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Abstract. A major limitation of the classical random Boolean network model
of gene regulatory networks is its synchronous updating, which implies that all
the proteins decay at the same rate. Here a model is discussed, where the
network is composed of two different sets of nodes, labelled G and P with
reference to “genes” and “proteins”. Each gene corresponds to a protein (the one
it codes for), while several proteins can simultaneously affect the expression of a
gene. Both kinds of nodes take Boolean values. If we look at the genes only, it is
like adding some memory terms, so the new state of the gene subnetwork
network does no longer depend upon its previous state only.
In general, these terms tend to make the dynamics of the network more

ordered than that of the corresponding memoryless network. The analysis is
focused here mostly on dynamical critical states. It has been shown elsewhere
that the usual way of computing the Derrida parameter, starting from purely
random initial conditions, can be misleading in strongly non-ergodic systems.
So here the effects of perturbations on both genes’ and proteins’ levels is
analysed, using both the canonical Derrida procedure and an “extended” one.
The results are discussed. Moreover, the stability of attractors is also analysed,
measured by counting the fraction of perturbations where the system eventually
falls back onto the initial attractor.
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1 Introduction

Random Boolean models of genetic regulatory networks (RBNs) are very well-known
and, in spite of their long age, they still provide useful descriptions of important
observational and experimental results [8, 12–17]. A major limitation of the classical
RBN model is its synchronous updating: from a physical viewpoint, this amounts at
assuming that all the proteins decay at equal rates: this unrealistic assumption allows
one to write the gene activation pattern at time t + 1 as a function of that pattern at time
t, forgetting the previous history. Asynchronous updating has been sometimes pro-
posed (one gene at each time step), but this also leads to difficult interpretations, due to
the relatively large typical protein decay time and to the very large number of genes.
Other interesting “intermediate” update strategies have also been proposed [5, 19].
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Some properties of RBNs are robust with respect to the updating strategy, but in
general there is no guarantee that this is the case. In particular, one should be very
careful when dealing with the networks’ dynamical properties. We have been partic-
ularly interested in the response of genetic networks to perturbations like gene
knock-out and we have shown that, if the RBN model is chosen, the distribution of
avalanches in gene expression levels in S. Cerevisiae that follows a single knock-out
provides information about the dynamical regime of the biological network [8, 16].
This result is particularly relevant, given the importance of the “criticality hypothesis”,
which states that biological systems should preferentially be found in dynamically
critical states [13]. If we are indeed interested in biological genetic networks, such
issues should be addressed in a way that does not critically depend upon the unrealistic
assumption of synchronicity: different updating schemes should be considered, privi-
leging whenever possible those that are closer to what we know about the behaviour of
real gene regulatory networks.

In order to do so, while retaining the simplifications related to the use of Boolean
variables and to the “generic” approach of RBNs, we introduced the GPBN model
(Gene-Protein Boolean Network), where the network is composed of two different sets
of nodes, labelled G and P with reference to “genes” and “proteins” [9–11]. It is now
well-established that proteins are not the only genetically-encoded products which can
influence the effective expression level of other genes (think for example of miRNAs [2,
3]). However, in order to simplify the model description, we will call here “proteins” all
the products of gene activation that are able to influence the expression of other genes.

Each gene corresponds to a protein (the one it codes for), while several proteins can
simultaneously affect the expression of a gene. Both kinds of nodes take Boolean
values: the state at time t + 1 of a G node depends upon the state of a fixed set of P
nodes at the same time, while the state at time t + 1 of a P node depends upon the state
of its corresponding G node at time t. Once a P node is set active (its state is 1), it
remains active for at least a fixed number of steps. If a new activation signal comes in
before decaying, the counter is reset. If no activation signal arrives, the P node is set to
0 at the end of its “lifespan”. If we look at the genes only, it is like adding some
memory terms, so the new state of the network is no longer “Markovian”, i.e. it does no
longer depend upon the previous state only.

This model has been thoroughly studied and its properties have been described
elsewhere [9, 11]. In those papers the usual definition of dynamical criticality, based on
the value of the so-called Derrida parameter, had been used. We have recently shown
some limitations related to the use of that single measure to characterize critical states
in RBNs [4]. In particular, the choice of a completely random initial state in the
computation of the Derrida parameter has been criticized and a different measure
(“extended Derrida parameter”) has been proposed [18].

This prompted a more thorough analysis of the dynamics of GPBNs, whose main
features are presented in this paper.

The paper is organized as follows: in Sect. 2 the GBPN model is described, while
in Sect. 3 the measures of dynamical criticality are discussed and the extended Derrida
parameter is introduced. In Sect. 4 the results obtained by simulating GPBNs are
shown and discussed, paying particular attention to the similarities and differences
between the “canonical” (i.e. standard) and the extended Derrida procedures.
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A different way to evaluate the robustness of the network behaviour, based upon
perturbations of its dynamical attractors, is also presented. Critical discussion and
suggestions for further research are summarized in Sect. 5.

2 The GPBN Model

A GPBN model [9–11] is a bipartite oriented graph containing two types of Boolean
nodes: the G nodes, which represent the genes set, and the P nodes, which represent the
set of proteins (or, in general, gene products). A G node can be active or inactive
(producing or not its protein), whereas a P node describes the presence (or absence) of a
protein within the system. There are two types of links: synthesis links, which go from a
G node to only one P node, and transcriptional regulation links, from a P node to one
or more G nodes.

As usual in RBNs, time evolves in discrete steps. Note that the state at time t + 1 of
the GPBN model is determined by its state at time t, and the update is formally
synchronous. However, due to the presence of the P nodes, the updating of the gene
subnetwork is not synchronous, i.e. the states of G nodes at time t + 1 are not deter-
mined by their states at the previous time step.

Each G node, say the j-th, produces its protein when active (synthesis link) and a G
node is driven by the action of its k inputs (k being the number of its transcriptional
regulation links, coming from P nodes), according to a fixed Boolean function fj
associated to it (fj: {0, 1}

k ! :{0, 1}).
The topology of the transcriptional links is random, and so is the choice of the

Boolean functions: each fj is generated by assigning at random to each of its 2k possible
inputs an output equal to 1 with probability p (the so-called bias of the set of Boolean
functions), 0 otherwise.

To each P node, say the i-th, an integer non-negative variable hi is also associated
(its decay phase) which can change in time and which represents its residual lifetime.
The maximum value of hi is the decay time dti of node i, representing the lifespan of the
protein, once activated (i.e. just synthesized). When a P node is activated, its decay
phase hi takes the value dti and it is later decreased by 1 at each time step, until it ends
in 0 (unless the same node is not activated again in that time interval). When the
incoming G node is active, then the corresponding P node resets its decay phase to the
decay time. As long as the decay phase takes a nonzero value, the P node has a
regulation role on its outgoing links (i.e. its value in the transition function is 1).

The decay time of each node is taken randomly with uniform probability between 1
and a parameter defined as maximum decay time (MDT); note that when MDT is equal
to 1 the GPBN is identical to the corresponding RBN (i.e. the one with the same
topology and the same activation functions). If the value of a G node is 1 at time t then
the value of the corresponding P node will be 1 at time t + 1 and its decay phase will be
set to dti, otherwise the decay phase of the P node is decremented by one unit (in case
of dti = 0, the activation of P is set to 0). On the other hand, the value of the G node at
time t is immediately determined by its function fj, which depends on the states of its
incoming P nodes at time t.

144 D. Sapienza et al.



3 Dynamical Regimes

The asymptotic states of finite RBNs are periodic cycles; fixed points correspond to
cycles with unitary period. Different dynamical regimes have been observed in RBNs
[1, 13, 14], classified as disordered (sometimes called “chaotic”, although all the
attractors are indeed periodic), ordered or critical depending upon the length of their
periods and the sensitive dependence upon initial conditions. In chaotic networks the
cycle length sharply increases with the network size, and nearby initial states are likely
to lead to different attractors, while in ordered systems the typical cycle length shows a
polynomial dependence upon the number of nodes, and basins of attraction are quite
regular. Given the random nature of these systems, the analysis usually concerns
families of networks built by keeping fixed some parameters, like e.g. the number of
nodes, the average number of connections per node and/or the average bias of the
Boolean functions, while changing in different network realizations the topology of
connections and the transition functions. Critical networks are those whose parameters
lie on (or close to) the manifolds that separate regions in parameter space with ordered
behaviours from the chaotic regions. It is important to stress that these terms refer to the
typical features of networks with those parameters, while a single network realization
can behave in a way very different from the typical ones. Large deviations from typical
behaviours can easily be found in critical networks [15].

The asymptotic dynamics can be identified by means of the so-called dynamical
Derrida parameter k [6, 7], which measures the tendency of a temporary perturbation to
vanish, to persist or to spread through the entire system: so, ordered, critical and chaotic
dynamical regimes correspond respectively to k < 1, k � 1 and k > 1.

This parameter can be determined by analysing a plot of the average distance
between two states at time t + 1 versus their distance at time t (the Derrida plot) and by
looking at the slope of the tangent to the curve in the limit of small initial distances.

Different (static) measures of the dynamical properties have also been proposed,
based on an analysis of the properties of the set of Boolean functions rather than on
actual simulations: they are discussed in depth in [18] alongside with their relationships
with the dynamical Derrida parameter, described above, which is the only such mea-
sure considered in this paper.

Another important remark raised in [18] concerns the dependency of the dynamical
Derrida parameter from the set of initial conditions. The usual recipe is that of choosing
a fully random initial state, and of considering the time behaviour of its perturbed
states. While this is entirely reasonable in ergodic systems (where all accessible states
are equiprobable over a long period of time), RBNs with a small number of connec-
tions per node are strongly non-ergodic [20], so it may easily happen that such purely
random states are never encountered in the life of the cell modelled by the Boolean
genetic network.

It seems therefore physically much more appropriate to determine the dynamical
Derrida parameter while limiting the set of allowed initial states only to those states that
are the successors of some other states. The initial state might be found by starting the
network simulation from a purely random state, letting it evolve for Tev steps (Tev � 1)
and by choosing the state that has been reached as the initial state for computing the
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Derrida parameter. When the set of allowed initial states is limited in this way, we refer
to an “extended Derrida approach”, or to an “extended Derrida parameter”, to distin-
guish it from the canonical one.

Note also that different types of perturbations are possible: in GPBNs the initial
perturbation could affect G nodes, P nodes, or both. In our approach a perturbation of a
P node can correspond either (i) to an activity change from 0 to 1, with a decay phase hi
randomly chosen within the range [1, dti] or (ii) to an activity change from 1 to 0, with
hi = 0. A perturbation of a G node can correspond (i) to an activity change from 0 to 1,
followed by the appropriate effect on the protein or (ii) to an activity change from 1 to 0
– in this case, the G node is not producing its protein, and the P node reduces its decay
phase by one.

4 Results

It had already been observed in [9, 11] that, as it might be apriori expected, the
presence of a memory term tends to make the dynamical behaviour “more ordered”.
This can be shown by comparing the behaviour of networks with MDT 6¼ 1 with those
of the corresponding network with MDT = 1 (that are identical to the corresponding
RBNs). The comparison can be made for different dynamical behaviours, in this paper
we will report results concerning networks that are critical if MDT = 1. Three sets of
parameters, all corresponding to critical behaviours, will be discussed: [k = 2, p = 0.5],
[k = 3, p = 0.21], [k = 3, p = 0.79]. The fact that two different cases are chosen for
k = 3 is due to the fact that in GPBN the 0–1 symmetry of RBNs no longer holds.

Fig. 1. Number of different attractors vs. maximum decay time (MDT, ranging from 1 to 10);
each point represents the average of 1000 different networks (case [k = 2, p = 0.5]) with 100 G-P
node pairs. For each network 100 runs with different initial conditions are performed, until an
attractor (with period lower than 1000 time steps) is reached or until the sum of the transient time
exceed 10000 time steps
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The stabilizing effect of memory can be seen in Fig. 1, where the number of
different attractors versus the maximum decay time is shown to decrease sharply even
with a short memory term [9].

Let us now turn to the dynamical regime, as determined by the Derrida procedure.
As discussed in Sect. 3, perturbations can be performed either on G or on P nodes. Let
us first consider this latter case. In all the simulations described here below the per-
turbations can be either up (i.e. setting equal to one the value of a P node which is 0) or
down, depending on the not perturbed activity of the chosen P node. In each simulation
series we create 50 different networks with 100 G-P node pairs, 100 different initial
conditions for each network. In order to allow an easier series comparison we consider
the decay time of each P node being exactly equal to MDT.1

In Fig. 2 the behaviour of the Derrida parameter for the critical case k = 2, p = 0.5
is shown. The two curves refer to the G-node and to the P-node subnetworks. Very
large values of MDT have also been considered, and it is shown that the network
remains critical notwithstanding the memory term.

In Fig. 3 the same parameter is shown for the two cases with k = 3. While the
G-node subnetwork remains critical, here the effect of the memory term on the P
subnetwork is neither that of leaving it critical, nor that of always bringing it in the

Fig. 2. Canonical Derrida parameter vs MDT (MDT 2 {1, 2, 4, 8, 16, 32, 64, 126, 256}), case
k = 2, p = 0.5. The two curves refer to the G-node and to the P-node subnetworks, subject to a
P-node perturbation

1 Subsequent simulation series where the decay time of each node is randomly chosen (with uniform
probability) in [1, MDT] show that the main effect of choosing the decay times randomly with
uniform probability between 1 and MDT is that of slightly soften the shape of the curves, without
altering their behavior (data not shown).
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ordered region; this happens for the case with high bias, while the Derrida parameters
becomes larger than one in the low-bias case.

This behaviour may seem surprising (but see the comments in Sect. 5), therefore it
is interesting to consider also the extended Derrida parameter described in Sect. 3. The
results are shown in Figs. 4 and 5.

Fig. 3. Canonical Derrida parameter vs MDT, case k = 3: left p = 0.21, right p = 0.79. The two
curves refer to the G-node and to the P-node subnetworks, subject to a P-node perturbation

Fig. 4. Extended Derrida parameter vs maximum decay time for the case k = 2, p = 0.5; left
Tev = 1, right Tev = 3. The two curves refer to the G-node and to the P-node subnetworks,
subject to a P-node perturbation

Fig. 5. Extended Derrida parameter vs maximum decay time for the case k = 3; Left p = 0.21,
right p = 0.79. In both cases Tev = 3. The two curves refer to the G-node and to the P-node
subnetworks, subject to a P-node perturbation
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Note that, while the G subnetwork remains critical, the behaviour of the P sub-
network is different from that of the canonical Derrida parameter. In the k = 2 case, it is
more ordered (k < 1 even for values of MDT slightly larger than 1) while it was critical
in Fig. 2. In the k = 3, low-bias case the network is critical, while it was supercritical in
Fig. 3. Only in the case of k = 3 with low bias the two behaviours are at least quali-
tatively the same. It should also be observed that the length of the time window Tev

may affect the outcomes: for example, by choosing it equal to one in the same case as
that of Fig. 5 left, one would have concluded that the P subnetwork is slightly
supercritical (data not shown here).

In order to complete the description of the model behaviours, let us now consider
the results that have been obtained by perturbing the gene subnetwork (recall that all
the previous ones referred to perturbations of P nodes). As it can be seen from Fig. 6
below, in all the cases both subnetworks are ordered even for values of MDT larger
than 1.

The dynamical regimes of GPBNs have been analysed so far by using canonical or
modified Derrida methods, i.e. the discrete analogues of Lyapunov exponents. A major
interest concerns the robustness of networks of this kind, and in order to characterize
this property a different measure, independent of Tev or of any similar parameter, is
given by the fraction of perturbations that, starting from an attractor cycle, end in the
same attractor.

Fig. 6. Extended Derrida parameter vs maximum decay time for the cases k = 2 and p = 0.5,
k = 3 and p = 0.21, k = 3 and p = 0.79. In all cases Tev = 1. The curves refer to the G-node and
to the P-node subnetworks, subject to a G-node perturbation
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These data are shown in Fig. 7. As it is expected, the fraction of perturbations that
fall back onto the initial attractor decreases as the intensity of the perturbation
increases. This fraction increases when a memory term is added and, like in the other
cases described above, the effect is observed for small values of the maximum decay
time, while further increases of MDT do not lead to any appreciable change.

5 Conclusion

The GPBN model of genetic regulatory systems maintains the abstraction level of the
RBN framework and at the same time allows an explicit modelling of time delay
effects.

It is of course extremely interesting to compare abstract-level models with
real-world data. It has indeed been possible to show that RBNs can properly describe
the distribution of perturbations in gene expression levels induced by single knock-outs
in S. Cerevisiae [15, 16]. However, the techniques used for this purpose do not allow
one to test the behaviour of the model when the perturbation affects several genes at the
same time – a situation that is much more frequently encountered in experiments, like
those related to the effects of drugs or contaminants. In these cases the comparison of
model behaviour and experimental data should concern the time behaviour of the
perturbation after the initial shock, but time-course data cannot be properly compared
to RBNs because of their unrealistic synchronous updating. On the contrary, the
introduction of memory terms in GPBNs should make it possible to deal also with

Fig. 7. The fraction of perturbations that came back to the starting attractor by varying MDT, if
perturbing 1, 2, 5, 10, 15 or 20 P-nodes. Each point is the average of 50 different systems with
100 GP nodes: in each system the attractors are identified by using 100 random initial conditions;
all states of the so sampled attractors are perturbed. In these experiments, we considered the same
decay time for each P node.
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time-course data following a multiple initial perturbation, thus greatly increasing the
wealth of experimental data available for testing the appropriateness of the abstract
framework.

The kind of memory that has been introduced has different effects in case of
information transmission from G to P nodes or from P to G nodes, and pose some
interesting questions about the correct way of measuring of the system dynamical
regimes through Derrida-like procedures. Anyway, the robustness of the system’s
attractors can constitute a sort of global measure related to its general “degree of order”.
In the future it will be interesting to analyse a Derrida parameter modified in a way
different from those of Sect. 4, i.e. computed by allowing as initial states only those
that belong to an attractor.

In order to understand the behaviour of the GPBN model when P nodes are per-
turbed, it will be interesting to consider separately the effects of up and down per-
turbations. Indeed, the impacts of “up” and “down” perturbations of P nodes are likely
to have different intensities. The effect of a “down” perturbation, i.e. the disappearance
of a protein, should typically die out quite rapidly, as the rest of the nodes resynthesize
that protein. On the other hand, the impact of an “up” perturbation is likely to last
longer, i.e. for a number of steps equal to its phase. Investigating the effects of the two
types of perturbations by canonical and modified Derrida parameters may therefore
provide important clues about the properties of the model.
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