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Preface

The Wivace conference series has been showing a vitality that is quite surprising, as it
is not supported by any formal society or association. Instead, it is the scientific
community that gathers at Wivace that continues to make it so lively. At each con-
ference there is an informal meeting, where the organizer of the following Wivace is
chosen. This method provides a continuous testing of the value of the conference for
the participants, and it also explains why the flavors of various editions may differ,
depending in part on the main scientific orientation of the organizers. In 2017 the
burden of the organization was mostly on mathematical modelers, computer scientists,
and statisticians, while in the two previous editions it had been on biologists and
chemists. However, the interest of the two communities for the other’s work is always
high, and no “parallel sessions” are run.

The dual soul of Wivace is indeed rooted in its history, since it was born out of the
coalescence of two independent initiatives. Two workshops on Artificial Life were held
in 2003 in Cosenza and in 2005 in Rome, and a workshop on Evolutionary Compu-
tation took place in Milan in 2005 (as a part of the Conference of the Italian Associ-
ation for Artificial Intelligence). The organizers of the two initiatives decided to
co-locate their 2006 editions in Siena, sharing a day (the last day of one conference
coincided with the first day of the other). It became clear that there was a strong mutual
interest between the two scientific communities, so it was decided that the two ini-
tiatives had to merge – and the beautiful acronym Wivace was born!1

The first true Wivace took place in Samperi (Sicily) in 2007, followed by the 2008
edition in Venice. This was the first time that some invited speakers and some par-
ticipants came from abroad, and the conference proceedings were published in English
by an international publisher. Wivace 2009 took place in Naples, and in that case the
local organizer decided to work with an Italian publisher, and to accept papers in
Italian. This prompted some reflections about what Wivace had to be, and it was
eventually decided that its international features had to be preserved and improved.
Therefore, since the edition that took place in Parma in 2012, there have always been
international proceedings and international well-known invited speakers.

A possibly incomplete list of non-Italian invited speakers include Stuart Kauffman,
Norman Packard, Christian Mueller-Schloer, Wim Hordijk, Yaroslav Sergeyev, Ricard
Solè, Kepa Ruiz Mirazo, Olli Yli-Harja, Gabor Vattay, Steen Rasmussen, Ruedi
Fuechslin, and Erik Schultes. Moreover, several Italian researchers working abroad
have also been invited to Wivace.

The meeting in Milan in 2013 was followed by Wivace 2014 in Vietri sul Mare,
co-located with that year’s edition of Wirn, a series of workshops on neural networks
dating back to 1986. In 2015 the meeting took place in Bari and in 2016 in Salerno. And
in 2017 we were back in Venice, for the ninth conference under the name of Wivace.

1 In Italian, “vivace” means “lively.”



However, since (as detailed above) three “parent” Wiva workshops had taken place
earlier, this can be regarded as the 12th edition of the series.

Wivace is not a big conference, the number of participants typically ranging around
50. During the conference, presentations are discussed in depth, without, however,
indulging in uselessly aggressive polemics. The combination of scientific rigor with a
relaxed atmosphere, and with the openness to novel suggestions and hypotheses, also
facilitates informal discussions and exchange of ideas.

We have been lucky to host some invited speakers who combined their outstanding
scientific merits with the capability to effectively communicate their thoughts, and thus
we are deeply indebted to Stuart Kauffman, Steen Rasmussen, Ruedi Fuechslin,
Erik Schultes, and Roberto Taramelli for their contributions.

The review process was quite long, involving two phases. The call for papers left the
choice of presenting an extended abstract or a full paper to the contributors, and the
acceptance of the presentation to the conference was based on this document. Two
reviewers were involved for each submission, and comments and suggestions were sent
to the authors. After the conference, all the authors of accepted contributions were
asked to send a full paper, which was scrutinized by three reviewers who also sent their
evaluations and suggestions for improvements. The 23 papers in this volume are the
outcome of this selection procedure. We thank all the contributors and all the partic-
ipants for their role in making Wivace 2017 a successful event. And special thanks are
due to the members of the Program Committee and the reviewers for their precious
work.

This year’s organization profited from the strong and highly qualified support of the
European Centre for Living Technology (ECLT), an international research center run
by the Università Cà Foscari, which is associated with several universities and research
institutions in Europe and the USA. We wish to thank in particular Agnese Boscarol
and Roberta D’Argenio, who managed the complicated organizational and financial
aspects of the conference, and Marco Fiorucci, who took care of the website. We also
thank the student Feliks Hibraji for his help.

Thanks are also due to the host institutions of the organizers, namely, the Università
Ca’ Foscari di Venezia, the Università di Modena e Reggio Emilia, and the Università
di Bologna.

Let us finally acknowledge the precious advice of the staff at Springer, who pro-
vided their professional support through all the phases that led to this volume.

February 2018 Marcello Pelillo
Irene Poli

Roberto Serra
Andrea Roli

Debora Slanzi
Marco Villani
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Quantum Neural Networks Achieving
Quantum Algorithms

Delphine Nicolay(B) and Timoteo Carletti

Department of Mathematics, Namur Institute for Complex Systems (naXys),
University of Namur, Namur, Belgium

delphine.nicolay@unamur.be

Abstract. This paper explores the possibility to construct quantum
algorithms by means of neural networks endowed with quantum gates
evolved to achieve prescribed goals. First tentatives are performed on
the well known Deutsch and Deutsch-Jozsa problems. Results are promis-
ing as solutions are detected for different sizes and initializations of the
problems using a standard evolutionary learning process. This approach
is then used to design quantum operators by combining simple quantum
operators belonging to a predefined set.

1 Introduction

Quantum computation has generated a lively interest for the last two decades,
since the discovery of a quantum algorithm able to factorize large integers in
polynomial time [11]. In fact, the demand for better performance of computers
strongly increases and quantum computation could be the answer to overcome
the limitations of current computing. However, even in the case of relatively
simple problems, the search for a quantum algorithm is not trivial. This fact is
clearly illustrated by the parcelled development of solutions for the well known
problems of Deutsch [3] and Deutsch-Jozsa [5]. Another complication of quantum
computing is its physical feasibility. Indeed, quantum computing requires the
development of quantum operators working on systems of qubits. Until now,
researchers have been able to physically produce operators dealing with small
systems composed of one or two qubits. Fortunately, it has been proved that any
quantum operator can be built as a combination of these concretely realizable
operators. But, once more, the development of the right combination is not a
trivial problem.

In this work, we study the possibility to make use of networks endowed with
quantum gates to develop appropriate quantum algorithms, i.e. appropriate com-
binations of quantum operators to achieve defined tasks or computations. As the
construction and the learning process of these networks are roughly inspired by
standard artificial neural networks, we decided to name them quantum neural
networks (QNN). They are designed for their specific goals by evolutionary opti-
mization methods. The already mentioned Deutsch and Deutsch-Jozsa problems

c© Springer International Publishing AG, part of Springer Nature 2018
M. Pelillo et al. (Eds.): WIVACE 2017, CCIS 830, pp. 3–15, 2018.
https://doi.org/10.1007/978-3-319-78658-2_1
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4 D. Nicolay and T. Carletti

have been the first tasks considered for this study. We show that our method-
ology has led to promising results, as solutions have been detected for different
sizes and initializations of the problems. Then, we have identified a set of univer-
sal quantum operators and we have applied our method to the design of quantum
gates by combining operators from this set. This second phase of the research
highlights an important limitation of our model which is the exponential increase
of the possible combinations.

The paper is organized as follows. In Sect. 2, we remind the basic concepts
of quantum computing and we present our Quantum Neural Network model. In
Sect. 3, we detail the problems of Deutsch and Deutsch-Jozsa and results we get
with our model. We also perform a critical discussion about our optimization
methods. Section 4 presents our attempt of gates development with a set of uni-
versal quantum operators. Section 5 concludes the contribution with a summary
of our results and perspectives for future work.

2 Background to Quantum Computing

2.1 Quantum Bits

The bit is the fundamental unit of classical computation. Quantum computation
is developed upon a similar concept, the quantum bit, also called qubit. These
qubits have basic states |0〉 and |1〉, which correspond to logical states 0 and
1 for classical bits. But, contrary to the latter ones, qubits can also be in a
superposition of states

|ψ〉 = α|0〉 + β|1〉
where α and β are complex numbers constrained by the normalization condition
|α|2 + |β|2 = 1. Usually, a qubit is considered as a vector in C

2 and the basic
states are then seen as a pair of orthonormal basis vector

|0〉 =
[

1
0

]
, |1〉 =

[
0
1

]
.

As qubits are quantum objects, this superposition of states is not observable.
Once the qubit is measured, the superposition is lost and the system will be
found in the state |0〉 with probability |α|2 and |1〉 with probability |β|2.

In the same way, we can define systems with n-qubit as

|xnxn−1 . . . x1〉 where xi ∈ {0, 1} for i = 1, . . . , n.

Such states can be written as a tensor product of qubits but quantum compu-
tation is much richer. Indeed, thanks to the superposition, a 2-qubit can be in
the state

α|00〉 + β|11〉
which can not be constructed using tensor products of qubits. This property
of quantum system is called the entanglement [9] and is proper to quantum
systems.



Quantum Neural Networks Achieving Quantum Algorithms 5

2.2 Quantum Gates

Quantum gates, working on a qubit or an n-qubit system, are obtained using
unitary operators, hence they are reversible and they respect the normalization
condition. They are the basic building blocks, combined to form quantum cir-
cuits. Widely used qubit operators and their matrix representation are presented
below.

• Identity operator I:

I|0〉 = |0〉
I|1〉 = |1〉 I =

[
1 0
0 1

]

• NOT operator X:

X|0〉 = |1〉
X|1〉 = |0〉 X =

[
0 1
1 0

]

• Operator Y :

Y |0〉 = i|1〉
Y |1〉 = −i|0〉 Y =

[
0 −i
i 0

]

• Operator Z:

Z|0〉 = |0〉
Z|1〉 = −|1〉 Z =

[
1 0
0 −1

]

• Hadamard transformation H:

H|0〉 = 1√
2
(|0〉 + |1〉)

H|1〉 = 1√
2
(|0〉 − |1〉) H =

1√
2

[
1 1
1 −1

]

• Phase operator S:

S|0〉 = |0〉
S|1〉 = i|1〉 S =

[
1 0
0 i

]

• π/8 operator T :

T |0〉 = |0〉
T |1〉 =

√
2
2 (1 + i)|1〉 T =

[
1 0
0 eiπ/4

]

The most used 2-qubit operator is the controlled-not operator (Cnot), also
called the 2-qubit XOR gate, which is represented by

Cnot|00〉 = |00〉
Cnot|01〉 = |01〉
Cnot|10〉 = |11〉
Cnot|11〉 = |10〉

C =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ .

Its effect consists in changing the state of the second qubit if and only if the
first one is equal to |1〉. In the same way, we can define other controlled gates by
combining this rule and the qubits presented previously. It has been proved [1]
that the controlled-not gate combined with all qubit gates form a universal set
for quantum computation.
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2.3 QNN Model

Our model of quantum neural networks is based on the model proposed by
Deutsch [4]. The idea is to build a network whose nodes are quantum gates and
connections bring quantum information through qubits. The network is obviously
feedforward and the number of nodes is constant in every layer. Quantum neural
networks are trained by means of heuristic optimization methods.

3 Deutsch and Deutsch-Jozsa Algorithms

3.1 Problems Description

The Deutsch [3] and the Deutsch-Jozsa [5] problems are basic problems in quan-
tum computing. The Deutsch problem consists in deciding if a binary function
f : {0, 1} → {0, 1} is constant using only one function evaluation. It is clear that
this is not possible in the classical framework, where two function evaluations
are needed. To achieve this goal, we have a quantum black box, called oracle, at
our disposal. This oracle computes one of the four possible functions, i.e. form-
ing all the possible couples f(u) = v with u, v ∈ {0, 1}, by applying an unitary
operator Uf defined as

Uf (|x〉|y〉) = |x〉|y ⊕ f(x)〉

where |x〉 and |y〉 are the qubits of the system. The quantum circuit representing
the solution of this problem is presented in Fig. 1. The sequence of operations
described in this figure leads to the final state |ψ〉:

|ψ〉 =

⎧⎨
⎩

±|0〉
[

|0〉−|1〉√
2

]
if f(0) = f(1)

±|1〉
[

|0〉−|1〉√
2

]
if f(0) �= f(1)

A measure of the first qubit is then sufficient to evaluate if the function is
constant (|0〉) or not (|1〉).

Fig. 1. Quantum circuit for the resolution of the Deutsch problem. The first qubit is
initialized to |0〉 while the second one is set to |1〉. Then, an Hadamard gate is applied
to the two inputs before calling the oracle. An Hadamard gate is finally applied on the
first qubit, which is then measured. If it is found in the state |0〉 then the function is
constant, otherwise, namely if the measure determines that the qubit is in the state
|1〉, the function is not constant.
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The Deutsch-Jozsa problem is a generalization of the Deutsch problem for
a binary function f : {0, 1}n → {0, 1}. In this case, we have to decide if the
function is constant or balanced, which means that we get 0 for half of the
function evaluations and 1 for the other half. The resolution is very similar
to the previous one and is presented in Fig. 2. Indeed, the qubits are initialized
similarly i.e. |0〉 for the n first qubits and |1〉 for the last one. Then, an Hadamard
gate is applied on all qubits before the oracle intervention. An Hadamard gate
operates again on each of the n first qubits. The function is constant if all of
them are finally in the state |0〉.

Fig. 2. Quantum circuit for the resolution of the Deutsch-Jozsa problem. The n first
qubits are initialized to |0〉 while the last one is set to |1〉. Then, an Hadamard gate is
applied to all qubits before calling the oracle. An Hadamard gate is finally applied on
the n first qubits, which are then measured. If they are all found in the state |0〉 then
the function is constant, otherwise, namely if at least one of the qubits is in the state
|1〉, the function is balanced.

Even if these two problems are relatively simple, let us remark that find-
ing their solution is not trivial. Indeed, the algorithm originally proposed by
Deutsch [3] was probabilistic. It was successful with a probability of one half. In
[5], Deutsch and Jozsa developed a deterministic algorithm but it required two
oracle calls to succeed. The current solution, with only one function evaluation,
has been proposed by Cleve et al. [2]. This shows that even in relatively simple
cases, there is a need for a general strategy allowing to construct the algorithm
associated to the problem at hand.

3.2 Experimentation and Results

For the trial problems of Deutsch and Deutsch-Jozsa, we have not considered
a set of universal gates. The nodes could only be assigned to one of the three
qubit gates I, X and H or to the oracle. Let us remind that this oracle is only
used in one layer of the network, but has an effect on all qubits of the layer.
Indeed, our n + 1 qubits, handled separately, have to be turned into a (n + 1)-
qubit system used as a whole by the oracle. This transformation is carried out
using the Kronecker tensor product. The inverse operation is then executed after
passing the oracle to recover our n + 1 qubits.

Quantum neural networks are evolved to solve the considered problem by
a genetic algorithm (GA) [6]. The training environment contains the functions
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to classify. The fitness of each individual is defined by the fraction of correct clas-
sifications. As the optimization is heuristic, all experiments have been replicated
10 times. The results presented are means on these 10 simulations1.

The first tests on Deutsch problem have been performed with an initialization
of the first qubit to |0〉 and the second one to |1〉. All simulations led to a correct
solution. The only difference observed among these different solutions concerns
the operator applied on the second qubit in the last layer, as it is shown in Fig. 3.
This difference is not important as only the first qubit is measured to answer
the asked question. This solution was already found at the first generation of
the GA, this fact could be explained by the small number of possible networks
(247).

Fig. 3. Quantum circuits for the resolution of the Deutsch problem obtained with our
model. The only difference among solutions pertains to the last operator applied on
the second qubit, and so has no influence on the state which is measured.

Then, different parameters have been altered to observe the consequences
on the learning and the final algorithm. These parameters are the number of
layers in the network, the initialization of the qubits and the state to measure
to be constant or balanced. When the number of layers is increased, we observe
that a solution is always found even if the number of possible networks increase
exponentially. Indeed, the number of admissible solutions also increase exponen-
tially according to the number of layers. For example, if we consider five layers
in the network, the two networks presented in Fig. 4 have the same effect on the
quantum states.

Fig. 4. Two different solutions for the problem of Deutsch if the network is formed by
five layers. The networks are different but their effect on quantum bits are equivalent.

1 The selection is performed by a roulette wheel selection. The genetic operators are
the 1-point crossover and the uniform mutation. Their respective rates are 0.9 and
0.01. The population size is 100 and the maximum number of generations is 10000.
The survival of best individuals is ensured by elitism.
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If we exchange the initialization of the two qubits, we have to consider a
network of at least four layers to find a solution. And, most of the time, the
solution consists in replacing the network in the previous initialization, which
means that a NOT operator is applied to each qubit in the first layer. Results
are similar if we alter the initialization by setting both qubits to |0〉 or |1〉.

In case we switch the states to measure to have a constant (|1〉) or balanced
(|0〉) function, we can find a solution whatever we take as initialization of our
qubits. The smallest network, given in Fig. 5, is obtained if both qubits are
initialized to |1〉. In other cases, the solution is made of four layers. We have also
tried to look for a solution if we measure the second qubit instead of the first one
but it has not worked whatever the considered initialization and configuration.
This result seems consistent as such a solution has never been introduced in the
literature.

Fig. 5. Quantum circuit for the resolution of the Deutsch problem if a constant function
is given by a measure of the first qubit equal to |1〉. Even if less frequently met, this
scheme has already been presented in the literature [8].

Concerning the Deutsch-Jozsa problem, we have tested different sizes of the
problem. Let n be the number of variables of the function, then the number of
input states of the function is 2n and the number of possible balanced functions
is given by the number of combinations of 2n−1 units taken among 2n. Figure 6
presents the number of possible networks according to n and the mean number
of generations to reach the solution with our GA for each of this dimension. We
can see in our two graphs that the increase according to n is exponential.

From n = 3, we have remarked that our (n + 1)-qubit systems could not
always be split into n + 1 qubits. This is due to the property of entanglement of
quantum states. Indeed, some qubits that are combined with the tensor product
are modified by the oracle in such a way that they can no more be separated
properly. In this case, we have considered either to keep all functions or to exclude
functions that lead to entangled states. In the first case, we could hardly get a
fitness of 1. In the second case, we have obtained a fitness of 1 but simulations
were longer as a preliminary test was needed to remove this type of functions.

3.3 Discussion on the Used Optimization Methods

Before going further, we have considered the possibility of using optimization
methods different from genetic algorithms. In this way, we have implemented
a simulated annealing (SA) [7] and a random search (RS). Figure 7 shows the
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Fig. 6. Number of possible quantum networks (left panel) and number of generations
to reach the solution for the Deutsch-Jozsa problem (right panel) according to the
number of variables in the function.

number of iterations required by each method to reach the solution for different
sizes of the Deutsch-Jozsa problem. We can observe that these numbers are very
similar for the random search and the simulated annealing. Regarding our genetic
algorithm, the number of required iterations is divided by a factor 100. However,
this smaller number of iterations is offset by the number of function evaluations
at each iteration, which is 1 for RS and SA and 100 for GA. In conclusion, the
genetic algorithm and the simulated annealing do not appear more efficient than
the random search.

This fact could be explained by our way of coding and modifying our model
of quantum neural networks. Indeed, the shift of the oracle from one layer to
another because of the application of a mutation for the GA leads to important
changes in networks. This remark also holds for SA, as the oracle can be shifted
during the exploration of the space of solutions. Because networks are pretty
small, these big changes can modify them as strongly as it is made by random
search.

Another explanation could be glimpsed by the analysis of two indicators,
namely the fitness distance correlation coefficient and the autocorrelation of
the function landscape [7]. As it is indicated by its name, the fitness distance
correlation coefficient measures the correlation between the objective function of
a candidate and its distance to the optimal solution. As for the autocorrelation,
it measures the correlation between neighboring candidates. Results of these
two measures for different sizes of the Deutsch-Jozsa problem are presented in
Fig. 8. We can see that these two coefficients are quite low, whatever the size
of the problem. This observation reinforces our intuition that GA and SA are
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Fig. 7. Comparison of the number of iterations required by each algorithm to reach the
solution. This comparison is performed for different sizes of the Deutsch-Jozsa problem.
The simulated annealing and the random search required similar number of iterations
while it is divided by a factor 100 for the genetic algorithm.

no more efficient than RS for this application. Indeed, if correlation does not
exist between the distance to the solution and the objective function, it can not
be assumed that the best individual will be found by crossovers and mutations
on good individuals. Similarly, the absence of correlation between neighbors
removes any advantage to an optimization method such as SA that travels from
one candidate to its neighbors.

4 Quantum Gates Construction

Our methodology enables us to develop quantum algorithms solving problems of
Deutsch and Deutsch-Jozsa without requiring any particular knowledge except
the function to reproduce. Indeed, the appropriate algorithm appears following
the learning process applied to a network composed by standard gates. Given
the difficulty to develop quantum algorithms and the small number of such
algorithms, we think that our results are promising even if the increase according
to the number of variables is exponential. Consequently, we have considered to
exploit our methodology for the implementation of quantum gates.

Our idea was to identify a set of universal gates and to develop other gates
by combining those belonging to this set. We followed the statement of Nielsen
and Chuang [10] and worked with a set made of 6 qubit gates to whom the
controlled-not gate has been added. The qubit gates are I, H, S, T and their
adjoint. As I and H are self-adjoint, we only have to add S∗ and T ∗.
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Fig. 8. Indicators analysis for different sizes of Deutsch-Jozsa problem. Left panel:
fitness distance correlation coefficient. In our case, the distance between two quantum
gates is fixed to 1. Moreover, we do not consider the last operator applied on the
last qubit as it has any influence on the final result of the algorithm. Right panel:
Autocorrelation of the objective function landscape. For this measure, we consider
neighbors at distances from 1 to 5.

Before starting our optimizations, we have analyzed the two indicators pre-
sented above in order to choose the most appropriate method. For this, we have
considered the objective function of the controlled-Z gate and the Toffoli gate,
which is a generalization of the controlled-not for three qubits. The correlation
coefficients for these two problems are respectively equal to 0.1048 and 0.2010.
The autocorrelation of the function landscape is represented in Fig. 9. Once
more, these measures are pretty low. Consequently, we have decided to replace
our genetic algorithm by a simulated annealing. Indeed, the genetic algorithm
requires more CPU time due to crossover and mutation process for analogous
results. Our simulated annealing has a temperature that decreases very slowly2,
with the aim to explore the space of solutions as much as possible.

Firstly, we used our QNN model and our simulated annealing to design the
qubit gates that were not part of the defined set, i.e. the X (NOT), Y and Z
gate. The Z gate is quite easy to rebuild as it only requires a sequence of two
Hadamard gates. On the contrary, X and Y respectively claim 4 and 6 layers
and are represented in Fig. 10. Such a number of layers seems quite expensive
for so simple gates. Then, we have succeeded in recreating the 2-qubit gates
controlled-Y and controlled-Z, which are also represented in Fig. 10. Although it
has been proved theoretically that all these gates could be rebuilt from a set of
universal gates, let us note that we hereby provide their explicit scheme for the
first time.

Nevertheless, we have quickly been confronted to one big limitation of our
model, which is the exponential increase of the number of possible networks

2 The temperature is initialized to 1, in such a way that a candidate decreasing the
objective function by 0.5 has a probability of 2

3
to be accepted. The cooling parameter

is fixed to 0.99995 for a slow diminution of this probability.
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Fig. 9. Autocorrelation analysis for the objective function of two quantum gates. We
consider neighbors at distances from 1 to 5. Left panel: Controlled-Z gate. Right panel:
Toffoli gate.

Fig. 10. Design of qubit gates with our model starting from the set of universal quan-
tum gates. Right panel: Not (X) and controlled-Y gates. Left panel: Y and controlled-Z
gates.

according to its size. Indeed, we know that a Toffoli gate requires 13 layers of
three qubits to be designed from our predefined set [10]. With our model, even if
we consider that we know the number of needed controlled-not gate, the number
of possible networks among which the solution has to be found is superior to 1026.

5 Conclusion

Quantum computation attracts considerable interest as it can be an answer to
the limitations of current computers. Nevertheless, it remains difficult to elab-
orate quantum algorithms or quantum operators working on systems made of
more than two qubits. Our aim is to study the possibility to develop a general
framework based on neural networks endowed with quantum gates and evolu-
tionary computation to tackle this difficulty.

Our approach was first used on the Deutsch and Deutsch-Jozsa problems.
Results are positive as solutions were found for different configurations and dif-
ferent sizes of these problems. However, we have observed that our optimization
method, a genetic algorithm, was no more efficient than a random search among
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the space of solutions. This fact can be explained by the low values of the fitness
distance correlation coefficient and the autocorrelation of the landscape, as well
as by our way of coding the networks. In a second time, our QNN model has
been trained to achieve quantum gates from a set of universal quantum gates.

This research highlights two limitations of our approach. The first one is
linked to the entanglement property of quantum systems. Indeed, once a state
is turned into a entangled state by an oracle or a controlled-not gate, we are
no longer able to manage with it. The second one, and the most important for
us, is the exponential increase of the networks number according to the size
of this network. This increase, combined with the absence of correlation given
by our indicators for the objective function, makes the resolution impossible in
reasonable time for networks with more than about 15 gates.

Despite these limitations, we can envisage to improve the efficiency of our
method. Firstly, we can decrease the number of possible networks by fixing the
number of controlled-not gates, and stronger, by fixing the number of one qubit
gates that differ from the identity. But, even with these constraints, the size
of the resolvable networks will be limited. Another option would be to add a
quantum operator to our set as soon as we find its breakdown. Improvements
can also be imagine on the learning process. For example, we can consider the
addition of a penalty in order to avoid useless sequences of operations.
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ences, Les Ulis (2010)

9. Mintert, F., Viviescas, C., Buchleitner, A.: Basic concepts of entangled states. In:
Buchleitner, A., Viviescas, C., Tiersch, M. (eds.) Entanglement and Decoherence.
LNP, vol. 768, pp. 61–86. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-540-88169-8 2

10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

11. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999). https://doi.
org/10.1137/S0036144598347011

https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1007/978-3-540-88169-8_2
https://doi.org/10.1007/978-3-540-88169-8_2
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011


Signal Transduction and Communication
Through Model Membranes in Networks

of Coupled Chemical Oscillators

Federico Rossi1(B) , Kristian Torbensen2, Sandra Ristori3,
and Ali Abou-Hassan2

1 Department of Chemistry and Biology “A. Zambelli”, University of Salerno,
Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy

frossi@unisa.it

http://docenti.unisa.it/025462/en/home
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Abstract. In nature, an important example of chemical communica-
tion and synchronicity can be found in cell populations where long-
range chemical communication takes place over micrometer distance.
In vitro laboratory systems can be useful to understand and control
such complex biological mechanisms and, in a biomimetic approach, we
present in this paper a model based on three basic features, namely (i)
the compartmentalization of chemical information (using microfluidics),
(ii) a stable emitter of periodic chemical signals inside compartments
(Belousov-Zhabotinsky oscillating reaction) and (iii) a suitable spatio-
temporal monitoring of the emitted chemical signal. In particular, start-
ing from our recent work on the communication among oscillators via
chemical intermediates in networks of lipid-stabilised droplets, we dis-
cuss here the role of compartments and of the geometry of the system.
We present 3 different experimental configurations, namely liposomes
(water-in-water dispersions), double emulsions (water-in-oil-in-water dis-
persions) and simple emulsions (water-in-oil dispersions) and we show
that the global behaviour of networks can be influenced and controlled by
several experimental parameters, like the nature of the collecting solvent,
the presence of dopants and the network geometry. Numerical models
supporting and explaining the experimental findings are also discussed.

Keywords: Belousov-Zhabotinsky reaction · Microfluidics
Lipid droplets · Chemical oscillators network · Chemical coupling

1 Introduction

Biological systems are the most fascinating expression of self-organisation phe-
nomena taking place in nature. After Prigogine’s work, self-organisation is
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interpreted as the tendency of far-from-equilibrium systems, also known as Dis-
sipative Structures, to spontaneously organise in more complex assemblies, start-
ing from simple elements. Such kind of organisation bears new features that are
in a stationary state, kept far from thermodynamic equilibrium by a constant
flux of energy and/or matter [1–3]. As an extension, several researchers consid-
ered Life and many of its manifestations as dissipative structures, providing, for
instance, a possible solution to the evolutionary problem of order out of disor-
der in the transitional stages between abiotic and prebiotic ages [4]. Beside the
high hierarchical structures, like in biological systems, there are simple physi-
cal and chemical systems that manifest self-organising properties, such as, for
example, the Belousov-Zhabotinsky (BZ) chemical oscillator [5,6]. Starting from
the seventies, chemical oscillators quickly became a simple model for studying
complex phenomena typical of the living realm, such as oscillations, bistability,
excitability and pattern formation [7,8].

However, equilibrium dynamics is also fundamental for understanding the
beautiful complexity of nature. In this respect, similarly to self-organisation,
self-assembly has been defined as the tendency of single components to sponta-
neously aggregate in complex structures while tending to a minimum (or a max-
imum) of a thermodynamic potential [9–11]. In chemical and biochemical fields,
dispersed media like micelles, emulsions and liposomes are genuine examples of
self-assembling systems [12]. Unlikely to Dissipative Structures, such systems do
not need a continuos flux of energy to survive [9,10,13].

In this context, blending the structural properties of self-assembled matrixes
together with the evolutive peculiarities of dissipative system, allows to study an
important aspect of biological systems, namely the transmission of signals across
an amphiphilic boundary layer (membrane) and the synchronisation and com-
munication among coupled chemical systems in networks [14,15]. The Epstein’s
group in Brandeis pioneered the study of coupled chemical oscillators in water-in-
oil nano size domain (microemulsions), where the interfacial film was a simple
AOT monolayer [16,17] to find that, the exchange of molecules among water
compartments dispersed in a nonpolar solvent and containing the BZ reaction,
produced a rich variety of structured patterns at the macroscopic level. The
cooperative behaviour of nano-droplets, mediated by diffusion (or cross-diffusion
[18,19]) of chemical messengers, resulted in an unexpected and emergent global
behaviour at a higher hierarchical level. By using microfluidics technique, the
microemulsion system was then upscaled to an emulsion system with the droplets
having a characteristic size of hundreds of micrometers; here it was found that a
network of diffusively coupled oscillators could produce global in-phase and out-
of-phase oscillations, or more complex dynamical behaviours, depending whether
the messenger molecules were activators, inhibitors or a mix of the two, respec-
tively [20–22]. Other groups used microfluidics devices to explore similar config-
urations [23–25].

In a more realistic biomimetic approach, our group substituted synthetic
surfactants with phospholipids to stabilise droplets in dispersed systems. We
could thus study pattern formation in membrane model systems [26–28] and,
by using microfluidics [29], chemical communication in liposomes [30], double
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emulsions [31] and emulsions [32]. The oscillating BZ reaction was employed
as the signal generator. The overall reaction is driven by the oxidation of an
organic substrate, e.g. malonic acid (MA), by bromate in acidic solution in the
presence of a catalytic species in the form of an organometal complex, such as
ferroin [a phenanthroline-iron(II) complex]. The oscillatory dynamics, however,
is governed by the amount of the inhibitory intermediate bromine and the excita-
tory intermediate bromous acid. These BZ intermediates might diffuse between
individual microdrops, thus affecting the overall oscillatory dynamics and syn-
chrony of multiple drop arrays. As such, the intermediates serve as messenger
molecules between individual drops. More details about the kinetic mechanism
responsible for oscillations will be given in Sect. 3. 1,2-dimyristoyl-sn-glycero-
3-phosphocholine (DMPC) is known to form stable bilayers in water and to
self-assemble spontaneously at the water-oil interface giving resistant, yet inter-
nally fluid, membranes [33,34]. DMPC was thus used in our experiments as the
principal component of the membranes.

In this paper we present 3 different experimental configurations, namely lipo-
somes (water-in-water dispersions), multi-core double emulsions (water-in-oil-in-
water dispersions) and simple emulsions (water-in-oil dispersions), whose struc-
tures are sketched in Fig. 1, and we discuss how the global behaviour of networks
can be influenced and controlled by the nature of the collecting solvent, the pres-
ence of dopants and the network geometry. Numerical models supporting and
explaining the experimental findings will be also discussed.

Fig. 1. Sketch of the structure of the dispersed media used in this work. The phos-
pholipid DMPC is the amphiphilic molecule stabilizing the dispersions. W stands for
water and with Oil is intended a generic nonpolar solvent

2 Experimental Approach: Microfluidic Techniques
for the Generation of Oscillating Droplets

Microfluidic techniques are a reliable and easy method to synthesize droplets
(either single and double emulsions, liposomes or polymersomes) with control-
lable size, monodispersity and composition [29]. In particular, to generate both
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liposomes and emulsions loaded with the BZ reaction, we employed a home-
made coaxial flow microfluidic device adapted from the setup devised by the
group of D. Weitz [35]. The geometry of our setup varied depending on the
experimental configuration we explored. In particular, we studied three different
systems: planar 2-D liposomes and multi-core double emulsions and planar 1-
D arrays of single emulsions. Figure 2 resumes the experimental conditions and
the experimental observations of the most significative results in liposomes (left
panel) and multi-core double emulsions (right panel). Experimental details are
in the figure captions and in references [30,31]. From a physical point of view,
the two systems have different solvents separating the oscillating droplets; this
fact implies the presence of an osmotic pressure in the case of liposomes that
has to be balanced by adding an electrolyte in the collecting solution. Moreover,
the different solubility properties of the surrounding solvents might affect the
communication among the oscillators. In fact, these features are reflected in the
dynamical behaviour of the two systems. In the case of liposomes we observed
the development of autocatalytic fronts in single droplets, that could be trans-
mitted from one compartment to the neighbours. In the series of pictures b–e of
Fig. 2 an autocatalytic front starts to oxidise the droplet 1, wherein the colour
change from dark (reduced form of the catalyst, ferroin) to bright (oxidised form
of the catalyst, ferriin). The oxidative front is then propagated via the transduc-
tion of a chemical signal through the liposomes membrane to the surrounding
droplets, as it is evident from the colour change of droplets 2, 5 and 6. The sig-
nal transmission sequence among liposomes 2, 5 and 6 was analysed by means
of the space-time (ST) plot reported in Fig. 2f. Thin slices cut from each frame
along the white line in Fig. 2e were vertically stacked, so that the horizontal axis
represents the actual space spanned by the oxidation pulse (∼820µm) and the
vertical axis represents the time elapsed from the generation of the first pulse in
liposome 2 to the end of the last pulse in liposome 6 (∼23 s). The reciprocal of
the slope of the diagonal borders between dark and bright areas represents the
speed at which the chemical pulses travel inside the water compartment of the
liposome and was calculated to be in the range 110–150µm s−1. From the ST
plot we could also quantify the lag time in about 5 s, during which a liposome
remains in an oxidised state before transmitting the impulse to its neighbour.

In liposomes experiments, we demonstrated an actual communication among
different single oscillators. The oxidative pulse transmission suggested the
autocatalytic species, HBrO2, as the main messenger molecule able to cross
the DMPC bilayers and this was confirmed by an electrochemical investiga-
tion of the membranes during the oscillatory cycles [30,36]. However, mainly
because of the osmotic pressure, the stability of liposomes was not long enough
(<10 min) to study the network dynamics during a series of sustained oscil-
lations. Therefore we devised a series of experiments in a double emulsion
system as depicted in Fig. 2g and h, where the DMPC stabilised oscillat-
ing droplets were dispersed in an organic solvent (the same used for the
encapsulation process) and, in turn, in a PVA (Polyvinyl Alcohol) solution.
In contrast to liposomes, in double emulsions the DMPC membrane around
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Fig. 2. Experimental setup and dynamical behaviour in liposomes (left panel) and
multi-core double emulsions (right panel). (a) Microfluidic device for liposomes gener-
ation: the inner phase was a BZ aqueous mixture having H2SO4 (300 mM), NaBrO3

(120 mM), MA (30mM) and ferroin (5 mM), the middle phase contained DMPC solu-
bilised in a mixture of chloroform: cyclohexane (40:60; v/v), the external phase was an
aqueous solution of PVA (Polyvinyl alcohol) (7%, wt), an aqueous solution of NaBrO3

(0.4 M) was used to recuperate the liposomes at the exit of the microfluidic device; (b)–
(e) pulse transmission across the touching liposomes after solvent evaporation. White
arrows indicate the direction of pulse propagation; (f) space-time plot of liposomes
2, 5, 6 along the white bar in panel (e); (g) Microfluidic device for double emulsion
generation. Conditions are the same as in (a) but in this case the droplets and the
surrounding oil phase where collected in a PVA solution only at the end of the encap-
sulation process, preventing the evaporation of the organic solvents, H2SO4 (350 mM),
NaBrO3 (180 mM), MA (150 mM) and ferroin (2.5 mM); (h) Final configuration of the
oscillating droplets in double emulsions; (i) Time series of the oscillating dynamics of
the two droplets in the red circlet in (h); (j) Temporal behaviour of the phase difference
between the two droplets calculated by using the Eq. (1). (Color figure online)

each droplet is a thick layer (30–50 nm) with disordered internal structure.
By avoiding the osmotic pressure problems, we could obtain droplets stable
enough to record more than 10 oscillatory cycles (∼30 min) and observe an in-
phase synchronisation tendency between touching droplets. Figure 2i shows the
timeseries extracted from the two droplets in the red circlet of Fig. 2h; it is quite
evident that, after few oscillations, the two droplets tend to spike with the same
period and phase. This is also confirmed by the evolution of the phase difference
between the two oscillators (φ12 = φ1 −φ2) reported in Fig. 2j and calculated by
means of the Eq. (1) [37,38].

φi(t) = 2π
t − tk

tk+1 − tk
+ 2kπ tk < t < tk+1 (1)
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where tk is the time of the k-th peak of the oscillatory time series of the oscilla-
tor i. The diagonal lines in Fig. 2j mean that the phase difference is changing in
time, while horizontal lines indicate that both oscillators have the same period
and oscillate with a constant phase difference. This represents a phase lock state,
i.e. a coherent behaviour of the two oscillators. The phase difference, in partic-
ular, shifts from an initial value of about 0.5 p during the first cycles to 0 at the
end, indicating that the two oscillators adjust their oscillation frequency until
they reach a synchronistic behaviour. The in-phase oscillations of the communi-
cating droplets reveals an activatory coupling path, that can be brought about
by the exchange of the autocatalytic intermediates [39], in agreement with the
electrochemical investigations and with the pulse transmission in liposomes. Sim-
ulations presented in the Sect. 3 confirmed this hypothesis.

1-D arrays of oscillating droplets were built to explore a linear connection
geometry in a controlled and tunable configuration. By taking advantage of the
microfluidic setup shown in Fig. 3a, it was possible to obtain a reliable and robust
network of oscillators that could be monitored for longer periods with respect to
double emulsions. In this case, we dealt with a single emulsion system obtained
by keeping the droplets inside of the collection tube (Fig. 3b). Experimental

Fig. 3. (a) Sketch of the microfluidic device used to generate the droplet arrays; (b)
1D array of BZ containing droplets collected in a PTFE tube for monitoring. (c) Array
of six oscillating droplets in the simple emulsion system. Space-Time plots of each
droplet were reconstructed from the movie frames (sampling time 1 s). (d) Time-series
extracted from the Space-Time plots by converting the pixels in grey scale values;
H2SO4 (300 mM), NaBrO3 (120 mM), MA (300 mM) and ferroin (5 mM), The sus-
pending oil phase consisted of a mixture of chloroform/cyclohexane (1:2), DMPC (0.8%
w/w), and STS (0.2% w/w).
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details are in the figure caption and in reference [32]. In order to work at a low
lamellarity of the membranes between the touching droplets, thus facilitating the
exchange of messenger molecules, we used sodium tetradecyl sulfate (STS), since
charged surfactants are known to favour oligo- (or mono-) lamellar structures
in liposomes, to dope the DMPC [32,40]; cholesterol (CHOL) was also used to
interact with brominated BZ intermediates and tune the communication between
droplets [32,40].

As an example of the operative setup, Fig. 3c shows a simple emulsion array
of six oscillating droplets loaded with BZ and surrounded by the mixture of
cyclohexane/chloroform containing DMPC+STS. On the right of the array, the
ST plots display the oscillating dynamics of each droplet. The vertical bright
lines correspond to a firing of the oscillator (oxidized catalyst), whilst the dark
regions represent the recovery period (reduced catalyst) between single oscilla-
tions. From the ST plots of four droplets (2–5), the time-series were extracted;
the corresponding time-series are reported in Fig. 3d.

The analysis of the timeseries for the DMPC+STS system revealed an anti-
phase global dynamics among adjacent droplets (Δφ ∼ π) and an in-phase syn-
chronisation among alternating droplets (Δφ ∼ 0), as highlighted in Fig. 4a–b.
This behaviour is typical of networks of oscillators coupled via inhibitory signals,
that in the BZ case are generally Br2 or Br− intermediates. To confirm the promi-
nent role of brominated species as inhibitory messengers in the simple emulsions
system, we modified the membrane composition by inserting CHOL molecules
in order to modulate the communication pathway and to seek a difference in
the global behaviour of the array. We expected, in fact, that cholesterol-doped
DMPC membranes act as a barrier for Br2, thus preventing, or at least miti-
gating, inhibitory coupling. The analysis of the phase difference of the droplets
couples reported in Fig. 4c–d, shows a substantially erratic behaviour for all the
permutated couples except for a weak coupling of the droplets 3,4.

In this section, we showed that the global behaviour of a network of coupled
oscillators can be influenced and controlled by several experimental parameters:
(i) the nature of the collecting solvent determines the type of dispersion (lipo-
somes, double and single emulsions) and control the osmotic pressure; (ii) the
presence of dopants like STS favour communication among droplets by decreas-
ing the lamellarity of the membranes; (iii) CHOL in the membranes selectively
interacts with messenger molecules; (iv) finally, also the network geometry exerts
a certain influence on the type of communication pathways among individual
oscillators.

In the next section we propose few models that can explain and reproduce
some of the observed results.
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Fig. 4. (a) Phase difference of the alternate droplets 2,4 and 3,5, as a function of
time. The inset shows the count distribution for various intervals of phase differences
in the DMPC+STS system; (b) Phase differences of adjacent droplet couples vs time,
displaying the progressive phase shift to anti-phase oscillations in the DMPC+STS
system; (c) Phase difference of the droplets 3,4 as a function of time, the inset shows
the count distribution for various intervals of phase differences in the DMPC+CHOL
system; (d) Phase differences of the droplet couples 2,3; 2,4; 4,5; and 3,5 vs time,
displaying an uncorrelated coupling for these adjacent and alternate droplets in the
DMPC+CHOL system.

3 Modeling

The first step for understanding the dynamics of the droplets network is to model
the chemical system responsible for the oscillations. A minimal reaction mecha-
nism that reproduces the complex chemistry of the ferroin catalysed BZ reaction
is represented by the reaction scheme (R1)–(R14) with relative kinetic constants
reported in Table 1 [32,41–43]. According to the classic interpretation of the oscil-
latory mechanism [44], the reactions (R1)–(R14) can be simplified in three main
processes as sketched in the lower panel of Fig. 5. Process A accounts for the reac-
tions (R1)–(R4) and it is dominated by the inhibitor Br− chemistry, process B
accounts for the reactions (R5)–(R8) and represents the autocatalytic reactions
that involve the activator HBrO2, process C accounts for reactions (R9)–(R14)
and it is responsible for the regeneration of the catalyst (M(ox)→M(red)) and the
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production of the inhibitor that, in turn, restarts the cycle. A kinetic scheme can
then be derived from the three processes and numerically integrated for simulat-
ing the dynamics of the systems (legend for the symbols is reported in the Fig. 5
caption).

HOBr + Br− + H+ � Br2 + H2O (R1)

Br− + HBrO2 + H+ → 2HOBr (R2)

2HBrO2 → BrO−
3 + HOBr + H+ (R3)

Br− + BrO−
3 + 2H+ � HOBr + HBrO2 (R4)

BrO−
3 + HBrO2 + H+ � Br2O4 + H2O (R5)

Br2O4 � 2BrO• (R6)

Fe(phen)2+3 + BrO−
3 + 2H+ → Fe(phen)3+3 + BrO•

2 + H2O (R7)

Fe(phen)2+3 + BrO•
2 + H+ → Fe(phen)3+3 + HBrO2 (R8)

Fe(phen)3+3 + BrCH(COOH)2 � Fe(phen)2+3 + •CBr(COOH)2 + H+ (R9)

BrCH(COOH)2 � (HOOC)CBr = C(OH)2 (R10)

(HOOC)CBr = C(OH)2 + Br2 → Br2C(COOH)2 + Br− + H+ (R11)
(HOOC)CBr = C(OH)2 + HOBr → Br2C(COOH)2 + H2O (R12)
2•CBr(COOH)2 + H2O → BrCOH(COOH)2 + BrCH(COOH)2 (R13)

BrCOH(COOH)2 → Br− + CO(COOH)2 + H+ (R14)

Table 1. Forward and backward reaction rates for the BZ model involving reactions
(R1)–(R14). Taken from refs. [32,41–43].

Reaction kforward kinverse

R1 8 × 109 mol−2 dm6 s−1 80 s−1

R2 2.5 × 106 mol−2 dm6 s−1

R3 3 × 103 mol−1 dm3 s−1

R4 10 mol−3 dm9 s−1 3.2 mol−1 dm3 s−1

R5 48 mol−2 dm6 s−1 3.2 × 103 s−1

R6 7.5 × 104 s−1 1.4 × 109 mol−1 dm3 s−1

R7 0.38 mol−3 dm9 s−1

R8 1 × 109 mol−2 dm6 s−1

R9 100 mol−1 dm3 s−1 6 × 108 M−2 s−1

R10 0.012 s−1 800 s−1

R11 3.5 × 106 mol−1 dm3 s−1

R12 6.6 × 104 mol−1 dm3 s−1

R13 1 × 108 mol−1 dm3 s−1

R14 1.5 s−1
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When communication among droplets is considered, the system can be mod-
elled as sketched in Fig. 5a for liposomes and double emulsions and b for the
droplets array: each droplet contains the BZ reaction and it is free to exchange
the activator, HBrO2, and the inhibitor, Br2, with neighbours through a sim-
ple equilibrium reaction following mass action kinetics. The coupling reactions
are reported in the lowest part of Fig. 5 with the corresponding kinetics to be
included in the BZ scheme. Details are reported in the figure caption. DMPC was

Fig. 5. (a) Sketch of two touching droplets. (di) represents the droplet, dd is a droplet
diameter and dc is the diameter of the contact surface between two droplets, which has
been approximated to a circle; (b) Model of the BZ oscillator array.
The lower part of the panel shows the most import processes accounting for the chem-
istry of the BZ reaction: Xi, Yi and Zi represent the concentration of HBrO2, Br−

and Mox in droplet i, respectively; the kinetic constants derived from Table 1 are k1
(M−1s−1) = 0.245, k2 (M−1s−1) = 1.05 × 106, k3 (M−1s−1) = 14.7, k4 (M−1s−1) =
1.05 × 103, kz (M−1s−1) = 1, f = 0.5 is a stoichiometric factor which account for
the Br− regeneration. ki

c = ki
−c (s−1) are the transfer kinetic constants related with

the permeability of the i-th species, P i
m (cm/s), towards the phospholipid membranes

by the relation ki
c = P i

mAc/Vd, where Vd is the droplet volume and Ac is the con-
tact surface area between two droplets. The values for Vd and Ac were determined
from experiments, the value for P 1

m is 0.07 cm/s [45], the value for P 2
m was chosen as

1 × 10−4 cm/s [46], so that k1
c = 0.15 s−1 and k2

c = 2 × 10−4 s−1.
Colours map the state and the transition of the catalyst forms, red for the reduced and
blue for the oxidised state. (Color figure online)
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Fig. 6. (a)–(b) Signal transmission between two liposomes. At t = 400 s a signal has
been triggered in droplet 1 ([HBrO2]ex = 1.1 × 10−6 M). After about 4 s the signal
reaches droplet 2 and causes the production of the autocatalytic species and the con-
sequent oxidation of the ferroin; (c) Numerical simulations of the coupled dynamics of
two BZ droplets in a double emulsion system. (d) Time evolution of the phase differ-
ence calculated from the time series in the panel (c); (e)–(h) Simulated phase dynamics
for four droplets in an array of linearly coupled oscillating simple emulsions: (e) Phase
difference for the synchronised droplets in the DMPC+STS system; (f) Phase differ-
ence for the adjacent droplets oscillating in anti-phase in the DMPC+STS system; (g)
phase difference for the weakly coupled droplets (3,4) in the DMPC+CHOL system;
(h) phase difference for adjacent and alternate droplets showing uncorrelated phase
behaviour over time.
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always used as the major structural unit for the mono- and bilayer membranes,
the latter present at all the droplet interfaces, alternatively intercalated with
CHOL and STS molecules in the case of arrays.

When cholesterol was intercalated in the DMPC membranes, a fast bromi-
nation reaction was added to the scheme, similarly to the bulk systems we inves-
tigated in reference [40]

Br2 + Chol k−→ Br2 − Chol

with a kinetic rate constant k = 340 M−1s−1.
Numerical simulations were performed by integrating the kinetic scheme by

means of the CO.PA.SI. software [47]. All data used in simulations reflected the
real experimental parameters, and the different initial conditions of the droplets
were reproduced by introducing a small delta in the concentration of the reac-
tants (±0.1%). All the simulations details can be found in references [30–32,40],
Fig. 6 resumes the most important numerical results that reproduce the experi-
mental findings presented in Sect. 2.

The pulse transmission between two communicating liposomes (Fig. 6a and b)
was clearly reproduced on a timescale comparable with the experiments (∼4 s).
In this case we simply perturbed one droplet in its excitable state and we followed
the time evolution of the impulse in a second droplet. Both the autocatalysis
and the oxidation of the catalyst take place with a lag time consistent with the
experimental data reported in Fig. 2f.

Phase synchronisation of two communicating droplets in a double emulsion
system was also reproduced by numerical simulations (Fig. 6c and d), both the
oscillation profiles and the evolution of the phase difference are in excellent
agreement with the experimental results reported in Fig. 2i and j.

Finally the typical behaviour of the arrays of simple emulsions, either in the
presence of STS or CHOL as dopants in the membranes (Fig. 4), was reproduced
by the model as showed by the results in Fig. 6e–h.

4 Conclusions

In this paper we discussed how the nature of the compartments, of the solvents
and of the network geometry influenced the communication among chemical
oscillators in networks of lipid-stabilised droplets. We employed the Belousov-
Zhabotinsky reaction as the source/sink of chemical signals transmitted from
and to single network elements. The chemical signals directly influenced the
time evolution of each droplet, that, in turn, creates a feedback to the network.
Microfluidic techniques allowed precise and reliable control over the experimen-
tal conditions, thus we could explore several network configurations in differ-
ent chemical environments. By using this approach, it can be relatively simple
to follow the global dynamics of large networks of far-from-equilibrium reac-
tions, that can mimic the complex behaviours typical of the biological sys-
tems (self-organisation and self-regulation, oscillations, pattern formation etc.).
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Moreover, with respect to the previous work on similar systems, the use of
lipids as barrier-forming molecules confers to the overall structure a enhanced
biomimetic character.

We investigated 3 different experimental configurations as a function of the
environment where the droplets were dispersed, namely liposomes (water-in-
water dispersions), double emulsions (water-in-oil-in-water dispersions) and sim-
ple emulsions (water-in-oil dispersions). The lipid molecule DMPC was always
used as the major structural unit alternatively intercalated with STS or CHOL
molecules to tune the communication properties.

We showed that the global behaviour of networks can be influenced and
controlled by several experimental parameters, like the nature of the collecting
solvent, the presence of dopants and the network geometry. The most impor-
tant molecules responsible for communication were identified in the brominated
species, being the inhibitor Br2 and the autocatalytic activator HBrO2 the ones
chosen for numerical simulations. In liposomes and double emulsions the com-
munication was dominated by the activators (pulse transmission and in-phase
oscillations), in contrast to the 1-D arrays where the communication between
adjacent droplets mainly exhibited an inhibitory character (anti-phase oscilla-
tions), governed by the prominent role of Br2. In the presence of mono-lamellar
membranes, in fact, molecular bromine has a higher permeability with respect to
the activator HBrO2. This is also confirmed by the experiments with bromine-
blocking molecule (i.e. cholesterol) intercalated in the membrane structure; in
this case, the global dynamics resulted in a weakly coupled array with an erratic
global behaviour. Numerical simulations of coupled oscillators (up to 6 units)
confirmed our hypothesis and could reproduce, qualitatively and quantitatively,
the experimental observations.
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21. Delgado, J., Li, N., Leda, M., González-Ochoa, H.O., Fraden, S., Epstein, I.R.:
Coupled oscillations in a 1D emulsion of Belousov-Zhabotinsky droplets. Soft Mat-
ter 7(7), 3155 (2011)

22. Tompkins, N., Li, N., Girabawe, C., Heymann, M., Ermentrout, G.B., Epstein,
I.R., Fraden, S.: Testing Turing’s theory of morphogenesis in chemical cells. Proc.
Natl. Acad. Sci. 111(12), 4397–4402 (2014)

23. Thutupalli, S., Herminghaus, S., Seemann, R.: Bilayer membranes in micro-fluidics:
from gel emulsions to soft functional devices. Soft Matter 7(4), 1312 (2011)

24. de Souza, T.P., Perez-Mercader, J.: Entrapment in giant polymersomes of an
inorganic oscillatory chemical reaction and resulting chemo-mechanical coupling.
Chem. Commun. 50(64), 8970–8973 (2014)

25. Guzowski, J., Gizynski, K., Gorecki, J., Garstecki, P.: Microfluidic platform for
reproducible self-assembly of chemically communicating droplet networks with pre-
designed number and type of the communicating compartments. Lab Chip 16(4),
764–772 (2016)

https://doi.org/10.1007/978-3-662-22492-2


30 F. Rossi et al.

26. Magnani, A., Marchettini, N., Ristori, S., Rossi, C., Rossi, F., Rustici, M., Spalla,
O., Tiezzi, E.: Chemical waves and pattern formation in the 1,2-dipalmitoyl-
sn-glycero-3-phosphocholine/water lamellar system. J. Am. Chem. Soc. 126(37),
11406–11407 (2004)

27. Ristori, S., Rossi, F., Biosa, G., Marchettini, N., Rustici, M., Tiezzi, E.: Inter-
play between the Belousov-Zhabotinsky reaction-diffusion system and biomimetic
matrices. Chem. Phys. Lett. 436, 175–178 (2007)

28. Rossi, F., Ristori, S., Rustici, M., Marchettini, N., Tiezzi, E.: Dynamics of pattern
formation in biomimetic systems. J. Theor. Biol. 255(4), 404–412 (2008)

29. Torbensen, K., Rossi, F., Ristori, S., Abou-Hassan, A.: Chemical communication
and dynamics of droplet emulsions in networks of Belousov-Zhabotinsky micro-
oscillators produced by microfluidics. Lab Chip 17(7), 1179–1189 (2017)

30. Tomasi, R., Noel, J.M., Zenati, A., Ristori, S., Rossi, F., Cabuil, V., Kanoufi,
F., Abou-Hassan, A.: Chemical communication between liposomes encapsulating
a chemical oscillatory reaction. Chem. Sci. 5(5), 1854–1859 (2014)

31. Rossi, F., Zenati, A., Ristori, S., Noel, J.M., Cabuil, V., Kanoufi, F., Abou-Hassan,
A.: Activatory coupling among oscillating droplets produced in microfluidic based
devices. Int. J. Unconventional Comput. 11(1), 23–36 (2015)

32. Torbensen, K., Ristori, S., Rossi, F., Abou-Hassan, A.: Tuning the chemical com-
munication of oscillating microdroplets by means of membrane composition. J.
Phys. Chem. C 121(24), 13256–13264 (2017)

33. Nii, T., Ishii, F.: Properties of various phosphatidylcholines as emulsifiers or dis-
persing agents in microparticle preparations for drug carriers. Colloids Surf. B:
Biointerfaces 39(1), 57–63 (2004)

34. Di Cola, E., Torbensen, K., Clemente, I., Rossi, F., Ristori, S., Abou-Hassan, A.:
Lipid stabilized water- oil interfaces studied by micro focusing small angle X-ray
scattering. Langmuir 33(36), 9100–9105 (2017)

35. Utada, A.S., Lorenceau, E., Link, D.R., Kaplan, P.D., Stone, H.A., Weitz, D.A.:
Monodisperse double emulsions generated from a microcapillary device. Science
308(5721), 537–541 (2005)
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Abstract. Chaos is ubiquitous in Nature and represents one of the most
fascinating expressions of real world complexity. Depending on the spe-
cific context, the onset of chaotic behaviours can be undesirable, thus,
controlling the mechanisms at the basis of chaotic dynamics represents
a cutting-edge challenge in many areas, including cardiology, informa-
tion processing, hydrodynamics and optics, to name a few. In this work
we review our recent results showing how, in chemical reactions, the
active interplay between a nonlinear kinetics and hydrodynamic insta-
bilities can be exploited as a general mechanism to induce and control
chemical chaos. To this end, we consider as a model system the Belousov-
Zhabotinsky (BZ) reaction. Thanks to a chemo-hydrodynamic coupling,
the reaction can undergo chaotic oscillations when carried out in batch
conditions. Chaos appears and disappears by following Ruelle-Takens-
Newhouse scenario both in the cerium- and ferroin-catalyzed BZ systems.
Here, we present experimental evidence that the transition to chemical
chaos can be directly controlled by tuning either kinetic or hydrody-
namic parameters of the system. Experiments were simulated by using a
reaction-diffusion-convection (RDC) model where the nonlinear reaction
kinetics are coupled to the Navier-Stokes equations. Numerical solutions
of the RDC model clearly indicate that natural convection can feedback
on the spatio-temporal evolution of the concentration fields and, in turn,
changes bulk oscillation patterns. Distinct bifurcations in the oscillation
patterns are found when the Grashof numbers (governing the entity of
convective flows into the system) and the diffusion coefficients of the
chemical species are varied. The consumption of the initial reagents is
also found to be a critical phenomenon able to modulate the strength of
the RDC coupling and drive order-disorder transitions.

c© Springer International Publishing AG, part of Springer Nature 2018
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1 Introduction

The term “chaos” identifies deterministic aperiodic behaviours sensitive to ini-
tial conditions [1]. This means that the same chaotic system will evolve in two
exponentially divergent stories when starting from two infinitesimally different
initial conditions. Also popular among non-scientists as butterfly effect, this fea-
ture implies the long-term unpredictability of chaotic systems; in fact, though
these systems are governed by deterministic rules, their macroscopic initial states
cannot be known with infinite precision. In this framework, we can include the
failure of the economic and weather forecasts and we can also understand why
the onset of chaos is often considered undesirable, such as in the case of tran-
sitions from regular rhythm to chaotic electrical activity in the cardiac tissue,
which preludes to ventricular fibrillations. In contrast, in several contexts chaos
turns to be useful. An example is the realm of artificial intelligence where the
complexity of chaotic sequences can be exploited as a source of information to
develop fundamental logics [2,3] or to encrypt messages [4]. Independently of
the context, it is always desirable to understand and control chaotic instabilities
and their underlying mechanisms.

In this perspective chemical systems have traditionally played a key role.
In particular, chemical oscillators, whereby the concentration of some interme-
diates of the reaction changes periodically in time, have been widely used as
relatively simple model systems for studying chaotic dynamics [5]. The Belousov-
Zhabotinsky (BZ) reaction [6,7] is the prototype of chemical oscillators. It con-
sists of a mixture of a bromate salt, an oxidizable substrate (malonic acid in
the most common recipe) and a redox catalyst (typically ferroin or cerium com-
plexes) in a strongly acidic medium. The reaction proceeds easily at room tem-
perature and pressure and it can stay far-from-equilibrium for a long time thanks
to the slow depletion of the reactants. When stirred, the reaction shows periodic
oscillations between the reduced and the oxidized state of the catalyst (and other
intermediates); if the same solution is poured into a Petri dish forming a shallow
layer, oxidation waves (concentric or spiral waves) periodically form and develop
through the medium as a result of the spatial synchronization and spreading of
the chemical oscillations driven by diffusion (see an example in Fig. 1b).

A minimal kinetic scheme that can describe the BZ oscillatory mechanism
is the FKN model [5,8]. According to this scheme there are 3 fundamental pro-
cesses that cyclically alternate during the reaction. The first two steps involve
the depletion of bromide ions (Br−) and the autocatalytic production HBrO2

that, in turn, oxidises the catalyst. In the third step (the reset of the clock),
the catalyst is brought back to the reduced form via a reaction with the organic
species of the system (typically malonic acid) and, simultaneously, new Br− ions
are produced. The switching among the three steps is ruled by the concentration
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of bromides, that alternatively crosses a threshold dictated by the experimental
conditions (reactants concentration, temperature, etc.) and initiate either the
oxidative or the reducing process. Oscillations are visible following a chromatic
periodic change from red to blue when the ferroin is used as the redox cata-
lyst. Nevertheless, in order to follow the dynamics quantitatively, spectrophoto-
metric or potentiometric recordings are the most convenient techniques. Large-
amplitude periodic oscillations in the solution absorbance typically appear in
the spectrophotometric recordings when the solution is well-stirred. However, it
was found that, if stirring is stopped, periodic oscillations dynamically trans-
form into aperiodic and eventually chaotic oscillations (see Fig. 1a) [9,10]. This
phenomenon can be reproduced in a wide range of conditions and represents
a sort of fingerprint of the system. Chaotic oscillations occur and vanish by
following a Ruelle-Takens-Newhouse (RTN) route, that involves a sequence of
Hopf bifurcations going from periodicity to quasi-periodicity and eventually to
chaos [11].

The physical basis of the onset of chaos was found to be an active interplay
between the nonlinear kinetics and transport phenomena (typically diffusion and
convection). In fact, the nonlinear kinetics, when coupled to diffusion, induces
the spontaneous formation of chemical waves that, in turn, bear concentration
inhomogeneities and density gradients. In the presence of the gravitational field,
unfavourable density gradients initiate buoyancy-driven convective flows that
couple back with the reaction evolution and the reaction-diffusion patterns. This
loop, sketched in Fig. 1c, is also called chemo-hydrodynamic coupling [12] and is
known to promote complex behaviours and the formation of new stationary or
dynamical patterns [13–15].

In this paper, we show how to master the system dynamics, including self-
sustained chaos, by tuning the coupling between chemistry and transport phe-
nomena. In fact, chemically-driven convection induced by an oscillatory reac-
tion can be controlled through a simple adjustment of experimental conditions
(reactants concentration, temperature, etc.) and physical properties (viscosity,
reactor geometry, etc.), that act either on the kinetics or on the hydrodynamics
of the system, in order to select and maintain over time a chosen dynamical
reaction regime (periodic, aperiodic or chaotic). Experimental results are guided
and supported by numerical simulations and interpreted in terms of a general
reaction-diffusion-convection model that can be generalised and applied to sim-
ilar problems.

2 Experimental Approach

2.1 Experimental

In our experiments we used both the cerium- and the ferroin-catalyzed BZ sys-
tems. Malonic acid (CH2(COOH)2, MA), sodium bromate (NaBrO3), sulfuric
acid (H2SO4), ferroin (Fe(phen)2+3 , Fe) and cerium sulfate (Ce(SO4)2, Ce(IV))
were purchased from Sigma Aldrich. All reagents were of analytical quality and
were used without further purification. Deionised water from reverse osmosis was
used to prepare all the solutions.
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Fig. 1. (a) Examples of spectrophotometric recordings of the Ce(IV)-catalyzed BZ
reaction in a batch unstirred reactor. On the left the typical oscillations characterizing
a well-stirred solution while on the right the evolution of the unstirred reaction. The red
box identifies the characteristic aperiodic transient between the two periodic regions.
[MA] = 0.3 M, [NaBrO3] = 0.09 M, [H2SO4] = 1M, [Ce(IV)] = 4 mM. (b) Example of
concentric chemical waves developing in the ferroin-catalyzed BZ medium. (c) Scheme
of the complex interplay between nonlinear kinetics and transport phenomena, sustain-
ing density-driven chemo-hydrodynamic patterns and the transition to chemical chaos.
(Color figure online)

The kinetics of the BZ reaction has been studied at 25.0 ◦C. The typical
recipe for the cerium-catalyzed system was [Ce(IV)] = 0.004 M, [MA] = 0.30 M,
[NaBrO3] = 0.09 M, [H2SO4] = 1 M while the following concentrations [MA] =
0.74 M, [NaBrO3] = 0.28 M, [H2SO4] = 0.35 M, [Fe] = 0.93 mM were used for
the ferroin-catalyzed sytem.

The reaction dynamics was monitored by recording via a UV-vis spec-
trophotometer the absorption of (i) Ce(IV) for the cerium-catalyzed system at
λmax = 320 nm (ε ∼ 5600 M−1 cm−1) and (ii) the ferriin, the oxidized form of
ferroin, at λmax = 630 nm (ε ∼ 620 M−1 cm−1) for the ferroin-catalyzed BZ
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system. 3.0 mL of the reactive solution were prepared in a beaker, stirred for
twenty minutes and finally transferred into a quartz cuvette for spectrophoto-
metric data acquisition. Each kinetic measurement has been repeated at least
three times in order to check the reproducibility of the experimental results.
The time series obtained in this way were analyzed by means of the Fast Fourier
Transform (FFT).

2.2 Hydrodynamic Control

Influence of Stirring. An immediate and straightforward control over the
chemo-hydrodynamic coupling responsible for chaos, is to restart stirring during
the development of the aperiodic transient [10,16]. In this way we can suppress
the onset of natural convection as we eliminate the concentration gradients at
the origin of the buoyancy-driven hydrodynamic instabilities. When stirred, the
system behaves as a unique oscillator with regular high-amplitude oscillations. If
stirring is stopped again, the system dynamics undergoes a new transition to the
aperiodic regimes. This is illustrated in Fig. 2. We expect that a similar behaviour
can also be obtained if the reaction is carried-out in parabolic flights (see as an
example the experiments run in microgravity with the Iodide-Arseneous-Acid
(IAA) reaction [17]), where periodic conditions of microgravity eliminate and
decouple intermittently the contribution of buoyancy-driven convection to the
system dynamics.

Fig. 2. Effect of stirring when ferroin catalysed BZ reaction undergoes a transition to
chemical chaos. Reproduced from [10] with permission of the copyright owner.
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Influence of the Reactor Size. Hydrodynamic instabilities are also known
to be sensitive to the size of the spatial domain where they occur and can be
avoided working with reactors below a critical size. A spectrophotometric study
on the dynamic behaviour of the BZ system in unstirred batch conditions was
then carried out by using cuvettes with different path length, specifically in the
range 1 to 0.02 cm [18]. It was shown that there is a critical threshold, namely
0.05 cm, below which the transition to aperiodic oscillations cannot be observed
any more and just periodic oscillations develop as the possibility for the onset
of convection is also hindered by narrowing the reactor (see Fig. 3).

Fig. 3. Effect of the reactor size in the dynamics of the BZ reaction in batch and
unstirred reactors.

Influence of the Medium Viscosity. A further control of the system dynam-
ics can be obtained by changing the medium viscosity. In our check experiments
this was obtained for example by adding different amounts of an organic poly-
mer, namely poly-ethylene-glycol (PG), to the reactive solution [16] or by using
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a surfactant, sodium dodecyl sulphate (SDS) [19,20], both able to increase the
hydrodynamic inertia of the medium to contrast convective motions without
affecting the chemical kinetics. In particular, differently to the case of the zwit-
terionic surfactant N-tetradecyl-N,N-dimethylamine oxide that causes an induc-
tion period prior to the onset of regular oscillations [19,21], SDS only slightly
alter the kinetics of the BZ reaction, without changing the oscillation mechanism
and without introducing new dynamical features [22], even above the critical
micelle concentration (CMC). To maximise the effect of the surfactant on the
viscosity of the solutions, we thus varied SDS concentration above CMC.
Both PG and SDS, by suppressing the possibility for the onset of hydrodynamic
motions, can in parallel prevent the system from a transition to chemical chaos.
The percentage of PG and the concentration of SDS are related to the kinematic
viscosity and this can effectively act as a direct control parameter in the bifur-
cation sequence from chaotic to periodic regimes. Once more, it was found that
this route to periodicity obeys a RTN scenario. To give an example of this result,
we report in Fig. 4 the transition scenario from chaos to periodicity obtained by
increasing the concentration of SDS in the range [1, 250] mM, which causes an
increase of viscosity up 10% as compared to the surfactant-free BZ system.

Fig. 4. Relative viscosity, ηrel, of the ferroin-catalyzed BZ solution and related effect
in the chemical oscillator dynamics when the reaction is carried out in batch conditions
and without stirring. [MA] = 0.74 M, [NaBrO3] = 0.28 M, [H2SO4] = 0.35 M; the inset
shows the zoom of the region 0 < [SDS] < 1 × 10−2 M.
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2.3 Chemical Control

In order to show that not only hydrodynamics but also chemistry plays a crucial
role in the appearance of chemical chaos, a large number of experiments were
carried out by varying different relative initial concentration of the reactants of
the BZ oscillator. As shown by Pojman et al. [23], the concentration of the main
reactants can be treated as a pseudo-bifurcation parameter in batch conditions.
A systematic screening of the ternary parameter-space was performed [24] by
varying the relative concentration of the redox catalyst (here CeSO4), NaBrO3

and malonic acid. It was found that by changing the initial composition of the
system the oscillatory dynamics and, hence, the transition to chaos, could be
controlled to a large extent. This is illustrated in the ternary diagram shown in
Fig. 5. When the relative concentration of the reactants is that circumscribed
by the red region, chaos can appear after the periodic behaviour following a
RTN route. Yellow areas indicate conditions where only quasi-periodicity can
develop and, finally, green region are related to situations in which only periodic
behaviours were observed.

The ionic strength of the solution is a further tool to control the dynamics of
the system through chemistry. In fact, it was demonstrated that by adding an
inert electrolyte to the solution (Na2SO4, Al2(SO4)3, etc.) the chemical potential
of the reactants could be tuned to prevent or induce the chaotic regime [25].

Fig. 5. A ternary bifurcation diagram describing possible dynamical regimes in a
Ce(IV)-catalyzed closed unstirred BZ system as a function of the volume fraction of
three initial reactants: malonic acid, potassium bromate and Ce(IV). The green, yellow
and red zones identify periodic, quasi-periodic and chaotic domains, respectively. The
black boundary zone corresponds to initial compositions where no oscillations occur.
Reproduced from [24] with permission of the copyright owner. (Color figure online)
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3 Numerical Approach

The experimental approach discussed so far could be strengthen by means of
a theoretical/numerical implementation. In fact, the modelling strategy helped
us in the interpretation of the experimental results and now serves as powerful
planning instrument to predict new routes for chaos control.

3.1 Model

We modeled the system as a two-dimensional vertical slab (i.e. a vertical cut of
the real three-dimensional spectrophotometric cuvette, perpendicular to a vir-
tual spectrophotometric beam) in the coordinate system (x, y), with the gravi-
tational field g = (0,−g) oriented against the vertical axis y. As shown in pre-
vious work, this two-dimensional description is a reliable approximation to the
three-dimensional problem [26–29]. A set of reaction-diffusion-convection (RDC)
equations is derived by coupling the chemical kinetics to diffusion through Fick’s
terms and to natural convection by means of the Navier-Stokes equations.

The reaction-diffusion-convection (RDC) system is (i) formulated in the
Boussinesq approximation, (ii) written in the vorticity-stream function (ω − ψ)
form, (iii) conveniently scaled on the chemical time scale t0 (see [5]) and on the
characteristic space scale of the problem, x0. Finally, since the BZ reaction is not
highly exothermic and thermal gradients are rapidly smoothed, we formulated
the problem under the isothermal approximation.

The resulting model is
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Dν = νt0/x2
0 = 58.5 is the dimensionless viscosity (ν being the medium

kinematic viscosity); Di = Dt0/x2
0 = 0.00350 is the dimensionless diffusivity (D

being the dimensional diffusivity of the two oscillating species). u = U/v0 and
v = V/v0 are dimensionless horizontal and vertical components of the velocity
field scaled over the velocity scale v0 = x0/t0.

Gri = gx3
0δρi/ρ0ν

2 is the Grashof number for the i-th species, g is the gravi-
tational acceleration, ρ0 is the reference density of the medium and δρi = ∂ρ

∂ci
is
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the density variation due to the change of the concentration of the i-th species
with respect to the reference conditions (reduced state) of the reactive mixture.
The Grashof number is a measure of the sensitivity of a species to produce con-
vective motions in virtue of isothermal density changes and, in a sense, controls
the strength of the RDC coupling within the system. ω is the vorticity, defined
as the rotor of the velocity vector (u, v), while the stream function ψ is defined
by Eqs. (4) and (5).

The kinetic functions ki(ci, λ̄) are derived from the Oregonator model [5] and
have the form

k1(ci, λ̄) =
dc1
dτ

=
1
ε1

(
(qa − c1)
(qa + c1)

fbc2 + c1(a − c1)
)

(6)

k2(ci, λ̄) =
dc2
dτ

= ac1 − bc2 (7)

where i = 1, 2, c1 is the concentration of bromous acid, c2 is the concentra-
tion of the oxidized form of the catalyst and λ̄ = ε1, q, f, a, b the set of kinetic
parameters. The initial distributions of the chemical species are set as

c1(0) = 0.8 if 0 < θ < 0.5 (8)
= c1(ss) elsewhere (9)

c2(0) = c2(ss) +
θ

8πf
(10)

(where c2(ss) = c1(ss) = q(f + 1)/(f − 1) and θ is the polar coordinate angle)
to mimic inhomogeneous concentration profiles that typically occur in unstirred
systems. These specific functions were used by Jahnke et al. [30] to initiate spiral
waves in an analogous reaction-diffusion system. q and ε are kinetic parameters
accounting for the excitability of the system and f is a stoichiometric factor
included in the resetting step of the oscillatory scheme. This parameter allows
one to set the system in an oscillatory regime when it ranges [0.5, 1+

√
2] and

we use f = 1.6; q is fixed to 0.01; ε = 0.01; a and b are the concentration of the
bromate salt and the malonic acid, respectively. In our study we set b = 1 while
a was used a chemical control parameter.

The PDE system (1–5) was numerically solved over a 100 × 100 points grid
(mesh-point separation hx = 0.50), using the alternating direction finite differ-
ence method [31]. We imposed no-slip boundary conditions for the fluid velocity
and no-flux boundary conditions for chemical concentrations at the walls of the
slab. A small time step ht has to be used due to the stiff nature of the kinetic
equations. ht = 1 × 10−6 was tested to be a good value.

In the experiments the output of the spectrophotometric recordings is the
average of the absorbance of the reactive solution over the spatial domain
scanned by the spectrophotometric beam as a function of the time. In order to
have an observable comparable to the experimental data, we build up time series
by reporting at each integration time step the mean concentration of the oscilla-
tory intermediates averaged over the solving grid (〈c1〉 and 〈c2〉). The resulting
signals are then analyzed by means of the FFT and attractor’s reconstruction.
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3.2 Hydrodynamic Control

We focus now on the direct transition from periodic to chaotic regimes under
hydrodynamic control, namely by changing the Grashof numbers of the chemical
species [26]. This gives a picture of the direct transition to chaos in the unstirred
BZ reaction (shown in Fig. 1) if one assumes that, after stirring is stopped,
residual advective motions relax, concentration patterns (typically waves) with
related density gradients can build-up and initiate convective motions with pro-
gressively growing intensity. In this regime the chemical oscillator is in the far-
from-equilibrium branch, where the depletion of the initial reactants is negligibly
slow and the system can maintain quasi-stationary conditions like if it was open.

Periodic regime. In Fig. 6a we show a limit cycle, with a fundamental frequency
ω1 = 0.747 Oregonator frequency units, obtained in the absence of convection
(i.e. with Gri = 0.00). Periodicity is still found when the chemo-hydrodynamic
coupling is strengthened, by increasing both Grashof numbers to 9.40. The
related attractor projection (〈c1〉, 〈c2〉) and the time series are shown in Fig. 6(b),
left and centre panels, respectively. To show the attractor change, we keep fixed
the region framing the phase portrait. The oscillatory dynamics of 〈c1〉 and 〈c2〉
present one fundamental frequency ω1 = 0.396, different from that observed in
panel (a). This confirms that convection is actively coupled with the reaction-
diffusion system. Note that, due hydrodynamic inertia, the new solution presents
a longer period with respect to the case where convection is at rest.

Quasi-periodic regime. As the Grashof numbers are increased to 9.80 a quasiperi-
odic behavior is found (see Fig. 7). This can be inferred by the attractor recon-
struction (left), the time series (centre) and quantitatively revealed by the related
Fourier amplitude spectrum (right). In the latter, two characteristic fundamental
frequencies (ω1, ω2) and their linear combinations are shown. These frequencies,
which ratio ω1/ω2 is an irrational number, characterize the toroidal flow of the
system represented in the phase-space projection (〈c1〉, 〈c2〉).
Chaotic regime. If the Grashof numbers are further increased, namely to 12.10, an
aperiodic behavior (see Fig. 8a) associated with the strange attractor in Fig. 8c,
is observed. As shown in Fig. 8a, the time series manifest sensitivity to initial
conditions consistent with one of the signatures for chaotic dynamics. To test
for chaos, we have also calculated the largest Lyapunov exponents, λ, using
the Rosenstein algorithm from TISEAN package [32]. The value λ = 0.018 was
extracted from linear regression of the curves S(ε,m,t) for m = 5–9 shown Fig. 8d.

3.3 Chemical Control

As mentioned in Sect. 2.3, we can use the initial concentration of reactants as
a bifurcation pseudo-parameter [23,24] to modify and control chemically the
system dynamics. An inverse transition chaos-periodicity consistent with a RTN
scenario was indeed induced keeping constant the Grashof numbers and decreas-
ing the sodium bromate concentration, i.e. parameter a [33]. The chaotic regime,
occurring for a = 1, has been extensively characterized in Sect. 3.2 and [26].
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Fig. 6. (a) Characterization of the periodic dynamics of the RDC system for Gr1 =
Gr2 = 0.00: (left) trajectories described by the system in the phase space projection
(〈c1〉, 〈c2〉) (〈c1〉 ∈ [0.02, 0.20] and 〈c2〉 ∈ [0.06, 0.12]); (centre) time series describ-
ing 〈c2〉 dynamics in the time-frame [100, 200] Oregonator time units; (right) FFT
amplitude spectrum. (b) The same analysis is performed for Gr1 = Gr2 = 9.40.

Fig. 7. Quasi-periodic regime for Gr1 = Gr2 = 9.80: phase space trajectories in the
phase space projection (〈c1〉, 〈c2〉) with 〈c1〉 ∈ [0.02, 0.20] and 〈c2〉 ∈ [0.06, 0.12] (left),
time series describing 〈c2〉 dynamics in the time-frame [100:200] Oregonator time units
(centre) and related Fourier amplitude spectrum (right) (a = ω2 − ω1, b = 3ω2 − 3ω1,
c = 6ω2 − 7ω1, d = ω1 + 1/2ω1, e = 4ω2 − 4ω1, f = 7ω2 − 8ω1, g = ω1 + ω2).

A bifurcation to quasi-periodicity takes place for a = 0.97 and it is charac-
terized in Fig. 9(a, b). Quasi-periodicity is confirmed by the Fourier amplitude
spectrum, showing two incommensurable fundamental frequencies (ω1 = 0.39,
ω2 = 0.54) and their harmonic combinations. Note that these frequencies match
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Fig. 8. Chaotic dynamics for Gr1 = Gr2 = 12.10: (a) time series describing 〈c2〉 evo-
lutions for two different initial conditions in the time-frame [100:200] Oregonator time
units; (b) FFT amplitude spectrum of the signal in panel (a); (c) strange attractor of
this chaotic regime obtained in the phase-space (〈c1〉, 〈c2〉, vorticity); (d) Computation
of the maximum Lyapunov exponent by means of the Rosestein algorithm. The value
of λ = 0.018 is obtained by the linear regression of the curves S(ε,m,t) for m = 5–9, in
the zone between 0–40 iterations.

the values ω1 = 0.39, ω2 = 0.54 of the quasi-periodic regime obtained in the
direct transition under hydrodynamic control.

When a is decreased to 0.95 a supercritical Hopf bifurcation leading to a bi-
periodic solution can be detected. In the corresponding FFT’s amplitude spec-
trum (Fig. 9c), the main frequency ω1 can be still identified and subharmonic
frequencies of the type n × ω1

2 (where n is an integer) clearly emerge. According
to the FFT’s spectrum, the corresponding attractor exhibits a double-period,
visible in the inset of Fig. 9d.

Figure 9f shows a limit cycle characterized by the main frequency ω1 (see the
related FFT spectrum in Fig. 9e) obtained when a reaches the value 0.93. The
FFT’s analysis reveals a supercritical Pichfork bifurcation, leading to a unique
oscillation period.

As a whole, this transition scenario under chemical control can describe the
inverse route from chaos to periodicity observed in Fig. 1a.
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Fig. 9. Attractor reconstruction in the phase-space section (〈c1〉, 〈c2〉, with 〈c1〉 ∈
[0.02, 0.20], 〈c2〉 ∈ [0.06, 0.12]) and FFT amplitude spectra of the simulated dynamical
regimes in the transition from chaotic to periodic oscillations controlled by the concen-
tration of the initial reactant a. (a–b), a = 0.97 a quasi-periodic regime; (c–d), a = 0.95
a bi-periodic regime; (e–f), a = 0.93 a periodic regime.

4 Concluding Discussion

To summarize, we discussed the active interplay of nonlinear kinetics with related
chemically-driven transport phenomena as a general mechanism for devising
a self-sustained chaotic generator. The route to chaos in this context can be
controlled by tuning the strength of the chemo-hydrodynamic coupling either
via chemical or hydrodynamic parameters. We have supported this idea by
means of experimental examples and also formalized it with a reaction-diffusion-
convection model which allows the numerical description and prediction of the
chaotic dynamics.

This theoretical framework guided us in the interpretation of the transition
from periodicity to chaos and viceversa observed in experiments. In particular,



46 M. A. Budroni et al.

it was found that the reaction evolves through two main phases, characterized
by a longer time scale with respect to chemical oscillations. In a first phase, the
concentration of the reactants is in large excess with respect to the intermedi-
ates and the reactant depletion can be neglected. In this phase, the system is
mainly under hydrodynamic control and convection drives the system to chaos.
In a second phase, the system evolves to the ultimate thermodynamic equilib-
rium. The main reactants consumption cannot be neglected any more and the
reactants concentration acts as a bifurcation parameter towards regular periodic
oscillations.

Conceptually, the results obtained with this experimental system and the
related theoretical model have a general value and can also be extended to
spatiotemporal phenomena [34]. The modularity of the RDC model permits
to fit our findings to isomorphic problems; by changing the kinetics terms, for
example, we can study other nonlinear chemical systems or face more complex
mechanisms such those that lead and control low-dimensional spatio-temporal
turbulence in cardiac arrhythmias.

Also, chaotic dynamics are themselves rich sources of information [4]. In
the realm of artificial intelligence chemo-hydrodynamic systems could be thus
exploited as generators of chaotic signals for implementing fundamental log-
ics and as a controllable contaminator in protocols for encrypting messages.
Similar studies have already been initiated by using externally-forced chemo-
hydrodynamic oscillations, which feature suitable output to develop fundamental
operations based on fuzzy logic [2,3].
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Abstract. Molecular docking is a computationally efficient method used to
predict the conformations adopted by the ligand within a target-binding site.
A positive aspect of conventional docking is the possibility of easily distributing
the calculation on dedicated grid or cluster. The receptor is usually kept rigid,
therefore the changes in the binding pocket geometry induced by the ligand is
overlooked. Here we present a new docking approach (DynDock) that exploits
molecular dynamics to preserve the flexibility of the receptor. To maintain high
computational efficiency, DynDock has been developed to be distributed on a
grid. The main advantages of this method are the full flexible molecular docking
achieved during the simulation and the reduced number of compounds collected.

Keywords: Docking � Drug design � Molecular dynamics

1 Introduction

The molecular design is a computationally demanding task; it is the process of finding
new drugs and involves the design of molecules that are complementary to the target in
shape and charge. Usually, these compounds interact with a protein activating or
inhibiting its function. There are two major methods of molecular design. The first is
the Ligand-Based Drug Design (LBDD) that uses the structural characteristics of all
molecules that bind the target of interest, to derive a pharmacophore model [1]. The
second method is the Structure-Based Drug Design (SBDD), which is based on
knowledge of the three-dimensional structure of the target [2]. The aim is to predict the
affinity and the selectivity of a drug candidate using the ligand and the target structure.

In details, SBDD is a cyclic process, which starts from a known target structure
usually experimentally obtained by X-ray crystallography or NMR spectroscopy [3].
The knowledge of 3D structures permits to run in silico studies to identify potential
ligands (Fig. 1).

Following the molecular modelling predictions, the most promising compounds can
be synthesized and evaluated for their biological properties. Once synthesized and
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tested, the new 3D structures can be solved and made ready for a further optimization
cycle. This process reasonably permits to increase the affinity of new ligands but it is
extremely costly.

Another limit of SBDD is that the experimental structures of the complex
receptor/ligand are not always available and, when accessible, we must take into
account that ligands can induce conformational changes in proteins and different
ligands may stabilize different receptor conformations. Nevertheless, the crystallo-
graphic data represents only a successful binding event of a specific protein confor-
mation and a specific ligand [4].

For these reasons, it is clear that the flexibility of the target receptor is an essential
aspect that must be considered in the docking studies and it is not recommended to use
only one structure of the receptor to perform the analysis.

Molecular dynamics (MD) is also a useful technique to evaluate critical phenomena
and conformational changes involved in the molecular interactions [5, 6]. Keeping the
proteins flexible in the molecular modelling studies has a high computational cost. The
most popular docking programs limit the receptor flexibility to side-chain mobility only
[7, 8]. In some other cases, they consider several snapshots extracted from a molecular
dynamics of the receptor. This approach assumes that the protein flexibility could be
encoded in an arbitrary set of MD conformations, but the molecular dynamics is
strongly dependent on the ligand nature [4, 9].

The computational complexity of the procedure grows quickly with the numbers of
atoms in the ligands. An exhaustive analysis of all possible ligands is far impossible
even when a molecule is simplified in groups of atoms or residues. For example, the
investigation of a very short peptide of only 10 amino acids, having as a starting point
only 3 conformations (alpha, beta and coil), leads to more than 6 � 107 possible
sequences, a number beyond the current computational possibilities.

DynDock employs an in silico combinatorial molecular dynamics to optimize
ligands inside the target protein. This procedure combines the advantages of the SBDD

Fig. 1. Structure-based drug design cycle
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method with the accuracy of MD, reducing drastically the number of the possible
sequences to analyse.

2 Methods

Figure 2 describes the DynDock approach.

The DynDock is a hierarchical method to design a ligand candidate. We start from a
fragment of a known ligand and we proceed with a cycle in which we evaluate the
effect of a set of possible moves. The single move can be an addition, a deletion, an
atom or residue swap, or a cyclization. After the move, we perform a molecular
dynamics run of 1 ns and then we anneal the system. After the relaxation, we calculate
the binding energy of the ligand and the distortion energy of the receptor. At the end of
the cycle, the ligand having the highest binding energy is chosen for a further cycle.
The procedure ends when no further energy improvement is observed. DynDock
ensures to find always a better ligand, though it cannot guarantee to find the best one.

Fig. 2. DynDock flowchart
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2.1 Fragment-Based Molecular Dynamics

The starting point for DynDock is the structure of a target protein bound to a ligand. In
this work, we used as initial structures the microbial enzyme Streptomyces griseus
Protease A (SGPA) [10] in complex with the peptide Pro-Ala-Pro-Tyr (5SGA PDB). It
is a proteolytic enzyme with a serine residue (Ser 195) in its active site. The proximity
of a histidine and an aspartate is essential for its activity (see the ligand diagram
interaction in Fig. 2a) [11, 12].

The first step of DynDock is the preparation of the receptor structure for the
docking, removing all water molecules and adding missing hydrogens. From the
experimental structure of the ligand/receptor complex, it is possible to identify the
binding site in which the ligand is grown. From literature data, we know that the active
site of SGPA is an external portion of the receptor and the residue of tyrosine of the
ligand interacts with the catalytic triad. In Fig. 2b, it is possible to see the position of
the ligand PAPY on the external surface of the enzyme. The surface is colored by atom
types. To put in evidence the active site, we colored only the residue with distance 4 Å
from the ligand (Fig. 3).

The tyrosine residue is critical for the enzyme inhibition, and therefore, we have
chosen the terminal Tyr as starting point for peptide elongation.

2.2 Preliminary Screening

The elongation procedure consists in adding an amino acid chosen among the 20
natural residues. Each amino acid, when binds a peptide, forms an amide bond char-
acterized by two torsion angles. They describe the rotations of the polypeptide back-
bone around the bonds between N-Ca (u) and Ca-C (w). It is well known that three
regions of u, w correspond to the most stable conformations namely a-helices, b-sheet

Fig. 3. (a) 2D interaction between the ligand and the enzyme. (b) Molecular surface of Serine
protease in complex with PAPY inhibitor (5SGA PDB). (Color figure online)
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and coil. Therefore, for each residue added by DynDock, we must take into account the
different geometries, and the number of possible structures becomes:

peptides ¼ conf � aað Þelongation ð1Þ

Where conf is the number of conformational regions, and aa is the number of
amino acids. That for 3 geometries only and for an elongation of 10 residues, gives:

peptides ¼ 3 � 20ð Þ10 ffi 6:05 � 1017 ð2Þ

Though the molecular dynamics approach promises a big progress in the docking
field, it is evident that the astronomic number of possible peptides renders this way
unmanageable. The DynDock approach greatly reduces the number of possible pep-
tides and only the best n-mers can be kept for further elongation. If only the peptide
with the highest binding energy is kept for each iteration, the number of peptides to
analyze may collapse to:

peptides ¼ elongation � conf � aa ¼ 10 � 3 � 20 ¼ 600 ð3Þ

Unfortunately, an important aspect of peptide folding was neglected in the above
consideration. The interaction of a peptide with a receptor is not a simple cumulative
process because the peptide residues can interact with the peptide itself changing
conformation and then altering the binding with the receptor. Consequently, we cannot
keep the best residue only for each elongation step, but we can safely choose to keep
the a few number of peptides (bestResultsÞ for each step. The number of possible
peptides for BestResults = 5 becomes:

peptides ¼ bestResults � elongation � conf � aa ¼ 5 � 10 � 3 � 20 ¼ 3000 ð4Þ

Considering the last 2 or 3 residues (nmer) during an elongation should give more
realistic results, but the number of possible peptides would reach soon extremely large
numbers (see Table 1) according to Eq. (5).

peptides ¼ bestResults � elongation � conf � aað Þnmer ð5Þ

We have faced this problem in two different ways. The first is the distribution of the
calculation on a dedicated grid. We have used GRIMD [13], an info structure that
permits easily the delivery of molecular dynamics calculation on available PCs. The
second solution is more chemistry-oriented. A preliminary screening is made before the

Table 1. Number of sequences to analyze based on the number of residues kept in memory

Elongation Sequences to analyze

1 amino acid 3000
2 amino acids 180000
3 amino acids 1:08 � 107
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ligand fragment building. This step is essential to reduce the time of the entire drug
design. The user can set the elongation (e.g. 6 amino acids) and the solubility of the
ligand candidate. The solubility is an important parameter to be considered, in order to
ensure the possibility of chemical synthesis and the biological screening. Water solu-
bility can be predict as a function of the surface hydrophobicity of the ligand. The
tendency of a protein to aggregate and so to decrease its water solubility can be related
to the hydrophobic surface [14]. Ligand candidates with potential low water solubility
are not considered.

Finally, in order to avoid too exotic peptides, we introduced a phylogenetic control
of sequences. We downloaded the human proteome from the UniProt database [15]
(Proteome ID UP000005640) and we calculated the dimer abundance. We assigning a
different weight based on dimer probabilities.

The DynDock method favors the building of dimers with high frequency.

2.3 Ligand Fragment Modification

The ligand fragment modification starts considering a swap, deletion and addition of
amino acid residues.

The ligand modification step occurs during molecular dynamics simulations (MD),
which means the ligand fragment and the receptor, are always in contact. A cubic cell
of 57 � 57 � 57 Å was built around all atoms under periodic boundary condition.
The MD simulation is set at 298 K with 1.25 fs of integration time steps for
intramolecular forces. After each modification, the system is left to move for 1 ns to
allow the receptor to better accommodate the ligand. The all-atom structure of the
complex fragment/target is minimized using the force field AMBER14 [16] and the
steepest descent minimization followed by a simulated annealing minimization [17].

2.4 Output Selection

The binding affinity of the ligand was calculated using the function YaEnergy already
reported in [18]. YaEnergy permits to estimate the binding energy taking into account
the biological history of the receptor. It has been written after an extensive genetic
algorithm including a term that depends on the minimal distance between the ligand
barycenter and the nearest conserved residues. The sequence of the enzyme SGPA is
highly conserved through species indicating that the sequence has been maintained by
evolution despite speciation. As shown in Fig. 4, the residues of the binding pocket are
extremely conserved confirming that functional residues are generally more preserved
[19]. The conservation string was obtained from the Consurf database [20], a server for
identification of structurally important residues in protein sequences (http://conseq.tau.
ac.il/).

The binding energy calculated at the end of the molecular dynamics was used to
build up a new ranking function for peptide selection. Whereas the choice of high
binding energies is straightforward, energy alone is not enough because tends to bias
longer peptides. A long peptide, in fact, can interact in more ways than a shorter one.
The rank function at denominator has the peptide length and a negative surface area
term at numerator. There is also a corrective term based on the receptor distortion.
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The rationale is that a peptide, modifying the 3D structure of the flexible receptor, can
drive its geometry far from the experimental data. In the ranking function, we have
added a term to award receptor structures not dissimilar from the crystallographic data.

DynDock rank ¼ yaEnergy þ 20 � En:endEn:in � SurfArea
90

Length
ð6Þ

Whereas YaEnergy is the peptide binding energy, En.in and En.end are the initial
and final energies of the receptor calculated with the force field AMBER14, and
SurfArea is the molecular surface area of the peptide.

DynDock selects the molecules with the highest binding energy and lowest
deformation of the receptor. The receptor changes its structure during the fragment
growing to better accommodate the ligand. This could damage the 3D structure and
lead to an unrealistic structure. For this reason, the DynDock rank function is rescaled
on the dimension of the ligands, optimizing the binding energy value with the ligand
surface area. This is essential to prevent that the algorithm prefers bigger peptides that,
having more atoms, have more chances to interact with the receptor.

Based on the DynDock rank value, the step that involves the ligand modification
can be accepted or rejected.

The process ends when there are no further energy improvements. The computa-
tional complexity of the procedure grows quickly with the numbers of conformers
considered. Consequently, to reduce the computational time and cost we have used a
specialized grid (GRIMD) to distribute the calculation [13].

Fig. 4. 5SGA surface. The conserved residues are colour mapped in yellow onto the protein
surface. (Color figure online)
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3 Results and Discussion

The evaluation of the DynDock procedure can be done in terms of binding energy.
Interestingly, following the methods herein described, after binding each peptide can be
forced to leave the receptor and the activation energy required to leave the receptor
estimated. This calculation permits to evaluate the residence time [21] of the ligand
(that is the inverse of the unbinding kinetic constant rate koff) [22–24] that is of
fundamental importance in drug discovery.

Starting from the first amino acid (tyrosine), DynDock adds new amino acids and
chooses the best dimer among the 20 possibilities. The dimer was then further elon-
gated until the length of 4 residues. All ligands are ordered by length and by ranking
value. Based on the rank function value, DynDock selects only two dimers made, in
this example, glutamine-tyrosine (QY) and alanine-tyrosine (AY) and proceeds further
with the elongation. We decided to fix the elongation to 4 residues to make easier the
comparison with the crystallographic structure. The best ligand developed by DynDock
protocol (PGAY) shows higher binding affinity that the experimental molecule PAPY
and it still maintains the interactions with the catalytic triad (see Fig. 5).

To build a ligand candidate formed by ten residues, traditional approaches of
structure-based drug design provide 10 million of millions of sequences to analyze
(2010 = 1�1013). DynDock method limits the calculation to a number of sequences to
analyze of few thousands.

Fig. 5. DynDock protocol trend. Length is the number of amino acids in the ligand and the rank
function is the normalized binding energy. On the left are shown the ligand PGAY interactions
with the binding site.
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4 Conclusion

The method here described for Drug Design is an easy way to perform fully molecular
docking reducing drastically the number of possible sequences. It permits also the easy
distribution on computer grids to further reduce the analysis time.

This hierarchical approach has several advantages over traditional docking. First,
the flexibility of the receptor, essential for its function, is fully considered and modeled
with the modern AMBER14 force field. Second, DynDock takes into account the
receptor distortion to avoid unrealistic and improbable interactions. Third, the
sequential procedure guarantees to find a series of peptides with high binding energies
without a sensible decrease of computational performances. Fourth, the sequentiality of
the investigation makes DynDock ideal for parallelization or for use on grids. Finally,
the molecular dynamics can be used also to perform a steered molecular dynamics of
the ligand out from the receptor to estimate the residence time. This improvement will
be the object of an upcoming paper.
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Abstract. The use of time series for integrating ordinary differential
equations to model oscillatory chemical phenomena has shown benefits in
terms of accuracy and stability. In this work, we suggest to adapt also the
model in order to improve the matching of the numerical solution with
the time series of experimental data. The resulting model is a system of
stochastic differential equations. The stochastic nature depends on phys-
ical considerations and the noise relies on an arbitrary function which
is empirically chosen. The integration is carried out through stochastic
methods which integrate the deterministic part by using one-step meth-
ods and approximate the stochastic term by employing Monte Carlo
simulations. Some numerical experiments will be provided to show the
effectiveness of this approach.

Keywords: Oscillating solutions · Belousov-Zhabotinsky reaction
Reaction equations · Stochastic chemical oscillators
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1 Introduction

This work deals with the problem of modelling oscillatory phenomena by suitable
systems of differential equations, together with providing a proper numerical
scheme for an accurate and efficient approximation of their solutions. A special
emphasis is here given to a significant case study: the well-known Belousov-
Zhabotinsky (BZ) reaction. The BZ is a striking example of a self-organizing
chemical system, and thanks to its characteristics, it became a widely employed
model also in other fields. For instance, in biology BZ can be considered a simple
analogue of periodic phenomena (metabolic cycles, circadian clocks, etc) and in
mathematics and physics it is an ideal example of complex nonlinear dynamical
system [1]. There are several models to describe the complex kinetics of the BZ
reaction, being the Oregonator, the most used [1–3].
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In [4] this system has been integrated by employing an adapted numer-
ical scheme which exploits information obtained by observing time series of
experimental data. It has been shown that this problem-oriented approach is
more accurate and stabler than general-purpose numerical methods, which could
require a strong reduction in stepsize in order to accurately follow the behaviour
of the exact solution. In this paper, we focus on the nature of the operator, in
order to improve the matching of the numerical solution of the Oregonator with
the time series.

In Field, Körös and Noyes approach, the time evolution of BZ reactions is
treated as a continuous and deterministic process. In many cases, this is suffi-
cient to study the qualitative behaviour of the system. However, the reaction-rate
equations may be unable to describe the fluctuations in the molecular population
levels within the study, for instance, of ecological systems, microscopic biological
systems and nonlinear systems characterised by chemical instability. Therefore,
in some cases it may be more convenient to employ a stochastic approach, which
derives from some physical considerations. Firstly, molecular population levels
change in a discrete manner, so the time evolution of a chemically reacting sys-
tem is not a continuos process. Moreover, it is impossible to predict the exact
molecular population levels at a certain time unless the exact positions and
velocities of all the molecules in the system are known [5,6]. The stochastic for-
mulation of chemical kinetics basically takes into account that the collisions in
a system of molecules in thermal equilibrium occur essentially in a random way.
However, it is based on the so-called master equation which is often mathemat-
ically intractable. For this reason, we suggest to add a stochastic term to the
deterministic system in order to obtain a model which is still simple to inte-
grate like the reaction-rate equations, but it can lead to a numerical solution
more similar to the time series. In the resulting model, the time evolution of the
system is described by a system of Itô stochastic differential equations, where
the stochastic term is characterised by a Wiener process and an arbitrary func-
tion empirically chosen. The deterministic term of this system is integrated by
employing a one-step numerical method, whereas the stochastic term is approx-
imated through Monte Carlo simulations. The numerical solution is compared
to the time series of the experiment performed in [7] on an unstirred ferroin
catalysed BZ system.

In summary, we describe the main aspects of Belousov-Zhabotinsky reaction
in Sect. 2, Sect. 3 is devoted to the development of the new stochastic model
to describe the kinetics of this reaction, while Sect. 4 shows some numerical
experiments and Sect. 5 exhibits the conclusions.

2 The Belousov Zhabotinsky Reaction

The Belousov-Zhabotinsky reaction is probably the simplest closed macroscopic
system that can be maintained far from equilibrium by an internal source of free
energy homogeneously distributed in space [8–11]. Being outside of thermody-
namical equilibrium, BZ can display several exotic dynamical regimes: periodic,
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aperiodic and chaotic oscillations [12–14], Turing structures and pattern forma-
tion [15,16], autocatalysis and bistability [17]. At present, most of the research
involving the BZ reaction deals with stimuli-responsive smart materials [18–20]
and with the simulation of complex biological communication [21–23]. In this
work, we attempt to reproduce the periodic oscillatory regime generally mani-
fested by the BZ in homogeneous well-stirred reactors.

BZ reaction involves an organic substrate that is oxidised by bromate ions
in an acidic medium and is generally catalysed by one-electron metal-ion oxi-
dants with standard reduction potentials of 1–1.5 V, for example metal ions
complexes (ferroin, cerium sulphate, etc.) [1,3] (and references therein). Under
proper conditions, the system exhibits self-sustained temporal oscillations in the
concentrations of the catalysts, visible through a color change in the solution
(more drastic for the iron). The oscillations stem from two concurrent processes:
at the beginning the metal ion is reduced and the concentration of bromide ions
([Br−]) is high (Process I); then bromides are consumed up to a certain critical
value and the metal ion is oxidised (Process II); finally, the metal ion reacts to
produce bromide ions and reverts to its reduced state again. However, from the
kinetics point of view, the oscillations are caused by an Hopf instability deriving
from the nonlinear chemical mechanism (autocatalysis + inhibition) and occur-
ring in the reaction. The most widely accepted model to describe BZ reaction
has been proposed by Field and Noyes in [24] and it has been derived from the
more complicated Field-Körös-Noyes mechanism [25] which is based on 11 reac-
tions involving 15 chemical species that lead to a system of 7 coupled nonlinear
first-order ordinary differential equations. In order to theoretically analyse oscil-
lations, bistability and traveling waves, it is sufficient to consider the following
reduced formulation of the FKN mechanism [26]:

A + Y
k1−→ X + P,

X + Y
k2−→ 2P,

A + X
k3−→ 2X + 2Z,

2X
k4−→ A + P,

B + Z
k5−→ 1

2
f Y,

where the main chemical elements are:

X = HBrO2 (bromous acid), P = HOBr (hypobromous acid),
Y = Br− (bromide ion), A = BrO−

3 (bromate ion),
Z = Me(n+1)+ (metal ion in oxidized state), B (organic substrate),

and f is a stoichiometric factor which represents the number of bromide ions
produced when metal ions are reduced. The concentrations of A, B and P are
generally maintained constant, whereas the concentrations of intermediates X,
Y and Z vary periodically. The kinetics of the system can be described by the
following set of 3 differential equations [3]
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dx∗

dt∗
= k1 a y∗ − k2 x∗y∗ + k3 a x∗ − 2k4(x∗)2, (1a)

dy∗

dt∗
= −k1 a y∗ − k2 x∗y∗ +

f

2
k5 b z∗, (1b)

dz∗

dt∗
= 2k3 a x∗ − k5 b z∗, (1c)

which is called Oregonator and involves the concentrations of the aforementioned
chemical elements. We refer to such concentrations by using letters in lower case
henceforth. As highlighted in [27], the Oregonator is not only the simplest model
for Belousov-Zhabotinsky reaction but also the most popular to study the period
and the amplitude of observed oscillations.

The oscillations in the exact solution of the Oregonator are strongly depen-
dent on the values of the involved parameters, especially k5 and f . Indeed,
if k5 = 0, the bromide ion (Br−) concentration decays to zero according to
the Eq. (1b), so the system cannot oscillate. Moreover, oscillations occur only if
0.5 < f < 2.414, whereas for f < 0.5 and f > 2.414 the system is in a stable
steady state, being Process II or Process I dominant, respectively (see [1] and
references therein).

In order to integrate the Oregonator (1), we consider its dimensionless form,
as follows:

ε
dx

dt
= q y − x y + x (1 − x), (2a)

ε′ dy

dt
= −q y − x y + f z, (2b)

dz

dt
= x − z, (2c)

where
x =

2k4
k3a

x∗, y =
k2
k3a

y∗, z =
k4k5b

(k3a)2
z∗, t = t∗k5b,

ε =
k5b

k3a
, ε′ =

2k4k5b

k2k3a
, q =

2k1k4
k2k3

,

(3)

or, in a more compact form,

dr

dt
= F (r; q, f, ε, ε′), (4)

where r = [x, y, z]T and F (r; q, f, ε, ε′) =

⎡
⎣

1
ε (q y − x y + x (1 − x))

1
ε′ (−q y − x y + f z)

x − z

⎤
⎦.

3 Stochastic Adaptation of the Oregonator

We aim to develop a simple stochastic variant of the deterministic system (4)
in order to better describe the fluctuations usually observed in time series of
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experimental data. For this purpose, we add a stochastic term to the reaction-
rate Eq. (4), as follows

dR

dt
= F (R; q, f, ε, ε′) + λG(R) dW, (5)

where R(t) is a three-dimensional stochastic process describing the concentra-
tions of the key chemical elements, F (R; q, f, ε, ε′) is the deterministic forcing
term, λ is the amplitude of the stochastic term, G(R) is an arbitrary function
and W (t) is a Wiener process. We recall that a standard Wiener process is a
stochastic process {W (t), t ∈ [0, T ]} such that W (0) = 0 with probability 1,
the function Φ : t → W (t) is continuous with probability 1, the increments are
independent and behave as the random variable

√
t − s N (0, 1), i.e. a normally

distributed random variable with zero-mean and variance equal to t − s.
Equation (5) is a system of Itô stochastic differential equations, whose solu-

tion R(t) is a stochastic process depending on an initial value

R(0) = R0, (6)

a deterministic integral and an Itô stochastic integral.
In order to integrate (5) in [0, T ], we discretize the interval by selecting

equidistant N + 1 points, as follows

0 = t0 < t1 < · · · < tN = T,

and we employ a one-step stochastic numerical method having this general
formulation

Rn+1 = Rn + h(α F (Rn+1) + β F (Rn)) + G(Rn) (W (tn+1) − W (tn))) , (7)

where h is the integration stepsize. For the simulation of the Wiener increments,
we employ Monte Carlo simulations, i.e. we generate a standard normally dis-
tributed variable through the Matlab routine randn and we approximate the
Wiener increments multiplying this variable with

√
h.

4 Numerical Experiments

We take into account the experiment performed in [7] on an unstirred ferroin
catalysed BZ system, where the organic substrate is the malonic acid (B = MA)
and the catalyst is the redox couple ferriin/ferroin (Fe(phen)3+3 /Fe(phen)2+3 ).

In [7] time series are recorded spectrophotometrically at wavelengths equal to
510 nm (ferroin) and 630 nm (ferriin), where the molar extinction coefficients are
equal to 1.1×104 mol−1dm3cm−1 and 620mol−1dm3cm−1, respectively. Employ-
ing these data, we construct the corresponding time series of the concentration
of the ferriin, i.e. the catalyst in its oxided state, which is the third component
of the solution of the Oregonator (5). The resulting time series shows an initial
exponential decay trend corresponding to the start of the reaction (see Fig. 1)
and followed by periodic oscillations.
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In order to model this chemically reacting system, we consider the system
of Itô stochastic differential equations (5) in a region of the plane k5 − f where
the solution is known to oscillate. With regards to the choice of G(R), we select
different functions. Firstly, we have considered a linear noise depending on the
parameters of the problem

Glin(x, y, z) =
[
x +

q

ε
y + 1, y +

q

ε
y, z +

q

ε
y
]T

. (8)

This choice is convenient because the function evaluations are not highly
demanding in terms of computational cost. Another possible G-function has
a logarithmic expression:

Glog(x, y, z) =
[
2 log(x y), log

(
y2

q

)
, log(z2 + 1)

]T

. (9)

Since we observe an oscillatory behaviour in time series (Fig. 1), we next consider
a simple trigonometric noise

Gtrig(x, y, z) = [sin(x), sin(y), sin(z)]T , (10)

but, as will be shown in Table 1, it may be more convenient to adopt a trigono-
metric G-function depending on the parameters of the problem, as follows:

Gpdtrig(x, y, z) =
[
sin(x) +

q

ε
sin(y) + 1, sin(y) +

q

ε′ sin(y), sin(z) + sin(y)
]T

.

(11)
We have solved system (5) in [0, 250] combined with these different noises, pro-
vided by the initial conditions

x(0) = 0.0013, y(0) = 0.2834, z(0) = 0.1984, (12)

and the following values for the parameters

f = 1, q = 3.52 · 10−5, ε = 0.3779, ε′ = 7.56 · 10−4. (13)

We remark that the concentrations in (12) are in their dimensionless form.
We employ a one-step method to integrate the deterministic part and Monte
Carlo simulations to treat the stochastic term. In particular, we have integrated
the deterministic term through explicit Euler method, obtaining the Euler-
Maruyama method

Rn+1 = Rn + hF (Rn) + G(Rn) (W (tn+1) − W (tn)) . (14)

However, this method is strongly unstable for every choice of the G functions
and amplitude λ due to the stiffness of the problem. For this reason, we integrate
the deterministic term through the implicit trapezoidal rule, as follows:

Rn+1 = Rn +
h

2
(F (Rn) + F (Rn+1)) + G(Rn) (W (tn+1) − W (tn))) . (15)
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Fig. 1. Time series of concentration of ferriin related to the experiment carried out in
[7] on an unstirred ferroin catalyzed BZ system.

Table 1. Minimum error computed in the last point with 100 simulations as difference
between the value assumed in the last point by the numerical solution obtained by the
scheme (15) for h = 0.06 and with different functions G and the corresponding value
observed in time series.

λ Glin Glog Gtrig Gpdtrig

0 9.99 · 10−1

0.5 1.24 · 10−2 8.99 · 10−4 1.45 · 10−2 6.56 · 10−3

1 1.25 · 10−1 1.29 · 10−3 2.84 · 10−1 1.92 · 10−2

We remark that the implicitness of this stochastic method is only in the deter-
ministic part.

Table 1 reports the relative errors computed by comparing the value assumed
by the numerical solution in the last point of the interval and the corresponding
value observed in time series. In case of non-zero amplitude of the stochastic
term, i.e. when the system (5) does not reduce to the deterministic formulation
(4), we have run 100 simulations for each G function and amplitude λ because
of the random nature of the Wiener increments and we have computed the
minimum error obtained. We observe that the accuracy generally improves when
we add the stochastic term to the model and it is higher for the logarithmic noise
(9) and the parameter-dependent trigonometric one (11) than for the linear (8)
and the first trigonometric case (10). Moreover, increasing the amplitude λ of the
stochastic term, the errors related to the stochastic models become higher, but
they are still smaller than the error obtained with the deterministic formulation
of the problem. Therefore, it may be convenient to add a stochastic term, but its
amplitude has to be small enough, so that the noise does not cover the solution.

The solution of the deterministic model (see Fig. 2(a)) has a regular profile
having only two oscillations, so it differs more from the time series than the
solutions of stochastic models. Indeed, the numerical solution of the stochastic
model combined with a trigonometric noise (see Fig. 2(d)) has a regular pro-
file with three oscillations, but it is still far from time series. The choices of a
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(b) λ = 0.5, G = Glin (linear noise)
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(c) λ = 0.5, G = Glog (logarithmic noise)
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(d) λ = 0.5, G = Gtrig (trigonometric noise)
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(e) λ = 0.5, G = Gpdtrig (parameter-dependent
trigonometric noise)

Fig. 2. Numerical solution of stochastic Oregonator (5) having initial conditions (12)
and parameters (13) computed by the method (15) which integrates the determin-
istic term with the implicit trapezoidal rule and treats the stochastic part through
Monte Carlo simulations. Different choices for the amplitude λ and the function G are
considered and the adopted stepsize is h = 0.06.
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linear noise (Fig. 2(b)) or a logarithmic noise (Fig. 2(c)) lead to solutions which
are more oscillatory, so they are qualitatively more similar to time series. How-
ever, the solution obtained with a linear noise exhibits some spurious oscillations
due to the noise and that one computed with a logarithmic noise has a highly
irregular profile. As it regards Fig. 2(e), we can observe that the profile of the
solution quantitatively matches very well with the time series and, moreover, the
peaks are distributed similarly as in the pattern of the time series, which makes
this kind of choice of the diffusion term in the stochastic model very promising.
Clearly, the noisy behaviour observable in Fig. 2(e) is given by a single realization
of the stochastic process solution that may be replaced, in future investigations,
by a more regular and smooth mean behaviour over several realizations. We
remark that in the figures the variable concentrations of ferriin (z) and time (t)
have been recasted according to the positions (3) by employing the values

k2 = 1.11 · 106, k3 = 15.54, k4 = 1.11 · 103, k5 = 1.

5 Conclusion

In this work, we have presented a new stochastic model to describe the kinetics of
Belousov-Zhabotinsky reaction, assumed here as an experimental benchmark for
proposing an adapted numerical scheme for differential models of oscillatory phe-
nomena. Indeed, following the idea of adapting numerical schemes to time series
presented in [4] (coming from [28–34] and references therein), we have adapted
in this work also the model to describe better the available experimental data.
In particular, we have considered the well-known deterministic model developed
by Fields, Körös and Noyes and we have added a stochastic term, leading to
a system of Itô stochastic differential equations. In this system, the stochastic
term is characterized by an arbitrary function selected empirically. The resulting
system has been integrated by a combination of known time-stepping methods
for the integration of the deterministic part and Monte Carlo simulations for the
numerical treatment of the stochastic term. The numerical solution has been
compared with the time series related to the experiment carried out in [7] on
an unstirred ferroin-catalysed BZ system. Numerical experiments show an high
improvement in accuracy and a slight enhancement in the preservation of the
qualitative behaviour observed in time series. It is important to highlight that our
proposed approach can be assumed as a general setting for handling oscillatory
problems in many different contexts: for instance, in the description of chem-
ical oscillators in compartmentalized systems like microemulsions that feature
nano-sized reactors [35]. Future developments of this research will be focused on
taking these preliminary results as starting point to also fit the data into the
model under a qualitative point of view, rather than only quantitative. In this
sense, as it is clearly visible in the experiments, the passage from deterministic
to stochastic models has been crucial and it seems promising to proceed in this
direction.
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Abstract. A novel scenario is emerging from the synthetic biology
advancements of the last fifteen years. We refer to a well-defined multi-
disciplinary sci-tech arena dedicated to the construction of biological-like
systems, and, in particular, microscopic cell-like systems. The challenge
of assembling a minimal cell from separated parts is generally considered
the Holy Grail of biology. However, an accurate analysis of this emerging
line of research, grounded in the theory of autopoiesis and its implications,
is able to show its potentially high relevance for two other fields – artifi-
cial life and artificial intelligence. In this paper we intend to propose this
perspective. Based on the critical discussion of recent trends and experi-
mental results in synthetic biology, we sketch out how current research in
this field can impact not only artificial life, but also artificial intelligence
inquiries, in particular with respect to embodied cognition.

1 The Vision

In 1943 Arturo Rosenblueth, Norbert Wiener and Julian Bigelow inaugurated
the era of cybernetics with the article Behavior, Purpose and Teleology [42].
They concluded it with a visionary remark, which assigns to synthetic biology
(SB) a potentially crucial role in the scientific modeling of cognition.

“If an engineer were to design a robot, roughly similar in behavior to an
animal organism, he would not attempt at present to make it out of pro-
teins and other colloids. He would probably build it out of metallic parts,
some dielectrics and many vacuum tubes. The movements of the robot
could readily be much faster and more powerful than those of the original
organism. Learning and memory, however, would be quite rudimentary.
In future years, as the knowledge of colloids and proteins increases, future
engineers may attempt the design of robots not only with a behaviour, but
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also with a structure similar to that of a mammal. The ultimate model of
a cat is of course another cat, whether it be born of still another cat or
synthesized in a laboratory.”

Today, while engineering research on mechanical robots is impressively
advancing, biology is integrating fifty years of progress in chemistry, biophysics
and life sciences to proceed in the direction indicated by these pioneers of cyber-
netics. This is a way leading to bio-robots, and maybe, one day, even to approx-
imations of what they called “ultimate” models of living beings.

Starting from 1953, the annus mirabilis of biology (mainly due to the James
Watson’s and Francis Crick’s discovery of DNA helical structure, the completion
of the insulin sequencing by Fred Sanger, and the famous experiment of Stanley
Miller and Harold Urey), our understanding of “colloids and proteins” increased
at a stunning level, especially in the last decades. After having explored biological
systems according to the analytic or ‘taking apart’ methodology [22], in the early
2000 a new wave of biological studies emerged, explicitly inspired to engineering.
This is SB, a branch of biology aiming at constructing, or ‘putting together’
[22], for engineering purposes, biological parts, devices and systems that do not
currently exist in the natural world. More precisely, SB targets the design and the
construction of programmable synthetic cells by developing first, and using later,
parts-devices-systems that ultimately exploit the computational capability of
molecules [3]. SB’s main research activity is based on the availability of powerful
and often high-throughput bio-analytical techniques, on the progress in synthetic
capability (synthesis of genes), and on the inclination of a young generation of
scientists to blend biology and engineering.

However, SB also has another facet. It combines biology and engineering in
order to contribute to the scientific understanding of life. This is one of the
reasons for which SB stimulates critical philosophical explorations of its epis-
temological and theoretical approaches [30,35,38]. The attention is primarily
focused on the way in which SB generates knowledge, based not on develop-
ing abstract representations, but on creating material models – that is, con-
crete physico-chemical models – of the biological processes under inquiry, and
of the underlying biological mechanisms. Such an “understanding-by-building”
methodological approach [7,39] has a significant long tradition. It was introduced
by proto-cybernetic movements between the 1910s and the 1930s for the model-
ing of biological and cognitive processes through mechanical artifacts (hardware
models). It has become a recognized scientific method with the birth of cyber-
netics in the 1940s. Since the 1950s it has been developed by classical artificial
intelligence (AI) and, since the late 1980s, by artificial life (AL) through com-
puter simulations (software models). With the raise of “embodied AI” [39] it
has been implemented through new generations of mechanical robots (again,
hardware models).

One of the main novelties generated by SB is that now we can build chemical
models (wetware models) of natural processes at the molecular, supramolecular
and cellular levels, because, as Rosenblueth, Wiener and Bigelow foresaw in 1943
[42], our “knowledge of colloids and proteins” has critically increased in the past
years, and SB has developed a variety of “constructive” approaches [21].
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In this essay we will discuss with a certain detail one of these approaches.
This is the so-called bottom-up semi-synthetic approach, which was introduced
in the early 1990s by emergent research on the origins of life, and, in particular,
by the seminal work of Pier Luigi Luisi, Peter Walde and Thomas Oberholzer
at the ETH-Zürich [28]. The article is composed of three parts, respectively
dedicated to: (i) theory and construction of semi-synthetic minimal cells; (ii)
chemical signaling between synthetic cells and biological cells; (iii) relevance
and implications of the recent advancements in SB for the creation of fecund
cross-disciplinary research embracing SB and AL, and in particular SB and AI.
The theoretical framework defining our perspectives on these developments relies
on autopoietic cognitive biology [31–33] and (related radical trends in) embodied
cognitive science [51].

2 Theory and Construction of Semi-synthetic
Minimal Cells

Mainstream SB operates according to the bio-brick philosophy (parts.igem.org),
which refers to the construction of molecular devices – generally genetic circuits –
as the assembly of standardized parts, whereby a part is generally a DNA sequence.
Just like electronic engineers design and build devices from electronic parts [14,26],
synthetic biologists operate with genes and regulatory proteins, and plug them in
the biological chassis, i.e., the cell with its core set of genetic-metabolic circuitry.

A new wave in SB considers instead the possibility of constructing simplified
(minimal) cells [27] from scratch. These synthetic cells should mimic biological
cells, and thus should be capable of performing target living functions, despite
the strong reduction of complexity required for their construction. They some-
how resemble primitive (ancient) cells before the complexification generated by
evolution. These cell-like compartments, best called semi-synthetic minimal cells
(SSMCs), are interesting in many respects, such as:

1. in general, they allow life sciences to understand biochemical and biophysical
processes without the interference of the other cellular processes in back-
ground;

2. in the so-called “origins-of-life research”, they help to study and understand
basic mechanisms leading to the transition from inanimate to living matter;

3. in SB, they can be used to develop systems performing specific functions;
4. they are composed using dozens of separated, yet well-characterized, molec-

ular parts (proteins, nucleic acids, lipids, etc.);
5. they can be built in the laboratory according to a novel technology based on

the convergence of cell-free systems, liposome technology, and microfluidics;
6. a precise mathematical modeling can be applied to SSMCs processes;
7. despite their simplicity, SSMCs have several cell-like properties (though in a

rudimentary form) and might display emergent properties;
8. although creating living SSMCs is the challenging long-term goal, non-living

SSMCs work well for most biotechnological applications;

http://parts.igem.org/
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Fig. 1. SSMCs made of solute-containing liposomes. (a) Giant lipid vesicles are often
used for constructing cell-like systems. The picture shows calcein-filled vesicles whose
membranes have been stained by Trypan Blue. Reproduced from [48] according to the
CC-BY license. (b) The minimal number of genes, enzymes, RNAs, and low molecular-
weight compounds are encapsulated into synthetic lipid-based compartments, such as
in the case of lipid vesicles. The membrane acts as a boundary to confine the interacting
internalized molecules and allows selective passage of some molecules (nutrients, waste).

9. SSMCs might represent a concrete attempt to experimentally investigate bio-
logical autonomy and its expression in cognition [4], in particular within the
autopoietic framwework [31–33].

The construction of SSMCs is generally acknowledged as the SB bottom-up
approach, as opposite to the mainstream approach, which is dubbed as top-down
SB (for a critical discussion, see [46]). For constructing SSMCs, a minimal num-
ber of biological macromolecules (DNA, ribosomes, enzymes) are encapsulated
inside liposomes (Fig. 1). Early attempts started in the 1990s. Today SSMCs can
be constructed in a rather complex way and can produce proteins [47]. SSMCs
easily host diverse biochemical reactions, and thus can perform simple biological-
like functions.
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Autopoiesis [32] offers a theoretical perspective that, as we think, best guides
SSMCs design [29]. This theory deals with the question “What is life?”, and finds
the answer in the specific form of dynamical organization that, according to its
authors, Humberto Maturana and Francisco Varela, characterizes and defines as
such all biological systems. Autopoiesis proposes that:

1. the distinctive property of living systems is their autopoiesis (namely, self-
production), i.e., their capability of producing and maintaining their material
identity (themselves) by producing their own components (via metabolism);

2. since autopoiesis is a global property, its realization does not rely on com-
ponents of the living systems as taken separately, or specific parts or centers
within these systems, but on the way in which the components are organized
within the living systems;

3. in its minimal manifestation, given at the level of minimal cells, the autopoi-
etic organization is a self-regenerating network of operations of synthesis and
destruction of components (metabolism), which: (i) produces its material
components; (ii) defines by itself its topological limits through the creation of
a material separation from the external environment; (iii) maintains itself as
a unit by compensating environmental perturbations through self-regulation;

4. the self-regulative adaptive activity of autopoietic systems can be interpreted
as a cognitive activity, consisting in generating internal meanings, expressed in
schemes of self-regulation, for external events perceived as perturbations [10];

5. this view entails that minimal cognition is rooted in the minimal biological
body, and is a radical form of embodied cognition [53].

Early work was dedicated to realize simple systems, like self-reproducing
reverse micelles [2] and vesicles [52], which, owing to their simplicity and to the
exploitation of surfactants self-organization, displayed dynamics that were con-
sidered similar to the autopoietic ones [31]. Moving from these simple chemical
systems to more complicated cell-like ones, like the SSMCs, the attempts of cre-
ating full-fledged autopoietic systems are extremely difficult to implement. This
is due to the fact that the production of SSMCs components (proteins, nucleic
acids, . . . ) relies on complex biochemical mechanisms based on macromolecular
catalysts, the enzymes, which, according to the autopoietic theory, have to be
produced autonomously by the system.

To be more specific, current SSMCs are assembled by combining liposome
technology and cell-free technology [5,20,47], for example by incorporating the
PURE system (a transcription-translation system [44]) inside liposomes. The
resulting cell-like system can synthesize one or more proteins and thus per-
form specific functions. However, what we can conceive as a genuine ‘autopoietic
SSMC’ should produce, together with a target protein, also all the components
of the PURE system that are involved in the synthesis of the protein. Moreover,
it should be able to conservatively interact with its environment, in such a way
to fuel its internal self-productive dynamic and maintain it stable through self-
regulation. This behavior is currently too complex to be synthetically generated.

Although building an autopoietic synthetic cell from scratch remains the prin-
cipal purpose of bottom-up SB, any ‘intermediate’ cell-like structures that can
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be constructed in the lab are highly relevant. Yet not displaying an autopoietic
organization, they are per se interesting milestones to reach, both to contribute
to our understanding-by-building undertaking, and to develop novel tools for
biotechnology.

Among the most interesting non-autopoietic SSMCs, we find those capable
of exchanging chemical signals with biological cells, discussed below.

3 Chemical Signaling Between Synthetic Cells
and Biological Cells

Synthetic cells can be built in order to recognize a chemical signal and behave
accordingly, as it happens between biological cells. This is generally discussed in
terms of performing a logical operation (i.e., computing) [13,17]. This computa-
tional interpretation of the behavior of synthetic cells is increasingly often con-
sidered as opening a promising route to the novel bio-chemical information and
communication technologies (bio-chem ICTs). However, other interpretations are
possible. One of them, as we already remarked [49], is an autopoietic interpre-
tation, in line with which these signaling mechanisms are better interpreted as
attempts of autopoietic systems to conservatively (i.e., ‘self-regulatively’) react
to externally generated perturbations. In 2012 [49] we specified that:

“. . . [autopoietic systems] can perceive some external variations as perturba-
tions of their internal process of self-production. Besides, they can react to
them through an activity of self-regulation, that is, through changes in their
elementary processes that compensate the alteration. In this sense, these
systems can be conceived able of generating internal operational meanings
for the perceived external variations. These meanings are expressed in terms
of dynamical schemes of self-regulation, which externally appears as actions
oriented to conservation (e.g., absorbing a molecule of sugar, overcoming an
obstacle...). This ‘meaning generation’ behavior – for Maturana and Varela
the basic ‘cognitive’ behavior – grounds what the two researchers called
“structural coupling” with the environment: a dynamic of reciprocal pertur-
bations and compensations, in which the autopoietic system continuously
generate and associate to exogenous variations operational meanings of self-
regulation that allows it to keep its process of self-production in an ever-
changing environment.”

Developing this autopoietic perspective, the capabilities of recognition that
appear intrinsic to the molecular domain can be employed by SB to create exper-
imental scenarios to synthetically study minimal cognition. In view of this goal,
the first step is that of building ‘signaling synthetic cells’, that is, synthetic cells
capable of exchanging chemical signals, or, more in general, of expressing adap-
tive responses to perturbations. The second step is that of using them to test,
provide feedback and eventually further develop the autopoietic description of
embodied cognition (Fig. 2).
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Fig. 2. Target for SSMCs and minimal cognition: generation and association of internal
self-regulation patterns to external perturbative events. The transition between several
states (1, 2, 3) of autopoietic cells is triggered by environmental perturbations (a, b,
c) acting on the internal dynamical organization (genetic-metabolic circuitry). When
the system cannot cope with a perturbation (d), it undergoes a transition toward a
non-autopoietic state (4). To experimentally build this kind of artificial model of a
minimal autopoietic unit equates to have the possibility of developing the autopoietic
perspective on cognitive coupling by trying to answer research questions such as the
following. At what level of internal dynamic complexity a minimal autopoietic unit
is able to establish a relation of structural coupling with the environment as it is
described by the theory of autopoiesis? Can this kind of relationship be established by
autonomous systems that cannot be defined as full-fledged autopoietic systems? Why?
Are there significant variations in this coupling, and the related activity of generation
of meanings, with the progressive increase of the dynamic complexity of the modeled
autopoietic unit? If yes, can we distinguish and classify different kinds of cognitive
coupling already at the level of minimal synthetic autopoietic units? Can we do that
with regard to the coupling that can be established between different artificial, or
between artificial and natural, minimal autopoietic units?

An analysis of the deep implications of this approach exceeds the scope of this
contribution, and we will develop it in future publications. Here we would like to
underline that, as remarked also in Sect. 4, these developments might profoundly
impact the epistemological and theoretical frameworks of AI research.

Coming back to traditional bio-chem ITCs, the relevance of inter- and intra-
cellular molecular signaling has been put forward by Tadashi Nakano [37], and
application to nanomedicine has been lucidly defined by Philip LeDuc [23]
(Fig. 3). Genetic, regulatory and metabolic circuitry could be adapted to this
goal (consider for instance SSMCs endowed with plugged-in circuits).

Related experimental work has been carried out in recent years. In 2009 Ben
Davis and collaborators reported that chemicals inside vesicles could synthesize
a sugar-like molecule that, when released in the medium and converted to a
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Fig. 3. By advancing the current biotechnology for SSMCs construction, potential
medical applications of more sophisticated and programmable synthetic cells can be
envisaged. A goal would be to construct cell-like systems that, once injected in the
human body, reach a specific target region and, thanks to chemical information pro-
cessing, are able to act appropriately, for example producing in situ a cytotoxic drug
or a stimulus to trigger a cellular response. This has been referred as the concept of
“pseudo-cell factories” or “nanofactories” (illustrated above) [23].

borate derivative, can stimulate a response in receiving cells (Vibrio harveyi
bacteria) [16]. Our group is involved in this kind of research since 2012, and has
been promoting in this area a SB approach [34,41,49]. Recently we reported an
effective chemical signaling between SSMCs and Pseudomonas aeruginosa [40].
In 2014 Sheref Mansy built synthetic cells acting as “translators” for Escherichia
coli [25], and more recently reported a two-way chemical exchange of signals
between synthetic cells and bacteria [24]. Chemical signaling between synthetic
cells has been also reported by Kate Adamala [1] and by Sheref Mansy with
Stephen Mann [50].

A common point of this scientific literature is that it is actively paving the
way to a scientific exploration of natural processes of communicational exchange.
Based on the understanding-by-building methodology, this scientific undertaking
starts from the synthetic exploration of minimal and mono-directional molecular
signaling processes, and progressively targets higher levels of complexity. These
include bi-directional and multi-directional exchanges, as well as different forms
of behavioral coordination between cells, in order to define the conditions of
emergence of full-fledged communication.
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3.1 A Turing Test for Synthetic Cellularity?

As we discussed in previous works [6,41], an interesting and somehow provoca-
tive scenario was proposed in 2006 by Lee Cronin, Natalio Krasnogor, Ben Davis
and collaborators [8]. These authors argued that a sort of Turing test, targeting
minimal communication skills, in the sense specified above, could help to deter-
mine whether a cell-like system can be considered alive. The advantage provided
by this test would be that of bypassing the issue of defining and clarifying what
life is, in analogy with the approach of the classical Turing Test – determining
whether a system is intelligent, while bypassing the problem of defining and
clarifying what intelligence is.

As related literature pointed out, in AI the artificial re-creation of a target
cognitive behavior can be – and often is – mere imitation: the recreation of the
phenomenology of the behavior based on biologically implausible mechanisms,
which would abrogate de facto the actual relevance of such a test [9].

With regard to this, the case of SSMCs is different. Due to their consti-
tutive molecular nature, they are able to increment the possibilities of gener-
ating plausible mechanisms, those found in nature, and the “imitation game”
might be significant. The experimental scenarios mentioned above, based on the
understanding-by-building approach, could prove useful to address interesting
technical, theoretical, epistemological, and philosophical questions. At this min-
imal level, will the synthetic/artificial cells reproduce the ‘cognitive pattern’ of a
natural/biological partner? Will SB blur, or even break, the synthetic vs. natural
divide? [6].

It is interesting to shortly consider the attempt done by Sheref Mansy and col-
leagues [24] of quantifying the life-likeness (or better, Vibrio fisheri -likeness) of
synthetic cells capable of sending and receiving signals to/from the bacterium V.
fischeri. The quantification was done on the basis of RNA sequencing (i.e., deter-
mining the gene expression profile of natural cells in response to the activity of
the synthetic cells). From a series of comparative tests (V. fischeri vs. V. fischeri,
V. fischeri vs. non-functional synthetic cells, and V. fischeri vs. functional syn-
thetic cells), surprisingly their synthetic cells scored 39% life-like. However, as the
authors remarked, the genetically encoded elements in signaling synthetic cells
were only two (LuxR and LuxI), whereas the calculus was extended to include
the more than 100 genes encoding for the transcription-translation machinery.
Thus the result (39%) refers to an ideal synthetic cell that autonomously pro-
duces all its proteins and nucleic acid. As mentioned above, such a system is still
out of reach.

4 SB-AI

The cross-disciplinary connection between SB and AI, based on the
understanding-by-building approach, is a task that frontier research is starting to
address [11]. Can SB, and in particular research on synthetic cells, be useful in AI
inquiries? In principle, the answer is positive in relation to the new embodied AI.
This, differently from classic AI, acknowledges a deep integration – in its radical
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versions, a unity – between cognitive and biological processes. We refer in partic-
ular to radical approaches to embodied cognition, which, in line with the autopoi-
etic theory, ground the cognitive mind in the biological processes of construction
and maintenance of the biological body. Within these explorative contexts the
synergy of SB and AI through the understanding-by-building approach appears
as a solid possibility. Research on minimal cells, by constructing material (chemi-
cal) models of minimal living systems, opens the concrete prospect of experimen-
tal scenarios to scientifically explore minimal embodied cognitive and related pro-
cesses (organizational closure, self-distinction, self-production, self-maintenance,
self-regulation, dynamical coupling between autonomous or autopoietic systems
and their environments, molecular signaling between autonomous units, behav-
ioral coupling between autonomous units, among others). All these processes
stem from the molecular dimension, molecular dynamics, strength of entropy
at the molecular level, molecular energies and interplay with the thermal back-
ground [19], which cannot be found in macroscopic objects. It is not by chance
that life originated at the molecular and supra-molecular level. Following this
line of reasoning, it is worth noticing that molecular systems significantly differ
from electronic computers. Their operations can be interpreted as forms of com-
puting, but with reference to properties that diverge from the one we are used to
consider related to computation. These different properties are well illustrated
in Nakano’s work [36,37].

Since a few years, we have been engaged in promoting the possibility of a syn-
ergic cross-fertilization between SB and AI [11,45] focused on minimal embodied
cognition. In what follows, we draw the main lines of a possible SB-AI approach to
the study of minimal cognition based on the theory of autopoiesis – an approach
that we call ‘Chemical Autopoietic AI’.

4.1 Chemical Autopoietic AI: Drawing the Basic Lines of a SB-AI
Research Program

The potentialities that autopoiesis can express in AI rely on its definition of life,
based on two main reasons. The first refers to the “synthetic” nature of this
definition. Maturana and Varela’s answer to the question “What is life?” is not
analytical, as traditional definitions of life are. Autopoiesis answers this ques-
tion not by proposing a list of properties of living systems, but by theoretically
defining a mechanism able to generate, from a multiplicity of separated compo-
nents, a minimal living system potentially able to produce the whole biological
domain as we know it. The idea of providing a “synthetic” definition of life is
essentially this: theoretically determining a mechanism able to generate, from
scratch, the whole biological phenomenology. Its interest for the sciences of the
artificial, and AL and AI in particular, is evident. It promises that, if science
implements the mechanism specified by the autopoietic definition of life, then,
in principle, it will be able to re-create all biological processes. And these pro-
cesses, according to Maturana and Varela, are intrinsically cognitive processes.
In the words of the pioneers of cybernetics: providing a material model of the
autopoietic network would open to the sciences of the artificial the possibility
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of creating “ultimate” models of living and cognitive systems – i.e., artificial,
but genuinely living and cognitive systems. The second reason of the relevance
of the autopoietic definition of life for AI relies on its theoretical content. This
corresponds to the notion of autopoietic organization, which describes, in the
following terms, a mechanism able to generate minimal and cognitive systems -
and, through them, all biological and cognitive systems.

[. . . ] A network of process of production (transformation and destruction)
of components that produces the components which: (i) through their
interactions and transformations continuously regenerate and realize the
network of processes (relations) that produced them; and (ii) constitute it
(the machine) as a concrete unity in the space in which they (the compo-
nents) exist by specifying the topological domain of its realization as such
a network [. . . ] [32] (p. 79).

One of the peculiarities of the notion of autopoietic organization, as it clearly
emerges from its definition, is that it is independent from the designation of
specific components. This implies that, in principle, the sciences of the artificial
engaged in the project of creating material models of the autopoietic organization
do not have to focus on the actual components of life as we know it. They can use
all kinds of components that prove able to generate the network described by the
autopoietic definition of life. This gives AL and AI the possibility to implement
different material models of (minimal) life and cognition, that is, (a variety of)
forms of biological and cognitive processes that, with respect to their material
structure, do not exist in nature. These two characteristics of the autopoietic
definition of life – its synthetic character and its independence from specific
components – make it particularly interesting for SB research on synthetic cells.
In particular, they make it appealing for the subsections of SB focusing on the
convergence between liposome technology and cell-free systems, with respect to
which the theory of autopoiesis defines the long-term goal of building minimal
living systems in the laboratory.

This goal allows SB to aspire to actively contribute to AI research, with a sig-
nificant advantage with regard to other ways of modeling life and cognition based
on autopoiesis. Computer simulations can provide only abstract artificial models
of the autopoietic definition of life, and current mechanical robotics appears to
be far from the possibility of generating material models of the dynamic net-
work that this definition describes [15]. Differently from them, SB operates with
components that are chemical molecules, and thus can differ from those of terres-
trial life for chemical structure, but not for reactivity in general terms. Thus, in
principle, SB is able to generate embodied models, i.e., chemical models, of this
kind of network, and actually is already engaged in designing primitive versions
of them. Its main obstacle is the very high level of complexity of even minimal
autopoietic networks – especially when based on available biomacromolecules.
As we will show in a future publication, however, this does not preclude the
possibility of building simplified versions of the autopoietic organization, based
on theoretical re-elaborations of the original autopoietic definition of life.
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The promises of this kind of SB-AI approach would be extremely relevant
for the evolution of AI, for a series of reasons:

1. As we will show elsewhere, this approach would provide AI with experi-
mentally explorable material models of an “intrinsically intentional” cogni-
tive agent. We refer to a cognitive agent whose relations with the environ-
ment are charged with “intrinsic” meanings, depending on the conservation
of its organization and its ways of existence. As relevant literature empha-
sizes since Hubert Dreyfus’ “What Computers Cannot Do” (1979) [12], John
Searle’s “Chinese Room Argument” (1980) [43], and Stevan Harnad’s “Sym-
bol Grounding Problem” (1990) [18], this is one of the main weak point of
(both traditional and embodied) AI [53].

2. The experimental exploration of this notion through its basic wetware mod-
elization could include not only the structural coupling of the minimal syn-
thetic autopoietic system with its environment, but also the dynamics of
interactions with this niche that could lead it to develop higher levels of orga-
nizational complexity, as implied by the “synthetic definitional approach”
characterizing the autopoietic theory.

3. Both explorations could have applicative implications leading to hybrid bio-
mechanical robots and, more in general, synthetic cognitive systems based
on the autopoietic approach, and/or, more in general, a radical approach to
embodied cognition.

The above described difficulties in fully implementing this SB-AI research
line are currently engaging us in developing a simplified version of it. We plan
to fully describe it in future works as a first step in the inauguration of the
Chemical Autopoietic AI approach.
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Abstract. In the field of theoretical biology the study of the dynamics
of the so-called gene regulatory networks is useful to follow the relation-
ship between the expression of a gene and its dynamic regulatory effect
on the cell fate. To date, most of the models developed for this purpose,
applies the synchronous update schedule while reality is far from being
so. On the other hand, the more realistic asynchronous update requires
to compute all possible updates at each single instant, thus bearing a
much greater computational load.

In the present work, we describe a novel method that addresses the
problem of efficiently exploring the dynamics of a gene regulatory net-
work with the asynchronous update.

Keywords: SAT solver · Discrete dynamical systems
Tarjan’s algorithm · Gene regulatory networks
Strongly connected components

1 Introduction

A gene regulatory network (GRN) can be regarded as a discrete dynamical sys-
tem with a transition function T : S → S which is determined by the acti-
vation/inhibition dependencies between a given number of genes, transcription
factors or RNA molecules, where S is the set of all activation profiles of the
n involved elements, that hereinafter we refer to as the genes. In its simplest
form with the number of activation levels q = 2 representing genes that are
either activated or silent, this function T is represented as a vector of Boolean
expressions. In this and other more complicated cases (i.e., q > 2) components
of T come in special forms as polynomials and the system can be considered a
Polynomial Dynamical System on Finite Fields Fq [VCL12].

Given the transition function T , a dynamical system can be described as the
graph consisting in the set of the ordered pairs (s, T (s)) for any s ∈ S. This graph
is called the state transition graph (STG) of the dynamics T . The transition
function T can be applied according to a synchronous schedule, meaning that
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all genes are updated at the same time. A more general situation occurs when we
want to study the evolution in the case of asynchronous dynamics: in this case,
the gene to be updated is chosen at random among all genes. In both cases, the
size N of the set S of the vertices of the state transition graph of a dynamics T is
exponential in the number of genes n (N = qn) and any exhaustive method for
the investigation of its structure rapidly becomes intractable even for small n.
In the asynchronous case things are more difficult in the sense that the number
of arcs in the state transition graph is much larger.

In what follows we refer to the state transition graph structure as the set of
attractors and their properties. An attractor is a set A of states which coincides
with the set

⋃
k T k(A) of all its successors. In particular, in the synchronous

dynamics only two forms of attractors are possible: limit cycles (also referred to
as cyclic attractors) and steady states (point attractors).

Whereas any steady state of the synchronous dynamics is also a steady state
in the asynchronous case, the same cannot be affirmed for synchronous dynamics
limit cycles. In fact, a cycle could be or not a limit cyclic in the asynchronous
dynamics. Intuitively, the reason for this behaviour is that the update function
is non-deterministic and therefore it allows the dynamics to exit from cycles.

A strongly connected component (SCC) of a state transition graph is a set
of states S, such that for any pair of states s, s′ ∈ S, a directed path from s to
s′ exists. Among all SCCs of a state transition graph we are interested in the
maximal ones with respect to the classical subset relationship. Let’s call M(T )
the set of all maximal SCCs in the state transition graph of the dynamics T .
A strongly connected component is called terminal if it has no outgoing edges.
Note that given a state transition graph there exists at least one terminal SCC.
Given two maximal components A,B ∈ M(T ) we say that A precedes B (indi-
cated A → B) whenever a directed path from A to B exists.

Terminal SCCs are minimal with respect to this ordering relationship because
they are the attractors of the dynamics and by definition they are their own
successors. In the literature of asynchronous networks, in order to emphasize
that a limit cycle cannot coincide with an attractor but rather with a part of
it, attractors which are not point-attractors are sometimes referred to as loose
attractors [HB97].

An informative representation of the state transition graph structure is then
provided by a graph in which the set of nodes/vertices is the set of maximal SCCs
M(T ) and edges/arcs are the pairs (A,B) such that A precedes B (A → B). In
a similar way to [BCM+13], we call hierarchical transition graph (HTG) of the
asynchronous network this compact version of the asynchronous state transition
graph structure.

In this work, we are concerned with the method to determine the hierarchical
transition graph under certain hypothesis. Moreover, the algorithm is based on
the possibility of generating transition paths in the state transition graph that
avoid to cross previously determined cycles. Despite the number of nodes of the
state transition graph is exponential in the number of genes, the algorithm we
propose here is efficient if the graph satisfies few necessary hypotheses (described
below) in order to visit only a small fraction of the whole graph.
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The best algorithm for finding SCC in a directed graph is the algorithm from
Tarjan [Tar72]. Its time complexity is o(N + M), i.e., linear in the number of
nodes N of the resulting state transition graph, and in the number of transitions
between states M [Tar72]. We achieve a similar bound in the size of the hierar-
chical transition graph: the linear bound is therefore obtained with respect to (i)
the number of maximal SCCs, (ii) the number of nodes in any SCC and (iii) the
length of transient paths connecting pairs of SCCs. This result can be attained
because thanks to the use of logical Boolean expression of the dynamics we do
not need to explicitly compute the whole state transition graph. Instead, by fol-
lowing the approach by Dubrova and Teslenko [DT11], we generate transition
paths as solutions of the Boolean satisfiability problem, which can be computed
by using highly specialised and optimised software called SAT solvers. In partic-
ular, logical expressions can be adapted during the computation, in such a way
that their paths avoid nodes belonging to previously-discovered cycles.

In the following, we use the term SAT-complexity meaning that we count
any call to the SAT solver at unitary cost; this is the same situation assumed
in the case of synchronous dynamics in [DT11], where the main-loop iterates on
the number of cycles of the relative state transition graph. Nevertheless, from
the complexity viewpoint, any call to the SAT solver could impact on runtime
with an exponential cost. Therefore, strictly speaking, the procedure cannot be
said to have polynomial complexity but we can measure the complexity of the
procedure in terms of calls to the SAT solver and also in terms of the fraction of
the state transition graph visited in order to determine the hierarchical transition
graph of the asynchronous network. If the above mentioned three conditions on
the structure of SCCs are respected, the proposed variant of Tarjan’s algorithm
has a polynomial SAT-complexity bound on the number of genes n.

The main result of our work is the presentation of a new algorithm to deter-
mine the hierarchical transition graph of Boolean networks with several dozens
of genes in the asynchronous dynamics. To this aim, we recall in Sect. 2 some
definitions and formalisms on Boolean regulatory networks. In Sect. 3, we sum-
marise the algorithm for finding limit cycles in the case of synchronous Boolean
networks. Our algorithm is obtained by merging the (optimal) Tarjan approach
to the determination of SCCs and the algorithm that generates paths by the
SAT solver. The combination of these two approaches, described in Sect. 4, is
the main result presented in this paper since it allows to determine the hier-
archical transition graph of SCCs without exploring the entire state transition
graph.

2 Boolean Networks as Dynamical Systems

Since Kauffman’s studies, steady states and limit cycles in gene regulatory net-
works are regarded as set up of cellular genetic programs. Therefore there is some
interest in studying the dynamics of groups of genes in the context of biological
functions they are supposed to be involved in. For instance, cell differentiation
is one of these functions in which the activation of the genetic transcription
program brings the cell into a novel phenotypic state [Kau93,DJ02].
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Definition 1. A gene regulatory network of a set of genes V (|V | = n) assum-
ing values in a scalar domain K is described by components ( i.e., by dependency
functions)

fv : Kn → K for any gene v ∈ V.

Each of these functions is one component of the synchronous global updating
function of the state (that for the sake of simplicity we call the dynamics),

Tsync : Kn → K
n

where for any state s = (k1, . . . , kn) ∈ K
n we obtain a new state of the system

by
Tsync(s) = (fv1(s), . . . , fvn

(s)).

In the case of Definition 1, the dynamics is termed synchronous to put in evidence
the fact that at each step all the components of the state are updated at once.
A more flexible situation occurs when we want to study the evolution given the
asynchronous dynamics. In this case, each component is updated independently
from the others with no specific order in the sequence of updates. The result-
ing behaviour can be though as a non-deterministic dynamical system where
starting from a configuration it is possible to reach different configurations as
a consequence of the choice of the component vi (with i chosen at random) to
update.

Definition 2. The asynchronous updating function is

Tasync : Kn → K
n

where for any state s = (k1, . . . , kn) ∈ K
n we obtain a new state of the system

by

Tasync(s) = (k1, . . . , fvi
(s), . . . , kn) for any choice of i ∈ {1, . . . , n}.

Definition 3. The state transition graph of the dynamics T (either Tsync or
Tasync) is a graph G(T ) with nodes in K

n and edges (s, s′) ∈ K
n ×K

n if and only
if s′ = T (s).

Note that the number of nodes N in the state transition graph corresponds to
the number of possible states which is the exponential in the size |K| to the
power n, the number of genes, namely

N = |G(T )| = |K|n

regardless of the chosen dynamics (synchronous or asynchronous). The most
commonly used scalar field consists of the binary one K = F2, in which case
each component of the dynamics T can be expressed as a Boolean expression,
and the corresponding genetic regulatory network is simply referred to as a
Boolean network (BN).
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Example 1. Let us consider a genetic regulatory network on F2, with |V | = 3
and the components given by the following Boolean expressions:

f1(s1, s2, s3) = ¬s3 ∧ (s1 ∨ s2) (1)
f2(s1, s2, s3) = s1 ∧ s3

f3(s1, s2, s3) = ¬s3 ∨ (s1 ∧ s2)

For what concerns the corresponding state transition graph, we have that N =
qn = 23 = 8. Figure 1 shows the two graphs corresponding to state transition
graph in both synchronous and asynchronous dynamics.

(a) G(Tsync) (b) G(Tasync)

Fig. 1. Synchronous and asynchronous dynamics state transition graphs of the Boolean
network specified in Eq. (1).

We are interested in several parameters which describe the state transition
graph obtained starting from a given Boolean network with different transition
functions and, particularly in biological applications we are concerned with the
determination of the strongly connected components of the state transition graph
since the biological interpretation of SCCs can be related to the stable functional
characterisation of the cell behaviour [Kau93,DJ02]. Synchronous updates are
rough but reasonable models of (early) response in signal networks. In Fig. 1,
we compare the two state transition graphs G(Tsync) and G(Tasync). In the first
case, we see that any path terminates in a cycle, whilst in the latter case we
have many self loops and two SCCs, one of which is terminal (i.e., an attractor).
When the state transition graph is available and feasible to manage, one can
describe the relationship between pair of maximal SCCs as a partial order.

A useful definition in [GCBP+13] describes a “state-transition diagram” as
a hierarchical transition graph. Hierarchical transition graphs are built on the
analysis of the paths from initial states to attractors. In this paper, we tackle the
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problem of determining these SCCs in the G(Tasync) when the graph is too large
to be explicitly computed, although its compressed form (i.e., the hierarchical
transition graph) can be effectively computed. See an example in Fig. 2.

Fig. 2. An asynchronous random network with n = 7. The hierarchical transition
graph in panel (b) (nodes are the maximal SCCs) is much more compact than the
corresponding state transition graph in panel (a). (Color figure online)

Definition 4. Given the state transition graph G(Tasync), M(T )async the set
of its maximal strongly connected components and → a partial order relation
between elements of M(T )async, we define the hierarchical transition graph as
the graph

H(Tasync) := (M(T )async,→).

Given the specification of the dynamics of a Boolean network Tasync, the gen-
eral method for determining all the maximal SCCs of its state transition graph
G(Tasync), consists in exhaustively analysing the graph. As already mentioned
the number of nodes in G(T ) is N = 2n, so that in order to make effective any
procedure to compute H(Tasync), we need polynomial bounds for:

1. k where M(Tasync) = {m1, . . . ,mk}, that is the number of maximal SCCs,
2. l = max1≤i≤k ki where mi = {si,1, . . . , si,ki

}, that is the cardinality of the
largest SCC,

3. d that is the length of the longest path between two SCCs; in particular, this
measure is bounded by the diameter of the state transition graph G(Tasync).

With the above notations, we have the following
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Theorem 1. The SAT-complexity of determining H(Tasync) is bounded by

o((k + log2 d) l d).

If the three quantities k, l, d < nc for some c, the procedure is effective with
regards to the number of calls to the SAT solver; i.e., it is polynomial-time in
the number of calls to the SAT solver and we denote this execution time as
oSAT (n3c).

In the rest of the paper, we constructively show that there exists an algorithm
which effectively finds the H(Tasync) for those Boolean networks which satisfy
complexity bounds in the hypothesis.

We tackle the problem of efficiently determining the hierarchical transition
graph of an asynchronous network by visiting only nodes of the state transition
graph which belong to the SCCs and paths connecting them. In order to obtain
the optimal solution, this work relies on the integration of (i) the best known
algorithm to determine SCCs, i.e., the algorithm from Tarjan and (ii) the use
of Boolean formulas for expressing any path which belongs to the graph. This
condition enables the use of a SAT solver in order to find assignments to the
variables which satisfies the path-formula. Moreover, the path-formula can be
enriched with extra conditions on the represented states, avoiding that nodes of
already discovered loops appear again on the path obtained by the SAT solver.
This technique allows to overcome limitations of an exhaustive approach. It has
indeed been successfully applied in the determination of the limit cycles of gene
regulatory networks using a synchronous update. In the asynchronous case, the
results are very limited since the structure of cycles as described by the SCCs of
G(Tasync) is much more complex.

3 Finding Limit Cycles in Synchronous Networks

The first ingredient of our work is the possibility of computing cycles in a state
transition graph without exhaustively exploring it in its entirety. Indeed, for the
gene regulatory networks of our interest that are composed of several dozens of
genes, the corresponding state transition graph is so large that it is not even
possible to store it in current digital memories.

To overcome such limitations, several approaches have been suggested, all
sharing the idea to treat the updating function in a symbolic manner, like
in [DT11,BGS06,ZYL+13]. To this end, there have been various proposals
such as Binary Decision Diagrams [GMDC+09], Algebraic Decision Diagrams
[BFG+93], Boolean Expressions and Logic Programming [HMMK13].

The approach suggested by Dubrova and Teslenko in [DT11] consisted in
starting from the Boolean expressions of the components fv of the dynamics and
in defining a Boolean expression in the variables, representing relations between
successive states in a path of the graph G(Tsync):

StepExpression[t] :=
n∧

i=1

sti ↔ fvi
(st−1

1 , . . . st−1
n ). (2)
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Then, by iterating the expression for a number of steps from t − k to t, the
algorithm gets the expression corresponding to a Boolean Expression which any
path in G(Tsync) has to satisfy:

PathExpression[t − k, t] :=
k−1∧

i=0

StepExpression[t − i].

Note that the number of variables involved in each formula depends on the
number of the genes and the length of the path, namely, if we identify the size
of the expression with the number of variables, we have

|PathExpression[t − k, t]| = nk.

In Algorithm 1, we present the algorithm proposed by Dubrova. It consists in
a while-loop which at each iteration performs a call to a SAT solver in order to
test if a certain Boolean expression admits a solution. The Boolean expression is
the conjunction of the PathExpression and a condition excluding that new paths
have nodes which belong to already discovered cycles. If a solution exists, then
the presence of a cycle is easily verified by testing for the presence of repeated
states in the solution path provided by the SAT solver (CheckPath function).
When the algorithm does not find any cycle in a path, then the PathExpression
doubles the path length. This last step is very important since, when the path
length becomes longer than the diameter of state transition graph and at the
same time the algorithm has already visited any cycle in state transition graph,
then the formula F becomes unsatisfiable and the exit condition of the loop is
reached. From the viewpoint of the run-time complexity, this method performs a
number of iterations which in the worst case is bounded by twice the logarithm
of the diameter plus the number of cycles in G(Tsync). The number of iterations
of the main cycle does not provide the complexity of the algorithm in the usual
sense, since at each iteration we call the SAT solver which has an exponential
complexity bound (on the size of the formula).

Thanks to this approach it is possible to establish limit cycles of synchronous
GRNs consisting of a great number of genes. Our numerical experiments are in
line with results reported in [DT11] and it is even possible to find limit cycles of
a realistic network with 51 genes [PBC+10] in a matter of seconds, which would
be impossible to achieve by using an exhaustive search algorithm.

In Table 1, we give an appreciation of how much better the symbolic approach
is with respect to the exhaustive search: note that the number of nodes visited
by our method (fourth column), is in the order of hundreds against the huge
number of nodes appearing in the state transition graph (N = 2n) even for
networks consisting of many nodes (e.g., last rows of the table).

Note that the maximal length of the paths does not need to be known in
advance. In fact, although it depends on the network diameter, in practice it
is found dynamically: the algorithm ends when, by doubling the length of the
paths, this number exceeds the diameter and there is no path which can satisfy
the formula F , since the algorithm has already found all the cycles.



96 M. Pedicini et al.

Algorithm 1. Dubrova-Teslenko Algorithm to find limit cycles of G(Tsync) start-
ing from the Boolean expression of Tsync.
Require: Boolean expression PathExpression which is satisfied by any path in the

dynamics Tsync; a global stack data structure representing the intermediate state
of the calculation of the HTG.

1: function Cycles(T )
2: Initialise
3: path length := 1
4: F := PathExpression(−path length, 0)
5: while Satisfiability(F ) do
6: (c−path length, . . . , c0) := SAT(F )
7: if CheckPath((c−path length, . . . , c0)) then
8: cj minimal state forming the loop
9: Attractors(s0) := Attractors(s0) ∧ (s0 ↔ cj)

10: F := F ∧ ¬Attractors(s0)
11: end if
12: if attractor is found then
13: attractor is found := false
14: else
15: F := PathExpression(−2path length, 0)
16: path length := 2 path length
17: end if
18: end while
19: end function

Table 1. Statistics of the runs of our implementation of Dubrova Algorithm on several
literature GRNs using the synchronous updating dynamics.

n GRN name # Limit cycles Visited nodes Paths (#

SAT calls)

Max path

length

Reference Time

10 Fission yeast 13 × 1 28 16 8 [GMDC+09] 0.45

10 Mammalian cell 1 × 7, 1 × 1 29 6 16 [DT11] 0.25

12 Budding yeast 7 × 1 52 12 16 [DT11] 1.11

15 Arabidopsis

thaliana

10 × 1 45 14 16 [DT11] 1.74

23 T-helper cell 3 × 1 42 7 16 [DT11] 0.29

40 T-helper cell

receptor

1 × 6, 8 × 1 136 14 32 [DT11] 3.08

51 Th1/Th2 Switch 1 × 3, 3 × 1 97 10 64 [PBC+10] 6.06

52 Drosophila

megalonoster

7 × 1 172 13 32 [DT11] 6.10

54 MAPK 7 × 8, 2 × 7, 4 × 4,

1 × 2, 3 × 1

295 22 32 [GCBP+13] 62.00

4 The Algorithm for the Asynchronous Case

What described in the above section leads us to the conclusion that at least in
the synchronous case, even when the number of genes produces a large state
transition graph and its size makes any tentative to determine limit cycles
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unreasonable, we have an effective tool which helps addressing (and solving
indeed) the problem of finding limit cycles. In the asynchronous case, we have
a different formula describing a single step, that is, instead of Eq. 2 we have to
use the following one:

StepExpression[t] :=
n∨

i=1

⎛

⎜
⎜
⎝sti ↔ fvi

(st−1
1 , . . . st−1

n ) ∧
n∧

j=1
j �=i

stj ↔ st−1
j

⎞

⎟
⎟
⎠ . (3)

As it is evident, this formula has a greater logical complexity with respect
to the one corresponding to the synchronous case, that is Eq. 2; a fact which
reflects in the more intricate nature of the G(Tasync).

Algorithm 1 works on the assumption that Tsync behaves as a deterministic
function and only one possible transition can occur after a state; in this way a
cycle is certainly found if the path is long enough. Moreover, once a path reaches
a loop, it never leaves it (because of the uniqueness of the successor state).

In the asynchronous case, for any state we possibly have n successors (one
for each gene, i.e., component, i.e., updating rule). The case in Fig. 1 is more
complicated because non terminal cycles exist, making the problem of deter-
mining the structure of G(Tasync) more similar to the identification of SCCs in a
directed graph.

The strongly connected components of a directed graph can be found using a
variant of the depth-first search (the method was originally devised by R.E. Tarjan
in 1972, as stated above). Since it is based on the depth-first search (DFS), it runs in
time proportional to |V |+ |E|. It is worth to mention that before Tarjan, no linear
time algorithm (in the number |E|) was known for this problem. A straightforward
approach to the same problem is to follow a path-based algorithm as initially pro-
posed by Purdom [Pur70] and Munro [Mun71] for strong components, later deeply
analysed by Gabow [Gab00]. As a consequence of the structure of Dubrova’s algo-
rithm which at each iteration generates one path, the “path oriented” approach to
finding maximal SCCs in the state transition graph is the more appropriate choice.

We now describe the steps undertaken to design the algorithm which com-
bines those of Dubrova (Algorithm1) and Tarjan without affecting their com-
plexity bounds. The structure of Algorithm1 is unchanged, since the algo-
rithm makes calls to the SAT solver to find an assignment to the variables
which appears in the expression specifying the path of length path length in
the asynchronous dynamics. Note that we do not change the definition of
PathExpression[t−k, t] but StepExpression[t] has been replaced with the one given
in Eq. 3. In this case, because of the different dynamics, we have to consider that
cycles can appear also in non-terminal SCCs thus, by running Algorithm1, we
have to detect cycles as part of SCCs in G(Tasync). In order to do so, we interleave
the execution of Algorithm 1 with the path-oriented Tarjan algorithm to discover
SCCs. Instead of calling the function CheckPath which tests the presence of a
loop in the path (i.e., line 7 of Algorithm 1) a more subtle implementation of this
test is required: a new function CheckPath is given as Algorithm 2, it can be seen
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as the partial evaluation of the strongly connected components determination
algorithm at each iteration and is our main contribution to this work.

Unfortunately, in Tarjan’s Algorithm the depth first search visit is performed
by exploring the graph in a precise order, that is, by following all outgoing edges
of the encountered nodes. In our case, however, we have to follow the sequence
of nodes in the path provided by the SAT solver. By imposing the ¬Attractors
condition in the formula F , we are sure that the path provided by the SAT solver
does not contain any node belonging to previously discovered SCCs, nevertheless
a node already encountered in a transient path can appear again in new paths.

Algorithm 2. Tarjan DFS specialised to path processing
Require: the global stack data structure defined in Algorithm 1
1: function CheckPath(v :: path)
2: if path �= emptypath then
3: w :: path′ := path
4: if w is marked then
5: ProcessBacklink(v, w)
6: else
7: Push(w)
8: Mark(w)
9: end if

10: CheckPath(w :: path′)
11: end if
12: end function

A difference with a generic depth first search algorithm is that a backtracking
function which closes the visit for a given node is not required since it is not
possible to say if a node will not be found again in next path to be analysed,
until we reach the end. Therefore, the visit of the sub-graph of paths starting in
a given node is never closed. Actually, when a node is absorbed in a SCC, then
the visit of the sub-graph is completed and the component is represented by the
node in the hierarchical transition graph which corresponds to its SCC.

What remains to be analysed are the functions used in the ProcessBacklink,
which is the main novelty of our work. The structure we use is a stack; one
stack for each thread, see Fig. 3. The function Push performs the push of a
node on the stack. New threads are created when the solution provided from
the SAT solver contains a node that has never been encountered before in first
position. A node found more than once has multiple outgoing edges in its stack
and therefore the stack is a tree. In order to detect loops, we fix an ordering
between threads and we add pointers from nodes belonging to threads that are
in ‘higher’ positions to nodes which are in ‘lower’ positions. When this ordering
is broken (i.e., ThreadPrecedes is false), because the edge we would like to add
connects a node in a lower thread to a higher one, then a merge operation is
issued (MoveSubtree) and the subtree in higher position is moved under the node
in lower position. We test for the presence of a loop in the branch of the tree
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Algorithm 3. Function ProcessBacklink specialised for the path oriented version
of Tarjan.
Require: the global stack data structure defined in Algorithm 1
1: function ProcessBacklink(v, w)
2: if TestLoop(v, w) then
3: CollapsePath(w, v)
4: else
5: if ThreadPrecedes(w, v) then
6: PushPointer(v, w)
7: else
8: MoveSubtree(w, v)
9: end if

10: end if
11: end function

Fig. 3. Example of the data structure of the multithreaded stack (red-links represent
backlinks, red nodes represent SCCs collapsed in that node). (Color figure online)

which contains the node w. If a loop is found then we collapse the path to a
single canonical node representing an entire component by using CollapsePath.

5 Testing on Random Networks

We report about several runs performed on random Boolean networks. These are
specified as directed graphs whose links represent either activations or inhibitions
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Table 2. Runtime best and worst case out of 20 randomly generated GRNs with
both synchronous and asynchronous dynamics. See symbol legend in the paragraph
text. Missing data correspond to cases exceeding a bound in the execution time. When
runtime exceeds a given time-out (heuristic dependent on the number of genes) they
are shown among parentheses.

n v v/2n paths
(# SAT
calls)

max
length of
paths

density (K/N) inh/(act+inh) time

5
S

8 .25 3 4 0.36 0.11 0.09
15 .47 6 8 0.32 0.01 0.16

A
16 .50 6 16 0.48 0.08 1.28
32 1.00 19 8 0.48 0.08 5.24

7
S

11 .09 4 8 0.31 0.07 0.10
41 .32 11 8 0.35 0.29 0.30

A
57 .45 12 16 0.29 0.00 4.39

128 1.00 62 16 0.14 0.15 189.89

8
S

5 .02 3 4 0.19 0.17 0.10
31 .12 8 16 0.36 0.30 0.25

A
144 .56 12 32 0.27 0.18 25.04
256 1.00 125 8 0.14 0.22 486.15

10
S

17 .17 7 8 0.1 0.2 0.18
153 .15 20 16 0.17 0.18 3.81

A
210 .21 10 64 0.2 0.1 34.99

1024 1.00 485 16 0.23 0.48 7703.87

11
S

14 .01 5 8 0.17 0.01 0.17
36 .02 10 8 0.17 0.01 0.53

A
286 .14 17 64 0.19 0.0 100.22

2048 1.00 572 16 0.15 0.11 27188.90

12
S

14 3× 10−3 5 8 0.17 0.01 0.17
36 .01 10 8 0.17 0.01 0.53

A
302 .07 13 64 0.23 0.18 56.6134

3056 .75 300 64 0.17 0.02 49736.80

16
S

16 2× 10−4 4 8 0.13 0.01 0.16
32 5× 10−4 7 16 0.13 0.01 0.36

A
68 1× 10−3 7 32 0.14 0.09 14.07

100
S

18 1× 10−29 4 8 0.15 0.02 0.60
367 3× 10−28 21 32 0.15 0.02 139.85

A

1000
S

32 3× 10−300 5 16 0.10 0.01 96.85
63 6× 10−300 7 32 0.15 0.02 931.59

A
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among genes. Two parameters control the generation of the graph: (i) the density
parameter δ gives the probability that a gene influences another gene, namely
that there is a link between them; (ii) the probability α that such a link is an
inhibition (respectively 1 − α for activation). What we report in Table 2 is the
best and worst case in terms of performance computed on twenty independent
runs for both synchronous and asynchronous updating rules. In the table S stays
for synchronous update and A for asynchronous; p is the number of generated
paths which coincides with the number of SAT-solver calls; m is the maximal
length of paths (it relates to the diameter of the STG); δ is the density of
the GRN (fraction of links w.r.t. the fully linked network); α is the fraction of
inhibitors over the whole number of links in the GRN. The elapsed time t in
seconds correlates to the number of visited nodes v; the fraction of the whole
STG that was necessary to explore in order to determine the HTG is v/2n as
reported in 4th column.

Moreover whereas in the synchronous case there is a direct correlation
between t and m, in the asynchronous case this relationship is inverted. Note
that since the networks are drawn at random, the algorithm performs efficiently
when the hypotheses of Theorem 1 are satisfied. For instance this is the case of
the network with n = 16 for which v/2n equals to 585/216 � 10−3 which in fact
terminates in about 136 s. An opposite case is that of n = 10 for which the algo-
rithm explores the totality of nodes of the state transition graph (937/210 = 90%)
which runs for more than one hour due to the fact that the state transition graph
is made of many relatively small SCCs, a fact that translates to a smaller value
for m.

Note that the time values shown in the last column of Table 2 derive from
an implementation of the algorithm which does not conform to the criteria of
high performance and should therefore be considered as an indication of the
relationships among execution time and network characteristics as just discussed.
For those cases when the execution time exceeds a heuristic threshold (value
dependent on the number of genes), the time spent until that limit is shown
among parentheses. In the largest case of n = 103 the huge size of the search
space prevented the algorithm finding a single time for the execution of the
asynchronous case.

6 Conclusion

We have presented a method that can efficiently determine the attractors of a
gene regulatory network in the case of the asynchronous updating rule by com-
bining the formulation of a dynamical system in terms of satisfiability problems
with an efficient algorithm for determining the strongly connected components
of a graph; resulting in the possibility to determining the hierarchical transi-
tion graph without the need to entirely exploring the state transition graph.
The method presented here extends previous algorithms developed for the syn-
chronous dynamics to the asynchronous case which is regarded as being more
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realistic. The existence of the algorithm is a proof of Theorem1 which sum-
marises the link between the size of the hierarchical transition graph and the
run-time.

A more detailed description of the implementation will be provided in a
follow-up manuscript.
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Abstract. Random Boolean Networks (RBNs) are a popular and suc-
cessful model of gene regulatory networks, especially for analysing emer-
gent properties of cell dynamics. Since completely random networks
are unrealistic, some work has been done to extend the original model
with structural and functional properties observed in biological net-
works. Among recurring motifs identified by experimental studies, auto-
regulation seems to play a significant role in gene regulatory networks. In
this paper we present a model of auto-regulatory mechanisms by intro-
ducing self-loops in RBNs. Experiments are performed to analyse the
impact of self-loops in the RBNs asymptotic behaviour. Results show
that the number of attractors increases with the amount of self-loops,
while their robustness and stability decrease.

1 Introduction

Boolean Networks (BNs) have been successfully used as gene regulatory net-
work (GRN) models both for identifying generic properties of cell dynam-
ics [4,14,22,28] and for reproducing a specific (partial) genetic network recon-
structed from biological data [8,26]. When generic properties are sought, the
typical approach consists in studying ensembles of boolean networks generated
according to a given, biologically plausible, model, such as the one proposed by
Kauffman [14]. In this model a Random Boolean Network (RBN) is initialised
completely random both in the topology and in the functions, possibly defin-
ing the number of inputs each node has. Variants of this model have also been
considered, for example by restricting the set of boolean functions to canalising
ones, or by imposing a scale-free topology. These variants are inspired by biologi-
cal plausibility and are often suggested by the identification of crucial properties
and mechanisms observed in GRNs reconstructed from biological data.

The work presented in this paper is part of this research field. The long term
goal is to identify basic mechanisms and common motifs of GRNs underlying
fundamental cellular processes [24,29] that can be modelled as structural and
functional elementary bricks in BNs, thus making it possible to study generic
properties of cell dynamics by means of ensembles of more realistic BNs models.
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Furthermore, this repertoire of bricks may be used inside algorithms for the
automatic generation of BNs endowed with specific dynamical properties [6,7].
Such networks may also be exploited for designing and controlling the behaviour
of artificial entities [9].

As a first step, in this paper we analyse the role and the impact of self-
loops, which abounds in biological genetic networks, in RBNs dynamics. Indeed,
within a GRN, a self-loop models the property of a gene producing some chemical
substances that contribute at the regulation of its own gene. In particular we
focus here on positive self-loops, whose effect is to maintaining the activation
state of the gene.

We performed different simulation experiments where a RBN created com-
pletely random is incrementally modified introducing one self-loop at a time
until every node has one. Different configurations, in terms of network topology
and functions, are evaluated. Results show that self-loops have a crucial role in
RBN asymptotic states and the same trend is observed, independently from the
specific configuration: as the percentage of self-loops increases, the number of
attractors increases exponentially while their stability decreases almost linearly.

2 Motivation and Goal

BN is one of the formalisms adopted to model GRNs. The most used model
defines a RBN of n nodes according to the following rules: each node has exactly
k inputs, randomly chosen among the other nodes; boolean functions are assigned
to each node on the basis of the 2k truth table entries, in which the entry is set to
1 with probability p (the bias). A node of a RBN models a gene whose expression
is regulated by its k input genes. Boolean functions model the regulation type
such as, for instance, activation or inhibition. Formally, a BN is defined by a
directed graph of N nodes, each associated to a Boolean variable xi, i = 1, . . . , N ,
and a Boolean function fi(xi1 , . . . , xik) with {xi1 , . . . , xik} �� xi, i.e., self-loops
are not allowed; k is the number of inputs of node i. The arguments of the
Boolean function fi are the values of the nodes whose outgoing arcs are connected
to node i. The state of the system at time t, t ∈ N , is defined by the array of
the N Boolean variable values at time t: s(t) ≡ (x1(t), ..., xN(t)).

Literature suggests that RBNs are particularly effective as an abstract model
of GRNs for reproducing the most relevant features of experimentally observed
phenomena. In particular, much work has been done to compare the RBNs
asymptotic states to GRNs evolution. A notable example is the work proposed
by Kauffman [14] where RBNs are used as a model that describes the dynamics of
cellular differentiation. There, attractors of RBNs are identified with cell types,
since each state corresponds to the dynamic activation of a subset of nodes, i.e.,
of a subset of genes that are the markers of a specific cell type or differentiation
stage.

From there, research efforts extended the basic model to include features and
mechanisms that are significant in the biological systems. Extensions investigate
for instance the role of noise in the stability of the asymptotic states [12,28], since
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it plays a crucial role in cellular regulatory networks [17]. Other works [10,15]
discuss whether boolean rules, if selected randomly among all the possible
boolean functions of k inputs, are an acceptable approximation to model gene
regulation. Their conclusion states that canalising rules reproduce experimen-
tal observation more accurately. Finally, the distribution of GRNs is analysed,
observing that they mainly exhibit a scale-free topology [2], and simulation
experiments with scale-free RBNs are performed, suggesting that nor pure ran-
dom neither scale-free are likely the best approximation for GRN topology and
that further studies are worthy [3,21,23].

Given these premises, we believe that analysing common motifs and basic
mechanisms of GRNs, and identifying the best solution for modelling them as
structural and functional elementary bricks in RBNs, would support a more
aware analysis and understanding of the emergent dynamics obtained with
the simulation [1,29]. The research presented in this paper grounds on this
vision. Our long term goal is to build a catalogue of bricks—similarly from
the BioBricksTM idea of Synthetic Biology [25]—whose function and role inside
a GRN is known. The expected impact of this bricks catalogue is twofold. On
one side the analysis of GRNs dynamics via simulation will provide an in depth
clue on the link between the function of the parts and the emergent behaviour
observed. On the other side, the engineering and design of RBNs with specific
behaviours will then be possible by composing known bricks.

We present in this paper a first step towards this challenging result. The
network motif under study here is self-loop, also known as auto-regulation mech-
anism, i.e., the gene regulation motif where a transcription factor regulates the
transcription of its own gene. Self-loops abound in biological genetic networks
[11]. In this paper we focus on positive self-loops responsible for the up-regulation
of their own genes. This mechanism is particularly evident in the differentiation
process, where cells, from a stem state, choose a fate towards specific specialised
cells. For example, from the Drosophila GRN shown in Fig. 8 of [18], all the four
main genes responsible for the patterning of gap genes expression during embryo
development are involved in autocatalytic reactions.

To the best of our knowledge, the impact of self-loops has only preliminarily
been studied in RBNs. A first work is presented in [20], where the relation
between the sign of the regulation (positive or negative) and the robustness of
the network is investigated.

3 Methods

The impact of the introduction of self-loops into a RBN has been studied through
simulation. In particular the goal was to observe how the asymptotic behaviour
of the network, namely the number of attractors and their stability, changes as
a function of the fraction of self-loops added.

As in the RBN model introduced by Kauffman [13], we suppose that one
node in the RBN corresponds to one gene in the GRN. For simulation purposes,
we modified a randomly generated boolean network in different ways; we have:
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AUGM-RND: added a self-loop and extended the truth table randomly (with
the same bias used for generating the original RBN);

AUGM-OR: added a self-loop and changed the node boolean function into an
OR between the node value and the previous function;

CONST-RND: removed an incoming link and replaced the input with a self-
loop, without changing the node boolean function;

CONST-OR: removed an incoming link and replaced the input with a self-
loop, and changed the node boolean function into an OR between the node
value and the previous function.

(a) (b) (c)

Fig. 1. a: Typical generic node generated following the original RBN model with k = 2,
self-loops are not allowed. b: Example of a node modified for experiments with a self-
loop added. c: Example of a node modified for experiments with an incoming link
removal and self-loop addition. Outcoming arcs are not drawn since both the RBN
model and our models do not impose constraints on them.

In Fig. 1 we elucidate how a single network node is modified to obtain the
experiments configurations previously mentioned. We thus explore the role of
self-loops in both the cases of maintaining a random boolean function and of
adopting a canalising function (OR). The choice to explore canalising functions
is motivated by the focus on self-loops with self-activating effect. Indeed, accord-
ing to the role they have in biological networks, a positive self-loop should model
the property of a gene producing some chemical substances that contribute main-
taining the activation state of that gene. This means, within a RBN, that the
function should keep the node value. It is worth mentioning that, since within
a RBN we do not associate 0 with gene off and 1 with gene on, but we are
interested in maintenance and transition of states, using an OR function or an
AND function is conceptually the same.

For each of these experiments, self-loops are introduced incrementally to the
original RBN. In this way we have a fraction of self-loops varying from 0 to 1
(no node has a self-loop – all nodes have a self-loop) and we are able to observe
how the behaviour of the network is modified step-by-step.

In all experiments, each RBN is simulated following a synchronous dynamics
update scheme—i.e., nodes update their states at the same instant—and with
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deterministic functions. Since the state space is finite, the BN after a transient
eventually reaches a fixed point or a cyclic attractor ; these are the only achievable
asymptotic states in this setting.

Statistics are taken across 50 different RBNs with n = 20 nodes. Initial
RBNs are created with k = 2 and function bias p equal to 0.5. The value of
the k parameter is chosen for its biological plausibility [13,16,22]. The ensemble
of RBNs having these bias and k values are in critical dynamic regime [5]. We
sampled from this networks ensemble because, statistically, they exhibit robust-
ness and adaptiveness similar to real genetic regulatory networks [27,28]. In the
experiments, we explored all the possible initial states (220) of the RBN, to
obtain the whole attractors landscape. Since we did not want the results of com-
parisons between models to be affected by the variance of the network dynamic
regime, we set an exact bias to initial RBNs (before any modification). To do
this, we computed a random permutation of a vector with length equal to the
sum of all Boolean functions entries (2k ∗n) with half of the values to 1 and the
remaining to 0; we take a portion of this vector to populate the truth table of a
node.

To estimate the dynamic robustness of a network we introduced noise, mod-
elled by a random flip of a randomly chosen node (logic negation of a node
state). We have flipped each node of each state of each attractor in order to
compute a matrix, called Attractor Transition Matrix (ATM), that summarises
the transition probabilities between attractors; the procedure is described in
[19,28]. In particular, to compute our statistics measuring the network robust-
ness, we examine the main diagonal of the ATM: each diagonal entry give us the
estimate probability of returning in the same attractor as a result of a random
node perturbation.

4 Results

Results reveal that self-loops massively affect the number of attractors and their
robustness. Figures 2, 3, 4 and 5 show how the average number of attractors and
the probability of returning to an attractor vary as a function of the fraction
of self-loops. In particular, on the left side of Figs. 2, 3, 4 and 5, each point
corresponds to the average number of attractors obtained across the 50 networks
with a particular fraction of self-loops. On the right side, we have the robustness
trend as a function of the fraction of self-loops; each boxplot represents the
distribution of the ATM main diagonal values from all 50 BNs.

Generally speaking, we can observe that the number of attractors is higher
in the networks with self-loops. It grows quasi-exponentially, thus the effect
observed is gradually more evident with increasing number of self-loops. In par-
ticular under around 30% of self-loops, the number of attractors slowly grows, not
impacting too much the network dynamics, while afterwords it sharply increases,
strongly reconfiguring the attractor landscape. At the same time, attractors’
robustness tends to be smaller than in classical RBNs. This result is quite intu-
itive: since the number of attractors is significantly higher, the size of the basins
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Fig. 2. Average number of attractors (i.e., both cycles and fixed points) as a function
of the fraction of self-loops added in RBNs originally with k = 2 (a). Distribution of
the probabilities of returning to an attractor after one node flip (b).

Fig. 3. Average number of attractors (i.e., both cycles and fixed points) as a function
of the fraction of self-loops added with an OR function in RBNs originally with k = 2
(a). Distribution of the probabilities of returning to an attractor after one node flip (b).
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Fig. 4. Average number of attractors (i.e., both cycles and fixed points) as a function of
the fraction of self-loops added in RBNs originally with k = 2 (self-loops are introduced
by rewiring a randomly chosen input) (a). Distribution of the probabilities of returning
to an attractor after one node flip (b).

Fig. 5. Average number of attractors (i.e., both cycles and fixed points) as a function
of the fraction of self-loops added in RBNs with k = 2 (self-loops are introduced by
rewiring a randomly chosen input and substituting the boolean function with an OR)
(a). Distribution of the probabilities of returning to an attractor after one node flip (b).
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of attraction should on average be smaller, thus making less likely to return
to the same attractor after a flip, while easier to move in an other attractor.
Moreover, the impact is even more striking when boolean functions are changed
into an OR between the previous function and the node value involved in the
self-loop.

Even though we have found that the results are qualitatively the same for
all the four variants we considered for introducing self-loops (as discussed in
Sect. 3), in the following we detail the main differences we observed.

AUGM-RND: the number of attractors varies quasi-exponentially until
around 70 attractors for networks with a self-loop in each node. Conversely
the median value of the returning probability decreases from around 0.6 to
0.3. However the distribution of the ATM main diagonal values is widely dis-
tributed between the extreme values of the range;

AUGM-OR: the peculiar characteristic of this experiment is that the num-
ber of attractors raises exponentially until around 2000 attractors. We used
a logarithmic scale to zoom the plot to just a few nodes with self-loops; we
motivate this significative difference in the attractors number, with respect to
the previous configuration, noting that the OR function increases the proba-
bility that one node is in the 1 state, and it assures that it remains at that
value;

CONST-RND: the number of attractors varies approximately exponentially
until around 400 attractors, i.e., more than the max number of attractors we
have in experiments where we add a self-loop;

CONST-OR: the number of attractors varies exponentially until around 600
attractors. Peculiar in this setting is the median value of the returning prob-
ability graph where the probabilities of returning to an attractor, after one
node flip, decreases until around 0.1, which is the lowest value we have in all
the settings we considered.

4.1 RBNs with OR Functions

A question may be asked as to what extent the observed results depend on OR
functions rather than self-loops. To address this question we first observe that
in a BN with random topology and all OR functions it is very likely to have two
attractors corresponding to two fixed points S0 = (00 . . . 0) and S1 = (11 . . . 1),
characterised by a basin of attraction of 1 and 2n − 1, respectively. Therefore,
in the limit case the number of attractors decreases—instead of increasing as in
the case with self-loops—and so we expect experimentally. Results of—statistics
over 50—experiments are summarised in Fig. 6.

We observed that the average number of attractors tends to decrease until
almost 80% of OR functions within the network. This result is consistent with
literature findings: from theoretical results is known that canalising functions



112 S. Montagna et al.

Fig. 6. Average number of attractors (i.e., both cycles and fixed points) as a function
of the number of nodes with an OR function (a). Distribution of the probabilities of
returning to an attractor after one node flip (b).

move the RBN with k = 2 from a critical dynamic regime towards an ordered
regime where we observed that the mean number of attractors is one. Thereafter,
we observe a final increasing trend. We conjecture that it is due to the growing
prevalence of network with two fixed points. In particular with all OR functions
we measure an average number of attractors slightly bigger than two. We think
that this result is owing to network topology that prevents the signal to be
propagated to the whole network.

5 Discussion and Conclusion

If we want to stay close to the Kauffman interpretation of attractors, during the
process of differentiation a RBN evolves and passes through different attractors
that represent different cellular states, from stem cells to terminally differentiated
cells. In this vision, the number of attractors models cellular diversity, while
attractor stability models how strong must a signal be to move from one cell
type to another. A tight balance between diversity and robustness ensures the
perfect homeostasis known in multicellular organisms.

By analysing the impact of positive self-loops in RBN attractor landscape, we
observed that they have an important role in network dynamics, and particularly
on the number and stability of attractors. On one side they bring diversification,
on the other side they seem to be responsible for instability. An operating point,
where the balance is perfect as in biological world, is worth to be found.
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More than that, biological research identified, for each differentiation state, a
set of markers that characterise and identify the differentiation state. In RBNs,
within each attractor, only a subset of nodes maintains its state (on/off). We here
speculate that these nodes can model the concept of markers—an in-depth anal-
ysis of this claim is devoted to future work. In the model presented in this paper,
self-loops are the mechanism that contributes maintaining the node state. This
is particularly true considering those networks were self-loops are introduced
with the OR function. There, their role is exactly to keep the local stability on a
subset of nodes, representing the marker genes. If the network is in the operating
point, “some self-loops but not too many”, they have the crucial role to cause
diversification, i.e., different cell types, without harming attractors stability, i.e.,
cell type robustness.

Finding this operating point is thus crucial. However not trivial, especially
because homeostasis in multicellular organisms is the result of a number of differ-
ent mechanisms. This means that, including in the model also other phenomena
and bricks, can change the dynamic described in this paper. In particular we
draw the reader attention to auto-inhibitory processes, epigenetics and cell-to-
cell interactions. Auto-inhibition negatively regulate gene expression. Epigenet-
ics affects gene expression by changing the chromatin accessibility. As a conse-
quence, cells with the same set of genes respond differently to the same signal.
Cellular interactions influence the intracellular GRN dynamic by means of sig-
nals crosscutting cell membranes and whose effect is typically to activate or
inhibit the expression of the target gene.

We conclude that results shown in this paper suggest to study the advantage
of having self-loops in genetic networks during differentiation processes. How-
ever, further investigation is necessary to provide a more complete analysis and
understanding of the results observed in this paper, supporting our findings with
theoretical verification and estimation. Moreover, future work will be devoted to
investigate what mechanisms counterbalance the effect of self-loops on attrac-
tor robustness, which is, as discussed previously, a fundamental property for
modelling cell dynamics.

Finally, as mentioned in the Introduction section, we can think that this
catalogue of bricks we are building, and whose functions we are analysing, are
elementary building blocks that can be combined to face the reverse engineering
problem of reconstructing real GRNs or designing GRN model with desired
dynamics properties for artificial purposes. In addition, this approach can give
us insights of the evolutionary processes that biological GRNs have undergone.
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Abstract. Recently a cell differentiation model based on noisy random
Boolean networks has been proposed. This mathematical model is able
to describe in an elegant way the most relevant features of cell differenti-
ation. Noise plays a key role in this model; the different stages of the dif-
ferentiation process are emergent dynamical configurations deriving from
the control of the intracellular noise level. In this work we compare two
approaches to this cell differentiation framework: the first one (already
present in the literature) is focused on a network analysis representing
the average wandering of the system among its attractors, whereas the
second (new) approach takes into consideration the dynamical stories
of thousands of individual cells. Results showed that under a particular
noise condition the two approaches produce comparable results. There-
fore both can be used to model the cell differentiation process in an
integrative and complementary manner.

1 Introduction

Cell differentiation is the process by which the development of specialized cell
types takes place, starting from a single cell (the zygote). The development of
different cell types is the result of highly complex dynamics between intracellu-
lar, intercellular, external and inherited signals [4,5]. Intracellular interactions
are captured in gene regulatory networks (GRNs): complex networks that reg-
ulate the gene expression. Each cell type presents a particular pattern of gene
expression.

Boolean networks (BNs) [6] are models of gene regulatory networks and
are prominent examples of complex dynamical systems. Recently a cell dif-
ferentiation model based on Boolean networks subject to noise has been pro-
posed [11,12]. This model reproduces the generic abstract features of the differ-
entiation process, such as the attainment of different degrees of differentiation,
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deterministic and stochastic differentiation, reversibility, induced pluripotency
and cell type change [12]. The model considers the asymptotic behaviours of
noisy random Boolean networks, where (intracellular) noise is modelled as the
transient flip of a node value. Attractors of BNs are unstable with respect to
noise even at low level [10]. In fact, even if the flips last for a single time step
sometimes we observe transitions from an attractor to another one. The main
abstraction introduced in the model presented in [11,12] is the Threshold Ergodic
Set (TES). TESs represent the asymptotic states of the BNs subject to noise.
The various steps of the differentiation process are represented by TES land-
scapes, which are the emergent results of intracellular noise changes. This model
offers a way to mitigate the intrinsic complexity of the analysis of stochastic sys-
tems: by applying it we are able to analyse a noisy random Boolean network and
produce a static global picture of the all possible differentiation pathways that
it can express. So, the main characteristics of the differentiation are captured by
TES-based differentiation trees, TES-trees in the following.

The generic abstract properties of the model have been already shown to
match those of the real biological phenomenon. However, we remark that (i) the
results produced by this model depend on the specific noise mechanism imple-
mented and therefore the properties enlighten by the TES model might differ
from those observed in the dynamics of real biological cells, as noise acting on
them might perturb them in different ways; and (ii) the differentiation picture
the TES model produces summarises all the possible outcomes of the BN dynam-
ics that may happen under this specific noise mechanism and so it might not
represent in sufficient detail individual cell dynamics. For these reasons, we com-
pared the properties of the TES model with the actual dynamical simulation of
the BN subject to random external perturbations with the aim of assessing to
what extent the two approaches exhibit comparable results and their respective
strengths and weaknesses.

The paper is organised as follows. In Sect. 2 we introduce the differentiation
model. In Sect. 3 the approach based on stochastic simulations of Boolean net-
works is illustrated. The experimental setting is described in Sect. 4. Results and
discussion are presented in Sects. 5 and 6, respectively.

2 TES Differentiation Model

The cell differentiation model we consider in this work has been presented in
[11,12]. This abstract model1 is able to describe the most relevant features of
the differentiation process, which are the following:

1. Different degrees of differentiation: totipotent, pluripotent, multipotent and
fully differentiated cells.

2. Stochastic differentiation: a population of identical cells can generate different
cell types, in a stochastic way.

1 It is abstract because does not refer to a specific organism or cell type.



118 M. Braccini et al.

3. Deterministic differentiation: activation or deactivation of specific genes or
group of genes can trigger the development of a multipotent cell into a well-
defined type.

4. Limited reversibility : a cell can come back to a previous stage under the action
of appropriate signals.

5. Induced pluripotency : fully differentiated cells can come back to a pluripotent
state by modifying the expression level of some genes.

6. Induced change of cell type: the expression of few transcription factors can
convert one cell type into another.

This differentiation model is based on noisy random Boolean networks. A
Boolean network (BN) is a genetic regulatory network (GRN) model, and a
complex dynamical system, introduced by Kauffman [6]. A BN is a discrete-
state and discrete-time dynamical system whose structure is defined by a directed
graph in which each node represents a gene; genes are binary devices that have
incoming arcs from other nodes if these last influence the activation of that gene.
The most studied BN models are characterized by synchronous dynamics and
deterministic functions. With such dynamics, the reachable asymptotic states
are fixed points and cyclic attractors.

This differentiation model takes into account only intracellular noise, since
it deals with a single cell as a closed system. It is generic and in principle can
support different definitions of noise; however in this contribution we adopt the
noise type originally presented in [11,12]. Hence, we investigate the asymptotic
dynamics of BNs subject to noise modelled by the transient flip of a randomly
chosen node which lasts for a single time step (a logic negation of node’s state).
After the transient flip the BN evolves according to its usual deterministic rules
until an attractor is found. This noise type represents the smallest stochastic
perturbation that can affect a Boolean network; even in this configuration we
can observe jumps from an attractor to another one. By perturbing each node of
each phase of each attractor found (one at a time), and checking in which attrac-
tor the dynamics lead we can compute the attractor transition matrix (ATM).
This procedure is described in [8,12,13]. The ATM summarises the observed
transitions between attractors and gives us an estimate of the probabilities with
which such transitions can occur; a measure of the system’s robustness respect
to a random flip of an arbitrary state.

The Threshold Ergodic Set (TES) is the key concept introduced on ATM:
indeed, cell types are modelled by TESs. A TESθ is a set of attractors in which
the dynamics of the network remains trapped, under the hypothesis that attrac-
tor transitions with probability less than threshold θ are not feasible2. TESs
are computed from the ATM, by iteratively removing the entries with value less
than a threshold θ, which is progressively increased from 0 to 1. The TES-trees
are constructed following this procedure: TES0 represents the level 0 and each

2 This hypothesis is supported by the observation that cells have a finite lifetime,
which enables their dynamics to explore only a portion of the possible attractor
transitions.
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subsequent level is created if the current threshold applied to the ATM pro-
duces a different TES-landscape with respect to the previous one. In this way
we capture, in a static representation, all the possible differentiation dynamics
of a BN subject to noise. The threshold abstraction plays an important role,
as it is a mathematical concept strictly related with the noise level in the cell: it
scales with the reciprocal of the noise level. High levels of noise (low threshold
values) correspond to pluripotent cell states, where the BN trajectory can wan-
der freely among the attractors; conversely, low levels of noise (high thresholds)
induce low probabilities to jump between attractors, thus representing the case
of specialised cells [11,12].

3 Stochastic Simulation Approach

The main contribution introduced by the previous model is that the differenti-
ation process is strongly correlated with the intracellular noise level. From the
model point of view we know how the threshold is related to noise, see [11], and
in addition we know that pluripotent cells have a more intrinsic noise level than
the more specialized ones [9]. But the threshold and above all its variation mech-
anism introduced in the model (with which we model the differentiation process)
are externally controlled. In fact the threshold represents an abstraction of the
mechanisms implemented by the real cell to control noise. The identification
of autogenous mechanisms, somehow bound to cell’s dynamics, through which
achieve a threshold self-regulation is subject of ongoing work. As first step to
identify the biological mechanisms that affect noise level, and in turn the thresh-
old, we can take in exam a system with different types of noise and noise levels
and we can verify if the system is able to reproduce the TES phenomenology. In
fact, the approach to cell differentiation previously presented might not capture
the real asymptotic configurations of real cells if the cellular system is subject
to a noise implemented in a different way with respect to the original model.
For example, a real cell dynamics might quickly diverge from the TES model’s
prevision if its dynamics is such that:

– more than one noise events can occur simultaneously in an asymptotic state;
– noise events occur in its transients.

In addition, the TES-based differentiation trees are constructed following a spe-
cific process of threshold variation on the ATM. This process allows us to observe
all the differentiation pathways the GRN model is capable of expressing, under
a particular noise setting.

To verify to what extent can the TES model predict the entire spectrum of
scenarios produced by the dynamics of a system subject to intrinsic noise, we per-
form time evolutions of Boolean networks subject to different noise levels and we
compare these two approaches. Noise levels are represented by distinct frequen-
cies of random perturbations. In such a way, we have the means for counting—for
each noise level—the number of differences between the outcomes obtained with
the TES model and the stochastic simulations. In the following we call a story
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a single time evolution of a BN subject to random perturbations. Considering
that we are interested in the asymptotic behaviour of the BN dynamics we count
the jumps between attractors obtained in each story and we compare them with
each level of the TES-based differentiation tree, computed using the TES-model
approach on the same BN. We call an incompatibility a jump between attractors
that would not be allowed given the TES-landscape of a tree’s level.

4 Experimental Setting

The Boolean networks used in the experiments have n = 100 nodes and k = 2
distinct inputs per node assigned randomly (self-loops are not allowed). Boolean
functions have been set by assigning a 1 in the node truth table so as to attain
exactly a frequency of 0.5 across all the truth tables (for k = 2, this corresponds
to the critical value [1]). The rationale behind this choice is that in preliminary
results, by setting the bias for each boolean function, in some instances the aver-
age overall bias calculated on all nodes could have a non-negligible standard
deviation from the desired mean value. Because we want to estimate the differ-
ences between the model and the stochastic simulations, we did not want the
results to be affected by variance in network dynamic regime. So we use an exact
bias, following this procedure for generating networks: we generate a vector of
length equal to the sum of the number of Boolean functions’ entries of all nodes
in the network (2k ∗ n), we assign half the values to 1 and half to 0 and we use
a random permutation of this vector to define the Boolean functions.

The BN is subject to a synchronous dynamics, i.e. all nodes update their
state in parallel and functions are applied deterministically. Given that the typ-
ical time needed to transcribe a gene is equal to 25–50 s in yeasts and 2–3 min
in mammalians (see reference BNID 111611 [7]); we assume 1 min as a plausi-
ble mean value for a BN’s synchronous step of update. In addition, analysing
the cell’s average life span in humans (see reference BNID 101940 [7]) we set to
5 × 104 the number of steps for a BN run, in order to model an upper bound
of plausible mean cell lifetimes (approximately one month). The only stochas-
tic component resides in the noise, which has been simulated as a temporary
flip of the value of a node applied with probability ν; hence, at each step of
the temporal evolution of the network, νn nodes are flipped on average. We
ran experiments with ν so as to have on average one flip every τ steps, with
τ ∈ {1, 5, 10, 15, 20, 50, 100, 200, 500, 103, 5 × 103, 104, 2 × 104, 5 × 104}. In the
following, we will denote the corresponding noise probabilities as ντ . Note that
the higher τ , the lower the probability ν applied to each node. This noise mech-
anism emulates possible temporary fluctuations in the expression level of genes
and may occur both during stationary phases (i.e. along attractors of the BN)
and transients. We run experiments with 30 random BNs; for each of them we
compute the ATM and then the TES-tree, following the procedures mentioned
in Sect. 2. A typical TES-tree is depicted in Fig. 1. The time evolution of each
BN was also simulated 100 times (100 stories), each one of them starting from
a random initial state. We collected the trajectories of the BNs and computed
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Fig. 1. An example of a TES-tree. Levels are numbered from 0, the topmost, to n, the
lowermost; n = 6 in this example. TES of level 1 has a diamond shape whereas TESs
of level n have an hexagonal one. Labels on the edges indicate the minimum threshold
value at which any TESs of the previous level splits or reduces. Continuous lines denote
paths along the differentiation tree that can be followed by increasing the threshold at
minimum steps (these values are directly obtained by the ATM). Dashed lines denote
the paths that can instead be followed if the threshold was increased by larger steps.

statistics on the compatibility between the stories and the TES-tree, besides
other ancillary statistics on the overall dynamics of the BNs.

5 Results

In this section we provide the results obtained. The comparison between TES-
trees and simulations with stochastic noise is mainly based on counting the
transitions between attractors that are observed in the stochastic simulation
but that are not allowed by the ATM, given a probability threshold θ. That is,
the analysis of what we have called incompatibilities between the two approaches
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Fig. 2. Distribution of the median values of the incompatibilities between the level 1
and level n of the TES-trees and stochastic simulations with the probabilities to flip a
node ν so as to have on average one flip every 1, 5, 10, 15, 20 steps. Noise probabilities
ντ expressed with different colours (Color figure online).

for modelling cell differentiation. For each value of ντ , we counted the incompat-
ibilities observed in all the 100 stories w.r.t. the lowest non-zero value of θ (level
1 of the TES-tree) and the highest one, where all TESs are single attractors
(level n of the TES-tree). These two particular levels are taken as representative
elements able to summarise the trend of incompatibilities since level 1 represents
the first TES with not trivial constraints and level n is the most constrained one.
Results are summarised in Figs. 2, 3 and 4. In these figures the boxplots graphi-
cally represent distributions of the median values of the overall incompatibilities
(computed on all 30 BNs) with respect to a particular noise level; different noise
levels are represented by distinct colours. For each noise level two boxplots are
plotted, one for the incompatibilities with respect to the level 1 and one for the
level n.

As expected, the higher ντ (corresponding to low values of τ), the higher
the number of these incompatibilities. Moreover, this increases with θ; which
corresponds to the increase of the TES-tree’s depth. Despite the discrepancy
which is apparent at high noise levels, we observe that already for medium noise
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Fig. 3. Distribution of the median values of the incompatibilities between the level 1
and level n of the TES-trees and stochastic simulations with the probabilities to flip a
node ν so as to have on average one flip every 50, 100, 200, 500 steps. Noise probabilities
ντ expressed with different colours (Color figure online).

levels, i.e. not higher than ν200, the incompatibilities are limited and tend to be
negligible towards low noise levels.

As previously stated, we could observe marked differences between model
and simulations if the actual noise presents in the stories is different from that
hypothesized by the model. Hence, we analyze the dynamics of the stochastic
simulations and we count the number of noise events occurred during transients
and the multiple flips in attractors. With multiple flips we mean the occurrence
of more than one node value change at a time. Situations both not covered in
the model and which could represent the main causes of divergence between the
two approaches. In Figs. 5, 6, 7 and 8 each distribution summarises the median
values of the property in exam; the median value for each BN computed across
the 100 stories of a particular noise level. Hence, we have one boxplot for each
distribution of medians. These statistics show that noise events in transients and
multiple flips decrease in an exponential way as noise decreases. This trend is
more evident in Figs. 6 and 8, which have logarithmic scales. We can note that
under noise level ν100 the number of multiple flips and noise during transients
become negligible with respect to the number of steps considered in the stories
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Fig. 4. Distribution of the median values of the incompatibilities between the level 1
and level n of the TES-trees and stochastic simulations with the probabilities to flip a
node ν so as to have on average one flip every 1000, 5000, 10000, 20000, 50000 steps.
Noise probabilities ντ expressed with different colours (Color figure online).

(i.e. 5 × 104). We must remark that although the flip of a gene is the smallest
stochastic perturbation that can affect a Boolean network it biologically repro-
duces a fairly intense event, much stronger than molecular fluctuations. Hence,
the noise level ν200 (250 noise events on average in a story) identified as the con-
vergence point between the two approaches could even be a too high noise level
for a real cell’s life span. This observation contextualizes the results obtained in
a biological framework and it highlights the relevant noise levels in which a real
cell can operate.

The results obtained support the statement that there exists a significant
noise level under which the two models are in agreement. Therefore, (i) under this
threshold they can be both used to model differentiation phenomena—and their
observations can be combined—and (ii) the new dynamic simulations may add
interesting pieces of information on the heterogeneities of the possible individual
configurations.
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Fig. 5. Distribution of the median values of the number of noise events occurred during
transients in stochastic simulations (stories), for different noise levels. Noise levels
expressed by the ντ values in the x axis.

Fig. 6. Detail of Fig. 5 on logarithmic scale.
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Fig. 7. Distribution of the median values of the number of multiple flips occurred in
the attractors in stochastic simulations (stories), for different noise levels. Noise levels
expressed by the ντ values in the x axis.

Fig. 8. Detail of Fig. 7 on logarithmic scale.
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6 Conclusion

In this paper we have compared two approaches for modelling cell differentiation,
both based on random Boolean networks subject to noise. One approach is rep-
resented by the well-known model based on TES concept, the other is grounded
in time evolutions of BNs subject to different noise levels. The analysis of the
emerging differences between these two approaches suggests that there is a spe-
cific noise level under which the two models produce similar results. This result
has important implications because it shows that both approaches can be used
to model cell differentiation and in addition their outcomes can be, at least in
part, complementary. Indeed, the new approach could be used to determine the
distribution of the extra-cellular noise, due to the intra-cellular events. Moreover
this work produced, on the one hand, another proof of robustness of the TES-
based differentiation model and, on the other, since the stochastic simulations
of BN require less computational cost than the TES model they can be used as
an alternative and exploitable approach to conceive more performing automatic
procedure for generating biologically plausible cell differentiation model based
on BNs [2,3].
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Abstract. Many complex systems, both natural and artificial, may
be represented by networks of interacting nodes. Nevertheless, it is
often difficult to find meaningful correspondences between the dynam-
ics expressed by these systems and the topological description of their
networks. In contrast, many of these systems may be well described in
terms of coordinated behavior of their dynamically relevant parts. In this
paper we use the recently proposed Relevance Index approach, based
on information-theoretic measures. Starting from the observation of the
dynamical states of any system, the Relevance Index is able to provide
information about its organization. Moreover, we show how the applica-
tion of the proposed approach leads to novel and effective interpretations
in the T helper network case study.

Keywords: Complex systems · Biological networks
Dynamical behavior · Relevance index · T helper cells

1 Introduction

Nowadays a plethora of molecular data results in a vast amount of pathways,
networks of interactions and molecular scenarios. A large quantity of information
is available on many biological systems, and researchers use it to infer global
properties of biological networks [15,21]. In spite of the strong representational
power and flexibility of networks, there are, however, two major limitations which
affect most studies in the field [16,23]:

– the information about the underlying true interactions is often incomplete,
so the inferred networks do not provide a complete picture of the interactions
in the system under study;

– network studies are often concerned with “static” topological information,
like connectivity and betweenness, whereas, in order to understand the func-
tionality of a system, it is important to study its dynamical properties.
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Modeling the dynamic behavior of such systems is difficult, due to the lack of
kinetic data and to computational limitations. Among the methods for facing this
problem, those based on steady-state approximations are widely used [13,25].
Nevertheless, these kinds of analysis do not provide enough constraints to find
a unique solution to the problem: thus researchers support these techniques by
means of suitable hypotheses as, for example, minimization or maximization
issues [25]. This drawback, in terms of modeling, has turned out to be particu-
larly relevant when controlling the steady-state behavior of complex networked
dynamical systems. In this respect, some efficient model-free methods based on
multi-agent reinforcement learning [5] and on mean-field game theory [3] are
rapidly emerging in several domains, such as telecommunications.

In order to overcome the aforementioned limitations of steady-state methods,
it is worthwhile to resort to methods able to directly deal with the dynamical
repertoire of the system. In this paper, we use a recently proposed approach,
the Relevance Index (RI for short) method [11,32,33], which has the following
features:

1. It is based on the observation of the dynamical states of the system (whether
simulated or real), without requiring any a priori knowledge of the interac-
tions among variables (whenever such knowledge is available, it can be used
to complement the proposed method);

2. It can be applied to states coming from different steady state conditions, or
even to states obtained from perturbation of these conditions (it does not
require fixed asymptotic states);

3. It provides information about the organization of the system itself; indeed,
complex systems often display complex organizational features that cannot
be captured by a simple tree-like structure;

4. It is robust against noisy or incomplete data, being based on information-
theoretic measures.

The overall contribution of this paper is twofold.
On one hand, we show that (i) the dynamically relevant groups of variables

identified using the RI index in a biological network are extremely useful in
describing the overall dynamics of the system and that (ii) this description could
significantly enlarge the explicative power of the graph description of a biological
system, by highlighting the links that are really effective.

On the other hand, we present a novel method for creating the homoge-
neous system used as a reference to evaluate the significance of the RI results.
This method considers non-zero pairwise correlations among the variables of the
system and is based on the NORTA technique.

The rest of the paper is structured as follows. Section 2 presents the context
about complex systems and related works. Section 3 provides a brief review of the
Relevance Index method and of the improvement in computing the homogeneous
system. Section 4 shows how the application of the RI method leads to novel and
effective interpretations in a biological network (T helper case study). Finally,
Sect. 5 seals up the work.
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2 Context and Related Work

In most natural or artificial dynamical systems, there are groups of variables
showing highly coordinated internal dynamics able to significantly influence
other groups or even the whole system (Relevant Sets, or shortly RS in the
following). The capacity of detecting their presence can often lead to a high-
level description of the dynamical organization of the system, and thus to its
understanding [32].

However, the identification and monitoring of the significant or relevant por-
tions of dynamical systems is very difficult, especially if these systems exhibit
emergent or self-organizing phenomena, the latter being the most interesting and
prominent situation for complex dynamical systems [7].

Indeed, most theories and models take into account only two-level systems
and describe the formation of relatively simple dynamical patterns as, for exam-
ple, the creation of the well-known Bénard-Marangoni hexagonal convection pat-
tern [12]. In this case the two levels involved are those of the water particles and
of the hexagonal convection cells. Indeed, the apparatus where the phenomenon
takes place (which is, of course, necessary, since it determines some major fea-
tures of the phenomenon itself) is not affected by what happens at the lower
levels: in other words, it just provides the fixed boundary conditions that allow
the phenomenon to occur.

However, the most interesting recurrent patterns of interaction [18] take place
very often at levels that can be regarded as intermediate between pre-existing
layers, which are, in turn, affected by the dynamics of these patterns. There
are several examples of these “sandwiched” phenomena in physics, biology and
social sciences [18]. Perhaps the most evident cases are the presence of vortexes
on fluids surfaces, the presence of organs and tissues in multi-cellular organisms,
or the action of various groups of humans (such as companies, cooperatives,
associations, factions, communities) within societies1. Note that the formation
of structures or patterns not explicitly designed is frequent even in artificial
systems, as for example power grids [34], e-mail networks [6], Internet [1,8], and
so on. Thus, the detection of intermediate-level structures and patterns is a very
central issue in complex dynamical systems.

Many interesting systems can be represented, at least partially, by means of
graphs. In this case, a widespread property is the presence of the so-called com-
munities, portions of system elements within which the connections are dense,
but between which they are sparser [20]. Their identification sometimes could
detect groups that can be good relevant set candidates.

A method that mixes static and dynamic issues was proposed by Thomas
et al. [27,28] for regulatory networks, the focus of this paper, to capture the
main qualitative features of the dynamics of such systems.

1 The lower and upper level being constituted by the fluid particles and their global
stream, by cells and the organism to which they belong, and by human beings and
societies, respectively.
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Works that use dynamical features in order to detect functional groups are
not so frequent; many of them rely on similarity measures and clustering algo-
rithms. This is what is done by Feldt et al. [9], for example.

An interesting approach uses methods introduced in information theory and
applied in neurosciences by Edelman and Tononi in 1994 and 1998 [29,30] to
detect functional groups of brain regions. In our previous works, we extended the
approach to non-stationary dynamical regimes, in order to apply the method to
a broad range of systems, including abstract models of gene regulatory networks
and simulated social [10], chemical [32], and biological [33] systems. The resulting
approach could also be used to identify the critical states of complex dynamical
systems [24].

Finally, an interesting literature review about the reconstruction of gene reg-
ulatory networks and the development of mathematical models of how the pat-
terns of activation and inhibition determine the state of activation of the network
can be found in [4]. The T helper regulatory network considered in this paper is
based on the one described in [19].

3 Method

The technique employed in this paper to identify subsets of nodes that are good
candidates as RSs is mainly based on the Relevance Index (RI) method. For
a complete overview of the methodology adopted in this work please refer to
Villani et al. [33]. In the following we will only summarize it briefly.

Main assumptions:

– the values of the system nodes, or variables, express the observed states of
the system;

– there exist one or more subsets where these variables are acting in a coordi-
nated way;

– the variables of each subset interact with the other system variables more
weakly than among one another internally;

– The computation of the RI is usually based on observational data, and prob-
abilities are estimated as the relative frequencies of the values observed for
each variable.

Consider a system U composed of n random variables (X1,X2, ...,Xn), and
a subset Sk composed of k of them, with k < n. The RI(Sk) value is defined
as the ratio between the integration I of Sk and the mutual information MI
between Sk and the rest of the system:

RI(Sk) =
I(Sk)

MI(Sk;U\Sk)
(1)

where I(Sk), the integration, measures the statistical independence of the k ele-
ments in Sk and M(Sk;U\Sk), the mutual information, expresses the mutual



A Relevance Index Method to Infer Global Properties of Biological Networks 133

dependence between the subset Sk and the rest of the system U\Sk. The inte-
gration is defined by the following formula:

I(Sk) =
∑

s∈Sk

H(s) − H(Sk) (2)

Values of MI equal to zero indicate that the Candidate Relevant Set (CRS in the
following) does not communicate with the rest of the system, i.e., it is a separate
system and its variables can be neglected. The RI scales with the size of the
CRS, thus it needs to be normalized by dividing each member of the quotient
in Eq. 1 by its average value within a system where no dynamical structures are
present, i.e., a homogeneous system where no specific interaction within groups
of variables can be highlighted. Moreover, the statistical significance of RI dif-
ferences should be assessed by means of an appropriate test. For these reasons, a
statistical significance index Tc was introduced, which measures how much larger
(or smaller) the RI of a subset of variables Sk is with respect to the average RI
of groups of the same size within the homogeneous system:

Tc(Sk) =
RI(Sk) − 〈RIh〉

σ(RIh)
=

νRI − ν 〈RIh〉
νσ(RIh)

(3)

where 〈RIh〉 and σ(RIh) are, respectively, the average and the standard deviation
of the RI of a sample of subsets of size k extracted from a reference homogeneous
system Uh, and ν = 〈MIh〉 / 〈Ih〉 is its normalization constant. A more detailed
description can be found in previous work [26,31].

The generation of the homogeneous system is critical, and often, in past
papers, a simple but general and easy to compute solution was chosen. This
solution encompassed the computation of the frequency of each variable, given
the available observations, and the generation of a new random series of samples,
where each variable had a prior probability equal to the frequency of the original
observations. The homogeneity required by Tononi was achieved by considering
the components of the random vector Uh, representing the homogeneous system,
to be independent. This produced:

1. A unity correlation matrix of the homogeneous system, i.e., with pairwise
correlations set to zero;

2. An integration I(Sk) = 0 for all subsets of the homogeneous system.

In this paper, we introduce, for the first time, a novelty in the generation of the
homogeneous system compared to previous works: homogeneity is maintained
by forcing all off-diagonal elements of the correlation matrix to have the same
constant value ρ different from zero:

CORR(Uh) =

⎡

⎢⎢⎢⎢⎣

1 ρ . . . ρ

ρ
. . . . . .

...
...

. . . . . . ρ
ρ . . . ρ 1

⎤

⎥⎥⎥⎥⎦
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Such a value ρ is computed as the average of all pairwise correlations of the
observed variables. In this way we preserve both homogeneity and dependence
among the different variables.

In order to generate a homogeneous system with the aforementioned features,
we use the NORTA method [2], a mathematical procedure that solves the issue
of creating random vectors of correlated samples, given the set of their marginal
distributions (marginals) and a measure of the dependence among them. The
dependence measure we used in NORTA is the usual product-moment correlation
matrix, based on the linear Pearson correlation coefficient.

As a final step of our methodology, a further sieving algorithm [11] can be
used to isolate the most representative CRSs, i.e., those having the highest Tc.
This procedure is based on the following criterion: if CRS C1 is a proper subset
of C2 and ranks higher than CRS C2, then C1 is considered to be more relevant
than C2. Thus it is possible to keep only those CRSs not included in or not
including any other CRS with higher Tc. The sieving activity stops when no
more eliminations are possible and the remaining sets of variables are the true
relevant sets.

4 Experimental Results

4.1 The T Helper Cell Differentiation System

The vertebrate immune system is composed of several cell populations, including
antigen presenting cells, natural killer cells, and B and T lymphocytes. There
are two main kinds of T lymphocytes: the T cytotoxic cells that actively destroy
virus-infected cells and tumor cells and the T helper cells (Th) that take part in
cell- and antibody-mediated immune responses by secreting various cytokines,
differently distributed in the two main T helper cell sub-types Th1 and Th2.
Both sub-types derive from a common precursor Th0 through a rather complex
differentiation path, modeled in [19,22]. In this work, we use the discretization
of an updated version of these paths described in [19] (Fig. 1).

The nodes TCR, IL18, IFNb and IL12 receive their input from outside the
Th differentiation system and constitute the way the system is aware of its
context (in other words, they constitute the system “sensors”). Several signalling
pathways are stimulated by their activation [14].

4.2 RI Results

We simulated the gene regulatory network described in Fig. 1 by means of a
synchronous Boolean system. There are 219 different initial conditions for each
of the 24 different scenarios identified by the “sensor” nodes. However, we found
only 33 different asymptotic behaviors (all fixed points). Three of these attractors
coincide with the gene expression of Th0, Th1 and Th2 cells. These attractors
are presented in [19] as the only really stable states, according to the information
derived from the application of the so-called generalized logical analysis [28] to
the Th differentiation system.
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Fig. 1. (a) A graph representation of the Th differentiation system. Note that all the
gray-filled nodes (TCR, IL 18, IFN b, and IL 12) do not receive their input from the
network regulating the differentiation system. Thus, in this representation, they do
not have incoming links. (b) The dynamical rules of the Th differentiation system as
described in [19].

However, the gene regulatory network can express 33 different asymptotic
behaviors. Indeed, this fact should give us some information about the dynamical
organization of the system2. Therefore, to extract this information, we tried to
apply the RI methodology (i) to the mere juxtaposition of these attractors or (ii)
by weighting their presence proportionally to the size of their basins of attraction,
i.e., the width of the neighborhood from which the system converges into the
state represented by the attractor under consideration.

In both cases the relevant subsets that were found are composed by TCR
and NFAT nodes (Group1 in Fig. 2) and all the other nodes (Group2 in Fig. 2)3.

2 In this work we do not make hypotheses about the biological plausibility (or stability
or biological function, if any) of these attractors, suggesting the interested readers
to refer to Mendoza and Xenarios [19] and to the references quoted therein. Rather
we highlight that, once a mathematical model has been established, its structure
implies the presence of a well-defined set of attractors: so, an analysis that takes into
account their presence (and therefore which highlights their interrelated dynamical
relationships) should provide better results than a method that does not act in this
way.

3 The node JAK1 is constantly inactive in all attractors. Thus, its presence is useless
for the purposes of a dynamical analysis and no CRS include it. Indeed, it is active
in transient states, but this kind of analysis is out of the scope of this work (see [24]
for a first comparison of the results of RI application to transients and asymptotic
states).
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Fig. 2. The table shows the groups detected by the application of the RI methodology
followed by the sieving algorithm (groups 1–6): each group is represented as a row
where black boxes denote the variables belonging to it. Group7 and Group8 have been
discarded by the sieving algorithm, because they include the stronger relevant subsets
indicated as Group3 and Group4: however their observation is important, because it
traces a significant coupling among Group3 and Group4 and the other system variables.
Indeed, a second application of the iterated RI method fixes this strong association
(data not shown).

This fact indicates that the Th differentiation machinery is indeed highly inte-
grated. We can register the presence of these two first CRSs and successively
filter them out, in order to apply the sieving algorithm to all the remaining
groups. In this case, the two approaches produce different results.

The simple attractor juxtaposition separates Group2 into two big subsets
(see Fig. 3, left), whereas the application of RI to an extended set of observations
obtained by repeating input data related with the 33 attractors a number of times
proportional to the width of their basins of attraction is able to identify (i) the
four chains that transmit the external signals toward the inner core of the Th
differentiation system (the TCR-NFAT chain, i.e., the Group1, already identified
during the first RI application) and (ii) a “circle” of nodes that appears to be
the “dynamical engine” of the Th differentiation system, denoted as Group5
(Fig. 3, right).

Fig. 3. The main relevant subsets identified using the simple juxtaposition of the
attractors of the Th differentiation system (left) or by weighting their presence pro-
portionally to their basins of attraction - the right part of the figure. In this part we
highlight the presence of Group1, Group3, Group4, Group5, and Group6, respectively
in striped, yellow, blue, orange, and green background. (Color figure online)
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It appears that nodes SOCS1, IL 4, IL 4R, and STAT6 do not belong to any
relevant subsets (Fig. 3, right), if we strictly adhere to the relevant subset def-
inition. However, before the application of the sieving algorithm, the RI analy-
sis reports two highly-ranked groups in the top positions, namely Group7 (com-
posed by the aforementioned nodes and by Group3) and Group8 (composed of
IL 4,IL 4R, STAT6, and by Group4). Indeed, these two groups are discarded by
the sieving algorithm because they include two already identified and slightly
stronger relevant subsets. Vice-versa, we can use this information in order to iden-
tify the nodes influenced by (or influencing) Group3 and Group4. Thus, given the
directions of the links of the Th system, it appears that the information acquired
by Group3 (in particular by node IFN b) is transmitted to the nodes belonging to
the “white group”, which, in turn, passes it to Group4. Therefore, the white group
is composed by elements that seem to act as a sort of “transmission engine” for
the Th differentiation system. Figure 4 highlights such an information flow from
the “yellow” region (group 7) to the “blue” region (group 8).

The RI analysis therefore induces an interesting interpretation of the dynam-
ical data which, when mapped on the already available topological knowledge,
provides an expressive explanation of the system functioning. The same knowl-
edge (the identification of groups of variables and of their relationships) is not
derivable from the static analysis alone. The usual algorithms for the search of
communities [17,20] identify only the pair GATA3-T bet. Moreover, only one of
the identifiable 27 circuits is highlighted (Group5, which involves nodes T bet,
GATA3, IL 10, IL 10R, STAT3, IFN g, IFN gR, JAK1 and STAT1).4

On the other hand, the usual dynamical analyses are mainly focused on the
detailed reproduction or prediction of the system’s behaviors [19] and therefore
are not suitable for a highly abstracted and “global” vision of the system func-
tioning. The same generalized logical analysis [28] that mixes topological and
dynamical issues identifies chains of positive and negative feedbacks, eventually
providing clues for the identification of stable attractors, but does not give the
overall vision of the RI method, which identifies the genes involved in injecting
information into the system (the groups 1, 3, 4 and 6) and the main circuit
responsible of the information processing (group5).

Obviously, this method cannot be used to reconstruct the detailed topology
of the investigated system (though it could suggest useful groupings). It is worth
mentioning, however, that the RI method can be applied directly to the exper-
imental data, if these are available. In this respect, we can note that while the
collection of time series is an experimentally difficult and costly task, the RI
methodology can be applied merely by comparing different steady states (whose
data could derive even from different beings), in such a way taking advantage
from more common data sources. In case experimental data are available, the
RI method can provide an effective idea of the dynamical organization of the
observed system without requiring any knowledge of topology, dynamical rules,
or parameters [26,31,32].

4 Note that the node STAT1 participates in Group 3, one of the “sensors groups” of
the Th differentiation system.
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Fig. 4. Same as Fig. 3, but highlighting the correlation of Group3 and Group4 with
other Th differentiation variables (SOCS1, IL 4, IL 4R and STAT6 – for brevity indi-
cated in this caption as “WhiteGroup”). With reference to the table reported in Fig. 2,
one can see that, indeed, the first (and unique) significant appearance of these variables
as a block occurs along with Group3 and Group4, with which they compose Group7
and Group8, as shown by the third block of results in the table. Given the directions
of the links, in this example assumed to be known, it appears that the graph struc-
ture of the system could allow the signal transmission from Group3 and Group5 to
the WhiteGroup (first row). However, the RI index indicates as evident the influence
of just Group3. In turn, the information acquired by the WhiteGroup from Group3
is transmitted to Group4, in such a way modulating the external signals coming from
node IL 18 (second row). (Color figure online)

5 Conclusion

In this paper, we proposed to use the RI method, improved through a novel
technique for computing the correlation matrix of the homogeneous system,
as a means to infer global properties of biological networks. With respect to
steady-state approximation approaches, the RI method, which is based on the
observation of the dynamical states of the system, provides information about
the organization of the system itself and is robust against noisy or incomplete
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data, being based on information-theoretic measures. The RI method can be
applied directly to the experimental data, if available. In this case, it can sketch
an effective picture of the dynamical organization of the observed system. As a
use case, we illustrated the analysis of the T helper network.

Regarding future work, we plan to apply the RI method to several biolog-
ical networks. This can be done quite easily because it can be applied to sys-
tem characterized by both continuous and discrete (Boolean or multi-valued)
variables. The ultimate objective is twofold and encompasses both finding new
insights about those systems and refining the method itself. In particular, we are
interested in studying systems with a large number of nodes, which cannot be
explored exhaustively, even with parallel computing approaches. For such sys-
tems, the adoption of meta-heuristics is necessary in order to find the relevant
groups of nodes in a reasonable amount of time.
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Abstract. A major limitation of the classical random Boolean network model
of gene regulatory networks is its synchronous updating, which implies that all
the proteins decay at the same rate. Here a model is discussed, where the
network is composed of two different sets of nodes, labelled G and P with
reference to “genes” and “proteins”. Each gene corresponds to a protein (the one
it codes for), while several proteins can simultaneously affect the expression of a
gene. Both kinds of nodes take Boolean values. If we look at the genes only, it is
like adding some memory terms, so the new state of the gene subnetwork
network does no longer depend upon its previous state only.
In general, these terms tend to make the dynamics of the network more

ordered than that of the corresponding memoryless network. The analysis is
focused here mostly on dynamical critical states. It has been shown elsewhere
that the usual way of computing the Derrida parameter, starting from purely
random initial conditions, can be misleading in strongly non-ergodic systems.
So here the effects of perturbations on both genes’ and proteins’ levels is
analysed, using both the canonical Derrida procedure and an “extended” one.
The results are discussed. Moreover, the stability of attractors is also analysed,
measured by counting the fraction of perturbations where the system eventually
falls back onto the initial attractor.

Keywords: Gene-protein model � Generic properties � Memory effect
Dynamical regimes

1 Introduction

Random Boolean models of genetic regulatory networks (RBNs) are very well-known
and, in spite of their long age, they still provide useful descriptions of important
observational and experimental results [8, 12–17]. A major limitation of the classical
RBN model is its synchronous updating: from a physical viewpoint, this amounts at
assuming that all the proteins decay at equal rates: this unrealistic assumption allows
one to write the gene activation pattern at time t + 1 as a function of that pattern at time
t, forgetting the previous history. Asynchronous updating has been sometimes pro-
posed (one gene at each time step), but this also leads to difficult interpretations, due to
the relatively large typical protein decay time and to the very large number of genes.
Other interesting “intermediate” update strategies have also been proposed [5, 19].
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Some properties of RBNs are robust with respect to the updating strategy, but in
general there is no guarantee that this is the case. In particular, one should be very
careful when dealing with the networks’ dynamical properties. We have been partic-
ularly interested in the response of genetic networks to perturbations like gene
knock-out and we have shown that, if the RBN model is chosen, the distribution of
avalanches in gene expression levels in S. Cerevisiae that follows a single knock-out
provides information about the dynamical regime of the biological network [8, 16].
This result is particularly relevant, given the importance of the “criticality hypothesis”,
which states that biological systems should preferentially be found in dynamically
critical states [13]. If we are indeed interested in biological genetic networks, such
issues should be addressed in a way that does not critically depend upon the unrealistic
assumption of synchronicity: different updating schemes should be considered, privi-
leging whenever possible those that are closer to what we know about the behaviour of
real gene regulatory networks.

In order to do so, while retaining the simplifications related to the use of Boolean
variables and to the “generic” approach of RBNs, we introduced the GPBN model
(Gene-Protein Boolean Network), where the network is composed of two different sets
of nodes, labelled G and P with reference to “genes” and “proteins” [9–11]. It is now
well-established that proteins are not the only genetically-encoded products which can
influence the effective expression level of other genes (think for example of miRNAs [2,
3]). However, in order to simplify the model description, we will call here “proteins” all
the products of gene activation that are able to influence the expression of other genes.

Each gene corresponds to a protein (the one it codes for), while several proteins can
simultaneously affect the expression of a gene. Both kinds of nodes take Boolean
values: the state at time t + 1 of a G node depends upon the state of a fixed set of P
nodes at the same time, while the state at time t + 1 of a P node depends upon the state
of its corresponding G node at time t. Once a P node is set active (its state is 1), it
remains active for at least a fixed number of steps. If a new activation signal comes in
before decaying, the counter is reset. If no activation signal arrives, the P node is set to
0 at the end of its “lifespan”. If we look at the genes only, it is like adding some
memory terms, so the new state of the network is no longer “Markovian”, i.e. it does no
longer depend upon the previous state only.

This model has been thoroughly studied and its properties have been described
elsewhere [9, 11]. In those papers the usual definition of dynamical criticality, based on
the value of the so-called Derrida parameter, had been used. We have recently shown
some limitations related to the use of that single measure to characterize critical states
in RBNs [4]. In particular, the choice of a completely random initial state in the
computation of the Derrida parameter has been criticized and a different measure
(“extended Derrida parameter”) has been proposed [18].

This prompted a more thorough analysis of the dynamics of GPBNs, whose main
features are presented in this paper.

The paper is organized as follows: in Sect. 2 the GBPN model is described, while
in Sect. 3 the measures of dynamical criticality are discussed and the extended Derrida
parameter is introduced. In Sect. 4 the results obtained by simulating GPBNs are
shown and discussed, paying particular attention to the similarities and differences
between the “canonical” (i.e. standard) and the extended Derrida procedures.
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A different way to evaluate the robustness of the network behaviour, based upon
perturbations of its dynamical attractors, is also presented. Critical discussion and
suggestions for further research are summarized in Sect. 5.

2 The GPBN Model

A GPBN model [9–11] is a bipartite oriented graph containing two types of Boolean
nodes: the G nodes, which represent the genes set, and the P nodes, which represent the
set of proteins (or, in general, gene products). A G node can be active or inactive
(producing or not its protein), whereas a P node describes the presence (or absence) of a
protein within the system. There are two types of links: synthesis links, which go from a
G node to only one P node, and transcriptional regulation links, from a P node to one
or more G nodes.

As usual in RBNs, time evolves in discrete steps. Note that the state at time t + 1 of
the GPBN model is determined by its state at time t, and the update is formally
synchronous. However, due to the presence of the P nodes, the updating of the gene
subnetwork is not synchronous, i.e. the states of G nodes at time t + 1 are not deter-
mined by their states at the previous time step.

Each G node, say the j-th, produces its protein when active (synthesis link) and a G
node is driven by the action of its k inputs (k being the number of its transcriptional
regulation links, coming from P nodes), according to a fixed Boolean function fj
associated to it (fj: {0, 1}

k ! :{0, 1}).
The topology of the transcriptional links is random, and so is the choice of the

Boolean functions: each fj is generated by assigning at random to each of its 2k possible
inputs an output equal to 1 with probability p (the so-called bias of the set of Boolean
functions), 0 otherwise.

To each P node, say the i-th, an integer non-negative variable hi is also associated
(its decay phase) which can change in time and which represents its residual lifetime.
The maximum value of hi is the decay time dti of node i, representing the lifespan of the
protein, once activated (i.e. just synthesized). When a P node is activated, its decay
phase hi takes the value dti and it is later decreased by 1 at each time step, until it ends
in 0 (unless the same node is not activated again in that time interval). When the
incoming G node is active, then the corresponding P node resets its decay phase to the
decay time. As long as the decay phase takes a nonzero value, the P node has a
regulation role on its outgoing links (i.e. its value in the transition function is 1).

The decay time of each node is taken randomly with uniform probability between 1
and a parameter defined as maximum decay time (MDT); note that when MDT is equal
to 1 the GPBN is identical to the corresponding RBN (i.e. the one with the same
topology and the same activation functions). If the value of a G node is 1 at time t then
the value of the corresponding P node will be 1 at time t + 1 and its decay phase will be
set to dti, otherwise the decay phase of the P node is decremented by one unit (in case
of dti = 0, the activation of P is set to 0). On the other hand, the value of the G node at
time t is immediately determined by its function fj, which depends on the states of its
incoming P nodes at time t.
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3 Dynamical Regimes

The asymptotic states of finite RBNs are periodic cycles; fixed points correspond to
cycles with unitary period. Different dynamical regimes have been observed in RBNs
[1, 13, 14], classified as disordered (sometimes called “chaotic”, although all the
attractors are indeed periodic), ordered or critical depending upon the length of their
periods and the sensitive dependence upon initial conditions. In chaotic networks the
cycle length sharply increases with the network size, and nearby initial states are likely
to lead to different attractors, while in ordered systems the typical cycle length shows a
polynomial dependence upon the number of nodes, and basins of attraction are quite
regular. Given the random nature of these systems, the analysis usually concerns
families of networks built by keeping fixed some parameters, like e.g. the number of
nodes, the average number of connections per node and/or the average bias of the
Boolean functions, while changing in different network realizations the topology of
connections and the transition functions. Critical networks are those whose parameters
lie on (or close to) the manifolds that separate regions in parameter space with ordered
behaviours from the chaotic regions. It is important to stress that these terms refer to the
typical features of networks with those parameters, while a single network realization
can behave in a way very different from the typical ones. Large deviations from typical
behaviours can easily be found in critical networks [15].

The asymptotic dynamics can be identified by means of the so-called dynamical
Derrida parameter k [6, 7], which measures the tendency of a temporary perturbation to
vanish, to persist or to spread through the entire system: so, ordered, critical and chaotic
dynamical regimes correspond respectively to k < 1, k � 1 and k > 1.

This parameter can be determined by analysing a plot of the average distance
between two states at time t + 1 versus their distance at time t (the Derrida plot) and by
looking at the slope of the tangent to the curve in the limit of small initial distances.

Different (static) measures of the dynamical properties have also been proposed,
based on an analysis of the properties of the set of Boolean functions rather than on
actual simulations: they are discussed in depth in [18] alongside with their relationships
with the dynamical Derrida parameter, described above, which is the only such mea-
sure considered in this paper.

Another important remark raised in [18] concerns the dependency of the dynamical
Derrida parameter from the set of initial conditions. The usual recipe is that of choosing
a fully random initial state, and of considering the time behaviour of its perturbed
states. While this is entirely reasonable in ergodic systems (where all accessible states
are equiprobable over a long period of time), RBNs with a small number of connec-
tions per node are strongly non-ergodic [20], so it may easily happen that such purely
random states are never encountered in the life of the cell modelled by the Boolean
genetic network.

It seems therefore physically much more appropriate to determine the dynamical
Derrida parameter while limiting the set of allowed initial states only to those states that
are the successors of some other states. The initial state might be found by starting the
network simulation from a purely random state, letting it evolve for Tev steps (Tev � 1)
and by choosing the state that has been reached as the initial state for computing the

Dynamical Properties of a Gene-Protein Model 145



Derrida parameter. When the set of allowed initial states is limited in this way, we refer
to an “extended Derrida approach”, or to an “extended Derrida parameter”, to distin-
guish it from the canonical one.

Note also that different types of perturbations are possible: in GPBNs the initial
perturbation could affect G nodes, P nodes, or both. In our approach a perturbation of a
P node can correspond either (i) to an activity change from 0 to 1, with a decay phase hi
randomly chosen within the range [1, dti] or (ii) to an activity change from 1 to 0, with
hi = 0. A perturbation of a G node can correspond (i) to an activity change from 0 to 1,
followed by the appropriate effect on the protein or (ii) to an activity change from 1 to 0
– in this case, the G node is not producing its protein, and the P node reduces its decay
phase by one.

4 Results

It had already been observed in [9, 11] that, as it might be apriori expected, the
presence of a memory term tends to make the dynamical behaviour “more ordered”.
This can be shown by comparing the behaviour of networks with MDT 6¼ 1 with those
of the corresponding network with MDT = 1 (that are identical to the corresponding
RBNs). The comparison can be made for different dynamical behaviours, in this paper
we will report results concerning networks that are critical if MDT = 1. Three sets of
parameters, all corresponding to critical behaviours, will be discussed: [k = 2, p = 0.5],
[k = 3, p = 0.21], [k = 3, p = 0.79]. The fact that two different cases are chosen for
k = 3 is due to the fact that in GPBN the 0–1 symmetry of RBNs no longer holds.

Fig. 1. Number of different attractors vs. maximum decay time (MDT, ranging from 1 to 10);
each point represents the average of 1000 different networks (case [k = 2, p = 0.5]) with 100 G-P
node pairs. For each network 100 runs with different initial conditions are performed, until an
attractor (with period lower than 1000 time steps) is reached or until the sum of the transient time
exceed 10000 time steps
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The stabilizing effect of memory can be seen in Fig. 1, where the number of
different attractors versus the maximum decay time is shown to decrease sharply even
with a short memory term [9].

Let us now turn to the dynamical regime, as determined by the Derrida procedure.
As discussed in Sect. 3, perturbations can be performed either on G or on P nodes. Let
us first consider this latter case. In all the simulations described here below the per-
turbations can be either up (i.e. setting equal to one the value of a P node which is 0) or
down, depending on the not perturbed activity of the chosen P node. In each simulation
series we create 50 different networks with 100 G-P node pairs, 100 different initial
conditions for each network. In order to allow an easier series comparison we consider
the decay time of each P node being exactly equal to MDT.1

In Fig. 2 the behaviour of the Derrida parameter for the critical case k = 2, p = 0.5
is shown. The two curves refer to the G-node and to the P-node subnetworks. Very
large values of MDT have also been considered, and it is shown that the network
remains critical notwithstanding the memory term.

In Fig. 3 the same parameter is shown for the two cases with k = 3. While the
G-node subnetwork remains critical, here the effect of the memory term on the P
subnetwork is neither that of leaving it critical, nor that of always bringing it in the

Fig. 2. Canonical Derrida parameter vs MDT (MDT 2 {1, 2, 4, 8, 16, 32, 64, 126, 256}), case
k = 2, p = 0.5. The two curves refer to the G-node and to the P-node subnetworks, subject to a
P-node perturbation

1 Subsequent simulation series where the decay time of each node is randomly chosen (with uniform
probability) in [1, MDT] show that the main effect of choosing the decay times randomly with
uniform probability between 1 and MDT is that of slightly soften the shape of the curves, without
altering their behavior (data not shown).

Dynamical Properties of a Gene-Protein Model 147



ordered region; this happens for the case with high bias, while the Derrida parameters
becomes larger than one in the low-bias case.

This behaviour may seem surprising (but see the comments in Sect. 5), therefore it
is interesting to consider also the extended Derrida parameter described in Sect. 3. The
results are shown in Figs. 4 and 5.

Fig. 3. Canonical Derrida parameter vs MDT, case k = 3: left p = 0.21, right p = 0.79. The two
curves refer to the G-node and to the P-node subnetworks, subject to a P-node perturbation

Fig. 4. Extended Derrida parameter vs maximum decay time for the case k = 2, p = 0.5; left
Tev = 1, right Tev = 3. The two curves refer to the G-node and to the P-node subnetworks,
subject to a P-node perturbation

Fig. 5. Extended Derrida parameter vs maximum decay time for the case k = 3; Left p = 0.21,
right p = 0.79. In both cases Tev = 3. The two curves refer to the G-node and to the P-node
subnetworks, subject to a P-node perturbation
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Note that, while the G subnetwork remains critical, the behaviour of the P sub-
network is different from that of the canonical Derrida parameter. In the k = 2 case, it is
more ordered (k < 1 even for values of MDT slightly larger than 1) while it was critical
in Fig. 2. In the k = 3, low-bias case the network is critical, while it was supercritical in
Fig. 3. Only in the case of k = 3 with low bias the two behaviours are at least quali-
tatively the same. It should also be observed that the length of the time window Tev

may affect the outcomes: for example, by choosing it equal to one in the same case as
that of Fig. 5 left, one would have concluded that the P subnetwork is slightly
supercritical (data not shown here).

In order to complete the description of the model behaviours, let us now consider
the results that have been obtained by perturbing the gene subnetwork (recall that all
the previous ones referred to perturbations of P nodes). As it can be seen from Fig. 6
below, in all the cases both subnetworks are ordered even for values of MDT larger
than 1.

The dynamical regimes of GPBNs have been analysed so far by using canonical or
modified Derrida methods, i.e. the discrete analogues of Lyapunov exponents. A major
interest concerns the robustness of networks of this kind, and in order to characterize
this property a different measure, independent of Tev or of any similar parameter, is
given by the fraction of perturbations that, starting from an attractor cycle, end in the
same attractor.

Fig. 6. Extended Derrida parameter vs maximum decay time for the cases k = 2 and p = 0.5,
k = 3 and p = 0.21, k = 3 and p = 0.79. In all cases Tev = 1. The curves refer to the G-node and
to the P-node subnetworks, subject to a G-node perturbation
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These data are shown in Fig. 7. As it is expected, the fraction of perturbations that
fall back onto the initial attractor decreases as the intensity of the perturbation
increases. This fraction increases when a memory term is added and, like in the other
cases described above, the effect is observed for small values of the maximum decay
time, while further increases of MDT do not lead to any appreciable change.

5 Conclusion

The GPBN model of genetic regulatory systems maintains the abstraction level of the
RBN framework and at the same time allows an explicit modelling of time delay
effects.

It is of course extremely interesting to compare abstract-level models with
real-world data. It has indeed been possible to show that RBNs can properly describe
the distribution of perturbations in gene expression levels induced by single knock-outs
in S. Cerevisiae [15, 16]. However, the techniques used for this purpose do not allow
one to test the behaviour of the model when the perturbation affects several genes at the
same time – a situation that is much more frequently encountered in experiments, like
those related to the effects of drugs or contaminants. In these cases the comparison of
model behaviour and experimental data should concern the time behaviour of the
perturbation after the initial shock, but time-course data cannot be properly compared
to RBNs because of their unrealistic synchronous updating. On the contrary, the
introduction of memory terms in GPBNs should make it possible to deal also with

Fig. 7. The fraction of perturbations that came back to the starting attractor by varying MDT, if
perturbing 1, 2, 5, 10, 15 or 20 P-nodes. Each point is the average of 50 different systems with
100 GP nodes: in each system the attractors are identified by using 100 random initial conditions;
all states of the so sampled attractors are perturbed. In these experiments, we considered the same
decay time for each P node.

150 D. Sapienza et al.



time-course data following a multiple initial perturbation, thus greatly increasing the
wealth of experimental data available for testing the appropriateness of the abstract
framework.

The kind of memory that has been introduced has different effects in case of
information transmission from G to P nodes or from P to G nodes, and pose some
interesting questions about the correct way of measuring of the system dynamical
regimes through Derrida-like procedures. Anyway, the robustness of the system’s
attractors can constitute a sort of global measure related to its general “degree of order”.
In the future it will be interesting to analyse a Derrida parameter modified in a way
different from those of Sect. 4, i.e. computed by allowing as initial states only those
that belong to an attractor.

In order to understand the behaviour of the GPBN model when P nodes are per-
turbed, it will be interesting to consider separately the effects of up and down per-
turbations. Indeed, the impacts of “up” and “down” perturbations of P nodes are likely
to have different intensities. The effect of a “down” perturbation, i.e. the disappearance
of a protein, should typically die out quite rapidly, as the rest of the nodes resynthesize
that protein. On the other hand, the impact of an “up” perturbation is likely to last
longer, i.e. for a number of steps equal to its phase. Investigating the effects of the two
types of perturbations by canonical and modified Derrida parameters may therefore
provide important clues about the properties of the model.
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Abstract. Protocells should be similar to present-day biological cells, but much
simpler. They are believed to have played a key role in the origin of life, and
they may also be the basis of a new technology with tremendous opportunities.
In this work we study the effect of uneven division processes on the synchro-
nization of the duplication rates of protocells’ membrane and internal materials.
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1 Introduction

Protocells should be similar to present-day biological cells, but much simpler [1, 2].
They are believed to have played a key role in the origin of life, and they may also be
the basis of a new technology with tremendous opportunities (see e.g. the books [1, 3]
and further references quoted therein). Among various candidate protocell architec-
tures, those based on lipid vesicles are particularly promising since they can sponta-
neously undergo fission, giving rise to two daughter protocells. Protocells should also
contain a self-replicating set of molecules (the “replicators”): their composition should
also affect the growth and replication rate of the container, so that some kind of
competition can take place between cells with different chemical compositions [4].

The simplest case is that of even division, where a vesicle splits into two identical
daughter cells. In order to assure sustainable growth of a population of protocells, it is
necessary that the duplication rate of the replicators be equal to that of the lipid
container. It has been shown in a series of papers [5–10] that this synchronization takes
spontaneously place, generation after generation, under a wide set of hypotheses
concerning the protocell architecture and the kinetic equations for the replicators, and
that it is robust with respect to random fluctuations. This is indeed a beautiful example
of dynamical self-organization.

It has however also been observed that there are other ways in which lipid vesicles
can divide. In this paper we consider a case (inspired by the “budding” processes [11])
where the vesicle splits in two daughter vesicles of different size, a “large” one and a
“small” one. Other types of division, like e.g. those due to extrusion processes, might
also be investigated. We suppose that, when a critical size has been reached, the protocell
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splits into two: the daughters will inherit a fraction of both the lipid container and the
replicators. In this work also consider the important situations of (noisy) uneven division
and of not constant splitting thresholds.

The paper is organized as follows. In Sect. 2 we introduce the investigated protocell
models and discuss the uneven division process. In Sect. 3 we present the experimental
setting and the simulations, and discuss the simulations main results. Finally, in Sect. 4
we summarize the main paper results.

2 The Protocell Model

2.1 The Protocell Model

As anticipated, several different protocell “architectures” have been suggested [1, 12–14].
Many architectures are based upon lipid vesicles, where an aqueous internal environment
is separated from the external water phase by a lipid bilayer, similar to those of existing
biological cells. Vesicles form spontaneously under appropriate conditions, and it is
known that they are able to split giving rise to two (or more) daughter cells [15, 16].
The different architectures are based on different hypotheses about the chemical com-
position of the protogenetic material (e.g., nucleic acids, or polypeptides, or even lipids
themselves) and about the place where the action, i.e., duplication of genetic molecules
and growth of the lipid container, takes place (in the internal environment, in the
membrane, at the interface, or some combinations of the two) [13].

One might therefore be tempted to guess that no unified treatment is possible,
however this turns out not to be the case: indeed it has been shown that at least the
problem of synchronization lends itself to be dealt with using abstract models of quite
broad applicability [3].

In this paper we consider the case where there is a single replicator, represented by
some chemical species, and let its quantity (i.e., number of moles) be denoted by
X. Let also C be the total quantity of ‘‘container’’ (i.e., lipid membrane forming vesicles
or micelles) and V its volume, which is equal to C/q (where q is the density, assumed to
be constant).

We assume that the X-molecule favors the formation of the container materials (as
for example in [17, 18]). Some models imagine that only the X-molecule fraction near
the external surface is effective in doing so, since the container precursors are found
outside the protocell; other models envisage that these materials could pass through the
membrane allowing in such a way an active role also to the internal X-molecule
fraction. In [8] we demonstrate that these frameworks actually show equivalent
behaviors: so, in this paper we follow the design that suppose permeable membranes
and inner X-molecule materials.1

So the catalytic activity of the X-molecules favor the growth of the lipid container,
which provides in turn the physical conditions appropriate for the replication of the X-

1 Note that even in this case it is possible that not all the internal X-molecules be active in supporting
the container building; however, in [19] we show that also this difference does not significantly affect
the process leading to the synchronization of the X-molecules and container reproduction rates.
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molecules, without being however a proper catalyst. Because of its effect on the lipid
container and of its ability in maintaining its presence during generations, the chemical
species X loosely acts as a sort of ‘‘genetic material’’, and we could refer to it with the
term “genetic memory molecule”, or GMM for short.

If we follow the assumptions already used and discussed in [10], namely:

1. spontaneous container formation is negligible, so that only the catalyzed term
matters

2. the precursors (both of container and X-molecule) are buffered
3. the membrane vesicle is thin, so the volume of the lipid membrane (and as con-

sequence the amount of container C) is approximately proportional to its surface
4. diffusion is very fast, so in each phase the concentrations can be assumed to be

homogeneous
5. the protocell breaks into two identical daughter units when its container mass

reaches a certain threshold2

6. the shape of the mother protocell, as well as those of her daughters, are all
spherical3

7. the rate limiting step which may appear in the replicator kinetic equations does not
play a significant role when the protocell is smaller than the division threshold.

The simplified equations for the total quantities of lipid container C and replicator
X during the continuous growth phase from an initial condition to the critical lipid
container mass h become:

dC
dt

¼ aCb�1X

dX
dt

¼ gCb�1X

8><
>: ð1Þ

where a and η are two positive constants denoting respectively the rate of self-replication
of genetic molecules and the container growth, and the shape factor b ranges between 2/3
for a micelle and 1 for a very thin vesicle [8].

As it was proved in [10], in order to determine whether there is a synchronization in
the asymptotic time limit, one can limit oneself to consider the b = 1 case. The final
result does not depend on b, while of course this parameter affects the speed with which
it is approached: this is essentially a non-linear rescaling of time, useful to simplify the
analysis. With this simplification, the basic equations (which are valid between two
successive divisions) are then:

2 The dropping of this hypothesis is one of the topics of this paper.
3 This assumption is reasonable if we suppose that the flow of water is “fast” enough to allow us to
consider the protocell as turgid, on the time scale of interest [20]. This implies that we do not
describe here in detail the breakup of a vesicle into two, which certainly requires consideration of
shape changes – that are supposed to be fast and to fall below the time scale of the relevant
phenomena that the model describes. Moreover, we do not take explicitly into account osmotic
effects (as for example in [21]) that might be relevant in the case of hypertonic or hypotonic
environments.
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dC
dt

¼ aX

dX
dt

¼ gX

8><
>: ð2Þ

2.2 Uneven Division

As anticipated, we assume that a protocell splits into two daughters when its membrane
reaches a certain critical mass, in the following indicated as h. After splitting, one of the
daughter cells inherits a fraction x of the lipid container, while the other one inherits
1 − x; the same happens to the GMM chemical species that are diluted in the mem-
brane, if any.

In this paper we assume that the shape of the mother protocell, as well as those of
her daughters, are all spherical. As it has been discussed elsewhere [3], this implies that
some part of the mother’s internal aqueous environment is lost in fission - and the same
holds for the GMMs that are there diluted. So, only a part of these GMMs part is shared
between the two daughters, which inherit Lx and L(1 − x) respectively, L being the
fraction of GMMs that is not lost in the bulk.4

This fraction can be calculated by simple geometric reasoning, if the concentration
of the replicators is uniform in the internal water phase. Indeed, if r is the protocell
radius, the surface and the volume of a protocell are respectively S = 4pr2 and
V = 4pr3/3, and the dependence of volume from the surface is:

V ¼ 4
3
pr3 ¼ 4

3
p

S
4p

� �3
2

¼ 4
3 � 4p � 2 ffiffiffi

p
p pS

3
2 ¼ S

3
2

6
ffiffiffi
p

p ð3Þ

The sum of the volumes of the two daughters VF therefore is:

VF ¼ x
3
2S

3
2

6
ffiffiffi
p

p þ 1� xð Þ32S3
2

6
ffiffiffi
p

p ¼ S
3
2

6
ffiffiffi
p

p x
3
2 þ 1� xð Þ32

� �
¼ Vmother x

3
2 þ 1� xð Þ32

� �
ð4Þ

Consequently, the fraction of the mother protocell volume that is not lost in the
bulk is:

L ¼ x
3
2 þ 1� xð Þ32 ð5Þ

This is also the fraction of GMMs of the initial protocell shared between the two
daughters, in case of these GMMs are diluted in the mother’s internal aqueous
environments.

These rules determine the initial conditions of the two daughter cells at the next
generation. The small one will need a longer time to reach the critical size and to
undergo fission, while the larger one will be faster.

4 Obviously, L = 1 in case of the GMMs are diluted in the membrane.
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The continuous growth described by Eq. 2, starting from an initial condition where
C = Ci and X = xi up to the time T = Tdiv when C = h (i.e. when splitting takes place)
can be analytically determined to be

Tdiv ¼
ln g h�Cið Þ

axi
þ 1

� �
g

xdiv ¼ g h� Cið Þ
a

þ xi

8>>><
>>>:

ð6Þ

where xdiv is the quantity of replicator at splitting time Tdiv.
Of course, in case of uniform and regular process of division (each progenitor

regularly dividing into two descendants of size x and 1−x) a large daughter cell will
also give rise to another large one, etc. This “pure lineage” of large cells will tend to
synchronize, in a way similar to the case of even division. The same will happen for the
pure lineage of small cells, although with a different division frequency. Therefore, for
a pure x lineage the following rule holds:

Tdiv ¼
ln 1

Lx

� �
g

xdiv ¼ gh
a

1� x
1� Lx

8>><
>>:

ð7Þ

A similar rule holds for the pure “1−x” lineage, by substituting x with “1−x”.
Finally, we can compute the difference between the asymptotic division times and the
GMMs’ quantities at division time of these pure lineages:

DTdiv ¼
ln 1�xð Þ

x

� �
g

Dxdiv ¼ gh
a

L� 1ð Þ 2x� 1ð Þ
1� Lþ L2x� L2x2

� �

8>>><
>>>:

ð8Þ

Note that (i) the difference between the asymptotic division times does not depend
upon L and that (ii) in case of even division these differences are equal to zero (only
one lineage is present).

3 Population of Protocells

In the previous section, we derived the rules to compute the asymptotic division time
and the GMMs’ quantity at division time of the protocell pure lineages.

However, as generations increase, the fraction of cells belonging to the pure lin-
eages declines, and most cells have both large and small cells among their ancestors.
Indeed, after k generations the large cells will be k, while the total number of cells will
be 2k, so the fraction of pure lineage cells will vanish in the long k limit.
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An interesting question then concerns the distribution of division times after several
generations: will there be, on average, a uniform distribution of fission events in time,
or will there be some pace, at population level, in the fission processes?

We have therefore simulated the growth of such populations of protocells, origi-
nated from a single protocell. Because of computational limits (which anyway mimic
real physical constraints) when the population size reach its maximum value each
division implies the substitution of an already “born” protocell (stable population
phase).

These substitutions are random, so the data are noisy. However, an interesting
observation is that the data concerning both the fission intervals and the values of the
replicators before fission are divided in two groups and they do not become homo-
geneous (Fig. 1). As expected, the division time is smaller in the case of the larger
initial vesicles with a larger initial quantity of replicators (Fig. 1b). On the other hand,
the smaller vesicles, with longer division times, synthesize a larger final quantity of

Fig. 1. (a) Quantity of replicators before division and (b) division time (i.e. the interval between
two successive divisions) vs initial quantity of replicators.

Fig. 2. (a) Populations of protocells with uneven fission exhibit two stable subgroups: the more
uneven is the fission, the more distant are the characteristics of the subgroups. (b) Difference
between the observed and the “theoretical” values for the maximum difference between division
times, vs x. Dt is the measured maximum distance in division times, Dt_att is the “theoretical
distance” defined in the text, Division is the width of the zero-level plateau, whose some
instances are visible in Fig. 3a and c.

158 M. Musa et al.



replicators (Fig. 1a). The bimodality of the distribution of division times and of the
quantity of replicators at division time can also be directly observed in Fig. 3, which
shows their (stable) probability distribution for different x. Therefore, after the growth
phase the population of protocells shows the presence of two subgroups, composed
respectively by protocells with relatively long lifespan that divide with high concen-
trations of GMMs, and protocells with relatively short lifespan that divide with low
concentrations of GMMs. Each protocell divides into two (possibly uneven) daughters,
but the two subpopulation are stable – in the sense that the cardinality of each group
does not change in time.

It is also possible to analyze the difference between division times as a function of x
(remember that, given the geometrical hypotheses, x determines also the fraction L of
replicators that are not lost). Let us define the “theoretical distance” between division
times as the difference between the division times of the two pure lineages, determined

Fig. 3. Probability distribution of division times (a), (c) and probability distribution of
X quantities at division time (b), (d) observed in simulations; the first row refers to x = 0.2,
whereas the second row refers to x = 0.3. Red vertical lines indicate the division times and the
X quantities at division time of the asymptotic pure lineages, blue vertical lines indicate the same
for even division. Note that the division times of the pure lineages precisely individuates the
extremities of the empty space dividing the two protocell subgroups, whereas their X quantities at
division time embrace the distribution of the protocell populations. (Color figure online)
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analytically in Eq. 8. Surprisingly enough, in the case of uneven division one sometimes
observes that the maximum of the actual difference between division times typically
exceeds this value, as shown in Fig. 2a. Indeed, the theoretical distance closely
approximates the zero-level plateau (some instances are visible in Fig. 3a and c).

Till now protocells divide in two “new” individual each one inheriting respectively
a fraction equal to Lx and L�(1−x) of the progenitor’s materials. However, this is a
very idealized situation: real splitting processes are noisy (or even very noisy), and each

Fig. 4. Probability distribution of division times (a) and probability distribution of X quantities
at division time (b) observed in simulations, when at division time each protocell divides in two
“new” protocells inheriting respectively a fraction equal to Lx’ and L�(1-x’) of the progenitor’s
materials, x’ being randomly extracted from a uniform distribution spanning within the range
[0.4, 0.5] (a process that simulates a noisy even division). The vertical lines indicate the division
times and the X quantities at division time of pure lineages with x respectively equal to 0.4 and
0.6 (the complementary size of a daughter protocell with x = 0.4).

Fig. 5. Probability distribution of division times (a) and probability distribution of X quantities
at division time (b) observed in simulations, when at division time each protocell divides in two
“new” protocells inheriting respectively a fraction equal to Lx’ and L�(1-x’) of the progenitor’s
materials, x’ being randomly extracted from a uniform distribution spanning within the range
[0.25, 0.3] (a process that simulates a noisy uneven division with x = 0.3). The vertical lines
indicate the division times and the X quantities at division time of pure lineages with x
respectively equal to 0.3 and 0.7 (the complementary size of a daughter protocell with x = 0.3).
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division could (i) happen at thresholds more or less distant from h and/or (ii) giving
birth to slightly different descendants.

The effect of adding noise to even division is that of “blurring” the delta distri-
butions of the asymptotic division times and of the X quantities at division time
(Fig. 4); a similar effect is observed in uneven divisions, where it is still possible
however to re-observe the presence of the two previously individuated protocell sub-
populations (Fig. 5).

Interestingly, a very “disordered” division process leads to an asymmetric distri-
bution of division times (with a small fraction of protocell owning very long lifespans),
that corresponds to a very sparse X quantities at division times distribution. Note that
the presence of very long lifespans allows the formation of protocells with relatively
high final concentrations (Fig. 6).

The effect of splitting events occurring at not constant protocell size (simulated by
adding noise to h, the membrane threshold quantity that induces the protocells insta-
bilities leading to the protocell division) is similar to the ones just shown for noisy
uneven division. A random size of splitting makes more “fuzzy” the delta distributions
of the asymptotic division times and of the X quantities at division time (Fig. 7); very
high noise levels possibly override the presence of the two previously individuated
protocell subpopulations, at least of one of the observed variables (Fig. 7d).

Fig. 6. Probability distribution of division times (a) and probability distribution of X quantities
at division time (b) observed in simulations, when at division time each protocell divides in two
“new” protocells inheriting respectively a fraction equal to Lx’ and L�(1−x’) of the progenitor’s
materials, x’ being randomly extracted from a uniform distribution spanning within the range
[0.01, 0.5] (a process that simulates a very noisy uneven division). The vertical lines indicate the
division times and the X quantities at division time of pure lineages with x respectively equal to
0.5, 0.9 and 0.1 (the complementary size of a daughter protocell with x = 0.9).
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4 Conclusions

Protocells should be similar to, but much simpler than biological cells. Protocell
populations do not yet exist and mathematical models are therefore extremely impor-
tant to address the key questions concerning their synthesis and behavior. Different
protocell architectures have been proposed so, due to uncertainties about the details,
high-level abstract models like those that are presented in this paper are particularly
relevant. In this context, the problem of synchronization plays a particularly relevant
role: indeed, growth and evolution of a population of protocells require that repro-
duction of the whole protocell and replication of its “genetic memory molecules” take
place at the same pace.

Despite the fact that only “pure lineage” streams of protocells can rigorously
synchronize (that is, reproduce the same amount of materials at precise and regular time
intervals), in this paper we show that the macroscopic output of the random super-
position of thousands of these processes is the presence within the protocell population
of stable distributions of the relevant protocell variables. In case of uneven division

Fig. 7. Probability distribution of division times (a), (c) and probability distribution ofX quantities
at division time (b), (d) observed in simulations, for even division (first row) and uneven division
(second row, uneven division with x = 0.3), in case of the membrane threshold quantity that
induces the protocells instabilities leading to the protocell division is not constant. The vertical lines
indicate the division times and the X quantities at division time of pure lineages withx respectively
equal to 0.5, 0.7 and 0.3 (the complementary size of a daughter protocell with x = 0.7).
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these distributions become bimodal, highlighting in such a way the presence of two
stable subpopulations, the macroscopic consequence of the fact that protocells, when
divide, split into two not symmetric descendants.

Further works will explore the effects of changing the protocell architecture on the
regularity or on the shape of this very interesting macroscopic output.
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Abstract. Computational models are expected to increase understanding of
how complex biological functions arise from the interactions of large numbers
of gene products and biologically active low molecular weight molecules.
Recent studies underline the need to develop quantitative models of the whole
cell in order to tackle this challenge and to accelerate biological discoveries.
In this work we describe three major functions of a yeast cell: Metabolism,

Growth and Cycle, through two coarse grain models, MeGro (Metabolism +
Growth) and GroCy (Growth + Cycle). GroCy effectively recapitulates major
phenotypic properties of cells grown in glucose and ethanol supplement media.
MeGro can act as a parameter generator for GroCy. The resulting iMeGroCy
integrated model can be used as a scaffold for molecularly detailed models of
yeast functions.

Keywords: Computational models � Systems biology � Whole cell models

1 Introduction

Saccharomyces cerevisiae is a major eukaryotic model organism in both fundamental
and applied research. Computational approaches are required to analyze, structure and
integrate the ever-increasing data sets available for yeast. Ultimately, a dynamic,
comprehensive computational model of S. cerevisiae should be the ambition: it would,
in part, allow further improvement of industrial bioprocesses by extending the
understanding presently possible by genome-scale metabolic model [1]. It also would
allow translation of the methodologies to human cells, as it previously happened for
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genome sequencing, functional analysis and interactomics, just to name a few fields in
which yeast research has recently led the way [2].

The design rules followed in the construction of the pioneering Mycoplasma whole
cell model [3] were to divide the functionality of the cell into modules, each modeled
bottom-up for short enough periods of time to assume module independence. Simple
translation of this approach to a eukaryote, even as simple as the unicellular budding
yeast, may not be straightforward. In fact, in contrast to Mycoplasma, yeast has a
compartmentalized cellular organization, a ten-fold larger genome [4], sophisticated
nutritionally modulated sensing and differentiation pathways [5] and an asymmetric
cell division that results in population heterogeneity in terms of size, age and cellular
content of individual cells. Accordingly, the successful building of models of cells
more complex than Mycoplasma may face significant challenges [6] and originate
models that are difficult to structure and parametrize.

To deal with yeast complexity we developed a multi-level approach. In the fol-
lowing, we present an integrated coarse grain model of the basic functions of a yeast
cell (metabolism, growth and cycle), investigate how they respond to availability of a
major yeast nutrient, glucose, and discuss how the model can be used as a scaffold for
molecularly detailed models of yeast functions.

2 The Metabolism and Growth Model (MeGro)

The Metabolism and Growth Model (MeGro) connects growth and metabolism in S.
cerevisiae. Growth rate maximization forms a rational basis for explaining growth
strategies (see e.g. [7] and references therein), since a faster growing unicellular
microrganism will have higher evolutionary fitness than its competitors, producing
more progeny per time unit in a given environment. So we considered a coarse grain
representation of a yeast cell that maximizes its specific growth rate by allocating total
protein synthesis capacity to different protein pools. MeGro - derived from the generic
“self-replicator” model proposed in [7] for unicellular microorganisms - is conceived to
highlight the common patterns connecting growth rate-dependent regulation of cell
size, ribosomal content and metabolic efficiency in a cell. All the metabolic reaction
rates, the kinetic parameters and the stoichiometry of the flux balance constraints in
MeGro are suitably tuned for S. cerevisiae and only the relevant classes of enzymes and
metabolites are considered.

MeGro accounts for five classes of proteins and five kinds of metabolites. The
proteins with enzymatic activity (square blocks in the MeGro scheme of Fig. 1) are
(i) the hexose transporters, ‘hxt’, (ii) the glycolytic enzymes, ‘gly’, (iii) the ribosomes,
‘rib’, (iv) the respiration and (v) fermentation pathways enzymes, ‘resp’ and ‘ferm’
respectively. Three kinds of metabolites are involved in metabolic conversions (green
ovals in the MeGro scheme of Fig. 1): the (a) extracellular and (b) intracellular glucose,
‘glc, ex’, and ‘glc,in’ respectively, and (c) pyruvate, ‘pyr’; other two kinds of
metabolites are involved in energy production/consumption: (d) ATP and (e) ADP. In
the following we indicate with cx, x 2 {Prot, Met}, Prot = {hxt, gly, rib, resp, ferm},
Met = {glc,ex, glc,in, pyr, ATP, ADP}, the protein/metabolite concentrations, (mM),
and with mx, x 2 Prot, the metabolite fluxes, (mM/h) catalyzed by a specific protein x.
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MeGro captures resource allocation strategies, partitioning the investment into
ribosomes in producing the different metabolic proteins. The accumulation of each
protein pool is provided by a proper fraction ax of the net ribosomal flux mrib. Thus, in
exponential growth conditions we have the following steady-state constraints (see also
[7] for analytical details):

kcx � axmrib ¼ 0; x 2 Prot ð1Þ

where k (h−1) is the specific growth rate and
P

x2Prot ax = 1, with ax � 0. Equation (1)
refers to a steady state, each protein pool resulting from the balance - not explicitly
modeled - of synthesis and degradation. Protein synthesis and degradation are instead
explicitly modeled in the GroCy dynamical model, detailed in the next section.

The net dynamics of cglc,in, cpyr, cATP are determined by the combination of the
fluxes of production and consumption:

dcglc;in=dt ¼ mhxt � mgly; ð2Þ

dcpyr=dt ¼ 2mgly � mferm � mresp � 600mrib; ð3Þ

dcATP=dt ¼ 2mgly þ 10mresp � 2000mrib; ð4Þ

providing steady-state constraints by imposing the derivatives equal to zero.
The total amount of ADP + ATP is constant, according to the following

relationship

cATP þ cADP ¼ 1: ð5Þ

All protein and metabolite concentrations cx are such that cx � 0. All the metabolic
conversions are catalysed by enzymes and the corresponding fluxes are modeled using
the Michaelis-Menten formalism:

Fig. 1. Concept map of MeGro sub-module. (Color figure online)
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mhxt ¼ kcat; hxtcglc; exchxt
ðcglc; ex þ km;hxtÞð1þ cglc; in=ki; gluiÞ ; ð6Þ

mgly ¼ kcat; glycADPcglc; incgly
ðcADPcglc; in þ km; glycADP þ km;ADPglycglc; in þ kglykm;ADPglyÞð1þ cpyr=ki; pyr Þ

; ð7Þ

mrib ¼ kcat; ribcATPcpyrcrib
cATPcpyr þ km; ribcATP þ km;ATPribcpyr þ km; ribkm;ATPrib

; ð8Þ

mresp ¼ kcat; respcADPcpyrcresp
cADPcpyr þ km; respcADP þ km;ADPrespcpyr þ km; respkm;ADPresp

; ð9Þ

mferm ¼ kcat;fermcpyrcferm
cpyr þ km;ferm

: ð10Þ

(1) to (10) define the set of algebraic-differential equations of MeGro. The expo-
nential growth rate k is maximized as a function of the external glucose concentration
cglc,ex (model input), with the fractions ax as optimization variables, and subject to
exponential growth constraints (1), flux balance constraints (derived from steady-state
Eqs. (2–4)), feasible constraints (5) and Michaelis-Menten flux Eqs. (6–10).

The optimal set of k and ahxt, agly, arib, aresp, aferm together with the
proteins/metabolites concentrations and the protein fluxes provide a first level of
MeGro outputs. A second level of cellular outcomes are computed by properly
exploiting concentrations and fluxes. These are (i) the fermentative ratio F,

F ¼ mferm= ðmferm þ mrespÞ; ð11Þ

`(ii) the ribosome-over-protein ratio q,

q ¼ crib= 600 chxt þ cgly þ crib þ cresp þ cferm
� �� �

; ð12Þ

with proteins expressed in terms of number of polymerized amino acids, which
explains the division by 600, the average number of polymerized amino acids per
protein [8, 9] and (iii) the yield of ethanol YEtOH/glc,

YEtOH=glc ¼ mferm=mhxt: ð13Þ

If we leave F as an optimization variable, the model predicts that the cell behavior
is fully respiratory for values of external glucose smaller than a critical value and then
switches to purely fermentative for values of external glucose greater than the
threshold. This model behavior (respiratory-to-fermentative switch) is independent of
the setting of the model parameters (no threshold mechanism is artificially imposed),
instead it is an emergent property of MeGro, with the model parameters allowing the
tuning of the value of the external glucose threshold. Such a behavior is coherent with
experimental results showing ethanol production only when the dilution rate exceeds a
certain level, see e.g. [16].
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MeGro can treat the fermentative ratio F as an input rather than an output, thus
allowing the modeler to compute the optimal growth rate (as well as all the other model
outputs) according to different values of F. Indeed, by properly exploiting the flux
balance constraints (derived from steady state Eqs. (2–4)) and the fermentative ratio
Definition (11), we can write mferm and mhxt in terms of F and of the ribosomal flux mrib:

mferm ¼ ð1:4� 103FÞ= 1þ 10 1�Fð Þð Þmrib; ð14Þ

mhxt ¼ 103 � 1þ 3 1�Fð Þð Þ= 1þ 10 1�Fð Þð Þmrib; ð15Þ

so that, according to the ethanol yield Definition (13) the fermentative ratio F is pro-
vided as a function of a given ethanol yield:

F ¼ 20YEtOH=glc= ð7þ 15YEtOH=glcÞ: ð16Þ

This last equation will be exploited to feed MeGro with the fermentative ratio
associated to experimental yield, Fig. 2A.

Fig. 2. AMeGro outcomes, when both the external glucose concentration and the fermentative
ratio (i.e., the yield of ethanol) are exploited as model inputs. B: optimal fractions of ribosomal
activity (aj) engaged in the synthesis of the corresponding protein modules as functions of the
external glucose concentration. C: MeGro optimal ribosome-over-protein ratio q as a function of
MeGro optimal growth rate k, with fixed fermentative ratio F (colored curves, F ranging in [0, 1])
and not fixed F (bold black line). MeGro simulations are compared to the experimental data
redrawn from [10, 11]: in grey we highlight the region between Michaelis-Menten experimental
data best fitting. D: MeGro optimal growth rate k as a function of the external glucose
concentration cglc,ex, with fixed fermentative ratio F (colored curves, F ranging in [0, 1]) and not
fixed F (bold black line). (Color figure online)
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Figure 2B reports the steady-state protein fluxes for the different protein pools as a
function of glucose concentration for a fermentative ratio F = 0.8. k increases as a
function of external glucose concentration following a saturation kinetics, whose
parameters depend on the fermentative ratio F (Fig. 2D). Figure 2C shows the behavior
of the ribosome-over-protein ratio q as a function of the external glucose concentration,
at different fixed values of the fermentative ratio F. Model predictions (solid lines) are
compared with two sets of experimental data (green and orange circles) from different
yeast strains [10, 11], showing overall agreement between model predictions and
experimental data. MeGro parameters can be found in Table 1. Most parameters are
chosen by following the criteria developed in [12], with minor modifications, mostly
related to the use of different units.

3 The Growth and Cycle Model (GroCy)

In yeast, the critical cell size required to enter S phase (PS) is modulated by nutrient
availability [14]. It remains small and nearly constant when glucose is utilized through
respiration. In contrast, PS and hence average protein content increases as cells shift
their metabolism towards fermentation [15]. Cells forced to ferment under
slow-growing conditions show the same increase [16].

GroCy is composed by three modules (Fig. 3): (1) a dynamical cell growth model
in which a set of ordinary differential equations describes dynamics of synthesis and
degradation of ribosomes and proteins; (2) a molecular triggering mechanism that links
cell growth and cell cycle. It exploits a set of ordinary differential equations which
detail the dynamics of the growth-controlled activator Cdk1Cln3 and of its cognate

Table 1. MeGro parameters. Most parameters are chosen by following to the same criteria
developed in [12], with minor modifications, mostly related to the use of different units. To
determine the parameters kcat,x, x 2 {Prot}, we used experimental data on the specific growth rate
of yeast cell populations growing in batch cultures at different glucose concentrations and
literature data of yeast cells in chemostat. Since the maximal growth rate is reached by fully
fermenting cells, we tuned kcat,x (except kcat,resp) in order to fit our maximal experimental growth
rate of 0.424 h−1 at a glucose concentration of 278 mM, obtaining a maximal growth rate of
0.48 h−1 for fully fermenting cells at saturating glucose concentrations. In order to tune kcat,resp
we consider literature data reporting the growth rate at which the switch from respiration to
fermentation occurs. According to such data, S. cerevisiae in a chemostat starts to produce
ethanol at a dilution rate between 0.25 and 0.28 h−1 [13]. Then we set kcat,resp such that an equal
growth rate of about 0.28 h−1 is achieved either using the fermentation pathway or the respiration
pathway.

Parameter Meas. unit Value Parameter Meas. unit Value

kcat,hxt h−1 37492 km, hxt mM 20
kcat,gly h−1 4166 km, gly mM 0.2
kcat, rib h−1 670 km, rib, ki, pyr, ki, glui mM 1
kcat, resp h−1 99 km, resp, km, ADPgly,

km, ADPresp, km, ATPrib

mM 0.5

kcat, ferm h−1 6427 km, ferm mM 5
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inhibitor Far1; (3) a cell cycle module, that consists of three consecutive timers (T1b, T2
and TB) that describe the cycle progression after the triggering mechanism activates the
first timer T1b. The period that leads from the birth of the cell up to the time instant
when the molecular machinery triggers the first timer is denoted by T1a.

3.1 The Growth Module

The growth module deals with the ribosome content R, expressed as number of ribo-
somes per cell (rib), and the protein content P, expressed as number of polymerized
amino acids per cell (aa), and is taken from [17] (where the reader can find the
equations and the details which are below briefly recalled). Both ribosome and protein
dynamics are described by the balance between production and degradation rates.
Figure 4A shows the time course of the protein content and of the number of ribosomes
for two different parameter settings: fast growth (2% glucose, solid line) or slow growth
(ethanol, dashed line).

For each steady-state growth condition, the target ribosome/protein ratio q is an
output of MeGro that can be directly fed into GroCy, providing the link between the
two models. According to the model, when the ratio R/P is greater than q, then there is
no ribosome production; otherwise, the ribosome production rate is proportional to the
(positive) difference qP − R. Denoting with K2, s2, the average translational efficiency
and the protein degradation time constant, respectively, it can be shown that, provided
the exponential growth condition is satisfied, qK2 − 1/s2 > 0, the ratio R/P asymptot-
ically converges to the value of parameter q. The exponential growth condition ensures
that both ribosomes and proteins grow according to the same exponential law, with an
exponential growth rate k (min−1) given by: k = qK2 − 1/s2.

k is not hard-wired in the model, but rather it is linked to the macromolecular
composition and biosynthetic activity of the cells, a connection whose detection is
made possible by the appropriate choice of the measurement units for ribosome and
protein content, synthesis and degradation.

Fig. 3. Concept map of GroCy sub-module.
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3.2 The Molecular Trigger Linking Growth to Cell Cycle Initiation

In budding yeast the entrance into S phase and budding starts when cells reach a critical
cell size, thus connecting growth and cycle [18, 19]. Cln3 is an activator of S phase
entrance, whose amount is proportional to the overall protein content, Eq. (20),
therefore linking the growth and cycle modules. Despite some discordant results dis-
cussed in [20], we take that Cln3 accumulation is constant during G1. Cln3 production
takes place in the cytoplasm. Cytoplasmic Cln3 is defined straightforwardly by
Eq. (21). Nuclear volume is a constant fraction of total cell volume throughout the
cycle [21].

The cyclin-dependent kinase inhibitor Far1 is involved in the cell size control
mechanism in cycling cells by inhibiting Cln3 in early G1 [22, 23]. After mitosis,
newly synthesized Far1 is endowed to each nucleus [24]. Ensuing Cln3 nuclear
transport and accumulation allows overcoming of Far1 inhibition, which is made
irreversible by Far1 degradation primed by the rising Cln3 activity [25, 26].

Here we use a simplified version of the equations used in [27] to model the
molecular interplay between Cln3 and Far1, which we call the molecular triggering
mechanism. Cdk1 – present in excess over its regulatory subunits – is implied, but not
explicitly modeled (Fig. 4B). Cln3 transport in the nucleus and Cln3/Far1 interaction
follow mass action kinetics. Far1 degradation is governed by rate η (min−1) modeled

Fig. 4. ATime course of the protein content P and of the number of ribosomes R for fast (2%
glucose, solid line) and slow growth conditions (ethanol, dashed line). B: schematic view of the
interactions among the molecular players involved in the GroCy molecular triggering
mechanism. C-D: time evolution of the players of the molecular triggering module, for fast
(2% glucose, panel C) and slow (ethanol, panel D) growth conditions.
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according to a Hill function (Eq. (21)), that increases from 0 to a high level η* as soon
as the free nuclear Cln3 exceeds Cln3Far1. nF is the Hill coefficient, modeling the
steepness of the Hill function. Equation (19) accounts for reversible nucleo-
cytoplasmic transport of Cln3 and interaction with Far1.

dCln3Far1=dt ¼ kon=Vnucð ÞClin3nucFar1 � koff Clin3Far1; ð17Þ

dFar1=dt ¼ � kon=Vnucð ÞCln3nucFar1 þ koff Cln3Far1� g Cln3nuc=Cln3Far1ð ÞFar1; ð18Þ

dCln3nuc=dt ¼ � kon=Vnucð ÞCln3nucFar1 þ koff Cln3Far1 þ kcnCln3cyt � kncCln3nuc;

ð19Þ

Cln3cyt ¼ Cln3tot � Cln3nuc þCln3Far1ð Þ;Cln3tot ¼ hP; ð20Þ

Vnuc ¼ hVcell;Vcell ¼ P=H; g xð Þ ¼ g�xnF= 1þ xnF
� �

: ð21Þ

When 80% of the budded period has elapsed, a RESET function takes place and the
G1* phase begins. RESET denotes the time instant when nuclear division (but not cell
division) occurs: i.e. during the G1* phase each cell has two G1 nuclei and an undi-
vided cytoplasm. At RESET the nuclear players show a discontinuity because they no
more represent the whole (and unique) nuclear content and also because Far1 has been
reset to a higher value. The RESET function includes instantaneous synthesis of Far1
and equal partition of Cln3Far1, Far1, Cln3nuc in two nuclei whose volume is half of
the original volume before RESET: Vnuc = hVcell/2. Far1 degradation is inhibited
(η = 0 in Eq. (18)), and Cln3 diffusion from the cytoplasm into the nucleus is strongly
reduced (kcn in Eq. (19) reduces of 5 orders of magnitudes during the G1

*).
Figure 4C–D shows the time course for the different molecular players throughout

the whole cycle of an average size cell, growing in fast conditions (2% glucose, panel
C) or in slow conditions (ethanol, panel D): when - very early after division - free
nuclear Cln3 overcomes its inhibited form Cln3Far1 the first of the three consecutive
Timers related to the cell cycle module is triggered. The time period spanning from the
birth of the cell up to the aforementioned time instant is named T1a. The kinetic
parameters of the molecular trigger do not vary in different nutrient environments,
except for the total amount of Far1, known to diminish in poor media [22], and for the
parameters H, h assumed to decrease in case of poor growth (see Table 2).

3.3 The Cell Cycle Module

In S. cerevisiae cell mass at division is unequally partitioned [19] between a larger, old
parent cell (P) and a smaller, newly synthesized daughter cell (D). The degree of
asymmetry of cell division in S. cerevisiae is modulated by nutrients: poor media –

such as ethanol - yield a high level of asymmetry with large parent cells and very small
daughter cells, whereas in rich media - such as glucose - parents and daughters at
division are very close in size (reviewed in [15]). Since cells have to grow to a critical
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cell size before entering S phase and budding, small daughter cells have a longer cycle
time than the corresponding parent cells, most notably in poor media. This difference in
cycle time between daughter and parent cells is due to differences in the G1 phase,
whilst the budded period TB has essentially the same length in both parents and
daughter cells [18]. Differences in growth rate have marginal effects on the length of TB
and dramatic effects on the length of G1 (reviewed in [15]).

As explained, T1a is the period from the birth of a cell till the time instant when free
nuclear Cln3 exceeds its inhibited form Cln3Far1; the rest of the cycle is modeled by
the sequence of three consecutive timers T1b, T2, and TB. The sum of the period
T1a + timer T1b corresponds to timer T1 in [18]. The G1 phase is given by T1 + T2.
Timer TB encompasses the budded phase.

The first timer T1b starts when free Cln3 exceeds its inhibited form Cln3Far1. The
length of T1b is related to the size of the cell, so that larger cells have smaller T1b
periods, and vice versa. More in details, T1b length is set according to the equation

T1b ¼ max T1b;min;W0�W1ln PT1að Þ� �
; ð22Þ

with PT1a denoting the size of the cell at the end of T1a. Notice that PT1a plays an active
role in the setting of T1b only for cells small enough, i.e. only when:

W0�W1ln PT1að Þ [ T1b;min ! PT1a\exp W0�T1b;min
� �

=W1
� �

: ð23Þ

Table 2. GroCy parameters.

Parameters Meas. unit glc 2% Ethanol Parameters Meas. unit glc 2% Ethanol

q rib/aa 2.02e−5 1.18e−5 s2s, s � 1 min 1500 3000
P(0) aa 2.76e10 0.8e10 kon (molec/L)−1/min 1.63e−15 1.63e−15
R(0) rib 5.57e5 0.94e5
Far1(0) molec 240 110 koff min−1 25 25
Cln3nuc(0) molec 0 0 h – 0.07 0.07
Cln3Far1(0) molec 0 0 H aa/L 7.09e23 6.18e23
Far1reset molec 240 110 nF – 10 10
K1 min−1 1 0.6 �g min−1 1 1
s1 min 4000 2000 H molec/aa 3.02e−8 2.66e−8
K2 aa/rib/min 380 316.66 kcn min−1 1.5 1.5
K2
1 aa/rib/min 342 285.46 knc min−1 0.6 0.6

K2
2 aa/rib/min 178 149.34 kcn,reset min−1 5e−4 5e−4

K2
3 aa/rib/min 69 58.59 T1b,min min 1 8

K2
4 aa/rib/min 51 43.47 W0 min 1503 7045

K2
5 aa/rib/min 42 35.91 W1 min 62.1 306

K2
s , s > 5 aa/rib/min 35 29.86 T2 min 10 30

s2 min 3000 6000 TB min 85 136
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This happens, for instance, with most of daughter cells. In parent cells PT1a is,
usually, greater than the upper bound in inequality (23), so that their T1b length is fixed
to T1b, min and does not depend on the size.

The length of timer T2 does not depend on protein content [18]. At the end of timer
T2, the critical protein size P is estimated. The budded period TB, includes the S, G2, M
and G1* phases. G1* has been modeled as the last 20% period of TB phase. The end of
the timer results in cell division. Like timer T2, timer TB length does not depend on
protein content, (no difference between daughters and parents). Part of the GroCy
parameters are influenced by - and vary according to - the nutrient environment.

3.4 Genealogical Age Heterogeneity and Pedigree Simulations

When a yeast cell buds, a chitin ring, called bud scar, is formed at the bud isthmus
remaining on the Parent after bud separation [15]. The genealogical age ‘k’ of a parent
cell is the same as the number of bud scars ‘s’, that can be visually counted, since each
new bud starts at a new site. A cell without bud scars (s = 0) is a Daughter cell and it
has not yet completed a cycle. We denote by “Dk” a Daughter of genealogical age ‘k’
(Fig. 5A). Each Dk (k > 1) is born from a Pk−1 Parent. D1 are born from any Dk.

Fig. 5. AChain of cells P1−P4, D1−D4. B, C: Computed Ps (number of polymerized amino
acid) for Parents of increasing genealogical age (until age 4), for fast (2% glucose, panel B) and
slow (ethanol, panel C) growth conditions. Panel B reports the experimentally determined
volume at bud initiation for Parents of increasing genealogical age (redrawn from [28]). D:
Generation times, TPk, TDk, for Parents and Daughters of increasing genealogical ages obtained
by simulating 20 different chains of cells P1, …, P4 and D1, …, D4. Frequencies of each
sub-population (FPk, FDk) have been obtained using eqs. (A12, 13) in [30]. E: experimental and
simulated values for relevant population parameters. TD and TP have been calculated from data in
panel D, using eqs. (A4, 5) in [30].
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Each Parent increases in size before starting to bud [28]. At division, it receives the
mass it had at budding, while the mass synthesized during the budding phase goes to the
newborn daughter. Hence, cell mass at budding (in Parents) and cell size at birth (in
Daughters) increase with genealogical age. A reduced increase in parent cell size at
budding with increasing genealogical age has been reported [15, 28] (see inset in Fig
Fig. 5B) and explained by mechanical stress of the cell wall, which increases with cell
size [29]. Both K2 and s2 in the growth module of GroCy (rate of protein synthesis and
time constant of protein degradation respectively) decrease in value during the
pre-budded period (G1 phase), according to the parent genealogical age, returning to
their nominal values at the onset of the budding phase (end of Timer T2), so that the
parent cell Pk grows again with the steady-state exponential rate given by k = qK2 – 1/s2.
Daughter cells (of any genealogical age) are not affected by such a mechanical stress. The
behavior of PS qualitatively recapitulates experimental data (see Fig. 5B, C).

GroCy may be used to replicate small pedigree populations in different nutritional
conditions, by suitably setting its parameters. We simulated 20 chains of cells D1, …,
D4, P1, …, P4 (Fig. 5A), starting from 20 different initial cells, for two distinct growth
conditions: 2% glucose and ethanol. The timers T1b, T2, TB and the initial protein
content P(0) of each cell have been allowed to vary, with log-normal distribution, with
a 5% CV over their average values. In order to estimate the average cell cycle length
for both subpopulations of parents and daughters (TP, TD), we need to estimate the
fractions of parents and daughters from the aforementioned “chain-cells” simulation.
To this end we adopt the population modeling approximation described by Eq. (A1)
given in [29] that provides the critical size of a parent Pk as a function of the critical
size of a daughter and of the pair of parameters a, Q < 1. In exponential growth, the
cell cycle length of parents and daughters of any genealogical age can be computed by
means of Eqs. (A4, A5) of the same paper, where the parameter a denotes the expo-
nential growth rate. Since these lengths are provided by the “chain-cells” simulation,
we exploit the mentioned equations to infer the information on the population growth
rate a and to estimate the values of (a, Q) that best fit these data. Parameters (a, Q), as
well as the growth rate a, are finally exploited to derive the fractions of cells (FP1, …,
FP4, FD1, …, FD4) by way of the age distribution function [29]. The inferred structure
population (Fig. 5D) allows to compute TP and TD, and the average protein content for
the whole population, < P>. Relative protein content, mass duplication times (T), TP
and TD of yeasts growing on different media are very similar to experimental values.
The relationship 2−TD/T + 2−TP/T - that links together T, TP and TD - yields a number
very close to the theoretical value of 1 [15, 19], confirming that the simulated
parameters capture the structure of yeasts growing on different carbon sources.

4 Conclusions

The growth activity combined to the other two main cellular activities of metabolism
and cycle (MeGro and GroCy, respectively) define the modular building blocks con-
stituting the coarse grain backbone of a modular, hierarchical and integrated Metabo-
lism, Growth and Cycle model: iMeGroCy. The light green box in Fig. 6 reports a
functional scheme highlighting the general procedure that allows to inter-connect
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MeGro and GroCy as a function of the nutritional input (i.e., the glucose concentra-
tion). The current version of MeGro does not allow carbon sources other than glucose.
MeGro responds to the external glucose cglc,ex and YEtOH/glc coming from experimental
data in order to set the steady-state exponential growth rate k and ribosome-over-
protein ratio q as outputs of an optimization algorithm aiming at maximizing the
growth rate. The MeGro outputs k and q enter GroCy as inputs, allowing to set the
ribosome and protein dynamics parameters, constituting the growth module. The
exponential growth relationship k = qK2 −1/s2 is used to constrain the GroCy
parameters K2 and s2 to the MeGro outputs (k, q). K1 and s1 have been fixed
accordingly to [18]. So, for cells growing on glucose-containing media, MeGro acts as
a parameter generator for GroCy.

iMeGroCy differs from previous cell cycle models that either relied on defined
molecular networks [31] - encompassing 27 components out of the much larger
identified number [14, 32] or - when of low granularity [33] - did not show the same

Fig. 6. Scheme of iMeGroCy (light green box). The scheme depicts the interconnection of the
two main sub-blocks (MeGro, red block, and the GroCy, yellow block). The figure also shows
iMeGroCy could host molecular blow-ups (plug-ins) of yeast functions. (Color figure online)

An Integrated Model Quantitatively Describing Metabolism 177



degree of modularity offered by our approach. Other models concentrated on specific
cell cycle phases and could be used in conjunction with iMeGroCy, whose modular and
hierarchical nature allows it to act as a scaffold for the construction of a whole cell
model for S. cerevisiae (Fig. 6). For instance, MeGro could be substituted by a
genome-wide model [1], appropriately modified to include connections with cell
growth and regulation by nutrients, the G1 timers could be substituted by a recently
described G1/S module [20], entrance into S phase by a model of the onset of DNA
synthesis [34], the budded phase by a wave of cyclins [35].

Adding the modules incrementally, the ability of iMeGroCy to fit experimental data
could be monitored at any step. Top-down definition of the molecular modules would
allow coherent expansion of iMeGroCy, favoring collaboration within the yeast
community, since such an ambitious large-scale project will require a new type of
collaborative effort [36].
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Abstract. Recent studies of Escherichia coli transcription dynamics using
time-lapse confocal microscopy and in vivo single-RNA detection confirmed
that transcription initiation has two main rate-limiting steps. Here, we argue that
this allows selective ‘tuning’ of the effects of extrinsic noise on a multi-scale
level that ranges from individual genes to large-scale gene networks. First, using
empirically validated stochastic models of transcription and translation, we show
that the effects of RNA polymerase numbers’ cell-to-cell variability on the
cell-to-cell diversity in RNA numbers decrease as the relative time-length of the
open complex formation increases. Next, using a stochastic model of a 2-genes
symmetric toggle switch, we show that the cell-to-cell diversity of the switching
frequency due to cell-to-cell variability in RNA polymerase numbers also
depends on the promoter kinetics. Finally, from the binarized protein numbers
over time of 50-gene network models where genes interact by repression, we
calculate the cell-to-cell variability of the mutual information and Lempel-Ziv
complexity of the networks dynamics, and find that, while arising from the
cell-to-cell variability in RNA polymerase numbers, these variability levels also
depend on the promoter initiation kinetics. Given this, we hypothesize that
E. coli may be capitalizing on the 2 rate-limiting steps’ nature of transcription
initiation to tune the effects of extrinsic noise at the single gene, motifs, and
large gene regulatory network levels.

Keywords: Transcription initiation � Extrinsic noise � Genetic circuits
Mutual information � Lempel-Ziv complexity

1 Introduction

When facing changing conditions, Escherichia coli cells can perform behavioral
changes that can range from ‘smooth’ to ‘sharp’. This degree of change depends on the
changes (how many and by how much) in the regulatory molecules of the transcrip-
tional and translational machineries, such as RNA polymerase (RNAP) core enzymes,
promoter sequence, r factors, transcription factors, and ribosomes [1, 2].
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Single-cell measurements have shown that, even in monoclonal bacterial popula-
tions, cells differ widely in component numbers [3, 4]. Consequently, the behavioral
changes in response to, e.g., an environmental change, vary widely between individual
cells. Such variability in cellular components numbers that causes cell-to-cell vari-
ability in the dynamics of cellular processes is usually termed “extrinsic noise”.
Meanwhile, variability in the dynamics of a system that arises from the stochastic
nature of its underlying processes (e.g. the stochastic nature of an event such as two
molecules binding to one another) is usually termed ‘intrinsic noise’.

Because of the influence of these noise sources in cellular processes, the response
of genes, in activity level, to global changes in regulatory molecules numbers is also
highly diverse both in time (in a single cell, due to intrinsic noise) and across a cell
population (due to intrinsic and extrinsic noise sources) [5]. In the case of r factors’
direct positive regulation, this is believed to be due to a promoter-dependent selectivity
for the r factors [6], and/or the action of transcription factors [5]. Meanwhile, in the
case of indirect negative regulation, it has recently been shown to be due to differences
in the multi-step kinetics of transcription initiation of the promoters [7].

Following this finding, we recently have made use of stochastic modelling to
explore the hypothesis that the dynamics of the rate-limiting steps in transcription
initiation [8, 9] may influence individual genes’ degree of responsiveness to extrinsic
noise [10, 11].

Here we investigate this phenomenon further, on a wide multi-scale perspective,
namely, from individual genes to large-scale networks involving tens of genes. In
particular, we study, at each level of complexity, the response to changing extrinsic
noise levels as a function of the transcription kinetics of the component genes.

For this, we implement stochastic models of individual genes, genetic toggle
switches, and 50-gene networks accounting for cell-to-cell diversity in RNAP numbers.
Parameter values used in the models are obtained from recent microscopy measure-
ments of single-cell RNAP, RNA, and protein numbers. Stochastic simulations [12, 13]
of these models are performed to assess the extent to which the kinetics of initiation of
the component promoters can be used to tune the level of the effects of the cell-to-cell
variability in RNAP numbers on the dynamics of individual genes, genetic switches
and 50-gene networks.

2 Methods

2.1 Models of Transcription, Translation, Genes Networks, and Source
of Extrinsic Noise

Our stochastic models of gene expression and genetic circuitry are based on multiple
genome-wide studies of cell-to-cell variability in RNA numbers [14, 15], transcription
dynamics of individual genes [9], translation kinetics at the single protein level [16–
18], protein folding and activation kinetics [19], natural genetic switches [20, 21], and
topology of large-scale circuits [22]. Importantly, the value set for each parameter
associated to the core process of gene expression was obtained from empirical data
(Table 1).
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Assuming a N-genes network, the multi-step transcription process of an active
promoter i, PiON, is modeled by reactions (1), with i = {1, …, N} [23]. The closed
complex (RPc) is formed once an RNAP (R) binds to a free promoter [24]. Subsequent
steps follow to form the open complex RPio

� �
[23, 24]. Finally, elongation starts [25],

clearing the promoter. In the end, an RNA is produced and the RNAP is released.
Elongation is not considered, due to its much shorter time-length when compared to
initiation [9].

In (1), k1 is the rate at which an RNAP (R) finds and binds to promoter Pi, k−1 is the
rate of reversibility of the closed complex, k2 is the rate of open complex formation,
and k3 is the rate of promoter escape (expected to be much higher than all other rates,
and thus assumed to be ‘infinite’ [9]):

1 32

1

i
ON ON rnak kk iiii

c ok
P R RP RP R P

−

⎯⎯→+ ⎯⎯→ ⎯⎯→ + +←⎯⎯ ð1Þ

Reactions (2) and (3) model translation of the RNA and subsequent protein folding
(which includes activation, for simplicity), respectively:

Protrbsk iii
unfoldedrna Rib rna Rib+ ⎯⎯→ + + ð2Þ

Prot Protfoldk ii
unfolded folded⎯⎯⎯→ ð3Þ

Reactions (4) and (5) model degradation and dilution due to cell division of RNA
and proteins, respectively:

RNAkdirna ⎯⎯⎯→∅ ð4Þ

Prot Pkdi
folded ⎯⎯→∅ ð5Þ

For simplicity, we assume that genes interact solely via repression mechanisms that
block initiation [31]. This suffices to model several known small gene network motifs,
such as, e.g., genetic switches. The repression mechanism is modeled by reactions (6),

which account for the transitioning of the promoter to active/inactive PiON
.
PiRep

� �
due

to the unbinding/binding of an active repressor protein Protjfolded
� �

, produced by gene j:

Rep

ON RepProt
ON

ki j i
folded k

P P⎯⎯⎯→+ ←⎯⎯⎯ ð6Þ

Finally, we assume a mean cell lifetime (‘div’) of 1 h [9]. The dilution rate (Dil) of
RNA and proteins due to cell division thus equals:

Estimating Effects of Extrinsic Noise on Model Genes and Circuits 183



Dil ¼ div�1 � logð2Þ ð7Þ

Taking into account the dilution due to cell division, along with the molecules’
natural degradation rate (Deg), one has that the overall decay rate of, e.g., RNA
molecules (kd) along one line of a cell lineage will be:

kd ¼ DilþDeg ð8Þ

The same formula is applied to proteins, using the appropriate rate constant (kdp)
for the degradation process. It is noted that, in agreement with [9], in the case of the
model of single genes, we assume that the cell has a constant amount of active
repressors, which, at points, force the promoter to go into the repressed state.

Given these models, assuming an ‘active’ promoter, we define sprior as the mean
expected time for a successful closed complex formation, which depends on the speed
and number of attempts to initiate an open complex formation (which, in turn, depends
on the RNAP concentration). Meanwhile, the remaining time to produce an RNA, safter,
includes the steps following commitment to open complex formation (e.g. isomeriza-
tion [31]), and prior to transcription elongation. The mean time interval between
consecutive RNA productions (Dtactive) of a fully active promoter is thus given by:

Dtactive ¼ sprior þ safter ð9Þ

Relevantly, in this model, safter does not depend on the RNAP intracellular con-
centrations. This is of significance in that, e.g., fluctuations in this concentration will
only cause fluctuations in sprior and thus, will only cause ‘partial’ fluctuations in
Dtactive, whose intensity will depend on the ratio safter/Dtactive. Note also that we do not
expect this formula to describe RNA production of genes in circuits, since the
repression mechanism will cause significant changes to the RNA production kinetics
prior to a successful closed complex formation.

The model above, as it is based on chemical reactions, and it is simulated in
accordance with the stochastic simulation algorithm (SSA) [12], will result in systems
whose dynamics are inherently stochastic due to two intrinsic noise sources, namely, the
variability in the time moments that reactions occur and which reaction occurs next [12].

In addition to this, at the cell population level, the model possesses an extrinsic
source of noise, which consists of a variability in the RNAP numbers of individual
cells. This variability, as explained in the next section, is based on empirical data.

2.2 Cell-to-Cell Variability in RNA Polymerase Numbers

RNAP numbers in individual model cells are set based on measurements of RNAP
fluorescence intensity in individual E. coli RL1314 cells with fluorescently tagged b’
subunits [9]. In particular, we set the mean RNAP fluorescence in individual cells
arbitrarily to 1 and obtain the fraction of cells with a given relative fluorescence level.
The 2.5% cells with lowest and highest fluorescence intensity were discarded as
outliers.
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To obtain empirical values, we measured the cell-to-cell variability in RNAP
numbers by calculating the squared coefficient of variation (CV2) of the RNAP
fluorescence intensity levels in individual cells. Next, to obtain the CV2 of RNAP
relative levels in individual cells, we fitted a normal distribution to the data (MATLAB
package Statistics and Machine Learning Toolbox™). The CV2 of the fit equaled 0.03,
in agreement with [9]. To validate the fitting, we performed a Kolmogorov-Smirnov
(KS) test between the empirical and best fit distributions, which showed that they
cannot be statistically distinguished (p-value of 0.69, which, by being much higher than
0.01, clearly indicates that the null hypothesis that the two sets of data are from the
same distribution cannot be rejected). Finally, we used this best fit distribution to set
random RNAP numbers in each model cell, unless stated otherwise.

2.3 Detecting Switches in the Dynamics of the Toggle Switch
and Switching Frequency Quantification

To detect ‘switches’ in the two protein numbers over time in toggle switches (where a
switch is a change in which protein is more abundant), at each moment of the simu-
lation, we calculate the difference between the numbers of the two proteins, denoted as
‘Prot1’ and ‘Prot2’. To not account short, transient switches, we use the following
filter: if the absolute difference between Prot1 and Prot2 is smaller than 100 (*10% of
the mean protein numbers of an active gene in our models), we set the difference to 0.
The number of switches during the time series is the number of times the difference
between the two protein numbers changes from positive to negative or vice-versa.
Given that n is the number of switches and Δt is the observation time, the switching
frequency (F) is quantified as:

F ¼ nþ 1
Dt

ð10Þ

2.4 Parameter Values and Simulations

Simulations are performed by SGNS [13], a simulator of chemical reaction systems
based on the Delay Stochastic Simulation Algorithm [12, 32].

Each model cell ‘contains’ the systems of reactions (1)–(6). These reactions have
the parameter values shown in Table 1 (unless stated otherwise). According to the
model, e.g., increasing k1 decreases the closed complex formation, while increasing k2
shortens the open complex formation time. Here, we tune k1 and k2 so that the mean
RNA production rate is kept constant, using the following formula [9]:

I Rð Þ ¼ kON þ krep
� �

k�1 þ k2ð Þ
Rk1k2kON

þ 1
k2

þ 1
k3

ð11Þ

where I(R) is the mean interval between consecutive RNA productions in individual
cells, assuming infinite cell lifetime. In (12), we first set all parameter values to the
values shown in Table 1, to obtain the value of I(R) in the control condition. Next, again

Estimating Effects of Extrinsic Noise on Model Genes and Circuits 185



using this formula, we alter k1 and k2, so that I(R) is kept constant and equal to the I(R)
of the control condition. This allows changing the ratio safter/Δt, which is given by:

safter
Dt

¼ 1� kON þ kOFFð Þ k�1 þ k2ð Þ
Rk1k2kON

� IðRÞ�1 ð12Þ

The range of possible values of safter/Δt is set to be [0.05, 0.95], due to high
diversity of empirical values of different promoters and promoters subject to different
induction settings. These values, reported in [7], are here shown in Table 2:

In the case individual genes and small motifs, we simulate models whose promoters
differ in safter/Δt (by changing k1 and k2 while keeping Δt constant) by 0.1, from 0.05 to
0.95 (i.e. 10 conditions). Meanwhile, given that the RNAP cell-to-cell variability
(CV2(RNAP)) is known to be equal to 0.03 in optimal growth conditions [9], and
assuming that it is likely higher in sub-optimal conditions, we simulate models that
differ in CV2(RNAP) by 0.015, from 0 to 0.09 (i.e. 7 conditions). As such 70 different
models are simulated. Specifications of the large-scale circuits (50-gene networks)
simulated are described in the results section.

Table 2. Empirical values of safter/Δt of various promoters under various induction levels.

Promoter and Induction safter/Δt Reference

BAD (0.1% arabinose) 0.29 [7]
BAD (0.01% arabinose) 0.45 [7]
BAD (0.001% arabinose) 0.83 [7]
Lac-O1O3 (1 mM IPTG) 0.45 [7]
Lac-O1O3 (0.05 mM IPTG) 0.54 [7]
Lac- O1O3 (0.005 mM IPTG) 0.88 [7]
TetA (no inducers) 0.93 [7]
Lac-O1 (1 mM IPTG) 0.95 [7]
Lac-ara1 (1 mM IPTG and 0.1% arabinose) 0.51 [7]

Table 1. Parameter values of the models (control condition). k1 and krbs values are set assuming
that the number of available RNAP and ribosomes equal 1 (and are never depleted).

Parameter Value (s−1) Reference

kON 0.01 [9]
krep 281 [9]
k1 6469 [9]
k−1 1 [9]
k2 0.005 [9]
kdrna 0.0033 [14], Eq. (7)
krbs 0.637 [16–18]
kfold 0.0024 [19]
kdp 0.0019 [19], Eq. (7)
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2.5 Mutual Information and Lempel-Ziv Complexity

In the case of large-scale gene networks (i.e. with 50 nodes and mean number of input
connections of 2, see below), we calculate the Mutual Information (MI) and
Lempel-Ziv (LZ) complexity of their dynamics. We consider such dynamics to cor-
respond to the protein numbers of each gene over time (as in [26]). For that, we first
define time windows (each window containing 10 consecutive time moments where
protein numbers were collected) and calculate the mean protein numbers within that
window, for each gene. Next, we binarize these numbers in accordance with a fixed
threshold. If, in a given window, the mean protein numbers is smaller than 200, then
the ‘binary protein value’ is set to zero. Else, it is set to 1. The threshold value of 200
for protein numbers was set based on our observation that, when the corresponding
gene is repressed, its proteins usually tended to be smaller than 100, while when the
gene is unrepressed, they tend to be larger than 300.

Based on this binarized data, to study the global propagation of information in the
gene network, we make use of the average pairwise MI, which is a measure of the
degree of correlation between the dynamics over time of all genes of the network. In
particular, we defined MI as follows. Let Sa be a process that generates 0 with prob-
ability p0 and 1 with probability p1. We define the entropy of Sa as:

H½sa� ¼ �p0 � log2 p0 � p1 � log2 p1 ð13Þ

Similarly, for a process Sab that generates pairs xy with probabilities pxy, where x, y
2 {0, 1}, we define the joint entropy as:

H½sab� ¼ �p00 � log2 p00 � p01 � log2 p01 � p10 � log2 p10 � p11 � log2 p11 ð14Þ

Finally, the MI of the pair of genes i and j is [26]:

MIij ¼ H si½ � þH sj
� �� H sij

� � ð15Þ

Given this definition, MIij measures the extent to which information about node i at
time t influences, directly or not, node j one time step later. From this, to quantify the
efficiency of information propagation throughout the entire network, assuming N to be
the number of nodes, we define the average pairwise MI of a network as:

MI ¼ N�2 �
X

i;j¼1;::;N

MIij ð16Þ

In addition to the average pairwise MI, again using the windowed, binarized protein
numbers data, we further calculate the Lempel-Ziv (LZ) complexity of each gene’s
protein numbers over time (averaged over all genes) [27], as a means to quantify the
degree of complexity of the signals that each gene of the network can generate.

In general, LZ measures a sequence’s complexity over a finite alphabet (here {0,
1}) by counting the number of new sub-strings (words) found, as the sequence is read
(usually from left to right). For this, the algorithm used here [29] separates the sequence
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into shortest words that haven’t occurred yet, and the complexity equals the number of
unique words, except for the last word, which may not be unique [27, 28]. Finally,
assuming that n is the length of the time series of protein numbers from which the
absolute LZ is calculated, we divide this absolute quantity by log2 nð Þ so as to scale it
by the length, thus obtaining the scaled LZ for each gene. Then, we calculate the
average scaled LZ of the network by summing the scaled LZ of each gene i and
dividing by the total number of genes (N):

LZ ¼ 1
N
�
X

i¼1;::;N

LZðiÞ � log2 nð Þ
n

� 	
ð17Þ

3 Results and Conclusions

3.1 sAfter/Δt Tunes the Generation of Cell-to-Cell Variability in RNA
Numbers from the Cell-to-Cell Variability in RNAP Numbers

We simulated the 70 models of individual genes described in the Methods section.
Each model was simulated 100 times, each time for 2 � 104 s. From each simulation,
we extracted the total number of produced RNA molecules during that time period.

As described in Methods, the models differ in such a way that the mean rate of
RNA production should not differ. This was verified to be true. In all models, the total
number of RNAs produced per cell equals *20, as expected (Table 1).

In Fig. 1, we show the CV2 of the number of produced RNAs (CV2(RNA)) in
individual cells in each model. We find that, as safter/Δt increases, the CV2(RNA)
decreases. Meanwhile, the CV2(RNA) grows with increasing CV2(RNAP). More
importantly, visibly, both safter/Δt and CV2(RNAP) need to be tuned in particular ways
so that the CV2(RNA) reaches a maximum and a minimum, which is not possible
otherwise.

We conclude that, while the CV2(RNAP) ‘propagates’ to the CV2(RNA), as
expected [33], the degree with which it does so strongly depends on the promoter
initiation kinetics (specifically, it differs depending on the value of safter/Δt).

Fig. 1. CV2 of number of produced RNAs in model cells versus safter/Δt and CV2(RNAP).
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3.2 safter/Δt Tunes the Influence of the Cell-to-Cell Variability in RNAP
Numbers on the Cell-to-Cell Variability in Switching Frequency
of a 2-Gene Toggle Switch

A 2-gene toggle switch consists of a genetic circuit of 2 genes that repress each other.
Here, we model symmetric circuits, i.e., the 2 genes are identical. We simulated 70
models of toggle switches, differing in the dynamics of the component genes as
described in Methods. Each model was simulated 100 times, each for 5 � 107 s, and
protein numbers were assessed at a sampling interval of 104 s. In each simulation, we
determined the moments when the protein numbers ‘switched’, as described in the
Methods section, from which we obtained the mean and CV2 of the switching fre-
quency (F) for each model toggle switch. Results are shown in Fig. 2.

From Fig. 2(Left), decreasing safter/Δt decreases mean F, due to increased robust-
ness of the ‘noisy attractors’ of the toggle switch [30], caused by a reduced probability
of finding the ‘repressed’ promoter in a state that allows transcription to initiate.
Meanwhile, changing CV2(RNAP) does not affect the mean F, as this variable should
not influence the mean behavior of the cell population, only the population’s behavior
diversity.

From Fig. 2(Right), we find that as the CV2(RNAP) increases, so does the CV2(F)
(although mildly), provided that safter/Δt is smaller than *0.7–0.8. This is because, the
smaller is safter/Δt, the weaker is the filtering of the extrinsic noise. Overall, the
CV2(RNAP) affects the CV2(F) weakly since, first, the CV2(RNAP) only affects the
cell-to-cell variability of the mean sprior/Δt and, thus, if this step is short-length, the
effects on the variability in RNA production kinetics will be weak. Second, for rela-
tively small values of sprior/Δt compared to safter/Δt, the switch becomes less stable [11],
causing the effects of increasing CV2(RNAP) to become negligible.

Meanwhile, safter/Δt has a strong influence on CV2(F) since, the smaller is its value,
the larger is CV2(F). This is explained by the fact that sprior/Δt will be larger for small
values of safter/Δt, and thus, the transcription kinetics will be more influenced by the

Fig. 2. (Left) Mean switching frequency (F) as a function of safter/Δt and CV2(RNAP). (Right)
Cell-to-cell diversity of the switching frequency (CV2(F)) as a function of safter/Δt and
CV2(RNAP).

Estimating Effects of Extrinsic Noise on Model Genes and Circuits 189



noise from events such as RNAp binding, repressors binding, etc., causing the switch to
change have a more noisy dynamics.

3.3 Large-Scale Circuits. Information Generation and Propagation

We simulate networks with 50 nodes and mean number of input connections (i.e. mean
connectivity) of 2. The network topologies are generated using the ‘Erdős Random 2’
algorithm proposed in [34] that allow producing Erdős random graphs [35].

In these networks, each node is a gene whose expression dynamics and interactions
(i.e. connections) are defined according to reactions (1–6). Consequently, all interac-
tions between genes consist of repression mechanisms, as those used to model the
genetic switches above. Given this modelling strategy, at any given moment, a gene is
expected to be either actively expressing (in the absence of its repressor proteins, which
can be more than 1) or to be repressed. We hypothesize that the degree of repression
should depend on the number of genes that can directly repress a given gene, on the
relative time length during which the repressing genes are active, and, importantly, as
seen above, on the value of safter/Δt of the repressed gene.

To study how changing safter/Δt and CV2(RNAP) affects the networks ability to
generate and propagate information, for each set of values of safter/Δt and CV2(RNAP),
we generate 10 topologies. Then, we simulated each topology 10 times, with individual
simulations differing in RNAP numbers as above.

Each simulation lasts 106 s, and the numbers of each protein were collected each
103 s. Each such set of collected protein numbers constitutes a network ‘time moment’.
From these, network ‘states’ over time are obtained as follows. First, time windows
with a length of 10 time moments are defined (the first window is not considered since
the network is initialized without proteins). Next, the protein numbers in each state are
obtained by averaging these numbers from all 10 time moments composing the win-
dow. Finally, for each protein, we binarize its mean numbers of each time window
using a fixed threshold (see Methods).

Thus, from each simulation, we obtained 100 consecutive ‘binary states’ of the
given network. From this data, we can then calculate the average pairwise MI and the
average scaled LZ, so as to measure, respectively, the degrees of information propa-
gation and generation of the network during that time period. Finally, for each con-
dition, we obtained the averages of these two quantities for all networks.

Six models of gene expression differing in safter/Δt and CV2(RNAP) were con-
sidered (Table 3). Note that, as described in Methods, all genes of a given network
share the same value of safter/Δt and all networks of a given model share the same value
of CV2(RNAP). The values for these two parameters were chosen so as to test whether
they can affect the mean and variability of the information generation and propagation
capabilities of the networks. Results are shown in Table 3.

From Table 3, we find that the value of safter/Δt of the component genes affects the
values of µ(MI), µ(LZ), CV2(MI), and CV2(LZ). This is expected (from reactions (1)
and (6)), since this parameter affects the degree to which a gene’s activity is affected
not only by variability in RNAP numbers but also by its repressor genes’ activity
levels. Meanwhile, the CV2(RNAP) affects the CV2(MI), provided small values of
safter/Δt, as expected given the results for the toggle switch model.
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4 Discussion

We performed simulations of stochastic models of single gene, 2-gene toggle switches,
and large-scale (50 genes) genetic circuits, all of which include the multi-step process
of transcription, whose parameter values have been obtained from empirical data
extracted from in vivo, single-cell measurements on E. coli cells.

Overall, we find that the relative time that the gene spends in the rate-limiting steps
after initiation of the open complex formation, here quantified by the ratio safter/Δt,
significantly affects the degree to which individual genes and circuits (small- and
large-scale) are affected by extrinsic noise.

It is of interest that this property of the promoter initiation kinetics has a clear
multi-scale effect, ranging from effects on RNA numbers of individual genes over time,
to effects on the dynamics of small network motifs, to effects on the capacity of large
networks to produce and propagate information. The above suggests that this feature of
the kinetics of transcription may be used as a ‘master regulator’ of the functioning of
the genetic circuits in E. coli, perhaps as influent as the global and local topological
structures formed by promoter-protein, protein-protein, and RNA-RNA interactions.

Importantly, the kinetics of transcription initiation of each gene in the network is
both sequence dependent as well as subject to regulation, both by transcription factors
as well as by global regulatory molecules, such as r factors. As such, this mechanism
is both, respectively, evolvable as well as adaptive at the single gene level. We
hypothesize that, given this, the 2 rate-limiting step nature of the transcription process
may confer E. coli rapid evolvability as well as plasticity in fluctuating environments.

In the future, we plan to perform a wide range of experiments to validate our
findings, as well as to make use of additional simulation and more detailed models to
further explore how the dynamics of transcription of individual genes may act as a
regulator of the degree of influence of extrinsic noise on genetic networks.
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Table 3. Pairwise mutual information (MI) and scaled Lempel-Ziv complexity (LZ) mean (µ)
and CV2 as a function of safter/Δt of the promoters and the CV2(RNAP) of the cell populations.

Condition safter/Δt CV2(RNAP) µ(MI) µ(LZ) CV2(MI) CV2(LZ)

1a 0.1 0.01 0.004 0.18 3.4 0.0016
1b 0.1 0.08 0.005 0.18 1.6 0.0018
2a 0.5 0.01 0.008 0.48 0.002 0.0007
2b 0.5 0.08 0.008 0.48 0.002 0.0009
3a 0.9 0.01 0.0007 0.17 0.05 0.0016
3b 0.9 0.08 0.0007 0.17 0.04 0.0016
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Abstract. In this work, we address the problem of calibrating dynamic
factor models for macroeconomic forecasting. The variables upon which
the forecasts are computed are the logarithm of the Industrial Production
(IP) and the yearly change of the logarithm of the Consumer Price Index
(CPI). Our purpose is to provide a contribution to the model identifica-
tion by proposing a new kind of calibration of static and dynamic factor
models. The innovative part of our work consists of building a genetic
algorithm for calibrating three dynamic factor models. We first analyse
a dataset of 176 EU macroeconomic and financial time series and then
we conduct the same study on a dataset of 115 US macroeconomic and
financial time series. In both studies, the employment of genetic algo-
rithm in the calibration procedure produces very good results and more
significant than those achieved in similar studies, such as [1,2].

Keywords: Macroeconomic time-series forecasting
Genetic algorithms · Dynamic factor models

1 Introduction

In this work, we propose a novel approach to the calibration of three selected
large-dimensional dynamic factor models for macroeconomic forecasting by
means of a genetic algorithm. Some insights about the three selected dynamic
factor models are reported below:

(i) Stock and Watson (SW) model. This time-domain method was introduced
in [3,4]. The factors are estimated by computing static principal components
of the variables in the dataset. Let yit be the variable of the dataset to be
forecasted at time t, its h-step-ahead prediction equation (also called Diffu-
sion Forecast Index ) is obtained by regressing yit+h on the factors and on yit
itself. Lags of the factors and of yit may be added.

(ii) Forni, Hallin, Lippi and Reichlin (FHLR) model. This frequency-domain
method was proposed in [5,6] and requires the computation of two steps. In a

c© Springer International Publishing AG, part of Springer Nature 2018
M. Pelillo et al. (Eds.): WIVACE 2017, CCIS 830, pp. 197–211, 2018.
https://doi.org/10.1007/978-3-319-78658-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78658-2_15&domain=pdf
http://orcid.org/0000-0001-7976-1387


198 F. Della Marra

first step, the common component χt, the idiosyncratic component ξt and
their covariances are estimated using a frequency-domain method introduced
in [5] named Dynamic Principal Component. In the second step, the factors
are estimated by computing Generalized Principal Components.

(iii) Forni, Hallin, Lippi and Zaffaroni (FHLZ) model. This frequency-domain
method was proposed in [7,8]. Here, the underlying assumption in (i) and (ii)
that the common components span a finite-dimensional space as n tends to
infinity is relaxed.

There exists some literature comparing the forecasting performances of SW
and FHLR, but universal consensus still does not seem to have been reached.
Theoretically, time-domain methods (as FHLR and FHLZ) consider only rela-
tions among the variables at the same time, whereas frequency-domain methods
(as SW) exploit leaded and lagged relations among the variables. However time-
domain methods require less parameters to be calibrated. Hence they are more
robust to misspecification than frequency-domain methods. Instead, a system-
atic comparison of the forecasting performances of SW, FHLR and FHLZ can
be found only in [1,2]. [2] conducted a forecasting exercise on a US macroe-
conomic dataset, taking an autoregressive process of order 4 as a benchmark.
They showed that FHLZ outperforms SW, FHLR and the benchmark both for
the Industrial Production and the CPI during the Great Moderation (1982–
2007). In the Great Recession (2007–2012), the forecasting performances of the
Industrial Production change dramatically: all factor models are outperformed
by the benchmark. SW and FHLR outperform FHLZ. Hence, Forni et al. con-
cluded that, due to its more dynamical structure, FHLZ tends to be the best
performing method in “stationary periods”, but it loses ground during regime
changes. [1] conducted a forecasting exercise on an EU macroeconomic dataset.
The global settings of his exercise are basically the same as in [2], but also
the length of the rolling window is suboptimally selected during the calibration
process. He found that, on the proper sample, FHLZ is the most performing
for the CPI. However, mixed evidences appear over the proper sample for the
Industrial Production. Since each model is characterized by several parameters
to estimate, an exhaustive exploration of the parameter space would be com-
putationally infeasible. In order to give a partial solution to this issue, in [1]
and in [2] the calibration procedure is carried out in a naif fashion, i.e. an ini-
tial configuration for each parameter is randomly selected and then, for each
parameter at a time, a predetermined range of values is tested while keeping the
other parameters fixed. As all the parameters have been tested, the configura-
tion of the parameters with the lowest mean-squared forecast error (MSFE) is
selected. The drawback of this procedure is that the final configuration selected
may depend on the order on which the parameters have been processed in the
calibration process. The novelty introduced in this paper is the employment of
a genetic algorithm to explore the parameter space. In fact, the genetic algo-
rithm allows us to select a suboptimal configuration of the parameters without
imposing any order on the parameters to be estimated. In this work, we also com-
pare the macroeconomic forecasting performance of the three selected dynamic
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factor models on two datasets. The former (an EU macroeconomic and financial
dataset) is the same employed in [1]. Instead, the latter (an US macroeconomic
and financial dataset) is the same employed in [2]. The paper is structured as
follows. In Sect. 2, the calibration process of the models with a genetic algorithm
is described. In Sect. 3, the results achieved on the EU dataset are discussed and,
the same analysis is developped in Sect. 4 for the US dataset. In Sect. 5, some
concluding remarks are presented.

2 The Calibration Process with a Genetic Algorithm

Both datasets contain real variables (import/export price indexes, employment,
Industrial Production) and nominal variables (money aggregates, consumer price
indexes, wages), asset prices (stock prices and exchange rates) and surveys. To
achieve stationarity, several series are deseasonalized and transformed. No treat-
ment for outliers is applied. In addition to SW, FHLR, FHLZ, the forecasts of
an autoregressive process (AR) are computed. The order p of the AR process
is determined in the calibration process. As in [1,4], to assess the forecasting
performances, the variables which are taken into account are the level of the log-
arithm of the Industrial Production (IP) and the yearly change of the logarithm
of the Consumer Price Index (CPI). Forecasts are computed h-months ahead,
with h ∈ {1, 3, 6, 12, 24}. For each methods, we employ a rolling-window scheme
[t − l, t], whose size l is determined in the calibration sample.

As to the calibration process, the observations of the EU dataset ranging
from February 1986 to December 2000 will be used to calibrate the methods SW,
FHLR, FHLZ and the benchmark. For this reason, we will refer to this range of
the EU dataset as the calibration sample. Instead, the calibration sample in the
US dataset will range from March 1960 to December 1984. At each epoque, the
population of the genetic algorithm is a subset of the strings containing all the
possibile configurations of the parameters. We set the MSFE as the objective
function to be minimised by the genetic algorithm. For each method, we iterate
the genetic algorithm ten times on the calibration sample of the two datasets.
The fitness of each individual is stored in a data structure. Eventually, for each
method we select as the most performing configuration the one endowed with
the lowest MSFE. More precisely, we select the configuration with the lowest
objective function value that has been assessed during each of the ten runs of
the genetic algorithms, independently from the final solutions obtained at each
run. The parameters of each run of the genetic algorithm are the following:

(i) Population size of the genetic algorithm at each generation = 100;
(ii) Crossover fraction = 0.6;
(iii) Number of individuals who passes to the next generation = 25;
(iv) Mutation = Gaussian model (adds a random number chosen from a Gaus-

sian distribution, to each entry of the parent vector).
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The stopping criteria of each run of the genetic algorithm are the following:

(i) Maximum number of generations = 1000;
(ii) Maximum number of generations in which the difference between the average

MSFE is less than the threshold 10−7 = 5 ;
(iii) MSFE of an individual in the last generation tending to zero.

The same procedure is described in [9] and in [10], but the main purpose of
these articles is to achieve suboptimal variable selection in a regressive setting.

3 Results on the EU Dataset

In this chapter, we will use the same notation as in [1].

3.1 Calibration of SW Model

In SW, the following parameters must be calibrated:

(i) The number of static factors r: ranging from 1 to 10. Also, a comparison
with Bai & Ng criterium (BN) with maximum 12 factors has been made.

(ii) The degree α of a(L): ranging from 1 to 10.
(iii) The degree β of b(L): ranging from 0 to 10.
(iv) The size l of the rolling window : ranging from 5 to 12 years.

After the ten runs of the genetic algorithms in the calibration process, the
individual granted with the minimum objective function value for the IP is the
following:

(r, α, β, l) = (5, 1, 0, 11). (3.1)

Instead, the individual granted with the minimum objective function value
for the CPI is the following:

(r, α, β, l) = (1, 0, 1, 7). (3.2)

3.2 Calibration of FHLR Model

In FHLR, the following parameters must be calibrated:

(i) The number of static factors r: ranging from 1 to 10. Also, a comparison
with Bai & Ng criterium (BN) with maximum 12 factors has been carried
out.

(ii) The number of dynamic factors q: ranging from 0 to 10. Also, a comparison
with Hallin-Liska criterium (HL) with maximum 12 factors has been carried
out.

(iii) The type of kernel k: ranging in the set {Triangular, Rectangular, Parzen,
Gaussian, Exponential, Cosine, Tukey, Hann}.
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(iv) The lag window d for spectral density estimation: ranging in the set {25,
35, 40}.

(v) The size l of the rolling window : ranging from 5 to 12 years.

After the ten runs of the genetic algorithms in the calibration process, the
individual granted with the minimum objective function value for the IP is the
following:

(r, q, k, d, l) = (10, 3, Cosine, 35, 11). (3.3)

Instead, the individual granted with the minimum objective function value
for the CPI is the following:

(r, q, k, d, l) = (8, 4,Hann, 25, 7). (3.4)

3.3 Calibration of FHLZ Model

In FHLZ, the following parameters must be calibrated:

(i) The number of dynamic factors q: ranging from 1 to 5. Also, a comparison
with Hallin-Liska criterium has been carried out.

(ii) The type of kernel k: ranging in the set {Triangular, Rectangular, Parzen,
Gaussian, Exponential, Cosine, Tukey, Hann}.

(iii) The lag window d for spectral density estimation: ranging in the set {25,
35, 40}.

(iv) The maximum lag ml for the matrix Ak(L): ranging from 1 to 5.
(v) The size l of the rolling window : ranging from 5 to 12 years.

After the ten runs of the genetic algorithms in the calibration process, the
individual granted with the minimum objective function value for the IP is the
following:

(q, k, d,ml, l) = (4, Parzen, 25, 4, 11). (3.5)

Instead, the individual granted with the minimum objective function value
for the CPI is the following:

(q, k, d,ml, l) = (2, Parzen, 35, 1, 7). (3.6)

3.4 Calibration of the Benchmark

To calibrate the benchmark AR(p), the only parameter that needs to be fixed
is the order p. In our exercise, we let p range from 1 to 13. By selecting the
values of the parameter p which guarantee the lowest mean rMSFE, the chosen
configuration for the IP is the following:

p = 2. (3.7)

Instead, the chosen configuration for the CPI is the following:

p = 1. (3.8)
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3.5 Empirical Proof of the Convergence of the Runs of the Genetic
Algorithm

To give an empirical proof of the convergence of the genetic algorithm, in Fig. 1
the boxplots of the results of the ten runs of each selected dynamic factor models
for the IP (on the left) and for the CPI (on the right) are reported.

Fig. 1. Boxplot of the results on the EU dataset of the ten runs of the genetic algorithm
for SW, FHLR and FHLZ over the IP (on the left) and over the CPI (on the right).

Since the results achieved for all dynamic factor models span a narrow region,
we can conclude that the ten runs of the genetic algorithms for all methods have
reached convergence. In addition, we can see that, over the IP, the dynamic
methods show better results since the ten runs span a narrower region than
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SW. Over the CPI, FHLZ shows better results since its ten runs of the genetic
algorithm span a narrower region than the other methods. Moreover, the boxplot
of FHLR covers a smaller region than SW.

3.6 Forecasting of the Industrial Production and the CPI

The forecasting performances of the three dynamic factor models over the IP
and CPI are compared on the proper sample, which starts on January 2001
and ends on November 2015. The common benchmark for the factor models is
the autoregressive process (AR) of order p = 2 for the IP and p = 1 for the
CPI. However, as reported by CEPR, during the proper sample, the european
economy faces two crisis periods: the first starts on May 2008 and ends on
January 2009. The second starts on September 2011 and ends on March 2013.
Hence, it is reasonable to assess whether the relative forecasting performances
of the three dynamic factor models present a relevant change during the crisis
periods. As in [2] and in [1], to assess the forecasting performance of each couple
of methods locally, each time series of the dataset is smoothed by a centered
moving average of length m = 61 (with coefficients equal to 1/m) and then
the Fluctuation test is run, at 5% significance level. Further details about this
test can be found in [11]. The results for the IP at horizons h ∈ {6, 12, 24} are
reported in Fig. 2. All factor models outperform significantly the benchmark from
the first crisis on at all horizons. SW tends to outperform the dynamic methods
between the two crises. Instead, outside the period between the two crises, the
dynamic methods show significantly better performances than SW. As to the
performance of the dynamic methods, FHLR outperforms FHLZ between the
two crises. To sum up, FHLR tends to outperform the other methods. However,
this does not hold true in the period between the two crises, in which SW seems
to be the most performing method. These results are similar to those obtained
in [1], but in our exercise the relative performance of FHLR in comparison with
SW are neater. The results for the CPI at horizons h ∈ {6, 12, 24} are reported
in Fig. 3. All methods perform better than AR significatively from the first crisis
on. At horizon h ∈ {12, 24}, FHLR and FHLZ outperform SW on average on the
whole sample, except between the two crises. As to the comparison of dynamic
methods, at horizons h ∈ {6, 12} FHLZ globally outperforms FHLR from the
first crisis on. Instead, at horizon h = 6, FHLR globally outperforms FHLZ from
the first crisis on. In comparison with [1], FHLR shows slightly better forecasting
performance in comparison with other methods. In addition, SW seems to be
the most performing method between the two crises.

FHLR and FHLZ tend to outperform SW at all horizons, except FHLR at
horizon h = 6 during the first crisis. FHLR and FHLZ outperform AR at horizons
h ∈ {6, 12}. At horizon h = 24, AR outperforms FHLR and FHLZ from the
first crisis on. SW outperforms AR during the two crisis periods at horizons
h ∈ {6, 12}. At horizons h ∈ {12, 24}, AR outperforms SW from the second
crisis on. At all horizons, FHLZ outperforms FHLR during the first crisis. At
horizons h ∈ {6, 12}, this behaviour seems to be persistent. Instead, at horizon
h = 24, FHLR outperforms FHLZ from the second crisis on.
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Fig. 2. Fluctuation test for the IP on the EU dataset.
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Fig. 3. Fluctuation test for the CPI on the EU dataset.
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4 Results on the US Dataset

In this chapter, we will use the same notation as in [2].

4.1 Calibration of SW Model

As in Subsect. 3.1, by selecting the values of the parameters which guarantee the
lowest mean rMSFE, the chosen configuration for the IP is the following:

(r, α, β, l) = (BN, 0, 0, 12). (4.1)

Instead, the chosen configuration for the CPI is the following:

(r, α, β, l) = (3, 1, 10, 15). (4.2)

4.2 Calibration of FHLR Model

As in Subsect. 3.2, by selecting the values of the parameters which guarantee the
lowest mean rMSFE, the chosen configuration for the IP is the following:

(r, q, k, d, l) = (9, 2, Exponential, 40, 12). (4.3)

Instead, the chosen configuration for the CPI is the following:

(r, q, k, d, l) = (6, 1,Hann, 25, 15). (4.4)

4.3 Calibration of FHLZ Model

As in Subsect. 3.3, by selecting the values of the parameters which guarantee the
lowest mean rMSFE, the chosen configuration for the IP is the following:

(q, k, d,ml, l) = (5, T riangular, 40, 2, 12). (4.5)

Instead, the chosen configuration for the CPI is the following:

(q, k, d,ml, l) = (5, T riangular, 25, 5, 15). (4.6)

4.4 Calibration of the Benchmark

As in Subsect. 4.4, by selecting the values of the parameter p which guarantee
the lowest mean rMSFE, the chosen configuration for the IP is the following:

p = 2 (4.7)

Instead, the chosen configuration for the CPI is the following:

p = 9 (4.8)
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4.5 Empirical Proof of the Convergence of the Runs of the Genetic
Algorithm

To give an empirical proof of the convergence of the genetic algorithm, in Fig. 4
the boxplots of the results of the ten runs of each selected dynamic factor model
for the IP (on the left) and for the CPI (on the right) are reported.

Since the results achieved for all dynamic factor models span a narrow region,
we can conclude that the ten runs of the genetic algorithms for all methods over
IP and over CPI have reached convergence. We can see that, over both the IP and
the CPI, FHLZ shows better results since its ten runs of the genetic algorithm
span a narrower region than the other methods. Moreover, the boxplot of FHLR
covers a smaller region than SW.

Fig. 4. Boxplot of the results on the US dataset of the ten runs of the genetic algorithm
for SW, FHLR and FHLZ over the IP (on the left) and over the CPI (on the right).
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Fig. 5. Fluctuation test for the IP on the US dataset.
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Fig. 6. Fluctuation test for the CPI on the US dataset.
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4.6 Forecasting of the Industrial Production and the CPI

The forecasting performances of the three dynamic factor models over the IP
and CPI are compared on the proper sample, which starts on March 1960 and
ends on October 2014. The common benchmark for the factor models is the
autoregressive process (AR) of order p = 2 for the IP and p = 9 for the CPI.
However, as reported by NBER, during the proper sample, the american economy
faces a crisis period which starts on December 2007 and ends on June 2009.
Hence, it is reasonable to assess whether the relative forecasting performances
of the three dynamic factor models present a relevant change during the crisis
period. As in Subsect. 4.6, to assess the forecasting performance of each couple
of methods locally, each time series of the dataset is smoothed by a centered
moving average of length m = 61 (with coefficients equal to 1/m) and then
the Fluctuation test is run, at 5% significance level. The results for the IP at
horizons h ∈ {6, 12, 24} are reported in Fig. 5. The benchmark globally shows
significantly better results than the factor models from the Great Recession
on. However, this does not hold for SW at horizons h ∈ 6, 12 and for FHLZ
at horizon h = 24 during the Great Recession. SW tends to outperform the
dynamic methods from the Great Recession on, apart from FHLZ at horizon
h = 24. As in [2], FHLR outperforms FHLZ from the Great Recession on. The
results for the CPI at horizons h ∈ {6, 12, 24} are reported in Fig. 6. No factor
model seems to perform better than the benchmark from the Great Recession
on. Instead, before the Great Recession, the contrary seems to hold. Dynamic
methods show significant better performances than SW at all horizons, except
for h = 12. FHLZ outperforms FHLR outside the Great Recession. Apart from
this period, mixed evidences appear as far as the comparison between dynamic
methods is concerned. Hence, as to the performances of dynamic methods, we
can draw less clear conclusions than in [2].

5 Concluding Remarks

In this paper, we address the problem of calibrating dynamic factor models for
macroeconomic forecasting. The novelty in this study consists in having designed
and built a genetic algorithm for calibration. In this paper, we have empirically
shown that the genetic algorithm in the calibration process plays a crucial role
in this study, since a more efficient exploration of the parameter space allows us
to empirically prove the superiority of frequence-domain dynamic factor models
against time-domain factor model in a macroeconomic forecasting setting. We
also notice that the time-domain factor model performs much better that the
frequency-domain models considered in this paper. We eventually stress that our
novel calibration approach has produced very good results in prediction.
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Abstract. In order to enable the management of the large presence of
similar groups of agents, namely masks, resulting from the implementa-
tion of the Relevance Index (RI) algorithm, the ‘PoSH-CADDy’ three-
step methodology is here proposed. The developed procedure is based
on (i) several rounds of analysis to be performed over reducing sets of
agents (with a Progressive Skimming procedure), (ii) the consideration
of the overlaps among masks emerging from the output of each round
(by means of a Hierachical Cluster Analysis), (iii) a final analysis of the
masks remaining from the previous steps (by considering those with a
minimum Degree of Dissimilarity). The methodology is implemented in
a real socio-economic complex network. Insights from a first explorative
analysis are provided.

Keywords: Functional interactions · Physical order
Relevance Index · Progressive skimming · Hierarchical clustering

1 Introduction

Since the widespread use of network analysis in mid 90’s [1], social sciences have
mostly focused on the comprehension of the structure of durable relationships
(e.g. friendship) and its evolution. However, in some contexts the concept of
connections is required to represent something that is more similar to a series of
flickering and dynamic interactions, than to stable relationships1. When dynamic
interactions are observed, the presence and the evolution of meso-structures2

The views expressed are purely those of the author and may not in any circumstances
be regarded as stating an official position of the European Commission.

1 There are cases in which, even if any new relationship is established, flickering inter-
actions occur: people daily exchange messages with long-time friends, and enterprises
repeatedly collaborate with partners they already know.

2 In the present work, the concepts of (i) masks, (ii) groups, (iii) communities, or (iv)
meso-structures, are all treated indistinctly since they all refer to subset of agents
belonging to the same system.
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https://doi.org/10.1007/978-3-319-78658-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78658-2_16&domain=pdf


Functional Interactions in Complex Networks 213

can be scarcely investigated through the use of methods that are suitable for a
process of stepwise creation/dissolution of connections [2]. The continuous
activation/inactivation of links between agents demands the use of method-
ologies that, instead of considering the statistical significance of the forma-
tion/modification of the relational architectures, focus on the physical order
contained in the occurred phenomena [3]. One example of a methodology that
allows this is the Relevance Index algorithm, henceforth RI [4–6]. The RI, in
order to investigate emergent temporal patterns in dynamic complex systems,
uses a statistical approach to evaluate the significance of the integration in terms
of entropy of agents’ joint behaviors.

Although in complex networks analyses the detection of groups of agents
is typically performed by focusing on agents’ similarity or through the analy-
sis of the network structure [7,8], the creation and the implementation of the
RI algorithm provides a new approach for community detection analysis. With
the RI algorithm researchers can detect groups of agents characterized by high
levels of behavioral integration. These behaviors, being significantly far from
randomness, are expected to reveal the presence of a common function jointly
pursued by all the involved members. Since low levels of entropy are determined
by the repetition of specific combinations of joint individual statuses over time,
the emergence of a non-random temporal pattern unveils the alignment of the
actions of these individuals towards a common function. Nevertheless, to imple-
ment the RI algorithm in dynamic complex networks that have at least some
thousands of agents, and that are observed in a number of instants that is sen-
sibly lower than the number of agents involved, additional methodological steps
have to be developed. In particular, in the present work the three-step ‘PoSH-
CADDy’ methodology is developed so as to provide a possible solution to refine
the presence of redundancy in the results provided by the RI algorithm when
implemented on temporal networks having the aforementioned characteristics.

In Sect. 2 in which an overview of the proposed methodology is presented.
In Sect. 3 the principles of the RI algorithm are introduced. Then, in Sect. 4,
the first step of the methodology is described, regarding the run of the RI algo-
rithm several times over sets of agents progressively reducing. Then, in Sect. 4
the second step of the methodology is described, regarding the implementation
of a hierarchical agglomerative cluster analysis over masks, i.e. subsets of agents
belonging to the analyzed system, detected at the previous step. Section 5 fol-
lows with the third and last step of the methodology, regarding a final treatment
for redundancy of masks detected in all round. Because of this last step, a final
set of masks, i.e. a partition of the system, is detected. Finally, in Sect. 6 the
implementation of the methodology in a case study is presented. After select-
ing combinations of the introduced parameters, explorative considerations are
made on partitions selected according to (i) a principle of maximization of the
overall percentage of agents involved in the partition3 and (ii) a principle of
minimization of the percentage of agents that belong to more than one mask.

3 Not necessarily all agents belong to at least one masks/subset.
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2 Overview of the Methodology

Acknowledging other ongoing researches with similar objectives [9,10], the
present work addresses the issue of redundancy that arises by implementing
RI methodology in systems with a small ratio between the number of instants
in time over which agents can be observed, and the number of agents involved.
More specifically, the methodology aims to identify a limited number of masks
of agents, i.e. subsets of agents detected by the RI algorithm, so as to allow
a final simple representation of the functional meso-structures that are present
in the considered complex network. The proposed methodology is based on the
following three parameters:

(1) R, i.e. the number of RI rounds of analysis that are performed,
(2) vOV , i.e. a threshold used as reference to limit the presence of overlapping

agents among the subset of masks finally considered from each round of RI
analysis,

(3) vSM , i.e. a second threshold used as reference to reduce redundancy among
the masks remaining after all the previous steps.

Each parameter has a strong connection with one of the steps of the method-
ology: R parameter defines the length of a process of Progressive Skimming,
based on the reiteration of the RI algorithm in rounds of analysis in which the
best mask obtained in the previous round is dropped; vOV parameter defines
the development of a Hierarchical Cluster Analysis of the masks detected in
each round; vSM parameter defines the final process of refinements in which
the remaining masks after all rounds are analyzed in terms of their Degree of
Dissimilarity. The methodology is named ‘PoSH-CADDy’ and is summarized
in Pseudo-Code 1. The refinement of the output of the RI analysis is performed
attempting (i) a spread and wide exploration of the meso-structures of the system
under analysis through progressive skimming, and moving towards the detection
of masks that (ii) are the most significant (in terms of integration of the behav-
iors of the agents belonging to them), and that (iii) produce a limited degree
of overlaps among them, so as to favor simplicity in the analysis of complex
network’s dynamics. The ‘PoSH-CADDy’ procedure (independently from the
RI algorithm) is implemented with the R language with a CPU Intel Core i5
2.6 GHz processor and 8 GB RAM. The computational time (with R = 24 and
where vOV , vSM is tested with 21 different values each) is approximatively of
5 h. This time period is essentially required for the computation of the distance
matrices that are needed to implement the cluster analysis of each group of
15.000 masks that are detected by the RI algorithm in each round. The other
steps require a computational time of some minutes. The work does not take
into consideration the computational performance of the RI algorithm, as what
developed applies to a procedure of refinements of its results.
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Pseudo-code 1: ‘PoSH-CADDy’ methodology for implementation of the RI algorithm over a
system A = {a1, a2, . . . , an, . . . , aN }, where an is the n-th agent

function PoSH-CADDy (R ∈ N
+, vOV ∈ R≥0∧≤1, vSM ∈ R≥0∧≤1)

for each r round of analysis, where r ∈ N
+ and r ≤ R, do

Skimming of the best mask detected in the previous round
Definition of Ar ⊆ A including the agents considered in the new round
Detection of the set of masks O(Ar) by means of RI analysis over Ar

for each possible number of clusters, i.e. κ ∈ N
+, in which to split O(Ar), do

Hierarchical agglomerative cluster analysis for binary data
(with simple matching coefficient and complete linkage method)

for each obtained k-th cluster, i.e. Ck,κ(Ar), do
Selection of the mask with the highest tCI

end for
Measurement of the resulting overlaps by means of sOV (r, κ), i.e. the ratio between
the number of agents included in at least two of the remaining masks, and the number
of agents included in at least one of the remaining masks

end for
Definition of the set Kr,vOV

, including those κ such that sOV (r, κ) ≤ vOV

Selection of κ̃r,vOV
, i.e. the highest value of κ ∈ Kr,vOV

Definition of set Pr,vOV
, by finally considering the results of the introduced cluster analysis

with a number of clusters equal to κ̃r,vOV
and considering for each cluster only the mask

with the highest tCI

end for
Definition of the unique set of masks PR,vOV

, including all the Pr,vOV

Definition of P+
R,vOV

, by sorting the masks in PR,vOV
in decreasing order of tCI

Computation of dissimilarity between all masks in P+
R,vOV

for each couple of masks having a Jaccard index > vSM do
Drop of the mask with the lower tCI

end for
Definition of the final set FR,vOV ,vSM

, including the remaining masks
end function

3 Principles of the RI Algorithm

The Relevance Index algorithm takes its origin from the neurological studies
of Giulio Tononi in the 90’s. Tononi introduced the notion of functional clus-
ter, defining it as a set of elements that are much more strongly interactive
among themselves than with the rest of the system, whether or not the under-
lying anatomical connectivity is continuous [11]. The hypothesis was confirmed
as neurons with similar functions are found to demonstrate high level of coordi-
nation in their behaviors over time, independently from being (or not) situated
in the same brain region [12,13]. The Cluster Index (henceforth, CI), i.e. the
statistics developed and tested by Tononi in his work [12], is based on two infor-
mation theory concepts derived from the Shannon entropy: Integration (I) and
Mutual Information (MI). Formally, given the set A = {a1, a2, . . . , an, . . . , aN}
made of N agent and a mask of agents Bm such that Bm ⊂ A, the CI of Bm is
written as follows

CI(Bm) = I(Bm)/MI(Bm, A \ Bm) (1)

where 2 ≤ |Bm| < |A| and 0 < m ≤ ξ, with m ∈ N
+ and ξ ≈ 2|A|.

Since integration and mutual information values depend on the size of the
subsystem that is under analysis, a homogeneous system made of variables hav-
ing the same probabilities of the variables of the original system, but that do
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not have correlation4 is used [4,5,12]. Finally, the level of significance of the
normalized CI, namely tCI , is the value according to which the final ranking of
the subsets is produced:

CI ′(Bm) =
I(Bm)
〈Ih〉

/MI(Bm, A \ Bm)
〈MIh〉 (2)

tCI =
CI ′(Bm) − 〈CI ′

h〉
σ(CI ′

h)
(3)

where 〈Ih〉 and 〈Mh〉 indicate respectively the average integration of subsets of
dimension |Bm| belonging to the homogeneous system, and the average mutual
information between these subsets and the remaining part of the homogeneous
system. 〈CI ′

h〉 and σ(CI ′
h), respectively the mean and the standard deviation of

normalized cluster indices of subsets that have the same size of Bm and that
belong to the homogeneous system, are used to compute the statistical index tCI .

The concept of CI and tCI was introduced in the research areas of artificial
network models, of catalytic reaction networks and of biological gene regulatory
systems, contributing to the identification of emergent meso-level structures [4].
Since an exhaustive computation of the tCI statistic is possible only in small
artificially designed networks, as those that were initially used to test the efficacy
of the method [4–6], a genetic algorithm aimed to investigate the relevant subsets
was implemented [6] in the RI algorithm. When implemented in large systems
that can be observed in a relatively small number of instants in time, the RI
algorithm produces a large number of possible Bm, which may differ among
them just for the presence/absence of a single agent. As many similar masks are
detected, redundancy emerges.

4 Step 1: Progressive Skimming of the Best Mask
Detected

In order to address the large presence of similar masks detected in the considered
system A = {a1, a2, . . . , an, . . . , aN} made of N agent, the first step that is
proposed is the run of several rounds of the RI algorithm. Each round r ∈
N

+, with r ≤ R, and where R ∈ N
+ indicates the number of rounds finally

performed, is set to produce the detection of a same number of masks5. At the

4 A homogeneous system is a system having the same number of agents of the system
to which it is referred; each agent has a random generated behavior in accordance
with the probability of the states it assumes in the reference system.

5 The fact that the number of masks detected does not change, is just a choice of
the researcher. This parameter could change but, since this work is not aimed at
considering the increasing of the value of M , which has been fixed equal to 15.000 in
each round of analysis, M is taken for given. Because of that, M will not be indexed
with the number of the round r.
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same time, in each r round a different set of agents is considered, namely Ar =
{a1, a2, . . . , anr

, . . . , aNr
} where Ar ⊂ A and with |Ar| = Nr. In order to formally

describe the output of any round r of the analysis, the sets of masks detected
by the RI algorithm, namely O(Ar), is defined according to the corresponding
round of analysis. Formally,

O(Ar) = {B1
r , B2

r , . . . , Bm
r , . . . , BM

r } (4)

where

i. Bm
r = {anr

∈ Ar : bm,nr
= 1} is the m-th mask detected

ii. bm,nr
=

{
1, if the agent anr

is detected in the m-th mask
0, otherwise.

iii. tCI(Bm
r ) ≥ tCI(Bm+1

r )

For the definition of each different set of agent Ar, a cascade process is used.
Before each round, the agents belonging to best mask detected in the previous
round, i.e. B1

r−1, are dropped from the analysis, such that the cardinality of the
set of agents considered, i.e. Ar, decreases after each round. Formally, each Ar

can be described as

Ar = A \
r−1⋃
q=0

B1
q (5)

where q ∈ N indicates one of the rounds preceding the r-th round6, and where
0 ≤ q ≤ (R − 1). Therefore, Ar ⊂ Ar−1 ∀ r. As in each round, the set that is
analyzed with the RI algorithm does not include any of the best masks detected
in the previous rounds, this procedure is called ‘progressive skimming’.

The RI algorithm produces a list of ordered binary masks that may differ
among them just for the presence/absence of one single agent. Therefore, for the
best detected mask of agents, i.e. B1

r , also many similar masks are detected (as
they are likely to perform well also from a point of view of entropy) in O(Ar).
Because of this redundancy7 the progressive skimming of masks is implemented,
so as to perform an extended exploration of the system. This procedure, even
if it deals with a loss of information and a reduction (and so also change) of
the considered system when continuing the analysis round after round, allows
the researcher to analyze how the rest of the system works independently from
what in the previous rounds has been detected the group of agents with the most
integrated behaviors. Interactions between the best mask detected in round r and
masks detected in following rounds are limited, since the agents belonging to B1

r

6 Since the initial round that is performed is r = 1, if r = 1 → q = 0. As there is
no round 0, if q = 0 → B1

0 = ∅. Therefore, from Eq. 5, when r = 1, we have that
A1 = A \ B1

0 = A \ ∅ = A.
7 Furthermore, the problem of redundancy in O(Ar) does not affect only the best

mask B1
r . It is important to remark that it is also present for masks different from

the best one. Therefore, it can be said that when the system is large, in each O(Ar)
a lack of variety comes up.
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are removed from the sets of agents that is going to be analyzed in the rounds
following the r-th. However, because of the implementation of a hierarchical
agglomerative cluster analysis (Sect. 5), in each round r also all the other masks
different from B1

r are taken into account. Therefore, the progressive skimming
does not imply that the best mask B1

r stands in a condition of isolation. If mask
B1

r has significant intersections/interactions with other masks Bm
r detected in

the same round, evidences should appear in the cluster analysis of the whole
O(Ar). In contrary, if masks substantially different from B1

r do not emerge from
the cluster analysis, some clues of a functional detachment between the agents
in B1

r and the agents that belong to the rest of the system are detected.

5 Step 2: Clusters of Masks Within Each r-th Round

5.1 The Cluster Analysis of Masks in O(Ar)

With the Simple Matching Coefficient (SMC) distance is measured between cou-
ples of masks, and with the Complete Linkage (CL) criterion for the progressive
merging of clusters, a hierarchical agglomerative cluster analysis is then imple-
mented. This analysis is here represented by the function θκ assigning each mask
Bm

r to one (and only one) cluster. Formally,

θ
SMC,CL
κ (Bm

r ) = k (6)

where k ≤ κ, with k ∈ N
+ indicating the specific cluster to which each mask

Bm
r ∈ O(Ar) is assigned through the hierarchical cluster analysis (with SMC

and CL) in which the masks of O(Ar) are allocated in a number of clusters
equal to κ ∈ N

+. Since the number of clusters is not established a-priori, at this
stage the definition of each cluster, namely Ck,κ(Ar), has to take into account
the fact that κ can vary. Therefore, each cluster Ck,κ(Ar) is formally defined as

Ck,κ(Ar) = {Bm
r ∈ O(Ar) : θκ(Bm

r ) = k} (7)

where Ck,κ is the k-th cluster, obtained by dividing in κ clusters the masks
contained in O(Ar).

5.2 The Selection of a Representative Masks for Each Cluster

For any cluster obtained, only the mask with the highest tCI is considered, as
representative of the cluster itself. Formally, this mask, henceforth indicated as
B̃r,k,κ, has the following properties:

B̃r,k,κ ∈ Ck,κ(Ar) and tCI(B̃r,k,κ) = max tCI(Ck,κ(Ar)). (8)

Therefore, each cluster is represented by the mask that, belonging to it, is also
the one whose agents present a joint behavior that is the significantly farthest
from randomness. By adopting this criterion, the principles underpinning the RI
algorithm are respected. Even if several different combination may be present,
the analysis of the similarity reveals groups of masks that have to be intended
just as possible modification of the one of reference, i.e. the most relevant one.
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5.3 Overlaps and the sOV Statistic

The cluster analysis of Or(Ar) and the selection of the mask with the highest tCI

for each cluster, can produce the affiliation of agents to more than one masks8.
In order to set the value of κ, i.e. to determine the number of clusters, a criterion
concerning the limitation of the progressive emergence of overlaps in the observed
structure of masks is adopted. In order to understand which degree of overlap
is associated with the values of κ, starting from 1 and continuing in increasing
order, the statistic sOV (r, κ), where the subscript ‘OV’ stands for OVerlaps, is
computed as

sOV (r, κ) =

|
κ⋃

kα,kβ=1

(B̃r,kα,κ ∩ B̃r,kβ ,κ)|

|
κ⋃

k=1

B̃r,k,κ|
∀ kα �= kβ (9)

where kα, kβ ∈ {1, . . . , k, . . . , κ} are the indices of two distinct clusters Ck,κ(Ar),
obtained by implementing the function θκ over the set of masks O(Ar). The
statistic sOV (r, κ) calculates, for each possible value of r and of κ, the ratio
between the number of agents that belong to at least two masks (numerator)
and the number of agents that belong to at least one mask (denominator). The
introduced statistic aims to evaluate the degree of simplicity associated to each
possible number value of κ, i.e. the number of clusters in which to group the
masks included in O(Ar). The simplicity lies on the fact that masks have to be
recognizable and distinct from each other. If the structure of the detected masks
is characterized by a high degree of overlap, the masks are so intertwined that
they cannot be assumed as unitarity entities and the representation of the whole
system, that they are suppose to provide, is finally unreadable.

5.4 Selection of the Number of Clusters by Means of vOV

Parameter

In order to define the value of κ, i.e. the number of clusters in which to split each
set of masks Or(Ar), the criterion adopted lies in the comparison between the
statistic sOV (r, κ), defined by Eq. 9, and a percentage threshold used as reference,
namely vOV ∈ R≥0, with 0 ≤ vOV ≤ 1. Given a specific value of vOV , the value
κ is chosen in order to have the highest number of clusters among those to which
corresponds a sOV (r, κ) lower than, or equal to, the percentage threshold vOV .
For each r-th round, a set of possible value of κ is so selected. These sets, namely
Kr,vOV

, are formally described as follows.

Kr,vOV
= {κ ∈ N

+ : sOV (r, κ) ≤ vOV } (10)

For each round r, depending on the threshold vOV , all the values of κ that
produce a partition for which the percentage of agents that belong to more
8 The allocation in one exclusive cluster does not concern agents. The same agent can

be detected in two masks that are not included in the same cluster.
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than one group (up to the number of agents overall included) is less or equal to
the considered threshold vOV , are considered admissible. Then, among all the
elements contained in Kr,vOV

, the value κ̃r,vOV
, i.e. the final value in which finally

to split the resulting masks contained in Or(Ar) given the specific threshold vOV ,
is defined as

κ̃r,vOV
= max Kr,vOV

(11)

By identifying κ̃r,vOV
, the highest number of cluster, given the threshold vOV , is

selected. Therefore, the soft partition9 obtained in any of the r rounds, namely
Pr,vOV

, and can be formally defined as

Pr,vOV
= {B̃r,k,κ ∈ O(Ar) : κ = κ̃r,vOV

} (12)

6 Step 3: Final Treatment of Redundancies

6.1 The Set of Masks Resulting from All the Rounds: PR,vO V

At the end of an entire process of analysis always10 with the same value of the
parameter vOV , R sets of masks are obtained, and each of them is identified
by the corresponding Pr,vOV

. Therefore, since the analysis is developed with a
specific value of R and a specific value of vOV , it is possible to assemble all the
masks in a unique set, namely PR,vOV

, that can be formally defined as

PR,vOV
= {B̃r,k,κ ∈

R⋃
r=1

O(Ar) : κ = κ̃r,vOV
} (13)

where κ̃r,vOV
is the number of clusters in which the specific O(Ar) is divided,

as a result of the process described in Eqs. (8–11), and where, as explained in
Eq. (8), the tilde (˜) over the mask Br,k,κ indicates that in the cluster of masks
to which it belongs, i.e. Ck,κ(Ar), the mask B̃r,k,κ presents the highest tCI . Once
the set PR,vOV

is defined, the last issue addresses the consequence of having
implemented a reiterated procedure of analysis, i.e. multiple rounds of the RI
algorithm. As at the beginning of each round r exclusively the agents belonging
to B1

r−1 are dropped, the presence of similar masks (among all those detected in
an entire process of analysis) is not prevented11. The following, and last, steps
aim to manage this redundancy.

9 A soft partition is intended to be a set of masks of agents that do not necessarily
belong to exclusively one masks. Therefore, as explained above, an agent can belong
to more than one mask.

10 From the first round r = 1, to the last round r = R.
11 The set PR,vOV can present redundancies since, even if the rest of the system that

at each new round r is analyzed does not include the best masks detected in round
(r−1), it can include the agents that belong to the second/third/etc. masks detected
in the round (r−1). Therefore, it could happen that those masks that were detected
as second/third/etc. masks in (r − 1), are detected also in the round r.
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6.2 Sorting the Masks of PR,vO V
in Decreasing Order of tCI

All the masks belonging to PR,vOV
are sorted in decreasing order, according to

the value of their tCI . In this way, from the set of masks PR,vOV
, the sorted set

of masks P+
R,vOV

is generated. Formally,

P+
R,vOV

= {B̃
(1)
R,vOV

, B̃
(2)
R,vOV

, . . . , B̃
(j)
R,vOV

, . . . , B̃
(J)
R,vOV

} (14)

where |PR,vOV
| = J , and B̃

(j)
R,vOV

is one of the masks belonging to PR,vOV
and

that were previously indicated as B̃r,k,κ̃r,vOV
. Moreover, the index in the super-

script, i.e. j ∈ N
+ where j ≤ J , refers to the ordinality of the masks of P+

R,vOV
,

so that is true the condition tCI(B̃
(j)
R,vOV

) > tCI(B̃
(j+1)
R,vOV

).

6.3 Final Drop of Similar Masks According to the Paramater vSM

Once the masks are ordered according to their tCI , a final analysis of their
similarity is performed. Starting from the best mask B̃

(1)
R,vOV

, all the masks that
are too similar to it are dropped. Then, the same procedure is repeated in cascade
process. The second best mask of those remaining is then compared with those
having a lower tCI , and so forth with the third best mask remaining, the fourth,
etc. This procedure continues until there are no more masks that can be used as
a reference. In this way, only masks that have a minimum degree of dissimilarity
are kept.

The similarities between masks are calculated in terms of JaCcard Index12

(henceforth, JC), i.e. the percentage of the number of agents in the intersection
of the two considered masks (up to the number of agents in the union set of the
same two masks). Then, the set of masks P+

R,vOV
is filtered using a threshold

regarding SiMilarity, namely vSM ∈ R≥0, with 0 ≤ vSM ≤ 1. The resulting (and
final) set of masks, namely FR,vOV ,vSM

, can be formally defined as

FR,vOV ,vSM
= {B̃

(j)
R,vOV

∈ P+
R,vOV

: JC(B̃(i)
R,vOV

, B̃
(j)
R,vOV

) < vSM} (15)

where

i. B̃
(i)
R,vOV

∈ P+
R,vOV

,
ii. i and j, where i ∈ N and j ∈ N

+ and 0 ≤ i < j, are used to indicate
the mask of P+

R,vOV
by making reference to their ordinality, as described in

Eq. 14,
iii. B̃

(0)
R,vOV

= ∅ , so that JC(B̃(0)
R,vOV

, B̃
(1)
R,vOV

) = 0.

12 While in Step 2 of the proposed methodology the SMC is used to evaluate similarity
(see Sect. 5), in this Step the JC is considered as more appropriate. JC focuses its
attention on the intersection of two masks (with regard of the union set), while
SMC considers as a condition of similarity also the simultaneous absence of a same
element. While in Step 2 was important to consider also the co-absence of agents as
an element of similarity, so as to evaluate where the algorithm had moved (in terms of
agents considered and not considered), here only the presence of overlapping agents,
i.e. the intersection, is relevant.
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7 Case Study - Region Tuscany Innovation Policies

In this Section, an example of an implementation of the RI+PoSH-CADDy
methodology in an empirical analysis, is presented. The considered case study
addresses a regional programme implemented by Tuscany Region (Italy) in
the period 2000–2006, aiming to support innovation projects. The considered
network policy programme sustained the development of innovation processes
by fostering interactions between local agents (enterprises, universities, pub-
lic research centers, local government institutions, service centers, etc.) [14–16].
Starting in 2002 (and ending in 2008), the programme of public policies was
consisted of nine waves not uniformly distributed over time: they had different
durations and they overlapped, producing periods in which no wave was active,
and periods in which three waves were simultaneously active. The degree of for-
mation and of dissolution of connections was so high that resulted in a situation
of intense discontinuity over time. Therefore, a new appropriate tool that does
not investigate the flourishing of communities looking at the stepwise creation
of network frameworks, was deemed necessary [2]. Moreover, by using the RI
algorithm the analysis could take into account the presence of functional meso-
structures. Finally, because of the objective of policies taken into consideration,
i.e. fostering of innovative processes, the focus on interactive dynamics, more
than on network’s relational architectures, is even more meaningful13 [17].

7.1 Available Data and Pre-processing

The most important aspect regarding the implementation of RI analysis in the
present case study regards the definition of the informational basis describing
agents’ statuses of activity. Since the available data contains information on
the starting and the ending dates of agents’ participations in the projects, it
is possible to define a set of 59 instants in time14 to observe the system. With
these dates, a complete behavioral profile for each of the agents involved in the
policy programme is structured. In each instant, the number of projects in which
each agent was active is considered. A series of 58 variables is generated taking
into account how the levels of activity vary from one instant to the following

13 In this case study, the agents’ activities coincide with interactions. Agents are consid-
ered to be active when they are participating in a project. And since in each project
partnerships have to be established (no single-participant projects are allowed), it
follows that to be active implies to be interacting.

14 Considering all the dates of starting and the ending of the projects, 59 different dates
were identified.
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one15. Regarding the size of the system, the agents participating in the described
policies of Region Tuscany are 1121, and the majority of them participated just
in one project. The scarcely active agents are removed from the analysis. The
focus is set on those with a minimum degree of activity. Therefore, only agents
that at least participated in 2 projects are considered. Finally, 352 agents remain.
These agents constitute the initial set of the analysis, namely A.

7.2 Setting the Parameters

The RI analysis with the PoSH-CADDy methodology is implemented over the
set A, consisted of 352 agents, observed in 58 instants over time. The number
of rounds to be performed, i.e. the parameter R, is set equal to 24. With the
progressive skimming, as described in Sect. 4, A24 is consisted of 204 agents.
Therefore, A is extensively explored, as the procedure is stopped after having
removed the 45.17% of the agents initially involved. Regarding the threshold
vOV , since no specific theoretical reasons suggest the a-priori identification of
a specific value, a discrete set VOV of percentage thresholds is used and each
vOV ∈ VOV is considered to implement a process of analysis. The set VOV is
defined as follows:

VOV = {vOV ∈ R>0 : vOV =
1
40

x} ∀ 0 ≤ x ≤ 20, x ∈ N (16)

Regarding the setting of the threshold vSM , the same set of conditions are applied
also for vOV . A discrete set VSM is created in the same way of VOV and each
vSM ∈ VSM is considered to implement the analysis. For both, values larger
than 0.5 are not taken into consideration as, in principle, they go in the oppo-
site direction of the general objective of the present work, that is to reduce
redundancy16.

As one value for R, and 21 values for vOV , and 21 values for vSM are con-
sidered, 441 different FR,vOV ,vSM

are finally computed. Each of these final sets
of RI masks constitute a soft partition17 of the system A. In Fig. 1a, the 441
15 These variables assume four different values that correspond to one of the following

four situations: inactivity, decreasing activity, stable activity or increasing activity.
The ‘activity’ status is defined by considering the number of projects in which the
agent is participating in the corresponding instant, with regard to the number of
projects in which it was participating in the previous instant. With these series
of variables, a second order Markov condition in taken into account, since agents’
activity is not described just for what is in each instant, but for what it is in the
present conditioned to what it was in its nearest past. As a variation in time is
considered, the number of variables finally computed equals the number of variables
initially present minus 1.

16 To have more than the 50% of agents producing an overlaps among the masks of a
generic Pr,vOV , or to allow in FR,vOV ,vSM couples of masks generating an intersection
that is the 50% or more of the corresponding union set, has been considered as not
pertinent for the objective of this work.

17 Overlaps among groups (determined by the fact that each agent can belong in more
than one group) are allowed and are present.
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Fig. 1: (a): Colored dots represent the final partitions obtained, i.e. all the
FR,vOV ,vSM

resulting from the possible combinations of the three parameters
R = 24, vOV ∈ VOV and vSM ∈ VSm, as described in Eq. (16). The y-axis
describes the percentage of agents that, in the corresponding FR,vOV ,vSM

, belong
to more than one mask (up to the number of agents that belong to at least one
mask). The x-axis describes the percentage of agents that belong at least to one
mask (up to the total number of agents included in the initial considered set A).
The z-axis describes the number of masks that are present in the corresponding
partition. The color of the 441 dots is in accordance with the % of overlapping
agents. Small grey asterisks indicate the 47 partitions that include at least the
60% of agents of A, and that have less than the 70% of overlapping agents.
Big colored dots are projected on the lateral and on the bottom faces of the
cube delimiting the three-dimensional space. (b): Bipartite graph representing
affiliations of agents (of set A) in the specific final set of RI masks F24,0.325,0.225

(indicated in the 3D representation on the left, with a darker grey asterisk). Grey
circular nodes represent agents, and blue squared nodes represent RI mask. The
width of edges is proportional to the tCI of the mask. (Color figure online)

obtained FR,vOV ,vSM
are illustrated in a three-dimensional space describing the

number of agents included (up to the total number of agents included in A),
the percentage of agents belonging to more than one mask (up to the number of
agents overall included in the partition), and the number of masks included in
the corresponding partition.

7.3 Exploration of the Results

As represented in Fig. 1a, the considered combinations of the three parameters
lead to different FR,vOV ,vSM

. Even though currently evaluation on the parame-
ters’ space is not effectuated, the choice of the value to be considered is attributed
with an a-posteriori unbiased procedure. In the present work, only those parti-
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tions including (i) at least 60% of the agents of the initial set A, and (ii) having
less than 70% of agents belonging to more than one community, are considered.
The parameters’ space is narrowed in order to address two objectives, which both
concern the readability of the final representations of the system. These objec-
tives are: (i) to consider partitions in which a large part of the initial system
is analyzed, and (ii) to avoid the selection of partitions in which extreme over-
lapping of the detected subsets prevents a simple interpretation of the system.
Statistics regarding the feature of the single masks are not taken into account,
and a-priori biased considerations on the values of vOV and vSM are not made.
Currently, the parameters’ space is not explored with a standardized method.
However, the parameters are not selected based on the properties of the single
masks, so as to avoid bias.

Based on the aforementioned conditions, 47 partitions (up to 441) are iden-
tified. These partitions are indicated with grey asterisks in Fig. 1a. In order to
proceed with the exploration of the first results provided by the methodology,
the presence of similar features within all the groups of 47 partitions is sug-
gested. Currently, only one is heuristically selected, namely the partition with
vOV = 0.325 and vSM = 0.225, which is indicated with a black asterisk in
Fig. 1a. The corresponding set of masks, i.e. the masks included in F24,0.3,0.075,
is intended as a weighted bipartite graph, as represented in Fig. 1b. The agents
involved, represented by grey circular nodes, are connected to the RI masks,
represented by blue squared nodes, in which they are included, and the weight
of their connection is based on the value of the tCI of the masks18. This parti-
tion is composed by 34 masks that overall include 298 agents of the initial set
A. The network is consisted of 6 components, and 54 agents are not included in
any mask. The 5 masks with the highest tCI (the ones with the widest edges
in Fig. 1b) include agents which participated in few projects, with behavioral
profiles characterized by few changes over time. The reason is that these masks
are identified as highly integrated as the activity of the agents involved is almost
constant. Although low levels of entropy are generated, given that the activity
of the involved agents is close to minimum, they can cannot be considered as
the most relevant subsets. As these 5 not conducive masks generate independent
components, the ongoing analyses are focused on the remaining 29 masks, which
determine the largest component of 222 agents.

After the computation of the weighted betweenness centrality, the first results
suggest a modification in the rank of centrality of the nodes. Although in the real-
observed network, where agents are connected together if they co-participated
in projects, the centrality of agents is related to the number of projects in which
they participated, in the resulting network of RI masks this does not apply. More
specifically, in the largest component of the one-mode projection of the weighted
bipartite graph determined by the final set of masks F24,0.325,0.225, the following
elements are emerging: (i) nodes with the largest number of participations in
projects appear to be close to each other in one periphery of the network; (ii)

18 In case of agents belonging together to more than one community, the corresponding
tCI have been summed.
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nodes with the smallest number of participations in projects appear to be close
to each other in the opposite periphery of the network (with respect to the
nodes with large number of projects); (iii) nodes with an average number of
participations in projects appear to be very central; (iv) nodes with a high
number of participations in projects and nodes with few participations in projects
present few direct connections between them; (v) the shortest paths between very
active nodes and scarcely active nodes (in terms of participations in projects)
pass through agents with average activity.

The centrality ranking that the can be inferred after these initial results
reveals an entire change with respect to the observation in the original network
of participation in projects. As the RI methodology allows the investigation of the
joint integration of agents’ dynamics, these first insights suggest that the agents
with average number of activities, that now are the most central, harmonize the
very intense activity of the nodes with many participations, namely the most
central in the network of projects, with the scarce activity of those agents that
participated in few projects. While the structure of the observed network of
participations indicates that one of the most important and recognized laws of
real complex network is respected, i.e. preferential attachment, the analysis of
the functionality reveals insights that suggest new interpretations. These insights
will be addressed in future research. Currently, because of the tests on the 447
considered partitions, observation do not suggest contradictory indications.

8 Conclusions

As physical order is addressed as a key dimension to the comprehension of the
operation and the evolution of socio-economic complex systems [3], the main
aim of this research is to contribute in the development the analysis of the
entropy of joint behavioral time dynamics characterized by discontinuity, e.g.
interactions. The objective of this work is to facilitate the implementation of a
methodology that detects functional meso-structures with information theories
[11–13]. In addition, the present work attempts to facilitate the implementation
of entropy-related methods in the field of social sciences, and in particular in
the analyses of socio-economic dynamic complex networks. The RI algorithm is
extended with the PoSH-CADDy three-step methodology so as to reduce redun-
dancy issues. The proposed approach is implemented in a real-world dynamic
network (economic agents participating to Region Tuscany Network Policies from
2000–2006) consisted of ≈350 agents, where the proportion between the number
of agents and the number of instants is ≈6:1. In a complex dynamic network
where the number of time instants is considerably lower than the number of
involved agents, the proposed procedure accomplished to successfully detect a
final set of 34 RI masks representing 34 groups of agents, whose behaviors are
considered as integrated, namely not random. For the scope of this study, the
focus is set in those partitions with a minimum percentage of agents included in
at least one mask, and without too many overlaps among masks. The revealed
ranking of the nodes’ centrality appears to be substantially different from the
one observed in the network of participations in projects.
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In the perspective of this research are (i) the development of analytic models
to statistically describe agents’ characteristics in relation to the topology of the
network of RI masks, (ii) the analysis of partitions obtained by combinations
of the presented parameters of the methodology, (iii) the implementation of the
methodology in other case studies, (iv) and the implementation of the method-
ology based on the edges’ activation over time, instead of agents’ statuses, as
system variables.
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Abstract. The complexity of the study on urban systems poses the chal-
lenging problem of developing methodological approaches for analyzing
and modeling social data, both from a quantitative and a qualitative
perspective. This work presents the research conducted to explore the
perception on the urban development of an high-tech zone which has
been recently established in China, i.e. Hangzhou Future Sci-Tech City.
We conducted field research and collected data to identify which topics,
concepts and interpretative categories are embedded in the social dis-
courses about urban development and to derive the network of relations
typical of complex social systems. The results of these analyses suggest
that the perception of the people interviewed is mostly of great appreci-
ation for the economic development with some concerns on the negative
effects of this development on the society and the environment.

Keywords: Urbanization · Perception · Structural Topic Models
Network of relations

1 Introduction

Recent social and economic literature has been particularly concerned with urban
development [1–3]. As it is well known, in China the urbanization rate and the
urban population have had huge increases: in 1979, only the 18% of Chinese
population lived in cities, but this surged to 54% by 2013 and the number of
cities increased from 193 to 9000 (http://mediumcities-china.org). This process
of accelerated urbanization is the result of rapid economic growth and dedicated
policies: with more than 80% of global GDP generated in cities, urbanization
in fact contributes to China’s growth by increasing its productivity and allow-
ing innovation and new ideas to emerge. However, as a consequence, cities and
countrysides have changed at an unprecedented scale and pace: landscape and
lifestyle have radically transformed raising social, economic, and environmen-
tal sustainability issues and stability problems [4,5]. The changes and trans-
formations generated by the planning of new urban areas have introduced new
c© Springer International Publishing AG, part of Springer Nature 2018
M. Pelillo et al. (Eds.): WIVACE 2017, CCIS 830, pp. 229–239, 2018.
https://doi.org/10.1007/978-3-319-78658-2_17
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imaginaries and new representations of livability and sustainability. These devel-
opments are differently perceived by the populations living or experiencing what
can be considered a rural to urban transition without precedent in human his-
tory. The analysis of how citizens feel these transformations can therefore provide
important elements to grasp at what people imagine and see about such a dra-
matic urban development. Due to the complexity of the study of urban systems,
there is an increasing need of adopting appropriate methods for analyzing and
modeling social data, both from a quantitative and a qualitative perspective
[6]. In this work, we conducted an evolutionary research design where data are
collected through a set of interviews to a selection of stakeholders of a recently
established high-tech zone in China, i.e. Hangzhou Future Sci-Tech City. This
area, 113 km2 large, was previously covered by farmlands and it is now benefiting
of dedicated-national policies to implement strategies to attract talents, improve
scientific and technology innovation and foster new entrepreneurship. These new
territorial entities are producing different consequences on the economy, on the
environment and on the landscape, both positive and negative, which generate
different perception on their development.

Aim of this work is to identify which topics, concepts and interpretative
categories are embedded in the social discourses about Hangzhou and Future
Sci-Tech City development and derive the corresponding network of relations
typical of complex social systems. In particular, to let the main latent themes to
emerge from citizens perception, we adopt narrative and textual data analysis
approaches on the collected interviews. Texts in fact provide a valuable source of
data for the identification and the measurement of latent variables, and several
methodological approaches to study these structures of data have been proposed
[7–9]. In particular, Topic Modeling approaches (TM) aim to infer from textual
data the latent topics of sets of documents or texts [7]. These models have been
successfully used across a variety of fields [10,11]. A network of the relations
among the estimated latent topics about the perception of this new area devel-
opment is then derived by the analysis of the relevant factors emerged by TM
analysis.

The paper is organized as follows: in Sect. 2 we illustrate the materials and
methods of the study presenting the research design that we developed to pro-
duce the data and the textual data analysis approaches; then in Sect. 3 we present
and discuss the research results on the perception and its modeling. Finally,
in Sect. 4 we propose some concluding remarks about issues requiring further
research.

2 Materials and Methods

2.1 The Perception on Hangzhou Future Sci-Tech City

In this work we analyze the perception on the urban development of a recently
established high-tech zone in China, i.e. Hangzhou Future Sci-Tech City. At this
aim we conducted several in depth interviews in the period Spring-Summer 2016
to different type of stakeholders, ranging from residents and workers to planners
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Fig. 1. Selection of 32 photos used to conduct the interviews.

and students. Moreover to elicit the perception of the different stakeholders,
the interviews were conducted using a composition of 32 photos of the area
which each stakeholder could comment and select in order to describe his/her
narrative about the changes occurred in the Future Sci-Tech City area. Images
are inherently polysemic, but each of those used within this research poses the
focus on different aspects of the development of the area, such as environmental,
socio-cultural, economic and working condition aspects [12]. The selection of
photos used in the interviews is presented in Fig. 1.

We then identify the core elements of the stakeholders’ narrative by means
of Nvivo, a computer assisted qualitative data analysis software: text coding
has been conducted achieving the identification of nodes (labels) for the main
conceptual categories. Then short texts corresponding to specific labels, here
identified by the 32 photos, have been extracted and elaborated to estimate a
statistical model for textual analysis. In this way we have been able to focus
on the specific perceptions highlighted and elicited by the proposed images and



232 D. Slanzi et al.

Table 1. Examples of short texts used in the analysis.

Photo Short text

P21 I am sure that most of people would say “Oh, how beautiful are those new
buildings”, like these [P3, P16, P21, P26] and they will not like this [P23]

P22 Many local people are living here [P22] and the environment is not very
good

P27 There is too much rubbish and waste [P27, P14]. Perhaps, the people of
our country do not pay much attention to this aspect. We only think how
to build beautiful houses, but in terms of ecological environment, we do
not care

on the latent issues they let emerge. Examples of short texts are presented in
Table 1. From this table we can see that each photo is often commented together
with other photos. Then latent topics emerging from the analysis of these coded
texts can reveal relational structures that can be derived from the analysis of
photo comments and narratives. Therefore, the research design developed in this
work is composed by the following steps:

– Estimate latent topics of urbanization perception from the short texts related
to photos;

– Build the graph of co-citation among photos, which means to identify the
connections emerged when two or more photos are commented together;

– Derive the network of topic relations by merging the information extracted
from topic contents and the photo co-citation graph.

Each design procedure will be briefly described in details in the following sec-
tions.

2.2 Structural Topic Models

Topics are estimated with probabilistic distributions over a vocabulary of words
and according to the co-occurrence of words within each analyzed text with a
probabilistic generative process. This process considers a collection of D docu-
ments (or texts), each containing Nd ⊆ V words, d = 1, . . . , D, and V represents
the set of distinct elements (words) of the vocabulary used in the analysis. More-
over a set of K latent topics is defined and assumed to be representative of the
documents. The probabilistic generative process consists then of the following
steps:

– a V -dimensional Dirichlet probability distribution, βk ∼ Dir(η), is deter-
mined for each topic k, k = 1, . . . , K, assessing the probability according to
which words are generated from the k-th topic;

– a K-dimensional Dirichlet probability distribution, θd ∼ Dir(α) is determined
for each document d, d = 1, . . . , D, assessing the expected proportion of words
that can be attributed to each topic;
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– for each word in the document
• a value zd,n for a multinomial distribution Zd,n ∼ MultK(θd), n =

1, . . . , Nd, is sampled denoting which topic is associated with such word,
and

• a word value wd,n from a multinomial distribution Wd,n ∼ MultV (Bzd,n),
is sampled where the matrix B = [β1 · · · βK ] encodes the distributions
over words in the vocabulary associated with the K topics.

When additional information regarding the documents is available, it can be
included in the model as a set of covariates X. The Structural Topic Model
(STM) proposed by Roberts et al. [13–15] represents a particular class of TMs
where the inclusion of covariates of interest can affect the topical prevalence
(i.e., the frequency with which a topic is discussed) and the topical content
(i.e., the distribution with which the words are used to discuss a topic) of the
model. The covariates are introduced in the TM approach by means of different
prior probability distributions for document-topic proportions and topic-word
distributions. In this research, we consider the photos as additional information
with respect to interviews’ texts to highlight if particular visual stimuli bring
out specific perceptions of latent issues. For the specific procedure on how these
prior distributions are defined and how the TM estimation process is modified, we
refer to [15]. Several pre-processing analyses are conducted to remove irrelevant
words and symbols in the texts as well as to stem (reduce words to their root
form). Not frequent words, i.e. words which are present only in the 1% of the
analyzed documents, are also removed. The resulting dataset is composed by
D = 319 texts on |V | = 384 words and a covariate X = x1, x2, . . . , x32 indicating
the photo from which the text is extracted as indicated in Table 1. A search
across models with different number of topics was also performed to identify the
preferable number of topics for the model estimation; the achieved number is
equal to K = 10.

The analyses were conducted using the package stm of the R-project free
software environment for statistical computing and graphics (www.r-project.
org) [16].

2.3 Network Analysis

From the STM results we can build the graph of photo co-citation. Photos, as
covariates of the models, have associated their particular vocabulary of words
from which we can derive which words of a photo are part of the set of words of
other photos. In this way, we can build a graph of co-citation by linking photos
which have a directed connections with others. In particular, we build the photo
co-citation graph in the following way:

– if a photo xj is part of the covariate vocabulary of the photo xi, i, j = 1, . . . , 32
and i �= j, then a link between xi and xj is derived;

– links are bidirectional if the covariate vocabulary of a photo includes photos
which have in their vocabulary the citation to the generating photo itself.

www.r-project.org
www.r-project.org
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This graph is then used to empirically derive the network of topic relations
by merging its information with the information extracted from topic contents.
From the STM results we can in fact detect that several photos are particularly
related to specific topics and the links between photos produce a flux of informa-
tion which can give rise to the relationships among topics. The network of topic
relation is represented as an undirected graph, where nodes correspond to the
estimated topics and edges between nodes are built considering that if a cluster
or a sub-cluster of photos (i.e. a group of connected components) is related to
more than one topic, then the corresponding topics are connected and an edge
between the nodes of the graph is drawn.

3 Results

The latent topics estimated by means of STM are presented in Table 2. In this
Table, topics are described by their most frequent/exclusive words identified by
FREX measure [15], a metric which combines word frequency and exclusivity,
and by the estimate value of θ, the expected proportion of words that can be
attributed to each topic. Moreover as topic words can be represented also by
photos (photos are in fact part of the short text vocabulary as shown in Table 1),
we report also the most frequent and exclusive photo numbers for each estimated
topic. Here, topics are labeled by the most representative theme which they
express and are ranked based on their estimated expected proportion. We can
see that most of the topics have the same proportion across the documents,
i.e. Topic 2, 3, 4, 5, 6, and 7 are equally distributed along the texts, meaning
that they are discussed in the same extent during the interviews. There is one
topic with higher expected proportion, Topic 1, highlighting that the theme of
Landscape quality is discussed more frequently than others, whereas Topic 8, 9
and 10 are the less present in the texts.

Then, following the procedure introduced in Sect. 2.3, we can derive the
co-citation graph among photos investigating the resulting STM vocabulary of
words of each photo. This graph is reported in Fig. 2. From this graph, we can
see that there are some “clusters” of photos (see for example, P4 + P17 + P22
or P19 + P22 + P25 + P28) meaning that in the interviews people citing a photo
have high probability of citing other photos which are connected as reported in
the graph. We can also notice different clusters of photos with respect to the
structure of the connections: some photos are not connected (for example, P2 or
P12), some photos are connected in unidirectional way (P25 → P9) and some
others in multi-directional way (P25 ↔ P22).

The information extracted from the co-citation graph is then merged with the
achieved topic contents the derive the network of topic relation. The resulting
network is shown in Fig. 3.

From this graph, several measures are calculated to identify a set of charac-
teristics of the estimated topics. We derive:

– the degree of each node, i.e. the number of its adjacent edges. Usually, high
values of degree indicates how the node is connected to other nodes: in the
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analysis of the urban development perception, the measure can indicate the
extent to which a topic is able to produce a narrative flux which includes or
makes emerge other themes perceived as relevant.

– the standardized betweenness measure of centrality, i.e the standardized num-
ber of the shortest paths that pass through the node. It represents the degree
of which nodes stand between each other, and higher betweenness centrality
indicated that more information will pass through that node. In this analy-
sis it can indicate how a topic is central in the a flux of discourses on the
perception.

– the normalized eigenvector centrality scores, i.e. the eigenvector correspond-
ing to the largest eigenvalue of the graph adjacency matrix. The scores are
normalized so that the sum of all scores is 1. This is a measure of the influence
of a node in the graph, and it can therefore highlight how a topic is able to
influence the emergence of other topics in the interviews.

These measures are presented in Table 3. They are usually correlated each
other, with some little distinctions. However, they provide information about
which topics are perceived and discussed as the most relevant by those stake-
holders who are differently affected and involved in the urban development of this
area of Hangzhou. In particular we see that Topic 3, i.e. Progress and modernity,
seems the key theme of the network of topic relations despite its expected mean

Fig. 2. Co-citation graph of photos built by evaluating the words identified for each
photo in the estimated model



236 D. Slanzi et al.

Fig. 3. Network of topic relations.

Table 2. Most frequent and exclusive words, including photos, and expected mean
proportion of each topic.

Topic Most frequent and exclusive
words (and photos)

Expected
proportion

T1. Landscape quality Place, peac, see, beauti, local,
gone, new, countrysid, acient,
demolish (23, 16, 21, 10)

15.1%

T2. Upgrade Look, care, good, better, area,
live, construct, subway,
presenrv, origin (3, 15, 7, 16, 21)

12.2%

T3. Progress and
modernity

Futur, sci-tech, west, shop, road,
style, develop, time, past,
progress (27, 21, 22, 15, 16)

11.8%

T4. Diversity Care, farmer, compani, cultur,
design, want, need, shanghai,
internet, concern (5, 3, 10)

11.4%

T5. Flexibility Develop, maintain, keep,
disappear, flexibi, help, hope
(17, 4, 22, 21, 1)

11.3%

T6. Working and living
conditions

Chang, recogn, differ, work, lif,
low, direct, feel, compens, fake
(22, 28, 12, 4, 24, 27, 1)

11.1%

(continued)
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Table 2. (continued)

Topic Most frequent and exclusive
words (and photos)

Expected
proportion

T7. Management of
consequences

Good, look, recogn,
haichuangyuan wetland,
environmen, build, govern,
suitabl, order, worry, temporary
(5, 15, 25, 32)

10.8%

T8. Modes of production Comparison, cold, disord,
connect, rubbish, eat, dirti,
labour, indic (7, 22, 4, 21)

7.1%

T9. Social
infrastructures

Street, people, simpli, talk,
familiar, house, village, rememb
(4, 27, 1, 21, 24)

6.2%

T10. New territorial
entities

Center, custom, land, pollut,
area, miss, resid, space, work,
canal, rich, buy (21, 15)

3%

Table 3. Measures of centrality of the estimated topics.

Degree Betweenness Eigenvector

T1 3 0.022 0.190
T2 2 0.000 0.147
T3 5 0.333 0.234
T4 0 0.000 0.000
T5 2 0.133 0.092
T6 1 0.000 0.032
T7 3 0.133 0.167
T8 1 0.000 0.081
T9 1 0.000 0.058
T10 0 0.000 0.000

proportion is not the highest. This topic mainly concerns with people’s attribu-
tions about modernization and China’s “moving forward” process, in which the
agents, purposes and consequences entailed by the development of high-tech zone
seems to play a crucial role. The imperative of modernization seems therefore the
central narrative that is embedded in people’s perceptions, and discourses about
Landscape quality (Topic 1) and the Management of consequences (Topic 7) nec-
essarily relate to it. Topic 1 concerns the distinguishing attributes of the natural
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and social ecosystems characterizing the Future Sci-Tech City, and also how dif-
ferent factors and features interplaying one each other, or different decisions and
behaviors, can influence their status and evolution, whereas Topic 7 concerns
handling the positive and negative impacts of the Sci-Tech City development. In
particular interviewees refer mainly to how this will affect its economy, heritage,
natural resources, communities’ life, health, etc. From these results we can see
that the majority of interviewed stakeholders are aware of the dramatic conse-
quences of such a rapid transition but they expect that - sooner or later - the
negative impacts will be properly managed. At the same time the current imper-
ative of modernization and material wellbeing seems to be the main priority in
order to achieve the so called “Chinese Dream” which claims ambitious targets
for 2020, in particular sustaining the growth of population living in cities and
expanding domestic consumption at a “sustainable pace”.

4 Concluding Remarks

Perceptions on the urbanization of Hangzhou fostered by the planning of new
urban areas such as the Future Sci Tech City have been collected with depth
interviews based on photos and narratives. The textual documents resulting from
the interviews have been analyzed and Structural Topic Models have been con-
structed and estimated. From these models we could identify the most relevant
topics, as perceived by the stakeholders of the area, the relations among the
topics and the structure of the network that characterizes these relations. A key
result of this analysis is the extremely positive perception of the impressive eco-
nomic growth experienced by this area since the establishment of the high-tech
zone in 2011, and achieved also with the rapid population growth and urbaniza-
tion. A tolerant attitude is shown instead towards emerging environmental and
social issues, which are part of the compromises required by development and,
therefore, are regarded as not as urgent to address in this transition phase.
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2 IRIDIA, Université libre de Bruxelles, Brussels, Belgium

Abstract. The design of control software for robot swarms is a challeng-
ing endeavour as swarm behaviour is the outcome of the entangled inter-
play between the dynamics of the individual robots and the interactions
among them. Automatic design techniques are a promising alternative to
classic ad-hoc design procedures and are especially suited to deal with the
inherent complexity of swarm behaviours. In an automatic method, the
design problem is cast into an optimisation problem: the solution space
comprises instances of control software and an optimisation algorithm is
applied to tune the free parameters of the architecture. Recently, some
information theory and complexity theory measures have been proposed
for the analysis of the behaviour of single autonomous agents; a simi-
lar approach may be fruitfully applied also to swarms of robots. In this
work, we present a preliminary study on the applicability of complexity
measures to robot swarm dynamics. The aim of this investigation is to
compare and analyse prominent complexity measures when applied to
data collected during the time evolution of a robot swarm, performing
a simple stationary task. Although preliminary, the results of this study
enable us to state that the complexity measures we used are able to cap-
ture relevant features of robot swarm dynamics and to identify typical
patterns in swarm behaviour.

1 Introduction

The behaviour of a swarm of robots is the result of the dynamic interplay among
the robots, and between robots and environment. As a consequence, the design
of control software for a robot swarm presents hard challenges. Typical tech-
niques for designing robot swarm are based on code-and-fix methods [4], usually
tailored to the specific problem at hand. A promising alternative to these ad hoc
approaches is provided by automatic design techniques [9], which are especially
suited to deal with the inherent complexity of swarm behaviours. In automatic
methods, the design problem is cast into an optimisation problem, whereby the
solution space contains instances of control software and an optimisation algo-
rithm is applied to tune the free parameters of the architecture [10,29]. For the
c© Springer International Publishing AG, part of Springer Nature 2018
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sake of completeness, we observe that the design process is not simply reduced
to an optimisation problem because it also involves the definition of proper merit
factors and experimental settings, likewise learning methods.

Recently, some information-theoretical measures have been proposed for the
analysis and design of the behaviour of single autonomous agents [1,8,25,28].
These studies support the use of information theory and complexity science
concepts in the field of autonomous agents and robotics. We believe that these
techniques may be fruitfully applied also to swarms of robots. Indeed, complex
systems science may provide a corpus of theories and methods that enable the
designer to formally and quantitatively analyse the dynamics of a robot swarm
and its internal information processes.

Complexity measures may be applied to the automatic design of robot
swarms with the following objectives:

1. understanding individual and swarm behaviour from observations of measur-
able quantities (e.g. sensor readings, actuation, controller state);

2. providing task-agnostic merit factors for the automatic design procedures;
3. classifying swarm tasks in terms of their intrinsic complexity so as to optimally

tune the complexity of individual robot and robot interactions.1

In the long term we plan to address the following questions: (i) Are the
intuition behind the measures in accordance with the observed robot swarm
behaviour? And is the observed behaviour coherent with the complexity values
measured? (ii) What are the most informative measures? (iii) What are the com-
plexity measures most suited for such an application? (iv) Are there phenomena
in the swarm behaviour that can be detected just by observing the complexity
values measured? The outcome of this study is expected to provide guidelines
for the choice of the most informative indicators for more complex tasks.

In this work, we present a preliminary study on the applicability of com-
plexity measures to robot swarm dynamics. The aim of this investigation is to
compare and analyse prominent complexity measures when applied to data col-
lected during the time evolution of a robot swarm performing a simple stationary
task. In the following, we first summarise the measures considered in this study
in Sect. 2; subsequently, we detail the robot swarm task (Sect. 3). In Sect. 4, we
provide a summary of the main results, emphasising the ones that enable us
contributing to answer the questions raised above. Finally, we conclude with an
outlook of ongoing and future work.

2 Measures of Complexity

In the scientific literature the word complexity is overloaded, as it appears with
different meanings, each related to a specific interpretation of the term. As a
consequence, there is no unique measure of complexity and in fact many met-
rics have been proposed in the literature. In general, each metric addresses one
1 This goal is motivated by a conjecture on the so-called reality gap, which has been

advanced in [3,10].
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specific aspect of the general notion of complexity, therefore we should aim at
producing a complexity fingerprint by evaluating several measures, rather than
identifying a single metric able to summarise all the relevant properties related
to complexity.

A measure of complexity was first proposed by Kolmogorov [14] who provided
an algorithmic view of information: the complexity of a string of symbols is
defined as the length of the shortest program producing it. As this measure is
not computable some approximations have been proposed, such as the ones based
on compression algorithms. In fact, algorithmic complexity estimates the amount
of randomness in a string, as they turn out to be very low for regular sequences
and maximised for completely random strings. The definition of complexity we
are interested in tries to capture the notion of presence of (dynamical) patterns,
often related to the extent to which correlations distribute across the element of
the system observed [13]. Intuitively, high complexity is associated to situations
between order and disorder, as patterns in both ordered and completely random
dynamics are negligible. Along this line, several measures have been proposed [12,
13,16,18,26]. However, a survey on the literature on complexity measures is out
of the scope of this contribution and we refer the interested reader to prominent
works on the subject [2,13,18,20,24]. A nice introduction to information theory
for complex systems can be found in the lecture notes by Lindgren [17].

In this work, we focus primarily on the complexity of the dynamics of the
system observed in its environment, rather than the individual complexity of a
controller of an isolated robot. Moreover, as a consequence of the fact that we
deal with data collected during experiments, the measures used should be applied
to time series of finite length. Among the measures proposed in the literature,
we selected and implemented the following ones:

1. Shannon entropy [27]
2. Block entropy and entropy excess [22]
3. Correlation information [17]
4. Mutual information [6]
5. LMC complexity [21]
6. Lempel-Ziv complexity [15]
7. bz2 compression factor [5]
8. Linguistic complexity [30]
9. Set-based complexity [11]

The choice of these metrics has been motivated by the intent of covering
the diverse facets of complexity, and also taking into account computational
requirements.2

Measures 1–5 are based on the Shannon entropy of a sequence s of symbols
in a finite set X . We suppose that the frequency of symbols appearing in s
approximates the probability distributions of the symbols. Therefore, we can
2 Indeed, due to excessive computational resources required, for this preliminary step

we did not applied measures of complexity based on model construction, such as the
ones by Crutchfield et al. [7].
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provide the definition of entropy in terms of random variables. Let X be a
random variable which can assume values from a finite and discrete domain X ,
the Shannon entropy of X is defined as

H(X) = −
∑

x∈X
P (x) log P (x)

where the logarithm is expressed in base 2. This definition can be extended to
blocks of symbols of length n in s, so as to take into account also correlations
among symbols. This leads to the definition of the block entropy of length n:

Hn = −
∑

sn∈S
P (sn) log P (sn)

The entropy excess3 is defined as the difference between block entropies of length
n and n − 1 and estimates the information required to predict the n-th symbol
conditioned to the observation of n − 1 preceding symbols. In formulas:

hn = ΔHn = Hn − Hn−1

We can extend this process to the second derivative (in discrete domains) and
obtain the correlation information from length n:

kn = Δ2H(n) = −H(n) + 2H(n − 1) − H(n − 2), n ≥ 3

Intuitively, the peaks of kn identify significant block regularities, i.e. maximum
gain in information for specific block lengths.

Also the mutual information I(X,Y ) between random variables X and Y is
defined in terms of entropies and estimates the average information one gains
about Y after the observation of X, and viceversa:

I(X,Y ) = H(X) + H(Y ) − H(X,Y )

where H(X,Y ) denotes the conjunct entropy of X and Y .
For completeness, we also introduce the LMC complexity4 which is defined

in terms of entropy and disequilibrium:

LMC(X) = H(X) · D(X)

where D(X) =
∑
x∈X

(
P (x) − 1

|X |
)2

. Unfortunately, this metric is quite sensitive

to numeric factors—mainly the values of H and D at the borders—and the
results it returns should be taken with care.

Measures 6–9 are instead based on computing properties of the sequence
at hand, rather than referring to a probability distribution. In particular, the

3 Not to be confused with the excess entropy [26], which is defined for n → ∞.
4 The name comes from the name initials of its inventors.
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Lempel-Ziv complexity (LZ) is a sort of algorithmic information measure com-
putable on finite sequences, therefore it estimates the randomness of a string.
LZ(s) returns the number of shortest different blocks composing s. Along the
same line is the compression factor achieved when compressing the string, in our
case with algorithm bzip, which takes into account blocks of different size. Lin-
guistic complexity is another metric that based on the occurrences of different
blocks in a sequence of symbols and is computed for blocks of varying size.

Finally, the complexity of a set of strings S = {s1, s2, . . . , sN} can be esti-
mated by means of the set-based complexity SBC, which accounts for the infor-
mative contribution of each string to the set. The intuition behind this measure
is that a random string and a duplicated string do not contribute to the overall
complexity of the set. This metric is defined in terms of Kolmogorov complexity
K(s) and it is empirically computed by approximating it with a compression
algorithm, providing an estimation K̂(s). Based on algorithmic complexity, the
distance between two strings can be computed as follows:

d(i, j) =
K̂(x ⊕ y) − min(K̂(x), K̂(y))

max(K̂(x), K̂(y))

where x ⊕ y denotes the concatenation of strings x and y. The SBC of the set of
strings S is defined as:

SBC(S) =
N∑

i=1

K̂(si)Fi(S)

where

Fi(S) =
2

N(N − 1)

∑

j∈{1,2,...,N},i �=j

dij(1 − dij), dij := d(si, sj)

3 Case Study: Random Walk with Collision Avoidance

We defined a case study that requires a simple software controller for the robots
and few parameters to be tuned. Moreover, the mission the swarm has to accom-
plish should be modelled as a stationary process, and its level of complexity
should be sufficiently high to be measured and produce non-trivial results. At
the same time, the complexity should be limited so as to allow an easy interpre-
tation of the results. We performed our experiments in a simulated environment
by the means of ARGoS [23], one of the most widespread swarm robotics simu-
lators. The robot chosen to be simulated is an e-puck, equipped with 8 infra-red
proximity sensors positioned around the circular body and two wheels.

3.1 Behaviour: Random Walk with Collision Avoidance

The random walk behaviour is a strategy for space exploration commonly used
in swarm robotics. We implemented this strategy as the alternate execution of
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Function ControlStep()

if State == STRAIGHT then
if StraigthSteps == 0 OR obstacle in front then

State = LEFT or RIGHT with same probabilities;
Bernouilli(0,5) == 1 ? State ← LEFT : State ← RIGHT;

TurningSteps ← Uniform(0, Ra
10

);

else
GoStraight();
StraightSteps ← StraightSteps - 1;

end

end
if State != STRAIGHT then

if TurningSteps > 0 then
if State == RIGHT then

TurnRight();
else

TurnLeft();
end
TurningSteps ← TurningSteps - 1;

else
State ← STRAIGHT;
StraightSteps ← Ws;
ControlStep();

end

end
Algorithm 1. Control step of the random walk behaviour executed every
100 milliseconds. The methods GoStraight(), TurnRight() and TurnLeft() are
responsible for affecting the required values to the wheels actuator in order
for the robot to move forward, rotate clockwise or anti-clockwise, respectively.
The recursive call to ControlStep() allows the robot to verify the absence of
obstacle before starting to move forward.

straight movements and static rotations: at each time step of an experiment, the
e-puck robots can either move forward for a given distance or rotate at a given
angle. In our implementation of the random walk behaviour the robots walk
straight for a maximal distance Ws. After this maximal distance is travelled,
or if an obstacle is perceived in front of the robot, the static rotation phase is
triggered. During the rotation, a robot turns left or right with same probability,
with a rotation angle given by a multiple of 10◦ taken uniformly between 0 and a
maximal angle Ra. Once the robot has completed the rotation, it can once again
move forward under the condition that no obstacles are on the way. Conversely,
if the path is not clear in front of the robot, another static rotation phase is
immediately started. Algorithm 1 resumes the behaviour that we implemented.
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3.2 Experimental Settings

For this study, we executed multiple runs of the random walk behaviour with
two parameters: the maximal straight distance Ws ∈ {10, 20, 30} expressed in
centimeters, and the maximal angle of rotation Ra ∈ {40, 90, 180} expressed in
degrees.

Fig. 1. Picture of the enclosed environment setup containing a swarm of 20 e-puck
robots. The 8 cyan lines around each robots represent their proximity sensors. (Color
figure online)

We ran two types of experiments. The first one is a control scenario involving
a single robot that moves in an infinite space with no obstacles nor boundaries.
This scenario represents a baseline for the comparisons with the swarms. The
second experiment involves a swarm of N ∈ {1, 10, 20, 40} robots moving in an
enclosed environment in which the walls form a dodecagonal shape with an area
equal to 4.91 m2 (see Fig. 1). The swarm is composed of robots all controlled
by the same random walk behaviour. At the beginning of each experiment,
the robots are uniformly distributed in the dodecagonal arena. Every possible
combinations of the parameters Ws and Ra were used in the two experiments.
Each experiment was repeated 10 times. Therefore, a total of 450 experiments
were ran.

The state of a robot performing this kind of random walk can be simplified
and expressed by means of three possible states: Straight, Left, and Right. Hence,
at each instant, the state of the whole swarm of N robots can be represented by
a vector of symbols, each from the alphabet {S,L,R}. For each run, we recorded
the state vector of the swarm every 100 ms. As runs last 20 min, a total of 12000
state vectors were recorded for each experiment. The complexity measures were
applied to this symbolic sequence depending on the definition of the measure, i.e.,
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either to the whole vector state (e.g., for set-based complexity) or by averaging
the values computed across all the robots (e.g., for entropies).

4 Results

The factors influencing swarm behaviour that we expect to be reflected into
a complexity metrics analysis are the number of forward steps, the maximum
turning angle and the number of robots in the arena. In particular, the metrics
should provide information on the amount of regularity in robots’ trajectories
and on their interactions. As we will show, although preliminary, the results
of this analysis enable us to state that the complexity measures we used are
able to capture these relevant features of robot swarm dynamics. Moreover,
we discovered that some metrics were able to capture non-trivial properties of
the dynamics of the swarm. In this paper we show and discuss a representative
sample of the results. The metrics we have omitted in this discussion are anyway
in agreement with the ones we have chosen for this presentation.

In the following plots, colours are used to differentiate among the three pos-
sible turning angle values: 40◦ in red, 90◦ in green and 180◦ in blue. The plots
shown are produced by analysing one run for each possible combination of exper-
imental factors; qualitatively analogous results are observed in the other runs.
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Fig. 2. LZ complexity for the case with 1 robot (left) and 40 robots (right) in the
dodecagonal arena. Maximum turning angles: � 40◦ � 90◦ � 180◦ (Color figure online)

In general, Shannon entropy and all the metrics measuring randomness are
in agreement with the expectations, as they show that randomness increases if
the number of forward steps decreases, the maximum turning angle decreases
or the number of robot increases. In Fig. 2 a representative example is shown
for the LZ complexity. Note that the maximum values reached in the case of
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40 robots are higher than those for one robot, providing a quantitative account
of the positive correlation between number of robots and randomness in their
trajectories. In addition, the LZ complexity decreases with the number of steps
and the maximum turning angle, specifically confirming that robots’ trajectories
are more regular when they have more possibilities to avoid obstacles.
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Fig. 3. Block entropy for the dodecagonal arena case, with 1 robot (left) and the 40
robots (right). Maximum turning angles: � 40◦ � 90◦ � 180◦

Block entropies and their derivatives are particularly informative because
they provide a picture of the correlations at different lengths in the dynamics of
the swarm. The block entropy as a function of block size is plotted in Fig. 3 for
the two extreme cases of the scenario with the dodecagonal arena. As expected,
the curves grow more rapidly for the dynamics characterised by a higher level
of randomness. The curves saturate when the length of the block considered
is about 40; in fact, as data series are of finite length, the frequency of large
blocks is underestimated and the block entropy values tend to converge even if,
in principle, the asymptote should have a strictly positive derivative for non-
periodic dynamics [17]. Therefore, the block entropy values are meaningful for
shorter block lengths. The block entropy trends suggest two main observations.
First, the initial slope of the curves is higher on average in the 40 robots case; this
is a direct consequence of the fact that the denser the robots the less regular their
trajectories in the arena. Second, the top and bottom limiting curves correspond
to the least (10 steps, 40◦) and most (30 steps, 180◦) regular case, respectively.

The correlation information (i.e. the second discrete derivative of the block
entropy) makes it possible to identify the points at which the block entropy slope
changes, thus providing a tool for a detailed inspection of the regularities in the
time series. The plots in Fig. 4 summarise the results of the correlation length
analysis. The most notable fact to observe is that in every condition considered,
and independently of the turning angle, there is a marked peak corresponding to
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the number of forward steps. Indeed, this is one of the most relevant regularities
in robots’ trajectories. We can also observe lower peaks corresponding to multi-
ples of the number of forward steps. This picture is particularly striking in the
control case (one robot, infinite arena) and gets blurred when delimiting walls
are present and mainly when robots in the arena are dense, as their avoidance
behaviour introduces randomness in their trajectories. We observe also a surpris-
ing phenomenon: a second peak appears at the left of the previously mentioned
one. This peak is particularly marked in the case of 40 robots and 30 forward
steps, where it is even higher than the other peak. This second local maximum
captures the pattern of turning moves of the robots trying to avoid an obstacle.
Indeed, the location of this peak gives us an indication of the average number
of turning moves the robots have to take before finding a free corridor to move
ahead. Whilst this phenomenon deserves a further in-depth investigation, this
result is remarkable as it shows that correlation information provides a fine tool
to detect—possibly unforeseen—regularities.
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Fig. 5. Mutual information for the dodecagonal arena case, with 1 robot (left) and the
40 robots (right). Maximum turning angles: � 40◦ � 90◦ � 180◦

A mutual information analysis of robots’ trajectories may provide an estima-
tion of the reciprocal influence between robots. Mutual information is computed
for all the possible robot pairs and then averaged. The barplots in Fig. 5 show
that the interdependence among robots is highest for the case of 40 robots and
that the interactions are stronger for smaller turning angles. This analysis is in
agreement with the expectations and complements the information gained by
the previous metrics.

For completeness, we conclude this section by mentioning the results returned
by the application of the set-based complexity. SBC is computed by considering
the sequence of swarm states as a set of strings; therefore, it is a measure of
the ensemble of robots, rather than of the robots taken individually. Barplots of
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Fig. 6. Set-based complexity for the dodecagonal arena case, with 1 robot (left) and
the 40 robots (right). Maximum turning angles: � 40◦ � 90◦ � 180◦

this analysis are depicted in Fig. 6. We observe that SBC does not differentiate
considerably as a function of forward steps and maximum turning angle. Con-
versely, it is worth to emphasise that the SBC values double moving from 10 to
40 robots, and also that the impact of forward steps number is stronger in the
case of 10 robots, where the interference among robots is limited. Nevertheless,
as the robots are mainly characterised by random walk, the potential of SBC can
not be expressed completely and we expect that this metric could be particularly
useful in non-stationary cases.

5 Conclusion and Future Work

The results of this exploratory study show that complexity metrics can capture
relevant features, such as patterns, in traces of robot swarm dynamics. We have
chosen the most known complexity measures, mainly from information theory,
and applied them to a simple task for swarm robotics characterised by a station-
ary dynamics. As expected, metrics devised for measuring specific dynamical
traits return similar results and an heterogeneous selection of them is likely to
be the best choice to produce a complexity fingerprint of the system. A mini-
mal fingerprint for a stationary case should be composed of metrics focusing on
(a) randomness (e.g. LZ complexity), (b) patterns (e.g. block entropy and its
derivatives) and (c) interdependence among robots in the swarm (e.g. mutual
information).

We are currently enlarging the set of metrics, by including also statistical
complexity measures based on model construction, and we plan to apply also
local measures [19] and information theoretical measures specifically designed
for capturing dynamical properties of the system [31]. Experiments on further
stationary cases are planned, such as flocking and memoryless foraging with



Complexity Measures in Automatic Design of Robot Swarms 255

random walk. The next step will be to address also non-stationary cases, like
e.g. aggregation, so as to be able to tackle swarm missions in which robots
may be characterised by changes in their dynamical behaviour. As stated in
the introduction, our aim is to devise tools for helping the automatic design of
controllers for robot swarms, so our research agenda include as a further step
the use of complexity measures both as analysis tool and task-agnostic merit
factors.
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Abstract. The topology of a network defines the structure on which
physical processes dynamically evolve. Even though the topological anal-
ysis of these networks has revealed important properties about their orga-
nization, the components of real complex networks can exhibit other
significant characteristics. In this work we focus in particular on the
distribution of the weights associated to the links. Here, a novel met-
ric is proposed to quantify the importance of both nodes and links in
weighted scale-free networks in relation to their resilience. The resilience
index takes into account the complete connectivity patterns of each node
with all the other nodes in the network and is not correlated with other
centrality metrics in heterogeneous weight distributions.

Keywords: Complex networks · Resilience · Percolation · Centrality
Scale-free networks · Weighted centrality metrics

1 Introduction

Complex networks have become a powerful tool for analyzing interactions in
a great variety of contexts [1,2]. By using the complex networks framework,
a system can be modeled in terms of nodes connected by binary or weighted
edges whose magnitude quantify respectively the presence or the strength of
the links between them. Several graph metrics that are able to characterize
the statistical properties of weighted networks combining both topology and
weight distributions have been proposed [3]. Weighted networks are particularly
interesting for assessing topological properties in systems whereby is critical
the importance of connections, e.g., social networks, ecological and biological
systems, well-known for their hierarchical organization. As an example, there
is clear evidence that many real-world networks exhibit a power law degree
c© Springer International Publishing AG, part of Springer Nature 2018
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distribution which confers properties of structural robustness amongst attacks
or failures [4].

Such properties are strictly related to the concept of percolation, i.e. the
existence of a critical probability at which a single connected giant component
exists and below which the network is composed of isolated clusters [1]. Different
approaches have been proposed to assess the degree of the fragmentation of a
network when a finite number of links are removed. Typically, metrics that quan-
tify the importance or centrality of nodes are evaluated as edges are gradually
removed from the network [5–9]. Several studies have tested the vulnerability
of some synthetic networks for both binary and weighted cases, finding some
network topologies more prone to attacks than others.

However, most of the real networks are characterized by a great heterogeneity
of topological properties that are only partially taken into account in synthetic
simulations. For instance, in weighted networks even weak connections can be
statistically significant for a particular structural topology [10]. As an exam-
ple, synthetic scale-free networks can be generated by using the Barabási-Albert
(B-A) algorithm [1,11]. Accordingly, the resulting networks have a power law
degree distribution P (k) ∼ k−γ with 1 ≤ γ ≤ 3. However, although the topolo
gical properties can highlight many interesting aspects of such real networks, it
has been showed that a number of systems with scale-free topology also presents
broad distributions of weights and non-trivial correlations between weights
and topology structure [3,12]. Hence, the heterogeneity of the weight distribu-
tions should be considered to investigate the complex features of real scale-free
networks [13].

Here, a new resilience index is proposed to capture the importance of both
nodes and links of a complex network. Specifically, a multidimensional approach
is adopted to quantify the importance of nodes and links in relation to their
survival rate for progressive removal of links in the network. Weighted undi-
rected networks with scale-free topology are simulated to test the capability of
the proposed resilience index to detect the most important nodes and links of
the networks. Different weight distributions are considered in order to reflect
the heterogeneity of links’ strengths in a real scenario. Other centrality metrics
known in the literature are compared to show their correlation with the proposed
index.

2 Methods

2.1 Synthetic Networks

The B-A algorithm was used to generate synthetic scale-free networks with the
same power law degree distribution P (k) ∼ k−γ with γ = 2. The mechanisms
of growth and preferential attachment are the main features of the scale-free
networks: new nodes tend to connect to the more connected nodes that become
hubs of the network. Then, in a scale-free topology, most of the nodes are weakly
connected and only few strongly connected nodes are the critical hubs of the
network.
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In particular, in order to represent two different kinds of weight-topology
correlations, the weight of the link wi,j between nodes i and j was assigned as:

1. wi,j = kikj , to simulate a power law weight distribution setting a full weight-
topology correlation.

2. wi,j ∼ U(0, 1), where a random uniform distribution of numbers in the range
[0, 1] is introduced to remove the correlation between weights and topology
structure.

Figure 1 shows the same topology of a scale-free network composed by N =
100 nodes with the aforementioned weight distributions. As it can be seen, the
most significant link in the power law case is established between the two hubs
of the network (see Fig. 1(a)).

Fig. 1. A scale-free network topology composed by N= 100 nodes: (a) power law weight
graph; (b) random uniform weight graph; (c) degree distribution; (d) power law weight
distribution; (e) random uniform weight distribution. Line width of the graph links are
proportional to their weights.
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2.2 Centrality Metrics

In an undirected network G(V,E), V and E being respectively the set of nodes
and set of links, the importance of a node was assessed by using the following
metrics:

– the degree ki of a node vi, i.e, simply the number of nodes attached to vi:

ki =
N∑

j=1

aij (1)

where N is the number of the nodes of the network and A = {aij} is the adja-
cency matrix, with aij = 1 if nodes vi and vj are connected and 0 otherwise.
Degree represents the simplest centrality index as it assigns more importance
to more connected nodes which have more influence over their neighbors.

– The strength of a node vi, defined as the sum of the weights of the links
associated to vi:

si =
N∑

j=1

wij (2)

where W = {wij} is the weighted adjacency matrix, with wij > 0 if vi and
vj are connected and wij = 0 if they are not connected.

– The centrality of a node can also be related to its position in the network with
respect to the paths of information flow. A path from vi to vj is a sequence
of vertices and edges, such that each edge connects its preceding with its
succeeding vertex. In weighted networks, a cost criterion should be specified
in order to associate weights to distances. In a general context, link weights
usually do not represent the costs of connections, but their strength, so the
reciprocal of weights can be directly related to their distance paths without
loss of generality [14]. Let dG(i, j) be the distance between vertices vi and
vj , i.e. the length of the shortest path among all the paths connecting vi

and vj that can be computed for example by using Dijkstra’s algorithm [15].
Closeness centrality quantify the proximity of each node to the rest of the
network and it is expressed as:

CCi =
1

∑N
j=1 dG(i, j)

(3)

A high value of closeness means that a node is easily reached from all the
other nodes with few steps.

– Betweenness centrality, expressed as the fraction of the shortest paths that
pass through each node or edge [16]:

BCi =
∑

i�=j �=t

σjt(i)
σjt

(4)

where σjt denotes the number of shortest paths from vj to vt and σjt(i)
denotes the number of shortest paths from vj to vt that pass through vi.



Identification of “Die Hard” Nodes in Complex Networks 261

Betweenness highlights nodes (or edges) that, upon removal, would affect
efficient routing across the network.
For both closeness and betweenness metrics the length of the shortest path
dG(i, j) between vertices vi and vj , is defined as:

dG(i, j) = min

(
1

wih
+ . . . +

1
whj

)
(5)

where h are intermediary nodes on paths between the two vertices vi and vj .
– The eigenvector centrality, i.e., an iterative centrality in which the influence

of a node is determined by the number and influence of its neighbors [17]:

EIGi =
1
λ

N∑

j=1

wijEIGj (6)

Where λ is the largest eigenvalue in absolute value of W .

2.3 Resilience Index

The computation of the resilience index requires the following steps which are
also shown in Fig. 2:

1. given the adjacency matrix W of the network, in which the entry (i, j) indi-
cates the weight of the link between the node i and j (wij), the range of
all the weights is divided into L levels. In this step, L percolation levels are
identified. Ideally, a dense range of levels should be considered to take into
account all possible percolation scenarios;

2. the matrix W is incrementally thresholded by removing all the links of the
network whose weight is below the threshold at each of the L levels;

3. a multilayer matrix T is defined where the entry (i, j, l) represents the weight
of the link between the nodes i and j at the lth level of percolation;

4. the connectivity pattern of the node i for the lth level of percolation is
defined as:

Pi,l = Ti,j,l j = 1, . . . , N. (7)

5. the similarity between connectivity patterns of each couple of nodes at each
level of percolation is expressed as their cosine similarity:

Dij,l =
Pi,l · Pj,l

‖Pi,l‖2‖Pj,l‖2 . (8)

6. Dij,l �= 0 for a certain degree of similarity between the connectivity patterns
of the nodes i and j and it is set Dij,l = 0 if the node i or the node j becomes
disconnected. Similarly, Dii,l = 1 if the node i is connected at least with
another node of the network and Dii,l = 0 if it becomes completely isolated
from the rest of the network.
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Fig. 2. Steps required to assess the resilience index. The weighted adjacency matrix
is percolated into L levels and a tensor T is composed of the matrices resulting from
each percolation level. The cosine distance between couple of connectivity patterns of
the nodes is computed to assess a percolation curve. Finally the resilience index is
expressed as the area under the curve.

The resilience index of the link (RIlink) between the nodes i and j is defined
as the area under the curve Dij = Dij,l, l = 1, . . . , L:

RIij =
L∑

l=0

Dij,l (9)

Likewise, the resilience index of the node (RInode) i is expressed as:

RIi =
L∑

l=0

Dii,l (10)

2.4 Correlation Analysis

In this work, both a simple example involving the two networks shown in Fig. 1
and a simulation study are presented to investigate the importance of nodes and
links of the networks.

For each of the two networks were computed:

– the following node centrality metrics: degree (K); strength (S); betweenness
(BC); closeness (CC); eigenvector centrality (EIG);

– the edge betweenness (EB) as link metric.
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Then, a correlation analysis was carried out to:

– investigate the presence of possible correlations between the proposed index
and the all the other centrality metrics;

– examine the ranking mechanism of each nodal centrality metric with respect
to the two weight distributions. To this end, Pearson’s correlation coefficient
was computed for the two weight distributions for each nodal metric. The
correlation coefficient has a range −1 ≤ r ≤ 1, where the coefficient has value
1 for perfect ranking, value −1 for anti-correlation (i.e., one ranking is the
reverse of the other) and value 0 for two uncorrelated rankings.

Numerical simulations of 100 scale-free networks with the same parameters,
were conducted to generalize the results. In particular, for each of the 100 simu-
lated network, the weights of the starting power-law distribution were progres-
sively randomized until a completely random final configuration. The correlation
analysis between the proposed index and each of the known metrics was carried
out for each randomization interval of the weights, while the comparison of the
node rankings was only performed between the initial and the final configuration
for each nodal metric.

3 Results

The centrality metrics evaluated for each node of the two networks are shown
in Fig. 3. Obviously, the degree function is the same for both networks because
they have the same structural topology. Strength and eigenvector values are
emphasized for both hub nodes of the network (nodes 1 and 4 as it can be noted in
Fig. 1) and for few other nodes with degree greater than that of the “leaf” nodes,
i.e., those nodes with just one link. The values of betweenness are slight different
only for the two hubs, so this metric seems to not take almost into account the
distribution of the weights. On the other hand, some nodes with few connections
exhibit high values of the resilience index for the random weight distribution,
while its trend is closely correlated with that of the eigenvector centrality for
the weight power law. The behavior of closeness centrality is clearly different in
the two networks, and it is considerably lower for all nodes of the network with
random weight distribution. However, there is no apparent relationship between
the centrality values and the role of nodes (hubs vs. leaf nodes).

The results of the correlation analysis between the proposed metric and
the other centrality measures are listed in Table 1. High correlation values are
observed for all centrality metrics except for the closeness centrality in the
network with scale-free weight distribution; whereas there are low correlations
(<0.4) between the resilience index and degree, betweenness and eigenvector
centrality respectively in the random weight distribution network. Strength and
the proposed index seem to exhibit the highest value of correlation in the latter
network, while closeness is negatively correlated, even if with low correlation
index. Moreover, there is no correlation between the resilience index defined for
the links and the edge betweenness for both weight distributions.



264 A. Lombardi et al.

Fig. 3. Values of the centrality metrics (degree, strength, betweenness, closeness, eigen-
vector and resilience index) for each of the 100 nodes for the network with the power
law weight distribution (blue) and that with the random uniform weight distribution
(red) reported in Fig. 1. (Color figure online)

Table 1. Correlation between the resilience index and the other centrality metrics
(p < 0.0001).

Network K S BC CC EIG EB

Power law 0.88 0.93 0.85 0.23 0.98 −0.0069

Uniform 0.32 0.50 0.29 −0.19 0.38 −0.0171

The rank correlation for each centrality metric is shown in Table 2. Strength,
betweenness (both nodal and edge) and eigenvector centralities display signi
ficant high correlation values between the ranking of the nodes (and the links
for EB) in the two weight distributions, whilst closeness and resilience index
are significantly dissimilar in ranking nodes. Although with a higher correlation
value, the RIlink metric confirms the same behavior of the RInode.

Figure 4 shows the evolution of the correlation between the RInode and the
other nodal metrics and between RIlink and edge betweenness as a function of
the percentage of randomization of the weights for the 100 simulated networks
starting from a configuration with scale-free weight distribution. All nodal met-
rics except CC, are highly correlated with the resilience index RInode for low
randomized of the weights and then correlation values decrease until they con-
verge around the median value rm = 0.3 for K,BC and EIG and rm = 0.5
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Table 2. Correlation coefficient (r) with p-value (p) resulting from correlation between
the rankings of the two weight distributions for each centrality metric.

S BC CC EIG EB RInode RIlink

r 0.87 0.99 0.18 0.98 0.98 0.28 0.45

p <0.0001 <0.0001 0.007 0.38 <0.0001 0.003 <0.0001

Fig. 4. Boxplots of correlation between the proposed index and each of the nodal
centrality metrics for progressive randomization of the weights for the 100 simulated
scale-free networks.

for S. The closeness centrality exhibits a median correlation value rm = 0.24 at
the scale-free weight distribution, decreasing to negative correlation values with
median rm = −0.3. RIlink and EB are almost uncorrelated for all percentages
of randomization.

The rank correlation analysis on simulated networks highlights that both
resilience metrics score the nodes and links of the two extreme network con-
figurations with different importance scales. Indeed, as shown in Fig. 5, they
have the lowest correlation values; in contrast, both the betweenness metrics are
insensitive to the distribution of weights, showing very high correlation between
the ranking mechanisms in the two cases. S and EIG also have significantly
higher correlation values (respectively median rm = 0.9 and rm = 0.8), while
CC exhibits lower values (median rm = 0.48), confirming a different ranking of
the nodes belonging to the two weight distributions.
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Fig. 5. Boxplots of correlation between node rankings (for the metrics: RInode,
S,BC,EIG and CC) and link rankings (for the metrics: EB and RIlink) of the initial
configuration (i.e., with power-law weight distribution)and the final configuration (i.e.,
random uniform weight distribution) for the 100 simulated scale-free networks.

The results of the correlation analysis between the proposed metric and the
other centrality measures are listed in Table 1.

4 Discussion

The statistical analysis carried out highlights an interesting phenomenon: when
the topology and the weight distribution are correlated, the proposed metric
is not different from the others and resilient nodes are also central (and vice
versa). However, when this correlation is removed, the proposed index is able
to provide more information about the position of a node in relation to the
network. The resilience index considers complete connectivity patterns of each
node with the rest of the network at varying degrees of percolation. For this
reason, even leaf nodes strongly connected to a particularly resilient node can
also be resilient nodes. This aspect is clearly visible in the scale free networks
with random weight distribution where weights are not assigned according to the
underlying topological structure and even a peripheral node may have a strong
connection with a hub node.

Real scale free networks with variable weight distributions have been identi-
fied and examined [3,12,13,18]. In particular, criteria for both model and classify
networks in which the connectivity of the node does not affect the weights of the
links and networks in which the connectivity strongly influence them, have been
reported [19]. Several measures to characterize weighted networks have been pro-
posed, but they have not been tested in this context so far. It is certainly true
that identifying important nodes is not trivial. First of all, because there is no a
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universal method for quantifying the importance of a node. The definition of cen-
trality varies according to the context in which a specific metric is applied. In [20]
some factors to evaluate each centrality metric are suggested: radial (e.g., degree,
closeness, and eigenvector centrality) and medial measures (e.g.,betweenness cen-
trality) are defined according to the information flow through the network and
number of walks. A centrality metric should identify the role of the node in rela-
tion to the global characteristics of the network and not simply on the basis of
the topology. The results of the rank correlation analysis show that some met-
rics assign very similar scores in the two situations. It is worth nothing the case
of the betweenness centrality according to which the two networks seem to be
completely similar. These findings could be due to the fact that some indices
take into account only local information of a node. The proposed metric differs
from all other centrality definitions since multidimensional patterns of connec-
tivity are considered for its computation. It is also important to note that the
resilience index should not be considered more effective than the other metrics
just because it is able to better discriminate the two types of considered weight
distribution, but that integrating the information provided by the other metrics
with that of the proposed index could lead to new centrality metrics and reach
a higher accuracy.

5 Conclusion

In this work, a novel metric is proposed to evaluate the importance of nodes and
links in weighted networks in relation to their resilience. The proposed metric is
applied to weighted scale-free complex networks with different weight-topology
correlations. Other centrality metrics that assess statistical properties of weighted
networks combining both topology and weight distributions have been used and
compared to the proposed resilience index. Although these measures allow to
quantify the centrality, cohesiveness and influence of a node in a complete and
heterogeneous way, they do not consider the dynamic evolution of the network.
The proposed index takes into account the complete connectivity patterns of each
node with all the other nodes in the network and the correlation analysis shows
that it is not related with other centrality metrics when the correlation between
the topology and the weight distribution of the scale-free networks is removed. In
future work, an accurate analysis of the influence of the choice of different perco-
lation intervals on the final performances will be carried out; additionally, more
effective metrics of centrality could be defined by integrating such new index with
the known centrality measures on real instances of networks.
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Abstract. Motivated from the previously proposed algebraic frame-
work for combinatorial optimization, here we introduce a novel for-
mal languages-based perspective on discrete search spaces that allows
to automatically derive algebraic evolutionary algorithms. The practical
effect of the proposed approach is that the algorithm designer does not
need to choose a solutions encoding and implement algorithmic proce-
dures. Indeed, he/she only has to provide the group presentation of the
discrete solutions of the problem at hand. Then, the proposed mecha-
nism allows to automatically derive concrete implementations of a chosen
evolutionary algorithms. Theoretical guarantees about the feasibility of
the proposed approach are provided.
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1 Introduction

In a previous series of articles [1,3,11,13], we have introduced an abstract alge-
braic framework for combinatorial optimization problems. The framework allows
to encode in algebraic terms the geometry of the search moves performed by a large
class of evolutionary algorithms on the search space of combinatorial problems.

Concrete implementations of the framework have been proposed for discrete
spaces such as the permutations and bit-string spaces. Hence, algebraic evolu-
tionary algorithms, such as algebraic differential evolution and particle swarm
optimization, have been proposed [1,11]. Interestingly, state-of-the-art and very
competitive results have been obtained for permutation flowshop scheduling
problems [11,12] and linear ordering problems [2,3].

The main achievement of the algebraic framework is the proposal of abstract
definitions for operators that allow to combine and operate on the discrete
solutions of the problem at hand. In particular, the proposed operations are
addition, subtraction and scalar multiplication. Some abstract algebraic and
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geometric properties, derived from group theory, guarantee that their effects on
the involved discrete solutions are geometrically similar to what happen in the
classical Euclidean space.

However, the definitions are merely abstract and the algorithm designer needs
to instantiate them for any finitely generated group at hand. For instance, ran-
domized decomposer have to be (and have been) provided for the groups of
permutations and bit-strings. As an additional, though secondary, result, here
we also show how the search space of integer vectors can be represented in the
framework.

In this paper we further evolve the framework by proposing general imple-
mentations of the abstract operators that are no more abstract but directly oper-
ative on any search space that respect some conditions, i.e., to be representable
by a finitely presented group. To achieve this aim, we consider a formal language-
perspective directly derived from advanced group theory concepts. Therefore, we
provide a mechanism to automatically derive operative and universal implemen-
tations of the previously proposed algebraic operators by exploiting the concept
of group presentation. Discrete solutions are represented as strings of an alpha-
bet (of generators). By changing the alphabet and the equivalence relations on
the strings, it is possible to use the Knuth-Bendix completion algorithm [9] to
automatically derive concrete operators on different types of solutions (permu-
tations, bit-strings, etc.).

Practically, we make easy the work of the algorithm designer that can now
avoid to choose a solutions encoding and implement the abstract procedures of
the framework for this encoding. Note anyway, that this proposal is a sort of
“proof of concept”. Indeed, we do not provide any experimental result, but only
theoretical guarantees about the feasibility of the proposed implementations.

The rest of the paper is organized as follows. Section 2 describes the pre-
viously proposed abstract algebraic framework together with some of its con-
crete implementations. The algebraic evolutionary operators are then derived in
Sect. 3. The core of the paper is represented by Sects. 4 and 5 where we provide,
respectively, theoretical foundations of the language-based perspective, and the
concrete and general algorithmic implementations. Finally, Sect. 6 concludes the
paper by also providing some future lines of research.

2 Abstract Algebraic Framework

In this section we provide a concise description of the algebraic framework for
evolutionary computation previously proposed in [11], together with its extension
introduced in [3]. The framework is based on the notion of finitely generated
group and the related algebraic and geometric concepts. Its aim is to introduce
the operations ⊕, �, � on the set of discrete solutions in such a way that they
simulate, as much as possible, the analogous vector operations of the Euclidean
space.
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2.1 Search Spaces and Finitely Generated Groups

The triplet G = (X, �,H) is a finitely generated group representing a combina-
torial search space if and only if:

– X is the discrete set of solutions in the search space;
– � : X × X → X is a binary operation on X which satisfies the group proper-

ties: associativity, existence of the identity e ∈ X, and existence of the inverse
x−1 ∈ X for any x ∈ X; if � is also commutative, the group is Abelian, but
it is not required;

– H ⊆ X is a finite generating set of the group, i.e., any x ∈ X can be decom-
posed as x = h1 � · · · � hl for some h1, . . . , hl ∈ H.

A decomposition x = h1 � · · · � hl of x ∈ X is minimal if there exists no
other decomposition x = h′

1 � · · · � h′
m with m < l. The length l of a minimal

decomposition of x is the weight of x and it is denoted by |x|.
Given a finitely generated group G = (X, �,H), its Cayley graph C(G) is the

labelled digraph whose vertexes are the solutions in X and there exists an arc
from x to y labelled by h ∈ H if and only if y = x � h.

In the Cayley graph, for all x ∈ X, every directed path from e to x cor-
responds to a decomposition of x: if the arcs labels occurring in the path are
〈h1, h2, . . . , hl〉, then x = h1�h2�· · ·�hl. As a consequence, shortest paths from e
to x correspond to minimal decompositions of x. More generally, a shortest path
from x to y, where x, y ∈ X, corresponds to a minimal sequence of generators
〈h1, h2, . . . , hl〉 such that x � (h1 � h2 � · · · � hl) = y. Hence, 〈h1, h2, . . . , hl〉 is a
minimal decomposition of x−1 � y.

The diameter D of C(G) is defined as the maximal weight of the elements
in X. Moreover, an interesting partial order relation, which will be useful later,
is defined as follows. For x, y ∈ X, x 
 y if and only if there exists (at least)
a shortest path from e to y passing by x. For the sake of presentation, here we
focus on groups with a unique maximal weight element ω such that x 
 ω for
all x ∈ X. The concrete group considered later belongs to such a class.

The Cayley graph has an important geometric interpretation. Indeed, a
sequence of generators 〈h1, h2, . . . , hl〉 can be seen as a vector which connects
a starting point x ∈ X to the end point y = x � (h1 � h2 � · · · � hl). On the
other hand, any element x ∈ X can be decomposed as a sequence of genera-
tors 〈h1, h2, . . . , hl〉 and therefore it can be considered also as a free vector. The
dichotomous interpretation of the elements of X, as points and as vectors, allows
to define the operations ⊕,�,� on X which simulate the analogous operations
of the Euclidean space.

2.2 Addition and Subtraction

The addition z = x ⊕ y is defined as the application of the vector y ∈ X
to the point x ∈ X. The result z is computed by choosing a decomposition
〈h1, h2, . . . , hl〉 of y and by finding the end point of the path which starts from x
and whose arcs labels are 〈h1, h2, . . . , hl〉, i.e., z = x�(h1�h2� · · ·�hl). By noting
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that h1 � h2 � · · · � hl = y, the addition ⊕ is independent from the generating set
and is uniquely defined as

x ⊕ y := x � y. (1)

Continuing the analogy with the Euclidean space, the difference between two
points is a vector. Given x, y ∈ X, the difference y � x produces the sequence of
labels 〈h1, h2, . . . , hl〉 in a path from x to y. Since h1 � h2 � · · · � hl = x−1 � y, we
can replace the sequence of labels with its product, thus making the difference
independent from the generating set. Therefore, � is uniquely defined as

y � x := x−1 � y. (2)

Both ⊕ and �, like their numerical counterparts, are consistent to each other.
Indeed, x ⊕ (y � x) = y for all x, y ∈ X. Moreover, both operations are not
commutative (unless the group is Abelian), ⊕ is associative, and e is its neutral
element.

2.3 Scalar Multiplication

Again, as in the Euclidean space, it is possible to multiply a vector by a non-
negative scalar. Given a ≥ 0 and x ∈ X, we denote their multiplication with
a � x.

We first provide the conditions that a � x has to verify in order to simulate,
as much as possible, the scalar multiplication of vector spaces:

(C1) |a � x| = �a · |x|;
(C2) if a ∈ [0, 1], a � x 
 x;
(C3) if a ≥ 1, x 
 a � x.

Clearly, the scalar multiplication of Rn satisfies the slight variant of (C1) where
the Euclidean norm replaces the group weight and the ceiling is omitted. Besides,
similarly to scaled vectors in R

n, (C2) and (C3) intuitively encode the idea that
a � x is the element x scaled down or up, respectively.

It is important to note that, fixed a and x, there may be more than one
element of X satisfying (C1–C3). This is a clear consequence of the non unique-
ness of the minimal decomposition of x. Therefore, different strategies can be
devised to compute a � x. Nevertheless, our aim is to apply the operation in
evolutionary algorithms, therefore we denote with a � x a randomly selected
element satisfying (C1–C3).

Note also that the diameter D induces an upper bound on the possible values
for the scalar a. Indeed, for any x ∈ X, let ax = D

|x| , if a > ax, (C1) would imply
|a�x| > D, but this is impossible. Therefore, similarly to out-of-bounds handling
techniques of continuous evolutionary algorithms, we define

a � x := ax � x, when a > ax. (3)

The multiplication a�x can be computed by: (i) randomly selecting a shortest
path from e to ω passing by x, and (ii) composing the first �a · |x| generators
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on its arcs. Since any sub-path of a shortest path is itself a shortest path, and
by also considering that shortest paths correspond to minimal decompositions,
it is easy to see that the conditions (C1–C3) are satisfied.

Let l = |x|, we can observe that the sequence of generators 〈h1, . . . ,
hl, . . . , hD〉 on the chosen shortest path can be divided in two parts: 〈h1, . . . , hl〉
and 〈hl+1, . . . , hD〉. The former is a minimal decomposition of x, while the latter
minimally decomposes x−1 � ω. Operatively, only one of the sub-paths is used to
compute a�x. When a ≤ 1, the generators to compose are all in the first sub-path
〈h1, . . . , hl〉. Conversely, for a > 1, it is sufficient to take the first �a·l−l generators
in the second sub-path 〈hl+1, . . . , hD〉 and compose them to the right of x.

The pseudo-codes of the two procedures for a ∈ [0, 1] and a > 1 are reported,
respectively, in Figs. 1 and 2. Both rely on the abstract procedure RandDec
which is assumed to return a random minimal decomposition of the element in
input. An implementation of RandDec has to consider the particularities of the
concrete finitely generated group at hand. Note also that Extend implements
Eq. (3).

Fig. 1. Truncation algorithm for computing a � x when a ∈ [0, 1]

Fig. 2. Extension algorithm for computing a � π when a > 1
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2.4 Concrete Implementations

Given a concrete finitely generated group (FGG) modeling the search space at
hand, in order to implement the abstract vector operations described in Sects. 2.2
and 2.3, it is sufficient to provide procedures to: (i) invert an element (x−1), (ii)
compose two elements (x � y), (iii) randomly decompose an element in terms of
the generators (RandDec). Moreover, note that the procedures for (i) and (ii)
are usually straightforward.

Three concrete FGGs that allow to cover the vast majority of the combina-
torial optimization problems are: the group of the n-length bit-strings B

n, the
group of the n-length permutations Sn, and the group of the n-length integer
vectors Z

n.
The bit-strings in B

n form a group by considering the classical bitwise XOR
operator �. The generators are the strings with one 1-bit and n−1 0-bits. There-
fore, computing a random decomposition of a given bit-string simply reduces to
choosing an ordering (i.e., a permutation) of its 1-bits. Note also that, given a
generic x ∈ B

n and the generator ui (i.e., the bit-string with only one 1-bit at
position i), the composition x � ui practically corresponds to flip the i-bit of x.
Hence, the induced Cayley graph and distance correspond to classical concepts
such as, respectively, the binary hypercube and the Hamming distance.

All the permutations of the set [n] = {1, . . . , n} form the “symmetric group”
Sn by considering the classical permutation composition operator ◦ defined as
(π ◦ ρ)(i) = π(ρ(i)) for all items i ∈ [n] and π, ρ ∈ Sn. Different generating sets
are possible in Sn (see [3,14]). The simplest is the subset of the n − 1 simple
transpositions, i.e., the set ST = {σi ∈ Sn : 1 ≤ i < n} where σi is defined
as: σi(i) = i + 1, σi(i + 1) = i, and σi(j) = j for j ∈ [n] \ {i, i + 1}. Given a
generic π ∈ Sn, the composition π ◦ σi corresponds to swap the adjacent items i
and i + 1 in π. Hence, by modifying the classical bubble sort algorithm, in [11]
we have provided a randomized decomposer for Sn. Moreover, other interesting
generators are those which encode exchange and insertion moves of generic items
in the permutation. Implementations of these generating sets have been discussed
and provided in [3].

Finally, the integer vectors in Z
n form a group by considering the classi-

cal arithmetic addition +. In this case, the generators are the n-length vectors
formed by n − 1 zeros and one component equal to ±1. A randomized decom-
poser for Z

n is straightforward to derive. Note also that this group, differently
from the other ones, is infinite and it does not have a maximum weight element.
Apparently, this does not allow to implement the algorithm Extend of Fig. 2.
Anyway, a simple generalization of Extend fixes the problem. The idea is to iter-
atively choose a random generators among all the generators that increase the
group weight of the current element. In Z

n, the group weight is the arithmetic
sum of the vector components.
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3 Algebraic Evolutionary Operators

It is possible to straightforwardly derive algebraic evolutionary operators by
using the operations introduced in Sect. 2 in order to redefine the move equa-
tions of the most popular evolutionary and swarm intelligence algorithms for
continuous optimization.

Here we provide the formal redefinitions for: the mutation operator of Differ-
ential Evolution (DE) [15], the velocity and position update equations of Particle
Swarm Optimization (PSO) [8], and the update equation of the Firefly Algo-
rithm (FA) [18]. The first two have been proposed in, respectively, [1,11], while
the third is a novelty of this work. The following definitions subsume that a
finitely generated group X is given.

The differential mutation of DE, given three distinct population individuals
x0, x1, x2 ∈ X and a scalar F ∈ [0, 1], generates a mutant u ∈ X according to

u ← x0 ⊕ F � (x1 � x2). (4)

A PSO particle is formed by its current position x, velocity v, personal and
social best positions p and g. All these particle’s properties can be encoded
by using group elements, i.e., x, v, p, g ∈ X. Hence, given also the three scalar
parameters w, c1, c2 ≥ 0, the particle’s new velocity v′ ∈ X and position x′ ∈ X
are computed according to

v′ ← [w � v] ⊕ [(r1c1) � (p � x)] ⊕ [(r2c2) � (g � x)], (5)

x′ ← x ⊕ v′, (6)

where r1, r2 are two randomly generated numbers in [0, 1].
In FA, the i-th computational firefly updates its position xi ∈ X by moving

towards the positions of the brighter fireflies j1, . . . , jk, and by considering fitness
as brightness. Formally, the new position x′

i is computed according to

x′
i ← xi ⊕

k⊕

h=1

[
β0 exp

(−γd(xi, xjh)2
) � (xjh � xi) ⊕ (α � ε)

]
, (7)

where α, β0, γ ≥ 0 are the FA scalar parameters, d is the distance induced by
the finitely generated group at hand, and ε is a randomly generated discrete
solution. Note how, with respect to the previous case, the FA update rule makes
an explicit use of the discrete distance function induced by the finitely generated
group at hand.

Generally, when the group in not Abelian, the composition is not indepen-
dent of the terms ordering. This issue has been addressed in [3]. Finally note that
many other evolutionary algorithms for numerical optimization can be adapted
for combinatorial search spaces using our framework. Some examples are: arti-
ficial bee colony [7], bacterial foraging optimization [5], cuckoo search [17], and
the fireworks algorithm [16].
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4 A Formal Language Perspective

A formal language perspective on the algebraic framework described in Sect. 2
can be introduced by restricting our focus to a sub-class of finitely generated
groups, namely, the finitely presented groups. All the concrete groups discussed
in Sect. 2.4 are finitely presented. Moreover, other popular groups, like for exam-
ple the braid group [6], are usually directly threated by means of their presen-
tation. Hence, restricting to finitely presented groups does not result in any
practical issue for our purposes.

Formally, the group (X, �) is finitely presented if there exists a presentation
(H,R) such that: (i) H ⊆ X generates X, i.e., (X, �) is finitely generated by the
generating set H; (ii) R is a finite set of equivalence relations (made using the
group operation �) among the generators in H.

Interestingly, the presentation (H,R) of the group (X, �) allows to interpret:

1. the generators in H as a set of symbols, i.e., an alphabet,
2. the elements in X as strings over the alphabet H, i.e., x ∈ X if and only if

x ∈ H∗,
3. the group operation � as a concatenation of strings, i.e., given x, y ∈ H∗ then

x � y = xy, where xy denotes the concatenation of x and y; and
4. the equivalence relations in R as rewriting rules for equivalent strings, i.e., if

(v, w) ∈ R then vxw = vxv = wxv = wxw ∈ H∗.

This formal language perspective allows to introduce a further level of gen-
eralization in our framework. Practically, we can facilitate the work of the algo-
rithm designer by avoiding him/her to peak up a solutions’ representation for
the problem at hand. Indeed, the goal of this section is to show how a generic
group presentation can be used to automatically derive generic implementations
of three operators ⊕,�,�.

The main idea is to encode the group elements (i.e., the solutions of the
problem at hand) by means of their representation as strings of generators.
Then, ⊕,�,� can be automatically derived by simply introducing general pro-
cedures for element’s inversion, composition and random decomposition that
work directly on the string representation of the element.

By considering a generating set closed for inversions, i.e., h ∈ H if and only if
h−1 ∈ H, the inversion can be straightforwardly derived by exploiting the basic
group properties. Formally, given a generic string hi1hi2 . . . hil ∈ H∗, its inverse
is defined as

INV (hi1hi2 . . . hil) := h−1
il

. . . h−1
i2

h−1
il

. (8)

Composition, as already explained in the point 3 above, becomes a simple
concatenation of strings. Formally, given x, y ∈ H∗:

CONCAT (x, y) := xy. (9)

More interesting is the operation of random minimal decomposition
RandDec. First note that a string representation of a group element is already
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a decomposition in terms of generators, thus the problem becomes to find a pro-
cedure to simplify the string as much as possible. Intuitively, we can iteratively
apply the equivalences in R in order to rewrite a string until it becomes of mini-
mal length. The problem with this approach is that it is not easy to know when
to stop. Luckily, the Knuth-Bendix (KB) completion algorithm [9] is a popular
tool in computational algebra that allows to solve this issue.

KB takes in input the group presentation (H,R) and produces a terminating
and confluent rewriting system RWS for the strings in H∗. RWS is nothing
else than a set of rewriting rules such as v → w that can be iteratively applied
to a string s until it does not match any rule in RWS, i.e., s has been reduced
to its minimal length. Formally, we denote with RWS(s) the minimal length
string obtained by simplifying s with the rules in RWS. KB guarantees that the
application of RWS terminates (i.e., it is a terminating system) and that the
minimal form obtained for any given input string does not depend on the ordering
by which the matching rules have been applied at every rewriting iteration (i.e.,
RWS is a confluent system). Therefore, KB can be run offline only once, because
of that we can store the produced rewriting system RWS (it can be actually
provided in different ways, one of them is as a finite state automaton) and execute
it every time we need a minimal decomposition.

There is only one last issue. We need a randomized minimal decomposer, but
the rewriting system produced by KB is confluent, i.e., deterministic. In order
to introduce randomization, let consider that KB needs, as additional input, an
arbitrary ordering (i.e., a permutation) of the generators in H. Hence, feeding
KB with two different orderings on H produces two distinct rewriting systems
RWS1 and RWS2 that both are terminating and confluent, but such that, in
general, RWS1(s) �= RWS2(s). Therefore, in the offline computation stage, we
can peak up k different permutations of H and run KB for k times in order to
obtain k different rewriting system RWS1, . . . , RWSk. Then, a random minimal
decomposition of a string x ∈ H∗ can be computed as

RandDec(x) := RWSr(x), (10)

where r is a random integer in [1, k].
Summarizing, the (finite) presentation of a group allows to: (i) represent the

group elements as string of generators, thus that no group (or problem) depen-
dent encoding has to be considered, and (ii) provide general concrete implemen-
tations (i.e., working on any possible finitely presented group) of the element’s
inversion, composition and random minimal decomposition.

5 Automatic Algebraic Evolutionary Algorithms

Here we show how it is possible to automatically generate the implementation of
an algebraic evolutionary algorithms by starting from a given group presentation.

By using the language-based tools provided in Sect. 4 we provide generic,
but operative, implementations of the operators ⊕,�,� for any possible group
presentation.
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Let x, y ∈ H∗ be two group elements represented as strings of generators.
Then, addition and subtraction are defined according to, respectively,

x ⊕ y := CONCAT (x, y), (11)

and
x � y := CONCAT (INV (y), x). (12)

For the scalar multiplication � we provide language-based implementations
of Truncate and Extend in, respectively, Figs. 3 and 4.

1: function Truncate(a ∈ [0, 1], x ∈ H∗)
2: x′ ← RandDec(x) � RandDec is defined in equation (10)
3: l ← Length(x′)
4: k ← �a · l�
5: z ← ε � ε ∈ H∗ is the empty string
6: for i ← 1 to k do
7: z ← CONCAT (z, x′

i) � x′
i is the i-th generators of x′

8: end for
9: return z
10: end function

Fig. 3. Generic implementation of the truncation algorithm

1: function Extend(a > 1, x ∈ H∗)
2: RWS ← a randomly choosen rewriting system from {RWS1, . . . , RWSk}
3: x′ ← RWS(x)
4: l ← Length(x′)
5: k ← �a · l�
6: z ← x′

7: for i ← 1 to k − l do
8: h ← a randomly generator such that len(RWS(zh)) = len(RWS(z)) + 1
9: z ← CONCAT (z, h)
10: end for
11: return z
12: end function

Fig. 4. Generic implementation of the extension algorithm

Moreover, note that some algebraic evolutionary operators also needs the
computation of the group distance d(x, y) (see for example Eq. (7)). However, it
is easy to show that d(x, y) = Length(RandDec(x � y)).

Therefore, it is now straightforward to show how, using the language-based
implementations of ⊕,�,�, we can automatically derive an algorithm imple-
mentation by simply providing a group presentation and choosing the preferred
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algebraic algorithmic schemes (e.g., the algebraic PSO described by Eqs. (5) and
(6)). Figure 5 depicts and summarizes the main idea of this approach. Given
a combinatorial problem to solve, the algorithm designer does not need to
choose a solutions encoding. Indeed, he/she only needs to: provide a fitness
function, choose its preferred algorithmic schemes (that uses algebraic opera-
tors), and provide a group presentation for the problem at hand. Note that the
last step is usually straightforward, since group presentations for the set of prob-
lem solution is often directly available. The group presentation is then used in
an offline computational stage where KB algorithm generates the rewriting sys-
tems RWS1, . . . , RWSk. Then, both the group presentation and the generated
rewriting systems are used by the general implementations of ⊕,�,� that, in
turn, allow to obtain the desired evolutionary behavior. In conclusion, the pro-
posed automatic mechanism substantially reduces the work of the algorithm’s
designer.

Fig. 5. Automatic generation of an algebraic evolutionary algorithm

6 Conclusion and Future Work

Starting from the algebraic framework for combinatorial optimization previously
proposed in [1,4,11,12], in this paper we have provided a mechanism to auto-
matically derive concrete implementations of the framework for any search space
representable by a finitely presented group.
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To achieve this goal, a formal language perspective on the search space has
been introduced. The main algebraic tool employed is the well known Knuth-
Bendix completion algorithm.

As a future line of research we will consider the implementation of our pro-
posal to derive algebraic evolutionary algorithms in order to address braid opti-
mization problems [6] that have applications in the field of quantum computing,
see for example [10].
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Abstract. The paper proposes a methodological approach to design
complex experiments for multi-objective optimization. The strategy is
based on evolutionary statistical inference to search for the optimal val-
ues in high-dimensional experimental spaces. We developed this approach
to study a particular molecular system and discover the best molecules
to be proposed as candidate drugs.
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1 Introduction

In the complex process of developing a new drug a major challenge concerns the
construction of small molecules that interacting with a pharmacological target of
interest can have a therapeutic effect on a particular disease. Current drug design
practices involve the screening of large chemical libraries, composed of thousands
or millions of compounds, with the aim of identifying a candidate molecule with
suitable characteristics, known as a lead molecule. This lead molecule may not
fulfil the properties needed to become a drug, such as Absorption, Distribu-
tion, Metabolism and Excretion (ADME) [1]. To achieve these properties, while
retaining the interaction capacity with the target protein, the molecule must be
modified for optimizing a set of variables. A simultaneous optimization is then
required and the problem is framed as a multi-objective optimization problem
with several conflicting objectives; see for example [2,3]. This field of research in
drug discovery has been developed using different approaches, mainly based on
the evolutionary principle. Among the most relevant contributions we mention
the studies in De novo Designs [4], in Molecular docking [5] and in Quantita-
tive structure-activity relationships [6]. These approaches have been successful
in detecting the relevant information for discovering the molecule optimal values
using computer based algorithms.

c© Springer International Publishing AG, part of Springer Nature 2018
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The optimization problem that we address in this study is concerned with a
molecular system where each molecule is described by a very large number of fea-
tures determining the high-dimensionality of the system. In order to discover the
optimal molecular structure we intend to develop an evolutionary approach based
on statistical models constructed to extract information in high-dimensional sys-
tems. In particular, we consider the Lasso model [7], Neural Networks [8], Stepwise
Regression and Boosting models [9]. The main purpose of this paper is to develop
an efficient approach that is able to find the best candidate molecules, testing
a very small number of experimental compositions. This approach is then built
on both the evolutionary paradigm and statistical models for high-dimensional
experimental spaces. The paper extends the Evolutionary data Design for Opti-
mization (EDO) proposed in [10,11] allowing several objective functions to be
optimized simultaneously. The approach, called m-EDO (multi-objective Evolu-
tionary data Design for Optimization), drives the evolution towards the target by
estimating and combining predictions from different models and different objec-
tive functions. We evaluate the method on the molecular library provided by [12]
as a test set, investigated by [11,13] and more recently by [14,15].

The structure of the paper is as follows. In Sect. 2, we describe the main
aspects of a multi-objective optimization problem. In Sect. 3, we briefly intro-
duce the Model-Based Evolutionary Design for Optimization and the statistical
models proposed for high-dimensional experimental spaces. In Sect. 4, we present
the results achieved with the procedure for the data set provided by [12] and in
Sect. 5, we present some concluding remarks.

2 The Multi-objective Optimization Problem

Discovering optimal values in high-dimensional systems can be a very difficult
problem, in particular when the number of experimental tests (or observations) is
small. Moreover, the optimal values can involve different properties of the system
elements, introducing multiple (and possible conflicting) objective functions to
be optimized simultaneously. This framing of the problem can make the search
of the optimal values pretty hard.

In general, a multi-objective optimization problem can be described in the
following way:

Consider a vector valued objective function f : C → R
k with C ⊆ R

d, where
d is the dimension of each element of C and f(c) = (f1(c), . . . , fk(c)); search the
element c0 ∈ C such that f(c0) ≤ f(c) for all c ∈ C (minimization) or such that
f(c0) ≥ f(c) for all c ∈ C (maximization).

Frequently, in multi-objective optimization problems, there does not exist a
solution, c0, which minimizes (or maximizes) all objective functions simultane-
ously. Therefore, the goal is to identify the Pareto optimal solutions which are
the solutions that cannot be improved in any of the objectives without degrading
at least one of the other objectives [2,3].
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Formally in a minimization problem, a point c∗ ∈ C is a Pareto optimal
solution if for every c ∈ C and I = {1, 2, . . . , k} either,

∀i∈I fi(c) = fi(c∗) (2.1)

or, there is at least one i ∈ I such that

fi(c) > fi(c∗). (2.2)

The set of optimal points is called the Pareto optimal set P∗ and the Pareto
front F∗, composed of all the values of the function f at the optimal points, is
defined as:

F∗ := {f(c) = (f1(c), . . . , fk(c))| c ∈ P∗}. (2.3)

In this research we will introduce a methodological approach to address multi-
objective optimization in the context above described and related to a molecular
system of interest for drug discovery. In particular, we propose a strategy which
may aid the process of lead molecule optimisation.

3 Methods

3.1 The Model-Based Evolutionary Design for Optimization

In the drug discovery research field evolutionary algorithms can provide efficient
and effective experimental designs; see for instance [16] and references therein.
These evolutionary procedures, as described in [10,11], enable to explore the
whole experimental space meanwhile exploiting the capacity of statistical mod-
els to uncover relevant information. The evolutionary design for optimization,
namely EDO-design, randomly generates a first initial population of experimen-
tal points. This initial set of experimental points is then tested in laboratory in
order to derive the experimental response values. This data set (test composi-
tion and responses) are then used to build a class of statistical predictive models.
The information gathered from these models is then used to drive the evolution
towards the optimal value. In fact, with this information we can identify the
next generation of experimental points which evolves from one generation to
the next. The process continues until a pre-defined amount of objective-function
evaluations is conducted. The EDO enables to capture the characteristics of the
data and discover the optimum value by testing a very small set of points. This
method has been developed for both single and multi-objective optimization.

Multi-objective optimization is based on the idea of guiding the evolution
towards the target of the experimentation by building predictive statistical mod-
els for the different objective functions and using a linear combination of the best
predicted values. The weights in the linear combination can be decided a priori
with respect to the relevance of the objective functions. In order to distinguish
between the single and multi-objective optimization, we indicate just by EDO
the Evolutionary data Design for single Optimization and by m-EDO the Evo-
lutionary data Design for multi-objective Optimization.
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3.2 Models for Prediction

The Evolutionary data Design for Optimization, drives the evolution towards the
target by estimating and combining predictions with different stochastic models
for high dimensional settings, namely Lasso Regression, Stepwise Regression,
Boosting, Neural Networks; see [15] and references therein. Herein, we briefly
survey some features of these statistical tools.

Modelling data with a multiple linear regression we can write

yi = Xiβ + εi, i = 1, . . . , n (3.1)

where yi is the response variable, Xi = (xi1, . . . , xip) is a p-dimensional vector of
predictors (or covariates), β = (β1, . . . , βp)T is the regression vector of p unknown
parameters, εi is the error term, and n is the number of observations. When the
number of predictors is much larger than the number of observations (p � n)
estimating regression models can be a very hard task. Under this setup, penalized
regression procedures offer powerful methods to simultaneously estimate models
and perform variable selection. Among these procedures, the most common is
the least absolute shrinkage selection operator (Lasso); see [7].

According to Lasso model we estimate the parameter vector β by minimizing
the following Lagrangian objective function

Q(β) =
1
2n

n∑

i=1

(yi −
p∑

j=1

βjxij)2 + λ

p∑

j=1

|βj |; (3.2)

where λ is a tuning parameter which should be assessed by cross validation or
information criteria (see [17]). The objective function in Eq. (3.2) is composed
of two terms, the former is the least square loss function, the latter is the Lasso
penalty, which imposes a constraint on the components of the vector β.

A different strategy for selecting the relevant variables in a regression frame-
work are the step-wise selection methods. These are iterative techniques which
allow to identify redundant variables by successively adding or removing vari-
ables on the basis of statistical significance criteria. Alternative to the linear
regressions the Neural Networks (NN) models can be considered for this struc-
ture of data. Neural Networks, in fact, are suitable models for dealing with data
characterized by complex non-linear relationships and have become a popular
tool for many applications in a wide range of fields including drug discovery
research [18]. From a statistical perspective of Neural Network models, we refer
the reader to [8,19]. The topology of a Neural Network can be described as a
collection of nodes, namely neurons, which are arranged into ordered layers. A
Neural Network usually contain input, hidden and output layers. Considering
a Feed Forward NN the input layer communicates information to one or more
hidden layers linked to the output layer of this net. With the single hidden layer,
the dynamics of the information can be summarized by the following expression

y = f(φ(X,w)) (3.3)
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where y is the output neuron which can be univariate or multivariate, X rep-
resents a set of covariates, w are the weight connections among the neurons
directly connected. The function f is called the activation function whose form
depends on the problem under consideration. This function can take different
forms, which include the linear, the sigmoidal, the logistic or the Gaussian forms.
Frequently, the function φ is linear and is called the propagation function, it
represents the relationship among a neuron and their predecessors. There are
several training algorithms for estimating Neural Networks parameters, such as
the classical Back-propagation, the scaled conjugate gradient Back-propagation
and the Bayesian regularization Back-propagation methods; see [20–22]. To anal-
yse complex structure in the data also the family of boosting algorithms can be
considered. Boosting is a class of ensemble techniques that construct multiple
estimates or predictions by using combined and averaged estimates or predictions
[9]. More formally, the aim of boosting algorithms is to construct or estimate
a complex relationship between a set of covariates and a response variable, i.e.
y = f(X). This goal will be achieved by minimizing a loss function which mea-
sures the discrepancy among y and f by estimating M times a particular model
by using weighted fitting and at the end of M iterations we consider a weighted
sum of the estimate founds. The specificity of the algorithms is related to differ-
ent loss functions which depend on the characteristics of the response variable.
In our approach we consider the least square loss function as in Lasso frame-
work for estimating a linear regression model; see [9] for an introduction on the
boosting algorithm from a statistical perspective.

4 Lead Optimization in a Molecular System

4.1 Data Description

In this research we address the lead optimization of MMP-12 Inhibitors, using
the library of molecules made publicly available by [12]. This library consists of
2500 molecules described by the presence of 22272 fragments. In our approach
fragments take the role of predictors and are represented as binary variables indi-
cating the presence or absence of each fragment into the molecule. The analysis
of these data showed the presence of linear dependence among the predictors
(fragments) leading then to a reduction of the total amount of fragments to
4059. Given the high-dimensionality of the system for the very high number
of fragments that characterizes each molecule, we adopted the Formal Concept
Analysis and reduced the number of fragments to 175; see [14]. Each molecule
is then characterized by a set of properties: the pharmacological activity at the
target protein; physicochemical properties, such as the solubility; the toxicity
property; and structural properties, such as the lipophilicity and the molecular
weight. In particular, the pharmacological activity at the target protein, defined
as the capacity to produce physiological or chemical effects by the binding of a
compound to the therapeutic target, will be denoted by Activity. The solubility
of a compound is the capacity to dissolve in a liquid and it will be denoted by
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Solubility. The toxicity refers to the capacity of any chemicals to produce unde-
sirable effects, and it will be called Safety. The lipophilicity is the capacity of the
compound to dissolve into lipid structures, and it will be denoted by cLogP. The
molecular weight relates to the compound size and will be denoted by MW. For
a more detailed explanation of these biological concepts we refer to the book [1],
which describes the influence of each of compound property on ADME and tox-
icity. Therefore, for this system the experimental response variables (molecular
properties) that we considered are: Activity ; Solubility ; Safety ; cLogP and MW.
These response variables represent the target of our optimization study, and
some summary statistics of the molecular library made available are reported in
the following:

– Activity, y1: the maximum value is 8, which corresponds to the optimal value.
The 99-th percentile of the response variable distribution is 7.5. The target
is the maximization of y1.

– Solubility, y2: the maximum value is −1.766, which corresponds to the opti-
mal value. The 99-th percentile of the response variable distribution is
−2.415. The target is the maximization of y2.

– Safety, y3: the maximum value is 3.6262, which corresponds to the optimal
value. The 99-th percentile of the response variable distribution is 3.2309.
The target is the maximization of y3.

– cLogP, y4: the minimum value is −2.505, which corresponds to the optimal
value. The 1-th percentile of the response variable distribution is 0.033.
The target is the minimization of y4.

– MW, y5: the minimum value is 291.3, which corresponds to the optimal
value. The 1-th percentile of the response variable distribution is 339.3.
The target is the minimization of y5.

Figure 1 depicts the box-plot of the distribution of the five properties that
characterize the set of 2500 molecule, and the blue stars represent the optimum
value of each response variable.

The aim of this study is to develop a multi-objective optimization procedure
based on experimental data (no simulation), and involving a very small number
of experimental tests, to avoid unnecessary waste of research resources. Know-
ing the whole experimental space (complete library) allowed us to evaluate the
performance of the approach in searching the best response values repeating the
procedure 1000 times. In order to obtain drug candidates with suitable prop-
erties, some constraints are imposed on the molecular properties. In particular,
we consider molecules with: Activity values y1 > 6, Solubility values y2 > −3,
Safety values y3 > 2.57, cLogP values y4 < 3 and MW values y5 < 450. Then
the goal of the multi-objective optimization is to discover the molecules (three
molecules in the library) that satisfy the constraints of the problem and reach
their best response values. These molecules are described (in red) in Fig. 2, and
represent the molecules belonging to the Pareto Front of Solubility and Safety
with the constraints above described on the other properties. Moreover, the
dashed lines represent the constraints values on Solubility and Safety, respec-
tively. The response values of the three best molecules, goal of our study, are
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Fig. 1. Box-plot of the response values distribution, from left to right Activity, Solu-
bility, Safety, cLogP, and MW. (Color figure online)
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Fig. 2. The molecule values of Solubility and Safety, respecting the defined constraints
for Activity, cLogP, and MW and in red the molecules belonging to the Pareto Front.
The dashed lines represent the constraints values on Solubility and Safety, respectively.
(Color figure online)

presented in Table 1. In this study we would like to discover these three molecules
by conducting the minimum possible set of experimental tests.

The chemical representation of these molecules as reported in Fig. 3 has
been obtained by using the SwissADME web tool freely available at http://www.
swissadme.ch/; see [23].

http://www.swissadme.ch/
http://www.swissadme.ch/
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Table 1. Values of the five response variables assumed by the three best molecules.

Activity Solubility Safety cLogP MW

Molecule 1 6.90 −2.98 2.78 1.39 427.56

Molecule 2 6.20 −2.76 3.16 0.81 425.48

Molecule 3 6.50 −2.30 2.74 0.38 423.50

Fig. 3. Chemical structure of the three target molecules.

4.2 The Evolutionary Procedure and the Optimization Results

At each generation the population size of the evolutionary algorithm is 20 and
the algorithm is run for 7 generations, with the constraint that all individuals
tested must be different. In this study the maximum number of tests considered
is 140 on the total of 2500 candidate compositions. The process is iteratively
repeated, generation after generation, maintaining the same size in each pop-
ulation of experimental points and ends when the maximum total number of
experimental points is reached. The structure of evolutionary approach consists
in randomly selecting an initial small population, in this study 20 molecules, and
then evaluating the response variables values of each molecule. In the evolution-
ary algorithm, the next population of experiments is then built by selecting the
20 molecules with the best predicted response values.

At first, to better understand the performance of the approach, we developed
the procedure of single objective optimization for each response variable. The
evolution has been driven by the information achieved with the Lasso model,
Stepwise regression, Boosting, Neural Networks, and the mixture of these three
linear models (hereafter Mixture of linear Models) [14]. The architecture of the
Neural Network used for this single-objective problem consists of 175 input neu-
rons, one hidden layer with 7 neurons and one output layer with one neuron.
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The activation function is the sigmoidal function, and the Neural Network has
been fitted by using Bayesian regularization Back propagation; see [22].

We study the robustness of the procedure with respect to the change of
the initial population by repeating the entire process 1000 times. The good
performance of the procedure is evaluated in its capacity to uncover the optimum
value and the set of values in the region of optimality (the 1% best values of
the distribution), conducting a very limited set of experimental tests (5.6% of
the whole experimental space). The results achieved for the single optimization
process are represented in Table 2.

Table 2. Single objective optimization: number of runs (out of 1000 runs) in which
EDO uncovers the optimum value and values in the region of optimality (1% best
values of the distribution).

Objective Lasso Stepwise Boosting Mixture of linear models NN

Activity Optimum 844 782 665 916 660

Region of optimality 1000 995 998 1000 990

Solubility Optimum 875 745 872 912 556

Region of optimality 995 998 1000 1000 996

Safety Optimum 387 358 278 467 228

Region of optimality 1000 1000 1000 1000 999

cLogP Optimum 848 821 917 918 760

Region of optimality 950 946 981 1000 945

MW Optimum 738 822 751 887 346

Region of optimality 905 966 956 1000 780

From these results we can learn that EDO procedure is able to achieve the
best response values in a very high proportion of the 1000 runs, showing also a
better performance of the Mixture of linear Models with respect to the single
model optimization. Concerning the response values in the region of optimality
(1% best values of the distribution) we observe that the Mixture of linear Models
is able to achieve these values in all the 1000 runs and for all the variables.

We then address the problem of the multi-objective optimization by extend-
ing the EDO approach which involves the evolution driven by the information
achieved with the Lasso model, Neural Network, and the Mixture of the Lasso
and the Neural Network models [14]. The architecture of the Neural Network in
the multi-objective optimization has the same topology proposed for the single-
objective optimization except that the output layer consists of 3 neurons. In
fact, we consider 3 response variables Activity, Solubility, Safety. The variables
cLogP and MW are not taken into consideration in the multi-objective proce-
dure because the cLogP is highly correlated with the Solubility, and the MW
could be easily predicted on the basis of its amino acids composition; see [24].
In particular for the multi-objective procedure, we selected in a random way 20
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Table 3. Multi-objective optimization: num-
ber of runs (out of 1000 runs) in which
m-EDO uncovers the best molecules.

Number of
best
molecules

Lasso NN Mixture of models

0 130 161 92

1 43 59 51

2 320 288 384

3 507 492 473

At least one 870 839 908

1 2 3 At least one

0
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80
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Fig. 4. Multi-objective optimiza-
tion: best molecules found in 1000
runs.

experimental points from the whole population of 2500 molecules, then we built
the model on these 20 data and predict the response variables values by using
an estimated model, as in the single optimization procedure. We then associated
a weight at each objective value and derived the linear combination of objec-
tives. The molecules with the best estimated linear combination of the objective
values are then selected for the next generation of experimental points. In the
following table (Table 3) we present the results for the multi-objective optimiza-
tion achieved with the Lasso model, the Neural Network model (NN) and the
Mixture of Lasso and Neural Network models (Mixture of Models) and in Fig. 4
we depict these results. The three ways chosen to optimize give similar results in
discovering the three best molecules. We notice that Mixture of models outper-
forms the alternatives in discovering at least one molecule of the three in more
than 90% of 1000 runs.
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Fig. 5. Evolution through generations. Left: box-plot of the mean of the results
achieved in 1000 runs by using the Mixture of Models. Right: proportion (average
on 1000 runs) of the results found in the 1% best values of the distribution.
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From the generation results, as presented in Fig. 5, we notice the relevance of
the evolutionary principle in the search process: from the first generation there
is a clear tendency of the procedure to converge towards the optimal value.
From the left-hand panel of Fig. 5, we can notice that the mean of the objective
response value is decreasing in each generation and get closer to the optimal
solution which is identified by the value 0. In fact, we transform our variable
values to lie in the interval [0, 1] and the multi-objective optimization becomes
just a minimization of the linear combination of the objective response values.
Moreover, we also notice in Fig. 5 that the median of the distribution decreases
generation after generation and becomes stable after the fourth generation. From
the right-hand panel of Fig. 5, we can notice that the proportion of the new
objective response values, i.e. the linear combination of the objective response
values, found in the region of optimality (1% best values of the distribution)
increases generation after generation.

5 Concluding Remarks

The purpose of this research was the development of a methodological strategy
able to address the multi-objective optimization problem for complex experi-
mentation conducting a very small number of tests. The procedure proposed is a
model-based evolutionary strategy for designing experiments, which involves the
construction and the estimation of predictive linear and non-linear models. The
study of a particular molecular system for drug discovery problems shows the
very good performance of the approach that we propose. Moreover, we would
like to stress that we achieve these results by conducting an extremely small
number of generations (7 generations) that usually is regarded too small to even
approach convergence of the algorithm.

Acknowledgements. The authors would like to acknowledge the fruitful collabora-
tion with Darren Green and his Molecular Design group at GlaxoSmithKline (GSK),
Medicines Research Centre, Stevenage (UK).
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Abstract. The definition of community, usually, relies on the concept
of edge density. Network motifs, however, have been recognized as fun-
damental building blocks of networks and, similarly to edges, may give
insights for uncovering communities in complex networks. In this work,
we propose a novel approach for identifying communities of network
motifs. Differently from previous approaches, our method focuses on
searching communities where nodes simultaneously participate in sev-
eral types of motifs. Based on a genetic algorithm, the method finds a
number of communities by minimizing the concept of multiple-motifs
conductance. Simulations on a real-world network show that the pro-
posed algorithm is able to better capture the real modular structure of
the network, outperforming both motifs-based and classic community
detection algorithms.

Keywords: Community detection · Network motifs
Evolutionary techniques · Genetic algorithm

1 Introduction

Complex networks contain small subgraphs named network motifs [11], which
are pattern of interconnections recurring more frequently than expected in a
random network. The frequency of a motif describes the number of times this
motif appears within the network. High frequencies of certain motifs are possible
due to the important functions they play in a network. For example, the feed
forward loop and the bifan motifs shown in Fig. 1(a) and (d), respectively, have
been found to be highly frequent into the genetic regulation networks of E. coli
and S. Cerevisiae, as well as into the C. elegans neurons network. It is worth
noting that multiple motifs usually coexist within a network. Figure 2 shows a
subgraph of Florida Bay food web network [18], where different microorganisms
interact through multiple motifs. We highlight here three types of network motifs:
M5, M6 (Fig. 1(b)) and M8 (Fig. 1(c)). In motif M5, Water POC serves as energy
source for Free Bacteria and Meroplankton, and Meroplankton for Free Bacteria.
In motif M6, Free Bacteria acts also as energy source for Arcatia tonsa, and both
nodes are served by Input. Finally, interaction patterns like Input serving Water
flagellates and Water ciliates (motif M8) occur many times.
c© Springer International Publishing AG, part of Springer Nature 2018
M. Pelillo et al. (Eds.): WIVACE 2017, CCIS 830, pp. 296–307, 2018.
https://doi.org/10.1007/978-3-319-78658-2_22
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(a) (b) (c) (d)

Fig. 1. (a) M5 (feed-forward loop), (b) M6, (c) M8, and (d) Mbifan motifs.

Fig. 2. Multiple motifs coexisting in a subgraph of Florida Bay food web network: M5,
M6 and M8. The edges composing these three motifs are highlighted in pink, purple
and orange, respectively. (Color figure online)

Although network motifs have been recognized as “fundamental units of net-
works” [3], few studies explore the role these subpatterns have in community
detection. Arenas et al. [1] show how motifs can be used to define a motif-based
modularity, i.e. how motif-based modules present more motifs than a random
division. Specifically, they extended the original definition of modularity intro-
duced by Girvan and Newman [6] to deal with classes of motifs, and showed that
the detected partitions are different with respect to those obtained by optimizing
the classical modularity. A spectral method based on the generalized modularity
[17] has been proposed by the same authors, and the differences between the
obtained community structures on several networks are highlighted. In a recent
work, Benson et al. [2] proposed a tensor spectral clustering method that clusters
nodes according to the motif specified in input by the user. First, the higher-
order structures involving multiple nodes are encoded by means of tensors (i.e.,
multidimensional matrices). Then, the method searches a partitioning that does
not cut the motifs. Another work [3] by the same authors, described in detail in
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the next section, extends the concept of conductance [16] to network motifs for
finding cluster of motifs with low motif conductance.

One of the main drawbacks of the aforementioned approaches is that the
number of communities must be fixed in advance. In a previously work [14],
we proposed MotifGA, an evolutionary motifs-based algorithm for community
detection using Genetic Algorithms (GAs) [7] and a type of motif as input for
discovering a number of motif-based communities minimizing motif conductance.
Here and in all the previous cited related works, motif-based clustering is thus
performed fixing a type of motif and exploring the communities based only on
that motif, without considering the coexistence of multiple motifs.

In this paper, we propose M-MotifGA, a genetic algorithm for detecting
communities in complex networks simultaneously considering different motifs.
The method evolves a population of individuals by minimizing the concept of
multiple-motifs conductance, and finds a partition of the network into k commu-
nities, with k determined by the best local solution optimizing the multiple-
motifs conductance as fitness function. A comparison with the approach of
Benson et al. [3], with a variant of this approach we developed here for taking
into account multiple motifs, and with the two best known community detection
methods Louvain [4] and Infomap [15] shows that M-MotifGA obtains results
better than those found by the other state-of-the-art methods.

The paper is organized as follows. Section 2 introduces the concepts of con-
ductance when motifs are considered and defines the problem we tackle. Section 3
describes our method. Section 4 details the dataset used to perform our experi-
ments and the results obtained. Finally, Sect. 5 concludes the paper.

2 Network Motif Clustering

In this section, we start recalling the concepts of network motif, conductance,
motif conductance and multiple-motifs conductance. Then, we describe the
method proposed by Benson et al. [3] and the introduction of multiple motifs
within their method.

Given a graph G = (V,E) with weights W , n =| V | number of vertices, and
m =| E | number of edges, a motif M of G on r nodes {v1, . . . , vr}, represented
by a sub-adjacency matrix of size r × r, is defined as a subgraph of G presenting
a particular pattern of interconnections. Figure 1 shows three types of motifs
among three nodes (Fig. 1(a), (b), and (c)) and a motif involving four nodes
(Fig. 1(d)). Their labeling follows the same convention adopted in [3].

Given the diagonal degree matrix D of G defined as Dii =
∑n

j=1 Wij , and a
set S ⊂ V of nodes, the cut of S, denoted cut(S), is defined as the sum of edge
weights having one endpoint in S and the other in S = V − S:

cut(S) =
∑

i∈S,j∈S

Wij (1)
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The conductance of S is defined as

φ(S) =
cut(S)

min(vol(S), vol(S))
(2)

where vol(S) =
∑

i∈S Dii is the weighted sum of edge end points in S.
By substituting an edge with a motif instance of M , the conductance of S

can be generalized to motifs as follows

φM (S) =
cutM (S)

min(volM (S), volM (S))
(3)

where φM (S) is defined motif conductance, cutM (S) is the number of motif
instances of M with at least a node in S and another in S, and volM (S) is the
number of instances of M contained in S.

Problem definition (single-motif). Fixed a network motif M , find a set of
nodes S such that: (1) they participate in as many instances of M as possible,
and (2) cutting instances of M is avoided, i.e. all the nodes of M should belong
to either S or S.

Benson et al. [3] proposed a method for partitioning V into the comple-
mentary sets S and S that, given a motif M , minimizes the motif conductance
φM (S). The method works on the motif adjacency matrix WM , where each ele-
ment represents the number of times two nodes appear in an instance of M .
When there are nodes that do not participate in any motif, these nodes are dis-
carded from WM . Then, the eigenvector corresponding to the second smallest
eigenvalue of the normalized motif Laplacian matrix is computed. The compo-
nents of the eigenvector generate an ordering of nodes, which produces nested
sets of nodes. The set of nodes with the smallest motif conductance is proven to
be a near-optimal partition. Further details on the approach can be found in [3].
For obtaining a partition with more than two communities, the method, named
Motif Recursive bi-partitioning (MRbi-part), can be recursively executed on S
and S, until the desired number of clusters is obtained.

When considering M1, M2, ..., Mq motifs simultaneously, the multiple-motifs
conductance is defined as

φMM (S) =

∑q
j=1 αjcutMj

(S)

min(
∑q

j=1 αjvolMj
(S),

∑q
j=1 αjvolMj

(S))
(4)

where each αj ≥ 0 gives a weight to the impact of motif Mj on the considered
network.

Problem definition (multiple-motifs). Given a set of q network motifs M1,
M2, ..., Mq, find a set of nodes S such that (1) they simultaneously participate
in as many instances of all the considered motifs as possible, and (2) cutting
instances of any Mj , j = 1, ..., q are avoided.

In the next section, we propose to solve the problem of finding a division on a
network based on multiple motifs by applying a Genetic Algorithm. Specifically,
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the proposed algorithm minimizes the multiple-motifs conductance computed on
the motif adjacency matrices of the single motifs, associated with the graph G
representing the network. For comparing our method to another method based
on multiple motifs, we also modified MRbi-part extending its code such that
the multiple-motifs conductance is the measure to minimize. As such, we con-
sidered a weighted motif adjacency matrix WMw =

∑q
j=1 αjWMj

for running
the method. We denominate this extension as MRbi-partMM . It is worth noting
that, differently from the methods by Benson et al., our method does not need a
prior setting of the number of communities to find. This number is automatically
provided by decoding the solution obtained by the method, i.e. the solution with
the lowest local optimum value of conductance.

3 M-MotifGA Description

The algorithm we propose, named M-MotifGA is based on our previous work [14],
where we proposed MotifGA, an approach to motif network clustering exploit-
ing a genetic algorithm, that evolves a population of individuals by minimizing
motif conductance. Similarly to MotifGA, M-MotifGA obtains the simultaneous
partition of a network into k communities, with k determined by the best local
solution optimizing the fitness function. However, differently from MotifGA, the
fitness function used in M-MotifGA is the multiple-motifs conductance.

A GA-based method basically evolves a population of individuals initialized
at random, and performs variation and selection operators to increase the value
of a criterion function, while exploring the search space during the optimiza-
tion process. M-MotifGA uses the locus-based adjacency representation [13] for
representing the problem, uniform crossover and neighbor-based mutation for
evolving individuals. In the locus-based representation, an individual I is rep-
resented as a vector of n genes. Each gene can assume a value j in the range
{1, . . . , n}: when a value j is assigned to the ith node, nodes i and j are linked.
A decoding step identifies all the connected components of the graph which cor-
respond to the network division in communities. Uniform crossover generates a
random binary mask of length equal to the number of nodes, and an offspring is
obtained by selecting from the first parent the genes in the mask set to 0, and
from the second parent the genes in the mask set to 1. Finally, the mutation
operator randomly changes the value j of a gene to one of its neighbors.

M-MotifGA receives in input the graph G = (V,E) and the set of motifs M1,
M2, ..., Mq, and performs the following steps:

1. compute the motif adjacency matrices WM1 , WM2 , ..., WMq
;

2. take the largest connected component Wmax
Mj

of WMj
for each motif Mj of

the q motifs;
3. obtain the weighted graph GMj

= (VMj
, EMj

) corresponding to Wmax
Mj

for
each 1 ≤ j ≤ q;

4. compute the weighted graph GM =
∑q

j=1 GMj
;
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5. run the GA on GM for a number of iterations by using multiple-motifs con-
ductance as fitness function to minimize, uniform crossover and neighbor
mutation as variation operators;

6. obtain the partition C = {C1, . . . , Ck} corresponding to the solution with the
lowest fitness value;

7. merge two communities if the number of inter-cluster connections is higher
than the number of intra-cluster connections.

Note that the weighted graphs GMj
associated with the largest connected com-

ponents of the motif adjacency matrices may have different numbers of nodes. In
this case, before Step 4, the algorithm computes the subset of nodes which are
common to all the GMj

graphs. Then, the matrices GMj
will be reorganized in

order to contain only the rows and the columns related to that subset of nodes.
In the next section we present the results obtained by our algorithm and

compare them with those returned by state-of-the-art methods. Moreover, we
also investigate a variant of our approach, named MS-MotifGA, that uses as
fitness function the sum of the motif conductance of the single motifs, that is
φMS(S) = φM1(S) + φM2(S) + . . . + φMq

(S).

4 Experimental Evaluation

To validate our algorithm, we performed several simulations using Matlab 2015b
and the Global Optimization Toolbox. Specifically, we compared our algorithm
with other well-known state-of-the-art algorithms in terms of NMI [5], ARI [9]
and F1 [10] indexes. The results for M-MotifGA have been averaged over 10 runs
of the algorithm, setting the population size to 100, the number of generations
to 200, the mutation rate to 0.2, and the crossover rate to 0.8. These parameter
values have been fixed by employing a trial-and-error procedure on the bench-
mark data set. Moreover, for computing the multiple-motifs conductance, we
equally weighted all motifs using αj = 1. For MRbi-part we set to 4 the num-
ber of communities to find, as suggested by Benson et al. for this dataset, since
a higher number of communities would give higher motif conductance values
and, thus, worse results for their algorithm. Specifically, we applied the motif
recursive bipartitioning method twice in order to obtain the desired number of
communities. The following subsections describe the dataset and performance
indexes used, and the algorithms taken into account for testing the effectiveness
of M-MotifGA.

4.1 Dataset

We analyze the Florida Bay food web dataset containing the data of an
ecosystem food web. Converting these data into a network graph, nodes can
be considered organisms and species, and edges the directed carbon exchange
between species. For clustering this network, we consider the motifs M5, M6 and
M8 shown in Fig. 1. M5, considered a building block for food webs, describes the
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hierarchical flow of energy between species i and j which are energy sources for
species k, while i is an energy source for both. M6, on the contrary, models two
species that exchange energy and compete to receive energy from a third specie.
This motif has been shown to be prevalent within this network, resulting in a
rich high-order modular structure. Finally, M8 corresponds to a single specie
feeding two non-interacting species.

The original Florida Bay food web network is composed by 128 nodes and
2106 edges. For detecting communities, we consider a subset of 62 nodes for
which the ground truths are known. Specifically, two ground truths, denoted as
GT1 and GT2, are available and are relative to the two large connected compo-
nents resulting from the analysis of the adjacency matrix of motif M6. Table 1
shows the 50 nodes corresponding to the first component and the 12 nodes of the
second component. The remaining 66 nodes are isolated. In GT1 nodes are classi-
fied into 11 different categories (‘demersal producer’, ‘seagrass producer’, ‘algae
producer’, ‘microbial microfauna’, ‘zooplankton microfauna’, ‘sediment organ-
ism microfauna’, ‘macroinvertebrates’, ‘pelagic fishes’, ‘benthic fishes’, ‘demer-
sal fishes’, and ‘detritus’ ). In GT2, on the contrary, nodes are categorized into
7 groups: ‘producer’, ‘microfauna’, ‘macroinvertebrates’, ‘pelagic fishes’, ‘benthic
fishes’, ‘demersal fishes’, and ‘detritus’. Basically, GT2 considers all the producer
and microfauna subcategories of GT1 as unique macro categories.

The largest connected components of the adjacency matrices for motifs M5

and M8 have 127 and 128 nodes, respectively. Since both motif adjacency matri-
ces contain the 62 nodes for which the ground truths are known, we consider
only the sub-matrices corresponding to this set of 62 nodes when dealing with
motifs M5 and M8.

4.2 Performance Indexes

To assess the quality of the solutions, we use the following evaluation measures,
well known in the literature:

NMI. The normalized mutual information NMI(A,B) [5] of two divisions A
and B of a network is defined as follows. Let C be the confusion matrix whose
element Cij is the number of nodes of community i of the partition A that are
also in the community j of partition B.

NMI(A,B) =
−2

∑cA
i=1

∑cB
j=1 Cij log(Cijn/Ci.C.j)

∑cA
i=1 Ci.log(Ci./n) +

∑cB
j=1 C.j log(C.j/n)

(5)

where cA (cB) is the number of groups in partition A (B), Ci. (C.j) is the sum of
the elements of C in row i (column j), and n is the number of nodes. If A = B,
NMI(A,B) = 1. If A and B are completely different, NMI(A,B) = 0.

F1 score. This measure [10] is calculated by using the Precision (P) and Recall
(R) measures as F1 = 2RP

R+P , where P = TP
TP+FP and R = TP

TP+FN . True Positive
(TP) refers to the number of nodes which are correctly assigned to communities,
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Table 1. Florida Bay food web ground truths (GT1 and GT2) for the two large
connected components of the motif M6 adjacency matrix.

Node ID Species Component GT1 GT2

8 ‘Benthic Phytoplankton’ 1 Demersal Producer Producer

9 ‘Thalassia’ 1 Seagrass Producer Producer

10 ‘Halodule’ 1 Seagrass Producer Producer

11 ‘’Syringodium’ 1 Seagrass Producer Producer

13 ‘Drift Algae’ 1 Algae Producer Producer

14 ‘Epiphytes’ 1 Algae Producer Producer

24 ‘Benthic Flagellates’ 1 Sediment Organism Microfauna Microfauna

25 ‘Benthic Ciliates’ 1 Sediment Organism Microfauna Microfauna

26 ‘Meiofauna’ 1 Sediment Organism Microfauna Microfauna

29 ‘Other Cnidaridae’ 1 Macroinvertebrates Macroinvertebrates

30 ‘Echinoderma’ 1 Macroinvertebrates Macroinvertebrates

31 ‘Bivalves’ 1 Macroinvertebrates Macroinvertebrates

32 ‘Detritivorous Gastropods’ 1 Macroinvertebrates Macroinvertebrates

34 ‘Predatory Gastropods’ 1 Macroinvertebrates Macroinvertebrates

35 ‘Detritivorous Polychaetes’ 1 Macroinvertebrates Macroinvertebrates

36 ‘Predatory Polychaetes’ 1 Macroinvertebrates Macroinvertebrates

37 ‘Suspension Feeding Polych’ 1 Macroinvertebrates Macroinvertebrates

38 ‘Macrobenthos’ 1 Macroinvertebrates Macroinvertebrates

39 ‘Benthic Crustaceans’ 1 Macroinvertebrates Macroinvertebrates

40 ‘Detritivorous Amphipods’ 1 Macroinvertebrates Macroinvertebrates

41 ‘Herbivorous Amphipods’ 1 Macroinvertebrates Macroinvertebrates

42 ‘Isopods’ 1 Macroinvertebrates Macroinvertebrates

43 ‘Herbivorous Shrimp’ 1 Macroinvertebrates Macroinvertebrates

44 ‘Predatory Shrimp’ 1 Macroinvertebrates Macroinvertebrates

45 ‘Pink Shrimp’ 1 Macroinvertebrates Macroinvertebrates

48 ‘Detritivorous Crabs’ 1 Macroinvertebrates Macroinvertebrates

49 ‘Omnivorous Crabs’ 1 Macroinvertebrates Macroinvertebrates

50 ‘Predatory Crabs’ 1 Macroinvertebrates Macroinvertebrates

51 ‘Callinectus sapidus’ 1 Macroinvertebrates Macroinvertebrates

57 ‘Sardines’ 1 Pelagic Fishes Pelagic Fishes

58 ‘Anchovy’ 1 Pelagic Fishes Pelagic Fishes

59 ‘Bay Anchovy’ 1 Pelagic Fishes Pelagic Fishes

60 ‘Lizardfish’ 1 Benthic Fishes Benthic Fishes

61 ‘Catfish’ 1 Benthic Fishes Benthic Fishes

62 ‘Eels’ 1 Demersal Fishes Demersal Fishes

63 ‘Toadfish’ 1 Benthic Fishes Benthic Fishes

64 ‘Brotalus’ 1 Demersal Fishes Demersal Fishes

65 ‘Halfbeaks’ 1 Pelagic Fishes Pelagic Fishes

66 ‘Needlefish’ 1 Pelagic Fishes Pelagic Fishes

68 ‘Goldspotted killifish’ 1 Demersal Fishes Demersal Fishes

69 ‘Rainwater killifish’ 1 Demersal Fishes Demersal Fishes

72 ‘Silverside’ 1 Pelagic Fishes Pelagic Fishes

91 ‘Mullet’ 1 Pelagic Fishes Pelagic Fishes

93 ‘Blennies’ 1 Benthic Fishes Benthic Fishes

94 ‘Code Goby’ 1 Benthic Fishes Benthic Fishes

95 ‘Clown Goby’ 1 Benthic Fishes Benthic Fishes

96 ‘Flatfish’ 1 Benthic Fishes Benthic Fishes

99 ‘Other Pelagic Fishes’ 1 Pelagic Fishes Pelagic Fishes

(continued)
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Table 1. (continued)

Node ID Species Component GT1 GT2

100 ‘Omnivorous Ducks’ 1 Demersal Fishes Demersal Fishes

124 ‘Benthic POC’ 1 Detritus Detritus

15 ‘Free Bacteria’ 2 Microbial Microfauna Microfauna

16 ‘Water Flagellates’ 2 Microbial Microfauna Microfauna

17 ‘Water Cilitaes’ 2 Microbial Microfauna Microfauna

18 ‘Acartia Tonsa’ 2 Zooplankton Microfauna Microfauna

19 ‘Oithona nana’ 2 Zooplankton Microfauna Microfauna

20 ‘Paracalanus’ 2 Zooplankton Microfauna Microfauna

21 ‘Other Copepoda’ 2 Zooplankton Microfauna Microfauna

22 ‘Meroplankton’ 2 Zooplankton Microfauna Microfauna

23 ‘Other Zooplankton’ 2 Zooplankton Microfauna Microfauna

27 ‘Sponges’ 2 Macroinvertebrates Macroinvertebrates

123 ‘Water POC’ 2 Detritus Detritus

126 ‘Input’ 2 Detritus Detritus

False Positive (FP) refers to the nodes which are incorrectly assigned to commu-
nities, and False Negatives (FN) refers to the set of nodes which are incorrectly
not assigned to the proper communities. F1 value reaches its best value at 1 and
worst at 0.

Adjusted Rand Index. The Adjusted Rand Index (ARI) is a normalized ver-
sion of the Rand Index (RI)[9] which simply assesses the degree of agreement
between two partitions A and B. Let n11 be the number of pairs appearing in the
same cluster in both A and B, n00 the number of pairs that appear in different
clusters in both A and B, n10 the number of pairs appearing in the same cluster
in A but in different clusters in B, and n01 the number of pairs that are in the
same cluster in B and not in A. Then

ARI(A,B) =
2(n00n11 − n01n10)

(n00 + n01)(n01 + n11) + (n00 + n10)(n10 + n11)
(6)

4.3 Algorithms for Community Detection

We compare the two strategies of M-MotifGA, namely MM-MotifGA, in which
the fitness function used is φMM (S), and MS-MotifGA, in which the fitness
function is the sum of the single motif conductances, with the motifs-based
MRbi-part , both in the case in which this last algorithm uses a single motif
to detect communities and in the case of multiple motifs jointly used. We also
compare M-MotifGA to two benchmark algorithms not using motifs: Louvain [4]
and Infomap [15]. Louvain basically tries to optimize the modularity [12] of a
partition through a greedy optimization technique. First, small communities are
searched by optimizing modularity locally. Then, a new network whose nodes
are the communities are built and these steps are repeated until a hierarchy
of high-modularity communities is obtained. Infomap, on the contrary, exploits
the principles of information theory characterizing the problem of community
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detection as the problem of finding a description of minimum information of a
random walk on the graph. Maximizing the Minimum Description Length [8]
objective function, Infomap quickly provides an approximation of the optimal
solution.

4.4 Results

Table 2(a)–(b) shows the NMI, ARI and F1 values obtained for the two ground
truths of the Florida Bay food web results. The statistical significance of the
results has been been checked by performing a t-test at the 5% significance level.
The test rejected the null hypothesis that the values come from populations with
equal means, and returned p-values, on average, below 0.1E-5.

For MM-MotifGA and MS-MotifGA we report both the average value and the
standard deviation (in parenthesis) of the evaluation measures. For MS-MotifGA,
we investigated as fitness function φMS(S) = φM5(S)+φM6(S)+φM8(S). On the
ground truth GT1, MM-MotifGA outperforms all the other community detection
schemes finding a number of communities ranging from 7 to 10. Similarly, MS-
MotifGA, finds solutions with 7, 8, 9 and 10 communities, outperforming all the
other methods. Considering MS-MotifGA, however, we observe that the strategy
to sum the single motif conductances as fitness function to optimize, results in
NMI, ARI and F1 values lower than MM-MotifGA. As such, we conclude that if
we explore separately the three motifs and then we recombine them by summing
their conductances to obtain the function to optimize, the algorithm does not
take into account the intersection which could exist between motifs in terms
of edges. This intersection, as in the case of motifs M5 and M8, and M6 and
M8 for example, considered when jointly analyzing multiple motifs, is able to

Table 2. Florida Bay food web results.

MM-MotifGA MS-MotifGA MRbi-partM5 MRbi-partM6

GT1
NMI 0.9241 (0.0756) 0.8602 (0.0781) 0.4392 0.504
ARI 0.8451 (0.1923) 0.6879 (0.2141) 0.1388 0.3005
F1 0.8765 (0.1489) 0.754 (0.1646) 0.3149 0.4437

GT2
NMI 0.8367 (0.1127) 0.6844 (0.1054) 0.3214 0.4822
ARI 0.7039 (0.1798) 0.3886 (0.1106) 0.1045 0.3265
F1 0.7756 (0.1329) 0.5549 (0.0727) 0.3087 0.4802

(a)

MRbi-partM8 MRbi-partMM Louvain Infomap

GT1
NMI 0.4197 0.3406 0.3879 0.4035
ARI 0.1203 0.1291 0.2207 0.1423
F1 0.2949 0.2962 0.4068 0.31

GT2
NMI 0.3573 0.2829 0.3034 0.3471
ARI 0.1332 0.1241 0.2229 0.1592
F1 0.3244 0.3101 0.434 0.3416

(b)
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provide more meaningful communities, as the results show. Analyzing all the
algorithms by Benson et al. where the number of communities has been set to
4, the communities found result in significantly lover values of the evaluation
measures we considered. It is worth noting that considering only M5, M6 or M8

for clustering nodes does not produce satisfying results compared to our multiple-
motifs strategies. Moreover, when jointly considering all the motifs as in MRbi-
partMM , the algorithm performs even worse than the single-motif strategies
MRbi-partM5 , MRbi-partM6 , and MRbi-partM8 . As such, we conclude that when
the number of communities needs to be fixed in input as for MRbi-part , detecting
clusters of multiple motifs using multiple-motifs conductance as the function to
be minimized may lead to suboptimal results. Finally, comparing our method to
Louvain and Infomap, which do not exploit motifs, we observe that also these
methods are not able to find a good match with the ground truth. Focusing on the
largest community of the ground truth (i.e., the macroinvertebrates) including
21 nodes, for example, we observe that MM-MotifGA perfectly matches it in
all the runs of the algorithm. Louvain distributes the nodes into 4 different
communities: 2 groups with 7 nodes are inserted into different communities,
3 nodes into another one, and the remaining nodes into another community.
Finally, Infomap inserts all the 21 nodes into a unique but larger community
including other nodes.

On the ground truth GT2, we obtain similar results. MM-MotifGA still out-
performs all other methods, resulting in the highest NMI, ARI and F1 values
finding solutions with 5 or 6 communities. Overall, for all the algorithms, we
observe NMI, ARI and F1 values for GT2 are lower than the values obtained
for GT1. This behavior was also observed in our previous work [14] and it is
probably due to the merging of some specie categories done on GT2 to create
macro-categories which do not perfectly reflect the modular structure of the
network.

5 Conclusion

In this paper, we have proposed M-MotifGA, a method for discovering commu-
nities composed by multiple motifs. Based on a genetic algorithm, our method
simultaneously considers different motifs for searching a partition with a number
of communities minimizing the multiple-motifs conductance as fitness function.
Simulations on the Florida bay food web network show that M-MotifGA results
in NMI, F1 and ARI values much higher than both the single-motif and the
multiple-motif based analyzed strategies, Louvain and Infomap. Specifically, we
have observed that for better matching the underlying real communities, not
only multiple motifs should be simultaneously considered, but also fixing the
number of communities to obtain as in Benson et al. [3] does not fully exploit
the benefits of considering multiple motifs. As future work, we plan to extend our
experiments to other datasets to further validate our method. We also intend to
explore how community detection can be performed when several motifs appear
at different network layers in multi-layered network structures.
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stefano.cagnoni@unipr.it

2 SMARTEST Research Centre, Università eCAMPUS, Novedrate, CO, Italy
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Abstract. The Relevance Index method has been shown to be effective
in identifying Relevant Sets in complex systems, i.e., variable sub-sets
that exhibit a coordinated behavior, along with a clear independence
from the remaining variables. The need for computing the Relevance
Index for each possible variable sub-set makes such a computation unfea-
sible, as the size of the system increases. Because of this, smart search
methods are needed to analyze large-size systems using such an approach.
Niching metaheuristics provide an effective solution to this problem, as
they join search capabilities to good exploration properties, which allow
them to explore different regions of the search space in parallel and con-
verge onto several local/global minima.

In this paper, we describe the application of a niching metaheuristic,
K-means PSO, to a set of complex systems of different size, compar-
ing, when possible, its results with the ground truth represented by the
results of an exhaustive search, while we rely on the analysis of a domain
expert to assess the results of larger systems. In all cases, we also com-
pare the results of K-means PSO to another metaheuristic, based on a
niching genetic algorithm, that we had previously developed.

Keywords: Complex systems · Relevant sets
Particle Swarm Optimization · K-means clustering

1 Introduction

Complex systems can be described by analyzing the collective behaviors and
the emerging properties of their components, which are usually well-known and
defined in terms of the system state variables. In several cases, however, the
interactions among the elements of a system are not known in advance. There-
fore, it is necessary to deduce some information about the organization of the
system by observing the behavior of its relevant dynamic components.

In a previous work, Villani et al. proposed to identify candidate dynamical
structures in complex systems [28], by means of a method, previously introduced
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by Tononi et al. [26], for analyzing the coordinated behavior of sets of neurons
in the brain cortex. Such a method detects subsets of the system variables that
behave in a coordinated and coherent way, while loosely interacting with the
remainder of the system. To do so, it associaties to each of them an information
theoretical measure, called Relevance Index (RI ). This measure can be normal-
ized with respect to a reference system (termed homogeneous system), wherein
the variables have the same marginal distribution as in the data set but are
homogeneously correlated with each other. The normalized measure that can
thus be computed, termed Tc index, quantifies how much a subset of variables
of the system under investigation deviates from such a neutral condition.

The subsets can thus be ranked according to their Tc: the higher the Tc, the
higher the correlation degree between the variables in a subset and the lower
the interaction with the variables outside the subset. The most relevant sets,
characterized by the highest Tc values, are referred to as Candidate Relevant
Sets (CRSs). In fact, the properly called Relevant Subsets (RSs) are CRSs that
do not include (or are not included in) other CRSs with higher Tc values.

This means that a full description of a dynamical system requires that the
Tc index be computed for each possible subset of the system variables. An
exhaustive analysis becomes unfeasible as the dimension of the system increases,
because the number of CRSs increases exponentially with the system size. The
curse of “dimensionality” thus makes it impossible to analyze large systems
exhaustively, even using massively parallel hardware such as GPUs, which fit
the computational needs of this problem particularly well [27].

The contribution of this paper can be summarized with the following goals:

– optimizing algorithm efficiency by GPU-based parallel computations;
– studying custom versions of swarm intelligence algorithms to search for rele-

vant sets as precisely and quickly as possible;
– comparing the aforementioned swarm intelligence algorithms with others pre-

viously applied to the same problems.

The rest of the paper comprises the background in Sect. 2, a description of
the RI method in Sect. 3, and of the employed metaheuristics in Sect. 4, as well
as a presentation of some interesting results in Sect. 5. Finally, Sect. 6 concludes
the work.

2 Background

In general, unsupervised learning techniques aimed at inferring the emerging
properties of a complex system are extremely attractive from the point of view
of practical applications: for instance, they have been recently applied success-
fully to user profiling in the design of Intelligent Transportation Systems [7], or
to the identification of the correct medical procedures based on medical dental
records [4]. Previous works have already documented the use of information-
theoretical measures as a possible solution to this clustering problem [12]. How-
ever, none of the existing methods has all the following desirable properties:
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– the ability to identify groups of variables that change in a coordinated fashion;
– the ability to identify critical states;
– direct applicability to data, without any need to resort to models;
– robustness with respect to sampling effort and system size.

The Relevance Index (RI) appears to be a step forward towards a method
having such features [29]. The RI is based on the Cluster Index (CI), introduced
by Edelman et al. [26] and extends the applicability of the latter to a broad
range of non-stationary dynamical systems, including abstract models of gene
regulatory networks and simulated chemical [23,28], as well as biological [29]
and social [11] systems.

In this work, we use Particle Swarm Optimization (PSO) as a search method,
to counteract the complexity of RS search in complex system, which increases
exponentially with the system size. PSO provides an effective solution to multi-
faceted optimization problems and is often used for finding the optimal values
for the parameters of other algorithms, such as hybrid SVM [17], deep belief
neural networks [25], artificial bee colony [13], and the like.

The aim of standard PSO is to find a single point representing the global
optimum of an N-dimensional function. However, in many multimodal func-
tion optimization problems, it is necessary to explore as many local minima
as possible to improve the chances of finding the global optimum or even all
the global optima, when more than one exist. Thus, to increase the particles’
diversity degree, different techniques, which separately explore different regions
of the search space, have been introduced in the literature. Among these, nich-
ing techniques assume a great importance. For example, they have been applied
to a genetic algorithm for the estimation of the solar radiation [30], and to an
evolutionary algorithm for forming collaborative learning teams in a class of a
students [32].

In the following we briefly summarize various use cases of modified and
improved PSO algorithms, with a particular focus on niching PSO algorithms.

Introduced by Parsopoulos et al. [20], objective function stretching was one
of the first strategies developed for analyzing multimodal functions. Its main
purpose is to overcome the limitations of PSO due to untimely convergence to
local solutions. The stretching approach modifies the fitness function to remove
previously identified local optima. In this way, successive iterations of PSO can
explore different regions of the research space and identify new solutions.

In 2002, Brits et al. introduced the nbest PSO algorithm, the first technique
using parallel niching in particle swarm [6]. It is particularly suitable for finding
multiple solutions in a system of equations. The same authors have also pro-
posed another approach, which employs sub-swarms to locate multiple solutions
in optimization problems of multi-modal functions, called NichePSO [5]. This
algorithm uses a cognition-only model to evolve a main swarm that can generate
sub-swarms each time a possible niche is identified.

Schoeman and Engelbrecht proposed a different niching approach [24], by
implementing the Vector-Based PSO. This method identifies the niches by
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exploiting some properties of the velocity vectors and some operations on them
already present in PSO. Therefore, it does not require additional parameters.

Li proposed the species-based PSO [16], which encompasses the idea of classi-
fying the population in groups of species. The definition of a species includes the
seed, i.e., the particle with best fitness function, and the radius of the species,
representing the Euclidean distance from the seed to the borders of the species.
All particles inside this radius belong to the same species. A problem with this
approach is the need to set the value of the radius, especially when the function
presents niches of different dimensions.

Bird and Li proposed the adaptive niching PSO (ANPSO) [3], which removes
the need to set the niche radius according to the specific problem and allows one
to compute the parameters adaptively during execution. ANPSO uses an indirect
graph to track the minimum distance between the particles, during the execution
of the algorithm, and the niches are formed through sub-graphs that exclude all
disconnected particles.

In this paper, we employ K-means PSO [21], where a clustering technique,
namely K-means [18], is used to group the particles in sub-swarms. In these
sub-warms a local search is performed using the gbest topology, which uses the
best individual’s position as the only global attractor, and clustering is repeated
at regular intervals.

K-means PSO, which is described in detail in Sect. 4, has been recently
employed in different fields, such as clustering of satellite images [14], selecting
effective features from the high-dimensional medical data set [10], etc. Moreover,
K-means and PSO have been successfully hybridized in other contributions, not
only in a sequential fashion, but also intertwined with each other [2] or in a
dynamic and adaptive way [15].

3 Method

The RI can be used to study data from a wide range of dynamical system classes,
with the purpose of identifying subsets of variables that behave in a somehow
coordinated way, i.e., the variables belonging to the subset are integrated with
each other much more than with the other variables not belonging to the subset.
These subsets can be used to describe the whole system organization, thus they
are named relevant subsets.

The computation of the RI, which is an information theoretical measure
based on the well-known Shannon’s entropy [9], is usually based on observational
data, and probabilities are estimated as the relative frequencies of the values
observed for each variable. The theoretical definition of the RI is summarized in
the following.

The entropy H(X) of a random variable X is defined as

H(X) = −
∑

x

p(x)log p(x) (1)
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The joint entropy of a pair of variables H(X,Y ) is defined as

H(X,Y ) = −
∑

x

∑

y

p(x, y)log p(x, y) (2)

Note that Eq. 2 can be naturally extended to sets of k elements.
Let us consider a system composed of n random variables X1,X2, . . . , Xn

(e.g., agents, chemicals, genes, artificial entities, etc.) and suppose that Sk is a
subset composed of k variables, with k < n. The RI of Sk is defined as:

RI(Sk) =
I(Sk)

MI(Sk;U\Sk)
, (3)

where I is the integration (multi-information), which measures the mutual
dependence among the k elements in Sk, and MI is the mutual information,
which measures the mutual dependence between subset Sk and the remaining
part of the system U\Sk.

The integration is defined as

I(Sk) =
∑

s∈Sk

H(s) − H(Sk) (4)

The mutual information MI(Sk;U\Sk) is defined as

MI(Sk;U\Sk) = H(Sk) + H(U\Sk) − H(Sk, U\Sk) (5)

The RI is undefined if MI(Sk;U\Sk) = 0. However, a vanishing MI is a
sign of separation of the subset under exam from the rest of the system, which
suggests that the subset be studied separately.

We observe that the RI scales with the subset size, therefore a normalization
method is required to compare RI values of subsets of different sizes. Moreover,
the statistical significance of the differences of the RI should be assessed by
means of an appropriate test. For these reasons, a statistical significance index
was introduced [26]:

Tc(Sk) =
RI(Sk) − 〈RIh〉

σ(RIh)
=

νRI − ν 〈RIh〉
νσ(RIh)

(6)

where 〈RIh〉 and σ(RIh) are, respectively, the average and the standard devi-
ation of the RI of a sample of subsets of size k extracted from a reference homo-
geneous system Uh, and ν = 〈MIh〉 / 〈Ih〉 is its normalization constant. A more
detailed description of the method can be found in [23,27].

4 Metaheuristic

In this paper, we use K-means PSO [21] for searching relevant dynamical struc-
tures of complex systems and for extracting the RSs when the dimension of
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the variable space makes an exhaustive search unfeasible. K-means [18] is used
as a niching technique to preserve diversity within the swarm, exploring many
peaks in parallel. PSO, even if mainly utilized for continuous optimization, is
employed in this case also on a discrete domain problem. The representation used
in this paper (see Sect. 4.4) has already been successfully employed for feature
selection [19].

The following subsections describe in detail the metaheuristic, the algorithms
on which it is based, and their application to the analysis of complex systems.

4.1 Particle Swarm Optimization

Particle Swarm Optimization is a bio-inspired optimization algorithm based on
the simulation of the social behavior of bird flocks. A swarm of s particles moves
within a function domain (fitness function), searching for the optimum of the
function (best fitness value).

Each particle of the swarm is characterized by:

– Position (x) in the search space;
– Fitness value at this position;
– Velocity (v), used to compute the next position;
– Memory (previous best) of the best position found so far by the particle;
– Fitness value of the previous best position.

The movement of each particle is influenced by its own best known position
(previous best), but is also guided towards the best known positions of the other
particles, which are updated as better values of the fitness function are found.

The particles thus move within the search space as a result of the following
update steps:

{
�vi←χ(�vi + �U(0, φ1) ⊗ (�pi − �xi) + �U(0, φ2) ⊗ ( �pg − �xi))
�xi←�xi + �vi

(7)

where χ is the so-called constriction factor [22], U are random variables uniformly
distributed in [0, φi], i = 1, 2, where φi’s (acceleration coefficients) are positive
constants such that

φ = φ1 + φ2 > 4 (8)

χ =
2

φ − 2 +
√

φ2 − 4φ
(9)

Such constraints have been found to guarantee system stability (finite speed) [8].
The convergence of PSO on a Rastrigin function of two variables is shown

in Fig. 1, which shows that the global optimum of the fitness function has been
finally found and virtually the whole swarm has converged onto it. However,
because of this, the local optima have not been identified. The enhancement of
this process using a niching technique as K-means PSO allows the swarm to
converge onto many peaks in parallel (see also Fig. 2 in Sect. 4.3).
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Fig. 1. Particle Swarm Optimization: the random initialization of the swarm positions,
using a Rastrigin function of two variables as fitness function (left) and the results at
convergence (right).

4.2 K-Means

K-means clustering aims to partition n observations into k clusters in which
each observation belongs to the cluster whose mean (centroid) is the nearest to
it. K-means clustering uses the Euclidean distance as similarity criterion and

J =
∑

k=1,Nc

∑

y(i)∼ωk

|y(i) − μk| (10)

as the function to be optimized, where y(i) is the ith sample, μk is the centroid of
the kth cluster, Nc is the number of clusters, and y(i) ∼ ωk refers to all samples
y(i) assigned to cluster k.

M = {μ1, μ2, . . . μNc} is the set of reference vectors, each of which represents
the prototype for a class. J is minimized by computing μk as the sample mean
of the data belonging to cluster k.

In practice, the algorithm partitions the input space S into k (the number
of clusters, that must be set by the user) subspaces induced by the Euclidean
distance. Each subspace si of S is defined as:

si = {xj ∈ S | d(xj , μi) = mint d(xj , μi)} (11)

This results in a partitioning of the data space into Voronoi cells (Voronoi tes-
sellation).

4.3 K-Means PSO

With respect to the basic PSO algorithm, in the K-means PSO the search pro-
cess is enhanced by a niching technique that maintains the diversity among
the particles of the swarm and allows the swarm to explore and converge onto
many peaks in parallel. In particular, in K-means PSO, at regular intervals, the
K-means clustering algorithm [18] is applied to the swarm to reorganize it into
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sub-swarms characterized by the proximity of their elements in the search space.
The standard PSO algorithm is then independently applied to each sub-swarm
thus identified.

The K-means PSO pseudo-code is reported in Algorithm 1. Lines 5, 6 and 7
represent the application of K-means clustering.

Algorithm 1. K-means PSO pseudo-code.
1: procedure kPSO
2: randomly initialize the particles’ positions and velocities
3: compute each particle’s fitness
4: for t = 1 to T do � T = number of iterations
5: if t mod C = 0 then � every C steps
6: run K-means algorithm to identify niches
7: end if
8: update each particle’s velocity � as in standard PSO
9: update each particle’s position

10: compute each particle’s fitness
11: update each particle’s and each niche’s best position
12: end for
13: end procedure

With respect to standard PSO, K-means PSO requires some additional
parameters: C is the number of PSO cycles to be performed between two cluster-
ing operations, k represents the number of clusters (it should be slightly higher
than the number of local optima of the fitness function).

The convergence of K-means PSO using a Rastrigin function of two variables
as fitness function is shown in Fig. 2 (right). The algorithm is able to explore
many peaks in parallel, finding as many local optima as possible.

Figure 2 also compares the results of PSO and K-means PSO using a two-
dimensional Rastrigin function as fitness function.

Fig. 2. Results of PSO (left) and K-means PSO (right) using a Rastrigin function of
two variables as fitness function.
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4.4 K-Means PSO for Searching Relevant Subsets

In our work, K-means PSO has been applied to the analysis of complex systems
for detecting the highest-Tc CRSs in large-sized systems.

In our method, each particle i of the swarm represents CRSs as a binary
string Pi of size N , where N is the number of variables that describe the system.
A bit of this binary string is set to 1 if the corresponding variable is included in
the CRS.

Pi(j) =

{
1 if variable j is included in the CRS
0 otherwise

(12)

where j ∈ [1, N ].
Since PSO operates in RN and each particle i is therefore represented by its

coordinates pi
r ∈ RN , the corresponding binary vector Pi is obtained from each

particle by setting the bits corresponding to positive coordinates in the search
space to 1, and setting the others to 0.

Pi(j) =

{
1 if pi

r(j) ≥ 0
0 otherwise

(13)

The other steps of the algorithm, for example position and velocity update, are
applied to the floating-point vectors pi

r.
The fitness function to be maximized corresponds to the Tc index of the CRS

associated to the particle and is implemented through a CUDA C [1] kernel that
can compute in parallel the fitness values of large blocks of particles. Position
and velocity updates have been parallelized as well.

A buffer has been introduced to store the best subsets (those having the high-
est Tc index) found during the run, and their corresponding fitness (Tc) values.
Thus, at the end of the run, the best CRSs are not only the ones represented by
the last swarm, but also the best ones found during the whole search process,
which are stored in the buffer.

5 Experimental Results

The K-means PSO has been evaluated on a set of meaningful systems described
by Boolean variables. The results have been compared with those achieved by an
exhaustive search, when computationally feasible, and by another hybrid meta-
heuristic, based on genetic algorithms and local search, which we had previously
developed [23]. All the algorithms rely on the same GPU implementation of the
fitness function.

Given the stochastic nature of the two meta-heuristics, 30 independent runs
of the algorithm were executed to assess its performance.

The results are summarized in Table 1. The first case study is a simulation
of a chemical system called Catalytic Reaction System (CatRS), featuring 26
variables. The second one is a stochastic artificial system reproducing a Leaders
& Followers (LF) behavior, described by 28 variables. In the third example,
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denoted as Green Community Network (GCN), the data come from a real world
environment (participation of partners in project meetings) and are described
by 56 variables, a size for which an exhaustive search is unfeasible on a standard
computer, even using GPU parallelization. Therefore, it was analyzed only by
the two meta-heuristics.

Table 1. Results obtained by K-means PSO (K) on three different systems and
comparison with [23] in terms of time and speed-up with respect to an exhaustive
search (E).

System Size N. data Time[s] (E) Time[s] [23] Time[s] (K) Speed-up [23] Speed-up (K)

CatRS 26 751 53 24 6 2.2 8.8

LF 28 150 196 19 2 10.3 98

GCN 56 124 n.a. 71 18 n.a. n.a.

Tests were run on a Linux server equipped with a 1.6 GHz Intel I7 CPU,
6 GB of RAM and a GeForce GTX 680 GPU by NVIDIA.

The parameters regulating the behavior of K-means PSO have been set as
reported in Table 2. They are the ones that led to the best results. Moreover,
φ1, φ2 and χ were obtained considering also the constraints presented in Eqs. 8
and 9.

Table 2. K-means PSO parameter settings. The parameters are defined in Sect. 4.

System s T k C φ1 φ2 χ

CatRS 2000 501 10 20 2.05 2.05 0.73

LF 1000 501 10 20 2.05 2.05 0.73

GCN 2000 2001 10 20 2.05 2.05 0.73

The results of the two metaheuristics have been evaluated both in terms
of quality and of speed-up with respect to an exhaustive search. Quality has
been evaluated, when feasible, counting the number of highest-Tc CRSs detected
by the exhaustive search, but not by K-means PSO. Regarding the large-sized
system, for which the results of the exhaustive search were not available, we have
relied on the opinion of an expert to assess their quality.

The results obtained with the smaller-size systems, for which the comparison
is possible, are almost always the same as those provided by an exhaustive search.
Only at most one out of the top 50 sets was not detected by both metaheuristics,
and we considered this acceptable and more than enough to understand the main
dynamics of the systems. For this reason we were able to compare the results of
the two metaheuristics with those of the exhaustive search.
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The results obtained on the GCN were judged as reasonable by an expert. In
this case, too, the same results were obtained in different runs, with marginal
occasional differences only within the least significant sets.

K-means PSO exhibits both good exploration capabilities, thanks to its nich-
ing behavior, and fast convergence. The latter is probably justified by the nature
of the problem that is such that dominant variables exist, which are repeatedly
present in the relevant sets. In other words, K-means PSO, which converges
extremely fast when solving optimization problems with separable functions, but
struggles when dealing with strongly-dependent variables, can easily find those
variables that are dominant across most groups and rapidly converges onto the
most relevant groups that include them.

This makes it possible for K-means PSO to achieve a significant speed-up with
respect to both the exhaustive search and the hybrid meta-heuristic. Basically,
the lower speed-up of the latter is partially due to the presence of the local search,
which ensures a better exploration of the neighborhoods of the local minima. In
the tests we have made, however, K-means PSO has not suffered from the lack
of such a feature.

It is worth highlighting again that all methods rely on the same GPU imple-
mentation of the fitness function, which means that the observed differences
depend only on the efficiency and complexity of the algorithms and not on their
implementation.

6 Conclusion and Future Developments

Finding hidden relationships between variables in complex systems is a very
relevant, but computationally heavy, task. Evolutionary and swarm intelligence
algorithms are very good candidate solutions for extracting such relationships
using the Relevance Index method, when the size of the system under consider-
ation is large.

The work described in this paper is mainly related with the study of custom
versions of swarm intelligence algorithms to search for relevant sets as precisely
and quickly as possible. In particular we employed K-means PSO for searching
relevant sets in a number of complex systems, comparing the results obtained
with such an algorithm with those obtained by HyReSS, a genetic algorithm-
based metaheuristic we had previously developed [23].

K-means PSO achieves a very good compromise between efficiency and pre-
cision in detecting the relevant sets. Compared to HyReSS, it appears to be
generally quicker but slightly less precise, because of the presence, in the latter,
of a local search step.

As future work we plan to study possible extensions of the method to other
application fields. In particular, we are considering applications, for example in
pattern recognition, in which we foresee that quickly finding most, even if not
all, the relevant sets could be enough to obtain significant results.
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