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Abstract. Recently a cell differentiation model based on noisy random
Boolean networks has been proposed. This mathematical model is able
to describe in an elegant way the most relevant features of cell differenti-
ation. Noise plays a key role in this model; the different stages of the dif-
ferentiation process are emergent dynamical configurations deriving from
the control of the intracellular noise level. In this work we compare two
approaches to this cell differentiation framework: the first one (already
present in the literature) is focused on a network analysis representing
the average wandering of the system among its attractors, whereas the
second (new) approach takes into consideration the dynamical stories
of thousands of individual cells. Results showed that under a particular
noise condition the two approaches produce comparable results. There-
fore both can be used to model the cell differentiation process in an
integrative and complementary manner.

1 Introduction

Cell differentiation is the process by which the development of specialized cell
types takes place, starting from a single cell (the zygote). The development of
different cell types is the result of highly complex dynamics between intracellu-
lar, intercellular, external and inherited signals [4,5]. Intracellular interactions
are captured in gene regulatory networks (GRNs): complex networks that reg-
ulate the gene expression. Each cell type presents a particular pattern of gene
expression.

Boolean networks (BNs) [6] are models of gene regulatory networks and
are prominent examples of complex dynamical systems. Recently a cell dif-
ferentiation model based on Boolean networks subject to noise has been pro-
posed [11,12]. This model reproduces the generic abstract features of the differ-
entiation process, such as the attainment of different degrees of differentiation,
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deterministic and stochastic differentiation, reversibility, induced pluripotency
and cell type change [12]. The model considers the asymptotic behaviours of
noisy random Boolean networks, where (intracellular) noise is modelled as the
transient flip of a node value. Attractors of BNs are unstable with respect to
noise even at low level [10]. In fact, even if the flips last for a single time step
sometimes we observe transitions from an attractor to another one. The main
abstraction introduced in the model presented in [11,12] is the Threshold Ergodic
Set (TES). TESs represent the asymptotic states of the BNs subject to noise.
The various steps of the differentiation process are represented by TES land-
scapes, which are the emergent results of intracellular noise changes. This model
offers a way to mitigate the intrinsic complexity of the analysis of stochastic sys-
tems: by applying it we are able to analyse a noisy random Boolean network and
produce a static global picture of the all possible differentiation pathways that
it can express. So, the main characteristics of the differentiation are captured by
TES-based differentiation trees, TES-trees in the following.

The generic abstract properties of the model have been already shown to
match those of the real biological phenomenon. However, we remark that (i) the
results produced by this model depend on the specific noise mechanism imple-
mented and therefore the properties enlighten by the TES model might differ
from those observed in the dynamics of real biological cells, as noise acting on
them might perturb them in different ways; and (ii) the differentiation picture
the TES model produces summarises all the possible outcomes of the BN dynam-
ics that may happen under this specific noise mechanism and so it might not
represent in sufficient detail individual cell dynamics. For these reasons, we com-
pared the properties of the TES model with the actual dynamical simulation of
the BN subject to random external perturbations with the aim of assessing to
what extent the two approaches exhibit comparable results and their respective
strengths and weaknesses.

The paper is organised as follows. In Sect. 2 we introduce the differentiation
model. In Sect. 3 the approach based on stochastic simulations of Boolean net-
works is illustrated. The experimental setting is described in Sect. 4. Results and
discussion are presented in Sects. 5 and 6, respectively.

2 TES Differentiation Model

The cell differentiation model we consider in this work has been presented in
[11,12]. This abstract model1 is able to describe the most relevant features of
the differentiation process, which are the following:

1. Different degrees of differentiation: totipotent, pluripotent, multipotent and
fully differentiated cells.

2. Stochastic differentiation: a population of identical cells can generate different
cell types, in a stochastic way.

1 It is abstract because does not refer to a specific organism or cell type.
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3. Deterministic differentiation: activation or deactivation of specific genes or
group of genes can trigger the development of a multipotent cell into a well-
defined type.

4. Limited reversibility : a cell can come back to a previous stage under the action
of appropriate signals.

5. Induced pluripotency : fully differentiated cells can come back to a pluripotent
state by modifying the expression level of some genes.

6. Induced change of cell type: the expression of few transcription factors can
convert one cell type into another.

This differentiation model is based on noisy random Boolean networks. A
Boolean network (BN) is a genetic regulatory network (GRN) model, and a
complex dynamical system, introduced by Kauffman [6]. A BN is a discrete-
state and discrete-time dynamical system whose structure is defined by a directed
graph in which each node represents a gene; genes are binary devices that have
incoming arcs from other nodes if these last influence the activation of that gene.
The most studied BN models are characterized by synchronous dynamics and
deterministic functions. With such dynamics, the reachable asymptotic states
are fixed points and cyclic attractors.

This differentiation model takes into account only intracellular noise, since
it deals with a single cell as a closed system. It is generic and in principle can
support different definitions of noise; however in this contribution we adopt the
noise type originally presented in [11,12]. Hence, we investigate the asymptotic
dynamics of BNs subject to noise modelled by the transient flip of a randomly
chosen node which lasts for a single time step (a logic negation of node’s state).
After the transient flip the BN evolves according to its usual deterministic rules
until an attractor is found. This noise type represents the smallest stochastic
perturbation that can affect a Boolean network; even in this configuration we
can observe jumps from an attractor to another one. By perturbing each node of
each phase of each attractor found (one at a time), and checking in which attrac-
tor the dynamics lead we can compute the attractor transition matrix (ATM).
This procedure is described in [8,12,13]. The ATM summarises the observed
transitions between attractors and gives us an estimate of the probabilities with
which such transitions can occur; a measure of the system’s robustness respect
to a random flip of an arbitrary state.

The Threshold Ergodic Set (TES) is the key concept introduced on ATM:
indeed, cell types are modelled by TESs. A TESθ is a set of attractors in which
the dynamics of the network remains trapped, under the hypothesis that attrac-
tor transitions with probability less than threshold θ are not feasible2. TESs
are computed from the ATM, by iteratively removing the entries with value less
than a threshold θ, which is progressively increased from 0 to 1. The TES-trees
are constructed following this procedure: TES0 represents the level 0 and each

2 This hypothesis is supported by the observation that cells have a finite lifetime,
which enables their dynamics to explore only a portion of the possible attractor
transitions.
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subsequent level is created if the current threshold applied to the ATM pro-
duces a different TES-landscape with respect to the previous one. In this way
we capture, in a static representation, all the possible differentiation dynamics
of a BN subject to noise. The threshold abstraction plays an important role,
as it is a mathematical concept strictly related with the noise level in the cell: it
scales with the reciprocal of the noise level. High levels of noise (low threshold
values) correspond to pluripotent cell states, where the BN trajectory can wan-
der freely among the attractors; conversely, low levels of noise (high thresholds)
induce low probabilities to jump between attractors, thus representing the case
of specialised cells [11,12].

3 Stochastic Simulation Approach

The main contribution introduced by the previous model is that the differenti-
ation process is strongly correlated with the intracellular noise level. From the
model point of view we know how the threshold is related to noise, see [11], and
in addition we know that pluripotent cells have a more intrinsic noise level than
the more specialized ones [9]. But the threshold and above all its variation mech-
anism introduced in the model (with which we model the differentiation process)
are externally controlled. In fact the threshold represents an abstraction of the
mechanisms implemented by the real cell to control noise. The identification
of autogenous mechanisms, somehow bound to cell’s dynamics, through which
achieve a threshold self-regulation is subject of ongoing work. As first step to
identify the biological mechanisms that affect noise level, and in turn the thresh-
old, we can take in exam a system with different types of noise and noise levels
and we can verify if the system is able to reproduce the TES phenomenology. In
fact, the approach to cell differentiation previously presented might not capture
the real asymptotic configurations of real cells if the cellular system is subject
to a noise implemented in a different way with respect to the original model.
For example, a real cell dynamics might quickly diverge from the TES model’s
prevision if its dynamics is such that:

– more than one noise events can occur simultaneously in an asymptotic state;
– noise events occur in its transients.

In addition, the TES-based differentiation trees are constructed following a spe-
cific process of threshold variation on the ATM. This process allows us to observe
all the differentiation pathways the GRN model is capable of expressing, under
a particular noise setting.

To verify to what extent can the TES model predict the entire spectrum of
scenarios produced by the dynamics of a system subject to intrinsic noise, we per-
form time evolutions of Boolean networks subject to different noise levels and we
compare these two approaches. Noise levels are represented by distinct frequen-
cies of random perturbations. In such a way, we have the means for counting—for
each noise level—the number of differences between the outcomes obtained with
the TES model and the stochastic simulations. In the following we call a story
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a single time evolution of a BN subject to random perturbations. Considering
that we are interested in the asymptotic behaviour of the BN dynamics we count
the jumps between attractors obtained in each story and we compare them with
each level of the TES-based differentiation tree, computed using the TES-model
approach on the same BN. We call an incompatibility a jump between attractors
that would not be allowed given the TES-landscape of a tree’s level.

4 Experimental Setting

The Boolean networks used in the experiments have n = 100 nodes and k = 2
distinct inputs per node assigned randomly (self-loops are not allowed). Boolean
functions have been set by assigning a 1 in the node truth table so as to attain
exactly a frequency of 0.5 across all the truth tables (for k = 2, this corresponds
to the critical value [1]). The rationale behind this choice is that in preliminary
results, by setting the bias for each boolean function, in some instances the aver-
age overall bias calculated on all nodes could have a non-negligible standard
deviation from the desired mean value. Because we want to estimate the differ-
ences between the model and the stochastic simulations, we did not want the
results to be affected by variance in network dynamic regime. So we use an exact
bias, following this procedure for generating networks: we generate a vector of
length equal to the sum of the number of Boolean functions’ entries of all nodes
in the network (2k ∗ n), we assign half the values to 1 and half to 0 and we use
a random permutation of this vector to define the Boolean functions.

The BN is subject to a synchronous dynamics, i.e. all nodes update their
state in parallel and functions are applied deterministically. Given that the typ-
ical time needed to transcribe a gene is equal to 25–50 s in yeasts and 2–3 min
in mammalians (see reference BNID 111611 [7]); we assume 1 min as a plausi-
ble mean value for a BN’s synchronous step of update. In addition, analysing
the cell’s average life span in humans (see reference BNID 101940 [7]) we set to
5 × 104 the number of steps for a BN run, in order to model an upper bound
of plausible mean cell lifetimes (approximately one month). The only stochas-
tic component resides in the noise, which has been simulated as a temporary
flip of the value of a node applied with probability ν; hence, at each step of
the temporal evolution of the network, νn nodes are flipped on average. We
ran experiments with ν so as to have on average one flip every τ steps, with
τ ∈ {1, 5, 10, 15, 20, 50, 100, 200, 500, 103, 5 × 103, 104, 2 × 104, 5 × 104}. In the
following, we will denote the corresponding noise probabilities as ντ . Note that
the higher τ , the lower the probability ν applied to each node. This noise mech-
anism emulates possible temporary fluctuations in the expression level of genes
and may occur both during stationary phases (i.e. along attractors of the BN)
and transients. We run experiments with 30 random BNs; for each of them we
compute the ATM and then the TES-tree, following the procedures mentioned
in Sect. 2. A typical TES-tree is depicted in Fig. 1. The time evolution of each
BN was also simulated 100 times (100 stories), each one of them starting from
a random initial state. We collected the trajectories of the BNs and computed
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Fig. 1. An example of a TES-tree. Levels are numbered from 0, the topmost, to n, the
lowermost; n = 6 in this example. TES of level 1 has a diamond shape whereas TESs
of level n have an hexagonal one. Labels on the edges indicate the minimum threshold
value at which any TESs of the previous level splits or reduces. Continuous lines denote
paths along the differentiation tree that can be followed by increasing the threshold at
minimum steps (these values are directly obtained by the ATM). Dashed lines denote
the paths that can instead be followed if the threshold was increased by larger steps.

statistics on the compatibility between the stories and the TES-tree, besides
other ancillary statistics on the overall dynamics of the BNs.

5 Results

In this section we provide the results obtained. The comparison between TES-
trees and simulations with stochastic noise is mainly based on counting the
transitions between attractors that are observed in the stochastic simulation
but that are not allowed by the ATM, given a probability threshold θ. That is,
the analysis of what we have called incompatibilities between the two approaches



122 M. Braccini et al.

Fig. 2. Distribution of the median values of the incompatibilities between the level 1
and level n of the TES-trees and stochastic simulations with the probabilities to flip a
node ν so as to have on average one flip every 1, 5, 10, 15, 20 steps. Noise probabilities
ντ expressed with different colours (Color figure online).

for modelling cell differentiation. For each value of ντ , we counted the incompat-
ibilities observed in all the 100 stories w.r.t. the lowest non-zero value of θ (level
1 of the TES-tree) and the highest one, where all TESs are single attractors
(level n of the TES-tree). These two particular levels are taken as representative
elements able to summarise the trend of incompatibilities since level 1 represents
the first TES with not trivial constraints and level n is the most constrained one.
Results are summarised in Figs. 2, 3 and 4. In these figures the boxplots graphi-
cally represent distributions of the median values of the overall incompatibilities
(computed on all 30 BNs) with respect to a particular noise level; different noise
levels are represented by distinct colours. For each noise level two boxplots are
plotted, one for the incompatibilities with respect to the level 1 and one for the
level n.

As expected, the higher ντ (corresponding to low values of τ), the higher
the number of these incompatibilities. Moreover, this increases with θ; which
corresponds to the increase of the TES-tree’s depth. Despite the discrepancy
which is apparent at high noise levels, we observe that already for medium noise
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Fig. 3. Distribution of the median values of the incompatibilities between the level 1
and level n of the TES-trees and stochastic simulations with the probabilities to flip a
node ν so as to have on average one flip every 50, 100, 200, 500 steps. Noise probabilities
ντ expressed with different colours (Color figure online).

levels, i.e. not higher than ν200, the incompatibilities are limited and tend to be
negligible towards low noise levels.

As previously stated, we could observe marked differences between model
and simulations if the actual noise presents in the stories is different from that
hypothesized by the model. Hence, we analyze the dynamics of the stochastic
simulations and we count the number of noise events occurred during transients
and the multiple flips in attractors. With multiple flips we mean the occurrence
of more than one node value change at a time. Situations both not covered in
the model and which could represent the main causes of divergence between the
two approaches. In Figs. 5, 6, 7 and 8 each distribution summarises the median
values of the property in exam; the median value for each BN computed across
the 100 stories of a particular noise level. Hence, we have one boxplot for each
distribution of medians. These statistics show that noise events in transients and
multiple flips decrease in an exponential way as noise decreases. This trend is
more evident in Figs. 6 and 8, which have logarithmic scales. We can note that
under noise level ν100 the number of multiple flips and noise during transients
become negligible with respect to the number of steps considered in the stories
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Fig. 4. Distribution of the median values of the incompatibilities between the level 1
and level n of the TES-trees and stochastic simulations with the probabilities to flip a
node ν so as to have on average one flip every 1000, 5000, 10000, 20000, 50000 steps.
Noise probabilities ντ expressed with different colours (Color figure online).

(i.e. 5 × 104). We must remark that although the flip of a gene is the smallest
stochastic perturbation that can affect a Boolean network it biologically repro-
duces a fairly intense event, much stronger than molecular fluctuations. Hence,
the noise level ν200 (250 noise events on average in a story) identified as the con-
vergence point between the two approaches could even be a too high noise level
for a real cell’s life span. This observation contextualizes the results obtained in
a biological framework and it highlights the relevant noise levels in which a real
cell can operate.

The results obtained support the statement that there exists a significant
noise level under which the two models are in agreement. Therefore, (i) under this
threshold they can be both used to model differentiation phenomena—and their
observations can be combined—and (ii) the new dynamic simulations may add
interesting pieces of information on the heterogeneities of the possible individual
configurations.
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Fig. 5. Distribution of the median values of the number of noise events occurred during
transients in stochastic simulations (stories), for different noise levels. Noise levels
expressed by the ντ values in the x axis.

Fig. 6. Detail of Fig. 5 on logarithmic scale.



126 M. Braccini et al.

Fig. 7. Distribution of the median values of the number of multiple flips occurred in
the attractors in stochastic simulations (stories), for different noise levels. Noise levels
expressed by the ντ values in the x axis.

Fig. 8. Detail of Fig. 7 on logarithmic scale.
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6 Conclusion

In this paper we have compared two approaches for modelling cell differentiation,
both based on random Boolean networks subject to noise. One approach is rep-
resented by the well-known model based on TES concept, the other is grounded
in time evolutions of BNs subject to different noise levels. The analysis of the
emerging differences between these two approaches suggests that there is a spe-
cific noise level under which the two models produce similar results. This result
has important implications because it shows that both approaches can be used
to model cell differentiation and in addition their outcomes can be, at least in
part, complementary. Indeed, the new approach could be used to determine the
distribution of the extra-cellular noise, due to the intra-cellular events. Moreover
this work produced, on the one hand, another proof of robustness of the TES-
based differentiation model and, on the other, since the stochastic simulations
of BN require less computational cost than the TES model they can be used as
an alternative and exploitable approach to conceive more performing automatic
procedure for generating biologically plausible cell differentiation model based
on BNs [2,3].
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