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Abstract. The definition of community, usually, relies on the concept
of edge density. Network motifs, however, have been recognized as fun-
damental building blocks of networks and, similarly to edges, may give
insights for uncovering communities in complex networks. In this work,
we propose a novel approach for identifying communities of network
motifs. Differently from previous approaches, our method focuses on
searching communities where nodes simultaneously participate in sev-
eral types of motifs. Based on a genetic algorithm, the method finds a
number of communities by minimizing the concept of multiple-motifs
conductance. Simulations on a real-world network show that the pro-
posed algorithm is able to better capture the real modular structure of
the network, outperforming both motifs-based and classic community
detection algorithms.
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1 Introduction

Complex networks contain small subgraphs named network motifs [11], which
are pattern of interconnections recurring more frequently than expected in a
random network. The frequency of a motif describes the number of times this
motif appears within the network. High frequencies of certain motifs are possible
due to the important functions they play in a network. For example, the feed
forward loop and the bifan motifs shown in Fig. 1(a) and (d), respectively, have
been found to be highly frequent into the genetic regulation networks of E. coli
and S. Cerevisiae, as well as into the C. elegans neurons network. It is worth
noting that multiple motifs usually coexist within a network. Figure 2 shows a
subgraph of Florida Bay food web network [18], where different microorganisms
interact through multiple motifs. We highlight here three types of network motifs:
M5, M6 (Fig. 1(b)) and M8 (Fig. 1(c)). In motif M5, Water POC serves as energy
source for Free Bacteria and Meroplankton, and Meroplankton for Free Bacteria.
In motif M6, Free Bacteria acts also as energy source for Arcatia tonsa, and both
nodes are served by Input. Finally, interaction patterns like Input serving Water
flagellates and Water ciliates (motif M8) occur many times.
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Fig. 1. (a) M5 (feed-forward loop), (b) M6, (c) M8, and (d) Mbifan motifs.

Fig. 2. Multiple motifs coexisting in a subgraph of Florida Bay food web network: M5,
M6 and M8. The edges composing these three motifs are highlighted in pink, purple
and orange, respectively. (Color figure online)

Although network motifs have been recognized as “fundamental units of net-
works” [3], few studies explore the role these subpatterns have in community
detection. Arenas et al. [1] show how motifs can be used to define a motif-based
modularity, i.e. how motif-based modules present more motifs than a random
division. Specifically, they extended the original definition of modularity intro-
duced by Girvan and Newman [6] to deal with classes of motifs, and showed that
the detected partitions are different with respect to those obtained by optimizing
the classical modularity. A spectral method based on the generalized modularity
[17] has been proposed by the same authors, and the differences between the
obtained community structures on several networks are highlighted. In a recent
work, Benson et al. [2] proposed a tensor spectral clustering method that clusters
nodes according to the motif specified in input by the user. First, the higher-
order structures involving multiple nodes are encoded by means of tensors (i.e.,
multidimensional matrices). Then, the method searches a partitioning that does
not cut the motifs. Another work [3] by the same authors, described in detail in
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the next section, extends the concept of conductance [16] to network motifs for
finding cluster of motifs with low motif conductance.

One of the main drawbacks of the aforementioned approaches is that the
number of communities must be fixed in advance. In a previously work [14],
we proposed MotifGA, an evolutionary motifs-based algorithm for community
detection using Genetic Algorithms (GAs) [7] and a type of motif as input for
discovering a number of motif-based communities minimizing motif conductance.
Here and in all the previous cited related works, motif-based clustering is thus
performed fixing a type of motif and exploring the communities based only on
that motif, without considering the coexistence of multiple motifs.

In this paper, we propose M-MotifGA, a genetic algorithm for detecting
communities in complex networks simultaneously considering different motifs.
The method evolves a population of individuals by minimizing the concept of
multiple-motifs conductance, and finds a partition of the network into k commu-
nities, with k determined by the best local solution optimizing the multiple-
motifs conductance as fitness function. A comparison with the approach of
Benson et al. [3], with a variant of this approach we developed here for taking
into account multiple motifs, and with the two best known community detection
methods Louvain [4] and Infomap [15] shows that M-MotifGA obtains results
better than those found by the other state-of-the-art methods.

The paper is organized as follows. Section 2 introduces the concepts of con-
ductance when motifs are considered and defines the problem we tackle. Section 3
describes our method. Section 4 details the dataset used to perform our experi-
ments and the results obtained. Finally, Sect. 5 concludes the paper.

2 Network Motif Clustering

In this section, we start recalling the concepts of network motif, conductance,
motif conductance and multiple-motifs conductance. Then, we describe the
method proposed by Benson et al. [3] and the introduction of multiple motifs
within their method.

Given a graph G = (V,E) with weights W , n =| V | number of vertices, and
m =| E | number of edges, a motif M of G on r nodes {v1, . . . , vr}, represented
by a sub-adjacency matrix of size r × r, is defined as a subgraph of G presenting
a particular pattern of interconnections. Figure 1 shows three types of motifs
among three nodes (Fig. 1(a), (b), and (c)) and a motif involving four nodes
(Fig. 1(d)). Their labeling follows the same convention adopted in [3].

Given the diagonal degree matrix D of G defined as Dii =
∑n

j=1 Wij , and a
set S ⊂ V of nodes, the cut of S, denoted cut(S), is defined as the sum of edge
weights having one endpoint in S and the other in S = V − S:

cut(S) =
∑

i∈S,j∈S

Wij (1)
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The conductance of S is defined as

φ(S) =
cut(S)

min(vol(S), vol(S))
(2)

where vol(S) =
∑

i∈S Dii is the weighted sum of edge end points in S.
By substituting an edge with a motif instance of M , the conductance of S

can be generalized to motifs as follows

φM (S) =
cutM (S)

min(volM (S), volM (S))
(3)

where φM (S) is defined motif conductance, cutM (S) is the number of motif
instances of M with at least a node in S and another in S, and volM (S) is the
number of instances of M contained in S.

Problem definition (single-motif). Fixed a network motif M , find a set of
nodes S such that: (1) they participate in as many instances of M as possible,
and (2) cutting instances of M is avoided, i.e. all the nodes of M should belong
to either S or S.

Benson et al. [3] proposed a method for partitioning V into the comple-
mentary sets S and S that, given a motif M , minimizes the motif conductance
φM (S). The method works on the motif adjacency matrix WM , where each ele-
ment represents the number of times two nodes appear in an instance of M .
When there are nodes that do not participate in any motif, these nodes are dis-
carded from WM . Then, the eigenvector corresponding to the second smallest
eigenvalue of the normalized motif Laplacian matrix is computed. The compo-
nents of the eigenvector generate an ordering of nodes, which produces nested
sets of nodes. The set of nodes with the smallest motif conductance is proven to
be a near-optimal partition. Further details on the approach can be found in [3].
For obtaining a partition with more than two communities, the method, named
Motif Recursive bi-partitioning (MRbi-part), can be recursively executed on S
and S, until the desired number of clusters is obtained.

When considering M1, M2, ..., Mq motifs simultaneously, the multiple-motifs
conductance is defined as

φMM (S) =

∑q
j=1 αjcutMj

(S)

min(
∑q

j=1 αjvolMj
(S),

∑q
j=1 αjvolMj

(S))
(4)

where each αj ≥ 0 gives a weight to the impact of motif Mj on the considered
network.

Problem definition (multiple-motifs). Given a set of q network motifs M1,
M2, ..., Mq, find a set of nodes S such that (1) they simultaneously participate
in as many instances of all the considered motifs as possible, and (2) cutting
instances of any Mj , j = 1, ..., q are avoided.

In the next section, we propose to solve the problem of finding a division on a
network based on multiple motifs by applying a Genetic Algorithm. Specifically,
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the proposed algorithm minimizes the multiple-motifs conductance computed on
the motif adjacency matrices of the single motifs, associated with the graph G
representing the network. For comparing our method to another method based
on multiple motifs, we also modified MRbi-part extending its code such that
the multiple-motifs conductance is the measure to minimize. As such, we con-
sidered a weighted motif adjacency matrix WMw =

∑q
j=1 αjWMj

for running
the method. We denominate this extension as MRbi-partMM . It is worth noting
that, differently from the methods by Benson et al., our method does not need a
prior setting of the number of communities to find. This number is automatically
provided by decoding the solution obtained by the method, i.e. the solution with
the lowest local optimum value of conductance.

3 M-MotifGA Description

The algorithm we propose, named M-MotifGA is based on our previous work [14],
where we proposed MotifGA, an approach to motif network clustering exploit-
ing a genetic algorithm, that evolves a population of individuals by minimizing
motif conductance. Similarly to MotifGA, M-MotifGA obtains the simultaneous
partition of a network into k communities, with k determined by the best local
solution optimizing the fitness function. However, differently from MotifGA, the
fitness function used in M-MotifGA is the multiple-motifs conductance.

A GA-based method basically evolves a population of individuals initialized
at random, and performs variation and selection operators to increase the value
of a criterion function, while exploring the search space during the optimiza-
tion process. M-MotifGA uses the locus-based adjacency representation [13] for
representing the problem, uniform crossover and neighbor-based mutation for
evolving individuals. In the locus-based representation, an individual I is rep-
resented as a vector of n genes. Each gene can assume a value j in the range
{1, . . . , n}: when a value j is assigned to the ith node, nodes i and j are linked.
A decoding step identifies all the connected components of the graph which cor-
respond to the network division in communities. Uniform crossover generates a
random binary mask of length equal to the number of nodes, and an offspring is
obtained by selecting from the first parent the genes in the mask set to 0, and
from the second parent the genes in the mask set to 1. Finally, the mutation
operator randomly changes the value j of a gene to one of its neighbors.

M-MotifGA receives in input the graph G = (V,E) and the set of motifs M1,
M2, ..., Mq, and performs the following steps:

1. compute the motif adjacency matrices WM1 , WM2 , ..., WMq
;

2. take the largest connected component Wmax
Mj

of WMj
for each motif Mj of

the q motifs;
3. obtain the weighted graph GMj

= (VMj
, EMj

) corresponding to Wmax
Mj

for
each 1 ≤ j ≤ q;

4. compute the weighted graph GM =
∑q

j=1 GMj
;



Multiple Network Motif Clustering with Genetic Algorithms 301

5. run the GA on GM for a number of iterations by using multiple-motifs con-
ductance as fitness function to minimize, uniform crossover and neighbor
mutation as variation operators;

6. obtain the partition C = {C1, . . . , Ck} corresponding to the solution with the
lowest fitness value;

7. merge two communities if the number of inter-cluster connections is higher
than the number of intra-cluster connections.

Note that the weighted graphs GMj
associated with the largest connected com-

ponents of the motif adjacency matrices may have different numbers of nodes. In
this case, before Step 4, the algorithm computes the subset of nodes which are
common to all the GMj

graphs. Then, the matrices GMj
will be reorganized in

order to contain only the rows and the columns related to that subset of nodes.
In the next section we present the results obtained by our algorithm and

compare them with those returned by state-of-the-art methods. Moreover, we
also investigate a variant of our approach, named MS-MotifGA, that uses as
fitness function the sum of the motif conductance of the single motifs, that is
φMS(S) = φM1(S) + φM2(S) + . . . + φMq

(S).

4 Experimental Evaluation

To validate our algorithm, we performed several simulations using Matlab 2015b
and the Global Optimization Toolbox. Specifically, we compared our algorithm
with other well-known state-of-the-art algorithms in terms of NMI [5], ARI [9]
and F1 [10] indexes. The results for M-MotifGA have been averaged over 10 runs
of the algorithm, setting the population size to 100, the number of generations
to 200, the mutation rate to 0.2, and the crossover rate to 0.8. These parameter
values have been fixed by employing a trial-and-error procedure on the bench-
mark data set. Moreover, for computing the multiple-motifs conductance, we
equally weighted all motifs using αj = 1. For MRbi-part we set to 4 the num-
ber of communities to find, as suggested by Benson et al. for this dataset, since
a higher number of communities would give higher motif conductance values
and, thus, worse results for their algorithm. Specifically, we applied the motif
recursive bipartitioning method twice in order to obtain the desired number of
communities. The following subsections describe the dataset and performance
indexes used, and the algorithms taken into account for testing the effectiveness
of M-MotifGA.

4.1 Dataset

We analyze the Florida Bay food web dataset containing the data of an
ecosystem food web. Converting these data into a network graph, nodes can
be considered organisms and species, and edges the directed carbon exchange
between species. For clustering this network, we consider the motifs M5, M6 and
M8 shown in Fig. 1. M5, considered a building block for food webs, describes the
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hierarchical flow of energy between species i and j which are energy sources for
species k, while i is an energy source for both. M6, on the contrary, models two
species that exchange energy and compete to receive energy from a third specie.
This motif has been shown to be prevalent within this network, resulting in a
rich high-order modular structure. Finally, M8 corresponds to a single specie
feeding two non-interacting species.

The original Florida Bay food web network is composed by 128 nodes and
2106 edges. For detecting communities, we consider a subset of 62 nodes for
which the ground truths are known. Specifically, two ground truths, denoted as
GT1 and GT2, are available and are relative to the two large connected compo-
nents resulting from the analysis of the adjacency matrix of motif M6. Table 1
shows the 50 nodes corresponding to the first component and the 12 nodes of the
second component. The remaining 66 nodes are isolated. In GT1 nodes are classi-
fied into 11 different categories (‘demersal producer’, ‘seagrass producer’, ‘algae
producer’, ‘microbial microfauna’, ‘zooplankton microfauna’, ‘sediment organ-
ism microfauna’, ‘macroinvertebrates’, ‘pelagic fishes’, ‘benthic fishes’, ‘demer-
sal fishes’, and ‘detritus’ ). In GT2, on the contrary, nodes are categorized into
7 groups: ‘producer’, ‘microfauna’, ‘macroinvertebrates’, ‘pelagic fishes’, ‘benthic
fishes’, ‘demersal fishes’, and ‘detritus’. Basically, GT2 considers all the producer
and microfauna subcategories of GT1 as unique macro categories.

The largest connected components of the adjacency matrices for motifs M5

and M8 have 127 and 128 nodes, respectively. Since both motif adjacency matri-
ces contain the 62 nodes for which the ground truths are known, we consider
only the sub-matrices corresponding to this set of 62 nodes when dealing with
motifs M5 and M8.

4.2 Performance Indexes

To assess the quality of the solutions, we use the following evaluation measures,
well known in the literature:

NMI. The normalized mutual information NMI(A,B) [5] of two divisions A
and B of a network is defined as follows. Let C be the confusion matrix whose
element Cij is the number of nodes of community i of the partition A that are
also in the community j of partition B.

NMI(A,B) =
−2

∑cA
i=1

∑cB
j=1 Cij log(Cijn/Ci.C.j)

∑cA
i=1 Ci.log(Ci./n) +

∑cB
j=1 C.j log(C.j/n)

(5)

where cA (cB) is the number of groups in partition A (B), Ci. (C.j) is the sum of
the elements of C in row i (column j), and n is the number of nodes. If A = B,
NMI(A,B) = 1. If A and B are completely different, NMI(A,B) = 0.

F1 score. This measure [10] is calculated by using the Precision (P) and Recall
(R) measures as F1 = 2RP

R+P , where P = TP
TP+FP and R = TP

TP+FN . True Positive
(TP) refers to the number of nodes which are correctly assigned to communities,
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Table 1. Florida Bay food web ground truths (GT1 and GT2) for the two large
connected components of the motif M6 adjacency matrix.

Node ID Species Component GT1 GT2

8 ‘Benthic Phytoplankton’ 1 Demersal Producer Producer

9 ‘Thalassia’ 1 Seagrass Producer Producer

10 ‘Halodule’ 1 Seagrass Producer Producer

11 ‘’Syringodium’ 1 Seagrass Producer Producer

13 ‘Drift Algae’ 1 Algae Producer Producer

14 ‘Epiphytes’ 1 Algae Producer Producer

24 ‘Benthic Flagellates’ 1 Sediment Organism Microfauna Microfauna

25 ‘Benthic Ciliates’ 1 Sediment Organism Microfauna Microfauna

26 ‘Meiofauna’ 1 Sediment Organism Microfauna Microfauna

29 ‘Other Cnidaridae’ 1 Macroinvertebrates Macroinvertebrates

30 ‘Echinoderma’ 1 Macroinvertebrates Macroinvertebrates

31 ‘Bivalves’ 1 Macroinvertebrates Macroinvertebrates

32 ‘Detritivorous Gastropods’ 1 Macroinvertebrates Macroinvertebrates

34 ‘Predatory Gastropods’ 1 Macroinvertebrates Macroinvertebrates

35 ‘Detritivorous Polychaetes’ 1 Macroinvertebrates Macroinvertebrates

36 ‘Predatory Polychaetes’ 1 Macroinvertebrates Macroinvertebrates

37 ‘Suspension Feeding Polych’ 1 Macroinvertebrates Macroinvertebrates

38 ‘Macrobenthos’ 1 Macroinvertebrates Macroinvertebrates

39 ‘Benthic Crustaceans’ 1 Macroinvertebrates Macroinvertebrates

40 ‘Detritivorous Amphipods’ 1 Macroinvertebrates Macroinvertebrates

41 ‘Herbivorous Amphipods’ 1 Macroinvertebrates Macroinvertebrates

42 ‘Isopods’ 1 Macroinvertebrates Macroinvertebrates

43 ‘Herbivorous Shrimp’ 1 Macroinvertebrates Macroinvertebrates

44 ‘Predatory Shrimp’ 1 Macroinvertebrates Macroinvertebrates

45 ‘Pink Shrimp’ 1 Macroinvertebrates Macroinvertebrates

48 ‘Detritivorous Crabs’ 1 Macroinvertebrates Macroinvertebrates

49 ‘Omnivorous Crabs’ 1 Macroinvertebrates Macroinvertebrates

50 ‘Predatory Crabs’ 1 Macroinvertebrates Macroinvertebrates

51 ‘Callinectus sapidus’ 1 Macroinvertebrates Macroinvertebrates

57 ‘Sardines’ 1 Pelagic Fishes Pelagic Fishes

58 ‘Anchovy’ 1 Pelagic Fishes Pelagic Fishes

59 ‘Bay Anchovy’ 1 Pelagic Fishes Pelagic Fishes

60 ‘Lizardfish’ 1 Benthic Fishes Benthic Fishes

61 ‘Catfish’ 1 Benthic Fishes Benthic Fishes

62 ‘Eels’ 1 Demersal Fishes Demersal Fishes

63 ‘Toadfish’ 1 Benthic Fishes Benthic Fishes

64 ‘Brotalus’ 1 Demersal Fishes Demersal Fishes

65 ‘Halfbeaks’ 1 Pelagic Fishes Pelagic Fishes

66 ‘Needlefish’ 1 Pelagic Fishes Pelagic Fishes

68 ‘Goldspotted killifish’ 1 Demersal Fishes Demersal Fishes

69 ‘Rainwater killifish’ 1 Demersal Fishes Demersal Fishes

72 ‘Silverside’ 1 Pelagic Fishes Pelagic Fishes

91 ‘Mullet’ 1 Pelagic Fishes Pelagic Fishes

93 ‘Blennies’ 1 Benthic Fishes Benthic Fishes

94 ‘Code Goby’ 1 Benthic Fishes Benthic Fishes

95 ‘Clown Goby’ 1 Benthic Fishes Benthic Fishes

96 ‘Flatfish’ 1 Benthic Fishes Benthic Fishes

99 ‘Other Pelagic Fishes’ 1 Pelagic Fishes Pelagic Fishes

(continued)
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Table 1. (continued)

Node ID Species Component GT1 GT2

100 ‘Omnivorous Ducks’ 1 Demersal Fishes Demersal Fishes

124 ‘Benthic POC’ 1 Detritus Detritus

15 ‘Free Bacteria’ 2 Microbial Microfauna Microfauna

16 ‘Water Flagellates’ 2 Microbial Microfauna Microfauna

17 ‘Water Cilitaes’ 2 Microbial Microfauna Microfauna

18 ‘Acartia Tonsa’ 2 Zooplankton Microfauna Microfauna

19 ‘Oithona nana’ 2 Zooplankton Microfauna Microfauna

20 ‘Paracalanus’ 2 Zooplankton Microfauna Microfauna

21 ‘Other Copepoda’ 2 Zooplankton Microfauna Microfauna

22 ‘Meroplankton’ 2 Zooplankton Microfauna Microfauna

23 ‘Other Zooplankton’ 2 Zooplankton Microfauna Microfauna

27 ‘Sponges’ 2 Macroinvertebrates Macroinvertebrates

123 ‘Water POC’ 2 Detritus Detritus

126 ‘Input’ 2 Detritus Detritus

False Positive (FP) refers to the nodes which are incorrectly assigned to commu-
nities, and False Negatives (FN) refers to the set of nodes which are incorrectly
not assigned to the proper communities. F1 value reaches its best value at 1 and
worst at 0.

Adjusted Rand Index. The Adjusted Rand Index (ARI) is a normalized ver-
sion of the Rand Index (RI)[9] which simply assesses the degree of agreement
between two partitions A and B. Let n11 be the number of pairs appearing in the
same cluster in both A and B, n00 the number of pairs that appear in different
clusters in both A and B, n10 the number of pairs appearing in the same cluster
in A but in different clusters in B, and n01 the number of pairs that are in the
same cluster in B and not in A. Then

ARI(A,B) =
2(n00n11 − n01n10)

(n00 + n01)(n01 + n11) + (n00 + n10)(n10 + n11)
(6)

4.3 Algorithms for Community Detection

We compare the two strategies of M-MotifGA, namely MM-MotifGA, in which
the fitness function used is φMM (S), and MS-MotifGA, in which the fitness
function is the sum of the single motif conductances, with the motifs-based
MRbi-part , both in the case in which this last algorithm uses a single motif
to detect communities and in the case of multiple motifs jointly used. We also
compare M-MotifGA to two benchmark algorithms not using motifs: Louvain [4]
and Infomap [15]. Louvain basically tries to optimize the modularity [12] of a
partition through a greedy optimization technique. First, small communities are
searched by optimizing modularity locally. Then, a new network whose nodes
are the communities are built and these steps are repeated until a hierarchy
of high-modularity communities is obtained. Infomap, on the contrary, exploits
the principles of information theory characterizing the problem of community
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detection as the problem of finding a description of minimum information of a
random walk on the graph. Maximizing the Minimum Description Length [8]
objective function, Infomap quickly provides an approximation of the optimal
solution.

4.4 Results

Table 2(a)–(b) shows the NMI, ARI and F1 values obtained for the two ground
truths of the Florida Bay food web results. The statistical significance of the
results has been been checked by performing a t-test at the 5% significance level.
The test rejected the null hypothesis that the values come from populations with
equal means, and returned p-values, on average, below 0.1E-5.

For MM-MotifGA and MS-MotifGA we report both the average value and the
standard deviation (in parenthesis) of the evaluation measures. For MS-MotifGA,
we investigated as fitness function φMS(S) = φM5(S)+φM6(S)+φM8(S). On the
ground truth GT1, MM-MotifGA outperforms all the other community detection
schemes finding a number of communities ranging from 7 to 10. Similarly, MS-
MotifGA, finds solutions with 7, 8, 9 and 10 communities, outperforming all the
other methods. Considering MS-MotifGA, however, we observe that the strategy
to sum the single motif conductances as fitness function to optimize, results in
NMI, ARI and F1 values lower than MM-MotifGA. As such, we conclude that if
we explore separately the three motifs and then we recombine them by summing
their conductances to obtain the function to optimize, the algorithm does not
take into account the intersection which could exist between motifs in terms
of edges. This intersection, as in the case of motifs M5 and M8, and M6 and
M8 for example, considered when jointly analyzing multiple motifs, is able to

Table 2. Florida Bay food web results.

MM-MotifGA MS-MotifGA MRbi-partM5 MRbi-partM6

GT1
NMI 0.9241 (0.0756) 0.8602 (0.0781) 0.4392 0.504
ARI 0.8451 (0.1923) 0.6879 (0.2141) 0.1388 0.3005
F1 0.8765 (0.1489) 0.754 (0.1646) 0.3149 0.4437

GT2
NMI 0.8367 (0.1127) 0.6844 (0.1054) 0.3214 0.4822
ARI 0.7039 (0.1798) 0.3886 (0.1106) 0.1045 0.3265
F1 0.7756 (0.1329) 0.5549 (0.0727) 0.3087 0.4802

(a)

MRbi-partM8 MRbi-partMM Louvain Infomap

GT1
NMI 0.4197 0.3406 0.3879 0.4035
ARI 0.1203 0.1291 0.2207 0.1423
F1 0.2949 0.2962 0.4068 0.31

GT2
NMI 0.3573 0.2829 0.3034 0.3471
ARI 0.1332 0.1241 0.2229 0.1592
F1 0.3244 0.3101 0.434 0.3416

(b)
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provide more meaningful communities, as the results show. Analyzing all the
algorithms by Benson et al. where the number of communities has been set to
4, the communities found result in significantly lover values of the evaluation
measures we considered. It is worth noting that considering only M5, M6 or M8

for clustering nodes does not produce satisfying results compared to our multiple-
motifs strategies. Moreover, when jointly considering all the motifs as in MRbi-
partMM , the algorithm performs even worse than the single-motif strategies
MRbi-partM5 , MRbi-partM6 , and MRbi-partM8 . As such, we conclude that when
the number of communities needs to be fixed in input as for MRbi-part , detecting
clusters of multiple motifs using multiple-motifs conductance as the function to
be minimized may lead to suboptimal results. Finally, comparing our method to
Louvain and Infomap, which do not exploit motifs, we observe that also these
methods are not able to find a good match with the ground truth. Focusing on the
largest community of the ground truth (i.e., the macroinvertebrates) including
21 nodes, for example, we observe that MM-MotifGA perfectly matches it in
all the runs of the algorithm. Louvain distributes the nodes into 4 different
communities: 2 groups with 7 nodes are inserted into different communities,
3 nodes into another one, and the remaining nodes into another community.
Finally, Infomap inserts all the 21 nodes into a unique but larger community
including other nodes.

On the ground truth GT2, we obtain similar results. MM-MotifGA still out-
performs all other methods, resulting in the highest NMI, ARI and F1 values
finding solutions with 5 or 6 communities. Overall, for all the algorithms, we
observe NMI, ARI and F1 values for GT2 are lower than the values obtained
for GT1. This behavior was also observed in our previous work [14] and it is
probably due to the merging of some specie categories done on GT2 to create
macro-categories which do not perfectly reflect the modular structure of the
network.

5 Conclusion

In this paper, we have proposed M-MotifGA, a method for discovering commu-
nities composed by multiple motifs. Based on a genetic algorithm, our method
simultaneously considers different motifs for searching a partition with a number
of communities minimizing the multiple-motifs conductance as fitness function.
Simulations on the Florida bay food web network show that M-MotifGA results
in NMI, F1 and ARI values much higher than both the single-motif and the
multiple-motif based analyzed strategies, Louvain and Infomap. Specifically, we
have observed that for better matching the underlying real communities, not
only multiple motifs should be simultaneously considered, but also fixing the
number of communities to obtain as in Benson et al. [3] does not fully exploit
the benefits of considering multiple motifs. As future work, we plan to extend our
experiments to other datasets to further validate our method. We also intend to
explore how community detection can be performed when several motifs appear
at different network layers in multi-layered network structures.
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