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Preface

Modern automatic systems are able to collect huge volumes of data, often with a
complex structure (e.g., multi-table data, network data, Web data, time series and
sequences, trees and hierarchies). Massive and complex data pose new challenges for
current research in data mining. Specifically, they require new models and methods for
their storage, management, and analysis, in order to deal with the following complexity
factors:

– Data with a complex structure (e.g., multi-relational, time series and sequences,
networks, and trees) as input or output of the data mining process

– Data collections with many examples and/or many dimensions, where data may be
processed in (near) real time

– Partially labeled data
– Data which arrive continuously as a stream, at high rate, subject to concept drift

The 6th International Workshop on New Frontiers in Mining Complex Patterns
(NFMCP 2017) was held in Skopje (Macedonia) in conjunction with the European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML-PKDD 2017) on September 22, 2017. The purpose of this
workshop was to bring together researchers and practitioners of data mining who are
interested in the latest developments in the analysis of complex and massive data
sources, such as blogs, event or log data, medical data, spatiotemporal data, social
networks, mobility data, sensor data, and streams. The workshop was aimed at dis-
cussing and introducing new algorithmic foundations and representation formalisms in
complex pattern discovery. Finally, it encouraged the integration of recent results from
existing fields, such as statistics, machine learning, and big data analytics. This book
features a collection of revised and significantly extended versions of papers accepted for
presentation at the workshop. These papers went through a rigorous review process to
ensure compliance with Springer’s high-quality publication standards. The individual
contributions of this book illustrate advanced data mining techniques which take
advantage of the informative richness of both complex data and massive data for efficient
and effective identification of complex information units present in such data.

The book is composed of 13 chapters.
Chapter 1 introduces an efficient algorithm to analyze pharmacogenomic data and

discover association rules between gene variants of a patient and drug-dependent
adverse events.

Chapter 2 describes a classification-based approach for speech remediation. This is
used to identify which portions of a speech can be deleted, in order to enhance the
speech understandability in terms of both speech content and speech flow.

Chapter 3 presents a heterogeneous clustering algorithm that is able to predict
possibly unknown lncRNA–disease relationships by analyzing complex heterogeneous
biological networks.



Chapter 4 illustrates a probabilistic generative model, in order to address the
problem of positive-unlabeled learning by considering a set of positive samples and a
(usually larger) set of unlabeled ones.

Chapter 5 proposes a constraint programming approach that is combined with large
neighborhood search, in order to efficiently identify homogeneous subsets of genes,
which are similarly expressed across subsets of patients.

Chapter 6 investigates the use of the scaled correlation function, in order to derive
the structure of a functional brain network from the activity series associated with the
network nodes.

Chapter 7 considers the problem of manufacturing defect identification. It compares
two approaches that address the multiple instance problem when the traditional
instance localization assumption is not met.

Chapter 8 focuses on the problem of designing ensemble strategies for defending the
company’s brands from an unauthorized use.

Chapter 9 investigates the task of electricity load forecasting through unsupervised
ensemble learning of clustered time series data.

Chapter 10 tackles the problem of phenotype traits prediction using supervised and
semi-supervised classification trees as well as supervised and semi-supervised random
forests of classification trees.

Chapter 11 introduces an approach that constructs a label hierarchy as a decom-
position of the output space of a classification problem, in order to improve the pre-
dictive performance.

Chapter 12 illustrates a non-parametric Bayesian approach, in order to fit a mixture
model of Markov chains to user session data and devise behavioral patterns.

Chapter 13 studies the problem of community-based semantic subgroup discovery
and leverages the structural properties of a complex network, in order to enhance the
ontology-based subgroup identification.

We would like to thank all the authors who submitted papers for publication in this
book and all the workshop participants and speakers. We are also grateful to the
members of the Program Committee and external referee for their excellent work in
reviewing submitted and revised contributions with expertise and patience. We would
like to thank Hiroshi Motoda for his invited talk on “Which Is More Influential, ‘Who’
or ‘When’ for a User to Rate in Online Review Site?” A special thank you is due to
both the ECML PKDD Workshop Chairs and to the ECML PKDD organizers who
made the event possible. Last but not the least, we thank Alfred Hofmann of Springer
for his continuous support.

February 2018 Annalisa Appice
Corrado Loglisci
Giuseppe Manco

Elio Masciari
Zbigniew Ras
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Which is More Influential, “Who” or “When”
for a User to Rate in Online Review Site?

(Invited Talk)

Hiroshi Motoda

Osaka University and AFOSR/AOARD, Japan

Abstract. At its heart the act of reviewing is very subjective, but in reality many
factors influence user’s decision. This can be called social influence bias. We
pick two factors, “Who” and “When” and discuss which factor is more
influential when a user posts his/her own rate after reading the past review
scores in an online review system. We show that a simple model can learn the
factor metric quite efficiently from a vast amount of data that is available in
many online review systems and clarify that there is no universal solution and
the influential factor depends on each dataset. We use a weighted multinomial
generative model that takes account of each user’s influence over other users.
We consider two kinds of users: real and virtual, in accordance with the two
factors, and assign an influence metric to each. In the former each user has its
own metric, but in the latter the metric is assigned to the order of review posting
actions (rating). Both metrics are learnable quite efficiently with a few tens of
iterations by log-likelihood maximization. Goodness of metric is evaluated by
the generalization capability. The proposed method was evaluated and con-
firmed effective by five review datasets. Different datasets give different results.
Some dataset clearly indicates that user influence is more dominant than the
order influence while the results are the other way around for some other dataset,
and yet other dataset indicates that both factors are not relevant. The third one
indicates that the decision is very subjective, i.e., independent of others’ review.
We tried to characterize the datasets, but were only partially successful. For
datasets where user influence is dominant, we often observe that high metric
users have strong positive correlations with three more basic metrics: 1) the
number of reviews a user made, 2) the number of the user’s followers who rate
the same item, 3) the fraction of the user’s followers who gave the similar rate,
but this is not always true. We also observe that the majority of users is normal
(average) and there are two small groups of users, each with high metric value
and low metric value. Early adopters are not necessarily influential.
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Learning Association Rules
for Pharmacogenomic Studies

Giuseppe Agapito1,2 , Pietro H. Guzzi1,2 , and Mario Cannataro1,2(B)

1 Department of Medical and Surgical Sciences,
University Magna Græcia of Catanzaro, Catanzaro, Italy

{agapito,hguzzi,cannataro}@unicz.it
2 Data Analytics Research Centre, University Magna Græcia of Catanzaro,

Catanzaro, Italy

Abstract. The better understanding of variants of the genomes may
improve the knowledge on the causes of the individuals’ different
responses to drugs. The Affymetrix DMET (Drug Metabolizing Enzymes
and Transporters) microarray platform offers the possibility to determine
the gene variants of a patient and correlate them with drug-dependent
adverse events. The analysis of DMET data is a growing research area.
Existing approaches span from the use of simple statistical tests to more
complex strategies based, for instance, on learning association rules.
To support the analysis, we developed GenotypeAnalytics, a RESTFul-
based software service able to automatically extract association rules
from DMET datasets. GenotypeAnalytics is based on an optimised algo-
rithm for learning rules that can outperform general purpose platforms.

Keywords: Association rules · Genomics · SNP

1 Introduction

One of the problems related to drug-development and clinical practice is the
variability of the response to the same drug. Pharmacogenomic is a relatively
new discipline based on the rationale that this variability is due to different
variants in the genome of patients [1]. In particular, it has been shown that a set
of genes, defined to as drug absorption, distribution, metabolism and excretion
genes (ADME-genes) [2] are related to such processes [3,4]. Such genes present
known Single Nucleotide Polymorphisms (SNPs), e.g. variants on the sequence
of nucleotides, related to different drug responses [5,6].

To study genome variants, we need: (i) an experimental platform for investi-
gating the presence of SNPs in the ADME genes (among others we consider the
Affymetrix DMET platform) [7,8], (ii) a computational platform to associate
single or multiple SNPs to drug response. A complete review whose purpose
is to highlight the potentiality, reliability, and limitations of the DMET Plus
platform as pharmacogenomic drug metabolism multi-gene panel platform for
selecting biomarkers is in [9]. In [9] the authors illustrate the possibility to predict
c© Springer International Publishing AG, part of Springer Nature 2018
A. Appice et al. (Eds.): NFMCP 2017, LNAI 10785, pp. 1–15, 2018.
https://doi.org/10.1007/978-3-319-78680-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78680-3_1&domain=pdf
http://orcid.org/0000-0003-2868-7732
http://orcid.org/0000-0001-5542-2997
http://orcid.org/0000-0003-1502-2387
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and avoid adverse drug reactions (ADRs), especially in the situation of drugs
with a narrow therapeutic index, like antitumor factors. Thus the prediction is of
significant relevance in the clinical practice. DMET Affymetrix platform allows
investigating germline polymorphisms in a panel of ADME genes, to shed light
on the complex relationships between human genetics and drug response and
identify new predictive biomarkers to enhance treatment efficacy and safety, a
more exhaustive description is available.

Although such analysis is usually performed through statistical analysis, in
the following, we will consider analysis approaches based on data mining, i.e.
association rule mining. From a computer science point of view, the result of
a DMET experiment is a n × m matrix of alleles, where n is the number of
probes (n = 1936 in the current DMET plate) and m is the number of samples
(patients). Each cell of such table contains a string value including two alleles
symbols i.e. a1/a2, where a1, a2 ∈ Δ = {A,C,G, T,−}, Δ is the alphabet of
allowed symbols, see for instance Table 1 that reports a fragment of DMET
data. The alphabet contains only four symbols since, the DNA is composed
by nucleotides. Each nucleotide is composed of one of four nitrogen-containing
nucleo-bases Adenine (A), Cytosine (C), Guanine (G) and Thymine (T). A probe
is a specific region of the human DNA, and for the current version of DMET
microarray the DNA is splitted in 1936 different regions of investigation related
with the drug response. Subjects (samples or patients) under investigation are
arranged in columns. Thus, the i − th column will be represented the i − th
subject, and all the alleles (“A/G”, “T/T” and so on) are the detected allele for
the i − th patients in each probe.

Table 1. A simple DMET SNP microarray data set. S and P respectively refer to
sample and probe identifiers.

Probes Samples

S1 . . . SN

P1 G/A · · · T/T

...
... · · ·

...

PM G/A · · · T/C

Usually, the algorithms for the analysis of DMET data try to correlate the
presence of genomic variants to the phenotype of patients. Early approaches to
the analysis were based mainly on statistical approaches, i.e. DMET-Analyzer
[10] employed the well-known Fisher’s Test and several statistical corrections
such as Bonferroni or False Discovery Rate.

Although DMET-Analyzer has demonstrated its validity in several clinical
studies [3,4,7,11], DMET-Analyzer is not able to cope with multiple variants.
To overcome those limitations, we developed DMET-Miner, a novel methodol-
ogy for the simultaneous analysis of genomic variants in more than one gene.
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DMET-Miner employs the association rules mining methodology [12], a well-
known method in the data mining field. Despite the innovation introduced by
DMET-Miner, it presents some disadvantages due to the Apriori method i.e. the
generation of the candidate itemsets could be extremely slow and require a mas-
sive amount of main memory [13–15]. CHARM [16] is an efficient algorithm for
enumerating the set of all frequent closed itemsets. CHARM breaks the search
space into small independent chunks, that can be stored efficiently into main
memory making it efficient algorithm to analyze reasonably large databases.
CLOSET [17] is an efficient algorithm to mine closed itemsets. CLOSET uses a
FP-TRee structure to mine closed itemsets without generate candidate. Closes
itemsets are identifyed developing a single prefix path exploring a partition pro-
jection for scalable databases.

To avoid memory issues and to improve the computation of association rules,
we here extended the core of DMET-Miner by implementing a modified FP-
Growth algorithm able to deal with SNP data efficiently and we implemented it
into a new software named GenotypeAnalytics.

The main advantage of FP-Growth concerning Apriori is that FP-Growth
does not need to generate a candidate set and it needs to read the input data-set
only twice, as opposed to Apriori that reads the input data-set on each iteration.
The improvements in terms of memory requirements, as well as computational
time introducing by FP-Growth, are evident compared to Apriori as showed in
[18]. Moreover we used FP-Growth algorithm because we are not interesting
in closed itemsets. Closed itemsets are subsets of frequent itemsets, which are
discovered when reducing the learning time is more important then reducing the
memory usage. However, limiting the memory usage is not an issue in this study.

GenotypeAnalytics improves the performances of DMET-Miner by using
optimised data structures that give good performance results in rule extrac-
tion also with massive DMET datasets. Also, GenotypeAnalytics can extract
relevant knowledge by computing frequent item-sets efficiently as well as mining
association rules [19] that link allelic variants in more than one probe with the
health status of patients (e.g. subjects responding or not responding to drugs).
The paper is structured as follows: Sect. 2 discusses the related approaches,
Sect. 3 introduces the problem, Sect. 4 discusses the proposed algorithm and
its implementation, Sect. 5 presents some experimental results, Sect. 6 concludes
the paper.

2 Related Work

Existing approaches of analysis of DMET data, span from the preprocessing
of raw data, e.g. Affymetrix-power-tools, Affymetrix-DMET-Console, to the
variants correlation of different patient conditions, e.g. DMET-Analyzer [10],
Cloud4snp [20], coreSNP [13], DMET-Miner [21], and OS-Analyzer [22].

– The apt-dmet-genotype software of the Affymetrix Power Tools suite, or the
DMET Console platform [23], generally allows only the sequential prepro-
cessing of binary data and simple data analysis operations. In particular,
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apt-dmet-genotype is a collection of command line programs for analysing
and working with Affymetrix microarray data. Whereas, DMET-Console is
software tool comes with graphical user interface (GUI) easier to use in order
to analyse the intensity data to determine the genotype for each marker. Both
programs are generally focused on CEL file analysis. CEL files containing the
amount of mRNA produced during the hybridization process.

– DMET-Analyzer [10] is a software platform for the automatic statistical anal-
ysis of DMET data that employs the well-known Fisher test and several
statistical corrections such as Bonferroni or False Discovery Rate. Although
DMET-Analyzer has demonstrated its validity in several clinical studies
[3,4,7,11], DMET-Analyzer is not able to cope with multiple variants, and it
is not able to group all of them in a single, easy to understand, and biologically
relevant information.

– Cloud4SNP is the Cloud-based version of DMET-Analyzer. Cloud4SNP has
been implemented on the Cloud using the Data Mining Cloud Framework
[24], a software environment for the design and execution of knowledge dis-
covery workflows on the Cloud [25]. Cloud4SNP allows to statistically test
the significance of the presence of SNPs in two classes of samples using the
well known Fisher test. Cloud4SNP makes it possible to analyze SNP data
sets through a web browser.

– coreSNP is a tool implemented by using Java language, for parallel pre-
processing and statistical analysis to cope with high dimensional DMET data
sets, deriving from the screening of population. The scalable implementation
based on multi-threading allows coreSNP to manage huge volumes of phar-
macogenomic experimental. The automatic association analysis among the
variation of the patient genomes and the clinical conditions of patients by
implementing the well known Fisher’s test, e.g., the different response to
drugs.

– DMET-Miner is a software tool for the extraction of association rules that
correlate the presence of a series of allelic variants with the clinical condi-
tion of patients, for example, the combination of alleles typical of a class
responsible for the different response to drugs. DMET-Miner incorporates a
customized SNPs datasets preprocessing approach based on a Fisher’s Test
Filter to discard the trivial transactions, decreasing the search space from
which to build many independent FP-Tree. DMET-Miner thanks to the sim-
ple and intuitive graphic user interface, it is a software tool easy to use where
specific skills are not necessary to easily extract multiple relations between
genomic factors buried into the data sets.

– OS-Analyzer is a software tool for the computation and visualization of
Overall Survival (OS) and Progression Free Survival (PFS) curves of can-
cer patients and evaluate their association with ADME gene variants. OS-
Analyzer is able to perform an automatic analysis of DMET data enriched
with survival events. Moreover, results are ranked according to statistical sig-
nificance obtained by comparing the area under the curves that is computed
by using the log-rank test, allowing a quick and easy analysis and visualization
of high-throughput data.
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To overcome limitations of the analysis, we developed DMET-Miner, a novel
methodology for the simultaneous analysis of genomic variants in more than one
gene. DMET-Miner uses on the association rules mining methodology [12], a
well-known method in the data mining field. Despite the innovation introduced
by DMET-Miner, it presents some disadvantages due to the Apriori method.

3 Problem Statement

DMET datasets are represented as a m × n SNP DMET table. In particular,
m is the number of probes (in the current version of the DMET chip is equals
to 1936), whereas n is the number of subjects (patients) gathered for the class
of membership i.e. Healthy and Diseased or responding and not responding to
the drug. Each element (i, j) of the table contains the allele recognised on the
ith probe and at the jth sample. An example of synthetic SNP DMET dataset
randomly generate is reported in Table 2.

Table 2. A simple DMET SNP microarray data set. S and P respectively refer to
sample and probe identifiers.

Probes Samples

S1 S2 S3 · · · SN

P1 G/A A/G A/G · · · T/T

P2 G/A A/G A/G · · · T/C

...
...

...
... · · ·

...

PM G/A A/G A/G · · · T/C

To extract relevant rules, we need to convert the input DMET data set
into a transaction database. The input DMET data needs to be converted in
a more suitable data structure to mine association rules. This transformation
is mandatory since the data in the current form are not suitable to mine AR.
Indeed, it is not possible to treat all the SNPs in the table in the same way
because SNPs are different even if have the same name. Only SNPs detected in
the same probe can be considered the same. The conversion of DMET data set
includes the following steps:

– Loading, Filtering and Transposing the input DMET dataset (let see e.g.
Table 2), obtaining a n × m table of alleles named AllelesTable AT (see
Table 3). In this way, each row of the AT contains a transaction and related
items. Table 3 shows the transformed matrix AT for the input dataset of
Table 2;

– setting-up the desired value minsupport and confidence. Support and confi-
dence are used to filter out rules that have support and confidence lower than
the chosen minimum support and confidence respectively;
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– Table 3 is then used to extract frequent itemsets;
– Finally the biological interpretation of extracted rules.

Table 3. The AllelesTable AT obtained transposing the input DMET microarray
dataset. S and P respectively refer to sample and probe identifiers.

Samples Probes

P1 P2 · · · PM

S1 P1-G/A P2-G/A · · · PM -G/A

S2 P1-A/G P2-A/G · · · PM -A/G

S3 P1-A/G P2-A/G · · · PM -A/G

...
...

...
...

...

SN P1-T/T P2-T/C · · · PM -T/C

To explain the overall process, we here recall some main concepts.
Let I = {i1, i2, . . . , in} be a set of items (alleles), where an item is identified by a
specific SNP into a cell (i, j) of AT . Let T be the set of transactions, formally a
transaction over I is a couple T = (tid, I), where tid is the transaction identifier,
and I is an item or item set. The number of items present in a transaction is
defined as transaction width. For example, if a transaction comprises 5 items,
then its width is equal to 5, whereas a transaction with 10 items has a width of 10.
A transaction Tj contains an item set J , if J is a subset of Tj , this is J ⊂ T . Let
D = {t1, t2, . . . , tm} be a set of transactions, called DMET-Dataset D hereafter.
Each transaction in D is identified by an unique ID of the corresponding sample
or patient.

Now we may start the mining phase by performing the following steps:

1. prune all the items that present a support value lower than the specified
minimum frequency threshold.

2. add all the frequent items to the FP-Tree.
3. mine association rules from the FP-Tree.

The power of frequent item sets extraction concerns with the ability to dis-
cover interesting relationships hidden in large data sets. This feature relies
on a fundamental property of the item set also known as Support. Support
refers to the number of transactions that contain a particular item or item
set. Formally, the Support S(·) of an item X, S(X) can be defined as follows:
S(X) = |{∀ti ⊂ X∧ti ∈ T}|, where |·| denotes the cardinality of the set. In other
words, S(X) is the fraction of transactions in T containing the item/item-set X.

Association models extract rules that express the relationships among items
into frequent item sets. We are aimed at finding regularities among SNPs in
the DNA, more specifically, to find a set of SNPs that are frequently together
that may be related to the disease growth or to the adverse drug reactions. For
example, a rule belonging to the frequent item sets composed by the following
elements {A/A,G/C,C/T}, might be stated as: IF (A/A ∧ G/C) THEN C/T
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and, can be read as: if A/A and G/C are included in the transaction, then C/T
likely should also be included, since related to the disease under investigation.

4 The Optimised FP-Growth Algorithm
of GenotypeAnalytics

This section illustrates the core algorithm of GenotypeAnalytics and its opti-
mizations used to reduce the space search and to minimize the number of mined
association rules. The goal of GenotypeAnalytics given a SNPs dataset D is
to discover all the frequent patterns above a user support threshold named
minsupport (Minimum Support).

Before converting the input dataset in a transaction database, GenotypeAn-
alytics tries to reduce the search space through a suitable preprocessing method-
ology able to decrease the number of possible transactions. The preprocessing
method is based on the use of the well known Fisher’s Test as a filter, which
allows removing all statistically insignificant rows. The Fisher’s Test makes it
possible to evaluate whether the proportions of one variable (SNP) depending
on the value of the other variables (SNPs). Thus, Fisher’s exact test will tell
whether the difference between all the possible couples of SNPs are statistically
significant. For example, the null hypothesis is that the probability of becoming
cured is the same whether a subject is treated with drug-A or drug-B (for a
more exhaustive explanation let consult [21]). Discarding these rows does not
lead to lose useful information, but rather allows us to improve the mining of
the association rules, avoiding to introduce further biases.

After the filtering step, the resulting table is transformed into a transaction
database. Such transformation is necessary since the extraction of frequent item
sets is more efficient with this data format. Alleles of different probes sometimes
have the same name. Therefore, we modified the variables adding information
related to the probe to which each allele belongs using the following notations
(i.e. X.A/A and Y.A/A, in this example X and Y are two different identifiers of
probe, making it possible to distinguish that the two SNPs A/A are different,
because detected in two different genomic regions).

The resulting table is stored in a data-structure called Transaction DB (TDB
hereinafter). In the TDB the transaction id (TID) is the entry of the table and
the matching items set (value) are encoded into hash-set using a hash-function.
Thus, it is possible to compress the items as well as, to ensure constant time
for standard operations such as: inserting, deleting and searching items in the
hash-set.

Despite the preprocessing phase of the input dataset, the number of items
that compose the TDB is too large to be directly contained into the main mem-
ory. Thus, a further compression step is necessary in order to better manage
the mining of association rules. For this reason, we decided to implement a cus-
tomized version of the FP-Growth algorithm, able to deal with SNPs data. The
FP-Tree, allows storing the TDB in a compressed form into the main memory
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named FP-Tree. The FP-Tree keeps track of the same item contained in differ-
ent transactions by connecting the prefix tree nodes indicating the same item
into a frequent items list. The mining of the associative rules is done using a
Depth-First-Search, (DFS, in short), sorting in descending order the items in
each transaction. The reason behind this choice is that the average size of the
conditional TDB tends to be smaller if the items are processed in this order.
Moreover, the order of the items influences only the search time, not the result
of the algorithm.

The GenotypeAnalytics core algorithm needs to scan twice the TDB. The
first pass is necessary to discover the frequency of each item I into the TDB for
which S(I) ≥ minsup and sort the items according to their descending frequency.
The second TDB scan is necessary to delete the items for which the support
is S(I) < minsup. Sorting the items in descending order of frequency allows
to further compress the FP-Tree by limiting the number of different possible
prefixes. Now all the items into the TDB can be mapped on the FP-Tree.

The mapping is performed by means of support-update and node-creation
functions. If during the mapping, the current element in the transaction matches
the current element in the FP-Tree the function support-update, which updates
the support of the current node, is invoked (increasing the occurrence of the
current node). Whereas, if the current node in the FP-Tree and the current node
in the transaction do not match the function node-creation is called. The node-
creation function starting from the current item creates a new node, adding it as
children of the current FP-Tree node. The other items in the current transaction
are appended as children of the last created FP-Tree node, as shown in Fig. 1.
The creation of FP-TREE is an iteratively process that ends when there are no
more transactions contained into the TDB.

Finally, association rules are mined by using a recursive methodology of Tree
visiting, in particular, we defined an inverted DFS (Deep First Search) scan
method to explore the FP-Tree. Algorithm 1 reports the pseudo code of the
GenotypeAnalyzer core algorithm.

5 Performance Evaluation

In this section, we present the performance evaluation of our version of the
FPGrowth algorithm compared to the FP-Growth algorithm available in SPMF,
an Open-Source Data Mining Library [26], and the version proposed in [27].
Experiments have been ran on the same data sets, namely “Vote.arff”, “Super-
market.arff” and a synthetic “DMET-SNP” data set. Table 4 reports the charac-
teristics of the three datasets. To provide an unbiased comparison, we employed
biological and non-biological datasets as a benchmark to test the association rule
mining capability of each tool. In this way, we can highlight the capability of
GenotypeAnalytics to mine association rules by analysing biological datasets as
well as by analysing general datasets. We have to use a synthetic DMET-SNP
dataset because at the moment of writing a real dataset was not be available.
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Fig. 1. Support-update and node-creation functions. When the item AM 3 − A/A
in transaction id1 is added to the tree, it is necessary to just update its support by
increasing it through the support-update function. support-update is invoked for all the
remainder items in this transaction (let see Fig. 1(a) and (b)). When item AM 11−A/A
has to be added, the function node-creation is invoked because there is not match
between the current item and the current node in the tree; any other item in transaction
id2 is added as child of the node AM 11 − A/A (let see Fig. 1(c)).

Table 4. Datasets used for the experiments.

Dataset name Number of rows Number of attributes

Vote 435 17

Supermarket 4627 217

DMET 1936 1000

A real DMET-SNP dataset has to be prepared in wet-laboratory by the clin-
ical unit after collected human samples from patients enrolled in a study and
analyzed by microarray.

As proof-of-principle, we report the performance evaluation results of all
the FP-Growth implementations. All the experiments have been executed on a
machine equipped with a Pentium i7 2.5 GHz CPU, 16 GB RAM and a 512 GB
SSD disk. The reported execution times refer to average times; each value has
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Algorithm 1. FP-Growth Core Algorithm.
Require: SNP DMET data set D

1: for all rows ∈ T
′
do

2: if (rowsDistribution ≥ Thr) then
3: pvalue ← computeF isherTest(row)
4: if (pvalue > σThr) then
5: remove(row)
6: else
7: TDB ← convert(row)
8: end if
9: end if

10: end for

11: for all items ∈ TDB do
12: if item.freq ≤ minsupp then
13: TDB.remove(item)
14: else
15: update(frequentItemsList)
16: end if
17: end for
18: FPTree.add(frequentItemsList)
19: for all t ∈ TDB do
20: if t ∈ header of FPTree then
21: supportUpdate
22: else
23: nodeCreation
24: end if
25: end for

26: for all (item ∈ header of FPTree) do
27: cpb ← generate(item, FPTree)
28: while cpb = ∅ do
29: if cpbnodefreq < minsupp then
30: remove(cpbnode)
31: end if
32: end while
33: end for

been computed repeating 10 times the experiments with the same settings. In
this way, it is possible to ensure that the results are comparable.

Figures 2, 3 and 4 convey the execution times obtained analyzing the data
sets by the three different implementation of the FP-Growth algorithms. All the
execution times are obtained by varying the minimum support values. The solid
black line refers to our implementation of the FP-Growth algorithm, the dashed
green line refers to the FP-Growth version available in SPMF, and finally the
dash-dot red line refers to the FP-Growth version proposed in [27].

All these implementations of FP-Growth show good performance on the clas-
sical Vote and Supermarket data sets. Our implementation of FP-Growth does
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Fig. 2. Execution times of various implementations of FP-Growth algorithm on the
Vote data set. The execution times are obtained by varying the value of minimum
support. (Color figure online)
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Fig. 3. Execution times of various implementations of FP-Growth algorithm on the
Supermarket data set. The execution times are obtained by varying the value of mini-
mum support. (Color figure online)

not present many differences compared to the other two methods, showing very
similar performance to those of other tools, with the exception of the synthetic
SNP data set. Here the results of the other two methods were beaten with an
appreciable margin by our implementation of FP-Growth, as our version of FP-
Growth is highly optimized to dig with SNPs data, thus clearly performs best.
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Fig. 4. Execution times of various implementations of FP-Growth algorithm on the
DMET-SNP data set. The execution times are obtained by varying the value of mini-
mum support. (Color figure online)

A rules mined by using GenotypeAnalytics is:

– AM 13459 T/C:34, AM 13464 C/A:34, AM 13465 C/T:35;

After translating the rule by using the GenotypeAnalytics probe converter
function, it is easier to analyze the mined rule.

Table 5. Translated rule.

Probe ID DMET
detected allele

Gene name Chromosome Functional consequence

AM 13459 T/C UGT2B7 rs7668258 intron variant, upstream
variant 2KB

AM 13464 C/A UGT2B7 rs7438284 synonymouscodon

AM 13465 C/T UGT2B7 rs7439366 missense

A possible approach to explain the rule extracted from the synthetic dataset
could be the following. In the translated rule (see Table 5); it is worthy to note
that all mutations refer to the same chromosomes, affect the following functional
consequences. The intron variant in the chromosome “rs7668258” is due to the
presence of “T/C” SNP. Intronic variants might affect alternative splicing of
the mRNA, or change the level of gene expression. Upstream variant refers to
the transcription direction, by convention upstream is toward the 5′ end of the
coding strand. The “C/A” allelic variant into the chromosome rs7438284 affects
the synonymous codon functionality. Synonymous codon functionality defines
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the insertion of the same amino acid, differing in its decoding characteristics.
Finally, an allelic variant in the chromosome rs7439366 might be produce a
missense in a codon, coding for a different amino acid. Thus researchers could
spur easily light in the dynamics that govern the hidden interactions among
genes, governing the cellular cycle.

6 Conclusion

Analysing genotyping datasets presents various challenges due to the huge vol-
umes of data and due to the specific characteristics of SNPs data. Thus, using
general purpose data mining implementation is not feasible and for this reason
we implemented GenotypeAnalytics, a specialised association rule mining system
able to mine association rules from DMET genotype data. It includes an opti-
mised version of the implementation of the FP-Growth algorithm. Preliminary
experiments show how our solution outperforms off the shelf implementation of
FP-Growth. As well as, GenotypeAnalytics makes easy to analyse SNP datasets
without to be necessary to have powerful computers that are expensive and
require a lot of maintenance to work properly. Moreover, the association rules
provided by GenotypeAnalytics are easy to read and understand, highlighting in
a remarkable way for the researchers, which are the multiple variants associate to
the particular condition under investigation. As future work, we will investigate
automatic methods to rank the extracted rules on the basis of their biological
significance and memory by using real DMET dataset in the oncology field.
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Abstract. Speech remediation by identifying those segments which take
away from the substance of the speech content can be performed by cor-
rectly identifying portions of speech which can be deleted without dimin-
ishing from the speech quality, but ratherPierre improving the speech.
Speech remediation is especially important when the speech is disfluent
as in the case of stuttered speech. In this paper, we describe a stuttered
speech remediation approach based on the identification of those seg-
ments of speech which when removed would enhance speech understand-
ability in terms of both speech content and speech flow. The approach we
adopted consists of first identifying and extracting speech segments that
have weak significance due to their low relative intensity, then classifying
the segments that should be removed. We trained several classifiers using
a large set of inherent and derived features extracted from the audio seg-
ments for the purpose of automatic improvement of stuttered speech
by providing a second layer filtering stage. This second layer would dis-
cern the audio segments that need to be eliminated from the ones that
do not. The resulting speech is then compared to the manually-labeled
“gold standard” optimal speech. The quality comparisons of the resulting
enhanced speeches and their manually-labeled counterparts were favor-
able and the corresponding tabulated results are presented below. To
further enhance the quality of the classifiers we adopted a voting tech-
niques that encompassed an extended set of models from 14 algorithms
and presented the classifier performance measures from different voting
threshold values. This voting approach allowed us to improve the speci-
ficity of the classification by reducing the false positive classifications at
the expense on additional false negatives thus improving the practical
effectiveness of the system.
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1 Introduction and Background

Quality of life is negatively impacted when individuals are chronically unable to
express themselves due to lack of speech fluency. Stuttering, also referred to as
stammering, is a condition that is exhibited in bad fluency of speech. The onset
of stuttering generally occurs during childhood years, and in one fourth of cases
this speech impediment persists throughout life [8,11].

Automatic speech disfluency detection offers many advantages, ranging from
time saving, constant speech monitoring, reducing the subjectivity of manual
disfluency identification [5,9] as well as a more effective automatic speech recog-
nition. Therefore, the identification of “episodes” of stutter will offer firm and
actionable information [3–5]. Reliable identification of speech segments, from
the beginning of episode to the end of episode, with pauses, blocks, interjec-
tions and hesitations will allow speech cleanup by ridding the speech of the
blocks, and interjections, smoothing the hesitation segments and shortening the
prolongations [6,7,10].

The state of the art is rich with papers which describe various prosodic- and
semantic-based machine learning approaches and algorithms for the detection of
disfluent speech [1,9,11–13]; however, research work addressing disfluent speech
remediation is considerably less common. Stuttered speech is difficult to listen to;
our assumption in this research work is that speech clarity will be significantly
improved by eliminating those segments. As a result the listener will more intent
on listening to the speech.

To confirm the assumption that undesired speech segment removal enhances
speech quality, we ran a script that eliminates audio segments with low intensity
levels using varying intensity thresholds and segment durations. This resulted in
an unquestionably clearer and more intelligible audio compared to the original
speech. That being said, automatically detecting and removing these potentially
undesired segments, resulted occasionally in discarding the wrong segments. For
that reason, we introduced a second layer of filtering stage when the potentially
undesired segments are further classified into true undesired, which would need
to be discarded; and false undesired, which would need to be retained.

The complexity in this paper arose from the need to take into consideration
various overlapping multi-threshold data samples. Also, we devised a labeling
process which reduces the effort required during the labeling process. We feel
that the proposed adaptive data collection and processing method paves the
way and lays a sound foundation for successful treatment of future and similar
multi-perspective [15] data collection and classification challenges.

In this paper, we discuss one certain type of stuttered speech remediation;
remediation in the form of undesired speech segments removal. In the next
section, we present an algorithm to enhance the stuttered speech quality by elim-
inating the speech segments that contain stuttering blocks, which are defined as
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the segments [14] of audio in which the person who stutters is unable to produce
clear sounds. Furthermore, unwanted segment elimination provides the listener
with yet another benefit; that is, the speech is shortened (up to 60% reduction)
without speeding up individual syllables.

Eliminating disfluent segments of speech requires identifying those segments
which do not add any value to the speaker’s message. Our algorithm first iden-
tifies and creates sound files of those segments that have the distinct potential
of being undesired in the speech through linguistic intensity and length analy-
sis; detailed explanation will be provided in Sect. 2. Next, the set of potentially
undesired audio segments are listened to in order to determine whether they
have semantic value or not, and to determine whether they must be deleted
or retained accordingly. The final output of the speech audio file, after remov-
ing the segments that were manually-labeled true undesired, will represent the
“gold standard”. The “gold standard” speech is later used to measure the per-
formance of the trained classifier. There are two vital reasons for the phase in
which the potentially undesired segments are manually labeled; the first reason
is to generate the optimal speech that will be used to evaluate our enhanced
stuttered speeches, and the second reason is to generate the true undesired and
false undesired segments used to build our classifier.

The dataset of speeches that we used was obtained from the UCLASS series
of recordings. UCLASS, which stands for the University College London Archive
of Stuttered Speech, is a database of stuttered speech recordings with individual
speech and speaker metadata. UCLASS contains a collection of over one hundred
speeches from which we chose fifteen for our research study.

The approach that we followed was to begin by scanning each speech for
potentially stuttered segments according to varying intensity thresholds and
lengths of audio segments. Every potentially undesired extracted segment is con-
sidered a candidate for removal because of the selection criteria used; however,
in numerous cases, the candidate segment may contain semantic speech and
therefore should not be omitted from the original speech. Determining which
candidate segments are truly undesired candidates and which segments are not,
is done through a classification system that was trained by providing it with
manually-labeled true undesired and false undesired segments that were col-
lected beforehand.

The features that are used in the classifier training include data extracted
from both the frequency domain such as voice formants and pitch, and from the
time domain such as intensity. In addition to that, a combination of speaker and
speech metadata are also used to improve the trained classifier; a more elaborate
description of the list of features will be presented in the next section.

The difference between the quality of the “gold standard” of a given speech
compared to the quality of an enhanced speech after having every potentially
undesired segment being classified is used to evaluate the quality of our system.
The results with respect to classifier performance are tabulated in the findings
section according to the extraction parameters. Process efficiency improvements
were created to minimize manual labeling effort as well as segment deletion
redundancy.
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As we remove speech portions we must be careful to avoid deleting good
content i.e. we are quite reluctant to remove segments carrying meaning. We
consider such mistakes more detrimental to the speech than not removing blocked
voice portions. In order to minimize the rate of mistaken speech segment removal
we doubled the number of classifiers and performed the classification according
to a threshold vote cutoff. Instead of a majority vote we selected multiple voting
proportion cutoffs, tabulated and graphed the outcome for the respective True
Positives, True Negatives, False Positives, False Negatives, Accuracy, Specificity,
and True Positive Rates. This exercise was instrumental in helping us decide on
a voting threshold which greatly reduces the number of wrong segment omissions
at a reasonable rate of increase in non removal of blocked speech segments.

2 Proposed Method

The method we adopted for this research consisted of selecting a set of speeches
to be examined from a group of disfluent speeches available from UCLASS.
UCLASS speeches exhibit a wide variety of speakers and stuttering conditions,
yet the vast majority of the speeches are distinctly stuttered and quite disfluent.
We selected fifteen speeches (roughly one hour of stuttered speech) as the foun-
dation for our research. Our goal in this research is to develop a system capable
of automatically analyzing stuttered speeches for the purpose of detecting unde-
sired segments and enhancing the overall speech quality through eliminating the
disfluent segments. In this work, we used a Praat script for initially detecting
potential candidate segment to be removed from the stuttered speech; the ulti-
mate goal of this research is to build a system able to distinguish true undesired
from false undesired for all candidate segments. Next, we provide an elaborate
description of the workings of the overall process.

2.1 Extracting Potentially Undesired Candidate Segments

Fifteen speeches from the UCLASS repository are selected as the stuttered
speeches of interest, each is scanned with a total of 8 segment extraction param-
eters. The extraction parameters determine what the sound intensity threshold
and the minimum duration of those segments should be. The minimum durations
that we used to iterate through our speeches are 0.6, 0.8, 1.0 and 1.2 s, and the
speech intensity thresholds are at 95% and 90% of the entire speech intensity
in decibels; for example, if the average intensity of a given speech is 50 db, then
the intensity thresholds that correspond to 95% and 90% are 47.5 db and 45 db,
respectively.

For each possible pair combination of segment duration and intensity thresh-
old (total of 8 unique combinations), the entire speech is scanned and the poten-
tially undesired candidates are detected according to the corresponding pair
combination. The minimum segment duration ensures that no excessively short
segments are extracted as potential candidates for deletion, which would disrupt
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the flow of normal speech and unfavorably affect the speech cadence. Note that
the extracted segments from each unique pair will not overlap, and that only
such overlapping is possible, and rather likely to happen, when examining seg-
ments extracted from different pairs. We provide a demonstration of how the
segments may look like in Fig. 1. For example, according to Fig. 1, extracting
potentially undesired segments from the fourth row (0.6 minimum duration with
95% intensity threshold) will result in three different segments (B, G, and K );
since segment B ’s length is 0.8 s, which satisfies the minimum duration threshold
for the third row, then the same segment will also be identified as a potentially
undesired segment on the third row; however, since the length of the segment is
not 1.0 s (or more), that segment will not be identified on the second (or first)
row in Fig. 1.

Fig. 1. Extracting potentially undesired candidate segments

Each extracted candidate segment results in a waveform audio file accom-
panied by five additional vectors that serve as the segment inherent features,
three out of which contain the values of formant 1, formant 2, and formant 3
and the remaining two vectors contain the pitch values and the intensity values.
All formants were computed with a 50 ms Gaussian analysis window with a 12.5
ms offset. The pitch values were taken at 10 ms interval and computed with the
Praat software algorithm which performs an acoustic periodicity detection on
the basis of an accurate autocorrelation method as described in [2]. The inten-
sity values were computed by squaring then convolving the sound values within
Gaussian analysis window of 50 ms length. The waveform audio files will be
later used for manually labeling the candidate segment, and the set of inherent
features (in addition to a set of derived features presented in Subsection 2.3) will
be used to build our classifier.
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2.2 Labeling Potentially Undesired Segments

Following the generation of the segment files, the labeling process is performed
to begin building the classifier and testing our dataset. The segment candidates
must be manually labeled as: (1) delete and analyze, these are denoted by G,
(2) leave in the speech and analyze, these are denoted by B, and (3) no analysis,
but delete from the speech, these segments of speech represent external sounds
such as when the interviewer was attempting to speak softly. We chose to exclude
these segments from the speech during cleanup because they showed no speech
disfluency but refrained from including them in the training dataset.

The “delete and analyze” labels (G) indicate that the sound is void of seman-
tic meaning and that we would like for our classifier to mark such segments as
“delete”, or as true undesired. The “leave in the speech and analyze” label is
used for sounds that were long enough and with low intensity yet the segment
sound contained semantic meaning and must not be removed from the original
speech; our classifier should label such segment as “retain”, or false undesired.
The “delete and do not analyze” label indicates that a segment is best deleted
from the speech but does not represent the type of sound that our classifier
must learn to recognize or take any action about; an common example would be
a segment containing the soft voice of the interviewer.

In an attempt to avoid redundant labeling efforts and minimize the number of
segments which must be manually reviewed, we have sorted the list of segments to
be reviewed such that if a segment s is marked “delete”, then all other segments
that are contained within s (start with, or after, s; and end when s ends, or
anytime before that) will also be marked as “delete”. The reasoning behind our
approach is that if some segment s is void of semantic meaning, then any other
segment contained in s must also be void of semantic meaning. Note here that
it is not the case that the opposite is true; given that some segment s contains
some semantic meaning, we cannot conclude that all other segments contained
in s must also contain semantic meaning. This approach has allowed us to reduce
review time by a factor of five.

We will use Fig. 1 to demonstrate the process explained above. The first step
is to sort all potentially undesired segments according to their start time, from
top to bottom. This means that based on Fig. 1, the list of candidate segments
will be sorted as follows: A, B, C, D, E, F, G, H, I, J, K, L, and M. The first
candidate segment to be listened to is A; if the segment A is marked as true
undesired (no semantic value), then all other subsets that are contained in A
are also marked true undesired, which are B and C. Similarly, if segment D is
labeled as true undesired, then segments E, F, G, H, and I are also labeled
true undesired. If however, segment D was marked as false undesired (contains
semantic value), then this only implies that segments E, F, and G are also false
undesired (since they are essentially the same as segment D), but we cannot
conclude that segment H nor I are also false undesired ; therefore, we would
need to listen to the two segments H and I to determine what the label of each
of them should be.
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The dataset used in our classification exhibited two possible class values:
G (positive), which meant that the candidate sound must be deleted; and B
(negative), which meant that the sound segment should not be deleted.

2.3 Building the Classifiers

In addition to the label feature, the dataset used to train our classifiers will con-
tain two additional types of features: (1) a set of derived attributes extrapolated
from the set inherent features, and (2) speaker and speech metadata [15]. The
inherent features that are associated with each candidate segment are formant
1, formant 2, and formant 3 (sampled at 50 ms intervals with the time step being
12.5 ms), pitch (sampled at 10 ms), and intensity (sampled at 8 ms). The derived
features that are used in our classifier training are all extrapolated from the
inherent features and will serve as a set of data-points that provide information
about the entire segment as opposed to an exact point in time (due to sampling).
We start by calculating the derivatives of each one of the five inherent features;
the reason for calculating the derivatives is to assess the variance of our inherent
features, which is vital for detecting stutter. Then, for each one of the inherent
features and their derivatives, we calculate the average, median, standard devia-
tion, percentiles (25, 50, and 75), minimum value, maximum value, peak-to-peak
amplitude measurement, and variance.

The speaker and speech metadata we included in our dataset consisted of
those data features provided with the UCLASS dataset; they consisted of the
following:

Speaker category metadata: Gender (M/F), Handedness (L, R, not known),
Past history of stuttering in the family, Age of stuttering onset, Age at the time
of recording, Location of recording (clinic, UCL, or home), Recording conditions
(quiet room or sound-treated room), Type of therapy received (family based
treatment or holistic treatment), Time between therapy and recording time,
Speaker had any history of hearing problems (Y/N), Speaker had a history of
language problems (Y/N), and Special educational needs (Y/N).

Speech category metadata: Background acoustic noise level (numeric), envi-
ronmental noise level (numeric), speaker clarity (numeric), interlocutor intru-
siveness (numeric).

The resulting dataset consisting of signal statistics, metadata, and labels
consisted of 126 features and was used to train eight different classifiers, each
for a unique pair combination of minimum duration and intensity threshold
(see Algorithm 1). Recall that the minimum duration threshold is the minimum
length of potentially undesired segments, and that the intensity (percentage)
threshold is measured by examining the averaged speech intensity. We used the
R ‘caret’package in order to streamline the classifier testing process and cover a
wide range of classifiers.
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Algorithm 1. Summary of our proposed algorithm

for every segment duration and intensity threshold pair do
extract potentially undesired candidate segments from a given speech;
manually label each candidate as true undesired or false undesired ;

end
training and testing phase;
for every segment duration and intensity threshold pair do

train a classifier using a portion of the labeled candidate segments;
test the remaining segments using the classifier built above;
evaluate the resulting labels by comparing them to the “gold
standard”;

end

There are three different courses of action for segments removal that are
examined in this research work, each producing a different level of stutter reme-
diation:

1. Remove all candidate segments without human intervention (this approach
does not require manual labeling).

2. Remove only the candidate segments that are manually labeled true undesired
(resulting speech is referred to by the “gold standard”).

3. Classify all candidate segments using our trained classifier, and only remove
the candidates that are classified true undesired.

Because of the speech intensity weakness during the episodes to be deleted
we were able to remove the segment minus 50 ms from the front both the front
and end of the episode without creating any perceptible sound discontinuities.

Each removal course of action yields a certain “enhanced” speech file; the
enhanced files are then examined and compared. Our goal is to build a classifier
that generates an audio file (course of action number 3) that is as close as possible
to the golden standard audio file (generated from course of action number 2).

In the case of speech remediation, it is more important to avoid deleting
semantically meaningful segments than to miss deleting semantically meaning-
less segments. In other terms, when evaluating our classifier performance, false
negatives (deleting what should not be deleted) should be considered more unde-
sirable than false positives (missing to delete segments which must be deleted).
The R classifiers that we trained and tested are C5.0, Neural Networks, Recur-
sive Partitioning, Random Forests, Polynomial SVM, and AdaBoost. In Fig. 2
below we show the process flow starting at the top left Extraction of the can-
didate segments followed by two independent paths (1) Feature extraction and
(2) Labeling ; the results of the two flows provides the digital signal processing
predictors and manual label results which will be combined with the metadata
to create the complete dataset.
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Fig. 2. Depiction of our proposed method

2.4 Practical Classifier Enhancement

We mentioned the impact of removing block episodes throughout the paper and
established the detrimental effect of removing episodes which are not truly bad.
In this section, we will revisit the segment removal concept as it pertains to the
optimization of speech repair.

The benefits of the identification and removal of blocked segments is multi-
fold; the listener benefits in a multitude of ways:

1. He/she does not hear spurious sounds which provide no meaningful lexical
content to the recording.

2. The flow of the recording is conducive to a smoother listening experience
because of increased fluency.

3. The speech is shortened thus reducing speech length.

The speaker benefits also, we list two such advantages:

1. By listening to the repaired speech, he/she acquires the confidence that some
prosodic speech repairs will greatly improve the message delivery.

2. The speaker can listen to the message on the merit of its meaning instead of
style thereby focusing on the core semantic components of the recording

Original, pre-repair speeches are qualitatively weak, yet their prosodic and
lexical content is uncompromised. If sought indiscriminately, the benefits listed
above could compromise the speech where meaning loss is incurred due to the
repair process.
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The aim of the described system enhancement is to generate a speech which is
superior in practical usability without the collateral damage of lexical component
resulting from removing segments that were not supposed to be removed.

The reason for remedy optimization is to ensure that as little meaning loss
as possible is caused thanks to the intervention from our proposed process. To
this end, we remain cognizant that meaning loss is more “detrimental” to the
message conveyed by a recording than the inconvenience of hearing unnecessary
blocks of speech. By more detrimental we mean that we would prefer to retain
stutter speech episodes if eliminating them means losing other lexical content.
Therefore, we will explore the options available to us which help with the reme-
diation process without cognitive meaning compromise. The level of tolerance to
collateral lexical damage incurred from our remediation approach and attempts
to improve a message prosodic quality must be carefully considered.

In the following remedy improvement discussion, we will use classifier pre-
diction confusion matrix results and derived measurements to help frame the
proposed solution qualitatively, and quantitatively.

Table 1. Confusion matrix

The confusion matrix Table 1 provides general measurements which apply
to classification prediction models. We will describe the confusion matrix and
measurements as they relate to our proposed remediation environment in general
and the improvement covered in this section.

In Table 1 the prediction outcome corresponds to the segment evaluation in
our classification, column p represents a segment evaluation of positive; a positive
evaluation means that a sound episode which was extracted as a candidate for
removal is evaluated as a blocked utterance segment and must, according to our
classifier prediction, be removed from the speech.

The n column in the Table 1 confusion matrix represents a candidate speech
episode which was presented as candidate for deletion, but the classifier predic-
tion evaluated it to be a segment with lexical content and therefore, the classifier
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indicates that it must be retained in the recording. The negative (n) column will
be used to denote candidate speech episodes which were presented as candidates
for deletion, but the classifier predictions evaluated them to be segments with
lexical content and therefore, they should be retained in the recording. So, p
means that a classifier suggests a segment must be removed and n indicates that
a classifier judged a segment as negative for removal and thus it must remain
in the recording. The actual value rows consist of the results obtained from the
manual segment labeling effort. Manual labeling is assumed to provide accurate
results, and True or False according to that assumption.

The p′ row represents a speech extracted candidate segment which, when
manually reviewed, was labeled as a blocked stutter segment and contained no
lexical meaning. If we had a perfect candidate extraction system, all p′ segments
would be predicted as such by our classifier(s) and consequently removed.

The n′ row represents speech candidates presented for removal considera-
tion but when manually reviewed they were labeled as lexically meaningful and
therefore should ideally be excluded from the list segments to remove from the
speech.

The matrix cells are represented by four squares: True Positive, False Positive,
False Negative, True Negative at the intersection of the actuals and prediction.

True Positive represents the number of candidate segments that were man-
ually reviewed and determined to be of no value to the speech and evaluated
by the trained classifier model as “bad”, lexically void, segments. This is a case
where both the actual/manual accurate values and the classifier predicted values
agree.

True Negative represents the number of speech segments manually labeled
as lexically meaningful hence they should be retained; and, consistently, these
segments were classified as lexically meaningful by the trained model. This, also,
is a prediction outcome that agrees with the actual value of the segment.

The True Positive and True Negative cells represent the desired outcome and
pose no concern; if all our samples fell in these two categories we would consider
our classifier to be performing in an absolutely optimal way.

A False Negative, means that the segment is manually labeled devoid of
lexical meaning (e.g. “Positive”) but the trained classifier was not able to detect
that and as a result it assigned it a class of Negative, thus a disfluent segment,
and it will be left in the recording and no repair will be performed.

The False Positive classifications occur when the manual, accurate, label
indicates that the candidate segment is a negative segment implying that the
segment contains semantic meaning, yet the classifier indicates that the segment
should be deleted. The False Positive cells count represents the total number of
samples that fell in that category at time of prediction. These False classifications
cause a loss of speech semantic content.

The False Negative and False Positive cells in the confusion matrix represent
predictions for which we want to insightfully fine tune our model classification
capabilities, thereby improving the practical usability of our classifier.
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False Positive conditions lead to speech content compromise due to removal
of speech parts which contain semantic information. False Positive mistakes are
fundamentally detrimental to the message and should be avoided if possible,
albeit at a price. Avoiding a False Positive means that we will incur additional
False Negatives; it is a trade off because the classifier is generally tuned to
minimize the total number of misclassification thus maximizing accuracy. One
can assume that by further tuning the classifier to minimize the total number of
False Positives would result in adding proportionately more False Negatives.

Deciding on our level of tolerance for lexical loss is of central importance
to the repair we propose. How many bad episodes are we willing to leave in a
recording to avoid losing a good segment is an essential question to the work
body of this research. Namely, how many false negatives would we be willing
incur to avoid one False Positive.

To realize our tolerance for False Positives, we consider the False Positive
Rate (FPR), False Negative Rate (FNR) and Accuracy. False Positive Rate
(FPR) represents the percentage of Negative samples that were classified posi-
tively relatively to the total number of Negative samples.

The lower our FPR is, the less mistakes our classifier would have made in
classifying segments for removal when those should have been retained in the
speech. Therefore, we would like the FPR to be as low as possible; and since we
would like to compare our measures to the accuracy which ranges between 0 and
100%, we will consider Specificity (SPC) instead of FPR (SPC = 1 − FPR).
When working with SPC we would aim to maximize SPC to a value as close to
100% as possible.

Also we will consider the False Negative Rate (FNR). FNR is the percentage
of samples classified as negative when the actual class is Positive; these are
segments that must be deleted, however our classifier has classified them for
retention. These mistakes are not as damaging to the speech and will have a
lesser priority. We would be willing to trade multiple False Negatives for one
False Positive. For ease of comparison with Accuracy and Specificity, we will
be considering the True Positive Rate (TPR = 1 − FNR).

There are multiple ways to perform classifications that tilt the balance in
favor of more False Negatives than False Positives (or the opposite).

1. Cost based training: Train individual classifiers by placing a higher penalty on
False Positives (FP ) than False Negatives (FN) thus creating models which
are less prone to FPs.

2. Sampling technique: During the classification inflate the number of positive
samples in the training sets by using same Positive samples multiple times,
thereby resulting in a higher count of Positive samples. This approach, also,
creates classifier models with higher sensitivity to FP than to FN classifica-
tions.

3. Probability cutoff: During training adjust the probability cutoff for classifier
models to favor minimizing False Positives as opposed to being optimized to
minimize both FNs and FP s combined.
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4. Voting consensus: One could also rely on a voting approach where one would
take pre-trained classifiers and use a consensus among multiple classifiers to
determine a final class.

Because we had many tuned and trained classifiers ready for use, we chose
the fourth approach and experimented with a voting mechanism that utilizes all
classifier results to consider collectively, and reach an optimal FPR. We chose to
devise a voting mechanism that utilizes the result of 14 classifiers to extract a
subset which, when combined, provided all we needed to perform the next steps.

In this case, we chose to vary a percentage of votes threshold as the method
to decide whether a segment should be classified Positive or Negative, i.e. Delete
or Retain a segment. In preparation of the dataset, we averaged the results of
all classifiers and varied the decision cutoff threshold to classify every sample as
Positive or Negative.

For this experimentation, we used the models that were trained and tuned
within the ‘caret’package with a balanced dataset described in prior sections.
The results from the models are combined with the actual label which consists
of 15 columns; one actual class (e.g. the manual label) and the 14 classifiers
results.

We used the resulting table of 15 columns to evaluate the impact of changing
the voting threshold on the Specificity (SPC), True Positive Rate (TPR) and
Accuracy. As previously stated, because false positives are especially detrimental
to the remediation process, we wanted to maximize SPC while maintaining
acceptable Accuracy and TPR levels. To make FP s less frequent, we intuitively
expected that the higher the majority vote requirement we impose on the votes-
based classifier, the less FP s (e.g. High SPC) we will end up with.

As shown in Table 2 we varied the voting threshold (Θ) to range from 14/14
to 1/14, where Θ denotes the number of classifiers needed to classify a segment
s as Positive. This means that if Θ is set to 14/14 (leftmost row in Table 2), the
audio segment will be classified as Positive if all 14 classifiers vote Positive; if Θ
is set to 13/14 the audio segment will be classified as Positive when 13 or more
classifiers vote Positive etc.

In addition to True Positive, True Negative, False Positive, and False Nega-
tive totals, we measured the Accuracy rate, Specificity, and TPR corresponding
to each of the 14 voting threshold results. As can be shown by Table 2, our initial
intuition that to minimize FP s we must use higher threshold was confirmed.

The analysis of Table 2 leads to the observation that there is a reverse cor-
relation between FP and FN . A close review of Accuracy (Accu), SPC and
TPR shows the best Accuracy results (97.81%) to occur at Θ = 12/14 but the
nature of our speech remediation prefers lower FP classes even if there is a rela-
tively larger increase in FN classifications. By considering Θ = 13/14 we lower
the FP values from 19 to 6, namely, we end up with 13 less instances where
we remove an episode which contains actual meaning; while increasing the FN
classifications from 23 to 43 thereby increasing the number of stutter blocks that
remain in the speech by 20. So, we choose to trade 13 FP s for 20 FNs and left
20 blocks in the recording.
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Table 2. TP, TN, FP, FN with specificity, TPR, accuracy

Such a trade off is reasonable when considering the high negative impact False
Positives have on a recording and we find that varying a voting cut off threshold
brings considerable improvement to the overall practicality of our system.

The effect of moving the Θ threshold is further illustrated in Fig. 3 where
the line graph depicted over a narrow range of Θ (14/14 to 7/14) and a narrow
range of Specificity, TPR and Accuracy (70% to 100%) visually magnifies the
impact of Θ and helps us confirm the soundness of our decision to use a Θ value
of 13/14.

3 Experiments and Results

Our approach proved to be effective in eliminating the vast majority of voice
blocks when applied to stuttered speech. The results of disfluent speech remedi-
ation consisted of the elimination of anomalous speech and a reduction in speech
length between 60% for the most severe stuttered speech to about 25% for mildly
stuttered speeches.

The effectiveness of our remediation process is highly dependent on the
threshold of the speech intensity tolerance during the potentially undesired seg-
ments identification. As we have stated earlier, we used two different thresholds
for the sound intensity for the initial phase - not to be confused with the vot-
ing threshold. On the one hand, the lower threshold (90% of average) resulted
in a considerably less undesired candidates as shown in Table 3; although most
of the undesired candidates extracted using the lower threshold were actually
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Fig. 3. Specificity, TPR, Accuracy (Accu) according the voting threshold

Table 3. Segment count

90% of speech avg sound
volume threshold

95% of speech avg sound
volume threshold

0.6 s 195 211

0.8 s 149 159

1.0 s 114 130

1.2 s 83 93

true undesired, there were many instances where stutter segments were not
detected (due to the low threshold). On the other hand, the higher thresh-
old (95%) resulted in a much higher number of potentially undesired segments,
some of which were false undesired; however, most of the stuttered segments
were detected in the first phase. Therefore, the value of the second phase (train-
ing and testing phase), which identifies true undesired and false undesired from
potentially undesired segments, is most useful when the threshold is high, and
when most of the actual stutter segments are detected, even if that means poten-
tially marking some segments as potentially undesired while in reality they are
false undesired, during the first phase.

We have subsequently added a component to this system of remediation
which helped us to enhance the usability of the system. Because a good remedi-
ation process should lose little to no semantic meaning we implemented a False
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Positives restricting subsystem which relies on a voting cutoff approach. This
enhancement would only tag a segment for removal if the vote for removal is
almost unanimous amongst all qualifiers. Although our accuracy was negatively
affected by this component, the results of this experimentation proved to be
effective in reducing False Positives.

The second threshold value that we used during the extraction of the poten-
tially undesired sound segments was the minimum time duration, starting with
0.6 s and ending with 1.2 s. It is worth noting that we tried shorter duration
time frames with little success, causing the comprehensibility of the speech to
be diminished; we found 0.6 s minimum silence duration to be the lowest value
that can be used in our experiments.

We used two different approaches for treating our data with each classi-
fier. The first approach is to build one classifier for our data after balancing
the labels regardless of the minimum duration and intensity threshold values;
in other words, we combine all the segments extracted from all eight different
unique pairs of minimum duration and intensity threshold, and build our clas-
sifier accordingly. The balancing approach we chose to apply for the balancing
of the data consisted of randomly excluding data tuples of the over-represented
class G.

The second approach is to build a single classifier for each unique pair, then
average the accuracy and confusion matrix results. Table 4 shows the results
obtained using the first approach, while Table 5 shows the results obtained from
using the second approach for the two classifiers that performed the best using
separate classifiers for every unique pair; Random Forests and C5.0.

Using 10-fold cross validation, we trained six different classifiers: C5.0, Neu-
ral Networks, Recursive Partitioning, Random Forests, Polynomial SVM, and
AdaBoost. During the training of our classifiers, we used the ‘caret’R pack-
age because of its built-in tuning functionality. The parameters to build the
respective models were chosen based on highest accuracy. We have listed the
‘caret’package chosen parameters below:

Neural Network (nnet): Tuned model parameters when training on the bal-
anced dataset: size = 5 and decay = 0.1. Tuned model parameters when training
on the entire dataset: size = 1 and decay = 0.1. Size represents the number of

Table 4. Results obtained from building a single classifier using all of segments

True positive rate True negative rate Accuracy

C5.0 100% 94% 97.4%

Neural networks 75.6% 55.9% 67.7%

Recursive partitioning 92.6% 94.2% 93.2%

Random forests 98.4% 91.7% 95.8%

Polynomial SVM 89.9% 75.6% 84.4%

AdaBoost 98.3% 93.8% 96.4%
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Table 5. Results obtained from using a single classifier for each pair of minimum
duration and intensity threshold, and averaging the results

Random forest C5.0 Classifier

True positive rate
(Averaged)

95.3 % 94.8%

True negative rate
(Averaged)

82.3 % 76.6%

Classifier with highest
true positive rate

1.2 minimum duration,
90% intensity threshold

0.8 minimum duration,
90% intensity threshold

Classifier with highest
true negative rate

1.2 minimum duration,
90% intensity threshold

1.2 minimum duration,
90% intensity threshold

Classifier with lowest
true positive rate

1.2 minimum duration,
95% intensity threshold

1.0 minimum duration,
95% intensity threshold

Classifier with lowest
true negative rate

1.0 minimum duration,
95% intensity threshold

1.0 minimum duration,
95% intensity threshold

units in the hidden layer and can be zero if there are skip-layer units. The decay
parameter represents weight decay.

Random Forest (rf): Tuned model parameters when training on the balanced
dataset: mtry = 2. Tuned model parameters when training on the entire dataset:
mtry = 56. The parameter mtry represents the number of variables randomly
sampled as candidates at each split.

SVM Polynomial (svmPoly): Tuned model parameters when training on the
balanced dataset: degree = 3, scale = 0.01 and C = 1. Tuned model parameters
when training on the entire dataset: degree = 3, scale = 0.01 and C = 1. The
degree parameter represents the polynomial degree of the kernel function. The
scale is the scaling parameter of the polynomial and tangent kernel. C is the cost
regularization parameter.

Adaptive Boosting (AdaBag): Tuned model parameters when training on
the balanced dataset: mfinal = 100 and maxdepth = 3. Tuned model parameters
when training on the entire dataset: mfinal = 150 and maxdepth = 3. The mfinal
parameters represents the number of iterations for which boosting is run or the
number of trees to use. Maxdepth is the maximum depth of any node of the final
tree.

Recursive Partitioning (rpart): Tuned model parameters when training on
the balanced dataset: cp = 0.03797468. Tuned model parameters when training
on the entire dataset: cp = 0.05970149. Cp is the complexity parameter; any split
that does not decrease the overall lack of fit by a factor of cp is not attempted.
The main role of this parameter is to save computing time by pruning off splits
that are evidently not worthwhile.

As can be seen in Table 4, when we balance our data we reduce the number
of samples in the dataset, this big reduction in the number of tuples seems to
have a detrimental impact on our neural network classifier model, since neural
network training is best accomplished with large datasets.
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4 Conclusion and Future Work

In summary, we described a system which can be successfully used to reduce
stuttered speech disfluency by removing certain potentially undesired speech
segments. The dataset consisted of speech and speaker metadata and speech
signal statistics. The remedied speeches showed a marked improvement over the
original speeches.

The innovation in our system is two-fold. First, both the scope of data col-
lection and the classification is predetermined and designed with the singular
objective of determining whether a possible action must be performed or not; in
our case, we only collected potentially undesired candidate segments that might
be removed, and extracted features which are then used to classify the segments
with the sole purpose of deciding whether a segment needs to be removed or
not. Secondly, the data collected represents different examination perspectives
of single instances.

As a practical enhancement to our system we implemented a voting based
classification system to reduce the possibility of speech meaning loss by tilting the
model in favor of less meaning loss at the expense of missed removal of blocked
segments. This also was interesting in outcome and continued such explorations
would likely bring practical usability enhancements to the system.

A specific use of a system such as the one presented in this work is to remedy
a disfluent speech with blocks for a speaker who wishes to make his (or her)
speech easy to listen to and better understood. Remediation makes a speech
easier to listen to with minimal inconvenience to the listener and minimal need
for re-recording.

The concept of single action based intelligent solutions can help systems
utilize compartmentalized machine learning and classification solutions. Such
scope-specific machine-learned actions can provide lightweight and fast inde-
pendent action prediction tool that can be chained together for more complex
tasks. The process of utilizing the use of multiple perspectives can be employed
to optimize and devise an adaptive approach to data gathering, where the data
collection method and scope are optimized according to the metadata and con-
dition of the subject on hand.

In future work, we recommend utilizing various extraction thresholds to fine
tune the feature collection to the speech condition, which would better stream-
line the remediation process. Another extension to disfluent speech remediation
would be to eliminate speech interjections by identifying the voiced and unvoiced
segments of speech and then singling out those voiced sound segments with inter-
jection episode characteristics for removal.
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Abstract. High-throughput sequencing technology led significant
advances in functional genomics, giving the opportunity to pay particular
attention to the role of specific biological entities. Recently, researchers
focused on long non-coding RNAs (lncRNAs), i.e. transcripts that are
longer than 200 nucleotides which are not transcribed into proteins. The
main motivation comes from their influence on the development of human
diseases. However, known relationships between lncRNAs and diseases
are still poor and their in-lab validation is still expensive. In this paper,
we propose a computational approach, based on heterogeneous cluster-
ing, which is able to predict possibly unknown lncRNA-disease relation-
ships by analyzing complex heterogeneous networks consisting of several
interacting biological entities of different types. The proposed method
exploits overlapping and hierarchically organized heterogeneous clusters,
which are able to catch multiple roles of lncRNAs and diseases at dif-
ferent levels of granularity. Our experimental evaluation, performed on
a heterogeneous network consisting of microRNAs, lncRNAs, diseases,
genes and their known relationships, shows that the proposed method is
able to obtain better results with respect to existing methods.

1 Introduction

High-throughput sequencing technology, alongside new computational methods,
has been crucial for rapid advances in functional genomics. Among the most
important results achieved by exploiting these new technologies, there is the dis-
covery of thousands of non-coding RNAs (ncRNAs). Since their function appears
to be pivotal for the fine-tuning of the expression of many genes [3], in the
last decade, the number of papers reporting evidences about ncRNAs involve-
ment in human complex diseases, such as cancer, has grown at an exponential
rate. Among the different classes of ncRNAs, the most investigated one is that
of microRNAs (miRNAs), which are small molecules that regulate the expres-
sion of genes through the modulation of the translation of their transcripts [7].
Much less is known about the functional involvement of long non-coding RNAs
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(lncRNAs), i.e. non-coding transcripts which are longer than 200 nucleotides,
that have been recently discovered to have a plethora of regulatory functions
[11]. However, the number of lncRNAs for which the functions are known is still
quite poor and their in-lab validation requires large resources. Thus, assessing
the role and, especially, the molecular mechanisms underlying the involvement
of lncRNAs in human diseases, is not a trivial task.

In the last few years, there were some attempts to computationally predict
the relationships among biological entities, such as genes, miRNAs, lncRNAs,
diseases, tissues, etc. An example can be found in [14], where the authors pro-
pose an approach to learn to combine the outputs of several algorithms for the
prediction of miRNA-gene interactions. A more sophisticated approach has been
proposed in [4], where the authors adopt the multi-view learning framework for
the reconstruction of gene-gene interaction networks.

Focusing on the identification of relationships involving diseases, in [16] the
authors propose a method to identify possible relationships between lncRNAs
and diseases, by exploiting a bipartite network and a propagation algorithm.
Analogously, in [1] the authors propose the method ncPred which exploits a
tripartite graph representing known ncRNA-gene and gene-disease associations.
Such a graph is analyzed by adopting a multi-level resource transfer technique
that, at each step, takes into account the resource transferred in the previous
one. For each detected interaction, the algorithm associates a score indicating
its degree of certainty. Both these methods, however, cannot exploit additional
information associated with the involved biological entities as well as other enti-
ties that are related to the considered ones (e.g., genes, miRNAs, tissues, etc.).

In this paper, we present a novel method for the identification of previously
unknown relationships between diseases and lncRNAs, which extends the het-
erogeneous clustering approach we proposed in [15]. In particular, the proposed
method is able to identify heterogeneous clusters from heterogeneous networks,
where nodes are biological entities (each associated with their own features)
and edges represent known relationships among them (see Fig. 1). Then, the
identified clusters are exploited to predict the possible existence of unknown
relationships between lncRNAs and diseases falling in the same clusters. This
approach is motivated by the fact that lncRNAs and diseases will fall in the same
clusters if they appear similar according to their features and their relationships
with the other analyzed entities. Therefore, the main advantage of the approach
proposed in this paper comes from its ability to globally take into account the
complex network of interactions involving different biological entities. Moreover,
the proposed algorithm has the advantage of identifying possibly overlapping
and hierarchically organized clusters, since (i) the same lncRNA/disease can be
involved in multiple networks of relationships and (ii) as shown in [12], clusters
at different levels of the hierarchy can describe more specific or more general rela-
tionships and cooperation activities. In the following section, we briefly describe
our clustering method and its exploitation to identify unknown lncRNA-disease
relationships, while in Sect. 3 we report the results of our experiments. Finally,
in Sect. 4, we draw some conclusions and outline the ongoing work.
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Fig. 1. An example of a heterogeneous network, where different shapes represent dif-
ferent node types. Circles represent possible heterogeneous clusters.

2 Method

In the following, we introduce the notation and some useful definitions.

Definition 1 (Heterogeneous network). A heterogeneous network is a net-
work G = (V,E), where V is the set of nodes and E is the set of edges among
nodes, where both nodes and edges can be of different types. Moreover:

– each node v′ ∈ V is associated to a single node type tv(v′) ∈ T , where T is
the finite set {Tp} of all the possible types of nodes in the network;

– each node type Tp implicitly defines a subset of nodes Vp ⊆ V ;
– a node type Tp defines a set of attributes Xp = {Xp,1,Xp,2, . . . , Xp,mp

};
– an edge e between two nodes v′ and v′′ is associated to an edge type Rj ∈ R,

where R is the finite set {Rj} of all the possible edge types in the network.
Formally, e = 〈Rj , 〈v′, v′′〉〉 ∈ E, where Rj = te(e) ∈ R is its edge type;

– an edge type Rj defines a subset of edges Ej ⊆ (Vp × Vq) ⊆ E;
– node types T are partitioned into Tt (target), i.e. considered as target of the

clustering/prediction task, and Ttr (task-relevant). Only nodes of target types
are actually clustered and considered in the identification of new relationships,
on the basis of all the nodes.

Definition 2 (Heterogeneous cluster). We define a heterogeneous cluster,
or multi-type cluster, as G′ = (V ′, E′), where: V ′ ⊆ V ; ∀v′ ∈ V ′, tv(v′) ∈ Tt

(nodes in the clusters are only of target types); E′ ⊆ (E ∪ Ê) is a set of edges
(among the nodes in V ′) belonging either to E or to a set of edges Ê containing
extracted edges, which relate nodes that are not directly connected in the original
network.

Definition 3 (Hierarchical organization of clusters). A hierarchy of het-
erogeneous clusters is defined as a list of hierarchy levels {L1, L2, . . . , Lk}, each
of which consisting of a set of heterogeneous and possibly overlapping clusters.
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In this specific application domain, target nodes are those representing lncRNAs
and diseases. Therefore, we distinguish two distinct sets of nodes Tl and Td,
representing the set of lncRNAs and the set of diseases, respectively. Our task
then consists in the identification of a hierarchy of clusters {L1, L2, . . . , Lk} and
of a function ψ(w) : Tl × Td → [0, 1] for each hierarchy level Lw, which, for each
lncRNA-disease pair, returns a score indicating its degree of certainty.

In the following, we describe our solution consisting of three steps: (i) iden-
tification of the strength of relationships among nodes in Tl and Td, which will
define the set of extracted edges Ê; (ii) construction of a hierarchy of (possibly
overlapping) heterogeneous clusters; (iii) identification of the functions ψ(w) for
the prediction of previously unknown relationships.

2.1 Identification of the Strength of the Relationship Among Nodes

We first estimate the strength of the relationship of all the possible lncRNA-
disease pairs, following the idea we proposed in [15]: for each pair (li, dj), we
compute the score s(li, dj) by analyzing the indirect relationships in which the
lncRNA li and the disease dj are involved. In particular, as in [15], we adopt the
concept of meta-path, i.e., the set of sequences of nodes which follow the same
sequence of edge types. For each meta-path P between li and dj , we compute a
score pathscore(P, li, dj) representing the strength between li and dj following
the meta-path P . Since several meta-paths can be identified between two objects
in the network, possibly with unlimited length (in presence of cycles), we have
to identify a strategy to assign a single score to each lncRNA-disease pair. The
strategy we considered is inspired by the classical formulation of fuzzy sets [17].
In particular, since s(li, dj) should measure the degree of certainty of the rela-
tionship between li and dj , we consider the scores computed over each meta-path
P (i.e., pathscore(P, li, dj)) as the degree of certainty estimated according to P .
Since the relationship between li and dj can be considered certain if there exists
at least one meta-path which proves its certainty (or, in other words, the cer-
tainty of the relationship corresponds to the highest certainty showed over the
meta-paths), we compute s(li, dj) as follows:

s(li, dj) = max
P∈metapaths(li,dj)

pathscore(P, li, dj) (1)

where metapaths(li, dj) is the set of the c shortest paths connecting li and dj ,
and pathscore(P, li, dj) is the degree of certainty of the relationship between li
and dj according to the meta-path P .

In order to compute pathscore(P, li, dj), we represent each meta-path P
as a finite set of sequences of nodes. If a sequence in P connects li and dj ,
then pathscore(P, li, dj) = 1. Otherwise, following the same strategy introduced
before, it is computed as the maximum similarity between the sequences which
start with li and the sequences which end with dj (see Fig. 2).

The similarity between two sequences seq′ and seq′′ is computed accord-
ing to the attributes of all the nodes involved in the two sequences. Follow-
ing [6], the similarity between two values of an attribute x, i.e., sx(seq′, seq′′),
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Fig. 2. An example of analysis of the sequences associated to the lncRNA l3 and to the
disease d3. In the example, sequences 2 and 6 (in yellow) are associated to the lncRNA
l3, and sequences 3, 4 and 5 (in green) are associated to the disease d3. The algorithm
pair-wisely compares the two sets of sequences (sequences in yellow and sequences
in green) and computes the degree of certainty between l3 and d3 as the maximum
similarity between two sequences. (Color figure online)

is computed as follows: If x is a numerical attribute, then sx(seq′, seq′′) =
1 − |valx(seq′)−valx(seq

′′)|
maxx−minx

(minx and maxx are the minimum and maximum val-
ues, respectively, observed for the attribute x); when x is not numeric, then
sx(seq′, seq′′) = 1 if valx(seq′) = valx(seq′′), 0 otherwise.
It is noteworthy that some node types may not be involved in any meta-path. In
order to exploit the information conveyed by these nodes, we add an aggregation
of their attribute values to the nodes that are connected to them and that appear
in at least one meta-path. Such an aggregation considers values coming from
directly or indirectly (up to a predefined depth of analysis) connected nodes. For
this purpose different aggregation functions could be used. Following [15], we
use the arithmetic mean for numerical attributes, the mode for non-numerical
attributes and limit the depth of analysis for the aggregation to 2.

2.2 Construction of the Hierarchy of Heterogeneous Clusters

Once all the possible pairs are identified, each associated with its degree of
certainty, we first build a set of (possibly overlapping) clusters in the form of
bicliques to be used in the subsequent step. A cluster is in the form of a biclique
if all the lncRNA-disease pairs in the cluster have a score above a given threshold
β ∈ [0, 1]. The algorithm consists of the following steps:

(i) A filtering phase which keeps only the pairs with a score greater than (or
equal to) β. The result is the subset of pairs {(li, dj)|s(li, dj) ≥ β}.

(ii) An initialization step which identifies the initial set of bicliques, each con-
sisting of a lncRNA-disease pair in {(li, dj)|s(li, dj) ≥ β}.

(iii) A process that iteratively merges two clusters G′ and G′′ into a new cluster
G′′′. The initial set of clusters is regarded as a list and is sorted according to
an ordering relation <c that reflects the quality of the clusters. Each cluster
G′ is merged with the first cluster G′′ in the list leading to a merged cluster
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G′′′ which still is a biclique. This step is repeated until no more merging
can be performed. The obtained result is the first hierarchy level L1.

The ordering relation <c is based on the cluster cohesiveness, defined as:

h(G) =
1

|pairs(G)| ·
∑

(li,dj)∈pairs(G)

s(li, dj) (2)

where pairs(G) is the set of all the possible lncRNA-disease pairs (both known
and unknown) in the cluster.

This measure actually corresponds to the average score of the relationships
in the cluster. Since, in our case, the score represents a degree of certainty, the
cluster cohesiveness can be considered as an indicator of the degree of certainty of
the global interactions among the group of lncRNAs and diseases in the cluster.
Therefore, we formally define the ordering relation <c as follows:

G′ <c G′′ ⇐⇒ h(G′) > h(G′′) (3)

Once the first level L1 of the hierarchy has been identified, the other levels are
built by evaluating whether some pairs of clusters (bicliques, in L1) can be rea-
sonably merged. The approach is similar to that used to obtain the first level
of the hierarchy. The main difference is that, instead of working on bicliques,
we work on generic clusters, where the score associated to each pair is not nec-
essarily greater than β. Due to this difference, we use a different criterion for
the identification of candidates for merging which is inspired by the research in
hierarchical co-clustering. In this research, one of the commonly used stopping
criterion is based on a predefined threshold applied to the quality constraint
that must be satisfied in order to merge two clusters [12]. Analogously, in our
approach, two clusters G′ and G′′ are merged into a cluster G′′′ if h(G′′′) > α,
where α is a user defined threshold on the cluster cohesiveness. Note that low
values of α lead to a higher number of mergings and, accordingly, to less clusters
containing a higher number of objects.

We repeat the process until no merging is possible and return the obtained
hierarchy of heterogeneous clusters {L1, L2, . . . , Lk}, according to Definition 3.

2.3 Prediction of Unknown Relationships

After building the hierarchy of clusters, we identify possibly unknown relation-
ships for each hierarchical level. In particular, the prediction is performed by
assigning each possible lncRNA-disease pair with a degree of certainty computed
as the cohesiveness of the cluster in which it falls. More formally, given C

(w)
ij the

cluster in which the lncRNA li and the disease dj fall in the w-th hierarchical
level, we compute the final degree of certainty of the relationship as:

ψ(w)(li, dj) = h
(
C

(w)
ij

)
. (4)
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When the lncRNA li and the disease dj appear in multiple clusters, i.e., C
(w)
ij

is a list of clusters, we combine their cohesiveness to obtain the final degree
of certainty. Baseline combination strategies can be the maximum, the mini-
mum and the average. In this work, we propose to adopt a different combina-
tion function, which rewards those cases in which the pair appears in several
highly cohesive clusters (indicating a higher degree of certainty). In details,
inspired by the evidence combination (EC) strategy proposed in [10], given
C

(w)
ij = [C1, C2, . . . , Cm], the list of the clusters in which the lncRNA li and the

disease dj fall in the w-th hierarchical level, we compute ψ(w)(li, dj) = ec(Cm),
where ec(Cm) is recursively defined as:

ec(Cm) =

{
h(C1) if Cm = C1

ec(Cm−1) + [1 − ec(Cm−1)] · h(Cm) otherwise
(5)

Fig. 3. Two possible clusters identified at a given hierarchical level w. Circles repre-
sent lncRNAs, while squares represent diseases. The clusters suggest two new possible
relationships between l3 and d1 and between l1 and d3.

In Fig. 3, we show an example of the prediction step, where the two clusters
C1 and C2, identified at the w-th hierarchical level, suggest two potential new
relationships, i.e., between l3 and d1 and between l1 and d3. The former falls
only in the cluster C1, therefore it will be associated with a degree of certainty
computed according to the cohesiveness of C1. Formally:

ψ(w)(l3, d1) = h(C1) =
1

3 · 2
(0.8 + 0.5 + 0.5) = 0.3.

The latter falls in both C1 and C2 and its degree of certainty will be computed
according to the cohesiveness of both clusters. In particular, given h(C1) = 0.3
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and h(C2) = 1
3·2 (0.7 + 0.8 + 0.9 + 0.8 + 1.0) = 0.7, by adopting the EC strategy

(see Eq. 5), the degree of certainty of the relationship between l1 and d3 will be
computed as:

ψ(w)(l1, d3) = h(C1) + [1 − h(C1)] · h(C2) = 0.3 + (1 − 0.3) · 0.7 = 0.79

3 Experiments

The proposed method has been implemented in the system LP-HCLUS (Link
Prediction through Heterogeneous CLUStering). We performed our experimental
evaluation in order to evaluate the effectiveness of the proposed approach on a
complex biological dataset containing data about lncRNAs, miRNAs, genes and
diseases, as well as their known interactions and relationships. Such a dataset,
whose schema is depicted in Fig. 4, has been built by integrating several existing
biological datasets:

– lncRNA-disease relationships and lncRNA-gene interactions from [5];
– miRNA-lncRNA interactions from [8];
– disease-gene relationships from DisGeNET [2];
– miRNA-gene and miRNA-disease relationships from miR2Disease [9].

Fig. 4. UML representation of the heterogeneous network used in the experiments.
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The integrated dataset consists of 7050 diseases, 507 lncRNAs, 508 miRNAs,
94527 genes, 953 interactions between diseases and lncRNAs, 2877 interactions
between diseases and miRNAs, 26522 interactions between diseases and genes, 70
interactions between lncRNAs and miRNAs, 252 interactions between lncRNAs
and genes, and 803 interactions between miRNAs and genes.
We adopted the 10-fold cross validation on the set of known lncRNA-disease
relationships. Due to the absence of negative examples, following the approach
adopted in [13], we averaged the results obtained in terms of recall@K, i.e.,
the recall measured by considering only the top-k returned relationships. In
detail, we produce a ranking of the predicted interactions by sorting them
in descending order with respect to their degree of certainty and compute
recall@K = TPk

TPk+FNk
, where TPk (respectively, FNk) is the number of vali-

dated lncRNA-disease relationships that were (respectively, were not) predicted
in the first K returned interactions. Since the most appropriate value of K can-
not be known in advance, we plot the obtained recall@K by varying the value
of K.

LP-HCLUS has been run by considering 3 shortest paths for each lncRNA-
disease pair (i.e., c = 3). We collected the results obtained with the maximum
(MAX), the minimum (MIN), the average (AVG) and the evidence combination
(EC) strategies to combine the degree of certainty of relationships identified in
multiple clusters, focusing on the first 3 levels of the identified hierarchies which,
according to [12], lead to the best results.
As competitor systems, we considered the following approaches:

– A variant of the biclustering algorithm HOCCLUS2 [12], which is able to
solve the link prediction task. HOCCLUS2 has similar characteristics with
respect to the clustering approach proposed in this paper, i.e., it is able to
extract a hierarchy of (possibly overlapping) clusters. However, it does not
allow to take into account several types of objects, linked by several types of
edges. Moreover, the algorithm adopted for the construction of the hierarchy
of clusters is different and guided only by the cohesiveness.

– The link prediction algorithm ncPred [1], which is tailored for the prediction
of ncRNA-disease associations.

– A baseline approach, which consists in the estimation of the degree of cer-
tainty by means of the strategy described in Sect. 2.1, i.e., without the clus-
tering and the prediction steps. The comparison of the results with respect
to this baseline approach allows us to evaluate the real contribution of the
exploitation of clusters for link prediction. We call this baseline approach
LP-HCLUS w/o LP (i.e., LP-HCLUS without Link Prediction).

We fed all the competitor methods with the set of lncRNA-disease scores com-
puted by LP-HCLUS, since, in their original form, they are not able to analyze
a complex heterogeneous network.

Since both HOCCLUS2 and LP-HCLUS require the input parameters α and
β, we performed some preliminary experiments to evaluate their effect on the
results. In particular, we evaluated the results with the following configurations:
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α = 0.1 and β = 0.3; α = 0.1 and β = 0.4; α = 0.2 and β = 0.3; α = 0.2
and β = 0.4. By observing the results reported in Fig. 5, obtained with the EC
strategy on the first three hierarchical levels, we can conclude that the results do
not appear to be significantly affected by these parameters. A similar behavior
was observed for the other combination strategies and for HOCCLUS2. However,
since the obtained recall@K results appeared higher in the case of α = 0.2 and
β = 0.4, the other experiments were conducted with such values.
In Table 1, we report the results in terms of recall@K obtained by the con-
sidered approaches, with K ∈ {500, 1000, . . . , 5000}. The first conclusion that
can be drawn regards the superiority of LP-HCLUS with respect to the consid-
ered competitor approaches, with all the values of K. This conclusion is even
more evident for small values of K, i.e., in the first part of the ranked inter-
actions. Moreover, by comparing the results obtained by LP-HCLUS with the
baseline approach (LP-HCLUS w/o LP) we can observe a significant improve-
ment when the clustering and the link prediction phases are adopted. This means
that the strategy proposed in this paper, i.e., the identification of heterogeneous
clusters and their exploitation for link prediction purposes, appears to be effec-
tive. Moreover, although the adopted variant of HOCCLUS2 is based on the
same principle, it still leads to a lower recall@K results, emphasizing that the
clustering algorithm and the adopted combination strategies proposed in this
paper perform better. A further observation comes from the comparison of the
results obtained by LP-HCLUS with different combination strategies. Indeed, by
observing Table 1, we can conclude that the strategy based on evidence combi-
nation (EC) generally leads to the best results, especially for high values of K.
This is mainly due to the fact that it rewards the interactions falling in multi-
ple highly-cohesive clusters. This means that, on overall, predicted interactions
have a higher degree of certainty (also higher than the those predicted with the
strategy based on MAX), leading to a higher recall with high values of K.

A more global overview is provided in Fig. 6, where we plot the recall@K
results of all the considered approaches, at different levels of the hierarchy. This
figure shows the overall superiority of LP-HCLUS, when the strategy based on
evidence combination is adopted. Moreover, it also shows that the competitors
(i.e., ncPred and HOCCLUS2) and the baseline method cannot reach the recall
values obtained by LP-HCLUS (very close to 1.0) even with K = 70, 000.

A final consideration comes from the analysis of the results at different lev-
els of the hierarchy. At this respect, we could not find a general trend in the
results, in terms of Recall@K. However, such a measure is only able to evaluate
the results quantitatively, and a deeper analysis could be necessary in order to
emphasize possible differences from a qualitative viewpoint. Therefore, since we
still believe that the hierarchy can be fruitfully exploited to emphasize interac-
tions at different levels of granularity, in future works we will involve a domain
expert in the analysis of results in order to evaluate qualitatively whether this
idea appears confirmed by real biological findings.
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Fig. 5. Recall@K obtained by LP-HCLUS EC with different values of α and β.
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Fig. 6. Recall@K results obtained by LP-HCLUS (α = 0.2, β = 0.4) and by the
considered competitor methods.
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Table 1. Recall@K obtained by LP-HCLUS and by the competitors for different values
of K. Results obtained by HOCCLUS2 and LP-HCLUS have been collected for the first
3 levels of the hierarchies. For each value of K, the best result is highlighted in bold.

Value of K

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

LP-HCLUS w/o LP 0.242 0.503 0.750 0.908 0.908 0.908 0.908 0.908 0.910 0.913

ncPred 0.154 0.228 0.248 0.275 0.293 0.304 0.316 0.325 0.336 0.344

l1 HOCCLUS2 0.329 0.658 0.908 0.908 0.908 0.908 0.908 0.910 0.913 0.919

l1 LP-HCLUS AVG 0.349 0.665 0.913 0.913 0.913 0.913 0.913 0.915 0.919 0.922

l1 LP-HCLUS MAX 0.340 0.644 0.915 0.926 0.926 0.926 0.933 0.942 0.948 0.951

l1 LP-HCLUS MIN 0.331 0.683 0.913 0.913 0.913 0.913 0.913 0.915 0.919 0.922

l1 LP-HCLUS EC 0.311 0.629 0.913 0.933 0.939 0.957 0.957 0.957 0.957 0.957

l2 HOCCLUS2 0.324 0.676 0.908 0.908 0.908 0.908 0.908 0.908 0.910 0.911

l2 LP-HCLUS AVG 0.362 0.658 0.908 0.908 0.908 0.908 0.908 0.910 0.910 0.915

l2 LP-HCLUS MAX 0.336 0.691 0.908 0.910 0.910 0.910 0.911 0.917 0.920 0.922

l2 LP-HCLUS MIN 0.329 0.656 0.908 0.908 0.908 0.908 0.908 0.911 0.913 0.917

l2 LP-HCLUS EC 0.349 0.662 0.910 0.931 0.933 0.949 0.949 0.951 0.951 0.951

l3 HOCCLUS2 0.304 0.669 0.908 0.908 0.908 0.908 0.908 0.910 0.910 0.911

l3 LP-HCLUS AVG 0.353 0.680 0.908 0.908 0.908 0.908 0.908 0.908 0.911 0.917

l3 LP-HCLUS MAX 0.329 0.680 0.908 0.908 0.908 0.908 0.908 0.910 0.915 0.917

l3 LP-HCLUS MIN 0.318 0.667 0.908 0.908 0.908 0.908 0.908 0.910 0.915 0.919

l3 LP-HCLUS EC 0.358 0.689 0.910 0.930 0.933 0.939 0.940 0.949 0.951 0.951

4 Conclusions

In this work, we proposed the method LP-HCLUS, which is able to analyze het-
erogeneous biological networks in order to identify (possibly overlapping) hier-
archically organized clusters and to exploit them to predict possibly unknown
lncRNA-disease relationships. Such findings can be exploited for better under-
standing the role of lncRNAs in the development of human diseases. We also
proposed the adoption of a specific strategy, based on evidence combination, to
aggregate the different degrees of certainty when a new lncRNA-disease relation-
ships is suggested by multiple clusters. Experiments performed on an integrated
biological dataset showed that the proposed method, especially when adopting
the strategy based on evidence combination, is able to outperform the meth-
ods HOCCLUS2 and ncPred, as well as a baseline approach. As future work,
we intend to perform additional experiments on large-scale networks, possibly
exploiting a distributed variant of the method proposed in this paper. Moreover,
we will perform a qualitative evaluation, from a biological point of view, of the
real contribution provided by our computational approach in the identification
of lncRNA-disease relationships.

Acknowledgements. We would like to acknowledge the support of the European
Commission through the projects MAESTRA - Learning from Massive, Incompletely
annotated, and Structured Data (Grant Number ICT-2013-612944) and TOREADOR -
Trustworthy Model-aware Analytics Data Platform (Grant Number H2020-688797).



48 E. P. Barracchia et al.

References

1. Alaimo, S., Giugno, R., Pulvirenti, A.: ncPred: ncRNA-disease association predic-
tion through tripartite network-based inference. Front. Bioeng. Biotechnol. 2, 71
(2014)

2. Bauer-Mehren, A., Rautschka, M., Sanz, F., Furlong, L.I.: DisGeNET: a cytoscape
plugin to visualize, integrate, search and analyze gene-disease networks. Bioinfor-
matics 26(22), 2924–2926 (2010)

3. Cech, T., Steitz, J.: The noncoding RNA revolution-trashing old rules to forge new
ones. Cell 157(1), 77–94 (2014)

4. Ceci, M., Pio, G., Kuzmanovski, V., Dzeroski, S.: Semi-supervised multi-view learn-
ing for gene network reconstruction. PLOS ONE 10(12), 1–27 (2015)

5. Chen, G., Wang, Z., Wang, D., Qiu, C., Liu, M., Chen, X., Zhang, Q., Yan, G.,
Cui, Q.: LncRNADisease: a database for long-non-coding RNA-associated diseases.
Nucleic Acids Rese. 41(D1), D983–D986 (2013)

6. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 2nd edn.
Morgan Kaufmann, San Francisco (2006)

7. Hayes, J., Peruzzi, P.P., Lawler, S.: MicroRNAs in cancer: biomarkers, functions
and therapy. Trends Mol. Med. 20(8), 460–469 (2014)

8. Helwak, A., Kudla, G., Dudnakova, T., Tollervey, D.: Mapping the human miRNA
interactome by CLASH reveals frequent noncanonical binding. Cell 153(3), 654–
665 (2013)

9. Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., Li, M., Wang, G.,
Liu, Y.: miR2Disease: a manually curated database for microRNA deregulation in
human disease. Nucleic Acids Res. 37(suppl 1), D98–D104 (2009)

10. Lesmo, L., Saitta, L., Torasso, P.: Evidence combination in expert systems. Int. J.
Man-Mach. Stud. 22(3), 307–326 (1985)

11. Melissari, M.T., Grote, P.: Roles for long non-coding RNAs in physiology and
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Abstract. Positive-Unlabeled (PU) learning works by considering a set
of positive samples, and a (usually larger) set of unlabeled ones. This
challenging setting requires algorithms to cleverly exploit dependencies
hidden in the unlabeled data in order to build models able to accu-
rately discriminate between positive and negative samples. We propose
to exploit probabilistic generative models to characterize the distribution
of the positive samples, and to label as reliable negative samples those
that are in the lowest density regions with respect to the positive ones.
The overall framework is flexible enough to be applied to many domains
by leveraging tools provided by years of research from the probabilis-
tic generative model community. Results on several benchmark datasets
show the performance and flexibility of the proposed approach.

1 Introduction

The classical supervised setting of statistical machine learning [14] aims at induc-
ing models (classifiers) from training sets of labeled data in the form of samples
(xi, yi) i.i.d. drawn from an unknown joint probability distribution p(X, Y ) over
random variables (RVs) X and Y , where Y is the label. For binary classification,
i.e., Y ∈ {0, 1}, labels yi are assumed to be modeled by a Bernoulli distribution
and are associated to positive and negative samples xi.

While nowadays gathering and storing all kinds of data is easier and easier,
having all these data perfectly and reliably labeled is unrealistic for several rea-
sons, which makes classical approaches to learning classifiers inapplicable. First,
the exponential rate at which data are produced contrasts the time required to
produce high quality labels. Moreover, in many fields there are relatively few
labelers effectively trained to produce reliable labels. Lastly, in many real-world
domains it is sometimes unclear what should be considered as a negative sample,
or the generation of negative samples is too expensive or just impossible. E.g.,
in process enactment, one would not waist time, money and resources to build a
wrong item just for the purpose of showing how things are not to be done. Thus,
the ability to learn predictive models in these scenarios may allow one to exploit
the vast amount of data that are produced, saving precious time and resources.
c© Springer International Publishing AG, part of Springer Nature 2018
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In Positive-Unlabeled (PU) learning [8,23], a set P of positive samples, and
a set U of unlabeled samples—each of which may be positive or negative—are
available at training time. So, discriminative information for the negative class
must be found in unlabeled data. PU learning shares similarities with semi-
supervised learning [26], one-class classification [28], and outlier detection [5].
Differently from the first, no negative samples are available at training time and
yet it is required to learn a discriminator between the two classes, in contrast
with the second. Additionally, PU learning is in opposition to the last which is
usually performed in a transductive way to label unlabeled training data only.

The interest for PU learning is supported by its successful application in
several domains [21,35,37]. PU learning approaches can be roughly grouped
into two-staged—extracting a set of reliable negative samples (RN) from U and
then performing supervised learning—and single-staged—taking all samples in
U as negative. For the former, it becomes crucial to learn a metric that is able to
discriminate among classes. However, each application domain needs a specific
formulation for such a metric. Hence, ad hoc algorithmic solutions are often
required to cope with different data representations [18,37]. Few approaches
have been proposed to deal with this categorical data [4,18] in PU learning, due
to their being quite challenging—there is no natural distance for them [19].

This work introduces Generative Positive-Unlabeled (GPU) learning, a novel
two-staged approach to PU learning that aims to be general enough to sup-
port very different application domains1. It estimates the marginal distribution
pP(X|Y = 1) of the positive samples in P via a generative model, and then
performs inference on such a distribution to select a set of reliable negative sam-
ples from U . The modeled probability density implicitly defines a metric space
among samples, and we assume negative ones to be concentrated where positive
ones are less likely. Generative models such as Probabilistic Graphical Models
(PGMs) [20] have been extensively studied in the literature and offer a powerful
formalism to deal with complex probability distributions over continuous, cate-
gorical, or even structured data [33]. Dealing with a particular domain translates
into choosing a suitable PGM from a consolidated research field. More generally,
given a PGM learned as a density estimator in a certain domain, we exploit it as
a negative sample extractor for partially labeled data. Albeit GPU can deal with
different data representations, here we focus on categorical data, which are han-
dled natively by PGMs. We compared GPU on real data to several PU learners
that have proven to be effective on categorical data.

The paper is organized as follows: in the next section we provide a brief
review of the literature about PU learning. In Sect. 3 we introduce and discuss
our GPU approach, while the experimental setting and the experiment results
are presented in Sect. 4. Conclusions are drawn in Sect. 5.

1 This paper is an extended version of [2] presented at the International Workshop
NFMCP held in conjunction with ECML/PKDD 2017.
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2 Related Works

PU learning has attracted a great deal of attentions in machine learning and
data mining research. An extensively adopted approach to PU learning is based
on a negative set construction process, that first identifies reliable negative sam-
ples from the unlabeled ones and, then, directly applies traditional classification
methods. Alternative methods following this paradigm differ for how they imple-
ment these two steps.

Several proposals adopt distance-based approaches to identify negative sam-
ples, as the farthest unlabeled ones from positive samples. In [34], after select-
ing features statistically related to positive samples, the unlabeled set is parti-
tioned into four sets (reliable/likely/weak negative and likely positive) based on
the Euclidean distance. Successively, a multi-level samples learning technique,
weighted SVMs, is exploited to build a classifier. The same approach of first
identifying, characterizing and discriminating features for positive samples is
adopted in [18], where a particular distance function previously designed by the
authors is used to determine reliable negative samples; then, distance learning is
applied twice—on the positive and reliable negative samples—and the resulting
distances are used for k-NN classification.

After having theoretically shown that, under appropriate conditions, P and
U provide sufficient information for learning, in [23] PU learning is posed as a
constrained optimization problem. In such a setting, the set of reliable nega-
tive samples is selected by using a Naive Bayes (NB) classifier and EM. To the
extreme, all the unlabeled samples are treated as negative samples in the NB
classifier initially learned and successively used to extract the set of reliable neg-
atives from unlabeled data [22]. The dataset so obtained is finally exploited to
learn a classifier using SVM. The obtained augmented set, as representative of
negatives samples, is exploited, along with positive ones, to compute the param-
eters of the NB classifier devoted to reliable negative samples identification.
Finally, an EM-based algorithm is exploited to learn the predictive model.

A different policy is the weighted-based approach on unlabeled data exploited
in [12]. The study shows that a classifier trained on positive and unlabeled sam-
ples is able to predict probabilities that differ by only a constant factor from the
true conditional probabilities produced by a model trained on fully labeled posi-
tive and negative samples, provided that the labeled positive samples are chosen
completely at random from all positive samples. This result is used in two dif-
ferent ways: learning from P versus U with adjustment of output probabilities
finally assigned to unlabeled samples, and learning from P and U after double
weighting of U . The basic learning algorithm for each method is an SVM with
a linear kernel whose outputs are post-processed into calibrated probabilities by
fitting a one-dimensional logistic regression function.

Naive Bayes is the classifier extensively adopted for categorical data in the
four methods proposed in [4], namely (Average) Positive Naive Bayes ((A)PNB),
based on Naive Bayes, and (Average) Positive TAN ((A)PTAN), two variants of
the Tree Augmented Naive Bayes model [13] able to deal with positive and unla-
beled samples. The difference lies in the way the prior probability for the negative
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class is estimated. For PNB and PTAN this probability is derived directly from
the whole set of unlabeled samples while for APNB and APTAN the uncertainty
is modeled by a Beta distribution.

The above survey shows that many works on PU learning [4,18,22,23] have
adopted the text categorization perspective, which is quite peculiar. Indeed,
features are intrinsically categorical, there is a huge number of features compared
to other settings, the representation of samples is very sparse, and there is a
heavy impact of text pre-processing in setting up the classification problem.
Others have faced biomedical problems [12,34], where it is typical that databases
specify which genes or proteins are related to some specific consequence, but this
does not mean that all the others are unrelated to that consequence and, on the
contrary, there is a strong interest in identifying which ones actually are [12].

As previously pointed out, although PU learning shares similarities to outlier
detection [5] and to one-class classification [28], it shows difference from these
settings in both the goal to fulfill and in the training set exploited, even in the
case of probability density estimation techniques are used as solving strategies
[15,27,29,32]. Indeed, both methods aim at learning a model able to reject the
new incoming samples using positive training data only. They do not require to
learn a discriminator between the two classes and, hence, no effort to learn a
model for the negative class is done. Intuitively, this type of approach is inferior
because it ignores useful information that is present in the unlabeled samples.

3 Methodology

Let RVs be denoted by upper-case letters, e.g., X, and their values as the corre-
sponding lower-case letters, e.g., x ∼ X. We denote sets of RVs as X, and their
combined values as x. When we refer to a joint probability distribution p(X)
over RVs X, we are either considering the joint probability density function for
continuous RVs, or the probability mass function for discrete RVs, or a hybrid
combination of both in hybrid domains [20,33]. To denote a finite domain of a
discrete RV Xj we introduce the following notation Val(Xj) = {xk

j }Kk=1. If D
is a set of samples over RVs X, we indicate with pD(X) the real (unknown)
probability distribution that generated the data, while if M indicates a gener-
ative model, pM(X) refers to the probability distribution estimated by such a
model on finite sample sets. Disambiguation is provided by context. Generally
one wants the estimate pM(X) to be as close as possible to pD(X). A common
way to measure this closeness is via the log-likelihood function [20], or one of its
variants, defined as:

�D(M) =
∑

xi∈D
log pM(xi).

In the classical PU learning setting, one has a training set D = P ∪ U i.i.d.
from p(X, Y ). Samples in P are provided with a known positive class label,
i.e., P = {(xi, 1)}mP

i=1 ∼ pP(X|Y = 1). On the other hand, class information,
i.e., labels, is not provided for samples in U , i.e., U = {xi}mU

i=1 ∼ pU (X), where
pU (X) is the marginal probability distribution w.r.t. pU (X, Y ). Let D0 (resp. D1)
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denote the subset of all negative (resp. positive) samples in D. The aim of PU
learning is to build a discriminator model f : X → Y from D in order to make
accurate predictions about the labels of unseen test data samples. Following [12],
we assume that samples in P are selected completely at random from all positive
samples in D, i.e., pP(X|Y = 1) = pD(X|Y = 1).

3.1 Generative Models for PU Learning

Our proposed approach, Generative PU learning (GPU), falls in the category
of two-staged methods for PU learning. First it extracts a set of reliable neg-
ative samples N from U , then N is employed to perform supervised learning.
In the following we detail our contribution to the first step, discussing possible
approaches for the second one.

As usual in statistical machine learning, we assume pD to be modeled as a
mixture of probability distributions for the positive and negative class, i.e.,

pD =
∑

y∈{0,1}
p(Y = y)p(X|Y = y) = wD0pD0(X) + wD1pD1(X),

where wD0 (resp. wD1) denotes the marginal probabilities of the label w.r.t the
negative (resp. positive) class and pD0(X) (resp. pD1(X)) denotes the conditional
probability of a sample w.r.t the negative (resp. positive) class. As already said,
as it is common practice in PU learning [12], we assume that the positive samples
in P are highly representative for all positive samples in D1. As an additional
assumption, we consider the distribution generating D0 and D1 to be fairly dis-
tinguishable [1]. That is, we assume that high density regions of pD0 correspond
to low density regions of pD1 and vice versa. While this assumption might seem
too strict for real data, in practice, it is commonly adopted when performing
unsupervised clustering (e.g., Gaussian densities must be separable in EM and
K-means). As future research, we plan to investigate how to adapt GPU learning
to more complex learning settings.

The high level idea behind our approach is the following. By correctly mod-
eling the probability distribution of positive samples over RVs X, one can model
discriminative patterns among samples in the form of probabilistic dependen-
cies among their RVs. If this is done accurately, then a metric space is implic-
itly defined, associating low probability regions to negative samples and high
probability ones to positive samples. Similar ideas have also been successfully
investigated in applications for anomalous or outlier training samples [27,32].
Algorithm 1 illustrates the general schema of our proposed GPU approach. In
order to estimate pP we fit a generative model, G, over the RVs X of the posi-
tive training set (line 3). We discuss the choice of such an estimator in Sect. 3.2.
After that, we derive an empirical estimation of the less dense (i.e., less likely)
regions by computing the point-wise log-likelihood of G over the samples in U .
Based on this information we build a set of reliable negative samples, denoted
as N (line 7), to be exploited in the second stage of PU learning. As already
stated, such a schema is general enough to be adapted to different data domains
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Algorithm 1. LearnGPU(P, U)
1: Input: a set P = {(xi, 1)}mP

i=1 of positive samples, and a set U = {xi}mU
i=1 of

unlabeled samples over RVs X ∪ {Y }, with Val(Y ) = {0, 1}.
2: Output: a trained discriminative model learned on positive samples P and reliable

negative samples N extracted from U
3: G ← learnGenerativeModel(P,X) � learn a generative model G from P
4: L ← {log pG(xi)|xi ∈ U}
5: N ← reliableNegativeSamples(L, P, U)
6: f ← fitClassifier(P, N )
7: return f

by leveraging different density estimators. Moreover, by specifying algorithmic
variants to build N and the final discriminator f , one can improve its robustness
and accuracy. We discuss such extensions in the following sections.

3.2 Bayesian Networks and Mixtures of Trees

A question arises on which generative model to employ. The main challenge in
learning generative models is balancing the representation expressiveness of the
learned models against the cost of learning and performing inference on them.

Probabilistic Graphical Models (PGMs), like Bayesian Networks (BNs) and
Markov Networks (MNs), are able to model highly complex probability distribu-
tions and have been successfully employed as density estimators. However, exact
inference with them is generally intractable. Since our GPU learning schema only
requires the computation of complete evidence queries, employing BNs in GPU
would lead to tractable inference to build N .

Nevertheless, learning a complex model could still pose a challenge on very
large datasets. Guaranteeing exact and tractable inference, a series of tractable
probabilistic models (TPMs) have been recently proposed: either by restricting
the expressiveness of PGMs by bounding their treewidth, or by exploiting local
structures in a distribution. The limited expressive capabilities of TPMs, like
mixtures of Bayesian trees (MT) [25] and Cutset Networks [9–11], or their ability
to compile a high treewidth network into a deep probabilistic architecture, like
Sum-Product Networks [31], allow for more efficient learning schemes.

In this work we evaluate GPU by exploiting both BNs and MTs to inves-
tigate how the model expressiveness affects the estimation of pP and therefore
ultimately the accuracy of the learned discriminator (see Sect. 4). In the following
we briefly review both models.

BNs are a PGM encoding a probability distribution by means of a directed
acyclic graph and a set of weights, where nodes correspond to RVs and edges to
dependencies among RVs. Given a set of n RVs X, for each variable Xi ∈ X,
Pai denotes the set of parents of node Xi in the DAG. The structure of the BN
G, induces a factorization of the joint distribution into local factors, that is:

pG(X) =
n∏

i=1

p(Xi|Pai).
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Learning a BN corresponds to learning both the structure and the conditional
probability distribution corresponding to each local factor from the data. Classi-
cal structure learning algorithms search in the space of BNs guided by a scoring
function. On the other hand, parameter learning is obtained by maximum like-
lihood estimation.

Concerning mixtures of generative models, a very competitive density esti-
mation algorithm is MT [25]. MT learns a mixture model M whose distribution
factorizes according to

pM(X) =
k∑

i=1

λipTi
(X),

where the distributions pTi
, learned using the Chow-Liu algorithm [6], are the

mixture components and λi ≥ 0, with
∑k

i=1 λi = 1 are their coefficients. The
Chow-Liu algorithm learns BNs with lower treewidth (i.e., nodes have at most
one parent in the network), thus leading to efficient learning and inference time.
In [25] the best components and weights are found as (local) likelihood maxima
by using EM, with k fixed in advance.

3.3 Reliable Negative Sample Elicitation

After learning a generative model G, the density estimation information G pro-
vides can be exploited in several ways. The most straightforward one would be
to impose a threshold hyperparameter θ such that each sample in U whose log-
likelihood log pG falls under θ can be added to N . However, determining the best
value for θ would require to perform additional hyperparameter optimization.
To alleviate this issue we propose to implicitly compute it by building N to com-
prise the mP = |P| samples in U with the lowest log-likelihood score according
to G. In such a way we ensure that the resulting labeled set P ∪ N is balanced
w.r.t. the positive and negative class. The risk of including positive samples into
P ∪ N can be mitigated by adopting a robust classifier in the following super-
vised step, whose generalization ability on test data may also additionally benefit
from the regularization capability of mis-specifying some sample labels. Lastly,
we note how density information in the form of the finite set log-likelihoods can
be directly incorporated into the construction of the classifier over P ∪ N .

While we employ the likelihoods to select the most reliable negative samples
from U , they could also be used to select the most reliable positive samples
instead. Adopting such a strategy, GPU can be turned into an iterative schema
in which at each iteration P is augmented with the samples belonging to the
most dense regions. After a stopping criterion is met, N can be built by collecting
all the samples in U not added to P.

3.4 Supervised Classification Step

In principle, every supervised classifier can be employed in GPU after the set
N is constructed. In the empirical evaluation we provide in Sect. 4 we adopt the
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regular implementation of Support Vector Machines (SVMs). Nevertheless, we
now discuss other interesting variants for GPU learning. First, if one builds N
to be unbalanced w.r.t. P, it would be possible to adopt the more robust variant
of biased SVMs [17]. Alternatively, if one focuses on iteratively augmenting the
set P only with GPU, then 1-class SVMs [28] could be employed to derive a
max-margin hypersphere for the positive class.

Additionally, the likelihoods associated to samples in U could be interpreted
as sample confidence weights. Approaches like that of [36] could be adopted to
learn a weighted classifier over P ∪ U without the need to build N either.

Lastly, our probabilistic generative approach for the first stage can be plugged
in an unsupervised clustering approach for the second stage, as done with the
EM algorithm in [23]. A principled end-to-end probabilistic formulation would
allow estimating both pD0 and pD1 iteratively and jointly.

4 Experiments

In this section we empirically evaluate the proposed GPU approach, applying
it to categorical data. We are interested in this kind of data because they are
challenging for classical metric based approaches. Since there is no general con-
sensus on how to build a metric to evaluate categorical data, ad-hoc solutions
have been adopted on a domain-wise perspective [19], and only recently PU
learning schemes have been devised for it [18]. On the other hand, PGMs have
been extensively investigated for categorical data and estimating a probability
distribution over discrete RVs is a consolidated practice for extracting new rep-
resentations in a domain-agnostic unsupervised way [3,16,30]. As stated in the
previous sections, adapting GPU to other domains reduces to selecting an appro-
priate generative toolbox from the probabilistic model literature. Specifically, we
aim at answering the following research questions: (Q1) how does GPU compare
to state-of-the-art PU learning approaches? (Q2) how does the quantity of avail-
able positive samples affect GPU learning? (Q3) how much does the choice of a
generative model in estimating pP affect GPU’s performance?

4.1 Experimental Setting

We took 10 datasets publicly available on the UCI machine learning repository2,
derived 3 experimental settings for each, and ran 10-fold cross validations exactly
as in [18]3. The three settings were generated by putting in P 30%, 40%, and
50% labeled samples of the positive class respectively, and in U the remaining
positive samples plus all the negative ones. When the dataset does not describe a
binary classification problem, the two heavily populated classes were considered.
In our experiments, all numerical attributes were discretized into 10 equal-width
bins. Detailed dataset statistics are reported in Table 1.

2 http://archive.ics.uci.edu/ml/.
3 The datasets and settings used in [18] were kindly provided by Dino Ienco.

http://archive.ics.uci.edu/ml/
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Table 1. Dataset statistics. #pos and #unl denote the number of positive and unla-
beled samples respectively.

Dataset #attributes % pos #test

30 40 50

#pos #unl #pos #unl #pos #unl

Audiology 69 15 79 20 74 26 68 11

Breast-cancer 9 54 203 72 185 91 166 29

Chess 36 451 2425 601 2275 751 2125 320

Dermatology 34 30 136 40 126 50 116 19

Hepatitis 19 9 130 12 127 15 124 16

Lymph 18 17 111 22 106 28 100 14

Nursery 8 1166 6562 1555 6173 1944 5784 859

Pima 8 135 556 180 511 225 466 77

Soybean 35 25 140 33 132 42 123 18

Vote 16 72 319 96 295 120 271 44

We evaluate GPU by employing either BNs (GPUBN) or MTs (GPUMT) as
generative models (see Sect. 3.2). BNs are learnt using the R package bnlearn4

(release 4.1.1). To learn their structure we employed the simple score-based hill-
climbing algorithm. In order to avoid overfitting of the network to the positive
samples, the following K2 scoring function [7] was adopted5:

scoreK2(G : P) = log p(G) +
n∑

i=1

qi∑

j=1

(
log

(
(ri − 1)!

(Nij + ri − 1)!

)
+

ri∑

k=1

log(Nijk!)

)
,

where p(G) represents the prior probability of the network G over the n RVs
Xi, ri is the number of states of variable Xi, qi is the number of possible con-
figurations of the parent set Pai, Nijk is the number of instances in the data
where variable Xi takes value xik and the set of variables Pai takes value wij ,
Nij is the number of instances in the data where the variables in Pai take their
j-th configuration wij . Concerning parameter estimation, we set the imaginary
sample size to 1. MTs are learnt using the Libra [24] toolkit6 (version 1.1.2). We
imposed the number of components to be 10.

As the classifier for the supervised second stage, we adopt the commonly
used SVMs7 with an RBF kernel as implemented in scikit-learn8. The penalty
4 http://www.bnlearn.com/.
5 The same set of experiments have been conducted using the likelihood as scoring
function, leading to overfitted models with an overall result worst than that obtained
using the K2 score.

6 http://libra.cs.uoregon.edu/.
7 For this stage only, categorical data is one-hot encoded.
8 http://scikit-learn.org/.

http://www.bnlearn.com/
http://libra.cs.uoregon.edu/
http://scikit-learn.org/
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parameter C and the kernel coefficient γ have been optimized with a cross
validation on the following grid C ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000} and γ ∈
{0.001, 0.01, 0.1, 1, 10, 100, 1000}.

We compared GPU with Positive Naive Bayes (PNB), Average Positive Naive
Bayes (APNB), Positive TAN (PTAN), Average Positive TAN (APTAN) [4] and
Pulce [18] with k = 7. See Sect. 2 for a description of these methods.

Source code, in Python and R, of the proposed approach and scripts to repro-
duce the results are available at https://github.com/nicoladimauro/GPU.

4.2 Results and Discussion

Performance on the test set was evaluated using the F1-score measure of the
accuracy, defined as F = 2PR/(P +R) = 2tp/(2tp+fp+fn), where P and R are,
respectively, the precision and the recall obtained by the algorithm, and tp, fp
and fn are, respectively, the true positive, false positive and false negative sam-
ples. Since the number of positive samples is much larger than that of negative
ones, as in [18] we directed the computation of P , R, and F1-score to the negative
samples, differently from their classical setting, i.e., as F = 2tn/(2tn+fp+fn).
In particular, since no information for the negative class is provided, correctly
predicting negative samples should be somehow harder than focusing on the
positive counterparts.

Overall results are reported in Tables 2 and 3. We may note that PTAN and
APTAN never won against the other approaches, while the two GPU approaches
won 73.3% of the times (53.3% of the times GPUBN alone), and each GPU app-
roach won more times than any competitor (GPUBN more than doubled the
number of wins of each competitor). The worst-performing dataset for GPU
approaches, and the only one where they perform neatly worse than all other
competitors, is ‘hepatitis’. This may indicate that for such a dataset the distri-
butions of the negative and positive class are hard to estimate as very different
densities. Concerning question Q1, therefore, we can say that both GPUBN and
GPUMT are competitive to the current state-of-the-art for categorical data. On
datasets on which GPUBN does not win in all settings, it still performs com-
parably or better on settings with larger P sets. Overall, increasing the size of
P improves the models’ accuracy in a consistent way. At the same time, on
datasets where both GPU approaches are competitive, they improve over other
methods even with only 30% positive samples available (Q2). Lastly, we observe
that while GPUBN generally outperforms GPUMT, the latter is still comparable
to Pulce (see average ranks, Table 2) and overall more accurate than all other
methods. To answer question Q3, we can state that the greater expressiveness of
BNs, allowing better modeling the probability distribution of the positive class,
is fairly relevant for achieving better performances. Nevertheless, note that for
both GPUBN and GPUMT we employed out-of-the-box PGMs and did not invest
too much time optimizing the hyperparameters for their structure and weight
learning algorithms. It is left for future work to explore how increasing a model
complexity can degrade its performance, that is when too accurate probability
distribution estimates can lead to overfitting.

https://github.com/nicoladimauro/GPU
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Table 2. F1-score results over the 30 samples, comparing GPUBN and GPUMT against
the competitors Pulce, PNB, APNB, PTAN, APTAN. The second column indicates the
percentage of positive samples in P.

Dataset % GPUBN GPUMT Pulce PNB APNB PTAN APTAN

Audiology 30 0.839 0.902 0.745 0.68 0.7 0.66 0.66

Audiology 40 0.879 0.804 0.846 0.75 0.74 0.71 0.66

Audiology 50 0.980 0.991 0.899 0.80 0.80 0.78 0.71

Breast-cancer 30 0.475 0.450 0.534 0.40 0.39 0.43 0.43

Breast-cancer 40 0.483 0.513 0.438 0.42 0.40 0.43 0.45

Breast-cancer 50 0.517 0.535 0.443 0.42 0.41 0.44 0.44

Chess 30 0.689 0.663 0.696 0.58 0.64 0.59 0.64

Chess 40 0.691 0.665 0.688 0.58 0.64 0.60 0.64

Chess 50 0.773 0.650 0.655 0.58 0.64 0.60 0.64

Dermatology 30 1.000 0.834 0.992 0.57 0.57 0.57 0.56

Dermatology 40 1.000 0.836 0.992 0.57 0.58 0.57 0.57

Dermatology 50 0.992 0.951 0.992 0.59 0.60 0.57 0.58

Hepatitis 30 0.822 0.665 0.843 0.87 0.87 0.85 0.86

Hepatitis 40 0.778 0.654 0.873 0.88 0.88 0.85 0.85

Hepatitis 50 0.764 0.742 0.855 0.88 0.88 0.86 0.85

Lymph 30 0.827 0.782 0.851 0.84 0.85 0.79 0.84

Lymph 40 0.825 0.795 0.827 0.84 0.83 0.79 0.81

Lymph 50 0.824 0.835 0.814 0.86 0.87 0.81 0.82

Nursery 30 0.809 0.761 0.739 0.65 0.65 0.56 0.50

Nursery 40 1.000 0.762 0.773 0.69 0.69 0.61 0.56

Nursery 50 0.960 0.779 0.807 0.69 0.70 0.74 0.44

Pima 30 0.588 0.576 0.532 0.49 0.50 0.50 0.50

Pima 40 0.568 0.593 0.547 0.49 0.50 0.50 0.51

Pima 50 0.609 0.605 0.528 0.49 0.51 0.50 0.52

Soybean 30 0.893 0.766 0.738 0.81 0.86 0.80 0.81

Soybean 40 0.883 0.852 0.767 0.86 0.86 0.84 0.83

Soybean 50 0.890 0.923 0.823 0.92 0.92 0.88 0.86

Vote 30 0.826 0.799 0.679 0.62 0.62 0.56 0.55

Vote 40 0.850 0.790 0.800 0.71 0.71 0.58 0.54

Vote 50 0.844 0.829 0.829 0.77 0.77 0.61 0.56

# wins 16 6 3 5 6 0 0

Avg. F1-score 0.796 0.743 0.751 0.677 0.686 0.653 0.643

30% 0.777 0.720 0.735 0.651 0.665 0.631 0.635

40% 0.796 0.727 0.755 0.679 0.683 0.648 0.642

50% 0.815 0.784 0.764 0.700 0.710 0.679 0.652

Avg. ranking 2.16 3.23 3.2 4.57 3.95 5.47 5.42
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Table 3. Number of wins/ties among all the methods, the average of the number of
wins for each method and its ranking in parenthesis.

GPUBN GPUMT Pulce PNB APNB PTAN APTAN Avg.

GPUBN — 24/0 23/1 23/0 23/0 27/0 25/1 24.17 (1)

GPUMT 6/0 — 13/0 22/0 22/0 25/0 24/0 18.67 (3)

Pulce 6/0 17/0 — 22/0 22/0 25/0 24/0 19.33 (2)

PNB 7/0 8/0 8/0 — 5/12 18/2 18/3 10.67 (5)

APNB 7/0 8/0 8/0 13/12 — 23/3 21/4 13.33 (4)

PTAN 3/0 5/0 5/0 10/2 4/3 — 12/6 6.50 (7)

APTAN 4/0 6/0 6/0 9/3 5/4 12/6 — 7.00 (6)

Table 4. Number of positive samples uncorrectly predicted as negative ones in the
negative sample elicitation phase. In parenthesis the average number of errors for each
fold over the cardinality of both P and N .

Dataset 30% 40% 50%

Audiology 0.17 (2.6/15) 0.11 (2.3/20) 0.11 (2.8/26)

Breast-cancer 0.48 (25.7/54) 0.46 (33.3/72) 0.43 (38.8/91)

Chess 0.33 (148.6/451) 0.27 (162.4/601) 0.21 (159.7/751)

Dermatology 0.00 (0.0/30) 0.00 (0.0/40) 0.00 (0.0/50)

Hepatitis 0.19 (1.7/9) 0.00 (0.0/12) 0.11 (1.7/15)

Lymph 0.16 (2.8/17) 0.15 (3.4/22) 0.14 (3.8/28)

Nursery 0.00 (0.0/1166) 0.00 (0.0/1555) 0.03 (50.4/1944)

Pima 0.33 (44.4/135) 0.30 (53.6/180) 0.28 (64.0/225)

Soybean 0.14 (3.4/25) 0.15 (4.9/33) 0.10 (4.4/42)

Vote 0.30 (22.9/72) 0.22 (21.0/96) 0.23 (27.9/120)

As already said, in the reliable negative sample elicitation phase, the number
of negative samples to be included in the set N was set to the same number
of positive samples available in P, i.e., |N | = |P|. However, the generated set
N may contain some true positive samples that have been incorrectly predicted
as negative ones. In order to quantify the accuracy of the proposed approach,
Table 4 reports, for each dataset, the number of errors occurred in the negative
elicitation step, when GPUBN has been used as a density estimator. As we can
see, the percentage of errors decreases as the percentage of positive samples in
P increases. For datasets like ‘breast-cancer’, the number of errors reaches 50%
thus confirming the low accuracy in terms of F1-score obtained on this dataset.
Anyway, also other competitors are not able to properly separate positive and
negative samples on this dataset.

A concluding experiment has been done by varying the number of negative
samples in N as a percentage of the number of samples in P, i.e., by setting
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Table 5. Detailed F1-score results over the 30 samples obtained by GPUBN by varying
the percentage of the reliable negative samples added to N . Last column reports Pulce
results for comparison.

Dataset GPUBN Pulce

Negative percentage

% 60% 70% 80% 90% 100% 110% 120% 130% 140%

Audiology 30 0.830 0.832 0.812 0.834 0.839 0.627 0.857 0.857 0.880 0.745

Audiology 40 0.896 0.949 0.940 0.958 0.879 0.938 0.940 0.923 0.931 0.846

Audiology 50 1.000 0.991 0.989 0.971 0.980 0.989 0.966 0.957 0.942 0.899

Breast-cancer 30 0.478 0.422 0.426 0.410 0.475 0.485 0.497 0.464 0.450 0.534

Breast-cancer 40 0.421 0.416 0.409 0.470 0.483 0.494 0.492 0.500 0.452 0.438

Breast-cancer 50 0.457 0.486 0.454 0.508 0.517 0.522 0.497 0.481 0.476 0.443

Chess 30 0.604 0.629 0.644 0.668 0.689 0.693 0.693 0.700 0.700 0.696

Chess 40 0.601 0.637 0.671 0.675 0.691 0.703 0.724 0.731 0.740 0.688

Chess 50 0.623 0.645 0.701 0.739 0.773 0.777 0.788 0.786 0.783 0.655

Dermatology 30 0.992 0.992 0.992 0.992 1.000 0.992 0.992 0.992 0.992 0.992

Dermatology 40 0.992 0.992 0.992 0.992 1.000 1.000 1.000 1.000 1.000 0.992

Dermatology 50 0.992 0.992 0.992 0.992 0.992 0.992 1.000 1.000 0.993 0.992

Hepatitis 30 0.336 0.620 0.605 0.513 0.822 0.822 0.862 0.842 0.876 0.843

Hepatitis 40 0.562 0.611 0.678 0.741 0.778 0.825 0.823 0.871 0.839 0.873

Hepatitis 50 0.679 0.684 0.730 0.695 0.764 0.871 0.859 0.898 0.891 0.855

Lymph 30 0.792 0.810 0.791 0.793 0.827 0.782 0.800 0.829 0.794 0.851

Lymph 40 0.757 0.772 0.781 0.842 0.825 0.823 0.838 0.819 0.849 0.827

Lymph 50 0.721 0.792 0.814 0.841 0.824 0.833 0.816 0.823 0.792 0.814

Nursery 30 0.799 0.810 0.816 0.819 0.809 0.810 0.817 0.818 0.809 0.739

Nursery 40 1.000 1.000 1.000 1.000 1.000 1.000 0.832 0.832 0.832 0.773

Nursery 50 1.000 1.000 1.000 1.000 0.960 1.000 1.000 1.000 1.000 0.807

Pima 30 0.481 0.515 0.535 0.545 0.588 0.543 0.562 0.565 0.567 0.532

Pima 40 0.504 0.509 0.531 0.574 0.568 0.600 0.590 0.607 0.620 0.547

Pima 50 0.519 0.532 0.552 0.603 0.609 0.620 0.613 0.623 0.610 0.528

Soybean 30 0.802 0.834 0.816 0.902 0.893 0.914 0.902 0.915 0.929 0.738

Soybean 40 0.830 0.846 0.893 0.902 0.883 0.915 0.924 0.925 0.926 0.767

Soybean 50 0.819 0.886 0.864 0.854 0.890 0.922 0.916 0.935 0.938 0.823

Vote 30 0.819 0.841 0.838 0.832 0.826 0.798 0.795 0.801 0.779 0.679

Vote 40 0.883 0.850 0.861 0.864 0.850 0.848 0.831 0.814 0.806 0.800

Vote 50 0.892 0.918 0.888 0.854 0.844 0.845 0.846 0.791 0.824 0.829

# wins 12 14 16 20 22 21 25 23 24

Avg. F1-score 0.736 0.760 0.767 0.779 0.796 0.799 0.802 0.803 0.801 0.751

|N | = α|P|. Table 5 reports the results adopting GPUBN as a density estimator
for α ∈ {0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4}. It is possible to see that for α = 1.2
the number of wins of the proposed approach over Pulce increases to 25.
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5 Conclusions

In Positive-Unlabeled (PU) learning only positive samples are labeled at training
time. PU learning requires algorithms to cleverly exploit dependencies hidden
in the data in order to build models able to discriminate between positive and
negative samples. In this paper, we proposed to exploit probabilistic generative
models for PU learning by characterizing the density distribution for the positive
class. The overall GPU framework is flexible enough to be applied on many
domains by leveraging tools provided by PGMs. Results on several benchmark
datasets empirically confirmed the validity of our new proposed approach.
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8. De Comité, F., Denis, F., Gilleron, R., Letouzey, F.: Positive and unlabeled exam-
ples help learning. In: Watanabe, O., Yokomori, T. (eds.) ALT 1999. LNCS (LNAI),
vol. 1720, pp. 219–230. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-46769-6 18

9. Di Mauro, N., Vergari, A., Basile, T.M.A., Esposito, F.: Fast and accurate density
estimation with extremely randomized cutset networks. In: Ceci, M., Hollmén, J.,
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Abstract. Biclustering techniques have been widely used to identify
homogeneous subgroups within large data matrices, such as subsets of
genes similarly expressed across subsets of patients. Mining a max-sum
sub-matrix is a related but distinct problem for which one looks for
a (non-necessarily contiguous) rectangular sub-matrix with a maximal
sum of its entries. Le Van et al. [7] already illustrated its applicability
to gene expression analysis and addressed it with a constraint program-
ming (CP) approach combined with large neighborhood search (LNS).
In this work, we exhibit some key properties of this NP-hard problem
and define a bounding function such that larger problems can be solved
in reasonable time. The use of these properties results in an improved
CP-LNS implementation evaluated here. Two additional algorithms are
also proposed in order to exploit the highlighted characteristics of the
problem: a CP approach with a global constraint (CPGC) and a mixed
integer linear programming (MILP). Practical experiments conducted
both on synthetic and real gene expression data exhibit the character-
istics of these approaches and their relative benefits over the CP-LNS
method. Overall, the CPGC approach tends to be the fastest to produce
a good solution. Yet, the MILP formulation is arguably the easiest to
formulate and can also be competitive.

1 Introduction

Gene expression data is typically represented as a large matrix of gene expres-
sion levels across various samples. The study of such data is a valuable tool to
improve the understanding of the underlying biological processes. For example,
biomarker discovery aims at finding indicators of a disease or the physiologi-
cal state of patients. This problem can be addressed with clustering techniques
which perform a grouping of one dimension, either the rows or the columns of
the original matrix. Yet it is known that breast cancer, for example, exhibits dis-
tinct subtypes [12,13]. In other words, specific genes exhibit activation patterns
only in a specific group of patients. Biclustering techniques, or co-clustering,
identify specific subsets of rows and of columns which jointly form homogeneous
entries [9].
c© Springer International Publishing AG, part of Springer Nature 2018
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In the present work, we focus on a related but different mining task. One looks
in particular for subsets of rows and of columns with globally high values. In
the context of gene expression analysis, the objective is to find a subset of genes
which are relatively highly expressed among a subset of patients, even though
some entries might depart from this pattern. With several thousands genes and
hundreds of patients, we are mostly interested in the production of an algorithm
that can deal with large matrices. Formally, one looks for a rectangular, and non
necessarily contiguous, sub-matrix of a large matrix with a maximal sum of the
selected entries. An illustrative example is provided in Fig. 1. The sum of the
sub-matrix defined by the subset of rows {i1, i2, i4, i5} and the subset of columns
{j2, j4, j5, j6} is 27.3 and is maximum. It can not be increased by the addition
or the exclusion of any other row or column.

This max-sum sub-matrix problem is closely related to the maximal ranked
tile mining problem studied by Le Van et al. [7]. In the later case, prior to
the search of a sub-matrix, each matrix entry is replaced by its rank across its
particular row. In other words, the maximal ranked tile mining is equivalent to
the max-sum sub-matrix for which the matrix entries are discrete ranks along the
rows. Since the combinatorial optimization algorithms to solve such problems are
actually not specific to discrete entries we address here the slightly more general
setting of continuous entries.

Our main contributions are (1) the study of the max-sum sub-matrix prob-
lem while exhibiting some of its key properties and the definition of an upper
bound easy to compute in order to speed up the search for a solution; (2) the
implementation of two additional algorithms making use of these properties: a
CP approach with a global constraint (CPGC) and mixed integer linear pro-
gramming (MILP); (3) practical experiments conducted both on synthetic and
real gene expression data showing that the CP-LNS method can be largely out-
performed; (4) the study of the relative benefits of the proposed methods across
various problem instances.

2 Problem

2.1 Statement

Definition 1 (The Max-Sum Sub-Matrix Problem). Given a matrix
M ∈ IRm×n consisting of m rows and n columns, let R = {1, . . . , m} and
C = {1, . . . , n} be index sets for rows and for columns respectively, find the max-
sum sub-matrix (I∗, J∗), with I∗ ⊆ R and J∗ ⊆ C, such that:

(I∗, J∗) = argmax
I⊆R,J⊆C

f(I, J) = argmax
I⊆R,J⊆C

∑

i∈I,j∈J

Mi,j . (1)

The objective function f(I, J) is the sum of the entries of a sub-matrix (I, J).
The maximization term rewards, respectively penalizes, matrix entries with pos-
itive, respectively negative, values. One only considers matrices with positive
and negative entries. Otherwise the optimal solution is trivially identified.
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(a) Instance matrix (b) Max-sum sub-
matrix

(c) Threshold: 5.1 (d) Threshold: −5.5

Fig. 1. (a): Instance matrix. (b): Associated sub-matrix of maximal sum. (c) and (d):
Sub-matrix of maximal sum obtained for different thresholds applied on the instance
matrix.

This formulation implicitly assumes that there is a threshold equal to zero
to consider entries as potentially relevant or informative.

A different threshold can be considered by subtracting some constant to
all matrix entries. This allows to control the size of the optimal sub-matrix.
Figures 1c and d illustrates solutions for a threshold of 5.1 and −5.5, respectively.

The max-sum sub-matrix problem is NP-hard from a simple reduction1 of
the Maximum edge Weight Biclique Problem (MWBP) [4].

2.2 Explicit Versus Implicit Search Space

For a defined subset of columns J , the objective function can be formulated as
f(I, J) =

∑
i∈I ri with ri being the contribution of the row i:

ri =
∑

j∈J

Mi,j . (2)

This is important as the actual search can be limited to one dimension
through independent computation of the contributions along the other dimen-
sion. Indeed, for any of the two dimensions being fixed, optimization along the
other dimension is straightforward since it amounts to select only the subset of
entries whose contribution is positive. For a fixed subset of columns J ⊆ C, the
subset of rows I∗

J ⊆ R that maximizes the objective value is identified as:

I∗
J = argmax

I⊆R

∑

i∈I,j∈J

Mi,j = {i ∈ R | ri ≥ 0}. (3)

In the gene expression analysis context, with order(s) of magnitude more
rows (the genes) than columns (the samples), one typically searches for a subset
of columns and selects the associated optimal subset of rows.

1 Essentially by considering the rows and columns of the matrix as the two sets of
nodes of a bipartite graph.
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The search space of the max-sum sub-matrix problem contains 2|R|×2|C| fea-
sible solutions that are rectangular sub-matrices (I ⊆ R, J ⊆ C) of the original
matrix. Thanks to the independent contribution along one dimension, the num-
ber of feasible solutions to be explicitly evaluated is thus reduced to 2|C| × |R|.

2.3 Related Work

Biclustering techniques address the problem of finding sub-matrices that satisfy
some definition of homogeneity since entries grouped together into biclusters
typically have similar values. A comprehensive review can be found in [9]. There
is no assumption of homogeneity in the max-sum sub-matrix problem but rather
one looks for a rectangular sub-matrix with an overall maximal sum. The dif-
ference is illustrated in Fig. 1b where a highly negative entry −4.1 in (i4, j4)
is selected. This results from the sums of the selected entries in i4 and in j4
which contribute positively to the maximal sum. In the biclustering context,
any entry that differs from entries of a bicluster or from entries in its row or
its column is not expected to be selected. Cohesive biclusters [14,15], with high
average values, are built by aggregating entries that are higher than a certain
threshold such that the average value of the bicluster is higher than a second
threshold. Then all entries must be higher than the first threshold while in the
max-sum sub-matrix problem there is no expected minimum value for an entry
to be selected. Biclustering approaches commonly identify multiple biclusters.
Many algorithms iteratively identify a single bicluster and subsequently mask
it [3,9,16]. Yang et al. [20] proposed a global alternative to these local opti-
mal decisions. Designing a dedicated approach to the identification of multiple
sub-matrices of maximal sum is part of our future research.

The maximum (contiguous) subarray problem introduced in [2] identifies a sub-
array of maximal sum from an array. For a one-dimensional array, this prob-
lem can be solved in linear time by Kadane’s algorithm [2]. Cubic and sub-
cubic time complexity algorithms have been proposed in the two-dimensional
case [2,18,19]. This problem is however simpler than the max-sum sub-matrix
since the selected sub-matrix is constrained to be formed of contiguous rows and
contiguous columns from the original matrix.

The maximum ranked tile mining problem has been introduced in [7]. As dis-
cussed in Sect. 1, this is a special case of the max-sum sub-matrix problem for
which the matrix entries are discrete ranks, corresponding to a permutation of
column indices on each row. While the discrete ranking is an important charac-
teristic of the maximum ranked tile mining problem, the associated constraint
programming solution does not require discrete entries nor benefit from it. In
this work, we present improved and new optimization approaches to solve the
problem with arbitrary continuous entries.

Subgroup discovery is a data mining technique which extracts classification rules
with respect to a target variable [1,6]. It departs from the standard learning of a
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classifier as the extracted rules are not necessarily intended to cover all possible
instances. Besides, such technique focuses on the interpretability of the classifi-
cation rules rather than the generalization capability to classify new instances.
Mining a max-sum sub-matrix is somewhat similar to subgroup discovery but
there is no supervision by a specific target class variable. The hotspot detection
problem, which can be considered as a particular form of subgroup discovery,
aims at identifying subgroups that are unexpected with respect to some baseline
information [5]. In the max-sum sub-matrix problem, one does consider globally
high values without any baseline distribution of the data.

3 Optimization Approaches

3.1 Boolean Decision Vectors

The max-sum sub-matrix problem can be modeled with two vectors of boolean
decision variables: T = (T1, . . . , Tm) for the rows and U = (U1, . . . , Un) for the
columns with Ti ∈ {0, 1} and Uj ∈ {0, 1}. A sub-matrix (I, J) is defined by
I = {i ∈ R | Ti = 1} and J = {j ∈ C | Uj = 1}. The problem consists in
assigning a value to each variable of T and U . Let us denote by U1 = {j ∈
C | Uj = 1} the selected columns, U0 = {j ∈ C | Uj = 0} the unselected ones
and by U? = {j ∈ C | Uj = {0, 1}} the undecided ones.

3.2 Constraint Programming

Constraint Programming (CP) is a flexible programing paradigm that is capable
of solving optimization problems. As a declarative approach, it only requires to
model the problem and, by using existing solvers, let it search and find solu-
tions. A model is defined as a constraint satisfaction problem CSP = (V,D,C)
where V is the set of variables, D is their respective domains, and C is a set of
constraints defined over the variables. A feasible solution is an assignment of the
variables to values of their domains such that all constraints are satisfied.

Constraints are exploited to iteratively reduce the domains of variables. Such
constraint propagation reduces the number of variable assignments to consider.
Once all unfeasible values are removed from the domains of variables, the fix-
point of the propagation is reached. Then the solver selects a variable X ∈ V
that is unbound and recursively calls the solver while assigning a value to this
variable. Through exploration of a depth-first-search tree (DFS), the solver either
reaches a solution or backtracks when the domain of variables becomes empty.

Efficient backtracking is achieved through trailing, a state management strat-
egy that facilitates the restoration of the computation state to an earlier version,
effectively undoing changes that were imposed since then. The trail exposes two
methods: pushState and popState to respectively time-stamp the current state
and restore it. Its implementation is captured in terms of two simple stacks.
The first stack holds entries to undo, the second one holds the frame sizes
stacked between two consecutive call to pushState. Trailing enables the design
of reversible objects defined on the trail.
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In the rest of this section, the original model proposed by Le Van et al. [7]
(CP-LNS 0) is presented, as well as an improved version (CP-LNS ). Then a new
constraint programming formulation is proposed (CPGC ).

In CP-LNS0, the tree reaches a leaf (or feasible solution) as soon as all rows
and columns variables are bound. Each row and each column is associated to a
reified constraint that ensures its selection if the sum of the entries along the
other selected dimensions (respectively columns or rows) is positive. The LNS
strategy is implemented as follows: after a given number of backtracking, the
constraints on half of the columns variables of the best solution found so far are
removed and the search restarts in another region. LNS may improve the time to
identify a good solution at the cost of losing the possibility to prove optimality
since the search is no longer complete.

In CP-LNS, by virtue of the implicit search space property (see Sect. 2.2), the
tree reaches a leaf as soon as all column variables are bound. The contribution of
all rows are computed afterwards. The objective function is computed as the sum
of positive rows contributions. Similarly to CP-LNS0, after some backtracking,
half of the constraints, here only on the columns variables, are relaxed and a
different region of the search space is explored.

CP-LNS0. The max-sum sub-matrix problem has been modeled in [7] as:

maximize
∑

i∈R,j∈C
Ti × Uj × Mi,j , (4)

∀i ∈ R : Ti = 1 ⇔
∑

j∈C
Uj × Mi,j ≥ 0, (5)

∀j ∈ C : Uj = 1 ⇔
∑

i∈R
Ti × Mi,j ≥ 0. (6)

Expression (4) states the optimization problem. The set of redundant con-
straints (5) and (6) permits a stronger filtering during the search.

CP-LNS. We propose here an improved CP model obtaining the same filtering
as the original one but resulting in a lighter propagation of the constraints:

maximize
∑

i∈R
Ti × ri, (7)

∀i ∈ R : Ti = 1 ⇔ ri ≥ 0. (8)

The objective is to maximize the sum of rows contributions which are formal-
ized as ri =

∑
j∈C Uj × Mi,j . Each row with positive (respectively negative)

contribution is constrained in (8) to be selected (respectively unselected).
This improved model avoids the computation of the quite-heavy reified sum

constraints (6) and reduces the number of terms in the objective function. As
each product between variables in the objective is translated into a small binary
constraint, reducing their number from |R| × |C| to |R| makes a significant dif-
ference on the time spent to compute the fix-point in each node.
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CP Global Constraint. We also propose to improve the model due to Le Van
et al. [7] by designing a novel algorithm encapsulated inside a global constraint
that captures the whole problem. The pseudo-code is given in Algorithm 1. The
call to the bounding and filtering procedures has been made explicit. In practice,
the lines 11 to 14 would be encapsulated in the global constraint triggered by
the fix-point algorithm. The key ingredients of our approach are:

– A feasible solution at each node of the search tree (evaluate()).
– An efficient bounding procedure (upperBound()).
– An efficient procedure to filter the domains (filter()).

A feasible solution at each node of the search tree. CP usually updates its feasible
solution and best so far lower bound in the leaf-node of the search tree, that is
when every variable of the problem is bound. One can observe that for the max-
sum sub-matrix problem, any partial assignment of the variables can be extended
implicitly as a complete solution for which the unbound variables would be set
to 0 (i.e. U? variables are considered unselected). There is thus no need to wait
that every variable is bound to evaluate the solution and possibly update the
best so far lower bound. The value of the objective function of the feasible
solution is computed in the evaluate() method as the sum of the positive rows
contributions of the partial solution (see (2) and (3) where U1 = J): f(I∗

U1 , U1) =∑
i∈R max(0, ri).

An efficient bounding procedure. CP uses a branch and bound depth-first-search
to avoid the exploration of proven suboptimal solutions. The branch and bound
performances depend on the strength and efficiency of the procedure to compute
the upper bound. We design simple yet efficient bounding procedure for the max-
sum sub-matrix problem. Intuitively one computes an upper bound on the row
contribution of each row and sums up all the positive bounds on the rows. The
upper bound on the contribution of a row is the sum of the matrix entries in the
selected columns plus the sum of the positive entries in the unbound columns.
One simply computes the upper bound as:

g(P ) = g(U1, U0, U?) =
∑

i∈R
max(0, ri +

∑

j∈U?

max(0,Mi,j)). (9)

The bound is admissible but not tight as it may optimistically evaluate the
objective (g(P ) ≥ f(P )). Indeed, it relies on a per-line relaxation of the problem,
each selecting a possibly different set of columns.

The upperBound() method is an implementation of the proposed upper
bound using reversible double to store the incremental modifications of the par-
tial contribution of the rows. Using a reversible sparse-set T for the row vari-
ables allows an efficient exclusion or inclusion of the rows through descent or
backtrack [17]. Indeed, as soon as the bound on the row contribution becomes
negative it should not be considered in the descendant nodes of the search tree.
The number of rows to consider goes from exactly |R| to at most |R|.
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An efficient filtering procedure. The filter() method evaluates the upper
bound result for two one-step look-ahead scenarios: if column j would be selected,
this look-ahead upper bound is denoted ub∈

j , or if j would not be selected,
denoted ub/∈j . Then, any column j with ub∈

j ≤ best is discarded as inclusion of
the column can only lead to worst solution than the best so far. Similarly, any
column j with ub/∈j ≤ best is included. The time complexity for computing all
the look-ahead upper bounds is in O(|T | × |U?|). Indeed the look-ahead bound
of each line for each column can be obtained in O(1) from rub

i .

3.3 Mixed Integer Linear Programming

Mixed Integer Linear Programming [10] involves the optimization of a linear
objective function, subject to linear constraints. Some or all of the variables are
required to be integer. A MILP solver explores a branch and bound tree using
linear-programming (LP) bounds at each node of the search tree.

It differs from a classical branch and bound as a LP relaxation, obtained by
removing all the integrality constraints of a node, is solved before branching.
The domain of all rows and columns variables changes from {0, 1} to [0, 1]. This
relaxed problem can be solved in polynomial time and the solution is an upper
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bound on the objective value of the constrained problem. As an upper bound,
the LP relaxation solution can be used to prune out suboptimal solutions.

If any integer variable is associated to a fractional value in the LP relaxation,
two sub-problems are generated imposing restrictions on the domain of this vari-
able. When all integrality constraints are satisfied in the solution of a node, then
it corresponds to a feasible solution and the lower bound is possibly updated.

In an initial formulation, each entry of the matrix is associated to a decision
variable that takes the value 1 if and only if both rows and columns are selected.
The objective function is computed as the sum of the selected matrix entries.

Initial Model. The max-sum sub-matrix problem can be linearized as:

maximize
∑

i∈R,j∈C
Mi,j × xi,j , (10)

s.t. xi,j ≤ Ti, ∀i ∈ R,∀j ∈ C, (11)
xi,j ≤ Uj , ∀i ∈ R,∀j ∈ C, (12)
xi,j ≥ Ti + Uj − 1, ∀i ∈ R,∀j ∈ C. (13)

A binary decision variable is associated to each row Ti, to each column Uj

and to each matrix entry xi,j . The objective function is computed as the sum
of matrix entries whose decision variable is set to one. Equations (11) to (13)
enforce that variable xi,j = 1 if and only if Ti = 1 and Uj = 1. All these decisions
variables are relaxed to the interval [0, 1] in the MILP solver.

Improved Model. In our experiments, reported in Sect. 4, we consider an
improved and more compact MILP formulation. It relies on (3) where a row is
selected if its contribution is positive and unselected otherwise. For each row, a
variable r+i is defined as the contribution of row i if it is positive and 0 otherwise.
The objective is to maximize the sum over these variables. This linear model also
uses “big M”constants. More specifically, (16) and (17) linearize r+i = max(0, ri)
with ri being the sum of the selected entries of row i.

maximize
∑

i∈R
r+i , (14)

s.t. ri =
∑

j∈C
Mi,j × Uj , ∀i ∈ R, (15)

r+i ≤ Ti × M+, ∀i ∈ R, (16)

r+i ≤ ri + (1 − Ti) × M−, ∀i ∈ R. (17)

If Ti = 1, r+i ≤ ri + (1 − Ti) × M− ≤ Ti × M+, then r+i ≤ ri. If Ti = 0,
r+i ≤ Ti × M+ ≤ ri + (1 − Ti) × M−, then r+i ≤ 0. From the maximization (14),
it appears that if ri ≥ 0, Ti must be bound to 1 and r+i = ri. Otherwise, Ti

must be bound to 0 and r+i = 0. This formulation is valid if and only if M+ ≥ ri
and M− + ri ≥ 0. To avoid rounding errors and ill conditioned matrices, the big
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M constants can be replaced by
∑

j∈C max(0,Mi,j) and −
∑

j∈C min(0,Mi,j),
respectively in (16) and (17).

4 Experiments

This section describes experiments conducted to assess the relative performances
of three algorithms to solve the max-sum sub-matrix problem. CP-LNS denotes
the improved version of the method CP-LNS0 proposed by Le Van [7]. The other
algorithms are original methods proposed in the present work: a constraint pro-
gramming with a global constraint (CPGC) and a mixed integer programming
(MILP) solution.

These algorithms are first compared on data matrices which are generated
in a controlled setting. Experiments on the breast cancer gene expression data
used in [7] are reported next. The main criterion to assess the performance of the
various methods is the computing time to solve a particular problem instance.
This is technically assessed through an any-time profile defined below.

All algorithms have been implemented in the Scala programming language
(2.11.4). Each run is executed with a single thread on a MacBook Pro (OS
version 10.10.5) laptop (Intel i7-2720 CPU @ 2.20–3.30 GHz, 4 GB RAM per
run). Constraint programming implementations are based on the latest version
of OscaR [11] and MILP is based on the latest version of Gurobi (7.0.2). The
code, datasets and supplementary results are available at https://bitbucket.org/
vbranders/maxsumsubmatriximplementation.

4.1 Synthetic Data

We follow a similar protocol as in [7]. Synthetic data are generated by implanting
a sub-matrix (I, J) of interest in a larger matrix M = (R, C) made of m rows
and n columns. The implanted sub-matrix (I, J) forms a specific selection of
rows and columns chosen at random. For each row index (from 1 to m) and each
column index (from 1 to n) of M, a binary variable is sampled from a Bernoulli
distribution B(p) and the associated row or column is included in the sub-matrix
(I, J) if B(p) = 1. Hence, I = {i ∈ R | B(p) = 1} and J = {j ∈ C | B(p) = 1}.
Next, the full matrix M is generated according to two normal distributions,
N (1, 1) whenever the particular entry belongs to the implanted sub-matrix, and
N (−3, 1) otherwise.

Such a generation protocol favors the occurrence of higher values in the
implanted sub-matrix and lower values elsewhere. Yet, given the standard devi-
ations chosen equal to 1, both ranges of values may overlap. We note that, as
in [7], the implanted sub-matrix is not guaranteed to be an optimal solution
to the max-sum sub-matrix problem. This generation protocol looks however
realistic to define a rectangular (and not necessarily contiguous) sub-matrix of
interest in a larger matrix.

Problem instances are generated for various matrix sizes (m,n) and a varying
parameter p. As p increases, the size of the implanted sub-matrix is expected to
increase as well. In the gene expression analysis context, m can easily be two orders

https://bitbucket.org/vbranders/maxsumsubmatriximplementation
https://bitbucket.org/vbranders/maxsumsubmatriximplementation
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of magnitude larger than n and the sub-matrix of interest is typically small as
compared to the full matrix. Such cases are included in the controlled experiments
reported below but a larger spectrum of problem instances is also considered.

4.2 Gene Expression Data

The proposed case study concerns biomarker discovery for breast cancer sub-
types using heterogeneous molecular data types. For a biological analysis and
interpretation of the results, the reader is redirected to the work of [7]. The
pre-processed data provided by [7] consists of a matrix of m = 2, 211 rows and
n = 94 columns.

Matrix entries are first transformed to discrete ranks along each row. A given
threshold θ×n is then subtracted from each entry. As θ increases, the proportion
of positive entries decreases and, consequently, a smaller sub-matrix of interest
is expected to be found. Hence, the control parameter θ plays a similar role as
the parameter p (from Sect. 4.1) but in an opposite way.

4.3 Evaluation

One could assess algorithms performances through runtime or number of feasible
solutions. While the former may depend on implementation details, the latter
strongly depends on the time spent in each node. As an example, the large num-
ber of reified constraints in CP-LNS0 has a major impact on the time spent to
compute the fix-point in each node while the filtering is as strong as the filter-
ing of the CP-LNS model. While both should perform equally well in terms of
the number of feasible solutions, it was observed in preliminary experiments that
CP-LNS0 is significantly slower than CP-LNS (the interested reader may consult
https://bitbucket.org/vbranders/maxsumsubmatriximplementation). We prefer
the runtime comparisons as it is a more common approach and we made sure to
implement the algorithms in the most comparable fashion.

Any-Time Profile. In practice, an important criterion for the user is the time
required to solve an instance and the ability to find the best solution within a
given budget of time. Using any-time profiles, one can summarize these charac-
teristics. The idea behind any-time profiles is that an algorithm should produce
as high quality solution as possible at any moment of its running time [8]. It
directly provides a cumulative probability for a method to solve an arbitrary
instance after a given budget of time. In the max-sum sub-matrix problem, a
high solution quality corresponds to a sub-matrix of large sum. For each instance,
runs not completed in a maximum budget of time tmax are interrupted.

Definition 2 (Max-Sum Sub-Matrix Any-Time Profile). Let f(algo,
inst, t) be the objective value of the best solution found so far by an algorithm
algo for an instance inst at time t. Let tmax be the maximum running time before

https://bitbucket.org/vbranders/maxsumsubmatriximplementation
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interrupting an algorithm. The any-time profile of an algorithm is the solution
quality Qalgo(t) computed on all instances as a function of the time:

Qalgo(t) =
1

|inst|
∑

inst

f(algo, inst, t)
f(algo∗

inst, inst, tmax)
, (18)

with algo∗
inst = argmax

algo
f(algo, inst, tmax).

4.4 Results

Figure 2 presents the any-time profile on 50 synthetic data with 10, 000 rows and
p = {0.05, 0.3, 0.7} for 100 columns (column 1) or 1, 000 columns (column 2) and
the any-time profile on breast cancer gene expression data with 2, 211 rows, 94
columns and variable choices of θ (columns 3 and 4).

Synthetic Data. The CP-LNS method is clearly outperformed by the two other
methods. It can barely produce any solution within the allocated time budget.
The best approach is CPGC followed by MILP. The reported curves are stopped
whenever the proof of optimality is obtained or else the maximal running time
is reached. Hence, CPGC also exhibits best results whenever proving optimality
is possible in the allocated running time.

Gene Expression Data. Each curve corresponds here to the performance of
an algorithm on a single instance, the one obtained for a specific choice of θ. On
the whole spectrum of instances considered, the clear winner is CPGC. The most
interesting instances are those for which θ ≥ 0.9 since such settings correspond
to small sub-matrices which are more likely to illustrate an interesting biological
pattern. In such cases, the best approaches are CPGC and CP-LNS.

Summary. As expected by the size of the search tree, CP-LNS is sensible
to the size of the instance matrix producing barely no results on the larger
synthetic instances within the time budget. On the opposite, CPGC achieves the
best results. Indeed the model uses a dedicated global constraint with efficient
filtering through computation of an upper bound and fast update of the lower
bounds. The results of MILP are surprisingly good given its inability to express
specialized constraints such as these of CP. This is explained by the benefits of
the linear-programming relaxation to tighten the gap between the lower and the
upper bounds. The current major issue is related to the “big M” approach that
fails to guide the search in some settings on the gene expression data. When θ is
smaller, the “big M” constant M− is tighter. As a consequence, the result of the
LP relaxation as a higher chance to be a tighter bound. It follows a speed-up of
the search as it implies a more efficient pruning of the tree.
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Fig. 2. Any-time profiles of constraint programming with a global constraint (CPGC),
the CP method with large neighborhood search (CP-LNS) and mixed integer linear
programming (MILP).
Columns 1 and 2: reported curves correspond to the average solution quality over all
synthetic instances as a function of time (in seconds). Results are computed on 50
synthetic instances with 10, 000 rows, 100 (column 1) or 1, 000 (column 2) columns,
a variable p and a maximum running time of 20 (column 1) or 200 (column 2) seconds.
Columns 3 and 4: reported curves correspond to the solution quality over each gene
expression problem instance obtained for a specific θ as a function of the time (in
seconds). Results are computed on breast cancer gene expression data with 2, 211
rows, 94 columns and various θ values for a maximum CPU time of 1, 000 s.
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5 Conclusions and Perspectives

We introduce the max-sum sub-matrix problem which consists in finding a (non
necessarily contiguous) rectangular sub-matrix in a large matrix whose sum is
maximal. This problem is originally motivated, in the context of gene expression
analysis, by the search of a subset of highly expressed genes in a specific subset,
to be found, of relevant samples exhibiting such a pattern. A close variant of
this problem, known as maximal ranked tile mining problem, has already been
studied and tackled with constrained programming (CP) combined with large
neighborhood search (LNS) [7].

We present here key properties of the max-sum sub-matrix problem to speed
up the search for a solution. This results in an improved CP-LNS implementa-
tion. We also propose two new algorithms to solve this problem. Experiments
reported both on synthetic data and the original gene expression data used in [7]
illustrate the benefits of our proposed methods. In particular, a CP approach
with a global constraint (CPGC) is the most effective one in a large spectrum of
problem instances. Overall, the CPGC method is also best at proving optimality
when such proof can be obtained within the allocated CPU time budget.

The second approach proposed here relies on mixed integer linear program-
ming (MILP). It is arguably the simplest to formulate and to address with a
standard solver for such problems. It is competitive with the other methods and
largely outperforms CP-LNS as well in our controlled experiments. It exhibits
however some performance degradation on some instances from gene expression
data, most likely as a consequence of the specific relaxation it is based on.

The max-sum sub-matrix mining problem could be extended to a supervised
classification setting. For example, in gene expression analysis, one typically
wants to find genes (rows) that allows to discriminate between two conditions. In
other words, the columns could be a priori labeled according to two conditions.
The objective can then be to identify a subset of rows that are maximally relevant
to discriminate between subsets of samples from different conditions. This could
be encoded in a larger matrix for which columns represent pairs of columns in
either conditions from the original matrix and the value stored is interpreted as
a distance value for a particular gene across both conditions.

The max-sum sub-matrix problem could also be applied to outlier detection
and/or biclustering. For example, using an appropriate data transformation,
entries that are close to the mean or to the median could be mapped to rela-
tively large positive entries. Similarly, entries far away from the mean would be
mapped to low values. Consequently a sub-matrix of maximal sum after such
transformation would correspond to subsets of rows and of columns exhibiting
similar entries. Explicit comparisons to existing biclustering algorithms could be
considered in such a setting.
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Abstract. Many natural systems can be described as networks of inter-
acting elements, forming a graph of interactions. This is the case for
climate models, coupled chemical systems, computer or social networks,
or the brain. For many of these cases, dynamical networks emerge whose
structure changes in time. Estimating the structure of such networks
from the time series that describe the activity of their nodes is a serious
challenge. Here, we devise a new method that is based on the Scaled
Correlation function to estimate interactions between nodes that occur
on fast timescales. We apply the method on EEG measurements from
human volunteers to evaluate neuronal functional connectivity associ-
ated with a visual perception task. We compare the statistics of networks
extracted with the new method with those that are extracted using tra-
ditional techniques, like the Pearson correlation coefficient or the cross-
correlation function. Results indicate that the new method is superior
in identifying networks whose structure correlates to the cognitive pro-
cesses engaged during visual perception. The method is general enough
to be applied on any data that describes dynamical interactions evolv-
ing on multiple timescales, as is the case in climate modeling, chemical
networks, or complex biological systems.

Keywords: EEG · Functional brain networks · Metrics
Cross-Correlation · Scaled-Correlation · Pearson correlation coefficient
Directed weighted network

1 Introduction

Network science [1] has become a major research field in the past decade, rely-
ing heavily on computational methods to extract and characterize networks from
complex data. A wide variety of systems can be described as connected graphs,
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from computer networks, social interaction patterns, disease spreading models,
to biological networks. Networks can even be found in the legal system [2] and
tourism [3]. Importantly, many of these networks are dynamical, in the sense
that individual nodes exhibit a time-dependent activity that shapes interaction
patterns with the other nodes. Such is the case of complex brain networks [4],
whereby different brain regions connect and disconnect all the time as a function
of cognitive processing, thus yielding functional networks whose structure evolves
in time. Similarly, in climate modeling one constructs networks from modeled
space-time series [5], yielding complex dynamical graphs. A large effort has been
dedicated to characterizing complex networks but less attention has been paid to
how these networks are defined and extracted from the data, although this is a
critical step. For dynamical networks, each node has an associated activity that
can be described as a time series. To evaluate if two nodes are functionally con-
nected, the traditional procedure is to use the pairwise Pearson correlation coef-
ficient [6] or the cross-correlation function [7]. Arguably, both of these methods
are sub optimal because they either do not consider the full temporal structure
of the data (e.g., delays), or cannot distinguish faster from slower interactions,
respectively. Here we develop a novel method to extract networks from complex
time series using the Scaled Correlation function (SCF) that can estimate inter-
actions on the fast timescales by means of restricted sampling [8]. We apply this
method on a hard test case, defining and characterizing functional brain networks
from high-density EEG signals recorded in humans during a demanding visual
task. The challenge is to determine if statistics of networks extracted using SCF
correlate better to the cognitive task that participants have to solve than those
extracted with traditional techniques. To this end, we focused on three differ-
ent types of networks: Pearson Coefficient Weighted Networks (PCWN), Cross
Correlation Weighted Networks (CCWN), and Scaled Correlation Weighted Net-
works (SCWN) and for each we evaluated network theory metrics.

2 Related Work

Three types of neural connectivity are considered in the literature [9]: struc-
tural, functional, and effective. Structural connectivity pertains to the physical,
anatomical connections between brain areas and is considered to be fixed on
a short term. By contrast, functional connectivity expresses sub-graphs of the
anatomical network that are transiently coupled, depending on the activity of
the nodes [10]. Effective connectivity constrains the graph further by considering
only those interactions that mediate the reciprocal influence of brain areas [9].

Here we focused on functional connectivity, as it is more widely used and eas-
ier to estimate. The basic theoretical framework for graph/network analysis of
functional connectivity is given in [4], with more advanced metrics being defined
in [11]. The community and hub structure dynamic was studied in [12], that con-
cluding that increasing the cognitive task difficulty leads to lower modularity,
fewer provincial hubs, and more connector hubs. The relevance of the network
size was studied in [13], showing that different metrics depend on it (i.e. clus-
tering coefficient, modularity, efficiency, economic efficiency and assortativity).
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The conclusion was that efficiency, assortativity were higher and modularity was
lower on large networks compared to smaller networks, even though their density
was the same.

Functional brain connectivity is usually estimated by computing pairwise
correlations between activities of different neural populations. The most popu-
lar measure of correlation is the Pearson Correlation coefficient (PCC). Also, a
related approach was presented in [14] by computing partial correlations between
pairs of signals. Partial correlation consists of calculating PCC but augmenting
this coefficient in order to eliminate the influence of potential third-party signals.
One of the most important conclusions is that using first grade partial correla-
tions the distribution of values are centered around zero whereas non-partial
correlations (simple PCC) were spread along the [0, 1] interval.

PCC as well as its partial counterpart ignore the multiple timescales present
in neural signals. For example, fast oscillations in the gamma band (30–80 Hz)
are expressed in relation to a plethora of cognitive and perceptual processes but
traditional measures, like the PCC, cannot selectively evaluate the fast-timescale
correlations induced by such oscillations. By contrast, we have developed a mea-
sure called Scaled Correlation [8], which isolates correlations expressed on fast
timescales by using restricted sampling.

Here, we analyzed EEG data recorded from human volunteers performing
a visual recognition task. Participants had to identify objects from images of
stimuli containing deformed grids/lattices of dots (see the “Dots” method for a
reference). The varying deformation of these lattices made recognition easier or
harder. Our objective was to evaluate how functional brain connectivity changes
when the subjects engage in the perceptual task, compared to the “baseline”
condition (i.e., before the stimulus was shown on the screen). We wanted to
determine which measure of connectivity is able to more efficiently reveal the
reorganization of functional networks during perceptual engagement.

3 Relevant Concepts

A participant is defined as one of the individuals that took part in the experi-
ment, and for which specific data was recorded.

A trial is a part of an experiment, time-wise. An experiment is divided into
several trials (in our case, 210 trials), and each trial contains some events. In
this experiment the trials have different lengths, as the participants were free to
explore. An event consists of a specific time instant relative to the beginning of
the trial and a unique code which has significance for the experiment.

A correlogram is the result of a correlation function [8] applied on two
signals. As the correlogram is an array of values, the peak of a correlogram is
the maximum absolute value along all values. The lag is the position where the
peak was found in the correlogram.

The stimulus refers to the moment when the picture is displayed on screen.
We call baseline the moment right before the stimulus appears.
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An area is one of the brain regions (occipital, frontal, parietal, left temporal
and right temporal). In our case it is represented by a group of electrodes (whose
coordinates are given by the headset used in experiment).

4 Identification of Functional Networks

For each participant and for each trial, we do the following steps: first, using
the recorded signals, we construct graphs using different correlations to estimate
the functional connectivity, and then we apply metrics from complex network
theory on these graphs in order to investigate the relevance of the metrics and
to analyze properties of the network (Fig. 1). These steps are further explained
in the following paragraphs.

Fig. 1. Lags, Peaks and Pearson weighted networks approach used

The first phase consists of parsing the EEG signals recorded from the partic-
ipants. Based on these signals we compute various correlation functions. We use
three types of functions: Cross-Correlation (CCF), Scaled-Correlation (SCF) [8]
and Pearson Correlation Coefficient (PCC). Based on the resulted cross/scaled-
correlogram (in case of CCF and SCF) we identify lags and peaks. In the case of
PCC we simply use it without further processing. The decision of using PCC is
based on its frequent use in literature. However this coefficient fails to represent
the timing relation (i.e., delay) between signals, its value representing only the
instantaneous correlation at lag zero. In contrast, SCF and CCF slides the sig-
nals in time enabling to identify delays that indicate potential causality relations
between signals.

In the next phase, we create five kinds of graphs, referred by us as the
PCCWN (Peaks Cross Correlation weighted Network), LCCWN (Lags Cross
Correlation weighted Network), PSCWN (Peaks Scaled Correlation weighted
Network), LSCWN (Lags Scaled Correlation weighted Network) and the PCWN
(Pearson Coefficient weighted Network). All these graphs have 128 nodes, cor-
responding to the 128 EEG channels.

The PCWN is an undirected weighted graph which has the absolute values
of the Pearson correlation coefficient (samples version) as weights between any
two nodes. The Pearson correlation coefficient shows how linearly correlated two
signals are varying from: 1 - the signals are perfectly linearly correlated, to −1
- they are perfectly anti-correlated.
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The PCCWN and PSCWN are directed graphs having edges with weight
defined as the absolute value of the largest peak from the cross/scaled-
correlogram [8], respectively. The LSCWN and LCCWN are directed graphs as
well but the weights of the edges are the absolute values of the lags of the peaks
identified previously. The absolute peak value is the strongest correlation value
at time t. As we mentioned a negative correlation indicates the anti-correlation
which is perfectly fine because it means that most probably the two signals
come from opposite electrode sites. The lag of this peak indicates the delay of
information transfer hence the bigger the distance from 0, the higher delay it
is obtained no matter if it is negative or positive. In the case of the LSCWN,
LCCWN, PSCWN, and PCCWN the direction of the edge is defined by the lag
sign. Considering channels A and B, a positive lag shows B leading A while a
negative lag shows A leading B. When the lag is 0, we consider that the channels
are instantaneously correlated and we assign two bidirectional edges (from A to
B and from B to A). For channels with the same index (diagonal) the value in
the matrix is zero.

For the window of the CCF we have chosen a window of ±100 ms, which
has the effect of focusing on small delays. For the SCF we applied a scale win-
dow segment of 25 ms to keep only correlations between components that have a
frequency greater than 40 Hz. We have chosen to use Pearson-based and Scaled-
Correlation based networks to compare results obtained with the traditional
method with those which extract only the fast correlations of the signals, con-
sidered to be important for conscious visual perception [15]. However we decided
to go for Cross-Correlation as well because we want to understand if considering
the temporal structure (delays) of signals brings additional benefits compared
to the PCC. The CCF is used without any normalization.

For each network we decided to reduce its density (keeping only 50% of the
edges with the strongest weights). The motivation behind the thresholding is
that we also considered the reduction of potential noises that may alter the
correlation values [16]. Another reason for density reduction is because of the
extremely high density of PCWN which is a complete graph, hence the metrics
would lead to improper results. Furthermore, we chose to take the absolute value
for edge weights because negative edge weights are affecting graph metrics (i.e.,
Average Path Length) while the absolute value still captures the information
about the correlation strength.

For the second analysis (per areas) we didn’t consider a 50% density reduction
since we are interested in raw values of the peaks and lags as they were initially
computed. In order to be consistent with the previous strategy for the metrics,
we kept the absolute values too in this new analysis.

The following measures have been applied: average path length (APL) [17,
18], global clustering coefficient (GCC) [19], betweenness centrality (BC) and
closeness centrality (CC) [17]. For each measure we study the modifications of
the global network statistics by comparing CC, SC and PCC.

APL has been considered on the obtained graphs and the computation was
done by using Dijkstra shortest path algorithm [17]. In order to achieve the
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average path length based on the shortest paths between each two nodes, the
following formula has been applied:

aplGweighted
=

1
N(N − 1)

∑
pi,j , i �= j (1)

where pi,j is the shortest path between node i and j and N is the total number
of nodes. Because this metric is a distance based metric we applied it only
on the lags network. However in the case of the Pearson network, we consider
stronger connections as closer connections by inversing the edge weights in the
computation of the shortest path.

5 Experimental Results

5.1 Data Description

Electroencephalography (EEG) data was recorded from 10 healthy human vol-
unteers performing a visual recognition task. A high-density Biosemi ActiveTwo
machine, with 128 channels was used to record scalp potentials with a sampling
rate of 1024 samples/s. The experimental protocol followed the one described in
[20], with several important modifications. Participants were shown visual stimuli
that represented shapes of 30 objects through a lattice of dots that was distorted
to capture object contours (see the “Dots method” in [20]). The experiment was
organized in 7 successive blocks of 30 stimuli, each block being characterized by a
different level of distortion. The first block contained no distortion of the lattice,
and thereby no information about the object, whereas the seventh block contained
the maximal distortion, enabling effortless recognition of the objects. Blocks were
shown in ascending order of distortion, thus rendering objects increasingly more
visible in successive blocks. This yielded a total of 210 trials (30 stimuli/block x
7 blocks). Compared to our previous study [20], here we used only a subset of
30 stimuli that were validated in a pilot experiment – only objects that provided
unambiguous recognitionwere included.Also, datawas recorded from10novel par-
ticipants with an “ascending” protocol only, i.e. increasing visibility in successive
blocks. Data from all the 10 subjects was analyzed.

Each individual trial consisted of several periods that were delineated by using
TTL pulses on an 8-bit line delivered to the EEG machine by a National Instru-
ments PCI-6503 board controlled by the stimulation computer (see Fig. 2). Trial
start was signaled by an event code (trigger) 128 and was followed by the presenta-
tion of a red fixation dot in the center of the screen, which subjects had to watch for
1–1.5 s. A new trigger value of 150 was then followed by a white, full screen mask
kept for 500 ms. Then, a 129 trigger code was issued simultaneously with the pre-
sentation of the dot stimulus on screen. Subjects were free to visually explore the
stimulus and then had to press one of three keys, signaling that they (i) have seen
the object and can name it (trigger code = 1), or (ii) have seen something but are
uncertain about the object it represents (trigger code = 2), or (iii) haven’t seen any
object (trigger code = 3). Each baseline (segment between triggers 150 and 129)
and stimulus (segment between trigger 129 and trigger 1, 2, or 3) periods of a trial



86 S. Dolean et al.

in the raw EEG data was represented as a matrix of floating-point values, where
each row corresponded to a channel (128 rows) and columns corresponded to the
samples during the baseline and stimulus period, respectively (see Fig. 2).Different
participants had a different number of trials for each response type: e.g., the first
participant had 63 seen trials, 53 uncertain trials and 94 trials where he recognized
nothing. Other participants had different numbers of trials for each response type.
Once all trials are parsed and gathered from the raw data for each response cate-
gory, we computed the CCF, SCF and PCC for each pair of channels. The networks
we obtained were represented as square (128 × 128) adjacency matrices, where we
ignored the primary diagonal (self-connectivity of nodes). Matrices for PCCWN
(based on CCF) and PSCWN (based on SCF) contained, for each row-column pair
a value between [−1, 1] representing the value of the largest peak in the correl-
ogram. In the case of LCCWN and LSCWN, this value was taken to be the lag
where the peak was positioned in the correlogram. Finally, for PCWN (Pearson
correlation coefficient) the value was between [−1, 1] (no information about lag
was available).

To avoid having all-to-all connectivity, for PCCWN, LCCWN, PSCWN,
LSCWN and PCWN the density was reduced by eliminating 50% of the weakest
edges. In case of lag networks (LCCWN and LSCWN), the density reduction
was done by considering the corresponding correlation value of the peak in the
correlogram (PCCWN/PSCWN) instead of the lag.

On the extracted networks, we applied two different types of network metrics:
distance based (APL, BC, CC) and connection based (GCC). In order to allow
a comparison between PCCWN, PSCWN and PCWN (peak based networks) we
created a set of binary networks by keeping only the strongest 50% of the links.
Because we end up with a binary network for the PCWN (if the value is zero, then
it is a zero otherwise it is a one), binary networks are considered as well for the
PCCWN and PSCWN in order to allow results comparison. In the next section we
describe the comparisons between Cross Correlation and Scaled Correlation based
networks and Pearson Correlation based networks. In addition to exploring the full
128 node networks, we also grouped the nodes according to the anatomical posi-
tion of their corresponding electrodes. We used this strategy in order to estimate
the interaction between brain areas (occipital, parietal, frontal, temporal) during
the visual task. We applied this grouping method only for CCF and SCF based
networks (as will be shown, the Pearson network did not offer informative results).
Results for each individual area were labeled with a capital letter (e.g. Occipital -
O, Frontal - F, Left Temporal - LT etc.).

5.2 Results

After generating the candidate functional brain networks, we applied the metrics
mentioned previously in order to identify how these metrics change from baseline
to stimulus periods and as a function of the type of connectivity measure that
was used to define the networks.

Figure 3 (top row) displays the average of APL across the 10 subjects, as
a function of the perceptual condition (seen, uncertain, unseen) and depending
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Fig. 2. Schematic representation depicting how the data was extracted from the raw
signals. For each participant, 128 signals were recorded as successive trials were pre-
sented. A red dot was presented on screen (black segment), followed by a full screen
white mask (red segment), after which the stimulus was shown on the screen (blue
segment) until the subject pressed a key to signal that (i) the stimulus was recognized
(code = 1), (ii) the subject was uncertain about it (code = 2), (iii) the subject saw
nothing relevant (code = 3). A 128× 128 matrix with pairwise correlation values or
lags was extracted for each segment corresponding to baseline (B1, B2, ..., B210) and
stimulus presentation (S1, S2, ..., S210), yielding a total of 210 matrices associated to
baseline and 210 matrices associated to stimulus periods for each subject. (Color figure
online)

on the type of network. Clearly, the largest difference between the baseline and
stimulus periods is exhibited by LSCWN, indicating a strong reduction in APL
when the brain is engaged in perceptual processing. By contrast, neither LCCWN
nor PCWN networks showed such a consistent and strong effect.

In Fig. 3 (second row) we show results for GCC, whereby this measure was
consistently lower for all networks during the baseline than during the stimulus
period. Notably, the largest increase in GCC induced by stimulus presentation
was again exhibited by PSCWN, with a close result for PCCWN. Again, PCWN
performed the worst in terms of showing differences between baseline and stim-
ulus periods.

The BC and CC are illustrated in Fig. 3 (third and fourth rows). As was
the case with the other metrics, BC and CC were modulated the strongest for
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Fig. 3. Metrics applied on our generated networks. APL, BC and CC applied on
LCCWN, LSCWN and PCWN. GCC applied on PCCWN, PSCWN and PCWN. For
the Scaled Correlation the segment size s = 25 ms (fast events - 40 Hz). For all net-
works the density was reduced with 50%. The value obtained is the mean value across
all trials and then across all 10 subjects. Error bars are S.D.
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Fig. 4. Areas pairs for PCCWN and PSCWN

the case of networks extracted with SCF and somewhat less for networks whose
definition relied on CCF. Importantly, PCC-based networks did not show a clear
modulation of any of the two metrics.

Area Level Analysis. Since SCF and CCF based networks showed the largest
difference between baseline and stimulus, we next focused only on the PCCWN
and PSCWN networks. We computed the average across all link weights (aver-
age absolute peak correlations). We expected to see higher correlations for the
O-F pair when the stimulus was on the screen and a lower correlation in the
baseline, because the two areas are actively involved in conscious visual pro-
cessing. As can be seen in Fig. 4 the PCCWN (Cross Correlation) presents
the expected behavior: the correlation between Occipital and Frontal is higher
when the stimulus is on the screen meaning that these two areas are better
correlated by exchanging more information during the stimulus than during the
baseline period. Also was a similarity across all perceptual outcomes (seen, uncer-
tain and unseen) which may indicate that the O-F correlation is non-specific,
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Fig. 5. Areas pairs for LCCWN and LSCWN

i.e. it reflects visual processing but no the decision taken by the subject. The
effects in the PSCWN (Scaled Correlation) were smaller and this behavior may
be the result of considering absolute values of the correlation. For the lags net-
work we expect to see the opposite behavior: a lower lag when the stimulus is
shown and a higher lag in the baseline. Figure 5 shows the mean lags for each
pair. The most important thing to notice is the consistency across all perceptual
outcomes (seen, uncertain, unseen). Another behavior that can be observed for
PCSWN (Scaled Correlation) is the lag being lower (closer to 0) for the stimulus
period. This indicates the fact that the overall information may be moving faster
during cognitive engagement.

6 Conclusion

We have shown that SCF enables the extraction of functional networks from com-
plex time series in a way that outperforms traditional ones because it can isolate
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those networks that evolve on particular timescales. As a result, the structure of
SCF-extracted networks more readily correlates with the cognitive processes that
support visual perception in humans. This is likely due to the fact that fast, gamma
oscillations (30–80 Hz) are known to correlate to visual perception, in particular
[21], and cognitive processing, in general [22]. SCF is able to estimate the fast inter-
actions between neural populations that occur in the gamma range and reveal the
dynamical networks evolving on the fast timescale.

Results also show that PCC-based networks performed the worst in distin-
guishing the baseline from the stimulus periods. CCF-based networks fared bet-
ter, indicating that information about the temporal relation of signals (delays)
is highly relevant in order to properly define the functional brain networks asso-
ciated to stimulus processing. On top of this temporal information, SCF brings
the further advantage that it can select those networks that evolve on the fast
timescales, which are known to be co-expressed with perceptual and cognitive
processes. The present study suggests that SCF networks may be the preferred
choice as they can help define networks that are more likely reflecting the relevant
underlying functional brain networks.

The method we have introduced is useful for the investigation of complex brain
networks. For example, it could help identify how dynamics of functional networks
are altered in brain disorders [23] and may found interesting applications for brain-
computer interfaces [24]. However, the applicability of the method is not restricted
to neuroscience problems. The ability of SCF to extract fast networks from time
series opens its applicability range to a wide array of issues where dynamical net-
works can be found. For example, in climate modeling thermal disturbances or
humidity evolve on various timescales andparticular networksmaybe identified for
each. Another example pertains to modeling of coupled chemical processes whose
reaction rates may also cover a range of timescales. For all these cases, SCF can
enable the selective investigation of dynamical networks that evolve on different
timescales. To conclude, the method we have introduced proves very useful for
studying brain networks but it is general enough to lend itself to the analysis of
dynamical networks from a wide array of research areas.
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Abstract. This paper introduces two approaches for solving Multiple
Instance Problems (MIP) in which the traditional instance localization
assumption is not met. We introduce a technique which transforms indi-
vidual feature values in the attempt to align the data to the MIP local-
ization assumption and a new MIP learning algorithm which identifies a
region enclosing the majority (negative) class while excluding at least one
instance from each positive (minority class) bag. The proposed methods
are evaluated on synthetic datasets, as well as on a real-world manufac-
turing defect identification dataset. The real-world dataset poses addi-
tional challenges: data with noise, large imbalance and overlap.

Keywords: Multiple instance learning
Axis-Parallel Hyper-Rectangle · Feature value transformation
R-APR · Classification

1 Introduction

The aim of this work is to design a systematic strategy to detect faults in indus-
trially manufactured entities. The real-world dataset originates from the trace-
ability system of a Printed Circuit Board production line, therefore its dimension
in considerably large (≈320 GB). Each entity is composed of a variable number
of components. The characteristics of every component are known. After being
manufactured, entities are labeled as functional or faulty by automatic inspection
machines. An entity may be faulty due to one or more components. The task is to
define a model that is able to identify non-functional entities. The difficulty arises
due to the fact that faulty entities can contain both non-functional and func-
tional components, without them being explicitly differentiated. This is known
in literature as the Multiple Instance Problem (MIP). In the current context,
one expects the components rendering the entity to which they belong faulty
(positive instances) to have atypical characteristics compared to functional com-
ponents (negative instances). However, classical MIP algorithms attempt to find
regularities amongst positive instances. In other words, MIP algorithms expect
positive instances to be located in a small, dense region, while negative instances
are supposed to be scattered around the feature space. In the studied problem,
c© Springer International Publishing AG, part of Springer Nature 2018
A. Appice et al. (Eds.): NFMCP 2017, LNAI 10785, pp. 93–106, 2018.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78680-3_7&domain=pdf


94 D.-O. Graur et al.

however, positive instances are situated in a large, less dense region (possibly
scattered), while negative instances are located in a denser region. Although
outlier or novelty detection techniques could be used under these circumstances,
the region defining positive instances is not necessarily well determined. As such,
our objective is to propose a novel set of methods through which such atypical
MIP problems can be solved.

2 The Multiple Instance Problem

The MIP comes as a generalization to the classical Supervised Learning Prob-
lem [3], in that training examples consist of groups of instances, where an
instance is a feature vector. Each such group is known as a bag, and each such
bag has an associated label. That is to say, labels are not directly associated to
an instance, but rather to a group of instances. The concept which stands at
the foundation of the MIP is known as the standard MIP assumption [12], or
linearity hypothesis [5], which states that a positive bag has at least one positive
instance, whilst a negative bag has no positive instances. The MIP is consider-
ably more difficult than classical Supervised Learning [6,7], mainly due to the
high degree of noise introduced in the learning process by the arbitrarily high
number of positive instances a positive bag can have [7]. As such, specialized
MIP algorithms need to be employed, to tackle the problem at hand.

Following, is a formal description of the standard MIP, based on the nota-
tion in [13]. Let B = {B1, B2, . . . , Bm} be a set of m bags, where ∀Bi ∈ B
∃ vi ∈ N

∗, such that Bi = {Bi1, Bi2, . . . , Bivi
} is a bag containing vi n-

dimensional feature vectors. Let Bij be the jth instance of the ith bag, such
that Bij = {Bij1, Bij2, . . . , Bijn}. Let L = {l1, l2, . . . , lm} be the label set,
and li ∈ Y for i = 1 . . . m. In the particular case of binary classification,
which is the problem approached in this paper, Y = {⊥,�}. Finally, let
D = {〈B1, l1〉, 〈B2, l2〉, . . . , 〈Bm, lm〉} be the labeled data. The aforementioned
standard MIP assumption can be formally represented as li = li1 ∨ li2 ∨· · ·∨ livi ,
that is, a bag is positive if and only if it has at least one positive instance.

Whilst the standard MIP is arguably the most popular type of MIP, it is
important to mention that the MIP context hosts a set of more complex chal-
lenges [1,2,12]. Weidmann et al. [12] produce a comprehensive taxonomy of
the various types of MIPs, based on the existence of a multitude of underlying
concepts, as opposed to a singular underlying concept which stands at the foun-
dation of the positive class, as is the case in the standard MIP. These challenges
are not to be further detailed here, since they are beyond the scope of this paper.

3 MIP Issues in the Current Context

The MIP de facto standard works under the assumption that positive instances
converge towards a certain region, whilst negative instances are scattered around
the feature space. However, in the given context, positive instances are scattered
around the feature space, while negative instances cluster within a particular
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region. The Antisymmetry Problem (AP) is best described graphically by Fig. 1.
It might be tempting to consider that a simple class label inversion solves this
problem. However, this is not the case, since positive bags will now consist only
of positive instances, while negative bags will contain both negative and positive
instances. This goes against the assumptions made by existing MIP algorithms,
and as a consequence, their learning process becomes biased. For instance, the
Iterated Discrimination [6] algorithm requires only one instance from every pos-
itive bag to be included in the resulting Axis-Parallel Hyper-Rectangle (APR).
However, after the label inversion, every instance belonging to a now positive
bag is positive. Therefore, this algorithm would yield a high number of false
negatives (or false positives, considering the initial labels). Another issue is the
presence of positive instances in negative bags, as mentioned previously, which
may prove problematic during the feature selection stage. Likewise, the DD met-
ric [7], which stands at the foundation of the EM-DD algorithm [13], will require
extensive modification in order to accommodate the existence of negative bag
instances in high density areas. Thus, existing methods require either a prepro-
cessing step or changes in their approach to allow them to tackle the AP.

Fig. 1. × = positive bag instance and ◦ = negative bag instance. (a) Positive instances
converge. (b) Positive instances are scattered.

3.1 A Feature-Value Transformation Based Approach

Our approach first transforms the feature space to meet the MIP instance local-
ization assumption. Such a transformation is supposed to bring positive instances
“closer” together while scattering negative instances around the feature space.
Such a transformation would apply a function f : Rn × R

n → R
n, where n is

the number of features, to all instances x, replacing their feature vectors with
f(x,x), where x is the mean of all instances belonging to negative bags:

x =

∑

x ∈ N

x

|N | ,where N is the set of negative instances (1)
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The function f must be chosen such that positive instances end up “closer”
to x, while negative instances end up “further” from x, considering a metric for
which a difference in only one dimension of the feature vectors is enough for the
output to change considerably (e.g. the Euclidean metric). It must be noted that
this specific transformation relies upon the fact that all negative instances are
clustered. The dataset obtained after applying the transformation is then fed
into the Iterated Discrimination algorithm [6].

It is worth mentioning, however, that the feature-value transformation
employed here is general purpose, and as such, can be used on any antisym-
metric dataset, whose initial structure is incompatible with the standard MIP
algorithms, to convert it so that MIP learning methods can be applied.

3.2 An Axis-Parallel Hyper-Rectangle Based Approach

The second approach we propose towards solving the standard MIP in the Anti-
symmetric MIP Context is the Reverse Axis-Parallel Hyper-Rectangle Algorithm
(R-APR). R-APR is inspired by the Iterated Discrimination algorithm [6]. It
solves the standard MIP by finding an APR which, unlike the one resulted from
the Iterated Discrimination algorithm, encloses all the negative bag instances
and some of the instances of positive bags, leaving at least one positive bag
instance outside. As such, a bag is classified as positive, if at least one of its
instances falls outside of the APR along at least one dimension, whilst a bag
is classified as negative if all its instances fall within the APR’s bounds for all
dimensions.

The algorithm consists of four major stages: All-Negative APR Generation,
High Density Positive Instance Margin Expansion, Feature Selection, and finally,
Statistical Margin Expansion. The R-APR algorithm attempts to solve the AP
without employing any sort of feature-value transformations, other than normal-
ization. Moreover, the APR produced by this algorithm yields valuable informa-
tion in terms of what the normal value ranges for the relevant features are.
Consequently, in certain contexts, such as that of industrial manufacturing, it
provides potentially useful insight into the production process.

4 Solving the Antisymmetry Problem

This section provides a more in depth description of the two original approaches
we propose towards solving the AP problem in the MIP.

4.1 The Transformation-Based Iterated Discrimination Algorithm

This approach requires the definition of a function as described in Sect. 3.1. Every
instance is then replaced with f(x,x), with the purpose of bringing positive
instances “closer” to x while moving negative instances “further” from x. An
example of such a function f is:

f(x,x) = x +
x − x

‖x − x‖ · g(‖x − x‖), (2)
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where ‖·‖ is the Euclidean norm and g : R → R is a monotonically decreasing
function. The function g can be defined independently of the number of fea-
tures of the dataset, but then ‖x − x‖ must be scaled accordingly. Therefore
g(‖x − x‖) from Eq. (2) should be replaced with g

(
‖x−x‖√

n

)
. This is because the

Euclidean metric of an n-dimensional vector, whose components are all equal to
a, is

√
n ·a. That is, ‖(a, a, . . . , a)‖ =

√
n ·a. The Euclidean norm is used so that

one feature value being “far” from that feature’s mean suffices for the instance
to be brought “closer” to x.

Figure 3 contains plots of one family of functions which meet the above
requirements, described by:

G =
{
g : R → R | g(x) = c · a−b·x}

, where a, b, c ∈ R>0. (3)

An exponential family of functions was chosen because the absolute value
of their derivative can be made large enough so as to achieve a substantial
separation margin between positive and negative instances, regardless of the
initial value of this margin. Furthermore, the behavior of these functions in the
proximity of 0 can be constrained. The fixed points (x0, y0) of these functions
are marked at the intersection of the vertical line x = x0 with the functions’
plots. Considering Eq. (2), these fixed points and the value of ‖x − x‖ determine
whether x ends up closer or further from x.

Figure 2 shows the effect of applying (2) to a normally distributed two-
dimensional dataset. The function g is replaced in (2), in turn, by the functions
displayed in Fig. 3.

4.2 The R-APR Algorithm

The R-APR algorithm consists of the four steps shown in Fig. 4, excluding the
data normalization stage, which is optional. The four steps are presented in the
subsections that follow.

All-Negative APR Generation. This APR defines a region in feature space
which encloses all negative instances. The upper margins of the APR, along
every relevant feature d, are defined as:

ubd = max
Bi∈B−,Bij∈Bi

(Bijd) (4)

Respectively, the lower bounds are obtained using:

lbd = min
Bi∈B−,Bij∈Bi

(Bijd) (5)

Due to the standard MI assumption, the generated APR is not yet ready to
be used for classification, since positive bags still have negative instances, which
may be outside the All-Negative APR. During this stage, only negative bags are
processed.
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(a) initial dataset (b) c = 10, a = 4, b = 2

(c) c = 10, a = 6, b = 3 (d) c = 10, a = 8, b = 6

Fig. 2. Figure 2a represents a normally distributed, two-dimensional dataset. Instances
that are “closer” to the mean point (green) are colored in blue, while instances that
are “further” from it are colored in red. Figures 2b, c and d illustrate the original
dataset transformed using Eq. (2), where the function g belongs to the function family
described in Eq. (3). (Color figure online)

(a) c = 10, a = 4, b = 2 (b) c = 10, a = 6, b = 3 (c) c = 10, a = 8, b = 6

Fig. 3. Plots of functions belonging to the family defined in (3). The vertical lines mark
the fixed points of the functions. In this context, the fixed point discriminates between
instances x which end up “closer” and “further” from x.

Fig. 4. The general execution flow of the R-APR algorithm.
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High Density Positive Instance Margin Expansion. To generalize better,
the APR must be expanded in such a way as to include negative instances
belonging to positive bags. However, due to the asymmetry [3,7,8] introduced
by the bag level label, identifying them is not straightforward. We propose two
solutions towards solving this problem, based on the assumption that negative
instances from positive bags are gathered together, since they should have similar
feature values. Both procedures are based on density and distance measurements.

The first approach refers to selecting one instance from each positive bag,
thus constructing a set of instances which are used towards building an auxiliary
APR. The new APR is used to expand the All-Negative APR, where necessary.
The instance is chosen based on a Density measurement, which computes the
instance’s degree of proximity to the other instances belonging to the same bag:

HDi = arg max
Bij∈Bi

(
∑

k,k �=j

1
ζ + ‖Bij − Bik‖2 ) (6)

where ‖·‖ is the Euclidean Metric, ζ ∈ R is an offset, and HDi is the highest den-
sity instance of Bi. Additionally, the instance’s distance from the All-Negative
APR, is computed, using the Manhattan Distance:

distij =
∑

d

f(Bijd, lbd, ubd) (7)

where function f is computed as:

f(x, lb, ub) =

⎧
⎪⎨

⎪⎩

lb − x, if x < lb

x − ub, if x > ub

0, otherwise
(8)

During this stage, the algorithm attempts to find regions towards which it
expands the margins of the All-Negative APR, by essentially speculating which
regions host a large number of negative instances belonging to positive bags. As
such, one must ensure that the APR is not wrongly expanded towards regions
of positive instances, as may be the case when positive bags have few negative
instances. In order to avoid such cases, the algorithm requires two user-defined
thresholds, density and distance, empirically identified and tuned for every data
set. An instance is only selected if its density is above the density threshold, and
if its distance from the APR is below the distance threshold.

The second approach we propose comes as an extension to the previously
described technique. After determining the highest density instance for a bag,
using Eq. (6), an optimization algorithm is used to find the point which maxi-
mizes the density function. The search is bounded by a rectangular region defined
by the bag’s instances. Once more, the user-defined distance and density thresh-
olds are used when selecting the instances. The set obtained as a result of the
selection procedure is used to construct a new APR, with the aim of expanding
the All-Negative APR’s bounds, where necessary.
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Feature Selection. Similarly to the Iterated Discrimination algorithm [6], the
R-APR algorithm attempts to select the relevant features in an iterative fash-
ion. However, unlike the Iterated Discrimination algorithm, discrimination is
performed on the positive bags and at the bag-level.

There are two criteria for establishing when a feature discriminates a bag,
both dependent on a user-specified global out-of-bounds threshold t ∈ R≥0. Since
discrimination is performed at the bag level, a bag’s out-of-bounds value for a
particular feature d is given by vald = maxBij∈Bi

(out of bounds(Bijd, lbd, ubd)).
The first criterion specifies that a feature d discriminates a bag Bi if vald > t.
The second criterion specifies that a feature d discriminates a bag Bi if vald >
valk ∀k ∈ Fr, d �= k, where Fr is the relevant feature set. Figure 5 describes
these concepts visually.

Following is a formal description of the Feature Selection stage: let Fold
r =

{f1, f2, . . . , fn} be the old set of relevant features. Let Fnew
r = ∅ be the new set

of relevant features, initially empty, and let B+
FS = B+ be the set of positive

bags used in the current feature selection stage. As previously mentioned, the
Feature Selection stage is iterative. Let f ′

i be the most discriminating feature, i.e.
the feature which discriminates the most bags in B+

FS , as identified in iteration
i of this stage. Let B+

f ′
i

be the set of positive bags discriminated by f ′
i . It follows

that Fold
r = Fold

r \ {f ′
i}, and Fnew

r = Fnew
r ∪ {f ′

i}. Moreover, B+
FS = B+

FS \ B+
f ′
i
.

This stage will continue to loop, until either B+
FS = ∅ or Fold

r = ∅. In the former
case, the algorithm loops back to All-Negative APR Generation, with Fnew

r

as the set of relevant features. In the latter case, the feature set converges, and
the algorithm moves on to the next, and final stage.

Statistical Margin Expansion. The final stage of the R-APR algorithm refers
to expanding the margins of the APR obtained so far, to generalize better. It is

Fig. 5. An example of the two Feature Selection criteria. Each chart contains 20 fea-
tures (vertical bars), the threshold t is set to 40. Bars represent a bag’s maximal
out-of-bounds value along that feature. Red bars represent features that discriminate
the bag. Black bars represent features which do not discriminate the bag. (a) Example
of the first criterion. (b) Example of the second criterion. (Color figure online)
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identical to that employed in the Iterated Discrimination algorithm [6], however,
the Kernel Density Estimation (KDE) is built from negative bag instances, as
opposed to positive bag instances. This stage is controlled by two user-defined
constants: ε and τ . The τ constant specifies the amount of probability which
should fall within the bounds of the APR, based on the KDE, if the negative bag
instances were centered between its bounds. The value of τ is used to establish the
deviation σd along relevant feature d, such that a normal distribution centered
in μd = lbd+ubd

2 with deviation σd hosts τ probability between the upper and
lower bounds. This can be formally expressed as Pr(lbd < X < ubd) = τ .

A Gaussian KDE is built for each relevant feature d. Next, relative to
the obtained KDEs, the margins of the APR along every relevant feature are
expanded so as to ensure that ε

2 probability remains above the upper bound,
and that ε

2 remains below the lower bound.
This step is, however, optional, and can be removed when the APR should

be tighter. Such cases are largely identified empirically, and are typically due to
a high number of positive instances being located near the bounds, outside of
the unexpanded APR. Through expansion, these instances are included in the
APR, which likely leads to an undesirably high rate of false-negatives.

Classification. Classification assumes a series of comparisons against the
bounds of the APR. As such, for an unseen bag, if at least one instance falls
outside the APR, along at least one dimension, then that bag is classified as
positive. Otherwise, the bag is classified as negative.

The most computationally intensive step in the R-APR algorithm is the
High Density Positive Instance Margin Expansion. If we consider that
the number of instances in a positive bag is constant - which, in the current
application context is satisfied (since the number of instances is the number of
pads on a component), then the complexity of the R-APR algorithm is linear in
the number of positive instances in the entire dataset.

5 Experimental Evaluation

We have evaluated the R-APR algorithm and the effect of the feature-value
transformation on the APR algorithm for both synthetic and real-world datasets,
using a 5-fold cross validation strategy. The synthetic datasets have 100 positive
bags and 100 negative bags, each individual instance having 3 features. Negative
bags contain 10 to 19 negative instances. Positive bags contain 10 to 16 nega-
tive instances with a probability of 0.5 and 3 to 5 positive instances. Negative
instances belong to a 3-dimensional Gaussian distribution with μ = [10 10 10],
with no feature correlation, each having a standard deviation σ = 4. For the
positive instances we have employed the same strategy, μ = [α1 10 α2], with
(α1, α2) ∈ Mlow = {(22,−1), (25, 22), (27, 0), (−3, 25), (−2.5,−2.5)} and σ ∈
D = {4, 4.5, 5}. In this setting, the degree of overlap is relatively low. We have
also considered a dataset with a larger degree of overlap, by using, for the positive
instances, (α1, α2) ∈ Mmoderate = {(20, 1), (0.5, 21), (21.5, 0.5), (22, 22), (1, 1)},
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with the same values for σ as before. Each positive instance is generated from
a distribution described by a tuple chosen randomly and independently from
{(α1, 10, α2) | (α1, α2) ∈ Mlow} × D, in the case of the dataset having a rela-
tively low degree of overlap, and {(α1, 10, α2) | (α1, α2) ∈ Mmoderate} × D, in
the case of the dataset with a larger degree of overlap.

For the feature-value transformation, we have varied a between 6 and 9 and
b between 2 and 6, both with an increment of 1. For R-APR, we have varied the
distance and density thresholds for the density based expansion step: distance
between 0.06 and 0.24, with a 0.02 increment and density between 1.3 and 1.8,
with a 0.05 increment. For the R-APR tests, we have fixed the parameters of
the Statistical Margin Expansion step to τ = 0.98 and ε = 0.02.

The average recall and precision values obtained by the APR algorithm with
different parameter settings for the feature transformation, on the two different
versions of artificial datasets (low and moderate overlap), are presented in Fig. 6.

Fig. 6. Average Recall and Precision obtained by the APR algorithm with different
transformation settings, the low (a, b) and moderate overlap (c, d) synthetic datasets.

We have included, as baseline, the results obtained by the basic APR algo-
rithm (without the transformation). The feature transformation significantly
boosts the precision values obtained by the APR algorithm, on both types of
datasets, while keeping recall at approximately the same level. We can observe
that as the overlap increases, the recall is maintained at the same level as the
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one obtained by the APR algorithm alone, but precision almost doubles. Larger
values for a and b produce slightly better precision values. The best trade-off
between the precision and recall (considering equal costs for false positives and
false negatives) is around the values 7 and 8 for a, and 4 and 5 for b.

The diagram in Fig. 7 shows how recall varies with the different threshold
values considered for distance and density, for the R-APR algorithm, on the two
synthetic datasets. We observe that, as we increase the distance and decrease the
density threshold, recall decreases - which is expected, since the risk of expanding
the R-APR too aggressively increases with larger distance and smaller density
thresholds. The precision value for these experiments was 1, regardless of the
variations considered, whereas the precision obtained by the APR algorithm is
0.49 on the low overlap dataset and 0.48 on the medium overlap dataset (see
Fig. 6). However, on the moderate overlap dataset, the boost in precision comes
at the high cost of a decay in recall, due to the aggressive expansion of the
R-APR in the density based expansion stage. We believe lower values for the
distance threshold and larger values for the density threshold could produce
better results in this case.

Fig. 7. Average Recall obtained by the R-APR algorithm, with different values for
distance and density thresholds, on the low (a) and moderate overlap (b) synthetic
datasets.

The real-world defect identification dataset represents electronic components
having multiple pins, the label being associated with the entire component
instead of the individual pins. For example, an integrated circuit may consist of
around 100 pins and may be labeled as faulty or non-faulty. The dataset on which
the following evaluation was performed contains 100 positive bags (faulty compo-
nents) and 700 negative bags (non-faulty components). Bags contain between 16
and 200 instances. It suffers from severe overlap given the current set of features,
therefore the R-APR algorithm yields low recall values. The results obtained by
the APR with and without transformation (baseline) are presented in Fig. 8.
Here again we considered two different values for a (7 and 8) and three values
for b (2, 3 and 4). As observed on the synthetic datasets, the transformation can
improve precision without degrading recall (for a = 7, b = 3, recall decreases
only slightly, but precision is improved by 0.1 – from 0.86 to 0.96).
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Fig. 8. Average Recall and Precision obtained by the APR algorithm with the trans-
formation, on the real-world dataset.

6 Related Work

The Iterated Discrimination algorithm [6] is one of the traditional MIP algo-
rithms. It attempts to find an APR, such that any bag having an instance within
its bounds, is classified as positive. Otherwise, the bag is considered negative. The
method is based on the idea that positive instances have similar features, thus,
converging towards a particular region in feature space.

The EM-DD algorithm [13] is another method employed towards solving the
MIP. The algorithm is based on the same supposition that positive instances con-
verge towards a particular region. Consequently, it searches for a target point in
feature space around which the positive instances are assumed to gather. A bag
is classified as positive if at least one of its instances neighbors the aforemen-
tioned target. The algorithm is based on the Diverse Density metric [7], which
yields high values for hypothesized points in regions containing a large number
of instances from diverse positive bags, and low values for regions containing
instances from negative bags, or little diversity in terms of positive bags.

Numerous other approaches have been employed towards solving the stan-
dard MIP, including: Neural Networks [8], Support Vector Machines [3,4], den-
sity based approaches [7], Lazy Learning [11], Decision Trees, or Rule Sets [5].
Solutions to the standard MIP have also been explored in the context of real-
valued labels through methods such as Multiple Instance Regression [10]. MIP
algorithms can be applied in many areas, including: image classification, stock
prediction, biochemistry, or text classification. However, empirical studies sug-
gest that no particular MIP algorithm appears to perform successfully in every
possible problem domain [9]. That is, MIP algorithms vary in performance,
depending on the problem they attempt to solve. It is worth emphasizing that
unlike the R-APR algorithm, these existing methods are unsuitable for directly
solving the AP, without prior feature-value transformation.

7 Conclusions

The paper presents two strategies for tackling the MIP in an antisymmetric
complex context, where the positive instances are located in a larger, less dense
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area, whilst the negative instances converge towards a particular region. The first
technique applies a feature-value transformation in order to align the data with
the assumption considered by standard MIP algorithms. The second technique
refers to a novel algorithm, the Reverse Axis-Parallel Hyper-Rectangle (R-APR)
algorithm, designed to identify a region in feature space, which encloses all the
negative bags, while excluding at least one instance from every positive bag.
The strategies achieved a good performance on synthetic data: the transforma-
tion significantly boosts the precision of the APR algorithm, while maintaining
recall at high levels; the R-APR algorithm can achieve a precision of 1, but as
the overlap in the data increases this gain comes at the cost of reduced recall
values. We believe this deficiency can be partially minimized via the distance
and density threshold values. The real-world data we employed in our experi-
ments suffers from severe overlap, which makes the classes partly indistinguish-
able given the current set of features. This prevents the R-APR algorithm from
achieving satisfactory recall levels; the feature-value transformation, however,
manages to boost the precision of the APR algorithm while keeping recall at the
same levels, which is also of interest in this particular context, since reducing
false positives can lead to reduced manual verification costs. Improving recall
remains the primary objective in this scenario and we are currently focusing on
identifying new features which could be extracted from the production line in
order to reduce overlap and improve the classification outcome.
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Abstract. Nowadays, implementing brand protection strategies has
become a necessity for enterprises delivering services through dedicated
apps. Increasingly, malicious developers spread unauthorized (fake, mali-
cious, obsolete or deprecated) mobile apps through alternative distribu-
tion channels and marketplaces. In this work, we propose a framework for
the early detection of these alternative markets advertised through social
media such as Twitter or Facebook or hosted in the Dark Web. Specif-
ically, it combines a data modeling approach and an ensemble learning
technique, allowing to recommend web pages that are likely to repre-
sent alternative marketplaces. The framework has been implemented in
a prototype system called Unauthorized App Store Discovery (UASD),
and integrated in a security enterprise platform for the monitoring of
malicious/unauthorized mobile apps. UASD allows to analyze web pages
extracted from the Web and exploits a classification model to distinguish
between real app stores and similar pages (i.e. blogs, forums, etc.) which
can be erroneously returned by a common search engine. An experimen-
tal evaluation on a real dataset confirms the validity of the approach in
terms of accuracy.

1 Introduction

Recently, an increasing attention has been paid to the problem of implementing
adequate strategies for defending the company’s brands from an unauthorized
use. In particular, the brand reputation represents an open issue for all the enter-
prises delivering services through dedicated apps. Indeed, malicious developers
frequently spread counterfeit apps which can compromise the security of the user
devices and eventually the reputation of the original developer. Nevertheless, in
this complex scenario, smartphones and tablets have become the devices mainly
used by millions of users which daily install a wide range of applications provided
through marketplaces and app stores. Therefore, it’s not unusual that unaware
users install unauthorized (e.g. fake, malicious, obsolete and deprecated) apps,
c© Springer International Publishing AG, part of Springer Nature 2018
A. Appice et al. (Eds.): NFMCP 2017, LNAI 10785, pp. 107–121, 2018.
https://doi.org/10.1007/978-3-319-78680-3_8
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which can potentially harm the device and consequently the brand reputation
of the copyright owner. Several technical reports, drafted by important secu-
rity software companies, show an exponential growth of virus and trojans able
to attack commonly used devices1. It is quite easy to develop variants of well-
known malware2, and many popular security tools are not able to counteract
common malware transformation techniques [16].

In many cases, these malicious programs are disguised as popular apps
spreading via official or alternative market places (e.g. Amazon app store for
Android3). As an example4, in July 2016 approximately two hundred mobile
apps were diffused as an official version of the Pokémon Go game,5 most of
which being malicious applications able to permanently lock the device. Other
examples are the PayPal App clones and counterfeits which aim at stealing the
login data of unaware users who accidentally update the original app to the
malicious version.

Besides representing a risk for the end user, the spread of these applications
represents a serious threat even for the original service providers and developers.
Being directly or indirectly associated with harmful apps can cause users to give
up on their services, thus causing a reputational damage. That’s why the early
detection of these apps is becoming strategic from a Brand Protection point of
view [20]. Notice that the problem is relevant even in situations where there
are no security issues, but just the possibility of being associated with poorly
designed apps and services. For example, the mobile app BancoSaldo is a third-
party app providing many utilities for handling financial services of the Italian
postal service “Poste Italiane”. The whole app (UI and Logo) has been designed
to look a legitimate Poste Italiane product. Hence it’s easy for an end user to
confuse this app for an official one distributed by Poste Italiane, thus attributing
all the potential failures to Poste Italiane itself.

The problem is that typically, malicious, fake or obsolete apps spread via
unofficial channels (e.g. alternative marketplaces and app stores) accessible both
via regular and Dark Web and therefore they are difficult to be discovered. The
capability of identifying and monitoring alternative marketplaces both on Reg-
ular and Dark Web is a relevant and challenging task. These marketplaces are
extremely dynamic and often do not monitor the published apps, and typically,
they are advertised through social media posts. Notably, companies set up teams
of experts and specialized personnel to discover these alternative markets and to
inspect whether potentially harmful apps are available which can be associated
with them. Anyway, the whole process to detect unauthorized app stores is usu-
ally performed manually by exploiting suitable queries on well-known research
engines (e.g. by employing google hacking techniques) and they strongly rely on
the skills of the operator.

1 https://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2012.pdf.
2 http://www.intel.se/content/dam/www/public/us/en/documents/reports/mcafee-

threats-quarterly-report.pdf.
3 https://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011.
4 http://www.silicon.co.uk/security/fake-pokemon-go-mobile-apps-195141.
5 http://www.pokemongo.com/.

https://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2012.pdf
http://www.intel.se/content/dam/www/public/us/en/documents/reports/mcafee-threats-quarterly-report.pdf
http://www.intel.se/content/dam/www/public/us/en/documents/reports/mcafee-threats-quarterly-report.pdf
https://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
http://www.silicon.co.uk/security/fake-pokemon-go-mobile-apps-195141
http://www.pokemongo.com/
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Defining semi-automatic monitoring protocols is crucial for effectively coun-
teracting the malicious mobile app diffusion, since it allows human operators
to analyze a wider web search space. Our main aim, in this work, is to pro-
pose an intelligent infrastructure for continuously monitoring and analyzing the
Web in order to detect alternative or unofficial marketplaces that may contain
unauthorized mobile apps.

The current literature has mainly focused on the problem of monitoring and
detecting malicious mobile apps, and little effort has been devoted to the detec-
tion of alternative markets.

In this work we define a semi-automatic approach for helping experts and
specialized personnel to discover the alternative marketplaces available both on
Regular Web and TOR (The Onion Router) Network. The learning method
allows to assign a score to the web pages returned by performing the operator
queries and then provides a sorted list according the probability that a page is
actually an appStore. The approach has been implemented in a prototype system
called Unauthorized App Store Discovery (UASD). Notably, UASD is integrated
into the Mobile Apps Security Monitoring (MASM6) infrastructure, a security
platform for monitoring malicious apps which is exploited by Poste Italiane.

To the best of our knowledge this is the first attempt to tackle this problem.
To summarize, the main contributions of this work are:

– A prototype system for proactively discovering (alternative) app stores on
Regular and Dark Web;

– A learning approach for accurately classifying and ranking web pages accord-
ing the probability to be a real mobile apps marketplace (UASD).

The rest of the paper is organized as follows. After introducing some pre-
liminary concepts in Sect. 2, we present our solution approach for discovering
alternative app stores. Section 3 introduces the logical architecture of MASM
and how UASD has been integrated for improving the capability of the platform
in detecting malicious mobile apps. An empirical analysis on a real case study
is then discussed in Sect. 4. Finally, the Sect. 5 concludes the paper and presents
some interesting future developments.

2 The UASD Framework

UASD stands for Unauthorized App Store Discovery, and it is a semi-automatic
machine learning approach that supports human operators recommending the
most likely alternative app stores in a (Dark) Web research space. UASD is com-
posed by three main macro components shown in Fig. 1: Information Retrieval,
Knowledge Discovery and Interaction with the operator. The details of the mod-
ules are as follows.

6 http://www.posteitaliane.it/en/innovation/technology centre/certcyb.shtml.

http://www.posteitaliane.it/en/innovation/technology_centre/certcyb.shtml
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Fig. 1. Logical flow of UASD.

2.1 Information Retrieval

Human experts devise a set of web queries by exploiting Advanced Google Search
Operators7 or specify some URLs in order to identify possible alternative mobile
markets in regular Web or in the TOR network (Dark Web). Typically, these
queries contain keywords referring to the names of the most popular mobile
operative systems, app categories (such as e.g. “arcade games”, “puzzles”), spe-
cific mobile apps or even mobile devices. The Information Retrieval module
is fed with these queries. Its task is to interpret them and extract the related
pages. The URL Retriever retrieves the URLs from the query results. If a URL
belongs to the TOR network, then a Tor Proxy allows the system to access the
page in the dark web and collect its content. The platform allows to integrate
different strategies for evaluating if an URL belongs to Tor Network, the most
simple method is checking it ends with “onion”. At the end of this process a
Knowledge Base is populated with all the extracted pages in HTML format.
The Web Page Data Extractor allows to store in the Knowledge Base the
html text (raw data) contained in the selected web pages.

7 https://en.wikipedia.org/wiki/Google hacking.

https://en.wikipedia.org/wiki/Google_hacking


Integrating a Framework for Discovering Alternative App Stores 111

2.2 Knowledge Discovery

This component allows to learn a classification/prediction model from the data
(knowledge base) gathered by the information retrieval module. We can devise
three components in it.

Data Transformation. Collected data need to be transformed and filtered in
order to be provided as input to the machine learning process. A crucial step
for this task is performed by a Statistical Feature Extractor, that allows to
devise a set of (discriminative) structural features for each web page, denoted
as embedded attributes. These features are based on the assumption that
the Web can be modeled as a graph whose nodes are the web pages and edges
are the hyperlink references. Each node has a neighborhood composed by those
nodes that are directly linked to it. Hence, given a raw web page, the current
implementation of the Statistical Feature Extractor builds a set of discriminative
features (embedded attributes) based on target page’s neighborhood. Table 1
summarizes the main features extracted from the pages.

Table 1. Embedded attributes.

Attribute Description

isTorLink A boolean flag highlighting whether the
page was extracted from the Dark Web

NumberIntraDomainLinks The number of neighbors within the same
web domain of the target page

IntraDomainLinkPercentage The ratio between the
NumberIntraDomainLinks and the
neighborhood size

IntraDomainDistinctLinkPercentage Similar to IntraDomainLinkPercentage

but distinct links are considered

NumberDownloads Number of direct download links for apps
(e.g. .apk) or keywords (e.g. install) that
allow a user to get a mobile application

NumberKeywords Number of keywords typically included in
app stores (suggested by domain experts):
e.g. android, apk, ios, access, app,
categories, market, price, best, popular, top,
rated, ios, windows phone, etc.

NumberDownloadFirstLevel The cumulative NumberDownloads for the
neighbors within the same domain of the
target page

NumberKeywordsFirstLevel The cumulative NumberKeywords for the
neighbors within the same domain of the
target page
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The embedded attributes allow to exploit the frequent (structural) patterns
featuring the app store pages, e.g. typically an app store will contain several links
for downloading .apk files in the home page or in the pages directly linked from
the home page. It is worth noting that, in many cases keeping both IntraDo-
mainLinkPercentage and IntraDomainDistinctLinkPercentage allows to exploit
more information: for example, despite some malicious web sites could have
the same IntraDomainLinkPercentage values as legal ones, the IntraDomainDis-
tinctLinkPercentage value is much lower because they try to deceive the user
by redirecting him to the (same) fraudulent service. If the IntraDomainLinkPer-
centage and the IntraDomainDistinctLinkPercentage exhibit similar values for
the same page, the page is likely a real marketplace or a page with a similar
structure (e.g. blog, forum, etc.).

Besides the embedded attributes, content features can be extracted directly
from the HTML code of the page. Specifically, the page is described by the META
tags and the keywords belonging to its BODY (where HTML tags are removed).
The Data Preprocessing Module filters such a content and produces further
attributes: specifically, META tags are directly converted in (logical) relational
attributes (Bag Of Words model), text extracted from the BODY is converted
by exploiting Text Mining techniques.

The text mining process is composed by the following steps:

– Tokenization. The text is separated by words and filtered from characters
different from the english alphabet (included numbers, punctuation and spe-
cial characters as “&”, “\”, ...).

– Stop word removal. The most common words in a language (conjunctions,
adverbs, prepositions, ...) are removed, since, typically, their discriminative
capability of distinguishing between two or more classes (i.e. categories) is
very poor.

– Stemming. Words are reduced to their word stem, a concept similar to the
base or root of a word. The stem doesn’t need to be identical to the mor-
phological root of the word: it usually suffices that related words map to the
same stem. For instance, the words “fishing”, “fished” and “fisher” share the
same stem “fish”.

– N-Gram generation. An N -Gram is a contiguous sequence of N words in a
text. The N -Gram generation process builds all possible N -Grams from the
filtered BODY of the pages. For instance, consider the sentence “The quick
brown fox jumps”, it has three 3-grams: “The quick brown”, “quick brown
fox” and “brown fox jumps”. The Data Processing module extracts N -Grams
with N ∈ {1, 2, 3}.

The merging of embedded attributes, meta tags and textual features rep-
resents the general schema upon which to characterize an extracted web page.
Notice that the resulting table exhibits very high dimensionality and a huge
sparseness factor. The Data Preprocessing Module is also demanded to perform
a feature selection routine based on χ2 test, tf-idf, correlation [5], and PCA [6].
According to these measures, the attributes with low discriminative power are
discarded and the dimensionality of the dataset is strongly reduced. Finally,
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a small portion of the cleaned data is manually labeled by experts as either app
store or Regular Web.

Prediction Model. The output of the Data Preprocessing Module is a Cleaned
Dataset that can be used for generating a classifier capable to discriminate
between records corresponding to actual app store pages and records referring
to regular Web. UASD relies on an Ensemble classifier [7].

An Ensemble is a combination of two or more classifiers (typically at least
three) according to different strategies in order to achieve a better prediction:
the idea is that classification errors are less likely with several classifiers rather
than a single classifier. In literature different combination strategies have been
proposed, the most known of them are three: Bootstrap aggregation (bagging)
[1], Boosting [18] and Stacking [21].

– Bootstrap Aggregating. The Bagging strategy randomly draws different sub-
sets from the data set; each subset is exploited to build a classifier. The
classifier set is demanded to vote about the prediction: if the majority of the
classifiers votes for an outcome (e.g. “the page is an AppStore”) then the
ensemble will predict that result.

– Boosting. Boosting defines an incrementally strategy to build an ensemble.
Data feed a classifier that returns its prediction with a confidence level. Each
record in the data is then equipped with a weight computed according to the
prediction: the bigger the error in terms of misclassification and confidence,
the bigger the weight. A new classifier is built exploiting the weighted data: it
will focus on those tuples with higher weight trying to correctly classify them.
The new classifier can overwrite the weights to generate another classifier.
This loop can continue until some stopping criterion is reached. The final
classifier is the result of the ensemble.

– Stacking. The Stacking approach, also called stacked generalization, is a two-
step strategy. In the first step, several different classifiers, Base Learners,
are trained on the whole data set: each one of the will enrich the data with
its prediction. A new data set, often called Stacked-View, is then built by
the combination of all the predictions. The stacked-view is provided as input
for one last classifier, called meta-classifier. The prediction process of a new
record will follow these two steps: firstly, the record will be equipped with the
base learners’ predictions, then the meta-classifier returns the final prediction
about the enriched record.

In our solution, we use a stacking approach since the amount of labeled data is
limited (as detailed in Sect. 4). Small data sets are more prone to the overfitting
problem and it is well known from the literature that stacking is more robust in
this setting.

The structure of the stacking method adopted in UASD is shown in Fig. 2.
We chose 9 different base learners, in order to promote the diversity of the
single predictions. These base learners are algorithms which work particularly
well in unbalanced scenarios (i.e. where a dominant class exists). This is exactly
the situation we cope with: the frequency of apps stores in the training data
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Fig. 2. UASD ensemble model.

is extremely lower than the regular web pages’ one. The complete list of the
chosen algorithms is the following: AODE [19], Hidden Naive Bayes [22], Maxi-
mum Entropy [13], Mine Rule AODE [3], Mine Rule Naive Bayes [3], Bayesian
Approach (Discretization) [9], Bayesian Approach (Kernel Transformation) [9],
Nearest Neighbors [4] and Logistic Regression [12].

The predictions of these base learners are combined in a stacked view (where
each column contains the prediction provided by a single classifier) that feeds
an Artificial Neural Network (ANN) as a meta-learner. In this way, the output
of the ANN will be a new probability value obtained as a suitable combination
of the probabilities provided by the base models. Hence, it will be exploited as
score to rank the sites from the most likely app store to least. Using ANNs for
combining the predictions provided by different classifiers has already success-
fully exploited [8] in many challenging scenarios. For example, the Otto Group
Product Classification Challenge8 has been won by a stacking model composed
of over 30 base learners whose output was provided as input for three meta-
classifiers: XGBoost, Neural Network, and Adaboost. In particular, we chose
an ANN because it can effectively and efficiently handle the great number of
attributes of the Cleaned Dataset enriched by the base learners’ predictions.

Evaluation. We assess the quality of the devised predictive engine by comput-
ing some accuracy metrics. As aforesaid, the discovering of novel app stores is
an unbalanced classification problem: the number of positive examples (actual
app store) is overwhelmed by the negatives (rest of the web pages). Different
evaluation metrics have been proposed in literature for testing the effectiveness
of classification models in presence of a rare class. Indeed, the usage of metrics
that do not adequately accounts for the rarity of such a minority class may lead
to overestimating the real capability of a classifier to correctly recognize the
instances of that class. Typically, some core metrics are based on the following
8 https://www.kaggle.com/c/otto-group-product-classification-challenge/discussion/

14335.

https://www.kaggle.com/c/otto-group-product-classification-challenge/discussion/14335
https://www.kaggle.com/c/otto-group-product-classification-challenge/discussion/14335
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statistics: (i) True Positives (TP ), i.e. the number of positive cases correctly
classified as such; (ii) False Positives (FP ), i.e. the number of negative cases
incorrectly classified as positive; (iii) False Negatives, i.e. the number of positive
cases incorrectly classified as negative; and (iv) True Negatives, i.e. the number
of negative cases correctly classified as such.

Classification accuracy is the fraction of cases classified correctly: (TP +
TN)/(TP +FP +FN +TN). Despite this is a widespread evaluation metric, it
is not appropriate when the classes are imbalanced. For instance, in a scenario
where only 1% of tuples belongs to the minority class, a simple model that
predicts every instance as belonging to the majority class would have an accuracy
of 99%, although it is not able to recognize the class of interest (in our case, the
app stores).

We exploit such statistics to compute the standard Precision (P ) and Recall
(R) measures [2] on the minority class, in order to support fine grain analyses
on the misclassification errors made over those instances:

Prec = TP
TP+FP

Rec = TP
TP+FN

The F-measure, defined as

F1 =
2 ∗ Prec ∗ Rec
Prec + Rec

represents the harmonic mean of the above measures and it is used to combine
them in a single score [17].

2.3 Human Interaction and Incremental Learning

The set up phase is the initial process of the system, during which the first model
is generated. This phase requires a small seed set of manually labeled web pages
by a team of experts. After this preliminary step, the system works in a semi-
supervised way. The overall process is monitored by human experts, as described
in Fig. 3 which represents the steady and operational states of the system. The
operator defines a set of queries and selects a set of target links to submit to the
URL Retriever. Relevant data is extracted and preprocessed from the links, and
the resulting pages are submitted to the prediction engine which performs the
prediction and ranks the pages according to the score provided by the prediction
model (see Sect. 2.2). The list is returned to the operator, then her feedbacks are
again exploited to enrich the original training data and consequently update the
prediction model. Obviously, the whole procedure can be computationally and
temporally expensive (according the number of queries submitted to the system)
due the human interaction, therefore a pipe-line scheme is used: the result of a
pre-processed set of queries is provided to the operators while another set is in
the processing phase. In this way, the extracting, storing and analyzing steps are
always performed off-line without introducing latency.
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Fig. 3. Interaction with the operator.

3 Mobile App Security Monitoring

In this section we describe MASM, a security enterprise platform for discovering
and monitoring (malicious) apps available in official and alternative market-
places. MASM integrates UASD and exploits the app stores discovered by the
latter to detect potentially harmful apps which counterfeit the company brand.

MASM is an advanced platform designed to support the operator in the whole
process for detecting malicious behaviors of mobile apps and can be effectively
employed to monitor the unauthorized usage of the brand of a company. The
(security) monitoring methodology implemented in MASM consists of 5 main
phases: Mobile App Detection, Analysis, Mitigation and Reporting, Shutdown,
Regular Checking. Figure 4 shows the logical flow of the approach.

App Detection is the first step of this process and it provides a set of methods
and tools to identify the unauthorized usage of the Brand to protect. In partic-
ular, this layer searches on the Web applications referring to the Brand in their
name or description. It allows to discover the (unauthorized) apps by exploiting
techniques of image analysis and comparison on their logos.

An application deemed as relevant undergoes an analysis process aiming at
identifying several types of security issues. The Analysis step is based on the
three-tier approach summarized below:

– Static analysis is performed without actually executing the app. Specifically,
it is performed by analyzing the application “as-is” (mainly using code inspec-
tion techniques)

– Dynamic analysis aims at studying the run-time behavior of the apps and it
is performed executing them in a controlled environment (a sandbox ). This
type of analysis focuses on the interactions between the smartphone and other
entities (e.g. web servers, local/remote files, other apps, etc.).

– Finally, legal analysis is performed which aims at identifying violations of
contractual obligations or laws. The results of this analysis are shared with
corporate functions within the Directorate of Legal Affairs.
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The Mitigation and Reporting phase provides a detailed report of the analy-
sis conducted and defines suitable strategies for the mitigating and/or contrast-
ing the identified security issues. Shutdown phase takes severe actions against
malicious/unauthorized mobile apps (like, e.g., forward remove requests to the
marketplaces for the deletion of these apps). Finally, the Regular Check phase
allows continuous monitoring of apps detected and analyzed.

Fig. 4. Mobile Apps Security Methodology (MASM) - logic architecture

With regard to the logic architecture shown in Fig. 4, UASD represent the
topmost layer, and it supports the initial phase of discovering unknown app
stores.

4 Experimental Evaluation

In this section, we discuss the experiments carried out on a real application
scenario. The scenario and the data at hand are discussed first. We next discuss
the setting adopted to evaluate the quality of discovered models and evaluate
the results of the performed test.

Case Study. The evaluation is performed on a crawl of 440 pages examined by
domain experts at Poste Italiane. Within these, 40 web pages represent actual
app stores and the remaining pages represent normal sites. The pages under-
went the preprocessing module and a final dataset characterized by the feature
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described in Sect. 2 was created. The dataset clearly devises an unbalanced classi-
fication problem where the number of examples, belonging to the class of interest,
is significantly lower than the majority class. The data preparation phase gener-
ates almost 12,000 attributes (mostly textual features and META tags), which
are further preprocessed by the feature evaluator and consequently reduced to
approximately 3,000 relevant attributes.

Performance Measures and Evaluation Setting. The model evaluation is accom-
plished relying on Stratified 10-fold Cross Validation [15], and measuring Pre-
cision (i.e., confidence of a prediction), Recall (i.e., coverage of a prediction)
and F-Measure (the harmonic mean between precision and recall, also called
F1-Score) [14].

Experimental Results. The purpose of the analysis is twofold.

– First, we aim at evaluating the role of the embedding attributes. Under this
perspective, we evaluate the performance of the base classifiers by considering
the full set of features and by excluding the embedding attributes.

– Second, we evaluate the role of the stacking architecture. In principle, the
addition of a further level where the set of available features is enriched should
allow to better balance the prediction.

In the context we are analyzing, the objective is to obtain a good balance
between precision and recall with regard to the minority class label. In fact,
the aim is to increase the number of covered marketplaces by simultaneously
minimizing the number of false positives, i.e. the incorrect suggestions to the

Table 2. Evaluation of F1 − Score, precision and recall on base models compared to
UASD.

Use embedded attributes Model F 1-Score Precision Recall

N AODE 0,712 0,788 0,650

Hidden Naive Bayes 0,687 0,852 0,575

Max-Ent 0,693 0,743 0,650

Mine Rule AODE 0,699 0,674 0,725

Mine Rule Naive Bayes 0,658 0,694 0,625

Bayesian Approach (Discretization) 0,692 0,711 0,675

Bayesian Approach (Kernel Transformation) 0,687 0,917 0,550

Nearest Neighbors 0,667 0,846 0,55

Logistic Regression 0,694 0,781 0,625

Y AODE 0,740 0,818 0,675

Hidden Naive Bayes 0,722 0,813 0,650

Max-Ent 0,707 0,690 0,725

Mine Rule AODE 0,690 0,659 0,725

Mine Rule Naive Bayes 0,700 0,700 0,700

Bayesian Approach (Discretization) 0,725 0,725 0,725

Bayesian Approach (Kernel Transformation) 0,725 0,862 0,625

Nearest Neighbors 0,694 0,781 0,625

Logistic Regression 0,743 0,867 0,650

UASD Approach 0,757 0,824 0,700
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operator. In this respect, F1 − Score represents a good choice to evaluate the
performance of the classification model.

In Table 2 we report the results of this analysis. The role of the embedding
attributes can be clearly appreciated and it increases the general performance
of the base classifiers by 5%. The stacker is also a winner in the evaluation, as
its adoption further boost the prediction quality.

4.1 UASD in Action

UASD is currently employed by a Poste Italiane expert team to monitor the
introduction of potentially harmful apps. The platform, integrated in MASM9 an
advanced security system for the analysis of mobile apps, provides the operator
with a set of graphical tools for querying the recommendation engine which
returns a ranked list of URLs ordered according the estimated probability to be
a market.

In Fig. 5, we show an example screenshot, where the result of a specific query
returns a set of potentially matching (unknown) marketplaces. Within the figure,

Fig. 5. Dashboard of MASM integrating UASD.

9 http://www.posteitaliane.it/en/innovation/technology centre/certcyb.shtml.

http://www.posteitaliane.it/en/innovation/technology_centre/certcyb.shtml
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we can notice the first four matches, representing three true positive examples
(with a probability above 97%) and a false positive example (the wikipedia page
for “app store” deemed as an app store with probability 60%). It is interesting
to highlight that the latter contains many terms that typically characterize an
actual marketplace and exhibits a similar structure in terms of intra-domain
links, and at the same time the lack of other embedded features (such as direct
download links to apk) lowers the positiveness of the likelihood.

5 Conclusion

Detecting malicious behaviors of mobile apps is a challenging task and it com-
prises a continuous monitoring of the apps available in marketplaces. Most of the
current approaches assume prior knowledge about the marketplaces to be mon-
itored. Due to the continuous growth and dynamism of mobile app providers,
identifying these app stores is becoming a difficult and time-consuming task.
In this work, we propose a semi-automatic machine learning approach based
on a suitable set of (derived) discriminative features and an ensemble learning
method for discovering alternative mobile app marketplaces. Our approach has
been implemented in a prototype platform for the proactive searching of mar-
ketplaces both on Regular and Dark Web, called UASD.

UASD provides a list of URLs (extracted from a set of queries defined by
the Human operator) sorted according the probability to be an actual app store,
then, the operator can evaluate the provided URL list. The platform has been
integrated as a service of MASM, an advanced security system for the analy-
sis of mobile apps that is developed and currently employed by Poste Italiane.
Experimental findings on a real use case confirm that our approach is effective
in identifying these marketplaces.

As future work, we plan to investigate the possibility to use Deep Learning
approaches [10] to automatically discover higher-level features from raw data.
This could allow to extract further discriminative features that are difficult to be
manually defined. Moreover, we want to investigate the possibility to equip our
approach with some collective mining techniques, e.g. [11], in order to exploit
other informations related to the structure of the web page links.
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Abstract. This paper presents a comparison of the impact of various
unsupervised ensemble learning methods on electricity load forecasting.
The electricity load from consumers is simply aggregated or optimally
clustered to more predictable groups by cluster analysis. The clustering
approach consists of efficient preprocessing of data gained from smart
meters by a model-based representation and the K-means method. We
have implemented two types of ensemble learning methods to investigate
the performance of forecasting on clustered or simply aggregated load:
bootstrap aggregating based and the newly proposed clustering based.
Two new bootstrap aggregating methods for time series analysis methods
were newly proposed in order to handle the noisy behaviour of time series.
The smart meter datasets used in our experiments come from Ireland and
Slovakia, where data from more than 3600 consumers were available in
both cases. The achieved results suggest that for extremely fluctuate
and noisy time series unsupervised ensemble learning is not useful. We
have proved that in most of the cases when the time series are regular,
unsupervised ensemble learning for forecasting aggregated and clustered
electricity load significantly improves accuracy.

Keywords: Load forecasting · Clustering · Bagging
Ensemble learning

1 Introduction

Modern information technologies produce a large amount of data that can be
used for further analysis, giving important insights into data that supports mak-
ing informed decisions. One important source of data is smart meters - sensors
measuring electricity consumption or production. A smart grid is an ecosystem
created from smart meters that can control or monitor electricity load (of con-
sumers) or both load and production (of prosumers), collecting a large amount
of data and making interventions when needed. To make these interventions
c© Springer International Publishing AG, part of Springer Nature 2018
A. Appice et al. (Eds.): NFMCP 2017, LNAI 10785, pp. 122–137, 2018.
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or decisions useful, they must be supported by information provided by smart
meter data. One of the key tasks in a smart grid is electricity load forecasting,
which is essential for energy distribution and utility companies, salesmen and
for end users. Developing more sophisticated and accurate forecasting methods
is important and for these purposes, data mining and machine learning methods
are developed and adapted.

There are several suitable methods for load forecasting such as time series
analysis and regression methods. Both types of them have their limitations such
as an inability of adaptation to sudden changes (concept drift) and the noisy
behaviour of time series. Therefore to find and choose the most suitable fore-
casting method is difficult. Besides already existing forecasting methods, there
is a promising approach using the proper combination of various methods over-
coming limitations of particular ones. This method is called ensemble learning.
Moreover, forecasting methods themselves can be tuned by the simplest of all
ensemble methods - bootstrap aggregating (bagging).

We have evaluated two types of methods of bagging that are based on type of
the used forecasting method: (a) time series analysis method; (b) regression tree.
Three types of bootstrapping methods were implemented to observe their useful-
ness for time series analysis methods: (a) moving block bootstrap with combina-
tion of STL decomposition and Box-Cox transformation; (b) smoothed version of
the previous one; (c) K-means based bootstrapping. Bagging for regression trees
was the classical sampling with replacement combined with randomized values
of hyperparameters. We have proposed several new ideas to unsupervised ensem-
ble learning approaches relying on a proper combination of multiple bootstrap
forecasts. Their advantages and disadvantages were discussed in our work.

Another very important but totally different approach to optimising forecast
accuracy is based on advanced time series data mining methods. This includes
cluster analysis that is used for consumer segmentation according to their con-
sumption patterns, so more predictable groups of consumers are created. As we
showed in our previous works [1,2], this approach has the promising improvement
of forecasting accuracy.

The aim of this paper is to compare the combination of the time series data
mining approach with the newly proposed ensemble learning methods for improv-
ing forecasting accuracy.

This paper is structured as follows: Sect. 2 contains an introduction with
related works, while in Sect. 3 the datasets used in our experiments are described.
Section 4 presents a description of our approach together with the methods used
for time series processing, cluster analysis, forecasting and ensemble learning.
Section 5 presents the description and the evaluation of performed experiments
and the paper concludes with Sect. 6.

2 Related Work

Electricity load forecasting is a highly discussed research area due to the inter-
esting character of data coming from smart meters. The time series of electricity
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consumption can have various patterns and are affected by multiple seasonali-
ties (daily, weekly and yearly), weather, holidays and other unexpected changes.
For this reason, sophisticated machine learning methods are applied to tackle
challenges linked with smart meter data.

Ensemble learning in load forecasting is a highly used method in solving
the above-mentioned problems. Adhikari et al. [3] proposed a ranking based
ensemble approach to incorporate only the best models to the final ensemble
forecast. Shen et al. [4] proposed a pattern forecasting ensemble model, which
combines forecasts created by clustering algorithms. Grmanová et al. [5] used
median-based approach to optimise weights in the incremental heterogeneous
ensemble learning model for consumption forecasting.

The usage of cluster analysis for more accurate forecasts of aggregated load
is noted in the work of Shahzadeh et al. [6]. This paper deals with the clustering
of consumers in three different ways of feature extraction from a time series.
As a clustering method, K-means was used and the neural network has been
applied as a forecast method. Wijaya et al. [7] used correlation-based feature
selection as a representation of consumers in clustering, and linear regression,
multi-layer perceptron and support vector regression were used as forecasting
methods. In our previous work [2], four different representations of time series
and ten forecasting methods were evaluated, in order to verify their suitability
for the forecasting of clustered load. We have proved that optimised clustering of
consumers significantly improves the accuracy of forecasts in combination with
triple exponential smoothing, ARIMA, Random Forests and bagging.

Until now, the combination of clustering of consumers and ensemble learning
has not been explored and evaluated. Therefore in the proposed paper we will (a)
evaluate from two different types of bagging on basic forecasting methods and
examine their behaviour on clustered load, (b) propose two new bootstrapping
methods for time series to overcome noisy character of data, (c) design several
new unsupervised clustering ensemble learning approaches for forecasting, (d) for
clustering electricity consumers, propose efficient preprocessing through model-
based representation of time series based on K-means clustering.

3 Smart Meter Data

For verification of our approach, we have used in our experiments two different
datasets, comprising of data from smart meters. This data includes Irish and
Slovak electricity consumption. The Irish data was collected by the Irish Com-
mission for Energy Regulation (CER) and available from ISSDA1 (Irish Social
Science Data Archive). This data contains three different types of customers:
residential, SMEs and others. The largest group is residential, where after remov-
ing consumers with missing data, we have 3639 residential consumers left. The
frequency of data measurements was on a half-hour basis, during a day 48 mea-
surements were performed. Slovak data was collected within the project “Inter-
national Centre of Excellence for Research of Intelligent and Secure Information-
1 http://www.ucd.ie/issda/data/commissionforenergyregulationcer/.

http://www.ucd.ie/issda/data/commissionforenergyregulationcer/
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Communication Technologies and Systems”. These measurements were obtained
from Slovak enterprises, having a completely different nature than the Irish data.
After removing consumers with missing data, those with zero consumption and
consumption higher than 42 kW, the dataset comprised 3630 consumers. The fre-
quency of data measurements was on a quarter-hour basis, so daily 96 measure-
ments were performed. The frequency of data measurements was transformed to
half-hourly in order to make it comparable with the Irish data.

The difference between the residential and enterprise data is significant. The
amount of consumption in residences was low and not regular, as opposed to the
enterprise, where the amount of consumption was very high and mostly regular
during the week and irregular during the year (i.e., holidays for whole factory
or in school, the period of year when central heating is turned on). Therefore
different evaluation results for these two datasets could be expected.

4 Proposed Approach

Two approaches for the aggregation of electricity load were compared: based on
clustering of consumers and based on simple aggregation. Moreover, three types
of forecasting methods were compared: six basic methods, six basic methods
with bagging and six ensemble methods. The clustering approach consists of
these phases:

1. Normalisation of time series by z-score and calculation of a model-based rep-
resentation of time series (estimation of regression coefficients). Extracted
representations then enter a clustering method.

2. Calculation of an optimal number of clusters for given representations of a
time series by DB-index. The actual clustering of consumers is followed by
the K-means method.

3. Aggregation of consumption within the clusters and the application of a fore-
cast model on training data. The forecast for the next period is calculated
and aggregated. Finally it is compared with the real consumption.

This process is repeated incrementally until new data is available. The sliding
window has length of 21 days and it is shifted by one day. It means that the
oldest day from the window is removed and the data from a new day are added.

4.1 Clustering of Electricity Consumers

The first necessary step is the normalisation of the times series of electricity
consumption by the z-score because we want to cluster similar patterns and not
the time series according to the amount of energy consumption.

The next is the computation of the time series representation, which is an
input to the clustering algorithm. The modification of the time series to its
representation is performed by a suitable transformation. The main reason for
using representations of time series is the pursuit of more effective and easier



126 P. Laurinec and M. Lucká

work with time series, depending on the application. Using time series represen-
tations is appropriate because by reducing the dimension, it will reduce memory
requirements and computational complexity, and it implicitly removes noise and
emphasizes the essential characteristics of data. We conducted from our previous
work that model-based representations are highly appropriate for seasonal time
series [1]. For a model, multiple linear regression is used for extraction of regres-
sion coefficients of two seasonalities (daily and weekly). Formally, the model can
be written as follows:

xt = βd1utd1 + βd2utd2 + · · · + βdsutds + βw1utw1 + · · · + βw6utw6 + εt,

for t = 1, . . . , n, where xt is the t − th electricity consumption, βd1, . . . , βds

are regression coefficients for daily season, s is the length of period of one day,
βw1, . . . , βw6 are regression coefficients for a weekly season. Weekly regression
coefficients are just six, not seven, because of prevention from singularity of the
model. The utd1, . . . , utdseas, utw1, . . . , utw6 are independent binary (dummy)
variables representing the sequence numbers in the regression model. They are
equal to 1 in the case when they point to the j − th value of the season, j =
1, 2, . . . , s, in case of a daily season and j = 1, 2, . . . , 6 in case of a weekly season.
The εt are random errors having the normal distribution of N(0, σ2) that are
for different t mutually independent. The most widespread method for obtaining
an estimate of the vector β = (βd1, . . . , βds, βw1, . . . , βw6) is the Ordinary Least
Squares method.

For grouping consumers into clusters, the centroid-based clustering method
K-means with centroids initialization K-means++ [8] was used. The advantage
over conventional K-means is based on carefully seeding of initial centroids,
which improves the speed and accuracy of clustering.

In each iteration of a batch processing, we have automatically determined
the optimal number of clusters to K using the internal validation rate Davies-
Bouldin index [9]. The optimal number of clusters ranged from 8 to 18.

In Fig. 1 clustered time series representations of consumers from Slovakia are
shown. We can see that the clusters 1, 2 and 8 have a similar daily pattern, but
the weekly pattern is remarkably different, so our clustering approach is working
correctly. As is apparent, other clusters are visibly different from each other.

4.2 Forecasting Methods

Basic Forecasting Methods. We have compared six basic forecasting methods
to investigate their relevance in combination with bootstrapping, and to see if it
benefits from clustering.

Seasonal decomposition of time series by Loess (STL) is a method that
decomposes a seasonal time series into three parts: trend, seasonal and remain-
ing [10]. For the resulting three time series, the result is used separately for
the forecast with ARIMA model (STL+ARIMA) and Holt-Winters exponen-
tial smoothing (STL+EXP). The ARIMA model has been introduced by Box
and Jenkins [11] and is one of the most popular approaches in forecasting.
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Fig. 1. Nine clusters of Slovak consumers. Grey line represents the centroid of a cluster.

The Holt-Winters exponential smoothing [12] is a forecasting method applied
to a time series, whereby past observations are not weighted equally, but the
weights decrease exponentially with time. The exponential smoothing method
was also used stand-alone (EXP), but with one important enhancement for trend
changing time series. Three different models were fitted each time and the best
of them was picked to produce a forecast. These models were a full additive
model with a trend component, an additive model with a damping trend and
an additive model without a trend. The best model among them was chosen
according to the best values of Akaike Information Criterion (AIC) [13].

Recursive partitioning regression trees that belong to Classification and
Regression Trees methods (CART) search over all possible splits by maximising
an information measure of node impurity, selecting the covariate showing the
best split [14]. The most important hyperparameters that must be tuned are the
minimum number of observations that are needed in node to split (set to 2),
maximal depth of a tree (set to 30) and the complexity parameter (cp). The last
parameter cp is a threshold deciding if each branch fulfils conditions for further
processing (only nodes with fitness larger than factor cp = 1E-6 are processed).

For adaptation to a trend change, the dependent variable (time series of
electricity consumption) was detrended by STL decomposition [10] in order to
improve forecasting accuracy. From the extracted trend part of the time series,
future values were forecasted by automatic ARIMA procedure [15] and added
to the forecast from the CART model that predicts the aggregated seasonal and
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remainder part of the time series. The attributes to the CART model are daily
and weekly seasonal vectors. We considered the size of a daily period s = 48 and
weekly period w = 7. Daily seasonal vector has the form dayj = (1, 2, . . . , s),
j = 1, 2, . . . , d, where d is the number of days in the training window and day =
(day1, . . . ,dayd). Let i = (i, . . . , i) is a vector of dimension s. Then the weekly
seasonal vector has the form week = (1,2, . . . ,w,1, . . . ) and has the dimension
of s ∗ d.

Conditional inference trees (CTREE) is a statistical approach to recursive
partitioning, which takes into account the distributional properties of the mea-
surements [16]. Here the important hyperparameter for tuning is the minimal
criterion that must be exceeded in order to implement a split (set to 0.925).

Two variants of CTREE method based on different attributes entering to the
model were evaluated. The first one (CTREE.lag) has four seasonal attributes
for daily and weekly periods in the sinus and cosinus form: (sin(2π day

s ) + 1)/2
resp. (cos(2π day

s ) + 1)/2, and (sin(2π week
7 ) + 1)/2 resp. (cos(2π week

7 ) + 1)/2.
Another attribute for the model is the seasonal component of STL decomposition
with a one day lag. The second one (CTREE.dft) uses as attributes two seasonal
Fourier terms. As we found experimentally the best results were achieved with
four terms for daily period (sin(2πjt

48 ), cos( 2πjt
48 ))4j=1, and eight pairs of terms for

weekly seasonality (sin( 2πjt
7 ), cos( 2πjt

7 ))8j=1, where t = (1, . . . , n). Before using
both CTREE variations, the original time series was also detrended by STL
decomposition as was with CART method.

Bootstrap Aggregating Methods. Bootstrap aggregating (bagging) is an
ensemble meta-algorithm [17], which creates multiple versions of a learning set to
produce a multiple number of predictors. These predictors are then aggregated,
for example by arithmetic mean. We have implemented two different types of
bagging methods in order to adapt to two different types of forecasting methods:
regression trees and time series analysis methods.

Classical bagging proposed by Breiman [17], generates multiple training sets
by uniformly sampling the original one with replacement with some sample ratio.
In our approach, the sample ratio and hyperparameters mentioned in the previ-
ous section concerning regression trees were also randomised. The sample ratio
was randomly sampled in the range of 0.7 − 0.9. The CART hyperparameters
were sampled this way: maximal depth in range of 26 − 30, minimal split 2 − 3
and cp 9E-7 − 1E-5. The CTREE hyperparameter minimal criterion is sampled
0.88 − 0.97. Each time 150 trees were created and the resulting forecasts were
aggregated by median.

For the time series analysis methods (STL+ARIMA, STL+EXP, EXP), the
bagging proposed by Bergmeir et al. [18] was used. At first a Box-Cox trans-
formation to the data was applied, then the series was decomposed into three
components by STL. The remainder component is then bootstrapped using the
moving block bootstrap (mbb), and to every created bootstrap version of the
remainder, the trend and seasonal components are added, and then the Box-
Cox transformation is inverted. So a random pool of similar bootstrapped time
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series is generated (in our case 100). After applying the forecasting method to
each time series, the forecasts are aggregated by median. In Fig. 2 the results of
mbb method applied on the Irish and Slovak data are shown. As it can be seen
the method produces very noisy time series when the original data is also noisy
(Slovak data). For this reason, we have proposed two new bootstrap methods
for time series for better adaptation to noisy time series.
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Fig. 2. Mbb method used on two different time series of length three weeks from Ireland
and Slovakia. The original time series is illustrated with the light grey colour.

The first one of our newly proposed methods is a modification of the previous
one (we will refer to as smo.mbb). This method is extended with one important
procedure for ensuring the noise reduction. Before application of the moving
block bootstrap method on remainder part of the time series, the remainder
part is smoothed by simple exponential smoothing. The smoothing factor was
set to 0.05 in our case. By this calculation, the remained part is significantly
denoised, so the new bootstrapped time series do not fluctuate as in the original
approach (mbb). The difference between mbb and smo.mbb method applied on
Slovak data is shown in Fig. 3.

The second newly proposed bootstrap method for time series is clustering-
based (we will refer to as KM.boot). It firstly uses K-means and automatic
determination of the number of clusters, as described in Sect. 4.1, to cluster
univariate time series to K groups (K was set to 12 − 20). Then new bootstrap
time series are created from sampling from values of clusters. For example, if
x1 is value of the time series that belongs to second cluster, the new value
of time series is randomly sampled value from the second cluster. For better
illustration, the clustered time series by K-means and final bootstrapped time
series by KM.boot method are shown in Fig. 4. We can see that bootstrapped
time series have very low variance between each other, so KM.boot reduces noise
dramatically.
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Fig. 3. The comparison of mbb and smo.mbb methods on time series of length three
weeks from Slovakia. The original time series is illustrated with the light grey colour.
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Fig. 4. The upper image shows clustered univariate time series to 13 clusters by
K-means. The second image shows bootstrapped time series by KM.boot method. The
original time series is illustrated with the light grey colour.

Ensemble Learning. We have implemented six different ensemble learning
methods that we can divide into these three groups:

(a) Simple aggregation based - average and median,
(b) Naive cluster based - average of medians of methods,
(c) Cluster based - K-means based, DBSCAN based and OPTICS based.
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There are other widely used ensemble learning methods, which are error based, so
they weight each prediction method by its performance. We proposed ensemble
learning methods, which are structure based, so it uses unsupervised learning to
create a final ensemble forecast. As we have found and experimentally proven,
only unsupervised approaches are suitable for time series created by clustering,
which are newly generated in each data window. Reason of this claim is that
each created clustered time series needs to apply different forecasting method.

Average and median ensemble simply aggregates all available forecasts, in
our case, there are 6 × 100 = 600 forecasts, which were produced by bagging.

The first cluster-based method uses a priori information on which forecasting
method was used. Each method creates a median. After this, a set of medians
(in this case having a set length of 6) is averaged to a final ensemble forecast.

The next three methods are cluster-based. Before using a clustering algorithm
on a dataset of forecasts (matrix of dimension 600×48), the Principal Component
Analysis is used to extract just the first three principal components in order
to reduce noise. The K-means based procedure (Sect. 4.1) was used to create
clusters of forecasts. First, DB-indexes were computed and an optimal number
of clusters in the range of 3−8 was found. Next K-means produced clusters with
corresponding centroids, which were averaged to the final ensemble forecast.

All ensemble methods mentioned above used all forecasts to produce the
final one, even when anomalous, which could cause loss of forecasting accuracy.
For this reason, density-based clustering methods which can automatically filter
noisy objects were implemented. First of them, DBSCAN [19] (Density-Based
Spatial Clustering of Applications with Noise) clustering algorithm was used.
It requires two parameters: ε (set to 1.45) and minPts (set to 8). Ensemble
forecast is created by the average of medians of clusters. The biggest drawback
of this approach is that these parameters in the whole process of evaluation are
set statically and not dynamically. However, deviations are reduced by principal
components normalisation, which guarantees stability in the range of data values.

For producing density-based clustering that automatically adapts to the
shape of objects, OPTICS [20] (Ordering Points To Identify the Clustering Struc-
ture) algorithm with automatic ξ-cluster procedure was implemented. ξ defines
the degree of steepness (set to 0.045), which is applied in the so-called reach-
ability plot of distances. The final ensemble forecast is the median of medians
of clusters. The accuracy of the load forecast was measured by MAPE (Mean
Absolute Percentage Error). MAPE is defined as 100× 1

n

∑n
t=1

|xt−xt|
xt

, where xt

is a real consumption, xt is the forecasted load and n is a length of data.

5 Experiments

We have performed several experiments to evaluate our implemented methods.
The Ireland testing dataset contains 3 months of measurements from the year
2010 (1.2.2010 − 28.2.2010, 1.5.2010 − 31.5.2010 and 1.8.2010 − 31.8.2010), com-
prising 90 days. The Slovak testing dataset contains also 3 months of measure-
ments from years 2013 and 2014 (23.9.2013 − 26.10.2013, 10.2.2014 − 11.3.2014
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and 2.6.2014 − 1.7.2014), comprising 94 days. Moreover we had additional data
coming from 21 days before each of the six tested periods that were used in clus-
tering and train forecasting methods. The source code of the all implemented
methods is available online2.

Table 1 summarises the results of basic methods used without bagging.
Besides the comparison of average values of MAPE, the p-values of Wilcoxon
rank sum test are also shown. They show whether forecast errors of the clustering
approach have significantly lower values in comparison with the simple aggrega-
tion approach. Corresponding p-values show that in both datasets clustering of
consumers significantly improves the accuracy of forecasting in four cases from
six, but in the meaning of average values of MAPE, clustering improves the
accuracy of forecasting in all cases. The CART forecasting method was the best
basic method on Irish data and the EXP on Slovak data.

Table 1. Average daily MAPE (%) of 6 forecasting methods evaluated on two datasets
and two types of aggregation. Agg. represents simple aggregation and Clust. clustering
approach. Bold values represent lowest MAPE. P-values less than 0.05 are bold.

Agg.-Irel. Clust.-Irel. p-value Agg.-Slov. Clust.-Slov. p-value

CART 3.9101 3.8140 0.0270 3.1000 3.0761 0.0922

CTREE.lag 4.0828 3.8507 0.0009 3.0391 2.8969 <0.0001

CTREE.dft 4.1246 3.8757 <0.0001 3.1308 2.9854 <0.0001

STL+ARIMA 4.0718 3.8943 0.0248 2.7567 2.7186 0.0302

STL+EXP 4.2750 4.1866 0.5560 2.6887 2.6318 0.1644

EXP 4.8086 4.6508 0.1291 2.4130 2.3957 0.0152

The first comparison of ensemble learning forecasting methods is shown in
Table 2, where for time series analysis methods mbb bootstrapping was used.
CTREE.dft.bagg method was the best basic bagged method on Irish data and
CTREE.lag.bagg on Slovak data. The best ensemble method on Irish data was
the median method. On the simple aggregated Slovak data the average method
had the lowest MAPE. The lowest MAPE on clustered Slovak dataset has been
achieved by the OPTICS-based ensemble method. A significant improvement of
results with the clustering approach on Irish data was in 5 of the 12 cases. On
the other hand, clustering helped in 3 of the 12 cases on Slovak data. Notice that
the best results by bagged basic methods are different from results using best
basic methods from Table 1. In the case of Irish dataset, we improved results by
0.11% points of MAPE on the simple aggregated dataset and 0.08% points on
the clustered dataset. However, in the case of Slovak dataset, result was worsen
by 0.52% points of MAPE on the simple aggregated dataset and 0.45% points
on the clustered dataset. It implies that mbb bagging method for time series
analysis methods on Slovak dataset decreases accuracy of forecasts.

2 https://github.com/PetoLau/UnsupervisedEnsembles.

https://github.com/PetoLau/UnsupervisedEnsembles
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Table 2. Average daily MAPE (%) of 12 forecasting methods evaluated on two datasets
and two types of aggregation. Agg. represents simple aggregation of consumption and
Clust. clustering approach. Bold values represent the lowest MAPE among bagged
basic and among ensemble methods. P-vales less than 0.05 are bold.

Agg.-Irel. Clust.-Irel. p-value Agg.-Slov. Clust.-Slov. p-value

CART.bagg 3.8630 3.7658 0.0177 3.0881 3.0598 0.1227

CTREE.lag.bagg 3.9708 3.8166 0.0004 2.9342 2.8506 0.0007

CTREE.dft.bagg 3.8040 3.7342 0.2382 3.0099 2.9557 0.0060

STL+ARIMA.mbb 3.9678 3.9025 0.0011 3.0188 3.0069 0.3531

STL+EXP.mbb 3.9804 4.0107 0.9296 3.0332 3.0020 0.1681

EXP.mbb 4.0931 4.0665 0.2070 2.9736 2.9322 0.0620

Average 3.8453 3.8019 0.0915 2.9424 2.9336 0.1991

Median 3.7768 3.7252 0.2744 2.9666 2.9400 0.1314

AveMedians 3.8125 3.7904 0.3437 2.9440 2.9217 0.0867

K-means 5.0296 4.1082 0.0003 3.0575 4.0662 0.4985

DBSCAN 4.1880 3.9231 0.0360 2.9700 2.9628 0.4061

OPTICS 3.8992 3.8243 0.1968 2.9921 2.8999 0.0164

Table 3 shows p-values of comparisons of Tables 1 and 2, where it is tested if
the bagging basic forecasting methods improve the forecasting accuracy signif-
icantly. On the simple aggregated Irish data, all methods achieved statistically
significant results, except the CART and the STL+ARIMA method. On the
Slovak data, the bagging regression trees had significant results, but time series
analysis methods had failed. This is caused by the mbb method that is not
adaptable on noisy and fluctuated time series that is present in Slovak data.

As it was described in Sect. 4.2, for this reason, we proposed two new
bootstrapping methods to overcome noisy character of time series. It was
experimentally found the smo.boot bootstrapping method improves results on
the Irish dataset and the KM.boot bootstrapping method improves results on
the Slovak dataset. In the opposite scenario, these methods decrease accuracy of

Table 3. P-values of testing if bagging six basic forecasting methods improves fore-
casting accuracy significantly.

Agg.-Irel. Clust.-Irel. Agg.-Slov. Clust.-Slov.

CART 0.0592 0.0033 0.0916 0.0027

CTREE.lag 0.0004 0.0293 <0.0001 <0.0001

CTREE.dft <0.0001 <0.0001 <0.0001 0.0012

STL+ARIMA.mbb 0.0646 0.0433 0.9854 0.9999

STL+EXP.mbb 0.0272 0.0184 0.9988 0.9999

EXP.mbb 0.0001 0.0003 1.0000 1.0000
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forecast, so their results are not present in the tables. Table 4 shows these results,
whereby on the Irish dataset the results achieved by smo.boot are showed and on
the Slovak dataset the results achieved by KM.boot are showed. We can see that
using the Irish dataset, the results of forecasts were improved dramatically by
smo.boot bootstrapping method for time series analysis methods in the mean-
ing of comparison of results presented in Tables 1 and 2. On the Slovak dataset,
the results of forecasts were improved dramatically by KM.boot bootstrapping
method for time series analysis methods in the meaning of comparison with the
original mbb method (Table 2). However, they have still worse results compared
to basic forecasting methods from Table 1. Clustering Irish data improved signif-
icantly forecasting results against the simple aggregated Irish data in 8 from 12
cases. Clustering Slovak data improved significantly forecasting results against
simple aggregated Slovak data in 10 from 12 cases. The improvement of results
achieved by clustering of consumers (better than in the case of usage mbb) is
proof that our two new proposed bootstrap methods are working well.

Table 4. Average daily MAPE (%) of 12 forecasting methods evaluated on two datasets
and two types of aggregation. Agg. represents simple aggregation of consumption and
Clust. clustering approach. Bold values represent the lowest MAPE among bagged
basic and among ensemble methods. P-vales less than 0.05 are bold.

Agg.-Irel. Clust.-Irel. p-value Agg.-Slov. Clust.-Slov. p-value

boot. method smo.mbb smo.mbb KM.boot KM.boot

CART.bagg 3.8630 3.7658 0.0177 3.0897 3.0598 0.1227

CTREE.lag.bagg 3.9708 3.8166 0.0004 2.9342 2.8506 0.0007

CTREE.dft.bagg 3.8040 3.7342 0.2382 3.0099 2.9557 0.0060

STL+ARIMA 3.8709 3.7151 0.0103 2.8452 2.7253 0.0023

STL+EXP 3.8541 3.6958 0.0078 2.8157 2.6543 <0.0001

EXP 3.9274 3.7573 0.0158 2.5631 2.4283 <0.0001

Average 3.7560 3.6788 0.2059 2.6765 2.6400 0.0256

Median 3.7402 3.6213 0.0662 2.7121 2.6717 0.0672

AveMedians 3.7341 3.6534 0.1753 2.6808 2.6406 0.0263

K-means 3.9516 3.6919 0.0042 2.6659 2.6132 0.0294

DBSCAN 3.8132 3.6589 0.0383 2.6472 2.5753 0.0261

OPTICS 3.8063 3.6345 0.0380 2.5679 2.6978 0.0060

Table 5 shows p-values of comparisons (differences) of Tables 1 and 4, where
it is tested if the bagging basic time series analysis forecasting methods improves
forecasting accuracy significantly. On the Irish dataset, now all methods achieved
statistically significant improvement. On the Slovak data, the bagging time series
analysis methods had again failed. We consider that bootstrapping methods for
time series are not appropriate to use when time series shows strong double-
seasonal pattern, trend changing and noisy character.
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Table 5. P-values of testing if bagging three basic time series analysis forecasting
methods improves forecasting accuracy significantly.

Agg.-Irel. Clust.-Irel. Agg.-Slov. Clust.-Slov.

boot. method smo.mbb smo.mbb KM.boot KM.boot

STL+ARIMA 0.0001 0.0004 0.9904 0.7514

STL+EXP 0.0001 <0.0001 0.9997 0.6691

EXP <0.0001 <0.0001 1.0000 0.9503

The last analysis of results are shown in Table 6. The significance of the best
ensemble approach against the best bagged method is shown, so results from
Tables 2 and 4 are analysed. On the Irish data, two times from four cases the
median ensemble method was significantly better than basic bagged method. On
the Slovak data, ensembles were not significantly better nor in one case.

Table 6. P-values from hypothesis if ensemble method is better than forecasting
method with bagging.

Agg.-Irel. Clust.-Irel. Agg.-Slov. Clust.-Slov.

Ctree.dft-Median Ctree.dft-Median Ctree.lag-Average Ctree.lag-Optics

0.0451 0.1563 0.6157 0.8579

smo.mbb smo.mbb KM.boot KM.boot

Ctree.dft-AveMedians STL+EXP-Median EXP-Optics EXP-DBSCAN

0.0989 <0.0001 0.2972 0.9890

6 Conclusion

In our paper we have proposed and tested two techniques for forecasting electric-
ity load. We have compared and implemented various ensemble learning methods
in order to compare its forecasting accuracy using aggregated and clustered elec-
tricity load. Six base forecasting methods combined with four different bagging
(bootstrapping) methods and six unsupervised ensemble approaches, combining
all available forecasts created by bootstrap methods, were evaluated. Two new
methods for bootstrapping time series were proposed in order to handle noisy
and fluctuate time series. One of them was a modification of mbb method that
uses exponential smoothing to the noisy part of a time series. The second one was
clustering-based method that uses K-means and sampling from created clusters.
A new approach based on unsupervised ensemble learning in combination with
clustered load was proposed and evaluated. The clustering of consumers was
performed by efficient preprocessing using estimated regression coefficients as a
representation of time series, K-means method and optimally finding a number
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of clusters by DB-index. We have proven that the bagging of regression trees
significantly improves accuracy on both aggregated and clustered load. On the
other hand, bagging of time series analysis methods can be unreliable, because of
weak adaptivity to noisy and fluctuated data. Our newly proposed bootstrapping
methods improved results of forecasting against mbb method, but still results for
Slovak dataset were not satisfying. Unsupervised ensemble learning approaches
performed better than any other forecasting methods on Irish smart meter data.
However, they failed on Slovak dataset because of instability of bootstrapping
methods on fluctuate and noisy Slovak data.

For this reason we conclude that unsupervised ensemble learning is not suit-
able for every type of aggregated and also clustered load forecasting. However,
the clustering of consumers itself stably improved forecasting accuracy of all
methods. Smart meter data are often noisy and fluctuated. They force us to
develop more robust methods to the detect trend shift (concept drift) and han-
dle the noisy character of data. In future work, we want to focus on ensemble and
clustering methods that are more adaptable for the aforementioned problems.
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2 Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
3 Division of Electronics, Ruder Boskovic Institute, Zagreb, Croatia

4 Faculty of Information Studies, Novo Mesto, Slovenia
5 Center for Genomic Regulation, Barcelona, Spain

Abstract. In this work, we address the task of phenotypic traits pre-
diction using methods for semi-supervised learning. More specifically,
we propose to use supervised and semi-supervised classification trees as
well as supervised and semi-supervised random forests of classification
trees. We consider 114 datasets for different phenotypic traits referring
to 997 microbial species. These datasets present a challenge for the exist-
ing machine learning methods: they are not labelled/annotated entirely
and their distribution is typically imbalanced. We investigate whether
approaching the task of phenotype prediction as a semi-supervised learn-
ing task can yield improved predictive performance. The results suggest
that the semi-supervised methodology considered here is especially help-
ful when using single trees, especially when the amount of labeled data
ranges from 20 to 40%. Similar improvements can be seen when the
presence of the phenotype is very imbalanced.

Keywords: Semi-supervised learning · Phenotype · Decision trees
Predictive clustering trees · Random forests · Binary classification

1 Introduction

The most common task in machine learning is supervised learning, where the
goal is to predict the value of a target attribute of an example by using the
values of descriptive attributes. Supervised methods often need a large amount
of labeled data to learn a predictive model with a satisfying predictive per-
formance. However, in many real-life problems, such as phonetic annotation of
human speech, protein 3D structure prediction, and spam filtering, only a few
labeled examples are available to learn from because of the expensive and/or
time-consuming annotation procedures. Contrary to labeled examples, unlabeled
examples are often freely available in vast amounts. For example, human speech
can be recorded from radio broadcasts, while DNA sequences of proteins can
c© Springer International Publishing AG, part of Springer Nature 2018
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be extracted from gene databases. Semi-supervised learning (SSL) emerged as
an answer to the problem of labeled data scarcity [1], with an idea to exploit
freely/easily available unlabeled examples to get better predictive performance
than the one achieved using labeled data alone.

In this work, we are concerned with the task of microbial phenotype pre-
diction. Phenotypes are defined as variations in observable characteristics of an
organism. Microbial organisms display a large diversity of possible phenotypic
traits, such as ability to inhabit different environments, adaptation to extreme
conditions and association to different hosts. The annotation of organisms with
phenotypes is important for understanding the genetic basis of phenotypes. It
often requires expensive experimental measurements and time-consuming man-
ual curation, hence there is a huge amount of unlabeled organisms. On the
other hand, phenotypes can be efficiently predicted from genome [2–5] and
metagenome data [6].

Thanks to the emergence of DNA sequencing technology, the number of
sequenced genomes is rapidly increasing, making unlabeled data easily available.
This makes the problem of phenotype prediction well suited for semi-supervised
learning. In this work, we explore whether better predictive performance can be
achieved with semi-supervised machine learning methods than with supervised
methods that have been used for this task in [7]1, namely classification trees
and random forests. To the best of our knowledge, this is the first application of
semi-supervised learning for microbial phenotype prediction.

In this work, we compare the predictive performance of supervised and semi-
supervised classification trees and random forests thereof [8] to predict 114 phe-
notypes of 997 microbial organisms. These datasets pose interesting challenges
for existing machine learning methods because the annotations are not complete
and the available datasets are imbalanced. To this end, we investigate whether we
can benefit from using semi-supervised learning under these difficult conditions.
In a nutshell, the results reveal that the semi-supervised classification trees can
improve the predictive performance over supervised classification trees in cases
where the amount of labeled data is in the range 20–40% and for phenotypic
traits that are not extremely rare.

The rest of this paper is organized as follows. Section 2 describes the semi-
supervised methods used in this study, while Sect. 3 describes the data used for
phenotype prediction. Section 4 specifies the experimental design. The results
of the empirical investigations are presented and discussed in Sect. 5. Finally,
Sect. 6 concludes the paper.

2 Methods

In this work, we consider semi-supervised classification trees and semi-supervised
random forests [8], which are based on the predictive clustering trees (PCTs) [9]
and ensembles thereof [10]. PCTs view a decision tree as a hierarchy of clusters,

1 Phenotype predictions from [7] are available at protraits.irb.hr.

http://protraits.irb.hr
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where the top-node corresponds to one cluster containing all the data. This clus-
ter is then recursively partitioned into smaller clusters while moving down the
tree. Semi-supervised PCTs are implemented in the CLUS system [11] (imple-
mentation available at http://kt.ijs.si/jurica levatic/). In this section, we briefly
describe semi-supervised trees and random forests, while for more details we
refer the reader to the work of Levatić et al. [8].

Supervised classification trees evaluate the quality of splits on the basis of
the class labels, by using, for example information gain or gini impurity as a
quality measure. Consequently, the resulting clusters (i.e., groups of examples
defined by splits in the tree) are homogeneous only with respect to the class label.
Semi-supervised PCTs [8], on the other hand, measure the quality of splits con-
sidering both the class labels and descriptive attributes. Therefore, the resulting
clusters are homogeneous with respect to both the descriptive attributes and the
class labels. Note that, only the descriptive attributes are known for unlabeled
examples, thus, such semi-supervised trees can exploit them during the tree
construction - contrary to supervised trees. The rationale behind the described
semi-supervised classification trees is the semi-supervised cluster assumption [1]:
If examples are in the same cluster, then they are likely of the same class.

The semi-supervised PCTs are based on the standard top-down induction of
decision trees (TDIDT) algorithm (see Table 1), which takes as input a set of
examples E and outputs a tree. The heuristic score (h) that is used for selecting
the tests (t) to put in the internal tree nodes is reduction of impurity caused by
partitioning (P, Table 1, line 3 of the BestTest procedure) the examples according
to the tests.

In supervised PCTs, the impurity for each set of examples E is calculated as
the gini impurity (Table 1, line 5 of the BestTest procedure):

Impurity(E) = Gini(E, Y ). (1)

Table 1. The top-down induction algorithm for decision trees construction.

http://kt.ijs.si/jurica_levatic/
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As mentioned before, to identify the best splits, the impurity function of
semi-supervised PCTs takes into account both the target attribute (i.e., the
class labels) and the descriptive attributes. This is achieved by changing the
equation for the calculation of impurity for supervised PCTs (Eq. 1). Impurity
of a set of examples E (which may contain labeled and unlabeled examples) is
calculated as a weighted sum of impurities over the target attribute (Y ) and
impurities over the descriptive attributes (Xi):

ImpuritySSL(E) = w · Impurity(El, Y ) +
1 − w

D
·

D∑

i=1

Impurity(E,Xi), (2)

where E = El ∪ Eu is the dataset available at a node of the tree, D is the number
of descriptive attributes, Xi is the ith descriptive attribute, and w ∈ [0, 1] is a
weight parameter.

The impurity of the target attribute Y is calculated as gini impurity over
a set of labeled examples El. Differently from the target attribute, which is
nominal, the descriptive attributes can be either nominal or numeric, therefore,
the two cases are considered separately: if the attribute is nominal as a measure of
impurity gini impurity is used, whereas, if the attribute is numeric, as a measure
of impurity variance is used.

The weight parameter w in (2) controls how much the target side or the
descriptive side contribute to the calculation of the impurity. Consequently, this
controls how much the unlabeled examples affect the learning of semi-supervised
PCTs. Namely, depending on the values of the w parameter, semi-supervised
PCTs can range from fully supervised trees (i.e., w = 1) to completely unsu-
pervised trees (i.e., w = 0). This aspect is important since unlabeled examples
can sometimes cause semi-supervised algorithms to perform worse than their
supervised counterparts [12–14]. The w parameter acts as a safety mechanism
of semi-supervised PCTs, enabling them to control the influence of unlabeled
examples and adapt to a given dataset.

If no acceptable test is found because some stopping criteria is met (e.g.,
minimum number of examples in the leaf has reached the user predefined value,
the variance reduction is not relevant etc.) then the algorithm places a leaf node
at that position. In each leaf node, the prototype for the examples belonging
to that leaf node is calculated (by using the function Prototype(E) from the
InduceTree procedure in Table 1 at line 10) and stored.

By using semi-supervised PCTs, it is possible to build semi-supervised ran-
dom forests. A random forest [15] is an ensemble of trees, where diversity among
the trees is obtained by making bootstrap replicates of the training set, and addi-
tionally by randomly selecting the subset of descriptive attributes used to evalu-
ate the splits. Random forests often substantially improve the predictive perfor-
mance of single trees, however, the interpretability aspect of trees is lost. Semi-
supervised random forests of PCTs are built by using semi-supervised PCTs as
members of the ensemble, instead of using supervised PCTs. In semi-supervised
random forests, the bootstrap sampling procedure is modified to perform
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stratified bootstrap sampling (considering the proportions of labeled and unla-
beled examples) to avoid having bootstrap samples consisting only of unlabeled
examples.

We next analyze the computational complexity of semi-supervised PCTs.
We first recall the procedures that contribute to the computational complex-
ity of supervised PCTs. These are as follows: sorting the values of D descrip-
tive attributes (O(DN logN)), calculating the best split for T target variables
(O(TDN)), and applying the split to the N (labeled) training examples (O(N)).
Assuming that the depth of the tree is in the order of O(logN) [16], the total
computational complexity of constructing a single PCT is O(DN log2 N) +
O(TDN logN) + O(N logN).

We then consider what changes from supervised PCTs to semi-supervised
PCTs. This is, first, the value of N : In the case of semi-supervised PCTs, the
number of training examples is equal to the number of labeled and unlabeled
examples combined, i.e., N = Nl + Nu, instead of N = Nl. Second, SSL-PCTs
consider both D descriptive attributes and T target variables when the split
is calculated, thus the complexity of this step is O((T + D)DN). The total
computational complexity of learning a single SSL-PCT is thus O(DN log2 N)+
O((T+D)DN logN)+O(N logN). This cost is then linearly extended to random
forests of PCTs similarly as in [10]. Additionally, one should also consider the cost
for obtaining the optimal value for the w parameter, which is usually performed
using an inner cross-validation procedure.

3 Data Description

Prokaryotic genome sequences and gene annotations were downloaded from the
NCBI Genomes database and COG/NOG gene families were downloaded from
eggNOG 3 [17]. In our analysis, we considered species that have a genome qual-
ity score greater or equal to 0.9 (out of 1) [22]. Higher score corresponds to
the higher level of completeness of sequenced genome data, where scores of 0.8
or higher indicate that a genome can be safely used for standard comparative
genomics analysis. Phenotype annotations are NCBI+Bacmap labels as in [7],
collected from the NCBI microbial genome projects list (‘lproks0’ table) and
from the BacMap database [18], in total 114 different phenotypic traits. We
considered only species having at least one assigned phenotype label, resulting
in 997 species. Each example corresponds to one species labeled with a set of
available phenotypic traits. For each species, the labels correspond to presence or
absence of traits, thus, the task of phenotype prediction corresponds to a binary
classification problem.

The labelling is, however, not exhaustive: For most of the phenotypes, only
30% of species are labeled (Fig. 1a). Hence, the dataset at hand contains unla-
beled data, which can be exploited with semi-supervised methods. The class dis-
tribution of most of the phenotypes is unbalanced (Fig. 1b): Many traits appear
at less than 10% of species, e.g. radiation-resistance phenotype and ability to
withstand extremely high (hyperthermophilic organisms) or extremely low tem-
perature (psychrophilic organisms).
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In all experiments, we used the gene repertoire representation [2]. The fea-
tures describing the species were encoded as the presence/absence of the clus-
ters of orthologous (COG) and non-supervised orthologous (NOG) groups of
proteins, resulting in the 80576 binary valued features. In order to reduce the
dimensionality of the feature set we applied principal component analysis (PCA)
as a preprocessing step and retained principal components explaining 90% of the
variance. This resulted in 526 features, i.e., principal components.
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Fig. 1. (a) Histogram of the amount of labeled (relative to unlabeled) examples for
each phenotype. (b) Histogram of the majority class distributions of phenotypes.

4 Experimental Design

We learn a separate model for each phenotype, transforming the problem of
phenotype prediction into 114 binary classification tasks. We then approach these
tasks with two learning paradigms: supervised and semi-supervised learning. In
other words, we learn predictive models in the form of supervised classification
trees (PCTs) and semi-supervised classification trees (SSL-PCTs) as well as
supervised random forests and semi-supervised random forests. Performance was
estimated with 10-fold cross validation procedure. The predictive performance
reported in the results is the average of the performance values obtained from
the 10 folds.

In the experiments, both supervised and semi-supervised trees are pruned
with the procedure used in C4.5 classification trees [19]. The weight parameter
w of semi-supervised algorithms was chosen from the set {0, 0.1, . . . , 0.9, 1} by
using internal 3-fold cross validation on the labeled part of the training set. We
construct random forests consisting of 100 trees. The trees in random forests are
not pruned and the number of random features at each internal node is set to
the square root of the number of features, which in our case amounted to 23.

Next, we compare the performance of semi-supervised PCTs and semi-
supervised random forests to their supervised counterparts. For every pheno-
type, examples with unknown labels were used as unlabeled data for learning
the semi-supervised PCTs and ensembles thereof.
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Furthermore, we investigate the influence of the amount of annotated pheno-
types on the performance of the semi-supervised methods. More specifically, we
analyze the performance of the predictive models across the different percent-
ages of annotated phenotypes. Moreover, we juxtapose this influence with the
influence of the imbalance of the class labels.

We also investigate how the value of the w parameter affects semi-supervised
methods. To do this, we randomly select 4 phenotypes and learn semi-supervised
models (both single PCTs and random forests) to predict them for all w in
{0, 0.1, . . . , 0.9, 1} the resulting performances. Additionally, we analyze the per-
formance of predictive models for different values of the w parameter selected
by the internal cross validation.

Finally, in our evaluation scenario we use truly unlabeled data, and not unla-
beled data that is obtained by removing the labels as it is usually done in most
SSL studies. Therefore, for each phenotype we use all the available unlabeled
data. We have performed an analysis of the influence of the amount of the unla-
belled data in [8]. The study revealed that the advantage of semi-supervised
classification trees over supervised trees is dependant more on the dataset at
hand, rather than on the amount of unlabeled data used, i.e., if the SSL algo-
rithm wins, it is likely to win for different amounts of unlabeled data (on that
dataset).

5 Results and Discussion

5.1 Predictive Performance

The performances of predicting 114 microbial phenotypic traits with super-
vised and semi-supervised trees and random forests are presented in Fig. 2.
Because class distribution was very imbalanced for some phenotypes, we used
F1 score (harmonic mean of precision and recall) in addition to accuracy to
measure the performance. We can observe that for many of the traits, semi-
supervised algorithms outperform their supervised counterparts, suggesting that
semi-supervised methods can successfully exploit unlabeled data and more accu-
rately predict microbial phenotypes. The advantage of semi-supervised meth-
ods is, however, not observed for all phenotypes. This is expected, since sev-
eral researchers found that the success of semi-supervised methods is, in gen-
eral, dataset dependent [20]. In other words, it cannot be expected that semi-
supervised methods will win against supervised ones for all cases. Furthermore,
several researchers have found that semi-supervised learning may sometimes per-
form worse than supervised learning [12–14]. The numbers of wins, ties and losses
of semi-supervised algorithms compared to their supervised counterparts in accu-
racy and F1 score can be seen in Table 2. Ties were results where the difference
in performance was smaller than 0.01.

Our results also suggest that improving (with unlabeled data) a supervised
random forest is a harder task than improving over a supervised tree: The num-
ber of wins of semi-supervised random forests is lower than the number of wins
of semi-supervised PCTs. This observation complies with previous findings [8].
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Fig. 2. Each dot represents the performance on one phenotype of supervised and semi-
supervised methods. Values above the diagonal (dashed line) denote that the semi-
supervised algorithm performed better. Darker color means greater density of dots.
(Color figure online)

Table 2. Numbers of wins, ties and losses of semi-supervised algorithms compared to
their supervised counterparts.

PCT:Acc PCT:F1 RForest:Acc RForest:F1

Wins 62 50 3 16

Ties 44 15 91 58

Losses 8 49 20 40

We consider that this is due to the fact that ensembles are very powerful pre-
dictive models, which are able to exploit all the information in a given (labeled)
dataset and approach the learnability borders of a given domain closer than a
single predictive model. Thus, arguably, random forests do not benefit so much
from additional information that unlabeled data bring, as compared to single
trees.

We further analyze the results with the goal to identify phenotypes that
are suitable for prediction with semi-supervised methods. The amount of avail-
able labeled data (relative to unlabeled) is an important factor for the perfor-
mance of semi-supervised methods [8]. We therefore analyze the results from
that aspect (Fig. 3). We can observe that semi-supervised single trees perform
better with smaller amounts of labeled data according to accuracy and F1 score,
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Fig. 3. The numbers of wins, ties and losses of semi-supervised PCTs and random
forests versus their supervised counterparts, achieved for phenotypes with different
amounts of labeled examples.

while supervised single trees have better F1 scores on phenotypes with a lot of
labeled examples (over 80%). Supervised and semi-supervised Random forests
are mostly tied, especially in terms of accuracy, however losses are more common
than wins.

Recall that many of the phenotypes have very unbalanced classes (Fig. 1b).
We next analyze whether the imbalance of the classes affects the performance
of semi-supervised methods (Fig. 4). Interestingly, we can see that the semi-
supervised methods achieve most wins in F1 score on phenotypes with the high-
est class imbalance. This holds for both single trees, where losses are more com-
mon than wins when the proportion of the majority class is less than 95%, and
random forests, where the number of wins on the most imbalanced targets is
almost the same as the number of losses, even though losses are far more com-
mon overall. Less surprisingly, we can also see that the vast majority of ties
comes from phenotypes with the highest class imbalance.

5.2 Influence of the w Parameter

Figure 5 shows the accuracy of semi-supervised methods with different values
of the w parameter for 4 randomly selected targets (phenotypes). We can see
that in some cases its influence is minimal (e.g., random forests on target 2) but
more often we need to select the right value for w to improve the performance
over supervised methods. The best performance is achieved with different values
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Fig. 4. The numbers of wins, ties and losses of semi-supervised PCTs and random
forests versus their supervised counterparts, achieved for phenotypes with different
proportion of the majority class.

Fig. 5. The performance of semi-supervised methods for various values of w for 4
random phenotypes. The dashed lines represents the performance of supervised PCTs
while the dotted line shows the performance of supervised random forests.
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of the parameter, indicating that it should be tuned for every dataset. This is
consistent with previous results on this topic [8] and the reason why we used
internal cross validation to select it.

We also look at the numbers of wins, ties and losses according to the w
selected (Fig. 6). Because the performance was measured with 10-fold cross vali-
dation and a different w was selected for each fold, we here compare the perfor-
mances on each fold and not aggregated as before.

First, we note that for single trees w = 0 and w = 1 were the most common
selections. Interestingly, when w = 0 is selected, accuracy is improved in most
cases while the F1 score is close to even. Ties are most common for w = 1, which
is to be expected. For random forests w = 1 is selected almost always, which
contributes to the high number of ties in performance observed in the results
previously.

Fig. 6. Numbers of wins, ties and losses for different values of the w parameter selected
by the internal cross validation.

6 Conclusions

In this work, we approach the task of phenotypic traits prediction using methods
for semi-supervised learning. This task is important to understand the genetic
basis for appearance of specific phenotypes. More specifically, we consider 114
datasets with different phenotypic traits referring to 997 microbial species. The
datasets are not completely labelled and different amount of annotation is avail-
able for the different traits.

We investigate whether approaching the task of phenotype prediction as
a semi-supervised learning task can yield improved predictive performance.
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More specifically, we learn supervised and semi-supervised classification trees
as well as supervised and semi-supervised random forests of classification trees.
We then compare the performance of predictive models learned using supervised
and semi-supervised methods.

The result suggest that the semi-supervised methodology considered here
improves the accuracy of single trees and also their F1 score when the amount
of labeled data ranges from 20 to 40%. Similar improvement can be seen when
the presence of a phenotype is very imbalanced (proportion of the majority class
over 95%). Improvement of random forests was rarer but also more common on
previously mentioned groups of phenotypes. In applications where interpretable
models are needed, semi-supervised classification trees should be favored over
the supervised classification trees. We also showed that the performance of semi-
supervised methods is sensitive to the value of the w parameter and that it should
be tuned to each dataset.

We plan to further extend this work along several dimensions. To begin
with, we plan to use phenotypes from other sources, specifically phenotypes from
GOLD database [21] and especially biochemical phenotypes from [7] where the
labeled examples are extremely scarce. Furthermore, we plan to consider other
feature spaces, namely the proteome composition, gene neighborhoods and trans-
lation efficiency representations [7]. Next, we will compare the approaches pre-
sented here with other methods used for phenotype prediction including, but not
limited to, SVMs and semi-supervised SVMs. Note that, considering the number
of datasets considered here, such experiments will require massive computational
power. Finally, we can treat the problem as a multi-label classification problem
and obtain a partially labelled dataset that can be then approached from this
perspective.
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10. Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Tree ensembles for predicting struc-
tured outputs. Pattern Recogn. 46(3), 817–833 (2013)

11. Blockeel, H., Struyf, J.: Efficient algorithms for decision tree cross-validation. J.
Mach. Learn. Res. 3, 621–650 (2002)

12. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text classification from
labeled and unlabeled documents using EM. Mach. Learn. 39(2–3), 103–134 (2000)

13. Cozman, F., Cohen, I., Cirelo, M.: Unlabeled data can degrade classification per-
formance of generative classifiers. In: Proceedings of the 15th International Florida
Artificial Intelligence Research Society Conference, pp. 327–331 (2002)

14. Guo, Y., Niu, X., Zhang, H.: An extensive empirical study on semi-supervised
learning. In: Proceedings of the 10th International Conference on Data Mining,
pp. 186–195 (2010)

15. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
16. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques. Morgan Kaufmann, Cambridge (2005)
17. Powell, S., Szklarczyk, D., Trachana, K., Roth, A., Kuhn, M., Muller, J., Arnold,

R., Rattei, T., Letunic, I., Doerks, T., Jensen, L.J., von Mering, C., Bork, P.:
eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxo-
nomic ranges. Nucleic Acids Res. 40(D1), D284 (2012)

18. Stothard, P., Van Domselaar, G., Shrivastava, S., Guo, A., O’Neill, B., Cruz, J.,
Ellison, M., Wishart, D.S.: BacMap: an interactive picture atlas of annotated bac-
terial genomes. Nucleic Acids Res. 33(suppl. 1), D317–D320 (2005)

19. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers Inc., San Francisco (1993)

20. Chawla, N., Karakoulas, G.: Learning from labeled and unlabeled data: an empir-
ical study across techniques and domains. J. Artif. Intell. Res. 23(1), 331–366
(2005)

21. Reddy, T., Thomas, A.D., Stamatis, D., Bertsch, J., Isbandi, M., Jansson, J.,
Mallajosyula, J., Pagani, I., Lobos, E.A., Kyrpides, N.C.: The genomes online
database (GOLD) v.5: a metadata management system based on a four level
(meta)genome project classification. Nucleic Acids Res. 43(D1), D1099 (2015)

22. Land, M.L., Hyatt, D., Jun, S.R., Kora, G.H., Hauser, L.J., Lukjancenko, O.,
Ussery, D.W.: Quality scores for 32,000 genomes. Stand. genomic sci. 9(1), 20
(2014)



Structuring the Output Space
in Multi-label Classification
by Using Feature Ranking

Stevanche Nikoloski2,3(B), Dragi Kocev1,2, and Sašo Džeroski1,2
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Ljubljana, Slovenia

{dragi.kocev,saso.dzeroski}@ijs.si
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Abstract. Motivated by the increasing interest for the task of multi-
label classification (MLC) in recent years, in this study we investigate
a new approach for decomposition of the output space with the goal
to improve the predictive performance. Namely, the structuring of the
output/label space is performed by constructing a label hierarchy and
then approaching the MLC task as a task of hierarchical multi-label
classification (HMLC). Our approach is as follows. We first perform fea-
ture ranking for each of the labels separately and then represent each
of the labels with its corresponding feature ranking. The construction of
the hierarchy is performed by the (hierarchical) clustering of the feature
rankings. To this end, we employ four clustering methods: agglomerative
clustering with single linkage, agglomerative clustering with complete
linkage, balanced k-means and predictive clustering trees. We then use
predictive clustering trees to estimate the influence of the constructed
hierarchies, i.e., we compare the predictive performance of models with-
out exploiting the hierarchy and models using hierarchies constructed
using label co-occurrences or per label feature rankings. Moreover, we
investigate the influence of the hierarchy in the context of single models
and ensembles of models. We evaluate the proposed approach across 8
datasets. The results show that the proposed method can yield predictive
performance boost across several evaluation measures.

Keywords: Multi-label classification · Hierarchy construction
Feature ranking · Structuring of the label space

1 Introduction

Nowadays, the number of new applications of multi-label learning is steadily
increasing, hence, the researchers are very interested to develop novel meth-
ods and new ideas related to multi-label classification and structuring of the
c© Springer International Publishing AG, part of Springer Nature 2018
A. Appice et al. (Eds.): NFMCP 2017, LNAI 10785, pp. 151–166, 2018.
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label/output space. Multi-label classification (MLC) is the task of learning from
data examples where each example can be associated with multiple labels. MLC
deals with a label dependencies and relations which is orthogonal with existing
traditional methods which take into account label independence and learn inde-
pendent functions from mapping from input space to the output (label) space.
The different application problems include video and image annotations (new
movie clips, genres), predicting genes and proteins (functional genomics), clas-
sification of a tweets and music into emotions, text classification (web-pages,
bookmarks, e-mails,...) and others.

The MLC task is typically approached either by decomposing the MLC prob-
lem into multiple single class classification problems (i.e., problem transforma-
tion methods) or by modifying the algorithms to consider the multiple classes
jointly (i.e., algorithm adaptation methods) [12]. In an extensive experimental
study Madjarov et al. [7] show that the landscape of MLC methods is not sim-
ple: on some datasets problem transformation methods achieve top performance
while on other datasets the algorithm adaptation methods are top performing.
Furthermore, the study recommends the use of two algorithms for benchmarking:
RF-PCT (Random forests of predictive clustering trees, an algorithm adapta-
tion method) [5] and HOMER (Hierarchy Of Multi-label learnERs, a problem
transformation method) [13]. The latter divides the label space into subspaces
and then constructs classifiers for each of the subspace (e.g., label power set
classifiers). This hints that the best performance might be obtained in between
the spectrum of the algorithm adaptation and problem transformation methods.
In other words, state-of-the-art MLC performance might be obtained by trans-
forming the original MLC problem into several MLC problems and then learn
predictive models (preferably using algorithm adaptation methods).

A crucial step in developing methods for output decomposition for MLC is
the creation of the subspaces. More specifically, the goal is to find a dependency
structure and consider jointly the labels that are inter-dependent. The construc-
tion of the output structure of the labels can be very tedious and expensive
process, especially if domain experts are needed to complete the task. Moreover,
selection of the representation language of the dependencies can be complicated
task on its own. Typically, these dependencies are represented as hierarchies of
labels [6]. The hierarchies can then be constructed in a data-driven manner using
the descriptive space and/or the label space. This presents automatic and rela-
tively efficient process to obtain the representation of the potential dependencies
in the label space.

Madjarov et al. [6] present an extensive study of different data-driven meth-
ods for constructing label hierarchies for multi-label classification by using the
label co-occurence matrix. More precisely, the hierarchies are constructed using
four clustering algorithms, agglomerative clustering with single and complete
linkage, balanced k-means and predictive clustering trees applied on the label
co-occurrences (see Fig. 1, left table).

Next, Szymansky et al. [11] address the question whether data-driven app-
roach using label co-occurrence graph is significantly better than a random choice
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in label space division for multi-label classification as performed by RAkELd.
Their results show that in almost all cases data-driven partitioning outperforms
the baseline RAkELd in all evaluation measures, but Hamming loss.

In this study, we build upon the idea of decomposition of the output space
and we present a different approach for data-driven structuring of label space in
multi-label classification. Our approach constructs the label hierarchy by clus-
tering the per label feature rankings. Namely, instead of using the original label
space consisting of label co-occurrences (see Fig. 1, left table), we calculate a
feature importance/ranking scores of the features for each label by using the
GENIE3 method for feature importance calculation coupled with the random
forest ensemble learning method [1,3] (see Fig. 1, right table).

The obtained structure is then used as the label hierarchy and the MLC task
is addressed as hierarchical multi-label classification (HMLC) [5,15]. We thus
evaluate whether considering the dependency in the label space can provide
better predictive performance than addressing MLC as a flat problem. In other
words, we investigate whether considering the MLC task as a hierarchical MLC
task can yield better predictive performance. Our approach is illustrated through
the example in Fig. 1. The table on the left hand-side shows the construction of
the label hierarchy using the label co-occurrence (as performed in [6,11]), while
the table on the right hand-side shows our proposed method for constructing
the label hierarchy.

BH_LowPeakAmp BH_LowPeakBPM BH_HighPeakAmp … λ1 λ2 λ3 λ4 λ5 λ6
FRank 
λ1 

FRank 
λ2

FRank 
λ3

FRank 
λ4

FRank 
λ5

FRank 
λ6

#1 0.036299 -58.962537 4.698083 … 1 0 0 0 0 0 BH_LowPeakAmp 1.369 12.63 22.68 14.06 5.563 1.328
#2 0.161218 -77.425609 3.09809 … 0 0 1 0 1 1 BH_LowPeakBPM 1.588 11.89 26.35 9.177 5.566 0.674
#3 0.115987 -61.893693 4.478436 … 1 1 1 1 0 0 BH_HighPeakAmp 1.433 11.08 44 8.951 19.03 1.479
#4 0.086016 -83.295694 3.786274 … 1 0 1 0 1 1 BH_HighPeakBPM 1.741 7.836 8.206 10.06 8.61 0.561
#5 0.063232 -76.108186 5.911183 … 0 1 0 1 1 1 BH_HighLowRa o 2.169 7.267 6.914 9.166 12.16 0.017
#6 0.026461 -74.429498 3.046795 … 0 0 1 0 1 1 BHSUM1 2.246 5.541 5.494 11.19 14.31 1.058
… … … … … … … … … … … … … … … … … …

Structured label/output spaceInput space
Output space of label co-

occurrences

Fig. 1. Excerpt from the original emotions dataset showing the output space consists
of label co-occurrences (left table) and the space consists of ranks of the features for
each of the labels, separately (right table). The former is obtained with structuring the
original label set using feature ranking.

We perform an experimental evaluation using 8 benchmark datasets from
different domains: text, image, music and video classification, and gene function
prediction. The predictive performance of the methods is assessed using 13 dif-
ferent evaluation measures used in the context of MLC (6 threshold dependent
and 7 threshold independent).

The obtained results indicate that using the methods for creating the hier-
archies using feature ranking can yield a better predictive performance as com-
pared to the original flat MLC methods without the hierarchy. Moreover, using
the hierarchy constructed by structuring of the output space using the feature
rankings of the labels gives better predictive performance compared to using the
hierarchy obtained using the label co-occurrences.
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The reminder of this paper is organized as follows. Section 2 presents the
background work, i.e., discussion on the tasks of multi-label classification and
hierarchical multi-label classification methods. Then, in Sect. 3, we present the
structuring of the output space using feature ranking. In Sect. 4, we show the
experimental design. The results obtained from the experiments are presented
and discussed in Sect. 5. Finally, Sect. 6 concludes this paper.

2 Background

In this section, we first define the task of multi-label classification and then
the task of hierarchical multi-label classification. Multi-label learning considers
learning from examples which are associated to more than one label coming from
a predefined set of labels containing all possible labels. There are two types of
multi-label learning tasks: multi-label classification and multi-label ranking. The
main goal of multi-label classification is to create a predictive model that will
output a set of relevant labels for a given, previously unseen example. Multi-label
ranking, on the other hand, can be understood as learning a model that, for each
unseen examples, associates a list of rankings (preferences) on the labels from a
given set of possible labels and a bipartite partition of this set into relevant and
irrelevant labels. An extensive bibliography of methods for multi-label learning
can be found in [7,14] and the references therein.

The task of multi-label learning can be defined as follows [5]. The input
space X consists of vectors of values of nominal or numeric data types i.e.,
∀xi ∈ X , xi = (xi1, xi2, . . . xiD), where D is a number of descriptive attributes.
The output space Y consists of a subset of a finite set of disjoint labels L =
{λ1, λ2, . . . , λQ} (Q > 1 and Y ⊆ L). Given this, each example is a pair of
a vector and a set from the input and output space, respectively. All of the
examples then form the set of examples (i.e., the dataset) E. The goal is then
to find a function h : X → 2L such that from the input space assigns a set of
labels to each example.

The main difference between multi-label classification and hierarchical multi-
label classification (HMLC) is that in the latter the labels from the label space
are organized into a hierarchy. A given example labeled with a given label it
is also labeled with all its parent labels (known as the hierarchy constraint).
Furthermore, an example can be labeled with multiple labels, simultaneously.
That means a several paths can be followed from the root node in order to
arrive at a given label.

Here, the output space Y is defined with a label hierarchy (L,≤h), where L is
a set of labels and ≤h is a partial order parent-child relationship structured as a
tree (∀λ1, λ2 ∈ L : λ1 ≤h λ2 if and only if λ1 is a parent of λ2) [5]. Each example
from the set of examples E is a pair of a vector and a set from the input and
output space respectively, where the set satisfies the hierarchy constraint, i.e.,
E = {(xi,Yi)|xi ∈ X ,Y ⊆ L, λ ∈ Yi ⇒ ∀λ′ ≤h λ : λ′ ∈ Yi, 1 ≤ i ≤ N}, where
N is a number of examples in E. Same conditions as in multi-label classification
should be satisfied for the quality criterion q (high predictive performance and
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low computational cost). In [9], an extensive bibliography is given, where the
HMLC task is presented across different application domains.

3 Structuring of Label Spaces Using Feature Ranking

In this section, we explain our method for structuring the label space using
feature ranking and we describe the different clustering algorithms used in this
work. Our proposed method for label space structuring is outlined in procedure
StructuringLabelSpaceFR in Table 1. First, we take the original training dataset
Dtrain and using random forest method with GENIE3 feature importance, we
create feature rankings for each label separately. We then construct a dataset
Dranks consisting of the feature rankings. Next, we obtain a hierarchy using one
of the clustering algorithms described bellow. The hierarchy is then used to pre-
process the datasets and obtain their hierarchical variants Dtrain

H and Dtest
H . At

the end, we learn the HMLC predictive models.

Table 1. The algorithm for structuring the label space using feature rankings per label.

In our approach, described in a procedure StructuringLabelSpaceFR
(Table 1), we can see that additional step, compare to the algorithm given by
Madjarov et al. [6], is the function CreateFimp at line 4, which increases the
theoretical complexity of the procedure. According to the dimensionality of the
space which is going to be clustered using the function Clustering at line 5, one
dimension in the space consists of label co-occurrences is the number of examples
(instances) which means that in case of more complex datasets with large num-
ber of examples, the clustering procedure will take more of the time in order to
create a hierarchy. From the other side, the procedure of creating the hierarchy
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using feature rankings has a dimension which depends of the feature space cardi-
nality. Typically, the feature space cardinality is much smaller than the number
of examples. It means that clustering of the rankings will finish faster than clus-
tering of the label co-occurrences for datasets with large number of examples but
small number of features, which is a case in most of the benchmarks datasets
available. Consequently, although we have additional function in our procedure
of structuring of the output space, for more complex datasets with high number
of examples and smaller number of features, the clustering procedure, i.e., the
hierarchy creation will be completed in a reasonable time, thus compensating
for obtaining the feature rankings.

We next describe the procedures for obtaining the feature rankings. Random
forests as ensemble method for predictive modeling are originally proposed by
Breiman [1]. The empirical analysis of their use as feature ranking methods has
been studied by Verikas et al. [16]. The random forests are constructed by first
performing bootstrap sampling on the data and then building a decision tree for
each bootstrap sample. The decision trees are constructed by taking the best
split at each level, from a randomly selected feature subset.

Huynh-Thu et al. [3] propose to use the reduction of the variance in the
output space at each test node in the tree (the resulting algorithm is named
GENIE3). Namely, the variables that reduce the variance of the output more
are, consequently, more important than the ones that reduce the variance less.
Hence, for each descriptive variable we measure the reduction of variance it
produces when selected as splitting variable. If a variable is never selected as
splitting variable then its importance will be 0.

The GENIE3 algorithm has been heavily evaluated for single-target regres-
sion tasks (e.g., for gene regulatory network reconstruction). The basic idea
adopted for future ranking is the same of that proposed in GENIE3, but we
use random forest of predictive clustering trees (PCTs) for building the ensem-
ble. The result is a feature ranking algorithm that works for different types of
structure output prediction tasks (including MLC and HMLC).

Furthermore, we discuss the different clustering methods used to obtain the
hierarchies of the labels. For achieving a good performance of the HMLC meth-
ods, it is critical to generate label hierarchies that more closely capture the
relations among the labels. The only constraint when building the hierarchy is
that we should take care about the leaves of the label hierarchies. They need to
define the original MLC task. In particular, the labels from the original MLC
problem represent the leaves of the label hierarchy, while the labels in inter-
nal nodes of the tree are so-called meta-labels. Meta-labels model the potential
relations among the original labels.

For obtaining the hierarchies, we use four different clustering methods (two
agglomerative and two divisive):

– agglomerative clustering with single linkage;
– agglomerative clustering with complete linkage;
– balanced k-means clustering (divisive) and
– predictive clustering trees (divisive).
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Agglomerative clustering algorithms consider each example as separate clus-
ter at the beginning and then iteratively merge pairs of clusters based on their
distance metric (linkage). If we use the maximal distance of two examples from
the clusters C1 and C2, then this type of agglomerative clustering is using com-
plete linkage, i.e., max{dist(c1, c2) : c1 ∈ C1, c2 ∈ C2}. If we use the minimal
distance between two clusters, then the agglomerative clustering approach is
with single linkage i.e., min{dist(c1, c2) : c1 ∈ C1, c2 ∈ C2}.

Balanced k-means is top-down approach for clustering. First, all labels from
the label space L are in one common cluster at the top node of the hierarchy.
Then, the procedure consecutively divides (splits) this cluster into k disjoint
sub-clusters (k < |Ln|) using k-means clustering. The division also is concerned
with the number of examples in each cluster: the algorithm outputs clusters with
approximately equal size [13]. The procedure recursively is repeated on each sub-
cluster (meta-label) until we have n different clusters consisting of one label from
the label space L. In other words, our label space L is covered by leaves of the
hierarchy obtained by the balanced k-means clustering approach.

We also use predictive clustering trees to construct the label hierarchies. More
specifically, the setting from the predictive clustering framework used in this work
is based on treating the target space as descriptive space, i.e., the target space is
also a descriptive space. Descriptive/target variables are used to provide descrip-
tions for the obtained clusters. Here, the focus is using predictive clustering frame-
work on the task of clustering instead of predictive modelling [2,4]. The obtained
hierarchies using agglomerative clustering (single and complete linkage) and using
predictive clustering trees for emotions dataset are shown in Fig. 2.

We next present the predictive clustering trees (PCTs) - the modelling frame-
work we used throughout this work. PCTs are a generalization of decision trees
towards the tasks of predicting structured outputs, including both MLC and
HMLC. In order to apply PCTs to the task of HMLC, Vens et al. [15] define the
variance and the prototype as follows. First, the set of labels for each example
is represented as a vector of binary components. If the example belongs to the
class ci then the i’th component of the vector is 1 and 0, otherwise. The variance
of a set of examples E is thus defined as follows:

V ar(E) =
1

|E| ·
|E|∑

i=1

dist(Γi, Γ )2 (1)

where Γ = 1
|E| · ∑|E|

i=1 Γi.
In other words, the variance V ar(E) in (1) represents the average squared

distance between each example’s class vector (Γi) and the mean class vector of
the set (Γ ). When we talk about HMC, then the similarity at higher levels of the
hierarchy are more important than the similarity at lower levels. This is reflected
with the distance term used in (1), which is weighted Euclidean distance:

dist(Γ1, Γ2) =

√√√√
|Γ |∑

s=1

θ(cs) · (Γ1,s − Γ2,s)2
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Fig. 2. Hierarchies obtained using agglomerative single (top-left), agglomerative com-
plete (top-right), balanced K-means clustering (bottom - left) and PCTs (bottom -
right) clustering methods for emotions dataset.

where Γi,s is the s’th component of the class vector Γi of the instance Ei, |Γ |
is the size of the class vector, and the class weights θ(c) = θ0· avgj{θ(pj(c))},
where pj(c) is j’th parent of the class c and 0 < θ0 < 1. The class weights θ(c)
decrease with the depth of the class in the hierarchy thus making the differences
in the lower parts of the hierarchy less influential to the overall score.

Random forests of PCTs for HMLC are considered in the same way as the
random forest of PCTs for MLC. In the case of HMLC, the ensemble is a set
of PCTs for HMLC. A new example is classified by taking a majority vote
from the combined predictions of the member classifiers. The prediction of the
random forest ensemble of PCTs for HMLC follows the hierarchy constraint (if
the example is labeled with a given label then is automatically labeled with all
its ancestor-labels).

4 Experimental Design

The aim of our study is to address the following questions:

(i) Whether feature ranking on the label (output) space in the MLC task can
be used to construct good label hierarchies?
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(ii) Which clustering method yields better hierarchy?
(iii) How this scales from single model to ensemble of models?
(iv) Can we achieve better predictive models with using a hierarchies obtained

by structuring the feature ranking or co-occurrences space?

In order to answer the above questions, we use eight multi-label classification
benchmark problems from different domains. We have 3 datasets from text clas-
sification, 4 datasets from multimedia, includes movie clips and genres classifica-
tion and 1 dataset from biology. All datasets are predefined by other researchers
(typically the data owners) and divided into train and test subsets. The basic
information and statistics about these datasets are given in Table 2.

Table 2. Statistics of used benchmark tasks in terms of application domain (domain),
number of training examples (#tr.e), testing examples (#t.e), number of descriptors
(D), total number of labels (L) and number of labels per example.

Dataset Domain #tr.e #t.e D L lc

emotions multimedia 391 202 72 6 1.87

scene multimedia 1211 1159 294 6 1.07

yeast biology 1500 917 103 14 4.24

tmc2007 text 21519 7077 500 22 2.16

medical text 645 333 1449 45 1.25

enron text 1123 579 1001 53 3.38

mediamill multimedia 30993 12914 120 101 4.38

corel5k multimedia 4500 500 499 374 3.52

In our experiments, we use 13 different evaluation measures, as presented in
[7,14]. These are divided into two groups: 6 threshold dependent/example based
measures (hamming loss, accuracy, precision, recall, F1 score) and 7 threshold
independent measures out of which three ranking-based (one-error, coverage and
ranking-loss) and four areas under ROC and PRC curves (AUROC, AUPRC,
wAUPRC and pooledAUPRC ). The threshold independent measures are typi-
cally used in HMLC and they do not require a (pre)selection of thresholds and
calculating a prediction [15]. All of the above measures offer different viewpoints
on the results from the experimental evaluation.

Hamming loss is an example-based evaluation measure that evaluate how
many times a pair of example and its label are misclassified. One-error is a
ranking-based evaluation measure that evaluates how many times the top-ranked
label does not exist in a set of relevant labels of the example. Coverage evaluates
how far, on average, we need to go down the list of label ranks in order to cover
all relevant labels of given example. Ranking loss evaluates the average fraction
of the label pairs that are reversely ordered for the given example. Precision and
recall are very important measures defined for binary classification tasks with
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classes of positive and negative examples. Precision is a proportion of positive
prediction that are correct, and recall is the proportion of positive examples that
correctly predicted as positive. F1 score is the harmonic mean between precision
and recall. Accuracy for each instance is defined as the proportion of correctly
predicted labels over total number of labels for that instance. Overall accuracy
is the average across all instances. A precision-recall curve (PR curve) is a curve
that represent the precision as a function of its recall. AUPRC (area under
the PR curve) is the area between the PR curve and the recall axis. wAUPRC
evaluates the weighted average of the areas under the individual (per class)
PR-curves. If choosing some threshold, we transform the multi-label problem
into binary problems with considering binary classifier as a couple (instance,
class) and predicting whether that instance belongs to that class, we can obtain
PR curves that differ depend of the varying the threshold. The area under the
average PR curve (from all different threshold curves) is called pooledAUPRC.
From the other side, if we consider the space of true positive rates (sensitivity)
versus false positive rates (fall-out) then the curve considers the sensitivity as a
function of the fall-out is called ROC-curve. The are under this ROC-curve is
the evaluation measure called AUROC.

The majority of our experiments are performed using the CLUS software
package (https://sourceforge.net/projects/clus/), which implements the predic-
tive clustering framework, including PCTs, random forests of PCTs and feature
ranking [5,10]. A hierarchical tree defined by the used clustering methods in
HMLC setting are defined as tree shaped hierarchies. We use the same values
for k in balanced k-means clustering algorithm, as suggested in [7].

For obtaining a hierarchy using the agglomerative clustering method
we use the R software package (function agnes() from the cluster pack-
age. For more info, see https://stat.ethz.ch/R-manual/R-devel/library/cluster/
html/agnes.html). We use the MATLAB software package to create hierar-
chies with balanced k-means clustering which is based on Hungarian (Munkres’)
assignment algorithm to assign the examples to the clusters [8]. We use Euclidean
distance metric in all our algorithms that require distance. Moreover, for random
forest for feature ranking we use GENIE3 as a feature importance method based
on variable selection with ensembles of PCTs [3].

In order to make a comparative analysis with the results obtained by the
study by Madjarov et al. [6], we repeated their experiments on the same exper-
imental setting with the experiments we perform for feature ranking.

5 Results

In this section, we present the obtained results from the experiments we per-
formed using our novel proposed method for structuring the output space. In
our study, as an output space, we consider the space consisting of label co-
occurrences (as presented by Madjarov et al. [6]) and the space consisting of
feature ranks for each label, respectively. We compare the following methods for
hierarchy construction:

https://sourceforge.net/projects/clus/
https://stat.ethz.ch/R-manual/R-devel/library/cluster/html/agnes.html
https://stat.ethz.ch/R-manual/R-devel/library/cluster/html/agnes.html
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– flat MLC problem without considering a hierarchy in the label space
(FlatMLC );

– agglomerative clustering with single linkage (AggSingle);
– agglomerative clustering with complete linkage (AggComplete)
– balanced k-means clustering (BKmeans)
– clustering using predictive clustering trees (ClusPCTs).

Since we have two different models (single PCTs model and random forest
of PCTs) and two different structured output spaces, we show separately the
results for single PCTs (Fig. 3) and random forest of PCTs (Fig. 4). In order to
distinguish between using either single tree or random forest of PCTs and differ-
ent methods of structuring the output space (label co-occurrences and feature
rankings), we use prefixes (PCT- and RF-) and suffixes (-CO and -FR) before
and after the hierarchy construction method name, respectively. For example,
RF-AggComplete-CO refers to the agglomerative clustering method with com-
plete linkage of the output space of label co-occurrences using random forest
of PCTs for model creation. Then, PCT-ClusPCTs-FR refers to the clustering
method with PCTs of the output space consists of feature rankings per label
using single PCTs for model creation, etc.

Observing the results obtained using single PCTs (Fig. 3), we can note that
there is no clear winner across all evaluation measures and datasets. In the case
of threshold independent measures, such as AUPRC, AUROC, wAUPRC and
pooledAUPRC, we can see that hierarchies created using clustering of the out-
put space consisting of feature rankings perform the best for enron, emotions,
mediamill and yeast datasets. Considering the scene and corel5k datasets, we
can observe that they perform the best according to AUROC, AUPRC and
pooledAUPRC, but not for wAUPRC. PCT-BKmeans-FR outperforms the other
algorithms for hierarchy creation in the emotions dataset according to the most
of the evaluation measures but not according to one-error. Moreover, the hier-
archies created clustering the feature rankings outperform the other algorithms
considering the ML performance measures (ML F1 measure, ML accuracy, ML
precision and ML recall) in 5 out of the 8 datasets.

Generally, structuring the output space consisting of feature rankings for
each label yields better predictive performance compared to the structuring the
output space consisting of label co-occurrences considering most of the evaluation
measures in almost all datasets. For the corel5k dataset only, we can see that
both have similar performance. If we consider medical and tmc2007 datasets, we
can see that structuring the output space does not improve the performance as
compared to the flat MLC task, where there is no hierarchy considered. All in
all, we can conclude that using the hierarchies, the predictive performance can
be improved.

The results obtained when random forests are used as predictive models are
given in Fig. 4. These results present a different situation as compared to the
results obtained when single PCTs are used as predictive models. First of all,
the predictive performance is improved as compared to the single PCTs for
large majority of the cases. Most notably, the performance for the threshold
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PCT-ClusterPCTs-CO 0.072 0.588 40.473 0.374 0.476 0.487 0.517 0.396 0.108 0.142 0.594 0.366 0.424
EMOTIONS

PCT-FlatMLC 0.292 0.669 4.431 0.460 0.541 0.550 0.582 0.450 0.335 0.516 0.680 0.509 0.524
PCT-AggSingle-FR 0.304 0.666 4.569 0.421 0.502 0.514 0.549 0.490 0.317 0.487 0.661 0.480 0.503

PCT-AggComplete-FR 0.296 0.672 4.574 0.442 0.528 0.551 0.559 0.470 0.314 0.507 0.679 0.508 0.517
PCT-BKmeans-FR 0.266 0.717 4.173 0.507 0.589 0.597 0.634 0.401 0.265 0.552 0.714 0.558 0.563

PCT-ClusterPCTs-FR 0.292 0.702 4.569 0.438 0.529 0.554 0.564 0.386 0.291 0.505 0.670 0.509 0.517
PCT-AggSingle-CO 0.307 0.670 4.460 0.439 0.525 0.528 0.576 0.450 0.345 0.496 0.664 0.495 0.510

PCT-AggComplete-CO 0.307 0.670 4.460 0.439 0.525 0.528 0.576 0.450 0.345 0.496 0.664 0.495 0.510
PCT-BKmeans-CO 0.312 0.640 4.698 0.414 0.507 0.541 0.535 0.485 0.357 0.496 0.653 0.491 0.505

PCT-ClusterPCTs-CO 0.297 0.681 4.639 0.440 0.516 0.535 0.535 0.446 0.323 0.489 0.664 0.491 0.502
MEDICAL

PCT-FlatMLC 0.014 0.795 11.447 0.724 0.766 0.759 0.809 0.204 0.104 0.321 0.686 0.672 0.702
PCT-AggSingle-FR 0.015 0.794 12.874 0.706 0.741 0.742 0.771 0.216 0.082 0.320 0.685 0.646 0.682

PCT-AggComplete-FR 0.015 0.785 12.207 0.721 0.759 0.758 0.791 0.222 0.115 0.325 0.690 0.665 0.692
PCT-BKmeans-FR 0.015 0.771 12.616 0.710 0.750 0.751 0.786 0.219 0.125 0.320 0.689 0.648 0.687

PCT-ClusterPCTs-FR 0.015 0.787 11.832 0.727 0.767 0.771 0.803 0.231 0.087 0.314 0.696 0.670 0.699
PCT-AggSingle-CO 0.016 0.761 12.258 0.694 0.733 0.726 0.777 0.264 0.133 0.315 0.684 0.645 0.687

PCT-AggComplete-CO 0.016 0.763 12.640 0.694 0.734 0.733 0.773 0.240 0.141 0.294 0.662 0.638 0.676
PCT-BKmeans-CO 0.015 0.795 12.003 0.716 0.757 0.753 0.797 0.198 0.078 0.340 0.695 0.652 0.691

PCT-ClusterPCTs-CO 0.016 0.795 12.003 0.707 0.747 0.751 0.783 0.228 0.063 0.298 0.678 0.658 0.686
MEDIAMILL

PCT-FlatMLC 0.052 0.472 77.282 0.356 0.476 0.491 0.551 0.445 0.247 0.089 0.571 0.339 0.440
PCT-AggSingle-FR 0.052 0.584 76.868 0.353 0.474 0.495 0.549 0.318 0.105 0.087 0.570 0.350 0.439

PCT-AggComplete-FR 0.052 0.610 76.795 0.358 0.478 0.498 0.553 0.313 0.083 0.089 0.570 0.353 0.443
PCT-BKmeans-FR 0.053 0.509 76.514 0.357 0.477 0.493 0.554 0.394 0.118 0.093 0.575 0.347 0.441

PCT-ClusterPCTs-FR 0.052 0.604 76.004 0.360 0.479 0.499 0.552 0.351 0.071 0.088 0.574 0.352 0.443
PCT-AggSingle-CO 0.053 ? 73.362 0.341 0.452 0.478 0.516 0.440 0.291 0.087 0.562 0.345 0.429

PCT-AggComplete-CO 0.055 ? 72.275 0.339 0.450 0.474 0.513 0.516 0.321 0.081 0.564 0.337 0.428
PCT-BKmeans-CO 0.054 ? 70.465 0.349 0.463 0.479 0.537 0.471 0.273 0.090 0.571 0.339 0.434

PCT-ClusterPCTs-CO 0.051 ? 78.356 0.343 0.455 0.480 0.516 0.267 0.156 0.088 0.569 0.339 0.428
SCENE

PCT-FlatMLC 0.263 0.636 4.537 0.271 0.288 0.289 0.302 0.686 0.183 0.193 0.530 0.255 0.907
PCT-AggSingle-FR 0.251 0.491 4.215 0.311 0.333 0.332 0.360 0.669 0.475 0.183 0.479 0.282 0.903

PCT-AggComplete-FR 0.247 0.658 4.595 0.304 0.333 0.351 0.347 0.628 0.166 0.191 0.494 0.265 0.907
PCT-BKmeans-FR 0.237 0.688 4.157 0.342 0.371 0.372 0.397 0.587 0.151 0.196 0.546 0.291 0.906

PCT-ClusterPCTs-FR 0.247 0.470 4.595 0.304 0.333 0.351 0.347 0.661 0.525 0.191 0.494 0.265 0.907
PCT-AggSingle-CO 0.234 0.557 4.256 0.349 0.376 0.373 0.405 0.579 0.361 0.189 0.516 0.299 0.906

PCT-AggComplete-CO 0.234 0.557 4.256 0.349 0.376 0.373 0.405 0.579 0.361 0.189 0.516 0.299 0.906
PCT-BKmeans-CO 0.229 0.509 4.099 0.355 0.387 0.386 0.421 0.612 0.523 0.186 0.502 0.316 0.904

PCT-ClusterPCTs-CO 0.260 0.658 4.438 0.280 0.309 0.303 0.343 0.636 0.164 0.186 0.517 0.260 0.904
TMC2007

PCT-FlatMLC 0.028 0.957 2.600 0.807 0.866 0.843 0.942 0.044 0.007 0.907 0.994 0.962 0.955
PCT-AggSingle-FR 0.030 0.948 2.712 0.797 0.859 0.835 0.936 0.052 0.009 0.905 0.993 0.955 0.950

PCT-AggComplete-FR 0.030 0.949 2.705 0.802 0.862 0.836 0.940 0.052 0.009 0.903 0.993 0.955 0.950
PCT-BKmeans-FR 0.029 0.950 2.648 0.807 0.867 0.842 0.943 0.053 0.008 0.925 0.993 0.959 0.955

PCT-ClusterPCTs-FR 0.030 0.950 2.684 0.801 0.862 0.837 0.940 0.048 0.009 0.903 0.993 0.956 0.949
PCT-AggSingle-CO 0.031 0.943 2.739 0.794 0.855 0.837 0.928 0.057 0.010 0.861 0.992 0.953 0.939

PCT-AggComplete-CO 0.030 0.946 2.711 0.797 0.859 0.835 0.937 0.056 0.009 0.870 0.992 0.955 0.942
PCT-BKmeans-CO 0.029 0.954 2.640 0.807 0.866 0.840 0.943 0.049 0.008 0.903 0.993 0.960 0.953

PCT-ClusterPCTs-CO 0.030 0.947 2.719 0.800 0.860 0.841 0.932 0.051 0.009 0.884 0.992 0.955 0.945
YEAST

PCT-FlatMLC 0.295 0.630 11.124 0.406 0.514 0.516 0.572 0.430 0.299 0.354 0.558 0.483 0.510
PCT-AggSingle-FR 0.290 0.590 11.122 0.429 0.541 0.545 0.600 0.510 0.367 0.365 0.574 0.500 0.528

PCT-AggComplete-FR 0.289 0.608 11.109 0.417 0.526 0.529 0.584 0.507 0.320 0.368 0.578 0.504 0.527
PCT-BKmeans-FR 0.291 0.645 11.372 0.412 0.523 0.533 0.570 0.430 0.261 0.357 0.565 0.488 0.521

PCT-ClusterPCTs-FR 0.292 0.645 11.298 0.415 0.518 0.531 0.561 0.455 0.257 0.358 0.560 0.491 0.525
PCT-AggSingle-CO 0.298 0.648 11.262 0.408 0.516 0.521 0.573 0.353 0.317 0.356 0.556 0.491 0.517

PCT-AggComplete-CO 0.290 0.676 11.144 0.419 0.528 0.530 0.590 0.328 0.263 0.359 0.570 0.502 0.520
PCT-BKmeans-CO 0.286 0.670 11.352 0.412 0.519 0.530 0.566 0.334 0.275 0.363 0.568 0.498 0.523

PCT-ClusterPCTs-CO 0.296 0.668 11.241 0.412 0.520 0.526 0.575 0.400 0.246 0.355 0.558 0.497 0.518
COREL5K

PCT-FlatMLC 0.015 0.144 352.716 0.091 0.130 0.175 0.125 0.774 0.419 0.027 0.516 0.058 0.114
PCT-AggSingle-FR 0.014 0.187 357.244 0.083 0.124 0.186 0.118 0.752 0.223 0.022 0.514 0.045 0.098

PCT-AggComplete-FR 0.016 0.184 354.216 0.083 0.121 0.142 0.125 0.734 0.409 0.021 0.513 0.055 0.106
PCT-BKmeans-FR 0.016 0.137 360.022 0.092 0.136 0.169 0.142 0.752 0.606 0.031 0.521 0.060 0.115

PCT-ClusterPCTs-FR 0.016 0.217 350.488 0.093 0.134 0.144 0.150 0.716 0.215 0.032 0.523 0.064 0.123
PCT-AggSingle-CO 0.013 0.096 368.088 0.065 0.097 0.169 0.085 0.778 0.712 0.013 0.501 0.037 0.083

PCT-AggComplete-CO 0.013 0.110 367.356 0.073 0.108 0.186 0.095 0.776 0.645 0.020 0.504 0.042 0.092
PCT-BKmeans-CO 0.015 0.181 351.246 0.101 0.147 0.168 0.156 0.700 0.294 0.029 0.518 0.071 0.120

PCT-ClusterPCTs-CO 0.018 0.210 360.764 0.091 0.138 0.145 0.160 0.718 0.149 0.022 0.511 0.051 0.105

Fig. 3. Results with the 13 performance measures for single PCTs from experiments
performed on 8 different datasets. The best results obtained per measure per dataset
are highlighted.
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RF-FlatMLC 0.047 0.698 13.187 0.402 0.509 0.714 0.435 0.200 0.078 0.241 0.709 0.620 0.577

RF-AggSingle-FR 0.047 0.696 13.028 0.396 0.500 0.706 0.425 0.206 0.077 0.235 0.724 0.615 0.574
RF-AggComplete-FR 0.047 0.695 13.347 0.396 0.499 0.703 0.425 0.206 0.078 0.239 0.724 0.618 0.575

RF-BKmeans-FR 0.046 0.697 12.865 0.404 0.509 0.708 0.434 0.211 0.076 0.242 0.745 0.622 0.582
RF-ClusterPCTs-FR 0.046 0.696 13.180 0.402 0.506 0.704 0.431 0.199 0.076 0.244 0.737 0.620 0.582
RF-AggSingle-CO 0.042 0.686 11.784 0.405 0.507 0.726 0.424 0.193 0.079 0.213 0.728 0.598 0.553

RF-AggComplete-CO 0.042 0.692 11.717 0.410 0.511 0.719 0.430 0.202 0.079 0.215 0.730 0.603 0.559
RF-BKmeans-CO 0.043 0.688 12.223 0.399 0.503 0.728 0.420 0.200 0.078 0.225 0.719 0.600 0.554

RF-ClusterPCTs-CO 0.047 0.692 13.100 0.400 0.504 0.706 0.429 0.199 0.078 0.236 0.742 0.616 0.572
EMOTIONS

RF-FlatMLC 0.191 0.813 2.812 0.530 0.605 0.674 0.600 0.267 0.152 0.755 0.851 0.754 0.755
RF-AggSingle-FR 0.201 0.815 2.837 0.500 0.569 0.629 0.567 0.282 0.155 0.749 0.852 0.756 0.753

RF-AggComplete-FR 0.196 0.810 2.817 0.502 0.574 0.643 0.564 0.262 0.151 0.766 0.859 0.762 0.769
RF-BKmeans-FR 0.199 0.810 2.817 0.494 0.563 0.626 0.553 0.277 0.153 0.770 0.863 0.767 0.772

RF-ClusterPCTs-FR 0.205 0.814 2.827 0.487 0.559 0.623 0.550 0.282 0.154 0.754 0.856 0.756 0.754
RF-AggSingle-CO 0.199 0.817 2.812 0.504 0.578 0.645 0.572 0.287 0.150 0.755 0.858 0.758 0.757

RF-AggComplete-CO 0.199 0.817 2.812 0.504 0.578 0.645 0.572 0.287 0.150 0.755 0.858 0.758 0.757
RF-BKmeans-CO 0.193 0.815 2.871 0.510 0.580 0.649 0.569 0.297 0.160 0.759 0.854 0.765 0.762

RF-ClusterPCTs-CO 0.191 0.820 2.787 0.512 0.582 0.648 0.575 0.267 0.148 0.764 0.860 0.766 0.766
MEDICAL

RF-FlatMLC 0.018 0.858 2.571 0.415 0.431 0.462 0.418 0.396 0.023 0.432 0.824 0.787 0.818
RF-AggSingle-FR 0.019 0.856 2.700 0.356 0.371 0.402 0.359 0.459 0.024 0.439 0.812 0.764 0.803

RF-AggComplete-FR 0.018 0.865 2.589 0.417 0.434 0.470 0.418 0.402 0.022 0.458 0.820 0.790 0.828
RF-BKmeans-FR 0.018 0.865 2.589 0.430 0.447 0.479 0.435 0.393 0.023 0.467 0.823 0.795 0.831

RF-ClusterPCTs-FR 0.019 0.849 2.769 0.388 0.405 0.441 0.391 0.411 0.026 0.422 0.805 0.777 0.818
RF-AggSingle-CO 0.019 0.853 2.841 0.366 0.382 0.416 0.367 0.447 0.027 0.437 0.804 0.771 0.813

RF-AggComplete-CO 0.019 0.852 2.727 0.369 0.386 0.420 0.372 0.438 0.025 0.432 0.817 0.764 0.808
RF-BKmeans-CO 0.018 0.853 2.613 0.421 0.440 0.477 0.424 0.372 0.023 0.455 0.822 0.786 0.821

RF-ClusterPCTs-CO 0.019 0.857 2.586 0.376 0.397 0.438 0.379 0.423 0.023 0.441 0.813 0.778 0.818
MEDIAMILL

RF-FlatMLC 0.030 0.735 20.676 0.455 0.573 0.798 0.495 0.124 0.047 0.254 0.762 0.671 0.618
RF-AggSingle-FR 0.030 0.733 20.781 0.451 0.570 0.803 0.489 0.124 0.047 0.249 0.765 0.669 0.617

RF-AggComplete-FR 0.030 0.733 20.727 0.451 0.569 0.802 0.487 0.127 0.047 0.254 0.765 0.668 0.616
RF-BKmeans-FR 0.030 0.735 20.546 0.453 0.571 0.800 0.491 0.124 0.046 0.252 0.773 0.671 0.617

RF-ClusterPCTs-FR 0.030 0.734 20.806 0.451 0.569 0.801 0.488 0.126 0.047 0.248 0.765 0.668 0.616
RF-AggSingle-CO 0.031 ? 19.722 0.438 0.549 0.777 0.470 0.150 0.047 0.242 0.756 0.657 0.607

RF-AggComplete-CO 0.032 ? 19.117 0.440 0.551 0.777 0.471 0.150 0.047 0.249 0.761 0.659 0.610
RF-BKmeans-CO 0.032 ? 18.830 0.440 0.551 0.772 0.474 0.153 0.046 0.249 0.768 0.659 0.609

RF-ClusterPCTs-CO 0.030 ? 20.681 0.434 0.546 0.775 0.465 0.152 0.045 0.248 0.763 0.656 0.607
SCENE

RF-FlatMLC 0.169 0.631 2.405 0.202 0.204 0.207 0.202 0.339 0.247 0.193 0.515 0.457 0.906
RF-AggSingle-FR 0.174 0.608 2.496 0.174 0.174 0.174 0.174 0.347 0.272 0.186 0.495 0.440 0.904

RF-AggComplete-FR 0.174 0.624 2.314 0.174 0.174 0.174 0.174 0.331 0.234 0.189 0.502 0.434 0.905
RF-BKmeans-FR 0.172 0.640 2.298 0.198 0.198 0.198 0.198 0.364 0.231 0.189 0.519 0.456 0.905

RF-ClusterPCTs-FR 0.174 0.624 2.314 0.174 0.174 0.174 0.174 0.331 0.234 0.189 0.502 0.434 0.905
RF-AggSingle-CO 0.174 0.590 2.496 0.140 0.140 0.140 0.140 0.298 0.274 0.187 0.507 0.415 0.904

RF-AggComplete-CO 0.174 0.590 2.496 0.140 0.140 0.140 0.140 0.298 0.274 0.187 0.507 0.415 0.904
RF-BKmeans-CO 0.172 0.589 2.595 0.182 0.182 0.182 0.182 0.306 0.292 0.191 0.512 0.434 0.905

RF-ClusterPCTs-CO 0.169 0.614 2.545 0.182 0.182 0.182 0.182 0.339 0.279 0.190 0.513 0.434 0.905
TMC2007

RF-FlatMLC 0.025 0.976 2.301 0.796 0.848 0.933 0.813 0.039 0.003 0.993 0.999 0.975 0.992
RF-AggSingle-FR 0.025 0.976 2.305 0.796 0.848 0.935 0.812 0.039 0.003 0.993 0.999 0.974 0.992

RF-AggComplete-FR 0.025 0.976 2.305 0.797 0.849 0.933 0.815 0.038 0.003 0.993 0.999 0.974 0.992
RF-BKmeans-FR 0.025 0.977 2.303 0.797 0.849 0.933 0.815 0.039 0.003 0.993 0.999 0.975 0.991

RF-ClusterPCTs-FR 0.026 0.976 2.309 0.789 0.842 0.931 0.805 0.042 0.003 0.992 0.999 0.973 0.992
RF-AggSingle-CO 0.027 0.976 2.309 0.776 0.831 0.928 0.790 0.044 0.004 0.993 0.999 0.973 0.992

RF-AggComplete-CO 0.031 0.947 2.749 0.795 0.857 0.834 0.933 0.052 0.009 0.872 0.992 0.954 0.941
RF-BKmeans-CO 0.025 0.976 2.305 0.791 0.844 0.931 0.808 0.040 0.003 0.993 0.999 0.975 0.992

RF-ClusterPCTs-CO 0.026 0.976 2.308 0.788 0.842 0.933 0.805 0.041 0.003 0.993 0.999 0.974 0.992
YEAST

RF-FlatMLC 0.197 0.759 7.176 0.482 0.587 0.741 0.530 0.241 0.166 0.508 0.710 0.722 0.675
RF-AggSingle-FR 0.199 0.755 7.308 0.471 0.578 0.743 0.514 0.241 0.170 0.501 0.699 0.717 0.669

RF-AggComplete-FR 0.200 0.753 7.269 0.469 0.576 0.740 0.513 0.246 0.172 0.500 0.682 0.713 0.665
RF-BKmeans-FR 0.199 0.755 7.215 0.473 0.580 0.737 0.521 0.248 0.167 0.505 0.704 0.716 0.669

RF-ClusterPCTs-FR 0.198 0.755 7.252 0.477 0.583 0.739 0.524 0.244 0.169 0.504 0.692 0.714 0.669
RF-AggSingle-CO 0.198 0.757 7.201 0.479 0.586 0.742 0.530 0.242 0.168 0.506 0.699 0.719 0.673

RF-AggComplete-CO 0.196 0.759 7.218 0.484 0.591 0.742 0.535 0.240 0.167 0.511 0.707 0.717 0.674
RF-BKmeans-CO 0.196 0.759 7.215 0.483 0.588 0.740 0.529 0.246 0.166 0.508 0.698 0.719 0.674

RF-ClusterPCTs-CO 0.199 0.758 7.217 0.474 0.581 0.738 0.522 0.241 0.168 0.503 0.695 0.716 0.671
COREL5K

RF-FlatMLC 0.009 0.317 103.856 0.016 0.025 0.056 0.016 0.298 0.107 0.068 0.656 0.200 0.230
RF-AggSingle-FR 0.009 0.298 105.210 0.020 0.030 0.069 0.020 0.236 0.109 0.066 0.658 0.185 0.229

RF-AggComplete-FR 0.009 0.319 101.606 0.015 0.023 0.052 0.015 0.306 0.107 0.068 0.660 0.208 0.236
RF-BKmeans-FR 0.009 0.327 102.092 0.012 0.018 0.042 0.012 0.320 0.106 0.067 0.665 0.219 0.236

RF-ClusterPCTs-FR 0.009 0.313 107.224 0.017 0.026 0.058 0.017 0.286 0.110 0.070 0.654 0.201 0.234
RF-AggSingle-CO 0.009 0.266 121.804 0.020 0.031 0.072 0.020 0.206 0.127 0.061 0.636 0.155 0.215

RF-AggComplete-CO 0.009 0.269 120.950 0.021 0.032 0.074 0.021 0.228 0.126 0.064 0.636 0.155 0.218
RF-BKmeans-CO 0.009 0.343 97.858 0.014 0.022 0.047 0.014 0.364 0.101 0.075 0.674 0.227 0.245

RF-ClusterPCTs-CO 0.009 0.301 106.638 0.017 0.027 0.062 0.017 0.264 0.109 0.066 0.654 0.186 0.224

Fig. 4. Results with the 13 performance measures for Random Forest from experiments
performed on 8 different datasets. The best results obtained per measure per dataset
are highlighted.
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independent measures (AUPRC, AUROC, wAUPRC and pooledAUPRC ) for
the mediamill and tmc2007 datsets are improved for almost twice, which is con-
sistent to the notion from the literature that ensembles of PCTs improve the
performance over single predictive models. Hierarchies created with clustering
of the space consisting of feature rankings outperform both hierarchies obtained
using label co-occurrences and flat MLC for the threshold independent mea-
sures on the medical, enron and emotions datasets. RF-BKmeans-FR performs
the best for medical dataset in seven evaluation measures. Considering the hier-
archies obtained with clustering the space of label co-occurrences, we can note
that they outperform the other methods for the corel5k dataset. Using hier-
archies (i.e., label dependences) rather than flat multi-label task improves the
predictive performance generally for most of the evaluation measures, but not
for (ML F1 measure, ML accuracy, ML precision and ML recall) in the emotions
and scene datasets.

Finally, in our study we also considered training errors i.e., the errors made in
the learning phase. There, in a large majority of the cases, the original FlatMLC
method performed the best. This means that other methods we use for construct-
ing the hierarchies do not overfit as the original one. This is another advantage
of methods for construction the hierarchies identified from the obtained results.

6 Conclusions and Further Work

In this work, we have presented an approach for hierarchy construction and
structuring the output (label) space by using feature ranking. More specifically,
we cluster the feature rankings to obtain a hierarchical representation of the
potential relations existing among the different labels. We then address the task
of MLC as a task of HMLC. Moreover, we compare our approach with the
approach of clustering the space consisting of label co-occurrences [6].

We investigated four clustering methods for hierarchy creation, agglomera-
tive clustering with single and complete linkage, balanced k-means and cluster-
ing using predictive clustering trees (PCTs). The resulting problem was then
approached as a HMLC problem using PCTs and random forests of PCTs for
HMLC. We used eight benchmark datasets to evaluate the performance.

The results reveal that the best methods for hierarchy construction are
agglomerative clustering methods and balanced k-means. Compared to the orig-
inal MLC method where there is no hierarchy this improves the performance in
most of the datasets. In four datasets, the hierarchies obtained by clustering the
label space consisting of feature rankings improve the predictive performance
compared to the hierarchies obtained by clustering the space consisting of label
co-occurrences. Similar conclusions, but to a lesser extent, can be made for the
random forests of PCTs for HMLC - in many of the cases (datasets and eval-
uation measures) the predictive models exploiting the hierarchy of labels yield
better predictive performance. Finally, by considering the training error perfor-
mance, we find that original MLC models overfit more than the HMLC models.
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For further work, we plan to make more extensive evaluation on more datasets
with diverse properties and to try more different feature ranking methods. Fur-
thermore, we assume that potential improvement of the performance can be
achieved with cutting the hierarchies based on some conditions such as density,
distribution or distance between nodes. Moreover, we plan to include a compar-
ison to network approaches given by Szymanski et al. [11]. Finally, we plan to
extend this approach to other tasks, such as multi-target regression.
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Abstract. Facilitating a satisfying user experience requires a detailed
understanding of user behavior and intentions. The key is to leverage
observations of activities, usually the clicks performed on Web pages.
A common approach is to transform user sessions into Markov chains
and analyze them using mixture models. However, model selection and
interpretability of the results are often limiting factors. As a remedy, we
present a Bayesian nonparametric approach to group user sessions and
devise behavioral patterns. Empirical results on a social network and an
electronic text book show that our approach reliably identifies underlying
behavioral patterns and proves more robust than baseline competitors.

1 Introduction

Being able to translate a user’s behavior into an educated guess of her intent
is often the key to provide a satisfying user experience. Users express different
behavior in different contexts to satisfy their needs, fulfill a task, etc. [1]. Char-
acteristic behavioral traits may thus serve as indicators for future behavior and
capturing these traits is important in many application domains:

Content providers on the Web often rely on repeated user visits. Their success
depends highly on how well they are able to anticipate a user’s needs by providing
the right content, at the right time, and in the right place. Accurately modeling
user behavior not only predicts a user’s actions but informs design and content
decisions. This includes predicting what links a user will click on, deciding where
webpage components should be placed, and what content to provide.

A similar problem arises in emerging areas such as educational research that
aim to provide tailored learning environments and tutoring systems to children
and students. Often it is either undesirable or not possible to build personal-
ized models, and even when available, such models suffer from the cold start
problem, or are unable to deal with context-dependent variations in user behav-
ior. Accurately modeling user behavior leads to accurate assessments of a user’s
competency and allows for selecting next items, appropriate feedback, etc.

Recently, user behavior plays an increasing role in security related areas.
Behavioral models are studied as replacements for passwords and intelligent
pieces of operating systems are being developed to actively block security related
components, such as access to a company data base, when the user is checking
c© Springer International Publishing AG, part of Springer Nature 2018
A. Appice et al. (Eds.): NFMCP 2017, LNAI 10785, pp. 167–181, 2018.
https://doi.org/10.1007/978-3-319-78680-3_12
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news on Facebook. Similarly, security relevant features can be blocked by such a
system if the user behavior deviates from the expected behavior; e.g., to prevent
hacking a stolen device.

Traditionally, Markov models are frequently studied methods in behavioral
contexts [3,6,7,22] due to their good interpretability. The underlying idea is to
exploit the sequential nature of user behavior and translate user sessions into
Markov processes. Using Expectation-Maximization (EM)-based approaches [23],
similar sessions can be grouped to draw conclusions about different types of users
and their behaviors from the arising clusters. While there is nothing wrong with
the general blueprint of these analyzes, they often suffer from being paramet-
ric approaches and using greedy optimization strategies that may lead to poor
local optima. The problem arises because the optimal number of clusters is a
priori unknown and needs to be identified with heuristics (e.g., [24,25]) or trial
and error. Often, this leads to repeated parameter estimations on subsets of
the data. In addition, EM-based algorithms potentially converge to local optima
and, therefore, several repetitions of the same experiment with random initial-
izations are required. In the presence of todays data set sizes, the multiplicative
consequences of deploying heuristics with EM-based algorithms quickly become
prohibitive.

We present a non-parametric Bayesian approach to fit a mixture model of
Markov chains to sequential data, turning behavior into data. We draw conclu-
sions from the resulting models that constitute novel insights and show how
these insights impact future developments and design decisions.

2 Related Work

Modeling user behavior is often performed using probabilistic models in com-
bination with some sort of clustering. The most commonly studied type of
approaches are based on Markov models [3,6–9]. Early work investigates the
use of probabilistic methods and subsequent publications use the formalism of
Markov chains [6,7] to build stochastic models that capture behavioral patterns.
[3] further explores the idea by proposing a mixture model of Markov chains to
divide data into meaningful groups and focus on these groups in the analysis.
Here, each manifestation of a common behavioral pattern is represented by a
Markov chain. Putting this in the context of our application scenario, a user
interacts with a system and, by doing so, transitions between (possibly latent)
states of a Markov model. Each state represents a possible interaction between
user and system. Due to the use of first-order Markov chains, the next state is
only conditioned on the previous state. The approach by [3] yields interpretable
results and is computationally efficient. However, model selection may lead to
sub-optimal results as identifying the number of groups is not always straight
forward and the non-convex problem may have many local optima. A similar
approach using a mixture model of hidden Markov models [8] takes intertwined
click traces into account while [9] propose selective Markov models for identifying
user behavior patterns.
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Generally, higher-order Markov models [10–12] capture user behavior in more
detail. However, [10] suffers from inefficient computations and results that are
difficult to interpret. Other approaches require unreasonably large data sets as
the model parameters grow exponentially with the number of states N and order
o [11,12]. [13,14,16] make use of Bayesian nonparametric mechanisms to control
the complexity of the respective models. E.g., combining a temporal point pro-
cess with a Bayesian nonparametric prior, [16] study the relation between both
areas. The resulting Dirichlet-Hawkes process allows to model user behavior in
greater detail compared to first-order Markov models. However, point processes
focus on predictive performance and often lack interpretability.

To satisfy all requirements, we propose an approach that combines both,
Bayesian nonparametric methods and Markov models. We derive a model that
adapts to the complexity of the data and, at the same time, retains interpretability.

3 Non-parametric Bayesian User Behavior Models

In this section, we briefly introduce mixtures of Markov chains models and dis-
cuss their properties. After pointing out the drawbacks of this approach, we
present a Bayesian nonparametric interpretation that mitigates these issues.

3.1 Mixtures of Markov Chains

Markov chains are probabilistic models for generating sequences of discrete
events. The probability of observing an element directly depends on the pre-
vious one1. Let us consider N sequences (or user sessions) x(i) = (x(i)

1 , . . . , x
(i)

T (i))

of length T (i) over an alphabet M such that every x
(i)
t ∈ M with i ∈ {1, . . . , N}.

For ease of notation, every sequence is augmented by auxiliary start x
(i)
0 = S and

terminal xT (i)+1 = E symbols, where M ∩{S,E} = ∅. The probability of observ-
ing adjacent elements is then given by the conditional θu,v = p(xt+1 = v|xt = u)
where u ∈ M ∪ {S} and v ∈ M ∪ {E}. Note that the first event of a sequence is
selected according to the prior surrogate θS,v = p(x1 = v|S). Thus, the auxiliary
start and terminal symbols allow for capturing prior and terminal distributions,
respectively, where the latter eventually serves as a natural duration model of a
cluster. The parameters θ are estimated by a maximum likelihood approach [3].

If there are several, say K, generating distributions instead of a single one,
a mixture model of Markov Chains (MMC) is required for parameter estima-
tion. Latent indicator variables zi assign sequences to one of the K clusters
and priors πk = p(z(i) = k|Θ) assess the importance of these clusters where
Θ = (π1, . . . , πK , θ1, . . . , θK). The quantity p(z(i) = k|x(i), Θ) estimates the prob-
ability that sequence i has been generated by the k-th component. To not clutter

1 We focus on first-order dependencies but the approach is easily generalized to higher-
order models; notation is quickly getting messy though.
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the notations unnecessarily, we omit superscript i whenever context allows. The
likelihood of the model is given by

p(x|Θ) =
K∑

k=1

p(z = k|Θ)
T+1∏

t=1

p(xt|xt−1, z = k,Θ) =
K∑

k=1

πk

T+1∏

t=1

θkxt−1,xt

Parameters Θ are estimated using Expectation Maximization (EM) and related
techniques [3,23].

While EM-based approaches yield interpretable results in an efficient and
straight forward way, they suffer from two major drawbacks. Firstly, the actual
number of components is generally unknown and consequently K becomes a
parameter that has to be adjusted in the model selection. Secondly, the greedy
inference by EM-based approaches can converge to local optima. This not only
renders a single solution unquantifiable but, also implies repetitions of the same
experiment necessary (e.g., using different initializations). Combining the two
arguments leads to complex experimentations and quickly becomes tedious.

By contrast, our contribution addresses both limitations of EM-based
approaches. Being a Bayesian nonparametric interpretation of the mixture of
Markov chains, the number of components is adjusted in a data-driven way dur-
ing the optimization. The latter is performed by a Gibbs sampling approach that
does not share the greedy nature of EM-based methods.

3.2 Infinite Mixtures of Markov Chains

Our contribution, infinite Mixtures of Markov Chains (iMMC), makes use of a
computationally efficient approximation to the hierarchical Dirichlet processes
(HDP) [2], known as the degree L weak limit approximation [4]. The limiter L
denotes the maximum cardinality of the approximated distribution. The app-
roach encourages the learning of models with a state space of less than L compo-
nents while allowing for the creation of new ones. It can be shown that such an
approximation converges to the original HDP as L → ∞ and provides a common
solution to efficient Bayesian nonparametrics [20].

Graphical Model. Our model consists of a maximum number of L clusters,
each comprised of a subset of events Ml ⊆ M with l ∈ {1, ..., L}. As before, we
differentiate between observations x and latent variables z that assign sequences
to clusters. The model is build of two well-known concepts in Bayesian nonpara-
metrics, the Dirichlet distribution (Dir) and the finite-dimensional hierarchical
Dirichlet process [2,4]. A hierarchical Dirichlet process (HDP) consists of a two-
layer hierarchy of Dirichlet processes (DP).

While the Dirichlet distribution is used to substitute the Multinomial distri-
bution of the MMC to allow for an adaptive prior distribution over the cardi-
nality of the clusters, the observation layer is modeled by a degree L weak limit
approximation [4] which captures the Markovian structure of a cluster. The idea
of this design choice is that the distribution over the events of a cluster serves
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Fig. 1. (left) Graphical model of an HDP mixture model; (right) graphical model of the
proposed iMMC; M is the set of events; I is the cardinality of the set of input sequences
with Ti as the length of the corresponding sequence; i ∈ I and t ∈ {0, . . . , Ti+1}; white-
and gray nodes represent hidden states and observed states, respectively.

as a natural base measure to the emission distributions of the events. Here, the
emission distributions denote the transition probabilities from a state to any
other. By representing these emission distributions by DPs themselves, we build
an HDP representing a cluster. Note that this way we define the Markov models
by the emission distributions of its states.

The approximated HDPs consist of a Dirichlet Gl to model the state distri-
bution within a cluster l and a set of subordinate Dirichlet distributions θlm,
which represent the transitions within a cluster, i.e., the transition distribution
given the current cluster l and its current state m ∈ Ml. The prior distributions
π, Gl and θlm are then computed by

π|σ ∼ Dir(α/L, . . . , α/L)
Gl|γ ∼ Dir(γ/L, . . . , γ/L)

θlm|α,Gl ∼ Dir (αGl1, . . . , αGlL) .

(1)

Note that the prior and terminal state distributions are encoded within θ
due to the augmentation of start and terminal symbols. Figure 1(right) shows
the graphical model and the generative process of a single sequence based on the
prior distributions is given by

z|π ∼ π xt|z, xt−1 ∼ θzxt−1 t ∈ {1, . . . , Ti + 1}. (2)

Inference. To estimate parameters we make use of a two-step sampling algo-
rithm which consists of the alternation of sequence assignments and parameter
updates. In the assignment phase we obtain a realization of the latent parame-
ters which is then used for the update of the prior distributions. These two steps
are then repeatedly run to obtain the final model parameters. In the following
we explain both steps in detail.
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Algorithm 1. Blocked Gibbs sampler for iMMC

Given the hyperparameters σ,γ,α

(i) Initialize prior distributions according to Eq. 1

Until convergence do:
(ii) Obtain a realization of z according to Eq. 5
(iii) During assignment step update auxiliary variables as follows:

→ For each assigned sequence, increment:
· bl=z(i) ≡ # observations assigned to cluster l
→ For each observation in the sequence, increment:

· dl=z(i),xt
≡ # observations of state xt assigned to l = z(i)

· sl=z(i),xt−1,xt
≡ # transitions from xt−1 to xt in l = z(i)

(iv) Re-sample prior distributions
(v) Build final model from multiple sample-sets of the parameters

Assignment Step. Given randomly initialized prior distributions (see Eq. 1), we
compute the likelihood of a sequence x as

p(x|Θ) =
L∑

l=1

p(z = l|Θ)
T+1∏

t=1

p(xt|xt−1, z = l, Θ) =
L∑

l=1

π(l)
T+1∏

t=1

θlxt−1(xt), (3)

where x0 and xT+1 represent the artificial boundary nodes and π the prior dis-
tribution over the clusters. The marginal distribution is

p(x|z = l, Θ) ∝ π(l)
T+1∏

t=1

θlxt−1(xt). (4)

Therefore, the assignments can be sampled as

z(i) ∼ Mu

(
∑

l∈L

p(x|z = l, Θ)δl

)
, (5)

where δ represents the Dirac delta.

Update Step. After obtaining a new sample of assignments the prior distribu-
tions have to be updated. This is an essential step in the Gibbs sampler and, in
our case, straight-forward given that all distributions consist of DPs. Therefore,
statistics are gathered during the assignment step. We keep track of the state
distribution and transitions within the clusters. Thus, dl,m records the number
of observations of state m assigned to cluster l and sl,m1,m2 records the num-
ber of transitions from state m1 to state m2 within cluster l. Finally, bl keeps
track of the number of observations assigned to luster l. For each iteration, the
auxiliary variables document the assignment step. Then, we can re-sample the
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distributions using the statistics as the new evidence. A summary of the entire
inference process is given in Algorithm 1. Note, that, while seemingly similar
to classic EM-approaches, the Gibbs sampler is based on sampling rather than
on ML solutions. Therefore, it can be shown, that under certain conditions the
sampler will converge to the global optimum [26].

4 Experiments

We first evaluate the clustering performance of our model in controlled scenarios
to understand its effectiveness and to shed light on extreme cases. The synthetic
nature of the data allows us to accurately evaluate the clustering performance
of our approach. Then we will focus on the interpretability of the clusters and of
the extracted patterns. Therefore, we extract usage patterns of users browsing
a social network website without prior knowledge. Finally, an analysis of the
behavior on an electronic textbook using iMMC will show that the obtained
patterns correlate with the success of the corresponding student, suggesting that
behavior patterns hold further, sensitive information about students.

4.1 Synthetic Data

In this section we compare the clustering performance of our algorithm, the
infinite mixture model of Markov chains (iMMC), to the traditional mixture
model of Markov chains approach (MMC). We pick the latent Dirichlet allocation
(LDA) [27] as an additional baseline to asses the importance of the sequential
information contained in the observations. LDA only makes use of the frequency
count of events within a sequence.

We generate three synthetic scenarios to generate different sets of clusters.
In the context of user behavior, a cluster represents the causal reason for
an observed sequence of events: clusters thus serve as proxies for user inten-
tion/interest. Their state spaces are the set of events that are associated with
one or more clusters.

Fig. 2. Generative processes of scenario II (left) and scenario III (right); states are
indexed by hexadecimal numbers (1–f).
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A learning task is simpler when state spaces are disjoint (Scenario I). An
example are clusters like ‘cooking’ and ‘driving a car’ that have no state spaces
of events in common. Learning tasks with fully overlapping state spaces are
more difficult (Scenario III, Fig. 2(right)). Examples are clusters that share many
events such as ‘cooking’ and ‘baking’ or ‘driving a car’ and ‘driving a motorcycle’.
The learning task in Scenario II (Fig. 2(left)) addresses both characteristics.

Given a scenario, we obtain a corresponding data set by selecting uniformly
at random one of its clusters. Then we run its generating process which yields a
sequence of actions. This procedure is repeated until we have the desired number
of actions in the set of generated sequences. For each scenario we evaluate the
algorithms on data sets of sizes of 10,000, 100,000 and 250,000 data points. For
each combination of scenario and data set size, we generate 10 data sets and
report on results of the averaged performances over 5 runs for each of these data
sets. While we use a single set of hyperparameter values for our algorithm (each
is set to 1), we supply the MMC with the correct number of clusters and apply
a soft clustering. For LDA we transform each sequence into a frequency vector
of events occurring in the sequence.

Table 1. Error rates for the synthetic clustering tasks; each data set consists of 10k,
100k, and 250k data points (small, medium, large).

Scenario I Scenario II Scenario III

Small Medium Large Small Medium Large Small Medium Large

LDA 20.92% 28.14% 28.62% 14.69% 12.09% 20.20% 27.95% 29.54% 29.06%

MMC 19.60% 9.90% 5.13% 5.94% 6.78% 4.77% 14.26% 20.36% 8.47%

iMMC 0.14% 2.23% 0.26% 0.00% 0.54% 2.78% 8.61% 5.82% 5.15%

Fig. 3. Accuracy of each method on different scenarios and for dataset sizes.
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Even though MMC was provided with the correct number of clusters and our
algorithm had to adjust it to the data, our algorithm is as efficient as MMC.

Table 1 and Fig. 3 shows the overall clustering performance of both algorithms
on all data sets and scenarios. In all cases, our algorithm outperforms MMC.

4.2 Facebook Data

In this experiment, we demonstrate how the model can be applied for information
extraction tasks from huge dataset. This is especially useful for tasks that come
with no or only little prior knowledge. The data set for the next evaluation
contains user navigation data from Facebook [15]. For each user, the invoked
pages are recorded and grouped into sessions. Examples for such invoked pages
are ‘Login’, ‘Newsfeed’, ‘Load more news’, ‘Like’, etc.. The dataset contains 152
unique invoked pages, 49, 479 sessions of 2,749 users, and 8,197,308 observations.
Every session is interpreted as a sequence of observations.

The most frequently observed behavioral pattern is user’s checking for
updates on the newsfeed by waking up the device and, without performing any
additional activity, put to sleep shortly after. Figure 4 depicts two more com-
plex patterns of users on Facebook. The first pattern, on the left, describes
passive user behavior without any direct communication. Users following this
patterns tend to look at their newsfeed (News) or at their own timeline (ownTL).
While updating (represented by the loop on ownTL) or scrolling (moreTL) their
own timeline, they would sometimes be interested in someone else’s time-line
(otherTL). There, they scroll through it but will most likely go back to their
own timeline. They tend to look at more entries (viewNews) from their newsfeed
and interact (self-loop) with them. If they open a gallery (Photo), they would
look at several pictures (self-loop on Photo) before returning to their previous
activity.

Fig. 4. An examplary solution of the identified clusters; exit states are omitted, their
probability equals 1 minus the sum of emission probabilities of a state.
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The pattern in the right part of Fig. 4 describes a more active behavior.
While also browsing their Facebook universe, users frequently comment on news-
feeds’ and timelines’ entries. Additionally, the users visit fan and company pages
(pages). The iMMC algorithm successfully distinguished different session behav-
iors without any prior knowledge on the data, nor dependencies between events.

4.3 Electronic Text Books

In this section, we present insights on the usage patterns of students interacting
with an electronic text book for history called the mBook [5]. We show that
identified usage patterns correlate with psychometric scores.

Among others, the mBook has been successfully deployed in the German-
speaking community of Belgium. Together with psychologists and didacticians,
we aim to evaluate the pros and cons of daily use in classrooms on children
and teachers. In addition to an event log that tracks all user actions in the
book, demographic variables as well as variables measuring competencies and
interest are regularly assessed. Since 2013, about 3,000 users have created 370,000
sessions. In this experiment, we focus on 803 sessions of a subset of 286 users
between February and March 2017. Our aim is to identify characteristic usage
patterns to later search for correlation with psychometric variables.

Related studies reveal that time-on-page and cursor trajectories often serve
as indicators for student engagement [18,19]. However, in our case, the text
book is mainly used on tablets in class rooms and, hence, cursors or eye track-
ing are not available. We thus aim to identify alternative indicators that are
precise enough to capture characteristic traits of different behavior. We define
and differentiate 75 atomic events that a user can trigger, ranging from pressing
a button to various scrolling performances. The latter are further divided into
9 events: scroll.direction.duration. The direction can be up, down or fix if the
movement is of less than 10 pixels. The duration can be fast, medium or slow
for event duration of respectively less than 1 s, between 1 and 3 s and more than
3 s. In the following, node names will be abbreviated using only the first letter.
For example a scroll.down.fast is reduced to d.f.

In contrast to the analysis of the Facebook data set, where the huge amount of
data allowed for a deployment of MMC, in this case a MMC would fail due to the
lack of a sufficient amount of data; information criteria are known to perform
poorly when the sample size is smaller than the number of parameters [17]
as shown in Fig. 5(left). The evolution of three information criteria AIC [24],
AICc [21], and BIC [25] is depicted for different numbers of clusters where every
point in the figure denotes the best result out of 30 repetitions. Theoretically,
the minima of these curves are supposed to give the optimal solutions given
the involved parameters. Due to the ill-posed optimization problem, however,
the criteria grow almost linearly. The AIC curves reaches a minimum for two
clusters, what is not really interesting. Thus information criteria do not allow to
draw conclusion.

By contrast, our Bayesian approach successfully clusters the data using γ = 2,
σ = 1.5, λ = 2.4, L = 100 and 10,000 iterations. After every 1,000 iterations, an
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Fig. 5. Left: BIC, AIC and AICc for MMC. Right: NMI and entropy for iMMC (Color
figure online)

Fig. 6. Two exemplary scrolling patterns.

intermediate clustering is computed as the average of the last 1,000 iterations.
The first intermediate clustering is based on 34 clusters, the final solution settles
on 32 clusters. The evolution of the solution is shown in Fig. 5(right). The blue
line (left scale) represents the evolution of the normalized mutual information
(NMI) relative to the final solution. The red line (right scale) refers to the entropy
of the clustering for the actual iteration. After 7,000 iterations the NMI indicates
that the clustering is already 90% similar to the final one. The decrease in entropy
shows that the algorithm merges the data into fewer clusters. The plateau after
7,000 iterations indicates fine granular changes of cluster memberships.

There are eight resulting clusters with at least 20 sessions. We focus on the
scrolling events and show two patterns in Figure 6 realizing the smallest and
highest entropy, respectively. Note that the weights do not sum up to one, as we
ignore outgoing edges to non-scroll events in this analysis.

The first thing to notice is that in Pattern 1, scroll.fix.* cannot be reached
from another type of scroll. Either it starts a scrolling sequence or it indicates
mis-usage or hesitation of the user. Although Pattern 8 is more complex, it shares
the fact that users tend to not transit to slower scrolls. This can be interpreted
by the observed behavior that ‘longer’ scrolls are corrected by faster ones. This
is typical behavior for users who are scrolling while reading the text on the page.
This is also reflected in high self-transition probabilities of scroll.down.slow and
scroll.fix.fast. Multiple ways to reach this last event are likely caused by stopping
a scroll with a small scroll and keeping the finger on the tablet.
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Psychometric Correlations. During the four years of the experiment, the
children are assessed at the end of each school year. Five factors are mea-
sured. Competency and knowledge in the field are assessed using item response
theory [28,29]. Additionally, their motivation, access to digital devices and
their skills in the usage of these are assessed by multiple choice questionnaires
(advanced skills weight more than simple ones).

To correlate the assessed variables with our clustering, we represent clusters
by the average score of all children who have sessions in the cluster. We compute
Pearson correlation coefficients [21] that are adjusted for small sample sizes for
the 81 possible transition probabilities between scroll events and the 8 resulting
clusters with at least 20 elements.

The maximum and minimum correlations for the assessed variables are
reported in Table 2. Except for motivation, high correlated transitions for every
variable end with a scroll.up.fast and a change in direction. Knowledge has a cor-
relation of almost 1.0 with scroll.down.medium → scroll.up.fast, and of nearly
−1.0 with scroll.down.slow → scroll.down.medium. Pattern 8 is the only pat-
tern containing these two edges. However, the correlations cancel out in the final
result. Figure 7 confirms that cluster 8 loads only weakly on knowledge compared
to the others.

The first row in Fig. 7 shows the loadings for the 8 biggest clusters. The
clusters are organized from top to bottom according to their entropy.

Patterns 1 and 8 (see Fig. 6) are extracted from clusters 1 and 8, respectively.
Both patterns are often observed by pupils with high competencies in history.
Therefore, these patterns may serve as behavioral indicators for a user’s com-
petency. This finding is supported by the high correlation of cluster 1 with the
prior knowledge of the user. Seemingly, knowledgeable children prefer simpler
scrolling patterns. By contrast, cluster 2 contains highly motivated children that
possess high computer skills. The pupils in cluster 6 are also motivated but do
not possess such a high ICT literacy and thus do not know to handle electronic
devices that well.

The second row in Fig. 7 displays the values among clusters of the most
strongly correlated transitions to the corresponding score. Negative correla-
tions are not shown for interpretability. These plots give an impression of
the correlations. For knowledge and motivation scores, the probability of
scroll.down.medium → scroll.up.fast and scroll.fix.fast → scroll.fix.fast could

Table 2. The most strongly correlated event transitions for each score.

Score Max corr. Event Min corr. Event

Competence 0.697 f.f → u.f −0.719 u.m → u.s

Knowledge 0.962 d.m → u.f −0.947 d.s → d.m

Motivation 0.748 f.f → f.f −0.714 f.f → u.f

IT access 0.751 d.s → u.f −0.735 f.f → d.f

IT skill 0.837 d.s → u.f −0.743 d.m → d.s
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Fig. 7. Scores and probabilities of their most correlated transition for the 8 biggest
clusters.

be used to predict their respective scores in the assessment. With respect to
competence, a high transition probability seemingly also implies a high score
in the assessment. However the opposite does not hold true. Cluster 8, as also
seen in Fig. 6, has a smaller probability of transitioning from scroll.fix.fast to
scroll.up.fast, although the average competency score of the cluster is the largest.

Our results show for the first time that behavioral indicators in electronic
text books can be identified to discriminate between children. Results like this
will have a high impact on the next generations of electronic text books so that
they become adaptive and provide individual learning environments for every
child.

5 Conclusion

We presented a Bayesian nonparametric approach to modeling user behavior.
The nonparametric nature of our approach allowed for the efficient identification
of the underlying clusters within user event data. Our model showed significant
improvements over related approaches when analyzing such data. We obtained a
natural state-duration model by capturing end-state distributions of the clusters.
The models allowed us to capture state durations based on the dynamics of the
cluster. Furthermore, representing each cluster as a Markov chain led to easily
interpretable results that may impact design decisions and future developments
of the respective service.
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Abstract. Modern data mining algorithms frequently need to address
learning from heterogeneous data and knowledge sources, including
ontologies. A data mining task in which ontologies are used as back-
ground knowledge is referred to as semantic data mining. A special form
of semantic data mining is semantic subgroup discovery, where ontol-
ogy terms are used in subgroup describing rules. We propose to enhance
ontology-based subgroup identification by Community-Based Semantic
Subgroup Discovery (CBSSD), taking into account also the structural
properties of complex networks related to the studied phenomenon. The
application of the developed CBSSD approach is demonstrated on two
use cases from the field of molecular biology.

Keywords: Semantic data mining · Bioinformatics
Community detection · Network analysis · Term enrichment analysis

1 Introduction

Modern machine learning approaches are capable of using continuously increas-
ing amounts of information to explain complex phenomena in numerous fields,
including biology, sociology, mechanics and electrical engineering. As there can
be many distinct types of data associated with a single phenomenon, novel
approaches strive towards the integration of different, heterogeneous data and
knowledge sources into unified predictive or descriptive models.

In such settings, prior knowledge can play an important role in the develop-
ment and deployment of learning algorithms in real world scenarios. Background
knowledge can come in many forms, which introduces additional complexity to
the modeling process, yet can have a great impact on the model’s performance.
For example, Bayesian methods can be leveraged to incorporate knowledge about
prior states of a system, i.e. prior distributions of random variables being mod-
eled. In the Bayesian setting, the prior knowledge is incorporated via condi-
tional probabilities used in the Bayes rule for posterior probability calculation.
c© Springer International Publishing AG, part of Springer Nature 2018
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For example, Bayesian methodology is in widespread use in the field of phy-
logenetics, where Bayesian inference is used for reconstruction of evolutionary
trees [1]. A different modeling technique was used in a biological application by
Madahian et al. [2], where a general linear model was developed to aid gene
expression profiling, achieving better predictive accuracy by using prior knowl-
edge based on the index rank of the term “cancer” in the underlying background
knowledge. Background knowledge can be encoded also more explicitly, as an
additional knowledge source to be used in learning the models. A machine learn-
ing discipline that relies heavily on the use of explicitly encoded background
knowledge is inductive logic programming (ILP) [3]. In ILP, background knowl-
edge is used along with the examples to derive hypotheses in the form of logic
programs, which explain the positive examples.

Semantic Data Mining. Semantic data mining (SD) [4] is a field of machine
learning that employs curated domain knowledge in the form of ontologies as
background knowledge used in the learning process. An ontology can be rep-
resented as a data structure consisting of semantic triplets T (S, P,O), which
represent the subject, its predicate and the object. Resource Description Format
(RDF) hypergraph is a data model commonly used to operate at the inter-
section of data and the ontologies. There are many existing approaches, which
use background knowledge in the form of an ontology to obtain either more
accurate or more general results. First, knowledge in the form of ontologies can
represent constraints, specific to a domain. It has been empirically and theo-
retically demonstrated, that using background knowledge as a constraint can
improve classification performance [5]. The RDF framework provides also the
necessary formalism to leverage the graph-theoretic methods for ontology explo-
ration. Random walks and large scale motif sampling are some of the techniques
used to discover indirectly associated biological terms [6]. Semantic clustering
is an emerging field, where semantic similarity measures are used to determine
the clusters using the background knowledge, in a manner similar to, for exam-
ple, k-means family of clustering algorithms. Semantic clustering is frequently
used in the area of document clustering [7]. Large databases in the form of RDF
triplets exist for many domains. For example, the Bio2RDF project [8] aims
at integrating all major biological databases and joining them under a unified
framework, which can be queried using SPARQLQ—a specialized query lan-
guage. The BioMine methodology is another example of large-scale knowledge
graph creation, where biological terms from many different databases are con-
nected into a single knowledge graph with millions of nodes [9]. Despite such
large amounts of data being freely accessible, there remain many new opportu-
nities to fully exploit its potential for knowledge discovery.

Semantic Subgroup Discovery. Semantic subgroup discovery (SSD) [10,11]
is a field of data mining named subgroup discovery, which is compliant with the
paradigm of rule learning that expect a labeled training set, where class labels
are used to denote the groups for which descriptive rules describing groups of
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instances of interest are to be learned. Apart from experimental data, a semantic
subgroup discovery algorithm leverages background knowledge in the form of
ontologies in order to guide the rule learning process. For example, the Hedwig
algorithm [10,12] accepts the input in the form of ontologies and the instances,
grouped into different classes, and the individual instances are mapped to the
ontology terms, while rule learning is guided by the hierarchical relations between
the considered ontology terms. Hedwig is capable of using an arbitrary ontology
to identify latent relations explaining the discovered subgroups of instances.

Complex Networks. Complex networks are graphs with distinct, real world
topological properties [13]. Many natural phenomena can be described using
graphs. They can be used to model physical, biological, chemical and mechanical
systems [14,15]. Real world networks can be characterized with distinct statisti-
cal properties regarding their node degree distribution, component distribution
or connectivity [16]. Complex biological and social networks are also known to
include many communities, i.e. smaller, distinct units of a network [17]. Complex
networks are commonly used in modeling systems, where extensive background
knowledge is not necessarily accessible. Motif finding, community detection and
similar methods can provide valuable insights into the latent organization of the
observed network.
In this work we propose a methodology, where iteratively constructed complex
networks are used to identify relevant subgroups, which are used as input for
the process of semantic subgroup discovery. We demonstrate that new knowledge
can be obtained using existing, freely accessible heterogeneous data in the form
of complex networks and ontologies. In the next sections we present the proposed
methodology and demonstrate the use of the new approach on two datasets from
the life science domain, where the complementarity with existing enrichment
analysis tools is demonstrated.

2 Methodology

This section presents the proposed approach to semantic subgroup discovery
from complex networks, named CBSSD (Community-Based Semantic Subgroup
Discovery). The proposed approach operates on a list of terms connected with
the studied phenomenon. The main steps include: network construction, com-
munity detection and semantic subgroup discovery. The proposed methodology
is depicted in Fig. 1.

Constructing the Network of Associations. A list of relevant biological
terms is used to construct a term network. The network is constructed using the
BioMine methodology [9]; individual terms are used as seeds for crawling the
BioMine knowledge graph, which already includes millions of term associations
across main biological databases, such as UniProt [18], Kegg [19], and GenBank
[20]. The final knowledge graph Gf is constructed incrementally, by querying one
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Fig. 1. Schematic representation of the proposed CBSSD procedure. Complex graph’s
communities are used to identify possible subgroups in the input term list. The sub-
groups are further explained using semantic subgroup discovery with background
knowledge.

term at a time. This knowledge graph consists of a set of graphs {G1, . . . , Gn},
where n is the total number of query terms and, for each i, Gi = (Vi, Ei). In
order to obtain the final graph Gf , node and edge information from {G1, .., Gn}
is joined into a single graph. Throughout the network construction process, nodes
and edges can not be duplicated—once the node is present in the final graph,
only new edges can be added. Final set of nodes Vf thus equals

⋃n
i=1 Vi and final

set of edges Ef similarly equals
⋃n

i=1 Ei.

Community Detection in Homogeneous Networks. Once the network
is constructed, a network community detection algorithm is used to identify
interesting subsets of the network, which are directly mapped to groups within
the input query list. We use the Louvain algorithm [21], which is based on
the network modularity measure [22] defined for splitting the network into two
modules (mi and mj) as follows:

ξ =
1

2m

n∑

i=1

n∑

j=1

[

Ai,j − didj

2m

]
mimj + 1

2
(1)

where the ξ represents the modularity, m the number of all edges, A the adja-
cency matrix (i.e. Aij is equal to 1 if the i-th and j-th node are connected and 0 if
they are not), and di is the degree of node ui. Term mi represents a membership
function, which returns 1 if a specific node is present in the observed module and
−1 otherwise. The final community partition includes all the nodes. The Louvain
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algorithm is one of the most scalable community detection methods due to its
O(n log(n)) time complexity. For this step, the constructed knowledge graph was
interpreted as an undirected graph, which is a feasible assumption as long as we
are interested only in biological associations. The community detection proce-
dure returns sets of nodes {C1...n} that represent individual communities. Each
node in the network belongs to exactly one community (i.e. the communities are
non-overlapping). We are interested in finding subgroup descriptions of these
communities. In order to do this, each community Ci becomes a class label Ti.
The terms from the input list are partitioned to individual classes according to
the community they belong to. This way, input terms are grouped into distinct
classes, yet no additional terms are added as they could introduce unnecessary
noise in the semantic subgroup discovery step.

Community Detection in Heterogeneous Networks. As the networks
under consideration consist of many distinct layers (node types), our method-
ology can also account for such organization without additional simplification
of the network. For such tasks, we leverage the state-of-the-art InfoMap algo-
rithm for multilayer community detection [23]. This algorithm’s objective is to
minimize the information gain, formulated as the map equation:

L(M) = q � H(Q) +
m∑

i=1

pi
◦H(pi) (2)

where L(M) represents the per-step description length for module partition M .
For module partition M of n nodes into m modules, L(M) is the lower bound of
the average length of a code word describing the trace of a random walker. The
partition resulting in the shortest description length is believed to best represent
the network dynamics. The q � H(Q) represents the total probability that the
random walker enters any of the m modules under consideration. The entropy
of the relative rates H(Q) is used to measure the smallest average code word
length that is theoretically possible. The pi

◦ represents the total probability that
any node in the module is visited, plus the probability that the random walker
exits the module and the exit code word is used. Entropy H(pi) of the relative
rates at which the random walker exits module i and visits each node in module
i, measures the smallest average code word length that is theoretically possible.
For completeness, our approach includes also a variant of the InfoMap algorithm,
which detects communities in homogeneous networks, i.e. networks consisting of
single node types.

Preparation of the Background Knowledge. Semantic rule learning
requires the data to be encoded in the form of RDF triplets T (S, P,O), where
S is the subject, P the predicate and O the object. The experimental data from
the previous step was converted into RDF triplets in accordance with Hedwig,
the algorithm used in the rule discovery process [10]. Hedwig is capable of lever-
aging the background knowledge in the form of ontologies to guide the rule
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construction process. It does so by using the hierarchical relations between the
ontology terms. Rules are initially constructed using more general terms and
further refined using more specific terms. As the CBSSD methodology is pri-
marily developed for the field of bioinformatics, our main source of background
knowledge in this study is the Gene Ontology (GO) [24] database, one of the
largest semantic resources for biology. It includes tens of thousands of terms,
which together form a directed acyclic graph, directly usable by SSD tools.

For Hedwig to perform rule construction, two conditions must be met. First,
individual term names from the community detection step need to have the
corresponding GO term mappings, and second, the whole gene ontology must be
provided as a source of background knowledge. This requires that the discovered
communities are encoded in the form of semantic triplets. Such encoding is
achieved by treating each observed community as an individual target class,
where all of its terms are considered as instances of this class. The key aspect
of the rule generation procedure is the definition of the predicate, which will be
used for finding suitable rule conjunctions. The objective function can thus be
formulated as learning a rule set Δ for individual classes ζ1,..,n using background
knowledge (Ξ) in the form of ontologies, and class instance embeddings (in the
semantic space) γ, such that the likelihood of individual class representations ζx

for x ∈ {1, .., n} is maximized, which is formulated as follows:

Δζ1,..,ζn = arg max
i∈{1,..,n}

[
Pr(Δζi |Ξ, γ)

]
. (3)

By convention, we use the subClassOf predicate when constructing the
knowledge base for the Hedwig algorithm. Individual rules’ p-values are deter-
mined by the Fisher’s exact test (FET), a non-parametric, contingency table-
based procedure, where a difference in coverage between two rules is leveraged to
select the better one. The FET test is based on the hypergeometric distribution,
in which a random variable X is distributed as

Pr(X = k) =

(
K
k

)(
N−K
n−k

)

(
N
n

) (4)

where N is the number of all examples, K is total number of positive examples,
n is the rule coverage (number of covered terms) and k is the number of covered
positives in the context of a single rule or a beam. Further, multiple hypothesis
correction (e.g., Bonferroni or Benjamini-Hochberg) is applied in order to reduce
the false discovery rate.

Final Formulation of the CBSSD Approach. First, individual input terms
are used to construct the heterogeneous network related to the studied phe-
nomenon. Communities are identified (CommunityDetection step) and the
input term list is partitioned according to the presence of individual terms within
specific communities (PartitionByCommunity). Finally, background knowledge
in the form of ontologies is used to construct meaningful representations of
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individual partitions. The CBSSD approach can thus be further formalized as
described in Algorithm 1.

Algorithm 1. Pseudocode of the CBSSD approach
Data: terms (T ), ontologies (Ξ), mapping function (M), network

generator (G)
Result: Enriched rule sets Δζ1,..,ζn

Sf := ∅ ;
foreach t ∈ T processed do

Sfedges
:= G(t)edges ∩ Sf ;

Sfnodes
:= G(t)nodes ∩ Sf ;

end
C1...n := CommunityDetection(Sf );
P1...n := M(PartitionByCommunity(T,C1...n));
foreach Px ∈ P1...n do

while Δζxnotfinal do

Δζx := arg max
[
Pr(Δζx |Ξ, γ)

]

end
end

In Algorithm 1, T represents the input term list, O the ontology used in the
semantic learning process, M the mapping from T to O and G a graph generator,
and Sf represents the knowledge graph, which is constructed from the input
term list. The stopping criterion for evaluating individual sets of rules can be
any statistical measure of rule significance, such as for example the chi-squared
metric, entropy-related measures or similar. The second while corresponds to a
rule beam update, the key part of the semantic subgroup discovery.

There are two computationally expensive steps in the CBSSD approach.
The community detection and the semantic subgroup discovery. The commu-
nity detection algorithms used [21,23] were previously proven to scale well up to
millions of nodes and edges. The subgroup discovery part uses efficient beam
search, where only a set of rules is propagated through search space and con-
tinuously upgraded. Furthermore, Hedwig [10,12] uses efficient parallelism with
bitsets.

As CBSSD consists of many distinct steps, having no free parameters would
not cover all possible uses. First, the community detection step is parameterized
in terms of number of iterations, as well as the detection type, which can include
information on multilayer edges or not. Initial network construction is parame-
terized in the number of concurrent terms, being sent as a query to the BioMine
graph crawler. Larger number of terms results in more coarse-grained networks
and thus smaller numbers are preferred (e.g., in range from 1 to 10). Mind that
smaller number of concurrent terms results in longer network construction step.
Some of the key parameters for the rule learning part include beam size, search
heuristic and significance thresholds. Larger beam sizes naturally result in larger
rule-sets, which results in longer execution times.
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3 Using CBSSD for Knowledge Discovery

This section demonstrates the use of the proposed methodology on two real world
datasets from the life science domain. First, we consider properties of amino-acid
variants within protein binding sites, followed by cancer related transcription
factors identified in the context of epigenetics.

3.1 Discovery of Properties of Proteins with Single Amino-Acid
Variants Present in the Binding Sites

Sequence variants are nucleotide or amino acid substitutions that can lead to
unstable protein interaction complexes and thus influence the organism’s phe-
notype (e.g., induce a disease state). There are two main types of variants: poly-
morphisms or germ-line variants that are heritable, and somatic mutations that
appear in somatic tissues without previous genetic encoding. Although it was
demonstrated that variants within biological interactions can be associated with
disease occurrence [25–28], currently there are no studies of this phenomenon
aimed at discovering new subgroups of proteins associated with variants within
interaction sites at a more general level.

We use the results from a previous enrichment analysis study [25] for com-
parison with the proposed CBSSD methodology. Enrichment analysis in the con-
text of this study is concerned with the identification of single significant terms,
associated with the studied phenomenon. The results are compared based on
terms appearing in both approaches, i.e. terms found as a result of enrichment
analysis as well as a result of semantic subgroup discovery. As the two com-
pared approaches are fundamentally different, the intersection of both results is
expected to be relatively small (highly significant terms).

Preparing the Input for Semantic Subgroup Discovery. More than 300
UniProt terms, for which variants were found within protein binding sites, were
used as the input query list (found in supplementary material of [25]). A BioMine
knowledge graph with more than 1,650 nodes and 2,300 edges was constructed.
The resulting network is depicted in Fig. 2.1

Triplet construction consists of first mapping the nodes from the knowledge
graph to the associated ontology terms, followed by the construction of the
background knowledge. In this application, the Gene ontology [24] was used
in both steps. Semantic subgroup discovery was conducted for more than 20
communities, and as the main result, more than 100 rules of various lengths were
obtained. The most significant and the longest rules were manually inspected
to identify possible overlap with previous pathway enrichment studies done on
the same input dataset. Different beam sizes were experimented with in the
procedure (from 10 to 50).

1 Plotted with the Py3Plex library (https://github.com/SkBlaz/Py3Plex).

https://github.com/SkBlaz/Py3Plex
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Fig. 2. Final size of the BioMine network, associated with polymorphisms located
within protein interaction sites.

Results. The obtained rule sets for the identified communities were further
inspected. We directly compared the ontology terms present in the rules with
the terms, identified as significant in our previous study [25]. For this näıve
comparison, conjuncts were considered as individual entries, as we were only
interested in term presence (not coverage). There were 13 gene ontology terms
present in both approaches (Table 1). Although only 13 terms were found with
both procedures, the identified terms were among the most significant ones
detected in the enrichment analysis setting. This indicates, that both proce-
dures identified a strong signal related to DNA and cell cycle related pro-
cesses. As semantic subgroup discovery was conducted for separate communi-
ties, the results were expected to be more detailed and comprehensive. This
was indeed the case: given that many CBSSD rules consist of two conjuncts,
these rules are potentially more informative than the ones identified by ontol-
ogy enrichment analysis. As iron binding proteins were present in the protein
list (this was known from the previous study [25]), rule R = GO:0034618 ∧
GO:0006874 appeared as one of the most significant rules (p < 0.1). Ontology
terms in this rule represent arginine binding and cellular calcium homeostasis—
both processes involving terms from the part of the input term list; a part
not directly detected with enrichment analysis. The key UniProt term found
for this rule was P41180 (CASR), which represents the extracellular calcium-
sensing receptor [29]. As CASR is indeed critical for calcium homeostasis dis-
covery (GO:0006874), it serves as an indicator of the validity of our CBSSD
approach. The second term (GO:0034618), representing arginine binding is not
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Table 1. Gene ontology terms, found both in enrichment and semantic rule learning
process. Terms marked with * emerged as the most statistically significant (p < 0.1)
and therefore relevant for semantic subgroup discovery.

Gene ontology term Meaning

GO:0000077 DNA damage checkpoint*

GO:0000086 Mitotic cell cycle*

GO:0003677 DNA binding*

GO:0004871 Signal transducer activity*

GO:0005730 Nucleolus*

GO:0005814 Centriole

GO:0016020 Membrane

GO:0016605 PML body

GO:0030018 Z-disc

GO:0035264 Multicellular organism growth

GO:0045892 Negative regulation of transcription (DNA)

GO:0000122 Negative regulation of transcription (RNA)

GO:0000785 Chromatin

so directly associated with the CASR protein. To further investigate the con-
text, within which GO:0034618 occurs, we queried the gene ontology database
directly for similar proteins, already associated with this term. The majority
of proteins, annotated with this term, correspond to acetylglutamate kinase, an
enzyme that participates in the metabolism of amino acids (e.g., urea cycle). A
possible interpretation of this association is that the CASR protein induces hor-
monal response, which could effectively lead to increased amino-acid metabolism,
providing the molecular components necessary for establishment of homeosta-
sis. This association serves as a possible candidate for further experimental
testing and demonstrates the hypothesis generation capabilities of proposed
approach.

Another interesting rule emerged from the first community identified. Rule
GO:0030903 ∧ GO:0000006 was found for UniProt entries Q96SN8 (CDK5 reg-
ulatory subunit-associated protein 2), O94986 (Centrosomal protein), Q9HC77
(Centromere protein J) and O43303 (Centriolar coiled-coil protein). It can be
observed that all the identified proteins are connected with nucleus-related pro-
cesses. TermGO:0030903 corresponds to notochord development, which is a stage
in cell division—a term directly associated with the identified proteins. The sec-
ond term, GO:0000006, corresponds to high-affinity zinc uptake transmembrane
transporter activity, a process related to enzyme system responsible for cell divi-
sion and proliferation. Although this rule does not imply any new hypothesis, it
demonstrates the generalization capability of the proposed approach.

Many terms remain specific for either semantic rule discovery based on com-
munity detection or enrichment analysis. This discrepancy appears due to the
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fact that community detection splits the input term list into smaller lists, which
can be described by completely different terms than the list as a whole. As the
proposed methodology splits the input list, it is not sensible to compare it with
conventional approaches, which operate on whole lists. Both approaches cover
approximately the same percentage of input terms. The CBSSD’s coverage is
12.02% with 218 GO terms, whereas the term coverage for conventional enrich-
ment is 12.3% with 881 GO terms. The Term discrepancy serves only as a proof
of fundamental difference between the two approaches. Nevertheless, we demon-
strate that our approach is a useful complementary methodology to the well
established enrichment analysis.

3.2 Grouping of Epigenetic Factors

Epigenetics is a field, where processes such as methylation are studied in the
context of the influence of environment on the phenotype. Epigenetic factors
are actively researched, and are constantly updated in databases such as emDB
[30], where information such as gene expression, tissue information and variant
information is publicly accessible. We tested the developed approach on the list
of many currently known epigenetic factors related to cancer. The epigenetics
dataset was chosen for two main reasons: first, to demonstrate the CBSSD’s
performance on a dataset, to our knowledge not yet used in semantic subgroup
discovery, and second, this dataset serves to further test the developed method-
ology in the context of different biological process. The 153 distinct UniProt
terms were used as input for the BioMine knowledge graph construction. Final
graph consisted of approximately 4,500 nodes and 5,500 edges, respectively. The
obtained knowledge graph is significantly larger than the one used in the previ-
ous case study (properties of SNVs in binding sites) and thus demonstrates the
capabilities of the developed approach on larger graphs.

More than 50 communities were identified and further inspected. For the com-
munity including UniProt term Q8WTS6 (Histone-lysine N-methyltransferase),
many interesting rules emerged. For example, rule (p = 0.09): GO:1990785 ∧
GO:0000975 ∧ GO:0000082 indicates that the protein is indeed highly asso-
ciated with epigenetic processes. Term GO:1990785 describes water-immersion
restraint stress, term GO:0000975 regulatory region DNA binding and term
GO:0000082 transition of mitotic cell cycle. All three terms describe the
Q8WTS6 entry, as it effects the DNA’s topological properties (coil formation)
and is responsible for transcriptional activation of genes, which code for colla-
genases, enzymes crucial to mitotic cell cycle (wall formation). To further ana-
lyze CBSSD’s generalization capabilities, we plotted all rule sets (communities)
against all GO terms, identified as enriched by the DAVID Bioinformatics Suite
[31]. As this experiment is conducted using only terms, previously identified as
significant, CBSSD’s significance threshold was relaxed to p = 0.5. Additional
relaxation was introduced to cover more possibly interesting patterns, which
would otherwise be considered noise or false positive results.

The semantic landscape obtained in this experiment is depicted in Fig. 3.
It can be observed that only a handful of GO terms serve as a basis for more
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Fig. 3. Visualizing higher order abstraction emerging from previously enriched terms
associated with epigenetic regulators. It can be observed (inset image), that only
a couple of terms correspond to multi-term rules (red rectangles). Terms, such as
GO:0000118 represent very high level terms, associated with majority of epigenetics-
related processes. Such terms are most commonly included in more complex rules.
(Color figure online)

complex rules. For this example, some of these terms are GO:0000118, which
represents the Hystone deacetylase complex, one of the key mechanisms for
hystone structure regulation. The GO:0000112, representing negative regula-
tion of transcription from RNA polymerase II promoter, a mechanism by which
many epigenetic regulators influence the transcription patterns, GO:0000183,
representing chromatin silencing at rDNA, GO:0000785 and GO:0000790, rep-
resenting chromatin in general, GO:0000976, representing transcription regula-
tory region sequence-specific DNA binding and GO:0001046, which represents
core promoter sequence-specific DNA binding. The described terms are all fun-
damentally associated with epigenetic regulation, which proves CBSSD was able
to use the more general terms to construct meaningful rules. Overall, 27% of
all significant terms identified via conventional enrichment analysis were also
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found via CBSSD algorithm. Such low percentage is expected, as CBSSD builds
upon individual subsets of the larger termset, used in conventional enrichment.
This result implies the higher level terms are similar in both approaches, yet
CBSSD identified latent patterns, which can not be detected via conventional
enrichment. The higher level terms appear to form the base for more complex
rules. Similar behavior was reported as a result of the SegMine methodology
[32], which similarly to CBSSD yields explanatory power of rules in order to find
enriched parts of input term lists. Coverage-wise, both approaches perform the
same, as the CBSSD’s coverage is 96.7% with 230 GO terms, whereas the term
coverage for conventional enrichment is 96.7% with 360 GO terms. Similarly to
the case study one, CBSSD needed less GO terms to cover approximately the
same percentage of input term list.

4 Conclusions and Further Work

Semantic data mining is an emerging field, where background knowledge in the
form of ontologies can be used to generalize the rules emerging from the learn-
ing process. In this study, we demonstrate how such an approach can be used
to induce rules describing the communities, detected on an automatically con-
structed knowledge graph. Our implementation was tested on two data sets from
the life science domain, where validity of the most significant rules was manually
inspected in terms of biological context. This approach works for up to 6,000
terms in reasonable time (e.g., a day), but for more than e.g., 10,000 terms,
whole graphs should be used from the beginning, if possible. As the number of
rules produced can be large, adequate visualization techniques for elegant result
inspection are still to be developed. Our approach differs significantly from con-
ventional enrichment analysis, as interesting groups of terms are identified based
on the underlying network structure, rather than manual, expert-guided selec-
tion. We currently see CBSSD it as a complementary methodology to enrichment
analysis, as it is capable of describing latent patterns beyond the ones expected
by a domain expert. Further work includes extensive testing of CBSSD on larger
data sets, possibly from many different domains.

Availability. The Community-based subgroup discovery reference implemen-
tation is freely available at https://github.com/SkBlaz/CBSSD.
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of financial news articles. In: Fürnkranz, J., Hüllermeier, E., Higuchi, T. (eds.) DS
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Toivonen, H.: Contrasting subgroup discovery. Comput. J. 56(3), 289–303 (2012)
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