a
microscopic model to get detail and accuracy in areas and at times where that
is required, e.g. the centre of an urban area. In the surrounding areas (e.g. on a
free way ring road around the urban area) less detailed results are obtained with a
macroscopic model, requiring much less computation time and memory. This way,
simulations take advantage of the qualities of both the microscopic model (detailed
results) and the macroscopic model (fast results).

6.3.1 Lagrangian Methods for Mesoscopic Models

The modelling within the micro- or macro-regions in space-time domain is done
with the models discussed before and (almost) any model could be applied. The
challenge lies in the modelling of the interfaces between the regions, see Fig. 6.1.
To be effective, hybrid models must have a coupling on the interface between
where/when traffic flow is modelled microscopically and where/when it is done
macroscopically. To simplify the coupling, the Lagrangian formulation of the
macroscopic model is often used. As we already saw in the previous chapter
(Sect. 5.4.2) the discretized Lagrangian model is closely related to a car-following
model. This makes the coupling of a discretized Lagrangian macroscopic model
with a car-following model relatively easy. The continuous formulation of the
macroscopic model or a discretised version of the Eulerian macroscopic model can
also be applied (Leclercq 2007).
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Fig. 6.1 Example of hybrid modelling: trajectories in the microscopic region and densities in the
macroscopic regions
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Examples of hybrid models are those combining Newell’s earlier safe-distance
model (Sect. 3.1.1) with the LWR model (Bourrel and Lesort 2003) and the one
applying the Simplified Newell car-followingmodel (3.4) to develop a hybridmodel
that couples this microscopic model with the macroscopic LWR model (Leclercq
2007). In this section, we focus on a rather generic approach as it is proposed by
Moutari and Rascle (2007).

6.3.2 Interface Modelling

We discuss the coupling at the interface from a numerical perspective: considering
how the discretized models are coupled. Therefore, at the macro-to-micro interface,
groups ofΔn vehicles are disaggregated into individual vehicles, while at the micro-
to-macro interface, individual vehicles are aggregated into groups of Δn vehicles.
For simplicity, we assume that Δn is integer, even though the method could be
adjusted to also work with vehicle groups that contain any non-integer number of
vehicles.

The main idea now is:

at the micro to macro interface vehicles leave the minimal microscopic region as
individual vehicles. When, at time step k, Δn vehicles have left the region, they
are aggregated in a vehicle group at the same location as the last vehicle in that
group. See Fig. 6.2a.

at the macro to micro interface vehicles approach the minimal microscopic
region as aggregated groups, but they are not allowed to enter as such.
Therefore, once the front of the groups has entered at time step k, the group
is disaggregated into individual vehicles, uniformly spaced over the road length
that was previously taken by the group. See Fig. 6.2a.

We note that this implies that microscopic trajectories are created before the macro
to micro interface and they are continued until after the micro to macro interface.

Depending on the applied microscopic and macroscopic models, the aggre-
gated groups and the disaggregated individual vehicles inherit properties from the
individual vehicles and vehicle groups, respectively. If the generic higher order
macroscopic model is applied, the invariant I is inherited. The variable I can simply
be averaged at the micro to macro interface: Ik

j = 1
Δn

∑
m=1 NIk

m. At the macro to

micro interface, the value of Ik
i for the individual vehicles equals Ik

j of the vehicle

group: Ik
i = Ik

j .
Finally, the time step size has to satisfy the CFL condition for Lagrangian

simulation (5.12). For a microscopic model with max
∣∣∣ dVds

∣∣∣ = vmax and Δn = 1,

the CFL condition reduces to:

ν := Δtvmax ≤ 1 (6.5)
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Fig. 6.2 Examples of interfaces in a hybrid model. Microscopic trajectories are indicated with
thin black lines, macroscopic Lagrangian trajectories are indicated with thick blue lines. Open
circles indicate the end of a trajectory, dots the start of a trajectory. The vehicle discretization
in the Lagrangian model is set to Δn = 3. (a) In this example, every third microscopic
trajectory is converted into a macroscopic Lagrangian trajectory. Whenever a new macroscopic
trajectory is created, all downstream microscopic trajectories are terminated. (b) In this example,
the macroscopic Lagrangian trajectories are converted into three microscopic trajectories. This is
done when the front of the group reaches the interface, i.e. when the most upstream microscopic
trajectory has left the macroscopic region. Two microscopic trajectories are created between this
microscopic trajectory and the Lagrangian trajectory. Furthermore, the Lagrangian trajectory is
converted into a microscopic trajectory

In most cases, this is a much stronger requirement than for the macroscopic model.
This leads to a low CFL number for the macroscopic part of the simulation,
which leads to added numerical diffusion and smaller times steps (and thus longer
computations) than strictly necessary. Therefore, it is possible to take a larger time
step only in the macroscopic region. For more details, we refer the interested reader
to Moutari and Rascle (2007).
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6.3.3 Moving Interfaces

In the examples, we have only shown interfaces fixed in space. However, the
interface may also move, or one may be interested in more (or less) detail during a
specific time interval. For example, it could be useful to apply a macroscopic model
nighttime traffic, while moving to microscopic modelling in the urban areas of a
network during peak hour. For more details about how to apply hybrid models in
such cases, we refer to Joueiai et al. (2015).

Problem Set

Gas Kinetic Models

Consider the continuum gas-kinetic model as proposed by Treiber et al. (1999).
(Refer to the original article for a detailed description.)

6.1 (Advanced) Reformulate the model in the Lagrangian coordinate system: i.e.
reformulate the model such that it fits into the framework in Sect. 4.4.3 and define
invariant I and source function g.

6.2 (Advanced) Adapt the code for a higher order model to simulate this model.
Reflect on the results and compare them with previous simulations.1

Hybrid Models

6.3 (Advanced) Combine the code for microscopic and macroscopic modelling to
build a hybrid simulation. Reflect on the results and compare them with previous
simulations.1

Further Reading

Hoogendoorn SP, Bovy PHL (2001) Generic gas-kinetic traffic systems modeling with applications
to vehicular traffic flow. Transp Res B Methodol 35(4):317–336

Joueiai M, Leclercq L, van Lint JWC, Hoogendoorn SP (2015) A multi-scale traffic flow model
based on the mesoscopic LWR model. Transp Res Rec J Transp Res Board 2491:98–106

1Gas-kinetic and hybrid modelling are advanced topics. Numerical methods are not yet well-
developed. The interested reader is encouraged to try to do some simulations, but it is not expected
that this can be done easily.
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Li L, Chen X (2017) Vehicle headway modeling and its inferences in macroscopic/microscopic
traffic flow theory: a survey. Transp Res C Emerg Technol 76:170–188

Moutari S, Rascle M (2007) A hybrid Lagrangian model based on the Aw-Rascle traffic flow
model. SIAM J Appl Math 68:413–436
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