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Abstract. We present constructions of CPA-secure (leveled) homo-
morphic encryption from learning with errors (LWE) problem. We
use the construction introduced by Gentry, Sahai and Waters ‘GSW’
(CRYPTO’13) as building blocks of our schemes. We apply their approx-
imate eigenvector method to our scheme. In contrast to the GSW scheme
we provide extensions of the (leveled) homomorphic identity-based
encryption (IBE) and (leveled) homomorphic attribute-based encryption
(ABE) on the multi-identity and multi-attribute settings respectively. We
realize the (leveled) homomorphic property for the multi-party setting
by applying tensor product and natural logarithm. Tensor product and
natural logarithm allow to evaluate different ciphertexts computed under
different public keys. Similar to the GSW scheme, our constructions do
not need any evaluation key, which enables evaluation even without the
knowledge of user’s public key.

1 Introduction

Since the proposal of public key cryptography (PKC), construction of an effi-
cient encryption has always been interesting and challenging problem. The first
efficient constructions were Boneh-Franklin identity-based encryption (IBE) [8]
and Cock’s IBE [20]. The former uses pairing over elliptic curve and the later
was based on quadratic residuosity. After years when lattices were found useful
to design post-quantum constructions, Gentry et al. [22] proposed new possi-
bility to design IBE from lattices. The topic of IBE has been widely studied in
cryptography and various possibilities on it have been explored. Attribute-based
encryption (ABE) is a special form of IBE, where identities are fine grained and
replaced by particular attributes of the users. Homomorphic encryption [21] is
another special encryption which has been studied parallel to ABE and serves
various useful application in cryptography. In a wide review of PKC of last decade
these topics namely IBE, ABE, homomorphic encryption, lattice-based encryp-
tion have gained much attentions as they cover a major section of recent research
in PKC. Since the last couple of years researchers have focused to achieve
mixed functionality by combining two or more properties in a single protocol.
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In this paper we achieve compact encryption schemes by combining functional-
ities of above crucial notions. Below we discuss each individual topic with their
state of art.

Identity-Based Encryption. An identity-based encryption was introduced by
Shamir [38] and it allows users to send encrypted messages knowing only the
recipient’s identity. Practical implementations were proposed only many years
later. The first IBE was given by Boneh and Franklin [8] and since then it got a
lot of attention from the cryptographic community. The first construction using
lattices was given by Gentry et al. [22]. Other IBE construction were presented
in [1,2,15,34] and proved secure in the standard model using LWE assumption.
Gentry et al.’s construction [23] allows to construct a fully homomorphic identity-
based encryption which is also secure under the LWE hardness problem. The
shortcoming of an IBE scheme is that it cannot have a unique identifier for each
person. Usually users are identified by their attributes. This leads to the next
cryptographic construction, called attribute-based encryption. In a nutshell, an
attribute-based encryption represents a generalization of an IBE scheme, since
in an IBE scheme ciphertexts are encrypted under one attribute, the identity.
In contrast, an attribute-based encryption provides a scheme where ciphertexts
are associated with many attributes. In the next paragraph we give an overview
of this scheme.

Attribute-Based Encryption. An attribute-based encryption (ABE) scheme
that allows fine-grained access control on encrypted data, was introduced by
Sahai and Waters [37]. The idea of an ABE is to associate ciphertexts and private
keys with sets of descriptive attributes such that the decryption is only possible
if the overlap of these two sets is sufficient. There are two flavors of an attribute-
based encryption, a key-policy ABE (KP-ABE) and a ciphertext-policy ABE
(CP-ABE). A key-policy ABE handles with ciphertexts which are annotated with
attributes while private keys which are associated with certain access structures.
The reason for these access structure is to specify which ciphertexts can be chosen
to be decrypted by user. The other ABE flavor, a ciphertext-policy model was
introduced by Bethencourt et al. [6] and by Cheung and Newport [17]. A work
that analyzes the first expressive construction was presented by Goyal et al.
[25] in the standard model. Other standard model CP-ABE constructions were
provided by Waters [41] and Lewko et al. [28]. In CP-ABE scheme attribute sets
are assigned to private keys, where the sender specifies an access policy such that
receiver’s attribute set can comply with it. Attrapadung et al. [5] introduced
an ABE scheme with constant-size ciphertexts. Goyal et al. [26] generalized
those techniques from [37] and introduced a new technique where user’s key
is associated with a tree-access structure and the leaves are associated with
attributes. User is able to decrypt a ciphertext if the attributes associated with
a ciphertext satisfy key’s access structure. This technique differs from secret-
sharing schemes by the fact that any communication between different parties is
forbidden. An ABE scheme which allows a group of authorities to monitor only
a certain subset of attributes was developed by Chase [16]. This multi-authority
ABE construction allows to corrupt any number of attribute authorities but
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guarantees security of encryption as long as not all required attributes can be
obtained from those corrupt authorities. The first ABE construction based on
lattices was introduced by Boyen [10]. Since these both discussed encryption
flavours provide attractive features for security issues of cloud computing, we
recall in the following paragraph the motivation of cryptographic applications in
cloud computing.

Homomorphic Encryption. Our paper handles with leveled homomorphic
encryption which represents a meaningful field of fully homomorphic encryp-
tion. The latter had an enormous development in recent years and became an
attractive cryptographic tool due to its functionality which allows to evaluate
certain computations on encrypted data sets. Gentry [21] introduced the first
fully homomorphic encryption scheme based on cryptographic assumptions. His
construction is based on the hardness of problems defined on ideal lattices, which
are not deeply and well-studied yet. The benefit of using these ideal lattices is
that they support addition and multiplication of homomorphic encryption. Other
fully homomorphic encryption schemes which are not based on lattices but relied
on ideals in rings were presented in [14,39,40]. Brakerski and Vaikuntanathan
[13] presented a fully homomorphic scheme based on a well-studied assumption
- called the learning with errors assumption (LWE). A comparatively simple
fully homomorphic encryption scheme also based on LWE problem has been
presented by Gentry et al. [23]. They presented a new technique which they
called approximate eigenvector method where homomorphic addition and multi-
plication are provided by simple matrix addition and multiplication. In contrast
to previous fully homomoprhic schemes, Gentry et al.’s construction does not
require any evaluation key and evaluation can even be calculated without know-
ing user’s public key. This feature allowed the authors to construct the first fully
homomorphic identity-based encryption.

Lattice-Based Encryption. Lattice-based cryptography developed rapidly
and became a significant part of cryptographic primitives in the last few years.
Cryptosystems based on the hardness of lattice problems became so powerful
because of their provable security guarantees, simplicity, potential efficiency and
their security against quantum attacks. This new kind of cryptography which
represents a part of post-quantum cryptography, was invented by the break-
through results of Ajtai [4] in 1996. There are so far several constructions of
lattice-based primitives, such like one-way functions [31], collision resistant hash
functions [4], signatures [9], public-key encryption [35,36], encryption for thresh-
old functions [3], identity based encryption [15,22], lossy trapdoor functions [22].
Agrawal and Boyen [2] presented an IBE construction based on hard problems
in lattices in the standard model. The construction is anonymous, which means
that it is usable for searching on encrypted data because the ciphertext does not
reveals the identity of the recipient. The most of these cryptographic applica-
tions [2,3,22,36] are based on the presumed hardness of LWE (Learning With
Errors) problem. One of the connections between lattices and LWE is given by a
polynomial-time quantum algorithm that solves standard lattice problems, given
access to an oracle that solves the LWE problem. There are other algorithms
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which run in exponential time, e.g. the Blum et al. [7], Micciancio and Voulgaris
[32] algorithms are the best known algorithms for solving LWE problem which
run in time 2O(n). Most of the cryptosystems based on lattices [2,3,22] rely on
the Learning With Errors (LWE) problem which was introduced by Regev [36].
Before we can present our contribution we recall shortly the basics of identity-
based encryption and attribute-based encryption as it takes an important part
of our underlying work.

Cloud computing. Cloud computing allows users to use big data storage and
computation capabilities at a very low price. Since its invention, cloud computing
became an important application for the recent cryptographic protocols. Storing
data on a cloud system enables users to reduce purchase and maintaining cost of
computing and storage tools which attracted a lot of attention from computer
users. When personal and confidential data is outsourced to a cloud server there
is a need to guarantee the customers that their data will not be watched by
anybody. Therefore cryptographic encryption became a crucial tool in cloud
security. Distributing the role and responsibility of a single party involved in a
cloud application, allowed to improvements for the cloud security. The idea of
distributing the power of a single party under multiple parties in a multi-party
protocol has been developed by Kamara et al. [27]. López-Alt et al. [30] presented
a multi-key fully homomorphic encryption from the NTRU encryption scheme
that allows computation of ciphertexts under different unrelated keys. In the
following paragraph we present our main contribution which encompasses the
aforementioned cryptographic constructions and we suggest how to apply our
construction to cloud computing.

Contribution. In contrast to the scheme in [23] which introduced a single-
authority leveled homomorphic attribute-based encryption (FHABE) and single
identity-based encryption (FHIBE), we present in our work two constructions
employing multiple authorities in case of attribute-based encryption or multiple
identities in case of identity-based encryption where a ciphertext is encrypted
under different public keys. The construction in [23] is advantageous in com-
parison to previous fully homomorphic encryption [12] which required existence
of evaluation keys to evaluate several ciphertexts. This is also an advantage of
our scheme, because our evaluator can execute homomorphic operations without
using any evaluation key. Our scheme presents an alternative construction of a
leveled homomorphic IBE and leveled homomorphic ABE schemes employing
multiple identities. In addition to the technique from [23] we recall the well-
known tensor product in order to allow the homomorphic encryption which sup-
ports multiplication operations of different ciphertexts using multiple identities
in case of IBE scheme and multiple authorities in case of ABE scheme. In compar-
ison to the López-Alt et al. work [30] which provided a multi-party construction,
we introduce a new technique for the addition of ciphertexts without use of eval-
uation keys, which makes our construction more advantageous than the scheme
in [30].
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Related Work. The first multi-key fully homomorphic encryption introduced
by López-Alt et al. [30] relies on a non-standard assumption, called the Deci-
sional Small Polynomial Ratio assumption and employs evaluation keys during
the evaluation process. Clear and McGoldrick [18] introduced the first multi-
identity and multi-key leveled FHE and multi-identity fully homomorphic IBE
(FHIBE) scheme secure under the hardness of learning with errors assumption.
They presented a new compiler, which converts a single-identity FHIBE scheme
into a multi-identity FHIBE scheme. Their technique involves a masking system
which makes the computations more difficult than in case of a single-identity
FHIBE. In their later work, Clear and McGoldrick [19] presented a pure fully
homomorphic attribute-based encryption scheme which is the first achievement
without using indistinguishability obfuscation. However they couldn’t achieve a
pure fully homomorphic multi-attribute based encryption scheme. We note that
we do not claim achievement of pure fully homomorphic property, but we claim
achievement of homomorphism according to the multiplication of ciphertexts
using the new mathematical constructs such like tensor product and natural log-
arithm. The latter guarantees that the compactness property of the evaluated
ciphertext keeps preserved. In contrast to the construction in [18], our work pro-
vides a simple and alternative construction of multi-identity homomorphic IBE
scheme and a new construction of multi-authority leveled homomorphic ABE
using the natural logarithm as an auxiliary for the homomorphic evaluation.
Brakerski et al. [11] showed that a cross-evaluation of attributes is possible, such
that the size of the ciphertext remains independent of attributes. Mukherjee and
Wichs [33] showed how to homomorphically evaluate data which as encrypted
under different public keys.

2 Preliminaries

In this section we recall learning with errors problem and the flattening technique
from [23]. Other preliminaries are provided in the appendix.

Definition 1 (LWE Problem). For an integer q and error distribution χ, the
goal of LWEq,χ in n dimensions problem is to find s ∈ Z

n
q with overwhelming

probability, given access to any arbitrary poly(n) number of samples from As,χ

for some random s.

In matrix form this problem looks as follows: collecting the vectors ai ∈ Z
n
q into

a matrix A ∈ Z
n×m
q and the error terms ei ∈ Z and values ti ∈ Zq as the entries

of the m-dimensional vector t ∈ Z
m
q we obtain the input A, t = Ats+e mod q.

2.1 Flattening Ciphertexts

In this paragraph we recall the technique from [23] which keeps ciphertexts
strongly bounded. It was used to realize the first leveled homomorphic identity-
based and leveled homomorphic attribute-based encryption as showed in [23].
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Using transformations from [13], vectors can be modified without affecting dot
products.

We assume two vectors a , b ∈ Z
k
q and set l = �log2 q� + 1 and N = k · l.

Let BitDecomp(a) be the N -dimensional vector (a1,0, . . . , a1,l−1, . . . , ak,0, . . . ,
ak,l−1), where ai,j is the j-th bit in ai’s binary representation. For some vector
a ′ = (a1,0, . . . , a1,l−1, . . . , ak,0, . . . , ak,l−1), let

BitDecomp−1(a ′) =

⎛
⎝

l−1∑
j=0

2j · a1,j , . . . ,

l−1∑
j=0

2j · ak,j

⎞
⎠

be the inverse of BitDecomp, which is well defined. It means that even if the
input is not a bit-vector, the inverse is well-defined.

Let Flatten(a ′) = BitDecomp(BitDecomp−1(a ′)) be a N -dimensional bit
vector. For a matrix A, let BitDecomp(A), BitDecomp−1(A), Flatten(A) being
applied to each row of A. Let Powerof2(b) = (b1, 2b1, . . . , 2l−1b1, . . . , bk, 2bk, . . . ,
2l−1bk). Observe following properties for any N -dimensional a ′:

〈BitDecomp(a , Powerof2(b))〉 = 〈a , b〉
〈a ′, Powerof2(b)〉 =

〈
BitDecomp−1(a ′, b)

〉
= 〈Flatten(a ′), Powerof2(b)〉 .

The leveled homomorphic encryption (LHE) scheme from [23] works as fol-
lows. For suitable parameters q, n,m = O(n log q) the LWE instance consists of
a m × (n + 1) matrix A, s.t. there is a vector s ∈ Z

n+1
q , where the first entry

is 1 and e = A · s is a small error vector. We assume that A is public and s is
secret. A ciphertext C encrypts μ if C · v = μv + e , where v is a N -dimensional
secret key. To decrypt message μ, the i-th row Cidi

is extracted from C and
x ← 〈Cidi

, v〉 = μvi + ei computed. The vector v is called approximate eigen-
vector. Let v = Powerof2(s), which is a vector of dimension N = (n + 1) · l for
l = �log2 q� + 1. It holds: Flatten(C) · v = C · v .

To encrypt a message μ ∈ Zq, a random matrix R ∈ {0, 1}N×m is generated
and C = Flatten(μ · IN + BitDecomp(R · A)) computed. Note that Flatten
operation does not affect the product with v , i.e.

C · v = μ · v + BitDecomp(R · A) · v = μ · v + R · A · s = μ · v + small.

3 Leveled Homomorphic Multi-identity-Based
Encryption

Intuition. As mentioned before, the first leveled homomorphic multi-identity-
based encryption scheme was introduced by Clear and McGoldric [18]. The
idea is to extend the single-identity setting to the multi-identity setting, such
that each ciphertext encrypts a different message under a different identity. To
enable the evaluation of different ciphertexts, we propose a new technique using
the already presented mathematical tool, “tensor product” for multiplication
of those ciphertexts. In this section we present the compilation of our leveled



Multi-party (Leveled) Homomorphic Encryption 77

homomorphic multi-identity-based encryption (LHMIBE) from LWE-based IBE
scheme, where the ciphertexts are computed on different identities and evalua-
tion procedure calculates a function on input of these ciphertexts. We provide
the syntax of our LHMIBE scheme in the following definition.

Definition 2 (LHMIBE). A leveled homomorphic multi-identity-based encry-
ption scheme consists of the following five algorithms:

Setup(1λ): On input the security parameter 1λ, λ ∈ N output the master key pair
(msk,mpk).
Extract(mpk,msk, idi): On input a master secret key msk and an identity idi,
output (idi, skidi

).
Encrypt(mpk, idi, μi): On input mpk, an identity idi and a message μi, output
a ciphertext C.
Eval(F,Cid1 , . . . , Cidn

): On input a function F , n different ciphertexts Cidi
, i ∈

[n], output Ĉ.
Decrypt(Ĉ, skid1 , . . . , skidn

): On input n secret keys {skidi
}i∈[n] and evaluated

ciphertext Ĉ, output μ̂(= F (μ1, . . . , μn)).

Further, we propose a transformation from an LWE-based IBE scheme into a
leveled homomorphic multi-identity-based encryption (LHMIBE) scheme, that
supports homomorphic operations on ciphertexts produced for different identi-
ties. We rely on the following properties of LWE-based IBE schemes [1,15,22]:

(1) The decryption key for identity idi and the corresponding ciphertext for idi,
are skidi

, Cidi
∈ Z

n′
q . We extend the decryption key by adding 1 as the first

component.
(2) If Cidi

encrypts 0, then 〈Cidi
, skidi

〉 is small.
(3) Encryptions of 0 are indistinguishable from uniform vectors over Zq (under

LWE assumption).

We stress that the technique from [23] cannot be applied to our setting where
ciphertexts can possibly be encryptions under different identities. Our construc-
tion offers an alternative evaluation technique based on tensor product and natu-
ral logarithm. The evaluation function F is a homomorphic function, allowing to
compute a product of ciphertexts by summing the evaluated individual cipher-
texts. To provide this functionality, we use the natural logarithm. Since the
ciphertext Cidi

is represented as a N × N matrix in the following paragraphs,
and the secret keys are N -dimensional vectors, i.e. Cidi

∈ Z
N×N
q , sk idi

∈ Z
N
q ,

the evaluation function F has the following form:

F (Cid1 . . . , Cidn
) = log

(
n⊗

i=1

Cidi

)
= log [(Cid1 ⊗ IN ) · . . . · (IN l−1 ⊗ Cidn

)]

= (Cid1 ⊗ IN )
n−1∏
i=1

(INi ⊗ Cidi+1) = log (Cid1 ⊗ IN ) + log (IN ⊗ Cid2) +
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. . . + log (INn−1 ⊗ Cidn
) = log(Cid1 ⊗ IN ) +

n−1∑
i=1

log(INi ⊗ Cidi+1).

The n different decryption keys {v idi
}i∈[n] operate on the resulting ciphertext

as follows:

F (Cid1 . . . , Cidn
) + log

(
n⊗

i=1

sk idi

)
= log

(
n⊗

i=1

Cidi

)
+ log

(
n⊗

i=1

sk idi

)

= log

[(
n⊗

i=1

Cidi

) (
n⊗

i=1

sk idi

)]
= log

[
n⊗

i=1

Cidi
sk idi

]
.

3.1 The Scheme

Let Σ be a LWE-based IBE scheme with the above properties. Our transforma-
tion of Σ into an LHMIBE scheme proceeds as follows:

Setup(1λ): Run the Setup algorithm of Σ to generate (mpk,msk).
Extract(mpk,msk, idi): Run the extraction algorithm of Σ scheme to com-
pute skibe

idi
∈ Z

m
q , which is the decryption key of IBE scheme. Then set

sidi
:= sk ′

idi
= (1, skibe

idi
) ∈ Z

m+1
q . Compute the decryption key of LHMIBE

scheme as Powerof2(sidi
) = v idi

∈ Z
l·(m+1)
q , where v idi

= (vidi,1, . . . , vidN
) for

i ∈ {1, . . . , n}, N = l(m + 1). Output (i, v idi
).

Encrypt(mpk, idi, μi): To encrypt the message μi ∈ {0, 1} for i ∈ [n], invoke
Encrypt of Σ in order to compute N = l · (m+1) encryptions of 0. The resulted
ciphertext is denoted by C ′

idi
. Taking C ′

idi
, compute the ciphertext of LHMIBE

as follows: Cidi
= Flatten

(
μ · IN + BitDecomp(C ′

idi
)
)
.

Eval(mpk,Cid1 , . . . , Cidn
, F ): Take as input ciphertexts, Cid1 , . . . , Cidn

and an
evaluation function F . Output F (Cid1 . . . , Cidn

) = log (
⊗n

i=1 Cidi
) = Ĉ.

Decrypt(mpk, Ĉ, v id1 , . . . , v idn
): On input master public key mpk, eval-

uated ciphertext Ĉ and the n secret keys v id1 , . . . , v idn
, compute

log [(
⊗n

i=1 Cidi
) (

⊗n
i=1 v idi

)] = log [
⊗n

i=1 Cidi
v idi

].

Correctness. To show the validity of decryption procedure, we observe the
following computation:

log(v−1
id1

⊗ . . . ⊗ v−1
idn

) + log (Cid1 ⊗ . . . ⊗ Cidn
) + log(v id1 ⊗ . . . ⊗ v idn

)

= log

[
n⊗

i=1

v−1
idi

n⊗
i=1

Cidi
v idi

]
= log

[
n⊗

i=1

(
μiv idi

v−1
idi

+ eiv idi

)]

exp(·)
=⇒ exp

(
log

[
n∏

i=1

μi + “small”

])
=

n∏
i=1

μi + “small” ≈ μ1 · . . . · μn.

Note: v−1
idi

:= (v−1
idi,1

, . . . , v−1
idi,N

) is defined as inverse of the components of
v idi

:= (v idi,1, . . . , v idi,N ). Furthermore holds Cidi
v idi

= (μiv idi
+ ei).



Multi-party (Leveled) Homomorphic Encryption 79

3.2 Security Analysis

We prove in this section that the resulting LHMIBE construction is IND-ID-CPA
secure according to the following Definition below. We note that an adversary
obtains at most n − 1 secret keys. Since the security of our construction is given
in the CPA model we assume an adversary having access to the extract oracle
which on input an identity outputs the corresponding secret key corresponding
tho that identity. We provide the limits of an adversary by not allowing her
to query the extraction oracle on the same identity which was used during the
encryption process. The security definition is given below:

Definition 3 (LHMIBE Indistinguishability). Let Aind be a probabilistic
polynomial time adversary against the IND-ID-CPA security of the LHMIBE
scheme, F an evaluation function and b ∈ {0, 1} a bit which is associated with
the following experiment ExpIND-ID-CPA-b

LHMIBE,Aind
(1λ):

1. (mpk,msk) r← Setup(1λ).
2. F, st, (id∗

1, μ1,0, μ1,1), . . . , (id∗
n, μn,0, μn,1) ← AOExtract(·)

ind (mpk, find).
3. Compute {vidi

}i∈[n−1] ← Extract(mpk,msk, idi) and set S = {(idi, vidi
)}i

with i ∈ [n]. At the beginning of the experiment the set S is empty.
4. If (idi, ·) /∈ S, run vidi

← Extract(mpk,msk, idi) and add (idi, vidi
) to S.

5. Compute C∗
i,b = Encrypt(mpk, id∗

i , μi,b), with different identities i ∈ [n].
6. Ĉb = Eval(mpk,C∗

1,b, . . . , C
∗
n,b, F ).

7. b′ ← AOExtract(·)
ind (Ĉb, {C∗

i,b}i∈[n], st), where b′ ∈ {0, 1}.

OExtract(idi): On input idi the oracle checks if (idi, ·) is in the list S. If so,
returns vidi

to the adversary. Otherwise the oracle runs vidi

r← Extract(mpk,
msk, idi) and gives vidi

to A. If |S| > n − 1, the oracle returns ⊥.
Aind wins if b′ = b meaning that Aind can distinguish whether Ĉb was pro-

duced from C1,0, . . . , Cn,0 or C1,1, . . . , Cn,1 and Aind did not issue secret key
extraction query on id∗

i . The advantage of Aind is AdvIND-ID-CPA
LHMIBE,Aind

=:

|Pr[ExpIND-ID-CPA-0
LHMIBE,Aind

(1λ) = 1] − Pr[ExpIND-ID-CPA-1
LHMIBE,Aind

(1λ) = 1]|.

The LHMIBE scheme is IND-ID-CPA secure if AdvIND-ID-CPA
LHMIBE,Aind

is negligible.

Remark 1. Furthermore, our LHMIBE scheme has to fulfill the compactness
property which is formulated as following: There exists a polynomial p(λ,L, ·),
such that |Ĉ| ≤ p(λ,L, ·), where L is the depth of the ciphertext. We note that
this property is satisfied by our construction since Ĉ is the result of natural loga-
rithm on input of individual ciphertexts. W.l.o.g. for sufficiently large arguments
of the natural logarithm, it is obvious that log(·) ≤ p(·).
Theorem 1. Our LHMIBE scheme is IND-ID-CPA secure given that (Zq, n, χ)-
LWE is hard.
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Proof. Let Aind be an adversary against IND-ID-CPA security of LHMIBE
scheme. We use Aind to construct an algorithm B against the IND-ID-CPA
security of the underlying Σ scheme which was proven secure in [23]. Thereafter
we use B to construct an adversary C against LWE problem. The challenger B
sets the public parameters of Σ equal to (mpk,msk) of LHMIBE scheme.

Key Extract Queries: When Aind issues queries on id′
i where (id′

i, ·) /∈ S and
id′

i = id∗
i , the algorithm B, which controls the set S, is invoked on that input and

forwards the query to its own oracle OExtractΣ of the underlying IBE scheme
Σ which returns skidi

to B. Algorithm B sets sid′
i

= (1, skid′
i
) ∈ Z

m+1
q and

v id′
i

= Powerof2(sid′
i
) ∈ Z

l(m+1)
q and sends v id′

i
to Aind. At some point Aind

outputs (id∗
1, μ1), . . . , (id∗

n, μn) on which it wants to be challenged. If B didn’t
guess the identities and messages correctly then it aborts the simulation. The
probability that B does not abort is 1/|M|2, where M is the message space.

Challenge Ciphertext: Algorithm B computes C∗
i ← Encrypt(mpk, id∗

i ,mi)
by running the encryption algorithm of Σ scheme and taking as input
the randomly guessed id∗

i . Aind computes challenge ciphertext C∗
i ←

Encrypt(pp, id∗
i ,mi). Aind does the same for the remained n − 2 identities. B

simulates F by randomly choosing F
r← Zq and sends it to Aind.

Guess: Simulator B issues up to qE queries on idi and outputs a guess b′.
After making additional queries Aind outputs a guess b. The probability that
b′ = b is 1

qE
. Thus the advantage that Aind wins the game is given by AdvB ≥

1
qE |M|2AdvAind

.

Reduction to LWE problem: Now we assume an adversary C against LWE
problem which simulates the outputs for adversary B against Σ scheme. The
instance of LWE problem is given as a sampling oracle O. This oracle can be
either purely random Or or pseudo-random Os for some secret s ∈ Z

N
q , where

N = l(m+1). C queries from his sampling oracle O and receives for each request
i a fresh pair (a i, ti) ∈ Z

n
q × Zq. In the next step B chooses target identity

it wants to attack id∗. The challenger C simulates for B the public parameters
(mpk,msk) using LWE samples and sends them to B. When B issues private key
extraction queries on idi, C simulates them using the samples which it received
from its oracle O that statistically close to uniform values. C sends the simulated
values to B.

The simulation of the challenge ciphertext proceeds in a similar manner using
as input entries from the LWE instance. Finally simulator C sends the ciphertext
to B. For the simulation of the ciphertext we differ between two oracles. When
the LWE oracle is given by Os (i.e. it is pseudo-random), the ciphertext is
randomly distributed including some random noise vector which is distributed
corresponding to the distribution Φm

α , which describes a certain noise distribution
over Zq, as showed in [36]. When O is given by Or then the ciphertext is uniform
and independent over Z

N
q , for some n′. Eventually the simulated ciphertext is

always uniform in Zq × Z
N
q . After issuing additional queries, B guesses a bit

b′. The LWE adversary C outputs its guess as the result of the LWE challenge.
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Finally we follow that C′s advantage in solving LWE is at least the same as B′s
advantage in distinguishing the ciphertext from a random value, i.e.: AdvC ≥
1

qE
AdvB. ��

4 Leveled Homomorphic Attribute-Based Encryption
in Single and Multi-authority Setting

In this section we extend the definition of a single setting attribute-based
encryption introduced in [23] and present a leveled homomoprhic attribute-
based encryption (LHABE). We first define a LHABE scheme assuming exis-
tence of a single attribute authority, which is responsible for the generation of
the secret keys corresponding to a certain string. This string can either describe
an attribute set in case of a ciphertext-policy ABE scheme or the string can
be related to an access policy in case of key-policy ABE scheme. We do not
specify the definition for one of the mentioned flavours of ABE scheme. Instead,
we provide a general definition where attributes and policy are represented by
certain strings. To do so, we assume that a leveled homomorphic ABE scheme
is associated to some computable relation R(x, y) for x ∈ {0, 1}l, y ∈ {0, 1}l′ as
it was showed in [23].

Gentry et al. [23] mentioned the possibility of extension of their scheme so
that the evaluation algorithm operates under multiple indices x1, . . . , xn. The
decryption process can rely on different possibilities. The result can be decrypted
using either the same secret key sky such that R(xi, y) = 1 for all i ∈ [1, k] or
using different secret keys sky1 , . . . , skyk

such that R(xi, yj) = 1 for i, j ∈ [1, k].
Our evaluation techniques based on tensor product and natural logarithm allow
us to realize these extensions. We note that in first case where we have only one
decryption key sky and different strings xi, we can provide a single authority
ABE scheme whose ciphertexts are encrypted under different indices, while in
second case with different secret keys skyj

we can construct the first leveled
homomorphic ABE scheme employing multiple authorities, such that each secret
key can be generated by a different authority. In this section we present the two
extensions of [23], a leveled homomorphic single authority ABE and a leveled
homomorphic multi-authority ABE (LHMABE) schemes.

4.1 Leveled Homomorphic ABE Scheme (LHABE)

In this section we introduce a leveled homomorphic ABE scheme that oper-
ates on different indices xi. Since the construction in [23] didn’t provide a con-
crete scheme over different indices, we resolve this drawback and instantiate in
our work a construction of a LHABE scheme where distinct messages μi are
encrypted using another public string xi. The decryption process is possible if
the decryption key which was generated on a fixed chosen string y is valid and
the following relation holds: R(xi, y) = 1 for all xi ∈ {0, 1}l.

Syntax. A leveled homomorphic ABE scheme consists of the following algo-
rithms:
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Setup(1λ): On input a security parameter 1λ, output (mpk,msk).
KeyGen(mpk,msk, y): On input (mpk,msk), a string y generate sky.
Encrypt(mpk,mi, xi): On input a master public key mpk, a message mi and
a string xi, output a ciphertext Ci for i ∈ {1, . . . , k}.
Eval(mpk, F, {xi}i∈[k], C1, . . . , Ck): On input mpk, an evaluation function F ,
set of strings {xi}i∈[k] and a set of k ciphertexts C1, . . . , Cn homomorphically
evaluate F and output Ĉ.
Decrypt(mpk, Ĉ, sky): On input master public key mpk, an evaluated cipher-
text Ĉ and the secret key sky, decrypt the function Ĉ = F (C1, . . . , Ck) if
R(x, y) = 1.

In the following definition we present a leveled homomorphic attribute-based
encryption (LHABE) which is compiled from a secure LWE based attribute-
based encryption scheme.

The Scheme. Let Σ′ denote an LWE-based attribute-based encryption scheme.
A leveled homomorphic ABE scheme consists of the following algorithms:

Setup(1λ): On input security parameter, run Setup algorithm of Σ′ and gen-
erate authority’s public key and authority’s secret key (apk, ask).
Extract(apk, ask, y): Run the KeyGen algorithm of Σ′ scheme to compute
sky ∈ Z

m
q , which is the decryption key of that scheme embedding a string

y ∈ {0, 1}l into the key. Set s := sk′
y = (1, sky) ∈ Z

m+1
q . It computes the

decryption key of LHABE scheme as Powerof2(s) = vy ∈ Z
l·(m+1)
q .

Encrypt(apk, xi, μi): On input authority’s public key apk, an attribute string
xi, i ∈ [n] with R(xi, y) = 1 and a message μi, i ∈ [n] run Encrypt of ABE
scheme Σ′ in order to compute N = l · (m+1) encryptions of 0. The result is
denoted by C ′

i. Taking C ′
i compute: Ci = Flatten (μ · IN + BitDecomp(C ′

i)).
Eval(apki, {xi}i∈[n], C1, . . . , Cn, F ): Take as input apk, the ciphertexts,
C1, . . . , Cn on messages μ1, . . . , μn and an evaluation function F . Output:
F (C1, . . . , Cn) = log (

⊗n
i=1 Ci) = Ĉ.

Decrypt(mpk, Ĉ, vy): On input the authorities’ secret keys vy, an evaluated
ciphertext F , compute v−1

y (where v−1
y is the vector consisting of inverse

components of vector vy. Using this inverse v−1
y , compute:

log(v−1
y ⊗ . . . ⊗ v−1

y ) + log (C1 ⊗ . . . ⊗ Cn) + log(vy ⊗ . . . ⊗ vy)

= log
[
(v−1

y ⊗ . . . ⊗ v−1
y ) (C1 ⊗ . . . ⊗ Cn) (vy ⊗ . . . ⊗ vy)

]
.

It outputs a product of messages μ̂ =
n∏

i=1

log(μi) + “small”.

Correctness. Since there is only one secret key v, the decryption process is given
by multiplication with the secret key v and then by division of this product by
v−1. Correctness of decryption can be verified in the following computations
assuming that the different ciphertexts can be decrypted using the same secret
key. In the end we apply the exponential function to get the decrypted plaintext:
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log(v−1
y ⊗ . . . ⊗ v−1

y ) + log (C1 ⊗ . . . ⊗ Cn) + log(vy ⊗ . . . ⊗ vy) = log

(
n⊗

i=1

v−1
y Civy

)

= log

(
n∏

i=1

(µi + ei)

)
exp(·)
=⇒ exp

(
log

(
n∏

i=1

(µi + ei)

))
=

n∏
i=1

µi + “small”.

4.2 Security Analysis of LHABE

In this paragraph we define the security of our leveled homomorphic ABE scheme
and provide the proof of security. We assume an adaptive adversary who specifies
the set of strings xi, i ∈ [k] after receiving the public key. He is allowed to issue
queries to the private key extraction oracle to string y of his choice, as long as
R(xi, y) = 0, where xi, i ∈ [k] are strings required for the encryption process,
which have to be announced before the adversary obtains the public and secret
keys of the authority.

Definition 4 (LHABE Indistinguishability). Let Aind be a probabilistic
polynomial time adversary against the IND-CPA security of the leveled homo-
morphic ABE scheme, F an evaluation function and b ∈ {0, 1} is a bit associated
with the following experiment: ExpIND-CPA-b

LHABE,Aind
(1λ):

1. (apk, ask) ← Setup(1λ),
2. F, st, (x∗

1, μ1,0, μ1,1), . . . , (x∗
n, μn,0, μn,1) ← AOExtract(·)

ind (find, apk).
3. Compute {vy}i∈[n−1] ← Extract(apk, ask, y).
4. Compute C∗

i,b = Encrypt(apk, x∗
i , μi,b), where i ∈ [n] are different attributes

and messages. We assume that each message is encrypted under another
attribute.

5. Ĉb = Eval(mpk,C∗
1,b, . . . , C

∗
n,b, F ).

6. b′ ← AOExtract(·)
ind (Ĉb, {C∗

i,b}i∈[n], st), where b′ ∈ {0, 1}.

OExtract(y): On input a string y, the oracle checks if R(x∗
i , y) = 1. If so, it

returns ⊥, otherwise runs vy
r← Extract(apk, ask, y) and gives vy to Aind.

Aind wins if b′ = b, meaning that Aind can distinguish whether Ĉb was produced
from C1,0, . . . , Cn,0 or from C1,1, . . . , Cn,1. The advantage of Aind is defined as:

AdvIND-CPA
LHABE,Aind

= |Pr[ExpIND-CPA-0
LHABE,Aind

(1λ) = 1] − Pr[ExpIND-CPA-1
LHABE,Aind

(1λ) = 1]|.

The leveled homomorphic ABE (LHABE) scheme is IND-CPA secure if the above
defined advantage AdvIND-CPA

LHABE,Aind
is negligible.

Remark 2. Furthermore, our LHABE scheme fulfills the compactness property
which is justified analogously to the compactness property of LHMIBE scheme.

Theorem 2. Our leveled homomorphic ABE scheme is IND-CPA secure pro-
vided that (Zq, n, χ)-LWE holds.
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4.3 Leveled Homomorphic Multi-authority ABE Scheme
(LHMABE)

In this section we present the compilation of our leveled homomorphic multi-
authority ABE scheme (LHMABE) from an LWE-based ABE scheme. We begin
with the description of its syntax. Our scheme is associated to some efficient
computable relation R(xi, yj), x ∈ {0, 1}l, y{0, 1}l′ .

Definition 5 (LHMABE Scheme). A leveled homomorphic multi-authority
ABE scheme consists of the following five algorithms:

Setup(1λ, 1n): On input a security parameter 1λ output attribute public key
apki and attribute secret key aski for each authority j ∈ {1, . . . , k}.
KeyGen(apki, aski, yi): On input master public and master secret key pair, a
string yi ∈ {0, 1}l, the attribute authority i, generate a secret key skyi

which
embeds the corresponding policy.
Encrypt({apki}i∈[k], μξ, xi): On input a set of attributes represented by string
xi, a set of trusted authorities and their public keys, output a ciphertext Ci.
Eval(apk, F, {xi}i∈[k], C1, . . . , Cn): On input a function F , set of strings
{xi}i∈[k] and a set of n ciphertexts C1, . . . , Cn, homomorphically evaluate
F and output Ĉ.
Decrypt(C, {skyi

}i∈[k]): On input a ciphertext C, a set of secret keys
{skyi

}i∈[k] decrypt the message if for every index i there is some index j
s.t. R(xi, yj) = 1.

The main idea of our leveled homomorphic MABE (LHMABE) scheme is a com-
pilation from an already existing LWE-based ABE scheme and an extension to
the multi-authority setting. There exist only few of such systems which have been
realized and proved secure under the LWE assumption. Boyen [10] introduced a
key policy attribute-based functional encryption which relies on the LWE prob-
lem. Gorbunov et al. [24] constructed an ABE scheme for circuits based on LWE.
Gentry et al. [23] presented the first leveled homomorphic ABE scheme using
compilation from ABE schemes [26,37].

With introduction of multiple authorities the role of the key extraction algo-
rithm in [10,23,24] is distributed among a multiple number of authorities where
each of them computes a secret key for the user corresponding to a string
yi ∈ {0, 1}l. Our construction allows to encrypt different messages μi using
different strings xi ∈ {0, 1}l′ , i ∈ [1, n] and to evaluate them to a certain cipher-
text. The user is able to decrypt the evaluated value only if for each xi there
exists some j such that R(xi, yj) = 1.

The Scheme. Let Σ′ be a LWE-based attribute-based encryption scheme. We
note that the encryption of different messages can be computed using different
strings xi ∈ {0, 1}l, but it also includes the possibility to encrypt at least two dif-
ferent messages μi, μj under the same string xi. A leveled homomorphic MABE
scheme consists of the following algorithms:
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Setup(1λ): On input security parameter, generate authority’s public key and
authority’s secret key apki, aski for each authority i ∈ [k].
Extract(apki, aski, yi): Run the KeyGen algorithm of Σ′ scheme to compute
ski ∈ Z

m
q , which is the decryption key of that scheme embedding an access

policy given by yi into the key. Set si := ski = (1, ski,Σ′) ∈ Z
m+1
q . We note that

ski,Σ′ is the decryption key of scheme Σ′. Compute the decryption key of ABE
scheme as Powerof2(si) = vyi

∈ Z
l·(m+1)
q , for i ∈ {1, . . . , n}.

Encrypt
({apki}i∈[n], xi, μi

)
: On input authority’s public key {apki} for all

i ∈ [n] authorities, an attribute string yi, for i ∈ [n] and a message μi, i ∈ [n],
run Encrypt of ABE scheme Σ′ in order to compute N = l · (m + 1) encryp-
tions of 0. The resulted ciphertext is denoted by C ′

i. Taking C ′
i compute:

Ci = Flatten (μi · IN + BitDecomp(C ′
i)).

Eval({apki}i∈[n], {xi}i∈[n], C1, . . . , Cn, F ): On input the ciphertexts, C1,
. . . , Cn on messages μ1, . . . , μn and an evaluation function F (C1, . . . , Cn), com-
pute: F (C1, . . . , Cn) = log (

∏
(C1 ⊗ . . . ⊗ Cn)).

Decrypt(mpk, Ĉ, {vyj
}i∈[n]): On input master public key mpk, evaluated cipher-

text Ĉ and n secret keys vy1 , . . . , vyn
, compute

log
[
v−1

y1
⊗ . . . ⊗ v−1

yn

]
+ log

[
n⊗

i=1

Ci

]
+ log

[(
n⊗

i=1

vyi

)]

and output μ̂, where μ̂ = log
[

n∏
i=1

μi + “small”
]
.

Correctness. Correctness of decryption can be verified in the following compu-
tations, assuming that the different ciphertexts can be decrypted using different
secret key. In the end we apply the exponential function to get the decrypted
plaintext:

log(v−1
y1

⊗ . . . ⊗ v−1
yn

) + log (C1 ⊗ . . . ⊗ Cn) + log(vy1 ⊗ . . . ⊗ vyn
)

= log

(
n⊗

i=1

v−1
yi

Civyi

)
= log

(
n∏

i=1

(μi + ei)

)
exp(·)
=⇒ exp

(
log

(
n∏

i=1

(μi + ei)

))
.

4.4 Security Analysis of LHMABE

In the following definition we define the indistinguishability property of our
scheme. We assume an adaptive adversary Aind who outputs a set of target
strings y∗

i for i ∈ [n] after receiving the public key. Further we give Aind access
to a key extraction oracle on input a string xi with the restriction that there
is no y∗

j , j ∈ [n], such that R(y∗
j , xi) = 1. A successful decryption is only pos-

sible if the user has all of the n decryption keys corresponding to the strings
{xi}i∈[n] which were used during the encryption of n different messages. Without
loss of generality, there can be messages which were encrypted under the same
string y∗

i .
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Definition 6 (LHMABE Indistinguishability). Let Aind be a probabilistic
polynomial time adversary against the IND-CPA security of the leveled homo-
morphic MABE scheme, F an evaluation function and b ∈ {0, 1} a bit associated
with the following experiment: ExpIND-CPA-b

LHMABE,Aind
(1λ):

1. (apki, aski) ← Setup(1λ),
2. F, st, (y∗

1 , μ1,0, μ1,1), . . . , (y∗
n, μn,0, μn,1) ← AOExtract(·)

ind (find, apki).
3. Compute {vyi

}i∈[n−1] ← Extract(apki, aski, yi) and set S = {(yi, vyi
)}i∈[n].

At the beginning of the experiment the set S is empty.
4. If (y∗

i , ·) /∈ S, run vy∗
i

← Extract(apki, aski, y
∗
i ), s.t. R(y∗

i , xi) = 1, add
(y∗

i , vyi
) to S.

5. Compute C∗
i,b = Encrypt(apki, x

∗
i , μi,b), where i ∈ [n] is the index of different

identities.
6. Ĉb = Eval({apki}i∈[n], C

∗
1,b, . . . , C

∗
n,b, F ).

7. b′ ← AOExtract(·)
ind (Ĉb, {C∗

i,b}i∈[n], st), where b′ ∈ {0, 1}.

OExtract(aski, yi): On input (aski, yi), the oracle checks if there is an y∗
i in the

announced set of strings, such that R(y∗
j , xi) = 1. If so, returns ⊥. Otherwise

it runs vyi

r← Extract(apki, aski, yi) and gives vyi
to Aind. If |L| > n − 1, the

oracle returns ⊥.
Aind wins if b′ = b, meaning that Aind can distinguish whether Ĉb was produced
from C1,0, . . . , Cn,0 or from C1,1, . . . , Cn,1 and Aind did not issue queries on xi

with R(y∗
j , xi) = 1 for some y∗

j ∈ {0, 1}l. Aind’s advantage is:

AdvIND-CPA
LHMABE,Aind

= |Pr[ExpIND-CPA-0
LHMABE,Aind

(1λ) = 1]− Pr[ExpIND-CPA-1
LHMABE,Aind

(1λ) = 1]|.

The LHMABE scheme is IND-CPA secure if AdvLHMABE,Aind
is negligible.

Remark 3. Furthermore, our LHMABE scheme fulfills the compactness property
which is justified analogously to the compactness property of LHMIBE scheme.

Theorem 3. Our leveled homomorphic MABE scheme is IND-CPA secure pro-
vided that (Zq, n, χ)-LWE holds.

Proof. Let Aind be an adversary against IND-CPA security of our leveled homo-
morphic multi-authority ABE scheme. We use Aind to construct an algorithm
B against the LWE problem.

Setup: The instance of LWE problem is given as a sampling oracle O. This
oracle can be either purely random Or or pseudo-random Os for some secret
s ∈ Z

N
q , where N = l(m+1) as in the scheme. In order to simulate A′

inds public
parameters, B issues N queries on samples to his sampling oracle O and receives
upon each request i a fresh pair (a i, ti) ∈ Z

n
q ×Zq. The simulator B computes for

Aind the public parameters (apki, aski) for each attribute authority using LWE
samples and sends them to Aind.

Key Extract Queries: When Aind issues private key extraction queries to its
key extract oracle on input (aski, yi), i ∈ [n], simulator B computes the required
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secret keys ski using the samplings obtained from its oracle and the simulated
public key. We assume that B has control over the set of strings {y∗

i }i∈[n]. If there
is an yj ∈ {y∗

i }i∈[n] such that R(yj , xi) = 1, B aborts the simulation. Otherwise
it returns the simulated secret keys to Aind. The outputs are statistically close
to uniform values. B sends the simulated values to Aind. We assume that Aind

issued in total qE private key extraction queries.
Furthermore Aind outputs a set of target strings {y∗

i }i∈[n] with the corre-
sponding messages μ1, . . . , μn it wants to be challenged on.

Challenge ciphertext: The simulation of the challenge ciphertext also works
using as input the entries from the LWE instance, choosing N random vector
pairs bi, e i

r← Z
N
q for i ∈ [n], taking the message bits μi and calculating C ←

bi ·μi +e i. Finally the ciphertext is sent to B. When the LWE oracle is given by
Os (i.e. it is pseudo-random), the ciphertext is randomly distributed including
some random noise vector according to the noisy distribution χ. When O is given
by Or then the ciphertext is uniform and independent over Z

N
q . Eventually the

simulated ciphertext is always uniform in Zq × Z
N
q .

Guess: After issuing additional queries, Aind guesses a bit b′ ∈ {0, 1}. The LWE
adversary B outputs its guess as result of the LWE challenge. Finally we follow
that B′s advantage in solving LWE is at least the same as A′

inds advantage in
distinguishing the ciphertext from a random value, i.e.: AdvB ≥ 1

qE
AdvAind

. ��

4.5 Application to Cloud Computing

Leveled homomorphic attribute-based encryption has significant relevance for
cloud systems and their security. Attribute-based encryption allows an addi-
tional option for many applications of functional encryption in cloud computing.
It enables a data owner, who outsourced her encrypted data to a cloud, to control
the access to the uploaded data. A useful application to personal health records
in cloud computing based on multi-authorities and multi-users attribute-based
encryption presented by Li et al. [29] can profit by enabling users of the scheme
to evaluate different ciphertexts on different messages without even revealing
those messages. The shortcoming of Li et al.’s [29] construction is the impossi-
bility to perform complex mathematical computations on encrypted data. Our
ABE construction in multi-authority setting in Sect. 4.3 provides this attractive
property. The data owner which uploads the data to a cloud server has the pos-
sibility to encrypt further several data files and compute a functional value of
the resulted ciphertexts. The data user, which has the valid access formula is
able to decrypt the evaluated ciphertexts and obtain a functional value of the
plaintexts. Our construction allows the cloud users to take advantage of ana-
lytical cloud services. Our scheme from Sect. 3.1, where distinct ciphertexts are
encrypted using distinct identities can also be applied to the cloud storage set-
ting. In this case our construction allows a data owner to encrypt different data
for a certain group of users with distinct identities, such that each user is able
to decrypt an evaluated value of different plaintexts.
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5 Conclusion

In this paper we presented a new construct called tensor product in combination
with natural logarithm in order to enable leveled homomorphic encryption under
different public keys. Using these mathematical constructions we first introduced
a leveled homomorphic encryption under multiple identities. We defined the
security of that scheme and provided the corresponding proof. Furthermore we
presented a leveled homomorphic attribute-based encryption in two different
settings. In the first setting we assumed that the evaluation function operates
on ciphertext under common index x, while in the second setting the evaluation
function was performed under distinct indices. We defined the security notions
for both ABE schemes and proved them secure. Our constructions enable a
multi-key leveled homomorphic encryption on lattices using simple mathematical
computations in contrast to so far existing milti-identity FHIBE by [18] and
provide efficient applications to the cloud storage setting.

A Lattices

Let B = {b1, . . . , bn} ⊂ R
n be a basis of a lattice Λ which consists of n linearly

independent vectors. The n-dimensional lattice Λ is then defined as Λ =
n∑

i=1

Zbi.

The i-th minimum of a lattice Λ, denoted by λi(Λ) is the smallest radius r
such that Λ contains i linearly independent vectors of norms ≤ r. (The norm

of vector bi is defined as ‖bi‖ =

√
n∑

j=1

c2i,j , where ci,j , j ∈ {1, . . . , n} are the

coefficients of vector bi. We denote by λ∞
1 (Λ) the minimum distance measured

in the infinity norm, which is defined as ‖bi‖∞ := max(|ci,1| , . . . , |ci,n|). Addi-
tionally we recall ‖B‖ = max ‖bi‖ and its fundamental parallelepiped is given

by P (B) =
{

n∑
i=1

aibi | a ∈ [0, 1)n

}
. The integer n is called the rank of the basis.

Note that a lattice basis is not unique, since for any unimodular matrix A ∈ Z
n×n

the product B · U is also a basis of Λ.

Integer Lattices. The following specific lattices contain qZm as a sub-lattice
for a prime q. For A ∈ Z

n×m
q and s ∈ Z

n
q , define:

Λq(A) := {e ∈ Z
m|∃s ∈ Z

n
q , where AT s = e mod q},

Λ⊥
q (A) := {e ∈ Z

m|Ae = 0 mod q},

Many lattice-based works rely on Gaussian-like distributions called Discrete
Gaussians. In the following paragraph we recall the main notations of this dis-
tribution.
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Discrete Gaussians. Let L be a subset of Z
m. For a vector c ∈ R

m and a
positive σ ∈ R, define

ρσ,c(x) = exp

(
−π

‖x − c‖2
σ2

)
and ρσ,c(L) =

∑
x∈L

ρσ,c(x).

The discrete Gaussian distribution over L with center c and parameter σ is given
by DL,σ,c(y) = ρσ,c(y)

ρσ,c(L) , ∀y ∈ L. The distribution DL,σ,c is usually defined over
the lattice L = Λ⊥

q (A) for A ∈ Z
n×m
q .

B Learning With Errors (LWE)

The LWE problem, first introduced by Regev [36], relies on the Gaussian error
distribution χ, which is given as χ = DZ,s over the integers. The LWE problem
assumes of access to a challenge oracle O, which is either a purely random
sampler Or or a noisy pseudo-random sampler Os, with some random secret key
s ∈ Z

s
q. For positive integers n and q ≥ 2, a vector s ∈ Z

n
q and error term e ← χ,

the LWE distribution As,χ is sampled over Z
n
q × Zq. Chosen a vector a ∈ Z

n
q

uniformly at random it outputs the pair (a , t = 〈a , s〉+ e mod q) ∈ Z
n
q ×Zq. A

more detailed description of χ can be found in [36]. The sampling oracles work
in the following way:

Os: outputs samples of the form (a , t) = (a ,as +e) ∈ Z
n
q ×Zq, where s ∈ Z

n
q is

uniformly distributed value across all invocations and e ∈ Zq is a fresh sample
from χ.

Or: outputs truly random samples from Z
n
q × Zq.

C Proof of Theorem2

Proof. Since the security of this construction relies on the hardness of LWE
problem we show how to build an algorithm which can simulate the outputs for
the LHABE adversary. Let Aind be an adversary against IND-CPA security of
our leveled homomorphic ABE scheme. We use Aind to construct an algorithm
B against the LWE problem. As known from the Definition of LWE, the decision
algorithm has access to a sampling oracle O, which can be either a pseudorandom
sampler Os or a truly random sampler Or. We assume a simulator B which
simulates the environment for LHABE adversary Aind in order to decide which
oracle is given. B queries from its oracle O the LWE samples and obtains n pairs
(a i, ti) ∈ Z

N
q × Zq, for N = l(m + 1). Aind announces a set of strings {xi}i∈k it

wants to be challenged on. The simulator B constructs the public key using the
obtained LWE instance of l pairs (a i, ti) for i ∈ [l(m + 1)], where the public key
is represented by a n × m matrix and a m-dimensional vector. When A issues
key generation queries on input apk, the LWE adversary simulates the queries
using previously sampled public key apk and setting s = (1, s1) ∈ Z

l(m+1)
q , where
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apk · s = e that is small and s1 ∈ Z
lm
q is also assumed to be small according to

distribution χ. In order to encrypt 0, B samples N times the vectors b, e ′ r← Z
N
q

according to χ and outputs a ciphertext C ← b · apk + e ′. This ciphertext is
indistinguishable from random by applying a standard hybrid argument. The
decryption is possible by computing a product of 〈C, s〉 and outputting μ = 0 if
the result is small or μ = 1 otherwise. ��
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