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Abstract. Molecular docking is a computationally efficient method used to
predict the conformations adopted by the ligand within a target-binding site.
A positive aspect of conventional docking is the possibility of easily distributing
the calculation on dedicated grid or cluster. The receptor is usually kept rigid,
therefore the changes in the binding pocket geometry induced by the ligand is
overlooked. Here we present a new docking approach (DynDock) that exploits
molecular dynamics to preserve the flexibility of the receptor. To maintain high
computational efficiency, DynDock has been developed to be distributed on a
grid. The main advantages of this method are the full flexible molecular docking
achieved during the simulation and the reduced number of compounds collected.
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1 Introduction

The molecular design is a computationally demanding task; it is the process of finding
new drugs and involves the design of molecules that are complementary to the target in
shape and charge. Usually, these compounds interact with a protein activating or
inhibiting its function. There are two major methods of molecular design. The first is
the Ligand-Based Drug Design (LBDD) that uses the structural characteristics of all
molecules that bind the target of interest, to derive a pharmacophore model [1]. The
second method is the Structure-Based Drug Design (SBDD), which is based on
knowledge of the three-dimensional structure of the target [2]. The aim is to predict the
affinity and the selectivity of a drug candidate using the ligand and the target structure.

In details, SBDD is a cyclic process, which starts from a known target structure
usually experimentally obtained by X-ray crystallography or NMR spectroscopy [3].
The knowledge of 3D structures permits to run in silico studies to identify potential
ligands (Fig. 1).

Following the molecular modelling predictions, the most promising compounds can
be synthesized and evaluated for their biological properties. Once synthesized and
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tested, the new 3D structures can be solved and made ready for a further optimization
cycle. This process reasonably permits to increase the affinity of new ligands but it is
extremely costly.

Another limit of SBDD is that the experimental structures of the complex
receptor/ligand are not always available and, when accessible, we must take into
account that ligands can induce conformational changes in proteins and different
ligands may stabilize different receptor conformations. Nevertheless, the crystallo-
graphic data represents only a successful binding event of a specific protein confor-
mation and a specific ligand [4].

For these reasons, it is clear that the flexibility of the target receptor is an essential
aspect that must be considered in the docking studies and it is not recommended to use
only one structure of the receptor to perform the analysis.

Molecular dynamics (MD) is also a useful technique to evaluate critical phenomena
and conformational changes involved in the molecular interactions [5, 6]. Keeping the
proteins flexible in the molecular modelling studies has a high computational cost. The
most popular docking programs limit the receptor flexibility to side-chain mobility only
[7, 8]. In some other cases, they consider several snapshots extracted from a molecular
dynamics of the receptor. This approach assumes that the protein flexibility could be
encoded in an arbitrary set of MD conformations, but the molecular dynamics is
strongly dependent on the ligand nature [4, 9].

The computational complexity of the procedure grows quickly with the numbers of
atoms in the ligands. An exhaustive analysis of all possible ligands is far impossible
even when a molecule is simplified in groups of atoms or residues. For example, the
investigation of a very short peptide of only 10 amino acids, having as a starting point
only 3 conformations (alpha, beta and coil), leads to more than 6 � 107 possible
sequences, a number beyond the current computational possibilities.

DynDock employs an in silico combinatorial molecular dynamics to optimize
ligands inside the target protein. This procedure combines the advantages of the SBDD

Fig. 1. Structure-based drug design cycle
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method with the accuracy of MD, reducing drastically the number of the possible
sequences to analyse.

2 Methods

Figure 2 describes the DynDock approach.

The DynDock is a hierarchical method to design a ligand candidate. We start from a
fragment of a known ligand and we proceed with a cycle in which we evaluate the
effect of a set of possible moves. The single move can be an addition, a deletion, an
atom or residue swap, or a cyclization. After the move, we perform a molecular
dynamics run of 1 ns and then we anneal the system. After the relaxation, we calculate
the binding energy of the ligand and the distortion energy of the receptor. At the end of
the cycle, the ligand having the highest binding energy is chosen for a further cycle.
The procedure ends when no further energy improvement is observed. DynDock
ensures to find always a better ligand, though it cannot guarantee to find the best one.

Fig. 2. DynDock flowchart
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2.1 Fragment-Based Molecular Dynamics

The starting point for DynDock is the structure of a target protein bound to a ligand. In
this work, we used as initial structures the microbial enzyme Streptomyces griseus
Protease A (SGPA) [10] in complex with the peptide Pro-Ala-Pro-Tyr (5SGA PDB). It
is a proteolytic enzyme with a serine residue (Ser 195) in its active site. The proximity
of a histidine and an aspartate is essential for its activity (see the ligand diagram
interaction in Fig. 2a) [11, 12].

The first step of DynDock is the preparation of the receptor structure for the
docking, removing all water molecules and adding missing hydrogens. From the
experimental structure of the ligand/receptor complex, it is possible to identify the
binding site in which the ligand is grown. From literature data, we know that the active
site of SGPA is an external portion of the receptor and the residue of tyrosine of the
ligand interacts with the catalytic triad. In Fig. 2b, it is possible to see the position of
the ligand PAPY on the external surface of the enzyme. The surface is colored by atom
types. To put in evidence the active site, we colored only the residue with distance 4 Å
from the ligand (Fig. 3).

The tyrosine residue is critical for the enzyme inhibition, and therefore, we have
chosen the terminal Tyr as starting point for peptide elongation.

2.2 Preliminary Screening

The elongation procedure consists in adding an amino acid chosen among the 20
natural residues. Each amino acid, when binds a peptide, forms an amide bond char-
acterized by two torsion angles. They describe the rotations of the polypeptide back-
bone around the bonds between N-Ca (u) and Ca-C (w). It is well known that three
regions of u, w correspond to the most stable conformations namely a-helices, b-sheet

Fig. 3. (a) 2D interaction between the ligand and the enzyme. (b) Molecular surface of Serine
protease in complex with PAPY inhibitor (5SGA PDB). (Color figure online)
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and coil. Therefore, for each residue added by DynDock, we must take into account the
different geometries, and the number of possible structures becomes:

peptides ¼ conf � aað Þelongation ð1Þ

Where conf is the number of conformational regions, and aa is the number of
amino acids. That for 3 geometries only and for an elongation of 10 residues, gives:

peptides ¼ 3 � 20ð Þ10 ffi 6:05 � 1017 ð2Þ

Though the molecular dynamics approach promises a big progress in the docking
field, it is evident that the astronomic number of possible peptides renders this way
unmanageable. The DynDock approach greatly reduces the number of possible pep-
tides and only the best n-mers can be kept for further elongation. If only the peptide
with the highest binding energy is kept for each iteration, the number of peptides to
analyze may collapse to:

peptides ¼ elongation � conf � aa ¼ 10 � 3 � 20 ¼ 600 ð3Þ

Unfortunately, an important aspect of peptide folding was neglected in the above
consideration. The interaction of a peptide with a receptor is not a simple cumulative
process because the peptide residues can interact with the peptide itself changing
conformation and then altering the binding with the receptor. Consequently, we cannot
keep the best residue only for each elongation step, but we can safely choose to keep
the a few number of peptides (bestResultsÞ for each step. The number of possible
peptides for BestResults = 5 becomes:

peptides ¼ bestResults � elongation � conf � aa ¼ 5 � 10 � 3 � 20 ¼ 3000 ð4Þ

Considering the last 2 or 3 residues (nmer) during an elongation should give more
realistic results, but the number of possible peptides would reach soon extremely large
numbers (see Table 1) according to Eq. (5).

peptides ¼ bestResults � elongation � conf � aað Þnmer ð5Þ

We have faced this problem in two different ways. The first is the distribution of the
calculation on a dedicated grid. We have used GRIMD [13], an info structure that
permits easily the delivery of molecular dynamics calculation on available PCs. The
second solution is more chemistry-oriented. A preliminary screening is made before the

Table 1. Number of sequences to analyze based on the number of residues kept in memory

Elongation Sequences to analyze

1 amino acid 3000
2 amino acids 180000
3 amino acids 1:08 � 107
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ligand fragment building. This step is essential to reduce the time of the entire drug
design. The user can set the elongation (e.g. 6 amino acids) and the solubility of the
ligand candidate. The solubility is an important parameter to be considered, in order to
ensure the possibility of chemical synthesis and the biological screening. Water solu-
bility can be predict as a function of the surface hydrophobicity of the ligand. The
tendency of a protein to aggregate and so to decrease its water solubility can be related
to the hydrophobic surface [14]. Ligand candidates with potential low water solubility
are not considered.

Finally, in order to avoid too exotic peptides, we introduced a phylogenetic control
of sequences. We downloaded the human proteome from the UniProt database [15]
(Proteome ID UP000005640) and we calculated the dimer abundance. We assigning a
different weight based on dimer probabilities.

The DynDock method favors the building of dimers with high frequency.

2.3 Ligand Fragment Modification

The ligand fragment modification starts considering a swap, deletion and addition of
amino acid residues.

The ligand modification step occurs during molecular dynamics simulations (MD),
which means the ligand fragment and the receptor, are always in contact. A cubic cell
of 57 � 57 � 57 Å was built around all atoms under periodic boundary condition.
The MD simulation is set at 298 K with 1.25 fs of integration time steps for
intramolecular forces. After each modification, the system is left to move for 1 ns to
allow the receptor to better accommodate the ligand. The all-atom structure of the
complex fragment/target is minimized using the force field AMBER14 [16] and the
steepest descent minimization followed by a simulated annealing minimization [17].

2.4 Output Selection

The binding affinity of the ligand was calculated using the function YaEnergy already
reported in [18]. YaEnergy permits to estimate the binding energy taking into account
the biological history of the receptor. It has been written after an extensive genetic
algorithm including a term that depends on the minimal distance between the ligand
barycenter and the nearest conserved residues. The sequence of the enzyme SGPA is
highly conserved through species indicating that the sequence has been maintained by
evolution despite speciation. As shown in Fig. 4, the residues of the binding pocket are
extremely conserved confirming that functional residues are generally more preserved
[19]. The conservation string was obtained from the Consurf database [20], a server for
identification of structurally important residues in protein sequences (http://conseq.tau.
ac.il/).

The binding energy calculated at the end of the molecular dynamics was used to
build up a new ranking function for peptide selection. Whereas the choice of high
binding energies is straightforward, energy alone is not enough because tends to bias
longer peptides. A long peptide, in fact, can interact in more ways than a shorter one.
The rank function at denominator has the peptide length and a negative surface area
term at numerator. There is also a corrective term based on the receptor distortion.
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The rationale is that a peptide, modifying the 3D structure of the flexible receptor, can
drive its geometry far from the experimental data. In the ranking function, we have
added a term to award receptor structures not dissimilar from the crystallographic data.

DynDock rank ¼ yaEnergy þ 20 � En:endEn:in � SurfArea
90

Length
ð6Þ

Whereas YaEnergy is the peptide binding energy, En.in and En.end are the initial
and final energies of the receptor calculated with the force field AMBER14, and
SurfArea is the molecular surface area of the peptide.

DynDock selects the molecules with the highest binding energy and lowest
deformation of the receptor. The receptor changes its structure during the fragment
growing to better accommodate the ligand. This could damage the 3D structure and
lead to an unrealistic structure. For this reason, the DynDock rank function is rescaled
on the dimension of the ligands, optimizing the binding energy value with the ligand
surface area. This is essential to prevent that the algorithm prefers bigger peptides that,
having more atoms, have more chances to interact with the receptor.

Based on the DynDock rank value, the step that involves the ligand modification
can be accepted or rejected.

The process ends when there are no further energy improvements. The computa-
tional complexity of the procedure grows quickly with the numbers of conformers
considered. Consequently, to reduce the computational time and cost we have used a
specialized grid (GRIMD) to distribute the calculation [13].

Fig. 4. 5SGA surface. The conserved residues are colour mapped in yellow onto the protein
surface. (Color figure online)
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3 Results and Discussion

The evaluation of the DynDock procedure can be done in terms of binding energy.
Interestingly, following the methods herein described, after binding each peptide can be
forced to leave the receptor and the activation energy required to leave the receptor
estimated. This calculation permits to evaluate the residence time [21] of the ligand
(that is the inverse of the unbinding kinetic constant rate koff) [22–24] that is of
fundamental importance in drug discovery.

Starting from the first amino acid (tyrosine), DynDock adds new amino acids and
chooses the best dimer among the 20 possibilities. The dimer was then further elon-
gated until the length of 4 residues. All ligands are ordered by length and by ranking
value. Based on the rank function value, DynDock selects only two dimers made, in
this example, glutamine-tyrosine (QY) and alanine-tyrosine (AY) and proceeds further
with the elongation. We decided to fix the elongation to 4 residues to make easier the
comparison with the crystallographic structure. The best ligand developed by DynDock
protocol (PGAY) shows higher binding affinity that the experimental molecule PAPY
and it still maintains the interactions with the catalytic triad (see Fig. 5).

To build a ligand candidate formed by ten residues, traditional approaches of
structure-based drug design provide 10 million of millions of sequences to analyze
(2010 = 1�1013). DynDock method limits the calculation to a number of sequences to
analyze of few thousands.

Fig. 5. DynDock protocol trend. Length is the number of amino acids in the ligand and the rank
function is the normalized binding energy. On the left are shown the ligand PGAY interactions
with the binding site.
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4 Conclusion

The method here described for Drug Design is an easy way to perform fully molecular
docking reducing drastically the number of possible sequences. It permits also the easy
distribution on computer grids to further reduce the analysis time.

This hierarchical approach has several advantages over traditional docking. First,
the flexibility of the receptor, essential for its function, is fully considered and modeled
with the modern AMBER14 force field. Second, DynDock takes into account the
receptor distortion to avoid unrealistic and improbable interactions. Third, the
sequential procedure guarantees to find a series of peptides with high binding energies
without a sensible decrease of computational performances. Fourth, the sequentiality of
the investigation makes DynDock ideal for parallelization or for use on grids. Finally,
the molecular dynamics can be used also to perform a steered molecular dynamics of
the ligand out from the receptor to estimate the residence time. This improvement will
be the object of an upcoming paper.
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