
Stochastic Numerical Models
of Oscillatory Phenomena

Raffaele D’Ambrosio1(B), Martina Moccaldi2, Beatrice Paternoster2,
and Federico Rossi3

1 Department of Engineering and Computer Science and Mathematics,
University of L’Aquila, L’Aquila, Italy

raffaele.dambrosio@univaq.it
2 Department of Mathematics, University of Salerno, Fisciano, Italy

{mmoccaldi,beapat}@unisa.it
3 Department of Chemistry and Biology, University of Salerno, Fisciano, Italy

frossi@unisa.it

Abstract. The use of time series for integrating ordinary differential
equations to model oscillatory chemical phenomena has shown benefits in
terms of accuracy and stability. In this work, we suggest to adapt also the
model in order to improve the matching of the numerical solution with
the time series of experimental data. The resulting model is a system of
stochastic differential equations. The stochastic nature depends on phys-
ical considerations and the noise relies on an arbitrary function which
is empirically chosen. The integration is carried out through stochastic
methods which integrate the deterministic part by using one-step meth-
ods and approximate the stochastic term by employing Monte Carlo
simulations. Some numerical experiments will be provided to show the
effectiveness of this approach.
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1 Introduction

This work deals with the problem of modelling oscillatory phenomena by suitable
systems of differential equations, together with providing a proper numerical
scheme for an accurate and efficient approximation of their solutions. A special
emphasis is here given to a significant case study: the well-known Belousov-
Zhabotinsky (BZ) reaction. The BZ is a striking example of a self-organizing
chemical system, and thanks to its characteristics, it became a widely employed
model also in other fields. For instance, in biology BZ can be considered a simple
analogue of periodic phenomena (metabolic cycles, circadian clocks, etc) and in
mathematics and physics it is an ideal example of complex nonlinear dynamical
system [1]. There are several models to describe the complex kinetics of the BZ
reaction, being the Oregonator, the most used [1–3].
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In [4] this system has been integrated by employing an adapted numer-
ical scheme which exploits information obtained by observing time series of
experimental data. It has been shown that this problem-oriented approach is
more accurate and stabler than general-purpose numerical methods, which could
require a strong reduction in stepsize in order to accurately follow the behaviour
of the exact solution. In this paper, we focus on the nature of the operator, in
order to improve the matching of the numerical solution of the Oregonator with
the time series.

In Field, Körös and Noyes approach, the time evolution of BZ reactions is
treated as a continuous and deterministic process. In many cases, this is suffi-
cient to study the qualitative behaviour of the system. However, the reaction-rate
equations may be unable to describe the fluctuations in the molecular population
levels within the study, for instance, of ecological systems, microscopic biological
systems and nonlinear systems characterised by chemical instability. Therefore,
in some cases it may be more convenient to employ a stochastic approach, which
derives from some physical considerations. Firstly, molecular population levels
change in a discrete manner, so the time evolution of a chemically reacting sys-
tem is not a continuos process. Moreover, it is impossible to predict the exact
molecular population levels at a certain time unless the exact positions and
velocities of all the molecules in the system are known [5,6]. The stochastic for-
mulation of chemical kinetics basically takes into account that the collisions in
a system of molecules in thermal equilibrium occur essentially in a random way.
However, it is based on the so-called master equation which is often mathemat-
ically intractable. For this reason, we suggest to add a stochastic term to the
deterministic system in order to obtain a model which is still simple to inte-
grate like the reaction-rate equations, but it can lead to a numerical solution
more similar to the time series. In the resulting model, the time evolution of the
system is described by a system of Itô stochastic differential equations, where
the stochastic term is characterised by a Wiener process and an arbitrary func-
tion empirically chosen. The deterministic term of this system is integrated by
employing a one-step numerical method, whereas the stochastic term is approx-
imated through Monte Carlo simulations. The numerical solution is compared
to the time series of the experiment performed in [7] on an unstirred ferroin
catalysed BZ system.

In summary, we describe the main aspects of Belousov-Zhabotinsky reaction
in Sect. 2, Sect. 3 is devoted to the development of the new stochastic model
to describe the kinetics of this reaction, while Sect. 4 shows some numerical
experiments and Sect. 5 exhibits the conclusions.

2 The Belousov Zhabotinsky Reaction

The Belousov-Zhabotinsky reaction is probably the simplest closed macroscopic
system that can be maintained far from equilibrium by an internal source of free
energy homogeneously distributed in space [8–11]. Being outside of thermody-
namical equilibrium, BZ can display several exotic dynamical regimes: periodic,
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aperiodic and chaotic oscillations [12–14], Turing structures and pattern forma-
tion [15,16], autocatalysis and bistability [17]. At present, most of the research
involving the BZ reaction deals with stimuli-responsive smart materials [18–20]
and with the simulation of complex biological communication [21–23]. In this
work, we attempt to reproduce the periodic oscillatory regime generally mani-
fested by the BZ in homogeneous well-stirred reactors.

BZ reaction involves an organic substrate that is oxidised by bromate ions
in an acidic medium and is generally catalysed by one-electron metal-ion oxi-
dants with standard reduction potentials of 1–1.5 V, for example metal ions
complexes (ferroin, cerium sulphate, etc.) [1,3] (and references therein). Under
proper conditions, the system exhibits self-sustained temporal oscillations in the
concentrations of the catalysts, visible through a color change in the solution
(more drastic for the iron). The oscillations stem from two concurrent processes:
at the beginning the metal ion is reduced and the concentration of bromide ions
([Br−]) is high (Process I); then bromides are consumed up to a certain critical
value and the metal ion is oxidised (Process II); finally, the metal ion reacts to
produce bromide ions and reverts to its reduced state again. However, from the
kinetics point of view, the oscillations are caused by an Hopf instability deriving
from the nonlinear chemical mechanism (autocatalysis + inhibition) and occur-
ring in the reaction. The most widely accepted model to describe BZ reaction
has been proposed by Field and Noyes in [24] and it has been derived from the
more complicated Field-Körös-Noyes mechanism [25] which is based on 11 reac-
tions involving 15 chemical species that lead to a system of 7 coupled nonlinear
first-order ordinary differential equations. In order to theoretically analyse oscil-
lations, bistability and traveling waves, it is sufficient to consider the following
reduced formulation of the FKN mechanism [26]:

A + Y
k1−→ X + P,

X + Y
k2−→ 2P,

A + X
k3−→ 2X + 2Z,

2X
k4−→ A + P,

B + Z
k5−→ 1

2
f Y,

where the main chemical elements are:

X = HBrO2 (bromous acid), P = HOBr (hypobromous acid),
Y = Br− (bromide ion), A = BrO−

3 (bromate ion),
Z = Me(n+1)+ (metal ion in oxidized state), B (organic substrate),

and f is a stoichiometric factor which represents the number of bromide ions
produced when metal ions are reduced. The concentrations of A, B and P are
generally maintained constant, whereas the concentrations of intermediates X,
Y and Z vary periodically. The kinetics of the system can be described by the
following set of 3 differential equations [3]
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dx∗

dt∗
= k1 a y∗ − k2 x∗y∗ + k3 a x∗ − 2k4(x∗)2, (1a)

dy∗

dt∗
= −k1 a y∗ − k2 x∗y∗ +

f

2
k5 b z∗, (1b)

dz∗

dt∗
= 2k3 a x∗ − k5 b z∗, (1c)

which is called Oregonator and involves the concentrations of the aforementioned
chemical elements. We refer to such concentrations by using letters in lower case
henceforth. As highlighted in [27], the Oregonator is not only the simplest model
for Belousov-Zhabotinsky reaction but also the most popular to study the period
and the amplitude of observed oscillations.

The oscillations in the exact solution of the Oregonator are strongly depen-
dent on the values of the involved parameters, especially k5 and f . Indeed,
if k5 = 0, the bromide ion (Br−) concentration decays to zero according to
the Eq. (1b), so the system cannot oscillate. Moreover, oscillations occur only if
0.5 < f < 2.414, whereas for f < 0.5 and f > 2.414 the system is in a stable
steady state, being Process II or Process I dominant, respectively (see [1] and
references therein).

In order to integrate the Oregonator (1), we consider its dimensionless form,
as follows:

ε
dx

dt
= q y − x y + x (1 − x), (2a)

ε′ dy

dt
= −q y − x y + f z, (2b)

dz

dt
= x − z, (2c)

where
x =

2k4
k3a

x∗, y =
k2
k3a

y∗, z =
k4k5b

(k3a)2
z∗, t = t∗k5b,

ε =
k5b

k3a
, ε′ =

2k4k5b

k2k3a
, q =

2k1k4
k2k3

,

(3)

or, in a more compact form,

dr

dt
= F (r; q, f, ε, ε′), (4)

where r = [x, y, z]T and F (r; q, f, ε, ε′) =

⎡
⎣

1
ε (q y − x y + x (1 − x))

1
ε′ (−q y − x y + f z)

x − z

⎤
⎦.

3 Stochastic Adaptation of the Oregonator

We aim to develop a simple stochastic variant of the deterministic system (4)
in order to better describe the fluctuations usually observed in time series of
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experimental data. For this purpose, we add a stochastic term to the reaction-
rate Eq. (4), as follows

dR

dt
= F (R; q, f, ε, ε′) + λG(R) dW, (5)

where R(t) is a three-dimensional stochastic process describing the concentra-
tions of the key chemical elements, F (R; q, f, ε, ε′) is the deterministic forcing
term, λ is the amplitude of the stochastic term, G(R) is an arbitrary function
and W (t) is a Wiener process. We recall that a standard Wiener process is a
stochastic process {W (t), t ∈ [0, T ]} such that W (0) = 0 with probability 1,
the function Φ : t → W (t) is continuous with probability 1, the increments are
independent and behave as the random variable

√
t − s N (0, 1), i.e. a normally

distributed random variable with zero-mean and variance equal to t − s.
Equation (5) is a system of Itô stochastic differential equations, whose solu-

tion R(t) is a stochastic process depending on an initial value

R(0) = R0, (6)

a deterministic integral and an Itô stochastic integral.
In order to integrate (5) in [0, T ], we discretize the interval by selecting

equidistant N + 1 points, as follows

0 = t0 < t1 < · · · < tN = T,

and we employ a one-step stochastic numerical method having this general
formulation

Rn+1 = Rn + h(α F (Rn+1) + β F (Rn)) + G(Rn) (W (tn+1) − W (tn))) , (7)

where h is the integration stepsize. For the simulation of the Wiener increments,
we employ Monte Carlo simulations, i.e. we generate a standard normally dis-
tributed variable through the Matlab routine randn and we approximate the
Wiener increments multiplying this variable with

√
h.

4 Numerical Experiments

We take into account the experiment performed in [7] on an unstirred ferroin
catalysed BZ system, where the organic substrate is the malonic acid (B = MA)
and the catalyst is the redox couple ferriin/ferroin (Fe(phen)3+3 /Fe(phen)2+3 ).

In [7] time series are recorded spectrophotometrically at wavelengths equal to
510 nm (ferroin) and 630 nm (ferriin), where the molar extinction coefficients are
equal to 1.1×104 mol−1dm3cm−1 and 620mol−1dm3cm−1, respectively. Employ-
ing these data, we construct the corresponding time series of the concentration
of the ferriin, i.e. the catalyst in its oxided state, which is the third component
of the solution of the Oregonator (5). The resulting time series shows an initial
exponential decay trend corresponding to the start of the reaction (see Fig. 1)
and followed by periodic oscillations.
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In order to model this chemically reacting system, we consider the system
of Itô stochastic differential equations (5) in a region of the plane k5 − f where
the solution is known to oscillate. With regards to the choice of G(R), we select
different functions. Firstly, we have considered a linear noise depending on the
parameters of the problem

Glin(x, y, z) =
[
x +

q

ε
y + 1, y +

q

ε
y, z +

q

ε
y
]T

. (8)

This choice is convenient because the function evaluations are not highly
demanding in terms of computational cost. Another possible G-function has
a logarithmic expression:

Glog(x, y, z) =
[
2 log(x y), log

(
y2

q

)
, log(z2 + 1)

]T

. (9)

Since we observe an oscillatory behaviour in time series (Fig. 1), we next consider
a simple trigonometric noise

Gtrig(x, y, z) = [sin(x), sin(y), sin(z)]T , (10)

but, as will be shown in Table 1, it may be more convenient to adopt a trigono-
metric G-function depending on the parameters of the problem, as follows:

Gpdtrig(x, y, z) =
[
sin(x) +

q

ε
sin(y) + 1, sin(y) +

q

ε′ sin(y), sin(z) + sin(y)
]T

.

(11)
We have solved system (5) in [0, 250] combined with these different noises, pro-
vided by the initial conditions

x(0) = 0.0013, y(0) = 0.2834, z(0) = 0.1984, (12)

and the following values for the parameters

f = 1, q = 3.52 · 10−5, ε = 0.3779, ε′ = 7.56 · 10−4. (13)

We remark that the concentrations in (12) are in their dimensionless form.
We employ a one-step method to integrate the deterministic part and Monte
Carlo simulations to treat the stochastic term. In particular, we have integrated
the deterministic term through explicit Euler method, obtaining the Euler-
Maruyama method

Rn+1 = Rn + hF (Rn) + G(Rn) (W (tn+1) − W (tn)) . (14)

However, this method is strongly unstable for every choice of the G functions
and amplitude λ due to the stiffness of the problem. For this reason, we integrate
the deterministic term through the implicit trapezoidal rule, as follows:

Rn+1 = Rn +
h

2
(F (Rn) + F (Rn+1)) + G(Rn) (W (tn+1) − W (tn))) . (15)
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Fig. 1. Time series of concentration of ferriin related to the experiment carried out in
[7] on an unstirred ferroin catalyzed BZ system.

Table 1. Minimum error computed in the last point with 100 simulations as difference
between the value assumed in the last point by the numerical solution obtained by the
scheme (15) for h = 0.06 and with different functions G and the corresponding value
observed in time series.

λ Glin Glog Gtrig Gpdtrig

0 9.99 · 10−1

0.5 1.24 · 10−2 8.99 · 10−4 1.45 · 10−2 6.56 · 10−3

1 1.25 · 10−1 1.29 · 10−3 2.84 · 10−1 1.92 · 10−2

We remark that the implicitness of this stochastic method is only in the deter-
ministic part.

Table 1 reports the relative errors computed by comparing the value assumed
by the numerical solution in the last point of the interval and the corresponding
value observed in time series. In case of non-zero amplitude of the stochastic
term, i.e. when the system (5) does not reduce to the deterministic formulation
(4), we have run 100 simulations for each G function and amplitude λ because
of the random nature of the Wiener increments and we have computed the
minimum error obtained. We observe that the accuracy generally improves when
we add the stochastic term to the model and it is higher for the logarithmic noise
(9) and the parameter-dependent trigonometric one (11) than for the linear (8)
and the first trigonometric case (10). Moreover, increasing the amplitude λ of the
stochastic term, the errors related to the stochastic models become higher, but
they are still smaller than the error obtained with the deterministic formulation
of the problem. Therefore, it may be convenient to add a stochastic term, but its
amplitude has to be small enough, so that the noise does not cover the solution.

The solution of the deterministic model (see Fig. 2(a)) has a regular profile
having only two oscillations, so it differs more from the time series than the
solutions of stochastic models. Indeed, the numerical solution of the stochastic
model combined with a trigonometric noise (see Fig. 2(d)) has a regular pro-
file with three oscillations, but it is still far from time series. The choices of a
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(a) λ = 0 (deterministic model)
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(b) λ = 0.5, G = Glin (linear noise)
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(c) λ = 0.5, G = Glog (logarithmic noise)
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(d) λ = 0.5, G = Gtrig (trigonometric noise)
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(e) λ = 0.5, G = Gpdtrig (parameter-dependent
trigonometric noise)

Fig. 2. Numerical solution of stochastic Oregonator (5) having initial conditions (12)
and parameters (13) computed by the method (15) which integrates the determin-
istic term with the implicit trapezoidal rule and treats the stochastic part through
Monte Carlo simulations. Different choices for the amplitude λ and the function G are
considered and the adopted stepsize is h = 0.06.
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linear noise (Fig. 2(b)) or a logarithmic noise (Fig. 2(c)) lead to solutions which
are more oscillatory, so they are qualitatively more similar to time series. How-
ever, the solution obtained with a linear noise exhibits some spurious oscillations
due to the noise and that one computed with a logarithmic noise has a highly
irregular profile. As it regards Fig. 2(e), we can observe that the profile of the
solution quantitatively matches very well with the time series and, moreover, the
peaks are distributed similarly as in the pattern of the time series, which makes
this kind of choice of the diffusion term in the stochastic model very promising.
Clearly, the noisy behaviour observable in Fig. 2(e) is given by a single realization
of the stochastic process solution that may be replaced, in future investigations,
by a more regular and smooth mean behaviour over several realizations. We
remark that in the figures the variable concentrations of ferriin (z) and time (t)
have been recasted according to the positions (3) by employing the values

k2 = 1.11 · 106, k3 = 15.54, k4 = 1.11 · 103, k5 = 1.

5 Conclusion

In this work, we have presented a new stochastic model to describe the kinetics of
Belousov-Zhabotinsky reaction, assumed here as an experimental benchmark for
proposing an adapted numerical scheme for differential models of oscillatory phe-
nomena. Indeed, following the idea of adapting numerical schemes to time series
presented in [4] (coming from [28–34] and references therein), we have adapted
in this work also the model to describe better the available experimental data.
In particular, we have considered the well-known deterministic model developed
by Fields, Körös and Noyes and we have added a stochastic term, leading to
a system of Itô stochastic differential equations. In this system, the stochastic
term is characterized by an arbitrary function selected empirically. The resulting
system has been integrated by a combination of known time-stepping methods
for the integration of the deterministic part and Monte Carlo simulations for the
numerical treatment of the stochastic term. The numerical solution has been
compared with the time series related to the experiment carried out in [7] on
an unstirred ferroin-catalysed BZ system. Numerical experiments show an high
improvement in accuracy and a slight enhancement in the preservation of the
qualitative behaviour observed in time series. It is important to highlight that our
proposed approach can be assumed as a general setting for handling oscillatory
problems in many different contexts: for instance, in the description of chem-
ical oscillators in compartmentalized systems like microemulsions that feature
nano-sized reactors [35]. Future developments of this research will be focused on
taking these preliminary results as starting point to also fit the data into the
model under a qualitative point of view, rather than only quantitative. In this
sense, as it is clearly visible in the experiments, the passage from deterministic
to stochastic models has been crucial and it seems promising to proceed in this
direction.
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