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Abstract. Chaos is ubiquitous in Nature and represents one of the most
fascinating expressions of real world complexity. Depending on the spe-
cific context, the onset of chaotic behaviours can be undesirable, thus,
controlling the mechanisms at the basis of chaotic dynamics represents
a cutting-edge challenge in many areas, including cardiology, informa-
tion processing, hydrodynamics and optics, to name a few. In this work
we review our recent results showing how, in chemical reactions, the
active interplay between a nonlinear kinetics and hydrodynamic insta-
bilities can be exploited as a general mechanism to induce and control
chemical chaos. To this end, we consider as a model system the Belousov-
Zhabotinsky (BZ) reaction. Thanks to a chemo-hydrodynamic coupling,
the reaction can undergo chaotic oscillations when carried out in batch
conditions. Chaos appears and disappears by following Ruelle-Takens-
Newhouse scenario both in the cerium- and ferroin-catalyzed BZ systems.
Here, we present experimental evidence that the transition to chemical
chaos can be directly controlled by tuning either kinetic or hydrody-
namic parameters of the system. Experiments were simulated by using a
reaction-diffusion-convection (RDC) model where the nonlinear reaction
kinetics are coupled to the Navier-Stokes equations. Numerical solutions
of the RDC model clearly indicate that natural convection can feedback
on the spatio-temporal evolution of the concentration fields and, in turn,
changes bulk oscillation patterns. Distinct bifurcations in the oscillation
patterns are found when the Grashof numbers (governing the entity of
convective flows into the system) and the diffusion coefficients of the
chemical species are varied. The consumption of the initial reagents is
also found to be a critical phenomenon able to modulate the strength of
the RDC coupling and drive order-disorder transitions.
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1 Introduction

The term “chaos” identifies deterministic aperiodic behaviours sensitive to ini-
tial conditions [1]. This means that the same chaotic system will evolve in two
exponentially divergent stories when starting from two infinitesimally different
initial conditions. Also popular among non-scientists as butterfly effect, this fea-
ture implies the long-term unpredictability of chaotic systems; in fact, though
these systems are governed by deterministic rules, their macroscopic initial states
cannot be known with infinite precision. In this framework, we can include the
failure of the economic and weather forecasts and we can also understand why
the onset of chaos is often considered undesirable, such as in the case of tran-
sitions from regular rhythm to chaotic electrical activity in the cardiac tissue,
which preludes to ventricular fibrillations. In contrast, in several contexts chaos
turns to be useful. An example is the realm of artificial intelligence where the
complexity of chaotic sequences can be exploited as a source of information to
develop fundamental logics [2,3] or to encrypt messages [4]. Independently of
the context, it is always desirable to understand and control chaotic instabilities
and their underlying mechanisms.

In this perspective chemical systems have traditionally played a key role.
In particular, chemical oscillators, whereby the concentration of some interme-
diates of the reaction changes periodically in time, have been widely used as
relatively simple model systems for studying chaotic dynamics [5]. The Belousov-
Zhabotinsky (BZ) reaction [6,7] is the prototype of chemical oscillators. It con-
sists of a mixture of a bromate salt, an oxidizable substrate (malonic acid in
the most common recipe) and a redox catalyst (typically ferroin or cerium com-
plexes) in a strongly acidic medium. The reaction proceeds easily at room tem-
perature and pressure and it can stay far-from-equilibrium for a long time thanks
to the slow depletion of the reactants. When stirred, the reaction shows periodic
oscillations between the reduced and the oxidized state of the catalyst (and other
intermediates); if the same solution is poured into a Petri dish forming a shallow
layer, oxidation waves (concentric or spiral waves) periodically form and develop
through the medium as a result of the spatial synchronization and spreading of
the chemical oscillations driven by diffusion (see an example in Fig. 1b).

A minimal kinetic scheme that can describe the BZ oscillatory mechanism
is the FKN model [5,8]. According to this scheme there are 3 fundamental pro-
cesses that cyclically alternate during the reaction. The first two steps involve
the depletion of bromide ions (Br−) and the autocatalytic production HBrO2

that, in turn, oxidises the catalyst. In the third step (the reset of the clock),
the catalyst is brought back to the reduced form via a reaction with the organic
species of the system (typically malonic acid) and, simultaneously, new Br− ions
are produced. The switching among the three steps is ruled by the concentration
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of bromides, that alternatively crosses a threshold dictated by the experimental
conditions (reactants concentration, temperature, etc.) and initiate either the
oxidative or the reducing process. Oscillations are visible following a chromatic
periodic change from red to blue when the ferroin is used as the redox cata-
lyst. Nevertheless, in order to follow the dynamics quantitatively, spectrophoto-
metric or potentiometric recordings are the most convenient techniques. Large-
amplitude periodic oscillations in the solution absorbance typically appear in
the spectrophotometric recordings when the solution is well-stirred. However, it
was found that, if stirring is stopped, periodic oscillations dynamically trans-
form into aperiodic and eventually chaotic oscillations (see Fig. 1a) [9,10]. This
phenomenon can be reproduced in a wide range of conditions and represents
a sort of fingerprint of the system. Chaotic oscillations occur and vanish by
following a Ruelle-Takens-Newhouse (RTN) route, that involves a sequence of
Hopf bifurcations going from periodicity to quasi-periodicity and eventually to
chaos [11].

The physical basis of the onset of chaos was found to be an active interplay
between the nonlinear kinetics and transport phenomena (typically diffusion and
convection). In fact, the nonlinear kinetics, when coupled to diffusion, induces
the spontaneous formation of chemical waves that, in turn, bear concentration
inhomogeneities and density gradients. In the presence of the gravitational field,
unfavourable density gradients initiate buoyancy-driven convective flows that
couple back with the reaction evolution and the reaction-diffusion patterns. This
loop, sketched in Fig. 1c, is also called chemo-hydrodynamic coupling [12] and is
known to promote complex behaviours and the formation of new stationary or
dynamical patterns [13–15].

In this paper, we show how to master the system dynamics, including self-
sustained chaos, by tuning the coupling between chemistry and transport phe-
nomena. In fact, chemically-driven convection induced by an oscillatory reac-
tion can be controlled through a simple adjustment of experimental conditions
(reactants concentration, temperature, etc.) and physical properties (viscosity,
reactor geometry, etc.), that act either on the kinetics or on the hydrodynamics
of the system, in order to select and maintain over time a chosen dynamical
reaction regime (periodic, aperiodic or chaotic). Experimental results are guided
and supported by numerical simulations and interpreted in terms of a general
reaction-diffusion-convection model that can be generalised and applied to sim-
ilar problems.

2 Experimental Approach

2.1 Experimental

In our experiments we used both the cerium- and the ferroin-catalyzed BZ sys-
tems. Malonic acid (CH2(COOH)2, MA), sodium bromate (NaBrO3), sulfuric
acid (H2SO4), ferroin (Fe(phen)2+3 , Fe) and cerium sulfate (Ce(SO4)2, Ce(IV))
were purchased from Sigma Aldrich. All reagents were of analytical quality and
were used without further purification. Deionised water from reverse osmosis was
used to prepare all the solutions.
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Fig. 1. (a) Examples of spectrophotometric recordings of the Ce(IV)-catalyzed BZ
reaction in a batch unstirred reactor. On the left the typical oscillations characterizing
a well-stirred solution while on the right the evolution of the unstirred reaction. The red
box identifies the characteristic aperiodic transient between the two periodic regions.
[MA] = 0.3 M, [NaBrO3] = 0.09 M, [H2SO4] = 1 M, [Ce(IV)] = 4 mM. (b) Example of
concentric chemical waves developing in the ferroin-catalyzed BZ medium. (c) Scheme
of the complex interplay between nonlinear kinetics and transport phenomena, sustain-
ing density-driven chemo-hydrodynamic patterns and the transition to chemical chaos.
(Color figure online)

The kinetics of the BZ reaction has been studied at 25.0 ◦C. The typical
recipe for the cerium-catalyzed system was [Ce(IV)] = 0.004 M, [MA] = 0.30 M,
[NaBrO3] = 0.09 M, [H2SO4] = 1 M while the following concentrations [MA] =
0.74 M, [NaBrO3] = 0.28 M, [H2SO4] = 0.35 M, [Fe] = 0.93 mM were used for
the ferroin-catalyzed sytem.

The reaction dynamics was monitored by recording via a UV-vis spec-
trophotometer the absorption of (i) Ce(IV) for the cerium-catalyzed system at
λmax = 320 nm (ε ∼ 5600 M−1 cm−1) and (ii) the ferriin, the oxidized form of
ferroin, at λmax = 630 nm (ε ∼ 620 M−1 cm−1) for the ferroin-catalyzed BZ
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system. 3.0 mL of the reactive solution were prepared in a beaker, stirred for
twenty minutes and finally transferred into a quartz cuvette for spectrophoto-
metric data acquisition. Each kinetic measurement has been repeated at least
three times in order to check the reproducibility of the experimental results.
The time series obtained in this way were analyzed by means of the Fast Fourier
Transform (FFT).

2.2 Hydrodynamic Control

Influence of Stirring. An immediate and straightforward control over the
chemo-hydrodynamic coupling responsible for chaos, is to restart stirring during
the development of the aperiodic transient [10,16]. In this way we can suppress
the onset of natural convection as we eliminate the concentration gradients at
the origin of the buoyancy-driven hydrodynamic instabilities. When stirred, the
system behaves as a unique oscillator with regular high-amplitude oscillations. If
stirring is stopped again, the system dynamics undergoes a new transition to the
aperiodic regimes. This is illustrated in Fig. 2. We expect that a similar behaviour
can also be obtained if the reaction is carried-out in parabolic flights (see as an
example the experiments run in microgravity with the Iodide-Arseneous-Acid
(IAA) reaction [17]), where periodic conditions of microgravity eliminate and
decouple intermittently the contribution of buoyancy-driven convection to the
system dynamics.

Fig. 2. Effect of stirring when ferroin catalysed BZ reaction undergoes a transition to
chemical chaos. Reproduced from [10] with permission of the copyright owner.
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Influence of the Reactor Size. Hydrodynamic instabilities are also known
to be sensitive to the size of the spatial domain where they occur and can be
avoided working with reactors below a critical size. A spectrophotometric study
on the dynamic behaviour of the BZ system in unstirred batch conditions was
then carried out by using cuvettes with different path length, specifically in the
range 1 to 0.02 cm [18]. It was shown that there is a critical threshold, namely
0.05 cm, below which the transition to aperiodic oscillations cannot be observed
any more and just periodic oscillations develop as the possibility for the onset
of convection is also hindered by narrowing the reactor (see Fig. 3).

Fig. 3. Effect of the reactor size in the dynamics of the BZ reaction in batch and
unstirred reactors.

Influence of the Medium Viscosity. A further control of the system dynam-
ics can be obtained by changing the medium viscosity. In our check experiments
this was obtained for example by adding different amounts of an organic poly-
mer, namely poly-ethylene-glycol (PG), to the reactive solution [16] or by using
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a surfactant, sodium dodecyl sulphate (SDS) [19,20], both able to increase the
hydrodynamic inertia of the medium to contrast convective motions without
affecting the chemical kinetics. In particular, differently to the case of the zwit-
terionic surfactant N-tetradecyl-N,N-dimethylamine oxide that causes an induc-
tion period prior to the onset of regular oscillations [19,21], SDS only slightly
alter the kinetics of the BZ reaction, without changing the oscillation mechanism
and without introducing new dynamical features [22], even above the critical
micelle concentration (CMC). To maximise the effect of the surfactant on the
viscosity of the solutions, we thus varied SDS concentration above CMC.
Both PG and SDS, by suppressing the possibility for the onset of hydrodynamic
motions, can in parallel prevent the system from a transition to chemical chaos.
The percentage of PG and the concentration of SDS are related to the kinematic
viscosity and this can effectively act as a direct control parameter in the bifur-
cation sequence from chaotic to periodic regimes. Once more, it was found that
this route to periodicity obeys a RTN scenario. To give an example of this result,
we report in Fig. 4 the transition scenario from chaos to periodicity obtained by
increasing the concentration of SDS in the range [1, 250] mM, which causes an
increase of viscosity up 10% as compared to the surfactant-free BZ system.

Fig. 4. Relative viscosity, ηrel, of the ferroin-catalyzed BZ solution and related effect
in the chemical oscillator dynamics when the reaction is carried out in batch conditions
and without stirring. [MA] = 0.74 M, [NaBrO3] = 0.28 M, [H2SO4] = 0.35 M; the inset
shows the zoom of the region 0 < [SDS] < 1 × 10−2 M.
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2.3 Chemical Control

In order to show that not only hydrodynamics but also chemistry plays a crucial
role in the appearance of chemical chaos, a large number of experiments were
carried out by varying different relative initial concentration of the reactants of
the BZ oscillator. As shown by Pojman et al. [23], the concentration of the main
reactants can be treated as a pseudo-bifurcation parameter in batch conditions.
A systematic screening of the ternary parameter-space was performed [24] by
varying the relative concentration of the redox catalyst (here CeSO4), NaBrO3

and malonic acid. It was found that by changing the initial composition of the
system the oscillatory dynamics and, hence, the transition to chaos, could be
controlled to a large extent. This is illustrated in the ternary diagram shown in
Fig. 5. When the relative concentration of the reactants is that circumscribed
by the red region, chaos can appear after the periodic behaviour following a
RTN route. Yellow areas indicate conditions where only quasi-periodicity can
develop and, finally, green region are related to situations in which only periodic
behaviours were observed.

The ionic strength of the solution is a further tool to control the dynamics of
the system through chemistry. In fact, it was demonstrated that by adding an
inert electrolyte to the solution (Na2SO4, Al2(SO4)3, etc.) the chemical potential
of the reactants could be tuned to prevent or induce the chaotic regime [25].

Fig. 5. A ternary bifurcation diagram describing possible dynamical regimes in a
Ce(IV)-catalyzed closed unstirred BZ system as a function of the volume fraction of
three initial reactants: malonic acid, potassium bromate and Ce(IV). The green, yellow
and red zones identify periodic, quasi-periodic and chaotic domains, respectively. The
black boundary zone corresponds to initial compositions where no oscillations occur.
Reproduced from [24] with permission of the copyright owner. (Color figure online)
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3 Numerical Approach

The experimental approach discussed so far could be strengthen by means of
a theoretical/numerical implementation. In fact, the modelling strategy helped
us in the interpretation of the experimental results and now serves as powerful
planning instrument to predict new routes for chaos control.

3.1 Model

We modeled the system as a two-dimensional vertical slab (i.e. a vertical cut of
the real three-dimensional spectrophotometric cuvette, perpendicular to a vir-
tual spectrophotometric beam) in the coordinate system (x, y), with the gravi-
tational field g = (0,−g) oriented against the vertical axis y. As shown in pre-
vious work, this two-dimensional description is a reliable approximation to the
three-dimensional problem [26–29]. A set of reaction-diffusion-convection (RDC)
equations is derived by coupling the chemical kinetics to diffusion through Fick’s
terms and to natural convection by means of the Navier-Stokes equations.

The reaction-diffusion-convection (RDC) system is (i) formulated in the
Boussinesq approximation, (ii) written in the vorticity-stream function (ω − ψ)
form, (iii) conveniently scaled on the chemical time scale t0 (see [5]) and on the
characteristic space scale of the problem, x0. Finally, since the BZ reaction is not
highly exothermic and thermal gradients are rapidly smoothed, we formulated
the problem under the isothermal approximation.

The resulting model is

∂ci
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Dν = νt0/x2
0 = 58.5 is the dimensionless viscosity (ν being the medium

kinematic viscosity); Di = Dt0/x2
0 = 0.00350 is the dimensionless diffusivity (D

being the dimensional diffusivity of the two oscillating species). u = U/v0 and
v = V/v0 are dimensionless horizontal and vertical components of the velocity
field scaled over the velocity scale v0 = x0/t0.

Gri = gx3
0δρi/ρ0ν

2 is the Grashof number for the i-th species, g is the gravi-
tational acceleration, ρ0 is the reference density of the medium and δρi = ∂ρ

∂ci
is
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the density variation due to the change of the concentration of the i-th species
with respect to the reference conditions (reduced state) of the reactive mixture.
The Grashof number is a measure of the sensitivity of a species to produce con-
vective motions in virtue of isothermal density changes and, in a sense, controls
the strength of the RDC coupling within the system. ω is the vorticity, defined
as the rotor of the velocity vector (u, v), while the stream function ψ is defined
by Eqs. (4) and (5).

The kinetic functions ki(ci, λ̄) are derived from the Oregonator model [5] and
have the form

k1(ci, λ̄) =
dc1
dτ

=
1
ε1

(
(qa − c1)
(qa + c1)

fbc2 + c1(a − c1)
)

(6)

k2(ci, λ̄) =
dc2
dτ

= ac1 − bc2 (7)

where i = 1, 2, c1 is the concentration of bromous acid, c2 is the concentra-
tion of the oxidized form of the catalyst and λ̄ = ε1, q, f, a, b the set of kinetic
parameters. The initial distributions of the chemical species are set as

c1(0) = 0.8 if 0 < θ < 0.5 (8)
= c1(ss) elsewhere (9)

c2(0) = c2(ss) +
θ

8πf
(10)

(where c2(ss) = c1(ss) = q(f + 1)/(f − 1) and θ is the polar coordinate angle)
to mimic inhomogeneous concentration profiles that typically occur in unstirred
systems. These specific functions were used by Jahnke et al. [30] to initiate spiral
waves in an analogous reaction-diffusion system. q and ε are kinetic parameters
accounting for the excitability of the system and f is a stoichiometric factor
included in the resetting step of the oscillatory scheme. This parameter allows
one to set the system in an oscillatory regime when it ranges [0.5, 1+

√
2] and

we use f = 1.6; q is fixed to 0.01; ε = 0.01; a and b are the concentration of the
bromate salt and the malonic acid, respectively. In our study we set b = 1 while
a was used a chemical control parameter.

The PDE system (1–5) was numerically solved over a 100 × 100 points grid
(mesh-point separation hx = 0.50), using the alternating direction finite differ-
ence method [31]. We imposed no-slip boundary conditions for the fluid velocity
and no-flux boundary conditions for chemical concentrations at the walls of the
slab. A small time step ht has to be used due to the stiff nature of the kinetic
equations. ht = 1 × 10−6 was tested to be a good value.

In the experiments the output of the spectrophotometric recordings is the
average of the absorbance of the reactive solution over the spatial domain
scanned by the spectrophotometric beam as a function of the time. In order to
have an observable comparable to the experimental data, we build up time series
by reporting at each integration time step the mean concentration of the oscilla-
tory intermediates averaged over the solving grid (〈c1〉 and 〈c2〉). The resulting
signals are then analyzed by means of the FFT and attractor’s reconstruction.
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3.2 Hydrodynamic Control

We focus now on the direct transition from periodic to chaotic regimes under
hydrodynamic control, namely by changing the Grashof numbers of the chemical
species [26]. This gives a picture of the direct transition to chaos in the unstirred
BZ reaction (shown in Fig. 1) if one assumes that, after stirring is stopped,
residual advective motions relax, concentration patterns (typically waves) with
related density gradients can build-up and initiate convective motions with pro-
gressively growing intensity. In this regime the chemical oscillator is in the far-
from-equilibrium branch, where the depletion of the initial reactants is negligibly
slow and the system can maintain quasi-stationary conditions like if it was open.

Periodic regime. In Fig. 6a we show a limit cycle, with a fundamental frequency
ω1 = 0.747 Oregonator frequency units, obtained in the absence of convection
(i.e. with Gri = 0.00). Periodicity is still found when the chemo-hydrodynamic
coupling is strengthened, by increasing both Grashof numbers to 9.40. The
related attractor projection (〈c1〉, 〈c2〉) and the time series are shown in Fig. 6(b),
left and centre panels, respectively. To show the attractor change, we keep fixed
the region framing the phase portrait. The oscillatory dynamics of 〈c1〉 and 〈c2〉
present one fundamental frequency ω1 = 0.396, different from that observed in
panel (a). This confirms that convection is actively coupled with the reaction-
diffusion system. Note that, due hydrodynamic inertia, the new solution presents
a longer period with respect to the case where convection is at rest.

Quasi-periodic regime. As the Grashof numbers are increased to 9.80 a quasiperi-
odic behavior is found (see Fig. 7). This can be inferred by the attractor recon-
struction (left), the time series (centre) and quantitatively revealed by the related
Fourier amplitude spectrum (right). In the latter, two characteristic fundamental
frequencies (ω1, ω2) and their linear combinations are shown. These frequencies,
which ratio ω1/ω2 is an irrational number, characterize the toroidal flow of the
system represented in the phase-space projection (〈c1〉, 〈c2〉).
Chaotic regime. If the Grashof numbers are further increased, namely to 12.10, an
aperiodic behavior (see Fig. 8a) associated with the strange attractor in Fig. 8c,
is observed. As shown in Fig. 8a, the time series manifest sensitivity to initial
conditions consistent with one of the signatures for chaotic dynamics. To test
for chaos, we have also calculated the largest Lyapunov exponents, λ, using
the Rosenstein algorithm from TISEAN package [32]. The value λ = 0.018 was
extracted from linear regression of the curves S(ε,m,t) for m = 5–9 shown Fig. 8d.

3.3 Chemical Control

As mentioned in Sect. 2.3, we can use the initial concentration of reactants as
a bifurcation pseudo-parameter [23,24] to modify and control chemically the
system dynamics. An inverse transition chaos-periodicity consistent with a RTN
scenario was indeed induced keeping constant the Grashof numbers and decreas-
ing the sodium bromate concentration, i.e. parameter a [33]. The chaotic regime,
occurring for a = 1, has been extensively characterized in Sect. 3.2 and [26].
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Fig. 6. (a) Characterization of the periodic dynamics of the RDC system for Gr1 =
Gr2 = 0.00: (left) trajectories described by the system in the phase space projection
(〈c1〉, 〈c2〉) (〈c1〉 ∈ [0.02, 0.20] and 〈c2〉 ∈ [0.06, 0.12]); (centre) time series describ-
ing 〈c2〉 dynamics in the time-frame [100, 200] Oregonator time units; (right) FFT
amplitude spectrum. (b) The same analysis is performed for Gr1 = Gr2 = 9.40.

Fig. 7. Quasi-periodic regime for Gr1 = Gr2 = 9.80: phase space trajectories in the
phase space projection (〈c1〉, 〈c2〉) with 〈c1〉 ∈ [0.02, 0.20] and 〈c2〉 ∈ [0.06, 0.12] (left),
time series describing 〈c2〉 dynamics in the time-frame [100:200] Oregonator time units
(centre) and related Fourier amplitude spectrum (right) (a = ω2 − ω1, b = 3ω2 − 3ω1,
c = 6ω2 − 7ω1, d = ω1 + 1/2ω1, e = 4ω2 − 4ω1, f = 7ω2 − 8ω1, g = ω1 + ω2).

A bifurcation to quasi-periodicity takes place for a = 0.97 and it is charac-
terized in Fig. 9(a, b). Quasi-periodicity is confirmed by the Fourier amplitude
spectrum, showing two incommensurable fundamental frequencies (ω1 = 0.39,
ω2 = 0.54) and their harmonic combinations. Note that these frequencies match
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Fig. 8. Chaotic dynamics for Gr1 = Gr2 = 12.10: (a) time series describing 〈c2〉 evo-
lutions for two different initial conditions in the time-frame [100:200] Oregonator time
units; (b) FFT amplitude spectrum of the signal in panel (a); (c) strange attractor of
this chaotic regime obtained in the phase-space (〈c1〉, 〈c2〉, vorticity); (d) Computation
of the maximum Lyapunov exponent by means of the Rosestein algorithm. The value
of λ = 0.018 is obtained by the linear regression of the curves S(ε,m,t) for m = 5–9, in
the zone between 0–40 iterations.

the values ω1 = 0.39, ω2 = 0.54 of the quasi-periodic regime obtained in the
direct transition under hydrodynamic control.

When a is decreased to 0.95 a supercritical Hopf bifurcation leading to a bi-
periodic solution can be detected. In the corresponding FFT’s amplitude spec-
trum (Fig. 9c), the main frequency ω1 can be still identified and subharmonic
frequencies of the type n × ω1

2 (where n is an integer) clearly emerge. According
to the FFT’s spectrum, the corresponding attractor exhibits a double-period,
visible in the inset of Fig. 9d.

Figure 9f shows a limit cycle characterized by the main frequency ω1 (see the
related FFT spectrum in Fig. 9e) obtained when a reaches the value 0.93. The
FFT’s analysis reveals a supercritical Pichfork bifurcation, leading to a unique
oscillation period.

As a whole, this transition scenario under chemical control can describe the
inverse route from chaos to periodicity observed in Fig. 1a.
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Fig. 9. Attractor reconstruction in the phase-space section (〈c1〉, 〈c2〉, with 〈c1〉 ∈
[0.02, 0.20], 〈c2〉 ∈ [0.06, 0.12]) and FFT amplitude spectra of the simulated dynamical
regimes in the transition from chaotic to periodic oscillations controlled by the concen-
tration of the initial reactant a. (a–b), a = 0.97 a quasi-periodic regime; (c–d), a = 0.95
a bi-periodic regime; (e–f), a = 0.93 a periodic regime.

4 Concluding Discussion

To summarize, we discussed the active interplay of nonlinear kinetics with related
chemically-driven transport phenomena as a general mechanism for devising
a self-sustained chaotic generator. The route to chaos in this context can be
controlled by tuning the strength of the chemo-hydrodynamic coupling either
via chemical or hydrodynamic parameters. We have supported this idea by
means of experimental examples and also formalized it with a reaction-diffusion-
convection model which allows the numerical description and prediction of the
chaotic dynamics.

This theoretical framework guided us in the interpretation of the transition
from periodicity to chaos and viceversa observed in experiments. In particular,
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it was found that the reaction evolves through two main phases, characterized
by a longer time scale with respect to chemical oscillations. In a first phase, the
concentration of the reactants is in large excess with respect to the intermedi-
ates and the reactant depletion can be neglected. In this phase, the system is
mainly under hydrodynamic control and convection drives the system to chaos.
In a second phase, the system evolves to the ultimate thermodynamic equilib-
rium. The main reactants consumption cannot be neglected any more and the
reactants concentration acts as a bifurcation parameter towards regular periodic
oscillations.

Conceptually, the results obtained with this experimental system and the
related theoretical model have a general value and can also be extended to
spatiotemporal phenomena [34]. The modularity of the RDC model permits
to fit our findings to isomorphic problems; by changing the kinetics terms, for
example, we can study other nonlinear chemical systems or face more complex
mechanisms such those that lead and control low-dimensional spatio-temporal
turbulence in cardiac arrhythmias.

Also, chaotic dynamics are themselves rich sources of information [4]. In
the realm of artificial intelligence chemo-hydrodynamic systems could be thus
exploited as generators of chaotic signals for implementing fundamental log-
ics and as a controllable contaminator in protocols for encrypting messages.
Similar studies have already been initiated by using externally-forced chemo-
hydrodynamic oscillations, which feature suitable output to develop fundamental
operations based on fuzzy logic [2,3].
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