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Abstract. Computational models are expected to increase understanding of
how complex biological functions arise from the interactions of large numbers
of gene products and biologically active low molecular weight molecules.
Recent studies underline the need to develop quantitative models of the whole
cell in order to tackle this challenge and to accelerate biological discoveries.

In this work we describe three major functions of a yeast cell: Metabolism,
Growth and Cycle, through two coarse grain models, MeGro (Metabolism +
Growth) and GroCy (Growth + Cycle). GroCy effectively recapitulates major
phenotypic properties of cells grown in glucose and ethanol supplement media.
MeGro can act as a parameter generator for GroCy. The resulting iMeGroCy
integrated model can be used as a scaffold for molecularly detailed models of
yeast functions.

Keywords: Computational models - Systems biology + Whole cell models

1 Introduction

Saccharomyces cerevisiae is a major eukaryotic model organism in both fundamental
and applied research. Computational approaches are required to analyze, structure and
integrate the ever-increasing data sets available for yeast. Ultimately, a dynamic,
comprehensive computational model of S. cerevisiae should be the ambition: it would,
in part, allow further improvement of industrial bioprocesses by extending the
understanding presently possible by genome-scale metabolic model [1]. It also would
allow translation of the methodologies to human cells, as it previously happened for
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genome sequencing, functional analysis and interactomics, just to name a few fields in
which yeast research has recently led the way [2].

The design rules followed in the construction of the pioneering Mycoplasma whole
cell model [3] were to divide the functionality of the cell into modules, each modeled
bottom-up for short enough periods of time to assume module independence. Simple
translation of this approach to a eukaryote, even as simple as the unicellular budding
yeast, may not be straightforward. In fact, in contrast to Mycoplasma, yeast has a
compartmentalized cellular organization, a ten-fold larger genome [4], sophisticated
nutritionally modulated sensing and differentiation pathways [5] and an asymmetric
cell division that results in population heterogeneity in terms of size, age and cellular
content of individual cells. Accordingly, the successful building of models of cells
more complex than Mycoplasma may face significant challenges [6] and originate
models that are difficult to structure and parametrize.

To deal with yeast complexity we developed a multi-level approach. In the fol-
lowing, we present an integrated coarse grain model of the basic functions of a yeast
cell (metabolism, growth and cycle), investigate how they respond to availability of a
major yeast nutrient, glucose, and discuss how the model can be used as a scaffold for
molecularly detailed models of yeast functions.

2 The Metabolism and Growth Model (MeGro)

The Metabolism and Growth Model (MeGro) connects growth and metabolism in S.
cerevisiae. Growth rate maximization forms a rational basis for explaining growth
strategies (see e.g. [7] and references therein), since a faster growing unicellular
microrganism will have higher evolutionary fitness than its competitors, producing
more progeny per time unit in a given environment. So we considered a coarse grain
representation of a yeast cell that maximizes its specific growth rate by allocating total
protein synthesis capacity to different protein pools. MeGro - derived from the generic
“self-replicator” model proposed in [7] for unicellular microorganisms - is conceived to
highlight the common patterns connecting growth rate-dependent regulation of cell
size, ribosomal content and metabolic efficiency in a cell. All the metabolic reaction
rates, the kinetic parameters and the stoichiometry of the flux balance constraints in
MeGto are suitably tuned for S. cerevisiae and only the relevant classes of enzymes and
metabolites are considered.

MeGro accounts for five classes of proteins and five kinds of metabolites. The
proteins with enzymatic activity (square blocks in the MeGro scheme of Fig. 1) are
(i) the hexose transporters, ‘hxt’, (ii) the glycolytic enzymes, ‘gly’, (iii) the ribosomes,
‘rib’, (iv) the respiration and (v) fermentation pathways enzymes, ‘resp’ and ‘ferm’
respectively. Three kinds of metabolites are involved in metabolic conversions (green
ovals in the MeGro scheme of Fig. 1): the (a) extracellular and (b) intracellular glucose,
‘gle, ex’, and ‘glc,in’ respectively, and (c) pyruvate, ‘pyr’; other two kinds of
metabolites are involved in energy production/consumption: (d) ATP and (e) ADP. In
the following we indicate with c,, x € {Prot, Met}, Prot = {hxt, gly, rib, resp, ferm},
Met = {glc,ex, glc,in, pyr, ATP, ADP}, the protein/metabolite concentrations, (mM),
and with v,, x € Prot, the metabolite fluxes, (mM/h) catalyzed by a specific protein x.
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Fig. 1. Concept map of MeGro sub-module. (Color figure online)

MeGro captures resource allocation strategies, partitioning the investment into
ribosomes in producing the different metabolic proteins. The accumulation of each
protein pool is provided by a proper fraction o, of the net ribosomal flux v,;,. Thus, in
exponential growth conditions we have the following steady-state constraints (see also
[7] for analytical details):

Acy — 0 Vyip = 0, x € Prot (1)

where A (h_l) is the specific growth rate and > .ep,or 0 = 1, with o, > 0. Equation (1)
refers to a steady state, each protein pool resulting from the balance - not explicitly
modeled - of synthesis and degradation. Protein synthesis and degradation are instead
explicitly modeled in the GroCy dynamical model, detailed in the next section.

The net dynamics of Cgc s Cpyrr Carp are determined by the combination of the
fluxes of production and consumption:

dcglc,in/dt = Vhx — Vgly, (2)
deyr/dl = 2Vg1y = Veerm — Vresp — 600v,;p, (3)
dCATp/dl = 2Vgly + 10Vresp —2000v,, (4)

providing steady-state constraints by imposing the derivatives equal to zero.
The total amount of ADP + ATP is constant, according to the following
relationship

carp +capp = 1. (5)

All protein and metabolite concentrations c, are such that ¢, > 0. All the metabolic
conversions are catalysed by enzymes and the corresponding fluxes are modeled using
the Michaelis-Menten formalism:
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(1) to (10) define the set of algebraic-differential equations of MeGro. The expo-
nential growth rate A is maximized as a function of the external glucose concentration
Cqlc,ex (model input), with the fractions o, as optimization variables, and subject to
exponential growth constraints (1), flux balance constraints (derived from steady-state
Egs. (2-4)), feasible constraints (5) and Michaelis-Menten flux Eqgs. (6—-10).

The optimal set of 4 and o, Ogys Cipy Opesps Ofern together with the
proteins/metabolites concentrations and the protein fluxes provide a first level of
MeGro outputs. A second level of cellular outcomes are computed by properly
exploiting concentrations and fluxes. These are (i) the fermentative ratio F,

F = vferm/ (errm + Vresp)a (1 1)
(i) the ribosome-over-protein ratio p,

P = crib/ (600 (Chxt + Cgly + Crip + Cresp + Cférm))a (12)

with proteins expressed in terms of number of polymerized amino acids, which
explains the division by 600, the average number of polymerized amino acids per
protein [8, 9] and (iii) the yield of ethanol Ygopygic,

YElOH/glc = errm/vhxt~ (13)

If we leave F as an optimization variable, the model predicts that the cell behavior
is fully respiratory for values of external glucose smaller than a critical value and then
switches to purely fermentative for values of external glucose greater than the
threshold. This model behavior (respiratory-to-fermentative switch) is independent of
the setting of the model parameters (no threshold mechanism is artificially imposed),
instead it is an emergent property of MeGro, with the model parameters allowing the
tuning of the value of the external glucose threshold. Such a behavior is coherent with
experimental results showing ethanol production only when the dilution rate exceeds a
certain level, see e.g. [16].
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MeGro can treat the fermentative ratio F as an input rather than an output, thus
allowing the modeler to compute the optimal growth rate (as well as all the other model
outputs) according to different values of F. Indeed, by properly exploiting the flux
balance constraints (derived from steady state Eqs. (2-4)) and the fermentative ratio
Definition (11), we can write Vy,,,, and vy, in terms of F and of the ribosomal flux v,;,:

Vierm = (1.4 x 10°F) /(1 + 10(1=F))v,, (14)
Vi = 10 X (1 4+3(1=F)) /(1 4+ 10(1=F)) v, (15)

so that, according to the ethanol yield Definition (13) the fermentative ratio F is pro-
vided as a function of a given ethanol yield:

F =20Yzon/gc/ (7+ 15Ygion/g1c)- (16)

This last equation will be exploited to feed MeGro with the fermentative ratio
associated to experimental yield, Fig. 2A.
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Fig. 2. AMeGro outcomes, when both the external glucose concentration and the fermentative
ratio (i.e., the yield of ethanol) are exploited as model inputs. B: optimal fractions of ribosomal
activity (o) engaged in the synthesis of the corresponding protein modules as functions of the
external glucose concentration. C: MeGro optimal ribosome-over-protein ratio p as a function of
MeGro optimal growth rate A, with fixed fermentative ratio F (colored curves, F ranging in [0, 1])
and not fixed F (bold black line). MeGro simulations are compared to the experimental data
redrawn from [10, 11]: in grey we highlight the region between Michaelis-Menten experimental
data best fitting. D: MeGro optimal growth rate A as a function of the external glucose
concentration cgy. .., With fixed fermentative ratio F (colored curves, F ranging in [0, 1]) and not
fixed F (bold black line). (Color figure online)
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Figure 2B reports the steady-state protein fluxes for the different protein pools as a
function of glucose concentration for a fermentative ratio F = 0.8. A increases as a
function of external glucose concentration following a saturation kinetics, whose
parameters depend on the fermentative ratio F' (Fig. 2D). Figure 2C shows the behavior
of the ribosome-over-protein ratio p as a function of the external glucose concentration,
at different fixed values of the fermentative ratio F. Model predictions (solid lines) are
compared with two sets of experimental data (green and orange circles) from different
yeast strains [10, 11], showing overall agreement between model predictions and
experimental data. MeGro parameters can be found in Table 1. Most parameters are
chosen by following the criteria developed in [12], with minor modifications, mostly
related to the use of different units.

Table 1. MeGro parameters. Most parameters are chosen by following to the same criteria
developed in [12], with minor modifications, mostly related to the use of different units. To
determine the parameters k. ,, X € {Prot}, we used experimental data on the specific growth rate
of yeast cell populations growing in batch cultures at different glucose concentrations and
literature data of yeast cells in chemostat. Since the maximal growth rate is reached by fully
fermenting cells, we tuned k., (€XCept Keqs resp) in order to fit our maximal experimental growth
rate of 0.424 h™! at a glucose concentration of 278 mM, obtaining a maximal growth rate of
0.48 h™! for fully fermenting cells at saturating glucose concentrations. In order to tune K.y resp
we consider literature data reporting the growth rate at which the switch from respiration to
fermentation occurs. According to such data, S. cerevisiae in a chemostat starts to produce
ethanol at a dilution rate between 0.25 and 0.28 h™' [13]. Then we set Kkear,resp Such that an equal
growth rate of about 0.28 h™" is achieved either using the fermentation pathway or the respiration
pathway.

Parameter | Meas. unit | Value | Parameter Meas. unit | Value

Kearhnt h™! 37492 | kp, e mM 20

Keatgry |h7' 4166 | ky, g1y mM 0.2

kcat, rib h71 670 km, riby ki, pynr ki, glui mM 1

kcat, resp h™! 99 km, resp km, ADPgly> mM 0.5
km, ADPresps km, ATPrib

kcat, Sferm h71 6427 km, ferm mM 5

3 The Growth and Cycle Model (GroCy)

In yeast, the critical cell size required to enter S phase (Ps) is modulated by nutrient
availability [14]. It remains small and nearly constant when glucose is utilized through
respiration. In contrast, Pg and hence average protein content increases as cells shift
their metabolism towards fermentation [15]. Cells forced to ferment under
slow-growing conditions show the same increase [16].

GroCy is composed by three modules (Fig. 3): (1) a dynamical cell growth model
in which a set of ordinary differential equations describes dynamics of synthesis and
degradation of ribosomes and proteins; (2) a molecular triggering mechanism that links
cell growth and cell cycle. It exploits a set of ordinary differential equations which
detail the dynamics of the growth-controlled activator Cdk1CIn3 and of its cognate
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inhibitor Farl; (3) a cell cycle module, that consists of three consecutive timers (7, T>
and Tp) that describe the cycle progression after the triggering mechanism activates the
first timer T;;. The period that leads from the birth of the cell up to the time instant
when the molecular machinery triggers the first timer is denoted by 7},

+ Ribosome R Protein P
n @ dynamics dynamics
- Ky, 1) Ky, 1)

Po(P) Ps

G < Tg >!

Po(D)

t

Fig. 3. Concept map of GroCy sub-module.

3.1 The Growth Module

The growth module deals with the ribosome content R, expressed as number of ribo-
somes per cell (rib), and the protein content P, expressed as number of polymerized
amino acids per cell (aa), and is taken from [17] (where the reader can find the
equations and the details which are below briefly recalled). Both ribosome and protein
dynamics are described by the balance between production and degradation rates.
Figure 4A shows the time course of the protein content and of the number of ribosomes
for two different parameter settings: fast growth (2% glucose, solid line) or slow growth
(ethanol, dashed line).

For each steady-state growth condition, the target ribosome/protein ratio p is an
output of MeGro that can be directly fed into GroCy, providing the link between the
two models. According to the model, when the ratio R/P is greater than p, then there is
no ribosome production; otherwise, the ribosome production rate is proportional to the
(positive) difference pP — R. Denoting with K, 1,, the average translational efficiency
and the protein degradation time constant, respectively, it can be shown that, provided
the exponential growth condition is satisfied, pK, — 1/7, > 0, the ratio R/P asymptot-
ically converges to the value of parameter p. The exponential growth condition ensures
that both ribosomes and proteins grow according to the same exponential law, with an
exponential growth rate A (min~') given by: 1 = pK, — 1/1.

/. 1is not hard-wired in the model, but rather it is linked to the macromolecular
composition and biosynthetic activity of the cells, a connection whose detection is
made possible by the appropriate choice of the measurement units for ribosome and
protein content, synthesis and degradation.



172 P. Palumbo et al.

>
@

2 P, 2% gl
—P, 2% glc
10% —R, Z%Sm
--R; EtOH —
Eon CIn3,, //:;.’ - ~
s-zzzzzazzIIsEt -~ ,’ r—

/!
cytosol Cin3 ;—’ Cln3Farl
4

NUC e
/!
/

Protein content - (#aa 1010)
Number of ribosomes*10°

50 100 150 200 250
time - (min)

o

nucleus

ul
N
o
S

1800
$1600 —Fart —CIn3_ —CIn3__ —Cin3Fart —CIn3,;,
Far1
,cmac "

21000 A Cell division

5 800 Y ———mm Reset !

—CIn3 .
huc 5

- >

15}
]
5
—CInSFar1‘ s
tot =

0 50 100 150 200 250 0 50 100 150 200 250
time - (min) time - (min)
Gl it G1 Ts

Cell division

Fig. 4. ATime course of the protein content P and of the number of ribosomes R for fast (2%
glucose, solid line) and slow growth conditions (ethanol, dashed line). B: schematic view of the
interactions among the molecular players involved in the GroCy molecular triggering
mechanism. C-D: time evolution of the players of the molecular triggering module, for fast
(2% glucose, panel C) and slow (ethanol, panel D) growth conditions.

3.2 The Molecular Trigger Linking Growth to Cell Cycle Initiation

In budding yeast the entrance into S phase and budding starts when cells reach a critical
cell size, thus connecting growth and cycle [18, 19]. Cln3 is an activator of S phase
entrance, whose amount is proportional to the overall protein content, Eq. (20),
therefore linking the growth and cycle modules. Despite some discordant results dis-
cussed in [20], we take that Cln3 accumulation is constant during G1. Cln3 production
takes place in the cytoplasm. Cytoplasmic Cln3 is defined straightforwardly by
Eq. (21). Nuclear volume is a constant fraction of total cell volume throughout the
cycle [21].

The cyclin-dependent kinase inhibitor Farl is involved in the cell size control
mechanism in cycling cells by inhibiting Cln3 in early G1 [22, 23]. After mitosis,
newly synthesized Farl is endowed to each nucleus [24]. Ensuing Cln3 nuclear
transport and accumulation allows overcoming of Farl inhibition, which is made
irreversible by Farl degradation primed by the rising Cln3 activity [25, 26].

Here we use a simplified version of the equations used in [27] to model the
molecular interplay between CIn3 and Farl, which we call the molecular triggering
mechanism. Cdk1 — present in excess over its regulatory subunits — is implied, but not
explicitly modeled (Fig. 4B). ClIn3 transport in the nucleus and CIn3/Farl interaction
follow mass action kinetics. Farl degradation is governed by rate # (min~ ") modeled
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according to a Hill function (Eq. (21)), that increases from O to a high level ;7* as soon
as the free nuclear Cln3 exceeds Cln3Farl. nF is the Hill coefficient, modeling the
steepness of the Hill function. Equation (19) accounts for reversible nucleo-
cytoplasmic transport of CIn3 and interaction with Farl.

dCn3Farl/dt = (kon/Viuc)Clin3pcFarl — kyyClin3Farl, (17)
dFarl/dt = —(kon/Vouc)CIn3uucFarl + kyyCin3Farl — §(Cln3,,./Cln3Farl)Farl, (18)

dCin3,c/dt = —(kon/Viue)Cln3,ycFarl + kogCln3Farl + ke Cln3 ey — ke Cln3,pc,

(19)
Cin3.y = CIn3,,, — (CIn3,, + Cln3Farl), Cln3,, = 0P, (20)
Vnuc = thelh Vcell = P/H7 VI(X) = 77*an/(1 +an) (21)

When 80% of the budded period has elapsed, a RESET function takes place and the
G1" phase begins. RESET denotes the time instant when nuclear division (but not cell
division) occurs: i.e. during the G1~ phase each cell has two G1 nuclei and an undi-
vided cytoplasm. At RESET the nuclear players show a discontinuity because they no
more represent the whole (and unique) nuclear content and also because Farl has been
reset to a higher value. The RESET function includes instantaneous synthesis of Farl
and equal partition of Cln3Farl, Farl, CIn3,,,. in two nuclei whose volume is half of
the original volume before RESET: V.= hV,/2. Farl degradation is inhibited
(n = 01in Eq. (18)), and CIn3 diffusion from the cytoplasm into the nucleus is strongly
reduced (k., in Eq. (19) reduces of 5 orders of magnitudes during the G)).

Figure 4C-D shows the time course for the different molecular players throughout
the whole cycle of an average size cell, growing in fast conditions (2% glucose, panel
C) or in slow conditions (ethanol, panel D): when - very early after division - free
nuclear Cln3 overcomes its inhibited form Cln3Far1 the first of the three consecutive
Timers related to the cell cycle module is triggered. The time period spanning from the
birth of the cell up to the aforementioned time instant is named 7, The kinetic
parameters of the molecular trigger do not vary in different nutrient environments,
except for the total amount of Farl, known to diminish in poor media [22], and for the
parameters H, 0 assumed to decrease in case of poor growth (see Table 2).

3.3 The Cell Cycle Module

In S. cerevisiae cell mass at division is unequally partitioned [19] between a larger, old
parent cell (P) and a smaller, newly synthesized daughter cell (D). The degree of
asymmetry of cell division in S. cerevisiae is modulated by nutrients: poor media —
such as ethanol - yield a high level of asymmetry with large parent cells and very small
daughter cells, whereas in rich media - such as glucose - parents and daughters at
division are very close in size (reviewed in [15]). Since cells have to grow to a critical
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Table 2. GroCy parameters.

Parameters | Meas. unit | glc 2% | Ethanol | Parameters | Meas. unit glc 2% | Ethanol
o rib/aa 2.02e—5|1.18¢=5 |15, s > 1| min 1500 3000
P(0) aa 2.76e10 | 0.8¢10 |k, (molec/L) /min | 1.63e—15 | 1.63e—15
R(0) rib 5.57e5 | 0.94e5

Farl(0) molec 240 110 kg min~ ! 25 25
Cin3,,(0) | molec 0 0 h - 0.07 0.07
CIn3Farl(0) | molec 0 0 H aa/LL 7.09¢23 | 6.18e23
Farl,,., molec 240 110 nr - 10 10

K, min~! 1 0.6 i min”! 1 1

T; min 4000 2000 (2] molec/aa 3.02e—8 |2.66e—8
K, aa/rib/min | 380 316.66 |k, min~! 1.5 1.5

K} aa/rib/min | 342 285.46 |k, min~" 0.6 0.6

K3 aa/rib/min | 178 149.34 | ey reser min~" Se—4 Se—4
K aa/rib/min | 69 58.59 | Tipumin min 1 8

K3 aa/rib/min | 51 43.47 W, min 1503 7045

K aa/rib/min | 42 3591 W, min 62.1 306

K5 s>5 aa/rib/min | 35 29.86 T, min 10 30

T min 3000 6000 Tp min 85 136

cell size before entering S phase and budding, small daughter cells have a longer cycle
time than the corresponding parent cells, most notably in poor media. This difference in
cycle time between daughter and parent cells is due to differences in the G1 phase,
whilst the budded period Ty has essentially the same length in both parents and
daughter cells [18]. Differences in growth rate have marginal effects on the length of Ty
and dramatic effects on the length of G1 (reviewed in [15]).

As explained, T}, is the period from the birth of a cell till the time instant when free
nuclear Cln3 exceeds its inhibited form Cln3Farl; the rest of the cycle is modeled by
the sequence of three consecutive timers 7;,, T,, and Tg. The sum of the period
T;, + timer T;;, corresponds to timer 7; in [18]. The G1 phase is given by T; + T>.
Timer Ty encompasses the budded phase.

The first timer 77, starts when free Cln3 exceeds its inhibited form Cln3Farl. The
length of T, is related to the size of the cell, so that larger cells have smaller T,
periods, and vice versa. More in details, 7;; length is set according to the equation

T1p = max{T1pmin, Wo—Wiln(Pr14) }, (22)

with P7;, denoting the size of the cell at the end of T;,. Notice that Pz,, plays an active
role in the setting of T;;, only for cells small enough, i.e. only when:

Wo—Wiln(Pr1a) > Tipmin — Pria <exp{ (Wo—Tipmin) /W1 }- (23)
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This happens, for instance, with most of daughter cells. In parent cells Pz, is,
usually, greater than the upper bound in inequality (23), so that their 7, length is fixed
to T;p, min and does not depend on the size.

The length of timer T, does not depend on protein content [18]. At the end of timer
T, the critical protein size P is estimated. The budded period T, includes the S, G2, M
and G1” phases. G1" has been modeled as the last 20% period of Ty phase. The end of
the timer results in cell division. Like timer 75, timer Ty length does not depend on
protein content, (no difference between daughters and parents). Part of the GroCy
parameters are influenced by - and vary according to - the nutrient environment.

3.4 Genealogical Age Heterogeneity and Pedigree Simulations

When a yeast cell buds, a chitin ring, called bud scar, is formed at the bud isthmus
remaining on the Parent after bud separation [15]. The genealogical age ‘k’ of a parent
cell is the same as the number of bud scars ‘s’, that can be visually counted, since each
new bud starts at a new site. A cell without bud scars (s = 0) is a Daughter cell and it
has not yet completed a cycle. We denote by “D,”” a Daughter of genealogical age ‘k’
(Fig. 5A). Each Dy (k > 1) is born from a P,_; Parent. D; are born from any Dy.

10
A c 5 x10
&
/ \ 19
@©) &) 18
@
Increasing age .7/\— ’ o 17

and size B2) Pa)
—_— <

e s & e

o E] Dy P, : 1.6
3 1.2 3 4 5 15
0 1 2 3 4 5 o 1 2 3 4 5

Genealogical age Genealogical age

Parent and daughter cell generation times Parent and daughter cell frequencies
Tei | Te2 | Tes | Tea [ Tor | Toz | Tos | Toa [Fe1 | Fe2 | Fes [ Fpa | Fo1 | Fp2z | Fps | Foa
‘ 2%glc | 98.0 | 956 | 93.9 | 96.2 | 106.9 | 102.6 | 101.9 | 104.0 | 0.25 | 0.13 | 0.07 | 0.04 | 0.28 | 0.13 | 0.07 | 0.03
‘ EtOH | 1754 | 174.2 | 178.1 | 171.9 | 188.5 | 179.3 | 177.9 | 1814 | 0.24 | 0.12 | 0.06 | 0.04 | 0.29 | 0.14 | 0.07 | 0.04

T Te Te To 27T 4 2T <P> <P>29,/<P>eton

exp |comp | exp |comp | exp |comp| exp |comp| exp | comp | exp |[comp| exp | comp
‘ 2% glc 97 100.9 81 84.9 90 96.6 104 105.0 | 1.003 1.001 508 |4.37e10|
l EtOH 195 170.3 136 136.4 177 175.1 208 184.3 | 1.009 0.963 201 [1.77e10

2.52 247

Fig. 5. AChain of cells P,—P4, D;—Dy4. B, C: Computed Ps (number of polymerized amino
acid) for Parents of increasing genealogical age (until age 4), for fast (2% glucose, panel B) and
slow (ethanol, panel C) growth conditions. Panel B reports the experimentally determined
volume at bud initiation for Parents of increasing genealogical age (redrawn from [28]). D:
Generation times, Tp, Tpy, for Parents and Daughters of increasing genealogical ages obtained
by simulating 20 different chains of cells Py, ..., P4 and Dy, ..., D4. Frequencies of each
sub-population (Fp;, Fpi) have been obtained using eqs. (A12, 13) in [30]. E: experimental and
simulated values for relevant population parameters. T and Tp have been calculated from data in
panel D, using egs. (A4, 5) in [30].
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Each Parent increases in size before starting to bud [28]. At division, it receives the
mass it had at budding, while the mass synthesized during the budding phase goes to the
newborn daughter. Hence, cell mass at budding (in Parents) and cell size at birth (in
Daughters) increase with genealogical age. A reduced increase in parent cell size at
budding with increasing genealogical age has been reported [15, 28] (see inset in Fig
Fig. 5B) and explained by mechanical stress of the cell wall, which increases with cell
size [29]. Both K and 7, in the growth module of GroCy (rate of protein synthesis and
time constant of protein degradation respectively) decrease in value during the
pre-budded period (G1 phase), according to the parent genealogical age, returning to
their nominal values at the onset of the budding phase (end of Timer 73), so that the
parent cell P, grows again with the steady-state exponential rate given by A = pK, — 1/15.
Daughter cells (of any genealogical age) are not affected by such a mechanical stress. The
behavior of Pg qualitatively recapitulates experimental data (see Fig. 5B, C).

GroCy may be used to replicate small pedigree populations in different nutritional
conditions, by suitably setting its parameters. We simulated 20 chains of cells Dy, ...,
Dy, Py, ..., P4 (Fig. 5A), starting from 20 different initial cells, for two distinct growth
conditions: 2% glucose and ethanol. The timers T;;, T», Tp and the initial protein
content P(0) of each cell have been allowed to vary, with log-normal distribution, with
a 5% CV over their average values. In order to estimate the average cell cycle length
for both subpopulations of parents and daughters (Tp, Tp), we need to estimate the
fractions of parents and daughters from the aforementioned ‘“chain-cells” simulation.
To this end we adopt the population modeling approximation described by Eq. (A1)
given in [29] that provides the critical size of a parent Py as a function of the critical
size of a daughter and of the pair of parameters a, Q < 1. In exponential growth, the
cell cycle length of parents and daughters of any genealogical age can be computed by
means of Eqs. (A4, A5) of the same paper, where the parameter o denotes the expo-
nential growth rate. Since these lengths are provided by the “chain-cells” simulation,
we exploit the mentioned equations to infer the information on the population growth
rate o and to estimate the values of (a, Q) that best fit these data. Parameters (a, Q), as
well as the growth rate «, are finally exploited to derive the fractions of cells (Fpy, ...,
Fpy, Fpy, ..., Fpy) by way of the age distribution function [29]. The inferred structure
population (Fig. 5D) allows to compute Tp and Tp, and the average protein content for
the whole population, < P>. Relative protein content, mass duplication times (7), Tp
and Tp of yeasts growing on different media are very similar to experimental values.
The relationship 27727 + 277”7 _ that links together T, Tp and T - yields a number
very close to the theoretical value of 1 [15, 19], confirming that the simulated
parameters capture the structure of yeasts growing on different carbon sources.

4 Conclusions

The growth activity combined to the other two main cellular activities of metabolism
and cycle (MeGro and GroCy, respectively) define the modular building blocks con-
stituting the coarse grain backbone of a modular, hierarchical and integrated Metabo-
lism, Growth and Cycle model: iMeGroCy. The light green box in Fig. 6 reports a
functional scheme highlighting the general procedure that allows to inter-connect
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MeGro and GroCy as a function of the nutritional input (i.e., the glucose concentra-
tion). The current version of MeGro does not allow carbon sources other than glucose.
MeGro responds to the external glucose Cgjc ex and Ygiop/ge coming from experimental
data in order to set the steady-state exponential growth rate A and ribosome-over-
protein ratio p as outputs of an optimization algorithm aiming at maximizing the
growth rate. The MeGro outputs A and p enter GroCy as inputs, allowing to set the
ribosome and protein dynamics parameters, constituting the growth module. The
exponential growth relationship A = pK, —1/t, is used to constrain the GroCy
parameters K, and 7, to the MeGro outputs (4, p). K; and 7; have been fixed
accordingly to [18]. So, for cells growing on glucose-containing media, MeGro acts as
a parameter generator for GroCy.
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Fig. 6. Scheme of iMeGroCy (light green box). The scheme depicts the interconnection of the
two main sub-blocks (MeGro, red block, and the GroCy, yellow block). The figure also shows
iMeGroCy could host molecular blow-ups (plug-ins) of yeast functions. (Color figure online)

iMeGroCy differs from previous cell cycle models that either relied on defined
molecular networks [31] - encompassing 27 components out of the much larger
identified number [14, 32] or - when of low granularity [33] - did not show the same
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degree of modularity offered by our approach. Other models concentrated on specific
cell cycle phases and could be used in conjunction with iMeGroCy, whose modular and
hierarchical nature allows it to act as a scaffold for the construction of a whole cell
model for S. cerevisiae (Fig. 6). For instance, MeGro could be substituted by a
genome-wide model [1], appropriately modified to include connections with cell
growth and regulation by nutrients, the G; timers could be substituted by a recently
described G,/S module [20], entrance into S phase by a model of the onset of DNA
synthesis [34], the budded phase by a wave of cyclins [35].

Adding the modules incrementally, the ability of iMeGroCly to fit experimental data
could be monitored at any step. Top-down definition of the molecular modules would
allow coherent expansion of iMeGroCy, favoring collaboration within the yeast
community, since such an ambitious large-scale project will require a new type of
collaborative effort [36].
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