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Abstract
The Barberton Greenstone Belt hosts abundant struc-
turally controlled gold mineralisation of Mesoarchaean
age. More than 300 gold occurrences have been reported,
although most of the gold production so far (>350 tonnes
Au) has come from a handful of deposits located along
the northern margin of the greenstone belt. Most deposits
are hosted by greenschist-facies metasedimentary and
metamafic rocks, with the notable exception of the
amphibolite-facies rocks at New Consort mine. Mineral-
isation is associated with quartz–carbonate veins that
truncate major compressional structures at the greenstone
belt scale. The age of mineralisation is loosely con-
strained at circa 3080–3030 Ma, based on U–Pb dating of
hydrothermal rutile and titanite. In greenschist-facies
deposits, the ore assemblage is dominated by pyrite and
arsenopyrite, which contain up to thousands of ppm of
‘invisible’ gold, Ni–As–Sb sulphides and native gold. At
New Consort mine, mineralisation includes massive
replacement-style ore and vein-hosted or disseminated
types. Both structural studies in the field and microstruc-
tural observation point to a multistage ore deposition
process, which is reflected in the re-activation of brittle to
ductile structures and the overprinting of sulphide
assemblages. The presence of mass-independently

fractionated S isotopes (D33S = –0.6 to +1.0‰) in pyrite
from Sheba and Fairview mines suggests that hydrother-
mal fluids mobilised S from volcanic and sedimentary
rocks of the greenstone belt and places constraints on the
origin of the Au itself.
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7.1 Introduction

The Palaeoarchaean Barberton Greenstone Belt is host to
some of the earliest known Au mineralisation (Anhaeusser
1976, 1986; de Ronde et al. 1991; Dziggel et al. 2010). The
mineralisation is structurally controlled and occurs in
strongly deformed greenschist- to amphibolite-facies meta-
morphic rocks. Deciphering mechanisms and timing of
mineralisation in the Barberton Greenstone Belt and other
Archaean terrains is important for understanding Archaean
tectonic and hydrothermal processes (Anhaeusser 1986;
Kolb et al. 2015; Sahoo and Venkatesh 2015; Hazarika et al.
2017; Mishra et al. 2017).

Mineralisation in the Barberton Greenstone Belt has
significant economic relevance and, since the discovery of
gold in this area in 1882, more than 350 tonnes of gold have
been extracted (Anhaeusser 1976; Dirks et al. 2009; Pearton
and Viljoen 2017). In plan view, the distribution of the main
deposits reveals a heterogeneous distribution of gold min-
eralisation. Despite the fact that more than 300 deposits and
prospects are known in the greenstone belt, the bulk of the
gold production comes from a handful of mines, namely
Fairview, Sheba, New Consort, Agnes and Princeton mines,
all located in the northern portion of the greenstone belt near
the contact between the Barberton Greenstone Belt and the
Kaap Valley and Stentor plutons (Anhaeusser 1976; Ward
1995, 1999; Dirks et al. 2009) (Fig. 7.1). The fluids
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responsible for mineralisation are believed to have been
low-salinity and H2O-CO2-rich (de Ronde et al. 1992) and,
similar to other orogenic gold deposits, Au is interpreted to
have been transported as complexes of reduced S such as Au
(HS)2

− and AuHS (Pokrovski et al. 2014). Structural and
microtextural evidence convincingly points at multiphase
processes of mineralisation (Agangi et al. 2014; Munyai
et al. 2011; Dziggel and Kisters 2019).

Some aspects of the genesis of this mineralisation are still
controversial, and some of the open questions include the
origin of H2O-CO2 mineralising fluids and, by inference, the
origin of Au itself. Possible sources of fluids and Au include
supracrustal lithologies (volcanic and sedimentary rocks),
felsic intrusions, and the mantle. The mineralisation is
believed to have occurred between circa 3080 and 3030 Ma,
based on rutile and titanite U-Pb ages, but precise timing of
mineral deposition is also uncertain, given the scarcity of
available data (de Ronde et al. 1992; Dziggel et al. 2010;
Dirks et al. 2013).

Several reviews have dealt with gold mineralisation in the
Barberton Greenstone Belt and have mostly focussed on the
meso- to mega-scale structural and metamorphic aspects of
various mines (Anhaeusser 1986; Dziggel et al. 2007;
Pearton and Viljoen 2017; Dziggel and Kisters 2019). Here,
we review some of the main characteristics of gold deposits
in the Barberton Greenstone Belt with an emphasis on
geochemical and microstructural characteristics. We refer to
the mentioned papers for more complete information on the
control of structures and deformation on mineralisation. We
distinguish mineralisation hosted in mostly greenschist-
facies rocks from mineralisation hosted in amphibolite-facies
rocks. We then evaluate different models of genetic mech-
anisms of mineralisation.

7.2 Geological Setting of the Barberton
Greenstone Belt

The Palaeoarchaean Barberton Greenstone Belt is situated in
the eastern part of the Kaapvaal craton, southern Africa
(Fig. 7.1). Its ca. 3550–3220 Ma volcano-sedimentary suc-
cession, which forms the Barberton Supergroup (formerly
Swaziland Supergroup), is preserved in a
southwest-northeast-trending belt surrounded by granitoid
rocks belonging to the trondhjemite-tonalite-granodiorite
(TTG) and granite-granodiorite-syenogranite (GMS) series
(Viljoen and Viljoen 1969; Lowe and Byerly 2007; de Wit
et al. 2019). The supracrustal succession has been subdi-
vided into three main lithostratigraphic units: the Onver-
wacht Group, the Fig Tree Group, and the Moodies Group,
in ascending order (SACS 1980).

The Inyoka–Saddleback Fault System, a southwest to
northeast-trending structure interpreted by some as a suture

zone, separates a northern and a southern terrane of different
age and geochemical characteristics (Kamo and Davis 1994;
Kisters et al. 2003; Lowe and Byerly 2007). The Onver-
wacht Group consists mostly of komatiite, komatiitic basalt
and basalt, with minor felsic volcanic rocks, and has been
dated at circa 3550–3300 Ma in the southern terrane (Kröner
et al. 1996, 2016). North of the Inyoka-Saddleback fault, the
Onverwacht Group is composed of the Weltevreden For-
mation, which contains mafic-ultramafic volcanic rocks and
numerous layered ultramafic complexes (Anhaeusser 2001;
Stiegler et al. 2012). The Fig Tree Group is a largely marine,
northwards deepening succession dominated by turbiditic
greywackes, shales, banded iron formation and cherts (Lowe
1999; Hofmann 2005). The Moodies Group is a shallow
marine to continental succession characterised by
coarse-grained clastic sedimentary rocks, mainly sandstones
and conglomerates, and only minor shale with a minimum
depositional age of 3219 Ma (SACS 1980; Heubeck et al.
2013, 2016; Drabon et al. 2017). The metamorphic grade of
the Barberton Greenstone Belt is generally low but increases
towards the contacts with the surrounding gneiss domes
(Dziggel et al. 2002, 2005; Diener et al. 2005). The structure
of the greenstone belt is rather complex and is dominated by
steeply plunging synforms separated either by thrust faults or
narrow anticlines (Lowe et al. 2012).

The tectonic evolution of the Barberton Greenstone Belt
is complex, and the multiple phases of deformation affecting
these rocks have been described elsewhere (de Ronde and de
Wit 1994; Kamo and Davis 1994; Lowe and Byerly 1999; de
Ronde and Kamo 2000; Lana et al. 2010). According to de
Ronde and de Wit (1994) and de Ronde and Kamo (2000),
four main tectono-metamorphic events affected the green-
stone belt. The first of these events (D1) remains to some
extent enigmatic. D1 occurred between circa 3445 and
3416 Ma and was restricted to Onverwacht Group rocks in
the southern part of the greenstone belt (de Ronde and de
Wit 1994). D1 was coeval with the intrusion of TTGs along
the southern margin of the greenstone belt and with an early
phase of low-pressure amphibolite-facies metamorphism,
with estimated peak conditions of *550 °C and 4.5 kbar
(Cutts et al. 2014).

The 3229–3227 Ma D2 event was responsible for the
main regional strain and affected the entire greenstone belt
(de Ronde and Kamo 2000; Schoene et al. 2008). Event D2
coincided with emplacement of TTG intrusions such as the
3227 Ma Kaap Valley Tonalite, the 3290–3230 Ma Bad-
plaas pluton and the 3236 Ma Nelshoogte pluton (Kamo and
Davis 1994; Kisters et al. 2010; Matsumura 2014). During
this event, the rocks of the lowermost units of the Onver-
wacht Group, the Theespruit and Sandspruit Formations,
experienced high-pressure amphibolite-facies metamor-
phism (Dziggel et al. 2002, 2005; Diener et al. 2005; Moyen
et al. 2006). D2 marked the switch from sedimentation of the
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3260–3230 Ma Fig Tree Group in a relatively deep marine
environment to the *3225 Ma Moodies Group in a shallow
marine to continental environment (de Ronde and de Wit
1994; Kamo and Davis 1994; de Ronde and Kamo 2000;
Kisters et al. 2010; Heubeck et al. 2013). The structures
associated with D2 are truncated by potassic intrusions such
as the 3203 Ma Dalmein pluton in the southern part (Lana
et al. 2010), which places constraints on the end of this phase
of deformation. The tectonic circumstances that gave rise to
the D2 event are controversial and directly mirror the con-
troversy relating to the nature of Archaean tectonics and the
origin of TTG magmas. Some authors interpreted D2 as the
consequence of compression, subduction and accretion of
the southern terrane along the Inyoka-Saddleback Fault
during northwards-directed subduction (Moyen et al. 2006;
Kisters et al. 2010). In this interpretation, the syntectonic
granitoids to the north of the greenstone belt represent the
roots of a volcanic arc. D2 was synchronous with, or
immediately followed by, a period of syn-orogenic extension
and solid-state doming that eventually resulted in the
steepening of fabrics during the orogenic collapse of the belt
(Kisters et al. 2003). Others interpret this deformation as a
result of crustal overturn due to density inversions between
buoyant (partially molten) TTG intrusions and cooler, denser
greenstones (Anhaeusser 1984; Van Kranendonk et al.
2009). These authors argue that the relatively high-pressure
conditions and the low temperature/pressure gradients can be
achieved during sagging of the supracrustal succession.

The later, post-D2 events are less clear as geochronological
constraints are scarce, and deformation gave rise to reacti-
vation of earlier shear zones. The D3 tectonic event appears to
have been related to NW-SE directed compression and
orogen-parallel stretching accommodated by strike-slip shear
zones (de Ronde and de Wit 1994). D3 structural elements
thus parallel those of D2 (de Ronde and de Wit 1994). The
timing of D3 has been constrained at <3126 Ma (de Ronde
and Kamo 2000), although much looser time constraints
(circa 3220–3080 Ma) were inferred for this event by other
authors (de Ronde and de Wit 1994; Kamo and Davis 1994;
Schoene et al. 2008). The D4 tectonic event was characterised
by a switch to transtensional deformation (de Ronde and de
Wit 1994). Geochronological constraints on this event are few
and suggest that D4 occurred at around *3080 Ma, based on
U-Pb ages on hydrothermal rutile from Fairview mine (de
Ronde et al. 1991; de Ronde and de Wit 1994).

Gold mineralisation is interpreted to be associated with
D3 and/or D4 deformation stages. The age of *3080 Ma
(de Ronde et al. 1991), estimated on rutile in an altered,
although not mineralised, sample offers a good indication of
the timing of hydrothermal alteration at Fairview mine.
However, much younger ages (3027 Ma) have been
obtained from titanite associated with sulphide mineralisa-
tion at New Consort mine (Dziggel et al. 2010), and a
maximum age of *3015 Ma was estimated based on the
zircon age of a felsic dyke interpreted to be syn- minerali-
sation at Fairview mine (Dirks et al. 2013).

Fig. 7.1 Geological map of the
Barberton Greenstone Belt and
distribution of the main gold
deposits (modified from de Ronde
et al. 1992). Dashed line indicates
position of Fig. 7.2
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7.3 Greenschist-Facies Gold Deposits

Gold deposits associated with host rocks at greenschist-
facies grade are the most abundant in the Barberton
Greenstone Belt and include the well-studied Sheba and
Fairview mines. The greenschist-facies deposits all share
distinctive alteration characteristics and structural style.
Mineralisation is spatially associated with major D2 com-
pressional structures (Figs. 7.1 and 7.2), although mineral-
ising fluids are interpreted to have moved along later,
extensional faults that crosscut D2 compressional structures
(de Ronde et al. 1991; Dirks et al. 2009, 2013).

Gold mineralisation is hosted by different lithologies,
ranging from metamafic–ultramafic rocks of the uppermost
Onverwacht Group to metasedimentary rocks (greywacke,
shale) of the Fig Tree and Moodies Groups. The Fairview
and Sheba mines are located largely south of the Sheba
Fault, although both mines exploit ore bodies on the north-
ern side of the fault as well. The Sheba Fault has been
interpreted as a north-west verging thrust fault that struc-
turally superposed Fig Tree Group (meta)greywacke and
shale of the Ulundi syncline onto Moodies Group arenites of
the Eureka syncline (Anhaeusser 1976; Ward 1999; de
Ronde and Kamo 2000) (Fig. 7.2). Minor metamafic rocks
of the Onverwacht Group are preserved between the Ulundi
and Eureka synclines as tight antiformal structures made of
talc-carbonate schist of the Zwartkoppie Formation1

(Schouwstra and De Villiers 1998; Schouwstra 1995).
Mineralisation occurs as auriferous quartz-carbonate ±

rutile veins with associated semi-massive replacement sul-
phide bodies developing as part of wall-rock alteration
(Schouwstra 1995). Alteration zones associated with min-
eralisation in mafic lithologies include, from distal to prox-
imal, talc-carbonate, quartz-carbonate, fuchsite-quartz-
carbonate ± sulphides, and fuchsite-quartz-sulphides ±
carbonate (Schouwstra 1995). Sericite is present instead of
fuchsite as the K-mica in the neighbouring greywacke and
shale. Mineralised fractures in the Sheba–Fairview area
extend for tens of metres, trending northeast to east-
northeast, and are arranged in hundreds of metre-scale
fracture zones (Dirks et al. 2009). In microtextural obser-
vations, veins directly associated with mineralisation appear
as dilatant, mostly brittle structures, as demonstrated by
euhedral prismatic quartz growing from the walls inwards
(Agangi et al. 2014) (Fig. 7.3a).

The mineralisation occurs within or around
quartz-carbonate veins that truncate the foliation (Fig. 7.3b,
c). The mineralisation hosted in metapelite and greywacke at
Fairview mine is dominated by arsenopyrite and pyrite, with

minor chalcopyrite, gersdorffite, galena and Sb-sulphides.
Mineralisation hosted in metamafic–ultramafic rocks at
Sheba mine is typically dominated by pyrite and also con-
tains As–Ni-sulphides, chalcopyrite, sphalerite and minor
galena (Fig. 7.3d). Gold occurs in a variety of forms, as
‘invisible’ (or refractory) gold in sulphides, as free gold
grains in quartz-carbonate veins, and as sulphide-hosted
inclusions of native gold (Cabri et al. 1989; de Ronde et al.
1992).

At Sheba and Fairview mines, gold is mostly hosted in
arsenopyrite and pyrite, both as micro-inclusions (Fig. 7.3e)
and as finely dispersed, sub-microscopic Au (refractory
gold). The concentrations and distribution of invisible Au
and other trace elements in sulphides have been studied by
different methods, including electron microprobe (EPMA),
secondary ion mass spectrometry (SIMS) and proton-
induced X-ray emission (PIXE) (Cabri et al. 1989; Agangi
et al. 2014; Altigani et al. 2016). These studies found that Au
concentrations are extremely heterogeneous and vary
from <300 ppm (the EPMA detection limit in Cabri et al.
1989 study) to 4400 ppm Au even in a single arsenopyrite
grain from Sheba mine, and up to 1020 ppm have been
measured in pyrite at Sheba mine. In the Au versus As
diagram (Fig. 7.4), pyrite compositions from mineralised
samples at Sheba and Fairview mines plot both above and
below the Au-saturation line of Reich et al. (2005). This is
compatible with the presence of Au in different oxidation
states and crystallographic positions, namely Au+ included
in the crystal lattice and Au0 in gold inclusions. Mapping of
trace element distributions at the micrometre scale has
highlighted complex intragranular textures that indicate
multiple phases of growth, resorption and recrystallisation of
sulphide minerals (Fig. 7.5; Cabri et al. 1989; Agangi et al.
2014, 2015).

The largely refractory nature of gold (below the zone of
surface oxidation) in these deposits requires the sulphide ore
minerals to be oxidised during the process of extraction in
order to liberate the gold. In the past, this was achieved by
roasting, with consequent production of large amounts of
SO2 gas and volatile As oxides, a process that posed a
considerable environmental hazard. Oxidation is now carried
out through biogenic means using sulphide-oxidising bac-
teria, such as Thiobacillus ferrooxidans (Barberton Mines
2010).

7.4 Amphibolite-Facies Gold Deposits—The
New Consort Mine

The New Consort mine (Figs. 7.1 and 7.2) represents an
exception in the Barberton Greenstone Belt in being one of
the few gold deposits hosted in amphibolite-facies rocks. It
is located north of Sheba and Fairview mines and occurs in

1The Zwartkoppie Formation is not recognised by SACS and its use is
informal.
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the hanging wall of the contact between greenstone
lithologies and the Stentor Pluton. Mineralisation is hosted
by upper greenschist- to upper amphibolite-facies rocks and
is associated with the Consort Bar, a mylonitic shear zone
separating (ultra)mafic rocks and chert of the Onverwacht
Group from clastic sedimentary rocks of the Fig Tree Group
(Otto et al. 2007; Munyai et al. 2011). Mineralisation is
found in three bodies, the Seven Shaft Shoot, Isaura Shoot,
and Prince Consort Shoot. The style of mineralisation in
underground workings includes massive replacement-style
ore and vein-hosted or disseminated mineralisation (Otto
et al. 2007).

Two phases of mineralisation have been identified: the
early phase in the footwall, characterised by löellin-
gite-pyrrhotite ore assemblages and a high-temperature
alteration calc-silicate assemblage composed of garnet,
clinopyroxene, hornblende, K-feldspar, quartz, calcite and

biotite (Dziggel et al. 2007; Otto et al. 2007; Dziggel and
Kisters 2019). Pressure-temperature estimates for first-phase
alteration assemblages in metamafic and intercalated
metasedimentary rocks are circa 600–700 °C and 6–8 kbar
(Otto et al. 2007).

The second, and main, phase of mineralisation has been
attributed to oblique shear zones crosscutting the Consort Bar
and was associated with the development of Cr-muscovite-
K-feldspar-plagioclase-quartz or Cr-muscovite-tourmaline-
plagioclase-rutile as typical alteration assemblages proximal
to ore. This second mineralisation event occurred at temper-
atures ranging from 520 to 600 °C and pressures between 1
and 3 kbar; the ore assemblages vary from arsenopyrite-
pyrrhotite to arsenopyrite-pyrrhotite-chalcopyrite-löellingite
with increasing depth and temperature (Dziggel et al. 2006,
2010; Otto et al. 2007). Shearing was accompanied by
emplacement of pegmatite that has been dated at

Fig. 7.2 a Map of the Eureka
and Ulundi synclines and location
of gold deposits (modified from
Dirks et al. 2009), b cross
sections of Fairview and Sheba
mines (modified from Barberton
gold mines 2014)
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3040 ± 84 Ma (Rb–Sr whole-rock; Harris et al. 1995).
Overall, textural relations and thermometric estimates indicate
a clock-wise P-T path with a near-isobaric decompression to
520–600 °C and 1–3 kbar followed by near-isobaric cooling
(Dziggel et al. 2006).

Munyai et al. (2011) and Dirks et al. (2013) focussed
their observations on gold-associated fractures on surface
exposure at, and in the vicinity of, New Consort mine. In

stark contrast with what has been described earlier, they
described gold mineralisation associated with low-
temperature alteration assemblages and brittle deformation
that developed during late-stage extensional tectonics. Thus,
mineralisation at New Consort mine and surrounding areas is
multiphase and may have formed at very different temper-
ature conditions at different times (Dziggel and Kisters
2019).

Fig. 7.3 Ore microtextures of samples from Sheba and Fairview
mines. a Quartz-carbonate vein in chert, Fairview mine. Pyrite and
arsenopyrite are present in the host rock. Note quartz crystals growing
perpendicular to the vein walls, indicating dilatant behaviour of the
cracks. b, c Carbonate-quartz veins in metagreywacke at Fairview
mine. Arsenopyrite and pyrite are visible in both the vein and the
alteration halo. Foliation is indicated by dashed lines. d Pyrite,

sphalerite and chalcopyrite in metamafic schist at Sheba mine.
e Pyrite-arsenopyrite ore with micro-inclusions of native gold and
chalcopyrite, Fairview mine. All images transmitted polarised light,
except for a and c (crossed polarisers in lower half), d (reflected light in
right-hand half) and e (reflected light). Abbreviations: Asp arsenopy-
rite, cb carbonate, Ccp chalcopyrite, Ms K-mica, Py pyrite, Qtz quartz,
Sp sphalerite
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7.5 Fluid Inclusion and Mineral Stable
Isotope Compositions

Fluid inclusion studies from the major deposits indicate
low-salinity (NaCl eq = 5–6 wt%), H2O-CO2-rich fluids,
and homogenisation temperatures in the T = 290 to 310 °C
range (de Ronde et al. 1992). As-in-arsenopyrite geother-
mometry at Fairview mine indicates temperatures
between <300 and 400 °C (Agangi et al. 2014). These
temperature estimates are in broad agreement with the
greenschist-facies alteration assemblages. Based on O, H
and C isotope analyses of mineralisation-related quartz and
carbonate, the ore fluid would have had narrow ranges of
d18O (+4.7 to + 5.8‰), d13C (−4.5 to −2‰) and dD (−35 to
−41‰), recalculated based on fluid-mineral equilibria at
300 °C (de Ronde et al. 1992). Hydrothermal sulphides have
slightly positive d34S values (+1.2 to +3.9‰) for pyrite and
arsenopyrite (Kakegawa and Ohmoto 1999). Overall, the
fluid inclusion compositions and mineral stable isotope
values indicate distinct homogeneity of mineralising fluids at
the greenstone belt scale.

Despite the complexity of sulphide textures and trace
element compositions, d34S values are confined to a narrow
range of moderately positive values (de Ronde et al. 1992;
Kakegawa and Ohmoto 1999) which limits the use of S
isotopes as tracers of the fluid source. As a further compli-
cation, d34S values are affected by a complex range of

processes during S transport and precipitation and associated
redox reactions that can have overlapping effects. However,
recent developments in S isotope studies have revealed that
sulphate and sulphide minerals in the Archaean and early
Palaeoproterozoic bear mass-independently fractionated S
isotopes (MIF-S, indicated by the notation D33S = d33S
−0.515·d34S) (Farquhar et al. 2000; Ono et al. 2003; John-
ston 2011). MIF-S signals are interpreted to be the footprint
of photolytic reactions caused by UV irradiation of S gases
(such as SO2) in an O2-free Archaean atmosphere, which
would produce sulphide with D33S > 0 and sulphate with
D33S < 0. Once produced, MIF-S is very robust and only
slightly affected by most mass-dependent fractionation-
inducing abiogenic and biogenic processes so that it can
be used as a tracer of S processed in the atmosphere.

In situ multiple S isotope analyses of pyrite obtained by
ion microprobe (SIMS) from samples of Fairview and Sheba
mines revealed MIF-S with D33S deviating significantly
towards both positive and negative values (D33S = −0.6 to
+1.0‰) (Agangi et al. 2016). In the D33S versus d34S plot,
these values match the distribution peak of S compositions
of pyrite and whole-rock analyses of the entire
volcano-sedimentary succession and suggest derivation of S
from the Barberton Supergroup (Fig. 7.6). Given the vari-
ability in D33S, S may have been scavenged from different
rock types and then been transported by hydrothermal fluids
responsible for Au mineralisation. More specifically, nega-
tive D33S values have been measured in sulphides from
volcanic-hosted massive sulphide deposits (VHMS) of the
Bien Venue deposit of the Fig Tree Group and hydrother-
mally altered mafic and ultramafic rocks of the Komati
Formation, Onverwacht Group (Montinaro et al. 2015).
These rocks are interpreted to have derived their S isotopic
signature from interaction with heated seawater and to have
inherited the typically negative D33S values of Archaean
seawater sulphate (Bao et al. 2007; Montinaro et al. 2015).
They are thus possible sources of some S (and Au) for the
sulphides at Sheba and Fairview mines. Positive D33S and
d34S values were measured in pyrite from chert, conglom-
erate and dolomite from the Onverwacht and Fig Tree
Groups, as well as from bulk shales from the Fig Tree Group
(Grosch and McLoughlin 2013; Roerdink et al. 2013;
Montinaro et al. 2015). In particular, some shale samples and
pyrite from barite-free samples show a steep negative
D33S/d34S slope that resembles the distribution of pyrite
analyses at Sheba-Fairview. Irrespective of the origin of this
negative trend, which may result from mixing of different S
components or represent a primary photolytic signal (Roer-
dink et al. 2013), the similarity to the values observed for
hydrothermal pyrite at Sheba-Fairview mines implies that
similar rocks may be a good source of S in the Au deposits
(Fig. 7.6b).

Fig. 7.4 Plot of Au versus As content of pyrite and arsenopyrite grains
from Fairview and Sheba mines (data from Agangi et al. 2014 and
Cabri et al. 1989). Gold saturation line in arsenian pyrite from Reich
et al. (2005)
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7.6 Discussion and Conclusions

7.6.1 Sources of S, Fluids, and Gold: Internal
or External to the Greenstone Belt?

The origin of mineralising fluids and Au in Archaean
greenstone belts has proved to be elusive, and the various
hypotheses proposed reflect the difficulty in the identification
of such sources in structurally-controlled Au deposits, both
in Precambrian and Phanerozoic ages (Hronsky et al. 2012;
Gaboury 2013; Goldfarb and Groves 2015). Possible sources
of sulphur in Archaean orogenic gold deposits include
supracrustal rocks (Groves et al. 2003; Phillips and Powell
2009; Tomkins 2013), hydrothermal systems related to
felsic magmatism (Salier et al. 2005; Doublier et al. 2014),

the lower crust, and the mantle (Hronsky et al. 2012; Fu and
Touret 2014).

The hypothesis of a magmatic origin for mineralising
fluids has been proposed in several cases of Archaean
structurally-controlled Au deposits, such as in Neoarchaean
Au deposits of Western Australia, based on the presence of
coeval magmatism (Wang et al. 1993; Doublier et al. 2014),
trace element signature of accessory minerals (Bath et al.
2013), and Pb and noble gas isotope studies (Qiu and
McNaughton 1999; Kendrick et al. 2011). A causal rela-
tionship between plutonism and Au mineralisation in the
Barberton Greenstone Belt has been proposed mostly based
on spatial distribution (Anhaeusser 1976, 1986). In the
Barberton Greenstone Belt, mineralisation post-dates the
main phase of potassic granite plutonism, which caused
the emplacement of extensive batholiths, such as the

Fig. 7.5 BSE image and
Ni-Co-Pb X-ray maps of pyrite
from Sheba mine. Abbreviations:
Ccp chalcopyrite, Gn galena, Py
pyrite
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Fig. 7.6 Comparison of S
isotope analyses of pyrite
associated with gold
mineralisation at Sheba and
Fairview mines, and pyrite and
barite from different units of the
Barberton Greenstone Belt.
a D33S versus d34S plot of pyrite
and barite from different units of
the Barberton Greenstone Belt
(n = 1680) and density
distribution of pyrite data. b D33S
versus d34S plot of pyrite from
Au-mineralised samples from
Sheba and Fairview mines and
some representative rocks of the
Barberton Greenstone Belt.
c Histogram of D33S of pyrite
from Sheba and Fairview mines
compared with Barberton
Greenstone Belt pyrite and barite.
Data from: (1) Philippot et al.
(2012), (2) Montinaro et al.
(2015), (3) Roerdink et al. (2012),
(4) Bao et al. (2007),
(5) Roerdink et al. (2013),
(6) Grosch and McLoughlin
(2013), (7) Agangi et al. (2016)
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3160–3090 Ma Mpuluzi Batholith (Kamo and Davis 1994;
Murphy 2015) and the circa 3067 Ma Stentor pluton (Kamo
and Davis 1994), and was accompanied by emplacement of
small granitic dykes (porphyries) observed in different gold
mines. However, the role of these dykes in the mineralising
process is not clear. A magmatic source is expected to have
0 ± 0.2‰ D33S (Farquhar et al. 2000) so that the MIF-S
measured at Sheba and Fairview mines requires the
involvement of atmospherically processed S (Fig. 7.6b).

A mantle derivation of CO2-bearing mineralising fluids
has been proposed in recent models that aimed at linking the
presence of various types of gold deposits with the presence
of ‘‘fertile’ metasomatised lithospheric mantle (Hronsky
et al. 2012; Fu and Touret 2014). This is particularly
applicable in the presence of mafic mantle magmas coeval
with mineralisation (de Boorder 2012). However, in the
Barberton Greenstone Belt magmas coeval with minerali-
sation are felsic, and the marked MIF-S also argues against
such a deep origin of fluids.

Homogeneity of fluid inclusion salinity and elemental
compositions (H2O, CO2, CH4), stable isotope compositions
of minerals and temperature estimates (in greenschist-facies
deposits) suggest a homogeneous source of mineralising
fluids at the greenstone belt scale. This source has been
identified as external to the Barberton Greenstone Belt (de
Ronde et al. 1992). This homogeneity of major element and
isotope compositions does not imply constant content of
metals, as indicated by zoning of sulphide minerals
(Fig. 7.5). Otto et al. (2007) estimated that mineralisation at
New Consort mine occurred at peak conditions in the Fig
Tree sedimentary rocks forming the hanging wall of the
Consort Bar, whereas the Onverwacht Group rocks had
already experienced metamorphic peak and were on their
retrograde path. They concluded that, as a consequence, the
host rocks are unlikely sources of fluids (also see Dziggel
and Kisters 2019).

In apparent contrast, multiple S isotope analyses with
non-zero MIF-S values imply an atmospheric source, and
heterogeneous D33S values suggest that a variety of rocks
with different D33S acted as S sources for mineralising fluids.
Similar results have been obtained from multiple S isotope
analyses of pyrite and pyrrhotite of various Neoarchaean
gold deposits of the Yilgarn Craton of Western Australia
(Selvaraja et al. 2017). These authors underlined the
importance of shales as sources of gold in Archaean struc-
turally controlled gold deposits. A sedimentary rather than
igneous source for Barberton gold would be in agreement
with low Au contents of komatiites from the Barberton
Supergroup (Hofmann et al. 2017).

The microscale heterogeneity of D33S values implies that
the ore-forming fluid was isotopically heterogeneous, and
variable MIF-S values were not completely homogenised
during hydrothermal fluid flow. The isotopic heterogeneity is

matched by trace element heterogeneity, which appears as
growth zones, recrystallisation domains and veinlets, a
characteristic also observed in several other orogenic gold
deposits of Archaean and Palaeoproterozoic age (Morey
et al. 2008; Fougerouse et al. 2016). This evidence is com-
patible with a pulsating fluid flow rather than a single large
event and suggests that single fluid pulses had a very loca-
lised effect in terms of ore deposition. This is similar to what
is observed in orogenic gold deposits and typically attributed
to periodic fluid pressure build-up and earthquake-related
release, also known as fault-valve mechanisms (Sibson et al.
1988).

7.6.2 Timing of Gold Mineralisation
in the Barberton Greenstone Belt
and Tectonic Context

The age of mineralisation in the Barberton Greenstone Belt
is still rather poorly constrained, namely because of a dearth
of available data (Fig. 7.7). At Fairview and Sheba mines,
porphyry dykes crosscutting mineralisation give good esti-
mates of minimum mineralisation ages. One of these dykes
was dated at 3126 Ma (U-Pb on zircon; de Ronde et al.
1991). A rutile separate extracted from a pre-mineralisation,
altered dyke at Fairview was dated at 3084 Ma (de Ronde
et al. 1992), which may be a good estimate for mineralisa-
tion. However, recent U-Pb zircon dating of two mineralised
dykes at Golden Quarry, near Sheba mine, has been inter-
preted to indicate mineralisation at circa 3015 Ma (Dirks
et al. 2013). At New Consort mine, a 3027 ± 7 Ma U-Pb
age on titanite (Dziggel et al. 2006) associated with
main-stage mineralisation and a whole-rock Rb-Sr age of
3040 ± 84 Ma on a syn-mineralisation dyke (Harris et al.
1995) may indicate that mineralisation was caused by a
protracted or episodic tectonic activity that lasted for several
tens of million years. The multiphase nature of mineralisa-
tion at New Consort mine seems to support such a conclu-
sion (Dziggel et al. 2007, 2010; Dziggel and Kisters 2019).

The tectonic regime in operation in the Kaapvaal craton at
the time of Au mineralisation are inferred from a fragmen-
tary record, and a complete picture has still to emerge. At the
craton scale, mineralisation occurred shortly after the final
consolidation of the Kaapvaal craton and at the beginning of
an extension phase that led to bimodal volcanism at circa
3074 Ma (Dominion Group, Armstrong et al. 1991) in the
central part of the craton and at 2980 Ma to the southeast
(Nsuze Group, Hegner et al. 1984).

In the eastern part of the craton, felsic magmatism is
indicated by emplacement of the Sinceni granite in Swazi-
land at circa 3070 Ma (Maphalala and Kröner 1993).
A continent-wide felsic magmatic event at circa 3070 Ma is
indicated by the abundance of detrital zircons of this age in
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the Witwatersrand and Pongola Supergroups (Kositcin and
Krapez 2004; Wilson and Zeh 2019). At the same time in the
north of the Kaapvaal craton, volcanic rocks and sedimen-
tary rocks of the Murchison Greenstone Belt, such as the
Weigel Formation and MacKop conglomerate, were depos-
ited, possibly starting from circa 3090 Ma in what is inter-
preted as a convergent setting (Poujol et al. 1996). Following
this magmatic event, volcanic rocks of the Rubbervale
Formation in the Murchison Greenstone Belt and Rooiwater
granitoids were emplaced at circa 2970 Ma. The emplace-
ment of these volcanic rocks is taken as evidence of crust
formation in an arc environment related to the accretion of
the northern part of the Kaapvaal craton, the Pietersburg
block, to the Witwatersrand block and collision at that time
(Zeh et al. 2013).

Gold mineralisation in the Barberton Greenstone Belt is
coeval with the tectono-magmatic event related to an
extension that shortly followed the final phase of stabilisa-
tion of the central Kaapvaal craton. Greenstone gold min-
eralisation is frequently associated with the latest stage of
stabilisation of cratons and can be related to the switch
between compression-collision and extensions, when
high-angle extensional faults allow deep fluids to flow across
the crust (Goldfarb and Groves 2015; Groves et al. 2000).
Intriguingly, the available ages for mineralisation partly
overlap with Re–Os age determinations of gold and detrital
pyrite grains from the Vaal Reef of the Witwatersrand basin
(circa 3030 ± 20 Ma, Kirk et al. 2002), the largest gold
deposit in the world (Frimmel this volume). Based on this
age and an unradiogenic initial 187Os/188Os ratio of 0.109,
Kirk et al. (2002) concluded that the Witwatersrand gold was
eroded from a mantle-derived mafic-ultramafic source rock,
although the specific origin of this detrital gold could not be
identified. Therefore, gold mineralisation preserved in the

Barberton Greenstone Belt may have formed as part of this
major crust- and Au-forming event, of which it would rep-
resent but a remnant.
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