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Abstract. The paper proposes a methodological approach to design
complex experiments for multi-objective optimization. The strategy is
based on evolutionary statistical inference to search for the optimal val-
ues in high-dimensional experimental spaces. We developed this approach
to study a particular molecular system and discover the best molecules
to be proposed as candidate drugs.
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1 Introduction

In the complex process of developing a new drug a major challenge concerns the
construction of small molecules that interacting with a pharmacological target of
interest can have a therapeutic effect on a particular disease. Current drug design
practices involve the screening of large chemical libraries, composed of thousands
or millions of compounds, with the aim of identifying a candidate molecule with
suitable characteristics, known as a lead molecule. This lead molecule may not
fulfil the properties needed to become a drug, such as Absorption, Distribu-
tion, Metabolism and Excretion (ADME) [1]. To achieve these properties, while
retaining the interaction capacity with the target protein, the molecule must be
modified for optimizing a set of variables. A simultaneous optimization is then
required and the problem is framed as a multi-objective optimization problem
with several conflicting objectives; see for example [2,3]. This field of research in
drug discovery has been developed using different approaches, mainly based on
the evolutionary principle. Among the most relevant contributions we mention
the studies in De novo Designs [4], in Molecular docking [5] and in Quantita-
tive structure-activity relationships [6]. These approaches have been successful
in detecting the relevant information for discovering the molecule optimal values
using computer based algorithms.
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The optimization problem that we address in this study is concerned with a
molecular system where each molecule is described by a very large number of fea-
tures determining the high-dimensionality of the system. In order to discover the
optimal molecular structure we intend to develop an evolutionary approach based
on statistical models constructed to extract information in high-dimensional sys-
tems. In particular, we consider the Lasso model [7], Neural Networks [8], Stepwise
Regression and Boosting models [9]. The main purpose of this paper is to develop
an efficient approach that is able to find the best candidate molecules, testing
a very small number of experimental compositions. This approach is then built
on both the evolutionary paradigm and statistical models for high-dimensional
experimental spaces. The paper extends the Evolutionary data Design for Opti-
mization (EDO) proposed in [10,11] allowing several objective functions to be
optimized simultaneously. The approach, called m-EDO (multi-objective Evolu-
tionary data Design for Optimization), drives the evolution towards the target by
estimating and combining predictions from different models and different objec-
tive functions. We evaluate the method on the molecular library provided by [12]
as a test set, investigated by [11,13] and more recently by [14,15].

The structure of the paper is as follows. In Sect. 2, we describe the main
aspects of a multi-objective optimization problem. In Sect. 3, we briefly intro-
duce the Model-Based Evolutionary Design for Optimization and the statistical
models proposed for high-dimensional experimental spaces. In Sect. 4, we present
the results achieved with the procedure for the data set provided by [12] and in
Sect. 5, we present some concluding remarks.

2 The Multi-objective Optimization Problem

Discovering optimal values in high-dimensional systems can be a very difficult
problem, in particular when the number of experimental tests (or observations) is
small. Moreover, the optimal values can involve different properties of the system
elements, introducing multiple (and possible conflicting) objective functions to
be optimized simultaneously. This framing of the problem can make the search
of the optimal values pretty hard.

In general, a multi-objective optimization problem can be described in the
following way:

Consider a vector valued objective function f : C → R
k with C ⊆ R

d, where
d is the dimension of each element of C and f(c) = (f1(c), . . . , fk(c)); search the
element c0 ∈ C such that f(c0) ≤ f(c) for all c ∈ C (minimization) or such that
f(c0) ≥ f(c) for all c ∈ C (maximization).

Frequently, in multi-objective optimization problems, there does not exist a
solution, c0, which minimizes (or maximizes) all objective functions simultane-
ously. Therefore, the goal is to identify the Pareto optimal solutions which are
the solutions that cannot be improved in any of the objectives without degrading
at least one of the other objectives [2,3].
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Formally in a minimization problem, a point c∗ ∈ C is a Pareto optimal
solution if for every c ∈ C and I = {1, 2, . . . , k} either,

∀i∈I fi(c) = fi(c∗) (2.1)

or, there is at least one i ∈ I such that

fi(c) > fi(c∗). (2.2)

The set of optimal points is called the Pareto optimal set P∗ and the Pareto
front F∗, composed of all the values of the function f at the optimal points, is
defined as:

F∗ := {f(c) = (f1(c), . . . , fk(c))| c ∈ P∗}. (2.3)

In this research we will introduce a methodological approach to address multi-
objective optimization in the context above described and related to a molecular
system of interest for drug discovery. In particular, we propose a strategy which
may aid the process of lead molecule optimisation.

3 Methods

3.1 The Model-Based Evolutionary Design for Optimization

In the drug discovery research field evolutionary algorithms can provide efficient
and effective experimental designs; see for instance [16] and references therein.
These evolutionary procedures, as described in [10,11], enable to explore the
whole experimental space meanwhile exploiting the capacity of statistical mod-
els to uncover relevant information. The evolutionary design for optimization,
namely EDO-design, randomly generates a first initial population of experimen-
tal points. This initial set of experimental points is then tested in laboratory in
order to derive the experimental response values. This data set (test composi-
tion and responses) are then used to build a class of statistical predictive models.
The information gathered from these models is then used to drive the evolution
towards the optimal value. In fact, with this information we can identify the
next generation of experimental points which evolves from one generation to
the next. The process continues until a pre-defined amount of objective-function
evaluations is conducted. The EDO enables to capture the characteristics of the
data and discover the optimum value by testing a very small set of points. This
method has been developed for both single and multi-objective optimization.

Multi-objective optimization is based on the idea of guiding the evolution
towards the target of the experimentation by building predictive statistical mod-
els for the different objective functions and using a linear combination of the best
predicted values. The weights in the linear combination can be decided a priori
with respect to the relevance of the objective functions. In order to distinguish
between the single and multi-objective optimization, we indicate just by EDO
the Evolutionary data Design for single Optimization and by m-EDO the Evo-
lutionary data Design for multi-objective Optimization.
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3.2 Models for Prediction

The Evolutionary data Design for Optimization, drives the evolution towards the
target by estimating and combining predictions with different stochastic models
for high dimensional settings, namely Lasso Regression, Stepwise Regression,
Boosting, Neural Networks; see [15] and references therein. Herein, we briefly
survey some features of these statistical tools.

Modelling data with a multiple linear regression we can write

yi = Xiβ + εi, i = 1, . . . , n (3.1)

where yi is the response variable, Xi = (xi1, . . . , xip) is a p-dimensional vector of
predictors (or covariates), β = (β1, . . . , βp)T is the regression vector of p unknown
parameters, εi is the error term, and n is the number of observations. When the
number of predictors is much larger than the number of observations (p � n)
estimating regression models can be a very hard task. Under this setup, penalized
regression procedures offer powerful methods to simultaneously estimate models
and perform variable selection. Among these procedures, the most common is
the least absolute shrinkage selection operator (Lasso); see [7].

According to Lasso model we estimate the parameter vector β by minimizing
the following Lagrangian objective function

Q(β) =
1
2n

n∑

i=1

(yi −
p∑

j=1

βjxij)2 + λ

p∑

j=1

|βj |; (3.2)

where λ is a tuning parameter which should be assessed by cross validation or
information criteria (see [17]). The objective function in Eq. (3.2) is composed
of two terms, the former is the least square loss function, the latter is the Lasso
penalty, which imposes a constraint on the components of the vector β.

A different strategy for selecting the relevant variables in a regression frame-
work are the step-wise selection methods. These are iterative techniques which
allow to identify redundant variables by successively adding or removing vari-
ables on the basis of statistical significance criteria. Alternative to the linear
regressions the Neural Networks (NN) models can be considered for this struc-
ture of data. Neural Networks, in fact, are suitable models for dealing with data
characterized by complex non-linear relationships and have become a popular
tool for many applications in a wide range of fields including drug discovery
research [18]. From a statistical perspective of Neural Network models, we refer
the reader to [8,19]. The topology of a Neural Network can be described as a
collection of nodes, namely neurons, which are arranged into ordered layers. A
Neural Network usually contain input, hidden and output layers. Considering
a Feed Forward NN the input layer communicates information to one or more
hidden layers linked to the output layer of this net. With the single hidden layer,
the dynamics of the information can be summarized by the following expression

y = f(φ(X,w)) (3.3)
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where y is the output neuron which can be univariate or multivariate, X rep-
resents a set of covariates, w are the weight connections among the neurons
directly connected. The function f is called the activation function whose form
depends on the problem under consideration. This function can take different
forms, which include the linear, the sigmoidal, the logistic or the Gaussian forms.
Frequently, the function φ is linear and is called the propagation function, it
represents the relationship among a neuron and their predecessors. There are
several training algorithms for estimating Neural Networks parameters, such as
the classical Back-propagation, the scaled conjugate gradient Back-propagation
and the Bayesian regularization Back-propagation methods; see [20–22]. To anal-
yse complex structure in the data also the family of boosting algorithms can be
considered. Boosting is a class of ensemble techniques that construct multiple
estimates or predictions by using combined and averaged estimates or predictions
[9]. More formally, the aim of boosting algorithms is to construct or estimate
a complex relationship between a set of covariates and a response variable, i.e.
y = f(X). This goal will be achieved by minimizing a loss function which mea-
sures the discrepancy among y and f by estimating M times a particular model
by using weighted fitting and at the end of M iterations we consider a weighted
sum of the estimate founds. The specificity of the algorithms is related to differ-
ent loss functions which depend on the characteristics of the response variable.
In our approach we consider the least square loss function as in Lasso frame-
work for estimating a linear regression model; see [9] for an introduction on the
boosting algorithm from a statistical perspective.

4 Lead Optimization in a Molecular System

4.1 Data Description

In this research we address the lead optimization of MMP-12 Inhibitors, using
the library of molecules made publicly available by [12]. This library consists of
2500 molecules described by the presence of 22272 fragments. In our approach
fragments take the role of predictors and are represented as binary variables indi-
cating the presence or absence of each fragment into the molecule. The analysis
of these data showed the presence of linear dependence among the predictors
(fragments) leading then to a reduction of the total amount of fragments to
4059. Given the high-dimensionality of the system for the very high number
of fragments that characterizes each molecule, we adopted the Formal Concept
Analysis and reduced the number of fragments to 175; see [14]. Each molecule
is then characterized by a set of properties: the pharmacological activity at the
target protein; physicochemical properties, such as the solubility; the toxicity
property; and structural properties, such as the lipophilicity and the molecular
weight. In particular, the pharmacological activity at the target protein, defined
as the capacity to produce physiological or chemical effects by the binding of a
compound to the therapeutic target, will be denoted by Activity. The solubility
of a compound is the capacity to dissolve in a liquid and it will be denoted by



Multi-objective Optimization in High-Dimensional Molecular Systems 289

Solubility. The toxicity refers to the capacity of any chemicals to produce unde-
sirable effects, and it will be called Safety. The lipophilicity is the capacity of the
compound to dissolve into lipid structures, and it will be denoted by cLogP. The
molecular weight relates to the compound size and will be denoted by MW. For
a more detailed explanation of these biological concepts we refer to the book [1],
which describes the influence of each of compound property on ADME and tox-
icity. Therefore, for this system the experimental response variables (molecular
properties) that we considered are: Activity ; Solubility ; Safety ; cLogP and MW.
These response variables represent the target of our optimization study, and
some summary statistics of the molecular library made available are reported in
the following:

– Activity, y1: the maximum value is 8, which corresponds to the optimal value.
The 99-th percentile of the response variable distribution is 7.5. The target
is the maximization of y1.

– Solubility, y2: the maximum value is −1.766, which corresponds to the opti-
mal value. The 99-th percentile of the response variable distribution is
−2.415. The target is the maximization of y2.

– Safety, y3: the maximum value is 3.6262, which corresponds to the optimal
value. The 99-th percentile of the response variable distribution is 3.2309.
The target is the maximization of y3.

– cLogP, y4: the minimum value is −2.505, which corresponds to the optimal
value. The 1-th percentile of the response variable distribution is 0.033.
The target is the minimization of y4.

– MW, y5: the minimum value is 291.3, which corresponds to the optimal
value. The 1-th percentile of the response variable distribution is 339.3.
The target is the minimization of y5.

Figure 1 depicts the box-plot of the distribution of the five properties that
characterize the set of 2500 molecule, and the blue stars represent the optimum
value of each response variable.

The aim of this study is to develop a multi-objective optimization procedure
based on experimental data (no simulation), and involving a very small number
of experimental tests, to avoid unnecessary waste of research resources. Know-
ing the whole experimental space (complete library) allowed us to evaluate the
performance of the approach in searching the best response values repeating the
procedure 1000 times. In order to obtain drug candidates with suitable prop-
erties, some constraints are imposed on the molecular properties. In particular,
we consider molecules with: Activity values y1 > 6, Solubility values y2 > −3,
Safety values y3 > 2.57, cLogP values y4 < 3 and MW values y5 < 450. Then
the goal of the multi-objective optimization is to discover the molecules (three
molecules in the library) that satisfy the constraints of the problem and reach
their best response values. These molecules are described (in red) in Fig. 2, and
represent the molecules belonging to the Pareto Front of Solubility and Safety
with the constraints above described on the other properties. Moreover, the
dashed lines represent the constraints values on Solubility and Safety, respec-
tively. The response values of the three best molecules, goal of our study, are
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Fig. 1. Box-plot of the response values distribution, from left to right Activity, Solu-
bility, Safety, cLogP, and MW. (Color figure online)
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Fig. 2. The molecule values of Solubility and Safety, respecting the defined constraints
for Activity, cLogP, and MW and in red the molecules belonging to the Pareto Front.
The dashed lines represent the constraints values on Solubility and Safety, respectively.
(Color figure online)

presented in Table 1. In this study we would like to discover these three molecules
by conducting the minimum possible set of experimental tests.

The chemical representation of these molecules as reported in Fig. 3 has
been obtained by using the SwissADME web tool freely available at http://www.
swissadme.ch/; see [23].

http://www.swissadme.ch/
http://www.swissadme.ch/
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Table 1. Values of the five response variables assumed by the three best molecules.

Activity Solubility Safety cLogP MW

Molecule 1 6.90 −2.98 2.78 1.39 427.56

Molecule 2 6.20 −2.76 3.16 0.81 425.48

Molecule 3 6.50 −2.30 2.74 0.38 423.50

Fig. 3. Chemical structure of the three target molecules.

4.2 The Evolutionary Procedure and the Optimization Results

At each generation the population size of the evolutionary algorithm is 20 and
the algorithm is run for 7 generations, with the constraint that all individuals
tested must be different. In this study the maximum number of tests considered
is 140 on the total of 2500 candidate compositions. The process is iteratively
repeated, generation after generation, maintaining the same size in each pop-
ulation of experimental points and ends when the maximum total number of
experimental points is reached. The structure of evolutionary approach consists
in randomly selecting an initial small population, in this study 20 molecules, and
then evaluating the response variables values of each molecule. In the evolution-
ary algorithm, the next population of experiments is then built by selecting the
20 molecules with the best predicted response values.

At first, to better understand the performance of the approach, we developed
the procedure of single objective optimization for each response variable. The
evolution has been driven by the information achieved with the Lasso model,
Stepwise regression, Boosting, Neural Networks, and the mixture of these three
linear models (hereafter Mixture of linear Models) [14]. The architecture of the
Neural Network used for this single-objective problem consists of 175 input neu-
rons, one hidden layer with 7 neurons and one output layer with one neuron.
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The activation function is the sigmoidal function, and the Neural Network has
been fitted by using Bayesian regularization Back propagation; see [22].

We study the robustness of the procedure with respect to the change of
the initial population by repeating the entire process 1000 times. The good
performance of the procedure is evaluated in its capacity to uncover the optimum
value and the set of values in the region of optimality (the 1% best values of
the distribution), conducting a very limited set of experimental tests (5.6% of
the whole experimental space). The results achieved for the single optimization
process are represented in Table 2.

Table 2. Single objective optimization: number of runs (out of 1000 runs) in which
EDO uncovers the optimum value and values in the region of optimality (1% best
values of the distribution).

Objective Lasso Stepwise Boosting Mixture of linear models NN

Activity Optimum 844 782 665 916 660

Region of optimality 1000 995 998 1000 990

Solubility Optimum 875 745 872 912 556

Region of optimality 995 998 1000 1000 996

Safety Optimum 387 358 278 467 228

Region of optimality 1000 1000 1000 1000 999

cLogP Optimum 848 821 917 918 760

Region of optimality 950 946 981 1000 945

MW Optimum 738 822 751 887 346

Region of optimality 905 966 956 1000 780

From these results we can learn that EDO procedure is able to achieve the
best response values in a very high proportion of the 1000 runs, showing also a
better performance of the Mixture of linear Models with respect to the single
model optimization. Concerning the response values in the region of optimality
(1% best values of the distribution) we observe that the Mixture of linear Models
is able to achieve these values in all the 1000 runs and for all the variables.

We then address the problem of the multi-objective optimization by extend-
ing the EDO approach which involves the evolution driven by the information
achieved with the Lasso model, Neural Network, and the Mixture of the Lasso
and the Neural Network models [14]. The architecture of the Neural Network in
the multi-objective optimization has the same topology proposed for the single-
objective optimization except that the output layer consists of 3 neurons. In
fact, we consider 3 response variables Activity, Solubility, Safety. The variables
cLogP and MW are not taken into consideration in the multi-objective proce-
dure because the cLogP is highly correlated with the Solubility, and the MW
could be easily predicted on the basis of its amino acids composition; see [24].
In particular for the multi-objective procedure, we selected in a random way 20
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Table 3. Multi-objective optimization: num-
ber of runs (out of 1000 runs) in which
m-EDO uncovers the best molecules.

Number of
best
molecules

Lasso NN Mixture of models

0 130 161 92

1 43 59 51

2 320 288 384

3 507 492 473

At least one 870 839 908

1 2 3 At least one

0
20

0
40

0
60

0
80

0
10

00

Lasso
NN
Mixture of Models

Fig. 4. Multi-objective optimiza-
tion: best molecules found in 1000
runs.

experimental points from the whole population of 2500 molecules, then we built
the model on these 20 data and predict the response variables values by using
an estimated model, as in the single optimization procedure. We then associated
a weight at each objective value and derived the linear combination of objec-
tives. The molecules with the best estimated linear combination of the objective
values are then selected for the next generation of experimental points. In the
following table (Table 3) we present the results for the multi-objective optimiza-
tion achieved with the Lasso model, the Neural Network model (NN) and the
Mixture of Lasso and Neural Network models (Mixture of Models) and in Fig. 4
we depict these results. The three ways chosen to optimize give similar results in
discovering the three best molecules. We notice that Mixture of models outper-
forms the alternatives in discovering at least one molecule of the three in more
than 90% of 1000 runs.

1 2 3 4 5 6 7
Generations
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Generations
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P
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EDO-LASSO
EDO-NN
EDO-Mixture of Models

Fig. 5. Evolution through generations. Left: box-plot of the mean of the results
achieved in 1000 runs by using the Mixture of Models. Right: proportion (average
on 1000 runs) of the results found in the 1% best values of the distribution.
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From the generation results, as presented in Fig. 5, we notice the relevance of
the evolutionary principle in the search process: from the first generation there
is a clear tendency of the procedure to converge towards the optimal value.
From the left-hand panel of Fig. 5, we can notice that the mean of the objective
response value is decreasing in each generation and get closer to the optimal
solution which is identified by the value 0. In fact, we transform our variable
values to lie in the interval [0, 1] and the multi-objective optimization becomes
just a minimization of the linear combination of the objective response values.
Moreover, we also notice in Fig. 5 that the median of the distribution decreases
generation after generation and becomes stable after the fourth generation. From
the right-hand panel of Fig. 5, we can notice that the proportion of the new
objective response values, i.e. the linear combination of the objective response
values, found in the region of optimality (1% best values of the distribution)
increases generation after generation.

5 Concluding Remarks

The purpose of this research was the development of a methodological strategy
able to address the multi-objective optimization problem for complex experi-
mentation conducting a very small number of tests. The procedure proposed is a
model-based evolutionary strategy for designing experiments, which involves the
construction and the estimation of predictive linear and non-linear models. The
study of a particular molecular system for drug discovery problems shows the
very good performance of the approach that we propose. Moreover, we would
like to stress that we achieve these results by conducting an extremely small
number of generations (7 generations) that usually is regarded too small to even
approach convergence of the algorithm.

Acknowledgements. The authors would like to acknowledge the fruitful collabora-
tion with Darren Green and his Molecular Design group at GlaxoSmithKline (GSK),
Medicines Research Centre, Stevenage (UK).
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