
Automatic Algebraic Evolutionary
Algorithms

Marco Baioletti1, Alfredo Milani1,2, and Valentino Santucci1(B)

1 Department of Mathematics and Computer Science,
University of Perugia, Perugia, Italy

{marco.baioletti,alfredo.milani,valentino.santucci}@unipg.it
2 Department of Computer Science, Hong Kong Baptist University,

Kowloon Tong, Hong Kong

Abstract. Motivated from the previously proposed algebraic frame-
work for combinatorial optimization, here we introduce a novel for-
mal languages-based perspective on discrete search spaces that allows
to automatically derive algebraic evolutionary algorithms. The practical
effect of the proposed approach is that the algorithm designer does not
need to choose a solutions encoding and implement algorithmic proce-
dures. Indeed, he/she only has to provide the group presentation of the
discrete solutions of the problem at hand. Then, the proposed mecha-
nism allows to automatically derive concrete implementations of a chosen
evolutionary algorithms. Theoretical guarantees about the feasibility of
the proposed approach are provided.

Keywords: Algebraic evolutionary algorithms
Combinatorial optimization · Formal language perspective

1 Introduction

In a previous series of articles [1,3,11,13], we have introduced an abstract alge-
braic framework for combinatorial optimization problems. The framework allows
to encode in algebraic terms the geometry of the search moves performed by a large
class of evolutionary algorithms on the search space of combinatorial problems.

Concrete implementations of the framework have been proposed for discrete
spaces such as the permutations and bit-string spaces. Hence, algebraic evolu-
tionary algorithms, such as algebraic differential evolution and particle swarm
optimization, have been proposed [1,11]. Interestingly, state-of-the-art and very
competitive results have been obtained for permutation flowshop scheduling
problems [11,12] and linear ordering problems [2,3].

The main achievement of the algebraic framework is the proposal of abstract
definitions for operators that allow to combine and operate on the discrete
solutions of the problem at hand. In particular, the proposed operations are
addition, subtraction and scalar multiplication. Some abstract algebraic and

c© Springer International Publishing AG, part of Springer Nature 2018
M. Pelillo et al. (Eds.): WIVACE 2017, CCIS 830, pp. 271–283, 2018.
https://doi.org/10.1007/978-3-319-78658-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78658-2_20&domain=pdf

272 M. Baioletti et al.

geometric properties, derived from group theory, guarantee that their effects on
the involved discrete solutions are geometrically similar to what happen in the
classical Euclidean space.

However, the definitions are merely abstract and the algorithm designer needs
to instantiate them for any finitely generated group at hand. For instance, ran-
domized decomposer have to be (and have been) provided for the groups of
permutations and bit-strings. As an additional, though secondary, result, here
we also show how the search space of integer vectors can be represented in the
framework.

In this paper we further evolve the framework by proposing general imple-
mentations of the abstract operators that are no more abstract but directly oper-
ative on any search space that respect some conditions, i.e., to be representable
by a finitely presented group. To achieve this aim, we consider a formal language-
perspective directly derived from advanced group theory concepts. Therefore, we
provide a mechanism to automatically derive operative and universal implemen-
tations of the previously proposed algebraic operators by exploiting the concept
of group presentation. Discrete solutions are represented as strings of an alpha-
bet (of generators). By changing the alphabet and the equivalence relations on
the strings, it is possible to use the Knuth-Bendix completion algorithm [9] to
automatically derive concrete operators on different types of solutions (permu-
tations, bit-strings, etc.).

Practically, we make easy the work of the algorithm designer that can now
avoid to choose a solutions encoding and implement the abstract procedures of
the framework for this encoding. Note anyway, that this proposal is a sort of
“proof of concept”. Indeed, we do not provide any experimental result, but only
theoretical guarantees about the feasibility of the proposed implementations.

The rest of the paper is organized as follows. Section 2 describes the pre-
viously proposed abstract algebraic framework together with some of its con-
crete implementations. The algebraic evolutionary operators are then derived in
Sect. 3. The core of the paper is represented by Sects. 4 and 5 where we provide,
respectively, theoretical foundations of the language-based perspective, and the
concrete and general algorithmic implementations. Finally, Sect. 6 concludes the
paper by also providing some future lines of research.

2 Abstract Algebraic Framework

In this section we provide a concise description of the algebraic framework for
evolutionary computation previously proposed in [11], together with its extension
introduced in [3]. The framework is based on the notion of finitely generated
group and the related algebraic and geometric concepts. Its aim is to introduce
the operations ⊕, �, � on the set of discrete solutions in such a way that they
simulate, as much as possible, the analogous vector operations of the Euclidean
space.

Automatic Algebraic Evolutionary Algorithms 273

2.1 Search Spaces and Finitely Generated Groups

The triplet G = (X, �,H) is a finitely generated group representing a combina-
torial search space if and only if:

– X is the discrete set of solutions in the search space;
– � : X × X → X is a binary operation on X which satisfies the group proper-

ties: associativity, existence of the identity e ∈ X, and existence of the inverse
x−1 ∈ X for any x ∈ X; if � is also commutative, the group is Abelian, but
it is not required;

– H ⊆ X is a finite generating set of the group, i.e., any x ∈ X can be decom-
posed as x = h1 � · · · � hl for some h1, . . . , hl ∈ H.

A decomposition x = h1 � · · · � hl of x ∈ X is minimal if there exists no
other decomposition x = h′

1 � · · · � h′
m with m < l. The length l of a minimal

decomposition of x is the weight of x and it is denoted by |x|.
Given a finitely generated group G = (X, �,H), its Cayley graph C(G) is the

labelled digraph whose vertexes are the solutions in X and there exists an arc
from x to y labelled by h ∈ H if and only if y = x � h.

In the Cayley graph, for all x ∈ X, every directed path from e to x cor-
responds to a decomposition of x: if the arcs labels occurring in the path are
〈h1, h2, . . . , hl〉, then x = h1�h2�· · ·�hl. As a consequence, shortest paths from e
to x correspond to minimal decompositions of x. More generally, a shortest path
from x to y, where x, y ∈ X, corresponds to a minimal sequence of generators
〈h1, h2, . . . , hl〉 such that x � (h1 � h2 � · · · � hl) = y. Hence, 〈h1, h2, . . . , hl〉 is a
minimal decomposition of x−1 � y.

The diameter D of C(G) is defined as the maximal weight of the elements
in X. Moreover, an interesting partial order relation, which will be useful later,
is defined as follows. For x, y ∈ X, x
 y if and only if there exists (at least)
a shortest path from e to y passing by x. For the sake of presentation, here we
focus on groups with a unique maximal weight element ω such that x
 ω for
all x ∈ X. The concrete group considered later belongs to such a class.

The Cayley graph has an important geometric interpretation. Indeed, a
sequence of generators 〈h1, h2, . . . , hl〉 can be seen as a vector which connects
a starting point x ∈ X to the end point y = x � (h1 � h2 � · · · � hl). On the
other hand, any element x ∈ X can be decomposed as a sequence of genera-
tors 〈h1, h2, . . . , hl〉 and therefore it can be considered also as a free vector. The
dichotomous interpretation of the elements of X, as points and as vectors, allows
to define the operations ⊕,�,� on X which simulate the analogous operations
of the Euclidean space.

2.2 Addition and Subtraction

The addition z = x ⊕ y is defined as the application of the vector y ∈ X
to the point x ∈ X. The result z is computed by choosing a decomposition
〈h1, h2, . . . , hl〉 of y and by finding the end point of the path which starts from x
and whose arcs labels are 〈h1, h2, . . . , hl〉, i.e., z = x�(h1�h2� · · ·�hl). By noting

274 M. Baioletti et al.

that h1 � h2 � · · · � hl = y, the addition ⊕ is independent from the generating set
and is uniquely defined as

x ⊕ y := x � y. (1)

Continuing the analogy with the Euclidean space, the difference between two
points is a vector. Given x, y ∈ X, the difference y � x produces the sequence of
labels 〈h1, h2, . . . , hl〉 in a path from x to y. Since h1 � h2 � · · · � hl = x−1 � y, we
can replace the sequence of labels with its product, thus making the difference
independent from the generating set. Therefore, � is uniquely defined as

y � x := x−1 � y. (2)

Both ⊕ and �, like their numerical counterparts, are consistent to each other.
Indeed, x ⊕ (y � x) = y for all x, y ∈ X. Moreover, both operations are not
commutative (unless the group is Abelian), ⊕ is associative, and e is its neutral
element.

2.3 Scalar Multiplication

Again, as in the Euclidean space, it is possible to multiply a vector by a non-
negative scalar. Given a ≥ 0 and x ∈ X, we denote their multiplication with
a � x.

We first provide the conditions that a � x has to verify in order to simulate,
as much as possible, the scalar multiplication of vector spaces:

(C1) |a � x| = �a · |x|;
(C2) if a ∈ [0, 1], a � x
 x;
(C3) if a ≥ 1, x
 a � x.

Clearly, the scalar multiplication of Rn satisfies the slight variant of (C1) where
the Euclidean norm replaces the group weight and the ceiling is omitted. Besides,
similarly to scaled vectors in R

n, (C2) and (C3) intuitively encode the idea that
a � x is the element x scaled down or up, respectively.

It is important to note that, fixed a and x, there may be more than one
element of X satisfying (C1–C3). This is a clear consequence of the non unique-
ness of the minimal decomposition of x. Therefore, different strategies can be
devised to compute a � x. Nevertheless, our aim is to apply the operation in
evolutionary algorithms, therefore we denote with a � x a randomly selected
element satisfying (C1–C3).

Note also that the diameter D induces an upper bound on the possible values
for the scalar a. Indeed, for any x ∈ X, let ax = D

|x| , if a > ax, (C1) would imply
|a�x| > D, but this is impossible. Therefore, similarly to out-of-bounds handling
techniques of continuous evolutionary algorithms, we define

a � x := ax � x, when a > ax. (3)

The multiplication a�x can be computed by: (i) randomly selecting a shortest
path from e to ω passing by x, and (ii) composing the first �a · |x| generators

Automatic Algebraic Evolutionary Algorithms 275

on its arcs. Since any sub-path of a shortest path is itself a shortest path, and
by also considering that shortest paths correspond to minimal decompositions,
it is easy to see that the conditions (C1–C3) are satisfied.

Let l = |x|, we can observe that the sequence of generators 〈h1, . . . ,
hl, . . . , hD〉 on the chosen shortest path can be divided in two parts: 〈h1, . . . , hl〉
and 〈hl+1, . . . , hD〉. The former is a minimal decomposition of x, while the latter
minimally decomposes x−1 � ω. Operatively, only one of the sub-paths is used to
compute a�x. When a ≤ 1, the generators to compose are all in the first sub-path
〈h1, . . . , hl〉. Conversely, for a > 1, it is sufficient to take the first �a·l−l generators
in the second sub-path 〈hl+1, . . . , hD〉 and compose them to the right of x.

The pseudo-codes of the two procedures for a ∈ [0, 1] and a > 1 are reported,
respectively, in Figs. 1 and 2. Both rely on the abstract procedure RandDec
which is assumed to return a random minimal decomposition of the element in
input. An implementation of RandDec has to consider the particularities of the
concrete finitely generated group at hand. Note also that Extend implements
Eq. (3).

Fig. 1. Truncation algorithm for computing a � x when a ∈ [0, 1]

Fig. 2. Extension algorithm for computing a � π when a > 1

276 M. Baioletti et al.

2.4 Concrete Implementations

Given a concrete finitely generated group (FGG) modeling the search space at
hand, in order to implement the abstract vector operations described in Sects. 2.2
and 2.3, it is sufficient to provide procedures to: (i) invert an element (x−1), (ii)
compose two elements (x � y), (iii) randomly decompose an element in terms of
the generators (RandDec). Moreover, note that the procedures for (i) and (ii)
are usually straightforward.

Three concrete FGGs that allow to cover the vast majority of the combina-
torial optimization problems are: the group of the n-length bit-strings B

n, the
group of the n-length permutations Sn, and the group of the n-length integer
vectors Z

n.
The bit-strings in B

n form a group by considering the classical bitwise XOR
operator �. The generators are the strings with one 1-bit and n−1 0-bits. There-
fore, computing a random decomposition of a given bit-string simply reduces to
choosing an ordering (i.e., a permutation) of its 1-bits. Note also that, given a
generic x ∈ B

n and the generator ui (i.e., the bit-string with only one 1-bit at
position i), the composition x � ui practically corresponds to flip the i-bit of x.
Hence, the induced Cayley graph and distance correspond to classical concepts
such as, respectively, the binary hypercube and the Hamming distance.

All the permutations of the set [n] = {1, . . . , n} form the “symmetric group”
Sn by considering the classical permutation composition operator ◦ defined as
(π ◦ ρ)(i) = π(ρ(i)) for all items i ∈ [n] and π, ρ ∈ Sn. Different generating sets
are possible in Sn (see [3,14]). The simplest is the subset of the n − 1 simple
transpositions, i.e., the set ST = {σi ∈ Sn : 1 ≤ i < n} where σi is defined
as: σi(i) = i + 1, σi(i + 1) = i, and σi(j) = j for j ∈ [n] \ {i, i + 1}. Given a
generic π ∈ Sn, the composition π ◦ σi corresponds to swap the adjacent items i
and i + 1 in π. Hence, by modifying the classical bubble sort algorithm, in [11]
we have provided a randomized decomposer for Sn. Moreover, other interesting
generators are those which encode exchange and insertion moves of generic items
in the permutation. Implementations of these generating sets have been discussed
and provided in [3].

Finally, the integer vectors in Z
n form a group by considering the classi-

cal arithmetic addition +. In this case, the generators are the n-length vectors
formed by n − 1 zeros and one component equal to ±1. A randomized decom-
poser for Z

n is straightforward to derive. Note also that this group, differently
from the other ones, is infinite and it does not have a maximum weight element.
Apparently, this does not allow to implement the algorithm Extend of Fig. 2.
Anyway, a simple generalization of Extend fixes the problem. The idea is to iter-
atively choose a random generators among all the generators that increase the
group weight of the current element. In Z

n, the group weight is the arithmetic
sum of the vector components.

Automatic Algebraic Evolutionary Algorithms 277

3 Algebraic Evolutionary Operators

It is possible to straightforwardly derive algebraic evolutionary operators by
using the operations introduced in Sect. 2 in order to redefine the move equa-
tions of the most popular evolutionary and swarm intelligence algorithms for
continuous optimization.

Here we provide the formal redefinitions for: the mutation operator of Differ-
ential Evolution (DE) [15], the velocity and position update equations of Particle
Swarm Optimization (PSO) [8], and the update equation of the Firefly Algo-
rithm (FA) [18]. The first two have been proposed in, respectively, [1,11], while
the third is a novelty of this work. The following definitions subsume that a
finitely generated group X is given.

The differential mutation of DE, given three distinct population individuals
x0, x1, x2 ∈ X and a scalar F ∈ [0, 1], generates a mutant u ∈ X according to

u ← x0 ⊕ F � (x1 � x2). (4)

A PSO particle is formed by its current position x, velocity v, personal and
social best positions p and g. All these particle’s properties can be encoded
by using group elements, i.e., x, v, p, g ∈ X. Hence, given also the three scalar
parameters w, c1, c2 ≥ 0, the particle’s new velocity v′ ∈ X and position x′ ∈ X
are computed according to

v′ ← [w � v] ⊕ [(r1c1) � (p � x)] ⊕ [(r2c2) � (g � x)], (5)

x′ ← x ⊕ v′, (6)

where r1, r2 are two randomly generated numbers in [0, 1].
In FA, the i-th computational firefly updates its position xi ∈ X by moving

towards the positions of the brighter fireflies j1, . . . , jk, and by considering fitness
as brightness. Formally, the new position x′

i is computed according to

x′
i ← xi ⊕

k⊕

h=1

[
β0 exp

(−γd(xi, xjh)2
) � (xjh � xi) ⊕ (α � ε)

]
, (7)

where α, β0, γ ≥ 0 are the FA scalar parameters, d is the distance induced by
the finitely generated group at hand, and ε is a randomly generated discrete
solution. Note how, with respect to the previous case, the FA update rule makes
an explicit use of the discrete distance function induced by the finitely generated
group at hand.

Generally, when the group in not Abelian, the composition is not indepen-
dent of the terms ordering. This issue has been addressed in [3]. Finally note that
many other evolutionary algorithms for numerical optimization can be adapted
for combinatorial search spaces using our framework. Some examples are: arti-
ficial bee colony [7], bacterial foraging optimization [5], cuckoo search [17], and
the fireworks algorithm [16].

278 M. Baioletti et al.

4 A Formal Language Perspective

A formal language perspective on the algebraic framework described in Sect. 2
can be introduced by restricting our focus to a sub-class of finitely generated
groups, namely, the finitely presented groups. All the concrete groups discussed
in Sect. 2.4 are finitely presented. Moreover, other popular groups, like for exam-
ple the braid group [6], are usually directly threated by means of their presen-
tation. Hence, restricting to finitely presented groups does not result in any
practical issue for our purposes.

Formally, the group (X, �) is finitely presented if there exists a presentation
(H,R) such that: (i) H ⊆ X generates X, i.e., (X, �) is finitely generated by the
generating set H; (ii) R is a finite set of equivalence relations (made using the
group operation �) among the generators in H.

Interestingly, the presentation (H,R) of the group (X, �) allows to interpret:

1. the generators in H as a set of symbols, i.e., an alphabet,
2. the elements in X as strings over the alphabet H, i.e., x ∈ X if and only if

x ∈ H∗,
3. the group operation � as a concatenation of strings, i.e., given x, y ∈ H∗ then

x � y = xy, where xy denotes the concatenation of x and y; and
4. the equivalence relations in R as rewriting rules for equivalent strings, i.e., if

(v, w) ∈ R then vxw = vxv = wxv = wxw ∈ H∗.

This formal language perspective allows to introduce a further level of gen-
eralization in our framework. Practically, we can facilitate the work of the algo-
rithm designer by avoiding him/her to peak up a solutions’ representation for
the problem at hand. Indeed, the goal of this section is to show how a generic
group presentation can be used to automatically derive generic implementations
of three operators ⊕,�,�.

The main idea is to encode the group elements (i.e., the solutions of the
problem at hand) by means of their representation as strings of generators.
Then, ⊕,�,� can be automatically derived by simply introducing general pro-
cedures for element’s inversion, composition and random decomposition that
work directly on the string representation of the element.

By considering a generating set closed for inversions, i.e., h ∈ H if and only if
h−1 ∈ H, the inversion can be straightforwardly derived by exploiting the basic
group properties. Formally, given a generic string hi1hi2 . . . hil ∈ H∗, its inverse
is defined as

INV (hi1hi2 . . . hil) := h−1
il

. . . h−1
i2

h−1
il

. (8)

Composition, as already explained in the point 3 above, becomes a simple
concatenation of strings. Formally, given x, y ∈ H∗:

CONCAT (x, y) := xy. (9)

More interesting is the operation of random minimal decomposition
RandDec. First note that a string representation of a group element is already

Automatic Algebraic Evolutionary Algorithms 279

a decomposition in terms of generators, thus the problem becomes to find a pro-
cedure to simplify the string as much as possible. Intuitively, we can iteratively
apply the equivalences in R in order to rewrite a string until it becomes of mini-
mal length. The problem with this approach is that it is not easy to know when
to stop. Luckily, the Knuth-Bendix (KB) completion algorithm [9] is a popular
tool in computational algebra that allows to solve this issue.

KB takes in input the group presentation (H,R) and produces a terminating
and confluent rewriting system RWS for the strings in H∗. RWS is nothing
else than a set of rewriting rules such as v → w that can be iteratively applied
to a string s until it does not match any rule in RWS, i.e., s has been reduced
to its minimal length. Formally, we denote with RWS(s) the minimal length
string obtained by simplifying s with the rules in RWS. KB guarantees that the
application of RWS terminates (i.e., it is a terminating system) and that the
minimal form obtained for any given input string does not depend on the ordering
by which the matching rules have been applied at every rewriting iteration (i.e.,
RWS is a confluent system). Therefore, KB can be run offline only once, because
of that we can store the produced rewriting system RWS (it can be actually
provided in different ways, one of them is as a finite state automaton) and execute
it every time we need a minimal decomposition.

There is only one last issue. We need a randomized minimal decomposer, but
the rewriting system produced by KB is confluent, i.e., deterministic. In order
to introduce randomization, let consider that KB needs, as additional input, an
arbitrary ordering (i.e., a permutation) of the generators in H. Hence, feeding
KB with two different orderings on H produces two distinct rewriting systems
RWS1 and RWS2 that both are terminating and confluent, but such that, in
general, RWS1(s) �= RWS2(s). Therefore, in the offline computation stage, we
can peak up k different permutations of H and run KB for k times in order to
obtain k different rewriting system RWS1, . . . , RWSk. Then, a random minimal
decomposition of a string x ∈ H∗ can be computed as

RandDec(x) := RWSr(x), (10)

where r is a random integer in [1, k].
Summarizing, the (finite) presentation of a group allows to: (i) represent the

group elements as string of generators, thus that no group (or problem) depen-
dent encoding has to be considered, and (ii) provide general concrete implemen-
tations (i.e., working on any possible finitely presented group) of the element’s
inversion, composition and random minimal decomposition.

5 Automatic Algebraic Evolutionary Algorithms

Here we show how it is possible to automatically generate the implementation of
an algebraic evolutionary algorithms by starting from a given group presentation.

By using the language-based tools provided in Sect. 4 we provide generic,
but operative, implementations of the operators ⊕,�,� for any possible group
presentation.

280 M. Baioletti et al.

Let x, y ∈ H∗ be two group elements represented as strings of generators.
Then, addition and subtraction are defined according to, respectively,

x ⊕ y := CONCAT (x, y), (11)

and
x � y := CONCAT (INV (y), x). (12)

For the scalar multiplication � we provide language-based implementations
of Truncate and Extend in, respectively, Figs. 3 and 4.

1: function Truncate(a ∈ [0, 1], x ∈ H∗)
2: x′ ← RandDec(x) � RandDec is defined in equation (10)
3: l ← Length(x′)
4: k ← �a · l�
5: z ← ε � ε ∈ H∗ is the empty string
6: for i ← 1 to k do
7: z ← CONCAT (z, x′

i) � x′
i is the i-th generators of x′

8: end for
9: return z
10: end function

Fig. 3. Generic implementation of the truncation algorithm

1: function Extend(a > 1, x ∈ H∗)
2: RWS ← a randomly choosen rewriting system from {RWS1, . . . , RWSk}
3: x′ ← RWS(x)
4: l ← Length(x′)
5: k ← �a · l�
6: z ← x′

7: for i ← 1 to k − l do
8: h ← a randomly generator such that len(RWS(zh)) = len(RWS(z)) + 1
9: z ← CONCAT (z, h)
10: end for
11: return z
12: end function

Fig. 4. Generic implementation of the extension algorithm

Moreover, note that some algebraic evolutionary operators also needs the
computation of the group distance d(x, y) (see for example Eq. (7)). However, it
is easy to show that d(x, y) = Length(RandDec(x � y)).

Therefore, it is now straightforward to show how, using the language-based
implementations of ⊕,�,�, we can automatically derive an algorithm imple-
mentation by simply providing a group presentation and choosing the preferred

Automatic Algebraic Evolutionary Algorithms 281

algebraic algorithmic schemes (e.g., the algebraic PSO described by Eqs. (5) and
(6)). Figure 5 depicts and summarizes the main idea of this approach. Given
a combinatorial problem to solve, the algorithm designer does not need to
choose a solutions encoding. Indeed, he/she only needs to: provide a fitness
function, choose its preferred algorithmic schemes (that uses algebraic opera-
tors), and provide a group presentation for the problem at hand. Note that the
last step is usually straightforward, since group presentations for the set of prob-
lem solution is often directly available. The group presentation is then used in
an offline computational stage where KB algorithm generates the rewriting sys-
tems RWS1, . . . , RWSk. Then, both the group presentation and the generated
rewriting systems are used by the general implementations of ⊕,�,� that, in
turn, allow to obtain the desired evolutionary behavior. In conclusion, the pro-
posed automatic mechanism substantially reduces the work of the algorithm’s
designer.

Fig. 5. Automatic generation of an algebraic evolutionary algorithm

6 Conclusion and Future Work

Starting from the algebraic framework for combinatorial optimization previously
proposed in [1,4,11,12], in this paper we have provided a mechanism to auto-
matically derive concrete implementations of the framework for any search space
representable by a finitely presented group.

282 M. Baioletti et al.

To achieve this goal, a formal language perspective on the search space has
been introduced. The main algebraic tool employed is the well known Knuth-
Bendix completion algorithm.

As a future line of research we will consider the implementation of our pro-
posal to derive algebraic evolutionary algorithms in order to address braid opti-
mization problems [6] that have applications in the field of quantum computing,
see for example [10].

References

1. Baioletti, M., Milani, A., Santucci, V.: Algebraic particle swarm optimization for
the permutations search space. In: Proceedings of IEEE Congress on Evolution-
ary Computation, CEC 2017, pp. 1587–1594 (2017). https://doi.org/10.1109/CEC.
2017.7969492

2. Baioletti, M., Milani, A., Santucci, V.: Linear ordering optimization with a combi-
natorial differential evolution. In: Proceedings of 2015 IEEE International Confer-
ence on Systems, Man, and Cybernetics, SMC 2015, pp. 2135–2140 (2015). https://
doi.org/10.1109/SMC.2015.373

3. Baioletti, M., Milani, A., Santucci, V.: An extension of algebraic differential evo-
lution for the linear ordering problem with cumulative costs. In: Handl, J., Hart,
E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS,
vol. 9921, pp. 123–133. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45823-6 12

4. Baioletti, M., Milani, A., Santucci, V.: A new precedence-based ant colony opti-
mization for permutation problems. In: Shi, Y., et al. (eds.) SEAL 2017. LNCS,
vol. 10593, pp. 960–971. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-68759-9 79

5. Das, S., Biswas, A., Dasgupta, S., Abraham, A.: Bacterial foraging optimiza-
tion algorithm: theoretical foundations, analysis, and applications. In: Abraham,
A., Hassanien, A.E., Siarry, P., Engelbrecht, A. (eds.) Foundations of Computa-
tional Intelligence Volume 3. SCI, vol. 203, pp. 23–55. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-01085-9 2

6. Garside, F.A.: The braid group and other groups. Q. J. Math. 20(1), 235–254
(1969)

7. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical func-
tion optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3),
459–471 (2007)

8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

9. Knuth, D.E.: The genesis of attribute grammars. In: Deransart, P., Jourdan, M.
(eds.) Attribute Grammars and their Applications. LNCS, vol. 461, pp. 1–12.
Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-53101-7 1

10. McDonald, R.B., Katzgraber, H.G.: Genetic braid optimization: a heuristic app-
roach to compute quasiparticle braids. Phys. Rev. B 87(5), 054414 (2013)

11. Santucci, V., Baioletti, M., Milani, A.: Algebraic differential evolution algorithm for
the permutation flowshop scheduling problem with total flowtime criterion. IEEE
Trans. Evol. Comput. 20(5), 682–694 (2016). https://doi.org/10.1109/TEVC.2015.
2507785

https://doi.org/10.1109/CEC.2017.7969492
https://doi.org/10.1109/CEC.2017.7969492
https://doi.org/10.1109/SMC.2015.373
https://doi.org/10.1109/SMC.2015.373
https://doi.org/10.1007/978-3-319-45823-6_12
https://doi.org/10.1007/978-3-319-45823-6_12
https://doi.org/10.1007/978-3-319-68759-9_79
https://doi.org/10.1007/978-3-319-68759-9_79
https://doi.org/10.1007/978-3-642-01085-9_2
https://doi.org/10.1007/3-540-53101-7_1
https://doi.org/10.1109/TEVC.2015.2507785
https://doi.org/10.1109/TEVC.2015.2507785

Automatic Algebraic Evolutionary Algorithms 283

12. Santucci, V., Baioletti, M., Milani, A.: Solving permutation flowshop scheduling
problems with a discrete differential evolution algorithm. AI Commun. 29(2), 269–
286 (2016). https://doi.org/10.3233/AIC-150695

13. Santucci, V., Baioletti, M., Milani, A.: A differential evolution algorithm for the
permutation flowshop scheduling problem with total flow time criterion. In: Bartz-
Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672,
pp. 161–170.Springer,Cham(2014). https://doi.org/10.1007/978-3-319-10762-2 16

14. Schiavinotto, T., Stützle, T.: A review of metrics on permutations for search land-
scape analysis. Comput. Oper. Res. 34(10), 3143–3153 (2007)

15. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for
global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

16. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan,
K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13495-1 44

17. Yang, X.S., Deb, S.: Cuckoo search via Levy flights. In: 2009 World Congress on
Nature Biologically Inspired Computing (NaBIC), pp. 210–214 (2009)

18. Yang,X.-S.: Firefly algorithms formultimodal optimization. In:Watanabe,O., Zeug-
mann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04944-6 14

https://doi.org/10.3233/AIC-150695
https://doi.org/10.1007/978-3-319-10762-2_16
https://doi.org/10.1007/978-3-642-13495-1_44
https://doi.org/10.1007/978-3-642-04944-6_14

	Automatic Algebraic Evolutionary Algorithms
	1 Introduction
	2 Abstract Algebraic Framework
	2.1 Search Spaces and Finitely Generated Groups
	2.2 Addition and Subtraction
	2.3 Scalar Multiplication
	2.4 Concrete Implementations

	3 Algebraic Evolutionary Operators
	4 A Formal Language Perspective
	5 Automatic Algebraic Evolutionary Algorithms
	6 Conclusion and Future Work
	References

