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Abstract. In the field of theoretical biology the study of the dynamics
of the so-called gene regulatory networks is useful to follow the relation-
ship between the expression of a gene and its dynamic regulatory effect
on the cell fate. To date, most of the models developed for this purpose,
applies the synchronous update schedule while reality is far from being
so. On the other hand, the more realistic asynchronous update requires
to compute all possible updates at each single instant, thus bearing a
much greater computational load.

In the present work, we describe a novel method that addresses the
problem of efficiently exploring the dynamics of a gene regulatory net-
work with the asynchronous update.
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1 Introduction

A gene regulatory network (GRN) can be regarded as a discrete dynamical sys-
tem with a transition function T : S → S which is determined by the acti-
vation/inhibition dependencies between a given number of genes, transcription
factors or RNA molecules, where S is the set of all activation profiles of the
n involved elements, that hereinafter we refer to as the genes. In its simplest
form with the number of activation levels q = 2 representing genes that are
either activated or silent, this function T is represented as a vector of Boolean
expressions. In this and other more complicated cases (i.e., q > 2) components
of T come in special forms as polynomials and the system can be considered a
Polynomial Dynamical System on Finite Fields Fq [VCL12].

Given the transition function T , a dynamical system can be described as the
graph consisting in the set of the ordered pairs (s, T (s)) for any s ∈ S. This graph
is called the state transition graph (STG) of the dynamics T . The transition
function T can be applied according to a synchronous schedule, meaning that
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all genes are updated at the same time. A more general situation occurs when we
want to study the evolution in the case of asynchronous dynamics: in this case,
the gene to be updated is chosen at random among all genes. In both cases, the
size N of the set S of the vertices of the state transition graph of a dynamics T is
exponential in the number of genes n (N = qn) and any exhaustive method for
the investigation of its structure rapidly becomes intractable even for small n.
In the asynchronous case things are more difficult in the sense that the number
of arcs in the state transition graph is much larger.

In what follows we refer to the state transition graph structure as the set of
attractors and their properties. An attractor is a set A of states which coincides
with the set

⋃
k T k(A) of all its successors. In particular, in the synchronous

dynamics only two forms of attractors are possible: limit cycles (also referred to
as cyclic attractors) and steady states (point attractors).

Whereas any steady state of the synchronous dynamics is also a steady state
in the asynchronous case, the same cannot be affirmed for synchronous dynamics
limit cycles. In fact, a cycle could be or not a limit cyclic in the asynchronous
dynamics. Intuitively, the reason for this behaviour is that the update function
is non-deterministic and therefore it allows the dynamics to exit from cycles.

A strongly connected component (SCC) of a state transition graph is a set
of states S, such that for any pair of states s, s′ ∈ S, a directed path from s to
s′ exists. Among all SCCs of a state transition graph we are interested in the
maximal ones with respect to the classical subset relationship. Let’s call M(T )
the set of all maximal SCCs in the state transition graph of the dynamics T .
A strongly connected component is called terminal if it has no outgoing edges.
Note that given a state transition graph there exists at least one terminal SCC.
Given two maximal components A,B ∈ M(T ) we say that A precedes B (indi-
cated A → B) whenever a directed path from A to B exists.

Terminal SCCs are minimal with respect to this ordering relationship because
they are the attractors of the dynamics and by definition they are their own
successors. In the literature of asynchronous networks, in order to emphasize
that a limit cycle cannot coincide with an attractor but rather with a part of
it, attractors which are not point-attractors are sometimes referred to as loose
attractors [HB97].

An informative representation of the state transition graph structure is then
provided by a graph in which the set of nodes/vertices is the set of maximal SCCs
M(T ) and edges/arcs are the pairs (A,B) such that A precedes B (A → B). In
a similar way to [BCM+13], we call hierarchical transition graph (HTG) of the
asynchronous network this compact version of the asynchronous state transition
graph structure.

In this work, we are concerned with the method to determine the hierarchical
transition graph under certain hypothesis. Moreover, the algorithm is based on
the possibility of generating transition paths in the state transition graph that
avoid to cross previously determined cycles. Despite the number of nodes of the
state transition graph is exponential in the number of genes, the algorithm we
propose here is efficient if the graph satisfies few necessary hypotheses (described
below) in order to visit only a small fraction of the whole graph.
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The best algorithm for finding SCC in a directed graph is the algorithm from
Tarjan [Tar72]. Its time complexity is o(N + M), i.e., linear in the number of
nodes N of the resulting state transition graph, and in the number of transitions
between states M [Tar72]. We achieve a similar bound in the size of the hierar-
chical transition graph: the linear bound is therefore obtained with respect to (i)
the number of maximal SCCs, (ii) the number of nodes in any SCC and (iii) the
length of transient paths connecting pairs of SCCs. This result can be attained
because thanks to the use of logical Boolean expression of the dynamics we do
not need to explicitly compute the whole state transition graph. Instead, by fol-
lowing the approach by Dubrova and Teslenko [DT11], we generate transition
paths as solutions of the Boolean satisfiability problem, which can be computed
by using highly specialised and optimised software called SAT solvers. In partic-
ular, logical expressions can be adapted during the computation, in such a way
that their paths avoid nodes belonging to previously-discovered cycles.

In the following, we use the term SAT-complexity meaning that we count
any call to the SAT solver at unitary cost; this is the same situation assumed
in the case of synchronous dynamics in [DT11], where the main-loop iterates on
the number of cycles of the relative state transition graph. Nevertheless, from
the complexity viewpoint, any call to the SAT solver could impact on runtime
with an exponential cost. Therefore, strictly speaking, the procedure cannot be
said to have polynomial complexity but we can measure the complexity of the
procedure in terms of calls to the SAT solver and also in terms of the fraction of
the state transition graph visited in order to determine the hierarchical transition
graph of the asynchronous network. If the above mentioned three conditions on
the structure of SCCs are respected, the proposed variant of Tarjan’s algorithm
has a polynomial SAT-complexity bound on the number of genes n.

The main result of our work is the presentation of a new algorithm to deter-
mine the hierarchical transition graph of Boolean networks with several dozens
of genes in the asynchronous dynamics. To this aim, we recall in Sect. 2 some
definitions and formalisms on Boolean regulatory networks. In Sect. 3, we sum-
marise the algorithm for finding limit cycles in the case of synchronous Boolean
networks. Our algorithm is obtained by merging the (optimal) Tarjan approach
to the determination of SCCs and the algorithm that generates paths by the
SAT solver. The combination of these two approaches, described in Sect. 4, is
the main result presented in this paper since it allows to determine the hier-
archical transition graph of SCCs without exploring the entire state transition
graph.

2 Boolean Networks as Dynamical Systems

Since Kauffman’s studies, steady states and limit cycles in gene regulatory net-
works are regarded as set up of cellular genetic programs. Therefore there is some
interest in studying the dynamics of groups of genes in the context of biological
functions they are supposed to be involved in. For instance, cell differentiation
is one of these functions in which the activation of the genetic transcription
program brings the cell into a novel phenotypic state [Kau93,DJ02].
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Definition 1. A gene regulatory network of a set of genes V (|V | = n) assum-
ing values in a scalar domain K is described by components ( i.e., by dependency
functions)

fv : Kn → K for any gene v ∈ V.

Each of these functions is one component of the synchronous global updating
function of the state (that for the sake of simplicity we call the dynamics),

Tsync : Kn → K
n

where for any state s = (k1, . . . , kn) ∈ K
n we obtain a new state of the system

by
Tsync(s) = (fv1(s), . . . , fvn

(s)).

In the case of Definition 1, the dynamics is termed synchronous to put in evidence
the fact that at each step all the components of the state are updated at once.
A more flexible situation occurs when we want to study the evolution given the
asynchronous dynamics. In this case, each component is updated independently
from the others with no specific order in the sequence of updates. The result-
ing behaviour can be though as a non-deterministic dynamical system where
starting from a configuration it is possible to reach different configurations as
a consequence of the choice of the component vi (with i chosen at random) to
update.

Definition 2. The asynchronous updating function is

Tasync : Kn → K
n

where for any state s = (k1, . . . , kn) ∈ K
n we obtain a new state of the system

by

Tasync(s) = (k1, . . . , fvi
(s), . . . , kn) for any choice of i ∈ {1, . . . , n}.

Definition 3. The state transition graph of the dynamics T (either Tsync or
Tasync) is a graph G(T ) with nodes in K

n and edges (s, s′) ∈ K
n ×K

n if and only
if s′ = T (s).

Note that the number of nodes N in the state transition graph corresponds to
the number of possible states which is the exponential in the size |K| to the
power n, the number of genes, namely

N = |G(T )| = |K|n

regardless of the chosen dynamics (synchronous or asynchronous). The most
commonly used scalar field consists of the binary one K = F2, in which case
each component of the dynamics T can be expressed as a Boolean expression,
and the corresponding genetic regulatory network is simply referred to as a
Boolean network (BN).
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Example 1. Let us consider a genetic regulatory network on F2, with |V | = 3
and the components given by the following Boolean expressions:

f1(s1, s2, s3) = ¬s3 ∧ (s1 ∨ s2) (1)
f2(s1, s2, s3) = s1 ∧ s3

f3(s1, s2, s3) = ¬s3 ∨ (s1 ∧ s2)

For what concerns the corresponding state transition graph, we have that N =
qn = 23 = 8. Figure 1 shows the two graphs corresponding to state transition
graph in both synchronous and asynchronous dynamics.

(a) G(Tsync) (b) G(Tasync)

Fig. 1. Synchronous and asynchronous dynamics state transition graphs of the Boolean
network specified in Eq. (1).

We are interested in several parameters which describe the state transition
graph obtained starting from a given Boolean network with different transition
functions and, particularly in biological applications we are concerned with the
determination of the strongly connected components of the state transition graph
since the biological interpretation of SCCs can be related to the stable functional
characterisation of the cell behaviour [Kau93,DJ02]. Synchronous updates are
rough but reasonable models of (early) response in signal networks. In Fig. 1,
we compare the two state transition graphs G(Tsync) and G(Tasync). In the first
case, we see that any path terminates in a cycle, whilst in the latter case we
have many self loops and two SCCs, one of which is terminal (i.e., an attractor).
When the state transition graph is available and feasible to manage, one can
describe the relationship between pair of maximal SCCs as a partial order.

A useful definition in [GCBP+13] describes a “state-transition diagram” as
a hierarchical transition graph. Hierarchical transition graphs are built on the
analysis of the paths from initial states to attractors. In this paper, we tackle the
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problem of determining these SCCs in the G(Tasync) when the graph is too large
to be explicitly computed, although its compressed form (i.e., the hierarchical
transition graph) can be effectively computed. See an example in Fig. 2.

Fig. 2. An asynchronous random network with n = 7. The hierarchical transition
graph in panel (b) (nodes are the maximal SCCs) is much more compact than the
corresponding state transition graph in panel (a). (Color figure online)

Definition 4. Given the state transition graph G(Tasync), M(T )async the set
of its maximal strongly connected components and → a partial order relation
between elements of M(T )async, we define the hierarchical transition graph as
the graph

H(Tasync) := (M(T )async,→).

Given the specification of the dynamics of a Boolean network Tasync, the gen-
eral method for determining all the maximal SCCs of its state transition graph
G(Tasync), consists in exhaustively analysing the graph. As already mentioned
the number of nodes in G(T ) is N = 2n, so that in order to make effective any
procedure to compute H(Tasync), we need polynomial bounds for:

1. k where M(Tasync) = {m1, . . . ,mk}, that is the number of maximal SCCs,
2. l = max1≤i≤k ki where mi = {si,1, . . . , si,ki

}, that is the cardinality of the
largest SCC,

3. d that is the length of the longest path between two SCCs; in particular, this
measure is bounded by the diameter of the state transition graph G(Tasync).

With the above notations, we have the following
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Theorem 1. The SAT-complexity of determining H(Tasync) is bounded by

o((k + log2 d) l d).

If the three quantities k, l, d < nc for some c, the procedure is effective with
regards to the number of calls to the SAT solver; i.e., it is polynomial-time in
the number of calls to the SAT solver and we denote this execution time as
oSAT (n3c).

In the rest of the paper, we constructively show that there exists an algorithm
which effectively finds the H(Tasync) for those Boolean networks which satisfy
complexity bounds in the hypothesis.

We tackle the problem of efficiently determining the hierarchical transition
graph of an asynchronous network by visiting only nodes of the state transition
graph which belong to the SCCs and paths connecting them. In order to obtain
the optimal solution, this work relies on the integration of (i) the best known
algorithm to determine SCCs, i.e., the algorithm from Tarjan and (ii) the use
of Boolean formulas for expressing any path which belongs to the graph. This
condition enables the use of a SAT solver in order to find assignments to the
variables which satisfies the path-formula. Moreover, the path-formula can be
enriched with extra conditions on the represented states, avoiding that nodes of
already discovered loops appear again on the path obtained by the SAT solver.
This technique allows to overcome limitations of an exhaustive approach. It has
indeed been successfully applied in the determination of the limit cycles of gene
regulatory networks using a synchronous update. In the asynchronous case, the
results are very limited since the structure of cycles as described by the SCCs of
G(Tasync) is much more complex.

3 Finding Limit Cycles in Synchronous Networks

The first ingredient of our work is the possibility of computing cycles in a state
transition graph without exhaustively exploring it in its entirety. Indeed, for the
gene regulatory networks of our interest that are composed of several dozens of
genes, the corresponding state transition graph is so large that it is not even
possible to store it in current digital memories.

To overcome such limitations, several approaches have been suggested, all
sharing the idea to treat the updating function in a symbolic manner, like
in [DT11,BGS06,ZYL+13]. To this end, there have been various proposals
such as Binary Decision Diagrams [GMDC+09], Algebraic Decision Diagrams
[BFG+93], Boolean Expressions and Logic Programming [HMMK13].

The approach suggested by Dubrova and Teslenko in [DT11] consisted in
starting from the Boolean expressions of the components fv of the dynamics and
in defining a Boolean expression in the variables, representing relations between
successive states in a path of the graph G(Tsync):

StepExpression[t] :=
n∧

i=1

sti ↔ fvi
(st−1

1 , . . . st−1
n ). (2)
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Then, by iterating the expression for a number of steps from t − k to t, the
algorithm gets the expression corresponding to a Boolean Expression which any
path in G(Tsync) has to satisfy:

PathExpression[t − k, t] :=
k−1∧

i=0

StepExpression[t − i].

Note that the number of variables involved in each formula depends on the
number of the genes and the length of the path, namely, if we identify the size
of the expression with the number of variables, we have

|PathExpression[t − k, t]| = nk.

In Algorithm 1, we present the algorithm proposed by Dubrova. It consists in
a while-loop which at each iteration performs a call to a SAT solver in order to
test if a certain Boolean expression admits a solution. The Boolean expression is
the conjunction of the PathExpression and a condition excluding that new paths
have nodes which belong to already discovered cycles. If a solution exists, then
the presence of a cycle is easily verified by testing for the presence of repeated
states in the solution path provided by the SAT solver (CheckPath function).
When the algorithm does not find any cycle in a path, then the PathExpression
doubles the path length. This last step is very important since, when the path
length becomes longer than the diameter of state transition graph and at the
same time the algorithm has already visited any cycle in state transition graph,
then the formula F becomes unsatisfiable and the exit condition of the loop is
reached. From the viewpoint of the run-time complexity, this method performs a
number of iterations which in the worst case is bounded by twice the logarithm
of the diameter plus the number of cycles in G(Tsync). The number of iterations
of the main cycle does not provide the complexity of the algorithm in the usual
sense, since at each iteration we call the SAT solver which has an exponential
complexity bound (on the size of the formula).

Thanks to this approach it is possible to establish limit cycles of synchronous
GRNs consisting of a great number of genes. Our numerical experiments are in
line with results reported in [DT11] and it is even possible to find limit cycles of
a realistic network with 51 genes [PBC+10] in a matter of seconds, which would
be impossible to achieve by using an exhaustive search algorithm.

In Table 1, we give an appreciation of how much better the symbolic approach
is with respect to the exhaustive search: note that the number of nodes visited
by our method (fourth column), is in the order of hundreds against the huge
number of nodes appearing in the state transition graph (N = 2n) even for
networks consisting of many nodes (e.g., last rows of the table).

Note that the maximal length of the paths does not need to be known in
advance. In fact, although it depends on the network diameter, in practice it
is found dynamically: the algorithm ends when, by doubling the length of the
paths, this number exceeds the diameter and there is no path which can satisfy
the formula F , since the algorithm has already found all the cycles.
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Algorithm 1. Dubrova-Teslenko Algorithm to find limit cycles of G(Tsync) start-
ing from the Boolean expression of Tsync.
Require: Boolean expression PathExpression which is satisfied by any path in the

dynamics Tsync; a global stack data structure representing the intermediate state
of the calculation of the HTG.

1: function Cycles(T )
2: Initialise
3: path length := 1
4: F := PathExpression(−path length, 0)
5: while Satisfiability(F ) do
6: (c−path length, . . . , c0) := SAT(F )
7: if CheckPath((c−path length, . . . , c0)) then
8: cj minimal state forming the loop
9: Attractors(s0) := Attractors(s0) ∧ (s0 ↔ cj)

10: F := F ∧ ¬Attractors(s0)
11: end if
12: if attractor is found then
13: attractor is found := false
14: else
15: F := PathExpression(−2path length, 0)
16: path length := 2 path length
17: end if
18: end while
19: end function

Table 1. Statistics of the runs of our implementation of Dubrova Algorithm on several
literature GRNs using the synchronous updating dynamics.

n GRN name # Limit cycles Visited nodes Paths (#

SAT calls)

Max path

length

Reference Time

10 Fission yeast 13 × 1 28 16 8 [GMDC+09] 0.45

10 Mammalian cell 1 × 7, 1 × 1 29 6 16 [DT11] 0.25

12 Budding yeast 7 × 1 52 12 16 [DT11] 1.11

15 Arabidopsis

thaliana

10 × 1 45 14 16 [DT11] 1.74

23 T-helper cell 3 × 1 42 7 16 [DT11] 0.29

40 T-helper cell

receptor

1 × 6, 8 × 1 136 14 32 [DT11] 3.08

51 Th1/Th2 Switch 1 × 3, 3 × 1 97 10 64 [PBC+10] 6.06

52 Drosophila

megalonoster

7 × 1 172 13 32 [DT11] 6.10

54 MAPK 7 × 8, 2 × 7, 4 × 4,

1 × 2, 3 × 1

295 22 32 [GCBP+13] 62.00

4 The Algorithm for the Asynchronous Case

What described in the above section leads us to the conclusion that at least in
the synchronous case, even when the number of genes produces a large state
transition graph and its size makes any tentative to determine limit cycles
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unreasonable, we have an effective tool which helps addressing (and solving
indeed) the problem of finding limit cycles. In the asynchronous case, we have
a different formula describing a single step, that is, instead of Eq. 2 we have to
use the following one:

StepExpression[t] :=
n∨

i=1

⎛

⎜
⎜
⎝sti ↔ fvi

(st−1
1 , . . . st−1

n ) ∧
n∧

j=1
j �=i

stj ↔ st−1
j

⎞

⎟
⎟
⎠ . (3)

As it is evident, this formula has a greater logical complexity with respect
to the one corresponding to the synchronous case, that is Eq. 2; a fact which
reflects in the more intricate nature of the G(Tasync).

Algorithm 1 works on the assumption that Tsync behaves as a deterministic
function and only one possible transition can occur after a state; in this way a
cycle is certainly found if the path is long enough. Moreover, once a path reaches
a loop, it never leaves it (because of the uniqueness of the successor state).

In the asynchronous case, for any state we possibly have n successors (one
for each gene, i.e., component, i.e., updating rule). The case in Fig. 1 is more
complicated because non terminal cycles exist, making the problem of deter-
mining the structure of G(Tasync) more similar to the identification of SCCs in a
directed graph.

The strongly connected components of a directed graph can be found using a
variant of the depth-first search (the method was originally devised by R.E. Tarjan
in 1972, as stated above). Since it is based on the depth-first search (DFS), it runs in
time proportional to |V |+ |E|. It is worth to mention that before Tarjan, no linear
time algorithm (in the number |E|) was known for this problem. A straightforward
approach to the same problem is to follow a path-based algorithm as initially pro-
posed by Purdom [Pur70] and Munro [Mun71] for strong components, later deeply
analysed by Gabow [Gab00]. As a consequence of the structure of Dubrova’s algo-
rithm which at each iteration generates one path, the “path oriented” approach to
finding maximal SCCs in the state transition graph is the more appropriate choice.

We now describe the steps undertaken to design the algorithm which com-
bines those of Dubrova (Algorithm1) and Tarjan without affecting their com-
plexity bounds. The structure of Algorithm1 is unchanged, since the algo-
rithm makes calls to the SAT solver to find an assignment to the variables
which appears in the expression specifying the path of length path length in
the asynchronous dynamics. Note that we do not change the definition of
PathExpression[t−k, t] but StepExpression[t] has been replaced with the one given
in Eq. 3. In this case, because of the different dynamics, we have to consider that
cycles can appear also in non-terminal SCCs thus, by running Algorithm1, we
have to detect cycles as part of SCCs in G(Tasync). In order to do so, we interleave
the execution of Algorithm 1 with the path-oriented Tarjan algorithm to discover
SCCs. Instead of calling the function CheckPath which tests the presence of a
loop in the path (i.e., line 7 of Algorithm 1) a more subtle implementation of this
test is required: a new function CheckPath is given as Algorithm 2, it can be seen
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as the partial evaluation of the strongly connected components determination
algorithm at each iteration and is our main contribution to this work.

Unfortunately, in Tarjan’s Algorithm the depth first search visit is performed
by exploring the graph in a precise order, that is, by following all outgoing edges
of the encountered nodes. In our case, however, we have to follow the sequence
of nodes in the path provided by the SAT solver. By imposing the ¬Attractors
condition in the formula F , we are sure that the path provided by the SAT solver
does not contain any node belonging to previously discovered SCCs, nevertheless
a node already encountered in a transient path can appear again in new paths.

Algorithm 2. Tarjan DFS specialised to path processing
Require: the global stack data structure defined in Algorithm 1
1: function CheckPath(v :: path)
2: if path �= emptypath then
3: w :: path′ := path
4: if w is marked then
5: ProcessBacklink(v, w)
6: else
7: Push(w)
8: Mark(w)
9: end if

10: CheckPath(w :: path′)
11: end if
12: end function

A difference with a generic depth first search algorithm is that a backtracking
function which closes the visit for a given node is not required since it is not
possible to say if a node will not be found again in next path to be analysed,
until we reach the end. Therefore, the visit of the sub-graph of paths starting in
a given node is never closed. Actually, when a node is absorbed in a SCC, then
the visit of the sub-graph is completed and the component is represented by the
node in the hierarchical transition graph which corresponds to its SCC.

What remains to be analysed are the functions used in the ProcessBacklink,
which is the main novelty of our work. The structure we use is a stack; one
stack for each thread, see Fig. 3. The function Push performs the push of a
node on the stack. New threads are created when the solution provided from
the SAT solver contains a node that has never been encountered before in first
position. A node found more than once has multiple outgoing edges in its stack
and therefore the stack is a tree. In order to detect loops, we fix an ordering
between threads and we add pointers from nodes belonging to threads that are
in ‘higher’ positions to nodes which are in ‘lower’ positions. When this ordering
is broken (i.e., ThreadPrecedes is false), because the edge we would like to add
connects a node in a lower thread to a higher one, then a merge operation is
issued (MoveSubtree) and the subtree in higher position is moved under the node
in lower position. We test for the presence of a loop in the branch of the tree
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Algorithm 3. Function ProcessBacklink specialised for the path oriented version
of Tarjan.
Require: the global stack data structure defined in Algorithm 1
1: function ProcessBacklink(v, w)
2: if TestLoop(v, w) then
3: CollapsePath(w, v)
4: else
5: if ThreadPrecedes(w, v) then
6: PushPointer(v, w)
7: else
8: MoveSubtree(w, v)
9: end if

10: end if
11: end function

Fig. 3. Example of the data structure of the multithreaded stack (red-links represent
backlinks, red nodes represent SCCs collapsed in that node). (Color figure online)

which contains the node w. If a loop is found then we collapse the path to a
single canonical node representing an entire component by using CollapsePath.

5 Testing on Random Networks

We report about several runs performed on random Boolean networks. These are
specified as directed graphs whose links represent either activations or inhibitions
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Table 2. Runtime best and worst case out of 20 randomly generated GRNs with
both synchronous and asynchronous dynamics. See symbol legend in the paragraph
text. Missing data correspond to cases exceeding a bound in the execution time. When
runtime exceeds a given time-out (heuristic dependent on the number of genes) they
are shown among parentheses.

n v v/2n paths
(# SAT
calls)

max
length of
paths

density (K/N) inh/(act+inh) time

5
S

8 .25 3 4 0.36 0.11 0.09
15 .47 6 8 0.32 0.01 0.16

A
16 .50 6 16 0.48 0.08 1.28
32 1.00 19 8 0.48 0.08 5.24

7
S

11 .09 4 8 0.31 0.07 0.10
41 .32 11 8 0.35 0.29 0.30

A
57 .45 12 16 0.29 0.00 4.39

128 1.00 62 16 0.14 0.15 189.89

8
S

5 .02 3 4 0.19 0.17 0.10
31 .12 8 16 0.36 0.30 0.25

A
144 .56 12 32 0.27 0.18 25.04
256 1.00 125 8 0.14 0.22 486.15

10
S

17 .17 7 8 0.1 0.2 0.18
153 .15 20 16 0.17 0.18 3.81

A
210 .21 10 64 0.2 0.1 34.99

1024 1.00 485 16 0.23 0.48 7703.87

11
S

14 .01 5 8 0.17 0.01 0.17
36 .02 10 8 0.17 0.01 0.53

A
286 .14 17 64 0.19 0.0 100.22

2048 1.00 572 16 0.15 0.11 27188.90

12
S

14 3× 10−3 5 8 0.17 0.01 0.17
36 .01 10 8 0.17 0.01 0.53

A
302 .07 13 64 0.23 0.18 56.6134

3056 .75 300 64 0.17 0.02 49736.80

16
S

16 2× 10−4 4 8 0.13 0.01 0.16
32 5× 10−4 7 16 0.13 0.01 0.36

A
68 1× 10−3 7 32 0.14 0.09 14.07

100
S

18 1× 10−29 4 8 0.15 0.02 0.60
367 3× 10−28 21 32 0.15 0.02 139.85

A

1000
S

32 3× 10−300 5 16 0.10 0.01 96.85
63 6× 10−300 7 32 0.15 0.02 931.59

A
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among genes. Two parameters control the generation of the graph: (i) the density
parameter δ gives the probability that a gene influences another gene, namely
that there is a link between them; (ii) the probability α that such a link is an
inhibition (respectively 1 − α for activation). What we report in Table 2 is the
best and worst case in terms of performance computed on twenty independent
runs for both synchronous and asynchronous updating rules. In the table S stays
for synchronous update and A for asynchronous; p is the number of generated
paths which coincides with the number of SAT-solver calls; m is the maximal
length of paths (it relates to the diameter of the STG); δ is the density of
the GRN (fraction of links w.r.t. the fully linked network); α is the fraction of
inhibitors over the whole number of links in the GRN. The elapsed time t in
seconds correlates to the number of visited nodes v; the fraction of the whole
STG that was necessary to explore in order to determine the HTG is v/2n as
reported in 4th column.

Moreover whereas in the synchronous case there is a direct correlation
between t and m, in the asynchronous case this relationship is inverted. Note
that since the networks are drawn at random, the algorithm performs efficiently
when the hypotheses of Theorem 1 are satisfied. For instance this is the case of
the network with n = 16 for which v/2n equals to 585/216 � 10−3 which in fact
terminates in about 136 s. An opposite case is that of n = 10 for which the algo-
rithm explores the totality of nodes of the state transition graph (937/210 = 90%)
which runs for more than one hour due to the fact that the state transition graph
is made of many relatively small SCCs, a fact that translates to a smaller value
for m.

Note that the time values shown in the last column of Table 2 derive from
an implementation of the algorithm which does not conform to the criteria of
high performance and should therefore be considered as an indication of the
relationships among execution time and network characteristics as just discussed.
For those cases when the execution time exceeds a heuristic threshold (value
dependent on the number of genes), the time spent until that limit is shown
among parentheses. In the largest case of n = 103 the huge size of the search
space prevented the algorithm finding a single time for the execution of the
asynchronous case.

6 Conclusion

We have presented a method that can efficiently determine the attractors of a
gene regulatory network in the case of the asynchronous updating rule by com-
bining the formulation of a dynamical system in terms of satisfiability problems
with an efficient algorithm for determining the strongly connected components
of a graph; resulting in the possibility to determining the hierarchical transi-
tion graph without the need to entirely exploring the state transition graph.
The method presented here extends previous algorithms developed for the syn-
chronous dynamics to the asynchronous case which is regarded as being more



102 M. Pedicini et al.

realistic. The existence of the algorithm is a proof of Theorem1 which sum-
marises the link between the size of the hierarchical transition graph and the
run-time.

A more detailed description of the implementation will be provided in a
follow-up manuscript.
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