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Abstract. Motivated by the increasing interest for the task of multi-
label classification (MLC) in recent years, in this study we investigate
a new approach for decomposition of the output space with the goal
to improve the predictive performance. Namely, the structuring of the
output/label space is performed by constructing a label hierarchy and
then approaching the MLC task as a task of hierarchical multi-label
classification (HMLC). Our approach is as follows. We first perform fea-
ture ranking for each of the labels separately and then represent each
of the labels with its corresponding feature ranking. The construction of
the hierarchy is performed by the (hierarchical) clustering of the feature
rankings. To this end, we employ four clustering methods: agglomerative
clustering with single linkage, agglomerative clustering with complete
linkage, balanced k-means and predictive clustering trees. We then use
predictive clustering trees to estimate the influence of the constructed
hierarchies, i.e., we compare the predictive performance of models with-
out exploiting the hierarchy and models using hierarchies constructed
using label co-occurrences or per label feature rankings. Moreover, we
investigate the influence of the hierarchy in the context of single models
and ensembles of models. We evaluate the proposed approach across 8
datasets. The results show that the proposed method can yield predictive
performance boost across several evaluation measures.

Keywords: Multi-label classification · Hierarchy construction
Feature ranking · Structuring of the label space

1 Introduction

Nowadays, the number of new applications of multi-label learning is steadily
increasing, hence, the researchers are very interested to develop novel meth-
ods and new ideas related to multi-label classification and structuring of the
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label/output space. Multi-label classification (MLC) is the task of learning from
data examples where each example can be associated with multiple labels. MLC
deals with a label dependencies and relations which is orthogonal with existing
traditional methods which take into account label independence and learn inde-
pendent functions from mapping from input space to the output (label) space.
The different application problems include video and image annotations (new
movie clips, genres), predicting genes and proteins (functional genomics), clas-
sification of a tweets and music into emotions, text classification (web-pages,
bookmarks, e-mails,...) and others.

The MLC task is typically approached either by decomposing the MLC prob-
lem into multiple single class classification problems (i.e., problem transforma-
tion methods) or by modifying the algorithms to consider the multiple classes
jointly (i.e., algorithm adaptation methods) [12]. In an extensive experimental
study Madjarov et al. [7] show that the landscape of MLC methods is not sim-
ple: on some datasets problem transformation methods achieve top performance
while on other datasets the algorithm adaptation methods are top performing.
Furthermore, the study recommends the use of two algorithms for benchmarking:
RF-PCT (Random forests of predictive clustering trees, an algorithm adapta-
tion method) [5] and HOMER (Hierarchy Of Multi-label learnERs, a problem
transformation method) [13]. The latter divides the label space into subspaces
and then constructs classifiers for each of the subspace (e.g., label power set
classifiers). This hints that the best performance might be obtained in between
the spectrum of the algorithm adaptation and problem transformation methods.
In other words, state-of-the-art MLC performance might be obtained by trans-
forming the original MLC problem into several MLC problems and then learn
predictive models (preferably using algorithm adaptation methods).

A crucial step in developing methods for output decomposition for MLC is
the creation of the subspaces. More specifically, the goal is to find a dependency
structure and consider jointly the labels that are inter-dependent. The construc-
tion of the output structure of the labels can be very tedious and expensive
process, especially if domain experts are needed to complete the task. Moreover,
selection of the representation language of the dependencies can be complicated
task on its own. Typically, these dependencies are represented as hierarchies of
labels [6]. The hierarchies can then be constructed in a data-driven manner using
the descriptive space and/or the label space. This presents automatic and rela-
tively efficient process to obtain the representation of the potential dependencies
in the label space.

Madjarov et al. [6] present an extensive study of different data-driven meth-
ods for constructing label hierarchies for multi-label classification by using the
label co-occurence matrix. More precisely, the hierarchies are constructed using
four clustering algorithms, agglomerative clustering with single and complete
linkage, balanced k-means and predictive clustering trees applied on the label
co-occurrences (see Fig. 1, left table).

Next, Szymansky et al. [11] address the question whether data-driven app-
roach using label co-occurrence graph is significantly better than a random choice
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in label space division for multi-label classification as performed by RAkELd.
Their results show that in almost all cases data-driven partitioning outperforms
the baseline RAkELd in all evaluation measures, but Hamming loss.

In this study, we build upon the idea of decomposition of the output space
and we present a different approach for data-driven structuring of label space in
multi-label classification. Our approach constructs the label hierarchy by clus-
tering the per label feature rankings. Namely, instead of using the original label
space consisting of label co-occurrences (see Fig. 1, left table), we calculate a
feature importance/ranking scores of the features for each label by using the
GENIE3 method for feature importance calculation coupled with the random
forest ensemble learning method [1,3] (see Fig. 1, right table).

The obtained structure is then used as the label hierarchy and the MLC task
is addressed as hierarchical multi-label classification (HMLC) [5,15]. We thus
evaluate whether considering the dependency in the label space can provide
better predictive performance than addressing MLC as a flat problem. In other
words, we investigate whether considering the MLC task as a hierarchical MLC
task can yield better predictive performance. Our approach is illustrated through
the example in Fig. 1. The table on the left hand-side shows the construction of
the label hierarchy using the label co-occurrence (as performed in [6,11]), while
the table on the right hand-side shows our proposed method for constructing
the label hierarchy.

BH_LowPeakAmp BH_LowPeakBPM BH_HighPeakAmp … λ1 λ2 λ3 λ4 λ5 λ6
FRank 
λ1 

FRank 
λ2

FRank 
λ3

FRank 
λ4

FRank 
λ5

FRank 
λ6

#1 0.036299 -58.962537 4.698083 … 1 0 0 0 0 0 BH_LowPeakAmp 1.369 12.63 22.68 14.06 5.563 1.328
#2 0.161218 -77.425609 3.09809 … 0 0 1 0 1 1 BH_LowPeakBPM 1.588 11.89 26.35 9.177 5.566 0.674
#3 0.115987 -61.893693 4.478436 … 1 1 1 1 0 0 BH_HighPeakAmp 1.433 11.08 44 8.951 19.03 1.479
#4 0.086016 -83.295694 3.786274 … 1 0 1 0 1 1 BH_HighPeakBPM 1.741 7.836 8.206 10.06 8.61 0.561
#5 0.063232 -76.108186 5.911183 … 0 1 0 1 1 1 BH_HighLowRa o 2.169 7.267 6.914 9.166 12.16 0.017
#6 0.026461 -74.429498 3.046795 … 0 0 1 0 1 1 BHSUM1 2.246 5.541 5.494 11.19 14.31 1.058
… … … … … … … … … … … … … … … … … …

Structured label/output spaceInput space
Output space of label co-

occurrences

Fig. 1. Excerpt from the original emotions dataset showing the output space consists
of label co-occurrences (left table) and the space consists of ranks of the features for
each of the labels, separately (right table). The former is obtained with structuring the
original label set using feature ranking.

We perform an experimental evaluation using 8 benchmark datasets from
different domains: text, image, music and video classification, and gene function
prediction. The predictive performance of the methods is assessed using 13 dif-
ferent evaluation measures used in the context of MLC (6 threshold dependent
and 7 threshold independent).

The obtained results indicate that using the methods for creating the hier-
archies using feature ranking can yield a better predictive performance as com-
pared to the original flat MLC methods without the hierarchy. Moreover, using
the hierarchy constructed by structuring of the output space using the feature
rankings of the labels gives better predictive performance compared to using the
hierarchy obtained using the label co-occurrences.
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The reminder of this paper is organized as follows. Section 2 presents the
background work, i.e., discussion on the tasks of multi-label classification and
hierarchical multi-label classification methods. Then, in Sect. 3, we present the
structuring of the output space using feature ranking. In Sect. 4, we show the
experimental design. The results obtained from the experiments are presented
and discussed in Sect. 5. Finally, Sect. 6 concludes this paper.

2 Background

In this section, we first define the task of multi-label classification and then
the task of hierarchical multi-label classification. Multi-label learning considers
learning from examples which are associated to more than one label coming from
a predefined set of labels containing all possible labels. There are two types of
multi-label learning tasks: multi-label classification and multi-label ranking. The
main goal of multi-label classification is to create a predictive model that will
output a set of relevant labels for a given, previously unseen example. Multi-label
ranking, on the other hand, can be understood as learning a model that, for each
unseen examples, associates a list of rankings (preferences) on the labels from a
given set of possible labels and a bipartite partition of this set into relevant and
irrelevant labels. An extensive bibliography of methods for multi-label learning
can be found in [7,14] and the references therein.

The task of multi-label learning can be defined as follows [5]. The input
space X consists of vectors of values of nominal or numeric data types i.e.,
∀xi ∈ X , xi = (xi1, xi2, . . . xiD), where D is a number of descriptive attributes.
The output space Y consists of a subset of a finite set of disjoint labels L =
{λ1, λ2, . . . , λQ} (Q > 1 and Y ⊆ L). Given this, each example is a pair of
a vector and a set from the input and output space, respectively. All of the
examples then form the set of examples (i.e., the dataset) E. The goal is then
to find a function h : X → 2L such that from the input space assigns a set of
labels to each example.

The main difference between multi-label classification and hierarchical multi-
label classification (HMLC) is that in the latter the labels from the label space
are organized into a hierarchy. A given example labeled with a given label it
is also labeled with all its parent labels (known as the hierarchy constraint).
Furthermore, an example can be labeled with multiple labels, simultaneously.
That means a several paths can be followed from the root node in order to
arrive at a given label.

Here, the output space Y is defined with a label hierarchy (L,≤h), where L is
a set of labels and ≤h is a partial order parent-child relationship structured as a
tree (∀λ1, λ2 ∈ L : λ1 ≤h λ2 if and only if λ1 is a parent of λ2) [5]. Each example
from the set of examples E is a pair of a vector and a set from the input and
output space respectively, where the set satisfies the hierarchy constraint, i.e.,
E = {(xi,Yi)|xi ∈ X ,Y ⊆ L, λ ∈ Yi ⇒ ∀λ′ ≤h λ : λ′ ∈ Yi, 1 ≤ i ≤ N}, where
N is a number of examples in E. Same conditions as in multi-label classification
should be satisfied for the quality criterion q (high predictive performance and
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low computational cost). In [9], an extensive bibliography is given, where the
HMLC task is presented across different application domains.

3 Structuring of Label Spaces Using Feature Ranking

In this section, we explain our method for structuring the label space using
feature ranking and we describe the different clustering algorithms used in this
work. Our proposed method for label space structuring is outlined in procedure
StructuringLabelSpaceFR in Table 1. First, we take the original training dataset
Dtrain and using random forest method with GENIE3 feature importance, we
create feature rankings for each label separately. We then construct a dataset
Dranks consisting of the feature rankings. Next, we obtain a hierarchy using one
of the clustering algorithms described bellow. The hierarchy is then used to pre-
process the datasets and obtain their hierarchical variants Dtrain

H and Dtest
H . At

the end, we learn the HMLC predictive models.

Table 1. The algorithm for structuring the label space using feature rankings per label.

In our approach, described in a procedure StructuringLabelSpaceFR
(Table 1), we can see that additional step, compare to the algorithm given by
Madjarov et al. [6], is the function CreateFimp at line 4, which increases the
theoretical complexity of the procedure. According to the dimensionality of the
space which is going to be clustered using the function Clustering at line 5, one
dimension in the space consists of label co-occurrences is the number of examples
(instances) which means that in case of more complex datasets with large num-
ber of examples, the clustering procedure will take more of the time in order to
create a hierarchy. From the other side, the procedure of creating the hierarchy
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using feature rankings has a dimension which depends of the feature space cardi-
nality. Typically, the feature space cardinality is much smaller than the number
of examples. It means that clustering of the rankings will finish faster than clus-
tering of the label co-occurrences for datasets with large number of examples but
small number of features, which is a case in most of the benchmarks datasets
available. Consequently, although we have additional function in our procedure
of structuring of the output space, for more complex datasets with high number
of examples and smaller number of features, the clustering procedure, i.e., the
hierarchy creation will be completed in a reasonable time, thus compensating
for obtaining the feature rankings.

We next describe the procedures for obtaining the feature rankings. Random
forests as ensemble method for predictive modeling are originally proposed by
Breiman [1]. The empirical analysis of their use as feature ranking methods has
been studied by Verikas et al. [16]. The random forests are constructed by first
performing bootstrap sampling on the data and then building a decision tree for
each bootstrap sample. The decision trees are constructed by taking the best
split at each level, from a randomly selected feature subset.

Huynh-Thu et al. [3] propose to use the reduction of the variance in the
output space at each test node in the tree (the resulting algorithm is named
GENIE3). Namely, the variables that reduce the variance of the output more
are, consequently, more important than the ones that reduce the variance less.
Hence, for each descriptive variable we measure the reduction of variance it
produces when selected as splitting variable. If a variable is never selected as
splitting variable then its importance will be 0.

The GENIE3 algorithm has been heavily evaluated for single-target regres-
sion tasks (e.g., for gene regulatory network reconstruction). The basic idea
adopted for future ranking is the same of that proposed in GENIE3, but we
use random forest of predictive clustering trees (PCTs) for building the ensem-
ble. The result is a feature ranking algorithm that works for different types of
structure output prediction tasks (including MLC and HMLC).

Furthermore, we discuss the different clustering methods used to obtain the
hierarchies of the labels. For achieving a good performance of the HMLC meth-
ods, it is critical to generate label hierarchies that more closely capture the
relations among the labels. The only constraint when building the hierarchy is
that we should take care about the leaves of the label hierarchies. They need to
define the original MLC task. In particular, the labels from the original MLC
problem represent the leaves of the label hierarchy, while the labels in inter-
nal nodes of the tree are so-called meta-labels. Meta-labels model the potential
relations among the original labels.

For obtaining the hierarchies, we use four different clustering methods (two
agglomerative and two divisive):

– agglomerative clustering with single linkage;
– agglomerative clustering with complete linkage;
– balanced k-means clustering (divisive) and
– predictive clustering trees (divisive).
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Agglomerative clustering algorithms consider each example as separate clus-
ter at the beginning and then iteratively merge pairs of clusters based on their
distance metric (linkage). If we use the maximal distance of two examples from
the clusters C1 and C2, then this type of agglomerative clustering is using com-
plete linkage, i.e., max{dist(c1, c2) : c1 ∈ C1, c2 ∈ C2}. If we use the minimal
distance between two clusters, then the agglomerative clustering approach is
with single linkage i.e., min{dist(c1, c2) : c1 ∈ C1, c2 ∈ C2}.

Balanced k-means is top-down approach for clustering. First, all labels from
the label space L are in one common cluster at the top node of the hierarchy.
Then, the procedure consecutively divides (splits) this cluster into k disjoint
sub-clusters (k < |Ln|) using k-means clustering. The division also is concerned
with the number of examples in each cluster: the algorithm outputs clusters with
approximately equal size [13]. The procedure recursively is repeated on each sub-
cluster (meta-label) until we have n different clusters consisting of one label from
the label space L. In other words, our label space L is covered by leaves of the
hierarchy obtained by the balanced k-means clustering approach.

We also use predictive clustering trees to construct the label hierarchies. More
specifically, the setting from the predictive clustering framework used in this work
is based on treating the target space as descriptive space, i.e., the target space is
also a descriptive space. Descriptive/target variables are used to provide descrip-
tions for the obtained clusters. Here, the focus is using predictive clustering frame-
work on the task of clustering instead of predictive modelling [2,4]. The obtained
hierarchies using agglomerative clustering (single and complete linkage) and using
predictive clustering trees for emotions dataset are shown in Fig. 2.

We next present the predictive clustering trees (PCTs) - the modelling frame-
work we used throughout this work. PCTs are a generalization of decision trees
towards the tasks of predicting structured outputs, including both MLC and
HMLC. In order to apply PCTs to the task of HMLC, Vens et al. [15] define the
variance and the prototype as follows. First, the set of labels for each example
is represented as a vector of binary components. If the example belongs to the
class ci then the i’th component of the vector is 1 and 0, otherwise. The variance
of a set of examples E is thus defined as follows:

V ar(E) =
1

|E| ·
|E|∑

i=1

dist(Γi, Γ )2 (1)

where Γ = 1
|E| · ∑|E|

i=1 Γi.
In other words, the variance V ar(E) in (1) represents the average squared

distance between each example’s class vector (Γi) and the mean class vector of
the set (Γ ). When we talk about HMC, then the similarity at higher levels of the
hierarchy are more important than the similarity at lower levels. This is reflected
with the distance term used in (1), which is weighted Euclidean distance:

dist(Γ1, Γ2) =

√√√√
|Γ |∑

s=1

θ(cs) · (Γ1,s − Γ2,s)2
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Fig. 2. Hierarchies obtained using agglomerative single (top-left), agglomerative com-
plete (top-right), balanced K-means clustering (bottom - left) and PCTs (bottom -
right) clustering methods for emotions dataset.

where Γi,s is the s’th component of the class vector Γi of the instance Ei, |Γ |
is the size of the class vector, and the class weights θ(c) = θ0· avgj{θ(pj(c))},
where pj(c) is j’th parent of the class c and 0 < θ0 < 1. The class weights θ(c)
decrease with the depth of the class in the hierarchy thus making the differences
in the lower parts of the hierarchy less influential to the overall score.

Random forests of PCTs for HMLC are considered in the same way as the
random forest of PCTs for MLC. In the case of HMLC, the ensemble is a set
of PCTs for HMLC. A new example is classified by taking a majority vote
from the combined predictions of the member classifiers. The prediction of the
random forest ensemble of PCTs for HMLC follows the hierarchy constraint (if
the example is labeled with a given label then is automatically labeled with all
its ancestor-labels).

4 Experimental Design

The aim of our study is to address the following questions:

(i) Whether feature ranking on the label (output) space in the MLC task can
be used to construct good label hierarchies?
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(ii) Which clustering method yields better hierarchy?
(iii) How this scales from single model to ensemble of models?
(iv) Can we achieve better predictive models with using a hierarchies obtained

by structuring the feature ranking or co-occurrences space?

In order to answer the above questions, we use eight multi-label classification
benchmark problems from different domains. We have 3 datasets from text clas-
sification, 4 datasets from multimedia, includes movie clips and genres classifica-
tion and 1 dataset from biology. All datasets are predefined by other researchers
(typically the data owners) and divided into train and test subsets. The basic
information and statistics about these datasets are given in Table 2.

Table 2. Statistics of used benchmark tasks in terms of application domain (domain),
number of training examples (#tr.e), testing examples (#t.e), number of descriptors
(D), total number of labels (L) and number of labels per example.

Dataset Domain #tr.e #t.e D L lc

emotions multimedia 391 202 72 6 1.87

scene multimedia 1211 1159 294 6 1.07

yeast biology 1500 917 103 14 4.24

tmc2007 text 21519 7077 500 22 2.16

medical text 645 333 1449 45 1.25

enron text 1123 579 1001 53 3.38

mediamill multimedia 30993 12914 120 101 4.38

corel5k multimedia 4500 500 499 374 3.52

In our experiments, we use 13 different evaluation measures, as presented in
[7,14]. These are divided into two groups: 6 threshold dependent/example based
measures (hamming loss, accuracy, precision, recall, F1 score) and 7 threshold
independent measures out of which three ranking-based (one-error, coverage and
ranking-loss) and four areas under ROC and PRC curves (AUROC, AUPRC,
wAUPRC and pooledAUPRC ). The threshold independent measures are typi-
cally used in HMLC and they do not require a (pre)selection of thresholds and
calculating a prediction [15]. All of the above measures offer different viewpoints
on the results from the experimental evaluation.

Hamming loss is an example-based evaluation measure that evaluate how
many times a pair of example and its label are misclassified. One-error is a
ranking-based evaluation measure that evaluates how many times the top-ranked
label does not exist in a set of relevant labels of the example. Coverage evaluates
how far, on average, we need to go down the list of label ranks in order to cover
all relevant labels of given example. Ranking loss evaluates the average fraction
of the label pairs that are reversely ordered for the given example. Precision and
recall are very important measures defined for binary classification tasks with
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classes of positive and negative examples. Precision is a proportion of positive
prediction that are correct, and recall is the proportion of positive examples that
correctly predicted as positive. F1 score is the harmonic mean between precision
and recall. Accuracy for each instance is defined as the proportion of correctly
predicted labels over total number of labels for that instance. Overall accuracy
is the average across all instances. A precision-recall curve (PR curve) is a curve
that represent the precision as a function of its recall. AUPRC (area under
the PR curve) is the area between the PR curve and the recall axis. wAUPRC
evaluates the weighted average of the areas under the individual (per class)
PR-curves. If choosing some threshold, we transform the multi-label problem
into binary problems with considering binary classifier as a couple (instance,
class) and predicting whether that instance belongs to that class, we can obtain
PR curves that differ depend of the varying the threshold. The area under the
average PR curve (from all different threshold curves) is called pooledAUPRC.
From the other side, if we consider the space of true positive rates (sensitivity)
versus false positive rates (fall-out) then the curve considers the sensitivity as a
function of the fall-out is called ROC-curve. The are under this ROC-curve is
the evaluation measure called AUROC.

The majority of our experiments are performed using the CLUS software
package (https://sourceforge.net/projects/clus/), which implements the predic-
tive clustering framework, including PCTs, random forests of PCTs and feature
ranking [5,10]. A hierarchical tree defined by the used clustering methods in
HMLC setting are defined as tree shaped hierarchies. We use the same values
for k in balanced k-means clustering algorithm, as suggested in [7].

For obtaining a hierarchy using the agglomerative clustering method
we use the R software package (function agnes() from the cluster pack-
age. For more info, see https://stat.ethz.ch/R-manual/R-devel/library/cluster/
html/agnes.html). We use the MATLAB software package to create hierar-
chies with balanced k-means clustering which is based on Hungarian (Munkres’)
assignment algorithm to assign the examples to the clusters [8]. We use Euclidean
distance metric in all our algorithms that require distance. Moreover, for random
forest for feature ranking we use GENIE3 as a feature importance method based
on variable selection with ensembles of PCTs [3].

In order to make a comparative analysis with the results obtained by the
study by Madjarov et al. [6], we repeated their experiments on the same exper-
imental setting with the experiments we perform for feature ranking.

5 Results

In this section, we present the obtained results from the experiments we per-
formed using our novel proposed method for structuring the output space. In
our study, as an output space, we consider the space consisting of label co-
occurrences (as presented by Madjarov et al. [6]) and the space consisting of
feature ranks for each label, respectively. We compare the following methods for
hierarchy construction:

https://sourceforge.net/projects/clus/
https://stat.ethz.ch/R-manual/R-devel/library/cluster/html/agnes.html
https://stat.ethz.ch/R-manual/R-devel/library/cluster/html/agnes.html
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– flat MLC problem without considering a hierarchy in the label space
(FlatMLC );

– agglomerative clustering with single linkage (AggSingle);
– agglomerative clustering with complete linkage (AggComplete)
– balanced k-means clustering (BKmeans)
– clustering using predictive clustering trees (ClusPCTs).

Since we have two different models (single PCTs model and random forest
of PCTs) and two different structured output spaces, we show separately the
results for single PCTs (Fig. 3) and random forest of PCTs (Fig. 4). In order to
distinguish between using either single tree or random forest of PCTs and differ-
ent methods of structuring the output space (label co-occurrences and feature
rankings), we use prefixes (PCT- and RF-) and suffixes (-CO and -FR) before
and after the hierarchy construction method name, respectively. For example,
RF-AggComplete-CO refers to the agglomerative clustering method with com-
plete linkage of the output space of label co-occurrences using random forest
of PCTs for model creation. Then, PCT-ClusPCTs-FR refers to the clustering
method with PCTs of the output space consists of feature rankings per label
using single PCTs for model creation, etc.

Observing the results obtained using single PCTs (Fig. 3), we can note that
there is no clear winner across all evaluation measures and datasets. In the case
of threshold independent measures, such as AUPRC, AUROC, wAUPRC and
pooledAUPRC, we can see that hierarchies created using clustering of the out-
put space consisting of feature rankings perform the best for enron, emotions,
mediamill and yeast datasets. Considering the scene and corel5k datasets, we
can observe that they perform the best according to AUROC, AUPRC and
pooledAUPRC, but not for wAUPRC. PCT-BKmeans-FR outperforms the other
algorithms for hierarchy creation in the emotions dataset according to the most
of the evaluation measures but not according to one-error. Moreover, the hier-
archies created clustering the feature rankings outperform the other algorithms
considering the ML performance measures (ML F1 measure, ML accuracy, ML
precision and ML recall) in 5 out of the 8 datasets.

Generally, structuring the output space consisting of feature rankings for
each label yields better predictive performance compared to the structuring the
output space consisting of label co-occurrences considering most of the evaluation
measures in almost all datasets. For the corel5k dataset only, we can see that
both have similar performance. If we consider medical and tmc2007 datasets, we
can see that structuring the output space does not improve the performance as
compared to the flat MLC task, where there is no hierarchy considered. All in
all, we can conclude that using the hierarchies, the predictive performance can
be improved.

The results obtained when random forests are used as predictive models are
given in Fig. 4. These results present a different situation as compared to the
results obtained when single PCTs are used as predictive models. First of all,
the predictive performance is improved as compared to the single PCTs for
large majority of the cases. Most notably, the performance for the threshold
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PCT-FlatMLC 0.071 0.538 40.513 0.360 0.467 0.489 0.502 0.444 0.151 0.130 0.585 0.353 0.416

PCT-AggSingle-FR 0.071 0.595 39.630 0.380 0.485 0.503 0.527 0.383 0.104 0.142 0.598 0.367 0.428
PCT-AggComplete-FR 0.072 0.565 39.703 0.371 0.478 0.486 0.530 0.382 0.192 0.148 0.601 0.370 0.433

PCT-BKmeans-FR 0.072 0.466 39.665 0.374 0.480 0.489 0.527 0.501 0.341 0.142 0.593 0.358 0.419
PCT-ClusterPCTs-FR 0.072 0.554 39.472 0.354 0.459 0.471 0.499 0.382 0.194 0.142 0.590 0.354 0.418
PCT-AggSingle-CO 0.067 0.482 36.858 0.374 0.475 0.488 0.520 0.458 0.356 0.137 0.591 0.362 0.421

PCT-AggComplete-CO 0.066 0.471 37.104 0.364 0.463 0.485 0.504 0.453 0.350 0.128 0.580 0.359 0.419
PCT-BKmeans-CO 0.068 0.541 37.879 0.364 0.472 0.493 0.522 0.323 0.222 0.131 0.586 0.357 0.413

PCT-ClusterPCTs-CO 0.072 0.588 40.473 0.374 0.476 0.487 0.517 0.396 0.108 0.142 0.594 0.366 0.424
EMOTIONS

PCT-FlatMLC 0.292 0.669 4.431 0.460 0.541 0.550 0.582 0.450 0.335 0.516 0.680 0.509 0.524
PCT-AggSingle-FR 0.304 0.666 4.569 0.421 0.502 0.514 0.549 0.490 0.317 0.487 0.661 0.480 0.503

PCT-AggComplete-FR 0.296 0.672 4.574 0.442 0.528 0.551 0.559 0.470 0.314 0.507 0.679 0.508 0.517
PCT-BKmeans-FR 0.266 0.717 4.173 0.507 0.589 0.597 0.634 0.401 0.265 0.552 0.714 0.558 0.563

PCT-ClusterPCTs-FR 0.292 0.702 4.569 0.438 0.529 0.554 0.564 0.386 0.291 0.505 0.670 0.509 0.517
PCT-AggSingle-CO 0.307 0.670 4.460 0.439 0.525 0.528 0.576 0.450 0.345 0.496 0.664 0.495 0.510

PCT-AggComplete-CO 0.307 0.670 4.460 0.439 0.525 0.528 0.576 0.450 0.345 0.496 0.664 0.495 0.510
PCT-BKmeans-CO 0.312 0.640 4.698 0.414 0.507 0.541 0.535 0.485 0.357 0.496 0.653 0.491 0.505

PCT-ClusterPCTs-CO 0.297 0.681 4.639 0.440 0.516 0.535 0.535 0.446 0.323 0.489 0.664 0.491 0.502
MEDICAL

PCT-FlatMLC 0.014 0.795 11.447 0.724 0.766 0.759 0.809 0.204 0.104 0.321 0.686 0.672 0.702
PCT-AggSingle-FR 0.015 0.794 12.874 0.706 0.741 0.742 0.771 0.216 0.082 0.320 0.685 0.646 0.682

PCT-AggComplete-FR 0.015 0.785 12.207 0.721 0.759 0.758 0.791 0.222 0.115 0.325 0.690 0.665 0.692
PCT-BKmeans-FR 0.015 0.771 12.616 0.710 0.750 0.751 0.786 0.219 0.125 0.320 0.689 0.648 0.687

PCT-ClusterPCTs-FR 0.015 0.787 11.832 0.727 0.767 0.771 0.803 0.231 0.087 0.314 0.696 0.670 0.699
PCT-AggSingle-CO 0.016 0.761 12.258 0.694 0.733 0.726 0.777 0.264 0.133 0.315 0.684 0.645 0.687

PCT-AggComplete-CO 0.016 0.763 12.640 0.694 0.734 0.733 0.773 0.240 0.141 0.294 0.662 0.638 0.676
PCT-BKmeans-CO 0.015 0.795 12.003 0.716 0.757 0.753 0.797 0.198 0.078 0.340 0.695 0.652 0.691

PCT-ClusterPCTs-CO 0.016 0.795 12.003 0.707 0.747 0.751 0.783 0.228 0.063 0.298 0.678 0.658 0.686
MEDIAMILL

PCT-FlatMLC 0.052 0.472 77.282 0.356 0.476 0.491 0.551 0.445 0.247 0.089 0.571 0.339 0.440
PCT-AggSingle-FR 0.052 0.584 76.868 0.353 0.474 0.495 0.549 0.318 0.105 0.087 0.570 0.350 0.439

PCT-AggComplete-FR 0.052 0.610 76.795 0.358 0.478 0.498 0.553 0.313 0.083 0.089 0.570 0.353 0.443
PCT-BKmeans-FR 0.053 0.509 76.514 0.357 0.477 0.493 0.554 0.394 0.118 0.093 0.575 0.347 0.441

PCT-ClusterPCTs-FR 0.052 0.604 76.004 0.360 0.479 0.499 0.552 0.351 0.071 0.088 0.574 0.352 0.443
PCT-AggSingle-CO 0.053 ? 73.362 0.341 0.452 0.478 0.516 0.440 0.291 0.087 0.562 0.345 0.429

PCT-AggComplete-CO 0.055 ? 72.275 0.339 0.450 0.474 0.513 0.516 0.321 0.081 0.564 0.337 0.428
PCT-BKmeans-CO 0.054 ? 70.465 0.349 0.463 0.479 0.537 0.471 0.273 0.090 0.571 0.339 0.434

PCT-ClusterPCTs-CO 0.051 ? 78.356 0.343 0.455 0.480 0.516 0.267 0.156 0.088 0.569 0.339 0.428
SCENE

PCT-FlatMLC 0.263 0.636 4.537 0.271 0.288 0.289 0.302 0.686 0.183 0.193 0.530 0.255 0.907
PCT-AggSingle-FR 0.251 0.491 4.215 0.311 0.333 0.332 0.360 0.669 0.475 0.183 0.479 0.282 0.903

PCT-AggComplete-FR 0.247 0.658 4.595 0.304 0.333 0.351 0.347 0.628 0.166 0.191 0.494 0.265 0.907
PCT-BKmeans-FR 0.237 0.688 4.157 0.342 0.371 0.372 0.397 0.587 0.151 0.196 0.546 0.291 0.906

PCT-ClusterPCTs-FR 0.247 0.470 4.595 0.304 0.333 0.351 0.347 0.661 0.525 0.191 0.494 0.265 0.907
PCT-AggSingle-CO 0.234 0.557 4.256 0.349 0.376 0.373 0.405 0.579 0.361 0.189 0.516 0.299 0.906

PCT-AggComplete-CO 0.234 0.557 4.256 0.349 0.376 0.373 0.405 0.579 0.361 0.189 0.516 0.299 0.906
PCT-BKmeans-CO 0.229 0.509 4.099 0.355 0.387 0.386 0.421 0.612 0.523 0.186 0.502 0.316 0.904

PCT-ClusterPCTs-CO 0.260 0.658 4.438 0.280 0.309 0.303 0.343 0.636 0.164 0.186 0.517 0.260 0.904
TMC2007

PCT-FlatMLC 0.028 0.957 2.600 0.807 0.866 0.843 0.942 0.044 0.007 0.907 0.994 0.962 0.955
PCT-AggSingle-FR 0.030 0.948 2.712 0.797 0.859 0.835 0.936 0.052 0.009 0.905 0.993 0.955 0.950

PCT-AggComplete-FR 0.030 0.949 2.705 0.802 0.862 0.836 0.940 0.052 0.009 0.903 0.993 0.955 0.950
PCT-BKmeans-FR 0.029 0.950 2.648 0.807 0.867 0.842 0.943 0.053 0.008 0.925 0.993 0.959 0.955

PCT-ClusterPCTs-FR 0.030 0.950 2.684 0.801 0.862 0.837 0.940 0.048 0.009 0.903 0.993 0.956 0.949
PCT-AggSingle-CO 0.031 0.943 2.739 0.794 0.855 0.837 0.928 0.057 0.010 0.861 0.992 0.953 0.939

PCT-AggComplete-CO 0.030 0.946 2.711 0.797 0.859 0.835 0.937 0.056 0.009 0.870 0.992 0.955 0.942
PCT-BKmeans-CO 0.029 0.954 2.640 0.807 0.866 0.840 0.943 0.049 0.008 0.903 0.993 0.960 0.953

PCT-ClusterPCTs-CO 0.030 0.947 2.719 0.800 0.860 0.841 0.932 0.051 0.009 0.884 0.992 0.955 0.945
YEAST

PCT-FlatMLC 0.295 0.630 11.124 0.406 0.514 0.516 0.572 0.430 0.299 0.354 0.558 0.483 0.510
PCT-AggSingle-FR 0.290 0.590 11.122 0.429 0.541 0.545 0.600 0.510 0.367 0.365 0.574 0.500 0.528

PCT-AggComplete-FR 0.289 0.608 11.109 0.417 0.526 0.529 0.584 0.507 0.320 0.368 0.578 0.504 0.527
PCT-BKmeans-FR 0.291 0.645 11.372 0.412 0.523 0.533 0.570 0.430 0.261 0.357 0.565 0.488 0.521

PCT-ClusterPCTs-FR 0.292 0.645 11.298 0.415 0.518 0.531 0.561 0.455 0.257 0.358 0.560 0.491 0.525
PCT-AggSingle-CO 0.298 0.648 11.262 0.408 0.516 0.521 0.573 0.353 0.317 0.356 0.556 0.491 0.517

PCT-AggComplete-CO 0.290 0.676 11.144 0.419 0.528 0.530 0.590 0.328 0.263 0.359 0.570 0.502 0.520
PCT-BKmeans-CO 0.286 0.670 11.352 0.412 0.519 0.530 0.566 0.334 0.275 0.363 0.568 0.498 0.523

PCT-ClusterPCTs-CO 0.296 0.668 11.241 0.412 0.520 0.526 0.575 0.400 0.246 0.355 0.558 0.497 0.518
COREL5K

PCT-FlatMLC 0.015 0.144 352.716 0.091 0.130 0.175 0.125 0.774 0.419 0.027 0.516 0.058 0.114
PCT-AggSingle-FR 0.014 0.187 357.244 0.083 0.124 0.186 0.118 0.752 0.223 0.022 0.514 0.045 0.098

PCT-AggComplete-FR 0.016 0.184 354.216 0.083 0.121 0.142 0.125 0.734 0.409 0.021 0.513 0.055 0.106
PCT-BKmeans-FR 0.016 0.137 360.022 0.092 0.136 0.169 0.142 0.752 0.606 0.031 0.521 0.060 0.115

PCT-ClusterPCTs-FR 0.016 0.217 350.488 0.093 0.134 0.144 0.150 0.716 0.215 0.032 0.523 0.064 0.123
PCT-AggSingle-CO 0.013 0.096 368.088 0.065 0.097 0.169 0.085 0.778 0.712 0.013 0.501 0.037 0.083

PCT-AggComplete-CO 0.013 0.110 367.356 0.073 0.108 0.186 0.095 0.776 0.645 0.020 0.504 0.042 0.092
PCT-BKmeans-CO 0.015 0.181 351.246 0.101 0.147 0.168 0.156 0.700 0.294 0.029 0.518 0.071 0.120

PCT-ClusterPCTs-CO 0.018 0.210 360.764 0.091 0.138 0.145 0.160 0.718 0.149 0.022 0.511 0.051 0.105

Fig. 3. Results with the 13 performance measures for single PCTs from experiments
performed on 8 different datasets. The best results obtained per measure per dataset
are highlighted.
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RF-FlatMLC 0.047 0.698 13.187 0.402 0.509 0.714 0.435 0.200 0.078 0.241 0.709 0.620 0.577

RF-AggSingle-FR 0.047 0.696 13.028 0.396 0.500 0.706 0.425 0.206 0.077 0.235 0.724 0.615 0.574
RF-AggComplete-FR 0.047 0.695 13.347 0.396 0.499 0.703 0.425 0.206 0.078 0.239 0.724 0.618 0.575

RF-BKmeans-FR 0.046 0.697 12.865 0.404 0.509 0.708 0.434 0.211 0.076 0.242 0.745 0.622 0.582
RF-ClusterPCTs-FR 0.046 0.696 13.180 0.402 0.506 0.704 0.431 0.199 0.076 0.244 0.737 0.620 0.582
RF-AggSingle-CO 0.042 0.686 11.784 0.405 0.507 0.726 0.424 0.193 0.079 0.213 0.728 0.598 0.553

RF-AggComplete-CO 0.042 0.692 11.717 0.410 0.511 0.719 0.430 0.202 0.079 0.215 0.730 0.603 0.559
RF-BKmeans-CO 0.043 0.688 12.223 0.399 0.503 0.728 0.420 0.200 0.078 0.225 0.719 0.600 0.554

RF-ClusterPCTs-CO 0.047 0.692 13.100 0.400 0.504 0.706 0.429 0.199 0.078 0.236 0.742 0.616 0.572
EMOTIONS

RF-FlatMLC 0.191 0.813 2.812 0.530 0.605 0.674 0.600 0.267 0.152 0.755 0.851 0.754 0.755
RF-AggSingle-FR 0.201 0.815 2.837 0.500 0.569 0.629 0.567 0.282 0.155 0.749 0.852 0.756 0.753

RF-AggComplete-FR 0.196 0.810 2.817 0.502 0.574 0.643 0.564 0.262 0.151 0.766 0.859 0.762 0.769
RF-BKmeans-FR 0.199 0.810 2.817 0.494 0.563 0.626 0.553 0.277 0.153 0.770 0.863 0.767 0.772

RF-ClusterPCTs-FR 0.205 0.814 2.827 0.487 0.559 0.623 0.550 0.282 0.154 0.754 0.856 0.756 0.754
RF-AggSingle-CO 0.199 0.817 2.812 0.504 0.578 0.645 0.572 0.287 0.150 0.755 0.858 0.758 0.757

RF-AggComplete-CO 0.199 0.817 2.812 0.504 0.578 0.645 0.572 0.287 0.150 0.755 0.858 0.758 0.757
RF-BKmeans-CO 0.193 0.815 2.871 0.510 0.580 0.649 0.569 0.297 0.160 0.759 0.854 0.765 0.762

RF-ClusterPCTs-CO 0.191 0.820 2.787 0.512 0.582 0.648 0.575 0.267 0.148 0.764 0.860 0.766 0.766
MEDICAL

RF-FlatMLC 0.018 0.858 2.571 0.415 0.431 0.462 0.418 0.396 0.023 0.432 0.824 0.787 0.818
RF-AggSingle-FR 0.019 0.856 2.700 0.356 0.371 0.402 0.359 0.459 0.024 0.439 0.812 0.764 0.803

RF-AggComplete-FR 0.018 0.865 2.589 0.417 0.434 0.470 0.418 0.402 0.022 0.458 0.820 0.790 0.828
RF-BKmeans-FR 0.018 0.865 2.589 0.430 0.447 0.479 0.435 0.393 0.023 0.467 0.823 0.795 0.831

RF-ClusterPCTs-FR 0.019 0.849 2.769 0.388 0.405 0.441 0.391 0.411 0.026 0.422 0.805 0.777 0.818
RF-AggSingle-CO 0.019 0.853 2.841 0.366 0.382 0.416 0.367 0.447 0.027 0.437 0.804 0.771 0.813

RF-AggComplete-CO 0.019 0.852 2.727 0.369 0.386 0.420 0.372 0.438 0.025 0.432 0.817 0.764 0.808
RF-BKmeans-CO 0.018 0.853 2.613 0.421 0.440 0.477 0.424 0.372 0.023 0.455 0.822 0.786 0.821

RF-ClusterPCTs-CO 0.019 0.857 2.586 0.376 0.397 0.438 0.379 0.423 0.023 0.441 0.813 0.778 0.818
MEDIAMILL

RF-FlatMLC 0.030 0.735 20.676 0.455 0.573 0.798 0.495 0.124 0.047 0.254 0.762 0.671 0.618
RF-AggSingle-FR 0.030 0.733 20.781 0.451 0.570 0.803 0.489 0.124 0.047 0.249 0.765 0.669 0.617

RF-AggComplete-FR 0.030 0.733 20.727 0.451 0.569 0.802 0.487 0.127 0.047 0.254 0.765 0.668 0.616
RF-BKmeans-FR 0.030 0.735 20.546 0.453 0.571 0.800 0.491 0.124 0.046 0.252 0.773 0.671 0.617

RF-ClusterPCTs-FR 0.030 0.734 20.806 0.451 0.569 0.801 0.488 0.126 0.047 0.248 0.765 0.668 0.616
RF-AggSingle-CO 0.031 ? 19.722 0.438 0.549 0.777 0.470 0.150 0.047 0.242 0.756 0.657 0.607

RF-AggComplete-CO 0.032 ? 19.117 0.440 0.551 0.777 0.471 0.150 0.047 0.249 0.761 0.659 0.610
RF-BKmeans-CO 0.032 ? 18.830 0.440 0.551 0.772 0.474 0.153 0.046 0.249 0.768 0.659 0.609

RF-ClusterPCTs-CO 0.030 ? 20.681 0.434 0.546 0.775 0.465 0.152 0.045 0.248 0.763 0.656 0.607
SCENE

RF-FlatMLC 0.169 0.631 2.405 0.202 0.204 0.207 0.202 0.339 0.247 0.193 0.515 0.457 0.906
RF-AggSingle-FR 0.174 0.608 2.496 0.174 0.174 0.174 0.174 0.347 0.272 0.186 0.495 0.440 0.904

RF-AggComplete-FR 0.174 0.624 2.314 0.174 0.174 0.174 0.174 0.331 0.234 0.189 0.502 0.434 0.905
RF-BKmeans-FR 0.172 0.640 2.298 0.198 0.198 0.198 0.198 0.364 0.231 0.189 0.519 0.456 0.905

RF-ClusterPCTs-FR 0.174 0.624 2.314 0.174 0.174 0.174 0.174 0.331 0.234 0.189 0.502 0.434 0.905
RF-AggSingle-CO 0.174 0.590 2.496 0.140 0.140 0.140 0.140 0.298 0.274 0.187 0.507 0.415 0.904

RF-AggComplete-CO 0.174 0.590 2.496 0.140 0.140 0.140 0.140 0.298 0.274 0.187 0.507 0.415 0.904
RF-BKmeans-CO 0.172 0.589 2.595 0.182 0.182 0.182 0.182 0.306 0.292 0.191 0.512 0.434 0.905

RF-ClusterPCTs-CO 0.169 0.614 2.545 0.182 0.182 0.182 0.182 0.339 0.279 0.190 0.513 0.434 0.905
TMC2007

RF-FlatMLC 0.025 0.976 2.301 0.796 0.848 0.933 0.813 0.039 0.003 0.993 0.999 0.975 0.992
RF-AggSingle-FR 0.025 0.976 2.305 0.796 0.848 0.935 0.812 0.039 0.003 0.993 0.999 0.974 0.992

RF-AggComplete-FR 0.025 0.976 2.305 0.797 0.849 0.933 0.815 0.038 0.003 0.993 0.999 0.974 0.992
RF-BKmeans-FR 0.025 0.977 2.303 0.797 0.849 0.933 0.815 0.039 0.003 0.993 0.999 0.975 0.991

RF-ClusterPCTs-FR 0.026 0.976 2.309 0.789 0.842 0.931 0.805 0.042 0.003 0.992 0.999 0.973 0.992
RF-AggSingle-CO 0.027 0.976 2.309 0.776 0.831 0.928 0.790 0.044 0.004 0.993 0.999 0.973 0.992

RF-AggComplete-CO 0.031 0.947 2.749 0.795 0.857 0.834 0.933 0.052 0.009 0.872 0.992 0.954 0.941
RF-BKmeans-CO 0.025 0.976 2.305 0.791 0.844 0.931 0.808 0.040 0.003 0.993 0.999 0.975 0.992

RF-ClusterPCTs-CO 0.026 0.976 2.308 0.788 0.842 0.933 0.805 0.041 0.003 0.993 0.999 0.974 0.992
YEAST

RF-FlatMLC 0.197 0.759 7.176 0.482 0.587 0.741 0.530 0.241 0.166 0.508 0.710 0.722 0.675
RF-AggSingle-FR 0.199 0.755 7.308 0.471 0.578 0.743 0.514 0.241 0.170 0.501 0.699 0.717 0.669

RF-AggComplete-FR 0.200 0.753 7.269 0.469 0.576 0.740 0.513 0.246 0.172 0.500 0.682 0.713 0.665
RF-BKmeans-FR 0.199 0.755 7.215 0.473 0.580 0.737 0.521 0.248 0.167 0.505 0.704 0.716 0.669

RF-ClusterPCTs-FR 0.198 0.755 7.252 0.477 0.583 0.739 0.524 0.244 0.169 0.504 0.692 0.714 0.669
RF-AggSingle-CO 0.198 0.757 7.201 0.479 0.586 0.742 0.530 0.242 0.168 0.506 0.699 0.719 0.673

RF-AggComplete-CO 0.196 0.759 7.218 0.484 0.591 0.742 0.535 0.240 0.167 0.511 0.707 0.717 0.674
RF-BKmeans-CO 0.196 0.759 7.215 0.483 0.588 0.740 0.529 0.246 0.166 0.508 0.698 0.719 0.674

RF-ClusterPCTs-CO 0.199 0.758 7.217 0.474 0.581 0.738 0.522 0.241 0.168 0.503 0.695 0.716 0.671
COREL5K

RF-FlatMLC 0.009 0.317 103.856 0.016 0.025 0.056 0.016 0.298 0.107 0.068 0.656 0.200 0.230
RF-AggSingle-FR 0.009 0.298 105.210 0.020 0.030 0.069 0.020 0.236 0.109 0.066 0.658 0.185 0.229

RF-AggComplete-FR 0.009 0.319 101.606 0.015 0.023 0.052 0.015 0.306 0.107 0.068 0.660 0.208 0.236
RF-BKmeans-FR 0.009 0.327 102.092 0.012 0.018 0.042 0.012 0.320 0.106 0.067 0.665 0.219 0.236

RF-ClusterPCTs-FR 0.009 0.313 107.224 0.017 0.026 0.058 0.017 0.286 0.110 0.070 0.654 0.201 0.234
RF-AggSingle-CO 0.009 0.266 121.804 0.020 0.031 0.072 0.020 0.206 0.127 0.061 0.636 0.155 0.215

RF-AggComplete-CO 0.009 0.269 120.950 0.021 0.032 0.074 0.021 0.228 0.126 0.064 0.636 0.155 0.218
RF-BKmeans-CO 0.009 0.343 97.858 0.014 0.022 0.047 0.014 0.364 0.101 0.075 0.674 0.227 0.245

RF-ClusterPCTs-CO 0.009 0.301 106.638 0.017 0.027 0.062 0.017 0.264 0.109 0.066 0.654 0.186 0.224

Fig. 4. Results with the 13 performance measures for Random Forest from experiments
performed on 8 different datasets. The best results obtained per measure per dataset
are highlighted.
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independent measures (AUPRC, AUROC, wAUPRC and pooledAUPRC ) for
the mediamill and tmc2007 datsets are improved for almost twice, which is con-
sistent to the notion from the literature that ensembles of PCTs improve the
performance over single predictive models. Hierarchies created with clustering
of the space consisting of feature rankings outperform both hierarchies obtained
using label co-occurrences and flat MLC for the threshold independent mea-
sures on the medical, enron and emotions datasets. RF-BKmeans-FR performs
the best for medical dataset in seven evaluation measures. Considering the hier-
archies obtained with clustering the space of label co-occurrences, we can note
that they outperform the other methods for the corel5k dataset. Using hier-
archies (i.e., label dependences) rather than flat multi-label task improves the
predictive performance generally for most of the evaluation measures, but not
for (ML F1 measure, ML accuracy, ML precision and ML recall) in the emotions
and scene datasets.

Finally, in our study we also considered training errors i.e., the errors made in
the learning phase. There, in a large majority of the cases, the original FlatMLC
method performed the best. This means that other methods we use for construct-
ing the hierarchies do not overfit as the original one. This is another advantage
of methods for construction the hierarchies identified from the obtained results.

6 Conclusions and Further Work

In this work, we have presented an approach for hierarchy construction and
structuring the output (label) space by using feature ranking. More specifically,
we cluster the feature rankings to obtain a hierarchical representation of the
potential relations existing among the different labels. We then address the task
of MLC as a task of HMLC. Moreover, we compare our approach with the
approach of clustering the space consisting of label co-occurrences [6].

We investigated four clustering methods for hierarchy creation, agglomera-
tive clustering with single and complete linkage, balanced k-means and cluster-
ing using predictive clustering trees (PCTs). The resulting problem was then
approached as a HMLC problem using PCTs and random forests of PCTs for
HMLC. We used eight benchmark datasets to evaluate the performance.

The results reveal that the best methods for hierarchy construction are
agglomerative clustering methods and balanced k-means. Compared to the orig-
inal MLC method where there is no hierarchy this improves the performance in
most of the datasets. In four datasets, the hierarchies obtained by clustering the
label space consisting of feature rankings improve the predictive performance
compared to the hierarchies obtained by clustering the space consisting of label
co-occurrences. Similar conclusions, but to a lesser extent, can be made for the
random forests of PCTs for HMLC - in many of the cases (datasets and eval-
uation measures) the predictive models exploiting the hierarchy of labels yield
better predictive performance. Finally, by considering the training error perfor-
mance, we find that original MLC models overfit more than the HMLC models.
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For further work, we plan to make more extensive evaluation on more datasets
with diverse properties and to try more different feature ranking methods. Fur-
thermore, we assume that potential improvement of the performance can be
achieved with cutting the hierarchies based on some conditions such as density,
distribution or distance between nodes. Moreover, we plan to include a compar-
ison to network approaches given by Szymanski et al. [11]. Finally, we plan to
extend this approach to other tasks, such as multi-target regression.
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5. Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Tree ensembles for predicting struc-
tured outputs. Pattern Recogn. 46(3), 817–833 (2013)

6. Madjarov, G., Dimitrovski, I., Gjorgjevikj, D., Džeroski, S.: Evaluation of different
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