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Abstract. In order to enable the management of the large presence of
similar groups of agents, namely masks, resulting from the implementa-
tion of the Relevance Index (RI) algorithm, the ‘PoSH-CADDy’ three-
step methodology is here proposed. The developed procedure is based
on (i) several rounds of analysis to be performed over reducing sets of
agents (with a Progressive Skimming procedure), (ii) the consideration
of the overlaps among masks emerging from the output of each round
(by means of a Hierachical Cluster Analysis), (iii) a final analysis of the
masks remaining from the previous steps (by considering those with a
minimum Degree of Dissimilarity). The methodology is implemented in
a real socio-economic complex network. Insights from a first explorative
analysis are provided.
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1 Introduction

Since the widespread use of network analysis in mid 90’s [1], social sciences have
mostly focused on the comprehension of the structure of durable relationships
(e.g. friendship) and its evolution. However, in some contexts the concept of
connections is required to represent something that is more similar to a series of
flickering and dynamic interactions, than to stable relationships1. When dynamic
interactions are observed, the presence and the evolution of meso-structures2

The views expressed are purely those of the author and may not in any circumstances
be regarded as stating an official position of the European Commission.

1 There are cases in which, even if any new relationship is established, flickering inter-
actions occur: people daily exchange messages with long-time friends, and enterprises
repeatedly collaborate with partners they already know.

2 In the present work, the concepts of (i) masks, (ii) groups, (iii) communities, or (iv)
meso-structures, are all treated indistinctly since they all refer to subset of agents
belonging to the same system.
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can be scarcely investigated through the use of methods that are suitable for a
process of stepwise creation/dissolution of connections [2]. The continuous
activation/inactivation of links between agents demands the use of method-
ologies that, instead of considering the statistical significance of the forma-
tion/modification of the relational architectures, focus on the physical order
contained in the occurred phenomena [3]. One example of a methodology that
allows this is the Relevance Index algorithm, henceforth RI [4–6]. The RI, in
order to investigate emergent temporal patterns in dynamic complex systems,
uses a statistical approach to evaluate the significance of the integration in terms
of entropy of agents’ joint behaviors.

Although in complex networks analyses the detection of groups of agents
is typically performed by focusing on agents’ similarity or through the analy-
sis of the network structure [7,8], the creation and the implementation of the
RI algorithm provides a new approach for community detection analysis. With
the RI algorithm researchers can detect groups of agents characterized by high
levels of behavioral integration. These behaviors, being significantly far from
randomness, are expected to reveal the presence of a common function jointly
pursued by all the involved members. Since low levels of entropy are determined
by the repetition of specific combinations of joint individual statuses over time,
the emergence of a non-random temporal pattern unveils the alignment of the
actions of these individuals towards a common function. Nevertheless, to imple-
ment the RI algorithm in dynamic complex networks that have at least some
thousands of agents, and that are observed in a number of instants that is sen-
sibly lower than the number of agents involved, additional methodological steps
have to be developed. In particular, in the present work the three-step ‘PoSH-
CADDy’ methodology is developed so as to provide a possible solution to refine
the presence of redundancy in the results provided by the RI algorithm when
implemented on temporal networks having the aforementioned characteristics.

In Sect. 2 in which an overview of the proposed methodology is presented.
In Sect. 3 the principles of the RI algorithm are introduced. Then, in Sect. 4,
the first step of the methodology is described, regarding the run of the RI algo-
rithm several times over sets of agents progressively reducing. Then, in Sect. 4
the second step of the methodology is described, regarding the implementation
of a hierarchical agglomerative cluster analysis over masks, i.e. subsets of agents
belonging to the analyzed system, detected at the previous step. Section 5 fol-
lows with the third and last step of the methodology, regarding a final treatment
for redundancy of masks detected in all round. Because of this last step, a final
set of masks, i.e. a partition of the system, is detected. Finally, in Sect. 6 the
implementation of the methodology in a case study is presented. After select-
ing combinations of the introduced parameters, explorative considerations are
made on partitions selected according to (i) a principle of maximization of the
overall percentage of agents involved in the partition3 and (ii) a principle of
minimization of the percentage of agents that belong to more than one mask.

3 Not necessarily all agents belong to at least one masks/subset.
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2 Overview of the Methodology

Acknowledging other ongoing researches with similar objectives [9,10], the
present work addresses the issue of redundancy that arises by implementing
RI methodology in systems with a small ratio between the number of instants
in time over which agents can be observed, and the number of agents involved.
More specifically, the methodology aims to identify a limited number of masks
of agents, i.e. subsets of agents detected by the RI algorithm, so as to allow
a final simple representation of the functional meso-structures that are present
in the considered complex network. The proposed methodology is based on the
following three parameters:

(1) R, i.e. the number of RI rounds of analysis that are performed,
(2) vOV , i.e. a threshold used as reference to limit the presence of overlapping

agents among the subset of masks finally considered from each round of RI
analysis,

(3) vSM , i.e. a second threshold used as reference to reduce redundancy among
the masks remaining after all the previous steps.

Each parameter has a strong connection with one of the steps of the method-
ology: R parameter defines the length of a process of Progressive Skimming,
based on the reiteration of the RI algorithm in rounds of analysis in which the
best mask obtained in the previous round is dropped; vOV parameter defines
the development of a Hierarchical Cluster Analysis of the masks detected in
each round; vSM parameter defines the final process of refinements in which
the remaining masks after all rounds are analyzed in terms of their Degree of
Dissimilarity. The methodology is named ‘PoSH-CADDy’ and is summarized
in Pseudo-Code 1. The refinement of the output of the RI analysis is performed
attempting (i) a spread and wide exploration of the meso-structures of the system
under analysis through progressive skimming, and moving towards the detection
of masks that (ii) are the most significant (in terms of integration of the behav-
iors of the agents belonging to them), and that (iii) produce a limited degree
of overlaps among them, so as to favor simplicity in the analysis of complex
network’s dynamics. The ‘PoSH-CADDy’ procedure (independently from the
RI algorithm) is implemented with the R language with a CPU Intel Core i5
2.6 GHz processor and 8 GB RAM. The computational time (with R = 24 and
where vOV , vSM is tested with 21 different values each) is approximatively of
5 h. This time period is essentially required for the computation of the distance
matrices that are needed to implement the cluster analysis of each group of
15.000 masks that are detected by the RI algorithm in each round. The other
steps require a computational time of some minutes. The work does not take
into consideration the computational performance of the RI algorithm, as what
developed applies to a procedure of refinements of its results.
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Pseudo-code 1: ‘PoSH-CADDy’ methodology for implementation of the RI algorithm over a
system A = {a1, a2, . . . , an, . . . , aN }, where an is the n-th agent

function PoSH-CADDy (R ∈ N
+, vOV ∈ R≥0∧≤1, vSM ∈ R≥0∧≤1)

for each r round of analysis, where r ∈ N
+ and r ≤ R, do

Skimming of the best mask detected in the previous round
Definition of Ar ⊆ A including the agents considered in the new round
Detection of the set of masks O(Ar) by means of RI analysis over Ar

for each possible number of clusters, i.e. κ ∈ N
+, in which to split O(Ar), do

Hierarchical agglomerative cluster analysis for binary data
(with simple matching coefficient and complete linkage method)

for each obtained k-th cluster, i.e. Ck,κ(Ar), do
Selection of the mask with the highest tCI

end for
Measurement of the resulting overlaps by means of sOV (r, κ), i.e. the ratio between
the number of agents included in at least two of the remaining masks, and the number
of agents included in at least one of the remaining masks

end for
Definition of the set Kr,vOV

, including those κ such that sOV (r, κ) ≤ vOV

Selection of κ̃r,vOV
, i.e. the highest value of κ ∈ Kr,vOV

Definition of set Pr,vOV
, by finally considering the results of the introduced cluster analysis

with a number of clusters equal to κ̃r,vOV
and considering for each cluster only the mask

with the highest tCI

end for
Definition of the unique set of masks PR,vOV

, including all the Pr,vOV

Definition of P+
R,vOV

, by sorting the masks in PR,vOV
in decreasing order of tCI

Computation of dissimilarity between all masks in P+
R,vOV

for each couple of masks having a Jaccard index > vSM do
Drop of the mask with the lower tCI

end for
Definition of the final set FR,vOV ,vSM

, including the remaining masks
end function

3 Principles of the RI Algorithm

The Relevance Index algorithm takes its origin from the neurological studies
of Giulio Tononi in the 90’s. Tononi introduced the notion of functional clus-
ter, defining it as a set of elements that are much more strongly interactive
among themselves than with the rest of the system, whether or not the under-
lying anatomical connectivity is continuous [11]. The hypothesis was confirmed
as neurons with similar functions are found to demonstrate high level of coordi-
nation in their behaviors over time, independently from being (or not) situated
in the same brain region [12,13]. The Cluster Index (henceforth, CI), i.e. the
statistics developed and tested by Tononi in his work [12], is based on two infor-
mation theory concepts derived from the Shannon entropy: Integration (I) and
Mutual Information (MI). Formally, given the set A = {a1, a2, . . . , an, . . . , aN}
made of N agent and a mask of agents Bm such that Bm ⊂ A, the CI of Bm is
written as follows

CI(Bm) = I(Bm)/MI(Bm, A \ Bm) (1)

where 2 ≤ |Bm| < |A| and 0 < m ≤ ξ, with m ∈ N
+ and ξ ≈ 2|A|.

Since integration and mutual information values depend on the size of the
subsystem that is under analysis, a homogeneous system made of variables hav-
ing the same probabilities of the variables of the original system, but that do
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not have correlation4 is used [4,5,12]. Finally, the level of significance of the
normalized CI, namely tCI , is the value according to which the final ranking of
the subsets is produced:

CI ′(Bm) =
I(Bm)
〈Ih〉

/MI(Bm, A \ Bm)
〈MIh〉 (2)

tCI =
CI ′(Bm) − 〈CI ′

h〉
σ(CI ′

h)
(3)

where 〈Ih〉 and 〈Mh〉 indicate respectively the average integration of subsets of
dimension |Bm| belonging to the homogeneous system, and the average mutual
information between these subsets and the remaining part of the homogeneous
system. 〈CI ′

h〉 and σ(CI ′
h), respectively the mean and the standard deviation of

normalized cluster indices of subsets that have the same size of Bm and that
belong to the homogeneous system, are used to compute the statistical index tCI .

The concept of CI and tCI was introduced in the research areas of artificial
network models, of catalytic reaction networks and of biological gene regulatory
systems, contributing to the identification of emergent meso-level structures [4].
Since an exhaustive computation of the tCI statistic is possible only in small
artificially designed networks, as those that were initially used to test the efficacy
of the method [4–6], a genetic algorithm aimed to investigate the relevant subsets
was implemented [6] in the RI algorithm. When implemented in large systems
that can be observed in a relatively small number of instants in time, the RI
algorithm produces a large number of possible Bm, which may differ among
them just for the presence/absence of a single agent. As many similar masks are
detected, redundancy emerges.

4 Step 1: Progressive Skimming of the Best Mask
Detected

In order to address the large presence of similar masks detected in the considered
system A = {a1, a2, . . . , an, . . . , aN} made of N agent, the first step that is
proposed is the run of several rounds of the RI algorithm. Each round r ∈
N

+, with r ≤ R, and where R ∈ N
+ indicates the number of rounds finally

performed, is set to produce the detection of a same number of masks5. At the

4 A homogeneous system is a system having the same number of agents of the system
to which it is referred; each agent has a random generated behavior in accordance
with the probability of the states it assumes in the reference system.

5 The fact that the number of masks detected does not change, is just a choice of
the researcher. This parameter could change but, since this work is not aimed at
considering the increasing of the value of M , which has been fixed equal to 15.000 in
each round of analysis, M is taken for given. Because of that, M will not be indexed
with the number of the round r.
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same time, in each r round a different set of agents is considered, namely Ar =
{a1, a2, . . . , anr

, . . . , aNr
} where Ar ⊂ A and with |Ar| = Nr. In order to formally

describe the output of any round r of the analysis, the sets of masks detected
by the RI algorithm, namely O(Ar), is defined according to the corresponding
round of analysis. Formally,

O(Ar) = {B1
r , B2

r , . . . , Bm
r , . . . , BM

r } (4)

where

i. Bm
r = {anr

∈ Ar : bm,nr
= 1} is the m-th mask detected

ii. bm,nr
=

{
1, if the agent anr

is detected in the m-th mask
0, otherwise.

iii. tCI(Bm
r ) ≥ tCI(Bm+1

r )

For the definition of each different set of agent Ar, a cascade process is used.
Before each round, the agents belonging to best mask detected in the previous
round, i.e. B1

r−1, are dropped from the analysis, such that the cardinality of the
set of agents considered, i.e. Ar, decreases after each round. Formally, each Ar

can be described as

Ar = A \
r−1⋃
q=0

B1
q (5)

where q ∈ N indicates one of the rounds preceding the r-th round6, and where
0 ≤ q ≤ (R − 1). Therefore, Ar ⊂ Ar−1 ∀ r. As in each round, the set that is
analyzed with the RI algorithm does not include any of the best masks detected
in the previous rounds, this procedure is called ‘progressive skimming’.

The RI algorithm produces a list of ordered binary masks that may differ
among them just for the presence/absence of one single agent. Therefore, for the
best detected mask of agents, i.e. B1

r , also many similar masks are detected (as
they are likely to perform well also from a point of view of entropy) in O(Ar).
Because of this redundancy7 the progressive skimming of masks is implemented,
so as to perform an extended exploration of the system. This procedure, even
if it deals with a loss of information and a reduction (and so also change) of
the considered system when continuing the analysis round after round, allows
the researcher to analyze how the rest of the system works independently from
what in the previous rounds has been detected the group of agents with the most
integrated behaviors. Interactions between the best mask detected in round r and
masks detected in following rounds are limited, since the agents belonging to B1

r

6 Since the initial round that is performed is r = 1, if r = 1 → q = 0. As there is
no round 0, if q = 0 → B1

0 = ∅. Therefore, from Eq. 5, when r = 1, we have that
A1 = A \ B1

0 = A \ ∅ = A.
7 Furthermore, the problem of redundancy in O(Ar) does not affect only the best

mask B1
r . It is important to remark that it is also present for masks different from

the best one. Therefore, it can be said that when the system is large, in each O(Ar)
a lack of variety comes up.
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are removed from the sets of agents that is going to be analyzed in the rounds
following the r-th. However, because of the implementation of a hierarchical
agglomerative cluster analysis (Sect. 5), in each round r also all the other masks
different from B1

r are taken into account. Therefore, the progressive skimming
does not imply that the best mask B1

r stands in a condition of isolation. If mask
B1

r has significant intersections/interactions with other masks Bm
r detected in

the same round, evidences should appear in the cluster analysis of the whole
O(Ar). In contrary, if masks substantially different from B1

r do not emerge from
the cluster analysis, some clues of a functional detachment between the agents
in B1

r and the agents that belong to the rest of the system are detected.

5 Step 2: Clusters of Masks Within Each r-th Round

5.1 The Cluster Analysis of Masks in O(Ar)

With the Simple Matching Coefficient (SMC) distance is measured between cou-
ples of masks, and with the Complete Linkage (CL) criterion for the progressive
merging of clusters, a hierarchical agglomerative cluster analysis is then imple-
mented. This analysis is here represented by the function θκ assigning each mask
Bm

r to one (and only one) cluster. Formally,

θ
SMC,CL
κ (Bm

r ) = k (6)

where k ≤ κ, with k ∈ N
+ indicating the specific cluster to which each mask

Bm
r ∈ O(Ar) is assigned through the hierarchical cluster analysis (with SMC

and CL) in which the masks of O(Ar) are allocated in a number of clusters
equal to κ ∈ N

+. Since the number of clusters is not established a-priori, at this
stage the definition of each cluster, namely Ck,κ(Ar), has to take into account
the fact that κ can vary. Therefore, each cluster Ck,κ(Ar) is formally defined as

Ck,κ(Ar) = {Bm
r ∈ O(Ar) : θκ(Bm

r ) = k} (7)

where Ck,κ is the k-th cluster, obtained by dividing in κ clusters the masks
contained in O(Ar).

5.2 The Selection of a Representative Masks for Each Cluster

For any cluster obtained, only the mask with the highest tCI is considered, as
representative of the cluster itself. Formally, this mask, henceforth indicated as
B̃r,k,κ, has the following properties:

B̃r,k,κ ∈ Ck,κ(Ar) and tCI(B̃r,k,κ) = max tCI(Ck,κ(Ar)). (8)

Therefore, each cluster is represented by the mask that, belonging to it, is also
the one whose agents present a joint behavior that is the significantly farthest
from randomness. By adopting this criterion, the principles underpinning the RI
algorithm are respected. Even if several different combination may be present,
the analysis of the similarity reveals groups of masks that have to be intended
just as possible modification of the one of reference, i.e. the most relevant one.
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5.3 Overlaps and the sOV Statistic

The cluster analysis of Or(Ar) and the selection of the mask with the highest tCI

for each cluster, can produce the affiliation of agents to more than one masks8.
In order to set the value of κ, i.e. to determine the number of clusters, a criterion
concerning the limitation of the progressive emergence of overlaps in the observed
structure of masks is adopted. In order to understand which degree of overlap
is associated with the values of κ, starting from 1 and continuing in increasing
order, the statistic sOV (r, κ), where the subscript ‘OV’ stands for OVerlaps, is
computed as

sOV (r, κ) =

|
κ⋃

kα,kβ=1

(B̃r,kα,κ ∩ B̃r,kβ ,κ)|

|
κ⋃

k=1

B̃r,k,κ|
∀ kα �= kβ (9)

where kα, kβ ∈ {1, . . . , k, . . . , κ} are the indices of two distinct clusters Ck,κ(Ar),
obtained by implementing the function θκ over the set of masks O(Ar). The
statistic sOV (r, κ) calculates, for each possible value of r and of κ, the ratio
between the number of agents that belong to at least two masks (numerator)
and the number of agents that belong to at least one mask (denominator). The
introduced statistic aims to evaluate the degree of simplicity associated to each
possible number value of κ, i.e. the number of clusters in which to group the
masks included in O(Ar). The simplicity lies on the fact that masks have to be
recognizable and distinct from each other. If the structure of the detected masks
is characterized by a high degree of overlap, the masks are so intertwined that
they cannot be assumed as unitarity entities and the representation of the whole
system, that they are suppose to provide, is finally unreadable.

5.4 Selection of the Number of Clusters by Means of vOV

Parameter

In order to define the value of κ, i.e. the number of clusters in which to split each
set of masks Or(Ar), the criterion adopted lies in the comparison between the
statistic sOV (r, κ), defined by Eq. 9, and a percentage threshold used as reference,
namely vOV ∈ R≥0, with 0 ≤ vOV ≤ 1. Given a specific value of vOV , the value
κ is chosen in order to have the highest number of clusters among those to which
corresponds a sOV (r, κ) lower than, or equal to, the percentage threshold vOV .
For each r-th round, a set of possible value of κ is so selected. These sets, namely
Kr,vOV

, are formally described as follows.

Kr,vOV
= {κ ∈ N

+ : sOV (r, κ) ≤ vOV } (10)

For each round r, depending on the threshold vOV , all the values of κ that
produce a partition for which the percentage of agents that belong to more
8 The allocation in one exclusive cluster does not concern agents. The same agent can

be detected in two masks that are not included in the same cluster.
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than one group (up to the number of agents overall included) is less or equal to
the considered threshold vOV , are considered admissible. Then, among all the
elements contained in Kr,vOV

, the value κ̃r,vOV
, i.e. the final value in which finally

to split the resulting masks contained in Or(Ar) given the specific threshold vOV ,
is defined as

κ̃r,vOV
= max Kr,vOV

(11)

By identifying κ̃r,vOV
, the highest number of cluster, given the threshold vOV , is

selected. Therefore, the soft partition9 obtained in any of the r rounds, namely
Pr,vOV

, and can be formally defined as

Pr,vOV
= {B̃r,k,κ ∈ O(Ar) : κ = κ̃r,vOV

} (12)

6 Step 3: Final Treatment of Redundancies

6.1 The Set of Masks Resulting from All the Rounds: PR,vO V

At the end of an entire process of analysis always10 with the same value of the
parameter vOV , R sets of masks are obtained, and each of them is identified
by the corresponding Pr,vOV

. Therefore, since the analysis is developed with a
specific value of R and a specific value of vOV , it is possible to assemble all the
masks in a unique set, namely PR,vOV

, that can be formally defined as

PR,vOV
= {B̃r,k,κ ∈

R⋃
r=1

O(Ar) : κ = κ̃r,vOV
} (13)

where κ̃r,vOV
is the number of clusters in which the specific O(Ar) is divided,

as a result of the process described in Eqs. (8–11), and where, as explained in
Eq. (8), the tilde (˜) over the mask Br,k,κ indicates that in the cluster of masks
to which it belongs, i.e. Ck,κ(Ar), the mask B̃r,k,κ presents the highest tCI . Once
the set PR,vOV

is defined, the last issue addresses the consequence of having
implemented a reiterated procedure of analysis, i.e. multiple rounds of the RI
algorithm. As at the beginning of each round r exclusively the agents belonging
to B1

r−1 are dropped, the presence of similar masks (among all those detected in
an entire process of analysis) is not prevented11. The following, and last, steps
aim to manage this redundancy.

9 A soft partition is intended to be a set of masks of agents that do not necessarily
belong to exclusively one masks. Therefore, as explained above, an agent can belong
to more than one mask.

10 From the first round r = 1, to the last round r = R.
11 The set PR,vOV can present redundancies since, even if the rest of the system that

at each new round r is analyzed does not include the best masks detected in round
(r−1), it can include the agents that belong to the second/third/etc. masks detected
in the round (r−1). Therefore, it could happen that those masks that were detected
as second/third/etc. masks in (r − 1), are detected also in the round r.
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6.2 Sorting the Masks of PR,vO V
in Decreasing Order of tCI

All the masks belonging to PR,vOV
are sorted in decreasing order, according to

the value of their tCI . In this way, from the set of masks PR,vOV
, the sorted set

of masks P+
R,vOV

is generated. Formally,

P+
R,vOV

= {B̃
(1)
R,vOV

, B̃
(2)
R,vOV

, . . . , B̃
(j)
R,vOV

, . . . , B̃
(J)
R,vOV

} (14)

where |PR,vOV
| = J , and B̃

(j)
R,vOV

is one of the masks belonging to PR,vOV
and

that were previously indicated as B̃r,k,κ̃r,vOV
. Moreover, the index in the super-

script, i.e. j ∈ N
+ where j ≤ J , refers to the ordinality of the masks of P+

R,vOV
,

so that is true the condition tCI(B̃
(j)
R,vOV

) > tCI(B̃
(j+1)
R,vOV

).

6.3 Final Drop of Similar Masks According to the Paramater vSM

Once the masks are ordered according to their tCI , a final analysis of their
similarity is performed. Starting from the best mask B̃

(1)
R,vOV

, all the masks that
are too similar to it are dropped. Then, the same procedure is repeated in cascade
process. The second best mask of those remaining is then compared with those
having a lower tCI , and so forth with the third best mask remaining, the fourth,
etc. This procedure continues until there are no more masks that can be used as
a reference. In this way, only masks that have a minimum degree of dissimilarity
are kept.

The similarities between masks are calculated in terms of JaCcard Index12

(henceforth, JC), i.e. the percentage of the number of agents in the intersection
of the two considered masks (up to the number of agents in the union set of the
same two masks). Then, the set of masks P+

R,vOV
is filtered using a threshold

regarding SiMilarity, namely vSM ∈ R≥0, with 0 ≤ vSM ≤ 1. The resulting (and
final) set of masks, namely FR,vOV ,vSM

, can be formally defined as

FR,vOV ,vSM
= {B̃

(j)
R,vOV

∈ P+
R,vOV

: JC(B̃(i)
R,vOV

, B̃
(j)
R,vOV

) < vSM} (15)

where

i. B̃
(i)
R,vOV

∈ P+
R,vOV

,
ii. i and j, where i ∈ N and j ∈ N

+ and 0 ≤ i < j, are used to indicate
the mask of P+

R,vOV
by making reference to their ordinality, as described in

Eq. 14,
iii. B̃

(0)
R,vOV

= ∅ , so that JC(B̃(0)
R,vOV

, B̃
(1)
R,vOV

) = 0.

12 While in Step 2 of the proposed methodology the SMC is used to evaluate similarity
(see Sect. 5), in this Step the JC is considered as more appropriate. JC focuses its
attention on the intersection of two masks (with regard of the union set), while
SMC considers as a condition of similarity also the simultaneous absence of a same
element. While in Step 2 was important to consider also the co-absence of agents as
an element of similarity, so as to evaluate where the algorithm had moved (in terms of
agents considered and not considered), here only the presence of overlapping agents,
i.e. the intersection, is relevant.
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7 Case Study - Region Tuscany Innovation Policies

In this Section, an example of an implementation of the RI+PoSH-CADDy
methodology in an empirical analysis, is presented. The considered case study
addresses a regional programme implemented by Tuscany Region (Italy) in
the period 2000–2006, aiming to support innovation projects. The considered
network policy programme sustained the development of innovation processes
by fostering interactions between local agents (enterprises, universities, pub-
lic research centers, local government institutions, service centers, etc.) [14–16].
Starting in 2002 (and ending in 2008), the programme of public policies was
consisted of nine waves not uniformly distributed over time: they had different
durations and they overlapped, producing periods in which no wave was active,
and periods in which three waves were simultaneously active. The degree of for-
mation and of dissolution of connections was so high that resulted in a situation
of intense discontinuity over time. Therefore, a new appropriate tool that does
not investigate the flourishing of communities looking at the stepwise creation
of network frameworks, was deemed necessary [2]. Moreover, by using the RI
algorithm the analysis could take into account the presence of functional meso-
structures. Finally, because of the objective of policies taken into consideration,
i.e. fostering of innovative processes, the focus on interactive dynamics, more
than on network’s relational architectures, is even more meaningful13 [17].

7.1 Available Data and Pre-processing

The most important aspect regarding the implementation of RI analysis in the
present case study regards the definition of the informational basis describing
agents’ statuses of activity. Since the available data contains information on
the starting and the ending dates of agents’ participations in the projects, it
is possible to define a set of 59 instants in time14 to observe the system. With
these dates, a complete behavioral profile for each of the agents involved in the
policy programme is structured. In each instant, the number of projects in which
each agent was active is considered. A series of 58 variables is generated taking
into account how the levels of activity vary from one instant to the following

13 In this case study, the agents’ activities coincide with interactions. Agents are consid-
ered to be active when they are participating in a project. And since in each project
partnerships have to be established (no single-participant projects are allowed), it
follows that to be active implies to be interacting.

14 Considering all the dates of starting and the ending of the projects, 59 different dates
were identified.



Functional Interactions in Complex Networks 223

one15. Regarding the size of the system, the agents participating in the described
policies of Region Tuscany are 1121, and the majority of them participated just
in one project. The scarcely active agents are removed from the analysis. The
focus is set on those with a minimum degree of activity. Therefore, only agents
that at least participated in 2 projects are considered. Finally, 352 agents remain.
These agents constitute the initial set of the analysis, namely A.

7.2 Setting the Parameters

The RI analysis with the PoSH-CADDy methodology is implemented over the
set A, consisted of 352 agents, observed in 58 instants over time. The number
of rounds to be performed, i.e. the parameter R, is set equal to 24. With the
progressive skimming, as described in Sect. 4, A24 is consisted of 204 agents.
Therefore, A is extensively explored, as the procedure is stopped after having
removed the 45.17% of the agents initially involved. Regarding the threshold
vOV , since no specific theoretical reasons suggest the a-priori identification of
a specific value, a discrete set VOV of percentage thresholds is used and each
vOV ∈ VOV is considered to implement a process of analysis. The set VOV is
defined as follows:

VOV = {vOV ∈ R>0 : vOV =
1
40

x} ∀ 0 ≤ x ≤ 20, x ∈ N (16)

Regarding the setting of the threshold vSM , the same set of conditions are applied
also for vOV . A discrete set VSM is created in the same way of VOV and each
vSM ∈ VSM is considered to implement the analysis. For both, values larger
than 0.5 are not taken into consideration as, in principle, they go in the oppo-
site direction of the general objective of the present work, that is to reduce
redundancy16.

As one value for R, and 21 values for vOV , and 21 values for vSM are con-
sidered, 441 different FR,vOV ,vSM

are finally computed. Each of these final sets
of RI masks constitute a soft partition17 of the system A. In Fig. 1a, the 441
15 These variables assume four different values that correspond to one of the following

four situations: inactivity, decreasing activity, stable activity or increasing activity.
The ‘activity’ status is defined by considering the number of projects in which the
agent is participating in the corresponding instant, with regard to the number of
projects in which it was participating in the previous instant. With these series
of variables, a second order Markov condition in taken into account, since agents’
activity is not described just for what is in each instant, but for what it is in the
present conditioned to what it was in its nearest past. As a variation in time is
considered, the number of variables finally computed equals the number of variables
initially present minus 1.

16 To have more than the 50% of agents producing an overlaps among the masks of a
generic Pr,vOV , or to allow in FR,vOV ,vSM couples of masks generating an intersection
that is the 50% or more of the corresponding union set, has been considered as not
pertinent for the objective of this work.

17 Overlaps among groups (determined by the fact that each agent can belong in more
than one group) are allowed and are present.
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Fig. 1: (a): Colored dots represent the final partitions obtained, i.e. all the
FR,vOV ,vSM

resulting from the possible combinations of the three parameters
R = 24, vOV ∈ VOV and vSM ∈ VSm, as described in Eq. (16). The y-axis
describes the percentage of agents that, in the corresponding FR,vOV ,vSM

, belong
to more than one mask (up to the number of agents that belong to at least one
mask). The x-axis describes the percentage of agents that belong at least to one
mask (up to the total number of agents included in the initial considered set A).
The z-axis describes the number of masks that are present in the corresponding
partition. The color of the 441 dots is in accordance with the % of overlapping
agents. Small grey asterisks indicate the 47 partitions that include at least the
60% of agents of A, and that have less than the 70% of overlapping agents.
Big colored dots are projected on the lateral and on the bottom faces of the
cube delimiting the three-dimensional space. (b): Bipartite graph representing
affiliations of agents (of set A) in the specific final set of RI masks F24,0.325,0.225

(indicated in the 3D representation on the left, with a darker grey asterisk). Grey
circular nodes represent agents, and blue squared nodes represent RI mask. The
width of edges is proportional to the tCI of the mask. (Color figure online)

obtained FR,vOV ,vSM
are illustrated in a three-dimensional space describing the

number of agents included (up to the total number of agents included in A),
the percentage of agents belonging to more than one mask (up to the number of
agents overall included in the partition), and the number of masks included in
the corresponding partition.

7.3 Exploration of the Results

As represented in Fig. 1a, the considered combinations of the three parameters
lead to different FR,vOV ,vSM

. Even though currently evaluation on the parame-
ters’ space is not effectuated, the choice of the value to be considered is attributed
with an a-posteriori unbiased procedure. In the present work, only those parti-
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tions including (i) at least 60% of the agents of the initial set A, and (ii) having
less than 70% of agents belonging to more than one community, are considered.
The parameters’ space is narrowed in order to address two objectives, which both
concern the readability of the final representations of the system. These objec-
tives are: (i) to consider partitions in which a large part of the initial system
is analyzed, and (ii) to avoid the selection of partitions in which extreme over-
lapping of the detected subsets prevents a simple interpretation of the system.
Statistics regarding the feature of the single masks are not taken into account,
and a-priori biased considerations on the values of vOV and vSM are not made.
Currently, the parameters’ space is not explored with a standardized method.
However, the parameters are not selected based on the properties of the single
masks, so as to avoid bias.

Based on the aforementioned conditions, 47 partitions (up to 441) are iden-
tified. These partitions are indicated with grey asterisks in Fig. 1a. In order to
proceed with the exploration of the first results provided by the methodology,
the presence of similar features within all the groups of 47 partitions is sug-
gested. Currently, only one is heuristically selected, namely the partition with
vOV = 0.325 and vSM = 0.225, which is indicated with a black asterisk in
Fig. 1a. The corresponding set of masks, i.e. the masks included in F24,0.3,0.075,
is intended as a weighted bipartite graph, as represented in Fig. 1b. The agents
involved, represented by grey circular nodes, are connected to the RI masks,
represented by blue squared nodes, in which they are included, and the weight
of their connection is based on the value of the tCI of the masks18. This parti-
tion is composed by 34 masks that overall include 298 agents of the initial set
A. The network is consisted of 6 components, and 54 agents are not included in
any mask. The 5 masks with the highest tCI (the ones with the widest edges
in Fig. 1b) include agents which participated in few projects, with behavioral
profiles characterized by few changes over time. The reason is that these masks
are identified as highly integrated as the activity of the agents involved is almost
constant. Although low levels of entropy are generated, given that the activity
of the involved agents is close to minimum, they can cannot be considered as
the most relevant subsets. As these 5 not conducive masks generate independent
components, the ongoing analyses are focused on the remaining 29 masks, which
determine the largest component of 222 agents.

After the computation of the weighted betweenness centrality, the first results
suggest a modification in the rank of centrality of the nodes. Although in the real-
observed network, where agents are connected together if they co-participated
in projects, the centrality of agents is related to the number of projects in which
they participated, in the resulting network of RI masks this does not apply. More
specifically, in the largest component of the one-mode projection of the weighted
bipartite graph determined by the final set of masks F24,0.325,0.225, the following
elements are emerging: (i) nodes with the largest number of participations in
projects appear to be close to each other in one periphery of the network; (ii)

18 In case of agents belonging together to more than one community, the corresponding
tCI have been summed.
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nodes with the smallest number of participations in projects appear to be close
to each other in the opposite periphery of the network (with respect to the
nodes with large number of projects); (iii) nodes with an average number of
participations in projects appear to be very central; (iv) nodes with a high
number of participations in projects and nodes with few participations in projects
present few direct connections between them; (v) the shortest paths between very
active nodes and scarcely active nodes (in terms of participations in projects)
pass through agents with average activity.

The centrality ranking that the can be inferred after these initial results
reveals an entire change with respect to the observation in the original network
of participation in projects. As the RI methodology allows the investigation of the
joint integration of agents’ dynamics, these first insights suggest that the agents
with average number of activities, that now are the most central, harmonize the
very intense activity of the nodes with many participations, namely the most
central in the network of projects, with the scarce activity of those agents that
participated in few projects. While the structure of the observed network of
participations indicates that one of the most important and recognized laws of
real complex network is respected, i.e. preferential attachment, the analysis of
the functionality reveals insights that suggest new interpretations. These insights
will be addressed in future research. Currently, because of the tests on the 447
considered partitions, observation do not suggest contradictory indications.

8 Conclusions

As physical order is addressed as a key dimension to the comprehension of the
operation and the evolution of socio-economic complex systems [3], the main
aim of this research is to contribute in the development the analysis of the
entropy of joint behavioral time dynamics characterized by discontinuity, e.g.
interactions. The objective of this work is to facilitate the implementation of a
methodology that detects functional meso-structures with information theories
[11–13]. In addition, the present work attempts to facilitate the implementation
of entropy-related methods in the field of social sciences, and in particular in
the analyses of socio-economic dynamic complex networks. The RI algorithm is
extended with the PoSH-CADDy three-step methodology so as to reduce redun-
dancy issues. The proposed approach is implemented in a real-world dynamic
network (economic agents participating to Region Tuscany Network Policies from
2000–2006) consisted of ≈350 agents, where the proportion between the number
of agents and the number of instants is ≈6:1. In a complex dynamic network
where the number of time instants is considerably lower than the number of
involved agents, the proposed procedure accomplished to successfully detect a
final set of 34 RI masks representing 34 groups of agents, whose behaviors are
considered as integrated, namely not random. For the scope of this study, the
focus is set in those partitions with a minimum percentage of agents included in
at least one mask, and without too many overlaps among masks. The revealed
ranking of the nodes’ centrality appears to be substantially different from the
one observed in the network of participations in projects.
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In the perspective of this research are (i) the development of analytic models
to statistically describe agents’ characteristics in relation to the topology of the
network of RI masks, (ii) the analysis of partitions obtained by combinations
of the presented parameters of the methodology, (iii) the implementation of the
methodology in other case studies, (iv) and the implementation of the method-
ology based on the edges’ activation over time, instead of agents’ statuses, as
system variables.
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