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Preface

ICISC 2017, the 20th International Conference on Information Security and Cryptol-
ogy, was held in Seoul, Korea, November 29 – December 1, 2017. This year con-
ference was hosted by the KIISC (Korea Institute of Information Security and
Cryptology) jointly with the NSR (National Security Research Institute).

The aim of this conference is to provide a international forum for the latest results of
research, development, and applications in the field of information security and
cryptology. This year we received 70 submissions, and were able to accept 20 papers
(acceptance rate of 28%). The review and selection processes were carried out by the
PC (Program Committee) members, prominent experts, via the EDAS review system.
First, each paper was blind reviewed, by at least three PC members for most cases.
Second, for resolving conflicts on the reviewers decisions, the individual review reports
were open to all PC members, and detailed interactive discussions on each paper
followed.

The conference features one invited talk: Modeling & Simulation Technologies of
Intelligent and Connected Vehicles by Jian Wang. We thank the invited speaker for his
kind acceptance and presentation.

We would like to thank all authors who submitted their papers to ICISC 2017 and all
of PC members. It was a truly experience to work with such talented and hard-working
researchers. We also appreciate the external reviewers for assisting the PC members in
their particular areas of expertise.

Finally, we would like to thank all attendees for their active participation and the
organizing members who nicely manage this conference. We look forward to seeing
you again next year ICISC.

November 2017 Howon Kim
Dong-Chan Kim
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Symmetric Key Encryption



CHAM: A Family of Lightweight Block
Ciphers for Resource-Constrained Devices

Bonwook Koo(B), Dongyoung Roh, Hyeonjin Kim, Younghoon Jung,
Dong-Geon Lee, and Daesung Kwon

National Security Research Institute, Daejeon, Republic of Korea
{bwkoo,dyroh,mikjh,sky1236,guneez,ds kwon}@nsr.re.kr

Abstract. In this paper, we propose a family of lightweight block
ciphers CHAM that has remarkable efficiency on resource-constrained
devices. The family consists of three ciphers, CHAM-64/128, CHAM-
128/128, and CHAM-128/256 which are of the generalized 4-branch Feis-
tel structure based on ARX (Addition, Rotation, XOR) operations.

In hardware implementations, CHAM requires smaller areas (73% on
average) than SIMON [8] through the use of a stateless-on-the-fly key
schedule which does not require updating a key state. Regarding software
performance, it achieves outstanding figures on typical IoT platforms in
terms of the balanced performance metrics introduced in earlier works.
It shows a level of performance competitive to SPECK [8] mainly due to
small memory size required for round keys. According to our cryptanal-
ysis results, CHAM is secure against known attacks.

Keywords: Lightweight block cipher · Stateless-on-the-fly · ARX

1 Introduction

We are in the pervasive computing era. One can interact with many computing
devices, such as laptop computers, tablets, smart phone, and even glasses with
computing capabilities. Gartner, Inc. forecasts that in 2017, up 31 percent from
2016, 8.4 billion connected devices will be in use worldwide, with the number
reaching 20.4 billion by 2020. The development and spread of these computing
devices have made human life more convenient and enriching. However, in terms
of adverse effects, threats that existed in cyberspace have spread and expanded
to our everyday lives. So, it has become crucial to address security issues in
relation to highly constrained devices so as to protect our lives and property.
The first step in securing pervasive devices is to ensure that all data from them
are transferred confidentially. Cryptographic algorithms, especially block ciphers,
have been used extensively to perform this role.

Lightweight cryptography is essential for reducing size and cost of com-
puting and communicating devices. So in cryptography, lightweightness has
been moved from implementation issues to design consideration. A lot of block

c© Springer International Publishing AG, part of Springer Nature 2018
H. Kim and D.-C. Kim (Eds.): ICISC 2017, LNCS 10779, pp. 3–25, 2018.
https://doi.org/10.1007/978-3-319-78556-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78556-1_1&domain=pdf
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ciphers have been designed for being lightweight in various aspect (for exam-
ple chip size, code size, power consumption, memory usage, and so on) on
various platforms for the past decade. Some of these algorithms have been
shunned for various reasons including security problems, but still many algo-
rithms are being discussed, applied or standardized in the real world such as
HIGHT [31], PRESENT [6], CLEFIA [44], KATAN/KTANTAN [21], PRINT-
CIPHER [34], LED [29], PICCOLO [43], PRINCE [19], SIMON/SPECK [8],
LEA [30], PRIDE [1], MIDORI [3], SPARX [28], SKINNY [11] and recently
proposed GIFT [4].

Among these algorithms, SIMON and SPECK designed by NSA in 2013, are
the most focused and evaluated ciphers. They are families of non-S-box based
lightweight block ciphers. SIMON is tuned for optimal performance in hardware,
while SPECK is designed for optimal performance in software. SPECK is in ARX
structure. They are arguably regarded as the best algorithms among previously
proposed lightweight block ciphers on hardware and software platforms.

LEA is another ARX cipher designed by Hong et al. in 2013 and suitable for
common platforms (mainly 32-bit microcontrollers), but its performance is not
so impressive on 8-bit and 16-bit microcontrollers.

Contributions. We have attempted to improve LEA by increasing the level of
suitability for resource-constrained environment such as hardware and 8-bit and
16-bit microcontrollers. As a result, we propose a new family of block ciphers,
CHAM.

CHAM has the following features:

– CHAM uses an extremely simple key schedule possibly being implemented
without updating key states. This feature helps to reduce the number of flip-
flops when implementing our ciphers on hardware.

– Numbers of round keys are far fewer than the numbers of rounds, and round
functions reuse them iteratively. This reduces the memory size necessary to
store the round keys.

– Encryption uses two types of left rotation, by 1 bit and by 8 bits, to minimize
the number of operations on 8-bit AVR microcontroller.

– Round indexes are used as round constants instead of random values to
save resources while defending against slide attacks [18] and basic rotational
attacks [33].

There are many lightweight block ciphers which have the same feature of
key schedule, such as HIGHT, KATAN, PRINTCIPHER, LED, PICCOLO,
PRINCE, PICARO [41], PRIDE, and KHUDRA [36]. However, some of these
ciphers are prone to or fully broken by related-key attacks [22,23,25,32,37,54].
Bearing this in mind, we analyze the security of CHAM against various attacks,
including differential cryptanalysis and linear cryptanalysis. In particular, we
give more attention to security analyses in the related-key model.

By efficiency evaluation and comparison, we draw the following results. On
hardware, we implement SIMON and our ciphers by minimizing the area with
the IBM 130 nm CMOS generic process library. The results are briefly presented
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in Table 1. Table 2 shows a brief comparison with SPECK on the two widely
adopted target platforms of Atmega128 and MSP430. CHAM shows efficiency
competitive with one of the top-ranked algorithms, SPECK on the platforms.
In summary, CHAM can be implemented using smaller area than SIMON in
hardware environment and shows a similar level of efficiency to SPECK in 8-
and 16-bit software environments.

Table 1. Area-optimized implementation results in gate for CHAM and SIMON.

Algorithm Library 64/128 128/128 128/256 Ref.

CHAM IBM 130 nm 665 1,057 1,180 This paper

SIMON IBM 130 nm 958 1,234 1,782 [8]

Table 2. Software efficiency comparison in rank metric [9] (Larger is better).

Scenario Algorithm Atmega128 MSP430 Ref.

Fixed key [9] CHAM-64/128 27.9 49.3 This paper

SPECK-64/128 29.8 50.0 [8]

CHAM-128/128 17.1 25.0 This paper

SPECK-128/128 12.7 21.7 [8]

Communication [26,27]
(without decryption)

CHAM-64/128 7.2 11.1 This paper

SPECK-64/128 6.3 9.7 FELICS website

2 Specifications and Design Principles

CHAM is a family of block ciphers with a 4-branch generalized Feistel structure.
Each cipher is denoted by CHAM-n/k with a block size of n-bit and a key size of
k-bit. Table 3 shows the list of ciphers in the family and their parameters. Here,
r and w denote the number of rounds and the bit length of a branch (word),
respectively.

Table 3. List of CHAM ciphers and their parameters.

Cipher n k r w k/w

CHAM-64/128 64 128 80 16 8

CHAM-128/128 128 128 80 32 4

CHAM-128/256 128 256 96 32 8

CHAM consists of three algorithms with different parameters. All three algo-
rithms in the family are suitable for resource-constrained environments, but at
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the same time they have slightly different applications according to their param-
eters. CHAM-64/128 is more suitable for low-end devices, CHAM-128/128 is a
better choice for general use on 32-bit microcontrollers, and CHAM-128/256 can
serve where a higher security level is required.

2.1 Notations

We use the following notations to describe CHAM-n/k.

– x‖y: concatenation of bit strings x and y
– x � y: addition of x and y modulo 2w

– x ⊕ y: bit-wise exclusive OR (XOR) of x and y
– ROLi(x): rotation of w-bit word x to the left by i bits
– wH(x): Hamming weight of x, the number of nonzero bits in x.

2.2 Specifications

CHAM-n/k encrypts a plaintext P ∈ {0, 1}n to a ciphertext C ∈ {0, 1}n using a
secret key K ∈ {0, 1}k by applying r iterations of the round function as follows.

Divide the plaintext P into four w-bit words X0[0], X0[1], X0[2], and X0[3],
where P = X0[0]‖X0[1]‖X0[2]‖X0[3]. Next, compute the n-bit output Xi+1 =
Xi+1[0]‖ Xi+1[1]‖ Xi+1[2]‖ Xi+1[3] of the i-th round for 0 ≤ i < r by

Xi+1[3] ← ROL8((Xi[0] ⊕ i) � (ROL1(Xi[1]) ⊕ RK[i mod 2k/w])),
Xi+1[j] ← Xi[j + 1] for 0 ≤ j ≤ 2,

if i is even, otherwise,

Xi+1[3] ← ROL1((Xi[0] ⊕ i) � (ROL8(Xi[1]) ⊕ RK[i mod 2k/w])),
Xi+1[j] ← Xi[j + 1] for 0 ≤ j ≤ 2,

where RK[i mod 2k/w] is the round key.
Then, the ciphertext C is defined by C = Xr[0]‖Xr[1]‖Xr[2]‖Xr[3].
The key schedule of CHAM-n/k takes the secret key K ∈ {0, 1}k and gen-

erates the 2k/w w-bit round keys RK[0], RK[1], · · · , RK[2k/w − 1]. Initially,
divide the secret key into k/w w-bit words K[0],K[1], · · · ,K[k/w − 1], where
K = K[0]‖K[1]‖ · · · ‖K[k/w−1]. Then the round keys are generated as follows.

RK[i] ← K[i] ⊕ ROL1(K[i]) ⊕ ROL8(K[i]),
RK[(i + k/w) ⊕ 1] ← K[i] ⊕ ROL1(K[i]) ⊕ ROL11(K[i]),

where 0 ≤ i < k/w.
The structures of the key schedule and round function of CHAM are depicted

in Fig. 1, and the test vectors are provided in AppendixA.
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Fig. 1. Key schedule (left) and two consecutive round functions beginning with the
even i-th round (right).

2.3 Design Principles

Design Paradigm and Design Approach. Our goal is to design a cipher that
shows better efficiency than SIMON and SPECK on both (resource-constrained)
hardware and software. So we design in the ARX design paradigm so that
our cipher could have advantages in various resource-constrained environments.
However, it is still not easy to prove nor to theoretically bound the minimum
number of rounds with respect to the security of an ARX block cipher (although
there is an exception [28]). Hence, we decided to design our algorithms (round
function and key schedule) with a focus on efficiency and lightweight aspect and
to perform a comprehensive and detailed cryptanalysis relying on experimental
methods.

Round Functions. In the instruction sets of AVR and MSP introduced in
Sect. 4, there is no single instruction for a rotation of arbitrary amounts. Only
byte-swap and 1-bit rotation can be used for implementing ROLi(). So, if we want
to implement 3-bit rotation, we have to implement 1-bit rotation for 3 times.
Hence, we choose every rotation amount as close as possible to 0 or 8 for the
round functions (as well as the key schedule) to achieve a better performance. At
the same time, in order to reduce the number of rounds while keeping security,
we select several combinations of rotation amounts for a round function and
consider combinations of the round functions for the whole encryption.

At first, we compare several cases of using a single round function and those
of using two slightly different round functions. Let’s denote rotation amounts
of two consecutive rounds as a 4-tuple (a, b, c, d) such that a and c are rotation
amounts for the values before the round key XOR and b and d are rotation
amounts for outputs of the additions. For example, CHAM is of type (1, 8, 8, 1).
We estimate the maximum numbers of rounds of differential characteristics with
probabilities greater than 2−n when w = 16. Table 4 shows the results.

In Table 4, the type (1, 8, 9, 1) looks like the best choice, however the type
(1, 8, 9, 1) requires more operations than the type (1, 8, 8, 1) for every two rounds,
so the overall efficiency of the type (1, 8, 8, 1) is better. Also, we test the case of
using 4-round alternating structures but could not find any better case than our
selection in the overall efficiency point of view.
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Table 4. Security evaluation results of several types of round functions.

Type (0, 9, 0, 9) (1, 8, 1, 8) (1, 8, 1, 9) (1, 8, 8, 1) (1, 8, 9, 1)

Diff. ch. round 58 47 40 36 33

Additionally, we use round indexes as round constants not only to defend the
slide attack and the rotational attack and but also to reduce the extra registers
for storing constants on both hardware and software implementations.

Key Schedule. Key schedule is a procedure to calculate round keys from a given
secret key. Many block ciphers (AES, SIMON/SPECK [8], and so on) have their
own key schedules that consist of functions calculating each round keys from
the current key state and update the key state. And key schedules of some other
ciphers (PICCOLO [43], LED [29], and so on) consist of functions which calculate
every round key directly from the secret key. Although the former key schedules
could be also implemented to calculate every round key directly from the secret
key, the latter key schedules are more suitable for such implementation. We call
this implementation method as stateless-on-the-fly implementation and a key
schedule like latter ones as stateless-on-the-fly key schedule.

It is clear that a stateless-on-the-fly implementation of a key schedule does
not require areas (flip-flops) for storing key states on hardware, so it can be
replaced by some selecting logics. For a k-bit secret key, at least k × sf gates are
required for storing key state while roughly at most (k−1)×sm gates are needed
for some selecting logic, where sf and sm are gate counts of D flip-flop and 2-to-1
MUX, respectively. Therefore, the stateless-on-the-fly implementation helps to
save the hardware areas when sm < sf . For an example of CHAM-64/128 in
IBM130 [8], we can theoretically save 259 gates by adopting stateless-on-the-
fly implementation for serial implementation, since sm = 2.25 and sf = 4.25.
In practice, more gates could be saved for stateless-on-the-fly implementation
because compiler could employ 3-to-1 or 4-to-1 MUXes instead of 2-to-1 MUXes
to optimize the area while D flip-flop cannot be replaced by the other cell.

The key schedules of CHAM consist of a linear function Φ from {0, 1}w to
{0, 1}2w. Let Iw be the w×w identity matrix and I lw be a w×w matrix whose i-th
row is defined by l times left rotation of i-th row of Iw for i = 1, 2, ..., w. Then,
the function Φ can be expressed by multiplication with the following binary
matrix A defined by

A = (A1|A2)
T =

(
Iw ⊕ I1

w ⊕ I8
w | Iw ⊕ I1

w ⊕ I11
w

)T
.

Let A be a set of all matrices
(
I l0w ⊕ I l1w ⊕ I l2w | I l3w ⊕ I l4w ⊕ I l5w

)T , where l0 =
l3 = 0, l0 �= l1 �= l2, l3 �= l4 �= l5 and 0 < l1, l2, l4, l5 < w. Let

Aj = {M ∈ A| min
x∈{0,1}w\{0}

(wH(M · x)) = j}.

We make certain that in the case of w = 16, A = A2 ∪ A4 ∪ A6.
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The matrix A is the case of l0 = 0, l1 = 1, l2 = 8, l3 = 0, l4 = 1, and l5 = 11.
It is chosen from A6 considering the number of instructions for implementations
on AVR and MSP and cryptographic properties in the related-key model. Note
that the matrix with l0 = 0, l1 = 1, l2 = 8, l3 = 0, l4 = 1, and l5 = 9 is in A4

and shows worse property for the related-key differential cryptanalysis. And the
matrix with l0 = 0, l1 = 1, l2 = 8, l3 = 0, l4 = 1, and l5 = 10 also shows worse
property than A in the viewpoint of the related-key differential cryptanalysis,
even though it belongs A6.

Additionally, we let the round keys be iteratively re-applied to reduce the
size of memory for storing the round keys in software. And we give the round
key index a tweak so that a w-bit word of a secret key cannot regularly act on
every k/w rounds.

3 Hardware Implementation

We implemented CHAM in Verilog and synthesized using Synopsys Design Com-
piler 2008.09-SP5 without the compile ultra feature. For the synthesis, the 100-
kHz frequency constraint is imposed. Clocks for plaintext flip-flops are gated
and scan flip-flops are not used. To evaluate and compare the hardware cost
and performance, we use the UMC 90 nm, UMC 180 nm CMOS generic process
library (UMC90, UMC180) provided by the Faraday Technology Corporation
and IBM’s 8RF 130 nm process (IBM130).

Figures 2 and 3 present the round-based and the bit-serial hardware archi-
tecture of CHAM, respectively. In both architectures, there are no flip-flops for

Fig. 2. Round-based hardware architecture of CHAM.

Fig. 3. Serialized hardware architecture of CHAM.
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storing the secret key because the secret key is injected for each clock count.
Instead of the flip-flops, a k/w-to-1 w-bit MUX is required for the round-based
architecture, and a k-to-1 1-bit MUX is required for the bit-serial architecture.
Since the size of the flip-flops is larger than that of the MUXes, we can save as
much as the difference between the two sizes.

Table 5 shows the results of comparison to other lightweight block ciphers for
each parameter and architecture in area (GE, gate equivalent) and throughput

Table 5. Comparison of the hardware implementation of CHAM and other ciphers.

n k Cipher Bit-serial Round-based Tech. Ref.

Area (GE) Throughput Area (GE) Throughput

64 128 Twine – – 1, 866 178.0 90n [47]

Hight – – 3, 048 188.3 250n [31]

Gift 930 – 1, 345 – STM90 [4]

Midori – – 1, 542 – STM90 [3]

Midori – – 1, 638 – STM65 [3]

Skinny 1, 399 8.1 1, 696 177.8 UMC180 [11]

LED 1, 265 3.4 – – – [29]

†LED 700 3.4 – – – [29]

Present 1, 391 11.4 1, 884 200.0 UMC180 [42]

Piccolo 758 12.1 1, 197 193.9 130n [43]

Simon 944 4.2 1, 403 133.3 ‡IBM130 [55]

Simeck 924 4.2 1, 365 133.3 ‡IBM130 [55]

Simon 958 4.2 1, 417 133.3 IBM130 [8]

Speck 996 3.4 1, 658 206.5 IBM130 [8]

CHAM 665 5.0 826 80.0 IBM130 Ours

CHAM 859 5.0 1, 110 80.0 UMC180 Ours

CHAM 727 5.0 985 80.0 UMC90 Ours

128 128 Gift 1, 213 – 1, 997 – STM90 [4]

Midori – – 2, 522 – STM90 [3]

Midori – – 2, 714 – STM65 [3]

Skinny 1, 840 14.7 2, 391 320.0 UMC180 [11]

LEA 2, 302 4.2 3, 826 76.2 UMC130 [30]

AES – – 2, 400 57.0 UMC180 [40]

Simon 1, 234 2.9 2, 090 182.9 IBM130 [8]

Speck 1, 280 3.0 2, 727 376.5 IBM130 [8]

CHAM 1, 057 5.0 1, 499 160.0 IBM130 Ours

CHAM 1, 296 5.0 1, 899 160.0 UMC180 Ours

CHAM 1, 084 5.0 1, 691 160.0 UMC90 Ours

128 256 Skinny 2, 655 12.3 3, 312 266.7 UMC180 [11]

Simon 1, 782 2.6 2, 776 168.4 IBM130 [8]

Speck 1, 840 2.8 3, 284 336.8 IBM130 [8]

CHAM 1, 180 4.2 1, 622 133.3 IBM130 Ours

CHAM 1, 481 4.2 2, 087 133.3 UMC180 Ours

CHAM 1, 256 4.2 1, 864 133.3 UMC90 Ours

†: Hard-wired key implementation.

‡: Not exactly same to the non-daggered IBM130.
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(Kbps@100 KHz). As the table shows, every instance in our family can be imple-
mented in much smaller area than SIMON with the corresponding parameter.
Precisely, the area of the sequential logic for CHAM is much smaller than that
of SIMON because the secret key is not stored in flip-flops. Moreover, in most
cases (except for the round-based CHAM-64/128), the throughputs per area’s
are also better than those of SIMON.

4 Software Implementation

We compare software performances of our cipher and existing algorithms
on three typical microcontrollers suitable for lightweight devices. In [10,26,
53], Atmega128 (AVR), MSP430F1611 (MSP), and SAM3X8E (ARM) are
widely used as target 8, 16, and 32-bit microcontrollers, respectively. We also
choose them as our target platforms. Their features are briefly presented in
AppendixB.1.

Software performances are measured based on two metrics, rank and FOM,
under two usage scenarios, Fixed-key and Communication. The metrics and sce-
narios are introduced in [9,26,27], and described in AppendicesB.3 and B.4.

All our software implementations of CHAM are done in assembly language
to draw better performance as much as possible. Some of the ideas are presented
in AppendixB.2. Note also that, in our work, all the best results of CHAM are
obtained from 4-round unrolled implementations except for CHAM-128/128 on
the ARM. In that case, 8-round unroll results the best FOM value.

Table 6 presents the results of a performance comparison on the AVR and
MSP platforms using the rank metric for the fixed-key scenario. Either SPECK
or CHAM is always ranked at the top on both AVR and MSP, for all of the

Table 6. Performance comparison using the rank metric on AVR and MSP, under the
fixed-key scenario.

Size (n/k) Algorithm AVR MSP

ROM RAM cpb Rank ROM RAM cpb Rank

64/128 SPECK [10] 218 0 154 29.8 204 0 98 50.0

CHAM 202 3 172 27.9 156 8 118 49.3

SIMON [10] 290 0 253 13.6 280 0 177 20.2

SPARX 448 2 224 9.9 366 14 136 18.7

HIGHT [9] 336 0 311 9.6 – – – –

128/128 CHAM 362 16 148 17.1 280 20 125 25.0

SPECK [10] 460 0 171 12.7 438 0 105 21.7

AES [10] 970 18 146 6.8 – – – –

LEA 754 17 203 6.3 646 24 147 9.8

128/256 CHAM 396 16 177 13.2 312 20 148 19.2

SPECK [9] 476 0 181 11.6 – – – –
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parameters of the block size and key size. They outperform the remaining ciphers.
The results for SPARX [28] and LEA are drawn from performance reports posted
on the FELICS [26] project’s website.

Table 7 shows the performances based on the rank metric under the one-way
communication scenario, emphasizing variable key encryption without decryp-
tion. The results of CHAM on the AVR and MSP, obtained by optimization1

level two, show slightly better performance than that of SPECK. The ranks of
SPECK are derived from the data reported in the FELICS website, and the best
ones are shown in the table.

On the ARM platform, CHAM-64/128 shows relatively poor result due to its
16-bit word size.2 On the other hand, CHAM-128/128, based on a 32-bit word
size, presents relatively decent result compared to SPECK-64/128.3

Table 7. Performance comparison using the rank metric in the one-way communication
scenario. EKS and Enc represent the key schedule and encryption.

Platform Algorithm ROM RAM Cycles cpb Rank

EKS Enc Stack Data EKS Enc

AVR CHAM-64/128 72 280 11 184 309 23, 664 187 7.2

SPECK-64/128 178 240 12 260 1, 401 19, 888 166 6.3

MSP CHAM-64/128 68 210 16 184 275 16, 715 133 11.1

SPECK-64/128 126 180 16 260 1, 242 14, 155 120 9.7

ARM SPECK-64/128 52 164 36 260 516 6, 323 53 23.2

CHAM-128/128 44 210 48 192 95 8, 846 70 19.5

CHAM-64/128 124 272 48 184 170 16, 944 134 8.7

Table 8 shows performance comparison based on the FOM metric under
the communication scenario. SPECK-64/128 reveals the best value, followed
by CHAM-128/128.4 Considering its block size, CHAM-128/128 can be regarded
as a very good performer. The FOM of CHAM-64/128 is degraded by relatively
poor performance on ARM. However, due to the excellence on AVR and MSP,
its FOM is still ahead of all other competitors, except for SPECK. Note that all
the values other than CHAM are presented on the FELICS website.
1 The FELICS platform provides a unified implementation environment which gener-

ates performance figures automatically. The FELICS software framework, written in
C language, permits users to implement only the core parts of encryption, decryp-
tion and their key schedules. Due to the common operational C source codes, the
performance results are affected by the compiler’s optimization option.

2 A SIMD implementation might enhance performance. Since the ARMv7-M archi-
tecture provides very limited instructions for SIMD arithmetics, it seems to be very
difficult to get non-trivial performance gain from SIMD approach.

3 The performance of SPECK-128/128 is not yet reported in the FELICS website.
4 In the comparison, we exclude Chaskey algorithm because it is not considered as a

block cipher.
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Table 8. Performance comparison using the FOM metric in the communication sce-
nario. The key schedule, encryption and decryption steps are all included.

Algorithm AVR MSP ARM FOM

ROM RAM cpb ROM RAM cpb ROM RAM cpb

SPECK-64/128 874 302 351 572 296 253 444 308 129 5.00

CHAM-128/128 1, 230 262 337 926 258 298 528 272 144 5.47

CHAM-64/128 844 225 394 578 220 290 606 244 319 6.52

Rectangle-64/128 1, 118 353 506 844 402 361 654 432 289 7.80

SPARX-64/128 1, 198 392 512 966 392 287 1, 200 424 319 8.57

5 Security Analysis

In this section, we summarize the security analysis results of CHAM and describe
how we determine the number of rounds for each algorithm. We then present
detailed cryptanalysis results of a number of well-known attacks applicable to
our ciphers.

5.1 Summary of the Security Analysis

Table 9 shows the maximum numbers of rounds of characteristics that can be
used for each attack. Based on these results, we determine the total number of
rounds of each cipher with the following considerations

– Round extension of characteristics
– Round extension during key-recovery phase
– Security margin

Table 9. The numbers of rounds of the best discovered characteristics for each cipher
and cryptanalysis.

CHAM- DC RDC LC BC RBC IDC ZCLC DLC RDLC IC RXDC

64/128 36 34 34 35 41 18 21 34 36 16 16

128/128 45 33 40 47 36 15 18 45 39 16 23

128/256 45 40 40 47 47 15 18 45 45 16 23

(R)DC: (Related-key)Differential Cryptanalysis, LC: Linear Cryptanalysis,
(R)BC: (Related-key)Boomerang Cryptanalysis, IDC: Impossible Differential
Cryptanalysis ZCLC: Zero-Correlation Linear Cryptanalysis, (R)DLC: (Related-
key)Differential-Linear Cryptanalysis, IC: Integral Cryptanalysis, RXDC:
Rotational-XOR-Differential Cryptanalysis.

By applying the probability gathering technique used in [45] to our differen-
tial cryptanalysis, an attacker may find differentials longer than the differential
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characteristics in Table 10 in AppendixC.1. But we check experimentally and
confirm that the attacker can have at most four rounds longer differentials.
Also, we verified that a boomerang and a rectangle characteristics can also be
extended at most four rounds despite their use of two differential characteristics.
Although such extensions can be applied only to the cryptanalyses based on dif-
ference or linear approximation, we assume every type of characteristic can be
extended by four rounds regarding this technique.

In the key-recovery phase of an attack, if k = 2n, then one can attack k/w
more rounds by guessing k/2 bits of the secret key before filtering. Otherwise,
one cannot utilize this type of round extension. After filtering, one can add at
most three rounds during key guessing and determining steps. Hence, we claim
that the maximal numbers of rounds for which one can mount a key-recovery
attack are at most 4+2(k/w−4)+3 more than the numbers of rounds in Table 9,
regardless of actual characteristics.

To estimate the numbers of rounds conservatively, we assume that an attacker
can mount successful attacks using the characteristics we have found, even if
the actual attacks are infeasible. Finally, we determine the numbers of rounds
(instances of r), as shown in Table 3 with these considerations together with a
security margin greater than 30% for full rounds5.

5.2 Cryptanalysis Results

We cryptanalyze our ciphers with the following well-studied techniques, and the
results are summarized in Table 9. We use state-of-the-art techniques, modified
for ARX structure ciphers [7,17,45,49]. Using these results, we estimate the
necessary numbers of rounds to ensure proper security. This subsection includes
the results of (RK6) Differential, Linear, and (RK) Boomerang cryptanalysis
and other detailed cryptanalysis results are provided in AppendixC due to the
page limit.

(RK) Differential and Linear Cryptanalysis. We searched for (RK) dif-
ferential characteristics [16] and linear approximations of each cipher using an
automated algorithm known as the threshold search suggested in [17]. It is consid-
ered as an appropriate variant of Matsui’s branch-and-bound algorithm [39] for
ARX ciphers. Using this threshold search approach, we found differential char-
acteristics with a probability of p > 2−n for each cipher. These results are given
in Table 10. We denote a (RK) differential characteristic by (Δkey), Δin → Δout,
where Δkey is the difference of the secret key, and Δin and Δout are the input
and output differences, respectively.

For a linear cryptanalysis [38], we found linear approximations with bias
ε > 2−n/2 for each cipher. These results are given in Table 11. Γin and Γout

denote the input and output masks, respectively. We calculate the correlation

5 30% is a relatively high ratio for a security margin compared to those associated
with other ciphers.

6 RK stands for “related-key”.
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of the linear approximation by determining the bias of every addition using
Wallén’s formula [52] and applying Piling-Up Lemma [38].

(RK) Boomerang Cryptanalysis. The (RK) boomerang characteristics [15,
50] are constructed with two short (RK) differential characteristics. These char-
acteristics are the most threatening ones for our ciphers. Examples of short (RK)
differential characteristics for constructing (RK) boomerang characteristics are
shown in Table 12. A (RK) boomerang characteristic is valid when pq > 2−n/2,
where p and q are the probabilities of the two differential characteristics φ1 and
φ2, respectively, used for constructing the (RK) boomerang characteristic. Note
that (RK) rectangle cryptanalysis [13,15] works using the same characteristics.

6 Conclusion

In this paper, we have presented CHAM, a family of lightweight block ciphers
that supports widely used block/key lengths. It is suitable for highly resource-
constrained devices, especially area-constrained hardware with the help of the
stateless-on-the-fly key schedule. Efficiency evaluations and comparisons with
other lightweight block ciphers on various platforms are provided to demon-
strate the merit of our algorithms. A variety of security analyses with extensive
searching have convinced us that it is secure against known attacks. We also
believe that it will be resistant to future attacks due to its high security mar-
gins. Moreover, the simplicity and flexibility of CHAM allow one to design ciphers
with other block sizes and key lengths. Of course, a rigorous security analysis
should be followed.

A Test Vectors

Test vectors are represented in hexadecimal with the prefix ‘0x’.

CHAM-64/128
secret Key : 0x0100 0x0302 0x0504 0x0706 0x0908 0x0b0a 0x0d0c 0x0f0e

plaintext : 0x1100 0x3322 0x5544 0x7766

ciphertext : 0x453c 0x63bc 0xdcfa 0xbf4e

CHAM-128/128
secret Key : 0x03020100 0x07060504 0x0b0a0908 0x0f0e0d0c

plaintext : 0x33221100 0x77665544 0xbbaa9988 0xffeeddcc

ciphertext : 0xc3746034 0xb55700c5 0x8d64ec32 0x489332f7

CHAM-128/256
secret Key : 0x03020100 0x07060504 0x0b0a0908 0x0f0e0d0c

0xf3f2f1f0 0xf7f6f5f4 0xfbfaf9f8 0xfffefdfc

plaintext : 0x33221100 0x77665544 0xbbaa9988 0xffeeddcc

ciphertext : 0xa899c8a0 0xc929d55c 0xab670d38 0x0c4f7ac8
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B Some Details About Software Implementation

B.1 Target Platforms

Atmega128 belongs to Atmel’s AVR microcontroller family with an 8-bit RISC
architecture. It has 32 general-purpose registers and 133 instructions. It is
equipped with 128 KBytes of flash and 4 KBytes of RAM. MSP430F1611,
a microcontroller from Texas Instruments, adopts a 16-bit RISC architecture
with 16 registers (12 of them are general-purpose registers) and 51 instructions,
including the emulated ones. It has 48 KBytes of flash and 10 KBytes of RAM.
The ARM Cortex-M3 is a 32-bit processor core based on the ARMv7-M archi-
tecture, with 12 general-purpose registers. The core is adopted in the Atmel
SAM3X8E microcontroller installed on the well-known Arduino Due develop-
ment board. SAM3X8E is equipped with 512 KBytes of flash and 96 KBytes of
SRAM.

B.2 Implementating Bit-Wise Rotation

In ARX design like CHAM, rotations by certain bit sizes might be costly to
implement on our 8 and 16-bit platforms. Efficient implementation of rotation is
crucial to both high throughput and smaller memory. With this consideration,
CHAM adopts ROL8, which can be performed for free on AVR platform.

The MSP430 provides a byte-swapping instruction, which is equivalent to
ROL8 for a 16-bit word. It is slightly tricky for a 32-bit word on the MSP430.
Similarly to [20], ROL8 can be carried out in seven instructions, as in Code 1
below.7 The code require an additional temporary register to hold a 16-bit data.

ARMv7-M provides a powerful instruction, barrel shifter, which can rotate
a 32-bit word by any bit-size. Moreover, the instruction can perform a certain
kind of operation additionally after the rotation. This fact gives rise to a good
performance of CHAM-128/128. However, it appears that no single instruction
of ARMv7-M can perform bit-wise rotation for a 16-bit word. This explains the
relatively low performance of CHAM-64/128 on ARMv7-M, as can be seen in
Tables 7 and 8.

Code 1. MSP430 code for 8-bit left rotation; register pairs Rh and Rl store a 32-
bit integer, ABCD, where each letter represents an 8-bit integer part; register Rt is
temporary.

mov Rl, Rt : Rh=(B,A), Rl=(D,C), Rt=(D,C) ABCD

xor.b Rh, Rl : Rl=(B^D,0)

xor Rh, Rl : Rl=(D,A)

xor.b Rt, Rh : Rh=(B^D,0)

xor Rt, Rh : Rh=(B,C)

swpb Rl : Rl=(A,D) 00DA

swpb Rh : Rh=(C,B) BC00

7 We implement ROR8, a right rotation for decryption, in eight instructions.
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B.3 Performance Metrics

Lightweight IoT devices are usually considered to have constrained resources.
This is why throughput alone does not fully describe the performance of an
algorithm. A smaller code size and less RAM usage are also important factors
to consider. In [9], the authors argue the same context and introduce the metric
of rank as an overall performance indicator. It is defined as

rank = (106/cpb)/(ROM + 2 × RAM),

where cpb refers to the cycles per byte consumed for a task, and ROM and RAM
are the byte sizes of the memory of each type. By definition, the larger rank is
better. Note also that RAM is considered to be twice as costly as ROM.

The FOM (figure of merit) metric, defined recently in the FELICS [27], aver-
ages performances on AVR, MSP and ARM. For each implementation i on a
device d, we measure memory usages vi,d

ROM, vi,d
RAM, and time cost vi,d

cost. Among
all the implementations of all the ciphers, the minimums of ROM, RAM and
cost are also determined (possibly each from different implementations). Denote
each minimum by md

ROM, md
RAM, and md

cost. Then, the performance parameter
pd for a cipher on a device d is defined by

pd = min
i

(
vi,d
ROM/md

ROM + vi,d
RAM/md

RAM + vi,d
cost/md

cost

)
.

Finally, the figure of merit for a cipher is defined by the average of three pd’s,

FOM = (pAVR + pMSP + pARM) × 1
3 .

The definition indicates the smaller FOM is better.8

B.4 Usage Scenarios

A block cipher suite usually consists of three distinctive algorithms: the key
schedule, encryption and decryption. However, in lightweight applications,
decryption tends to lose its role due to well-designed modes of operations for
block ciphers. The combined performance of the key schedule and encryption is
somewhat sensitive to their usage scenarios. For an easy comparison of our cipher
with the results in the literature, we adopt two scenarios: simple encryption with
a fixed key and data communication with variable keys.

Fixed-key scenario: In this scenario, a cipher is used for authenticating
devices. There are no key schedules or decryption steps. Round keys are fixed in
the device, i.e., specifically placed in the code area. Hence, their size is added to
the code size. This scenario is used in Table 6.

8 It can be pointed out that the definition of the FOM has a drawback that whenever
a new minimum is found by a better implementation of any cipher, the whole FOMs
of all ciphers should be updated.
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Communication scenario: In this scenario, a cipher is assumed to be used for
data communication. It is defined as Scenario 1 in the FELICS [26]. Originally,
the scenario contains encryption, decryption together with their key schedules,
where 128 bytes of data are encrypted and decrypted in the CBC mode. Since
encryption part is more important for lightweight application, we define one-
way communication scenario by omitting the decryption part, which is used in
Table 7. The scenario in its original meaning is also used in Table 8.

C Cryptanalysis Results

C.1 Tables of characteristics for (RK) Differential, Linear,
and (RK) Boomerang Cryptanalysis

Tables 10, 11, and 12 show characteristics for (RK) Differential, Linear, and (RK)
Boomerang Cryptanalysis, respectively.

Table 10. The best (RK) differential characteristics found. Only the input and output
differences are shown. We assume that every operation is independent. The subscript
x indicates a hexadecimal expression.

Model n/k Round/p Characteristic

Single-key
model

64/128 36/2−63 (0004x, 0408x, 0A00x, 0000x) → (0005x, 8502x, 0004x, 0A00x)

128/* 45/2−125 (01028008x, 08200080x, 04000040x, 42040020x)

→ (00000000x, 00110004x, 04089102x, 00080010x)

Related-
key
model

64/128 Key diff. (0000x, 0000x, 0000x, 0000x, 0040x, 0000x, 0000x, 4000x),

34/2−61 (20A0x, 1050x, 4000x, 2020x) → (0141x, 8080x, 4841x, 830Ax)

128/128 Key diff. (00000000x, 00000000x, 00000000x, 40000000x),

33/2−125 (00410500x, 00210080x, 80102000x, 40002041x)

→ (12810001x, 8A500940x, 08001503x, 06000220x)

128/256 Key diff.
(00000000x, 00000000x, 00000000x, 00000000x,

00000000x, 40000000x, 00000000x, 00000000x)

40/2−127 (42800040x, 20010420x, 00800104x, 08408082x)

→ (04405080x, 80040892x, 01000010x, 80a00008x)

Table 11. The best linear approximations found. We assume that every operation is
independent.

n/k Round 〈Γin, Γout〉 ε

64/128 34 〈(0000x, 1000x, 10D9x, 8C20x), (CF06x, 0202x, 0100x, 0009x)〉 2−31

128/* 40
〈(00000000x, 08001000x, 40891038x, 3000C800x),
(06082000x, 00001001x, 42040030x, 20020000x)〉

2−63
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Table 12. Examples of the best (RK) boomerang characteristics that we found.

Model n/k Round/p or q Characteristic

Single-key

model

64/128 17/2−15 (8200x, 0100x, 0001x, 8000x) → (0400x, 0004x, 0502x, 0088x)

18/2−16 (8200x, 0100x, 0001x, 8000x) → (0004x, 0502x, 0088x, 0000x)

128/128 23/2−30 (08104000x, 04002000x, 00000020x, 00000010x)

→ (40010000x, 20408100x, 00000001x, 02000080x)

24/2−33 (02000000x, 41000000x, 20410000x, 10008000x)

→ (00000000x, 00040001x, 81020400x, 00000004x)

Related-key

model

64/128 Key diff. (0000x, 0000x, 0080x, 0000x, 0000x, 8000x, 0000x, 0000x)

20/2−15 (0084x, 0000x, 0000x, 0000x) → (0400x, 0105x, 8080x, 0100x)

Key diff. (0000x, 0000x, 0000x, 0000x, 0080x, 0000x, 0000x, 8000x)

21/2−16 (0801x, 8400x, 0084x, 0000x) → (0000x, 0400x, 0105x, 8080x)

128/128 Key diff. (00000000x, 00000000x, 00000000x, 00800000x)

18/2−31 (00000801x, 80000400x, 00800004x, 00000000x)

→ (00020484x, 01000005x, 08020000x, 04010A00x)

Key diff. (00000000x, 00000000x, 00000000x, 00800000x)

18/2−31 (00000801x, 80000400x, 00800004x, 00000000x)

→ (00020484x, 01000005x, 08020000x, 04010A00x)

128/256 Key diff.
(00000000x, 00000000x, 00000000x, 00000000x)

(00000000x, 40000000x, 00000000x, 00000000x)

23/2−27 (08410002x, 04008000x, 00040080x, 00020040x)

→ (02020000x, 01010240x, 00000202x, 04000004x)

Key diff.
(00000000x, 00000000x, 00000000x, 00000000x)

(00000000x, 40000000x, 00000000x, 00000000x)

24/2−32 (08410002x, 04008000x, 00040080x, 00020040x)

→ (01010240x, 00000202x, 04000004x, 02008002x)

C.2 Impossible Differential Cryptanalysis and Zero-Correlation
Linear Cryptanalysis

Impossible differential cryptanalysis [12] uses a differential characteristic that can
never occur. A zero-correlation linear approximation [7] is the counter-part of
the impossible differential characteristic in the linear cryptanalysis field. Exam-
ples of the best impossible differential characteristics and zero-correlation linear
approximations as found here are given in Table 13.

C.3 (RK) Differential-Linear Cryptanalysis

A (RK) differential-linear approximation [14] is constructed with a short (RK)
differential characteristic and a short linear approximation. A (RK) differential-
linear approximation which has a correlation of pc2 > 2−n/2 can be used for
a (RK) differential-linear attack, where p is the probability of the differential
characteristic φ and c is the correlation of the linear approximation ψ. Examples
showing how to build these (RK) differential-linear approximations are given in
Table 14.
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Table 13. Examples of the best impossible differential characteristics and zero corre-
lation linear approximations found here.

Type n/k Round Characteristic

Impossible
differential

64/128 10 (11015, 016, 016, 016) ↔ (x61101x8, x1411x1, x16, x131101x1)

8 �↔ (x16, x16, x16, x81107) ↔ (081107, 016, 016, 01511)

128/* 8 (032, 032, 032, 11031) ↔ (032, x32, x32, x3011x1)

7 �↔ (x32, x32, x32, x241107) ↔ (032, 0241107, 032, 032)

Zero
correlation
linear
approxi-
mation

64/128 11 (01511, 11015, 016, 01511) ↔ (x16, x80611x1, x16, x16)

10 �↔ (11x15, x811x7, x16, x16) ↔ (0131102, 016, 016, 016)

128/* 9 (032, 032, 03111, 11031) ↔ (x32, 01511x808, x32, x32)

9 �↔ (032, 11x31, x32, x32) ↔ (01611015, 032, 032, 032)

Characteristics are denoted by 4-tuples of w-bit sequences separated by comma. 0j , 1j ,
and xj are j-bit sequences of 0, 1, and free bit, respectively.

Table 14. Examples showing how to build the best (RK) differential-linear approxi-
mations found here.

Model n/k (RK) diff.-linear approx. φ ψ

Round pc2 Rounds p Round c2

Single-key model 64/128 34 2−31 20 2−23 14 2−8

128/* 45 2−63 24 2−33 21 2−30

Related-key model 64/128 36 2−28 22 2−18 14 2−10

128/128 39 2−60 17 2−26 22 2−34

128/256 45 2−61 23 2−27 22 2−34

C.4 Integral Cryptanalysis

Integral cryptanalysis [35] uses sets of chosen plaintexts of which a part is held
constant and the other part varies through all possibilities. Considering ADD-
balance [30], we found the following 16-round integral characteristic for all of
our ciphers.

(A, C, C, C) → (C, C, C,A) → (C, C,A, C) → (C,A, C, C) → (A, C, C,A) → (C, C,A,A) → (C,A,A, C)

→ (A,A, C,A) → (A, C,A,B+
≪1) → (C,A,B+

≪1,A) → (A,B+
≪1,A,A) → (B+

≪1,A,A,U)

→ (A,A,U,U) → (A,U,U,B+
≪8) → (U,U,B+

≪8,U) → (U,B+
≪8,U,U) → (B+

≪8,U,U,U)

C, A, B+
≪l, U represent a constant word, an active word, an ADD-balanced

word when rotated to the right by l bits, and an unknown word, respectively.
The above 16-round distinguisher means that if the first word of a plaintext
is active, which takes all w-bit values at one time, and the other words of the
plaintext are constants, then the first word of the output after 16 rounds is
ADD-balanced when rotated to the right by 8 bits.
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The bit-based division property [49] is an improvement of the division prop-
erty [48] for non S-box-based ciphers. In [46], Sun et al. improved the integral
cryptanalysis result of LEA slightly by applying the bit-based division property.
Based on this result and owing to the similarity between LEA and our ciphers,
we expect that the bit-based division property will not seriously improve our
integral cryptanalysis.

C.5 Biclique Cryptanalysis

Wang et al. [51] showed that for variants of the Feistel structure, interleaving
related-key differential trails cannot construct bicliques [5]. Hence, we consider
the bicliques from independent related-key differentials, as our ciphers have a
variant of the type-3 generalized Feistel structure. We calculate the total com-
plexity Cfull for a key recovery attack with independent bicliques using the
following equation,

Cfull = 2k−2d(Cbiclique + Cprecomp + Crecomp),

where Cbiclique, Cprecomp, and Crecomp denote the complexities for building-
biclique, pre-computation, and re-computation, respectively. Note that a trivial
biclique for each cipher can be derived easily from related-key differentials. The
specific complexities are shown in Table 15. The re-check complexity of a false
positive is omitted in the above equation because it is negligible.

Table 15. Complexity of the biclique cryptanalysis for each parameter.

n/k Biclique round Cbiclique Cprecomp Crecomp Cfull

64/128 15 214.6 216.6 231.5 2127.5

128/128 7 229.5 232.7 263.7 2127.7

128/256 15 230.3 232.6 263.6 2255.6

C.6 Rotational Cryptanalysis

The initial version of a rotational cryptanalysis [33] can be easily defended by
constant-XOR’s. However, the recently proposed rotational-XOR cryptanaly-
sis [2] can be well-applied to ARX ciphers with constant XOR’s. So, we carefully
applied the rotational-XOR cryptanalysis to our algorithm and the results are
shown in the Table 16. Characteristics are initial and final δ’s. Refer to [2] for
attack conditions and the definition of δ.

C.7 Other Attacks

Applying round constants keeps our ciphers secure against slide attacks [18]. An
algebraic attack [24] is not effective for our ciphers due to the high nonlinearity
of such a case.
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Table 16. The best rotational-XOR differential characteristics found.

n/k Round/p Characteristic (δ)

64/128 16/2−62.225 (0000x, 0000x, 0000x, 8002x) → (0004x, 020ex, 0805x, 0810x)

128/* 23/2−125.545 (10000004x, 08000000x, 02080003x, 40040000x)

→ (00100004x, 08080400x, 00220008x, a1110d00x)
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Abstract. Kuznyechik is an SPN block cipher that has been chosen
recently to be standardized by the Russian federation as a new GOST
cipher. The cipher employs a 256-bit key which is used to generate ten
128-bit round keys. The encryption procedure updates the 16-byte state
by iterating the round function for nine rounds. In this work, we improve
the previous 5-round Meet-in-the-Middle (MitM) attack on Kuznyechik
by presenting a 6-round attack using the MitM with differential enumer-
ation technique. Unlike previous distinguishers which utilize only the
structural properties of the Maximum Distance Separable (MDS) linear
transformation layer of the cipher, our 3-round distinguisher is computed
based on the exact values of the coefficients of this MDS transformation.
More specifically, first, we identified the MDS matrix that is utilized in
this cipher. Then, we find all the relations that relate between subset
of the inputs and outputs of this linear transformation. Finally, we uti-
lized one of these relations in order to find the best distinguisher that
can optimize the time complexity of the attack. Also, instead of placing
the distinguisher in the middle rounds of the cipher as in the previous
5-round attack, we place it at the first 3 rounds which allows us to con-
vert the attack from the chosen ciphertext model to the chosen plaintext
model. Then, to extend the distinguisher by 3 rounds, we performed
the matching between the offline and online phases around the linear
transformation instead of matching on a state byte.

Keywords: Cryptanalysis · Meet-in-the-middle attacks
Substitution permutation network · Block ciphers · Kuznyechik
MDS transformations

1 Introduction

Kuznyechik [19] (Grasshopper in Russian) is a substitution permutation network
(SPN) block cipher which has been recently selected to be standardized by the
Russian federation as a new GOST cipher [2]. The current GOST R 34.12-2015
standard defines the new cipher, Kuznyechik, in addition to the old block cipher
GOST 28147-89 [1] which is now named Magma. The cipher employs a 256-bit
key which is used to generate ten 128-bit round keys. The encryption procedure
updates the 16-byte state by iterating the round function for nine rounds. While
c© Springer International Publishing AG, part of Springer Nature 2018
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the encryption process of Kuznyechik follows the SPN design architecture, its
key schedule employs a Feistel network to generate the round keys.

In the single-key attack model, Kuznyechik has been analyzed in [4,6]. In [6],
they launched multiset-algebraic attack against 6 and 7 rounds of Kuznyechik,
but the 7-round attack requires the whole code book. The data, time, and mem-
ory complexities of the 6-round attack are 2120 chosen plaintexts, 2146.5 encryp-
tions, and 2128 128-bit blocks, respectively. Furthermore, Biryukov et al. [7]
revealed a hidden structure in the S-box used in the cipher. A fault analysis
attack on the cipher was also presented in [3]. In this paper, we focus on improv-
ing the previous MitM attack on the cipher. The MitM attack was first proposed
by Diffie and Hellman in 1977 where they applied it to the cryptanalysis of Data
Encryption Standard (DES) [14]. In the classical version of this attack, we split
the block cipher E into two sub-ciphers such that E = GK2 ◦ FK1 , where K1

and K2 are two distinct key sets which are used in F and G, respectively. While
this MitM attack requires a low data complexity and is considered as one of the
major cryptanalysis techniques of block ciphers, finding two distinct key sets,
K1 and K2, that cover a large number of rounds is quite challenging, especially
in block ciphers that use nonlinear key schedules. The three-subset MitM attack
proposed by Bogdanov and Rechberger [8] solves this problem by splitting the
key into three-subsets K1, K2, and Kc such that the key sets K1 and K2 may
have common key bits that define the set Kc. The attack is then repeated for
each possible value of the key bits in Kc. This approach succeeded in attacking
the full KTANTAN cipher [8]. Later on, Tolba and Youssef [21] generalized the
idea of Bogdanov and Rechberger by allowing the key to be partitioned into
n ≥ 3 subsets which are not restricted to be independent.

Another line of research on the MitM attacks was triggered by Demirci and
Selçuk when they were able to attack 8 rounds of both AES-192 and AES-
256 [10]. In this attack, the cipher is split into three sub-ciphers such that
E = E2 ◦Emid ◦E1, where Emid exhibits a distinguishing property that is evalu-
ated offline independently of the middle rounds keys. Then, in the online phase,
the keys used in E1 and E2 are guessed and checked whether they verify the dis-
tinguishing property or not. The main downside of this attack is the high memory
required to save the precomputation table. Later on, Dunkelman et al. [15] pro-
posed two techniques to tackle the issue of the high memory requirement, namely,
the differential enumeration and the use of multisets, which helped reduce the
memory requirement but not enough to attack AES-128. Afterwards, Derbez et
al. [12] reduced the memory requirement further by using a rebound-like idea and
succeeded in attacking AES-128. Finally, Li et al. proposed a key-dependent siev-
ing technique [17] to further reduce the memory complexity of Derbez’s attack
and presented an attack on 9-round AES-192 and 8-round PRINCE. The MitM
attack is not only applied to SPN block ciphers such as AES but also to Feistel
ciphers as exemplified by the attacks presented by Guo et al. [16] and Lin and
Wu [18]. It is worth noting that despite its high memory requirement, the MitM
attack based on Demirci and Selçuk technique proves to be quite successful as
presented by the recent work against the SPN structure PRINCE [13] and the
Feistel constructions TWINE [5], and Piccolo [20].
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In this paper, we present 6-round MitM attack on Kuznyechik1. This attack
utilizes a 3-round truncated differential distinguisher that is based on the effi-
cient enumeration and multiset techniques. In particular, in this distinguisher,
the match between the offline and online computations is accomplished using
a linear relation that relates 5 input bytes and 12 output bytes of the linear
transformation layer. In the offline phase, we compute the left hand side of the
relation and store the obtained results in a table. Then, in the online phase,
we work out the right hand side of the relation and compare it with the stored
results in order to filter out the wrong keys. This idea, which is inspired by
the work in [11], enables us to extend the 3-round distinguisher by 3 rounds
to launch our 6-round MitM attack. Our attack has a time complexity of 2231

encryptions, a memory complexity of 2218 128-bit, and a data complexity of 2113

chosen plaintexts.
The rest of the paper is organized as follows. Section 2 provides the notations

used throughout the paper and a brief description of Kuznyechik. In Sect. 3, we
present our attack on 6 rounds of Kuznyechik. Finally, the paper is concluded
in Sect. 4.

2 Specifications of Kuznyechik

2.1 Notations

The following notation is used throughout the rest of the paper:

– K: The master key.
– Ki: The 128-bit round key used in the ith round.
– xi, yi, zi: The 16-byte state before the substitution, linear, and key addition

operations, respectively, at round i.
– xi[j]: The jth byte of the state xi, j = 0, 1, · · · , 15.
– xi[j : l]: The bytes from j to l of xi, j < l.
– Δxi, Δxi[j]: The difference at state xi, and byte xi[j], respectively.
– ·,+: The multiplication and addition in GF (28) using the irreducible polyno-

mial p(x) = x8 + x7 + x6 + x + 1.
– ||: The concatenation operation.

2.2 Specifications

Kuznyechik [2,19] employs the SPN design approach. It has a block length of
128-bit and a secret key of 256 bits. The 256-bit secret key is used to generate
10 128-bit round keys through the key schedule algorithm. The internal state
is updated using the round keys by applying the round function 9 times, as
illustrated in Fig. 1. The round function has the following operations [4]:

– Nonlinear bijective transformation (S): A nonlinear byte bijective mapping.
1 In Appendix A, we also show how the attack presented in [4] can be tweaked to work

under the chosen plaintext model with less time complexity.
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Fig. 1. Encryption scheme

– Linear Transformation (L): An optimal diffusion operation that operates on
a 16-byte input and has an optimal branch number = 17. This operation can
be defined as L(a) = R16(a), i.e., by iterating the transformation R for 16
times on a ∈ {0, 1}128 where

R(a) = R(a15|| · · · ||a0) = l(a15|| · · · ||a0)||a15|| · · · ||a1, (1)

l(a15, · · · , a0) = 0x94 · a15 + 0x20 · a14 + 0x85 · a13 + 0x10 · a12

+ 0xC2 · a11 + 0xC0 · a10 + a9 + 0xFB · a8 + a7

+ 0xC0 · a6 + 0xC2 · a5 + 0x10 · a4 + 0x85 · a3

+ 0x20 · a2 + 0x94 · a1 + a0.

(2)

– XOR layer (X): Mixes round keys with the encryption state.

Additionally, an XOR layer is added after the last round. Therefore, the
encryption algorithm that is used to encrypt the plaintext P to obtain the cipher-
text C, can be expressed as follows:

C = X[K10] ◦ (L ◦ S ◦ X[K9]) ◦ · · · ◦ (L ◦ S ◦ X[K1])(P ).

In our attack, we swap the order of the linear operations L, X, and hence we
use an equivalent key EKr instead of Kr such that EKr = L−1(Kr).

Key Schedule. The 256-bit secret key is used to generate 10 sub-round keys of
length 128 bits each through a 32-round Feistel network. First the master key
K is split into two keys K1,K2 such that K = K1||K2. These keys are used as
the first two round keys. Then, these two round keys are updated through the
Feistel network that applies the same round function of the encryption on the
right branch of the Feistel structure. Finally, as depicted in Fig. 2, each pair of
subsequent round keys is extracted after eight rounds of execution. The XOR
operation in the round function is done using constants Ci, i = 1, 2, · · · , 32,
defined as Ci = L(i).
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Fig. 2. Key schedule

3 A Differential Enumeration MitM Attack

In the MitM attack, the block cipher E is split into three sub-ciphers E1, Emid

and E2 such that E = E2 ◦Emid ◦E1 where the middle sub-cipher Emid exhibits
a distinguishing property evaluated from a particular set of messages. The dis-
tinguishing property is evaluated in the offline phase independent of middle
round keys. Afterwards, in the online phase, the round keys used in the analy-
sis rounds of the sub-ciphers E1 and E2 are guessed and checked whether they
satisfy the distinguishing property or not. The round keys that satisfy the dis-
tinguishing property are considered as key candidates and the remaining keys
are discarded. The chosen property in our attacks is a truncated differential
characteristic whose input is a δ-set [9] captured by Definition 1 and its output
is a parameterized function of the input. To identify the key candidates, we use
the multisets (see Definition 2) of the outputs corresponding to the δ-set as a
distinguishing property.

Definition 1 (δ-set). A δ-set for a byte-oriented cipher is a set of 256 state val-
ues that are all different in one byte (the active byte) and equal in the remaining
bytes (the inactive bytes).
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Definition 2 (Multisets of bytes). A multiset generalizes the set concept by
allowing elements to appear more than once. In our case, a multiset of 256
bytes can take as many as

(
28+28−1

28

) ≈ 2506.17 different values.

Our attack depends on the following proposition:

Proposition 1 (Differential Property of S). Given two nonzero differences Δi
and Δo in F256, the equation: S(x)+S(x+Δi) = Δo has one solution on average.
This property also applies to S−1.

3.1 MitM Attack on 6-Round Kuznyechik

The distinguishing property used in our attack is based on a relation between
5 input bytes and 12 output bytes of the linear transformation L, which can be
captured by the following proposition:

Proposition 2. The linear transformation L that transform the input a =
a15||a14|| · · · ||a0 to the output b = b15||b14|| · · · ||b0 has the following property:

a11 + 0x94 · a12 + 0x20 · a13 + 0x85 · a14 + 0x10 · a15 =
0xC2 · b0 + 0xC0 · b1 + b2 + 0xFB · b3 + b4 + 0xC0 · b5+

0xC2 · b6 + 0x10 · b7 + 0x85 · b8 + 0x20 · b9 + 0x94 · b10 + b11.
(3)

Proposition 2 is obtained by first using Eqs. (1) and (2) to calculate the equiv-
alent 16× 16 MDS matrix, A, that transforms the input a to the output b. Thus
we have2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0
b1
b2
b3
b4
b5
b6
b7
b8
b9
b10
b11
b12
b13
b14
b15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 94 20 85 10 C2 C0 1 FB 1 C0 C2 10 85 20 94
94 A5 3C 44 D1 8D B4 54 DE 6F 77 5D 96 74 2D 84
84 64 48 DF D3 31 A6 30 E0 5A 44 97 CA 75 99 DD
DD 0D F8 52 91 64 FF 7B AF 3D 94 F3 D9 D0 E9 10
10 89 48 7F 91 EC 39 EF 10 BF 60 E9 30 5E 95 BD
BD A2 48 C6 FE EB 2F 84 C9 AD 7C 1A 68 BE 9F 27
27 7F C8 98 F3 0F 54 8 F6 EE 12 8D 2F B8 D4 5D
5D 4B 8E 60 1 2A 6C 9 49 AB 8D CB 14 87 49 B8
B8 6E 2A D4 B1 37 AF D4 BE F1 2E BB 1A 4E E6 7A
7A 16 F5 52 78 99 EB D5 E7 C4 2D 6 17 62 D5 48
48 C3 2 0E 58 90 E1 A3 6E AF BC C5 0C EC 76 6C
6C 4C DD 65 1 C4 D4 8D A4 2 EB 20 CA 6B F2 72
72 E8 14 7 49 F6 D7 A6 6A D6 11 1C 0C 10 33 76
76 E3 30 9F 6B 30 63 A1 2B 1C 43 68 70 87 C8 A2
A2 D0 44 86 2D B8 64 C1 9C 89 48 90 DA C6 20 6E
6E 4D 8E EA A9 F6 BF 0A F3 F2 8E 93 BF 74 98 CF

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
a1
a2
a3
a4
a5
a6
a7
a8
a9
a10
a11
a12
a13
a14
a15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Then by performing Gauss elimination on the augmented matrix (A||b), we
obtain

2 All the matrix coefficients ∈ GF (28) and are expressed in hexadecimal notation.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
94 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 94 1 0 0 0 0 0 0 0 0 0 0 0 0 0
85 20 94 1 0 0 0 0 0 0 0 0 0 0 0 0
10 85 20 94 1 0 0 0 0 0 0 0 0 0 0 0
C2 10 85 20 94 1 0 0 0 0 0 0 0 0 0 0
C0 C2 10 85 20 94 1 0 0 0 0 0 0 0 0 0
1 C0 C2 10 85 20 94 1 0 0 0 0 0 0 0 0

FB 1 C0 C2 10 85 20 94 1 0 0 0 0 0 0 0
1 FB 1 C0 C2 10 85 20 94 1 0 0 0 0 0 0

C0 1 FB 1 C0 C2 10 85 20 94 1 0 0 0 0 0
C2 C0 1 FB 1 C0 C2 10 85 20 94 1 0 0 0 0
10 C2 C0 1 FB 1 C0 C2 10 85 20 94 1 0 0 0
85 10 C2 C0 1 FB 1 C0 C2 10 85 20 94 1 0 0
20 85 10 C2 C0 1 FB 1 C0 C2 10 85 20 94 1 0
94 20 85 10 C2 C0 1 FB 1 C0 C2 10 85 20 94 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0
b1
b2
b3
b4
b5
b6
b7
b8
b9
b10
b11
b12
b13
b14
b15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 94 20 85 10 C2 C0 1 FB 1 C0 C2 10 85 20 94
0 1 94 20 85 10 C2 C0 1 FB 1 C0 C2 10 85 20
0 0 1 94 20 85 10 C2 C0 1 FB 1 C0 C2 10 85
0 0 0 1 94 20 85 10 C2 C0 1 FB 1 C0 C2 10
0 0 0 0 1 94 20 85 10 C2 C0 1 FB 1 C0 C2
0 0 0 0 0 1 94 20 85 10 C2 C0 1 FB 1 C0
0 0 0 0 0 0 1 94 20 85 10 C2 C0 1 FB 1
0 0 0 0 0 0 0 1 94 20 85 10 C2 C0 1 FB
0 0 0 0 0 0 0 0 1 94 20 85 10 C2 C0 1
0 0 0 0 0 0 0 0 0 1 94 20 85 10 C2 C0
0 0 0 0 0 0 0 0 0 0 1 94 20 85 10 C2
0 0 0 0 0 0 0 0 0 0 0 1 94 20 85 10
0 0 0 0 0 0 0 0 0 0 0 0 1 94 20 85
0 0 0 0 0 0 0 0 0 0 0 0 0 1 94 20
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 94
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
a1
a2
a3
a4
a5
a6
a7
a8
a9
a10
a11
a12
a13
a14
a15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

It should be noted that this Gauss elimination step allows us to obtain many
linear relations that relate subsets of the input and output bytes of the linear
transformation, however, the relation identified by Proposition 2, which corre-
sponds to the bold line in Eq. (4) above, helped us to reduce the total time
complexity of the attack.

As depicted in Fig. 3, the distinguisher starts at x1 and ends at y4. The δ-set
is chosen at byte 15 and the multiset is computed from the left hand side of
Eq. (3) using bytes 11, 12, 13, 14, 15. Our distinguisher is based on the following
proposition:

Proposition 3. If a message m belongs to a pair of states conforming to the
truncated differential characteristic shown in Fig. 3, then the multiset of differ-
ences y4[11] + 0x94 · y4[12] + 0x20 · y4[13] + 0x85 · y4[14] + 0x10 · y4[15] obtained
from the δ-set constructed from m in x1[15] is fully determined by the following
27 bytes: Δx1[15], x2, y4[11 : 15] and Δy4[11 : 15].

Proof. The proof is based on the efficient enumeration technique [12]. In the
following, we show how the knowledge of 27 bytes is enough to propagate the
δ-set at x1 and compute the multiset (y4[11] + 0x94 · y4[12] + 0x20 · y4[13] +
0x85 · y4[14] + 0x10 · y4[15]). Let (m,m′) be a right pair that conforms to the
truncated differential characteristic in Fig. 3. Since we are interested in the mul-
tiset instead of the ordered sequence and the S-box that is used is bijective,
then we can propagate the difference Δy1[15] instead of Δx1[15]. Δy1[15] can be
propagated through the linear operations L, and X to compute Δx2. With the
knowledge of x2, we can bypass the non-linear operation S. Then we can forward
the knowledge through L,X to get Δx3. Similarly, in the backward direction,
the knowledge of y4[11 : 15] allows the propagation of Δy4[11 : 15] through the
non-linear mapping S−1 to get Δx4[11 : 15]. Then, we propagate the difference
Δx4[11 : 15] backward linearly through X, L−1 to determine Δy3. Using the
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Fig. 3. Kuznyechik 6-round attack

differential property of Kuznyechik S-box, the expected number of solutions for
x3 is one. ��

The previous 3-round distinguisher is utilized to launch a 6-round attack on
Kuznyechik by appending 3 rounds below it. In what follows, we describe the
details of our attack which has two phases, namely the offline and online phases.

Offline Phase. In this phase, we build the distinguishing property that will be
used in the online phase to filter the key space. As mentioned above, our distin-
guisher can be built using only 27 parameters given by Proposition 3. First, we
iterate on the 227×8 = 2216 possible values for each of the 27 byte parameters, to
deduce the internal state variable x3. Then, using the obtained value of x3, we
propagate the δ-set to compute the multiset differences y4[11] + 0x94 · y4[12] +
0x20 · y4[13] + 0x85 · y4[14] + 0x10 · y4[15] and store them in a table. Conse-
quently, we have 2216 multisets out of the 2467.6 theoretically possible ones (not
2506.17 because the number of ordered sequences associated to a multiset is not
constant [12]).

Online Phase. In this phase, we have two steps. First, the data collection step
where we want to ensure that we have one pair of messages that conform to the
truncated differential characteristic in Fig. 3, which holds with probability p. This
is achieved by collecting 1/p pair of messages. Second, the key recovery where we
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first identify the key values that satisfy the truncated differential characteristic
in Fig. 3. Then these key values with the collected data pairs are used to create
the δ-set, compute the multiset in the online phase and compare it with the
precomputation table to determine the valid key candidates.

Data Collection. We employed our δ-set in the plaintext side to operate in
the chosen plaintext model. We also utilize plaintext structures to reduce the
amount of required plaintexts. The utilized structure takes all the possible values
in byte 15 while the remaining bytes take fixed value. Therefore, one structure
generates 28 × (28 − 1)/2 ≈ 215 possible pairs. The probability of the whole
truncated differential characteristic of Fig. 3 can be calculated from the follow-
ing probabilities: transition from x6 to z5 over L−1 (16 → 12) of probability
2−4×8 = 2−32 and transition from z4 to y4 over L−1 (12 → 5) of probabil-
ity 2−11×8 = 2−88. Therefore, the total probability of the truncated differential
characteristic is 2−120. Hence, to find one pair of messages that conform to the
truncated differential characteristic, we need to collect 2120 message pairs. Since
each structure contains 215 message pairs, 2105 structures will suffice to find the
right pair. Therefore, the total number of queries to the encryption oracle is
about 2113.

Key Recovery. This step involves two sub steps. First, identifying the key sug-
gestions that will be used in building and computing the δ-set and the multiset,
respectively. Second, checking whether the identified keys in the first sub step
are key candidates. The keys that are used in building the δ-set and comput-
ing the multiset are EK6[0 : 11],K7, i.e., we want to guess 28 bytes which will
make the computational complexity exceeds the exhaustive search. Instead, we
identify the number of key suggestions of the 28 bytes that correspond to each
pair of messages. This can be achieved as follows: to deduce the values of the
16 bytes of K7, we guess 12 bytes of Δy5[0 : 11] and propagate these values
linearly through X,L to get Δx6. The knowledge of the ciphertext allows us
to compute Δy6. Using the differential property of the S-box, we evaluate y6.
Then, we compute z6 from y6 through the linear operation L. The knowledge
of the ciphertext and z6 allows us to deduce the values of the 16 bytes of K7.
For the next 12 bytes of Ek6[0 : 11], the 5 bytes of Δy4, Δy4[11 : 15] can take
240 values, but only 28 values among them can follow the truncated differen-
tial characteristic and after applying L, Δz4 has only 4 zero bytes. Therefore,
to deduce the values of the 12 bytes EK6[0 : 11], we guess the 28 values for
Δy4[11 : 15] and propagate them linearly forward through L, X to compute
Δx5[0 : 11]. The knowledge of Δx5[0 : 11] and Δy5[0 : 11] allows us to deduce
the value of 12 bytes y5[0 : 11] using the differential property of the S-box. We
can also propagate y6 through S−1 and L−1 to get z5[0 : 11]. The knowledge of
z5[0 : 11] and y5[0 : 11] allows to deduce EK6[0 : 11]. To summarize this part,
we have 213×8 = 2104 key suggestions for the 28 key bytes EK6[0 : 11],K7.

Now, we can use the 2120 collected message pairs and the 2104 suggestions for
the 28 key bytes EK6[0 : 11],K7 to identify the δ-set and compute the multiset
constructed from 0xC2 · z4[0]+0xC0 · z4[1]+ z4[2]+0xFB · z4[3]+ z4[4]+0xC0 ·
z4[5]+0xC2 ·z4[6]+0x10 ·z4[7]+0x85 ·z4[8]+0x20 ·z4[9]+0x94 ·z4[10]+z4[11].
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Consequently, the key suggestion is considered wrong if no match is found in the
table. Otherwise, it is considered as a key candidate. The probability of a wrong
key leading to a match in the table is 2216/2467.6 = 2−251.6. Therefore, after this
step we will have 2120+104−251.6 = 2−27.6 key candidates for the key bytes EK6[0 :
11],K7. In other words, only the right candidate will pass this filtering step. From
the key schedule of Kuznyechik, the master key can be recovered by guessing
K8. Then, we can propagate the knowledge of K7 and K8 until we evaluate K1

and K2, and hence the master key K = K1||K2. Therefore, retrieving the master
key requires to exhaustively search the remaining key candidate of K7 with the
2128 possible values of K8 using two plaintext/ciphertext pairs.

Attack Complexity. The offline phase dominates the memory complexity of
the attack in which we store 2216 multiset where each multiset is 512 bits. There-
fore, the memory complexity of the attack is 2216 × 512/128 = 2218 128-bit
blocks. The data collection step which determines the data complexity of the
attack requires us to collect 2113 plaintext to generate 2120 message pairs. Hence
the data complexity of the attack is 2113 chosen plaintexts. The time complexity
of the attack has three main components. First, the time needed to store the
precomputation table, is 227×8 × 28 × 3/6 = 2223 encryptions. Second, the time
required to get the one key candidate for K7 is 2120 × 213×8 × 28 × 3/6 = 2231

encryptions. Third, the time required to retrieve the master key is 2×2128 = 2129.
Therefore, the time complexity of the attack is about 2231 encryptions.

4 Conclusion

In this work, we presented a Meet-in-the-Middle attack on 6-round reduced
Kuznyechik. By exploiting the exact values of the coefficients of the MDS trans-
formation of the cipher, our attack recovers the master key with data complexity
of 2113 chosen plaintexts, time complexity of 2231 encryptions, and memory com-
plexity of 2218 128-bit blocks. This attack improves the previous results of the
MitM with differential enumeration technique which can only reach 5 rounds.
Compared to the best known attack which does not require the full code book
on this cipher in the single-key model, and which also reaches 6 rounds, our
attack improves the data complexity at the expense of requiring more time and
memory complexities.

A Chosen Plaintext MitM Attack on 5-Round
Kuznyechik

The authors in [4] implied that their attack can only work in the chosen cipher-
text model. In this appendix, we show how we can tweak their attack to work in
the plaintext model. Figure 4 illustrates our 3-round distinguisher which starts
at x1 and ends at y4. The δ-set is chosen at byte 15 and the multiset is computed
at byte 15. Our distinguisher is based on the following proposition:
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Fig. 4. Kuznyechik 5-round attack

Proposition 4. If a message m belongs to a pair of states conforming to the
truncated differential characteristic of Fig. 4, then the multiset of differences
Δy4[15] obtained from the δ-set constructed from m in x1[15] is fully determined
by the following 19 bytes: Δx1[15], x2, y4[15] and Δy4[15].

Proposition 4 can be proved using the same approach used to prove Proposition 3.

Offline Phase. In this phase, we compute the multiset at y4[15] using the 19
byte parameters mentioned in Proposition 4, i.e., we have 219×8 = 2152 multiset
out of 2467.6 theoretically possible ones.

Data Collection. The probability of the truncated differential characteristic
can be evaluated as follows: transition from z4 to y4 over L−1 (16 → 1) of
probability 2−15×8 = 2−120. Therefore, we need to collect 2120 message pairs
to guarantee that there exist one message pair which conform to the truncated
path. We use the same structure that is used in the 6-round attack. Hence, we
need to query 2113 chosen plaintext.

Key Recovery. In order to build the δ-set and compute the multiset, we need to
guess K6. The key suggestions for the 16 bytes K6 can be obtained by guessing
Δy4[15]. Therefore, we have 28 values for the 16 bytes key K6.

The probability of finding a match in the table with the wrong key is
2152/2467.6 = 2−315.6. Therefore, the number of key candidates of K6 after
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launching the attack is 2120+8−315.6 = 2−187.6, i.e., our attack will find one
right value for K6. Then, the master key can be recovered by guessing K5 using
two plaintext/ciphertext pairs.

Attack complexity. The memory complexity is 2152 × 512/128 = 2154 128-bit.
The data complexity is 2113 chosen plaintext. The time complexity is 219×8 ×
28 × 3/5 + 2120 × 28 × 28 × 2/5 + 2 × 2128 ≈ 2159.3 + 2134.7 + 2129 ≈ 2159.3

encryptions. Our attack has an online time complexity of 2134.7 encryptions.
Therefore, this attack reduces the online time complexity of the previous attack
[4] by a factor of 25.6 with the same data and a non significant increase in the
memory complexity.
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against reduced-round AES. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp.
541–560. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-
3 28

https://eprint.iacr.org/2015/347.pdf
https://doi.org/10.1007/978-3-662-48116-5_1
https://doi.org/10.1007/978-3-662-48116-5_1
https://doi.org/10.1007/978-3-662-49890-3_15
https://doi.org/10.1007/978-3-662-49890-3_15
https://doi.org/10.1007/978-3-642-19574-7_16
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/978-3-540-71039-4_7
https://doi.org/10.1007/978-3-662-43933-3_28
https://doi.org/10.1007/978-3-662-43933-3_28


38 M. Tolba and A. M. Youssef

12. Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-
round AES in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 23

13. Derbez, P., Perrin, L.: Meet-in-the-middle attacks and structural analysis of round-
reduced PRINCE. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 190–216.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5 10

14. Diffie, W., Hellman, M.E.: Special feature exhaustive cryptanalysis of the NBS
data encryption standard. Computer 10(6), 74–84 (1977)

15. Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round
AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
158–176. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
8 10
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Abstract. Most of the proposed order-preserving encryption (OPE)
schemes in the early stage of development including the first provably
secure one are stateless and work efficiently, but guarantee only weak
security. Additionally, subsequent works have shown that an ideal secu-
rity notion IND-OCPA can be achieved using statefulness, ciphertexts
mutability, and interactivity between client and server. Though such
properties hinder availability of IND-OCPA secure OPE schemes, the
only definitively known result is the impossibility of constructing a fea-
sible IND-OCPA secure OPE scheme without ciphertext mutability. In
this work, we study the security that can be fulfilled by only statefulness,
from a viewpoint different from the existing research. We first consider
a new security notion, called δ-IND-OCPA, which is a natural relax-
ation of IND-OCPA. In comparison to IND-OCPA in which ciphertexts
reveal no additional information beyond the order of the plaintexts, our
notion can quantify the rate of plaintext bits that are leaked. To show
achievability of our notion, we construct a new δ-IND-OCPA secure OPE
scheme. The proposed scheme is stateful and non-interactive, but does
not require ciphertext mutation. Through several experiments, we show
that our construction is also feasible and that has an advantage in the
correlation analysis compared with the IND-OCPA secure scheme.

Keywords: Order-preserving encryption · Outsourced database
Cloud computing

1 Introduction

Cloud storage services provide the ability to accumulate large amount of data
and make it possible to share and synchronize them across devices. Considering
the sensitivity of such data and the confidence in the cloud servers, a significant
amount of data should be encrypted before being transferred to the cloud servers,
and stored on those servers without decryption. While traditional encryption is
a powerful tool of protecting the confidentiality of stored data, its all-or-nothing
approach to data access destroys properties of plaintexts that are necessary for
efficient server-side processing, such as order comparison. One particularly effi-
cient solution for performing useful operations on encrypted data is to use an
c© Springer International Publishing AG, part of Springer Nature 2018
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order-preserving encryption (OPE) scheme [5,12,13,16,18]. OPE is a symmetric
encryption that results in ciphertexts which preserve the numerical orders of
the corresponding plaintexts. Although an OPE scheme cannot achieve a natu-
ral indistinguishable notion of semantic security [5], it allows order comparison
operations, including matching, range, sorting, ranking, etc., directly on cipher-
texts. So any possible environment that makes an SQL query on encrypted data
such as e-mail, web applications, database security solutions, and cloud storage
services can be applications of OPE.

The notion of ideal security for OPE, called Indistinguishability under
ordered chosen-plaintext attack (IND-OCPA)1 was first formalized by Boldyreva
et al. [5], but the first concrete IND-OCPA secure scheme was proposed a few
years later by Popa et al. [16]. Back in [5], the authors showed that stateless OPE
schemes cannot achieve ideal security under reasonable assumptions. To con-
struct a deployable and provably secure OPE scheme, they set up a weaker secu-
rity goal called pseudorandom order-preserving function security under chosen-
ciphertext attack (POPF-CCA) in which the oracle access to the encryption
algorithm of an OPE scheme is indistinguishable from that to a random order-
preserving function under chosen-ciphertext attacks. Later, it was proven that
POPF-CCA secure OPE schemes reveal at least half of the most significant
bits of plaintexts [6]. As an alternative to POPF-CCA, Teranishi et al. pro-
posed another security goal for OPE of θ-lsb-KPA: guaranteeing the secrecy of
a fraction θ of the least significant bits of a plaintext under known plaintext
attacks [18].

Instead of striving for a weaker notion of security, Popa et al. utilized
the client-side inner state (statefulness) and ciphertext mutability, and proved
impossibility of achieving IND-OCPA by the statefulness alone [16]. Here, cipher-
text mutability means that whenever a new plaintext is encrypted the existing
ciphertexts can be updated. Because the states are encrypted and stored in a
tree data structure at the server, the encryption process is interactive, requiring
multiple rounds of communication between the client and the server. Such app-
roach has a problem that the entire ciphertexts should be updated at a certain
point in time depending on the distribution of plaintexts. Although Kerschbaum
and Schröepfer [13] have shown that there is little update when plaintexts fol-
low uniform distribution. However, it only take into accounts an ideal case that
favorable to them, and there are many applications whose plaintext distribution
is non-uniform. For example, we can consider the worst-case scenario in which
the plaintext is inserted one by one according to their order.

Before describing the contribution of this paper, we briefly compare the char-
acteristics of the existing OPE schemes in Table 1. As evaluation points, the
columns “Client storage” and “Computation” denote the size of secret informa-
tion and computational complexity of encrypting data at the client-side, respec-
tively. The “Communication” column denotes the (worst-case) communication
cost between client and server when encrypting a plaintext. The “Update” col-
umn denotes the cost of re-encrypting ciphertexts at the server-side DBMS, but

1 See Appendix A.
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Table 1. Comparison with the previous OPE schemes

Scheme Client storage #Round Computation Communication Update Ref.

BCLO O(1) - O(logM)-HDS O(1) - [5]

TYM O(1) - O(logM)-HDS/BDS O(1) - [18]

PLZ O(1) O(logM) O(logM)-Dec O(logM) O(M) [16]

KS O(M) - O(logM)-TL/SAO O(M/ logM) O(M) [13]

Ours O(M) - O(logM)-TL/SAO O(1) -

M : Message Space Size, SAO: Simple Arithmetic Operation,
HDS: Hypergeometric Distribution Sampling, BDS: Binomial Distribution Sampling,
Dec: Decryption, TL: Table Lookup

it generally occurs sporadically. For example, the re-encryption process of the
OPE schemes proposed in [12,13] are occurred every O(log M) times in the worst
case, such as encrypting strictly increasing or decreasing data set. Known state-
ful OPE schemes [12,13,16] with ciphertext mutability provide ideal security
but at least one of the efficiency factors is harmed. Note that such constructions
have focused on achieving IND-OCPA security using ciphertext mutability, but
the upper limit of the achievable security without this property is still unknown.

As an approach to reduce this gap, we first consider a new security notion of
OPE, called δ-IND-OCPA. Our security notion is similar to the partial indistin-
guishability notion of [18] but considers adaptive adversaries [10] and provides
stronger security goal that can quantify the rate of plaintext bits be leaked. By
such properties, we can show that δ-IND-OCPA implies θ-lsb-KPA [18] under
any plaintext distribution (relation between θ and δ is explained later), and it is
identical to IND-OCPA when δ = 1. We also provide a stateful but non-mutable
OPE (hereinafter referred to as “sOPE”) scheme which achieves this new secu-
rity notion. Note that the stateless OPE scheme in [18] does not guarantee
security goal in the adaptive CPA model, and so we use the client-side state to
counter such stronger attack model. Finally, we implement our scheme to show
its feasibility by comparing with the existing schemes [5,13]. When a ciphertext
re-encryption phase via update operation is occurred in the IND-OCPA secure
scheme, we can confirm that our sOPE scheme is faster. We also show that our
sOPE scheme has lower correlation between the ciphertext and plaintext than
the IND-OCPA secure scheme for plaintexts with normal distribution.

As related works, Boneh et al. introduced a related primitive called order-
revealing encryption (ORE), which is a generalization of OPE [7]. The ORE
scheme does not preserve the numerical ordering of the plaintexts in cipher-
texts, but there is a public comparison function that takes two ciphertexts and
outputs the numeric ordering of the underlying plaintexts. Although their ORE
scheme is IND-OCPA secure, it relies on multilinear maps, which accompany
heavy computations and strong assumptions. Recently, N. Chenette et al. showed
that a practical ORE scheme leaks some information about the relative distance
between the underlying plaintexts [8].
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2 Preliminaries

2.1 Notations

Let λ ∈ N denote the security parameter. Given positive integers α and β with
α ≤ β, [α, β] denotes the set {α, α+1, . . . , β} and [α] = [1, α]. Let

∣
∣[α, β]

∣
∣ denote

the number of elements in the interval.
A function ν : N → N is negligible in k if for every positive polynomial p(·)

there exists K ∈ R such that ν(k) < 1/p(k) for all k ≥ K. We write f(k) =
negl(k) to mean that there exists a negligible function ν(·) such that f(k) ≤ ν(k)
for all sufficiently large k. We write poly(k) to denote a polynomial in k. Let �x�
denote the min{n ∈ N | n ≥ x} and �x	 denote the max{n ∈ N | n ≤ x}. The
output x of an algorithm A is denoted by x ← A.

2.2 Basic Primitive

A symmetric key encryption scheme SE consists of three polynomial-time algo-
rithms SE = (Kg, Enc, Dec) such that SE.Kg takes a security parameter λ in
unary and returns a secret key skey; SE.Enc takes a key skey and a message m
and returns a ciphertext c; SE.Dec takes a key skey and a ciphertext c and returns
m if skey was the key under which c was produced. Here, SE.Kg is probabilistic,
but SE.Enc and SE.Dec are deterministic. Informally, a symmetric key encryp-
tion scheme is considered CPA secure if a ciphertext do not leak any information
about the corresponding plaintext even to an adversary that can query to the
encryption oracle.

2.3 Syntax and Correctness

A stateful order-preserving encryption scheme sOPE consists of the polynomial-
time algorithms defined as follows:

– Kg, the key generation algorithm, is a probabilistic polynomial-time algorithm
that, given a security parameter λ and a domain D, returns a secret key okey
that includes some states; okey ← sOPE.Kg(1λ,D).

– Enc, the encryption algorithm, is a deterministic polynomial-time algorithm
that, given the secret key and a plaintext m ∈ D, returns a ciphertext c ∈ R
where R is the range of sOPE; c ← sOPE.Enc(okey,m). Here, some states in
okey are updated (inserted usually) during this encryption process.

– Dec, the decryption algorithm, is a deterministic polynomial-time algorithm
that, given the secret key and a ciphertext c ∈ R, returns a plaintext m ∈ D;
m ← sOPE.Dec(okey, c).

For D,R ⊆ N, an OPE scheme sOPE has to satisfy two requirements. One
is the monotone increasing property: for all (m1,m2) ∈ D × D and okey ←
sOPE.Kg(1λ,D),

m1 < m2 ⇐⇒ c1 < c2 where ci ← sOPE.Enc(okey,mi).
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The other is the standard consistency constraint: for all plaintexts m ∈ D and
okey ← sOPE.Kg(1λ,D),

m ← sOPE.Dec(okey, c) where c ← sOPE.Enc(okey,m).

3 New Security Notion

Previous works showed that any IND-OCPA secure stateless or even stateful
OPE scheme must have ciphertext size that is at least exponential to the size
of the plaintext [5,16]. As noted above, the first provably secure and feasible
OPE scheme was designed to satisfy POPF-CCA. To clarify the OPE security
guaranteed by such pseudorandom OPE schemes, the cryptographic properties
of a random order-preserving function (ROPF) have been considered as an ideal
object of POPF in [6]. One of things considered in such analysis is one-wayness
under the KPA model. In more detail, known plaintext/ciphertext pairs split the
plaintext and ciphertext spaces into subspaces, and so the analysis under each
one-wayness definition reduces to that of an ROPF on the subspace.

In the CPA model, however, an adversary can even specify the target sub-
space and gradually constrain the range of the subspace. Then ciphertext indis-
tinguishability, which is a stronger security notion than one-wayness, should
guarantee that the advantage of any OCPA adversary to distinguish a pair of
ciphertexts in the target subspace is negligible.

Fig. 1. Chosen plaintext attack on OPE

Figure 1 shows that a challenge ciphertext c∗ is given to a OCPA adver-
sary who obtained (m1, c1) and (m2, c2) from the encryption oracle. Here, our
motivation started from the following question:

Is it possible to construct an OPE scheme ideally secure in at least I not J?

An affirmative answer for this question has been shown by Teranish et al. [18].
They considered a find-then-guess type partial indistinguishability definition
under the non-adaptive CPA model (called (k, θ)-FTG-O-nCPA), to ensure the
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secrecy of the fraction of the least significant bits of a plaintext2. Such secrecy
is guaranteed by showing that a ciphertext of any element m∗

0 in an interval I
is indistinguishable from that of a uniformly random element m∗

1 in I which is
determined by k and θ. In more details, the interval I is set as [α, β] where α and
β satisfy |α − m1| ≥ kθ and |m2 − β| ≥ kθ. Then it implies that 2kθ + θ ≤ |J|,
J = [m1,m2].

We extend this approach to the CPA model and present a new security
notion, called δ-IND-OCPA. This notion is defined by the following game
Gameδ-ideal

sOPE (A, b) between a challenger C and an adversary A:

(Setup) C runs okey ← sOPE.Kg(λ) and chooses a random bit b.
(Query) At round i ∈ [1, n], A queries i-th message pair (m0

i ,m
1
i ) to C as follows:

1. A chooses a message m0
i and sends it to C.

2. If m0
i = m0

j for some j ∈ [1, i − 1], C returns Ii = {m1
j} to A.

3. Otherwise, C finds the largest (resp. smallest) m0
x (resp. m0

y) in QM =
{m0

0,m
0
1, . . . ,m

0
i−1,m

0
n+1} where m0

x < m0
i (resp. m0

y > m0
i ) and m0

0 =
m1

0 = 0, m0
n+1 = m1

n+1 = M +1. Then, C returns an interval Ii to A
satisfying

Ii ⊆ Ji = [m1
x + 1,m1

y − 1] and log |Ii| ≥ δ log |Ji|.
4. A chooses m1

i ∈ Ii arbitrarily and sends it to C.
5. C returns cb

i ← sOPE.Enc(okey,mb
i ) to A.

Here, the left and right messages should have the same order relation, i.e.,
for all 1 ≤ i, j ≤ n, m0

i < m0
j if and only if m1

i < m1
j .

(Guess) A outputs b′, its guess for b.

Definition 1. A stateful order-preserving encryption scheme sOPE is δ-IND-
OCPA secure if for any probabilistic polynomial-time adversary A,

∣
∣Pr[Gameδ-ideal

sOPE (A, 1) = 1] − Pr[Gameδ-ideal
sOPE (A, 0) = 1]

∣
∣ ≤ negl(λ).

Our δ-IND-OCPA notion means that plaintext information on I can be hidden
to any polynomial-time adversaries. From log |I| ≥ δ log |J|, we know that δ means
the ratio of the bit information that the underlying OPE scheme can protect
to the maximum bit information guaranteed by the ideal security notion. As
described in Fig. 1, δ = 1 means that an adversary cannot get any information
about a plaintext m∗ ∈ I(= J) from a ciphertext c∗, and it thus collapses to
the case of IND-OCPA. Additionally, δ-IND-OCPA implies (k, θ)-FTG-O-nCPA
when δ is taken as log θ/ log(2kθ + θ) from θ = |I| and 2kθ + θ ≤ |J|.

As mentioned in [18], the proposed stateless OPE scheme with (k, θ)-FTG-
O-nCPA security does not preserve ciphertext indistinguishability under the
adaptive CPA model. Therefore, we now design a new OPE scheme satisfying
δ-IND-OCPA notion. To counter the enhanced capabilities of the adversary, our
main design strategy is to adopt statefulness property.
2 Teranish et al. [18] proved that (k, θ)-FTG-O-nCPA implies θ-lsb-KPA that ensures

the secrecy of the least significant log θ bits of a plaintext under the known plaintext
attack. Here, θ is determined by plaintext distribution and has a maximum value in
the uniform distribution.
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4 Construction

In this section, we show that the security notion δ-IND-OCPA is achievable by
maintaining states of OPE. Similar to the constructions of [13,16], the encryption
algorithm of our OPE scheme can be separated into the conventional symmetric
key encryption part and the order-preserving encoding part. It means that a
ciphertext c consists of (c1, c2) where c1 is an order-preserving encoding value
and c2 is an encrypted value using the symmetric key cipher. This section focuses
on how to generate an encoded value c1 that preserves order from a given plain-
text. For convenience of explanation, we occasionally regard this order-preserving
encoding part c1 as the whole ciphertext c although it abuses notation.

4.1 Building Blocks

The basic concept of our construction is that each partitioned plaintext and
ciphertext space divided by a new pair of plaintext and ciphertext maintains the
ratio of the original plaintext space size to ciphertext space size. The following
example explains why our idea is crucial to achieve δ-IND-OCPA security.

Fig. 2. The basic design idea of our scheme

Assume that a plaintext/ciphertext pair (m1, c1) divides the entire space
into two subspaces, as depicted at Fig. 2. Here, the ratio between the parti-
tioned plaintext and ciphertext space sizes divided by (m1, c1) is different. More
precisely, the following relation holds.

log(c1−1)
log(m1−1)

>
log N

log M
>

log(N−c1)
log(M−m1)

. (1)

The left inequality in relation (1) shows that the ratio of the size of pos-
sible ciphertext space to the size of plaintext space [1,m1] is increased. Thus,
it becomes more difficult for an adversary to infer plaintext information from
a ciphertext c2 than c3. On the other hand, the right inequality in (1) shows
that the size of the ciphertext candidates to be reduced. If the latter case occurs
in the encryption process, either the OCPA-advantage of an adversary may be
increased by adaptive queries on such partitioned plaintext/ciphertext space
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or the size of the interval I returned by the challenger C in the δ-IND-OCPA
game may be reduced. To overcome this, it is required to assign a ciphertext c

for a given plaintext m to satisfy log(c−1)
log(m−1) > log N

log M and log(N−c)
log(M−m) > log N

log M . It
means that the ratio of between the partitioned plaintext and ciphertext space
sizes induced from any plaintext and ciphertext pair (m, c) should be main-
tained as large as log N

log M . Below, we will show that an OPE scheme designed
by this intuition satisfies the δ-IND-OCPA security. Figure 3 shows that any
element in [(m−1)2+1,m(2M−m)] for a certain message m satisfies this condi-
tion. From log(m−1)2

log(m−1) = log(M2−m(2M−m))
log(M−m) = log M2

log M = 2, we can assign any c in
[(m−1)2+1,m(2M−m)] as a ciphertext of m. Algorithm 1, named Find, describes
our intuition in more detail.

Fig. 3. Possible ciphertext space for a message m

Algorithm 1. Find(M,N, x) → y

Input: M : size of plaintext space, N(= Md) : size of ciphertext space, x : plaintext
Output: y : ciphertext

1: flag ← 0 ; x0 ← 1 ; i ← 0
2: if x > �M/2� then
3: x ← M − x + 1 ; flag ← 1
4: end if
5: repeat
6: i ← i + 1
7: yi ← min{�N/2�, N − (M − xi−1)

d}
8: xi ← min{�y1/d

i �, �M/2�}
9: if 0 < �M/2� − xi < x1 then

10: xi ← �M/2� − x1

11: end if
12: until x ≤ xi

13: if flag = 0 or yi = �N/2� then
14: output yi

15: else
16: output N − yi + 1
17: end if

Figure 4 describes an embodiment of Algorithm 1 for a particular input value
(M,N, x) = (200, 40000, 170). The input value x = 170 is symmetrically shifted
to x′ = 31 based on the median of the plaintext space, and then y1 = 399 and
x1 = 20 are sequentially computed in the first loop. We can easily check that
∣
∣[1, c−1]

∣
∣ >

∣
∣[1,m−1]

∣
∣
2 and

∣
∣[c+1, 20000]

∣
∣ >

∣
∣[m+1, 200]

∣
∣
2 if ∀m ∈ [1, 20] and
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Fig. 4. An example of the algorithm

c = 399. Second loop computes y2 = 7600 and x2 = 80, where the correction of
line 10 is occurred. Since x2 = 80 > 31 = x′, 31 is associated with y′ = 7600 and
so Find outputs y = N − y2 + 1 = 32401 which is symmetrically shifted based
on the median of the ciphertext space. At this point, 399 is the only ciphertext
candidate for all messages in [1,20], which guarantees indistinguishability on
[1, 20]. Since log 20/ log 200 > 0.5 and it is the smallest interval, we can say that
more than half of log M bits can be hidden in this example.

Lemma 1. The running time of the Find algorithm is O(log M).

Proof. First, we show that 2xi < xi+1 when d ≥ 2 and xi < 2M/5. In Algo-
rithm1, xi+1 is defined as (Md − (M − xi)d)1/d and it is a monotone increasing
function for the variable d. We then know

xi+1 = (Md − (M − xi)d)1/d ≥ (M2 − (M − xi)2)1/2 = (2Mxi − x2
i )

1/2.

By assumption, we get (2Mxi − x2
i )

1/2 > 2xi, and thus xi+1 > 2xi. And if
xi > 2M/5, then xi+1 > M/2. So the running time of the Find algorithm is
O(log M). On the other hand, for 0 < xi < M/2, xi+1−xi = (2Mxi−xd

i )
1/d−xi

takes its minimum at xi = 1 (namely, i = 0), and lines 8–10 in Algorithm1
guarantee this.

4.2 Proposed Scheme

In this subsection, we describe a new δ-IND-OCPA secure OPE scheme sOPE
based on the Find algorithm. For a given plaintext space [M ], a client chooses a
parameter 0 < δ < 1, and defines the ciphertext space as [N ] where N = �Md�
and d = 1/(1 − δ). For better security, a larger ciphertext space is required,
but there is a trade-off between security and efficiency. In Sect. 5.2 we provide a
guideline for choosing a proper d based on our correlation analysis.

As noted above, a ciphertext c of sOPE consists of (c1, c2) where c1 is an order-
preserving encoding part and c2 is a symmetric key encryption part. We assume
that a secure symmetric key encryption scheme SE = (SE.Kg,SE.Enc,SE.Dec) is
used for generating c2.
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Algorithm 2. sOPE.Kg(λ, [M ]) → okey

1: KeyTable ← {(0, 0), (M + 1, N + 1)}
2: skey ← SE.Kg(λ)
3: Output okey ← (KeyTable, skey)

Key Generation: Algorithm 2 shows the key generation algorithm of sOPE.
Here, a key table KeyTable is used to keep some states.

Encryption: The encryption process based on the Find algorithm is quite
straightforward. If an input m has previously been encrypted, namely (m, y) ∈
KeyTable for some y, y can be used as the ciphertext c1 of m again. Otherwise,
c1 is generated as described in Algorithm 3 and Fig. 5.

Fig. 5. How to set m′

Algorithm 3. sOPE.Enc(okey,m) → c

1: c2 ← SE.Enc(skey, m)
2: if There exits (x, y) in KeyTable where x = m then
3: Output c ← (y, c2)
4: else
5: Search (x1, y1), (x2, y2) ← KeyTable where x1 < m < x2 and |x2 − x1| is the

smallest.
6: X ← �(y2 − y1 − 1)1/d� ; Y ← y2 − y1 − 1
7: m′ ← �(y2 − y1 − 1)1/d(m − x1)/(x2 − x1 − 1)�
8: KeyTable ← KeyTable ∪ {(m, y1 + y)} where y ← Find(X, Y, m′)
9: Output c ← (y1 + y, c2)

10: end if

From lines 5–6 of Algorithm 3, we get Y = y2 − y1 − 1 and X = �Y 1/d	 if
we have (x1, y1) and (x2, y2) in KeyTable. Though it seems natural to set X to
x2 − x1 − 1, note that this is not secure because some information of x1 and
x2 can be deduced from X. Since the size of plaintext candidates X is adjusted
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from |x2−x1−1| to X = �Y 1/d	, we have to adjust m to m′ accordingly. Finally,
c1 is computed as y1 + y where y ← Find(X,Y,m′).

A client needs to maintain KeyTable of size at most M . By encrypting
KeyTable and storing it on the server, we can make the secret key size O(1).
However, O(log M) communication costs with the server are required, as in [16],
to perform line 5 of sOPE.Enc.

Decryption: Note that c1 is not required for the decryption process. It is
completed by simply running SE.Dec for c2.

4.3 Security Analysis

Theorem 1. For the plaintext space [M ] and ciphertext space [Md], the pro-
posed scheme sOPE is (1−1

d )-IND-OCPA secure if the underlying symmetric key
encryption scheme SE is CPA-secure.

Proof. An adversary A and a challenger C proceed to the δ-IND-OCPA security
game in the following process.

– (Setup) C runs the key generation algorithm sOPE.Kg(λ, [M ]) twice, and
obtains two keys okey1 = (KeyTable1, skey1) and okey2 = (KeyTable2, skey2).

– (Query) For a given message m0
i issued by A at round i ∈ [1, n = poly(λ)],

C determines Ii and ci as follows:
• If m0

i = m0
j for some j ∈ [1, i − 1], set Ii = {m1

j} and ci = cj

• Otherwise, C first computes ci ← sOPE.Enc(okey1,m0
i ). Let (x1, y1) and

(x2, y2) be two tuples obtained in the process of computing ci (line
5 of Algorithm 3), and let X = �(y2 − y1 − 1)1/d	, Y = y2 − y1 − 1,
x=�(y2−y1−1)1/d(m0

i−x1)/(x2−x1−1)	. Note that given y = Find(X,Y, x)
C can easily find an interval [xi−1, xi] such that y = Find(X,Y, x′) for any
x′ ∈ [xi−1, xi], and input parameters X and Y of Find algorithm depend
on only previous ciphertexts. Thus, if all of ciphertexts in the states
KeyTable1 and KeyTable2 are the same, C can easily find an interval Ii
satisfying sOPE.Enc(okey1,m0

i ) = sOPE.Enc(okey2,m1
i ) for any m1

i ∈ Ii.
C returns such Ii to A and receives m1

i ∈ Ii from A. Then, C finally returns
ci = sOPE.Enc(okey1,m0

i ) = sOPE.Enc(okey2,m1
i ) to A.

To complete the proof, it is sufficient to show that the encryption of m1
i

randomly selected in Ii are indistinguishable from the encryption of m0
i . Let E1

and E2 be the events where A gets some information about plaintext through
c1 and c2 of the ciphertext c = (c1, c2), respectively. The advantage of A for the
security game is defined as follows.(δ = (d − 1)/d)

Pr[Gameδ-ideal
sOPE (A, 1) = 1] − Pr[Gameδ-ideal

sOPE (A, 0) = 1] = Pr[E1 ∨ E2]
≤ Pr[E1] + Pr[E2].

By construction of Ii, we can easily check that all plaintext m1
i belonging to

Ii and m0
i have the same ciphertext c1. This means Pr[E1] = 0. On the other
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hand, Pr[E2] is determined by the CPA security of SE, and by assumption, it
is negligible. Now, we describe how to set δ from the expansion factor d. It is
(Md − (M − 1)d)1/d when |I| is the smallest as in the analysis of Sect. 4.

log |I|
log |J| ≥ log(Md − (M − 1)d)1/d

log M
≥ log(Md−1)

d log M
=

(d − 1)
d

.

From this equation, we can obtain log |I| ≥ δ log |J| where δ = (d − 1)/d. By
combining all these results, our proposed scheme can provide (d − 1)/d-IND-
OCPA security.

5 Evaluation

The evaluation of our scheme targets the correlation between plaintext and
ciphertext and the performance comparison of encryption phase for the different
OPE schemes.

5.1 General Setting

The client and the DBMS server were implemented and performed on a single
desktop computer with a Intel Core i7 4790 3.6 GHz CPU, 16 GB of DDR3 RAM,
and Samsung SSD 850 PRO 512 GB running Linux Mint 18(64-bit). The main
programming language is C++14 and we also use Python to take advantage of
the scripts we needed for testing. As a DBMS located at the server, we use
MariaDB [3] and use MySQL Connector/C++ to embed DMBS directly in our
application. Independently, to manage a state in the client, we use SQLite [4].
As a symmetric key cipher, we use AES-128 operating in ECB mode which is
supported by the CPU instruction.

To implement our sOPE scheme, we use GMP [2] as a big number back
end of the Boost multiprecision library [1]. And we use the conversion func-
tions provided by GMP for conversion between binary and big integer. We also
implemented BCLO [5] and KS [13] schemes for comparison. For BCLO scheme,
we used the implementation from CryptDB [17] but replaced AES operation
blocks with the equivalent AES-NI instructions. For KS scheme, we implemented
using the description in [13]. But we modify update procedure as detailed in
AppendixC. Such modifications on the KS scheme allow us to evaluate the
efficiency of our scheme through more fair comparison, and we think it is an
independently interesting result.

For our experiments, we use four types of datasets for plaintext inputs. One
of them follows the uniform distribution and other three follow the normal dis-
tribution. To vary the distribution in the normal distribution, three ρ values 0.5,
1, and 2 are used. We constitute a dataset using the random number library of
C++11.
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5.2 Correlation Analysis

Each OPE scheme can be described as a monotonically increasing function, so a
simple statistical cryptanalysis technique is to model the encryption as a linear
function. To estimate the effectiveness of such statistical attack, Kerschbaum
and Schröepfer [13], and Kerschbaum [12] compute the Pearson correlation coef-
ficients for their OPE schemes. The correlation coefficient r measures a linear
relation between two sets of random variables. Since r is expressed as a value
between −1 and 1, r = 1 (or r = −1) indicates linear correlation, and r = 0
indicates no correlation, a smaller r which is closer to 0 is better for the security
of an OPE scheme.

In our experiment to measure correlation coefficients, we set the number l of
bits in the plaintext domain by l = 32, i.e. M = 232, that is usually expected to
be used frequently, and the number n of plaintexts by n = 220. Instead we vary
the expansion factor d by choosing d ∈ {2, 3, 4, 5, 6}, i.e. N = 232d. We run 100
experiments for any combination of parameters. The correlation coefficients are
computed by using numpy.corrcoef in Python.

Fig. 6. Correlation coefficients for 32-bit normal and uniform datasets

Figure 6 depicts a distribution chart of the correlation coefficients for uni-
form and normal datasets. Each box plot shows the correlation coefficients of an
OPE scheme for each value of d and each distribution. In a box plot, computed
correlation coefficients are divided into quartiles, and a box is drawn between
the first and third quartiles, with an additional line drawn along the second
quartile to mark the median. A symbol × inside a box marks the average. And
the minimums and maximums outside the first and third quartiles are depicted
with lines.

Under uniform distribution, the correlation coefficients for both BCLO and
KS schemes already measured in [13]. Although parameter settings are slightly
different, our experiment shows similar results. Even under normal distribution,
no noticeable change of the patterns of correlation coefficients of both schemes
was found. For our sOPE scheme, it can be expected to show a good correlation
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coefficient because of d-th powering and d-th root operations. And Fig. 6 shows
that such our guess is highly plausible. However, unlike the other two schemes,
our sOPE scheme shows that the fluctuation of correlation coefficients for each
distribution is relatively wide depending on the size of d.

In our experiment, the proposed scheme behaves better under normal distri-
bution than uniform distribution. In normally distributed datasets, it behaves
better when ρ value decreases. This means that even if plaintexts are clustered
in a specific area, our sOPE scheme properly distributes corresponding cipher-
texts. In particular, such characteristic can be an advantage when considering
that the personal information usually follows the normal distribution.

5.3 Performance

Most of the OPE applications assume that the DBMS is located on the server
and the client encrypts the data and stores it in the server-side DB. For some
OPE schemes including Popa et al. [16] the performance of the network con-
necting client and server has a significant impact on the encryption time. But
our evaluation targets are limited to the schemes that do not require commu-
nication with the server when encrypting. Instead, they use an internal state
which is managed by the client-side DBMS or have no internal state at all. The
KS scheme and our sOPE scheme are the former case, and the BCLO scheme is
the latter case. In this case, the encryption procedure is performed only on the
client side using the internal state (if exists), and only the final result, i.e. cipher-
texts, is shared by the client and the server. So we measure the performance of
the encryption procedure, including the associated DBMS query processing. To
compute several variations, we vary two parameters: the number l of bits in
the plaintext domain and the expansion factor d. For the size of the plaintext
domain we choose l ∈ {16, 24, 32}, and we use the expansion factors d = 2 and
4. We set the number n of plaintexts by n = 220 and measure average time spent
for one plaintext. We run five experiments for any combination of parameters to
measure the average.

Figure 7 shows the performance results of three OPE schemes for uniform
dataset. As a note, the performance difference according to the distribution of
the data was not significant, so we omit results on other distribution datasets.
For the BCLO scheme, it shows the performance of pure encryption procedure
because the scheme does not use SQLite. Since we fix n = 220 that is sufficient
margin to the size of ciphertext, performance difference of the KS scheme was not
significant. On the other hand, we can confirm that the change of parameters,
especially the size of the ciphertext domain, is reflected in the computation.
When both sizes of plaintext and ciphertext are small, our scheme is fast, and
for other cases, the KS scheme is fast. For one reason we think of this result is
that it is possible to perform the d-th powering and d-th root operation without
big-integer operations at values within 64 bits.
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Fig. 7. Encryption speed comparison (unit: μs)

6 Concluding Remarks

In this paper, we propose a new security model δ-IND-OCPA, which is a relaxed
version of IND-OCPA and show the relationship to other security models. We
also show that δ-IND-OCPA can be achievable by constructing a feasible stateful
OPE scheme.

Recently, several leakage-abuse attacks [9,11,15] against OPE schemes have
been proposed. Those attacks show how leakage information such as access pat-
tern, rank, density, and distribution can be used to statistically recover a signifi-
cant amount of information about plaintext in OPE-protected DB and so demon-
strates even IND-OCPA is insufficient. Though we have not analyzed in detail,
the scheme we constructed is also expected to be vulnerable to such attacks in
certain practical scenarios. For example, a generic attack in [14] assumes the
adversary’s ability to utilize access pattern leakage of OPE schemes and a dense
dataset. Therefore, if one plans to apply OPE to an application, we recommend
to perform proper preliminary analysis to assure whether such attacks are prob-
lematic or not.

Acknowledgement. This work was supported by Institute for Information & com-
munications Technology Promotion (IITP) grant funded by the Korean government
(MSIT) (No. R0101-16-0301).

A Ideal Security

The IND-OCPA notion is a generalization of semantic security, and states that no
efficient adversary can distinguish between the encryptions of any two sequences
of messages, provided that the ordering of the messages in the two sequences is
identical. We recall the formal definition here. Specifically, IND-OCPA is defined
as the following game between a challenger C and an adversary A, where A is a
probabilistic polynomial-time algorithm:
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(Setup) C runs okey ← OPE.Kg(1λ,D) and chooses a random bit b.
(Query) At round i ∈ [1, n], A queries adaptively the i-th message pair (m0

i ,m
1
i )

to C, and then C returns cb
i ← OPE.Enc(okey,mb

i ) to as its answer. Here,
the left and right messages should have the same order relation, i.e., for all
1 ≤ i, j ≤ n, m0

i < m0
j iff m1

i < m1
j .

(Guess) A outputs b′, its guess for b.

We say that an OPE scheme guarantees the IND-OCPA security if the prob-
ability of b′ = b is 1/2 + negl(λ).

B Further Correlation Coefficients Evaluation

To confirm consistency in the pattern of change, we further vary the number n of
inputs from 210 to 220 by 2 times interval and compute the correlation coefficients
for uniform and normal datasets. Figures 8 and 9 depict correlation coefficients
of 32-bit normally distributed (with ρ = 0.5) and uniformly distributed datasets,
respectively. In other two normal distribution cases, the same trend is shown in
Fig. 8 based on Fig. 6, and the result is omitted. Conclusively, they show the
same pattern of change depicted in Fig. 6 for each case.

Fig. 8. Correlation coefficients for 32-bit normal datasets with ρ = 0.5

In general, it is predicted that as d increases, the correlation coefficient of
our sOPE scheme will be lowered due to the influence of d-th powering or d-th
root operation. But in this experiment we can observe that it decreases until the
specific d, and then increases again. Figures 6, 8 and 9 show that such specific
d is 5 when the size of the plaintext domain is 32. Considering that the larger
d, the less efficient or our sOPE scheme, this particular d is considered optimal.
We further examined for the other cases of l ∈ {16, 24, 32, 48}, and found that
the optimal expansion factor d for each l is 3, 4, 5, and 6, respectively.

Despite that we need more experiments to reliably recommend a choice of d,
we observe that our sOPE scheme with optimal choice of d performs better than
the ideal-secure KS scheme under normal distribution. And the performance of
both our sOPE scheme with optimal d and KS scheme are similar under uniform
distribution.
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Fig. 9. Correlation coefficients for 32-bit uniform datasets

C Implementation of the KS Scheme

The update algorithm of the KS scheme updates the state managed by the client.
It newly generates a ciphertext for all plaintexts up to the present in order by cre-
ating a balanced tree. The updated ciphertexts needs to be sent to the server-side
DB. Apart from the communication overhead that is generally pointed out, such
procedure shows realistic problems in our experiment. To implement the update
algorithm in MariaDB (including MySQL), we need to combine a specific UDF
(User-Defined Function) and table manipulation procedures. Such approach to
invoking cryptographic operations to the DBMS can be seen more specifically
in [17]. But native MariaDB (or MySQL) functions to manipulate table have a
data size constraint. Though there may be a way to suppress update operations
through parameter setting as stated in [13], but in this experiment, we tried to
solve the problem through implementation optimization.

In the KS scheme, the state that is represented as a binary tree plays the
role of the key. And the encryption procedure for a new plaintext using this key
can be interpreted as assigning a new node in the binary tree. In the update
process, all plaintext encrypted up to the present must be sorted first. And a
new balanced binary tree based only on the order of the sorted plaintexts is
derived through the recursive procedure. This binary tree is used as a key for
encrypting the next plaintext. Since the DMBS in the server can sort ciphertexts
up to the present in order, it can perform an update operation itself by creating
the same balanced binary tree with the client. Thus, we can update ciphertexts
stored in the server-side DB without sending renewal ciphertexts. Instead, it is
sufficient to send only basic sink information for the same balanced binary tree
creation.
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14. Lacharité, M.-S., Minaud, B., Paterson, K.G.: Improved reconstruction attacks on
encrypted data using range query leakage. In: 2018 IEEE Symposium on Security
and Privacy (SP), pp. 19–36. IEEE Press, New York (2018). https://doi.org/10.
1109/SP.2018.00002

15. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving
encrypted databases. In: 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, pp. 644–655. ACM Press, New York (2015). https://doi.org/
10.1145/2810103.2813651

16. Popa, R.A., Li, F.H., Zeldovich, N.: An ideal-security protocol for order-preserving
encoding. In: 2013 IEEE Symposium on Security and Privacy (SP), pp. 463–477.
IEEE Press, New York (2013). https://doi.org/10.1109/SP.2013.38

17. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: pro-
tecting confidentiality with encrypted query processing. In: Twenty-Third ACM
Symposium on Operating Systems Principles, pp. 85–100. ACM Press, New York
(2011). https://doi.org/10.1145/2043556.2043566

18. Teranishi, I., Yung, M., Malkin, T.: Order-preserving encryption secure beyond
one-wayness. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874,
pp. 42–61. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 3

https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-642-22792-9_33
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-52993-5_24
https://doi.org/10.1109/SP.2017.44
https://doi.org/10.1109/SP.2017.44
https://doi.org/10.1007/s00145-005-0310-8
https://doi.org/10.1007/s00145-005-0310-8
https://doi.org/10.1145/2976749.2978386
https://doi.org/10.1145/2976749.2978386
https://doi.org/10.1145/2810103.2813629
https://doi.org/10.1145/2660267.2660277
https://doi.org/10.1145/2660267.2660277
https://doi.org/10.1109/SP.2018.00002
https://doi.org/10.1109/SP.2018.00002
https://doi.org/10.1145/2810103.2813651
https://doi.org/10.1145/2810103.2813651
https://doi.org/10.1109/SP.2013.38
https://doi.org/10.1145/2043556.2043566
https://doi.org/10.1007/978-3-662-45608-8_3
https://doi.org/10.1007/978-3-662-45608-8_3


Homomorphic Encryption



Cryptanalysis of Tran-Pang-Deng
Verifiable Homomorphic Encryption

Shuaijianni Xu1,2, Yan He1,2, and Liang Feng Zhang1(B)

1 School of Information Science and Technology, ShanghaiTech University,
Shanghai 201210, People’s Republic of China

{xushjn,heyan,zhanglf}@shanghaitech.edu.cn
2 Shanghai Institute of Microsystem and Information Technology,

Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China

Abstract. Tran, Pang and Deng (AsiaCCS’16) proposed two verifiable
computation schemes on outsourced encrypted data in the cloud com-
puting scenario. One of them enables the delegation of linear functions
and the other is constructed for multivariate quadratic polynomials. In
the quadratic function case, it was claimed that their scheme is the first
to guarantee both confidentiality of input data and authenticity of com-
putations without using fully homomorphic encryption (FHE). In this
paper we present a cryptanalysis which shows that their scheme cannot
guarantee confidentiality of input data. We start with a technical lemma
on pseudorandom functions that have a range of Abelian group and then
provides a simple attack which allows the adversary to successfully break
the scheme with probability close to 1.
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1 Introduction

The past years have witnessed an increasing amount of attention spent on the
problem of securely outsourcing computation (a.k.a. delegating computation or
verifiable computation), due to the popularity of cloud computing and the prolif-
eration of mobile devices. The computationally weak clients such as smartphones
and netbooks can outsource the storage of numerous data and expensive com-
putations on the data to a powerful cloud server.

A main security issue arising in outsourcing is how to ensure the cloud server
performs the delegated computation correctly. The cloud server may have strong
financial incentives to run a quick but incorrect computation to free up comput-
ing resources. A number of models and schemes for securely outsourcing com-
putation have been developed in the past decade. For example, the verifiable
computation of Gennaro et al. [19] allows the client to outsource the computa-
tion of a function f on any input x and then verify the result of the server’s
work. The bottom line is that the client’s work of preparing delegation and
c© Springer International Publishing AG, part of Springer Nature 2018
H. Kim and D.-C. Kim (Eds.): ICISC 2017, LNCS 10779, pp. 59–70, 2018.
https://doi.org/10.1007/978-3-319-78556-1_4
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doing verification should be substantially more efficient than computing f(x)
from scratch. Verifiable computation schemes enabling the delegation of an arbi-
trary function f (encoded as a Boolean circuit) [1,4,15,25] are mostly short of
efficiency due to their dependance on expensive cryptographic primitives (such
as fully homomorphic encryption (FHE) and garbled circuit) and the necessity
of representing f as a Boolean circuit. A program of constructing efficient veri-
fiable computation schemes has been initiated by [6] and resulted in a number
of constructions for restricted classes of functions [10,17,24]. It was shown that
several related cryptographic primitives such as homomorphic MAC [3,9,11,20]
and homomorphic signature [2,7,8,12–14,16] imply verifiable computation, in
both privately verifiable setting and publicly verifiable setting.

Another security issue is how to protect the data of the client (e.g. the input
x) from an untrusted cloud server. After all, a cloud server not trusted to per-
form computation correctly can hardly be trusted with the knowledge of the
data. How to keep the confidentiality of input data was not addressed in the
above constructions except [4,15,19], which are based on FHE and short of effi-
ciency. Fiore et al. [18] and Joo and Yun [21] enable the delegation of restricted
functions such as multivariate quadratic polynomials with both the confiden-
tiality of input data and the authenticity of computation achieved. Although
more efficient, they were again based on FHE or adapted versions of FHE. Lai
et al. [22] combined data encryption and homomorphic message authenticator
(either homomorphic signature or homomorphic MAC) via Encrypt-and-MAC
[5] and obtained verifiable homomorphic encryption schemes that resolve both
security issues. Their schemes takes FHE as the data encryption and still lack
efficiency. The constructions of [2,8,12,13,16] imply efficient verifiable homo-
morphic encryptions but only enable the delegation of linear functions. Tran
et al. [26] proposed a verifiable homomorphic encryption scheme and claimed
that theirs is the first scheme for delegating nonlinear functions (more precisely,
multivariate quadratic polynomials) on encrypted data, guaranteeing both the
confidentiality of input data and the authenticity of computation, without using
FHE. It was claimed that their data privacy was based on the semantical security
of the additively homomorphic Paillier encryption scheme [23] and the hardness
of solving discrete logarithm problem in Z

∗
q , the multiplicative group of integers

modulo a safe prime q.
In this paper, we present a cryptanalysis of their verifiable homomorphic

encryption scheme and show that it cannot keep the client’s data semantically
secure against a malicious cloud server. We observe that (see Sect. 2.4 for more
details) their scheme transforms any data block m ∈ Zq−1 into a quadruple
(c0, c1, y0, Y1) = ((g′)m ·uN mod N2,m−kτ mod N, m−rτ

s mod q−1, grτ mod q).
While c0 and c1 are ciphertexts of m under the Paillier’s encryption and one-time
pad encryption (with refreshed keys), respectively, the remaining components do
not form a semantically secure ciphertext of m. We show that y0 and Y1 reveal
essential information of m. Our work calls for the first verifiable computation
scheme that achieves both confidentiality of input data and authenticity of com-
putations for nonlinear functions, without using FHE.
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2 Tran-Pang-Deng Verifiable Homomorphic Encryption

We first review the definitions, notations and relevant constructions from [26].
Let x ← S be the operation of assigning to x an element selected uniformly at
random from a set S. The notation x ← A(·) denotes the operation of running
a procedure A with the given input and assigning the output to x. For any
security parameter λ, let negl(λ) denote a negligible function in λ, i.e., for every
real number c > 0, there is an integer λ0 > 0 such that negl(λ) < λ−c for all
λ > λ0; let poly(λ) denote a polynomial function in λ. For any integer n > 0,
let [1, n] denote the set {1, 2, . . . , n}.

2.1 Pseudorandom Function

A pseudorandom function (PRF) is an efficiently computable keyed function
family F : K × X → Y with the property that the input-output behavior of a
random instance Fk (k ∈ K ⊆ {0, 1}λ) of the family is computationally indistin-
guishable from that of a random function with the same domain X and range Y,
i.e., for all probabilistic polynomial-time distinguishers D, there is a negligible
function negl(·) such that

|Pr[DFk(·) = 1] − Pr[Df(·) = 1]| ≤ negl(λ)

where the first probability is taken over the uniform choice of k ← K and the
random coins of D, and the second probability is taken over the uniform choice
of f ← {R|R : X → Y} and the random coins of D.

2.2 Arithmetic Circuits

An arithmetic circuit over a field F is a directed acyclic graph. Each node in
the graph is called a gate. A gate with input degree 0 is an input gate, which
is labeled by either a variable from a set of χ = (x1, . . . , xn) ∈ F

n or a constant
α ∈ F. A gate with in-degree and out-degree greater than 0 is an internal gate,
which is either an addition gate with a ‘+’ label, or a multiplication gate with a
‘×’ label. A gate with out-degree 0 is an output gate. The scheme of [26] allows a
variable to undergo only one multiplication with another variable, but unlimited
multiplications with constants and additions with other variables. Such a circuit
can always be transformed into one in which every internal gate has two inputs.
Therefore, they only consider circuits with one output gate, and in which each
internal gate has in-degree 2. The final result of the circuit is the output of the
output gate.

2.3 Labeled Programs

A labeled program P is defined by a tuple (f, τ1, . . . , τn) where f : Fn → F is a
circuit as defined above, and each label τi ∈ {0, 1}∗ (where {0, 1}∗ is the set of all
finite bit strings) uniquely identifies the i-th input node of f . Labeled programs
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may be composed as follows. Given labeled programs P1, . . . ,Pt and a circuit
f : Ft → F, the composed programs P∗ = f(P1, . . . ,Pt) evaluates a circuit f on
the outputs of P1, . . . ,Pt. The labeled inputs of P∗ correspond to the distinct
labeled inputs of P1, . . . ,Pt. Let Iτ = (fid, τ) denote the identity program with
input label τ ∈ {0, 1}∗,where fid : F → F is the canonical identity function.
Notice that any program P = (f, τ1, . . . τn) can be written as a composition of
identity programs P = f(Iτ1 , . . . , Iτn

).

2.4 Verifiable Homomorphic Encryption

Informally, a verifiable homomorphic encryption (VHE) is a symmetric-key
homomorphic encryption which enables verifiable computation on outsourced
encrypted data. In a VHE scheme, a user with secret key SK can encrypt n
messages m1, . . . ,mn into n independent ciphertexts c1, . . . , cn. Given cipher-
texts c1, . . . , cn and an admissible function f , anyone can compute ciphertext
c = f(c1, . . . , cn). The user then decrypts c to get m with the secret key SK,
and check whether m = f(m1, . . . ,mn).

The generic VHE scheme (called HEMAC in [26]) is a tuple H =
(KeyGen,Enc,Eval,Dec) of probabilistic polynomial time algorithms defined as
follows:

– KeyGen(1λ) takes as input a security parameter λ, and outputs a secret key
SK and a public parameter PP.

– Enc(SK, τ,m) takes as input a secret key SK, a label τ ∈ {0, 1}∗ and a datum
m ∈ M, where M is the data space. It outputs a ciphertext C.

– Eval(PP,P,C) takes as input the public parameter PP, a label program P =
(f, τ1, · · · , τn) and a vector of ciphertexts C = (C1, · · · , Cn). It outputs a
new ciphertext C.

– Dec(SK,P, C) takes as input the secret key SK, a labeled program P =
(f, τ1, · · · , τn) and a ciphertext C. It outputs a datum m ∈ M or an error
symbol ⊥.

The HEMAC scheme H has to satisfy the requirements of semantic security and
unforgeability.

Attack 1. The semantic security of HEMAC is formalized with the following
security game between a challenger and an adversary A.

Setup. The challenger runs KeyGen(1λ) to obtain a pair of secret key and public
parameter (SK,PP). It gives public parameter PP to adversary A, and keeps
secret key SK itself. The challenger also initializes a list T = ∅ for tracking the
queries from A.
Queries. Adversary A adaptively issues encryption queries to the challenger, each
of the form (τ,m) where τ ∈ {0, 1}∗ and m ∈ M. The challenger then performs
the following:
– if τ does not exist in T , the challenger computes C ← Enc(SK, τ,m), updates
the list T = T ∪ {τ}, and gives ciphertext C to A.
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– if τ is found in T , the challenger rejects the query.
Challenge. Adversary A submits a label τ∗ ∈ {0, 1}∗ and two data items m0,m1 ∈
M, such that τ∗ is not already in list T . The challenger selects a random bit
b ∈ {0, 1}, computes C∗ ← Enc(SK, τ∗,mb), and sends C∗ to A.
Output. Adversary A outputs b′ ∈ {0, 1} representing its guess for b. A wins the
game if b′ = b.

The advantage ss-adv[A,H] of adversary A with respect to the HEMAC
scheme in this game is defined as

∣
∣
∣
∣
Pr[b′ = b] − 1

2

∣
∣
∣
∣

where the probability is taken over the random bits used by the challenger and
adversary A.

Definition 1. The HEMAC scheme H is semantically secure if, for all proba-
bilistic polynomial time adversary A, the advantage ss-adv[A,H] is negligible.

The HEMAC scheme should be existentially unforgeable under adaptive chosen
message and query verification attacks. However, unforgeability is not the subject
of this work and will not be elaborated here.

Tran et al. proposed two schemes in [26], one is for linear functions (Sect. 4 of
[26]), the other is for quadratic functions (Sect. 5 of [26]). In this paper, we mainly
focus on the second scheme which is denoted as q-HEMAC. Let f : Fn → F be
an arithmetic circuit with addition gates and multiplication gates such that
any multiplication gate, for which none of its two inputs are constants, can
only be followed by addition gates or multiplication gates with as least one
constant as input. Without loss of generality, f can be identified with a quadratic
multivariate polynomial:

f(x1, · · · , xn) =
∑

i,j∈[1,n]

αi,jxixj +
∑

l∈[1,n]

αlxl + α (1)

for some constants αi, αj , αl, α ∈ F and xi, xj , xl taking arbitrary values in F.
As our attack is on the semantical security of q-HEMAC, we are only inter-

ested in the algorithms KeyGen(·) and Enc(·) of q-HEMAC:

– KeyGen(1λ). Let p1, p2 be prime numbers with roughly λ/2 bits, where λ is a
security parameter. Run the Paillier key generation algorithm [23]to generate
public parameters N = p1p2 and g′. Choose a random seed K ← ZN for the
pseudo-random function F ′

K : {0, 1}∗ → ZN . Next, let q be a large safe prime
number with roughly λ bits such that q < N . Let Z∗

q be a multiplicative cyclic
group of order q−1 on which the discrete logarithm problem is hard, and let g
be a generator of Z∗

q . Choose a random seed R ← Zq−1 for the pseudo-random
function FR : {0, 1}∗ → Zq−1, and a random number s ← Z

∗
q−1. Publish the

public key PK = (N, g′, g, q),and retain the secret key SK = (p1, p2,K,R, s).
The data space is M = Zq−1 and F = Zq−1.
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– Enc(SK, τ,m). Given secret key SK = (p1, p2,K,R, s), proceed as follows
to encrypt a datum m ∈ Zq−1 with label τ ∈ {0, 1}∗. First, compute
an encryption key kτ = F ′

K(τ) and a pseudo-random value rτ = FR(τ).
Then, choose a random number u ← Z

∗
q , and output a level-1 ciphertext

C = (c0, c1, y0, Y1) ∈ Z
∗
N2 × ZN × Zq−1 × Z

∗
q where:

c0 = g′m · uN mod N2,

c1 = m − kτ mod N,

y0 =
m − rτ

s
mod (q − 1),

Y1 = grτ mod q.

(2)

In the following sections we shall show that the output of Enc(SK, τ,m) will
reveal much information about m and thus render the semantical security of
q-HEMAC completely broken.

3 A Technical Lemma on Pseudorandom Functions

Our cryptanalysis starts with a technical lemma on the PRFs with a range Y of
Abelian groups. Without loss of generality, we suppose that Y is additive. Our
technical lemma informally says that, given any subset T ⊆ Y with

|T |
|Y| ≥ 1

poly(λ)
, (3)

where λ is a security parameter (such as the one in Sect. 2.4) and |Y| = 2O(λ),
one can easily find two inputs x, x′ ∈ X such that Fk(x′) − Fk(x) ∈ T .

Lemma 1. Let F : K × X → Y be a PRF where the range Y is an additive
Abelian group. Let T ⊆ Y and |T |/|Y| ≥ 1

α(λ) for a polynomial function α(λ).
Suppose that there is a polynomial time algorithm deciding whether y ∈ T for
all y ∈ Y. Then there is a probabilistic polynomial time algorithm with oracle
access to Fk(·) (where k ← K) and outputs two inputs x, x′ ∈ X such that
Fk(x′) − Fk(x) ∈ T with probability ≥ 1 − negl(λ).

Proof. Let A be a probabilistic algorithm with oracle access to Fk(·) for k ← K
and

– for t = λ · α(λ), choose a (t + 1)-subset {x0, x1, . . . , xt} of the set X ;
– for i = 0 to t: feed Fk(·) with xi and get Fk(xi);
– for i = 1 to t: if Fk(xi) − Fk(x0) ∈ T , then output 0;
– otherwise, output 1.

The algorithm A clearly runs in polynomial time. For every i ∈ [1, t], let Ei

be the event that Fk(xi)−Fk(x) /∈ T . Let E = E1 ∧E2 ∧ · · · ∧Et, i.e., the event
that A fails and outputs ⊥. It remains to show that Pr[E] ≤ negl(λ), where the
probability is taken over k ← K and the random choices of x0, x1, . . . , xt ← K.
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In order to show that Pr[E] ≤ negl(λ), we construct a distinguisher D for the
PRF F . Given access to an oracle O, which either implements Fk(·) for k ← K
or a truly random function f : X → Y, D proceeds as below:

– for t = λ · α(λ), choose a (t + 1)-subset {x0, x1, . . . , xt} of the set X ;
– for i = 0 to t: feed O(·) with xi and get O(xi);
– for i = 1 to t: if O(xi) − O(x0) ∈ T , then output 0;
– otherwise, output 1.

Because F is a PRF, we must have that |Pr[DO(·)(λ) = 1|O = Fk] −
Pr[DO(·)(λ) = 1|O = f ]| ≤ negl(λ), where k ← K and f ← {R|R : X → Y} are
uniformly chosen. That is,

∣
∣
∣Pr[DFk(·)(λ) = 1] − Pr[Df(·)(λ) = 1]

∣
∣
∣ ≤ negl(λ).

Note that Pr[DFk(·)(λ) = 1] = Pr[E]. Hence

Pr[E] ≤ Pr[Df(·)(λ) = 1] + negl(λ). (4)

Pr[Df(·)(λ) = 1] is taken over the uniform choices of f ∈ {R|R : X → Y} and
{x0, x1, . . . , xt} ⊆ X . The event Df(·)(λ) = 1 occurs if and only if f(xi)−f(x0) /∈
T for all i ∈ [t]. As the inputs x0, x1, x2, . . . , xt are all distinct from each other,
{f(xi) − f(x0)}t

i=1 are t uniformly distributed random variables over Y and
totally independent. For every i ∈ [t],

Pr[f(xi) − f(x0) ∈ T ] =
|T |
|Y| ≥ 1

α(λ)
.

It follows that

Pr[Df(·)(λ) = 1] = Pr[f(xi) − f(x0) /∈ T for all i ∈ [t]]

=
t∏

i=1

Pr[f(xi) − f(x0) /∈ T ]

≤
t∏

i=1

(

1 − 1
α(λ)

)

≤ e−λ.

Due to Eq. (4), we have that Pr[E] ≤ e−λ + negl(λ) = negl(λ). �

Remark. In the proof of Lemma 1, we could choose t = α(λ) · ω(log λ) such
that Pr[Df(·)(λ) = 1] ≤ e−ω(log λ) is negligible.

4 The Proposed Attack

In this section, we show that the Tran-Pang-Deng verifiable homomorphic
encryption q-HEMAC (2) cannot provide the claimed “confidentiality of input
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data” with a simple attack. Recall that in (2) each data block m ∈ M is
encrypted as a quadruple (c0, c1, y0, Y1), where c0 and c1 are ciphertexts of m
under the Paillier encryption and one-time pad encryption (keys for each data
block refreshed constantly), respectively. While (c0, c1) leaks no significant infor-
mation about m, we show that (y0, Y1) do not provide a secure encryption of
m.

Theorem 1. The scheme q-HEMAC is not semantically secure according to
Definition 1.

Proof. We denote by H the scheme q-HEMAC. Consider the security game
Attack 1. We construct a PPT adversary A such that ss-adv[A,H] is non-
negligible. Our adversary A works as below with its challenger:

– Setup. The challenger runs H.KeyGen(1λ) to obtain a secret key SK =
(p1, p2,K,R, s) and the public parameter PP = (N, g′, g, q), where p1, p2 are
λ/2-bit primes, N = p1p2 and g′ are public parameters for the Paillier encryp-
tion, q = 2p+1 is a random λ-bit safe prime, g is a generator of Z∗

q , s ← Z
∗
q−1,

K ← ZN and R ← Zq−1 are secret keys of the PRFs F ′
K : {0, 1}∗ → ZN and

FR : {0, 1}∗ → Zq−1, respectively. The challenger then gives PP to the adver-
sary A, and keeps SK to itself. The challenger also initializes a list T = ∅ for
tracking the queries from A.

– Queries. Let t = 2λ. The adversary A chooses a (t + 1)-subset {τ0, τ1, . . . , τt}
of {0, 1}∗. The adversary also chooses a data block m ∈ M arbitrarily. Then
for i = 0 to t:

• A queries its challenger with (τi,m).
• Note that the label τi ∈ {0, 1}∗ was never reused. The challenger updates

the list T = T ∪ {τi} and replies with

Ci =
(

c0,i, c1,i, y0,i =
m − rτi

s
mod (q − 1), Y1,i = grτi mod q

)

,

where rτi
= FR(τi).

– Challenge. The adversary A submits a label τ∗ ∈ {0, 1}∗ and two data blocks
m∗

0,m
∗
1 ∈ M, such that m∗

0 �≡ m∗
1 mod (q − 1) and τ∗ /∈ T .

The challenger selects a random bit b ∈ {0, 1} and replies with

C∗ =
(

c∗
0, c

∗
1, y

∗
0 =

m∗
b − rτ∗

s
mod (q − 1), Y ∗

1 = grτ∗ mod q

)

,

where r∗
τ = FR(τ∗).

– Output. The adversary A determines its output b′ ∈ {0, 1} as below.
• For every i ∈ {1, . . . , t}, compute

rτi
− rτ0

s
=

m − rτ0

s
− m − rτi

s
. (5)

• If rτi
−rτ0
s /∈ Z

∗
q−1 for all i ∈ {1, . . . , t}, then choose b′ ← {0, 1} uniformly

at random and output b′.
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• Otherwise, there is at least one integer i ∈ {1, . . . , t} such that rτi
−rτ0
s ∈

Z
∗
q−1. Compute

s

rτi
− rτ0

=
(

rτi
− rτ0

s

)−1

mod (q − 1),

gs = (grτi · g−rτ0 )
s

rτi
−rτ0 mod q,

gm∗
b = (gs)

m∗
b −rτ∗

s · grτ∗ mod q.

(6)

Compare gm∗
b with gm∗

0 and gm∗
1 . Define

b′ =
{

0, if gm∗
b = gm∗

0 ;
1, if gm∗

b = gm∗
1

and output b′.

It is trivial to see that the adversary A is probabilistic and the running time
of A is poly(λ). It remains to show that A outputs the correct value of b with
non-negligible probability, i.e., ss-adv[A,H] = Pr[b′ = b] is non-negligible in λ.
Let I be the event that there is at least one integer i ∈ {1, . . . , t} such that
rτi

−rτ0
s ∈ Z

∗
q−1. Clearly, when I occurs A will be able to learn gm∗

b and then
decide b′ = b with probability 1. On the other hand, if I does not occur, then
the uniform guess b′ will be equal to b with probability exactly half. Therefore,

ss-adv[A,H] =
∣
∣
∣
∣
Pr[b′ = b] − 1

2

∣
∣
∣
∣

=
∣
∣
∣
∣
Pr [b′ = b|I] Pr[I] + Pr

[

b′ = b|Ī
]

Pr[Ī] − 1
2

∣
∣
∣
∣

=
∣
∣
∣
∣
1 · Pr[I] +

1
2

· Pr[Ī] − 1
2

∣
∣
∣
∣

=
1
2

Pr[I],

(7)

where Ī denotes the complement of I.
It is left to show that Pr[I] is non-negligible in λ. We shall shortly see that the

expected result is an easy consequence of (the proof of) Lemma 1, our technical
lemma on PRFs with a range of Abelian group. Let F be the PRF with key
space K = Zq−1, domain X = {0, 1}∗ and range Y = Zq−1 in q-HEMAC. Let
T = Z

∗
q−1 ⊆ Zq−1 be the subset of Zq−1 that consists of all integers x ∈ Zq−1

such that gcd(x, q − 1) = 1. As q = 2p + 1 is a safe prime, we have that |T | =
φ(q − 1) = p. Then

|T |
|Y| =

p

2p
=

1
α(λ)

for α(λ) = 2. As in the proof of Lemma1, the adversary A chooses t+1 distinct
PRF inputs τ0, τ1, . . . , τt. Lemma 1 and its proof show that the probability that
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there is at least one integer i ∈ {1, . . . , t} such that FR(τi) − FR(τ0) ∈ T is
≥ 1 − e−λ − negl(λ). As a result,

Pr[I] ≥ 1 − e−λ − negl(λ),

which is non-negligible in λ. Putting all pieces together, we have that

ss-adv[A,H] =
1
2

Pr[I] ≥ 1
2
(1 − e−λ − negl(λ)).

Therefore, the scheme q-HEMAC is not semantically secure according to Defi-
nition 1. �

5 Conclusions

In this paper, we show that the q-HEMAC scheme of Tran et al. [26] is not
semantically secure and thus provides no confidentiality of input data in the del-
egation of multivariate quadratic polynomials. Our attack is simple and refutes
their claim of the first verifiable computation scheme without FHE for quadratic
functions. In particular, the analysis of our attack shows that a malicious cloud
server is able to learn significant information of the secret key (e.g., gs). It is an
interesting open problem to fix the broken scheme, without using FHE.
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Abstract. We present constructions of CPA-secure (leveled) homo-
morphic encryption from learning with errors (LWE) problem. We
use the construction introduced by Gentry, Sahai and Waters ‘GSW’
(CRYPTO’13) as building blocks of our schemes. We apply their approx-
imate eigenvector method to our scheme. In contrast to the GSW scheme
we provide extensions of the (leveled) homomorphic identity-based
encryption (IBE) and (leveled) homomorphic attribute-based encryption
(ABE) on the multi-identity and multi-attribute settings respectively. We
realize the (leveled) homomorphic property for the multi-party setting
by applying tensor product and natural logarithm. Tensor product and
natural logarithm allow to evaluate different ciphertexts computed under
different public keys. Similar to the GSW scheme, our constructions do
not need any evaluation key, which enables evaluation even without the
knowledge of user’s public key.

1 Introduction

Since the proposal of public key cryptography (PKC), construction of an effi-
cient encryption has always been interesting and challenging problem. The first
efficient constructions were Boneh-Franklin identity-based encryption (IBE) [8]
and Cock’s IBE [20]. The former uses pairing over elliptic curve and the later
was based on quadratic residuosity. After years when lattices were found useful
to design post-quantum constructions, Gentry et al. [22] proposed new possi-
bility to design IBE from lattices. The topic of IBE has been widely studied in
cryptography and various possibilities on it have been explored. Attribute-based
encryption (ABE) is a special form of IBE, where identities are fine grained and
replaced by particular attributes of the users. Homomorphic encryption [21] is
another special encryption which has been studied parallel to ABE and serves
various useful application in cryptography. In a wide review of PKC of last decade
these topics namely IBE, ABE, homomorphic encryption, lattice-based encryp-
tion have gained much attentions as they cover a major section of recent research
in PKC. Since the last couple of years researchers have focused to achieve
mixed functionality by combining two or more properties in a single protocol.
c© Springer International Publishing AG, part of Springer Nature 2018
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In this paper we achieve compact encryption schemes by combining functional-
ities of above crucial notions. Below we discuss each individual topic with their
state of art.

Identity-Based Encryption. An identity-based encryption was introduced by
Shamir [38] and it allows users to send encrypted messages knowing only the
recipient’s identity. Practical implementations were proposed only many years
later. The first IBE was given by Boneh and Franklin [8] and since then it got a
lot of attention from the cryptographic community. The first construction using
lattices was given by Gentry et al. [22]. Other IBE construction were presented
in [1,2,15,34] and proved secure in the standard model using LWE assumption.
Gentry et al.’s construction [23] allows to construct a fully homomorphic identity-
based encryption which is also secure under the LWE hardness problem. The
shortcoming of an IBE scheme is that it cannot have a unique identifier for each
person. Usually users are identified by their attributes. This leads to the next
cryptographic construction, called attribute-based encryption. In a nutshell, an
attribute-based encryption represents a generalization of an IBE scheme, since
in an IBE scheme ciphertexts are encrypted under one attribute, the identity.
In contrast, an attribute-based encryption provides a scheme where ciphertexts
are associated with many attributes. In the next paragraph we give an overview
of this scheme.

Attribute-Based Encryption. An attribute-based encryption (ABE) scheme
that allows fine-grained access control on encrypted data, was introduced by
Sahai and Waters [37]. The idea of an ABE is to associate ciphertexts and private
keys with sets of descriptive attributes such that the decryption is only possible
if the overlap of these two sets is sufficient. There are two flavors of an attribute-
based encryption, a key-policy ABE (KP-ABE) and a ciphertext-policy ABE
(CP-ABE). A key-policy ABE handles with ciphertexts which are annotated with
attributes while private keys which are associated with certain access structures.
The reason for these access structure is to specify which ciphertexts can be chosen
to be decrypted by user. The other ABE flavor, a ciphertext-policy model was
introduced by Bethencourt et al. [6] and by Cheung and Newport [17]. A work
that analyzes the first expressive construction was presented by Goyal et al.
[25] in the standard model. Other standard model CP-ABE constructions were
provided by Waters [41] and Lewko et al. [28]. In CP-ABE scheme attribute sets
are assigned to private keys, where the sender specifies an access policy such that
receiver’s attribute set can comply with it. Attrapadung et al. [5] introduced
an ABE scheme with constant-size ciphertexts. Goyal et al. [26] generalized
those techniques from [37] and introduced a new technique where user’s key
is associated with a tree-access structure and the leaves are associated with
attributes. User is able to decrypt a ciphertext if the attributes associated with
a ciphertext satisfy key’s access structure. This technique differs from secret-
sharing schemes by the fact that any communication between different parties is
forbidden. An ABE scheme which allows a group of authorities to monitor only
a certain subset of attributes was developed by Chase [16]. This multi-authority
ABE construction allows to corrupt any number of attribute authorities but
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guarantees security of encryption as long as not all required attributes can be
obtained from those corrupt authorities. The first ABE construction based on
lattices was introduced by Boyen [10]. Since these both discussed encryption
flavours provide attractive features for security issues of cloud computing, we
recall in the following paragraph the motivation of cryptographic applications in
cloud computing.

Homomorphic Encryption. Our paper handles with leveled homomorphic
encryption which represents a meaningful field of fully homomorphic encryp-
tion. The latter had an enormous development in recent years and became an
attractive cryptographic tool due to its functionality which allows to evaluate
certain computations on encrypted data sets. Gentry [21] introduced the first
fully homomorphic encryption scheme based on cryptographic assumptions. His
construction is based on the hardness of problems defined on ideal lattices, which
are not deeply and well-studied yet. The benefit of using these ideal lattices is
that they support addition and multiplication of homomorphic encryption. Other
fully homomorphic encryption schemes which are not based on lattices but relied
on ideals in rings were presented in [14,39,40]. Brakerski and Vaikuntanathan
[13] presented a fully homomorphic scheme based on a well-studied assumption
- called the learning with errors assumption (LWE). A comparatively simple
fully homomorphic encryption scheme also based on LWE problem has been
presented by Gentry et al. [23]. They presented a new technique which they
called approximate eigenvector method where homomorphic addition and multi-
plication are provided by simple matrix addition and multiplication. In contrast
to previous fully homomoprhic schemes, Gentry et al.’s construction does not
require any evaluation key and evaluation can even be calculated without know-
ing user’s public key. This feature allowed the authors to construct the first fully
homomorphic identity-based encryption.

Lattice-Based Encryption. Lattice-based cryptography developed rapidly
and became a significant part of cryptographic primitives in the last few years.
Cryptosystems based on the hardness of lattice problems became so powerful
because of their provable security guarantees, simplicity, potential efficiency and
their security against quantum attacks. This new kind of cryptography which
represents a part of post-quantum cryptography, was invented by the break-
through results of Ajtai [4] in 1996. There are so far several constructions of
lattice-based primitives, such like one-way functions [31], collision resistant hash
functions [4], signatures [9], public-key encryption [35,36], encryption for thresh-
old functions [3], identity based encryption [15,22], lossy trapdoor functions [22].
Agrawal and Boyen [2] presented an IBE construction based on hard problems
in lattices in the standard model. The construction is anonymous, which means
that it is usable for searching on encrypted data because the ciphertext does not
reveals the identity of the recipient. The most of these cryptographic applica-
tions [2,3,22,36] are based on the presumed hardness of LWE (Learning With
Errors) problem. One of the connections between lattices and LWE is given by a
polynomial-time quantum algorithm that solves standard lattice problems, given
access to an oracle that solves the LWE problem. There are other algorithms



74 V. Kuchta et al.

which run in exponential time, e.g. the Blum et al. [7], Micciancio and Voulgaris
[32] algorithms are the best known algorithms for solving LWE problem which
run in time 2O(n). Most of the cryptosystems based on lattices [2,3,22] rely on
the Learning With Errors (LWE) problem which was introduced by Regev [36].
Before we can present our contribution we recall shortly the basics of identity-
based encryption and attribute-based encryption as it takes an important part
of our underlying work.

Cloud computing. Cloud computing allows users to use big data storage and
computation capabilities at a very low price. Since its invention, cloud computing
became an important application for the recent cryptographic protocols. Storing
data on a cloud system enables users to reduce purchase and maintaining cost of
computing and storage tools which attracted a lot of attention from computer
users. When personal and confidential data is outsourced to a cloud server there
is a need to guarantee the customers that their data will not be watched by
anybody. Therefore cryptographic encryption became a crucial tool in cloud
security. Distributing the role and responsibility of a single party involved in a
cloud application, allowed to improvements for the cloud security. The idea of
distributing the power of a single party under multiple parties in a multi-party
protocol has been developed by Kamara et al. [27]. López-Alt et al. [30] presented
a multi-key fully homomorphic encryption from the NTRU encryption scheme
that allows computation of ciphertexts under different unrelated keys. In the
following paragraph we present our main contribution which encompasses the
aforementioned cryptographic constructions and we suggest how to apply our
construction to cloud computing.

Contribution. In contrast to the scheme in [23] which introduced a single-
authority leveled homomorphic attribute-based encryption (FHABE) and single
identity-based encryption (FHIBE), we present in our work two constructions
employing multiple authorities in case of attribute-based encryption or multiple
identities in case of identity-based encryption where a ciphertext is encrypted
under different public keys. The construction in [23] is advantageous in com-
parison to previous fully homomorphic encryption [12] which required existence
of evaluation keys to evaluate several ciphertexts. This is also an advantage of
our scheme, because our evaluator can execute homomorphic operations without
using any evaluation key. Our scheme presents an alternative construction of a
leveled homomorphic IBE and leveled homomorphic ABE schemes employing
multiple identities. In addition to the technique from [23] we recall the well-
known tensor product in order to allow the homomorphic encryption which sup-
ports multiplication operations of different ciphertexts using multiple identities
in case of IBE scheme and multiple authorities in case of ABE scheme. In compar-
ison to the López-Alt et al. work [30] which provided a multi-party construction,
we introduce a new technique for the addition of ciphertexts without use of eval-
uation keys, which makes our construction more advantageous than the scheme
in [30].
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Related Work. The first multi-key fully homomorphic encryption introduced
by López-Alt et al. [30] relies on a non-standard assumption, called the Deci-
sional Small Polynomial Ratio assumption and employs evaluation keys during
the evaluation process. Clear and McGoldrick [18] introduced the first multi-
identity and multi-key leveled FHE and multi-identity fully homomorphic IBE
(FHIBE) scheme secure under the hardness of learning with errors assumption.
They presented a new compiler, which converts a single-identity FHIBE scheme
into a multi-identity FHIBE scheme. Their technique involves a masking system
which makes the computations more difficult than in case of a single-identity
FHIBE. In their later work, Clear and McGoldrick [19] presented a pure fully
homomorphic attribute-based encryption scheme which is the first achievement
without using indistinguishability obfuscation. However they couldn’t achieve a
pure fully homomorphic multi-attribute based encryption scheme. We note that
we do not claim achievement of pure fully homomorphic property, but we claim
achievement of homomorphism according to the multiplication of ciphertexts
using the new mathematical constructs such like tensor product and natural log-
arithm. The latter guarantees that the compactness property of the evaluated
ciphertext keeps preserved. In contrast to the construction in [18], our work pro-
vides a simple and alternative construction of multi-identity homomorphic IBE
scheme and a new construction of multi-authority leveled homomorphic ABE
using the natural logarithm as an auxiliary for the homomorphic evaluation.
Brakerski et al. [11] showed that a cross-evaluation of attributes is possible, such
that the size of the ciphertext remains independent of attributes. Mukherjee and
Wichs [33] showed how to homomorphically evaluate data which as encrypted
under different public keys.

2 Preliminaries

In this section we recall learning with errors problem and the flattening technique
from [23]. Other preliminaries are provided in the appendix.

Definition 1 (LWE Problem). For an integer q and error distribution χ, the
goal of LWEq,χ in n dimensions problem is to find s ∈ Z

n
q with overwhelming

probability, given access to any arbitrary poly(n) number of samples from As,χ

for some random s.

In matrix form this problem looks as follows: collecting the vectors ai ∈ Z
n
q into

a matrix A ∈ Z
n×m
q and the error terms ei ∈ Z and values ti ∈ Zq as the entries

of the m-dimensional vector t ∈ Z
m
q we obtain the input A, t = Ats+e mod q.

2.1 Flattening Ciphertexts

In this paragraph we recall the technique from [23] which keeps ciphertexts
strongly bounded. It was used to realize the first leveled homomorphic identity-
based and leveled homomorphic attribute-based encryption as showed in [23].
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Using transformations from [13], vectors can be modified without affecting dot
products.

We assume two vectors a , b ∈ Z
k
q and set l = �log2 q� + 1 and N = k · l.

Let BitDecomp(a) be the N -dimensional vector (a1,0, . . . , a1,l−1, . . . , ak,0, . . . ,
ak,l−1), where ai,j is the j-th bit in ai’s binary representation. For some vector
a ′ = (a1,0, . . . , a1,l−1, . . . , ak,0, . . . , ak,l−1), let

BitDecomp−1(a ′) =

⎛
⎝

l−1∑
j=0

2j · a1,j , . . . ,

l−1∑
j=0

2j · ak,j

⎞
⎠

be the inverse of BitDecomp, which is well defined. It means that even if the
input is not a bit-vector, the inverse is well-defined.

Let Flatten(a ′) = BitDecomp(BitDecomp−1(a ′)) be a N -dimensional bit
vector. For a matrix A, let BitDecomp(A), BitDecomp−1(A), Flatten(A) being
applied to each row of A. Let Powerof2(b) = (b1, 2b1, . . . , 2l−1b1, . . . , bk, 2bk, . . . ,
2l−1bk). Observe following properties for any N -dimensional a ′:

〈BitDecomp(a , Powerof2(b))〉 = 〈a , b〉
〈a ′, Powerof2(b)〉 =

〈
BitDecomp−1(a ′, b)

〉
= 〈Flatten(a ′), Powerof2(b)〉 .

The leveled homomorphic encryption (LHE) scheme from [23] works as fol-
lows. For suitable parameters q, n,m = O(n log q) the LWE instance consists of
a m × (n + 1) matrix A, s.t. there is a vector s ∈ Z

n+1
q , where the first entry

is 1 and e = A · s is a small error vector. We assume that A is public and s is
secret. A ciphertext C encrypts μ if C · v = μv + e , where v is a N -dimensional
secret key. To decrypt message μ, the i-th row Cidi

is extracted from C and
x ← 〈Cidi

, v〉 = μvi + ei computed. The vector v is called approximate eigen-
vector. Let v = Powerof2(s), which is a vector of dimension N = (n + 1) · l for
l = �log2 q� + 1. It holds: Flatten(C) · v = C · v .

To encrypt a message μ ∈ Zq, a random matrix R ∈ {0, 1}N×m is generated
and C = Flatten(μ · IN + BitDecomp(R · A)) computed. Note that Flatten
operation does not affect the product with v , i.e.

C · v = μ · v + BitDecomp(R · A) · v = μ · v + R · A · s = μ · v + small.

3 Leveled Homomorphic Multi-identity-Based
Encryption

Intuition. As mentioned before, the first leveled homomorphic multi-identity-
based encryption scheme was introduced by Clear and McGoldric [18]. The
idea is to extend the single-identity setting to the multi-identity setting, such
that each ciphertext encrypts a different message under a different identity. To
enable the evaluation of different ciphertexts, we propose a new technique using
the already presented mathematical tool, “tensor product” for multiplication
of those ciphertexts. In this section we present the compilation of our leveled
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homomorphic multi-identity-based encryption (LHMIBE) from LWE-based IBE
scheme, where the ciphertexts are computed on different identities and evalua-
tion procedure calculates a function on input of these ciphertexts. We provide
the syntax of our LHMIBE scheme in the following definition.

Definition 2 (LHMIBE). A leveled homomorphic multi-identity-based encry-
ption scheme consists of the following five algorithms:

Setup(1λ): On input the security parameter 1λ, λ ∈ N output the master key pair
(msk,mpk).
Extract(mpk,msk, idi): On input a master secret key msk and an identity idi,
output (idi, skidi

).
Encrypt(mpk, idi, μi): On input mpk, an identity idi and a message μi, output
a ciphertext C.
Eval(F,Cid1 , . . . , Cidn

): On input a function F , n different ciphertexts Cidi
, i ∈

[n], output Ĉ.
Decrypt(Ĉ, skid1 , . . . , skidn

): On input n secret keys {skidi
}i∈[n] and evaluated

ciphertext Ĉ, output μ̂(= F (μ1, . . . , μn)).

Further, we propose a transformation from an LWE-based IBE scheme into a
leveled homomorphic multi-identity-based encryption (LHMIBE) scheme, that
supports homomorphic operations on ciphertexts produced for different identi-
ties. We rely on the following properties of LWE-based IBE schemes [1,15,22]:

(1) The decryption key for identity idi and the corresponding ciphertext for idi,
are skidi

, Cidi
∈ Z

n′
q . We extend the decryption key by adding 1 as the first

component.
(2) If Cidi

encrypts 0, then 〈Cidi
, skidi

〉 is small.
(3) Encryptions of 0 are indistinguishable from uniform vectors over Zq (under

LWE assumption).

We stress that the technique from [23] cannot be applied to our setting where
ciphertexts can possibly be encryptions under different identities. Our construc-
tion offers an alternative evaluation technique based on tensor product and natu-
ral logarithm. The evaluation function F is a homomorphic function, allowing to
compute a product of ciphertexts by summing the evaluated individual cipher-
texts. To provide this functionality, we use the natural logarithm. Since the
ciphertext Cidi

is represented as a N × N matrix in the following paragraphs,
and the secret keys are N -dimensional vectors, i.e. Cidi

∈ Z
N×N
q , sk idi

∈ Z
N
q ,

the evaluation function F has the following form:

F (Cid1 . . . , Cidn
) = log

(
n⊗

i=1

Cidi

)
= log [(Cid1 ⊗ IN ) · . . . · (IN l−1 ⊗ Cidn

)]

= (Cid1 ⊗ IN )
n−1∏
i=1

(INi ⊗ Cidi+1) = log (Cid1 ⊗ IN ) + log (IN ⊗ Cid2) +
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. . . + log (INn−1 ⊗ Cidn
) = log(Cid1 ⊗ IN ) +

n−1∑
i=1

log(INi ⊗ Cidi+1).

The n different decryption keys {v idi
}i∈[n] operate on the resulting ciphertext

as follows:

F (Cid1 . . . , Cidn
) + log

(
n⊗

i=1

sk idi

)
= log

(
n⊗

i=1

Cidi

)
+ log

(
n⊗

i=1

sk idi

)

= log

[(
n⊗

i=1

Cidi

) (
n⊗

i=1

sk idi

)]
= log

[
n⊗

i=1

Cidi
sk idi

]
.

3.1 The Scheme

Let Σ be a LWE-based IBE scheme with the above properties. Our transforma-
tion of Σ into an LHMIBE scheme proceeds as follows:

Setup(1λ): Run the Setup algorithm of Σ to generate (mpk,msk).
Extract(mpk,msk, idi): Run the extraction algorithm of Σ scheme to com-
pute skibe

idi
∈ Z

m
q , which is the decryption key of IBE scheme. Then set

sidi
:= sk ′

idi
= (1, skibe

idi
) ∈ Z

m+1
q . Compute the decryption key of LHMIBE

scheme as Powerof2(sidi
) = v idi

∈ Z
l·(m+1)
q , where v idi

= (vidi,1, . . . , vidN
) for

i ∈ {1, . . . , n}, N = l(m + 1). Output (i, v idi
).

Encrypt(mpk, idi, μi): To encrypt the message μi ∈ {0, 1} for i ∈ [n], invoke
Encrypt of Σ in order to compute N = l · (m+1) encryptions of 0. The resulted
ciphertext is denoted by C ′

idi
. Taking C ′

idi
, compute the ciphertext of LHMIBE

as follows: Cidi
= Flatten

(
μ · IN + BitDecomp(C ′

idi
)
)
.

Eval(mpk,Cid1 , . . . , Cidn
, F ): Take as input ciphertexts, Cid1 , . . . , Cidn

and an
evaluation function F . Output F (Cid1 . . . , Cidn

) = log (
⊗n

i=1 Cidi
) = Ĉ.

Decrypt(mpk, Ĉ, v id1 , . . . , v idn
): On input master public key mpk, eval-

uated ciphertext Ĉ and the n secret keys v id1 , . . . , v idn
, compute

log [(
⊗n

i=1 Cidi
) (

⊗n
i=1 v idi

)] = log [
⊗n

i=1 Cidi
v idi

].

Correctness. To show the validity of decryption procedure, we observe the
following computation:

log(v−1
id1

⊗ . . . ⊗ v−1
idn

) + log (Cid1 ⊗ . . . ⊗ Cidn
) + log(v id1 ⊗ . . . ⊗ v idn

)

= log

[
n⊗

i=1

v−1
idi

n⊗
i=1

Cidi
v idi

]
= log

[
n⊗

i=1

(
μiv idi

v−1
idi

+ eiv idi

)]

exp(·)
=⇒ exp

(
log

[
n∏

i=1

μi + “small”

])
=

n∏
i=1

μi + “small” ≈ μ1 · . . . · μn.

Note: v−1
idi

:= (v−1
idi,1

, . . . , v−1
idi,N

) is defined as inverse of the components of
v idi

:= (v idi,1, . . . , v idi,N ). Furthermore holds Cidi
v idi

= (μiv idi
+ ei).
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3.2 Security Analysis

We prove in this section that the resulting LHMIBE construction is IND-ID-CPA
secure according to the following Definition below. We note that an adversary
obtains at most n − 1 secret keys. Since the security of our construction is given
in the CPA model we assume an adversary having access to the extract oracle
which on input an identity outputs the corresponding secret key corresponding
tho that identity. We provide the limits of an adversary by not allowing her
to query the extraction oracle on the same identity which was used during the
encryption process. The security definition is given below:

Definition 3 (LHMIBE Indistinguishability). Let Aind be a probabilistic
polynomial time adversary against the IND-ID-CPA security of the LHMIBE
scheme, F an evaluation function and b ∈ {0, 1} a bit which is associated with
the following experiment ExpIND-ID-CPA-b

LHMIBE,Aind
(1λ):

1. (mpk,msk) r← Setup(1λ).
2. F, st, (id∗

1, μ1,0, μ1,1), . . . , (id∗
n, μn,0, μn,1) ← AOExtract(·)

ind (mpk, find).
3. Compute {vidi

}i∈[n−1] ← Extract(mpk,msk, idi) and set S = {(idi, vidi
)}i

with i ∈ [n]. At the beginning of the experiment the set S is empty.
4. If (idi, ·) /∈ S, run vidi

← Extract(mpk,msk, idi) and add (idi, vidi
) to S.

5. Compute C∗
i,b = Encrypt(mpk, id∗

i , μi,b), with different identities i ∈ [n].
6. Ĉb = Eval(mpk,C∗

1,b, . . . , C
∗
n,b, F ).

7. b′ ← AOExtract(·)
ind (Ĉb, {C∗

i,b}i∈[n], st), where b′ ∈ {0, 1}.

OExtract(idi): On input idi the oracle checks if (idi, ·) is in the list S. If so,
returns vidi

to the adversary. Otherwise the oracle runs vidi

r← Extract(mpk,
msk, idi) and gives vidi

to A. If |S| > n − 1, the oracle returns ⊥.
Aind wins if b′ = b meaning that Aind can distinguish whether Ĉb was pro-

duced from C1,0, . . . , Cn,0 or C1,1, . . . , Cn,1 and Aind did not issue secret key
extraction query on id∗

i . The advantage of Aind is AdvIND-ID-CPA
LHMIBE,Aind

=:

|Pr[ExpIND-ID-CPA-0
LHMIBE,Aind

(1λ) = 1] − Pr[ExpIND-ID-CPA-1
LHMIBE,Aind

(1λ) = 1]|.

The LHMIBE scheme is IND-ID-CPA secure if AdvIND-ID-CPA
LHMIBE,Aind

is negligible.

Remark 1. Furthermore, our LHMIBE scheme has to fulfill the compactness
property which is formulated as following: There exists a polynomial p(λ,L, ·),
such that |Ĉ| ≤ p(λ,L, ·), where L is the depth of the ciphertext. We note that
this property is satisfied by our construction since Ĉ is the result of natural loga-
rithm on input of individual ciphertexts. W.l.o.g. for sufficiently large arguments
of the natural logarithm, it is obvious that log(·) ≤ p(·).
Theorem 1. Our LHMIBE scheme is IND-ID-CPA secure given that (Zq, n, χ)-
LWE is hard.
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Proof. Let Aind be an adversary against IND-ID-CPA security of LHMIBE
scheme. We use Aind to construct an algorithm B against the IND-ID-CPA
security of the underlying Σ scheme which was proven secure in [23]. Thereafter
we use B to construct an adversary C against LWE problem. The challenger B
sets the public parameters of Σ equal to (mpk,msk) of LHMIBE scheme.

Key Extract Queries: When Aind issues queries on id′
i where (id′

i, ·) /∈ S and
id′

i = id∗
i , the algorithm B, which controls the set S, is invoked on that input and

forwards the query to its own oracle OExtractΣ of the underlying IBE scheme
Σ which returns skidi

to B. Algorithm B sets sid′
i

= (1, skid′
i
) ∈ Z

m+1
q and

v id′
i

= Powerof2(sid′
i
) ∈ Z

l(m+1)
q and sends v id′

i
to Aind. At some point Aind

outputs (id∗
1, μ1), . . . , (id∗

n, μn) on which it wants to be challenged. If B didn’t
guess the identities and messages correctly then it aborts the simulation. The
probability that B does not abort is 1/|M|2, where M is the message space.

Challenge Ciphertext: Algorithm B computes C∗
i ← Encrypt(mpk, id∗

i ,mi)
by running the encryption algorithm of Σ scheme and taking as input
the randomly guessed id∗

i . Aind computes challenge ciphertext C∗
i ←

Encrypt(pp, id∗
i ,mi). Aind does the same for the remained n − 2 identities. B

simulates F by randomly choosing F
r← Zq and sends it to Aind.

Guess: Simulator B issues up to qE queries on idi and outputs a guess b′.
After making additional queries Aind outputs a guess b. The probability that
b′ = b is 1

qE
. Thus the advantage that Aind wins the game is given by AdvB ≥

1
qE |M|2AdvAind

.

Reduction to LWE problem: Now we assume an adversary C against LWE
problem which simulates the outputs for adversary B against Σ scheme. The
instance of LWE problem is given as a sampling oracle O. This oracle can be
either purely random Or or pseudo-random Os for some secret s ∈ Z

N
q , where

N = l(m+1). C queries from his sampling oracle O and receives for each request
i a fresh pair (a i, ti) ∈ Z

n
q × Zq. In the next step B chooses target identity

it wants to attack id∗. The challenger C simulates for B the public parameters
(mpk,msk) using LWE samples and sends them to B. When B issues private key
extraction queries on idi, C simulates them using the samples which it received
from its oracle O that statistically close to uniform values. C sends the simulated
values to B.

The simulation of the challenge ciphertext proceeds in a similar manner using
as input entries from the LWE instance. Finally simulator C sends the ciphertext
to B. For the simulation of the ciphertext we differ between two oracles. When
the LWE oracle is given by Os (i.e. it is pseudo-random), the ciphertext is
randomly distributed including some random noise vector which is distributed
corresponding to the distribution Φm

α , which describes a certain noise distribution
over Zq, as showed in [36]. When O is given by Or then the ciphertext is uniform
and independent over Z

N
q , for some n′. Eventually the simulated ciphertext is

always uniform in Zq × Z
N
q . After issuing additional queries, B guesses a bit

b′. The LWE adversary C outputs its guess as the result of the LWE challenge.
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Finally we follow that C′s advantage in solving LWE is at least the same as B′s
advantage in distinguishing the ciphertext from a random value, i.e.: AdvC ≥
1

qE
AdvB. ��

4 Leveled Homomorphic Attribute-Based Encryption
in Single and Multi-authority Setting

In this section we extend the definition of a single setting attribute-based
encryption introduced in [23] and present a leveled homomoprhic attribute-
based encryption (LHABE). We first define a LHABE scheme assuming exis-
tence of a single attribute authority, which is responsible for the generation of
the secret keys corresponding to a certain string. This string can either describe
an attribute set in case of a ciphertext-policy ABE scheme or the string can
be related to an access policy in case of key-policy ABE scheme. We do not
specify the definition for one of the mentioned flavours of ABE scheme. Instead,
we provide a general definition where attributes and policy are represented by
certain strings. To do so, we assume that a leveled homomorphic ABE scheme
is associated to some computable relation R(x, y) for x ∈ {0, 1}l, y ∈ {0, 1}l′ as
it was showed in [23].

Gentry et al. [23] mentioned the possibility of extension of their scheme so
that the evaluation algorithm operates under multiple indices x1, . . . , xn. The
decryption process can rely on different possibilities. The result can be decrypted
using either the same secret key sky such that R(xi, y) = 1 for all i ∈ [1, k] or
using different secret keys sky1 , . . . , skyk

such that R(xi, yj) = 1 for i, j ∈ [1, k].
Our evaluation techniques based on tensor product and natural logarithm allow
us to realize these extensions. We note that in first case where we have only one
decryption key sky and different strings xi, we can provide a single authority
ABE scheme whose ciphertexts are encrypted under different indices, while in
second case with different secret keys skyj

we can construct the first leveled
homomorphic ABE scheme employing multiple authorities, such that each secret
key can be generated by a different authority. In this section we present the two
extensions of [23], a leveled homomorphic single authority ABE and a leveled
homomorphic multi-authority ABE (LHMABE) schemes.

4.1 Leveled Homomorphic ABE Scheme (LHABE)

In this section we introduce a leveled homomorphic ABE scheme that oper-
ates on different indices xi. Since the construction in [23] didn’t provide a con-
crete scheme over different indices, we resolve this drawback and instantiate in
our work a construction of a LHABE scheme where distinct messages μi are
encrypted using another public string xi. The decryption process is possible if
the decryption key which was generated on a fixed chosen string y is valid and
the following relation holds: R(xi, y) = 1 for all xi ∈ {0, 1}l.

Syntax. A leveled homomorphic ABE scheme consists of the following algo-
rithms:
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Setup(1λ): On input a security parameter 1λ, output (mpk,msk).
KeyGen(mpk,msk, y): On input (mpk,msk), a string y generate sky.
Encrypt(mpk,mi, xi): On input a master public key mpk, a message mi and
a string xi, output a ciphertext Ci for i ∈ {1, . . . , k}.
Eval(mpk, F, {xi}i∈[k], C1, . . . , Ck): On input mpk, an evaluation function F ,
set of strings {xi}i∈[k] and a set of k ciphertexts C1, . . . , Cn homomorphically
evaluate F and output Ĉ.
Decrypt(mpk, Ĉ, sky): On input master public key mpk, an evaluated cipher-
text Ĉ and the secret key sky, decrypt the function Ĉ = F (C1, . . . , Ck) if
R(x, y) = 1.

In the following definition we present a leveled homomorphic attribute-based
encryption (LHABE) which is compiled from a secure LWE based attribute-
based encryption scheme.

The Scheme. Let Σ′ denote an LWE-based attribute-based encryption scheme.
A leveled homomorphic ABE scheme consists of the following algorithms:

Setup(1λ): On input security parameter, run Setup algorithm of Σ′ and gen-
erate authority’s public key and authority’s secret key (apk, ask).
Extract(apk, ask, y): Run the KeyGen algorithm of Σ′ scheme to compute
sky ∈ Z

m
q , which is the decryption key of that scheme embedding a string

y ∈ {0, 1}l into the key. Set s := sk′
y = (1, sky) ∈ Z

m+1
q . It computes the

decryption key of LHABE scheme as Powerof2(s) = vy ∈ Z
l·(m+1)
q .

Encrypt(apk, xi, μi): On input authority’s public key apk, an attribute string
xi, i ∈ [n] with R(xi, y) = 1 and a message μi, i ∈ [n] run Encrypt of ABE
scheme Σ′ in order to compute N = l · (m+1) encryptions of 0. The result is
denoted by C ′

i. Taking C ′
i compute: Ci = Flatten (μ · IN + BitDecomp(C ′

i)).
Eval(apki, {xi}i∈[n], C1, . . . , Cn, F ): Take as input apk, the ciphertexts,
C1, . . . , Cn on messages μ1, . . . , μn and an evaluation function F . Output:
F (C1, . . . , Cn) = log (

⊗n
i=1 Ci) = Ĉ.

Decrypt(mpk, Ĉ, vy): On input the authorities’ secret keys vy, an evaluated
ciphertext F , compute v−1

y (where v−1
y is the vector consisting of inverse

components of vector vy. Using this inverse v−1
y , compute:

log(v−1
y ⊗ . . . ⊗ v−1

y ) + log (C1 ⊗ . . . ⊗ Cn) + log(vy ⊗ . . . ⊗ vy)

= log
[
(v−1

y ⊗ . . . ⊗ v−1
y ) (C1 ⊗ . . . ⊗ Cn) (vy ⊗ . . . ⊗ vy)

]
.

It outputs a product of messages μ̂ =
n∏

i=1

log(μi) + “small”.

Correctness. Since there is only one secret key v, the decryption process is given
by multiplication with the secret key v and then by division of this product by
v−1. Correctness of decryption can be verified in the following computations
assuming that the different ciphertexts can be decrypted using the same secret
key. In the end we apply the exponential function to get the decrypted plaintext:
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log(v−1
y ⊗ . . . ⊗ v−1

y ) + log (C1 ⊗ . . . ⊗ Cn) + log(vy ⊗ . . . ⊗ vy) = log

(
n⊗

i=1

v−1
y Civy

)

= log

(
n∏

i=1

(µi + ei)

)
exp(·)
=⇒ exp

(
log

(
n∏

i=1

(µi + ei)

))
=

n∏
i=1

µi + “small”.

4.2 Security Analysis of LHABE

In this paragraph we define the security of our leveled homomorphic ABE scheme
and provide the proof of security. We assume an adaptive adversary who specifies
the set of strings xi, i ∈ [k] after receiving the public key. He is allowed to issue
queries to the private key extraction oracle to string y of his choice, as long as
R(xi, y) = 0, where xi, i ∈ [k] are strings required for the encryption process,
which have to be announced before the adversary obtains the public and secret
keys of the authority.

Definition 4 (LHABE Indistinguishability). Let Aind be a probabilistic
polynomial time adversary against the IND-CPA security of the leveled homo-
morphic ABE scheme, F an evaluation function and b ∈ {0, 1} is a bit associated
with the following experiment: ExpIND-CPA-b

LHABE,Aind
(1λ):

1. (apk, ask) ← Setup(1λ),
2. F, st, (x∗

1, μ1,0, μ1,1), . . . , (x∗
n, μn,0, μn,1) ← AOExtract(·)

ind (find, apk).
3. Compute {vy}i∈[n−1] ← Extract(apk, ask, y).
4. Compute C∗

i,b = Encrypt(apk, x∗
i , μi,b), where i ∈ [n] are different attributes

and messages. We assume that each message is encrypted under another
attribute.

5. Ĉb = Eval(mpk,C∗
1,b, . . . , C

∗
n,b, F ).

6. b′ ← AOExtract(·)
ind (Ĉb, {C∗

i,b}i∈[n], st), where b′ ∈ {0, 1}.

OExtract(y): On input a string y, the oracle checks if R(x∗
i , y) = 1. If so, it

returns ⊥, otherwise runs vy
r← Extract(apk, ask, y) and gives vy to Aind.

Aind wins if b′ = b, meaning that Aind can distinguish whether Ĉb was produced
from C1,0, . . . , Cn,0 or from C1,1, . . . , Cn,1. The advantage of Aind is defined as:

AdvIND-CPA
LHABE,Aind

= |Pr[ExpIND-CPA-0
LHABE,Aind

(1λ) = 1] − Pr[ExpIND-CPA-1
LHABE,Aind

(1λ) = 1]|.

The leveled homomorphic ABE (LHABE) scheme is IND-CPA secure if the above
defined advantage AdvIND-CPA

LHABE,Aind
is negligible.

Remark 2. Furthermore, our LHABE scheme fulfills the compactness property
which is justified analogously to the compactness property of LHMIBE scheme.

Theorem 2. Our leveled homomorphic ABE scheme is IND-CPA secure pro-
vided that (Zq, n, χ)-LWE holds.
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4.3 Leveled Homomorphic Multi-authority ABE Scheme
(LHMABE)

In this section we present the compilation of our leveled homomorphic multi-
authority ABE scheme (LHMABE) from an LWE-based ABE scheme. We begin
with the description of its syntax. Our scheme is associated to some efficient
computable relation R(xi, yj), x ∈ {0, 1}l, y{0, 1}l′ .

Definition 5 (LHMABE Scheme). A leveled homomorphic multi-authority
ABE scheme consists of the following five algorithms:

Setup(1λ, 1n): On input a security parameter 1λ output attribute public key
apki and attribute secret key aski for each authority j ∈ {1, . . . , k}.
KeyGen(apki, aski, yi): On input master public and master secret key pair, a
string yi ∈ {0, 1}l, the attribute authority i, generate a secret key skyi

which
embeds the corresponding policy.
Encrypt({apki}i∈[k], μξ, xi): On input a set of attributes represented by string
xi, a set of trusted authorities and their public keys, output a ciphertext Ci.
Eval(apk, F, {xi}i∈[k], C1, . . . , Cn): On input a function F , set of strings
{xi}i∈[k] and a set of n ciphertexts C1, . . . , Cn, homomorphically evaluate
F and output Ĉ.
Decrypt(C, {skyi

}i∈[k]): On input a ciphertext C, a set of secret keys
{skyi

}i∈[k] decrypt the message if for every index i there is some index j
s.t. R(xi, yj) = 1.

The main idea of our leveled homomorphic MABE (LHMABE) scheme is a com-
pilation from an already existing LWE-based ABE scheme and an extension to
the multi-authority setting. There exist only few of such systems which have been
realized and proved secure under the LWE assumption. Boyen [10] introduced a
key policy attribute-based functional encryption which relies on the LWE prob-
lem. Gorbunov et al. [24] constructed an ABE scheme for circuits based on LWE.
Gentry et al. [23] presented the first leveled homomorphic ABE scheme using
compilation from ABE schemes [26,37].

With introduction of multiple authorities the role of the key extraction algo-
rithm in [10,23,24] is distributed among a multiple number of authorities where
each of them computes a secret key for the user corresponding to a string
yi ∈ {0, 1}l. Our construction allows to encrypt different messages μi using
different strings xi ∈ {0, 1}l′ , i ∈ [1, n] and to evaluate them to a certain cipher-
text. The user is able to decrypt the evaluated value only if for each xi there
exists some j such that R(xi, yj) = 1.

The Scheme. Let Σ′ be a LWE-based attribute-based encryption scheme. We
note that the encryption of different messages can be computed using different
strings xi ∈ {0, 1}l, but it also includes the possibility to encrypt at least two dif-
ferent messages μi, μj under the same string xi. A leveled homomorphic MABE
scheme consists of the following algorithms:
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Setup(1λ): On input security parameter, generate authority’s public key and
authority’s secret key apki, aski for each authority i ∈ [k].
Extract(apki, aski, yi): Run the KeyGen algorithm of Σ′ scheme to compute
ski ∈ Z

m
q , which is the decryption key of that scheme embedding an access

policy given by yi into the key. Set si := ski = (1, ski,Σ′) ∈ Z
m+1
q . We note that

ski,Σ′ is the decryption key of scheme Σ′. Compute the decryption key of ABE
scheme as Powerof2(si) = vyi

∈ Z
l·(m+1)
q , for i ∈ {1, . . . , n}.

Encrypt
({apki}i∈[n], xi, μi

)
: On input authority’s public key {apki} for all

i ∈ [n] authorities, an attribute string yi, for i ∈ [n] and a message μi, i ∈ [n],
run Encrypt of ABE scheme Σ′ in order to compute N = l · (m + 1) encryp-
tions of 0. The resulted ciphertext is denoted by C ′

i. Taking C ′
i compute:

Ci = Flatten (μi · IN + BitDecomp(C ′
i)).

Eval({apki}i∈[n], {xi}i∈[n], C1, . . . , Cn, F ): On input the ciphertexts, C1,
. . . , Cn on messages μ1, . . . , μn and an evaluation function F (C1, . . . , Cn), com-
pute: F (C1, . . . , Cn) = log (

∏
(C1 ⊗ . . . ⊗ Cn)).

Decrypt(mpk, Ĉ, {vyj
}i∈[n]): On input master public key mpk, evaluated cipher-

text Ĉ and n secret keys vy1 , . . . , vyn
, compute

log
[
v−1

y1
⊗ . . . ⊗ v−1

yn

]
+ log

[
n⊗

i=1

Ci

]
+ log

[(
n⊗

i=1

vyi

)]

and output μ̂, where μ̂ = log
[

n∏
i=1

μi + “small”
]
.

Correctness. Correctness of decryption can be verified in the following compu-
tations, assuming that the different ciphertexts can be decrypted using different
secret key. In the end we apply the exponential function to get the decrypted
plaintext:

log(v−1
y1

⊗ . . . ⊗ v−1
yn

) + log (C1 ⊗ . . . ⊗ Cn) + log(vy1 ⊗ . . . ⊗ vyn
)

= log

(
n⊗

i=1

v−1
yi

Civyi

)
= log

(
n∏

i=1

(μi + ei)

)
exp(·)
=⇒ exp

(
log

(
n∏

i=1

(μi + ei)

))
.

4.4 Security Analysis of LHMABE

In the following definition we define the indistinguishability property of our
scheme. We assume an adaptive adversary Aind who outputs a set of target
strings y∗

i for i ∈ [n] after receiving the public key. Further we give Aind access
to a key extraction oracle on input a string xi with the restriction that there
is no y∗

j , j ∈ [n], such that R(y∗
j , xi) = 1. A successful decryption is only pos-

sible if the user has all of the n decryption keys corresponding to the strings
{xi}i∈[n] which were used during the encryption of n different messages. Without
loss of generality, there can be messages which were encrypted under the same
string y∗

i .
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Definition 6 (LHMABE Indistinguishability). Let Aind be a probabilistic
polynomial time adversary against the IND-CPA security of the leveled homo-
morphic MABE scheme, F an evaluation function and b ∈ {0, 1} a bit associated
with the following experiment: ExpIND-CPA-b

LHMABE,Aind
(1λ):

1. (apki, aski) ← Setup(1λ),
2. F, st, (y∗

1 , μ1,0, μ1,1), . . . , (y∗
n, μn,0, μn,1) ← AOExtract(·)

ind (find, apki).
3. Compute {vyi

}i∈[n−1] ← Extract(apki, aski, yi) and set S = {(yi, vyi
)}i∈[n].

At the beginning of the experiment the set S is empty.
4. If (y∗

i , ·) /∈ S, run vy∗
i

← Extract(apki, aski, y
∗
i ), s.t. R(y∗

i , xi) = 1, add
(y∗

i , vyi
) to S.

5. Compute C∗
i,b = Encrypt(apki, x

∗
i , μi,b), where i ∈ [n] is the index of different

identities.
6. Ĉb = Eval({apki}i∈[n], C

∗
1,b, . . . , C

∗
n,b, F ).

7. b′ ← AOExtract(·)
ind (Ĉb, {C∗

i,b}i∈[n], st), where b′ ∈ {0, 1}.

OExtract(aski, yi): On input (aski, yi), the oracle checks if there is an y∗
i in the

announced set of strings, such that R(y∗
j , xi) = 1. If so, returns ⊥. Otherwise

it runs vyi

r← Extract(apki, aski, yi) and gives vyi
to Aind. If |L| > n − 1, the

oracle returns ⊥.
Aind wins if b′ = b, meaning that Aind can distinguish whether Ĉb was produced
from C1,0, . . . , Cn,0 or from C1,1, . . . , Cn,1 and Aind did not issue queries on xi

with R(y∗
j , xi) = 1 for some y∗

j ∈ {0, 1}l. Aind’s advantage is:

AdvIND-CPA
LHMABE,Aind

= |Pr[ExpIND-CPA-0
LHMABE,Aind

(1λ) = 1]− Pr[ExpIND-CPA-1
LHMABE,Aind

(1λ) = 1]|.

The LHMABE scheme is IND-CPA secure if AdvLHMABE,Aind
is negligible.

Remark 3. Furthermore, our LHMABE scheme fulfills the compactness property
which is justified analogously to the compactness property of LHMIBE scheme.

Theorem 3. Our leveled homomorphic MABE scheme is IND-CPA secure pro-
vided that (Zq, n, χ)-LWE holds.

Proof. Let Aind be an adversary against IND-CPA security of our leveled homo-
morphic multi-authority ABE scheme. We use Aind to construct an algorithm
B against the LWE problem.

Setup: The instance of LWE problem is given as a sampling oracle O. This
oracle can be either purely random Or or pseudo-random Os for some secret
s ∈ Z

N
q , where N = l(m+1) as in the scheme. In order to simulate A′

inds public
parameters, B issues N queries on samples to his sampling oracle O and receives
upon each request i a fresh pair (a i, ti) ∈ Z

n
q ×Zq. The simulator B computes for

Aind the public parameters (apki, aski) for each attribute authority using LWE
samples and sends them to Aind.

Key Extract Queries: When Aind issues private key extraction queries to its
key extract oracle on input (aski, yi), i ∈ [n], simulator B computes the required
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secret keys ski using the samplings obtained from its oracle and the simulated
public key. We assume that B has control over the set of strings {y∗

i }i∈[n]. If there
is an yj ∈ {y∗

i }i∈[n] such that R(yj , xi) = 1, B aborts the simulation. Otherwise
it returns the simulated secret keys to Aind. The outputs are statistically close
to uniform values. B sends the simulated values to Aind. We assume that Aind

issued in total qE private key extraction queries.
Furthermore Aind outputs a set of target strings {y∗

i }i∈[n] with the corre-
sponding messages μ1, . . . , μn it wants to be challenged on.

Challenge ciphertext: The simulation of the challenge ciphertext also works
using as input the entries from the LWE instance, choosing N random vector
pairs bi, e i

r← Z
N
q for i ∈ [n], taking the message bits μi and calculating C ←

bi ·μi +e i. Finally the ciphertext is sent to B. When the LWE oracle is given by
Os (i.e. it is pseudo-random), the ciphertext is randomly distributed including
some random noise vector according to the noisy distribution χ. When O is given
by Or then the ciphertext is uniform and independent over Z

N
q . Eventually the

simulated ciphertext is always uniform in Zq × Z
N
q .

Guess: After issuing additional queries, Aind guesses a bit b′ ∈ {0, 1}. The LWE
adversary B outputs its guess as result of the LWE challenge. Finally we follow
that B′s advantage in solving LWE is at least the same as A′

inds advantage in
distinguishing the ciphertext from a random value, i.e.: AdvB ≥ 1

qE
AdvAind

. ��

4.5 Application to Cloud Computing

Leveled homomorphic attribute-based encryption has significant relevance for
cloud systems and their security. Attribute-based encryption allows an addi-
tional option for many applications of functional encryption in cloud computing.
It enables a data owner, who outsourced her encrypted data to a cloud, to control
the access to the uploaded data. A useful application to personal health records
in cloud computing based on multi-authorities and multi-users attribute-based
encryption presented by Li et al. [29] can profit by enabling users of the scheme
to evaluate different ciphertexts on different messages without even revealing
those messages. The shortcoming of Li et al.’s [29] construction is the impossi-
bility to perform complex mathematical computations on encrypted data. Our
ABE construction in multi-authority setting in Sect. 4.3 provides this attractive
property. The data owner which uploads the data to a cloud server has the pos-
sibility to encrypt further several data files and compute a functional value of
the resulted ciphertexts. The data user, which has the valid access formula is
able to decrypt the evaluated ciphertexts and obtain a functional value of the
plaintexts. Our construction allows the cloud users to take advantage of ana-
lytical cloud services. Our scheme from Sect. 3.1, where distinct ciphertexts are
encrypted using distinct identities can also be applied to the cloud storage set-
ting. In this case our construction allows a data owner to encrypt different data
for a certain group of users with distinct identities, such that each user is able
to decrypt an evaluated value of different plaintexts.
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5 Conclusion

In this paper we presented a new construct called tensor product in combination
with natural logarithm in order to enable leveled homomorphic encryption under
different public keys. Using these mathematical constructions we first introduced
a leveled homomorphic encryption under multiple identities. We defined the
security of that scheme and provided the corresponding proof. Furthermore we
presented a leveled homomorphic attribute-based encryption in two different
settings. In the first setting we assumed that the evaluation function operates
on ciphertext under common index x, while in the second setting the evaluation
function was performed under distinct indices. We defined the security notions
for both ABE schemes and proved them secure. Our constructions enable a
multi-key leveled homomorphic encryption on lattices using simple mathematical
computations in contrast to so far existing milti-identity FHIBE by [18] and
provide efficient applications to the cloud storage setting.

A Lattices

Let B = {b1, . . . , bn} ⊂ R
n be a basis of a lattice Λ which consists of n linearly

independent vectors. The n-dimensional lattice Λ is then defined as Λ =
n∑

i=1

Zbi.

The i-th minimum of a lattice Λ, denoted by λi(Λ) is the smallest radius r
such that Λ contains i linearly independent vectors of norms ≤ r. (The norm

of vector bi is defined as ‖bi‖ =

√
n∑

j=1

c2i,j , where ci,j , j ∈ {1, . . . , n} are the

coefficients of vector bi. We denote by λ∞
1 (Λ) the minimum distance measured

in the infinity norm, which is defined as ‖bi‖∞ := max(|ci,1| , . . . , |ci,n|). Addi-
tionally we recall ‖B‖ = max ‖bi‖ and its fundamental parallelepiped is given

by P (B) =
{

n∑
i=1

aibi | a ∈ [0, 1)n

}
. The integer n is called the rank of the basis.

Note that a lattice basis is not unique, since for any unimodular matrix A ∈ Z
n×n

the product B · U is also a basis of Λ.

Integer Lattices. The following specific lattices contain qZm as a sub-lattice
for a prime q. For A ∈ Z

n×m
q and s ∈ Z

n
q , define:

Λq(A) := {e ∈ Z
m|∃s ∈ Z

n
q , where AT s = e mod q},

Λ⊥
q (A) := {e ∈ Z

m|Ae = 0 mod q},

Many lattice-based works rely on Gaussian-like distributions called Discrete
Gaussians. In the following paragraph we recall the main notations of this dis-
tribution.
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Discrete Gaussians. Let L be a subset of Z
m. For a vector c ∈ R

m and a
positive σ ∈ R, define

ρσ,c(x) = exp

(
−π

‖x − c‖2
σ2

)
and ρσ,c(L) =

∑
x∈L

ρσ,c(x).

The discrete Gaussian distribution over L with center c and parameter σ is given
by DL,σ,c(y) = ρσ,c(y)

ρσ,c(L) , ∀y ∈ L. The distribution DL,σ,c is usually defined over
the lattice L = Λ⊥

q (A) for A ∈ Z
n×m
q .

B Learning With Errors (LWE)

The LWE problem, first introduced by Regev [36], relies on the Gaussian error
distribution χ, which is given as χ = DZ,s over the integers. The LWE problem
assumes of access to a challenge oracle O, which is either a purely random
sampler Or or a noisy pseudo-random sampler Os, with some random secret key
s ∈ Z

s
q. For positive integers n and q ≥ 2, a vector s ∈ Z

n
q and error term e ← χ,

the LWE distribution As,χ is sampled over Z
n
q × Zq. Chosen a vector a ∈ Z

n
q

uniformly at random it outputs the pair (a , t = 〈a , s〉+ e mod q) ∈ Z
n
q ×Zq. A

more detailed description of χ can be found in [36]. The sampling oracles work
in the following way:

Os: outputs samples of the form (a , t) = (a ,as +e) ∈ Z
n
q ×Zq, where s ∈ Z

n
q is

uniformly distributed value across all invocations and e ∈ Zq is a fresh sample
from χ.

Or: outputs truly random samples from Z
n
q × Zq.

C Proof of Theorem2

Proof. Since the security of this construction relies on the hardness of LWE
problem we show how to build an algorithm which can simulate the outputs for
the LHABE adversary. Let Aind be an adversary against IND-CPA security of
our leveled homomorphic ABE scheme. We use Aind to construct an algorithm
B against the LWE problem. As known from the Definition of LWE, the decision
algorithm has access to a sampling oracle O, which can be either a pseudorandom
sampler Os or a truly random sampler Or. We assume a simulator B which
simulates the environment for LHABE adversary Aind in order to decide which
oracle is given. B queries from its oracle O the LWE samples and obtains n pairs
(a i, ti) ∈ Z

N
q × Zq, for N = l(m + 1). Aind announces a set of strings {xi}i∈k it

wants to be challenged on. The simulator B constructs the public key using the
obtained LWE instance of l pairs (a i, ti) for i ∈ [l(m + 1)], where the public key
is represented by a n × m matrix and a m-dimensional vector. When A issues
key generation queries on input apk, the LWE adversary simulates the queries
using previously sampled public key apk and setting s = (1, s1) ∈ Z

l(m+1)
q , where
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apk · s = e that is small and s1 ∈ Z
lm
q is also assumed to be small according to

distribution χ. In order to encrypt 0, B samples N times the vectors b, e ′ r← Z
N
q

according to χ and outputs a ciphertext C ← b · apk + e ′. This ciphertext is
indistinguishable from random by applying a standard hybrid argument. The
decryption is possible by computing a product of 〈C, s〉 and outputting μ = 0 if
the result is small or μ = 1 otherwise. ��
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Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 579–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 47

26. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data, pp. 89–98 (2006)

27. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation.
IACR Cryptology ePrint Archive, 2011:272 (2011)

https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-540-70936-7_28
https://doi.org/10.1007/978-3-540-70936-7_28
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-319-31517-1_16
https://doi.org/10.1007/3-540-45325-3_32
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-540-70583-3_47


92 V. Kuchta et al.

28. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

29. Li, M., Yu, S., Ren, K., Lou, W.: Securing personal health records in cloud com-
puting: patient-centric and fine-grained data access control in multi-owner settings.
In: Jajodia, S., Zhou, J. (eds.) SecureComm 2010. LNICST, vol. 50, pp. 89–106.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16161-2 6
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Abstract. At EUROCRYPT 2011, Gentry and Halevi implemented a
variant of Gentry’s fully homomorphic encryption scheme. The core part
in their key generation is to generate an odd-determinant ideal lattice
having a particular type of Hermite Normal Form. However, they did
not give a rigorous proof for the correctness. We present a better key
generation algorithm, improving their algorithm from two aspects.

– We show how to deterministically generate ideal lattices with odd
determinant, thus increasing the success probability close to 1.

– We give a rigorous proof for the correctness. To be more specific,
we present a simpler condition for checking whether the ideal lattice
has the desired Hermite Normal Form. Furthermore, our condition
can be checked more efficiently.

As a result, our key generation is about 1.5 times faster. We also
give experimental results supporting our claims. Our optimizations are
based on the properties of ideal lattices, which might be of independent
interests.
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Hermite Normal Form · Ideal lattice

1 Introduction

Fully homomorphic encryptions (FHE) support arbitrary operations on
encrypted data which have a wide range of applications such as private informa-
tion retrieval [19], electronic watermark [11]. Ever since the introduction of the
concept of FHE by Rivest et al. [13], there have appeared many homomorphic
encryption schemes which support limited operations [1,14]. Nevertheless, all
these schemes failed to be FHE.

It was not until 2009 that Gentry [6] proposed the first plausible FHE scheme
using ideal lattice. Since then, researchers proposed many FHE schemes [2,3,9].
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Nowadays, all existing FHE schemes follow Gentry’s blueprint. Specifically, one
first constructs a “somewhat homomorphic” scheme that supports some limited
operations on the encrypted data. Then he “squashes” the decryption procedure
so that it can be expressed as operations supported by the scheme. Finally,
he converts the “somewhat homomorphic” scheme into a fully homomorphic
scheme. The low efficiency of FHE is one of the main obstacles that prevents it
from being practical.

The first attempt to implement Gentry’s FHE scheme was made by Smart
and Vercauteren [18] in 2010. They gave an optimized version of Gentry’s scheme,
which decreased the key size by a linear factor. However, they needed to generate
ideal lattices with prime determinant during the key generation. In practice,
one may need to try as many as n1.5 candidates before finding one with prime
determinant when working with lattices in dimension n. As a result, they failed
to implement Gentry’s fully homomorphic encryption scheme.

In 2011, Gentry and Halevi [7] first completely implemented Gentry’s fully
homomorphic encryption scheme continuing in the same direction of the imple-
mentation of [18]. The strong requirement that the lattice has a prime determi-
nant was removed. Instead, they only required that the determinant is odd and
the lattice has a simple-HNF (see Definition 2). They found in practice that the
success probability was roughly 0.5. Thus one needs to try two candidates on
average to get a valid key. Moreover, they proposed a method to check whether
a lattice has a simple-HNF. However, they did not provide a rigorous proof for
the correctness of their algorithm and some details on their implementation were
not very clear.

Gentry-Halevi’s implementation depends heavily on the underlying algebraic
structure of the scheme, that is, the 2-power cyclotomic fields. Scholl and Smart
[16] showed how to generalize the fast key generation techniques to arbitrary
cyclotomic fields. They also obtained a key generation algorithm which is roughly
twice faster.

Our Contribution. By studying the properties of ideal lattices, we present
further improvements on the key generation algorithm in [7]. Our algorithm has
a rigorous proof for correctness and is about 1.5 times faster in practice. Our
focus is on Gentry-Halevi’s original implementation, which is different from [16].

As stated before, the core idea in the key generation algorithm of [7] is to
generate an odd-determinant ideal lattice, which has a simple-HNF.

In order to generate ideal lattice with odd determinant, the authors of [7]
chose a random generator and computed the determinant of the generated ideal
lattice. Since the ideal lattice under consideration is highly structured and we
only care about the parity of the determinant, it might be possible to determine
whether the determinant is odd without computing it. In fact, we do find that
the parity of the determinant is connected to the generator in a very simple
way. Thus we can generate odd-determinant ideal lattice deterministically by
imposing a simple constraint on the generator.
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To check whether the ideal lattice has the desired HNF, they gave a simple
checking condition, which avoided computing the HNF explicitly out of the con-
sideration of efficiency. By studying and exploiting the properties of the HNF
of ideal lattice, we are able to present another checking condition. By verifying
that our condition holds, we can rigorously prove that our algorithm outputs an
ideal lattice with the desired HNF. Furthermore, our condition can be checked
more efficiently.

We need to point out that our improvements are of more theoretical than
practical significance due to the following reasons. First, Gentry and Halevi’s
implementation is the very first one, and there are much better implementations
of different schemes [5,8,15,17]. Besides, key generation is not a bottleneck of
FHE schemes and the algorithm in [7] is very fast even for very large parameters,
which makes our slight speedup less significant.

Nevertheless, it is important to make things more clear. Besides, our improve-
ments are based on some new, special properties of the HNF of ideal lattices,
which we believe are of independent interests.

Roadmap. The paper is organized as follows. In Sect. 2, some preliminaries are
presented. In Sect. 3, we revisit the key generation algorithms in previous imple-
mentations. In Sect. 4, we propose our optimized key generation for Gentry’s
FHE scheme, together with some theoretical analysis and experimental results.
A brief conclusion will be given in the final section.

2 Preliminaries

Notations. We use bold capital and lowercase letters to denote matrices and
vectors respectively. For a matrix M ∈ R

n×m, the i-th row is denoted as Mi

and the entry in (i, j)-th entry is denoted as mi,j . For a vector x ∈ R
n, the i-th

entry is denoted as xi. These notations are used throughout the paper unless
specified otherwise.

2.1 Hermite Normal Form

For integer matrices, there is a very important standard form known as the
Hermite Normal Form.

Definition 1 (Hermite Normal Form). A nonsingular matrix H ∈ Z
n×n is

said to be in HNF, if

– hi,i > 0 for 1 ≤ i ≤ n.
– hj,i = 0 for 1 ≤ j < i ≤ n.
– 0 ≤ hj,i < hi,i for 1 ≤ i < j ≤ n.

For “randomly” generated matrices of high dimensions, the diagonals of its HNF
are highly unbalanced: most of them are small (in fact most of them are 1), and
the first diagonal is usually the only large one. We can define a very special HNF.
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Definition 2 (Simple-HNF). A nonsingular matrix H ∈ Z
n×n is said to be

in simple-HNF if it is in HNF and hi,i = 1 for 2 ≤ i ≤ n.

It has been shown that asymptotically the density of “simple-HNF” for randomly
generated n × n matrices (in the sense that each entry is chosen uniformly at
random from {−M,−M + 1, · · · ,M} for large enough M) is 1∏n

j=2 ζ(j) ≈ 44%
[10,12], where ζ(j) is the Riemann zeta function.

2.2 Lattice

A lattice is a discrete subgroup of Rm. Formally,

Definition 3 (Lattice). Given n linearly independent vectors B =
{b1, b2, · · · , bn}, where bi ∈ R

m, the lattice L(B) generated by B is defined
as following

L(B) = {
n∑

i=1

xibi : xi ∈ Z} = {xB : x ∈ Z
n}.

We call B a basis of L(B), m and n the dimension and the rank of L(B)
respectively. When m = n, we say L(B) is full-rank.

Definition 4 (Determinant). For lattice L(B), the determinant is defined as

det(L) =
√

det(BBT ).

When L(B) is full-rank, B is nonsingular and det(L) = |det(B)|.
Definition 5 (Primitive Lattice Vector). A lattice vector v ∈ L is called a
primitive lattice vector if for any integer k > 1, v/k /∈ L.

There is an easy criterion for determining whether a lattice vector is primitive.

Proposition 1. Given a lattice L with basis B, v = xB ∈ L is primitive if and
only if gcd(x1, · · · , xn) = 1.

2.3 Ideal Lattice

In what follows, we focus on R = Z[x]/ 〈f(x)〉, where f(x) ∈ Z[x] is a monic
polynomial of degree n and 〈f(x)〉 is the ideal generated by f(x) in Z[x].

Consider the coefficient embedding

σ : R → Z
n,

n−1∑

i=0

aix
i �→ (a0, a1, · · · , an−1).

For any polynomial v(x) ∈ R, we use v to denote the image of v(x) under σ,
and consider them equivalent.
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Let g(x) be a polynomial of degree < n and v(x) ∈ 〈g(x)〉, then there exists
a polynomial w(x) ∈ Z[x] of degree < n such that v(x) = w(x)g(x) mod f(x).
Write w(x) = wn−1x

n−1+· · ·+w1x+w0, then v(x) =
∑n−1

i=0 wix
ig(x) mod f(x).

So each element in 〈g(x)〉 is a linear combination of g(x) mod f(x), xg(x)
mod f(x), · · · , xn−1g(x) mod f(x). It follows that 〈g(x)〉 is a lattice under
the coefficient embedding. Thus, we can define

Definition 6 (Ideal Lattice). For g(x) ∈ R = Z[x]/ 〈f(x)〉, where f(x) ∈ Z[x]
is a monic polynomial of degree n, the ideal generated by g(x) forms a lattice L
under the coefficient embedding. We call L the ideal lattice generated by g(x).

Moreover, if g(x) and f(x) are coprime over Q (hence over Z since f(x) is
monic), g(x) mod f(x), xg(x) mod f(x), · · · , xn−1g(x) mod f(x) are linearly
independent. Otherwise there exist integers y0, y1, · · · , yn−1 not all zero, such
that

∑n−1
i=0 yix

ig(x) mod f(x) = 0, that is, (
∑n−1

i=0 yix
i)g(x) = 0 mod f(x),

which indicates that g(x) and f(x) are not coprime. Therefore, the ideal lattice
generated by g(x) is full-rank.

2.4 Resultant

The resultant of two polynomials is defined as

Definition 7 (Resultant). Let a(x) = amxm + · · · + a1x + a0, b(x) = bnxn +
· · · + b1x + b0 ∈ R[x]. Define the Sylvester matrix of a(x) and b(x) as

Sylv(a(x), b(x)) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(x)
...

xn−1a(x)
b(x)

...
xm−1b(x)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 · · · am

a0 a1 · · · am

. . .
. . .

a0 a1 · · · am

b0 · · · bn

. . .
. . .

b0 · · · bn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n+m)×(n+m)

.

Then the resultant of a(x) and b(x), denoted as Res(a, b), is the determinant of
Sylv(a(x), b(x)).

3 Key Generation Algorithms of Gentry’s FHE Scheme

In this section we revisit the key generation algorithms implementing Gentry’s
fully homomorphic encryption scheme in [7,18].

3.1 The Smart-Vercauteren’s Key Generation

Smart and Vercauteren [18] first attempted to implement Gentry’s FHE schemes.
For the key generation, they fixed a monic irreducible polynomial f(x) ∈ Z[x] of
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degree n. Then they repeatedly chose another polynomial g(x) randomly from
some set until the resultant of f(x) and g(x) was prime. They showed that the
HNF of such ideal lattice had the following simple-HNF.

⎡

⎢⎢⎢⎢⎢⎣

d 0 0 0
[−r]d 1 0 0
[−r2]d 0 1 0

. . .

[−rn−1]d 0 0 1

⎤

⎥⎥⎥⎥⎥⎦
. (1)

where [x]d = x mod d. Such lattices can be represented implicitly by two
integers d and r, thus the key size is reduced by a factor of n.

However, they failed to implement the FHE scheme since they were unable
to generate keys for lattice of dimension n > 2048. One of the main obstacles lies
in the inefficiency of generating ideal lattices with prime determinant by trial
and error.

3.2 The Gentry-Halevi’s Key Generation

In [7], Gentry and Halevi found that it was not necessary for the determinant
to be prime. Instead, they showed that the scheme can go through as long as
the ideal lattice has an odd determinant and a simple-HNF. The key generation
consists of the following steps.

(i) Fix f(x) = xn + 1 with n a power of 2. Then they choose a vector v =
(v0, · · · , vn−1), where each entry vi is chosen at random as a t-bit integer.
Consider the ideal lattice generated by v(x) = vn−1x

n−1 + · · · + v1x + v0 in
Z[x]/ 〈f(x)〉. Then the lattice is generated by the following basis

V =

⎡

⎢⎢⎢⎢⎢⎣

v0 v1 v2 vn−1

−vn−1 v0 v1 vn−2

−vn−2 −vn−1 v0 vn−3

. . .

−v1 −v2 −v3 v0

⎤

⎥⎥⎥⎥⎥⎦
.

(ii) Given v(x) and f(x), use their algorithm to compute the resultant d of v(x)
and f(x) and the constant term w0 of w(x), where w(x) = wn−1x

n−1+· · ·+
w1x + w0 is the unique polynomial such that v(x)w(x) = d mod f(x). If d
is odd, compute w1 by applying their algorithm to (xv(x) mod f(x)) and
f(x).

(iii) If gcd(w1, d) = 1, compute r = w0
w1

mod d, check whether rn = −1 mod d.
If so, they consider that the ideal lattice has the desired HNF, then they
compute an odd coefficient wi via wi = rwi+1 mod d and w0, w1 (The
subscripts are modulo n.) and use (d, r) as the public key and wi the secret
key.
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For the sake of clarity and comparison, the key generation algorithm is sum-
marized in Algorithm 1. We need to emphasize that there are some details miss-
ing in their description (Lines 3–5 and Lines 7–9 in Algorithm1) and Algorithm 1
is adopted from their source code.

Algorithm 1. Key Generation in [7]
Input: dimension n, bit length t.
Output: pk=(d, r), sk=wi.

1 Choose a random n-dimensional vector v, where each vi is a t-bit integer.
2 Compute the resultant d of v(x) and f(x), and the constant term w0 of w(x),

where w(x)v(x) = d mod f(x).
3 if d is even then
4 Go to 1.
5 end
6 Compute the coefficient w1 of w(x).
7 if w1 has no inverse modulo d then
8 Go to 1.
9 end

10 Compute r = w0
w1

mod d.

11 if rn �= −1 mod d then
12 Go to 1.
13 else
14 Compute an odd wi via wi = rwi+1 mod d and w0, w1. (The subscripts are

modulo n.)
15 Output: pk=(d, r), sk=wi.

16 end

3.3 Remarks on Gentry-Halevi’s Key Generation

The authors of [7] solved the main issues that prevented the key generation in [18]
from being practical. They also gave many optimizations focusing on practical
performance. However, we note that there are several natural questions regarding
to their implementation.

1. In [7], the authors mentioned that “it was observed by Nigel Smart that the
HNF has the correct form whenever the determinant is odd and square-free.
Indeed, in our tests this condition was met with probability roughly 0.5. . . ”
Since the determinants in the experiments are numbers with millions of bits,
it is difficult to determine whether they are square-free or not. We believe
that “this condition” means “the HNF has the correct form” rather than
“the determinant is odd and square-free”. We also rerun the experiment to
confirm our assertion.

2. In step (iii), they did not mention what to do if gcd(w1, d) 	= 1. Generally,
there are two options. We can start over by choosing another lattice, or we
can compute another random coefficient of w(x) until we find one that is
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coprime to d. (Judging from their code, they did the former.) In fact, we will
show if gcd(w1, d) 	= 1, then all the coefficients of w(x) are not coprime to d.
That means the latter is not optional.

3. Also in step (iii), when gcd(w1, d) = 1, we compute r, and check if rn = −1
mod d holds. Even if this equality held, they did not show that the HNF
has the desired form. In other words, they did not provide a proof for the
correctness of their algorithm. They did mention to check a serial of conditions
that could guarantee the HNF is simple, however, in their implementation
they actually tested only the last condition. It is vital for the FHE scheme to
work correctly. We will give a simpler condition and by checking our condition
holds, we can guarantee the HNF is indeed simple.

4 Improved Key Generation for Gentry’s FHE Scheme

In this section, we present our improved key generation algorithm for Gentry’s
FHE scheme. Our improvements consist of two aspects:

– we can generate ideal lattices with odd determinant deterministically.
– we present a rigorous proof for the correctness of our algorithm by checking

a simpler sufficient and necessary condition for the ideal lattice having a
simple-HNF.

Before presenting our key generation algorithm, we first show some new prop-
erties on ideal lattices. All the proofs can be found in the appendix.

4.1 Some Properties of Ideal Lattices

The following lemma was already stated without proof in [7].

Lemma 1. Let L be the ideal lattice generated by g(x) ∈ R = Z[x]/ 〈f(x)〉,
where f(x) is a monic polynomial of degree n and g(x) is of degree m. Assume
g(x) is relatively prime to f(x), then det(L) = |Res(g, f)| = |Res(f, g)|.

The next lemma shows that the HNF of an ideal lattice has a very special
structure.

Lemma 2. Let L be the ideal lattice generated by g(x) ∈ R = Z[x]/ 〈f(x)〉,
where f(x) is a monic polynomial of degree n and is relatively prime to g(x).
Then the Hermite Normal Form of L

H =

⎡

⎢⎢⎢⎣

h1,1

h2,1 h2,2

...
...

. . .

hn,1 hn,2 · · · hn,n

⎤

⎥⎥⎥⎦

satisfies hi,i|hj,l, for 1 ≤ l ≤ j ≤ i ≤ n.
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Remark 1. A part of the result has already been proven in [4] for identifying
ideal lattices. In fact, they proved that the diagonal entries of an HNF form
a division chain, that is, hn,n| · · · |h2,2|h1,1. Our results show that off-diagonal
entries are also divisible by the corresponding diagonal entry in the same row,
which means the primitive part1 of the polynomial corresponding to each row is
monic.

Remark 2. For the HNF of a full-rank lattice, the first row is the primitive lattice
vector of the form (d, 0, · · · , 0), where d > 0 is a factor of the determinant.
In the case of ideal lattice, the first row corresponds to the smallest positive
constant polynomial in the ideal. This characterization will be useful for proving
Proposition 3.

Lemma 3. Let the notations be the same as in Lemma 2 and let Hi(x) denote
the corresponding polynomial of i-th row in the HNF, i ≤ n. Let β be the root of
h2,1 + h2,2x. Then Hi(β) = 0 mod h1,1hi,i

h2,2
, ∀i ≥ 2 and f(β) = 0 mod h1,1

h2,2
.

4.2 Generating Ideal Lattice with Odd Determinant
Deterministically

The key generation algorithm in [7] needs to generate an ideal lattice with odd
determinant. The original paper achieved this by trial and error. We first show
that the parity of the determinant is related to the generator in a very simple
way, and then give a deterministic way to generate an ideal lattice with odd
determinant.

In the next two subsections, we fix f(x) = xn + 1 with n a power of 2.

Proposition 2. Let L be the ideal lattice generated by v(x) = vn−1x
n−1 + · · ·+

v1x + v0 in Z[x]/ 〈f(x)〉. Then det(L) ≡ v0 + v1 + · · · + vn−1 mod 2.

From the above proposition, we know how to generate ideal lattices with odd
determinant deterministically. Specifically, we choose a random n-dimensional
vector v from the set

{v(x) ∈ Z[x]/ 〈f(x)〉 : vi is a random t-bit integer and
n−1∑

i=0

vi ≡ 1 mod 2}.

This can be done by choosing vi randomly, and use v(x) + (v(1) + 1 mod 2) as
the generator or simply use 2u(x) + 1, where u(x) is a random vector. Then the
generated ideal lattice has an odd determinant.

1 The primitive part of an integer polynomial s(x) is s(x)/r, where r is the g.c.d of
the coefficients of s(x).
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4.3 A Simpler Condition for Checking the HNF

In this part, we give a simpler condition, which yields a rigorous proof for the
correctness of our algorithm. Our condition is based on the following proposition.

Proposition 3. Let L be the ideal lattice generated by v(x) in Z[x]/ 〈f(x)〉.
Suppose w(x) ∈ Z[x]/ 〈f(x)〉 is a polynomial such that v(x)w(x) = d mod f(x)
where d is the determinant of L. Then the following conditions are equivalent.

(1) L has a simple-HNF.
(2) L contains a vector of the form r = (−r, 1, 0, · · · , 0).
(3) There exists an index i, 0 ≤ i ≤ n − 1, gcd(wi, d) = 1.
(4) For arbitrary 0 ≤ i ≤ n − 1, gcd(wi, d) = 1.

From the above proposition, we can conclude that in order to check whether
the ideal lattice has a simple-HNF, we only need to compute a wi and gcd(wi, d),
which is simpler and more efficient to check. If gcd(wi, d) = 1, then from the
proposition, the lattice has a simple-HNF. Otherwise, the lattice does not have
a simple-HNF.

In what follows, we show that once w1 has an inverse modulo d, it must hold
that rn = −1 mod d. Thus the checking can be safely left out.

Proposition 4. Let L be the ideal lattice generated by v(x) in Z[x]/ 〈f(x)〉.
Suppose w(x) ∈ Z[x]/ 〈f(x)〉 is a polynomial such that v(x)w(x) = d mod f(x)
where d is the determinant of L. Assume that gcd(w1, d) = 1 and r = w0

w1
mod d,

then rn = −1 mod d.

4.4 Our Key Generation Algorithm

We formally present our improved key generation algorithm (Algorithm2) and
give some theoretical analysis and experimental results supporting our claims in
this section.

Theoretical Analysis. We first give time estimations for both algorithms. Here
we show a few notations to represent the time for different routines.

– Tres: time to compute the resultant and wi using the algorithm in [7]. Note
that in both algorithms, we sometimes only need to compute the resultant
or a single coefficient wi, this will also take time Tres since the exactly same
routine is used to achieve these goals.

– Txgcd: time to apply the extended Euclidean algorithm.
– Tpmod: time to compute rn mod d.
– Tmul: time to do one multiplication modulo d.
– Toddcoe: time to compute an odd coefficient of w(x) (line 14 in Algorithm 1

and line 7 in our algorithm).
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Algorithm 2. Our Key Generation Algorithm
Input: dimension n, bit length t.
Output: pk=(d, r), sk=wi.

1 Choose a random vector v from

{v(x) =
∑n−1

i=0 vix
i : vi is a random t-bit integer and

∑n−1
i=0 vi ≡ 1 mod 2}.

2 Compute the resultant d of v(x) and f(x), and coefficient w1 of the linear term
of w(x), where w(x)v(x) = d mod f(x).

3 if gcd(w1, d) �= 1 then
4 Go to 1.
5 else
6 Compute w0 and r = w0

w1
mod d.

7 Compute an odd wi via wi = rwi+1 mod d and w0, w1. (The subscripts are
modulo n.)

8 Output: pk=(d, r), sk=wi.

9 end

For Algorithm 1, since the probability of choosing an odd-determinant ideal
lattice is 0.5, we need to try twice on average to get an odd-determinant ideal
lattice, which costs time 2Tres in order to compute the determinants. At the same
time, we have also computed a coefficient w0. Afterwards, we need to compute
another coefficient w1, which costs time Tres. From the experiment, we found
that the probability of an odd-determinant ideal lattice having simple-HNF is
very high, we simply omit the failure cases. Then computing the inverse of w1

and r takes time Txgcd and Tmul respectively, and checking if rn = −1 mod d
takes time Tpmod. Finally we need to choose an odd coefficient of w(x), which
costs time Toddcoe. So the expected running time of Algorithm1 is 3Tres+Txgcd+
Tpmod + Tmul + Toddcoe.

In our algorithm, the ideal lattice always has an odd determinant. As before,
we omit the failure cases where an odd-determinant ideal lattice doesn’t have
a simple-HNF, then we only need to compute two consecutive coefficients of
w(x), which costs 2Tres. Then it costs time Txgcd +Tmul to perform an extended
Euclidean algorithm and multiplication modulo d to compute r. At last the time
for choosing an odd coefficient of w(x) is Toddcoe. Thus the total time used in
our key generation algorithm is 2Tres + Txgcd+Tmul + Toddcoe.

In our experiments, we found that Tres takes most proportion of the whole
time. So on average, our algorithm is about 1.5 times faster.

Experimental Results. We present our experimental results in the follow-
ing. Our experiments were performed on a PC (Intel(R) Core(TM) i7, 3.4 GHz,
2G RAM) and based on Shoup’s NTL library [17] (version 9.10.0). NTL is
installed with MPC (version 1.0.2), GMP (version 5.1.3), and MPFR (version
3.1.5).

1. We rerun the experiments of [7] to confirm our assertion in Sect. 3.3. We gen-
erated 100 random ideal lattices for each parameter set, and count the number of
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ideal lattices in different categories. In the table, the first row are the parameters
(n, t), like (512, 380), where n is the dimension of the ideal lattice and t is the
bit length of each coefficient in the generator. “even (or odd) d” indicates the
generated lattice has even (or odd) determinant, and “(non-)SHNF” indicates
the lattice has (doesn’t have) a simple-HNF.

(512, 380) (2048, 380) (8192, 380) (32768, 380)

Algorithm1Algorithm2Algorithm1Algorithm2Algorithm1Algorithm2Algorithm1Algorithm 2

Even d,

SHNF

25 0 32 0 25 0 24 0

Even d,

non-SHNF

27 0 25 0 18 0 25 0

Odd d,

SHNF

48 98 42 98 57 100 47 90

Odd d,

non-SHNF

0 2 1 2 0 0 4 10

From the experiment we can see that the probability of a randomly generated
ideal lattice in Algorithm 1 having the correct form (odd-determinant and simple-
HNF) is roughly 0.5 and that the failure cases is usually due to the determinant
being even.

Also, there is something interesting here. When the ideal lattices have an
even determinant, about half of them have a simple-HNF. It is not surprising if
the probability of a random ideal lattice having simple-HNF is somewhat higher
than 44% due the divisibility of the diagonal entries of its HNF. However, when
the ideal lattices have an odd determinant, most of them also have a simple-HNF.
As a result, the probability of simple-HNF is about 75%, which is much higher
than 44%. We conjecture this might has something to do with the underlying
2-power cyclotomic fields.

2. We present some experimental results on the running time of both algorithms.
In the experiments, we generated 20 valid keys and count the averaged time for
the different parts in theoretical analysis. In the next table, the “#(trials)”
column denotes the number of trials we did to get 20 valid keys. tres, txgcd,
tpmod, tmul and toddcoe are averaged time for doing the corresponding operations,
so tres ≈ 3Tres in Algorithm 1. ttotal is the averaged time to generate a valid
key. All the timings are measured in seconds.

We can see that the ratio between tres in Algorithm 1 and tres in Algorithm 2
is about 1.5, which matches the theoretical prediction (3Tres/2Tres). In two
algorithms, txgcd and tmul are almost the same and toddcoe is very short. We
note that this is because in most cases one of w0 and w1 is odd. From the
experiments, we can see that our key generation is about 1.5 (more close to 1.6)
times faster.
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dim n bit-size t Gentry and Halevi’s algorithm

# (trials) tres txgcd tpmod tmul toddcoe ttotal

512 380 37 0.171 0.048 0.054 0.007 0.003 0.284

2048 380 46 1.585 0.354 0.347 0.037 0.009 2.336

8192 380 36 12.068 2.120 2.040 0.173 0.086 16.500

32768 380 46 123.152 14.128 14.494 0.962 0.799 153.591

dim n bit-size t Our algorithm

# (trials) tres txgcd tmul toddcoe ttotal Speedup

512 380 20 0.118 0.047 0.007 0.002 0.174 1.632x

2048 380 20 0.966 0.351 0.038 0.036 1.393 1.677x

8192 380 20 7.568 2.108 0.173 0.069 9.924 1.663x

32768 380 22 78.276 13.882 0.964 0.432 93.592 1.641x

5 Conclusion

In this paper, we made improvements on the key generation of [7]. Using the
properties of ideal lattice, we present an improved key generation algorithm with
a rigorous proof for correctness. As a result, our algorithm is about 1.5 times
faster.

Acknowledgements. The authors would like to thank all anonymous referees of
ISC’2017 and ICISC’2017 for their valuable comments that greatly improve the
manuscript. This work is supported by the National Natural Science Foundation of
China (No. Y31005A102, No. Y610092302).

A Appendix

A.1 Proof of Lemma 1

Proof. Note that

Sylv(g(x), f(x)) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(x)
...

xn−1g(x)
f(x)

...
xm−1f(x)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0 g1 · · · gm

g0 g1 · · · gm

. . .
. . .

g0 g1 · · · gm

f0 · · · fn

. . .
. . .

f0 · · · fn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since fn = 1, the Sylvester matrix can always be transformed unimodularly into
the following (block-triangular) form by adding proper multiples of rows in the
lower half to each row on the top half,
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⎡

⎢⎢⎢⎣

Bn×n 0
f0 · · · fn

. . .
. . .

f0 · · · fn

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(x) mod f(x)
...

xn−1g(x) mod f(x)
f(x)

...
xm−1f(x)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It follows that Res(g, f) = fm
n det(B) = det(B).

Since g(x) is relatively prime to f(x), L is a full-rank lattice with basis B.
Therefore, det(L) = |det(B)| = |Res(g, f)| = |Res(f, g)|. �

A.2 Proof of Lemma 2

Proof. We prove the lemma by induction on i.
For i = 1, it is trivial.
For i = 2, consider the first row, which corresponds to the constant polynomial
h1,1. Since L is an ideal lattice, the vector (0, h1,1, 0 · · · , 0), which corresponds
to the polynomial h1,1x, is also in L.
It’s obvious that (0, h1,1, 0 · · · , 0) = x1H1 + x2H2 for some x1, x2 ∈ Z. Then
h1,1 = x2h2,2, x1h1,1 + x2h2,1 = 0. Hence h2,2|h1,1, h2,2|h2,1, which completes
the proof for i = 2.

Assume the result holds for i ≤ k ≤ n − 1, hi,i|hj,l, where 1 ≤ l ≤ j ≤ i ≤ k.
We show that for i = k + 1, hk+1,k+1|hj,l.

Consider the k-th row. The corresponding polynomial of k-th row is

hk,kxk−1 + hk,k−1x
k−2 + · · · + hk,2x + hk,1.

After multiplying x, we get a vector (0, hk,1, · · · , hk,k, 0, · · · , 0), which is a linear
combination of H1, · · · ,Hk+1 with integer coefficients, i.e.

(0, hk,1, · · · , hk,k, 0, · · · , 0) =
∑k+1

i=1
yiHi,

where yi ∈ Z, for i = 1, · · · , k + 1.
So ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

hk,k = yk+1hk+1,k+1

hk,k−1 = ykhk,k + yk+1hk+1,k

...

hk,1 =
∑k+1

i=2 yihi,2

0 =
∑k+1

i=1 yihi,1

. (2)
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From the first equation, we get yk+1 = hk,k

hk+1,k+1
and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

hk+1,k = hk,k−1−ykhk,k

hk,k
hk+1,k+1

hk+1,k−1 = hk,k−2−yk−1hk−1,k−1−ykhk,k−1
hk,k

hk+1,k+1

...

hk+1,2 = hk,1−∑k
i=2 yihi,2

hk,k
hk+1,k+1

hk+1,1 = − ∑k
i=1 yihi,1

hk,k
hk+1,k+1

.

From the induction hypothesis, we have hk,k|hj,l for 1 ≤ l ≤ j ≤ k ≤ n.
So the coefficient of hk+1,k+1 in each equation is in fact an integer, therefore
hk+1,k+1|hk+1,l, 1 ≤ l ≤ k + 1. Since hk+1,k+1|hk,k, we know hk+1,k+1|hj,l,
where 1 ≤ l ≤ j ≤ k + 1 ≤ n. Thus, the result holds for i = k + 1.

By the principle of induction, the lemma follows. �

A.3 Proof of Lemma 3

Proof. We prove the first equality by induction on i.
For i = 2, by the definition of β, H2(β) = 0 mod h1,1.

Assume Hi(β) = 0 mod h1,1hi,i

h2,2
, for i ≤ k, where 2 ≤ k ≤ n− 1. From Eq. 2,

we have

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

hk,kxk = yk+1hk+1,k+1x
k

hk,k−1x
k−1 = ykhk,kxk−1 + yk+1hk+1,kxk−1

...

hk,1x =
∑k+1

i=2 yihi,2x

0 =
∑k+1

i=1 yihi,1

.

Sum the equations up,

yk+1Hk+1(x) + ykHk(x) + yk−1Hk−1(x) + · · · + y1H1(x) = xHk(x),

Set x = β,

yk+1Hk+1(β) + (yk − β)Hk(β) + yk−1Hk−1(β) + · · · + y1H1(β) = 0.

Note that H1(x) = h1,1, H1(β) = 0 mod h1,1hk,k

h2,2
. By induction hypothesis,

Hi(β) = 0 mod h1,1hi,i

h2,2
and h1,1hi+1,i+1

h2,2
|h1,1hi,i

h2,2
, yk+1Hk+1(β) = 0 mod h1,1hk,k

h2,2
.

Since yk+1 = hk,k

hk+1,k+1
, we have

Hk+1(β) = 0 mod
h1,1hk+1,k+1

h2,2
.

Therefore for i = k+1, the equality also holds. Thus Hi(β) = 0 mod h1,1hi,i

h2,2
,

∀i ≥ 2.
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For the second equality, note that xHn(x) mod f(x) = xHn(x) − hn,nf(x).
Since the vector corresponding to xHn(x) − hn,nf(x) is a lattice vector, there
exist integers z1 · · · zn ∈ Z, xHn(x) − hn,nf(x) =

∑n
i=1 ziHi(x).

Set x = β,

βHn(β) − hn,nf(β) =
n∑

i=1

ziHi(β).

Since hn,n|hi,i for all i, Hi(β) =0 mod h1,1hn,n

h2,2
, ∀i ≥ 2. Also H1(β) =0

mod h1,1hn,n

h2,2
. Then hn,nf(β) = 0 mod h1,1hn,n

h2,2
and

f(β) = 0 mod
h1,1

h2,2
.

�

A.4 Proof of Proposition 2

Proof. Since we only concern the parity of the determinant, we work over F2.
Denote

P =

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 0 0

. . .

0 0 0 1
1 0 0 0

⎤

⎥⎥⎥⎥⎥⎦
.

Then

V =

⎡

⎢⎢⎢⎢⎢⎣

v0 v1 v2 vn−1

−vn−1 v0 v1 vn−2

−vn−2 −vn−1 v0 vn−3

. . .

−v1 −v2 −v3 v0

⎤

⎥⎥⎥⎥⎥⎦
= v0I + · · · + vn−1P

n−1 = v(P ) over F2.

Now we compute the eigenvalues of P .
Since P is a cyclic shift matrix, P n = I. Note that xn + 1 = (x + 1)n over

F2 (n is a power of 2), then all the eigenvalues of P are 1. All the eigenvalues of
V are thus v(1) = v0 + v1 + · · · + vn−1. Hence,

det(L) ≡ (v0 + v1 + · · · + vn−1)n ≡ v0 + v1 + · · · + vn−1 mod 2.

�
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A.5 Proof of Proposition 3

Proof.

(1)⇔(2) The equivalence between the two conditions was proved in [7].

(2)⇒(3) Assuming first that r = (−r, 1, 0, · · · , 0) ∈ L. Then there exists y(x) ∈
Z[x]/ 〈f(x)〉, such that y(x)v(x) = r(x) mod f(x). Therefore,

y(x)v(x)w(x) = r(x)w(x) mod f(x).

dy(x) = r(x)w(x) mod f(x).

Note that f(x) = xn + 1, we have

(−wn−1, · · · , wn−3, wn−2) − r(w0, · · · , wn−2, wn−1) = 0 mod d.

So w0r = −wn−1 mod d and wi+1r = wi mod d, for 0 ≤ i ≤ n − 2.
We prove by contradiction that ∃ 0 ≤ i ≤ n − 1, gcd(wi, d) = 1.
If for arbitrary 0 ≤ i ≤ n − 1, gcd(wi, d) 	= 1, let μ = gcd(w0, d) > 1.
From the relations among the wi’s, we know μ divides all the wi’s.
Therefore, μ| gcd(w0, · · · , wn−1, d). Hence d

μ = w(x)
μ v(x) mod f(x) is

a lattice vector, which means the first diagonal of the HNF is a proper
factor of d. So the second diagonal can’t be 1, otherwise the determinant
is d

μ rather than d. This is a contradiction. Therefore ∃ 0 ≤ i ≤ n − 1,
gcd(wi, d) = 1.

(3)⇒(4) Assume ∃ 0 ≤ i ≤ n−1, gcd(wi, d) = 1, fix i. We also prove by contradic-
tion. Suppose there exists a 0 ≤ j ≤ n−1 such that μ = gcd(wj , d) > 1.
Due to Lemma 2, we can assume the second row of HNF is
(−αr, α, 0, · · · , 0), for some α ∈ N

+. Then α2|αh1,1|d and gcd(α,wi) =
1. Similar to previous proof,

α(−wn−1, · · · , wn−3, wn−2) − αr(w0, · · · , wn−2, wn−1) = 0 mod d.

Hence

(−wn−1, · · · , wn−3, wn−2) − r(w0, · · · , wn−2, wn−1) = 0 mod
d

α
.

According to the steps above, wi+1r = wi mod d
α , for i ≤ n − 2 and

w0r = −wn−1 mod d
α . Since α2|d, d

α and d share exactly the same
prime factors, hence gcd(wj ,

d
α ) = μ′ > 1 . Similar to the previous proof,

we have μ′ divides all the coefficients of w(x). Specifically, μ′|wi. Hence
μ′| gcd(wi, d), a contradiction. Thus gcd(wi, d) = 1 for any 0 ≤ i ≤ n−1.

(4)⇒(2) Assume for any 0 ≤ i ≤ n − 1, gcd(wi, d) = 1. Since d = w(x)v(x)
mod f(x), gcd(w0, · · · , wn−1)|d. Hence gcd(w0, · · · , wn−1) = 1. Then
(d, 0, · · · , 0) is a primitive lattice vector in L. According to Remark 2,
it’s the first row of the HNF of L, which means all the other diagonals
in the HNF are 1. Thus, L contains a vector (the second row of its
HNF) of the form r = (−r, 1, 0, · · · , 0).

�
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A.6 Proof of Proposition 4

Proof. From the assumptions and the proof for Proposition 3, we know that
(−r, 1, 0, · · · , 0) is in L. According to Lemma 3, r is a root of f(x) = 0 mod d.
Therefore rn = −1 mod d. �
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Abstract. In this paper, we construct subring homomorphic encryption
scheme that is a homomorphic encryption scheme built on the decom-
position ring, which is a subring of cyclotomic ring. In the scheme, each
plaintext slot contains an integer in Zpl , rather than an element of GF(pd)
as in conventional homomorphic encryption schemes on cyclotomic rings.
Our benchmark results indicate that the subring homomorphic encryp-
tion scheme is several times faster than HElib for mod-pl integer plain-
texts, due to its high parallelism of mod-pl integer slot structure. We
believe in that such plaintext structure composed of mod-pl integer slots
will be more natural, easy to handle, and significantly more efficient for
many applications such as outsourced data mining, than conventional
GF(pd) slots.

Keywords: Fully homomorphic encryption · Ring-LWE
Cyclotomic ring · Decomposition ring · Plaintext slots

1 Introduction

Background. Homomorphic encryption (HE) scheme enables us computation on
encrypted data. One can add or multiply (or more generally “evaluate”) given
ciphertexts and generate a new ciphertext that encrypts the sum or product
(or “evaluation”) of underlying data of the input ciphertexts. Such computation
(called homomorphic addition or multiplication or evaluation) can be done with-
out using the secret key and one will never know anything about the processed
or generated data.

Since the breakthrough construction given by Gentry [7], many efforts are
dedicated to make such homomorphic encryption scheme more secure and more
efficient. Especially, HE schemes based on the Ring-LWE problem [4,6,15,16]
have obtained theoretically-sound proof of security and well-established imple-
mentations such as HElib [10] and SEAL v2.0 [14]. Nowadays many researchers
apply HE schemes to privacy-preserving tasks for mining of outsourced data
such as genomic data, medical data, financial data and so on [5,9,11–13].

Our perspective: GF(pd) versus Zpl slots. The HE schemes based on the Ring-
LWE problem (Ring-HE schemes in short), depend on arithmetic of cyclotomic
integers [15]. Cyclotomic integers a are algebraic integers generated by some
c© Springer International Publishing AG, part of Springer Nature 2018
H. Kim and D.-C. Kim (Eds.): ICISC 2017, LNCS 10779, pp. 112–136, 2018.
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primitive m-th root of unity ζ and have the form like a = a0+a1ζ+· · ·+an−1ζ
n−1

where ai are ordinary integers in Z and n = φ(m).
Generally, plaintexts in the Ring-HE schemes are encoded by cyclotomic inte-

gers modulo some small prime p. (Here, taking modulo p of cyclotomic integers
a means taking modulo p of each coefficient ai.) Then, what type of algebraic
structure will a cyclotomic integer a mod p have? Its structure is known to be
a tuple of elements of Galois field GF(pd) of some degree d. For small primes p,
this degree d (> logp(m)) will be large. Thus, in the Ring-HE schemes, a plain-
text is a tuple of plaintext slots and each plaintext slot represents an element of
Galois field GF(pd) of large degree d [17]. Addition or multiplication of plaintexts
actually means addition or multiplication of each plaintext slots as elements of
Galois field GF(pd).

Such plaintext structure is good for applications that use data represented by
elements of Galois field GF(pd), such as error correcting codes or AES ciphers.
However, many applications will use integers modulo pl (i.e., elements in Zpl)
for some positive integer l (and especially for p = 2), rather than elements of
Galois field GF(pd). By using the Hensel lifting technique, Ring-HE schemes can
have plaintext slots of integers modulo pl (as some applications do in fact) but
with expense of efficiency. If we want to encrypt mod-pl integer plaintexts on
slots using Ring-HE schemes, actually we can use only 1-dimensional constant
polynomials in each d-dimensional slots for homomorphic evaluation. As stated
earlier, the dimension d would not be small 1.

In this paper, we propose a novel HE scheme in which plaintext structure
is inherently a tuple of integers modulo pl (for some positive integer l), that is,
each plaintext slot contains an integer in Zpl , rather than an element of GF(pd).
We believe in that such plaintext structure will be more natural, easy to handle,
and significantly efficient for many applications such as outsourced data mining.

Method. To realize plaintext structure composed of slots of mod-pl integers, we
use decomposition ring RZ with respect to the prime p, instead of cyclotomic
ring R.

Let ζ be a primitive m-th root of unity. The m-th cyclotomic ring R =
{a0 +a1ζ + · · ·+an−1ζ

n−1 |ai ∈ Z} is a ring of all cyclotomic integers generated
by ζ, where n = φ(m) is the value of Euler function at m. Plaintext space of
Ring-HE schemes will be the space of mod-p cyclotomic integers, i.e., Rp = R/pR
for some small prime p. It is known that in the cyclotomic ring R, the prime
number p is not prime any more (in general) and it factors into a product of g
prime ideals Pi (with some divisor g of n): pR = P0P1 · · ·Pg−1. The residual

1 For instance, Lu, Kawasaki and Sakuma [13] uses the HElib with parameters n =
m − 1 = 27892 and p ≈ 236 to perform homomorphic computation needed for
their statistical analysis on encrypted data in 110-bit security, that results in the
plaintext space composed of l ≈ 70 tuples of the Galois field GF(pd) of the degree
d = n/l ≈ 398. They are enforced to use only constant polynomials in those Galois
fields.
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fields R/Pi of each factor Pi are nothing but the space of plaintext slots of
Ring-HE schemes, which are isomorphic to GF(pd) with d = n/g. Thus, the
plaintext space is

Rp � R/P0 ⊕ · · · ⊕ R/Pg−1 � GF(pd) ⊕ · · · ⊕ GF(pd).

As stated before, we can use only 1-dimensional subspace GF(p) = Zp in each
d-dimensional slot GF(pd) for homomorphic evaluation as mod-p integers.

The decomposition ring RZ with respect to prime p is the minimum subring
of R in which the prime p has the same form of prime ideal factorization as in
R, that is,

pRZ = p0p1 · · · pg−1 (1)

with the same number g of factors. By the minimality of RZ , the residual fields
RZ/pi of each factor pi must be one-dimensional, that is, isomorphic to Zp. So
the plaintext space on RZ will be

(RZ)p � RZ/p0 ⊕ · · · ⊕ RZ/pg−1 � Zp ⊕ · · · ⊕ Zp.

Applying the Hensel lifting l times, we get (RZ)q � Zq ⊕ · · · ⊕ Zq for q =
pl. Thus, the decomposition ring RZ realizes plaintext slots of integers modulo
q = pl, as desired. Note that now we can use all of the dimensions of RZ as
its plaintext slots for mod-pl integer plaintexts. This high parallelism of slot
structure will bring us significantly more efficient SIMD operations for mod-pl

integer plaintexts.

Two bases. The cyclotomic ring R has attractive features that enable efficient
implementation of addition/multiplication of and noise handling on their ele-
ments. Can we do the similar thing even if we use the decomposition ring RZ

instead of cyclotomic ring R?
The cyclotomic ring R’s nice properties are consolidated to the existence of

two types of bases [16]:

– The power(ful) basis: Composed of short and nearly orthogonal vectors to
each other. Used when rounding rational cyclotomic numbers to their nearest
cyclotomic integers.

– The CRT basis: Related to the FFT transformation and multiplication. Vec-
tors of coefficients of given two cyclotomic integers w.r.t. the CRT basis can
be multiplied component-wise, resulting a new vector corresponding to the
multiplied cyclotomic integer.

We investigate structure of the decomposition ring RZ , following the way in
cyclotomic cases given by Lyubashevsky et al. [16]. Then, we will give two types
of bases of RZ , called η-basis and ξ-basis in this paper, which can substitute for
the power(ful) and CRT bases in cyclotomic cases, respectively. The trace map
from R to RZ enables us to observe structure of RZ as an image of the cyclotomic
ring R, along with some particular phenomenon emerging from flatness of the
decomposition ring (the degree d = 1). We also study noise growth occurred
by algebraic manipulations (especially, by multiplication) of elements in RZ ,
following [16].
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Construction. Based on the above investigation, we construct our subring homo-
morphic encryption scheme that is an HE scheme over the decomposition ring
RZ , or a realization of the FV scheme [6] over RZ . The construction is described
concretely using the η-basis and ξ-basis above. We show several bounds on the
noise growth occurred among homomorphic computations on its ciphertexts and
prove that our HE scheme is fully homomorphic using ciphertext modulus of the
magnitude q = O(λlog λ) with security parameter λ, as the FV scheme is so.

For security we will need hardness of a variant of the decisional Ring-LWE
problem over the decomposition ring. Recall the search version of Ring-LWE
problem is already proved to have a quantum polynomial time reduction from
the approximate shortest vector problem of ideal lattices in any number field by
Lyubashevsky et al. [15]. They proved equivalence between the search and deci-
sional versions of the Ring-LWE problems only for cyclotomic rings. However,
it is not difficult to see that the equivalence holds also over the decomposition
rings, since they are subrings of cyclotomic rings and inherit good properties
from them.

Implementation and benchmark. We implemented our subring homomorphic
encryption scheme using the C++ language and performed several experiments
with different parameters. Our benchmark results show that the η-basis and ξ-
basis can substitute well for the power(ful) and CRT bases of cyclotomic rings,
and indicate that our subring homomorphic encryption scheme is several times
faster than HElib for mod-pl integer plaintexts, due to its high parallelism of
mod-pl slot structure.

Organization. In Sect. 2 we prepare notions and tools needed for our work, espe-
cially about cyclotomic rings. Section 3 investigates structure and properties of
the decomposition ring, and gives its η-basis and ξ-basis as well as quasi-linear
time conversion between them. In Sect. 4 we state a variant of the Ring-LWE
problem over the decomposition ring and construct our subring homomorphic
encryption scheme over the decomposition ring. Finally, Sect. 5 shows our bench-
mark results, comparing efficiency of our implementation of subring homomor-
phic encryption scheme and HElib. Proofs of lemmas or theorems are collected
in the appendices.

2 Preliminaries

Notation. For a positive integer m, Zm denotes the ring of congruent integers
mod m, and Z

∗
m denotes its multiplicative subgroup. For an integer a (that

is prime to m), ord×
m(a) denotes the order of a ∈ Z

∗
m. Basically vectors are

supposed to represent column vectors. The symbol 1 denotes a column vector
with all entries equal to 1. In denotes the n × n identity matrix. The symbol
Diag(α1, · · · , αn) means a diagonal matrix with diagonals α1, . . . , αn. For vectors
x ,y (∈ C

n),
〈
x ,y

〉
=

∑n
i=1 xiyi denotes the inner product of x and y . ‖x‖2 =√〈

x ,x
〉

denotes the l2-norm of vector x and
∥∥x

∥∥
∞ = maxn

i=1{
∣∣xi

∣∣} denotes the
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infinity norm of x . For vectors a and b, a �b = (aibi)i denotes the component-
wise product of a and b. For a square matrix M over R, s1(M) denotes the
largest singular value of M . For a matrix A over C, A∗ = A

T
denotes the

transpose of complex conjugate of A.

2.1 Homomorphic Encryption Scheme

A homomorphic encryption scheme is a quadruple HE= (Gen, Encrypt, Decrypt,
Evaluate) of probabilistic polynomial time algorithms. Gen generates a public
key pk, a secret key sk and an evaluation key evk: (pk, sk, evk) ← Gen(1λ).
Encrypt encrypts a plaintext x ∈ X to a ciphertext c under a public key pk:
c ← Encrypt(pk, x). Decrypt decrypts a ciphertext c to a plaintext x using the
secret key sk: x ← Decrypt(sk, c). Evaluate applies a function f : Xl → X (given
as an arithmetic circuit) to ciphertexts c1, . . . , cl and outputs a new ciphertext
cf using the evaluation key evk : cf ← Evaluate(evk, f, c1, . . . , cl).

A homomorphic encryption scheme HE is L-homomorphic for L = L(λ) if for
any function f : Xl → X given as an arithmetic circuit of depth L and for any l
plaintexts x1, . . . , xl ∈ X, it holds that

Decryptsk(Evaluateevk(f, c1, . . . , cl)) = f(x1, . . . , xl)

for ci ← Encryptpk(xi) (i = 1, . . . , l) except with a negligible probability (i.e.,
Decryptsk is ring homomorphic). A homomorphic encryption scheme is called
fully homomorphic if it is L-homomorphic for any polynomial function L =
poly(λ).

2.2 Gaussian Distributions and Subgaussian Random Variables

For a positive real s > 0, the n-dimensional (spherical) Gaussian function ρs :
R

n → (0, 1] is defined as

ρs(x) = exp(−π‖x‖2/s2).

It defines the continuous Gaussian distribution Ds with density s−nρs(x).
A random variable X over R is called subgaussian with parameter s (> 0) if

E[exp(2πtX)] ≤ exp(πs2t2) (∀t ∈ R). A random variable X over R
n is called

subgaussian with parameter s if
〈
X,u

〉
is subgaussian with parameter s for any

unit vector u ∈ R
n. A random variable X according to Gaussian distribution Ds

is subgaussian with parameter s. A bounded random variable X (as |X| ≤ B)
with E[X] = 0 is subgaussian with parameter B

√
2π.

A subgaussian random variable with parameter s satisfies the tail inequality:

Pr[|X| ≥ t] ≤ 2 exp
(
−π

t2

s2

)
(∀t ≥ 0). (2)
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2.3 Lattices

For n linearly independent vectors B = {bj}n
j=1 ⊂ R

n, Λ = L(B) ={∑n
j=1 zjbj | zj ∈ Z (∀j)

}
is called an n-dimensional lattice. For a lattice

Λ ⊂ R
n, its dual lattice is defined by Λ∨ =

{
y ∈ R

n | 〈
x, y

〉 ∈ Z (∀x ∈ Λ)
}

.

The dual lattice is itself a lattice. The dual of dual lattice is the same as
the original lattice: (Λ∨)∨ = Λ. For a countable subset A ⊂ R

n, the sum
Ds(A) def=

∑
x∈A Ds(x) is well-defined. The discrete Gaussian distribution DΛ+c,s

on a (coset of) lattice Λ is defined by restricting the continuous Gaussian distri-
bution Ds on the (coset of) lattice Λ:

DΛ+c,s(x) def=
Ds(x)

Ds(Λ + c)
(x ∈ Λ + c).

2.4 Number Fields

A complex number α ∈ C is called an algebraic number if it satisfies f(α) = 0
for some nonzero polynomial f(X) ∈ Q[X] over Q. For an algebraic number
α, the monic and irreducible polynomial f(X) satisfying f(α) = 0 is uniquely
determined and called the minimum polynomial of α. An algebraic number α
generates a number field K = Q(α) over Q, which is isomorphic to Q[X]/(f(X)),
via g(α) �→ g(X). The dimension of K as a Q-vector space is called the degree
of K and denoted as [K : Q]. By the isomorphism, [K : Q] = deg f .

An algebraic number α is called an algebraic integer if its minimum poly-
nomial belongs to Z[X]. All algebraic integers belonging to a number field
K = Q(α) constitutes a ring R, called an integer ring of K.

A number field K = Q(α) has n (= [K : Q]) isomorphisms ρi (i = 1, . . . , n)
into the complex number field C. The trace map TrK|Q : K → Q is defined by
TrK|Q(a) =

∑n
i=1 ρi(a) (∈ Q). If all of the isomorphisms ρi induce automor-

phisms of K (i.e., ρi(K) = K for any i), the field K is called a Galois extension
of Q and the set of isomorphisms Gal(K|Q) def= {ρ1, . . . , ρn} constitutes a group,
called the Galois group of K over Q. By the Galois theory, all subfields L of K
and all subgroups H of G = Gal(K|Q) corresponds to each other one-to-one:

L �→ H = GL = {ρ ∈ G | ρ(a) = a for any a ∈ L}
: the stabilizer group of L

H �→ L = KH = {a ∈ K | ρ(a) = a for any ρ ∈ H}
: the fixed field by H.

Here, K is also a Galois extension of L with Galois group Gal(K|L) = H (since
any isomorphism (of K into C) that fixes L sends K to K). Especially, [K : L] =
|H|. The trace map of K over L is defined by TrK|L(a) =

∑
ρ∈H ρ(a) (∈ L) for

a ∈ K.
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2.5 Cyclotomic Fields and Rings

Let m be a positive integer. A primitive m-th root of unity ζ = exp(2π
√−1/m)

has the minimum polynomial Φm(X) ∈ Z[X] of degree n = φ(m) that belongs
to Z[X], called the cyclotomic polynomial. Especially, ζ is an algebraic integer.
A number field K = Q(ζ) generated by ζ is called the m-th cyclotomic field and
its elements are called cyclotomic numbers. The integer ring R of the cyclotomic
field K = Q(ζ) is known to be R = Z[ζ] = Z[X]/Φm(X). In particular, as
a Z-module, R has a basis (called power basis) {1, ζ, . . . , ζn−1}, i.e., R = Z ·
1 + Z · ζ + · · · + Z · ζn−1. The integer ring R is called the m-th cyclotomic
ring and its elements are called cyclotomic integers. For a positive integer q,
Rq = R/qR = Zq[X]/Φm(X) is a ring of cyclotomic integers mod q.

The cyclotomic field K = Q(ζ) is a Galois extension over Q since it has
n = [K : Q] automorphisms ρi defined by ρi(ζ) = ζi for i ∈ Z

∗
m. Its Galois

group G = Gal(K|Q) is isomorphic to Z
∗
m by corresponding ρi to i. Note that

ρi(b) = ρi(b), since a = ρ−1(a).
The trace of ζ for the prime index m is simple:

Lemma 1. If the index m is prime, we have

TrK|Q(ζi) =
{

m − 1 (i ≡ 0 (mod m))
−1 (i �≡ 0 (mod m)).

Structure of Rp . Let p be a prime that does not divide m. Although the
cyclotomic polynomial Φm(X) is irreducible over Z, by taking mod p, it will be
factored into a product of several polynomials Fi(X)’s:

Φm(X) ≡ F0(X) · · · Fg−1(X) (mod p), (3)

where all of Fi(X) are irreducible mod p, and have the same degree d = ord×
m(p)

which is a divisor of n. The number of factors is equal to g = n/d.
It is known that there are g prime ideals P0, . . . ,Pg−1 of R lying over p:

Pi ∩ Z = pZ (i = 0, . . . , g − 1) and p decomposes into a product of those prime
ideals in R:

pR = P0 · · ·Pg−1. (4)

This decomposition of the prime p reflects the factorization of Φm(X) mod p
(Eq. (3)). In fact, each prime factor Pi is generated by p and Fi(ζ) as ideals of
R, Pi = (p, Fi(ζ)) for i = 0, . . . , g − 1. The corresponding residual fields are
given by

R/Pi � Zp[X]/Fi(X) � GF(pd)

for i = 0, . . . , g − 1. Thus, we have

Rp � R/P0 ⊕ · · · ⊕ R/Pg−1 � GF(pd) ⊕ · · · ⊕ GF(pd).

In the Ring-HE schemes such as [3,4,6], plaintexts are encoded by cyclotomic
integers x ∈ Rp modulo some small prime p (� m). By the factorization of Rp
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above, g plaintexts x0, . . . , xg−1 belonging to GF(pd) are encoded into a single
cyclotomic integer x ∈ Rp. The place of each plaintext xi ∈ GF(pd) is called
a plaintext slot. Thus, in the Ring-HE schemes, one can encrypt g plaintexts
into a single ciphertext by setting them on corresponding plaintext slots and
can evaluate or decrypt the g encrypted plaintexts at the same time using arith-
metic of cyclotomic integers [17]. Gentry et al. [8] homomorphically evaluates
AES circuit on HE-encrypted AES-ciphertexts in the SIMD manner, using such
plaintext slot structure for p = 2, which fits to the underlying GF(2d)-arithmetic
of the AES cipher.

Geometry of numbers. Using the n automorphisms ρi (i ∈ Z
∗
m), the cyclo-

tomic field K is embedded into an n-dimensional complex vector space C
Z

∗
m ,

called the canonical embedding σ : K → H (⊂ C
Z

∗
m): σ(a) = (ρi(a))i∈Z∗

m
. Its

image σ(K) is contained in the space H defined as

H
def= {x ∈ C

Z
∗
m : xi = xm−i (∀i ∈ Z

∗
m)}.

Since H = BR
n with the unitary matrix B = 1√

2

(
I

√−1J
J −√−1I

)
, the space H is

isomorphic to R
n as an inner product R-space (where J is the reversal matrix

of the identity matrix I).
By the canonical embedding σ, one can regard R (or its (fractional) ideals

of R) as lattices in the n-dimensional real vector space H, called ideal lattices.
Inner products or norms of elements a ∈ K are defined through the embedding
σ:

〈
a, b

〉 def=
〈
σ(a), σ(b)

〉
= TrK|Q(ab), ‖a‖2 def= ‖σ(a)‖2,

∥∥a
∥∥

∞
def=

∥∥σ(a)
∥∥

∞.

3 Decomposition Rings and Their Properties

To realize plaintext structure composed of slots of mod-pl integers for some small
prime p, we use decomposition rings RZ w.r.t. p instead of cyclotomic rings R.

3.1 Decomposition Field

Let G = Gal(K|Q) be the Galois group of the m-th cyclotomic field K = Q(ζ)
over Q. Let p be a prime that does not divide m. Recall such p has the prime
ideal decomposition of Eq. (4). The decomposition group GZ of K w.r.t. p is the
subgroup of G defined as

GZ
def= {ρ ∈ G | Pρ

i = Pi (i = 0, . . . , g − 1)}.

That is, GZ is the subgroup of automorphisms ρ of K that stabilize each prime
ideal Pi lying over p. Recall the Galois group G = Gal(K|Q) is isomorphic to Z

∗
m

via ρ−1. Since p does not divide m, p ∈ Z
∗
m. It is known that the decomposition

group GZ is generated by the automorphism ρp corresponding to the prime p,
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called the Frobenius map w.r.t. p: GZ = 〈ρp〉 � 〈p〉 ⊆ Z
∗
m. The order of GZ is

equal to d = ord×
m(p). The fixed field Z = KGZ by GZ is called the decomposition

field of K (w.r.t. p). The decomposition field Z can be characterized as the
smallest subfield Z of K such that Pi ∩Z does not split in K, so that the prime
p factorizes into prime ideals in Z in much the same way as in K. By the Galois
theory, GZ = Gal(K|Z). For degrees, we have [K : Z] = |GZ | = d, [Z : Q] =
n/d = g. The decomposition field Z is itself the Galois extension of Q and its
Galois group Gal(Z|Q) = G/GZ is given by Gal(Z|Q) � Z

∗
m/〈p〉.

3.2 Decomposition Ring

The integer ring RZ = R ∩ Z of the decomposition field Z is called the decom-
position ring. Primes ideals over p in the decomposition ring RZ are given by
pi = Pi ∩ Z for i = 0, . . . , g − 1, and the prime p factors into the product of
those prime ideals in much the same way as in K:

pRZ = p0 · · · pg−1. (5)

This leads to the decomposition of (RZ)p: (RZ)p � RZ/p0 ⊕ · · · ⊕ RZ/pg−1.
For each prime ideal Pi (of R) lying over pi, the Frobenius map ρp acts as

the p-th power automorphism powp(x) = xp on R/Pi:

R −−−−→ R/Pi

ρp

⏐⏐� powp

⏐⏐�

R −−−−→ R/Pi

Then, by definition of RZ = R〈ρp〉, any element in RZ/pi must be fixed by powp,
which means:

RZ/pi = (R/Pi)〈powp〉 = Zp.

Thus, we see that all slots of (RZ)p must be one-dimensional: (RZ)p � Zp ⊕
· · · ⊕ Zp.

By applying the Hensel lifting (w.r.t. p) l times to the situation, we get

qRZ = q0 · · · qg−1 (6)
(RZ)q � Zq ⊕ · · · ⊕ Zq (7)

for q = pl with any positive integer l. This structure of the decomposition ring
(RZ)q brings us the plaintext structure of our subring homomorphic encryption
scheme, being composed of g mod-q integer slots.

3.3 Bases of the Decomposition Ring RZ

To construct homomorphic encryption schemes using some ring R, we will need
two types of bases of the ring R over Z, one for decoding elements in R ⊗
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R into its nearest element in R, and another one that enables FFT-like fast
computations among elements in R. In addition, we also need some quasi-linear
time transformations among vector representations with respect to the two types
of bases. Here, assuming the index m of cyclotomic ring R is prime, we construct
such two types of bases for the decomposition ring RZ , following the cyclotomic
ring case given by Lyubashevsky et al. [16].

The η-basis. Let m be a prime and K = Q(ζ) be the m-th cyclotomic field.
For a prime p (�= m), let Z be the decomposition field of K with respect to p.

Fix any set of representatives {t0, . . . , tg−1} of Z
∗
m/〈p〉 � Gal(Z|Q). For

i = 0, . . . , g − 1, define

ηi
def= TrK|Z(ζti) =

∑

a∈〈p〉
ζtia (∈ RZ).

Lemma 2. For i = 0, . . . , g − 1, we have TrZ|Q(ηi) =
∑g−1

i=0 ηi = −1,
TrZ|Q(ηi) =

∑g−1
i=0 ηi = −1.

Lemma 3. For the prime index m, the set {η0, . . . , ηg−1} is a basis of the decom-
position ring RZ (w.r.t. p (�= m)) over Z, i.e., RZ = Zη0 + · · · + Zηg−1.

Definition 1. We call the basis η := (η0, . . . , ηg−1) η-basis of RZ . For any
a ∈ RZ , there exists unique a ∈ Z

g satisfying a = ηTa. We call such a ∈ Z
g

η-vector of a ∈ RZ .

The ξ-basis. By the choice of ti’s, the Galois group Gal(Z|Q) of Z is given by

Gal(Z|Q) = {ρt0 , . . . , ρtg−1}.

Elements a ∈ Z in the decomposition field are regarded as g-dimensional R-
vectors through the canonical embedding σZ : Z → HZ (⊂ C

Z
∗
m/〈p〉) defined as

σZ(a) = (ρi(a))i∈Z∗
m/〈p〉. The g-dimensional R-subspace HZ is as

HZ
def= {x ∈ C

Z
∗
m/〈p〉 : xi = xm−i (∀i ∈ Z

∗
m/〈p〉)}.

Define a g × g matrix ΩZ over RZ as

ΩZ =
(
ρti(ηj)

)

0≤i,j<g
(∈ Rg×g

Z ).

Note that each column of ΩZ is the canonical embedding σZ(ηj) of ηj . Since
the index m is prime, the Galois group Gal(Z|Q) is cyclic and we can take the
representatives {t0, . . . , tg−1} so that tj ≡ tj (mod 〈p〉) with some t ∈ Z

∗
m for

j = 0, . . . , g − 1. Setting η = TrK|Z(ζ), for any i and j,

ρti(ηj) = ρti(ρtj (η)) = ρti·tj (η) = ρti+j
(η) = ηi+j .

In particular, ΩZ is symmetric. We can show that:
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Lemma 4. Ω∗
ZΩZ = (TrZ|Q(ηiηj))0≤i,j<g = mIg − d1 · 1T (∈ Z

g×g).

Corollary 1. The set
{
m−1(η0 − d), · · · ,m−1(ηg−1 − d)

}
is the dual basis of

conjugate η-basis {η0, · · · , ηg−1}, i.e. for any 0 ≤ i, j < g,

TrZ|Q
(ηi − d

m
· ηj

)
= δij .

In particular, R∨
Z = Z

η0−d
m + · · · + Z

ηg−1−d
m .

Define a g × g matrix ΓZ over Z as

ΓZ
def=

(
ρti

(ηj − d

m

))

0≤i,j<g
(∈ Zg×g).

Corollary 1 means that Γ
T

ZΩZ = I. Since ΩZ is symmetric,

ΓZΩZ = ΩZΓZ = I. (8)

Lemma 5. For any b = ΩZa, we have

a = ΓZb =
1
m

(
ΩZb − d

(∑

j

bj

) · 1
)
.

Let r be a positive integer and q = pr. Let q = q0 be the first ideal that
appears in the factorization of qRZ (Eq. (6)). Recall that RZ/q � Zq.

Let

Ω
(q)
Z

def= ΩZ mod q (∈ (RZ)g×g
q � Z

g×g
q )

Since p � m, ΓZ mod q is well-defined and by Eq. (8), Ω
(q)
Z is invertible mod q.

Definition 2. Define ξ = (ξ0, . . . , ξg−1) ∈ (RZ)g
q by ηT ≡ ξT Ω

(q)
Z (mod q). We

call the basis ξ of (RZ)q over Zq ξ-basis of RZ (with respect to q). For any
a ∈ (RZ)q, there exists unique b ∈ Z

g
q satisfying that a = ξTb. We call such

b ∈ Z
g
q as ξ-vector of a ∈ (RZ)q.

Lemma 6. For any a ∈ RZ it holds that

a ≡ ηT · a ⇔ a ≡ ξT · (Ω(q)
Z · a) (mod q)

a = ηT · a ⇔ σZ(a) = ΩZa

a ≡ ξT · b (mod q) ⇔ σZ(a) ≡ b (mod q)

Lemma 7. If a1 = ξT · b1 and a2 = ξT · b2, then a1a2 = ξT · (b1 � b2).
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3.4 Conversion Between η- and ξ-vectors

Resolution of unity in RZ mod q. By Hensel-lifting the factorization of
Φm(X) mod p (Eq. (3)) to modulus q = pr, we get factorization of Φm(X) mod q:
Φm(X) ≡ F 0(X) · · · F g−1(X) (mod q). Here, note that the number g of irre-
ducible factors and the degree d of each factors remain unchanged in the lifting.
According to this factorization, the ideal qR of R is factored as qR = Q0 · · ·Qg−1

with ideals Qi = (q, F i(ζ)) of R.
For each i = 0, . . . , g − 1, let Gi(X) def=

∏
j �=i F j(X) (mod q) and Pi(X) def=

(Gi(X)−1 mod (q, F i(X))) · Gi(X) (mod q). It is verified that the set {τi =
Pi(ζ)}g−1

i=0 constitutes a resolution of unity in R mod q, i.e.

τi ≡
{

1 (mod Qi) (i = 0, . . . , g − 1)
0 (mod Qj) (j �= i)

and it satisfies that

g−1∑

i=0

τi ≡ 1, τ2
i ≡ τi, τiτj ≡ 0 (mod q) (j �= i).

By the Chinese remainder theorem, the resolution of unity {τi}g−1
i=0 is uniquely

determined mod qR. In the following we take coefficients of each τi from
[−q/2, q/2) over the basis B′ = {ζ, ζ2, . . . , ζm−1} of R.

Lemma 8. For any 0 ≤ i < g it is that τi ∈ RZ , and {τi}g−1
i=0 is also a resolution

of unity in RZ mod q.

Using the resolution of unity {τi}g−1
i=0 in RZ , we can compute ai ∈ Zq satis-

fying a ≡ ai (mod qi) given a ∈ RZ , as follows:

a mod qi = aτi mod q = aiτi mod q
dividing by τi�→ ai.

Computation of Ω
(q)
Z . Now we can compute the matrix Ω

(q)
Z =

(
ηi+j mod

q
)

0≤i,j<g
(∈ Z

g×g
q ) by computing the entities ηi+j in ΩZ as cyclotomic integers

and reducing them modulo q (= q0) using the resolution of unity {τi}g−1
i=0 . Since

the matrix Ω
(q)
Z has cyclic structure (the (i + 1)-th row is a left shift of the

i-th row), it is sufficient to compute its first row. Here, we remark that once we
have computed the matrix Ω

(q)
Z , we can totally forget the original structure of

cyclotomic ring R, and all we need is doing various computations among η- and
ξ-vectors (of elements in RZ) with necessary conversion between them using the
matrix Ω

(q)
Z .

Computation of b = Ω
(q)
Z · a . To convert η-vector a of an element a = ηT ·

a ∈ RZ to its corresponding ξ-vector b (satisfying a = ξT · b), by Lemma 6, we
need to compute a matrix-vector product b = Ω

(q)
Z ·a . By Lemma 5, the inverse
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conversion from ξ-vector b to its corresponding η-vector a = ΓZ · b also can be
computed using a similar matrix-vector product Ω

(q)

Z ·b. Here, Ω
(q)

Z
def= ΩZ mod q.

By definition of Ω
(q)
Z , the j-th component bj of the product b = Ω

(q)
Z · a

is bj =
∑g−1

i=0 aiηi+j (where indexes are mod g and we omit modq). This
means that b is the convolution product of vector η and the reversal vector
(a0, ag−1, ag−2, · · · , a1) of a , where η = (ηi)

g−1
i=0 is the first row of Ω

(q)
Z .

Define two polynomials f(X) =
∑g−1

i=0 ηiX
i and g(X) = a0 +

∑g−1
i=1 ag−iX

i

over Zq. Since b is the convolution product of η and the reversal vector of a ,
it holds that f(X)g(X) =

∑g−1
i=0 biX

i (mod Xg − 1). The polynomial product
f(X)g(X) (mod Xg − 1) can be computed in quasi-linear time Õ(g) using the
FFT multiplication. Thus, we know that conversions between η-vectors a and
ξ-vectors b can be done in quasi-linear time Õ(g).

4 Subring Homomorphic Encryption

Now we construct an HE scheme using the decomposition ring RZ , subring
homomorphic encryption scheme.

4.1 The Ring-LWE Problem on the Decomposition Ring

For security of our subring homomorphic encryption scheme, we will need hard-
ness of a variant of the decisional Ring-LWE problem over the decomposition
ring. Let m be a prime. Let RZ be the decomposition ring of the m-th cyclo-
tomic ring R with respect to some prime p (�= m). Let q be a positive integer.
For an element s ∈ RZ and a distribution χ over RZ , define a distribution As,χ

on (RZ)q × (RZ)q as follows: First choose an element a uniformly from (RZ)q

and sample an element e according to the distribution χ. Then return the pair
(a, b = as + e mod q).

Definition 3 (The decisional Ring-LWE problem on the decomposition
ring). Let q, χ be as above. The R-DLWEq,χ problem on the decomposition ring
RZ asks to distinguish samples from As,χ with s

u← Zq and (the same number
of) samples uniformly chosen from (RZ)q × (RZ)q.

Recall the search version of Ring-LWE problem is already proved to have
a quantum polynomial time reduction from the approximate shortest vector
problem of ideal lattices in any number field by Lyubashevsky et al. [15]. They
proved equivalence between the search and the decisional versions of the Ring-
LWE problems only for cyclotomic rings. The key of their proof of equivalence is
the existence of prime modulus q for Ring-LWE problem which totally decom-
poses into n prime ideal factors: qR = Q0 · · ·Qn−1. (Their residual fields R/Qi

have polynomial order q and we can guess the solution of the Ring-LWE problem
modulo ideal Qi, and then we can verify validity of the guess using the assumed
oracle for the decisional Ring-LWE problem.) Since the decomposition ring RZ

is a subring of the cyclotomic ring R, such modulus q totally decomposes into
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g prime ideals also in the decomposition ring RZ : qRZ = q0 · · · qg−1. Using this
decomposition, the proof of equivalence by [15] holds also over the decomposition
rings RZ , essentially as it is.

4.2 Parameters

Let m be a prime index of cyclotomic ring R. Choose a (small) prime p, distinct
from m. Let d = ord×

m(p) be the multiplicative order of p mod m, and g =
(m−1)/d be the degree of the decomposition ring RZ of R with respect to p. Take
two powers of p, q = pr and t = pl (r > l) as ciphertext and plaintext modulus,
respectively. Set the quotient as Δ = q/t = pr−l. Choose two distributions χkey

and χerr over Z
g.

4.3 Encoding Methods and Basic Operations of Elements in RZ

Basically, we use η-vectors a ∈ Z
g to encode elements a = ηT · a in RZ . To

multiply two elements encoded by η-vectors a and b modulo q = pr, first we
convert those η-vectors to corresponding ξ-vectors modulo q. We can multiply
resulting ξ-vectors component-wise, and then re-convert the result into its corre-
sponding η-vector modulo q. The functions eta to xi and xi to eta use the matrix
Ω

(q)
Z computed in advance. (ηi)

g−1
i=0 denotes the first row of Ω

(q)
Z .

mult eta (a , b, q) :
α = eta to xi(a , q)
β = eta to xi(b, q)
γi = αiβi mod q (i = 0, . . . , g − 1)
return c = xi to eta(γ, q)

eta to xi (a , q) :
a(X) = a0 +

∑g−1
i=1 ag−iX

i

c(X) =
∑g−1

i=0 ηiX
i

b(X) = a(X)c(X) mod (q,Xg − 1)
return b = (b0, . . . , bg−1)

xi to eta (b, q) :
b(X) = b0 +

∑g−1
i=1 bg−iX

i

c(X) =
∑g−1

i=0 ηiX
i

a(X) = b(X)c(X) mod (q,Xg − 1)
t = b0 + · · · + bg−1 mod q

return a = (m−1(ai − dt) mod q)g−1
i=0

We regard plaintext vectors m ∈ Z
g
t as ξ-vectors of corresponding elements

mξ = ξTm ∈ (RZ)t. By Lemma 7 their products mξm
′
ξ ∈ (RZ)t encodes the

plaintext vector m �m’ ∈ Z
g
t . For a fixed integer base w, let lw =

⌊
logw(q)

⌋
+1.

Any vector a ∈ Z
g
q can be written as a =

∑lw−1
k=0 wkak with vectors ak ∈ Z

g
w of

small entries. Define WD(a) def=
(
ak

)lw−1

k=0

(∈ (Zg
w)lw

)
.

4.4 Scheme Description

Our subring homomorphic encryption scheme is a realization of the FV scheme
by Fan and Vercauteren [6], using the decomposition ring RZ . Here we describe
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its symmetric key version. The public key version is easily derived as like in the
FV and other HE schemes.

SecretKeyGen () :
s ← χkey

return sk = s ∈ Z
g

Encrypt (sk = s ∈ Z
g,m ∈ Z

g
t ) :

a
u← Z

g
q , e ← χerr, n = xi to eta(m , t)

b = mult eta(a , s, q) + Δn + e mod q
return ct = (a , b)

Decrypt (sk = s ∈ Z
g, ct = (a , b)):

n =
⌊

1
Δ (b − mult eta(a , s, q) mod q)

⌉

m = eta to xi(n , t)
return m

Add (ct1 = (a1, b1), ct2 = (a2, b2)):
a = a1 + a2 mod q,
b = b1 + b2 mod q
return ct = (a , b)

EvaluateKeyGen (s) :
γ = mult eta(s, s, q)
For k = 0 to lw − 1:

αk
u← Z

g
q , xk ← χerr, βk = mult eta(αk, s, q) + wkγ + xk mod q

return ev =
(
(αk,βk)

)lw−1

k=0

Mult (ct1 = (a1, b1), ct2 = (a2, b2), ev =
(
(αk,βk)

)
k
) :

e =
⌊

1
Δ · mult eta(b1, b2, q

2/t)
⌉
,

c =
⌊

1
Δ · (

mult eta(a1, b2, q
2/t) + mult eta(a2, b1, q

2/t)
)⌉

,

d =
⌊

1
Δ · mult eta(a1,a2, q

2/t)
⌉
, (d0, · · · ,d lw−1) = WD(d)

a = c +
∑lw−1

k=0 mult eta(dk,αk, q) mod q,
b = e +

∑lw−1
k=0 mult eta(dk,βk, q) mod q

return ct = (a , b)

It is straightforward to see:

Theorem 1. The subring homomorphic encryption scheme is indistinguishably
secure under the chosen plaintext attack if the R-DLWEq,χkey,χerr

problem on
the decomposition ring RZ is hard.

For correctness we have the following theorem. (The proof is in Sect.A.3)

Theorem 2. The subring homomorphic encryption scheme will be fully homo-
morphic under circular security assumption (i.e., an encryption of secret key
s does not leak any information about s) by taking ciphertext modulus q =
O(λlog λ).

5 Benchmark Results

We implemented our subring homomorphic encryption scheme (SR-HE in short)
using the C++ language and performed several experiments using different
parameters, comparing efficiency of our implementation of SR-HE and homo-
morphic encryption library HElib by Halevi and Shoup [10], which is based on
the BGV scheme [4]. For notation of parameters, see Sect. 4.2.
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As common parameters, we choose four values of prime m so that the m-th
cyclotomic ring R will have as many number of plaintext slots (i.e., large g and
small d values) as possible. The plaintext modulus t = 2l is fixed as l = 8. The
noise parameter serr =

√
2πσerr is fixed as σerr = 3.2. The ciphertext modulus

q = 2r is chosen as small as possible so that it enables homomorphic evaluation
of exponentiation by 28 (i.e., Enc(s,m)2

8
) with respect to each implementation.

Table 1 summarizes the chosen parameters.

Table 1. Chosen parameters.

m g d l r (SR-HE) r (HElib)

par-127 127 18 7 8 162 135

par-8191 8191 630 13 8 210 250

par-43691 43691 1285 34 8 234 256

par-131071 131071 7710 17 8 242 -

Assuming that there is no special attack utilizing the particular algebraic
structure of involving rings, corresponding security parameters λ are estimated
using the lwe-estimator-9302d4204b4f by [1,2].

Table 2 shows timing results for HElib in milliseconds on Intel Celeron(R)
CPU G1840 @ 2.80 GHz 2. (We could not perform the test for par-131071 due to
shortage of memory.) The secret key is chosen uniformly random among binary
vectors of Hamming weight 64 over the power basis (default of HElib) and we
encrypt g number of mod-2l integer plaintexts into a single HElib ciphertext
using plaintext slots. As seen in Sect. 2.5, HElib (based on the BGV scheme)
basically realizes GF (2d) arithmetic in each of g slots. If we want to encrypt
mod-2l integer plaintexts on slots and to homomorphically evaluate on them, we
can use only 1-dimensional constant polynomials in each d(= m/g)-dimensional
slots. This should cause certain waste in time and space. In fact, for example,
timings for par-43691 (g = 1285) is much larger than two times of those for par-
8191 (g = 630). This indicates that the HElib scheme cannot handle many mod-2l

integer slots with high parallelism. So, to encrypt large number of mod-2l integer
plaintexts using HElib, we have no choice but to prepare many ciphertexts, each
of which encrypts a divided set of small number of plaintexts on their slots.

On the other hand, Table 3 shows timing results (also in milliseconds on Intel
Celeron(R) CPU G1840 @ 2.80 GHz 2) for our SR-HE scheme. The secret key
is chosen uniformly random among binary vectors of Hamming weight 64 over
η-basis and we encrypt g number of mod-2l integer plaintexts into a single SR-
HE ciphertext. As seen, timings are approximately linear with respect to the
numbers of slots g. This shows that our SR-HE scheme can handle many mod-2l

slots with high parallelism, as expected. We can encrypt large number of mod-
2l integer plaintexts into a single SR-HE ciphertext using mod-2l slots without
waste, and can homomorphically compute on them with high parallelism.
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Table 2. Timing results of HElib on mod-2l integer plaintexts.

λ Enc Dec Add Mult Exp-by-28

par-127 26 0.23 0.18 0.00 0.66 4.78

par-8191 92 30.45 210.77 0.84 107.53 512.64

par-43691 237 268.00 5158.44 4.74 634.69 4187.81

par-131071 − − − - − −

Table 3. Timing results of SR-HE on mod-2l integer plaintexts.

λ Enc Dec Add Mult Exp-by-28

par-127 - 0.14 0.12 0.00 0.57 4.47

par-8191 29 7.39 7.37 0.03 39.43 318.65

par-43691 32 17.38 17.19 0.11 92.14 741.42

par-131071 91 104.33 103.93 0.97 574.44 4620.22

Then, which is faster to encrypt many number of mod-2l integer plaintexts
between the following two cases?

(1) A single SR-HE ciphertext with many plaintext slots.
(2) Many HElib ciphertexts with small number of plaintext slots.

The result for par-131071 of Table 3 shows we can encrypt 7710 mod-2l integer
slots in a single SR-HE ciphertext with security parameter λ = 91 with timing:

(104.33, 103.93, 0.97, 574.44, 4620.22)

On a while, the result for par-8191 of Table 2 shows we can encrypt the same
number of 7710 mod-2l integer slots using

⌈
7710/630

⌉
= 13 ciphertexts with

security parameter λ = 92. The 13 times of the line par-8191 of Table 2 is

(395.85, 2740.01, 10.92, 1397.89, 6664.32).

Thus, our benchmark results indicate that Case (1) (a single SR-HE ciphertext
with many slots) is significantly faster than Case (2) (many HElib ciphertexts
with small number of plaintext slots) under equivalent security parameters.

Acknowledgments. This work was supported by JST CREST Grant Number
JPMJCR1503. This work is further supported by the JSPS KAKENHI Grant Number
17K05353.

A Appendices

A.1 Proofs of Lemma

Proof of Lemma 2. TrZ|Q(ηi) = TrZ|Q(TrK|Z(ζti)) = TrK|Q(ζti). So, by Lemma 1,
TrZ|Q(ηi) = −1 for any i. Similarly, TrZ|Q(ηi) = TrZ|Q(TrK|Z(ζ−ti)) =
TrK|Q(ζ−ti) = −1. �
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Proof of Lemma 3. Since the index m is prime, the cyclotomic ring R has a basis
B = {1, ζ, . . . , ζm−2} over Z. Since ζ is a unit of R, B′ := ζB = {ζ, ζ2, . . . , ζm−1}
is also a basis of R over Z. The fixing group GZ = 〈ρp〉 of Z acts on B′ and
decomposes it into g orbits ζti〈p〉 = {ζti , ζtip, . . . , ζtip

d−1} (i = 0, . . . , g − 1). An
element z =

∑m−1
i=1 ziζ

i ∈ RZ that is stable under the action of GZ must have
constant integer coefficients over the each orbits ζti〈p〉. Hence, z is a Z-linear
combination of {η1, . . . , ηg}. �

Proof of Lemma 4. For 0 ≤ i, j < g,

ηiηj =
( ∑

a∈〈p〉
ζ−ati

)( ∑

b∈〈p〉
ζbtj

)
=

∑

a,b∈〈p〉
ζ−ati+btj =

∑

a∈〈p〉

∑

b∈〈p〉
ρa(ζ−ti+ba−1tj )

=
∑

a∈〈p〉

∑

b∈〈p〉
ρa(ζ−ti+btj ) =

∑

b∈〈p〉
TrK|Z(ζ−ti+btj ).

Here, Suppose i �= j. Then, −ti + btj �≡ 0 (mod m) for any b ∈ 〈p〉. Hence, by
Lemma 1,

TrZ|Q(ηiηj) =
∑

b∈〈p〉
TrK|Q(ζ−ti+btj ) = |〈p〉| · (−1) = −d.

If i = j, since TrK|Q(ζ−ti+bti) = m − 1 only if b = 1 and −1 otherwise by
Lemma 1,

TrZ|Q(ηiηi) =
∑

b∈〈p〉
TrK|Q(ζ−ti+bti) = m − 1 + (d − 1) · (−1) = m − d �

Proof of Corollary 1. For any i, by Lemmas 2 and 4 we have

TrZ|Q
(ηi − d

m
· ηi

)
=

1
m

(m − d) − d

m
· (−1) = 1.

Similarly, for any i �= j we have

TrZ|Q
(ηi − d

m
· ηj

)
=

−d

m
− d

m
· (−1) = 0 �

Proof of Lemma 5

a = ΓZb =
(
ρti(

ηj − d

m
)
)

ij
b =

( 1
m

∑

j

ρti(ηj − d)bj

)

i

=
1
m

(∑

j

ρti(ηj)bj − d
∑

j

bj

)

i
=

1
m

(
ΩZb − d

(∑

j

bj

) · 1
)

�

Proof of Lemma 6. The first claim is the definition of ξ.
Since ΩZ =

(
σZ(ηj)

)

0≤j<g
, a = ηT · a if and only if σZ(a) = ΩZa .
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Next,

a = ξT · b ⇔ a ≡ ηT (Ω(q)
Z )−1 · b (mod q)

⇔ σZ(a) ≡ ΩZ(Ω(q)
Z )−1 · b ≡ b (mod q) �

Proof of Lemma 7. σZ(a1a2) = σZ(a1) � σZ(a2) = b1 � b2 �

Proof of Lemma 8. The ideal qRZ factors in RZ as

qRZ = q0q1 · · · qg−1

where qi = Qi ∩ RZ for any i.
Let {τ ′

i}g−1
i=0 be a resolution of unity in RZ mod q. Here, we take the coeffi-

cients of each τ ′
i from [−q/2, q/2) over the η-basis {η0, . . . , ηg−1} of RZ .

Then,

τ ′
i ≡

{
1 (mod qi) (i = 0, . . . , g − 1)
0 (mod qj) (j �= i).

Since qi ⊂ Qi for any i, {τ ′
i}g−1

i=0 is also a resolution of unity in R mod q. Since
the coefficients of each τ ′

i over the η-basis are in [−q/2, q/2), by definition of ηi =∑
a∈〈p〉 ζtia, their coefficients over the basis B′ are trivially also in [−q/2, q/2).

Hence, by the uniqueness of resolution, it must be that τ ′
i = τi for all i. �

A.2 Norms on the Decomposition Ring

Norms of a ∈ Z are defined by

‖a‖2 def= ‖σZ(a)‖2, ‖a‖∞
def= ‖σZ(a)‖∞.

Lemma 9. For any a, b ∈ Z, we have

‖ab‖∞ ≤ ‖a‖∞ · ‖b‖∞.

Proof. ‖ab‖∞ = ‖σZ(ab)‖∞ = ‖σZ(a) � σZ(b)‖∞ ≤ ‖σZ(a)‖∞ · ‖σZ(b)‖∞ =
‖a‖∞ · ‖b‖∞. �

In the following, a means the η-vector of given a = ηT · a ∈ RZ .

Lemma 10. (1) For any a ∈ Z, ‖a‖2 ≤ √
m‖a‖2.

(2) For any a ∈ R
g, ‖a‖2 ≤ ‖a‖2.

(3) If a ∈ R
g is far from being proportional to vector 1 (far from constants in

short), we have ‖a‖2 ≈ 1√
m

‖a‖2.

Proof. (1) By Lemma 6, σZ(a) = ΩZa and by Lemma 4

Ω∗
ZΩZ = mIg − d1 · 1T .
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The right-hand side matrix has eigenvalues g − 1 times of m and 1 with corre-
sponding eigenvectors (1,−1, 0, · · · , 0), (1, 0,−1, 0, · · · , 0), . . ., (1, 0, · · · , 0,−1),
(1, 1, · · · , 1). So, the symmetric matrix Ω∗

ZΩZ can be diagonalized to
Diag(m, · · · ,m, 1) by an orthogonal transformation, and we have s1(ΩZ) =

√
m.

This means ‖a‖2 ≤ √
m‖a‖2. (2), (3) Conversely, a = (ΩZ)−1σZ(a) =

ΓZσZ(a). Similarly as above, the matrix Γ ∗
ZΓZ can be diagonalized to

Diag(1/m, · · · , 1/m, 1) by the orthogonal transformation. Hence, s1(ΓZ) = 1
and ‖a‖2 ≤ ‖a‖2. Since almost all of the eigenvalues of Γ ∗

ZΓZ are 1/m, except
1 for eigenvector (1, 1, · · · , 1), if a is far from being proportional to the eigen-
vector (1, 1, · · · , 1), ‖a‖2 ≈ 1√

m
‖a‖2. �

Lemma 11. (1) For any a ∈ Z, ‖a‖∞ ≤ √
mg‖a‖∞.

(2) For any a ∈ R
g, ‖a‖∞ ≤ √

g‖a‖∞.

(3) If a is far from constants, we have ‖a‖∞ �
√

g/m‖a‖∞.

Proof. (1) By Lemma 10-(1), ‖a‖∞ ≤ ‖a‖2 ≤ √
m‖a‖2 ≤ √

mg‖a‖∞.
(2) By Lemma 10-(2), ‖a‖∞ ≤ ‖a‖2 ≤ ‖a‖2 ≤ √

g‖a‖∞.

(3) By Lemma 10-(3), ‖a‖∞ ≤ ‖a‖2 ≈ 1√
m

‖a‖2 ≤ √
g/m‖a‖∞. �

Subgaussian elements. We call a random variable a ∈ Z subgaussian with param-
eter s if corresponding random variable σZ(a) on HZ is subgaussian with param-
eter s.

Lemma 12 (Claim 2.1, Claim 2.4 [16]). Let ai be independent subgaussian
random variables over Z with parameter si (i = 1, 2). Then,

1. The sum a1 + a2 is subgaussian with parameter
√

s21 + s22.
2. For any a2 fixed, the product a1 ·a2 is subgaussian with parameter ‖a2‖∞s1.

Lemma 13. Let a be a subgaussian random variable over R
g of parameter s.

Then, a = ηT · a is subgaussian over Z of parameter
√

ms.

Proof. By Lemma 6 σZ(a) = ΩZa . As seen in the proof of Lemma 10, s1(ΩZ) =√
m. Hence, σZ(a) is subgaussian of parameter

√
ms. �

A.3 Correctness of Our Subring Homomorphic Encryption Scheme

Let χkey and χerr be discrete Gaussian distributions over Z
g of parameters skey

and serr, respectively. In the following, vectors a , b, · · · mean corresponding
η-vectors of elements a = ηT · a , b = ηT · b, · · · in the decomposition ring RZ ,
respectively.

Definition 4. The inherent noise term e of ciphertext ct = (a, b) designed for
m ∈ Z

g
t is an element e ∈ RZ with the smallest norm ‖e‖∞ satisfying that

b − as = Δmξ + e + qα

for some α ∈ RZ , secret key sk = s, and mξ = ξT · m ∈ RZ .
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By definition, a ciphertext ct = (a , b) ← Encrypt(s,m) has e = ηT · e
as an inherent noise term designed for m with e ← χerr. By Lemma 13, e is
subgaussian of parameter

√
mserr and by the tail inequality (Eq. 2), ‖e‖∞ ≤

ω(
√

log λ)
√

mserr with an overwhelming probability.
Define Bcorrect

def=
√

m
2
√

g Δ.

Lemma 14 (Noise bound for correctness). Let e be the inherent noise
term of ciphertext ct = (a, b) designed for m ∈ Z

g
t . If ‖e‖∞ < Bcorrect (i.e.

if
√

g√
m

‖e‖∞ < 1
2Δ), then decryption works correctly, i.e. Decrypt(s, ct) = m.

Proof. By definition of the inherent noise term, a and b satisfy that

1
Δ

(b − as − αq) = mξ +
e

Δ
. (9)

By Lemma 11-(3),

‖ e

Δ
‖∞ <

√
g/m · ‖ e

Δ
‖∞ ≤

√
g/m ·

√
m

2
√

g
=

1
2
.

Hence, the η-vector of the left-hand side of Eq. (9) rounds to n satisfying that
ηT · n = mξ = ξT · m . �

Lemma 15 (Noise bound for Add). Let e1 and e2 be inherent noise terms
of ciphertexts ct1 = (a1, b1) and ct2 = (a2, b2) designed for m1 and m2 ∈ Z

g
t ,

respectively. Let e be the inherent noise term of ct = Add(ct1, ct2) designed for
m1 + m2 ∈ Z

g
t . Then,

‖e‖∞ ≤ ‖e1‖∞ + ‖e2‖∞.

Lemma 16 (Noise bound for linearization). Let ev =
(
(αk,βk)

)lw−1

k=0
←

EvaluateKeyGen(s) be an evaluation key for a secret key sk = s. Suppose that a
triple of elements e, c, d in RZ satisfies

e − cs + ds2 ≡ Δmξ + x (mod q)

with mξ = ξT ·m and some x ∈ RZ bounded as ‖x‖∞ ≤ B. Let (d0, · · · ,dlw−1) =
WD(d). Then, for a = c +

∑lw−1
k=0 dkαk and b = e +

∑lw−1
k=0 dkβk, the pair ct =

(a, b) constitutes a ciphertext that has an inherent noise term y designed for m
bounded as

‖y‖∞ ≤ B + ω(
√

log λ)
√

lwmgwserr.

Proof. By definition of EvaluateKeyGen, the k-th pair (αk,βk) of ev has an
inherent noise term xk designed for wks2, which is subgaussian of parameter√

mserr. Then,



Subring Homomorphic Encryption 133

b − as ≡
(
e +

lw−1∑

k=0

dkβk

)
−

(
c +

lw−1∑

k=0

dkαk

)
s ≡ e − cs +

lw−1∑

k=0

dk(βk − αks)

≡ e − cs +
lw−1∑

k=0

dk(wks2 + xk) ≡ e − cs + ds2 +
lw−1∑

k=0

dkxk

≡ Δmξ + x +
lw−1∑

k=0

dkxk (mod q).

We estimate ‖y‖∞ for y := x +
∑lw−1

k=0 dkxk. First by Lemma 11 (1), ‖dk‖∞ ≤√
mg‖dk‖∞ ≤ √

mgw. Then, by Lemma 12, dkxk are independently subgaus-
sian of parameter ‖dk‖∞serr ≤ √

mgwserr, and
∑lw−1

k=0 dkxk is subgaussian of
parameter

√
lw

√
mgwserr. Hence,

‖y‖∞ ≤ ‖x‖∞ + ‖
lw−1∑

k=0

dkxk‖ ≤ B + ω(
√

log λ)
√

lw
√

mgwserr. �

Lemma 17 (Noise bound for Mult). Let e1 and e2 be inherent noise terms
of ciphertexts ct1 = (a1, b1) and ct2 = (a2, b2) designed for m1 and m2 ∈ Z

g
t ,

respectively. Suppose ‖ei‖∞ ≤ B (< Bcorrect) for i = 1, 2. Let f be the inherent
noise term of ct = Mult(ct1, ct2) designed for m1 � m2 ∈ Z

g
t . Then,

∥∥f
∥∥

∞ ≤ tω(
√

log λ)
√

mgskey · B + ω(
√

log λ)
√

lwmgwserr.

Proof. We prepare two claims.

Claim. Let e0 = 1
Δb1b2, c0 = 1

Δ (a1b2 + a2b1), d0 = 1
Δa1a2. Then,

e0 − c0s + d0s
2 ≡ Δmξ + x (mod q)

with mξ = (m1)ξ(m2)ξ and some x ∈ RZ bounded as

‖x‖∞ ≤ tω(
√

log λ)
√

mgskey · B.

Proof. By assumption,

bi − ais = Δ(mi)ξ + xi + αiq (i = 1, 2) (10)

with ‖xi‖∞ < B. By Lemma 12 the product ais is subgaussian of parameter
‖ai‖∞skey ≤ √

mg‖a i‖∞skey ≤ √
mgqskey. So, αi =

⌊
(bi − ais)/q

⌋
is bounded

as

‖αi‖∞ ≤ ω(
√

log λ)
√

mgskey.

By taking product of the two equations (10), we get

e0 − c0s + d0s
2 =

1
Δ

(
b1b2 − (a1b2 + a2b1)s + a1a2s

2
)

= Δ(m1)ξ(m2)ξ + x + qv
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with some v ∈ RZ , where

x = (m1)ξx2 + (m2)ξx1 +
1
Δ

x1x2 + t(x1α2 + x2α1).

By Lemmas 9 and 11,

‖(mi)ξxj‖∞ ≤ ‖(mi)ξ‖∞‖xj‖∞ =
√

mg‖n i‖∞‖xj‖∞ ≤ √
mgtB

‖ 1
Δ

x1x2‖∞ ≤ 1
Δ

‖x1‖∞‖x2‖∞ ≤ 1
Δ

Bcorrect · ‖x2‖∞ ≤
√

m

2
√

g
· B

‖txiαj‖∞ ≤ t‖xi‖∞‖αj‖∞ ≤ tBω(
√

log λ)
√

mgskey.

Hence, x is bounded as

‖x‖∞ ≤ 2
√

mgtB +
√

m

2
√

g
· B + 2

√
mgtBω(

√
log λ)

√
mgskey

= (2
√

mgt +
√

m

2
√

g
+ 2tω(

√
log λ)

√
mgskey)B

= tω(
√

log λ)
√

mgskey · B �

Claim. Let e =
⌊
e0

⌉
, c =

⌊
c0

⌉
, d =

⌊
d0

⌉
. Then,

e − cs + ds2 ≡ e0 − c0s + d0s
2 + y (mod q)

with some y ∈ RZ bounded as

‖y‖∞ ≤ ω(log λ)
√

mgs2key.

Proof. Let y = (e − e0) − (c − c0)s + (d − d0)s2 (mod q).
Using Lemma 11 (1), ‖e − e0‖∞ ≤ √

mg‖e − e0‖∞ ≤ √
mg/2.

Similarly, ‖c − c0‖∞ ≤ √
mg/2 and by Lemma 9,

∥∥(c − c0)s
∥∥

∞ ≤ ∥∥c −
c0

∥
∥

∞
∥
∥s

∥
∥

∞ ≤ √
mg/2 · ω(

√
log λ)skey = ω(

√
log λ)

√
mgskey. Similarly,

∥
∥(d −

d0)s2
∥∥

∞ ≤ ω(log λ)
√

mgs2key.
Thus,

∥
∥y

∥
∥

∞ ≤ ∥
∥e − e0

∥
∥

∞ +
∥
∥(c − c0)s

∥
∥

∞ +
∥
∥(d − d0)s2

∥
∥

∞
≤ √

mg/2 + ω(
√

log λ)
√

mgskey + ω(log λ)
√

mgs2key

≤ ω(log λ)
√

mgs2key �

By the two claims we know that

e − cs + ds2 ≡ Δmξ + z (mod q)



Subring Homomorphic Encryption 135

with z = x + y bounded as
∥∥z

∥∥
∞ ≤ ∥∥x

∥∥
∞ +

∥∥y
∥∥

∞ ≤ tω(
√

log λ)
√

mgskey · B + ω(log λ)
√

mgs2key

≤ tω(
√

log λ)
√

mgskey · B.

Finally, applying Lemma16 to our situation, we know that Mult will output
a ciphertext ct = (a , b) that has an inherent noise term f designed for mξ =
(m1)ξ(m2)ξ, satisfying that

∥∥f
∥∥

∞ ≤ ∥∥z
∥∥

∞ + ω(
√

log λ)
√

lwmgwserr

≤ tω(
√

log λ)
√

mgskey · B + ω(
√

log λ)
√

lwmgwserr.
�

Proof of Theorem 2. By Lemma 14, a ciphertext ct that encrypts plaintext m
can be correctly decrypted if its inherent noise term e designed for m satisfies
that

√
g√
m

∥∥e
∥∥

∞ <
1
2
Δ =

q

2t
.

By Lemma 17, by one multiplication,
√

g√
m

times of infinity norm of noises under
input ciphertexts increases log2(tω(

√
log λ)gskey) = O(log λ) bits. Hence, to cor-

rectly evaluate an arithmetic circuit over Z
g
t with L levels of multiplications, it

suffices that

log q > L log λ.

By Lemma 4 of [3], we can implement Decrypt algorithm by some circuit of
level Ldec = O(log λ). Hence by taking q = O(λlog λ), the subring homomorphic
encryption scheme can homomorphically evaluate its own Decrypt circuit and
will be fully homomorphic under circular security assumption. �
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Abstract. It is often considered reasonable to combine first-order
Boolean masking and shuffling countermeasures. However, shuffling
countermeasures can sometimes be applied only to some rounds to
improve performance. Herein, we define combinations of partial shuf-
fling and masking countermeasures as restricted shuffling and masking
countermeasures.

Moreover, we propose a novel leakage on restricted shuffling and
masking countermeasures that have low attack complexity and a small
correlation-reduction factor. Our novel leakage ignores the confusion
layer to prevent shuffling from increasing the attack complexity. To
reduce the complexity, we can confirm a partial correlation between the
diffusion and confusion layer outputs. We identify that our proposal,
which exploits this fact offers an overwhelming advantage compared with
existing attacks when applied to the PRINCE and SEED block ciphers.
Furthermore, we demonstrate the effectiveness of our proposed scheme
using both simulated and realistic traces. In simulations, the number of
traces required was reduced by up to 95%. When attacking a realistic
device, a few traces were enough to recover the correct key, although
existing attacks failed to reveal the correct key.

Keywords: Shuffling · Masking
Second-order correlation power analysis · PRINCE · SEED

1 Introduction

Higher-order Boolean masking [4,5] is computationally very expensive, whereas
shuffling [6,12] is usually significantly less costly when applied to non-linear
layers [12]. Moreover, first-order masking can be defeated with only modest effort
[10]. For these reasons, when implementing practical cryptographic algorithms
that have to be secure against CPA attacks, it is sometimes considered reasonable
to combine first-order Boolean masking and shuffling [6,12,16].

Many of the devices, used in IoT environments are very restricted in terms
of computing power and memory capacity. For these reasons, it is impractical to
c© Springer International Publishing AG, part of Springer Nature 2018
H. Kim and D.-C. Kim (Eds.): ICISC 2017, LNCS 10779, pp. 139–154, 2018.
https://doi.org/10.1007/978-3-319-78556-1_8
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fully prevent CPA attacks using perfect countermeasures as it is impossible in
practice to implement cryptographic algorithms to defend against CPA attacks
using full masking and shuffling. Thus, typical cryptographic algorithm imple-
mentations utilize more practical countermeasures to prevent CPA attacks they
use more secure countermeasures for parts wherein the complexity of guessing
the key is low and less secure countermeasures for other parts wherein the com-
plexity of guessing the key is significantly higher. For example, the SEED block
cipher algorithm [13] can apply first-order Boolean masking [7] and shuffling
schemes on G-functions over one or two rounds. At times, however, depending
on availability, first-order Boolean masking scheme can be selectively applied
over three rounds.

Especially, in the financial IC card of the Republic of Korea, the SEED block
cipher is used as encrypting a password. Moreover, to construct the counter-
measure implemented in software, the first-order Boolean masking and shuffling
countermeasures is sometimes employed.

In fact, it is well-known that these countermeasures are secure against second-
order CPA (SOCPA) attacks on confusion layer outputs (e.g., S-box outputs),
which are the usual targets for CPA attacks. However, we must still investi-
gate whether other potential target, in addition to confusion layer leaks, exist
for SOCPA attacks if these secure cryptographic algorithms are to be used in
practice.

Contributions. Some block ciphers, such as SEED [13] and PRINCE [1], uti-
lize bitwise AND operations in a diffusion layer after the confusion layer. When
they adopt first-order Boolean masking countermeasures in the diffusion layer,
they only utilize bitwise AND and bitwise XOR operations, as in [7]. Moreover,
to protect against SOCPA attacks in practice, first-order Boolean masking with
partial shuffling is sometimes employed [6] to improve performance; these are
defined as the restricted shuffling and first-order Boolean masking countermea-
sures in this paper. Although the confusion and diffusion layers are shuffled, the
diffusion layer outputs are loaded in order to compute next round.

In this paper, we propose a novel leakage on restricted shuffling and first-
order Boolean masking countermeasures that have low attack complexity and a
smaller correlation-reduction factor. It reduces the complexity of guessing the
key from (2n)L (for a SOCPA attack) to 22n, where n indicates the number
of blocks and L specifies the number of linear operations required to compute
a single block of the diffusion layer. In the case of PRINCE and SEED, the
complexity of guessing the key from 216 and 232 can be reduced to 28 and 216,
respectively.

Our main target is the diffusion layer outputs, which are composed of bitwise
AND and XOR operations. In addition, a partial correlation we prove between
the diffusion and confusion layer outputs will facilitate realistic recovery of the
correct key. We demonstrate that in simulations, our proposal can reduce the
number of traces required by up to 95%. We also confirm that in a more realistic
scenario, only a few traces can be enough to retrieve the correct key although
the existing SOCPA schemes fail to directly reveal it.
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2 Preliminaries

In this section, we define some necessary terminology and symbols, and describe
the algorithm used for the restricted shuffling and first-order Boolean masking
countermeasures. Then, we discuss the vulnerability in the confusion layer out-
put.

2.1 Notation

Let X denote a random variable comprising T elements Xi, represented as fol-
lows:

X = X0 ‖ X1 ‖ X2 ‖ · · · ‖ XT−2 ‖ XT−1

where Xi is an n-bit string and ‖ indicates concatenation. We also use tildes,
i.e., ˜X, to represent the application of masking. R indicates the total number of
cipher rounds. The functions κ (κm) , γ, and λ represent respectively key addition
(mask addition), confusion, and diffusion layer shuffling, where the shuffle order
is generated by the random permutation ϕ. Here, ϕ0 is the identity function,
i.e., it specifies that the shuffling countermeasure is not adopted.

2.2 Restricted Shuffling and Masking Countermeasures

In order to implement block ciphers, such as AES or SEED, so that they are
secure against power analysis attacks, countermeasures may be required. As dis-
cussed above, there are two approaches to protecting cryptographic algorithms
against power analysis attacks. Combine masking and shuffling is considered
to render effective protection for cryptographic algorithms. In [6], Herbst et al.
applied first-order Boolean masking and partial shuffling to AES for the use in
smart card implementations.

Definition 1 (Restricted shuffling and masking). When first-order Boolean
masking is applied to the entire cipher and shuffling is only applied to the first
and last rounds, we call these countermeasures restricted shuffling and mask-
ing.

Algorithm 1 shows the application of the restricted shuffling and masking
countermeasures to a block cipher that is mainly composed of key addition,
confusion, and diffusion layers.

Algorithm 1. Restricted shuffling and masking scheme
Input: Plaintext X, seen as n bits Xi, i ∈ [[0, T − 1]],

SubKeys, R + 1 (n × T )-bit constants RoundKey[r], r ∈ [[0, R]]
seen as n bits RoundKey[r]i, i ∈ [[0, T − 1]],

Output: Ciphertext X, seen as n bits Xi, i ∈ [[0, T − 1]]

� PreComputation
1: m, m′ ←R F

n
2

2: Generate the masked S-Box using m and m′
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� Encryption
// Start of partial shuffling countermeasure

3: Generate ϕ, ˜X ← κ
(

κm

(

X, m, ϕ0
)

,RoundKey[0], ϕ
)

4: Generate ϕ, ˜X ← γ
(

˜X , ϕ
)

5: Generate ϕ, ˜X ← λ
(

˜X , ϕ
)

// End of partial shuffling countermeasure

6: ˜X ← κ
(

˜X ,RoundKey[1], ϕ0
)

7: for r = 2 to R − 2 do

8: ˜X ← γ
(

˜X , ϕ0
)

9: ˜X ← λ
(

˜X , ϕ0
)

10: ˜X ← κ
(

˜X ,RoundKey[r], ϕ0
)

11: end for
12: ˜X ← γ

(

˜X , ϕ0
)

// Start of partial shuffling countermeasure

13: Generate ϕ, ˜X ← λ
(

˜X , ϕ
)

14: Generate ϕ, ˜X ← κ
(

˜X ,RoundKey[R − 1], ϕ
)

15: Generate ϕ, ˜X ← γ
(

˜X , ϕ
)

16: Generate ϕ, X ← κm

(

κ
(

˜X ,RoundKey[R], ϕ
)

, m, ϕ0
)

// End of partial shuffling countermeasure
17: return X

2.3 Existing Confusion Layer Vulnerabilities in Block Ciphers

In this section, we describe the existing vulnerabilities, which commonly exploit
the confusion layer output. In general, the confusion layer of a block cipher com-
prises S-boxes whose output is the main target for performing CPA. In order to
protect S-box operation against generic CPA attacks, first-order Boolean mask-
ing and shuffling countermeasures are typically employed together due to the
trade-offs involved in the security features of these countermeasures. Then, these
countermeasures cannot be easily broken except by a profiling attack. Enormous
numbers of traces are required to successfully break them, and it is well-known
that more traces are required to retrieve the correct key when shuffling is applied.
There are two main attacks against shuffling countermeasures: a generic CPA
and an integrated CPA against shuffling countermeasure. We call the generic
and integrated SOCPAs as G-SOCPA and I-SOCPA, respectively.

Remark 1 (G-CPA: Generic CPA against shuffling [11]). The signal, including
information about the sensitive variable X, is randomly split over p different
signals, reducing the correlation coefficient by the shuffling complexity p. In
other words, α×p2 traces are required to retrieve the correct key when shuffling
is applied, where α is the number of traces required to recover the correct key
when shuffling is not applied.
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Remark 2 ( I-CPA: Integrated CPA against shuffling [15]). Herein, although the
signal, including information about the sensitive variable X, is still randomly
split over p different signals, the correlation coefficient is reduced by a factor
of

√
p instead of the shuffling complexity p. In other words, α × p traces are

required to retrieve the correct key when shuffling is applied.

For example, when the 16 S-boxes of a PRINCE implementation are shuffled,
162 and 16 times more traces are required for the G-CPA and I-CPA attacks,
respectively. These approaches can be extended to perform SOCPA attacks
against combined shuffling and masking countermeasures. In that case, the shuf-
fling complexity increases from p to p·(p−1)

2 .

3 A Novel Leakage Against Restricted Masking and
Shuffling Countermeasures

In this section, we describe a novel vulnerability of block ciphers using restricted
shuffling and masking countermeasures. In other words, we exploit a new target
instead of an existing one to reduce the number of traces required to retrieve
the secret key. Our proposed main target is the diffusion layer output, which
consists of AND and XOR operations, as opposed to the confusion layer output
that is the usual target of attacks. We bypass the confusion and diffusion layers
of first round to prevent a further increase of the attack complexity owing to
shuffling countermeasure.

Unlike the confusion layer, no one has yet tried to attack the diffusion layer
output of a block cipher when restricted shuffling and masking countermeasures
are used together, because of the increased attack complexity. For example, in
Algorithm 1, the attack complexity is 22n when the main target is the confusion
layer output. In contrast, the attack complexity when targeting the diffusion
layer output is generally (2n)L when the main target is the output, where L is
the number of linear operations required to compute a single block of diffusion
output. The diffusion layer output of a block cipher is therefore not commonly
considered to be a leakage point.

We propose a novel leakage for the diffusion layer output when block ciphers
are implemented to protect against CPA by combining restricted shuffling and
masking countermeasure. In particular, we assume that the diffusion layer only
comprises AND and XOR operations, as in [7]. The following lemma allows us
to retrieve the correct key and reduce the complexity of SOCPA attacks.

Lemma 1. Let A,B, and C be n bit variables. Then, (A ∧ B) ⊕ (A ∧ C) if and
only if A ∧ (B ⊕ C).

Proof. By Table 1, A⊕B corresponds to (A∨B)∧ (A∧B)c. Based on this fact,
we can prove Lemma 1 as follows.
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Table 1. Truth table

A B A ⊕ B (A ∨ B) ∧ (A ∧ B)c

F F F F

F T T T

T F T T

T T F F

(A ∧ B) ⊕ (A ∧ C)
⇔ {(A ∧ B) ∨ (A ∧ C)} ∧ {(A ∧ B) ∧ (A ∧ C)}c

⇔ {A ∧ (B ∨ C)} ∧ (A ∧ B ∧ C)c

⇔ {A ∧ (B ∨ C)} ∧ {A ∧ (B ∧ C)}c

⇔ {A ∧ (B ∨ C)} ∧ {Ac ∨ (B ∧ C)c}
⇔ [{A ∧ (B ∨ C)} ∧ Ac] ∨ [{A ∧ (B ∨ C)} ∧ (B ∧ C)c]
⇔ A ∧ (B ∨ C) ∧ (B ∧ C)c

⇔ A ∧ (B ⊕ C)

�	
As previously discussed, our main target is the diffusion layer output, which

comprises AND and XOR operations. In other words, by using a SOCPA attack,
we can retrieve the correct key from the input to the second round by utilizing
Lemma 1. Generalizing Lemma 1 to the diffusion layer output is more compli-
cated so instead we show how to apply it to two block ciphers: PRINCE and
SEED. Without loss of generality, we define Yi as the confusion layer output cor-
responding to S[Xi ⊕RoundKey[r]i], where S[·] refers to an S-box and 0 ≤ i < T .

3.1 Case Study on the PRINCE Block Cipher

Before showing how to utilize Lemma 1, we briefly discuss the diffusion layer
of the PRINCE block cipher. For this cipher, the basic operation unit is a
nibble and L, the number of blocks used to compute a single diffusion layer
output, is 4.

Diffusion Layer. The diffusion layer output can be calculated as follows.

Z0+i = (M0 ∧ Y0+i) ⊕ (M1 ∧ Y1+i) ⊕ (M2 ∧ Y2+i) ⊕ (M3 ∧ Y3+i)
Z1+i = (M1 ∧ Y0+i) ⊕ (M2 ∧ Y1+i) ⊕ (M3 ∧ Y2+i) ⊕ (M0 ∧ Y3+i)
Z2+i = (M2 ∧ Y0+i) ⊕ (M3 ∧ Y1+i) ⊕ (M0 ∧ Y2+i) ⊕ (M1 ∧ Y3+i)
Z3+i = (M3 ∧ Y0+i) ⊕ (M0 ∧ Y1+i) ⊕ (M1 ∧ Y2+i) ⊕ (M2 ∧ Y3+i)

where i ∈ {0, 4, 8, 12} and M0 = 0x7,M1 = 0xB,M2 = 0xD,M3 = 0xE.
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In order to mount a SOCPA attack on our new target against the restricted
shuffling and masking countermeasures, we focus on the point wherein the second
round input is loaded, which directly gives the diffusion layer output because
shuffling countermeasures are only applied to the first and last rounds. To utilize
Lemma 1, we have to select one of the four cases {0, 4, 8, 12}. Subsequently, to
perform a SOCPA attack, preprocessing is required after selecting two leakage
points, we now provide an example for {Z0+i, Z1+i}.

Z0+i ⊕ Z1+i

={(M0 ∧ Y0+i) ⊕ (M1 ∧ Y1+i) ⊕ (M2 ∧ Y2+i) ⊕ (M3 ∧ Y3+i)}⊕
{(M1 ∧ Y0+i) ⊕ (M2 ∧ Y1+i) ⊕ (M3 ∧ Y2+i) ⊕ (M0 ∧ Y3+i)}

={(M0 ⊕ M1) ∧ Y0+i} ⊕ {(M1 ⊕ M2) ∧ Y1+i}⊕
{(M2 ⊕ M3) ∧ Y2+i} ⊕ {(M3 ⊕ M0) ∧ Y3+i} (By Lemma 1)

=(11002 ∧ Y0+i) ⊕ (01102 ∧ Y1+i) ⊕ (00112 ∧ Y2+i) ⊕ (10012 ∧ Y3+i)
=((Y0+i)(3) ⊕ (Y3+i)(3) || (Y0+i)(2) ⊕ (Y1+i)(2) ||

(Y1+i)(1) ⊕ (Y2+i)(1) || (Y2+i)(0) ⊕ (Y3+i)(0))

where (X)(s) means the s-th least significant bit.
By Eq. (1), it can be noted that each bit of diffusion layer outputs is related to

two rather than four confusion layer outputs. Therefore, the attack complexity,
based on Lemma 1, can be reduced from (24)4 to (24)2 for a SOCPA attack. For
example, (Z̃0+iZ̃0+ĩZ0+i ⊕ Z̃1+iZ̃1+ĩZ1+i) ∧ 01002 = (Z0+i ⊕ Z1+i) ∧ 01002 = (Y0+i)(2) ⊕ (Y1+i)(2).

As mentioned earlier, with the restricted shuffling and masking countermea-
sures, we can mount a SOCPA attack because each byte is masked using the
identical value. Consequently, we can perform a SOCPA attack on the diffusion
layer output with an attack complexity of (24)2.

3.2 Case Study on the SEED Block Cipher

Similar to block cipher PRINCE, we briefly explain the diffusion layer of block
cipher SEED. Although block cipher SEED consists of two type S-boxes, we
maintain the notation of S-box as previous. By the definition of block cipher
SEED, the basic operation unit is byte and L corresponds to 4 which is identical
to block cipher PRINCE.

Diffusion Layer. The diffusion layer output of the SEED block cipher can be
calculated as follows.

Z0 = (M0 ∧ Y0) ⊕ (M1 ∧ Y1) ⊕ (M2 ∧ Y2) ⊕ (M3 ∧ Y3)
Z1 = (M1 ∧ Y0) ⊕ (M2 ∧ Y1) ⊕ (M3 ∧ Y2) ⊕ (M0 ∧ Y3)
Z2 = (M2 ∧ Y0) ⊕ (M3 ∧ Y1) ⊕ (M0 ∧ Y2) ⊕ (M1 ∧ Y3)
Z3 = (M3 ∧ Y0) ⊕ (M0 ∧ Y1) ⊕ (M1 ∧ Y2) ⊕ (M2 ∧ Y3)
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where M0 = 0xFC,M1 = 0xF3,M2 = 0xCF,M3 = 0x3F .

As before, we now give an example for {Z0, Z1}.

Z0 ⊕ Z1

={(M0 ∧ Y0) ⊕ (M1 ∧ Y1) ⊕ (M2 ∧ Y2) ⊕ (M3 ∧ Y3)}⊕
{(M1 ∧ Y0) ⊕ (M2 ∧ Y1) ⊕ (M3 ∧ Y2) ⊕ (M0 ∧ Y3)}

={(M0 ⊕ M1) ∧ Y0} ⊕ {(M1 ⊕ M2) ∧ Y1}⊕
{(M2 ⊕ M3) ∧ Y2} ⊕ {(M3 ⊕ M0) ∧ Y3} (By Lemma 1)

= (000011112 ∧ Y0) ⊕ (001111002 ∧ Y1) ⊕
(111100002 ∧ Y2) ⊕ (110000112 ∧ Y3)

={110000002 ∧ (Y2 ⊕ Y3)} ⊕ {001100002 ∧ (Y1 ⊕ Y2)}
⊕ {000011002 ∧ (Y0 ⊕ Y1)} ⊕ {000000112 ∧ (Y3 ⊕ Y0)}

(1)

This shows that ˜Z0
˜Z0
˜Z0 ⊕ ˜Z1

˜Z1
˜Z1 leaks second-order information that indicates part

of Y2 ⊕ Y3, Y1 ⊕ Y2, Y0 ⊕ Y1 or Y3 ⊕ Y0. For example, (˜Z0
˜Z0
˜Z0 ⊕ ˜Z1

˜Z1
˜Z1) ∧ 000011002 =

(Z0 ⊕ Z1) ∧ 000011002 = (Y0 ⊕ Y1) ∧ 000011002. Consequently, the complexity
of the attack required to recover the secret key is 216 instead of 232.

4 Security Analysis

In this section, we perform our proposed attack, as well as G-SOCPA and I-
SOCPA attacks, on simulated and realistic traces. As discussed previously, we
use correlations with the combined S-box outputs to guess the intermediate
variables. However, unlike existing schemes, our proposed attack point where
the diffusion layer output data is loaded as input. That is, the point wherein
the diffusion layer output is loaded into the next operation after the diffusion
layer has been calculated. To make this clearer, we summarize the attack point,
complexities, and correlation-reduction factors of the different attacks in Table 2.

Except for Case 3, the intermediate variables are combinations of S-box out-
puts. Thus, we do not consider Case 3 in this paper due to its high complexity.
Instead, we focus on performing Cases 1, 2, and 4 against restricted shuffling
and masking countermeasures. In Cases 1 and 2, the attack point is conven-
tional. Although the restricted shuffling countermeasure is used, the S-boxes are
the main targets. Therefore, the main leaks are at the points wherein the S-box
outputs are loaded or saved.

In contrast to the usual approach, our proposal regards the point wherein
the diffusion layer outputs are loaded as the main leak. The point wherein the
diffusion layer outputs are saved cannot be used due to the shuffling counter-
measure. In spite of this limitation, our proposal still has an advantage because
the loading point has been used for some template attacks [3], indicating that
its leakage is sufficient.
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Table 2. Summary of targets for experimental SOCPA attacks

Case Attack
scheme

Intermediate
variables

Attack point Attack
complexity

Correlation-
reduction factor

Case 1 G-SOCPA S-box
outputs

Loading or
Saving of
S-box outputs

22n 1/
(

T
2

)

Case 2 I-SOCPA S-box
outputs

Loading or
Saving of
S-box outputs

22n 1/
√

(

T
2

)

Case 3 G-SOCPA Diffusion
layer outputs

Loading of
Diffusion layer
outputs

(2n)L 1

Case 4 Our
suggestion

S-box
outputs

Loading of
Diffusion layer
outputs

22n 1/
√

n
l

The correlation-reduction factor is the factor by which the correlation
between the intermediate variable and trace is reduced for SOCPA attack. In
Case 1, the correlation is reduced by 1/

(

T
2

)

because the shuffling complexity
T . Namely, the number of traces required to retrieve the correct key in Case
1 is α × (

T
2

)2
, where α is the number of traces required without the shuffling

countermeasure [8]. In the same way, the number of traces required in Case 2 is
α × (

T
2

)

[15].
Our proposal is not affected by shuffling countermeasure since the main tar-

get is the point wherein the diffusion layer outputs are loaded. However, the
intermediate variable is only partially available as the critical key leakage due
to a partial correlation with the combined S-box outputs. More precisely, the
correlation-reduction factor for our suggestion is derived from Sect. 4.1 where
n indicates the number of bits in the intermediate variable, and l denotes the
number of bits in the S-box outputs that are correlated when performing the
SOCPA attack. In the case of the PRINCE block cipher, n and l are 4 and 1,
respectively.

The number of traces required for our proposal can be roughly determined
from the correlation-reduction factor. By [8], the number of traces required
depends on the inverse square of the correlation-reduction factor, meaning
α × (√

n
l

)2
traces are required.

4.1 Statistical Derivation of the Correlation Reduction Factor

Herein, we derive the correlation-reduction factor for our proposal. We assume
that the power consumption conforms to the linear Hamming weight model [2].
Therefore, the basic model for the intermediate variable can be written as:

W = H(V ) + N (2)
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where H (·) is the Hamming weight function, V is the intermediate variable
(e.g., S[X0⊕RoundKey[0]0]⊕S[X1⊕RoundKey[0]1] for SOCPA), W is the power
consumption, and N is the noise, defined as N ∼ N (0, σ2), where σ2 denotes
the noise variance.

If the pre-processed power consumption W perfectly conforms to the linear
Hamming weight model, then we have the correlation ρWV = cov(W,H)

σW σH
where

H is H(V ). In our proposal, part of H(V ) is utilized to perform the SOCPA
attack. This correlation can be written as in Lemma2.

Lemma 2. Let H ′(V ) be the Hamming weight derived from part of the inter-
mediate variable, n be the number of bits in the intermediate variable, and l be
the number of bits in the S-box output that are correlated for the SOCPA attack.
Then, we have

ρWH′ = ρWHρHH′ =

√

l

n
ρWH

Proof. The proof of Lemma 2 is given in AppendixA. �	
For example, in the cases where n = 4 and l = 1 (for the PRINCE block

cipher) or n = 8 and l = 2 (for the SEED block cipher), the correlation is

reduced by
√

1
4 =

√

2
8 . Therefore, the number of traces required is at least four

times more than without the countermeasure.

4.2 Simulation Evaluation

In this section, we evaluate the proposed scheme against restricted shuffling and
masking countermeasures when the leakage conforms to Eq. (2). Herein, we gen-
erated T intermediate variables at the points (V0, V1, · · · , VT−1), which specify
(Yϕ(0), Yϕ(1), · · · , Yϕ(T−1)) for Cases 1 and 2 or (Z0, Z1, · · · , ZT−1) for Case 4,
where ϕ(i) means the ith operation after applying the shuffling countermeasure.

More precisely, to provide practical attack scenarios, we considered models
with three noise level: low, medium, and high, with standard deviations of σlow =
0.25, σmed = 1, and σhigh = 4, respectively.

In addition, we used guessing entropy [14] as the security metric because we
consider realistic countermeasures in this paper. In all experiments, 1, 000, 000
traces were generated, and each attack was repeated 50 times using randomly
chosen traces.

4.2.1 PRINCE Block Cipher

The PRINCE block cipher’s substitution comprises 16 S-boxes; therefore shuf-
fling complexity for the substitution layer is 16. For our proposal, we generate
traces diffusion layer output traces because the data cannot be shuffled when the
diffusion layer output is loaded, although restricted shuffling and masking coun-
termeasures were applied to the diffusion layer. Using this setup, we evaluated
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Fig. 1. Simulation results for the PRINCE block cipher

Cases 1, 2, and 4 against restricted shuffling and masking countermeasures for
the PRINCE block cipher, and the results are shown in Fig. 1.

The intermediate variable Y0 ⊕ Y1 was used to evaluate Cases 1 and 2. For
Case 4, (Y0 ⊕ Y1) ∧ 01002 was used to target the combination of Z0 and Z1.

For the low noise model, our proposal and I-SOCPA both recovered the secret
key for a few traces. Although there was no full leakage with respect to G-SOCPA,
a quarter of the guessing entropy was revealed. In contrast, our proposal achieved
full leakage with only 1, 000 traces, where 20 times as many traces were required
to reach a guessing entropy of 1 with I-SOCPA.

The guessing entropy of I-SOCPA dropped below 5 for the medium noise
model although the correct key could not be retrieved directly. In addition, Case
4 (our proposal) was still very effective as it only required 2, 500 traces to recover
the correct key.

Lastly, for the high noise model, the correct key was not be completely
revealed for all cases. However, the guessing entropy for our proposal appeared to
converge to a very low value; therefore, it could still be considered to be practical
attack scheme against restricted shuffling and masking countermeasures.

4.2.2 SEED Block Cipher

This section is analogous to the previous one for the PRINCE block cipher
in terms of experimental method. However, the substitution layer for SEED’s
G-function consisted of four S-boxes. The SEED cipher’s security may not be
sufficient despite the shuffling countermeasure, owing to the small the number
of S-boxes. To reinforce its security, fixed dummy operations can be effective
[6]; therefore, four dummy operations (the same as the number of S-boxes) were
used in our experiment, indicating that T was eight.

Using this setup, we evaluated Cases 1, 2, and 4 against restricted shuffling
and masking countermeasures for the SEED block cipher, and the results are
shown in Fig. 2. The intermediate variable Y0 ⊕ Y1 was used to evaluate Cases 1
and 2, and (Y0 ⊕ Y1) ∧ 000011002 was used for Case 4.
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Fig. 2. Simulation results for the SEED block cipher

For the low noise model, several of the attacks revealed the correct key.
However, the guessing entropy was over 1, 000 for G-SOCPA; therefore, it could
not retrieve the correct key despite the low noise. As expected, this demonstrated
the effectiveness of the windowing attack, which only required 13, 000 traces to
reach a guessing entropy of 1. In addition, our proposal only required 1, 500
traces (about 1/8 of as many) to recover the correct key. In the medium noise
model, even though the I-SOCPA attack only needed about 28, 000 traces to
confirm the leakage of the correct key, roughly 3, 000 traces allow Case 4 (our
proposal) to reveal the correct key.

As expected for the high noise, the correct key could not be retrieved. Only
our proposal was almost able to find the correct key so it could have broken the
countermeasure if more traces had been collected.

4.3 Practical Evaluation

In this section, we present experimental results for a realistic embedded board.
For this, we used an XMEGA128D4-I chip embedded on a ChipWhisperer-Lite
(CW1173) [9]. The sampling rate was four times the 29.5 MHz clock frequency
of the chip. There are two attack targets. For Cases 1 and 2, we acquired traces
when the substitution layer was calculated. For our proposal, traces were col-
lected when the diffusion layer outputs were loaded. As with the simulation
results, guessing entropy was employed as the security metric, calculated using
the same variables as in the simulations.

The results for this experiment are analogous to the medium noise cases in
the simulations. The I-SOCPA attack was able to achieve low guessing entropy
but could not immediately find the correct key. Our proposal, which utilizes the
correlation between the diffusion layer and confusion layer outputs, was more
effective than the existing attacks, requiring only 3, 000 and 7, 000 traces to find
the correct key directly for the PRINCE and SEED ciphers, respectively.

In conclusion, our proposed scheme offers an overwhelming improvement in
terms of the number of traces required. More precisely, an adversary using our
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Fig. 3. Realistic results for the PRINCE and SEED block ciphers

proposal would require more than 17 times fewer traces to break the PRINCE
block cipher and achieve a guessing entropy of one compared to I-SOCPA.

5 Conclusion

Restricted shuffling and masking countermeasures can provide adequate security
and performance in practice. However, this countermeasure can be defeated by
our proposed scheme due to a partial correlation between the diffusion layer
and confusion layer outputs. Using simulations, we have demonstrated that our
proposal offers an overwhelming advantage compared with existing attacks. For
instance, the number of traces required can be reduce by 95%, from 21, 000 to
1, 000, for the PRINCE block cipher. Moreover, for a realistic scenario, we have
demonstrated that the correct key can be retrieved using only a few traces even
though other attacks such as G-SOCPA and I-SOCPA fail to reveal the correct
key directly.

To protect against our proposal in the real-world, the diffusion layer out-
puts would have to be concealed a series of different masking values with each
row. Moreover, this computation would have to be done as part of the shuffling
countermeasure and with acceptable overhead.
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A Proof of Lemma 2

Proof. First, we prove the equation ρWH′ = ρWHρHH′ , which can be derived as
in [6].

ρWH′ =
Cov(W,H ′)

σW σH′
=

Cov(H + N,H ′)
σW σH′

=
E[(H + N)H ′] − E[H + N ]E[H ′]

σW σH′

=
E[HH ′] − E[H]E[H ′]

σW σH′
=

Cov(H,H ′)
σW σH′

=
Cov(H,H ′)

σHσH′
· σ2

H

σW σH

= ρHH′ · Cov(H + N,H)
σW σH

= ρWH · ρHH′

Before we prove the equation ρHH′ =
√

l
n , we define Hl as the Hamming

weight for l bits out of a total of n bits. Then, by [11], E[Hl] = l
2 , V ar[Hl] = l

4 ,
and hence
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Abstract. We present new methods for detecting plagiarized code seg-
ments using side-channel leakage of microcontrollers. Our approach uses
the dependency of side-channel leakage on processed data and requires
that the implementation under test accepts varying known input data.
Detection tools are built upon a similarity matrix that contains the abso-
lute correlation coefficient for each combination of time samples of the
two possibly different implementations as result of side channel measure-
ments. These methods are evaluated on smartcards with ATMega163
microcontroller using different test applications written in assembly lan-
guage. We show that our methods are highly robust even against a skilled
adversary who modifies the original assembly code in various ways. Our
approach is non-intrusive, so that the application does not need to be
additionally watermarked in order to be protected—the resulting pattern
of data leakage of the microcontroller executing the code is considered
as its own watermark.

Keywords: Side-channel watermarking · IP protection
Code similarity analysis · Similarity matrix
Software reverse engineering · Embedded software

1 Introduction

Intellectual property (IP) theft of embedded software for microcontrollers with
effective read-out protection of memories constitutes a hard problem for IP pro-
tection nowadays. A direct binary analysis is not feasible as the suspicious pro-
gram code needs to be physically extracted from the internal code memory first
which constitutes a hard and cost-intensive problem in practice. To address this
problem, the use of side channel leakage was first proposed by Becker et al.
[1] by implementing additional watermarking code for a leakage generator. In
their followup work, Becker et al. [2] have used the coincidence that ATMega8
microcontrollers leak the Hamming weight of the opcode when an instruction
is fetched. The power traces are converted into strings, and the strings are
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compared using string matching algorithms, such as edit distance and Boyer-
Moore-Horspool algorithm. However, this approach relies on processor-specific
properties that do not in general apply—not all microcontrollers leak Hamming
weights of the opcodes. In addition, Hamming weights of opcodes are not unique,
such that many different instructions can have the same Hamming weight. Also,
the method is not robust against code-transformation attacks that exchange
assembly instructions by others leading to the same output, replace registers
and RAM and flash addresses of variables and data.

A different approach was taken by Strobel et al. [3], where the authors tried to
disassemble instructions from electromagnetic (EM) traces of PIC16F687 micro-
controller by training a classifier that is able to distinguish 87.60% of instruction
classes correctly. This approach, however, has been only tested on a small range
of microcontrollers.

Another way to prove ownership is to look for dependency between the
power consumption and executed code. Durvaux et al. [4] compute similarity
of two power traces using Pearson’s correlation along the time axis. The intrin-
sic side channel leakage of different implementations is compared without the
need of additional watermarking code. However, their proposed method shows
low robustness if the adversary adds dummy instructions to the IP protected
code.

In this work we propose a new method that addresses the software plagiarism
problem on a much finer level—our method can not only identify whether the
whole program is a plagiarism, but also which code segments have been plagia-
rized. In addition, our method shows a significantly better robustness against
additions of dummy code when compared to the current state of the art app-
roach.

2 Our Approach

Since the pioneering work of Kocher et al. [5] it is well known that during code
execution data dependencies in microcontroller programs induce side-channel
leakage that is measurable in the power consumption of the microcontroller or
in its electromagnetic (EM) emanation. And side-channel leakage discloses the
positions in time where a targeted intermediate data item is processed, such that
repeatedly processing the same data using the same implementation will result
in a very similar physical leakage. Our approach builds upon this finding for the
use in IP protection. Considering the framework for IP protection of [6], our
contribution introduces new detection tools for IP protection using side channel
leakage. Our main approach requires that an equivalent input data channel is
available for the configuration of the program code of the genuine implemen-
tation and the second unknown and possibly suspicious implementation. The
existence of an equivalent input data channel is a reasonable assumption when
different program code is used for the same purpose. Our objective is to provide
robust similarity detection tools using code and data characteristics in two given
implementations.
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2.1 Extraction: Data Acquisition

The objective of the data acquisition step is the collection of N side channel
traces of the genuine program and N side channel traces of the unknown pro-
gram, both processing the same list of N varying input data. This can be achieved
either in a chosen-input scenario but also in a known-input scenario. In the latter
case the unknown program has to be measured first and a chosen-input variant
of the genuine program has to be available that is fed with the same input data
afterwards. Each set of measurements and their corresponding input data rep-
resent a soft physical hash value [6] or a fingerprint of the genuine and unknown
code, respectively. To make comparison of similarity easier, it is recommended
to use an identical measurement setup for both implementations. Details on
side-channel measurement setups can be found in [5,7].

2.2 Extraction: Preprocessing

Before comparing the two fingerprints, the number of samples per trace is
reduced by compressing them, e.g., by extracting the mean of each clock cycle.
In principle, this preprocessing step is optional, but useful in practice to reduce
the computation time in the following detection phase.

2.3 Detection: Similarity Matrix

As result of the extraction phase, we build two matrices:

1. An N ×M1 matrix Tgenuine that contains N rows of compressed side channel
traces with M1 samples each. Tgenuine contains the extracted measurement
data from the genuine implementation.

2. An N ×M2 matrix Tunknown that contains N rows of compressed side channel
traces with M2 samples each. Tunknown contains the extracted measurement
data from the unknown implementation.

In the following, we denote an entry of a matrix T as Tij , the j-th column
vector as T:,j , and the i-th row vector as Ti,:. An entry of a vector x is denoted
by xi and xT is the transpose of x .

For the computation of similarity between the data leakage of the genuine
and the unknown code the sample Pearson correlation coefficient

ρ̂(x ,y) =
ΣN

i=1(xi − x̂)(yi − ŷ)
σ̂xσ̂y

is used, where x and y are vectors of length N , x̂ and ŷ are the sample means of
x and y , respectively, and σ̂x, σ̂y are their respective sample standard deviations.

The basis for our detection methods is the M1×M2 similarity matrix S. Each
entry Sij is the absolute correlation coefficient of the column vector Tgenuine:,i
and the column vector Tunknown:,j .
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S =

⎛
⎜⎜⎜⎜⎝

|ρ̂(Tgenuine:,1 , Tunknown:,1)| · · · |ρ̂(Tgenuine:,1 , Tunknown:,M2
)|

· · · · ·
· · · · ·
· · · · ·

|ρ̂(Tgenuine:,M1
, Tunknown:,1)| · · · |ρ̂(Tgenuine:,M1

, Tunknown:,M2
)|

⎞
⎟⎟⎟⎟⎠

It holds 0 ≤ Sij ≤ 1 for all entries of S. If Sij is close to 1 this indicates
a high similarity between sample point i in the genuine implementation and
sample point j in the unknown implementation, whereas entries with Sij close
to 0 indicate that there is no similarity at these two sample points.

In the final step, we need to make a decision whether the two implementations
are similar or not as a whole, and whether they contain highly similar subparts.

Detection Tool: Visual Inspection. The similarity matrix pinpoints the
sequence of data processing in the unknown implementation and its analysis
discloses the structure of the unknown program code. To quickly find code sim-
ilarities, we plot the resulting similarity matrix and inspect it visually. Visual
inspection is an extremely powerful tool when the unknown program contains a
one-to-one copy of the original code, in which case the matrix will contain many
diagonal lines with absolute correlation coefficients close to 1.

Detection Tool: Maximum Projection. Rows and columns of the similarity
matrix S represent the time measured in samples or clock cycles. To analyze the
similarity matrix computationally, we project the matrix either onto the rows
or onto the columns by using the maximum function. By projecting along the
rows we can see which clock cycles of the genuine implementation are covered
by the unknown implementation. Concretely, the maximum projection of S onto
the rows results in an M2-dimensional vector

pT
row =

(
max

i=1,··· ,M1
Si1, · · · , max

i=1,··· ,M1
SiM2

)

On the other hand, projecting the matrix onto the columns will reveal the
clock cycles where the genuine implementation processes the same data as the
unknown one. The M1-dimensional vector pcol is computed as

pcol =

⎛
⎜⎜⎜⎝

max
j=1,··· ,M2

S1j

...
max

j=1,··· ,M2
SM1j

⎞
⎟⎟⎟⎠

For both projection vectors it holds that sub-parts with high correlation
values in succession suggest that the same intermediate data is processed using
the same code segment by the microcontroller. For the quantification of similarity
we use the mean absolute correlation coefficient calculated over all entries of prow

and pcol
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ρrow =
1

M2

M2∑
i=1

prowi
and ρcol =

1
M1

M1∑
i=1

pcoli .

Accordingly, local similarity is assessed by computing the mean absolute
correlation coefficient over pre-selected sub-parts of the vectors prow and pcol .

3 Experiments

We evaluate our approach on different smartcards with ATmega163 microcon-
troller [8]. It is an 8-bit RISC microcontroller based on the AVR architecture run-
ning at 4 MHz with 16 K bytes of flash memory, 1024 bytes internal SRAM, and
32 general-purpose registers [9]. The processor uses a two-stage pipeline, where
one instruction is executed while the next instruction is fetched and decoded. We
measure the voltage variations of the smartcard over a resistor inserted between
the ground path from the smartcard socket to the power supply using a digital
oscilloscope (PicoScope 6402C) running at the sampling frequency of 325 MHz.
For each implementation we recorded 10.000 power traces.

We test our approach on five implementations of AES encryption written
in assembly language. The AES implementations serve as an example of sev-
eral implementations of the same data-dependent algorithm. Thereby we target
the problem of distinguishing several implementations of the same algorithm or
application. The purpose of our experiments is not only to show that identi-
cal implementations can be detected as a whole, but also which of their code
segments are similar or even identical to each other.

Our test implementations differ in their overall duration and structure. An
overview is shown in Fig. 1. AES-0 was written by us, AES Labor is available
from [10], Fast, Furious, and Fantastic are available from [11]. Fast uses two
sbox tables, which results in data leakage that is very different from the leakage
of all other implementations. Some code parts of different implementations are
the same. For example, the key expansion of Fast and Furious are identical. The
MixColumns operation of AES-0 and AES Fantastic follow the same low-level
specification of the algorithm but utilize different registers and data addresses.

Fig. 1. AES implementations used in our experiments.

We explore two cases of plagiarism: (i) The passive adversary copies the
entire machine code or parts thereof into his own implementation. This case is
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considered in Sect. 3.1. (ii) The active adversary modifies the machine code in
various ways before copying it or parts thereof into his own implementation.
This case is covered in Sect. 3.2.

3.1 Plagiarized Code Without Modification

Visual Inspection. By visually inspecting a similarity matrix, we can
detect identical and similar code. Figure 2 shows segments of similarity matri-
ces for all implementations and the following AES operations: ExpandKey1,
AddRoundKey2, ShiftRows2 and SubBytes2, and MixColumns2, where sub-
scripts denote the round of the corresponding function. When comparing each
implementation to itself, we see long lines of high correlation along the diagonal
in the similarity matrices, as shown in Fig. 10. This is expected, since the same
implementations process the same data using the same sequence of instructions.

Fig. 2. Segments of similarity matrices for selected subparts of all AES implemen-
tations. Black points signify high absolute correlation (close to 1), and white points
signify low correlation (close to 0). Subscripts of selected AES subparts denote the
AES round: ExpandKey1 is the key expansion in the first AES round (the key will be
used by AddRoundKey2). RijndaelFast has no clear distinction between AddRound-
Key, ShiftRows, SubBytes, and MixColumns, so that we consider its entire second
round when we compare it to the other implementations.

Several observations can be made. For example, key expansion is differ-
ent in all implementations except for Fast and Furious, where it is identical.
AddRoundKey2 is similar for all implementations except for Fast. MixColumns2
is identical in AES-0 and Fantastic, except for the registers used. The other
operations are similar but not identical, and we can see that the similar values
are processed at slightly different times.

Maximum Projection. Figure 3 shows the results of projecting the maximum
values onto the rows of the similarity matrices for Furious and all the other tested
AES implementations. When comparing Furious with Furious, we have used
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Fig. 3. Maximum projection of all AES implementations onto Furious.

two different sets of traces. The maximum projection for Furious is the highest
when it is compared to itself. The graphs also suggest that Fast and Furious
implementations have identical key expansion algorithm. The high plateaus in
AES Labor are executions of AddRoundKey. The correlation at the same times
is still significant for all other implementations except for Fast, for which only
the very first and the very last key additions shows high correlated sequences.
By projecting a known implementation onto unknown implementation, we can
uncover the structure of the unknown implementations, as shown in Fig. 7.

Maximum projection graphs can be summarized by computing the mean
absolute correlation coefficient. The resulting number indicates the similarity
between the implementations. Table 1 shows the mean absolute correlation coef-
ficients for all our test AES implementations. Identical implementations have the
mean correlation close to 1.0. Similar implementations, such as AES-0, Furious,
and Fantastic result in high mean correlation coefficients. Even though Fast is
very different from the other implementations, its intermediate values are similar
enough to produce a significant correlation, so that we can conclude that Fast
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Table 1. Mean absolute correlation of projecting traces of each implementation (row)
into traces of each other implementation (column).

AES-0 AES Labor Furious Fast Fantastic

AES-0 0.97 0.41 0.63 0.33 0.53

AES Labor 0.42 0.91 0.46 0.29 0.39

Furious 0.61 0.44 0.96 0.45 0.54

Fast 0.35 0.32 0.46 0.96 0.29

Fantastic 0.58 0.40 0.62 0.30 0.93

Fig. 4. Absolute correlation of Furious with Furious when non-matching data was used.
Total mean absolute correlation equals to 0.061. High peaks happen when constants
are processed (e.g. loading a constant into a register).

is performing an AES encryption. In contrast, when different data is processed,
the mean absolute correlation is low, as shown in Fig. 4.

To reveal more details about a suspicious implementation at hand, the maxi-
mum projection graph can also be summarized by computing the mean absolute
correlation for each known operation, as shown in Table 2. Here we can see which

Table 2. Mean absolute correlation of projecting similarity matrices of all AES imple-
mentations into the implementations denoted by symbol “→”. Numbers in bold signify
identical code. AK-AddRoundKey, SB-SubBytes, MC-MixColumns, KE-KeyExpansion.
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subparts of the code are similar or even identical. For example, we know that the
key expansion of Fast and Furious is identical; and that AES-0 and Fantastic
have similar MixColumns.

3.2 Modified Plagiarized Code

To simulate an attacker who actively manipulates plagiarized code, we have
selected Furious as our genuine implementation and modified it in various ways,
cf. [4,12].

Address modification (addr). In this attack, we change the usage of all registers of
the Furious implementation. For example, register r8 is consistently used instead
of r0. In addition, the variables for the key, the expanded key, the plaintext,
and the ciphertext are stored in different locations in the SRAM. Finally, the
constants sbox and xtime are moved to different flash addresses.

Instruction reordering (swap). In this attack, we change the order of individ-
ual instructions, and also swap entire blocks of instruction without changing the
number of clock cycles required to perform the encryption. Concretely, we change
the order of loading and saving the key, plaintext, and ciphertext; the order of
applying XOR in AddRoundKey; the order of rows when computing ShiftRows
and SubBytes; and the order of applying XORs in the key scheduler. On sev-
eral occasions, in order to change the sequence of loading variables, we change
instructions such as, e.g., LD R0, Z+ (opcode 9001) into instructions like LDD
R0, Z+0 (opcode 8000).

Combination of addr and swap (addr+swap). Here, we combine the address
changes and the swapping of the instructions.

Insert dummy NOPs (dummy). This version has NOP instructions inserted
throughout the code: in the key expansion, in SubBytes, ShiftRows, and Mix-
Columns. As a result, the encryption needs 792 additional clock cycles to finish.

Insert other dummy instructions (dummy smart). The problem with NOP instruc-
tions is that on the ATmega163 they can be easily distinguished because they
have low power consumption in comparison to the other instructions. To make
the power consumption appear more genuine, we insert dummy instructions that
manipulate the state for a short amount of time, and change it back before resum-
ing with encryption. Figure 8 shows several assembly macros that we spread
throughout the code that reuse intermediate values of the implementation. This
version also has 792 additional clock cycles.

All attacks combined (dummy smart+addr+swap). This attack introduces 792
smart dummy cycles and combines them with the add+swap attack.
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Fig. 5. Similarity matrices of plagiarism attacks on RijndaelFurious (denoted by “gen-
uine”). X and Y axes are measured in clock cycles.

Visual Inspection. Figure 5 shows excerpts of the similarity matrices that
correspond to the genuine implementation along the Y-axis, and the manipulated
implementations along the X-axis for selected AES functions. Figures 11, 12, 13,
14, 15 and 16 show the full similarity matrices. Code with manipulations that
do not change the order of instructions can be well recognized because of the
long lines along the diagonals of the matrices.

Maximum Projection. Figures 6 and 9 show the maximum projection method
applied on similarity matrices of Furious with all the other implementations. The
versions addr and swap produce the largest impact on the maximum projection
method, however, we are still able to distinguish MixColumns quite well. On the
other hand, despite introducing 792 dummy clock cycles, we can argue with a
high confidence that the presented system contains large portions of our genuine
implementation.

Table 3 shows the total mean absolute correlation coefficients and the
operation-wise absolute mean correlation coefficient for Furious and its mod-
ified versions. Here we can see that our method is well-suited for finding versions
of our code with added dummy instructions—even 792 additional dummy clock
cycles have little effect on the mean absolute correlation, which, at >0.8 is high
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Fig. 6. Maximum projection of modified implementations onto genuine Furious.

enough to suspect a plagiarism. On the other hand, by exchanging registers and
choosing different addresses for variables and constants in the memory, as in
addr, the attacker can decrease the mean absolute correlation by a large margin.
However, after cross-referencing the similarity matrix, as shown in Fig. 11, we see
an almost continuous line along its diagonal, implying an identical implemen-
tation. Swapping code chunks does not help much, since the individual parts
are still well-recognizable in the operation-wise mean correlation table and in
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Table 3. (a) Total mean absolute correlation of modified Furious implementations
projected into the genuine Furious implementation. (b) Operation-wise mean absolute
correlation of modified Furious implementations projected into the genuine Furious
implementation.

the similarity matrix. Thus, in order to successfully avoid raising suspicion, an
attacker will have to use a plethora of countermeasures at a much finer level,
which requires a considerable amount of effort to obfuscate the code without
introducing bugs and unintended side effects.

4 Discussion

Our work is built upon the assumption that identical code produces almost iden-
tical side channel leakage on an identical (but physically distinct) microcontroller
platform. In our experiments we studied five different AES implementations and
observed significant correlation coefficients in each similarity matrix. This is due
to the fact that all test programs are implementations of the same task and
process the same data. However, as exemplarily shown in Fig. 3, the maximum
projection of identical implementations clearly stands out when compared to
different implementations, and thereby underlines that the same sequence of
instructions is clearly highlighted and allows us to detect plagiarized software of
a passive adversary with high accuracy.

In the case when an adversary has spent some effort modifying the original
code, we come to the conclusion that our method achieves a good robustness
against changed registers and added dummy cycles. The second case is a clear
advantage compared to the method of Durvaux et al. [4] that turned out to be
very sensitive to the addition of 57 dummy clock cycles, whereas we worked with
792 additional dummy cycles. In addition, in contrast to the method of Durvaux
et al., we are not forced to cut the recorded traces to have the same length
and are able to use all recorded information. The robustness of our approach
to adding smart dummy instructions is only slightly worse compared to dummy
NOPs and for many code segments the original sequence is still revealed in the
maximum projection. Similar observations hold when instructions are swapped.
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In this paper we have used static, time-aligned, and constant-time applica-
tions to test our approach. However, we are confident that our methods are also
applicable in a more general setting, e.g., with code branches and nondetermin-
istic parts. A further adversary strategy could be to implement dynamic code
generation on the microcontroller as, e.g., proposed by [12] which will make our
approach more difficult if the frequency of run-time code generation is high. As
result, an adversary is forced to combine many kinds of modifications and put a
considerable amount of effort in order to reduce successful plagiarism detection
that usually lead to enhanced code complexity and execution time.

Further promising properties of our approach can be seen in Fig. 4. Even if
the data of the two implementations do not match, our approach reveals smaller
but still significant correlation signals. These correlation signals are assumed to
be due to code similarities and lead to the conjecture that our methods are still
able to detect the similarity of two programs if there is a lack of any input data
channel. Interestingly, this observation gives reasons to assume that even the
implementation of an intrinsic data masking scheme by the adversary might be
not sufficient.

Thinking from a higher-level perspective, our tools detect whether a program
processes identical data or not. Hereby, patent infringements on the algorithm
level may be possible to detect. For example, an unlicensed use of a patented
algorithm with a specific data processing can be proven using the data dependent
side-channel leakage based on our approach.

5 Conclusions

We have presented and evaluated new methods based on characteristic data
leakage for detecting software plagiarism on a microcontroller platform. The con-
ducted experiments give evidence that these methods are highly robust to many
different code transformations and that the resulting pattern of data leakage of
the microcontroller executing the code can be considered as its own watermark.
Promising research directions are opened for connecting horizontal and vertical
dimensions for code sequence analysis through side channel traces.

Acknowledgement. This work has been supported in parts by the German Fed-
eral Ministry of Education and Research (BMBF) through the project DePlagEmSoft,
FKZ 03FH015I3.
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6 Appendix

Fig. 7. Maximum projection of Furious onto all other AES implementations.

Fig. 8. Assembly macros used to insert dummy smart instructions. Macros 1, 2, 3
change the content of a chosen register in one clock cycle, and change it back in the
next one. Macro 8 is used to remove Hamming-distance leakage between consecutive
SRAM reads or writes by performing a dummy read in the SRAM at some constant
address. Macro 5 is used before some of the sbox lookups in the flash memory. Macro
6 is applied to an unused register and leaks data from preceding operations that have
use the ALU (arithmetic-logic unit). Macro 4 loads a random constant value chosen
at compile time into a register and restores the register right after that. Macro 7 uses
XORs on three selected registers and immediately restores them to their respective
original values.
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Fig. 9. Maximum projection of genuine Furious onto all modified AES
implementations.
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Fig. 10. Similarity matrix of Furious with itself.

Fig. 11. Similarity matrix of addr and the genuine Furious AES implementations.
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Fig. 12. Similarity matrix of swap and the genuine Furious AES implementations.

Fig. 13. Similarity matrix of addr+swap and the genuine Furious AES implementa-
tions.
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Fig. 14. Similarity matrix of dummy NOPs and the genuine Furious AES implemen-
tations.

Fig. 15. Similarity matrix of dummy smart and the genuine Furious AES implemen-
tations.
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Fig. 16. Similarity matrix of dummy smart+addr+swap and the genuine Furious AES
implementations.
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Abstract. Compact implementations of the ring variant of the Learning
with Errors (Ring-LWE) on the embedded processors have been actively
studied due to potential quantum threats. Various Ring-LWE implemen-
tation works mainly focused on optimization techniques to reduce the
execution timing and memory consumptions for high availability. For this
reason, they failed to provide secure implementations against general side
channel attacks, such as timing attack. In this paper, we present secure
and fastest Ring-LWE encryption implementation on low-end 8-bit AVR
processors. We targeted the most expensive operation, i.e. Number Theo-
retic Transform (NTT) based polynomial multiplication, to provide coun-
termeasures against timing attacks and best performance among similar
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reduction techniques for speeding up the modular coefficient multiplica-
tion in regular fashion, (2) we use the modular addition and subtraction
operations, which are performed in constant timing. With these opti-
mization techniques, the proposed NTT implementation enhances the
performance by 18.3–22% than previous works. Finally, our Ring-LWE
encryption implementations require only 680,796 and 1,754,064 clock
cycles for 128-bit and 256-bit security levels, respectively.

Keywords: Ring learning with errors · Software implementation
Public key encryption · 8-bit AVR · Number theoretic transform
Discrete gaussian sampling · Timing attack

1 Introduction

Classic public key cryptography algorithms such as RSA and Elliptic Curve
Cryptography (ECC) are built based on integer factorization and discrete loga-
rithm problems, which are believed to be secure against classical computer envi-
ronments with properly chosen parameters. For this reason, a number of works
focused on compact implementations of RSA and ECC [5,6,8–10,12,13,17,21–
24]. However, such hard problems can be solved using Shor’s algorithm on a
sufficient large quantum computer in polynomial time [25]. To defeat potential
attacks and threats, lattice-based cryptography is considered as one of the most
promising candidates for post-quantum cryptography. Lattice-based cryptogra-
phy is built based on worst-case computational assumptions in lattices that
would remain hard even for quantum computers. Furthermore, the emerging
Internet of Things (IoT) technology introduces new computing environments
including all kinds of sensors, actuators, meters, consumer electronics, medi-
cal monitors, household appliances and vehicles. Since these devices are very
resource-constrained in terms of computing power, power supply and memory
resources, implementing public-key cryptographic algorithms on low-end 8-bit
processors poses a big challenge. Therefore, it is necessary to further study the
post-quantum cryptosystems on the low-end IoT devices.

The introduction of Learning with Errors (LWE) problem and its ring variant
(Ring-LWE) [14,18] provide efficient ways to build lattice-based public key cryp-
tosystems. The following software implementations of Ring-LWE based public-
key encryption or digital signature schemes improved performance and memory
requirements: Oder et al. presented an efficient implementation of Bimodal Lat-
tice Signature Scheme (BLISS) on a 32-bit ARM Cortex-M4F microcontroller
[15]. De Clercq et al. implemented Ring-LWE encryption scheme on the identi-
cal ARM processors [3]. They utilized 32-bit registers to retain two 13–14 coeffi-
cients. Boorghany et al. implemented a lattice-based cryptographic scheme on an
8-bit processor for the first time in [1,2]. The authors evaluated four lattice-based
authentication protocols on both 8-bit AVR and 32-bit ARM processors. In par-
ticular, Fast Fourier Transform (FFT) transform and Gaussian sampler function
are implemented. In LATINCRYPT’15, Pöppelmann et al. studied and com-
pared implementations of Ring-LWE encryption and BLISS on an 8-bit Atmel
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ATxmega128 microcontroller [16]. In CHES’15, Liu et al. optimized implemen-
tations of Ring-LWE encryption by presenting efficient modular multiplication,
NTT computation and refined memory access schemes to achieve high perfor-
mance and low memory consumption [11]. They presented two implementations
of Ring-LWE encryption scheme for both medium-term and long-term security
levels on an 8-bit AVR processor. Liu et al. presented the first secure Ring-LWE
encryption and BLISS signature implementations against timing attack [7]. NTT
and sampling computations are implemented in constant time to prevent timing
attack. Particularly, modular reduction is performed in Montgomery reduction
to reduce computation complexity. Recently, in [4,9], high efficient implementa-
tions on ARM-NEON and MSP430 processors are also covered.

1.1 Contributions

This paper continues the line of research on the secure and compact implemen-
tations of the Ring-LWE encryption scheme on low-end 8-bit AVR processor.
Core contributions are the techniques to prevent information leakage and opti-
mizations to improve real-world performance of Ring-LWE encryption scheme.

In particular, we focused on the optimization of Number Theoretic Transform
(NTT) based polynomial multiplication, which is the most expensive computa-
tion in the Ring-LWE. In NTT computation, a number of modular arithmetic
operations are required and optimization of modular reduction is highly related
with performance. To accelerate performance, we use Look Up Table (LUT)
based fast reduction techniques for modular coefficient multiplication. Modular
addition and subtraction operations are also implemented in constant time and
incomplete representation. To optimize the performance in assembly level, NTT
routines fully utilize general purpose registers in the target processors.

Based on the above NTT optimization techniques, we present secure and
compact implementations of Ring-LWE encryption scheme on an low-end 8-bit
AVR processor. All operations are designed to prevent the timing attack. The
implementation only requires 681K and 1,754K clock cycles for 128-bit and 256-
bit security level encryption respectively.

The rest of this paper is organized as follows. In Sect. 2, we recall background
of Ring-LWE encryption scheme, NTT algorithm, and previous implementation
techniques for NTT algorithm. In Sect. 3, we present optimization techniques for
NTT on low-end 8-bit AVR processors. In particular, we propose techniques to
prevent information leakage through timing and reduce execution time of NTT
algorithm. In Sect. 4, we report performance of our implementation and compare
with the state-of-the-art NTT and Ring-LWE encryption on the low-end 8-bit
AVR platforms. Finally, we conclude the paper in Sect. 5.

2 Background

2.1 Ring-LWE Encryption Scheme

In 2010, Lyubashevshy et al. proposed an encryption scheme based on a more
practical algebraic variant of LWE problem defined over polynomial rings
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Rq = Zq[x]/〈f〉 with an irreducible polynomial f(x) and a modulus q. In Ring-
LWE problem, elements a, s and t are polynomials in the ring Rq. Ring-LWE
encryption scheme proposed by Lyubashevshy et al. was later optimized in [20].
Roy et al.’s variant aims at reducing the cost of polynomial arithmetic. In partic-
ular, the polynomial arithmetic during a decryption operation requires only one
Number Theoretic Transform (NTT) operation. Beside this computational opti-
mization, the scheme performs sampling from the discrete Gaussian distribution
using a Knuth-Yao sampler. In next subsection, we will first present mathemati-
cal concepts of NTT and Knuth-Yao sampling operations, then we will describe
the steps used in the Roy et al.’s version of the encryption scheme.

Now, we describe steps applied in the encryption scheme proposed by Roy
et al. [20]. We denote the NTT of a polynomial a by ã.

– Key generation stage Gen(ã): Two error polynomials r1, r2 ∈ Rq are sam-
pled from the discrete Gaussian distribution Xσ by applying the Knuth-Yao
sampler twice.

r̃1 = NTT (r1), r̃2 = NTT (r2)

and then an operation p̃ = r̃1 − ã · r̃2 ∈ Rq is performed. Public key is
polynomial pair (ã, p̃) and private key is polynomial r̃2.

– Encryption stage Enc(ã, p̃, M): The input message M ∈ {0, 1}n is a binary
vector of n bits. This message is first encoded into a polynomial in the
ring Rq by multiplying the bits of message by q/2. Three error polynomi-
als e1, e2, e3 ∈ Rq are sampled from Xσ. The ciphertext is computed as a set
of two polynomials (C̃1, C̃2):

(C̃1, C̃2) = (ã · ẽ1 + ẽ2, p̃ · ẽ1 + NTT (e3 + M ′))

– Decryption stage Dec(C̃1, C̃2, r̃2): One inverse NTT is performed to recover
M ′:

M ′ = INTT (r̃2 · C̃1 + C̃2)

and then a decoder is used to recover the original message M from M ′.

2.2 Number Theoretic Transform

We use the Number Theoretic Transform (NTT) to perform polynomial mul-
tiplication. NTT can be seen as a discrete variant of Fast Fourier Transform
(FFT) but performs in a finite ring Zq. Instead of using the complex roots of

unity, NTT evaluates a polynomial multiplication a(x) =
n−1∑

i=0

aix
i ∈ Zq in the

n-th roots of unity ωi
n for i = 0, . . . , n − 1, where ωn denotes a primitive n-th

root of unity. Algorithm1 shows the iterative version of NTT algorithm.
The iterative NTT algorithm consists of three nested loops. The outermost

loop (i-loop) starts from i = 2 and increases by doubling i, and the loop stops
when i = n, thus it has only log2n iterations. In each iteration, the value of twid-
dle factor ωi are computed by executing a power operation ωi = ω

n/i
n , and the
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Algorithm 1. Iterative Number Theoretic Transform
Require: A polynomial a(x) ∈ Zq[x] of degree n − 1 and n-th primitive ω ∈ Zq of

unity
Ensure: Polynomial a(x) = NTT (a) ∈ Zq[x]
1: a = BitReverse(a)
2: for i from 2 by i = 2i to n do
3: ωi = ω

n/i
n , ω = 1

4: for j from 0 by 1 to i/2 − 1 do
5: for k from 0 by i to n − 1 do
6: U = a[k + j]
7: V = ω · a[k + j + i/2]
8: a[k + j] = U + V
9: a[k + j + i/2] = U − V

10: ω = ω · ωi

11: return a

value of ω is initialized by 1. Compared to i-loop, the j-loop executes more itera-
tions, the number of iteration can be seen as a sum of a geometric progression for
2i where i starts from 0 and has a maximum value of log2(n−1), thus, the j-loop
has n − 1 iterations. In each iteration of j-loop, the twiddle factor ω is updated
by performing a coefficient modular multiplication. Apparently, the innermost
loop (k-loop) occupies most part of the execution time of NTT algorithm since
it is executed roughly n

2 log2n times. In each iteration of the innermost loop, two
coefficients a[i + j] and a[i + j + i/2] are loaded from memory into registers, and
then a[i + j + i/2] are multiplied by the twiddle factor ω, after that, the value
of a[k + j] and a[k + j + i/2] are updated and stored in the memory.

2.3 Previous Implementations of NTT

In LATINCRYPT’15, Pöppelmann et al. optimized the NTT operation by merg-
ing inverse NTT and multiplication by powers of ψ−1. Furthermore, bit-reversal
step is removed by the manipulation of the standard iterative algorithms. In
CHES’15, Liu et al. suggested the high-speed NTT operations with efficient
coefficient modular multiplication [11]. They presented the Move-and-Add (MA)
method to perform the 16-bit wise coefficient multiplication and the Shift-Add-
Multiply-Subtract-Subtract (SAMS2) techniques to replace the expensive reduc-
tion operations with the MUL instructions by cheaper shift and addition instruc-
tions. In TECS’17, Liu et al. improved the modular reduction by using Mont-
gomery reduction [7]. This improves the previous SAMS2 techniques when the
case requires a number of shift and addition operations on low-end devices. The
new technique ensures the constant time computation together with high per-
formance.
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3 Proposed Methods

NTT computation takes up the majority of the execution time on modular mul-
tiplication operation since it is performed in the innermost k-loop. The 16-bit
wise multiplication requires only 4 8-bit wise multiplication operations and this is
already well covered in previous works [11]. Thus, the optimization of fast reduc-
tion operation is a perquisite for high-speed implementation of NTT algorithm.
We chose the prime modulus q = 7681 (i.e. 0x1e01 in hexadecimal representa-
tion) and q = 12289 (i.e. 0x3001 in hexadecimal representation) for the target
parameters, which are used in previous works [7,11].

Unlike previous SAMS2 method by [7,11], we propose an optimized Look-
Up Table (LUT) based fast reduction technique for performing the mod7681
and mod 12289 operations. The main idea is to first reduce the result by using
the 8-bit wise pre-computed reduced results, and then perform the tiny fast
reduction steps on short coefficients. The results are kept in the incomplete
representation in order to optimize the number of subtraction in the reduction
step. For the case of prime modulus q = 7681, the variables are always kept in
range of (0, 214 − 1) in incomplete representations and the intermediate results
(IR) of multiplication are kept in (0, 228 − 1). We set two pre-computed LUTs
with (mod 7681) operation. One input variable are ranging from 17-th bit to
24-th bit, which are the values located in (x × 216) where x is ranging from 0
to 28. Afterwards, the variable is reduced to 13-bit wise results through (mod
7681) operation (≈ ((IR div 216) mod 28) mod 7681). The other input variable
is from 25-th bit to 28-th bit, which are values (x × 224) where x is ranging
from 0 to 241. The LUT ensures that the variable is reduced to the 13-bit results
(≈ (IR div 224) mod 7681). After two times of LUT based reduction operations,
the two 13-bit wise outputs are added to the remaining 16-bit wise intermediate
results (1-st–16-th bits), which output 17-bit intermediate results. Afterwards,
the tiny fast reduction is performed on the intermediate results. Observing that
213 ≡ 29 − 1 mod 7681, the fast reduction can be performed with 16-bit wise
addition (29) and 8-bit wise subtraction operations (−1).

The detailed method is described in Fig. 1. We keep the product in four reg-
isters (r3, r2, r1, r0), which has been marked by different colors. Each of register
(r3, r2, r1, r0) is 8-bit long. The colorful parts mean that this bit has been occu-
pied while the white part means the current bit is empty. The reduction with
7681 using LUT approach can be performed as follows:

1. LUT access. We first perform the LUT access with variable (r2) to get the
13-bit wise reduced results (s1 and s0). Then, the variable (r3) is also reduced
to the results (t1 and t0). Both results are 13-bit wise long and stored in 2
8-bit registers.

1 Two LUTs only require 1 KB (28 ×2+28 ×2) and the LUTs are stored in the ROM.
Considering that AVR platforms support ROM size in 128, 256, and 384 KB, the
ROM consumption of LUT is negligible.
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1

3

(r1,r0)

(s1,s0)

r0r1r2r3

LUT#1

4

(t1,t0)
(k2,k1,k0)
(r1,r0)+(s1,s0)+(t1,t0)

(k2,k1,k0)»13

(k2,k1,k0) mod 213

u0«9
u0

(d1,d0)

(w1,w0) 7
(l1,l0) 
(w1,w0)+(d1,d0)‒u0

LUT#2 2

5

6

Fig. 1. Look-Up Table based fast reduction for q = 7681, 1© 2©: LUT access; 3©: addi-
tion; 4© 5©: shifting; 6©: modulo; 7©: addition and subtraction.

2. Addition. We then perform the addition of (r1, r0)+(s1, s0)+(t1, t0). Appar-
ently, the sum result is less than 18-bit, which can be kept in three registers
(k2, k1, k0).

3. Shifting. We right shift (k2, k1, k0) by 13-bit to get the result (u0). After-
wards, the value (u0) is left shifted by 9-bit to get the (d1, d0).

4. Modulo. Thereafter, the intermediate results (k2, k1, k0) below 13-bit are
extracted and we obtain the (w1, w0).

5. Addition and Subtraction. Finally, we perform the addition and subtraction
operations of (w1, w0) + (d1, d0) − u0.

In Algorithm 2, the LUT based modular reduction in source code level is
described. In Step 1–13, MOV-and-ADD multiplication is used to perform the
16-bit wise multiplication. The 32-bit intermediate results are stored in 4 8-bit
registers (R18, R19, R20, R21). In Step 14–15, the address of LUT 1 is loaded
to 2 registers (R30, R31). Then, the 17–24-th bits (R20) is added to the address.
When the address pointer is ready, the LUT access is performed. From Step 22 to
29, the 25–28-th bits (R21) are used to access the LUT 2. Afterwards the results
are reduced. In Step 30–31, two 13-bit LUT results are added. Afterwards, the
summation is added to the intermediate results. From Step 35 to 45, tiny fast
reduction is performed on 17-bit intermediate results with 16-bit wise addition
and 8-bit wise subtraction operations.

Since the LUT approach is generic approach for any primes, proposed LUT
based approach is also available in the case of mod 12289. Two differences are
LUT value and final step (tiny fast reduction). We need to construct the (mod
12289)’s LUT. For the final step, we perform the tiny fast reduction with mod-
ulus equation (214 ≡ 212 − 1 mod 12289). The detailed descriptions are drawn
in Fig. 2. We execute two LUT and one tiny final reduction. After the tiny fast
reduction, it outputs 16-bit results and this can incur the overflow in following
operations. We perform the fast reduction once again to fit the results within
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Algorithm 2. LUT based modular reduction in source code (mod 7681)

Input: operands R22, R23, R24, R25

Output: results {R24, R25}
1: CLR R26 {MOV-and-ADD}
2: MUL R24, R22

3: MOVW R18, R0

4: MUL R25, R23

5: MOVW R20, R0

6: MUL R24, R23

7: ADD R19, R0

8: ADC R20, R1

9: ADC R21, R26

10: MUL R25, R22

11: ADD R19, R0

12: ADC R20, R1

13: ADC R21, R26

14: LDI R30, lo8(LUT 1) {LUT access}
15: LDI R31, hi8(LUT 1)

16: ADD R30, R20

17: ADC R31, R26

18: ADD R30, R20

19: ADC R31, R26

20: LPM R22, Z+

21: LPM R23, Z+

22: LDI R30, lo8(LUT 2) {LUT access}
23: LDI R31, hi8(LUT 2)

24: ADD R30, R21

25: ADC R31, R26

26: ADD R30, R21

27: ADC R31, R26

28: LPM R24, Z+

29: LPM R25, Z+

30: ADD R24, R22

31: ADC R25, R23

32: ADD R24, R18

33: ADC R25, R19

34: ADC R26, R26

35: MOV R20, R25{tiny fast reduction}
36: ANDI R25, 0X1F

37: LSR R26

38: ROR R20

39: SWAP R20

40: ANDI R20, 0X0F

41: SUB R24, R20

42: SBC R25, R26

43: LSL R20

44: ADD R25, R20

45: CLR R1

15-bit. By leaving the most significant bit in the register, addition and subtrac-
tion operations do not need to check whether the intermediate results generate
the overflow/underflow or not.

Constant Modular Addition and Subtraction. To prevent timing attacks,
modular addition and subtraction operations should be implemented in constant
time. We used the incomplete representation and unsigned type for variable
format. The results are always kept in 2 bytes and positive values. The detailed
descriptions are available in Algorithm 3. First addition or subtraction operation
is performed. In particular, subtraction operation is performed with addition
of variable (q2) to avoid underflow condition. From Step 6 to 9, the tiny fast
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(r1,r0)

(s1,s0)

r0r1r2r3

LUT#1

4

(t1,t0)
(k2,k1,k0)
(r1,r0)+(s1,s0)+(t1,t0)

(k2,k1,k0)»14

(k2,k1,k0) mod 214

u0«12
u0

(d1,d0)

(w1,w0) 7
(l1,l0)
(w1,w0)+(d1,d0)‒u0

LUT#2 2

5

6

8
(l1,l0)»14

v0«12 9
v0

(l1,l0) mod 214 10
(b1,b0)

(n1,n0)

(g1,g0)
(b1,b0)+(n1,n0)‒v0

11

Fig. 2. Look-Up Table based fast reduction for q = 12289, 1© 2©: LUT access; 3©:
addition; 4© 5©: shifting; 6©: modulo; 7©: addition and subtraction; 8© 9©: shifting; 10©:
modulo; 11©: addition and subtraction.

reduction operation is performed. However, the result we get in Step 9 may still
be larger than modulus (q = 7681), thus, we do the correction by subtracting
the modulus (q). If the underflow condition occurs, we perform the addition with
modulus (q) with the mask variable (P ). Finally, the results (R) are always kept
within 0x2000 in the incomplete representation.

For the case of 12289, we can adopt the constant modular addition and
subtraction techniques in Algorithm 3. Only the parameters are different. The
detailed descriptions are given in Algorithm 4. Firstly, the addition and subtrac-
tion operations are performed. Afterwards, the fast reduction is performed. The
obtained results (R) are always kept within 0x4000 in the incomplete represen-
tation.

4 Performance Evaluation

This section presents performance results of our implementation. We first give
the experimental platform in Sect. 4.1. Afterwards, we show a comparison with
the previous modular multiplication and NTT implementations in Sect. 4.2.
Finally, we show a comparison with the previous Ring-LWE implementation
in Sect. 4.3.
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Algorithm 3. Constant modular addition/subtraction for q = 7681 (0x1E01)
Require: Two 2-word operands A and B in [0, 214 − 1].
Ensure: The incomplete result R = A(+, −)B mod 0x2000 [0, 214 − 1] or 0x1E01.
1: if addition then
2: R ← A + B {addition operation}
3: else if subtraction then
4: q2 ← q � 2 {subtraction operation}
5: R ← q2 + A − B {underflow prevention}
6: R1 ← R � 13 {tiny fast reduction}
7: R2 ← (R � 4)&0x1E00
8: R ← R&0x1FFF
9: R ← R − R1 + R2

10: if complete then
11: {Borrow, R} ← R − 0x1E01 {last correction}
12: P ← 0x0000 − Borrow
13: R ← R + (0x1E01&P )
14: return R

Algorithm 4. Constant modular addition/subtraction for q = 12289 (0x3001)
Require: Two 2-word operands A and B in [0, 215 − 1].
Ensure: The incomplete or complete result R = A(+, −)B mod 0x4000 ∈ [0, 215 − 1]

or 0x3001.
1: if addition then
2: R ← A + B {addition operation}
3: else if subtraction then
4: q2 ← q � 2 {subtraction operation}
5: R ← q2 + A − B {underflow prevention}
6: R1 ← R � 14 {tiny fast reduction}
7: R2 ← (R � 2)&0x7000
8: R ← R&0x3FFF
9: R ← R − R1 + R2

10: if complete then
11: {Borrow, R} ← R − 0x3001 {last correction}
12: P ← 0x0000 − Borrow
13: R ← R + (0x3001&P )
14: return R

4.1 Experimental Platform

Our implementation uses ATxmega128A1 processor on an Xplain board as tar-
get platform. This processor has a maximum frequency of 32 MHz, 128 KB flash
program memory, and 8 KB SRAM. It supports an AES crypto-accelerator and
can be used in a wide range of applications, such as industrial, hand-held bat-
tery applications as well as some medical devices. The implementation is written
using a mixed ANSI C and Assembly languages. In particular, the main struc-
ture and interface are written in C while the core operations such as modular
arithmetic is implemented in Assembly. For the LUT based approach, the con-
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Table 1. Execution time of modular multiplication and NTT (in clock cycles), where
128-bit security represents (n : 256, q : 7681) and 256-bit security represents (n : 512, q :
12289) on 8-bit AVR processors, e.g., ATxmega64, ATxmega128.

Implementation 128-bit security 256-bit security

MOD MUL NTT Const Mod MUL NTT Const

Boorghany and Jalili [2] N/A 1,216,000 – N/A 2,207,787 –

Boorghany et al. [1] N/A 754,668 – N/A N/A –

Pöppelmann et al. [16] N/A 334,646 – N/A 855,595 –

Liu et al. [11] N/A 193,731 – N/A 441,572 –

Liu et al. [7] 73 194,145
√

70 516,971
√

This work 57 158,607
√

66 403,224
√

stant LUT variables are stored in flash program memory, which requires 0.5 KB
for saving the parameters and 3 clock cycles for each byte access. We complied
our implementation with speed optimization option ‘-O3’ on Atmel Studio 6.2.
In order to obtain accurate timing, we execute each operation for at least 1000
times and report average cycle count for each operation.

4.2 Comparison of Modular Multiplication and NTT

Table 1 summarizes execution time of modular multiplication and NTT for both
of medium-term and long-term security levels. First, various works including
[1,2,11,16] are not constant-time solutions, which means the attackers can per-
form timing attack to extract the secret information. Recent work by Liu et al.
introduced the secure approach with tiny Montgomery reduction [7]. They per-
form the Montgomery reduction to reduce the 28/30-bit variables to 14/15-bit
results. However, the complexity of n-word Montgomery reduction is generally
n2 + n, which is still high overheads on the low-end devices. Unlike previous
approaches, we used LUT based approach to achieve high performance and
secure implementation.

As shown in the Table 1, the proposed modular multiplication with 7681
and 12289 only requires 57 and 66 clock cycles, which are 16 and 4 clock cycles
smaller than previous approaches, respectively [7]. The proposed NTT operation
also shows higher performance than previous works. NTT operation only requires
158, 607 clock cycles for 128-bit security implementation and 403, 224 cycles for
256-bit security implementation. Results of NTT for medium and long-term
security are 18.3% and 22.0% faster than previous works, respectively.

4.3 Comparison of Ring-LWE

With optimized NTT implementation, we evaluated the Ring-LWE encryp-
tion scheme with parameter sets (n, q, σ) with (256, 7681, 11.31/

√
2π) and

(512, 12289, 12.18/
√

2π) for security levels of 128-bit and 256-bit. The tailcut
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Table 2. Performance comparison of software implementation of 128-bit and 256-bit
security level lattice-based cryptosystems on 8-bit AVR processors, e.g., ATxmega64,
ATxmega128.

Implementation NTT/FFT Sampling Enc Secure

Implementations of 128-bit security level

Boorghany and Jalili [2] 1,216,000 N/A 5,024,000 –

Boorghany et al. [1] 754,668 N/A 3,042,675 –

Pöppelmann et al. [16] 334,646 N/A 1,314,977 –

Liu et al. [11] 193,731 26,763 671,628 –

Liu et al. [7] 194,145 53,023 796,872
√

This work 158,607 35,409 680,796
√

Implementations of 256-bit security level

Boorghany et al. [1] 2,207,787 617,600 N/A –

Pöppelmann et al. [16] 855,595 N/A 3,279,142 –

Liu et al. [11] 441,572 255,218 2,617,459 –

Liu et al. [7] 516,971 105,153 1,975,806
√

This work 403,224 69,062 1,754,064
√

of discrete Gaussian sampler is limited to 12σ to achieve a high precision statis-
tical difference from the theoretical distribution, which is less than 2−90. These
parameter sets were also used in most of the previous software implementations,
e.g., [1–3,7,11].

Discrete Gaussian sampling is an integral part of Ring-LWE algorithm. How-
ever, previous implementations are not secure against timing and simple power
analysis, since the Knuth-Yao sampler uses a bit/byte scanning operation in
which the sample generated is related to the number of probability-bits/bytes
scanned during a sampling operation and its timing provides secret information
to an adversary about the value of the sample. In [19], Roy et al. suggested a
random shuffling method to protect the Gaussian distributed polynomial against
such attacks. The random permutation is performed after generating all samples.
The random shuffle operation swaps all samples randomly, which removes any
timing information from samplings. In the implementation, we adopt the pre-
vious Knuth-Yao sampler with byte-scanning [11,19]. Afterwards, all generated
samples are randomly mixed with the random numbers.

Table 2 compares software implementations of 128-bit and 256-bit secu-
rity lattice-based cryptosystems on the 8-bit AVR processors. We compare the
previous work [1,2,7,11,16] with ours. Proposed 128-bit security implementa-
tion requires 159K, 35K, and 681K cycles for NTT, sampling and encryption,
respectively. Compared to the recent work [7], the NTT operation is signifi-
cantly improved because we used compact modular multiplication routine. For
the secure sampling, we adopted lightweight random shuffling technique, which
shows better performance than previous works. The proposed implementations
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are constant timing, which ensures a secure computation against simple power
analysis and timing attacks. The similar performance enhancement is observed
in 256-bit case.

5 Conclusion

This paper presents optimization techniques for efficient and secure implementa-
tion of NTT and its application Ring-LWE encryption on the low-end 8-bit AVR
platform. For the secure KY sampler, we use the random shuffling technique to
prevent the side channel attack. A combination of both NTT and KY sampler
implementation achieved new speed records for secure 128-bit and 256-bit Ring-
LWE encryption implementation on low-end 8-bit AVR platforms.

Our future works are applying the proposed techniques to the other low-
end IoT devices, such as 8-bit PIC and 16-bit MSP processors. Similarly, these
platforms also support very limited Arithmetic Logic Unit (ALU) and memory
consumptions. Second, we will further investigate side channel attacks on the
implementation of Ring-LWE. Unlike traditional RSA and ECC, only few works
explored potential threats on the implementation of Ring-LWE.
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Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 346–365. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 19

17. Qiu, L., Liu, Z., Pereira, G.C., Seo, H.: Implementing RSA for sensor nodes in
smart cities. Pers. Ubiquit. Comput. 21(5), 807–813 (2017)

18. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: 37th Annual ACM Symposium on Theory of Computing, pp. 84–93 (2005)

19. Roy, S.S., Reparaz, O., Vercauteren, F., Verbauwhede, I.: Compact and side chan-
nel secure discrete Gaussian sampling (2014)

20. Roy, S.S., Vercauteren, F., Mentens, N., Chen, D.D., Verbauwhede, I.: Compact
Ring-LWE cryptoprocessor. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS,
vol. 8731, pp. 371–391. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44709-3 21

21. Seo, H.: Faster (feat. ECC PMULL) over F2571. In: A Systems Approach to Cyber
Security: Proceedings of the 2nd Singapore Cyber-Security R&D Conference (SG-
CRC 2017), vol. 15, p. 97. IOS Press (2017)

22. Seo, H., Kim, H.: MoTE-ECC based encryption on MSP430. J. Inf. Commun.
Converg. Eng. 15(3), 160–164 (2017)
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Abstract. Public key broadcast encryption system is a fundamental
cryptographic primitive that enables a broadcaster to transmit encrypted
content to a set of users allowing only a privileged subset of users
to decrypt the content. Traditionally, it is not possible to remove any
receiver from the encrypted content without decryption. Recipient revo-
cable broadcast encryption (RRBE) is an useful cryptographic primi-
tive whereby a trusted third party can revoke a set of users from the
encrypted content without having the ability to decrypt it. This prop-
erty is not achievable in traditional broadcast encryption (BE) schemes.
However, the currently existing RRBE schemes are secure only in the
random oracle model. In this paper, we propose two new constructions
for RRBE with constant number of pairing, linear exponentiation oper-
ations and analyze their security in the standard model. Our first con-
struction achieves adaptive security in the standard model with constant
communication cost as opposed to the existing adaptively secure RRBE
schemes all of which use random oracles and have linear communication
cost. The storage and computation complexity are linear to the total
number of users and the number of subscribed users respectively.

Our second construction attains selective security in the standard
model with constant size public parameter and secret key. The commu-
nication and computation overhead are linear to the number of revoked
users. We emphasize that, this scheme is flexible in a sense that con-
stant size public parameter allows to encrypt any number of users in the
system.

The proposed constructions are highly comparable with the existing
similar schemes, exhibits better performance over them and practically
more efficient.

Keywords: Recipient revocable broadcast encryption
Chosen plaintext attack · Adaptive security

1 Introduction

With the rapid development of technology, the application of the Internet already
extended to each aspect of people’s life, and has gradually become a necessary
c© Springer International Publishing AG, part of Springer Nature 2018
H. Kim and D.-C. Kim (Eds.): ICISC 2017, LNCS 10779, pp. 191–213, 2018.
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part of our lives. Availability of internet makes a threat in copyright protection
and abuse of intellectual properties. Broadcast encryption (BE) provides skilful
techniques to handle the issue. BE introduced by Fiat and Naor [11], supports
a broadcaster to send an encrypted content to a group of users in such a way
that only the subscribed users can recover the message. Due to its numerous
application in real life expanding from pay TV to digital rights management,
many BE schemes have been developed. However, traditional BE schemes do not
support revocation of recipients from the encrypted content. Recipient revocable
broadcast encryption (RRBE) is a new broadcast encryption (e.g., [1–4,7–9,
11]) primitive, introduced by Susilo et al. [17], skillfully revokes users from the
encrypted content without decrypting it. In RRBE, a content provider and a
broadcaster agree upon a common set of recipients. The broadcaster broadcasts a
ciphertext by modifying the original encrypted content received from the content
provider in such a way that enables the broadcaster to revoke the intended
subscribers without having the ability to decrypt the original encrypted content.
A subscribed user can decrypt this modified content using its secret key and can
recover the message.

Applications: Consider the following applications where RRBE is useful.

• Suppose in an academic institute, the head wants to send an important mes-
sage (or file) to the current students. He makes an encrypted message for all
the enrolled students and securely sends to an academic staff. Some students
may leave the institute as they get jobs or for other reasons. The academic
staff makes a list of current students and wants to revoke the students who are
currently not present in the institute without having eligibility of recovering
the message.

• To increase the business, let Internet service provider, such as CenturyLink,
collaborates with movie content provider CinemaNow and provides free access
of CinemaNow to the subscribers. CinemaNow sends the content securely
(else any body can act as a broadcaster) to CenturyLink. CenturyLink wants
to distribute the content to as many users as possible to increase its profit.
Therefore, CinemaNow cannot send the content in a plaintext form and sends
in encrypted form. CenturyLink wants to revoke a user who has not paid pre-
vious month subscription charge. Now the challenge for CenturyLink comes
to revoke users using the encrypted content provided by CinemaNow.

• A study centre provides online material to the students. It releases 12 month
material on monthly basis. It provides first month content on the monthly
agreement and if the students are satisfied then they need to pay for remain-
ing 11 months contract amount to get the remaining materials. The teacher
provides (to study centre) all the content for the students who have registered
in the first month. He does not want to send the material in plaintext form
as there is the opportunity for misuse of study materials by the study centre.
As some students do not continue after the first month, study centre needs
to revoke those students.

The key challenge in designing an RRBE comes from the difficulty of revoking
users by the broadcaster from the encrypted content without recovering the
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content. One may think that RRBE can be developed by “decrypt then re-
encrypt” technique. But in this case, the broadcaster can recover the message
and can rebroadcast the content to other users, thereby damages the copyright
issue or business opportunity of the content provider.

The performance of an RRBE scheme is measured by the storage size,
communication and computation overhead. The computation cost includes the
encryption, revocation and decryption complexity ignoring the computations
that are offline and performed one time only. The communication cost is deter-
mined by the number of bits in the ciphertext. Security is another issue. Security
of an RRBE can be achieved in the selective, semi-static or adaptive security
model. In the selective security, the adversary publishes a challenge set in the
initialization phase at the beginning of the security game. The challenger can
generate the public parameter, secret key and challenge ciphertext according to
the initially committed challenge set. In the semi-static model, the adversary
sets an initial set in the initialization phase and declares a subset of the initial
set as the challenge set in the challenge phase. The hardness of achieving semi-
static security is in between of the selective and adaptive security. The adaptive
security is the strongest security model where the challenge set is fixed in the
challenge phase only and the challenger needs to set the public parameter, secret
key without utilising the challenge set.

Related works: Susilo et al. [17] introduced RRBE in AsiaCCS 2016 using the
identity-based broadcast encryption scheme of Delerablée [10]. The scheme is
selectively secure in the random oracle model under the (f̂ , φ, F )- General Deci-
sional Diffie-Hellman Exponent ((f̂ , φ, F )-GDDHE) assumption. The scheme has
constant ciphertext and secret key size. The public parameter size is linear to
the maximum number of users supported by the system. The encrypted con-
tent size is linear to the maximum possible number of revoked users. Lai et al.
[13] proposed an adaptively secure scheme with constant storage in 2016 using
Lagrange’s interpolation polynomial. It needs O(n2) exponentiations and O(n)
pairings for encryption and the ciphertext size is O(n), where n is the number of
users selected by the content provider to prepare the encrypted content. More-
over, the adaptive security under the Bilinear Diffie-Hellman Exponent (BDHE)
problem is achieved in the random oracle model. Recently, Lai et al. [12] propose
another scheme employing an authorisation set which has the same storage size,
encryption cost and security property. It needs O(m2) exponentiations in revo-
cation phase, m being the number of elements in the authorized set where m
is greater than the size of the subscribed user set after revocation. Scheme [13]
achieves anonymity in terms of ciphertext privacy. Very recently Lai et al. [14]
proposed another scheme in selective security model extending [13], it achieves
both ciphertext and user privacy as [12] at the cost of pairing computations and
communication bandwidth of [13].

Our Contribution: A security proof in the random oracle model can be treated
as a heuristic argument as all parties get black box access to a truly random func-
tion. On the other hand, there is no assumption for the existence of such random
looking function in the standard model and security of the scheme relies on the
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Table 1. Comparison of storage, communication bandwidth, security.

Scheme |PP| |SK| |CT′| |CT| SM RO SA

[17] (2N+1)|G|+
1|G1|

(1)|G| (k + 2)|G|+
1|G1|

2|G|+ 1|G1| Sel Yes (f̂ , g, F )-
GDDHE

[13] (2)|G| (1)|G| (2n+ 3)|G| (2n+ 3)|G| Adp Yes BDHE

[12] (2)|G| (1)|G| (n+ 3)|G| (m+ 2)|G| Adp Yes BDHE

[14] (2)|G| (1)|G| (2n+
6)|G|+1|Zp|

(2n+3)|G|+
(l− 1)|Zp|

Sel Yes BDHE

RRBE-I (3N+3)|G|+
2|G1|

(N+3)|G|+
1|Zp|

(k + 2)|G|+
2|G1|

2|G|+ 2|G1| Adp No q-
wDABDHE

RRBE-II (4)|G|+
1|G1|

3|G| (2r1 +
1)|G|+1|G1|

(2r+1)|G|+
1|G1|

Sel No q-DMEBDH

|CT′| = encrypted content size, |CT| = ciphertext size, N = total number of users, k =
maximum number of revoked users fixed in encryption phase, m = size of authorisation set,
r1 =number of revoked users in Encrypt phase of RRBE-II, r2 =number of newly revoked users
in Revoke phase of RRBE-II, r = r1 + r2, |G| = bit size of an element of G, SM = security
model, SA = security assumption, RO = random oracle, Sel=Selective, Adp = Adaptive.

Table 2. Comparison of computation cost.

Scheme PP SK Enc Revoke Dec

#exp #p #exp #in #exp #p # in #exp #p # inv #exp #p # in

[17] 2N in

G

1 1 in G 0 n + k+2 in G,

1 in G1

0 0 2l+1 in

G

1 0 n′-1 in G,

1 in G1

2 1 in G1

[13] 1 in G 0 1 in G 0 2n2 + 2 in G,

2n in G1,

2n 0 l in G 1 0 2n-2 in G 2 3 in G

[12] 1 in G 0 1 in G 0 n2 +3n+2 in

G, n+1 in G1

n +1 0 nm + m2

in G

0 0 m-1 in G 1 2 in G

[14] 1 in G 0 1 in G 0 2n2 + 3 in G,

3n+1 in G1,

4n+2 0 l in G l+1 0 2n-2 in G 3 3 in G

RRBE-I 3N+1

in G

2 N + 4

in G

0 n + k+2 in G,

2 in G1

0 1 in G,

1 in G1

2l+1 in

G

2 3 in G 4n′-2 in

G,4 in G1

4 1 in G1

RRBE-II 3 in G

1 in G1

1 5 in G 1 in G 3r1+1 in G, 1

in G1

0 0 3r2+1 in

G,1 in G1

1 0 2r in G 3 2 in G1

l = actual number of revoked users in revocation phase, n = number of users used in encryption phase,

n′ = n − l, #exp = number of exponentiations in G and G1, #p = number of pairings, #in = number of

inversions.

hardness of mathematical problem. This paper addresses the challenging task
to design efficient RRBE in the standard model and introduces two such RRBE
constructions using constant number of pairing and linear exponentiation com-
putations, namely, RRBE-I and RRBE-II. More precisely, the proposed schemes
provide the followings features.

– Our RRBE-I uses the identity-based broadcast encryption scheme of Ren
et al. [16] and achieves adaptive security in the standard model under
the q-weaker Decisional Augmented Bilinear Diffie-Hellman Exponent (q-
wDABDHE) assumption. More positively, this scheme achieves constant
ciphertext size while storage and encrypted content size are linear to the
number of users supported by the system and maximum revocation number
respectively.
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– Our second construction RRBE-II is the first RRBE where the encryption is
performed using the set of revoked user identities. It follows the identity-
based encryption scheme of Lewko et al. [15]. RRBE-II is more practical in
following scenario. Suppose a broadcast system involves a set U of N users
and the content provider needs to generate encrypted content by involving
all but a smaller set R ⊂ U of r users where r << N . The encryption phase
in [12–14,17] and our RRBE-I involves the set U\R which is large compared
to that in RRBE-II which involves a smaller set R. Consequently, RRBE-II
outperforms the existing RRBE schemes where r << N . More interestingly,
the pubic parameter is of constant size and independent of user set in RRBE-
II, therefore is flexible in the sense that the system can accommodate any
number of users without altering the existing public parameter provided the
chosen prime number (bilinear group order) is greater than total number of
users. Furthermore, the scheme achieves selective semantic security under
the hardness of the q-Decisional Multi-Exponent Bilinear Diffie-Hellman (q-
DMEBDH) problem.

Additionally, in both the proposed schemes, new users can join any time with-
out any updation of the pre-existing PP, SK provided the number of subscribed
users in the system does not exceed the maximum number of users allowed in
the system. More interestingly, the broadcaster has the control to revoke any
user of the group for which original content was created by the content provider
without changing the existing setup. Besides, the schemes are non-interactive
in the sense that the private key generation centre does not need to interact
with the subscribed users after issuing users’ secret key. We have compare our
constructions with existing similar schemes in Tables 1 and 2.

2 Preliminaries

Notation: Let [m], [a, b] denote integers from 1 to m, a to b respectively. We
use the notation x ∈R S to denote x is a random element of S and λ to represent
bit size of prime integer p. Let ε : N → R be a function, where N and R are the
sets of natural and real numbers respectively. The function ε(λ) is said to be a
negligible function if for every positive integer c, ∃ an integer Nc such that for
every λ > Nc, ε(λ) ≤ 1

λc . Let |G| denotes the number of elements of group G.

2.1 Recipient Revocable Broadcast Encryption (RRBE)

RRBE introduced by Susilo et al. [17] in 2016, enables a trusted third party
to generate public parameter and secret key, a content provider to provide
encrypted content to a broadcaster, and the broadcaster to revoke certain users
from the system without having the ability to decrypt the encrypted content
issued by the content provider. Formal description of RRBE in identity based
setting is provided below:
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Syntax of RRBE:
A RRBE=(Setup,KeyGen,Encrypt,Revoke,Decrypt) consists of the followings:

• (PP,MK)←Setup(N,λ): A trusted authority, called private key generation
centre (PKGC) takes as input the total number of users N supported by the
system and a security parameter λ and creates the public parameter PP and
a master key MK. The public parameter PP includes the message space M
and publicly available while the master key MK is kept secret by PKGC.

• (ski)←KeyGen(PP,MK, IDi): The PKGC receives as input the public param-
eter PP, master key MK and user identity IDi from user i and returns a secret
key ski associated with identity IDi to user i through a secure communication
channel between the PKGC and user i.

• (CT′, S)←Encrypt(S,PP,M): The broadcaster and the content provider agree
upon a set S of n (≤ N) user identities. The content provider takes as
input public parameter PP, S, message M ∈ M and produces as output
an encrypted content CT′ associated with the set S. The content provider
sends CT′ together with the description of set S securely to the broadcaster.
Note that using the size of CT′ it is easy to understand the maximum revoca-
tion number k. To allow maximum revocation capability to the broadcaster,
content provider should set k = n − 1.

• (CT, G)←Revoke(PP,CT′, S,R): On input PP, S, encrypted content CT′ for
the set S, and a set R of l (≤ k) identities of users to be revoked, the broad-
caster broadcast CT and makes G = S\R public.

• (M)←Decrypt(PP, ski,CT, G): A subscribed user i with identity IDi, outputs
the message M using PP, CT, ski and the subscribed identity set G.

Correctness: We say that a RRBE is correct if for all λ,M

Pr

⎡
⎢⎢⎢⎣

Decrypt(PP, ski,CT, G) = M : (PP,MK) ← Setup(N,λ)
(ski) ← KeyGen(PP,MK, IDi)
(CT′, S) ← Encrypt(S,PP,M)
(CT, G) ← Revoke(PP,CT′, S,R)

⎤
⎥⎥⎥⎦ = 1

2.2 Security Framework

Message Indistinguishability of RRBE Under CPA:
Following Susilo et al. [17], we define the selective security of the scheme RRBE
as a message indistinguishability game played between a challenger C and an
adversary A as follows:

Initialization: The adversary A selects a recipient set (i.e., the set of subscribed
users) G and provides it to C.

Setup: The challenger C generates (PP,MK) by executing Setup(N,λ), provides
PP to A, and keeps MK secret to itself.

Phase 1: The adversary A is allowed to make key generation queries for user
identities IDi1 , . . . , IDim

, where IDi /∈ G, i ∈ {i1, . . . , im}. On input of user
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identity IDi, i ∈ {i1, . . . , im}, C obtains ski by executing KeyGen (PP,MK, IDi)
and sends to A.

Challenge: At this stage, the adversary A submits to C two equal length plain-
texts M0,M1 ∈ M, a set R of user identities to be revoked with no identity of
R lies in G. The challenger C picks a bit μ ∈R {0, 1} and generates CT′, CT by
executing Encrypt(S,PP,Mμ), Revoke(PP,CT′, S,R) respectively. The adversary
A gets a challenge ciphertext CT∗ as

CT∗ =

{
CT′, if R = φ

CT, if R �= φ.

Phase 2: The adversary A can issue additional key generation queries as in
Phase 1 with a restriction that queried user identities does not lie in G.

Guess: The adversary A outputs a guess μ′ ∈ {0, 1} of μ and wins if μ′= μ.
The adversary A’s advantage in the above security game is defined as
AdvIND−sCPA

A,RRBE = |Pr(μ′ = μ) − 1
2 |. The probability is taken over random bits

used by C and A. Let the adversary A is allowed to get reply up to t key gener-
ation queries.

Definition 1. The broadcast encryption scheme RRBE is said to be (T, t, ε)-
secure if for every probablilistic polynomial time (PPT) adversary A with running
time T and making at most t key generation queries AdvIND−sCPA

A,RRBE = ε.

In adaptive security, there is no Initialization phase and Phase 1 has no
restrictions on key generation query.

2.3 Complexity Assumptions

Definition 2. (Bilinear Map). Let G and G1 be two multiplicative groups of
prime order p. Let g be a generator of G. A function e : G × G −→ G1 is said
to be bilinear mapping if it has the following properties:

1. e(ua, vb) = e(u, v)ab, ∀ u, v ∈ G and ∀ a, b ∈ Zp.
2. The function is non-degenerate, i.e., e(g, g) is a generator of G1.
3. e is efficiently computable.

The tuple S = (p,G,G1, e) is called a prime order bilinear group system.

• The q-Decisional Multi-exponent Bilinear Diffie-Hellman (q-
DMEBDH) Assumption [15]:
Input :

〈
Z,K

〉
, where

Z =

⎧
⎪⎨
⎪⎩

S, g, gs, e(g, g)α,

gai , gais, gaiaj , gα/a2
i , ∀1 ≤ i, j ≤ q

gaiajs, gαaj/a2
i , gαaiaj/a2

k , gαa2
i /a2

j , ∀1 ≤ i, j, k ≤ q, i �= j

⎫
⎪⎬
⎪⎭

for some s, α, a1, . . . , aq ∈ Zp, and K is either e(g, g)αs or X ∈R G1.
Output : 0 if K = e(g, g)αs; 1 otherwise.
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Definition 3. The q-DMEBDH assumption holds with (T, ε) if for every PPT
adversary A with running time at most T , the advantage of solving the above
problem is at most ε, i.e.,

Advq−DMEBDH
A = |Pr[A(Z,K = e(g, g)αs) = 0] − Pr[A(Z,K = X) = 0]| ≤ ε.

q-DMEBDH assumption: Advq−DMEBDH
A is negligible.

• The l-weaker Decisional Augmented Bilinear Diffie-Hellman Expo-
nent (l-wDABDHE) Assumption [16]:
Input :

〈
Z = (S, h, hαl+2

, . . . , hα2l

, g, gα, . . . , gαl

),K
〉
, where g is a generator

of G, h ∈R G, α ∈R Zp, K is either e(g, h)αl+1
or a random element X ∈ G1.

Output : 0 if K = e(g, h)αl+1
; 1 otherwise.

Definition 4. The l-wDABDHE assumption holds with (T, ε) if for every PPT
adversary A with running time at most T , the advantage of solving the above
problem is at most ε, i.e.,

Advl−wDABDHE
A = |Pr[A(Z,K = e(g, h)αl+1

) = 0] − Pr[A(Z,K = X) = 0]| ≤ ε.

l-wDABDHE assumption: Advl−wDABDHE
A is negligible.

The hardness of the q-DMEBDH and l-wDABDHE assumptions follow from
the General Decisional Diffie-Hellman Exponent (GDDHE) problem [6] intro-
duced by Boneh et al. [6].

3 Our RRBE-I

3.1 Protocol Description

Our RRBE-I=(Setup,KeyGen,Encrypt,Revoke,Decrypt) involves a PKGC, a con-
tent provider, a broadcaster and several users. The PKGC runs Setup to gener-
ate public parameter PP and master key MK and runs KeyGen to generate ski

of user i with identity IDi. A content provider and a broadcaster agree upon a
common set of users. The content provider invokes Encrypt to encrypt a content
for a set S using PP and securely sends the encrypted content to the broadcaster.
From this encrypted content, the broadcaster produces CT running Revoke by
revoking a set of users R ⊂ S of its choice without getting any information about
the original content. Legal users use their secret keys to recover the content. The
algorithms are detailed below.

• (PP,MK)←Setup(N,λ): Given the security parameter λ, the PKGC generates
the public parameter PP and a master key MK as follows:

– Chooses a prime order bilinear group system S = (p,G,G1, e), where
G,G1 are groups of prime order (p > N) and e : G×G → G1 is a bilinear
mapping.
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– Selects α, β ∈R Zp, and sets MK, PP as MK = (α, β),

PP = (S, l0, l
α
0 , . . . , lα

N

0 , g, gα, . . . , gαN

, gαβ , . . . , gαN+1β , e(g, g), e(g, l0)),

where g is a generator of G and l0 is random non-identity element of G.
– Keeps MK secret to itself and makes PP public.

• (ski)←KeyGen(PP,MK, IDi): On receiving user identity IDi ∈ Zp from user i,
the PKGC selects hi ∈R G, ri ∈R Zp and generates a secret key ski, using
MK = (α, β) and extracting g, l0 from PP as ski = (d1,i, d2,i, d3,i, labeli)

d1,i = (hig
ri)

1
αβ(α+IDi) , d2,i = ri, d3,i = (hil

ri
0 )

1
αβ , labeli = (hi, h

α
i , . . . , hαN

i ).

It sends ski to user i through a secure communication channel between them.
Note that identities are taken from Zp. In practice, identity may be arbitrary
string but it is possible to map any string to an element of Zp using a collision
resistance hash function.

• (CT′, S)←Encrypt(S,PP,M): The content provider and the broadcaster agree
upon a set S of n (≤ N) user identities. The content provider selects maxi-
mum revocation number k (< n) and performs the following to produce an
encrypted content for S, using PP, message (or content ) M ∈ G1(= M):

– Sets a polynomial F (x) as F (x) =
∏

IDj∈S

(x + IDj) =
n∑

i=0

Fix
i, where Fi’s

are function of IDj ∈ S.
– Picks γ ∈R Zp and generates the encrypted content CT′ =

(c1, c2, ĉ1, . . . , ĉk+1, cM ) by setting

c1 =
n∏

i=0

(gαi+1β)γFi = g

n∑

i=0
βαi+1γFi

= gαβF (α)γ , c2 = e(g, g)−γ ,

ĉ1 = (gα)−γ = g−γα, ĉi = (gαi

)
γ

= gαiγ for 2 ≤ i ≤ k + 1, cM = M · e(g, l0)γ .

– Sends CT′ together with the information of S to the broadcaster through
a secure communication channel between the broadcaster and the content
provider.

• (CT, G)←Revoke(PP,CT′, S,R): Using PP, S,CT′ = (c1, c2, ĉ1, . . . , ĉk+1, cM ),
revocation identity set R = {IDi1 , IDi2 , . . . , IDil

} ⊂ S, (l ≤ k) the broadcaster
generates ciphertext for the set G = S\R as:

1. If R = φ, sets C1 = c1, C2 = c2, Ĉ1 = ĉ1, CM = cM .
2. If R �= φ, then

– Computes

∏

IDj∈R

(x+IDj)

∏

IDj∈R

IDj
=

l∑
i=0

fix
i, where fi, 0 ≤ i ≤ l are function of

IDj ∈ R.

Note that f0 = 1. Also computes X =
l∏

i=2

ĉfi

i = g
γ

l∑

i=2
fiα

i

.
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– Implicitly sets s = γ
l∑

i=0

fiα
i and generates C1, C2, Ĉ1, CM as

C1 = c

{
1∏

IDj∈R
IDj

}

1 = g

γαβ

{ ∏

IDj∈R
(α+IDj)

∏

IDj∈G
(α+IDj)

∏

IDj∈R
IDj

}

= g
αβ

{
s

∏

IDj∈G
(α+IDj)

}

,

C2 = c2e(g, ĉ
f1
1 X−1) = e(g, g)−γe(g, g)−γ(αf1+α2f2+...+αlfl) = e(g, g)−s,

Ĉ1 = ĉ1(
∏l+1

i=2
ĉ

fi−1
i )−1 = (g−αγ)(g−α2γ)f1(g−α3γ)f2 . . . (g−αl+1γ)fl = g−αs,

CM = cMe(ĉ
{−f1}
1 X, l0) = M · e(g, l0)γe(g, l0)

γ(αf1+...+αlfl) = M · e(g, l0)s.

In this computation, g, l0 are extracted from PP.
3. Finally, publishes CT = (C1, C2, Ĉ1, CM ) together with the set G = S\R.

• (M)←Decrypt(PP, ski,CT, G): A subscribed user i with identity IDi, having
the secret key ski =

(
d1,i, d2,i, d3,i, labeli = (hi, h

α
i , . . . , hαN

i )
)

uses PP, G, the
ciphertext CT = (C1, C2, Ĉ1, CM ) and recovers the message M as follows:

– Computes e(g, hig
ri)s, e(g, hi)s as

e(g, hig
ri )

s
=

⎧
⎪⎪⎨

⎪⎪⎩

[
e(C1, d1,i)e

(
Ĉ1, (hig

d2,i )Ai,G,α
)]

{
1∏

IDj∈G,j �=i
IDj

}

if |G| > 1

e(C1, d1,i) if |G| = 1

e(g,hi)
s
= e(g, hig

ri )
s
C

d2,i
2 ,

e(g,hil
ri
0 )

s
=

[
e(C1, d3,i)e

(
Ĉ1, (hil

d2,i
0 )

BG,α
)]

{
1∏

IDj∈G
IDj

}

,where

Ai,G,α =
1

α

{ ∏

IDj∈G,

j �=i

(α + IDj) −
∏

IDj∈G,

j �=i

IDj

}
, BG,α =

1

α

{ ∏

IDj∈G

(α + IDj) −
∏

IDj∈G

IDj

}
.

[Computation of (hig
d2,i)Ai,G,α and (hil

d2,i

0 )
BG,α

have been explained in
Note 1.]

– Obtain K = e(g, l0)s as
{

e(g,hil
ri
0 )s

e(g,hi)s

} 1
d2,i .

– Recovers the message M by computing CM

K .

Note 1. The polynomial 1
x

{ ∏
IDj∈G, j �=i

(x + IDj) − ∏
IDj∈G, j �=i

(IDj)
}

=
n−l−2∑

k=0

akxk

(say) is of degree (n − l − 2) in x, when |G| = n − l > 1. With the knowledge
of G, the user i can compute the co-efficients ak, k ∈ [0, n − l − 2] which are
functions of IDj ∈ G, j �= i. Also gαj

for j ∈ [0, n − l − 2] are available in the
public parameter PP and hαj

i for j ∈ [0, n − l − 2] are extractable from labeli
in ski. Consequently, user i having identity IDi ∈ G and its secret key ski

can compute
n−l−2∏

j=0

(hαj

i )
aj

n−l−2∏
j=0

(gαj

)
d2,iaj

= h

{
n−l−2∑

j=0
ajαj

}

i g
d2,i

{
n−l−2∑

j=0
ajαj

}
=

(hig
d2,i)Ai,G,α without the knowledge of α. Here d2,i = r is obtained from ski.
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Similarly (hil
d2,i

0 )
BG,α

is also computable. Thus a subscribed user can compute

(hig
d2,i)Ai,G,α and (hil

d2,i

0 )
BG,α

(in |G| > 1 case).

We have given the correctness of RRBE-I in Appendix A.

Remark 1. Suppose that the content provider has generated a content for
a group S of n user identities and provided it to the broadcaster as

CT′ = (c1, c2, ĉ1, . . . , ĉk+1, cM ) where c1 =
n∏

i=0

(gαi+1β)γFi = g

n∑

i=0
βαi+1γFi

=

gαβF (α)γ , c2 = e(g, g)−γ , ĉ1 = (gα)−γ = g−γα, ĉi = (gαi

)
γ

= gαiγ for 2 ≤
i ≤ k + 1, cM = M · e(g, l0)γ .

Here F (x) =
∏

IDj∈S

(x + IDj) =
n∑

i=0

Fix
i, where Fi’s are function of IDj ∈ S,

γ ∈R Zp, gα, . . . , gαk

, gαk+1
, gαβ , . . . , gαnβ , gαn+1β , e(g, g), e(g, l0) are extracted

from PP. It involves n users. In order to add more users, the broadcaster needs

to create the ciphertext component c1 as c1 =
n′∏

i=0

(gαi+1β)γFi , (n′ > n) for which

the explicit knowledge of γ is required. However, γ is chosen by the content
provider. Consequently, the broadcaster will not be able to modify the encrypted
content to involve more users.

Remark 2. The ciphertext can be modified by an attacker. To prevent this we need
to use an unforgeable signature scheme which will sign on ciphertext and will also
make verification key public. Each subscribed user will verify the signature and if
the verification succeeds then it will decrypt the content else output ⊥, indicating
that the ciphertext has been modified.

Remark 3. In CT, C1 is generated using the set G and any one can publicly verify
this by checking the following- e(C1, g

α) = e(gαβ
∏

IDj∈G(α+IDj), Ĉ
(−1)
1 ). Note that

g
αβ

∏
IDj∈G(α+IDj) is publicly computable (similar to c1) using set G.

Remark 4. If a content provider generates a content having k + 4 components
supporting at most k revocation, the broadcaster will not be able to revoke more
than k user as in this case in Revoke phase, computation of X will need more
components.

3.2 Security

Theorem 1. Our proposed scheme RRBE-I described in Sect. 3.1 achieves adap-
tive semantic (indistinguishability against CPA) security as per the message
indistinguishability security game of Sect. 2.2 under the q-wDABDHE (q ≥ 2N)
assumption.

We have given the proof of Theorem 1 in Appendix A.
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4 Our RRBE-II

4.1 Protocol Description

Our scheme RRBE-II works as follows:

• (PP,MK)←Setup(N,λ): Given the security parameter λ and a set of users U
of size N , the PKGC generates the public parameter PP, master key MK as
follows:

– Chooses a prime order bilinear group system S = (p,G,G1, e), where
G,G1 are groups of prime order p (> N) and e : G×G → G1 is a bilinear
mapping.

– Selects α, b ∈R Zp, and sets MK, PP as MK = (α, b),PP =
(S, g, gb, gb2 , hb, e(g, g)α), where g is a generator of G and h is random
element of G.

– Keeps MK secret to itself and makes PP public.
• (sku)←KeyGen(PP,MK, IDu): On receiving user identity IDu ∈ Zp from user

u, the PKGC selects t ∈R Zp and generates a secret key sku = (d0, d1, d2),
using MK = (α, b), and extracting g, gb, gb2 from PP as

d0 = gα(gb2)
t
, d1 = [gb(IDu)h]t, d2 = g−t.

It sends sku to user u through a secure communication channel between them.
• (CT′, S)←Encrypt(S,PP,M): The content provider and the broadcaster

agree on a set of subscribed user identities S ⊆ U . Let R1 = U\S =
{IDi1 , IDi2 , . . . , IDir1

} be the set of identities of revoked users and IR1 =
{i1, i2, . . . , ir1} be the index set of R1. The content provider executes the
following steps to encrypt M ∈ G1(= M) for the user set S, using PP, R1.

– Picks s ∈R Zp and divides s into r1 components si1 , si2 , . . . , sir1
∈ Zp

such that s = si1 + si2 + . . . + sir1
and generates the encrypted content

CT′ = (c0, {ci,1}i∈IR1
, {ci,2}i∈IR1

, cM ) by setting

c0 = gs, ci,1 = (gb)si , ci,2 = (gb2IDihb)
si

, cM = M · [e(g, g)α]s.

Here g, gb, gb2 , hb, e(g, g)α are extracted from PP.
– Sends CT′ together with S to the broadcaster through a secure commu-

nication channel between the broadcaster and the content provider.
• (CT, G)←Revoke(PP,CT′, S,R2): Let the broadcaster wants to revoke the set

R2 = {IDir1+1 , . . . , IDir1+r2
} from CT′. Let IR2 = {ir1+1, ir1+2, . . . , ir1+r2} be

the index set of R2 and IR = IR1 ∪ IR2 . The broadcaster generates ciphertext
for the set G = S\R2 using PP, CT′ = (c0, {ci,1}i∈IR1

, {ci,2}i∈IR1
, cM ), R2 as

follows
– Selects sir1+1 , . . . , sir

∈R Zp and sets ρ = s+
∑

i∈IR2
si where r = r1+r2.
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– Computes C0 = c0g
∑

i∈IR2
si = g

(s+
∑

i∈IR2
si) = gρ,

Ci,1 =

{
ci,1, if i ∈ IR1 ,

gbsi , if i ∈ IR2 ,
Ci,2 =

{
ci,2, if i ∈ IR1 ,

(gb2IDihb)
si

, if i ∈ IR2 ,

CM = cM

(
e(g, g)α

)∑
i∈IR2

si = M · e(g, g)
α(s+

∑
i∈IR2

si) = M · e(g, g)αρ.

– Broadcasts the ciphertext CT = (C0, {Ci,1}i∈IR
, {Ci,2}i∈IR

, CM ) together
with G = S\R2.

• (M)←Decrypt(PP, sku,CT, G): A subscribed user u with identity IDu, hav-
ing the secret key sku =

(
d0, d1, d2

)
, uses PP, the ciphertext CT =

(C0, {Ci,1}i∈IR
, {Ci,2}i∈IR

, CM ), R = R1 ∪ R2 = U\G and recovers the mes-
sage M as follows:

– Obtain e(g, g)αρ =
e(C0, d0)

e
(
d1,

∏
i∈IR

C
1/(IDu−IDi)
i,1

) · e
(
d2,

∏
i∈IR

C
1/(IDu−IDi)
i,2

) .

Here IR = IR1 ∪ IR2 .
– Recovers the message M by computing CM/e(g, g)αρ.

We have given the correctness of RRBE-II in Appendix B.

Remark 5. Note that in our scheme RRBE-II, we have used Lewko-Sahai-Waters
Identity-Based Revocation (IBR) [15] scheme which has ciphertext size linear
to the number of revoked users. Consequently, the communication cost in our
RRBE-II is linear to number of revoked users. The cost can be reduced further if
IBR scheme of Lewko-Sahai-Waters is replaced by a suitable IBR with constant
size ciphertext. Attrapadung-Libert-Panafieu proposed an IBR [5] with constant
size ciphertext. However this scheme cannot be employed in place of Lewko-
Sahai-Waters IBR as it cannot extend the revocation set as illustrated below.

The public parameter PP and master key MK for the IBR of [5] are respec-
tively given by PP = (A = e(g, g)α, g, gᾱ),MK = α, where e : G × G → G1

is a bilinear mapping, G,G1 are two multiplicative groups of prime order p
where discrete logarithm problem is hard, g is a generator of G, α ∈R Z

∗
p,

ᾱ = (α1, . . . , αr+1) ∈R (Z∗
p)

r+1, r is maximum revocation number that the system
can support, gᾱ = (gα1 , . . . , gαr+1). The content generated by the content provider
is given by CT′ = (c0, c1, c2) = (MAs, gs, gs<YR1 ,ᾱ>), where M ∈ G1 is the con-
tent to be encrypted, s ∈R Zp, YR1 = (a0, a1, . . . , ar1−1, ar1 = 1) is the vector co-
efficient of fR1 =

∏
IDi∈R1

(Z − IDi) with R1 = (ID1, ID2, . . . , IDr1) ∈ (Z∗
p )r1 .

Here < YR1 , ᾱ >=
∑r

i=0 aiαi+1 is the inner product. If r1 < r then set ar1+1 =
ar1+2 = . . . = ar = 0 to compute c2. In revocation phase the broadcaster wants
to revoke R2 = (IDr1+1, IDr1+2, . . . , IDr1+r2) ∈ (Z∗

p )r2 , where R1 ∩R2 = φ and
|R1 ∪ R2| ≤ r for which he needs to generate CT = (C0 = c0, C1 = c1, C2) =
(MAs, gs, gs<YR1∪R2 ,ᾱ>), where YR1∪R2 = (b0, b1, . . . , br1+r2−1, br1+r2 = 1) is the
vector co-efficient of fR1∪R2(Z) =

∏
IDi∈R1∪R2

(Z − IDi). The broadcaster will
not be able to extend the revocation set without explicitly knowing s or αi values
as C2 = gs<YR1∪R2 ,ᾱ> is not computable with the knowledge of gs, gᾱ, YR1∪R2

only.
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Remark 6. If no user revoke in revocation phase and U = S in encryption phase,
then encryption, decryption are not defined. To avoid this case, we can add a
dummy user in U which will be always revoked.

Remark 7. As in RRBE-I scheme, the broadcaster in our RRBE-II also will be
unable to modify the encrypted content in order to allow more users to recover
the original message from the encrypted content as s, {sij

}r
j=1 are chosen by the

content provider.

Remark 8. We can remove the secure communication between the content
provider and the broadcaster as follows. In the key generation phase, the PKGC
can select a random number η ∈ G1 and sends it securely to both the con-
tent provider and the broadcaster. The content provider publishes the following
encrypted content CT′ = (c0, {ci,1}i∈IR1

, {ci,2}i∈IR1
, Eη(cM )), by encrypting cM

using a symmetric key encryption with η as the symmetric key. As the broadcaster
has the secret symmetric key η, it can recover cM by decrypting Eη(cM ) and run
the revocation algorithm as in RRBE-II. Note that only the ciphertext component
cM involves the content M , thereby other components c0, {ci,1}i∈IR1

, {ci,2}i∈IR1

can be made public. Similar mechanism is applicable for RRBE-I.

Remark 9. In CT, Ci,1 and Ci,2 are generated involving the set R1, R2 and any
one can check by verifying the followings- e(Ci,1, (gb2IDihb)) = e(Ci,2, g

b) for
i ∈ IR = IR1 ∪ IR2 . This is verifiable using pubic parameters.

4.2 Security

Theorem 2. Our proposed scheme RRBE-II described in Sect. 4.1 achieves selec-
tive semantic (indistinguishability against CPA) security as per the message
indistinguishability security game of Sect. 2.2 under the q-DMEBDH (q ≥ r)
assumption where r is the number of revoked users.

We have given the proof of Theorem 2 in Appendix B.

5 Conclusion

We have proposed two RRBE schemes, one achieves adaptive security whereas
other is selective secure. Both of them are secure in standard model and com-
pare well with existing similar schemes. Our RRBE-II is the first RRBE where
encryption is done using the revocation identity set.
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Appendix

A Correctness and Security of RRBE-I

A.1 Correctness:

Let IDi ∈ G. Now if |G| > 1, we have

[
e(C1, d1,i)e

(
Ĉ1, (hig

d2,i)Ai,G,α

)]

{
1∏

IDj∈G,
j �=i

IDj

}

=
[
e(g, hig

ri)

s
{ ∏

IDj∈G,
j �=i

(α+IDj)
}

× e(g, hig
ri)

−s
{ ∏

IDj∈G,
j �=i

(α+IDj)−
∏

IDj∈G,
j �=i

IDj

}
]

{
1∏

IDj∈G,
j �=i

IDj

}

=
[
e(g, hig

ri)

s
∏

IDj∈G,
j �=i

IDj ]

{
1∏

IDj∈G,j �=i
IDj

}

= e(g, hig
ri)s,

and if |G| = 1, i.e., all but 1 user revoked, we have

e(C1, d1,i) = e
(
gsαβ(α+IDi), (hig

ri)
1

αβ(α+IDi)

)
= e(g, hig

ri)s.

Consequently, e(g, hig
ri)sC

d2,i

2 = e(g, hig
ri)se(g, g)−sri = e(g, hi)s.

Similarly,
[
e(C1, d3,i)e

(
Ĉ1, (hil

d2,i

0 )BG,α

)]
{

1∏

IDj∈G
IDj

}

= e(g, hil
ri
0 )s,

and,
{

e(g,hil
ri
0 )s

e(g,hi)s

} 1
d2,i =

{
e(g,hi)

se(g,l
ri
0 )s

e(g,hi)s

} 1
ri = e(g, l0)s = K.

The message is then recovered by computing CM

K = M ·e(g,l0)
s

e(g,l0)s = M.

A.2 Security

Theorem 1. Our proposed scheme RRBE-I described in Sect. 3.1 achieves adap-
tive semantic (indistinguishability against CPA) security as per the message
indistinguishability security game of Sect. 2.2 under the q-wDABDHE (q ≥ 2N)
assumption.

Proof. Assume that there is a PPT adversary A that breaks the adaptive seman-
tic security of our proposed RRBE-I scheme with a non-negligible advantage. We
construct a PPT distinguisher C that attempts to solve the q-wDABDHE problem
using A as a subroutine. Let C be given a q-wDABDHE (q ≥ 2N) instance

〈
Z,K

〉

with Z = (S, ĝ, ĝαq+2
, . . . , ĝα2q

, g, gα, . . . , gαq

), where S = (p,G,G1, e) is a prime
order bilinear group system, g is generator of group G, ĝ ∈R G, α ∈R Zp, K is
either e(ĝ, g)αq+1

or a random element X of G1. We describe below the interac-
tion of A with the distinguisher C who attempts to output 0 if K = e(ĝ, g)αq+1

and 1 otherwise.

Setup: The challenger C generates the public parameter PP and master key MK
as follows:
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– Chooses b0,j ∈R Zp, j ∈ [0, N − 1] and sets the polynomials P 0(x), Q0(x) as

P 0(x) =
N−1∑
j=0

b0,jx
j , Q0(x) = xP 0(x) + 1.

– Using g, gα, . . . , gαq

sets lα
i

0 = gαi
N−1∏
j=0

(gαj+i+1
)
b0,j

= gαiQ0(α), i ∈ [0, N ].

– Picks β ∈R Zp and sets MK = (α, β), where α is not known to C explicitly.
– Sets PP = (S, l0, l

α
0 , . . . , lα

N

0 , g, gα, . . . , gαN

, gαβ , . . . , gαN+1β , e(g, g), e(g, l0)),
and sends it to the adversary A.

As Q0(x), β are random, the distribution of the public parameter PP is identical
to that in the original scheme.

Phase 1: The adversary A issues m key generation queries on {IDij
}m

j=1. The
challenger C generates the private key ski for i ∈ {i1, . . . , im} as follows:

– Chooses bi, bi,j ∈R Zp, j ∈ [0, N − 2] and sets

P i(x) =
N−2∑
j=0

bi,jx
j , Qi(x) = x(x + IDi)P i(x) + bi.

– Computes d1,i =
(N−2∏

j=0

(gαj

)
bi,j

) 1
β

=
(
g

N−2∑

j=0
bi,jαj) 1

β

= g
P i(α)

β ,

d2,i = −Qi(−IDi) = IDi(−IDi + IDi)P i(−IDi) − bi = −bi,

d3,i =
(N−1∏

j=0

(gαj

)
−bib0,j

N−2∏
j=0

{(gαj+1
)
bi,j

(gαj

)
bi,j IDi}

) 1
β

=
(
g

−bi

N−1∑

j=0
b0,jαj

g
{(α+IDi)

N−2∑

j=0
bi,jαj}) 1

β

=
(
g−biP

0(α)+(α+IDi)P
i(α)

) 1
β

,

hαk

i = (gαk

)
bi

N−2∏
j=0

{(gαk+j+2
)
bi,j

(gαk+j+1
)
bi,j IDi}

= g
αk

(
α(α+IDi)P

i(α)+bi

)
= gαkQi(α).

– Sets labeli = (hαk

i , k ∈ [0, N ]) and ski = (d1,i, d2,i, d3,i, labeli).
Sends ski for i ∈ {i1, . . . , im} to the adversary A.
As bi, Q

i(x) are random, d2,i, labeli have identical distribution to those in the
original scheme. It is left to show that d1,i, d3,i follow the original distribution.

d1,i = g
P i(α)

β = g
Qi(α)−bi

αβ(α+IDi) = (gQi(α)gd2,i)
1

αβ(α+IDi) = (hig
d2,i)

1
αβ(α+IDi) ,
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Now, −biP
0(α) + (α + IDi)P i(α) =

1
α

{
− biαP 0(α) + Qi(α) − bi

}

=
1
α

{
− bi(Q0(α) − 1) + Qi(α) − bi

}
=

1
α

{
− biQ

0(α) + Qi(α)
}

⇒ d3,i =
(
g−biP

0(α)+(α+IDi)P
i(α)

) 1
β

= g
1

αβ

{
−biQ

0(α)+Qi(α)

}
= (hil

d2,i

0 )
1

αβ
.

Thus d1,i, d3,i are identical to original scheme.

Challenge: The adversary A sends a set of user identities G to C, where identi-
ties of G have not been queried before. It also sends two equal length messages
M0,M1, and a revocation identity set R to the challenger C where no identity
in the set R lies in G. The challenger C does the following:

– Computes
N−1∏
i=0

(gαi

)b0,i = g

N−1∑

i=0
b0,iα

i

= gP 0(α) by extracting gαi

values from

the given instance
〈
Z,K

〉
.

– Selects Mμ, μ ∈R {0, 1} and sets CMμ
as, CMμ

= Mμ · K · e(ĝαq+2
, gP 0(α)),

where K is extracted from the given instance
〈
Z,K

〉
. Here K is either

e(ĝ, g)αq+1
or a random element of G1. If K= e(ĝ, g)αq+1

then the simulated
CMμ

(= cMμ
) has the same distribution as in the original scheme as

CMμ
= Mμ · K · e(ĝαq+2

, gP 0(α)) = Mμ · e(ĝ, g)αq+1
e(ĝαq+2

, gP 0(α))

= Mμ · e(ĝαq+1
, gαP 0(α)+1) = Mμ · e(gs, l0) = Mμ · e(g, l0)s

where s is implicitly set as s = αq+1 logg ĝ.

– Sets Γ (x) =
∏

IDj∈G

(x + IDj) =
|G|∑
i=0

Γix
i, where Γi are function of IDj ∈ G.

– Computes
|G|∏
i=0

(ĝαq+2+iβ)Γi = (ĝαq+2β)

|G|∑

i=0
Γiα

i

= (ĝαq+2β)

∏

IDi∈G

(α+IDi)

. Note that

ĝαi

, i ∈ [q + 2, 2q], q ≥ 2N are available to C through
〈
Z,K

〉
.

– If R �= φ, sets the challenge ciphertext CT∗ as,

CT∗ =
(
(ĝαq+2β)

∏

IDi∈G

(α+IDi)

,K−1, ĝ−αq+2
, CMμ

)
= (C1, C2, Ĉ1, CMμ

).

else if R = φ (i.e. G = S), sets CT∗ as

CT∗ =
(
(ĝαq+2β)

∏

IDi∈G

(α+IDi)

,K−1, ĝ−αq+2
, ĝαq+3

, . . . , ĝαq+k+1
, CMμ

)

= (c1, c2, ĉ1, ĉ2, . . . , ĉk+1, cMμ
).
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If K = e(ĝ, g)αq+1
, then as s is implicitly set to be s = αq+1 logg ĝ, we have

C1 = c1 = (ĝαq+2β)

∏

IDi∈G

(α+IDi)

= (gβ logg ĝαq+2

)

∏

IDi∈G

(α+IDi)

= (gβααq+1 logg ĝ)

∏

IDi∈G

(α+IDi)

= (gαβ)
s

∏

IDi∈G

(α+IDi)

,

C2 = c2 = K−1 = e(glogg ĝ, g)−αq+1
= e(g, g)−αq+1 logg ĝ = e(g, g)−s,

Ĉ1 = ĉ1 = ĝ−αq+2
= g−(logg ĝ)αq+2

= g−ααq+1 logg ĝ = g−αs,

ĉi = ĝαq+1+i

= gαiαq+1 logg ĝ = gαis, 2 ≤ i ≤ k.

Consequently, distribution of CT∗ is similar to our real construction from A’s
point of view.

– Returns CT∗ to A.

Note that in our RRBE-I (see Sect. 3.1), components c1, c2, ĉ1, cM generated
for message M in Encrypt are identical to C1, C2, Ĉ1, CM of Revoke respec-
tively except randomness. Therefore in this Challenge phase, from adver-
sary A’s point of view there is no difference between (c1, c2, ĉ1, cMμ

) and
(C1, C2, Ĉ1, CMμ

). Consequently we can take C1 = c1, C2 = c2, Ĉ1 = ĉ1, CMμ
=

cMμ
as challenge ciphertext in R �= φ case.

Phase 2: This is similar to Phase 1 key generation queries. The adversary A
sends key generation queries for {IDim+1 , . . . , IDit

} with a restriction that IDij
/∈

G and receives back secret keys {skij
}t

j=m+1 simulated in the same manner by
C as in Phase 1.

Guess: Finally, A outputs a guess μ′ ∈ {0, 1} of μ to C and wins if μ′ = μ.

If μ′ = μ, C outputs 0, indicating that K = e(ĝ, g)αq+1
; otherwise, it outputs 1,

indicating that K is a random element of G1.
The simulation of C is perfect when K = e(ĝ, g)αq+1

. Therefore, we have
Pr[C(Z,K = e(ĝ, g)αq+1

) = 0] = 1
2 + AdvIND−aCPA

A,RRBE−I , where AdvIND−aCPA
A,RRBE−I is the

advantage of the adversary A in the above indistinguishability game. On the
other hand, Mμ is completely hidden from the adversary A when K = X is ran-
dom, thereby Pr[C(Z,K = X) = 0] = 1

2 . Hence, the advantage of the challenger
C in solving q-wDABDHE is

Advq−wDABDHE
C = |Pr[C(Z,K = e(ĝ, g)αq+1

) = 0] − Pr[C(Z,K = X) = 0]|
=

1
2

+ AdvIND−aCPA
A,RRBE−I − 1

2
= AdvIND−aCPA

A,RRBE−I .

Therefore, if A has non-negligible advantage in correctly guessing μ′, then
C predicts K= e(ĝ, g)αq+1

or random element of G1 (i.e., solves q-wDABDHE
(q ≥ 2N) instance given to C) with non-negligible advantage. Hence the theorem.
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B Correctness and Security of RRBE-II

B.1 Correctness:

The correctness of RRBE-II follows from the argument below:

If IDu ∈ G, then

e(C0, d0)

e
(
d1,

∏
i∈IR

C

{
1

IDu−IDi

}
i,1

) · e
(
d2,

∏
i∈IR

C

{
1

IDu−IDi

}
i,2

)

=
e(gρ, gαgb2t)

∏
i∈IR

{
e
(
(gbIDuh)

t
, gbsi

) · e
(
g−t, (gb2IDihb)si

)}
{

1
IDu−IDi

}

=
e(g, g)αρe(g, g)ρb2t

∏
i∈IR

{
e(g, g)b2IDusit · e(g, g)−b2IDisit

}{ 1
IDu−IDi

}

=
e(g, g)αρe(g, g)ρb2t

∏
i∈IR

e(g, g)sib
2t

= e(g, g)αρ,

and consequently, CM

e(g,g)αρ = M ·e(g,g)αρ

e(g,g)αρ = M.

B.2 Security

Theorem 2. Our proposed scheme RRBE-II described in Sect. 4.1 achieves selec-
tive semantic (indistinguishability against CPA) security as per the message
indistinguishability security game of Sect. 2.2 under the q-DMEBDH (q ≥ r)
assumption where r is the number of revoked users.

Proof. Assume that there is a PPT adversary A that breaks the selective seman-
tic security of our proposed RRBE-II scheme with a non-negligible advantage. We
construct a PPT distinguisher C that attempts to solve the q-DMEBDH problem
using A as a subroutine. Let C be given a q-DMEBDH (q ≥ r) instance

〈
Z,K

〉

with Z =

⎧
⎪⎨
⎪⎩

S, g, gs, e(g, g)α,

gai , gais, gaiaj , gα/a2
i , ∀1 ≤ i, j ≤ q

gaiajs, gαaj/a2
i , gαaiaj/a2

k , gαa2
i /a2

j , ∀1 ≤ i, j, k ≤ q, i �= j

⎫
⎪⎬
⎪⎭

where S = (p,G,G1, e) is a prime order bilinear group system, g is a generator
of the group G, α, ai ∈R Zp, and K is either e(g, g)αs or a random element
X of G1. We describe below the interaction of A with the distinguisher C who
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attempts to output 0 if K = e(g, g)αs and 1 otherwise. Both adversary A and
challenger C knows the universal set of users U .

Initialization: The adversary A selects a target identity set G of subscribed
users. Let R = U\G = {IDi1 , . . . , IDir

} and IR = {i1, . . . , ir} be index set for R.

Setup: The challenger C generates the public parameter PP using
〈
Z,K

〉
as:

– Selects y ∈R Zp and implicitly sets b = ai1 + ai2 + . . . + air
.

– Computes gb =
∏
i∈IR

gai , gb2 =
∏

i,j∈IR

gaiaj .

– Sets h, hb as h =
∏
i∈IR

(gai)−IDigy, hb =
∏

i,j∈IR

(gaiaj )−IDigajy. Since α, b are

not known to C, master key MK is explicitly implicitly set as MK = (α, b).
– Sends PP = (S, g, gb, gb2 , hb, e(g, g)α) to the adversary A.

Note that as b, α are random and therefore, PP has the same distribution as in
the original RRBE-II.

Phase 1: The adversary A issues m key generation queries on {IDij
}m

j=1, where
IDj /∈ G. Receiving key generation query for IDi, the challenger C does the
followings:

– Selects zi ∈R Zp and using y chosen randomly from Zp in Setup phase, it sets

d0 =
( ∏

j,k∈IR such that
if j=k then j,k �=i

g−αajak/a2
i

) ∏
j,k∈IR

(gajak)zi

= gα
∏

j,k∈IR

g−αajak/a2
i

∏
j,k∈IR

(gajak)zi = gαgb2ti , where ti = zi−α/a2
i ,

d1 =
( ∏

j∈IR
j �=i

(g−αaj/a2
i )(IDi−IDj)(g(IDi−IDj)aj )zi

)
(g−α/a2

i )ygyzi

=
( ∏

j∈IR
j �=i

(g(IDi−IDj)ajti)
)
gyti = gbIDiti

( ∏
j∈IR

(g−IDjajti)gyti

)
= gbIDitihti ,

d2 = gα/a2
i g−zi = g−ti .

– Sets ski = (d0, d1, d2) and sends ski to the adversary A.

Note that d0, d1, d2 have similar distributions as in the original scheme RRBE-II.

Challenge: The adversary A sends two equal length messages M0,M1 to the
challenger C together with a set of revoked user identities R2 (⊆ R) which will
be revoked in the revocation phase. The challenger C does the following:

– Selects s′ ∈R Zp and split it into r = |R| components s′
i1

, s′
i2

, . . . , s′
ir

∈ Zp

such that s′ = s′
i1

+ s′
i2

+ . . . + s′
ir

.
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– Sets C0 = gsgs′
and ui = gb2IDihb for each i ∈ IR.

– Selects μ ∈R {0, 1} and computes CMμ
= Mμ · K · e(g, g)αs′

. Also for each
i ∈ IR, computes the followings
Ci,1 = gsai(

∏
j∈IR

gaj )s′
i , Ci,2 =

∏
j∈IR
j �=i

(gsaiaj )(IDi−IDj)(gais)yu
s′

i
i ,

– If R2 = φ (i.e., G = S), then sends the challenge ciphertext CT∗ = CT′ =
(C0, {Ci,1}i∈IR1

, {Ci,2}i∈IR1
, CMμ

) to A.
– If R2 �= φ, then sends the challenge ciphertext CT∗ = CT =

(C0, {Ci,1}i∈IR
, {Ci,2}i∈IR

, CMμ
) to A.

Let us set implicitly ρ = s + s′ and split ρ as ρ =
∑

i∈IR
ρi with ρi = ais

b + s′
i

(implicitly). If K = e(g, g)αs, then these ciphertexts have distribution identical
to those in the original protocol as follows:

C0 = gsgs′
= gρ, Ci,1 = gsai(

∏
j∈IR

gaj )s′
i = gsaigbs′

i = gbρi ,

Ci,2 =
∏

j∈IR
j �=i

(gsaiaj )(IDi−IDj)(gais)yu
s′

i
i =

∏
j∈IR

(gsaiaj )(IDi−IDj)

gsaiai(IDi−IDi)
gysaiu

s′
i

i

= gbIDisai

∏
j∈IR

g−saiaj IDj gsaiyu
s′

i
i = (gbIDih)sai+bs′

i = (gb2IDihb)ρi .

CM = Mμ · K · e(g, g)αs′
= Mμ · e(g, g)αs · e(g, g)αs′

= Mμ · e(g, g)αρ.

Note that in our RRBE-II, the ciphertext components (c0, {ci,1}i∈IR1
, {ci,2}

i∈IR1
, cM ) generated for a message M by working Encrypt are identical to

(C0, {Ci,1}i∈IR
, {Ci,2}i∈IR

, CM ) generated by executing Encrypt followed by
Revoke except from number of components. Therefore, if R2 = φ, the adversary
will consider the challenge ciphertext CT∗ as an output of Encrypt(G,PP,Mμ)
and if R2 �= φ it will be considered as an output of Encrypt(S,PP,Mμ),
Revoke(PP,CT′, S,R2).

Phase 2: This is similar to Phase 1 key generation queries. The adversary A
sends key generation queries for {IDim+1 , . . . , IDit

} with a restriction that ij /∈ G
and receives back secret keys {skij

}t
j=m+1 simulated in the same manner by C

as in Phase 1.

Guess: Finally, A outputs a guess μ′ ∈ {0, 1} of μ to C and wins if μ′ = μ.
If μ′ = μ, C outputs 0, indicating that K = e(g, g)αs; otherwise, it outputs 1,
indicating that K is a random element of G1.

The simulation of C is perfect when K = e(g, g)αs. Therefore, we have
Pr[C(Z,K = e(g, g)αs) = 0] = 1

2 + AdvIND−sCPA
A,RRBE−II, where AdvIND−sCPA

A,RRBE−II is the
advantage of the adversary A in the above indistinguishability game. On the
other hand, Mμ is completely hidden from the adversary A when K = X is
random, thereby Pr[C(Z,K = X) = 0] = 1

2 . Hence, the advantage of the chal-
lenger C in solving q-DMEBDH is Advq−DMEBDH

C = |Pr[C(Z,K = e(g, g)αs) =
0] − Pr[C(Z,K = X) = 0]| = 1

2 + AdvIND−sCPA
A,RRBE−II − 1

2 = AdvIND−sCPA
A,RRBE−II.
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Therefore, if A has non-negligible advantage in correctly guessing μ′, then C
predicts K = e(g, g)αs or random element of G1 (i.e., solves q-DMEBDH (q ≥ r)
instance given to C) with non-negligible advantage. Hence the theorem follows.
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Abstract. The broadcast encryption with dealership (BED) scheme
allows a dealer, instead of a broadcaster, to manage a recipient. Unlike
prior broadcast encryption schemes, BED reduces the burden placed on
the broadcaster to manage recipient, which makes it suitable for a broad-
casting service targeting a large number of recipients. Subscribing and
unsubscribing from the broadcast service occur frequently at the request
of the user, however, early versions of BED schemes do not support recipi-
ent revocation. In this paper, we propose a recipient revocable broadcast
encryption with dealership and show that it is secure in the adaptive
security model without random oracles.

Keywords: Broadcast encryption with dealership
Adaptive security · Revocation · Chosen plaintext attack

1 Introduction

Broadcast encryption (BE) is a useful tool that enables a single ciphertext to
be decrypted by multiple recipients. A broadcaster encrypts a message intended
for a group of recipients instead of for a single recipient, and anyone belonging
to the recipient group can decrypt the ciphertext with its secret key. Since a
ciphertext is broadcast to multiple recipients, BE is suitable for a service trans-
mitting digital content such as Pay-TV [5]. As the demand for digital content
has increased, researchers have studied a variety of ways to set a recipients group
[1,5,8,13]. However, the increasing number of recipients has made it important
to manage all recipients as well as to specify groups of recipients.

To solve this issue, Gritti et al. proposed a broadcast encryption with dealer-
ship (BED) scheme in 2015 that focuses on the separation of roles, i.e. selecting
a set of recipients and providing content to them [11]. In BED, there is a dealer
who sets the recipient group, unlike in BE. The dealer directly manages recip-
ients instead of the broadcaster without knowing the content, and obtains a
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ogy Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2015-0-
00320, A study of a public-key authentication framework for internet entities with
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commission from the broadcaster for this service. The recipient can purchase
content from the dealer at a lower price than purchasing from the broadcaster.
Specifically, the dealer creates a group token without exceeding its own author-
ity, which is defined as the maximum number of recipients whom he is allowed
to manage by contract, and sends it to the broadcaster. The broadcaster verifies
if the group token is valid and uses it to encrypt the content. The recipient can
decrypt the encrypted content using a secret key if he or she belongs to the
group.

Although BED helps recipient management, requests for subscription or
unsubscription of recipients changes dynamically in real online multimedia ser-
vices. The recipient may receive the wrong content owing to a mistake by the
dealer or the broadcaster and may request a refund for receiving incorrect ser-
vices. In such a scenario, the recipient may ask the dealer to revoke his or her
access of channel. To revoke the recipient’s access using prior BED schemes, the
dealer must generate another group token excluding the revoked user for a new
ciphertext because only the dealer knows the recipient group he has set. After
completing verification of the new group token, the broadcaster encrypts con-
tent again. The process is inefficient for both the dealer and the broadcaster: [(1)
group token generation - (2) group token verification - (3) content encryption]
whenever recipients request the dealer to revoke their access. If the dealer can
revoke recipients without the broadcaster’s help, the revocation process men-
tioned above will become much more efficient. In this paper, we first propose
a recipient revocable broadcast encryption with dealership (RR-BED) that can
revoke recipients more simply than prior BED schemes.

1.1 Our Contribution

In this paper, we first construct a BED scheme that supports recipient revoca-
tion. There are two types of revocation methods in BE that revoke a secret key
from the system and a recipient from the ciphertext. Since the secret key revoca-
tion system excludes a recipient from the whole system, the recipient revocation
method, which revokes a recipient only for a specific content, is more suitable
for BED applications. There are some studies on BE that support recipient
revocation [4,15] and we use the similar technique to construct our scheme. In
specific, there is a Revoke algorithm that allows a dealer to revoke recipients
efficiently without the complex process mentioned above. The dealer removes a
set of recipients from the original group defined in the old ciphertext using the
Revoke algorithm. To generate a ciphertext for a new group, the Revoke algo-
rithm takes as inputs a group R of recipients to be revoked and the ciphertext
CT for the old group G and outputs an updated ciphertext CT ′ for a new group
S = G − R. The Revoke algorithm should be executed by the dealer because
only the dealer knows which clients are in the recipient group. At this point, the
dealer performs revocation without assistance, and the revocation interactions
between the dealer and the broadcaster are no longer necessary.

In our RR-BED, there are three security requirements. First, the broadcaster
must not be able to obtain any recipients’ information from the group token. If
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recipient information in the group token is exposed to the broadcaster, then the
broadcaster can directly sell the access of channel to a recipient at the same price
that the dealer sells, without owing a commission to the dealer. The second is
that the dealer cannot generate a group token exceeding his own authority. If a
group token forged by the dealer passes verification, even though it exceeds the
dealer’s authority, the dealer can get an unfair commission. The final require-
ment is that an unauthorized user or the dealer cannot get any information
about content from the ciphertext. We prove its security under the discrete log-
arithm problem, the (q + i)− Diffie-Hellman exponent problem, and the q−weak
decisional augmented bilinear Diffie-Hellman exponent problem.

1.2 Related Work

The first BED scheme for a new business model was proposed by Gritti et al.
in 2015 [11]. The authors designed the BED scheme by leveraging the concept
of group tokens used in a membership encryption and presented a new security
model. The security of the scheme is proved in the semi-static security model in
which an adversary specifies a target group at the beginning of the attack. In
2016, Acharya and Dutta pointed out the problem of [11] that a malicious dealer
can generate a group token for a larger group beyond his own privilege [2]. They
proposed a more efficient BED scheme and proved the security of their scheme
in the semi-static security model with random oracles. After that, Acharya and
Dutta proposed an improved BED scheme that does not use random oracles for
the security proof and is proved in the adaptive security model that allows an
adversary to query secret keys before a target is set [3]. However, none of the
existing BED schemes support revocation.

Whereas there is no BED scheme that supports revocation, there have been
many studies of BE that support revocation [4,6,10,12,15]. Some of these studies
were combining BE with the trace system and revocation of the secret key [6,10,
12]. On the other hand some studies focused on revoking the recipients rather
than revoking the secret key [4,15]. The notion of recipient revocable broadcast
encryption (RR-BE) was first proposed by Susilo et al. in 2016 [15] and after
that, Acharya et al. improved the security model of RR-BE from selective to
adaptive security [4].

The rest of this paper is organized as follows. We describe preliminaries in
Sect. 2, and we define the algorithms of RR-BED and the security model in
Sect. 3. We then present our RR-BED construction in Sect. 4. The security proof
of the proposed scheme is provided in Sect. 5. Finally, we summarize our results
in Sect. 6.

2 Preliminaries

In this section, we describe bilinear map and give the complexity assumptions
for our scheme.
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2.1 Bilinear Map

Let G and GT be multiplicative cyclic groups of prime order p and let g be a
generator of G. The bilinear map e : G × G → GT has the following properties:

– Bilinearity: for all u, v ∈ G and for all a, b ∈ Zp, e(ua, vb) = e(u, v)ab

– Non-degeneracy: for generator G ∈ G, e(g, g) �= 1GT
, where 1GT

is an identity
element in GT .

We say that B = (p,G,GT , e) is a bilinear group if the group action in G can
be computed efficiently and there exists a GT for which the bilinear map e :
G × G → GT is efficiently computable.

2.2 Complexity Assumptions

We use the following complexity assumptions to prove that the scheme we pro-
pose is secure.

Definition 1 (Discrete Logarithm (DL) assumption). Let G be a multi-
plicative cyclic group of order p. The DL Problem in G is stated as follows:
Given a tuple <Z = (g, gα)>, an attacker A outputs α where g ∈ G and random
α ∈ Zp. A has an advantage ε in solving the DL problem in G if

AdvDL
A =

∣
∣Pr[A(Z)] = α

∣
∣ ≥ ε.

We say that the DL assumption holds in G if no polynomial-time algorithm has
a non-negligible advantage in solving the DL problem.

Definition 2 ((N + i)-Diffie-Hellman Exponent (DHE) (i > 0) assump-
tion [7]). Let B = (p,G,GT , e) be a bilinear group. The (N + i)-DHE problem in
G is stated as follows : Given a tuple <Z =

(

B, g, gα, · · · , gαN )

>, an attacker A
outputs gαN+i

where g ∈ G and random α ∈ Zp. A has an advantage ε in solving
the (N+i)-DHE problem in G if

Adv
(N+i)−DHE
A =

∣
∣Pr[A(Z) = gαN+i

]
∣
∣ ≥ ε.

We say that the (N + i)-DHE assumption holds in G if no polynomial-time
algorithm has a non-negligible advantage in solving the (N+i)-DHE problem.

Definition 3 (q-weaker Decisional Augmented Bilinear Diffie-Hellman
Exponent (q-wDABDHE)assumption [14]). Let B = (p,G,GT , e) be a bilin-
ear group. The q-wDABDHE problem in G is stated as follows: Given a tuple
< Z =

(

B, u, uαq+2
, · · · , uα2q

, g, gα, · · · , gαq)

,K >, an attacker A outputs 1 if
K = e(g, u)αq+1

and outputs 0 if K = R for random R ∈ GT where g ∈ G,
random u ∈ G, and random α ∈ Zp. A has an advantage ε in solving the q-
wDABDHE problem in G if

Advq−wDABDHE
A =

∣
∣Pr[A(Z,K = e(g, u)αq+1

) = 1] − Pr[A(Z,K = R) = 1]
∣
∣ ≥ ε.

We say that the q-wDABDHE assumption holds in G if no polynomial-time algo-
rithm has a non-negligible advantage in solving the q-wDABDHE problem.
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3 Recipient Revocable Broadcast Encryption with
Dealership

In this section, we describe the definitions of recipient revocable broadcast
encryption with dealership (RR-BED) and its security models.

3.1 Definition

We give an overview of our system model. There are four entities participating
in the RR-BED system that a key generation center (KGC), a dealer, a broad-
caster, and a recipient. KGC sets up the system and issues secret keys to the
recipients. The dealer has responsibility to manage recipients’ information and
decide whether the recipient can access to the content or not, which are kept
secret to the other entities even to the broadcaster. It generates a group token
for the set of recipients and sends it to the broadcaster. When the broadcaster
obtains the group token, it first verifies the validity of it. If it is valid, the broad-
caster encrypts the content with the hidden information of the set of recipients
and uploads it to the server (or a cloud storage). Then, only the authorized recip-
ients can decrypt the ciphertext. RR-BED is composed of the following seven
algorithms (Setup, KeyGen, GroupGen, Verify, Encrypt, Revoke, Decrypt).

RR-BED.Setup(λ,N): This algorithm takes as inputs a security parameter λ
and the maximum number of users N. It outputs public parameters PP and
a master key MK.

RR-BED.KeyGen(i, MK, PP): This algorithm takes as inputs a user index i, the
master key MK, and the public parameters PP. It outputs a secret key ski

for user i.
RR-BED.GroupGen(S, v, k, PP): This algorithm takes as inputs a group of users

S = {i1, i2, · · · , ik′}, a threshold value v, a maximum number of revocations
k, and the public parameters PP. It outputs a group token P (S) where
|S| ≤ v. Note that v is determined by the broadcaster and the dealer in
advance as the maximum number of recipients that a dealer can service.

RR-BED.Verify(P (S), v,PP): This algorithm takes as inputs a group token
P (S), the threshold value v, and the public parameters PP. If |S| ≤ v,
it outputs 1, otherwise, it outputs 0.

RR-BED.Encrypt(P (S),M ,PP): This algorithm takes as inputs a group token
P (S), a message M , and the public parameters PP. It outputs a ciphertext
CT .

RR-BED.Revoke(CT,R,PP): This algorithm takes as inputs a ciphertext CT ,
a set of users R to be revoked, and the public parameters PP. It outputs an
updated ciphertext CT ′ for a user group G = S − R.

RR-BED.Decrypt(ski, CT,G,PP): This algorithm takes as inputs a secret key
ski, a ciphertext CT , a user group G, and the public parameters PP. It
outputs message M .
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Correctness. The correctness of RR-BED is as follows: If PP,MK are generated
by RR-BED.Setup(λ,N), CT is generated by RR-BED.Encrypt(P (S),M,PP),
CT ′ is generated by RR-BED.Revoke(CT,R, PP), and ski is generated by RR-
BED.KeyGen(i, MK, PP) for every recipient i in the recipient group G, then

RR-BED.Decrypt(ski, CT ′, G,PP) = M.

3.2 Security Models

There are three security issues in RR-BED. These are privacy, maximum num-
ber of accountability, and message indistinguishability under chosen plaintext
attacks. We describe each issue through the following security models.

(Privacy). RR-BED must ensure privacy for its user set as does the original
BED. In more detail, information regarding the set of users in a group token
should not be known to the broadcaster. The original security model for this
privacy in BED was introduced by Gritti et al. [11]. We follow their security
model.

Definition 4. Privacy in RR-BED is defined using the game between a proba-
bilistic polynomial-time (PPT) adversary A and a challenger C. The game pro-
ceeds as follows:

Setup: The challenger C runs RR-BED.Setup(N,λ) and obtains PP,MK. It keeps
MK and gives PP to the adversary A.

Challenge: A selects two user groups G0, G1 of the same size and submits to
C. C picks b ∈ {0, 1} and generates group token P (Gb) by running RR-
BED.GroupGen(Gb, v, k,PP), where |Gb| ≤ v and k is a maximum revocation
number. C gives P (GB) to A.

Guess: A outputs a guess b′ ∈ {0, 1}. If b = b′, A wins.

The advantage of A is defined as AdvPrivacy
A =

∣
∣Pr[b′ = b] − 1

2

∣
∣. An RR-BED

scheme is guaranteed privacy of all users in the group token if for every PPT
adversary A, the advantage of A in the above game is negligible.

(Maximum number of accountability). In RR-BED, the dealer should not
exceed the number of privileges granted by the broadcaster when the dealer
generates a group token. The broadcaster must ensure that a the group size of
a group token is not larger than the number of privileges granted to the dealer.
We follow Gritti et al.’s security model to achieve this goal [11].

Definition 5. Maximum number of accountability in RR-BED is defined using
the following game between a PPT adversary A and a challenger C:
Setup: The challenger C runs RR-BED.Setup(N,λ) and obtains PP, MK. It keeps

MK and gives PP to the adversary A.
Challenge: C sends an integer k to A.
Guess: A computes P (G∗), with |G∗| > k. A sends (P (S∗), S∗) to C. If RR-

BED.Verify(P (S∗), k, PP)=1, A wins.
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The advantage of A is defined as AdvMax
A =

∣
∣Pr[RR-BED.Verify(P (S∗), k,PP) =

1]
∣
∣. An RR-BED scheme is secure regarding maximum number of accountability

if for every PPT adversary A, the advantage of A in the above game is negligible.

(Message indistinguishability under CPA). The adaptive security model
of BED was introduced by Acharya et al. [3], but it does not consider revocation.
We define a chosen plaintext attack of RR-BED against an adaptive adversary
with respect to the security model of RR-BE [4,15]. In the adaptive security
model, the adversary is allowed to make queries before choosing the target group
that it wishes to attack.

Definition 6. The adaptive security in RR-BED is defined using the game
between a PPT adversary A and a challenger C. The game proceeds as follows:

Setup: The challenger C runs RR-BED.Setup(N,λ) and obtains PP,MK. It keeps
MK and gives PP to A.

Phase 1: A adaptively requests a polynomial number of queries for a user
index i ∈ {i1, · · · , im}. C runs RR-BED.KeyGen(i,MK,PP) on i and gives
the resulting secret key ski to A.

Challenge: A submits two equal length messages M∗
0 ,M∗

1 and a challenge iden-
tity group G∗ which has not been queried. A also submits a maximum revo-
cation number k < n and a revocation set R∗ to C, where G∗ ⋂

R∗ = φ. C
sets S∗ = G∗ +R∗ and runs RR-BED.GroupGen(S, v, k,PP). C obtains P (S∗)
and picks b ∈ {0, 1}. C generates CT=RR-BED.Encrypt(P (S∗),Mb,PP) and
CT’=RR-BED.Revoke(CT,R∗,PP). If R = φ, C sets CT∗ = CT else it sets
CT∗ = CT’ and gives CT ∗ to A.

Phase 2 : A may continue the key generation queries, and C responds as Phase
1. One restriction is that A cannot make queries for i in G∗.

Guess : A outputs a guess b′ ∈ {0, 1}. If b = b,′ A wins.

The advantage of A is defined as AdvIND−CPA
A =

∣
∣Pr[b′ = b]− 1

2

∣
∣. An RR-BED

scheme is semantically secure under a chosen plaintext attack if for every PPT
adversary A, the advantage of A in the above game is negligible.

4 RR-BED Scheme

In this section, we present our concrete construction of the RR-BED scheme.
We construct our RR-BED scheme using BED [11] and RR-BE [4] as building
blocks. We extend BED using revocation technique of RR-BE so that the dealer
who only knows the set of recipients is allowed to revoke the recipients. The
proposed scheme is described as follows.

RR-BED.Setup(λ,N): It generates a bilinear group B = (p,G,GT , e) and let
g be a generator of G. It randomly chooses α, β ∈ Zp, and h ∈ G, and
computes hα, · · · , hαN

, gα, · · · , gαN

, and gαβ , · · · , gαN+1β . Then, it outputs
PP = (B, h, hα, · · · , hαN

, g, gα, · · · , gαN

, gαβ , · · · , gαN+1β , Ω = e(g, g), Ω1 =
e(g, h), ID) and MK = (α, β), where ID = {ID1, ID2, · · · , IDN} is a set of
user identities.
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RR-BED.KeyGen(i, MK, PP): It chooses random ri ∈ Zp, li ∈ G, and computes
d1,i = (ligri)

1
αβ(α+IDi) and d3,i = (lihri)

1
αβ . It sets d2,i = ri and outputs

ski =
(

d1,i, d2,i, d3,i, li, l
α
i , · · · , lα

N

i

)

.

RR-BED.GroupGen(S, v, k, PP): It chooses a random r ∈ Zp and computes the
following values, where F (x) =

∏

ij∈S(x + IDij
) =

∑k′

i=0 Fix
i:

w1 =
k′
∏

i=0

(gαi+1β)rFi = gαβF (α)r,

w2 =
k′
∏

i=0

(gαN−v+i+1β)rFi = gαN−v+1βF (α)r,

w3 = Ω−r, [ŵi] = [g−αir]1≤ i ≤ k +1, wM = Ωr
1 .

Finally, it outputs a group token P (S) = (w1, w2, w3, ŵ1, · · · , ŵk+1, wM ).

Note that a dealer must set a group size k′ satisfying k′ ≤ v so as not to exceed
the number of its own privileges v. The dealer sends P (S) to each recipient
through a secure channel.

RR-BED.Verify(P (S), v, PP): It verifies e(w1, g
αN

) = e(w2, g
αv

). If it holds
true, it outputs 1, otherwise it outputs 0. The following equations show the
correctness of the verification:

e(w1, g
αN

) = e(gαβF (α)r, gαN

) = e(g, g)αN+1βF (α)r,

e(w2, g
αv

) = e(gαN−v+1βF (α)r, gαv

) = e(g, g)αN+1βF (α)r.

Note that if RR-BED.Verify(P (S), v, PP) outputs 1, the broadcaster generates a
ciphertext, otherwise it aborts.

RR-BED.Encrypt(P (S),M , PP): It chooses random t ∈ Zp and outputs a cipher-
text CT = (c1, c2, ĉ1, · · · , ĉk+1, cM ) as follows:

CT = (c1, c2, ĉ1, · · · , ĉk+1, cM )

= (wt
1, w

t
3, ŵ

t
1, · · · , ŵt

k+1, w
t
M )

= (gαβF (α)rt, Ω−rt, g−αrt, · · · , g−αk+1rt,MΩrt
1 )

= (gαβF (α)s, Ω−s, g−αs, · · · , g−αk+1s,MΩs
1), where rt = s.

RR-BED.Revoke(CT,R, PP): Let CT = (c1, c2, ĉ1, · · · , ĉk+1, cM ) and R =
{i1, · · · , il} ⊆ S where l ≤ k. It generates CT ′ = (C1, C2, Ĉ1, CM ) as follows:
1. If R = φ, CT ′ = (C1, C2, Ĉ1, CM ) = (c1, c2, ĉ1, cM )
2. If R �= φ, it computes

∏
j∈R(x+IDj)
∏

j∈R(IDj)
=

∑l
i=0 fix

i, where f0 = 1, and

H =
∏l

i=2 ĉfi

i = g−r
∑l

i=2 fiα
i

. It sets y = s
∑l

i=0 fiα
i and computes
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C1, C2, Ĉ1, CM as follows:

C1 = c
1∏

j∈R IDj

1 = g
αβs

∏
j∈R(α+IDj)

∏
j∈G(α+IDj)

∏
j∈R(IDj) = gαβy{∏

j∈G(α+IDj)},

C2 = c2e(g, ĉf1
1 H) = Ω−se(g, g)−s(f1α+f2α2···flα

l)

= Ω−s(1+f1α+f2α2···flα
l) = Ω−y,

Ĉ1 =
l+1∏

i=1

ĉ
fi−1
i = (g−αs)(g−α2s)f1(g−α3s)f2 · · · (g−αl+1s)fl

= g−αs(1+flα+···flα
l) = g−αy,

CM = cMe(ĉ−f1
1 H−1, h) = MΩs

1e(g, h)s(f1α+f2α2+···flα
l)

= MΩ
s(1+f1α+f2α2+···flα

l)
1 = MΩy

1 .

3. It then outputs a new ciphertext CT ′ = (C1, C2, Ĉ1, CM ) =
(c1, c2, ĉ1, cM ) for a user group G = S − R.

RR-BED.Decrypt(ski, CT,G, PP): Let CT = (C1, C2, Ĉ1, CM ) and The message
M is recovered as follows:
1. It first computes Ai,G,α = 1

α

( ∏

j∈G,j �=i(α + IDj) − ∏

j∈G,j �=iIDj

)

and
Bi,G,α = 1

α

(∏

j∈G(α + IDj) − ∏

j∈G(IDj)
)

2. It then computes e(g, li)y and e(g, lih
ri)y

e(C1, d1,i)e(Ĉ1, (ligd2,i)Ai,G,α)]
1∏

j∈G,j �=i(IDj) C
d2,i

2 = e(g, li)y,

e(C1, d3,i)e(Ĉ1, (lihd2,i)Bi,G,α)]
1∏

j∈G(IDj) = e(g, lih
ri)y.

Finally, it computes the message CM ( e(g,li)
y

e(g,lihri )y )
1

d2,i = M .

4.1 Correctness

Let Ii = 1∏
j∈G,j �=i IDj

, Ai,G,α = 1
αAi,G, and Bi,G,α = 1

αBi,G. The decryption
process for the secret key ski of a recipient i ∈ G and the ciphertext CT ′ for
group G is as follows:
[
e(C1, d1,i)e(Ĉ1, (lig

d2,i)Ai,G,α)
]IiC

d2,i

2

=
[
e(gαβy

∏
j∈G(α+IDj), (lig

ri)
1

αβ(α+IDi) ) · e(g−αy, (lig
ri)

1
α

Ai,G)
]IiC

d2,i

2

=
[
e(g, lig

ri)y
∏

j∈G,j �=i(α+IDj) · e(g, ligri)−y(
∏

j∈G,j �=i(α+IDj)−
∏

j∈G,j �=i IDj)
]IiC

d2,i

2

=
[
e(g, lig

ri)y
∏

j∈G,j �=i IDj
] 1∏

j∈G,j �=i IDj e(g, g)−yri

= e(g, li)
y,
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[

e(C1, d3,i)e(Ĉ1, (lihd2,i)Bi,G,α)
] 1∏

j∈G IDj

=
[

e(gαβy
∏

j∈G(α+ IDj), (lihr
i )

1
αβ ) · e(g−αy, (lihri)

1
α Bi,G)

] 1∏
j∈G IDj

=
[

e(g, lih
ri)

y
∏

j∈G(α+IDj) · e(g, lih
ri)−y(

∏
j∈G(α+IDj)− ∏

j∈G IDj)
] 1∏

j∈G IDj

=
[

e(g, lih
ri)y

∏
j∈G IDj

] 1∏
j∈G IDj

= e(g, lih
ri)y.

CM

(
e(g, li)y

e(g, lihri)y

) 1
d2,i

= CM

(
e(g, li)y

e(g, li)ye(g, hri)y

) 1
ri

= MΩy
1

1
e(g, h)y

= M.

5 Security Analysis

We prove the security of our RR-BED under the cryptographic assumptions
described in Sect. 2. Theorems 1 and 2 are proved in a similar way to [3], and
the security proof of Theorem 3 follows that of [4].

Theorem 1. The RR-BED scheme is guaranteed the group privacy if the DL
assumption holds.

Theorem 2. The RR-BED scheme is secure with regard to the maximum num-
ber of accountability if the (N + i)−DHE assumption holds.

The proof of the above theorems are given in Appendix A.1 and A.2.

Theorem 3. The RR-BED scheme is semantically secure if the q −wDABDHE
assumption (q ≥ 2N) holds.

Proof. Suppose there exists a PPT adversary A, that can break our RR-BED
scheme in the adaptive IND-CPA security model with an advantage ε. We build
a challenger C that solves the q − wDABDHE problem by using A. Let < Z =
(B, u, uαq+2

, · · · , uα2q

, g, gα, · · · , gαq

),K > be given to C, where G, GT is the
groups of order p with the bilinear map e : G×G → GT and g is a generator of
G. If K = e(u, g)αq+1

, then C outputs 1, otherwise, it outputs 0. The simulation
proceeds as follows:

Setup: C randomly chooses each b0,j ∈ Zp for j ∈ [0, n − 1]. It computes
P 0(x) =

∑n−1
j=0 b0,jx

j , Q0(x) = x + 1 and hαi

= gα
∑n−1

j=0 (gαi+j+1
)b0,j =

gαi(1+αP 0(α)) = gαiQ0α for i ∈ [0, n]. It randomly chooses β ∈ Zp and
the identities of n users ID = {ID1, ID2, · · · , IDn} ∈ Zp. It sets MK =
(α, β) and PP = (B, h, hα, · · · , hαN

, g, gα, · · · , gαN

, gαβ , · · · , gαN+1β , Ω =
e(g, g), Ω1 = e(g, h)). Note that C doesn’t know α. It gives PP and MK
to A. Since b0,j and Q0(x) are chosen randomly, a distribution of PP and
MK is identical to the actual construction.
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Phase 1 : A adaptively makes key generation queries. C responds to a query on
i ∈ {i1, · · · , im}. C randomly chooses each bi,j ∈ Zp for j ∈ [0, N − 2] and
bi ∈ Zp and computes P i(x) =

∑n−2
j=0 bi,jx

j , Qi(x) = x(x + IDi)P i(x) + bi.

C computes d1,i, d2,i, d3,i, li, l
α
i , · · · , lα

N

i as follows:

d1,i = (
∏

N−2
j=0 (gαj

)bi,j )
1
β = (g

∑N−2
j=0 bi,jαj

)
1
β = g

P i(α)
β ,

d2,i = −Qi(−IDi) = IDI(−IDi + IDi)P i(−IDi) − bi = bi,

d3,i = (
∏

N−1
j=0 (gαj

)−bib0,j

∏
N−2
j=0 (gαj+1

)bi,j (gαj

)bi,jIDi)
1
β

= (
∏

N−1
j=0 g−bib0,jαj ∏

N−2
j=0 gbi,j(α+IDi)α

j

)
1
β

= (g−bi

∑N−1
j=0 b0,jαj

(g(α+IDi)
∑N−2

j=0 bi,jαj

)
1
β

= (g−biP
0(α)+(α+IDi)P

i(α))
1
β ,

lα
k

i = (gαk

)bi

∏
N−2
j=0 (gαk+j+2

)bi,j (gαj+i+1
)bi,jIDi

= gαk(α(α+IDi)P
i(α)+bi) = gαkQi(α) for k ∈ [0, N ].

C sets ski = (d1,i, d2,i, d3,i, li, l
α
i , · · · , lα

N

i ) and gives it to A. Since bi, b0,j and
Q0(x) are chosen randomly, a distribution of ski is identical to the actual
construction.

d1,i = g
P i(α)

β = g
Qi(α)−bi

αβ(α+IDi) = g
Qi(α)+d2,i
αβ(α+IDi) = (ligr

i )
1

αβ(α+IDi) ,

d3,i = (g−biP
0(α)+ (α+ IDi)P

i(α))
1
β

= (g(−biαP 0(α)+Qi(α)−bi))
1

αβ

= (g(−bi(Q
0(α)−1)+Qi(α)−bi))

1
αβ

= (g(−biQ
0(α)+Qi(α)))

1
αβ .

Challenge: A submits two equal length messages M∗
0 ,M∗

1 and a challenge iden-
tity group G∗ that has not been queried. A also submits a maximum revo-
cation number k(≤n) and a revocation set R∗ to C, where G∗ ⋂

R∗ = φ.
C sets S∗ = G∗ + R∗ and generates a challenge ciphertext as follows: C
chooses random b ∈ {0, 1} and computes CMb

= MbKe(uαq+2
, gP 0(α)),

where
∏n−1

i=0 (gαi

)b0,i = g
∑n−1

i=0 b0,iα
i

= gP 0(α) and
∏|G∗|

i=0 (uαq+i+2β)f∗
i xi

=

(uαq+2β)
∑|G∗|

i=0 f∗
i αi

= (uαq+2β)
∏

i∈G∗ (α+ IDj), where f∗
i is a coefficient of the

polynomial F ∗(x) =
∏

j∈G∗(x + IDj) =
∑|G∗|

i=0 f∗
i xi. If R∗ �= φ, C sets a

ciphertext as

CT ∗ = ((uαq+2β)
∏

i∈G∗ (α+ IDj),K−1, u−αq+2
, CMb

)
= (c1, c2, ĉ1, CMb

).



Recipient Revocable Broadcast Encryption with Dealership 225

If R∗ = φ, C sets a ciphertext as

CT ∗ = ((uαq+2β)
∏

i∈G∗ (α+ IDj),K−1, u−αq+2
, u−αq+3

, · · · , u−αq+k+1
, CMb

)
= (c1, c2, ĉ1, ĉ2, · · · , ĉk+1, CMb

).

If K = e(uαq+1
, g), C sets r as gr = uαq+1

and then,

c1 = (uαq+2β)
∏

i∈G∗ (α+ IDj) = {(uαq+1
)αβ}

∏
i∈G∗ (α+ IDj)

= {(gr)αβ}
∏

i∈G∗ (α+ IDj) = (gαβr)
∏

i∈G∗ (α+ IDj),

c2 = K−1 = e(u, g)−αq+1

= e(u−αq+1
, g) = e(gs, g) = e(g, g)s,

ĉi = u−αq+1+i

= (u−αq+1
)−αi

= gαs, 1 ≤ i ≤ k,

CMb
= MbKe(uαq+2

, gP 0(α))

= Mbe(uαq+1
, g)e(uαq+2

, gP 0(α))

= Mbe(uαq+1
, g)e(uαq+1

, gαP 0(α))

= Mbe(uαq+1
, gαP 0(α)+ 1)

= Mbe(uαq+1
, gQ0(α)) = Mbe(gs, h)

= Mbe(g, h)s.

hence the distribution of CT ∗ is identical to the actual construction.
Phase 2 : A may continue the key generation queries, and C responds as Phase

1 . One restriction is that A cannot make a query for IDi ∈ G∗.
Guess: Finally, A outputs a guess b′ ∈ {0, 1} and C also outputs the same

guess b′.

If K = e(uαq+1
, g), then the simulation is the same as in the real game. Hence,

A will have the probability 1
2 + ε to guess b correctly. If K is a random element

of GT , then A will have probability 1
2 to guess b correctly. Therefore, C can solve

the q − wDABDHE problem also with the advantage ε. �	

6 Efficiency

In this section, we compare several existing BED schemes [2,3,11] with our RR-
BED scheme in Table 1.

Comparing the computation cost of our scheme and [3], the computation
cost of Verify and Decrypt are same as those of [3], and the computation costs
of GroupGen and Encrypt are higher than those of [3] by kEG, respectively.
Since existing BED schemes do not provide for revocation, it is necessary to add
the computation costs of [(1) GroupGen - (2) Verify - (3) Encrypt] to compare
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Table 1. Comparison of BED schemes: EG, EGT denote the number of exponentiation
in G,GT , P denotes the number of pairings, k′ denotes the number of users selected by
the dealer, l denotes the actual number of revoked users, and k denotes the number of
users that can be revoked, w/o RO denotes without random oracles, and RR denotes
recipient revocable.

GroupGen Verify Encrypt Revoke Decrypt Security

model

w/o RO RR

[11] (k′ + 4)EG +

1EGT

2P 2EG + 1EGT

+2P

(k′ − l +

6)EG +

2EG1 + 4P

2P Semi-

static

O X

[2] (2k′ + 3)EG +

1EGT

2P 2EG + 1EGT
(2k′ − l +

5)EG +

2EG1 + 2P

(k′ − 1)EG +

1EGT
+ 2P

Selective X X

[3] (2k′ + 3)EG +

2EGT

2P 2EG + 2EGT
(2k′ − l +

5)EG +

4EG1 + 2P

(4k′ − 2)EG +

4EGT
+ 4P

Adaptive O X

Ours (2k′ + k +

3)EG + 2EGT

2P (k + 2)EG +

2EGT

(2l + 1)EG +

2P

(4k′ − 2)EG +

4EGT
+ 4P

Adaptive O O

the computation costs when generating the ciphertext for a new group. How-
ever, in our proposed scheme, the computation cost of the Revoke algorithm is
(2l + 1)EG + 2P , which is actually lower than the overall cost of previous BED
schemes. Thus, our RR-BED is more efficient when executing the overall process.
Moreover, the security proof of our scheme is achieved in the adaptive security
model without random oracles as in [3].

7 Conclusion

In this paper, we proposed a recipient revocable broadcast encryption with deal-
ership. We proved the security of our scheme applying cryptographic assump-
tions. Our scheme provides recipient revocation without the broadcaster’s help,
allowing the dealer to directly revoke recipients. In real multimedia services,
adding recipients is also an important issue as well as revoking recipients. Design-
ing a BED scheme that supports both addition and revocation of recipients would
be an interesting future work.

A Security Proof

A.1 Proof of Theorem 1

Proof. Let a PPT adversary A breaks the privacy of our RR-BED scheme. The
security game between the challenger C and the adversary A is executed as
follows:

Setup: The challenger C randomly chooses α, β ∈ Zp and h ∈ G and generates
PP =

(

B, h, hα, · · · , hαN

, g, gα, · · · , gαN

, gαβ , · · · , gαN+1β , Ω = e(g, g), Ω1 =
e(g, h)

)

and MK = (α, β). It keeps MK secret and gives PP to A.
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Challenge: A selects two user groups G0, G1 of the same size and submits to
C. C picks b ∈ {0, 1} and runs RR-BED.GroupGen(Gb, v, k, PP) to obtain a
group token.

P (Gb) = (w1, w2, w3, ŵ1, · · · , ŵk+1, wM )

= (gαβF (α)r, Ω−r, g−αr, g−αir, · · · , g−αk+1r, Ωr
1).

where v ≥ |Gb|, k is a maximum revocation number, and F (x) =
∏|Gb|

i∈Gb
(x+

IDi). C gives P (Gb) to A.
Guess: A outputs a guess b′ ∈ {0, 1}. If b = b′, A wins.

A must guess the group information from the group token. The group informa-
tion is contained in F (α) of w1 and w2. But F (α) is hidden by a random integer
r. If A can predict r from gα and ŵ1 = g−αr, then A can generate P (G0),
and P (G1), and compare them with P (Gb) because G0, G1 are selected by A.
But predicting r from gα and ŵ1 = g−αr is same as solving the DL problem.
Therefore the group privacy is guaranteed if the DL assumption holds. �	

A.2 Proof of Theorem 2

Proof. Let a PPT adversary A breaks the maximum number of accountability
of our RR-BED scheme. The security game between a challenger C and the
adversary A is executed as follows:

Setup: The challenger C randomly chooses α, β ∈ Zp and h ∈ G. It generates
PP =

(

B, h, hα, · · · , hαN

, g, gα, · · · , gαN

, gαβ , · · · , gαN+1β , Ω = e(g, g), Ω1 =
e(g, h)

)

and MK = (α, β). It keeps MK and gives PP to A.
Challenge: C chooses a threshold value v ≤ N and sends the value to A.
Guess: A chooses G∗, where |G∗| = v′ > v, and generates a group token

P (G∗) = (w1, w2, w3, ŵ1, · · · , ŵk+1, wM )

= (gαβF (α)r, Ω−r, g−αr, g−αir, · · · , g−αk+1r, Ωr
1).

where k is a maximum revocation number and F (x) =
∏|G∗|

i∈G∗(x + IDi). A
sends (P (G∗), G∗) to C. If RR-BED.Verify(P (G∗), v, PP) = 1, then A wins.

RR-BED.Verify(P (G∗), v,PP) = 1 indicates that A can generate a valid group
token. So A can computes gαN+2

, · · · , gαN+v′−v+1
and the v′(> v) degree poly-

nomial F (x) =
∏|G∗|

i∈G∗(x + IDi). Hence, breaking the maximum number of
accountability is the same as solving the (N + i)−DHE(2 ≤ i ≤ v − v′ + 1)
problem. �	
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Abstract. The security of cryptographic protocols which are based on
elliptic curve cryptography relies on the intractability of elliptic curve dis-
crete logarithm problem (ECDLP). In this paper, the authors describe
techniques applied to solve 114-bit ECDLP in Barreto-Naehrig (BN)
curve defined over the odd characteristic field. Unlike generic elliptic
curves, BN curve holds an especial interest since it is well studied in
pairing-based cryptography. Till the date of our knowledge, the previ-
ous record for solving ECDLP in a prime field was 112-bit by Bos et al.
in Certicom curve ‘secp112r1’. This work sets a new record by solving
114-bit prime field ECDLP of BN curve using Pollard’s rho method. The
authors utilized sextic twist property of the BN curve to efficiently carry
out the random walk of Pollard’s rho method. The parallel implemen-
tation of the rho method by adopting a client-server model, using 2000
CPU cores took about 6 months to solve the ECDLP.

Keywords: ECDLP · Barreto-Naehrig curve · Pollard’s rho method

1 Introduction

The complexity of solving a difficult mathematical problem such as discrete loga-
rithm problem (DLP) and elliptic curve discrete logarithm problem (ECDLP) in
a practical amount of time determines the security level of many popular public
key cryptosystems. The mathematical estimation of such complexity is common
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in literature [10]. However, actual experiment is also bearing same importance,
which is the focus of this work.

Pairing-based cryptography became popular as a form of public key cryp-
tography (PKC) by the works of [3,4,17,18]. Typically, pairing is defined as
a bilinear map of two additive cyclic sub-groups G1 and G2 of prime order r
to the same order multiplicative group G3. In practice, G1 and G2 are defined
over a certain pairing-friendly curve of embedding degree k and G3 is defined in
extension field F

∗
pk . This paper considers Barreto-Naehrig curve [1], one of the

widely used curves for pairing-based cryptographic applications. Let the curve
be E, defined over the finite extension field Fpk , where embedding degree k is
the smallest positive integer such that r | (pk − 1). The set of rational points
E(Fp) is defined over the prime field Fp, together with the point at infinity O
forms a commutative group. The curve’s order r is a large prime number such
that r |#E(Fp), where #E(Fp) denotes the total number of rational points. The
bilinearity property of pairing is e given as e(aP, bQ) = e(P,Q)ab for every ratio-
nal point P ∈ G1, Q ∈ G2 and a, b ∈ Z. In the case of BN curve, G1 = E(Fp) and
G2 ⊂ E(Fp12). The ECDLP in G1 = E(Fp) with two arbitrary rational point
P,R is finding an integer s (0 < s ≈ r) such that [s]P = R in E, provided that
such s exists for P,R. The security of pairing-based cryptosystems depends on
the difficulty of

– solving ECDLP in G1 and G2,
– solving DLP of the multiplicative group G3.
– and the difficulty of pairing inversion, i.e. G1 × G2 ← G3.

This paper focuses on solving ECDLP in G1 = E(Fp) of BN curve.
The Pollard’s rho algorithm [16] can solve the ECDLP in

√
πr/2 steps. Later

Gallant et al. [8] improved the time complexity of the Pollard’s rho method by√
2 factors, that took

√
πr/2 steps. Van Oorschot and Wiener [20] proposed a

distributed version of Pollard’s rho algorithm that can be parallelized on n CPUs
taking

√
πr/2n steps giving n-fold speed up. This paper utilizes the above idea

of parallelized rho method together with an efficient implementation of elliptic
curve arithmetic using Montgomery reduction [13] and Montgomery trick [14].

In the experimental implementation, a client-server model consisting 2000
processor cores (each core acts as a single client for generating random rational
points) is utilized. The generated random points with special feature also called
the distinguished point, is sent to server to minimize collision detection cost.
The server checks collision detection and uses MySQL database to store received
rational points. The inversion in elliptic curve addition and doubling steps are
efficiently carried out by applying Montgomery tricks while creating 95 random
walks for each inversion in each thread. In addition, the sextic twist property
of BN curve is utilized to apply skew Frobenius map on the twisted curve. The
skew Frobenius map generates 6 associated rational points, which are treated as
a single rational point in a random walk. The distinguished points technique is
applied with the condition of 29 trailing zeros of x-coordinate to send the filtered
point to the server. The experiment took about 6 months to solve the 114-bit
ECDLP in BN curve defined over the prime field.
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Related works

Several works have been done both from the algorithmic perspective and actual
attack implementation. However, most of the works are focused on solving
ECDLP in curves defined over binary field [2,21]. A very few works have done on
the actual attack for solving ECDLP in curves defined over Fp. In 2016, Kajitani
et al. [9] solved 70-bit prime field ECDLP in less than 24 min by using web-based
volunteer computing. The authors of this paper have been influenced by Miyoshi
et al. [12] work, where 94-bit ECDLP on was solved in 28 h by parallelizing 71
computers. In 2012, Bos et al. [5] set a record by solving 112-bit ECDLP in
prime field using about 200 Sony PlayStation 3 s for about 6 months. Before
that in 2002, the 109-bit ECDLP of Certicom ECCp-109 curve defined over Fp

wast solved by Chris Monico [6] in 549 days of calendar time. Therefore, this
works sets a new record for solving ECDLP on BN curve defined over 114-bit
prime field.

2 Preliminaries

2.1 Elliptic Curve and ECDLP

Let p be a prime number and Fp be a prime field. An elliptic curve, generally
represented by affine coordinates over Fp is defined as,

E(Fp) : y2 = x3 + ax + b, a, b ∈ Fp. (1)

A pair of coordinates x and y that satisfy Eq. (1) are known as rational points
on the curve. Let #E(Fp) be the set of all rational points on the curve defined
over Fp including the point at infinity denoted by O.

Elliptic curve addition (ECA) between rational points Q1(x1, y1) and
Q2(x2, y2) is Q1 + Q2 = Q3(x3, y3), defined as follows:

λ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y2 − y1
x2 − x1

, if Q1 �= Q2 and x1 �= x2,

3x2
1 + a

2y1
, else if Q1 = Q2 and y1 �= 0,

∅, otherwise,

(2)

(
x3, y3

)
=

⎧
⎨

⎩

(
λ2 − x1 − x2, (x1 − x3)λ − y1

)
, if λ �= ∅,

O, otherwise.
(3)

where Q3 is also a rational points of elliptic curve E(Fp) and λ is the tangent
between the points. If Q1 = Q2 then Q1 + Q2 = 2Q1, which is known as elliptic
curve doubling (ECD). ECDLP is the problem that calculates the scalar s only
by using rational points P and Q in E(Fp) such that Q = [s]P , where [s]P is

[s]P = P + P + · · · + P︸ ︷︷ ︸
s−1 times addition of P

. (4)
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2.2 BN Curve

BN curve is a class of non super-singular pairing friendly elliptic curve of embed-
ding degree 12, defined over extension field Fq (q = p12) is given by

E : y2 = x3 + b, (b �= 0 ∈ Fq and x, y ∈ Fq). (5)

Other parameter settings are given by

p = 36χ4 − 36χ3 + 24χ2 − 6χ + 1, (6)

r = 36χ4 − 36χ3 + 18χ2 − 6χ + 1, (7)

where χ is a certain integer and p is the characteristic of Fp. Let #E(Fq) be
the set of all rational points on the curve defined over Fq including the point at
infinity denoted by O.

2.3 Pollard’s Rho Method

Pollard’s rho method is known as an efficient technique for solving an ECDLP.
We designed and implemented a parallelized rho method for solving a 114-bit
ECDLP with thousands of CPU cores. The proposed method consists of three
steps. The first step generates a set of n different random rational points denoted
by L. For an integer i where 1 ≤ i ≤ n and two random scalars αi, βi (∈ Fq),
let Wi denote i-th random walk seed to be used in random walks where

Wi � [αi]P + [βi]Q, (8)

L � {Wi|1 ≤ i ≤ n}. (9)

Let m be the number of branches of the parallel random walks. The second
step generates a set of m different random starting rational points in the m
parallel random walk branches, denoted by U . For two integers i and j where
1 ≤ i ≤ m and 0 ≤ j, let Ri,j denote the j-th rational point which is generated
with random scalars αi,j and βi,j by the i-th random walk branch. For an integer
i where 1 ≤ i ≤ m, since Ri,0 denotes the starting point of the i-th random walk
branch where

Ri,0 = [αi,0]P + [βi,0]Q, (10)

Ri,0 is randomly generated and,

U � {Ri,0|1 ≤ i ≤ m}. (11)

The third step performs m random works in parallel by using L and U . For a
rational point R, let η(R) be a function which gives an unique index of a rational
point in L. For two integers i and j where 1 ≤ i ≤ m and 1 ≤ j, let the rational
points Ri,j which is the j-th rational point in the i-th random walk branch, be
calculated by the following,
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Ri,j = Ri,j−1 + Wη(Ri,j−1), (12)
= [αi,j−1 + αη(Ri,j−1)]P + [βi,j−1 + βη(Ri,j−1)]Q, (13)
= [αi,j ]P + [βi,j ]Q. (14)

Let H be the set of all generated rational points in the rho method. Suppose
the i-th random walk branch generate a rational point Ri,j ∈ H at the j-th
iteration step and we have a rational point Ri,j = Ri′,j′ where αi,j �= αi′,j′

and βi,j �= βi′,j′ , the case is called a collision and the ECDLP is solved by a
simultaneous equation.

The algorithm of parallelized rho method is given as Algorithm1. An example
of parallelized rho method with 12-bit ECDLP is shown as follow Fig. 1. In this
paper, L and U are generated as preparation steps, and perform random walk at
every random walk branches by using L and U . Each attacking clients run the
algorithm. Therefore, the total number of random walk branches is m times the
number of attacking clients. It is said that a collision would occur when

√
πr/2

points are generated on average according to the birthday paradox.

Algorithm 1. Parallelized rho Method

Input: P, Q(= [s]P ) ∈ E(Fp)(0 ≤ s < r)
Output: s

for i = 1 to n do1

αi, βi are random elements (0 ≤ αi, βi < r),2

Wi ← [αi]P + [βi]Q.3

H ← φ.4

for i = 1 to m do5

αi,0, βi,0 are random elements (0 ≤ αi,0, βi,0 < r),6

Ri,0 ← [αi,0]P + [βi,0]Q.7

H ← H ∪ {Ri,0}.8

for j = 1 to r − 1 do9

for i = 1 to m do10

l ← η(Ri,j−1).11

Ri,j ← Ri,j−1 + Wl, αi,j ← αi,j−1 + αl, βi,j ← βi,j−1 + βl.12

if Ri,j = Ri′,j′(Ri′,j′ ∈ H, αi,j �= αi′,j′ , βi,j �= βi′,j′) then13

go to line 15.

else14

H ← H ∪ {Ri,j}.

s ← − (αi,j−αi′,j′ )
(βi,j−βi′,j′ ) (mod r).15

3 Techniques for Accelerating Random Walk

In the attack, Montgomery reduction [13] is used for efficient modular arithmetics
over Fp. Montgomery trick [14] is also used for reducing the number of inversions
over Fp by parallelizing many random walks on each client. Then, this paper
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Fig. 1. Parallelized rho method with 12bit ECDLP, n = 4 and 4 branches

attacks 114-bit ECDLP in G1 on BN curve to which a grouping technique is
applied based on the sextic twist [15]. This section concentrates on introducing
the grouping technique with skew Frobenius mapping defined in G1.

3.1 Groups of Rational Points for Ate Pairing on BN Curve

Let us remember the additive groups of rational points for Ate pairing e defined
as follows, where E(Fpk)[r], Ker, and π denote the set of rational points of order
r, kernel of homomorphism, and Frobenius mapping [7], respectively.

G1 = E(Fpk)[r] ∩ Ker(π − [1]), (15)
G2 = E(Fpk)[r] ∩ Ker(π − [p]), (16)

e(·, ·) : G1 × G2 → G3 = F
∗
pk/(F∗

pk)r. (17)

In the case of BN curve, the embedding degree k is equal to 12 and the above
G1 is equal to E(Fp). Based on these definitions, the next section introduces a
grouping technique with sextic twist and skew Frobenius mapping.

3.2 Sextic Twist and Skew-Frobenius Mapping

Basically, in order to improve Ate or optimal-ate pairing with BN curve, the
sextic-twist technique is available. However, it also contributes to attacking the
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ECDLP on BN curve. Since the embedding degree of BN curve is 12 and BN
curve is written as Eq. (5), sextic-twisted curve E′ is given by

E′ : y2 = x3 + bv−1, (18)

where v is a cubic and quadratic non residue in Fp2 . In this case, we have the
following isomorphism [19].

G
′
1 = E′(Fp12)[r] ∩ Ker(π2 − [p2]), (19)

ψ6 : (x, y) ∈ G1

�−→ (v1/3x, v1/2y) ∈ G
′
1. (20)

G
′
1 has the following automorphism mapping π̃, where Q is a rational point in

G1. It is called skew Frobenius mapping.

π̃(Q) = ψ−1
6 (π2(ψ6(Q)))

= (v
p2−1

3 x, v
p2−1

2 y). (21)

In this case, π̃6(Q) = π̃, v(p2−1)/3 becomes a primitive cubic root of unity ε in Fp,
and v(p2−1)/2 becomes p − 1. Thus, in what follows, the skew Frobenius π̃ map
in this case is denoted by π̃6 because it is periodic of period 6. Then, π̃6 enables
an efficient grouping in the rho method as introduced in the next section.

3.3 A Grouping of Rational Points in G1 on BN Curve

Let us consider a rational point Ti ∈ G1 as generated in the random walk process.
Then, based on the skew Frobenius mapping π̃, the following six rational points
in G1 are easily obtained.

Ti = (xi, yi), (22a)
π̃6(Ti) = (εxi, yi), (22b)

π̃2
6(Ti) = (ε2xi, yi), (22c)

π̃3
6(Ti) = (xi,−yi), (22d)

π̃4
6(Ti) = (εxi,−yi), (22e)

π̃5
6(Ti) = (ε2xi,−yi). (22f)

Then, a certain representative point among the six points is systematically
and efficiently determined, which enables the following efficient grouping attack.
For a rational point R ∈ G1, let Rep(R) denote a function which uniquely gives
the representative in the group of six rational points given by the skew Frobenius
map π̃6.

Let us suppose that a collision is detected as

Rep(Ti) = Rep(Tj), (23)
Rep(Ti) = [αi]P + [βi]Q, (24)
Rep(Tj) = [αj ]P + [βj ]Q, (25)
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where (αi, βi) �= (αj , βj). Then, since π̃t
6(Tj) = [p2t]Tj , it means that the follow-

ing relation holds:

Ti = π̃t
6(Tj),

Ti = [p2t]Tj ,

[αi]P + [βi]Q = [p2t]([αj ]P + [βj ]Q),

αi + βi · s ≡ p2t · αj + p2t · βj · s (mod r),

s ≡ − (αi − p2t · αj)
(βi − p2t · βj)

(mod r). (26)

where 0 ≤ t < 6. Therefore, since the skew Frobenius mapping is efficiently
carried out as previously introduced, this grouping technique enables to reduce
the average number for detecting a collision from

√
πr/2 to

√
πr/12. Algorithm 2

accommodates the above procedure of obtaining representative point among the
6 associated rational points. The step 7, 12, 13 and 16 actually differs from
Algorithm 1. In this paper, the last 16 generated scalars α are saved in order to
avoid fruitless cycles. If a new generated scalar α is same as one of the previous
scalars, η(R) in Sect. 2.3 is incremented by 1.

4 Implementation

In this experiment, the authors employed about 2000 heterogeneous Intel64 CPU
cores to attack the ECDLP by the rho method. In the parallel rho method,
each random walk branches are executed on distributed computer resources in
parallel. It is necessary to aggregate all the generated random rational points to
a single computer in order to check the collision. Therefore, this paper employs a
typical client-server model. In this context, all clients generate random rational
points in parallel and only the distinguished points are sent to the server. The
collision detection is done on the server.

4.1 Basic Integer Operations and Algebra

To handle the 114-bit integers efficiently, the authors employed 128-bit integer
type on Intel64 CPUs. Since the target is a 114-bit ECDLP, an addition and a
subtraction between two 114-bit integers never causes an overflow or an under-
flow. In contrast, since a result of a multiplication between two 114-bit integers
easily exceeds 128-bit integer, the authors implemented big number arithmetic
to handle this case.

In this attack, since the most of multiplications are multiplication modulo
prime p or r; Montgomery reduction is implemented by using the 128-bit multi-
plication. A calculation of a multiplicative inverse is implemented by using the
well-known extended Euclid’s algorithm.

Since the majority of the computational cost of an ECA or an ECD is the cost
of the inversion, well-known Montgomery trick is also employed. Since several
inversions must be aggregated to utilize Montgomery trick, the authors evaluated
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Algorithm 2. Customized parallelized rho method with representative point
technique

Input: P, Q(= [s]P ) ∈ E(Fp)(0 ≤ s < r)
Output: s

for i = 1 to n do1

αi, βi are random elements (0 ≤ αi, βi < r),2

Wi ← [αi]P + [βi]Q.3

H ← φ.4

for i = 1 to m do5

αi,0, βi,0 are random elements (0 ≤ αi,0, βi,0 < r),6

Ri,0 ← Rep([αi,0]P + [βi,0]Q).7

H ← H ∪ {Ri,0}.8

for j = 1 to r − 1 do9

for i = 1 to m do10

l ← η(Ri,j−1).11

if αi,j−1 = αi,c(j − 18 < c < j − 1) then12

l + +.

Ri,j ← Rep(Ri,j−1 + Wl). αi,j ← αi,j−1 + αl, βi,j ← βi,j−1 + βl.13

if Ri,j = Ri′,j′(Ri′,j′ ∈ H, αi,j �= αi′,j′ , βi,j �= βi′,j′) then14

go to line 16.

else15

H ← H ∪ {Ri,j}.

s ← − (αi,j−p2t·αi′,j′ )
(βi,j−p2t·βi′,j′ ) (mod r).16

the performance of our implementation of the inversion and choose 95 number
of aggregation for Montgomery trick. Therefore, 95 random walk branches are
synchronized and handled in a single thread in the implementation. The number
of the threads in a client computer m is chosen as the number of real CPU
cores or the number of Hyper Threading of the computer. For this case, the
computational cost of a single step in rho method having Montgomery trick
with a grouping (Sect. 3.3) and without a grouping are shown in Table 1. The
inversion takes 305 additions and a single multiplication on average.

Table 1. The computational cost of a single step in Rho method with Montgomery
trick

Operations (mod p) With grouping Without grouping

Addition 1073 760

Multiplication 691 472

Squaring 95 95

Inversion 1 1
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4.2 Distinguished Point Method

The collision detection is a check whether a rational point is in the set of all
previously stored rational points or not. If the all generated rational points are
sent to the server from the all clients, the number of rational points which must be
stored in the server easily exceeds the capacity of the memory space of the server.
For example, when solving 114-bit ECDLP, about

√
π × 2114/12 ≈ 7.4 × 1016

points need to be stored to the server. If the size of the data of a rational point is
50[Byte], 3.7 × 106[TB] storage space is required. Therefore, the authors choose
distinguished point method to reduce the number of transmitted and stored
rational points. In this attack, a distinguished point is a rational point where
it’s x-coordinate is divisible by an integer θ of the form of power of two. Here θ
is called parameter of the distinguished point method. The computational cost
to distinguish the point is a logical AND operation and comparison to numerical
zero. The number of rational points sent to the server is reduced to 1/θ. The
number of stored rational points are also reduced to 1/θ which significantly
reduce the cost of collision detection on the server. This reduction causes an
overhead by generating extra rational points in the random walk branches.

If there is a pair of two rational points (Ri,j , Ri′,j′) where Ri,j = Ri′,j′ for
positive integer h, (αi,j , βi,j) �= (αi′,j′ , βi′,j′), the following holds.

η(Ri,j) = η(Ri′,j′), (27)

Ri,j+1 = Ri′,j′+1, (28)

Ri,j+h = Ri′,j′+h. (29)

In addition, if θ/2 rational points are generated in a random walk branch, a
distinguished point can be generated in the random walk branch on average.
Therefore, the overhead is at most θ/2 iterations in the pair of random walk
branches, which means the distinguished method does not significantly increase
the number of iteration steps before the rho method ends.

4.3 Aggregation on Generated Distinguished Points

By using the distinguished point method, the frequency to transmit the distin-
guished points can be significantly reduced. However, to reduce the frequency to
transmit the IP datagrams, which includes the distinguished points, we employ
a method to aggregate the distinguished points.

Each processor acts as a single client for generating random rational points
in the experiment. The frequency to transmit the generated rational points to
the server depends on the parameter of the distinguished method θ. A client
stores a set of distinguished points. If the number of stored points becomes
large enough, they are sent to the server at once. The number of the aggregated
distinguished points is set 128 in this work. Therefore, the frequency to transmit
the IP datagrams is reduced to 1/128 in the implemented system.
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4.4 Collision Detection at Server

The server stores information about coordinate of the rational point and scalars.
For example, when the server receives R(x,y) = [α]P + [β]Q, it stores x and α,
β. When a new rational point is received, the server compares the information
with stored rational points. If any corresponding point is found in the server, a
scalar is calculated and the attack is ended.

By using Sect. 4.2, the number of stored rational points is reduced. However,
it is difficult to store all generated points on the memory of the server. Therefore,
this study stores rational points on the MySQL databases.

4.5 Computer Resources

This attack employed several types of computers for both the server and the
clients. Table 2 shows the major clients and the specification of the computers.
The attack consists of 3 phases. The first phase was 51 days attack with Client
1 and 2. The second phase was 47 days attack with same clients. The final phase
was 81 days attack with Client 3.

Table 2. Computer resources

Client 1 The number of computers 150

OS Mac OSX 10.7.5 (64-bit)

CPU Intel Core i5 (2.50 GHz)

Client 2 The number of computers 716

OS Windows7 Professional (64-bit)

CPU Intel Core 2 Duo E7600 (3.06 GHz)

Client 3 The number of computers 162

OS FreeBSD 11 (64-bit)

CPU Dual Intel Xeon X5670 (2.90 GHz)

Server OS CentOS 6.8 (64–bit)

CPU Intel Core i5 (3.40 GHz)

Database MySQL ver. 5.1.73

5 Result and Analysis

The parameter settings of BN curve for this attack is as follows:

χ = 135000271,
b = 3,

r = 11957518425389075145185553763727233,
p = 11957518425389075254535992784167879.
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The rational points for this ECDLP attack were randomly chosen by Mersenne
Twister (MT) pseudorandom number generator [11] as follows:

P = (2555802502070605019799774084777870,
2766213229730430765452066521605006),

Q = (8729198974879999392476239739358779,
2797493486736137111251588290298576).

The x coordinate of rational point P is generated randomly where x satisfies
Eq. (5) for the first time. The secret scaler s was incremented by 1 after generat-
ing randomly. The random seed of MT pseudorandom number generator is 5489.
The Q is obtained as [s]P = Q. This s is only used to obtain Q in initial step but
no longer used during the attack stage. After the 81 days, the attack introduced
in Sect. 4.5 with 136887663 rational points stored in the server; ended with the
following two pairs of random scalars of a collision:

(α, β) = (10978171553023857380293303028367032,
7667182665169261066594516279554751),

(α′, β′) = (49568355245740117450745472411632,
1446344014944960931462013632028773),

where [α]P + [β]Q = [α′]P + [β′]Q. The secret scalar s was calculated by

s = 10928603197778117262842557555955400/
5736679775164775010053051116201255.

The results proved that this attack certainly succeeded to solve the 114-bit
ECDLP. Note that 5.5 GB of memory was consumed to store the information of
generated rational points.

To save the memory space of the collision detection server and to reduce the
network traffic, the authors disposed the information on the actual number of
all the generated points, the authors give an estimation of the number. Since
the authors chose θ = 229 as the parameter of the distinguished points, we can
estimate the total number of generated rational points is 136887663 × 229 =
73491004476358656. Since r = 11957518425389075145185553763727233, the
result might be one of the typical average cases. However, the result of the
authors attack is little bit better than the average number of rational points
where a simple collision attack stops.

6 Conclusion

In this paper, the authors implemented a parallel rho attack for a 114-bit BN
curve and solved an ECDLP for the curve. The attack system employed well-
known Montgomery reduction, Montgomery trick and the extended Euclid’ algo-
rithm by using specially implemented integer operations over 128-bit integer type
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on Intel64 CPUs. The authors also employed a grouping of rational points in G1

on BN curve which significantly reduced the number of useless collision detec-
tions in the attack. The results of the experiment indicates that the 114-bit
ECDLP for BN curves can be solved in 81 days with 2000 cores of Intel Xeon
X5670 (2.90 GHz) CPU on average.
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Abstract. The security of elliptic curve cryptography is closely related
to the computational complexity of the elliptic curve discrete logarithm
problem (ECDLP). Today, the best practical attacks against ECDLP are
exponential-time, generic discrete logarithm algorithms such as Pollard’s
rho method. Recently, there is a line of research on index calculus for
ECDLP started by Semaev, Gaudry, and Diem. Under certain heuristic
assumptions, such algorithms could lead to subexponential attacks to
ECDLP in some cases. In this paper, we investigate the computational
complexity of ECDLP for elliptic curves in various forms—including Hes-
sian, Montgomery, (twisted) Edwards, and Weierstrass using index cal-
culus. The research question we would like to answer is: Using index
calculus, is there any significant difference in the computational com-
plexity of ECDLP for elliptic curves in various forms? We will provide
some empirical evidence and insights showing an affirmative answer in
this paper.

Keywords: Security evaluation · ECDLP · Index calculus
Summation polynomial · Point decomposition problem

1 Introduction

In recent years, elliptic curve cryptography is gaining momentum in deployment,
as it can achieve the same level of security as RSA using much shorter keys
and ciphertexts. The security of elliptic curve cryptography is closely related to
the computational complexity of the elliptic curve discrete logarithm problem
(ECDLP). Let p be a prime number and E, a nonsingular elliptic curve over Fpn ,
the finite field of pn elements. That is, E is a plane algebraic curve defined by
the equation y2 = x3 +ax+ b for a, b ∈ Fpn such that Δ = −16(4a3 +27b2) �= 0.
Along with a point O at infinity, the set of rational points E(Fpn) forms an
abelian group with O as the identity. Given P ∈ E(Fpn) and Q in the subgroup
generated by P , ECDLP is the problem of finding an integer α such that Q = αP .

Today, the best practical attacks against ECDLP are exponential-time,
generic discrete logarithm algorithms such as Pollard’s rho method [14]. How-
ever, recently there is a line of research on index calculus for ECDLP started
c© Springer International Publishing AG, part of Springer Nature 2018
H. Kim and D.-C. Kim (Eds.): ICISC 2017, LNCS 10779, pp. 245–263, 2018.
https://doi.org/10.1007/978-3-319-78556-1_14
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by Semaev, Gaudry, and Diem [5,10,15]. Under certain heuristic assumptions,
such algorithms could lead to subexponential attacks to ECDLP in some
cases [7,11,13]. The interested reader is referred to a survey paper by Galbraith
and Gaudry for a more comprehensive and in-depth account of the recent devel-
opment of ECDLP algorithms along various directions [8].

In this paper, we investigate the computational complexity of ECDLP
for elliptic curves in various forms—including Hessian [16], Montgomery [12],
(twisted) Edwards [3,4], and Weierstrass using index calculus. Recently, elliptic
curves of various forms such as Curve25519 [2] have been drawing a lot of atten-
tion in deployment, partly because some of them allow for fast implementation
and security against timing-based side channel attacks. Furthermore, we can
construct these curves not only over prime fields (such as the field of 2255 − 19
elements as used in Curve25519) but also extension fields. In this paper, we will
focus on curves over optimal extension fields (OEFs) [1]. An OEF is an extension
field from a prime field Fp with p close to 28, 216, 232, 264, etc. Such primes fit
nicely into the processor words of 8, 16, 32, or 64-bit microprocessors and hence
are particularly suitable for software implementation, allowing for efficient uti-
lization of fast integer arithmetics on modern microprocessors [1]. As we will see,
our experimental results show quite significant difference in the computational
complexity of ECDLP for elliptic curves in various forms over OEFs.

The rest of this paper is organized as follows. In Sect. 2, we will review the
relevant literature, giving an high-level overview of attacking ECDLP using index
calculus and the state of the art in this research direction. In Sect. 3, we will
present how we can attack ECDLP using index calculus for elliptic curves in
Montgomery and Hessian forms. In Sect. 4, we will experimentally compare its
computational complexity for elliptic curves in various forms. Finally, we will
conclude this paper by analyzing why ECDLP for elliptic curves in certain forms
may be “easier” to attack using index calculus in Sect. 5.

2 Previous Works

2.1 Index Calculus for ECDLP

Let E be an elliptic curve defined over a finite field Fpn . For cryptographic
applications, we are mostly interested in a prime-order subgroup generated by a
rational point P ∈ E(Fpn). Here we first give a high-level overview of a typical
index calculus algorithm for finding an integer α such that Q = αP for Q ∈ 〈P 〉.
1. Determine a factor base F ⊂ E(Fpn).
2. Collect a set R of relations by decomposing random points aiP + biQ into a

sum of points from F , i.e.,

R =

⎧
⎨

⎩
aiP + biQ =

∑

j

Pi,j : Pi,j ∈ F
⎫
⎬

⎭
.
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3. When |R| ≈ |F|, eliminate the righthand side using linear algebra to obtain
an equation in the form aP + bQ = O, and α = −a/b mod ord(P ).

The last step of linear algebra is relatively well studied in the literature, so we
will focus on the subproblem in the second step, namely, the point decomposition
problem (PDP) on an elliptic curve in the rest of this paper.

Definition 1 (Point Decomposition Problem of m-th Order). Given a
rational point R ∈ E(Fpn) on an elliptic curve E and a factor base F ⊂ E(Fpn),
find, if they exist, P1, . . . , Pm ∈ F such that

R = P1 + · · · + Pm.

2.2 Semaev’s Summation Polynomials

We can solve PDP by considering when a set of points sum to zero on an elliptic
curve. It is straightforward that if two points sum to zero on an elliptic curve
E : y2 = x3+ax+b in Weierstrass form, then their x-coordinates must be equal.
Let us now consider the simplest yet nontrivial case where three points on E
sum to zero. Let

Z =

{
(x1, y1, x2, y2, x3, y3) ∈ F

6
pn : (xi, yi) ∈ E(Fpn), i = 1, 2, 3;

(x1, y1) + (x2, y2) + (x3, y3) = O

}

.

Clearly, Z is in the variety of the ideal I ⊂ Fpn [X1, Y1,X2, Y2,X3, Y3] generated
by {

Y 2
i − (X3

i + aXi + b), i = 1, 2, 3;
(X3 − X1)(Y2 − Y1) − (X2 − X1)(Y3 − Y1)

}

.

Now let J = I ∩Fpn [X1,X2,X3]. Using MAGMA’s EliminationIdeal function,
we obtain that J is actually a principal ideal generated by the polynomial (X2 −
X3)(X1 − X3)(X1 − X2)f3, where

f3 =X2
1X2

2 − 2X2
1X2X3 + X2

1X2
3 − 2X1X

2
2X3 − 2X1X2X

2
3 − 2aX1X2 − 2aX1X3

− 4bX1 + X2
2X2

3 − 2aX2X3 − 4bX2 − 4bX3 + a2.

Clearly, the linear factors of this generator correspond to the degenerated case
where two or more points are the same or of opposite signs, and f3 is the 3rd
summation polynomial, that is, the summation polynomial for three distinct
points summing to zero.

Starting from the 3rd summation polynomial, we can recursively construct
the subsequent summation polynomials fm for m > 3 via taking resultants. As
a result, the degree of each variable in fm is 2m−2, which grows exponentially as
m. This is the observation Semaev made in his seminal work [15]. In short, his
proposal is to consider factor bases of the following form:

F =
{

(x, y) ∈ E(Fpn) : x ∈ V ⊂ Fpn

}
,
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where V is a subset of Fpn . Then we solve PDP of m-th order via solving the cor-
responding (m + 1)-th summation polynomial fm+1(X1, . . . , Xm, x̃) = 0, where
x̃ is the x-coordinate of the point to be decomposed.

Note that this factor base is naturally invariant under point negation. That
is, Pi ∈ F implies −Pi ∈ F . In this case, we have about |F|/2 (trivial) relations
Pi + (−Pi) = O for free, so we just need to find the other |F|/2 nontrivial
relations. In general, we will only discuss factor bases that are invariant under
point negation, so by abuse of language, both F and F modulo point negation
may be referred to as a factor base in the rest of this paper.

2.3 Weil Restriction

Restricting the x-coordinates of the points in a factor base to a subset of Fpn is
important from a viewpoint of polynomial system solving. Take f3 as an example.
When decomposing a random point aP +bQ, we first substitute its x-coordinate
into say X3, projecting the ideal onto Fpn [X1,X2]. The dimension of the variety
of this ideal is nonzero. Therefore, we would like to pose some restrictions on X1

and X2 to reduce the dimension to zero so that the solving time can be more
manageable.

When looking for solutions to a polynomial f =
∑

aiX
i ∈ Fpn [X] in Fpn ,

we can view Fpn [X] as a commutative affine algebra A = Fpn [X]/(Xpn − X) ∼=
Fpn [X1, . . . , Xn]/(Xp

1 − X1, . . . , X
p
n − Xn). This can be done by identifying the

indeterminate X as X1θ1 + · · · + Xnθn, where (θ1, . . . , θn) is a basis for Fpn

over Fp. Hence, f can be identified as a polynomial f1θ1 + · · · + fnθn, where
f1, . . . , fn ∈ A′ = Fp[X1, . . . , Xn]/(Xp

1 − X1, . . . , X
p
n − Xn), by appropriately

sending each coefficient ai ∈ Fpn to a
(1)
i θ1 + · · · + a

(n)
i θn for a

(1)
i , . . . , a

(n)
i ∈ Fp.

Therefore, an equation f = 0 over Fpn will give rise to a system of equations
f1 = · · · = fn = 0 over Fp. This technique is known as the Weil restriction and
is used in the Gaudry-Diem attack, in which the factor base is chosen to consist
of points whose x-coordinates lie in a subspace V of Fpn over Fp [5,10].

2.4 Exploiting Symmetry

Naturally, the symmetric group Sm acts on a point decomposition P1 + . . .+Pm

because elliptic curve groups are abelian. As noted by Gaudry in his seminal
work [10], we can therefore rewrite the variables x1, . . . , xm ∈ Fpn by elementary
symmetric polynomials e1, . . . , em, where e1 =

∑
xi, e2 =

∑
i�=j xixj , e3 =∑

i�=j,i�=k,j �=k xixjxk, etc. Such rewriting can reduce the degree of summation
polynomials and significantly speed up point decomposition [7,11].

We might be able to exploit additional symmetry brought by actions of other
groups, e.g., when the factor base is invariant under addition of small torsion
points. For example, consider a decomposition of a point R under the action of
addition of a 2-torsion point T2:

R = P1+ · · ·+Pn = (P1+u1T2)+ · · ·+(Pn−1+un−1T2)+

(

Pn +

(
n−1∑

i=1

ui

)

T2

)

.
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Clearly this holds for any u1, . . . , un−1 ∈ {0, 1}, so a decomposition can give
rise to 2n−1−1 other decompositions. Similar to rewriting using the elementary
symmetric polynomials for the action of Sm, we can also take advantage of this
additional symmetry by appropriate rewriting [6].

Naturally, such kind of speed-up is curve-specific. Furthermore, even if the
factor base is invariant under additional group actions, we may or may not be
able to exploit such symmetry to speed up point decomposition depending on
whether the action is “easy to handle in the polynomial system solving pro-
cess” [6].

2.5 PDP on (twisted) Edwards Curves

Faugère et al. studied PDP on twisted Edwards, twisted Jacobi intersections, and
Weierstrass curves [6]. For the sake of completeness, we include some of their
results here. An Edwards curve over Fpn for p �= 2 is defined by the equation
x2 + y2 = 1 + dx2y2 for certain d ∈ Fpn [4]. A twisted Edwards curve tEa,d

over Fpn for p �= 2 is defined by the equation ax2 + y2 = 1 + dx2y2 for certain
a, d ∈ Fpn [3]. A twisted Edwards curve is a quadratic twist of an Edwards curve
by a0 = 1/(a − d). For P = (x, y) ∈ tEa,d,−P = (−x, y). Furthermore, the
addition and doubling formulae for (x3, y3) = (x1, y1) + (x2, y2) are given as
follows.

When (x1, y1) �= (x2, y2) :

⎧
⎪⎪⎨

⎪⎪⎩

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
,

y3 =
y1y2 − ax1x2

1 − dx1x2y1y2
.

When (x1, y1) = (x2, y2) :

⎧
⎪⎪⎨

⎪⎪⎩

x3 =
2x1y1

1 + dx2
1y

2
1

,

y3 =
y2
1 − ax2

1

1 − dx2
1y

2
1

.

The 3rd summation polynomial for twisted Edwards curves is [6]:

ftE,3(Y1, Y2, Y3) =
(
Y 2
1 Y 2

2 − Y 2
1 − Y 2

2 +
a

d

)
Y 2
3

+ 2
d − a

d
Y1Y2Y3 +

a

d

(
Y 2
1 + Y 2

2 − 1
) − Y 2

1 Y 2
2 .

Again subsequent summation polynomials are obtained by taking resultants.

2.6 Symmetry and Decomposition Probability

Symmetry brought by group action on point decomposition will inevitably be
accompanied by decrease in decomposition probability. For example, if a factor
base F is invariant under addition of a 2-torsion point, then the decomposition
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probability for PDP of m-th order should decrease by a factor of 2m−1. This is
due to the same reason that the decomposition probability decreases by a factor
of m! because the symmetric group Sm acts on F .

However, this simple fact seems to have been largely ignored in the literature.
For example, Faugère et al. explicitly stated in Sect. 5.3 of their paper that “[the]
probability to decompose a point [into a sum of n points from the factor base]
is 1

n!” for twisted Edwards or twisted Jacobi intersections curves, despite the
fact that the factor base is invariant under addition of 2-torsion points [6]. At
a first glance, this may not seem a problem, as we would expect to obtain 2n−1

solutions if we can successfully solve a PDP instance. (Unfortunately this is
also not true in general. We will come back to it in more detail in Sect. 5.3.)
However, when estimating the cost of a complete ECDLP attack, they proposed
to collapse these 2n−1 relations into one in order to reduce the size of the factor
base and thus the cost of the linear algebra, cf. Remark 5 of the paper. In this
case, the decrease in decomposition probability does have an adverse effect, and
their estimation for the overall ECDLP cost ended up being overoptimistic by a
factor of at least 2n−1.

3 Montgomery and Hessian Curves

3.1 Montgomery Curves

A Montgomery curve MA,B over Fpn for p �= 2 is defined by the equation

By2 = x3 + Ax2 + x (1)

for A,B ∈ Fpn such that A �= ±2, B �= 0, and B(A2 − 4) �= 0 [12]. For P =
(x, y) ∈ MA,B ,−P = (x,−y). Furthermore, the addition and doubling formulae
for (x3, y3) = (x1, y1) + (x2, y2) are given as follows. When (x1, y1) �= (x2, y2):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x3 = B

(
y2 − y1
x2 − x1

)2

− A − x1 − x2 =
B(x2y1 − x1y2)2

x1x2(x2 − x1)2
,

y3 =
(2x1 + x2 + A)(y2 − y1)

x2 − x1
− B(y2 − y1)3

(x2 − x1)3
− y1.

When (x1, y1) = (x2, y2):

⎧
⎪⎪⎨

⎪⎪⎩

x3 =
(x2

1 − 1)2

4x1(x2
1 + Ax1 + 1)

,

y3 =
(2x1 + x1 + A)(3x2

1 + 2Ax1 + 1)
2By1

− B(3x2
1 + 2Ax1 + 1)3

(2By1)3
− y1.

It was noted by Montgomery himself in his original paper that such curves
can give rise to efficient scalar multiplication algorithms [12]. That is, consider a
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random point P ∈ MA,B(Fpn) and nP = (Xn : Yn : Zn) in projective coordinates
for some integer n. Then:

{
Xm+n = Zm−n[(Xm − Zm)(Xn + Zn) + (Xm + Zm)(Xn − Zn)]2,

Zm+n = Xm−n[(Xm − Zm)(Xn + Zn) − (Xm + Zm)(Xn − Zn)]2.

In particular, when m = n:
⎧
⎪⎨

⎪⎩

X2n = (Xn + Zn)2(Xn − Zn)2,

Z2n = (4XnZn)
(
(Xn − Zn)2 + ((A + 2)/4)(4XnZn)

)
,

4XnZn = (Xn + Zn)2 − (Xn − Zn)2.

In this way, scalar multiplication on Montgomery curve can be performed with-
out using y-coordinates, leading to fast implementation.

3.2 Summation Polynomials for Montgomery Curves

Following Semaev’s approach [15], we can construct summation polynomials for
Montgomery curves. Like Weierstrass curves, the 2nd summation polynomial for
Montgomery curves is simply fM,2 = X1 − X2. Now consider P,Q ∈ MA,B for
P = (x1, y1) and Q = (x2, y2). Let P + Q = (x3, y3) and P − Q = (x4, y4). By
the addition formula, we have

x3 =
B(x2y1 − x1y2)2

x1x2(x2 − x1)2
, x4 =

B(x2y1 − x1y2)2

x1x2(x2 + x1)2
.

It follows that
⎧
⎪⎪⎨

⎪⎪⎩

x3 + x4 =
2 ((x1 + x2)(x1x2 + 1) + 2Ax1x2)

(x1 − x2)2
,

x3x4 =
(1 − x1x2)2

(x1 − x2)2
.

Using the relationship between the roots of a quadratic polynomial and its coef-
ficients, we obtain

(x1 − x2)2x2 − 2 ((x1 + x2)(x1x2 + 1) + 2Ax1x2) x + (1 − x1x2)2.

From here, we can obtain for Montgomery curve the 3rd summation polynomial:

fM,3(X1, X2, X3) = (X1−X2)
2X2

3 −2 ((X1 +X2)(X1X2 + 1) + 2AX1X2)X3+(1−X1X2)
2,

as well as the subsequent summation polynomials via taking resultants:

fM,m(X1, . . . , Xm) = ResX
(
fM,m−k(X1, . . . , Xm−k−1, X), fM,k+2(Xm−k, . . . , Xm, X)

)
.
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3.3 Small Torsion Points on Montgomery Curves

A Montgomery curve always contains an affine 2-torsion point T2. Since T2+T2 =
2T2 = O, it follows that −T2 = T2. If we write T2 = (x, y), then we can see that
y = 0 in order for −T2 = T2, as p �= 2. Substituting y = 0 into Eq. (1), we get an
equation x3 + Ax2 + x = 0. The lefthand side factors into x(x2 + Ax + 1) = 0,
so we get

x = 0,
−A ± √

A2 − 4
2

.

Therefore, the set of rational points over the definition field Fpn of a Montgomery
curve includes at least two 2-torsion points, namely, O and (0, 0). The other 2-
torsion points may or may not be rational, so we will focus on (0, 0) in this
paper. Substituting (x2, y2) = (0, 0) into the addition formula for Montgomery
curves, we get that for any point P = (x, y) ∈ MA,B , P + (0, 0) = (1/x,−y/x2).

To be able to exploit the symmetry of addition of T2 = (0, 0), we need to
choose the factor base F = {(x, y) ∈ E(Fpn) : x ∈ V ⊂ Fpn} invariant under
addition of T2. This means that V needs to be closed under taking multiplicative
inverses. In other words, V needs to be a subfield of Fpn , i.e., V = Fp� for
some integer � that divides n. In this case, fm is invariant under the action of
xi �→ 1/xi. Unfortunately, such an action is not linear and hence not easy to
handle in polynomial system solving. How to take advantage of such kind of
symmetry in PDP is still an open research problem.

3.4 Hessian Curves

A Hessian curve Hd over Fpn for pn = 2 mod 3 is defined by the equation

x3 + y3 + 1 = 3dxy (2)

for d ∈ Fpn such that 27d3 �= 1 [16]. For P = (x, y) ∈ Hd,−P = (y, x). Further-
more, the addition and doubling formulae for (x3, y3) = (x1, y1) + (x2, y2) are
given as follows.

When (x1, y1) �= (x2, y2) :

⎧
⎪⎪⎨

⎪⎪⎩

x3 =
y2
1x2 − y2

2x1

x2y2 − x1y1
,

y3 =
x2
1y2 − x2

2y1
x2y2 − x1y1

.

When (x1, y1) = (x2, y2) :

⎧
⎪⎪⎨

⎪⎪⎩

x3 =
y1(1 − x3

1)
x3
1 − y3

1

,

y3 =
x1(y3

1 − 1)
x3
1 − y3

1

.
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3.5 Summation Polynomials for Hessian Curves

Following a similar approach outlined by Galbraith and Gebregiyorgis [9], we
can construct summation polynomials for Hessian curves. First, we introduce
a new variable T = X + Y , which is invariant under point negation. The 2nd
summation polynomial for Hessian curves is simply fH,2 = T1 − T2. Now let

Z =

{
(x1, y1, t1, x2, y2, t2, x3, y3, t3) ∈ F

9
pn : (xi, yi) ∈ Hd(Fpn), i = 1, 2, 3;

(x1, y1) + (x2, y2) + (x3, y3) = O;xi + yi = ti, i = 1, 2, 3

}

.

Clearly, Z is in the variety of the ideal I ⊂ Fpn [X1, Y1, T1,X2, Y2, T2,X3, Y3, T3]
generated by

⎧
⎪⎨

⎪⎩

X3
i + Y 3

i + 1 − 3dXiYi, i = 1, 2, 3;
(X3 − X1)(Y2 − Y1) − (X2 − X1)(Y3 − Y1);
Xi + Yi − Ti, i = 1, 2, 3

⎫
⎪⎬

⎪⎭
.

Again we compute the elimination ideal I ∩Fpn [T1, T2, T3] and obtain a principal
ideal generated by some polynomial. After removing the degenerate factors, we
can obtain for Hessian curve the 3rd summation polynomial:

fH,3(T1, T2, T3) =T 2
1 T

2
2 T3 + dT 2

1 T
2
2 + T 2

1 T2T
2
3 + dT 2

1 T2T3 + dT 2
1 T

2
3 − T 2

1 +

T1T
2
2 T

2
3 + dT1T

2
2 T3 + dT1T2T

2
3 + 3d2T1T2T3 + 2T1T2 + 2T1T3+

2dT1 + dT 2
2 T

2
3 − T 2

2 + 2T2T3 + 2dT2 − T 2
3 + 2dT3 + 3d2,

as well as the subsequent summation polynomials via taking resultants:

fH,m(T1, . . . , Tm) = ResT (fH,m−k(T1, . . . , Tm−k−1, T ), fH,k+2(Tm−k, . . . , Tm, T )) .

3.6 Small Torsion Points on Hessian Curves

As we shall see in Sect. 4.1, we will compare elliptic curves in various forms that
are isomorphism to one another over the same definition field. As a result, we
will only experiment with those Hessian curves that include 2-torsion points like
Montgomery or (twisted) Edwards curves. Since T2 + T2 = 2T2 = O, it follows
that −T2 = T2. If we write T2 = (x, y), then we can see that x = y in order for
−T2 = T2, as −T2 = (y, x). Substituting x = y into Eq. (2), we get an equation
2x3 − 3dx2 + 1 = 0. Therefore, a Hessian curve Hd(Fpn) has a 2-torsion point
(ζ, ζ) if the polynomial 2X3 − 3dX2 + 1 has a root ζ in Fpn . In this case, the
addition of this 2-torsion point to a point (x, y) would give a point (x′, y′), where

⎧
⎪⎪⎨

⎪⎪⎩

x′ =
ζy2 − ζ2x

ζ2 − xy
,

y′ =
ζx2 − ζ2y

ζ2 − xy
.
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Obviously, typical factor bases are not invariant under addition of this 2-torsion
point in general.

A Hessian curve always contains a 3-torsion point T3 such that 3T3 = O [16].
If we let T3 = (x, y), then we see that 2(x, y) = −(x, y) = (y, x), substituting
which into the doubling formula, we get:

⎧
⎪⎪⎨

⎪⎪⎩

y(1 − x3)
x3 − y3

= y,

x(y3 − 1)
x3 − y3

= x.

Since x and y cannot be zero at the same time, we have x3−y3 = 1−x3 = y3−1,
or x3 = y3 = 1. Now since pn = 2 mod 3,Fpn does not have any primitive cubic
roots of unity, so x = y = 1, and T3 = (1, 1). By the addition formula, if
P = (x, y), then

P + T3 = (x, y) + (1, 1) =
(

y2 − x

1 − xy
,
x2 − y

1 − xy

)

.

However, for P ∈ F , we only know that t = x + y ∈ V ⊂ Fpn , but we know
nothing about 1 − xy, which can lie outside of V . So again, typical factor bases
are not invariant under addition of this 3-torsion point in general. Therefore, it
is not clearly how to exploit such symmetry brought by addition of small torsion
points for Hessian curves.

4 Experiments on PDP Solving

This section shows our experimental results, which we have conducted to com-
pare the computational complexity of PDP on four different curves: Hessian (H),
Weierstrass (W ), Montgomery (M), and twisted Edwards (tE).

4.1 Experimental Setup

To make a fair comparison, we use curves in different forms but are nonetheless
isomorphic to one another over the same definition field Fpn . That is, H(Fpn) ∼=
W (Fpn) ∼= M(Fpn) ∼= tE(Fpn) as groups, and we consider ECDLP in the same
largest prime-order subgroup. We will also explicitly state whether the factor
base is invariant under addition of 2-torsion points for each of the four forms
under investigation.

We start from a Hessian curve Hd satisfying x3 + y3 + 1 = 3dxy for d ∈ Fpn

such that the number of its rational points #Hd(Fpn) is divisible by 12. As we
have seen in Sect. 3.5, the factor base of Hd is in general not invariant under
addition of 2-torsion points. From Hd, we can obtain an isomorphic Weierstrass
curve Wa,b satisfying y2 = x3 + ax + b for a = −27d(d3 + 8) and b = 54(d6 −
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20d3−8) [16]. The isomorphism φW,H from Wa,b(Fpn) to Hd(Fpn) is defined over
Fpn and is given by sending (u, v) ∈ Wa,b to (x, y) ∈ Hd, where

⎧
⎪⎪⎨

⎪⎪⎩

x =
36(d3 − 1) − v

6(u + 9d2)
− d

2
,

y =
36(d3 − 1) + v

6(u + 9d2)
− d

2
.

The inverse φH,W is given by

⎧
⎪⎪⎨

⎪⎪⎩

u =
12(d3 − 1)
d + x + y

− 9d2,

v =
36(d3 − 1)(y − x)

d + x + y
.

The factor base of Wa,b is in general not invariant under addition of 2-torsion
points [6].

With a high probability, we can obtain a Montgomery curve MA,B satisfying
By2 = x3 + Ax2 + x from Wa,b by solving the following equations

⎧
⎪⎪⎨

⎪⎪⎩

a =
3 − A2

3B2
,

b =
2A3 − 9A

27B3
.

The isomorphism φW,M is defined over Fpn and is given by sending (u, v) ∈ Wa,b

to (x, y) ∈ MA,B for x = Bu − 1/3A and y = Bv. The inverse φM,W can be
obtained by equation solving. As we have seen in Sect. 3.1, the factor base is
invariant under addition of a particular 2-torsion point (0, 0), though we are not
able to exploit this symmetry in general.

Finally, we can obtain a twisted Edwards curve tEa′,d′ satisfying a′x2 +y2 =
1 + d′x2y2 from MA,B by taking a′ = (A + 2)/B and d′ = (A − 2)/B. Again we
let a0 = 1/(a′ − d′) be the amount of quadratic twist. The isomorphism φW,tE

is defined over Fpn and given by sending (u, v) ∈ Wa,b to (x, y) ∈ tEa′,d′ , where
⎧
⎪⎨

⎪⎩

x =
2a0u

v
,

y =
u − a0

u + a0
.

The inverse φtE,W is given by

⎧
⎪⎪⎨

⎪⎪⎩

u =
a0(1 + y)

1 − y
,

v =
2a2

0(1 + y)
x(1 − y)

.

As shown by Faugère et al. [6], the factor base is invariant under addition of the
2-torsion point (0,−1).
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As explained in Sect. 2.1, we focus on PDP in these experiments, as the linear
algebra step is already well understood. Furthermore, we focus on the bottle-
neck computation in PDP, namely, the cost of the F4 algorithm for computing
Gröbner bases of the polynomial systems obtained after rewriting using the ele-
mentary symmetric polynomials and applying the Weil restriction technique to
summation polynomials. This way we will be taking advantage of the symmetry
of Sm acting on point decompositions. However, we did not exploit symmetry
of any other group actions. This is because we want to compare the intrinsic
computational complexity of PDP and hence only consider the symmetry that is
present in all curves. Exploiting further curve-specific symmetry whenever pos-
sible will result in further speed-up, but it would be independent of our findings
here.

4.2 Experimental Results

Table 1 presents our experimental results for the case of n = 5. Here we choose
our factor base by taking V as the base field Fp of Fpn . All our experiment
are done using the MAGMA computation algebra system (version 2.23-1) on a
single core of an Intel Xeon CPU E7-4830 v4 running at 2 GHz. Comparisons to
solve each PDP are done by running time (in second), Dreg, Matcost, and Rank.
the “Dreg” is the maximum step degree reached during the execution of the F4
algorithm, which referred to as the “degree of regularity” in the literature [9],
and provides an upper bound for the sizes of the Macaulay submatrices involved
in the computation, the “Matcost” is a number output by the MAGMA imple-
mentation of the F4 algorithm and provides an estimate of the linear algebra
cost during the execution of the F4 algorithm, and finally the “Rank” is the
number of linearly independent relations we obtain once successfully solving a
PDP instance. It is an important factor to consider, as it determines how many
PDP instances we need to successfully solve in order to have enough relations
for a complete ECDLP attack using index calculus.

We can clearly see that the PDP solving time and Matcost for twisted
Edwards curves are much smaller than those for the other curves. In contrast, the
degree of regularity for Montgomery and twisted Edwards curves is smaller than
that of the other curves in the case of m = 4. Also, we can see that the rank
for Hessian and Weierstrass curves is 1 in all cases, whereas for Montgomery
and twisted Edwards curves, it is 4 and 5 in the case of m = 3 and m = 4,
respectively. Last but not least, although we only present the results for small p
(around 8-bit long) here, we have some preliminary results for larger p (around
16-bit and 32-bit long). Aside from slight difference in absolute running time, all
other results such as Dreg, Matcost, and Rank are similar, so we do not repeat
them here.
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Table 1. Experimental results on PDP solving for the case of n = 5

m p Curve Time Dreg Matcost Rank

3 239 Hessian 0 6 42336.8 1

Weierstrass 0 6 41259.0 1

Montgomery 0 6 61239.0 4

tEdwards 0 6 6308.4 4

251 Hessian 0 6 41420.4 1

Weierstrass 0 6 42132.0 1

Montgomery 0 6 61127.9 4

tEdwards 0 6 6308.4 4

4 239 Hessian 3.990 19 12066100000 1

Weierstrass 3.680 19 12064700000 1

Montgomery 3.489 18 11399100000 5

tEdwards 0.150 18 54093000 5

251 Hessian 3.459 19 12069800000 1

Weierstrass 3.659 19 12066400000 1

Montgomery 3.280 18 11401700000 5

tEdwards 0.119 18 54102900 5

5 Analysis

5.1 Revisit Summation Polynomial in Each Forms

As we have seen in Sect. 4.2, PDP on (twisted) Edwards curves seems easier to
solve than on other curves. The explanation offered by Faugère et al. is “due
to the smaller degree appearing in the computation of Gröbner basis of SDn

in
comparison with the Weierstrass case,” cf. Sect. 4.1.1 of their paper [6]. Unfortu-
nately, this cannot explain the difference between (twisted) Edwards and Mont-
gomery curves, as the highest degrees appearing in the computation of Gröbner
bases are the same for these two curves. Therefore, there must be other reasons.
Table 2 shows the sparsity of the polynomials before and after Weil restriction
for each of the four curves under investigation in the case of m = 2, 3, 4. As
there are n polynomials after Weil restriction, we only show the average num-
bers here. We also include the maximum number of terms for a polynomial of
degree 2(m+1)−2 in m variables.

We can see that total number of terms for twisted Edwards curves is signif-
icantly fewer than that for the other curves in all cases. Naturally, this could
lead to faster solving time with the F4 algorithm. We also note that, except for
twisted Edwards curves, the summation polynomials before Weil restriction for
the other curves are all 100% dense without any missing terms.
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Table 2. Number of terms (experimental/maximum) in polynomial systems before
and after Weil restrictions

m Curve Before Weil restriction After Weil restriction

Total Odd Even Total Odd Even

2 Hessian 6/6 2/2 4/4 5.2/6 2.0/2 3.2/4

Weierstrass 6/6 2/2 4/4 5.2/6 2.0/2 3.2/4

Montgomery 6/6 2/2 4/4 5.2/6 2.0/2 3.2/4

tEdwards 4/6 0/2 4/4 3.2/6 0.0/2 3.2/4

3 Hessian 35/35 16/16 19/19 34.2/35 16.0/16 18.2/19

Weierstrass 35/35 16/16 19/19 34.0/35 16.0/16 18.0/19

Montgomery 35/35 16/16 19/19 33.4/35 16.0/16 17.4/19

tEdwards 25/35 6/16 19/19 23.4/35 6.0/16 17.4/19

4 Hessian 495/495 240/240 255/255 493.2/495 239.4/240 253.8/255

Weierstrass 495/495 240/240 255/255 492.0/495 238.4/240 253.6/255

Montgomery 495/495 240/240 255/255 492.2/495 239.2/240 253.0/255

tEdwards 255/495 0/240 255/255 253.0/495 0.0/240 253.0/255

5.2 Missing Terms of Summation Polynomials in (twisted) Edwards
Curves

In this section, we will show that the summation polynomials for (twisted)
Edwards curves mainly have terms of even degrees. The set of terms of even
degrees is closed under multiplication, so intuitively this kind of polynomials are
easier to solve, which can be the main reason for the efficiency gain observed in
the case of (twisted) Edwards curves.

We shall make this intuition precise in Theorem 1, but before we state the
main result, we need to clarify our terminology for ease of exposition. When
a multivariate polynomial is regarded as a univariate polynomial in one of its
variables T , we say that the coefficient ai of a term aiT

i is an even or odd-degree
coefficient depending on whether i is even or odd, respectively. Note that these
coefficients are themselves multivariate polynomials in one fewer variables.

We say that a monomial m =
∏n

i=1 xei
i , ei ≥ 0 in a multivariate polynomial

in n variables is of even degree or simply an even-degree monomial if
∑

i ei is
even; that it is of odd degree or simply an odd-degree monomial otherwise. In
contrast, a monomial is of (homogeneous) even parity if all ei are even; it is
of (homogeneous) odd parity if all ei are odd. A monomial is of homogeneous
parity if it is either of homogeneous even or odd parity. Note that the definition
of monomials of odd parity depends on the total number of variables in the
polynomial, which is not the case for monomials of even parity because we regard
0 as even. For example, the monomial x1x2 is a monomial of odd parity in a
polynomial in x1 and x2 but not so in another polynomial in x1, . . . , xn for n > 2.

By abuse of language, we say that a polynomial is of even or odd parity if
it is a linear combination of monomials of even or odd parity, respectively; that
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a polynomial is of homogeneous parity if it is a linear combination of mono-
mials of homogeneous parity. The set of polynomials of even parity is closed
under polynomial addition and multiplication and hence forms a subring. On
the other hand, a polynomial f in x1, . . . , xn of odd parity must have the form
∑

i ci

(∏
j=1 x

eij

j

)
, for eij odd. Therefore, if f is a polynomial of odd parity and

g, a polynomial of even parity, then fg must be of odd parity.

Theorem 1. Let E be a family of elliptic curves such that its 3rd summa-
tion polynomial fE,3(X1,X2,X3) is of degree 2 in each variable Xi and of
homogeneous parity. Let gE,m be the polynomial corresponding to the PDP
of m-th order for E as described in Sect. 2.2. That is, gE,m(X1, . . . , Xm) =
fE,m+1(X1, . . . , Xm, x), where x is a constant depending on the point to be decom-
posed.

1. If m is even, then gE,m has no monomials of odd degrees.
2. If m is odd, then gE,m has some but not all monomials of odd degrees.

Among the four forms of elliptic curves that we have investigated in this paper,
only the (twisted) Edwards form satisfies the premises of Theorem1. As we have
seen in Sect. 4, the PDP solving time for the (twisted) Edwards form is thus
significantly faster than that for the other forms.

We will prove Theorem 1 in the rest of this section, for which we will need
the following lemmas.

Lemma 1. Let f1(T1, . . . , Tr, T ) = a0 + a1T + · · · + amTm and f2(T1, . . . ,
Tr, T ) = b0 + b1T + · · · + bnTn be two polynomials in r + 1 variables, where
ai and bi are polynomials in T1, . . . , Tr. Let f(T1, . . . , Tr) = ResT (f1, f2) be the
resultant of f1 and f2 regarded as two univariate polynomials in T . If both m
and n are even, then every monomial of f is a product of an even number or
none of the odd-degree coefficients of f1 and f2 and some or none of the even-
degree coefficients of f1 and f2. Specifically, the odd-degree coefficients a2k+1 and
b2k+1 of f1 and f2, respectively, appear in total an even number of times in each
monomial of f .

Proof. The resultant ResT (f1, f2) of f1 and f2 is the determinant of the following
(m + n) × (m + n) matrix S:

S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

am am−1 . . . a0

am am−1 . . . a0

. . . . . .
am am−1 . . . a0

bn bn−1 . . . b0
bn bn−1 . . . b0

. . . . . .
bn bn−1 . . . b0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

⎫
⎪⎪⎬

⎪⎪⎭

n

⎫
⎪⎪⎬

⎪⎪⎭

m

(3)
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We denote as sij the entry at the i-th row and j-th column of S for 1 ≤ i, j ≤
m + n. Since both m and n are even, an even-degree coefficient a2k or b2k will
appear in sij for which the sum of indices i + j is even. Similarly, an odd-degree
coefficient a2k+1 or b2k+1 will appear in sij for which the sum of indices i + j is
odd. Now recall that the determinant of S is defined as

∑

σ∈Sn+m

sgn(σ)s1,σ(1) · s2,σ(2) · · · sm+n,σ(m+n).

We note that the sum of the indices of any summand is

m+n∑

i

i + σ(i) = (m + n)(m + n + 1),

which is always even. Therefore, the odd-degree coefficients must appear an even
number of times, thus completing the proof. ��
Lemma 2. Let E be a family of elliptic curves such that its 3rd summation poly-
nomial fE,3(X1,X2,X3) is of degree 2 in each variable Xi and of homogeneous
parity. Then any subsequent summation polynomial fE,m(X1, . . . , Xm) for m > 3
is of homogeneous parity.

Proof. As the summation polynomial fE,m+1 for m ≥ 3 is defined recursively
from fE,m and fE,3 via taking resultants

fE,m+1(X1, . . . , Xm+1) = ResX (fE,m(X1, . . . , Xm−1,X), fE,3(Xm,Xm+1,X)) ,

we shall prove this lemma by induction on m. Let fE,m(X1, . . . , Xm−1,X) =
a2m−2X2m−2

+ · · · + a1X + a0 and fE,3(Xm,Xm+1,X) = b2X
2 + b1X + b0. By

the premise that fE,3 is of homogeneous parity, b0 and b2 must consist only of
monomials (in Xm and Xm+1) of even parity. Furthermore, b1 = cXmXm+1 for
some constant c. This is because fE,3 is of degree 2 in each variable, for which
the only monomial of odd parity is XmXm+1X.

Now consider a term ckXk
m+1 of

fE,m+1(X1, . . . , Xm,Xm+1) = c2m−1X2m−1

m+1 + · · · + c1Xm+1 + c0

as a univariate polynomial in Xm+1. Again as fE,3 is of degree 2 in X, we have
the case of n = 2 in Eq. 3. Now Xm+1 must come from b1, so we can conclude
that

ckXk
m+1 =

∑

i

αiaβi
aγi

bδi
0 bεi

2 Xk
mXk

m+1,

where αi a constant, βi, γi ∈ {0, . . . , 2m−2}, and δi, εi nonnegative integers such
that δi + εi + k = 2m−2. We will complete the proof by showing as follows that
ckXk

m+1 is a polynomial in X1, . . . , Xm+1 of homogeneous parity for all k.
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1. If k is even, then by Lemma 1, βi and γi are both even or both odd in each
summand. In either case, the product aβi

aγi
is a polynomial in X1, . . . , Xm−1

of even parity. It follows that each summand is a polynomial of even parity
because it is a product of polynomials of even parity. Hence ckXk

m+1 is a
polynomial of even parity.

2. If k is odd, the situation is similar but slightly more complicated. By Lemma1,
exactly one of βi and γi is odd in each summand, say βi. By induction hypoth-
esis, aβi

is a polynomial in X1, . . . , Xm−1 of odd parity because it comes from
aβi

Xβi in fE,m. It follows that each summand is a polynomial of odd parity
because it is a product of a polynomial of even parity aγi

bδi
0 bεi

2 and a poly-
nomial of odd parity aβi

Xk
mXk

m+1. Hence ckXk
m+1 is a polynomial of odd

parity.

��
By Lemma 2, gE,m(X1, . . . , Xm) = fE,m+1(X1, . . . , Xm, x) is of homogeneous
parity. Obviously, the monomials of even parity will remain of even degree after
x is substituted. If m is even, then the monomials of odd parity in fE,m+1 will
become of even degree after x is substituted because an even number of odd
numbers sum to an even number. Similarly if m is odd, then the monomials of
odd parity in fE,m+1 will become of odd degree after x is substituted. However,
those odd-degree monomials that are not of homogeneous parity, e.g., X2

1X2,
cannot appear in gE,m by Lemma 2. This completes the proof of Theorem 1.

5.3 What Price for a Highly Symmetric Factor Base?

Last but not least, we discuss the price needed to pay to have a highly symmetric
factor base F that is invariant under more group actions in addition to that of
the symmetric group Sm. As previewed in Sect. 2.6, we would expect that the
effect of the decrease in decomposition probability due to additional symmetry
in F could be offset by that of the increase in number of solutions. For example,
let us reconsider the group action of addition of T2 in Sect. 2.4. If we could get
2m−1 solutions, then the loss of the factor of 2m−1 in decomposition probability
would be compensated. This way everything would be the same as if there were
no such symmetry, and we could exploit the additional symmetry at no cost.

Unfortunately, this proposition is false in general. Consider an example of
m = 4. Let Qi = Pi + T2 for i = 1, 2, 3, 4. We can write down all 2m−1 = 8
possible ways of a point decomposition under this group action:

P1 + P2 + P3 + P4 = Q1 + Q2 + P3 + P4

= Q1 + P2 + Q3 + P4 = Q1 + P2 + P3 + Q4

= P1 + Q2 + Q3 + P4 = P1 + Q2 + P3 + Q4

= P1 + P2 + Q3 + Q4 = Q1 + Q2 + Q3 + Q4.

It is easy to find that we have only 5 linearly independent relations from these
8 relations, as there are nontrivial linear combinations summing to zero, e.g.:

(P1 + P2 + P3 + P4) − (Q1 + Q2 + P3 + P4) − (P1 + P2 + Q3 + Q4) + (Q1 + Q2 + Q3 + Q4) = O.
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As explained in Sect. 4.1, the factor bases for Montgomery and twisted
Edwards curves are invariant under addition of 2-torsion points. For m = 3,
we achieve maximum rank of 2m−1 = 4. For m = 4, as we have explained above,
we can only have rank 5, which is strictly less than the maximum possible rank
2m−1 = 8.

Finally, we note that we have not exploited any symmetry for Hessian curves
in our experiments. However, the rank for Hessian curves is always 1 in all our
experiments. This shows that the factor base we have chosen for Hessian curves
is not invariant under addition of small torsion points, as the rank would be >1
otherwise.

6 Conclusion

In this paper, we have experimentally explored index-calculus attack on ECDLP
over different forms such as twisted Edwards curves, Montgomery, Hessian and
Weierstrass curves under the totally fair conditions as they are isomorphic to
each other over the same definition field Fpn and shown that twisted Edwards
curves are clearly faster than others. We have investigated summation polynomi-
als of all forms in detailed; found that big differences are exist in the number of
terms; and proved that monomials of odd degrees in summation polynomial on
twisted Edwards curves does not exist. We have seen that this difference causes
less solving time of index-calculus attack on ECDLP over twisted Edwards than
others.
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Abstract. RFID technology is becoming more useful and it is applied in
various domains such as inventory management, supply chain, logistics,
control access, e-passport, e-health and many other applications. Propos-
ing an authentication protocol for RFID systems must find a compromise
between the limitation of resources and the security requirements. In this
paper, we propose two Zero-Knowledge mutual authentication protocols
for the first time based on error correcting codes which are supposed to
be resistant to quantum computer. Our proposed schemes have many
advantages in terms of the approach used in the definition of the pro-
tocols and in terms of security properties and performances. Besides all
the standard security requirements that our schemes fulfill, an adversary
who can compromise the Reader cannot get the identifier of the Tag. We
achieve this by using a Zero-Knowledge identification protocol.

Keywords: RFID · Authentication · Code-based cryptography
Zero-Knowledge · Security

1 Introduction

Radio Frequency Identification (RFID) is a contactless technology used to iden-
tify objects using radio frequency. Recently RFID systems have got much pop-
ularity and are now progressively substituting the bar-codes for identification.
This technology is more and more drawing attention of researchers and industri-
als and it has numerous applications in different real life scenarios. For example,
RFID systems are used in inventory management, supply chain, transporta-
tion, ticketing and control access systems, e-passport, e-health and many other
domains. An RFID system is generally composed by two or three entities: Tags
or tagged objects, Readers and Server as a backend database. In this case the
Server has more resources than Tags and Readers and consequently it is more
powerful in computing ability and storage. The Reader communicates with the
Server through a secure network channel and with the Tag using a radio fre-
quency interface which is supposed to be insecure. For this case we can give for
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examples e-passport, access control and e-health etc. RFID system with only
Reader and Tag is very useful in some applications like vehicle tags. It is in
this category that our work is located. RFID Tags can be divided into three
categories: passive Tags, which are powered by the radio wave from an RFID
Reader and communicates with the Reader throw backscattering. Active Tags,
which are powered by their own energy sources (battery) and semi active Tags,
which use internal energy sources to power their circuits. In this paper, the
RFID system is formed by only one Reader and one Tag. This case can be illus-
trated by the following real life scenario: Vehicle authentication system when the
reader is embedded in the vehicle and the vehicle key contains an RFID Tag.
The constraint of resources and the security requirements are the main issues
in the RFID systems and proposing an authentication protocol must verify the
following security and privacy properties as cited in [13]: Anonymity, Secrecy,
Mutual Authentication, Untraceability, Desynchronization Resilience, Forward
Secrecy and Resist Replay Attack. We also introduce the notion of Inside Secrecy
adapted from [20] that means that even if an Adversary can corrupt a Reader he
cannot impersonate the Tag. The RFID authentication protocols can be divided
into four types: the first type concerns the protocols that support cryptographic
functions whether symmetric or asymmetric while in the second type, the proto-
cols use pseudo random generator number PRNG and one way hash functions.
The third category called lightweight protocols and generally based on some
error correcting codes such as Cyclic Redundancy Check (CRC) and checksum.
The last type (the ultra-lightweight) concerns those protocols that support only
basic binary operations like XOR, AND etc.

Security and privacy are the two essential properties that must verify an
authentication protocol for RFID systems. In the literature, many works have
been proposed as authentication schemes and most of them are based on classi-
cal cryptography such as number theory assumptions or elliptic curve cryptog-
raphy as it is shown these publications [1–4]. In 2006, Chien [5] presented an
RFID authentication protocol for control access systems, his scheme provides
the anonymity beside other properties. Thereafter Cao and Shen [6] proposed
attacks on two RFID authentication protocols. Naveed et al. [3] designed a reli-
able and low cost RFID authentication protocol and later in [7], Chikouche et
al. reported deferent attacks on two RFID authentication protocols based on
coding theory assumptions. The authors of [8] proposed an authentication pro-
tocol based on randomized version of Niederreiter, however their protocol does
not achieve forward secrecy and Reader’s authentication. In [9] Chien and Laih
suggested an RFID authentication protocol based on error correcting codes,
basically, they used a confusion scheme to ensure the untraceability property.
In [10], Malek and Miri presented an authentication protocol for RFID systems
where they used the randomized McEliece cryptosystem but their protocol does
not achieve desynchronization resilience. In 2014, Li et al. [11] designed a mutual
authentication protocol based on error correcting codes. However, their proposal
remains vulnerable to traceability and forward secrecy attacks. Thereafter their
paper was improved by Chikouche et al. [12]. In [13], the authors improved an
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existing mutual authentication protocol based on randomized McEliece and they
proved that their scheme does not suffer from any problem in terms of security
and privacy. In a survey of authentication protocols for RFID systems based on
Zero-Knowledge proofs, we cite [14] where the authors present a private storage-
security based on public key scheme for low-cost RFID. Independently Deng
et al. in [15] proposed a formal RFID security and privacy framework based on
a Zero-Knowledge (ZK) formulation.

On the other hand, code based cryptography is a promising alternative that
resists to quantum computers. Therefore it is used in the construction of many
important cryptographic primitives such as group signatures and ring signatures
[21–23].

Our contribution. This paper consists in proposing two Zero-Knowledge
authentication protocols based on coding theory assumptions for the RFID sys-
tems. In the literature, we notice that such authentication protocols for RFID
systems are not well studied. Proposing an authentication protocol is a chal-
lenging task insofar as we should do a compromise between the required privacy
and the low resources. In our construction, the security requirements are verified
and even if we have a dishonest Reader or this one is compromised, an adversary
cannot have any more Tag’s identifier since it is never revealed by the Tag in the
authentication process.

Organization. The reminder of this paper is organized as follows: Sect. 2 is
devoted to the Stern-Based RFID Zero-Knowledge authentication protocol. Then
we propose the AGS-Based RFID authentication protocol in Sect. 3. Section 4
is devoted to analyze the performance of our proposal in terms of performances
and security. We conclude in Sect. 5.

Preliminaries. In what follows, we recall some necessary notions in code-based
cryptography to make the understanding of this paper easier.

Let Fq be the finite field of cardinality q and let C be a [n, k, d] linear code
over Fq of length n, dimension k and minimum distance d, i.e. a linear subspace
of dimension k of the vector space Fn

q . Let Mm×n(Fq) denotes matrices over

Fq of m rows and n columns. We denote by a
$← S when a is chosen uniformly

random from a finite set S. Let G ∈ Mk×n(Fq) be a generator matrix of a
[n, k, d] code C and H ∈ M(n−k)×n(Fq) be its parity check matrix. Let ⊕ denote
the xor operation. We use x� to denote the transpose of x and wt(x) to denote
the Hamming weight of x. We define Pr[A = a] as being the probability to have
the event A = a. We denote by T and R the Tag and Reader respectively and
by h a one way hash function. Let Sn be the group of permutations over the set
{1, . . . , n}. We define the following elements such as: σ is a permutation in Sn,
ui ∈ Fk

2 and Tag’s identifier ID ∈ Fn
2 in Stern case and ID = (e,m) ∈ Fn

2 × Fk
2

in AGS case. We denote by r = (r1, · · · , rN ) ∈ FN
k a random vector of rotations

such as ari
= Rotri

(a) where Rotri
is a left shift rotation of a ri positions. Let
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C = h(C1,1, C2,1, C3,1, · · · , C1,N , C2,N , C3,N ) be the vector obtained by hashing
all the commitments in AGS case and C = {Ci}1≤i≤N in Stern case. We define
b = (b1, · · · , bN ) ∈ FN

2 in AGS case and b = (b1, · · · , bN ) ∈ FN
3 in Stern protocol.

For protocols, we denote by P, V and A the prover, the verifier and the adversary
respectively. Our protocols are based on the Syndrome and General Decoding
Problems that are based on coding theory and proved to be NP-complete in [18].

2 The Proposed Stern-Based RFID Zero-Knowledge
Authentication Protocol

In this section, we propose a RFID Zero-Knowledge authentication protocols
based on Stern identification scheme [19].

2.1 Mutual Authentication Stern’s Protocol

We modify the original Stern identification scheme [19] that we describe in Algo-
rithm 1, to add the mutual authentication and we call it Mutual Authentication
Stern’s Protocol (MASP). Let H be an (n − k) × n random matrix, the Prover
P chooses ID ∈ F

n
2 of weight w and computes x = H · ID�. In Stern Identifica-

tion scheme H and x are public and ID is the Prover P secret Identity. In this
version of Stern x is considered as a shared secret between P and V.

Algorithm 1. Mutual Authentication Stern’s Protocol (MASP)
1. Let H ∈ M(n−k)×n(F2), the prover P randomly chooses a binary string u of length

n and a permutation σ ∈ Sn. He then sends c1, c2 and c3 to V defined by:
c1 = h(σ|Hu�); c2 = h(σ(u)); c3 = h(σ(u⊕ ID)) (where h is a hash

function).
2. V sends a random challenge g ∈ {0, 1, 2} to P.
3. three possibilities occur:

(a) if g = 0: P reveals u and σ.
(b) if g = 1: P reveals (u ⊕ ID) and σ.
(c) if g = 2: P reveals σ(u) and σ(ID).

4. Verification step by the verifier:
(a) if g = 0: V checks that c1 and c2 received at Step 1 were correctly computed

and sends L = h(σ(u) ‖ x) to P.
(b) if g = 1: V checks that c1 and c3 received at Step 1 were correctly computed.

– for c1 one remarks that Hu� = H(u ⊕ ID)� ⊕ x
– V sends L = h(Hu�) to P.

(c) if g = 2: V checks that c3 and c2 received at Step 1 were correctly computed
and that the weight of σ(ID) is exactly w and sends L = h(σ(ID) ‖ x) to P.

5. Verification step by the prover:
(a) if g = 0: P checks that L revived at Step 4 is equal to h(σ(u) ‖ x)
(b) if g = 1: P checks that L revived at Step 4 is equal to h(Hu�)
(c) if g = 2: P checks that L revived at Step 4 is equal to h(σ(ID) ‖ x)
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2.2 Security of Mutual Authentication Stern’s Protocol

We now study the completeness and soundness of MASP presented in Algo-
rithm 1. We also show that this protocol, as the original one [19], is Zero-
Knowledge with cheating probability of 2

3 .

Completeness. To ensure the completeness of our scheme, we show that the
MASP is always succeed when it is executed by honest prover and verifier.

Lemma 1. If P and V honestly execute MASP, we have for any round:
Pr[MASPP,V = Accept] = 1.

Proof. The completeness is natural, we draw inspiration from Stern’s complete-
ness proof. We just notify that V is authenticated until he has a valid y. Fur-
thermore in the case of g = 1,V can compute:

h(H · (u ⊕ ID)� ⊕ x) = h(H · u� ⊕ H · ID� ⊕ H · ID�) = h(H · u�) (1)

�

Soundness. To ensure the soundness properties, we show that a cheater cannot
deceive the verifier that he knows the secret ID when it is not true.

Lemma 2. If a cheater P and an honest verifier V execute MASP, we have
for any round: Pr[MASPP,V = Accept] = 2/3.

Proof. The proof of the soundness is the same as the Stern’s one, where P can
cheat in the cases g = 0 and g = 2. We notify that in MASP the additional
requirements witch allow P to authenticate V are used after P authentication.
Then these additional requirements does not impact the result of P authentica-
tion. Therefore, like in Stern’s soundness proof, a cheater P cannot anticipate
the 3 challenges and the protocol clearly outputs “Accept” with a maximum
probability of 2/3. �

Zero-Knowledge. To ensure the Zero-Knowledge, we show that during a nor-
mal execution the verifier learns nothing but only what he needs to confirm that
the data he possesses is linked or not to the prover’s secret.

Lemma 3. The mutual Authentication Stern’s Protocol MASP is a prover-
verifier Zero-Knowledge in ROM assuming the hardness of the syndrome decod-
ing problem.

Proof. In [19], Stern proves that his scheme is Zero-Knowledge in ROM assuming
the hardness of SD problem which means that in normal execution, V learns
nothing but only what he needs to confirm that the data he possesses is linked
or not to the prover’s secret. From the Step 1 to 4 MASP is constituted by fully
Stern scheme, furthermore, in the last steps, P sends nothing to P. Therefore,
based on Zero-Knowledge Stern’s scheme proof, MASP is a prover-verifier Zero-
Knowledge in ROM assuming the hardness of SD problem. �
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Theorem 1. The mutual Authentication Stern’s Protocol MASP is a prover-
verifier Zero-Knowledge with a cheating probability of 2

3 verifying properties of
completeness, soundness and Zero-Knowledge in ROM (Random Oracle Model)
assuming the hardness of SD problem.

Proof. We prove this theorem using Lemma 2 for completeness, Lemma 1 for
soundness and Lemma 3 to prove the Zero-Knowledge. �

2.3 MASP-Based Authentication Scheme

We describe our MASP-based RFID authentication scheme in two phases:

Initialization. During this step, the Customer generates randomly a (n−k)×n
random matrix H and ID ∈ F

n
2 of weight w and computes x = H · ID�. The

tuple (H,x,w) is stored in the Reader and the couple (H, ID) in the Tag.

Authentication. In the authentication step we repeat Algorithm 1 many times
(N rounds) to reach a good security level. We describe the mutual authentication
in the following steps:

1. The Tag generates all N commitments C = {Ci}1≤i≤N as follow: for each

1 ≤ i ≤ N the Tag gets a vector ui
$← F

n
2 and a permutation σi

$← Sn and
he computes Ci,1 = h(σi|Hu�

i ); Ci,2 = h(σi(ui)); Ci,3 = h(σi(ui ⊕ ID)) and
sets Ci = {Ci,1;Ci,2;Ci,3}. The Tag sends C = {Ci}1≤i≤N to the Reader.

2. The Reader sends back to the Tag the vector challenge b
$← F

N
3 .

3. After receiving the vector b, the Tag generates the vector RSP as the response.
For each 1 ≤ i ≤ N :

– if bi = 0: RSP (i) = {ui;σi}
– if bi = 1: RSP (i) = {(ui ⊕ ID);σi}
– if bi = 2: RSP (i) = {σi(ui);σi(ID)}

the Tag sends RSP = (RSP (1), · · · , RSP (N)) to the Reader.
4. At this step the Reader verifies the Tag identity. For each 1 ≤ i ≤ N :

– if bi = 0: Reader checks that Ci,1 and Ci,2 received at Step 2 are correctly
computed and sets Li = h(σi(ui) ‖ x).

– if bi = 1: Reader checks that Ci,1 and Ci,3 received at Step 2 are correctly
computed.

• For Ci,1 we notice that Hu�
i = H(ui ⊕ ID)� ⊕ x.

• The Reader sets L(i) = h(Hu�
i ).

– if bi = 2: Reader checks if Ci,3 and Ci,2 received at Step 2 are correctly
computed and that the weight of σi(ID) is exactly w and sets L(i) =
h(σi(ID) ‖ x).

To authenticate himself, the Reader sends L = (L(1), · · · , L(N)) to the Tag if
no error occurs during this verification step else the Reader sets L to random
data.
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5. At the end, the Tag tries to authenticate the Reader. For each 1 ≤ i ≤ N :
– if bi = 0: the Tag checks if L(i) is exactly h(σi(ui) ‖ x).
– if bi = 1: the Tag checks if L(i) is exactly h(Hu�

i ).
– if bi = 2: the Tag checks if L(i) is exactly h(σi(ID) ‖ x).

If all of these steps are passed, the Tag and the Reader are successfully authen-
ticated.

2.4 Security of MASP-Based Authentication Scheme

In this part we give a security analysis of our MASP-based authentication
scheme. Our RFID system is just composed by one legitimate couple of Tag
and Reader consequently it’s not necessary to study the anonymity and untrace-
ability. These two properties have a meaning in the case when we have many
Tags.

Mutual authentication. Let ni where 1 ≤ i ≤ 5 be five integers polynomial
bounded in the security parameter. To study this property we use the following
phases:

– Learning phase: during this phase A observes the protocol running n1 times
between Reader R and Tag T, interacts n2 times with R and interacts n3

times with T.
– Challenge phase: during this phase A tries to impersonate T n4 times and A

tries to impersonate R n5 times.

Assume that A can successfully impersonate T, which means that A can cheat
all of the N rounds of our MASP protocol or he can guess the Tag’s ID in
any one of n4 sessions during the challenge phase. This event can occur with a
probability of

n4w!(n − w)!
n!

+
(

2
3

)Nn4

which is negligible (where n, w and N denotes respectively the length of the
code, the small weight of the secret and the number of rounds). Now we assume
that A can successfully impersonate R n5 times, we distinguish three cases:

– bi = 0: A receives Ci,1 = h(σi|Hu�
i ); Ci,2 = h(σi(ui)); Ci,3 = h(σi(ui ⊕ ID))

and RSP (i) = {ui;σi} from T and must computes L(i) = h(σi(ui) ‖ x).
– bi = 1: A receives Ci,1 = h(σi|Hu�

i ); Ci,2 = h(σi(ui)); Ci,3 = h(σi(ui ⊕ ID))
and RSP (i) = {(ui ⊕ ID);σi} from T and must computes L(i) = h(Hu�

i ).
– bi = 2: A receives Ci,1 = h(σi|Hu�

i ); Ci,2 = h(σi(ui)); Ci,3 = h(σi(ui ⊕ ID))
and RSP (i) = {σi(ui);σi(ID)} from T and computes L(i) = h(σi(ID) ‖ x).

Depending on the cases presented above, without the knowledge of x and ID,
impersonating R means that A can find a pre-image under h, guess a good x,
guess T’s ID or the value of σi or ui are repeated in any one of n5 sessions during
the challenge phase. This event may occur with a probability of

1
3Nn5

(
n1 + n3

2n−1
+

n1 + n3

2nn!

)Nn5

+
n5

2n−k
+

n5w!(n − w)!
n!

(2)

which is negligible.
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Desynchronizing attack. If an adversary blocks or modifies the information
exchanged between the Tag and the Reader for a current session, the process of
authentication will not succeed. However, in the next session the authentication
will be achieved because we do not need to update the internal state in our
scheme.

Replay attack. To achieve a replay attack, the adversary A have to imperson-
ate Reader or Tag by replaying the same messages of previous communications
between legitimate Tag and Reader in order to forge the verification of Tag’s or
Reader’s identity.

We suppose that the adversary chooses to impersonate the Reader, he chooses
vector b = (b1, · · · , bN ) (Step 2) of a previous legitimate communication between
the Tag and the target Reader, he receives C and RSP from the Tag and he has
to send a valid vector L that fulfill verifications of Step 4 by the Tag. Achieving
this goal means that the adversary has knowledge of x (which is supposed as a
shared secret between the Tag and the Reader) or the Tag uses a repeated σi

and ui for all 1 ≤ i ≤ N as used in a legitimate conversation. However this can
occur with a probability of

(
1

2nn!

)N which is negligible. Now, we suppose that A
tries to impersonate a specific Tag. Firstly, A sends the vectors C and RSP used
in previous communications between a Reader and a target Tag. The adversary
succeeds this attack if the value of b = (b1, · · · , bN ) is the same as used in
the previous communication. However this can occur with a probability of

(
2
3

)N

which is negligible. Consequently, our protocol is not vulnerable to replay attack.

Secrecy. It is obvious that the proposed scheme achieves secrecy because our
RFID authentication protocol is Zero-Knowledge and consequently, the sensitive
data (secret or shared secret) are not transmitted using the radio frequency
interface witch is supposed to be insecure.

Forward secrecy. Our protocol provides forward secrecy: we assume that there
exists an adversary A that can compromise the secret stored in Tag’s memory.
We have to prove that this adversary cannot compromise the previous commu-
nications.

We suppose that an attacker has access to Tag’s memory then he gets
it’s ID.

Let (C ′, b′, RSP ′, L′) be the last conversation between the Tag and the
Reader. Since b′ is generated randomly and C ′ is computed using random ele-
ments (ui, σi), they are independent of ID. We use the same arguments to justify
that even if the adversary needs ID or x to compute RSP ′ and L′ he needs also
σi and ui which are chosen randomly. Thus if an intruder have access to Tag’s
memory, he cannot compromise the previous communications.

Inside Secrecy. Let n1, n2 and n3 be three integers polynomial bounded in the
security parameter. We assume that A can have access to the Reader memory
it means that A can have access to x. Now we study this property using the
following phases:
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– Learning phase: during this phase, A observes the protocol running n1 times
between R and T and interacts n2 times with R.

– Challenge phase: during this phase, A tries n3 times to impersonate T.

Assume that A can successfully impersonate T which means that A can recover
the Tag’s ID from x = HID� or cheat all of the N rounds of our MASP
protocol in any one of n3 sessions during the challenge phase. This event can
occur with a probability of

p =

((
1
2

)Nn3

+
n1 + n2

Cw
n

)
(3)

which is negligible. Where Cw
n = n!

w!(n−w)! .

3 The Proposed AGS-Based RFID Zero-Knowledge
Authentication Protocol

In this section, we propose a RFID Zero-Knowledge authentication protocol
based on AGS identification scheme [16].

3.1 The AGS Variant

Our proposed scheme is based first on a modification of AGS authentication
protocol [16], which is a five pass interactive Zero-Knowledge proof, when the
prover P proves in a Zero-Knowledge way that he knows the secret vectors
(e,m) ∈ Fn

2 × Fk
2 that verifies x = mG + e. Where the matrix G is double

circulant and wt(e) = w, (G,w) are public parameters. We notice the difference
between this variant and the original AGS authentication protocol that in our
protocol we consider x as a shared secret unlike the original version where x
is a public parameter. In our case even the verifier V must prove to the prover
P that he knows the shared secret of a particular prover. We achieve this by
verifying the commitments where the verifier has necessary to use the shared
secret x. Consequently, we reach a mutual authentication between the prover
and the verifier.

3.2 Security of the AGS Variant

In this subsection we study the completeness and soundness of the AGS variant
presented in Algorithm 2. We also show that this protocol, as the original one
[16], is Zero-Knowledge with cheating probability around 1

2 .

Completeness. A scheme is considered to be complete if the identification of
a legitimate prover and verifier fail only with negligible probability. In prover
authentication, the completeness is deduced from the proof in [16] and c3 is
computed as follows:
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Algorithm 2. The AGS variant protocol
1. Let (e, m) ∈ Fn

2 ×Fk
2 , P randomly chooses u ∈ Fk

2 and a permutation σ of Sn. Then
P sends to V the commitments c1 and c2 such that: c1 = h(σ) and c2 = h(σ(uG)).

2. V sends 0 ≤ r ≤ k − 1 (the number of shifted positions) to P.
3. P builds er = Rotr(e), mr = Rotr(m) (er and mr are a left shift rotation of r

position applied to vectors e and m separately) and sends the last part of the
commitment: c3 = h(σ(uG + er)).

4. V sends g ∈ {0, 1} to P:
5. Two possibilities:

– if g = 0: P reveals (u + mr) and σ.
– if g = 1: P reveals σ(uG) and σ(er).

6. Verification Step, two possibilities:
– if g = 0: V verifies that c1, c3 have been honestly computed and sends L =

h(uG + er) to P.
– if g = 1: V verifies that c2, c3 have been honestly computed and that

wt(σ(er)) = w and sends L = h(σ(uG + er) + xr) to P. (xr is a left shift
rotation of r position applied to vectors x)

7. Verification of the identity of V
– if g = 0, P verifies if L is equal to h((u + mr)G + xr) = h(uG + er).
– if g = 1, P verifies that L is equal to h(σ(uG)+σ(er)+xr) = h(σ(uG+er)+xr).

– if g = 0,

c3 = h(σ(u + mr)G + σ(xr)) = h(σ(uG + mrG + mrG + er)) = h(σ(uG + er)) (4)

– if g = 1, c3 = h(σ(uG) + σ(er)).

In verifier authentication we have:

– if g = 0,

L1 = h((u + mr)G + xr) = h(uG + er) (5)

– if g = 1,

L2 = h(σ(uG) + σ(er) + xr) = h(σ(uG + er) + xr) (6)

Soundness. The soundness property means that a dishonest prover or verifier
cannot be authenticated with non negligible probability. In [16], the authors
proves that a malicious prover cannot be authenticated successfully with prob-
ability higher than 1/2. In the verifier authentication, if this one has not the
shared secret x he is not able to compute correctly the values L in both cases
g = 0 or g = 1.

Zero-Knowledge. A scheme is considered as Zero-Knowledge if their is no
sensitive data (secrets) that can be deduced from an execution of the protocol.
It’s proved in [16] that AGS protocol is Zero-Knowledge. Observing our scheme,
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particularly where we add verifier authentication, a prover checks the prover’s
identity by computing L and this doesn’t give any advantage to an eavesdropper
to have a knowledge of x but the prover can compute it since he possess the
secrets (e,m).

3.3 Mutual Authentication Scheme Based on the AGS Variation

In the authentication process, we consider two entities: the Reader and the RFID
Tag then the proposed scheme ensure a mutual authentication between the tow
entities in Zero-Knowledge way.

Initialization phase. During this step of each Tag: the Customer stocks in
Tag’s memory G, e,m such that e ∈ Fn

2 and m ∈ Fk
2 are tow secrets constituting

Tag identifier ID = (e,m) with wt(e) = w which is constant for all Tags. The
public parameters are: G ∈ Mk×n(F2) and ω. We consider x = mG + e as a
shared secret between the Tag and the Reader.

Authentication phase. The authentication protocol uses the AGS variant
repeating each step N times rather than executing the protocol N rounds where
N is the number of necessary iterations that we need to achieve the wanted
security level as depicted in Fig. 1.

3.4 Security Analysis of Our AGS-Based RFID Authentication
Scheme

We don’t treat the anonymity and traceability property because we are interested
in the case where we have only one Reader and one Tag.

Mutual authentication. In the challenge phase, we assume that the adversary
impersonate n1 times a Tag T and for the ith session, A generates a couple
(C,RSP ) where 1 ≤ i ≤ n1. On the other hand the adversary A can impersonate
the Reader n2 times and in each session i, A can produce a tuple (r, b, L).

We assume that A can impersonate the target T successfully. In that case, A
sends a valid couple (C,RSP ) to the Reader R in one of the n1 sessions during the
challenge phase without knowing Tag’s ID. Observing our protocol, A can easily
generates C1,1, C1,2, · · · , C1,N , C2,N by choosing random σi ∈ Sn and ui ∈ F

k
2 .

However, the adversary cannot compute a valid C3,i = h(σi(uiG + Rotr(ei)))
without knowing the secret e which is a part of Tag’s ID. Consequently, the
probability to compute successfully a valid C3,i is n1

Cw
n

(the probability to guess

e ∈ Fk
2 of weight w, where Cw

n = n!
w!(n−w)! ). On the other hand, the adversary

A cannot compute a valid RSP . In the case where bi = 1, the adversary cannot
send a valid RSP (i) = (σi(uiG), σi(eri

), C2−bi) without knowledge of e and he
can guess e with probability n1

Cw
n

. When bi = 0 he can send a valid RSP where
RSP (i) = (ui + mri

, σi, C2−bi) with a probability equal to n1
2k

. Consequently
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Reader Tag

1- Authentication request for a specific Tag T

(The Reader knows the shared secret x)

The Reader generates a random vector

r = (r1, · · · , rN) ∈ N
k and sends it to the Tag T.

r

2- for i = 1 : N

The Tag T chooses randomly σi in Sn

and ui in k
2 and computes

C1,i = h(σi),

C2,i = h(σi(uiG))

C3,i = h(σi(uiG + eri))

The Tag T computes a global commitment

C as follows:
C = h(C1,1, C1,2, C1,3, · · · , C1,N , C2,N , C3,N )

and sends C to the Reader

C3-The Reader receives C from the Tag and sends to

him a random binary vector b = (b1, · · · , bN ) ∈ N
2 .

b

4- for i = 1 : N

if bi = 0, set

RSP (i) = (ui + mri , σi, C2−bi,i)

if bi = 1, set

RSP (i) = (σi(uiG), σi(eri), C2−bi,i)

The Reader constructs and sends
RSP = (RSP (1), · · · , RSP (N))

to the Tag T.

RSP

5- After receiving RSP from T the Reader do

the following:

for i = 1 : N

if bi = 0, R construct C1,i and C3,i

if bi = 1, R construct C2,i and C3,i

Computes

C3 = h(C1,1, C1,2, C1,3, · · · , C1,N , C2,N , C3,N)

if C3 = C, Tag’s authentication succes

for i = 1 : N

if bi = 0,

L(i) = h((ui + mri)G + xri) = h(uiG + eri)

if bi = 1, L(i) = h(σi(uiG) + σi(eri) + xri)

Computes L = h(L(1), · · · , L(N)) and send it

to the Tag

L

if C3 = C,Tag’s authentication fails.

6- for i = 1 : N

if bi = 0 the Tag computes

h((ui + mri)G + xri)

if bi = 1 the Tag computes

h(σi(uiG) + σi(eri) + xri)

if L = h(L(1), · · · , L(N)),

Reader authentication success

else

Reader authentication fails.

Fig. 1. Our AGS-based RFID authentication scheme
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the adversary A can generate a valid couple (C,RSP ) with probability of n1
Cw

n
+

1
2

(
n1
Cw

n
+ n1

2k

)
which is negligible.

Now, we assume that A can impersonate the target Reader successfully. In
that case, A sends a valid tuple (r, b, L): he can send r and b because they
are chosen randomly. However it’s infeasible for the adversary A to compute
a valid L because in both cases bi = 0 and bi = 1, A has to use the shared
secret x in order to compute a valid L(i), guessing x occurs with probability of
1
2

(
2n2
2n + n2

Cw
n

)
which is negligible.

Desynchronizing attack. If an adversary blocks or modifies the information
exchanged between the Tag and the Reader for a current session, the process of
authentication will not succeed. However, in the next session the authentication
will be achieved because we do not need to update the internal state in our
scheme.

Replay attack. To achieve a replay attack, the adversary A has to imperson-
ate Reader or Tag by replaying the same messages of previous communications
between legitimate Tag and Reader in order to forge the verification of Tag’s or
Reader’s identity.

We suppose that the adversary chooses to impersonate the Reader, he chooses
vectors r = (r1, · · · , rN ) (Step 1 of Fig. 1) and b = (b1, · · · , bN ) (Step 3 of Fig. 1)
of a previous legitimate communication between the Tag and the target Reader,
he receives C and RSP from the Tag and he has to send a valid vector L that
fulfill verifications of Step 6 of Fig. 1 by the Tag. Achieving this goal, means that
the adversary has knowledge of x (which is supposed as a shared secret between
the Tag and the Reader) or the Tag uses a repeated σi and ui for all 1 ≤ i ≤ N as
used in the legitimate conversation. However this can occur with a probability
of

(
1

n!2k

)N which is negligible.
Now, we suppose that A tries to impersonate a specific Tag. Firstly, A sends

a vector C and RSP used in previous communications between a Reader and a
target Tag. The adversary succeeds this attack if the value of b = (b1, · · · , bN )
and r = (r1, · · · , rN ) are the same as used in the previous communication. How-
ever this can occur with a probability of

(
1
2k

)N which is negligible. Consequently,
our protocol is not vulnerable to replay attack.

Secrecy. It is evident that the proposed scheme achieves the secrecy property
because our RFID authentication protocol is Zero-Knowledge and consequently,
the sensitive data (secret or shared secret) are not transmitted using the radio
frequency interface which is supposed to be insecure.

Forward secrecy. Our protocol provides forward secrecy: we assume that there
exists an adversary A that can compromise the secret stored in Tag’s memory.
We have to prove that this adversary cannot compromise the previous commu-
nications.

We suppose that the attacker has access to Tag’s memory then he gets it’s
ID = (e,m).
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Let (r′, C ′, b′, RSP ′, L′) be the last conversation between the Tag and the
Reader. Since r′ and b′ are generated randomly and C ′ is computed using ran-
dom elements (ui, σi), they are independent of ID = (e,m). We use the same
arguments to justify that even if the adversary needs e or m to compute RSP ′

and L′ he needs also σi and ui which are chosen randomly. Thus if an intruder has
access to Tag’s memory, he cannot compromise the previous communications.

Inside Secrecy. Let n1, n2 and n3 three integers polynomial bounded in the
security parameter. We assume that A can have access to the Reader memory,
it means that A can have access to x. Now we define the following phases:

– Learning phase: during this phase, A observes the protocol running n1 times
between R and T, interacts n2 times with R.

– Challenge phase: during this phase A tries to impersonate n3 times T.

Assume that A can successfully impersonate T which means that A can recover
the Tag’s ID = (e,m) from x = mG+ e or cheat all of the N rounds of our AGS
variant protocol in any one of n3 sessions during the challenge phase. This event
can occur with a probability of (12 )Nn3 +(n1+n2)

(
1
2k

+ 1
Cw

n

)
witch is negligible.

4 Performance and Practical Results

In Table 1, we present a comparison between our RFID protocols (AGS based
protocol and MASP based one) and others presented in the literature based on
coding theory namely: [10–12,17].

The comparison shows that our scheme fulfill the security requirements:
mutual authentication, resilience to desynchronization attacks, replay attack,
secrecy and forward secrecy. Moreover, unlike the others schemes based on cod-
ing theory, our schemes achieve Inside Secrecy.

Table 1. Comparison of privacy and security requirements

[10] [11] [12] [17] Our protocols

Mutual authentication Yes Yes Yes Yes Yes

Desynchronizing attack No Yes Yes Yes Yes

Replay attack Yes Yes Yes Yes Yes

Secrecy Yes Yes Yes Yes Yes

Forward secrecy Yes No Yes Yes Yes

Inside secrecy No No No No Yes

4.1 Performance Analysis

The performance of any authentication protocol for RFID systems are summa-
rized in the storage space in Tag’s memory, computation cost both for the Tag
and for the Reader and the communication cost between the Tag and the Reader.
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Storage space in Tag’s memory. We stock in Tag’s memory the ID = (e,m)
which is of length n + k and the first row of the circulant matrix to generate
G which is of size k bits. In AGS protocol, the authors present the following
parameters for 80 bits security level and cheating probability equal to 2−16:
n = 698, k = 349, w = 70. The number of required rounds is N = 18. Finally,
the Tag’s storage is n + 2k = 1386 bits.

Communication cost. In general, the communication cost is measured by
the number of bits transmitted during the exchange of messages between the
Tag and the Reader. Now, we compute the number of bits transmitted from the
Tag to the Reader. Observing our protocol, during one round the Reader sends
(C,RSP ). We note by lh the size of a hash function and lσ the number of bits
required to encode a permutation.

size(RSP ) =
N

2
(k + lσ + lh + n + n + lh) = N

(
k

2
+

lσ
2

+ lh + n

)

We note CommT→R the communication cost of messages sends from T to R.

CommT→R = size(C) + size(RSP ) = lh + N

(
k

2
+

lσ
2

+ lh + n

)
(7)

On the other hand, we also note lr the number of bits required to encode
1 < ri < k − 1 the number of shifts to apply rotations. Let (R, b, L) be the data
transmitted from R to T, we have:

size(r) = Nlr, size(b) = N, size(L) = lh

We note CommR→T the communication cost of messages sends from R to T.

CommR→T = N(lr + 1) + lh (8)

Thus, by (7) and (8) we conclude that the communication cost of our pro-
posed authentication protocol is:

Comm = CommT→R + CommR→T = N

(
k

2
+

lσ
2

+ lh + n + lr + 1
)

+ 2lh (9)

Let lp be the length of generating random number or hash, m the number of
bits required to encode the integer ri where 1 < ri < k − 1 and |key| the length
of key or ID.

Table 2. Comparison of performances

Tag’s storage CommT→R CommR→T

Chikouche et al. [13] n = 2048 n + lp n + lp

Malek and Miri [10] (n + k + |key|) n 2n + |key| + lp

Our protocol n + 2k = 1386 N(3lp + k + n) N(lp + 1 + m)
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5 Conclusion

In this paper, we have proposed two mutual authentication protocols for RFID
systems based on Zero Knowledge proofs and coding theory. Namely the MASP-
based and the AGS-based authentication protocols. Our protocols verify all the
important security and privacy requirements including secrecy, forward secrecy
and inside secrecy. In addition, our proposal provides stronger resistance to
desynchronizing and replay attacks. Compared to other protocols, if we suppose
that the Reader is compromised or it is considered as dishonest, an adversary
cannot have Tag’s identifier since it has not revealed during the authentica-
tion and even the Reader ignore it. This security property is ensured by the
Zero-Knowledge of our protocol. Moreover, the scheme is designed with pseudo
random generators, hash functions, permutations and other simple operations.
The number of bits required for storage in Tag’s memory makes the protocol
applicable and can be implemented for a large scale of low-cost RFID Tags and
can also be extended to other compact hardware design.
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Abstract. Due to its emerging security and computational properties,
lattice-based constructions are of prime concerns in recent research. Zero-
knowledge evidences serve strongest security guarantees to cryptographic
primitives. In this paper we formalize a new zero-knowledge argument
(ZKA) suitable for lattice-based construction and employ it to security
assurance of the proposed structure of attribute-based group signature
on lattice assumption. To the best of our knowledge this paper proposes
the first such construction.

1 Introduction

In recent years, lattice-based instantiations and concrete constructions of many
well known cryptographic primitives have been formalized. Zero-knowledge argu-
ments have been very standard and strong security evidences for such construc-
tions. Both, the design of lattice-based protocol and their analysis by zero knowl-
edge arguments are topics of interest in current research. In this paper, we for-
malize a new zero-knowledge argument (ZKA) for lattice-based primitives and
employ it for security assurance of the proposed construction of attribute-based
group signature from lattices. As we use the important ingredients of public key
cryptography namely attribute-based construction, group signature and lattice-
based setup, with broadly accessible public parameters; we systematically discuss
these topics with their state of art below:

Attribute-based signature (ABS) is a variant of identity-based signature
(IBS) where identities of the users are replaced by certain attributes which are
supposed to be possessed by the candidate users. The required set of attributes,
constrained to be satisfied by the users, is called predicate. A user satisfying the
predicate can anonymously authenticate (sign) messages while maintaining fine-
grained control over the attributes. In this view, ABS are fine-grained alternate
to widely-used anonymous signature like group signature [8] and ring signa-
tures [37]. The primary schemes of ABS were introduced by Maji et al. [28,29].
Their schemes are designed over the bilinear group, but the better scheme is
only proven secure in the generic group model. In recent years various use-
ful primitives have been designed combining ABS with the standard signature
c© Springer International Publishing AG, part of Springer Nature 2018
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algorithms like group signature [19], ring signature [23] etc. to achieve more
functionalities. Okamoto and Takashima [33] formalised the standard model of
security for ABS, they follow the functional encryption proof technique of [22].
In a threshold ABS the candidate users are required to satisfy at least a thresh-
old number of attributes. The ABS in [38] can be viewed as threshold variant of
[33]. Another ABS is proposed in [11] with the property of full revocability. The
constant sized ABS was first deviced in [16].

Since the last decade, lattice-based cryptography has received significant
attention due to its various appealing advantages including efficient computabil-
ity, support to worst-case to average-case security guarantees and most impor-
tantly conjectured resistance against quantum attacks. Hence it has became the
most promising candidate for post-quantum cryptography. Also in the practical
platform lattice-based schemes are relevant by their asymptotic efficiency and
simplicity. The first ABS from lattices (ABSL) was introduced in [30] following
the ‘bonsai tree’ techniques. Security of the scheme is related to hardness of the
small integer solution (SIS) problem. Nevertheless, their model suffers from long
key size. Further, Zhang et al. [39] have suggested a comparative efficient scheme
of ABSL using the framework of Boyen [6], their scheme also relies on worst-case
hardness of the SIS problem. Over the signature size (2k + 1) · m · log(q) of [30],
[39] offers signature with reduced size of 3m · log(q), where k is the number of
attributes, m is dimension of lattice and q is order of the group. In [17] Jia et al.
have presented a construction of ABSL in random oracle model. Their scheme
is unforgeable against adaptively chosen message and selective access structure
attacks under the similar hardness assumption- the hardness of SIS problem.
They have improved efficiency of the scheme significantly with compared to
[30,39]. They have also extended their construction on NTRU lattice to further
improve the efficiency in large amplitude. Very recently, El Bansarkhani and El
Kaafarani [9] have proposed ABSL for expressive policies. For the purpose, they
first construct a threshold ABS and then further an ABSL, for expressive (∧,∨)-
policies, based on their ABS. The drawback of scheme is the size of signature
which grows linearly with the number of attributes. The ABSL is comparatively
very recent topic of research and there is very good possibility of new frameworks
and concrete constructions of the primitive.

The idea of group signature is introduced by Chaum and Van Heyst [8].
Most useful application of group signature is anonymity of the signer. The other
security properties of group signature are traceability and non-frameability. The
former ensures tracing of the actual signer in case of dispute and/or conflict, and
the later ensures protection of uninvolved honest member. Group signatures are
devised in two different plots- static, where no new members are allowed to
join the group once the setup is done, and dynamic, where members are able
to join dynamically any time, and the setup is updated accordingly. Standard
generic framework of group signature are formalised by Bellare et al. [3,4] with
well-defined security properties. In [3] they have formalised a BMW model of
security. Boneh and Boyen [5], Boyen and Waters [7] and Liang et al. [7,24] have
proposed useful structures of group signature scheme secured in this restricted
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BMW model. Security of [4] is strengthened by formalising a dynamic setup of
the group and the analysis is realised by the means of a non-interactive zero
knowledge (NIZK) protocol.

The first realisation of lattice-based group signature (LBGS) was suggested
in [14] by Gordon et al. at Asiacrypt 2010 on the learning with errors (LWE)
assumption in the random oracle mode. Construction of their membership certifi-
cate is motivated by [12], encryption is motivated by [36] and a zero-knowledge
proof technique is motivated by [31]. A major shortcoming of their scheme is size
of public key and signature which are linear in the number of group members. To
overcome the linear-size barrier, the first LBGS with logarithmic signature size
was introduced by Laguillaumie et al. [20]. They also rely on LWE-based encryp-
tion like [14]. Also, their scheme does not support membership revocation. To
address this issue, Langlois et al. [21] provided a group signature construction
from lattice with verifier-local revocation. Unlike the previous schemes, their
construction is free of encryption, but asymptotically, their scheme is as effi-
cient as [20]. A more efficient and simpler construction of LBGS is presented in
[32]. Unlike [20,21], where encoding function is motivated by Boyen’s technique
[6], the group member’s identities are encoded in [32] following more efficient
building block of [1]. One of the main building blocks of groups signatures is a
zero-knowledge proof between signer and verifier to prove the validity of signer’s
certificate and her membership in the group. Boyen [6] introduced an efficient
group signature scheme from lattices using the technique of mixing lattices and
vanishing trapdoors. Libert et al. [26] have suggested a Merkle-Tree Accumulator
which is useful in design of LBGS and its zero-knowledge proof. Their scheme
offers significant improvements compared to the existing constructions.

The Attribute Based Group Signature (ABGS) was introduced in [19]. This
scheme provides only the anonymity of the signer and reveals the attributes of
the signer satisfying the predicate. In a further version [18] they added the revo-
cation property. To achieve full anonymity an ABGS scheme based on Oblivious
Signature-Based Envelope (OSBE) protocol is proposed in [34]. The work in
[10] presents a dynamic ABGS scheme with a possible application in anonymous
survey for collection of attribute statistics. Another variety of ABGS scheme
is Verifier-Local Revocation (VLR) scheme where only verifiers are involved in
the revocation process. In [2] a constant signature sized VLR ABGS scheme has
been presented which supports backward unlinkability and attribute anonymity.
The scheme is proven to be secure in standard model.

1.1 Our Contribution

In this paper we formalize a new zero-knowledge argument (ZKA) for lattice-
based construction and employ it to security assurance of the proposed struc-
ture of attribute-based group signature on lattice assumption. Particularly, our
construction relies on the hardness of SIS and LWE problems. To support our
zero-knowledge argument, we formalize a Merkle-type tree, motivated yet differ-
ent construction by [26]. To the best of our knowledge this paper proposes the
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first construction of attribute-based group signature from lattices, which is, due
to the conjecture, quantum immune.

2 Preliminaries

Definition 1 (Small Integer Solution (SIS) Problem). The SIS∞
n,m,q,β

problem is as follows: Given uniformly random matrix A ∈ Z
n×m
q , find a non-

zero vector x ∈ Z
m s.t. ‖x‖∞ and A · x = 0 mod q.

If m, β = poly(n) and q > β ~O(
√
n), then SIS∞

n,m,q,β problem is at least
as hard as the worst-case lattice problem SIVPγ for γ = β ~O(

√
nm). If

β = 1, q = ~O(n), m = 2n �log q�, the SIS∞
n,m,q,1 problem is at least as hard as

SIVP ~O(n).

Learning With Errors (LWE). The LWE problem, first introduced by Regev
[35], relies on the Gaussian error distribution χ, which is given as χ = DZ,s

over the integers. The LWE problem assumes of access to a challenge oracle
O, which is either a purely random sampler Or or a noisy pseudo-random sam-
pler Os, with some random secret key s ∈ Z

n
q. For positive integers n and q ≥ 2,

a vector s ∈ Z
n
q and error term e ← χ, the LWE distribution As,χ is sampled

over Z
n
q × Zq. Chosen a vector a ∈ Z

n
q uniformly at random it outputs the pair

(a, t = 〈a, s〉 + e mod q) ∈ Z
n
q × Zq. A more detailed description of χ can be

found in [35]. The sampling oracles work in the following way:

Os: outputs samples (a, t) = (a, 〈a, s〉 + e) ∈ Z
n
q × Zq, where s ∈ Z

n
q is uniformly

distributed value across all invocations and e ∈ Zq is a fresh sample from χ.
Or: outputs truly random samples from Z

n
q × Zq.

Definition 2 (LWE Problem). For an integer q and error distribution χ, the
goal of LWEq,χ in n dimensions is to find s ∈ Z

n
q with overwhelming probability,

given access to any arbitrary poly(n) number of samples from As,χ for some
random s.

In matrix form this problem looks as follows: collecting the vectors ai ∈ Z
n
q

into a matrix A ∈ Z
n×m
q and the error terms ei ∈ Z which form e and values

ti ∈ Zq as the entries of the m-dimensional vector t ∈ Z
m
q, we obtain the input

A, t = Ats + e mod q.

2.1 A Lattice-Based Tree-Generator with Supporting
Zero-Knowledge Argument of Knowledge

In this section, we first recall a lattice-based accumulator which motivates us to
construct a new cryptographic tool, called tree generator, where the leaves of
tree are generated via a Merkle-Damg̊ard hash function with a root node in the
beginning of the tree.

Definition 3 (Cryptographic Tree-Accumulator). A tree accumulator
scheme consists of the following four algorithms:
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TSetup(1λ): On input security parameter λ, outputs public parameters pp.
Taccum(pp): On input a set R = {d0, . . . , dN−1} of N public keys, output an accu-
mulated value u.
TWitness(pp,d): On input a data set R and a value d, output ⊥, if d /∈ R. Other-
wise output a witness w, for the fact that d is accumulated value in Taccum(pp).
TVerify(pp,u): On input accumulated value u and a pair (d, w), output 1 or 0.
A generator scheme is correct if for all public parameters pp holds:
TVerify(pp, Taccum(pp),d, TWitness(R,d))= 1 for all d ∈ R.

In [26] the authors use a hash function which is based on the Small Integer
Solution (SIS) problem. The idea for computing a hashed value of a vector u is to
compute first its syndrome Au ∈ Z

ν
q and to output bin(Au mod q) ∈ {0, 1}μ/2.

In the next definition we recall a family of lattice-based collision-resistant hash
functions (LBCRHF)

Definition 4 (LBCRHF). Let H be a function family with the map {0, 1}νκ×
{0, 1}νκ → {0, 1}νκ, which is defined as H = {hA|A ∈ Z

ν×μ
q }, where A =

[A0|A1], and A0,A1 ∈ Z
ν×μκ
q . For any vectors (u0,u1)∈ {0, 1}νκ × {0, 1}νκ we

have

hA(u0,u1) = bin(A0 · u0 + A1 · u1 mod q) ∈ {0, 1}nκ

which satisfies: hA(u0,u1) = u ⇔ A0 · u0 + A · u1 = G · u mod q.

Next, we recall the ‘power-of-2’ matrix G, which is useful for the construction of
our zero-knowledge proof: For g = (1, 2, . . . , 2κ−1) ∈ Z

l
q, set G = g ⊗ In ∈ Z

ν×νκ
q .

Using this ‘gadget’ matrix, we can represent each vector v ∈ Z
ν
q In the next

section, we provide a Merkle-Damg̊ard construction which can be applied to the
Merkle-Tree Generator.

3 Attribute-Based Group Signature

Definition 5. An attribute-based group signature scheme consists of the follow-
ing six algorithms:

Setup(1λ, 1n): On input security parameter 1λ and the size of attribute set 1n,
the central authority runs this randomized algorithm to output public parameters
param and master secret key msk.
ABGKeyGen(param, msk,Ai): The algorithm is run by the Key Generation Cen-
ter (KGC). On input public parameters param, master secret key msk and an
attribute set Ai of user i, it generates user’s secret key skAi

corresponding to
the user’s attribute set Ai and a user’s public key pki. Furthermore, the algo-
rithm outputs a group public key gpk, an issuing key ik for enrolling new group
members by an issuing entity and a group master secret key gmsk for opening
the signature by the group manager to trace and identify the signers.
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〈Join(param, gpk, pki, skAi
)〉 , 〈Issue(param, pki, ik)〉: This is an interactive

protocol to allow new members to join the group. The protocol is run between
a user i and an key issuing authority KIA. The key issuing entity outputs a
certificate certi for user i and stores user’s public key pki in a registration
table.
ABGSign(param, skAi

, m, Γ): On input public parameters param, member’s secret
key skAi

, a predicate Γ and a message m it returns a signature σ.
ABGVery(param, gpk, σ): On input public parameters param, group public key
gpk and a signature σ the deterministic algorithm verifies the validity of the
signature and outputs 1 if the signature is valid. Otherwise it outputs 0.
ABGOpen(param, gmsk, σ): On input public parameters param, group master
secret key gmsk and a signature σ it outputs either the attribute set A or ⊥.

3.1 Security Definitions

In this section we provide the main security properties of a secure ABGS scheme.
The main security properties are attribute and user anonymity, traceability and
non-frameability.

Fully anonymity of users. In general, anonymity property of an ABGS scheme
means that it is hard for an adversary apart from the group manager to recover
the identity of the signer. Similar to the construction in [4], we guarantee col-
lusion incapacity of an adversary with group members by providing the secret
keys of all group members to the adversary. Furthermore we give an adversary
access to the open oracle in order to allow him to see the results of previous
openings. In the following definition we consider an adversary Auan, who wants
to break the fully user anonymity property, and a bit b which is associated with
the security experiment. We assume that the adversary acts in two stages where
in the first stage - the so called find stage - it takes as input the set of user’s
secret keys skAi

and group public key gpk and outputs two identities i0, i1 and
a message m.

Definition 6 (User anonymity). An ABGS scheme preserves user anonymity
if the advantage of an adversary in winning the experiment ExpU−ANO−b

Auan,ABGS
(1λ, 1n)

(as follows below) is negligible:

(1) (param, msk) ← Setup(1λ, 1n)
(2) (gpk, ik, gmsk, skAi , ski, pki) ← ABGKeyGen(param, msk), ~usk = {skAi , ski}i∈[n]

(3) (state, i0, i1, m, Γ) ← AOABGOpen(·)
uan (find, param, gpk, ~usk)

(4) Choose b ∈ 0, 1; σ∗ ← ABGSign(param, skA,ib , m, Γ)
(5) b′ ← AOABGOpen(·)

uan (guess, state, σ∗)

OABGOpen(·, ·) The adversary calls this oracle with some message m and a sig-
nature σ. The oracle runs Open(gmsk, σ) to receive index i which allows to trace
malicious signer.
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An ABGS scheme is fully anonymous if for any PPT adversary Auan it’s advan-
tage is negligible: AdvU−ANO

Auan,ABGS
=

∣
∣
∣Pr

[

ExpU−ANO−1
Auan,ABGS

= 1
]

− Pr
[

ExpU−ANO−0
Auan,ABGS

= 1
]∣
∣
∣ .

Attribute anonymity. This property means that a verifier should be able to
verify a signature corresponding to a predicate without revealing the attribute
set. Attribute anonymity is especially useful if there is only one group member
with a certain attribute, helping trace back to the identity of the user.

Definition 7 (Attribute anonymity). ExpAttr−ANO−b
Aatt−ano,ABGS

(1λ, 1n):
(1) (param, msk) ← Setup(1λ, 1n)
(2) (Ai,0,Ai,1, Γ∗) ← Aatt−ano(param) s.t. (Γ∗(Ai,0) = Γ∗(Ai,1) = b) , b ∈ {0, 1}
(3) skAi,0

← ABGKeyGen(param, msk,Ai,0), skA1
← ABGKeyGen(param, msk,A1)

(4) b′ ← AOABGSign(param,Ai,b,·)
att−ano (param, skAi,0

, skAi,1
)

(5) If b = b′, return 1, else return 0.
OABGSign(param,A′

i, ·): On input public parameters param and an attribute set
A

′
i the oracle runs skA′

i
← ABGKeyGen(param, msk,A′

i). Furthermore upon receiv-
ing skA′

i
it runs σ ← ABGSign(param, skA′

i
, m) on some message m. It outputs a

signature σ. An ABGS scheme is attribute-anonymous if for any PPT adversary
Aatt−ano it’s advantage is negligible:

AdvAttr−ANO
Auan,ABGS

=
∣
∣
∣Pr

[

ExpAttr−ANO−1
Aatt−ano,ABGS

= 1
]

− Pr
[

ExpAttr−ANO−0
Aatt−ano,ABGS

= 1
]∣
∣
∣

Full-Traceability. We assume that in case of malicious behavior, signer’s iden-
tity can be revealed by the group manager using manager’s secret key. In other
words, it means that no collusion of group members should enable to create a
valid signature which cannot be opened by the group manager. As mentioned in
[3], the group manager could be dishonest and accuse an user in malicious behav-
ior. In order to avoid this dishonest behavior of the user, we can ask the group
manager to output a proof together with the index i, after running the Open
algorithm. The verification of the proof can take place by running an additional
algorithm - Judge - on input a signature σ, identity i ant proof π.

Definition 8 (Full-Traceability). We say that an ABGS scheme is fully
traceable if the advantage of an adversary Af−trace to win the following experi-
ment is negligible. ExpFull−Trace

Af−trace,ABGS
(1λ, 1n):

(1) (param, msk) ← Setup(1λ, 1n)
(2) (gpk, ik, gmsk, sk

Ai
, ski, pki)← ABGKeyGen(param, msk), ~usk = {skAi , ski}i∈[n]

(3) (m, σ) ← AOABGSign(·),OABGKeyGen(·),OOpen(·)
f−trace (gpk, gmsk)

If ABGVery(param, gpk, σ) = 0, return 0. If Open(param, gms, σ) = ⊥, return 1.
Let C denote the list of all opened identities. If Open(param, gmsk, σ) = i and
i /∈ C, then return 1, else return 0.
OABGSign(param, sk·, ·, ·): On input public parameters param and an attribute
set A

′ the oracle runs skA′ ← ABGKeyGen(param, msk,A′). Furthermore upon
receiving skA′ it runs σ ← ABGSign(param, skA, m) on some message m. It out-
puts a signature σ.



On New Zero-Knowledge Arguments for Attribute-Based Group Signatures 291

OABGKeyGen(param, msk, ·): On input public parameters and master
secret key, giving an attribute set A

′, the oracle runs (pk, skA′) ←
ABGKeyGen(param, msk,A′), where pk denotes all the public key of the ABGKeyGen.
It outputs a tuple consisting of public keys and secret key skA′ .
OOpen(param, gmsk, ·): On input a signature query σ, the oracle returns index
i ← Open(param,gmsk, σ).
An ABGS scheme is full-traceable if for any PPT adversary Af−trace the follow-
ing advantage is negligible: AdvFull−Trace

Af−trace,ABGS
=

∣
∣
∣Pr

[

ExpFull−Trace
Af−trace,ABGS

= 1
]∣
∣
∣.

Non-frameability. This security notion means that an adversary is not able
to prove that some honest user created a valid signature. This property requires
that it is impossible for two or more colluding users to produce a signature which
would trace back to the non-colluded group member. As showed by Bellare et al.
[3], non-frameability property is considered to be a version of collusion resistance.
The two properties are the same in the sense that non-frameability prevents to
create a signature which would be opened by a group manager and trace to
a different member of the group. An attribute-based group signature scheme
that is fully-traceable is automatically secure against framing. Bellare et al. [3]
showed how to convert an adversary against framing into an adversary against
full-traceability.

3.2 Merkle-Trees and Merkle-Damg̊ard Compression Function
for Lattice-Based Algorithms

In this section, we provide a variant of Merkle-Damg̊ard Construction for zero-
knowledge arguments for Merkle-tree algorithms which are inspired by the idea
of Merkle-tree generators. The main difference is that the parent node is not
calculated as an accumulated value of its children nodes. The idea is reversed
in the sense that the children nodes of the tree are calculated using the par-
ent node as one of the two inputs of the compression function. This idea is
especially useful for attribute-based constructions, where certain attributes are
assigned to the users via Merkle-tree construction. We fix a compression function
F : {0, 1}ν × {0, 1}ν → {0, 1}ν . Let A = [A|A0|A1| . . . |Al] a set of matrices in
Z

ν×μ
q and two vectors u,v ∈ Z

μ
q . The Merkle-Damg̊ard compression function is

defined as follows:

F0(u,v) = bin(A · u + A0 · v)
F1(u,F0) = bin(A1 · (d1,uu) + f1,uF0)
F1(v,F0) = bin(A1 · (d1,vv) + f1,vF0)
F2(u,F1,u) = bin(A2 · (d2,uuu) + f2,uuF1,u)
F2(v,F1,u) = bin(A2 · (d2,vuv) + f2,vuF1,u)
F2(u,F1,v) = bin(A2 · (d2,uvu) + f2,uvF1,v)
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F2(v,F1,v) = bin(A2 · (d2,vvv) + f2,vvF1,v)
...

...
Fl(u,Fl−1,u...u) = bin(Al · (dl,u...uu) + fl,u...uFl−1,u...u)
...

...
Fl(v,Fl−1,v...v) = bin(Al · (dl,v...vv) + fl,v...vFl−1,v...v)

All functions Fi, i ∈ [l] are elements in Z
μ
q and are computed modulo q. To

provide the zero-knowledge proof for our Merkle-Damg̊ard tree construction we
recall the following decomposition-extension technique presented in [27] which
is used to represent certain vectors with coordinates in {−1, 0, 1}.

Let COM be a statistically hiding and computationally binding string commit-
ment scheme. The common input to that scheme is a matrix A and a vector y,
which belongs to the image of A. The prover’s auxiliary input is given by vector
x. Before interaction, verifier and prover for an extension matrix A′ ∈ Z

ν×3μ
q by

adding 2μ zero columns to the matrix A.

Decomposition: Let x = (x1, . . . , xt) be a t-dimensional vector which we want
to represent as a vector in k dimensions with entries in {−1, 0, 1}. For each
xi ∈ x consider the binary representation xi = bi,020+bi,121 + . . . + bi,k−12k−1,

such that bi,j ∈ {−1, 0, 1} for j ∈ {0, . . . , k − 1}. We have x =
k−1∑

j=0

2jũj.

Extension: For each index j = 0, . . . , k − 1 we extend ũj to uj ∈ S3μ, where S3μ
is a set of all vectors in {−1, 0, 1}2μ, with exactly μ coordinates −1, μ coordinates
0, μ coordinates 1. The extension works as follows: Let λ

(−1)
j , λ

(0)
j , λ

(1)
j be the

numbers of coordinates −1, 0, 1, respectively, then pick a vector tj ∈ {−1, 0, 1}2μ
that has exactly (μ − λ

(−1)
j ) coordinates −1, (μ − λ

(0)
j ) coordinates 0, (μ − λ

(−1)
j )

coordinates 1. Set uj = (ũj||tj).
Using extension matrix A′, we have A′

(
k−1∑

j=0

2juj

)

= y mod q ⇔
Ax = y mod q.

Matrix Extension: On input a matrix A = [A|A0|A1| . . . |Al] ∈ Z
ν×(l+2)μ
q

append 2μ zero-columns to the matrix A and each Aj, for j ∈ [0, l]. The new
matrix Ã is an element in Z

ν×(l+2)3μ
q .

3.3 Merkle-Tree Algorithm Using Merkle-Damg̊ard Compression
Function

We assume that our Merkle tree has N = 2l leaves, where l is the depth of the
tree and is based on the lattice-based Merkle-Damg̊ard hash function. The tree
generator scheme consists of the following four algorithms:

TSetup(λ): On input security parameter λ, sample A = [A|A0|A1| . . . |Al] out-
puts pp = A.
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Tcalc(pp, R): On input a set R = {d0, . . . , dN−1} of N public keys repre-
senting the leaves, let (j1, . . . , jl) ∈ {0, 1}l be the binary representation of
j ∈ {0, . . . , N − 1}. Set dj = uj1,...,jl . The Merkle tree is formed using this tech-
nique with the N leaves u0,0,...,0, . . . ,u1,1,...,1 as follows:
(1) Let i ∈ [l] denote the current depth of the tree. Then the node ub1,...,bi ∈
{0, 1}νκ is defined using the Merkle-Damg̊ard hash function: Fi(u, Fi−1,(·)) for
the left-side leaf of the parent node and Fi(v, Fi−1,(·)) for the right-side leaf of
the parent node.
(2) At the depth 0, the root n0 is defined as F0(u,v), where
u,v ∈ {0, 1}νκ × {0, 1}νκ.
TWitness(pp,d): On input a data set R and a value d, output
⊥, if d /∈ R. Otherwise, set d = dj for some j ∈ {0, . . . , N − 1} output

a witness w =
(

(j1, . . . , jl), (uj1,...,jl−1,jl
, . . . ,uj1,j2

,uj1
)
)

∈ {0, 1}l × {0, 1}lνκ;
uj1,...,jl−1,jl

denotes the sibling-node of uj1,...,jl , and all the sibling-nodes are
calculated by Tcalc(R).
TVerify(pp,n0,d, w): On input root node n0 and a pair (d, w), where d is a w is
the “sibling-path” described as follows: w = ((j1, . . . , jl), (dj1 , fj1), . . . , (djl , fjl),
(wl, . . . ,w1)) ∈ {0, 1}l × {0, 1}2l × {0, 1}lνκ, where (dji , fji) are the cor-
responding randomnesses of vectors uj1,...,jl , . . . ,uj1 . To verify the node
d using root node n0, we first use the fact that F0(u,v) = n0 ⇔
A · u + A1 · v = G · n0 mod q. Taking gadget matrix G, the root node n0 and
the public parameters A,A0, we can calculate z = (u||v), using Gaussian elim-
ination technique for the equation Ã · z = n0 mod q, where Ã = [A|A0]. The
solution z is split into two vectors, where the left-side of the vector is asso-
ciated with u and the right-side is associated with vector v. Using these vec-
tors, the algorithm calculates (uj1,...,jl−1,jl

, . . . ,uj1,j2
,uj1

) and compares it with
(wl, . . . ,w1) and computes in the same way the leave d outputs 1, if the com-
parison is conform, otherwise it outputs 0.

Theorem 1. The given Merkle-tree algorithm is secure in the sense of Defini-
tion 1, assuming the hardness of the SIV PÕ(n) problem.

Proof. Let B be a PPT adversary against the SIS problem from Definition 1.
Upon running TSetup(λ), algorithm B receives A ∈ Z

ν×μ
q . It returns the string

(R = (d0, . . . ,dN−1),d∗, w∗), where d∗ /∈ R, TVerify(pp,n∗
0,d∗, w∗) = 1 and

n∗
0 = Tcalc(R).

It sets the witness as w∗ =
(

(j1, . . . , jl), (dj1 , fj1), . . . , (djl , fjl), (wl, . . . ,w1)
)

∈ {0, 1}l × {0, 1}lνκ and let j∗ ∈ [0, N − 1] with binary representation
(j∗

1 , . . . , j
∗
l). Set uj∗

1 ,...,j∗
l

= dj∗ ,uj∗
1 ,...,j∗

l−1
, . . . ,uj∗

1
,n∗

0 denoting the path from
the leave dj∗ to the root n∗

0. Furthermore, compute z = (u||v), using Gaussian
elimination technique for the equation Ã · z = n0 mod q, where Ã = [A|A0]
and using the values u,v compute the path (uj1,...,jl−1,jl

, . . . ,uj1,j2
,uj1

) by run-
ning the algorithm TVerify. Comparing the two path, we can find the smallest
index ξ ∈ [l], such that uj∗

1 ,...,j∗
ξ

�= u∗
ξ .
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3.4 Zero-Knowledge AoK of a Generated Value

In this section we construct a zero-knowledge argument of knowledge system
which allows a prover P to provide a proof to the verifier V, that P knows a
secret value that is the result of the Merkle-Damg̊ard construction used in our
Merkle-tree. In other words, in our zero-knowledge protocol the prover takes
as input A = [A|A0| . . . |Al] ∈ Z

ν×(l+2)μ
q , two vectors u,v ∈ Z

μ
q and convinces

V that P herself is in possession of a value-witness pair (d, w) such that holds
TVerify(n0,d, w) = 1. In the following definition we fix the relation Rcalc of our
Merkle-tree generator.

Definition 9. The relation of Merkle-tree generator is given as Rcalc =
{

(A,u,v) ∈ Z
ν×lμ
q × {0, 1}νκ;d ∈ {0, 1}νκ, w ∈ {0, 1}l : TVerify(n0,d, w) = 1

}

.

Before presenting our Zero-Knowledge (ZK) proof, we recall set S3μ consisting
of all vectors in {−1, 0, 1}3μ, with exactly μ coordinates −1, μ coordinates 0 and
μ coordinates 1. Furthermore, set Sμ consists of all permutations of vectors in
{−1, 0, 1}μ. Let Fπ be the function which transforms a vector v′ ∈ Z

3μ
q into

π(v′) ∈ S3μ. The ZK strategy relies on the following property:
Let Ext(v) denote an extension of v to a vector v′ ∈ {−1, 0, 1}3μ. For all

vectors v ∈ {−1, 0, 1}μ with λ(−1) coordinates −1, λ(0) coordinates 0 and λ(1)

coordinates 1 we have the following equation: v′
i ∈ Ext(vi) ∧ vi ∈ {−1, 0, 1}μ ⇔

Ext(π(vi)) = Fπ(v′) ∧ π(v′) ∈ {−1, 0, 1}3μ. Furthermore we show how to use
Merkle-Damg̊ard compress function in the Merkle tree during our zero-
knowledge protocol.

Preparation steps. Let (d, w) be such that
(

A,n0,d, w
) ∈ Rcalc, such that

w =
(

(j1, . . . , jl), (dj1 , fj1), . . . , (djl , fjl), (wl, . . . ,w1)
) ∈ {0, 1}l × {0, 1}2l ×

{0, 1}lνκ, and let (uj1,...,jl−1,jl
, . . . ,uj1,j2

,uj1
) be the path generated by the

TVerify(u,d, w) algorithm, where each uj1,...,ji−1,ji
, i ∈ [2, l] is described by

the Merkle-Damg̊ard compression function, i.e.

uj1,...,ji−1,ji
= Fi

(

uj1,...,ji−2,ji−1
, Fi−1,uj1,...,ji−3,ji−2

)

(1)

Using the gadget matrix G, which was recalled in Sect. 3.2, the Eq. (1) can be
represented as:

Fi
(

uj1,...,ji−2,ji−1
, Fi−1,uj1,...,ji−3,ji−2

)

= Aidi,uj1,...,ji−2,ji−1
uj1,...,ji−2,ji−1

+fi,uj1,...,ji−2,ji−1
Fi−1,uj1,...,ji−3,ji−2

= Aidi,uj1,...,ji−2,ji−1
uj1,...,ji−2,ji−1

+
i∏

k=1

fk,uj1,...,jk−2,jk−1
Au +

i∏

k=1

fk,uj1,...,jk−2,jk−1
A0u + fi,uj1,...,jk−2,jk−1

·
i−1∑

ι=1

(
i−1∏

k=1

dk,uj1,...,jk−2,jk−1

)

Aι−1uj1,...,jι−2,jι−1
= G · uj1,...,ji−1,ji

mod q
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To provide zero-knowledgeness, we construct an argument system, where
P convinces V in zero-knowledge, that P knows j1, . . . , jl ∈ {0, 1}l and
(uj1,...,jl−1,jl

, . . . ,uj1,j2
,uj1

) with (wl, . . . ,w1), s.t.

Aidi,Ext(uj1,...,ji−2,ji−1
)Ext(uj1,...,ji−2,ji−1

) (2)

+
i∏

k=1

fk,Ext(uj1,...,jk−2,jk−1
)AExt(u) +

i∏

k=1

fk,Ext(·)A0Ext(v)

+fi,Ext(uj1,...,jk−2,jk−1
)

i−1∑

ι=1

(
i−1∏

k=1

dk,Ext(uj1,...,jk−2,jk−1
)

)

·Aι−1Ext(uj1,...,jι−2,jι−1
) = G · uj1,...,ji−1,ji

mod q

In order to fulfill the zero-knowledgeness, we apply the extension technique,
recalled in Sect. 3.2.:
(1) Extend the matrix A = [A|A0| . . . |Al] to matrix A

′
= [A|0ν×νκA0|0ν×νκ . . .

|Al|0ν×νκ] ∈ Z
ν×(2+l)3μ
q .

(2) Extend the gadget matrix G to matrix G
′ = [G|0ν×νμ] ∈ Z

ν×μ
q .

(3) Extend the vectors (uj1,...,jl−1,jl
, . . . ,uj1,j2

,uj1
) and v to the corresponding

vectors (u′
j1,...,jl−1,jl

, . . . ,u′
j1,j2

,u′
j1

) and v′, all elements in Sνκ
3μ using Hamming

weight extension technique.
Let yi = Ext(u′

j1,...,ji−1,ji
) and z = Ext(v′). Using these extensions and those

of matrices, defined above, can be applied to the Eq. 2, replacing each matrix
and each vector by its extension.

3.5 The Underlying Interactive Protocol

Using the prepared information above, we provide our interactive zero-knowledge
protocol. The public parameters are given by ν, q, κ, μ, l.

Common inputs: A = [A|A0| . . . |Al] and u,v. P and V extend A
to A

′
. Prover’s input: Given by w =

(

(j1, . . . , jl), (dj1 , fj1), . . . , (djl , fjl),
(w′

l, . . . ,w
′
1)

)

, and (u′
j1,...,jl−1,jl

, . . . ,u′
j1,j2

,uj1
)′

, (yl, . . .y1), v′, z. P’s goal

is to prove in zero-knowledge that (u′
j1,...,ji−1,ji

,w′
i) ∈ (Sνκ

3m )2, yi =
Ext(u′

j1,...,ji−1,ji
), z = Ext(v′).

(1) To prove zero-knowledgeness of our protocol, the prover picks randomly
πi, ψi ←r Sμ and convinces V by the following equations:

π(u′
j1,...,ji−1,ji

) ∈ Sνκ
3μ ∧ Ext(π(u′

j1,...,ji−1,ji
)) = Fπ(yi) (3)

π(v′) ∈ Sνκ
3μ ∧ Ext(π(v′)) = Fπ(z) (4)

(2) To prove zero-knowledgeness of all l equations in (2) using extended vec-
tors and matrices, P samples randomly masking vectors ru1 , . . . , rul−1

← Z
μ
q ,
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ru, rv ← Z
μ
q and random values d̃1, . . . , d̃l, f̃1, . . . , f̃l ∈ Zq and shows to the veri-

fier that holds the following equation

A′
i
~di,yi−1(yi−1 + rui−1) +

i∏

k=1

~fk,yk−1A
′
Ext((u′) + ru) +

i∏

k=1

~fk,yk−1)A
′
0Ext((v

′) + rv)

(5)

+~fi,yk−1

i−1∑

ι=1

(
i−1∏

k=1

~dk,yk−1

)
A′

ι−1(yι−1 + ruι−1) = G · (yi + rui) mod q.

Commitment: P samples ρ1, ρ2, ρ3 and sends to V the following commitment
COM = (C1, C2, C3):

C1 = COM

(

{πi, ψi}i∈[l] : A′
i
~di,yi−1

rui−1
+

i∏

k=1

~fk,yk−1
A′ru +

i∏

k=1

~fk,yk−1
A′

0rv

+~fi,yk−1

i−1∑

ι=1

(
i−1∏

k=1

~dk,yk−1

)

A′
ι−1ruι−1

− G · rui ; ρ1
)

i∈[l−1]

C2 = COM({πi(rui)}i∈[l−1]; Fπi
(yi), Fψ(z); ρ2)

C3 = COM
({πi(rui + yi)}i∈[l−1]; Fπi

(yi + rui), Fψ(z + rv); ρ3
)

.

Challenge: V sends a challenge Ch ←r {1, 2, 3} to P.

Response: Prover sends a response corresponding to the challenge Ch.

If Ch = 1 : for each i ∈ [l − 1] set pu′
i
= πi(ru′

i
); for each i ∈ [l]: su′

i
= πi(u′

i),
su′ = ψ(u′), sv′ = ψ(v′), syi = Fπi

(rui), sv = Fψ(rv). The response is given by
the following tuple RSP := {{pu′

i
}i∈[l−1], {su′

i
, pyi}i∈[l], su′ , sv′ , sv, ρ2, ρ3}.

If Ch = 2 : for each i ∈ [l − 1] set au′
i
= (rui + ui), au′ = u′ + ru′ , av′ = v′ + rv′ ,

π̂i = πi, ψ̂i = ψi. The response is RSP := {{aui}i∈[l−1], au′ , av′ , π̂i, ψ̂i, ρ1, ρ3}.
If Ch = 3 : for each i ∈ [l − 1] set tui = rui , tyi = ryi , tu′

i
= ru′

i
,

tu′ = ru′ , tv′ = rv′ , ~πi = πi, ~ψi = ψi.
The response is given by RSP := {{tui}i∈[l−1], {tu′

i
, tyi}i∈[l], tu′ , tv′ , ~ψi, ~πi,

ρ1, ρ2}.

Verification: Distinguish between three cases.

(1) Case Ch = 1: Set RSP as above and check that su′
i
, su′ ∈ Sνκ

3μ ,
where i ∈ [l − 1]. Let ~su′

i
= Ext(su′

i
) and ~syi = Ext(syi), ~su′ = Ext(su),

~sv′ = Ext(sv) and check
C2 = COM

({pui}i∈[l−1], {sv, syi}i∈[l] : ρ2
)

C3 = COM
({su′

i
+ pu′

i
}i∈[l−1], {~su′

i
+ syi ; sv + ~sv′ ; su + ~su′}i∈[l]; ρ3

)

.
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(2) Case Ch = 2: Set RSP as above and check that:

C2 = COM

(

{π̂i, ψ̂i}i∈[l];A′
i
~di,au′i

+
i∏

k=1

~fk,au′
k−1

A′au′ +
i∏

k=1

~fk,au′
k−1

A′
0av′

+~fi,au′
k−1

i−1∑

ι=1

(
i−1∏

k=1

~dk,au′
k−1

)

A′
ι−1ruι−1

− G · aui ; ρ1
)

C3 = COM({π̂i(au′
i
)}i∈[l−1]; Fπ̂i

(au′
i
), Fψ̂i

(av); ρ3)

(3) Case Ch = 3: Set RSP as above and check that:

C1 = COM

(

{π̂i, ψ̂i}i∈[l] : A′
i
~di,ui−1

tui−1
+

i∏

k=1

~fk,yk−1
A′tu′ +

i∏

k=1

~fk,yk−1
A′

0tv′

+~fi,yk−1

i−1∑

ι=1

(
i−1∏

k=1

~dk,yk−1

)

A′
ι−1tyι−1

− G · tui ; ρ1
)

C2 = COM
({π̂i(tui)}i∈[l−1]; Fπ̂i

(tyi), Fψ̂i
(tv′); ρ2

)

.

3.6 Analysis of the Interactive Protocol

We summarize the properties of our zero-knowledge interactive protocol in the
following theorem, whose proof we skip in this version of the paper due to limited
number of pages and refer to the full version of the paper.

Theorem 2. Let COM denote a statistically hiding and computationally bind-
ing commitment scheme. Then, our ZK protocol described above is complete
and sound. Furthermore, it fulfills the property of a zero-knowledge argument of
knowledge.

4 Attribute-Based Group Signature on Lattices

Before we can proceed with the construction of our attribute-based group signa-
ture from lattices (ABGSL), we need to define a significant building block which
will be used in our ABGSL scheme. We present a signature of N message blocks
from lattices, whose construction is motivated by the signature from lattices
introduced by Libert et al. [25]

Definition 10 (Digital Signature from Lattices).

Setup(1λ, 1N ): On input a security parameter 1λ, performs the following steps:
(1) Select a security dimension ν > Ω(λ), a dimension of the lattice base is
μ > 2ν log q and a discrete Gaussian parameter s, an integer l = Θ(λ).
(2) Pick for each i ∈ [l] a random matrix Bi, run TrapGen algorithm on input
1λ and output l uniform random matrix Ai ∈ Z

ν×μ
q with the corresponding basis

TA,i ⊆ Λ⊥(Ai), where i ∈ {0, . . . , l}.
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(3) Select random ν × μ-matrix A ∈ Z
ν×μ
q .

(4) Select uniform random ν-vectors u,v ∈ Z
ν
q .

(5) Output public parameters pp = (A, {Ai}i∈[l],u,v) and sk = {TA,i}i∈[l].

Sign(pp, sk, M): On input public parameters pp, secret key sk and an μ-bit mes-
sage M = (m1, . . . , mμ) ∈ {0, 1} sign the message according to the following steps:

(1) Choose random string τ ←r {0, 1}l. Run ExtBasis(TA) to extent the basis

TA to the new basis Tτ belonging to Aτ = [A|A0 +
l∑

j=1

τjAj] ∈ Z
ν×2μ
q .

(2) Taking the values u,v compute the value cM as a Merkle-Damg̊ard hash
function as presented in the Sect. 3.2., where cM = Aldlv + flFl−1M. Pick
D ←r Z

ν×μ
q , define uM = u + D · bin(cM) ∈ Z

ν
q .

(3) Using Tτ sample a vector t ←r DZ2μ,s and run SamplePre(Tτ , t,u). The
output is a vector v ∈ Z

2μ.
Output the signature σ = (τ,v, t).
Verify(pp,M, σ): On input public parameters, a message M = (m1, . . . ,mμ)
and a signature σ = (τ,v, t) return 1 if Aτ · v = u + D · bin(cM) mod q.

The lattice-based signature scheme defined above is secure under chosen-
message attacks assuming that the SIS problem is hard. The proof of security
of this scheme is to be skipped due to the page limit. But, we refer to the
extended version of the paper for further details and proofs.

Construction. In this section we provide the first attribute-based group signa-
ture based on lattices using our zero-knowledge protocol from Sect. 3. The scheme
contains certain building blocks such as digital signature from Definition 11 and
a lattice-based encryption scheme introduced by Regev [35].

Setup(1λ, 1l, 1N): On input a security parameter 1λ, an attribute bound l and
a group limit of N members the algorithm performs the following steps:

(1) Select a security dimension ν > Ω(λ), a dimension of the lattice base is
μ > 2ν log q and a discrete Gaussian parameter s.
(2) Pick for each i ∈ [l] a random matrix Bi, run TrapGen algorithm on input 1λ

and output l uniform random matrix Ai ∈ Z
ν×μ
q with the corresponding basis

TA,i ⊆ Λ⊥(Ai), where i ∈ {0, . . . , l}.
(3) Select random ν × μ−matrix A ∈ Z

ν×μ
q and ν-vectors u,v ∈ Z

ν
q .

(4) Define a hash function H : {0, 1}∗ → Z
ν×2μ
q which maps a certain bit string

to an integer matrix of size ν × 2μ.
(5) Output public parameters pp =

(

A, {Ai}i∈[l],u,v
)

and msk = {TA,i}i∈[l].
(6) Generate public and secret key of Regev’s encryption scheme as follows:
Sample a random matrix B ←r Z

ν×μ
q and the corresponding short basis TB by

running the TrapGen algorithm on input security parameter. It outputs public
and secret key of the group manager who runs opening procedure to identify
malicious signer. The keys are set equal to gmsk = TB and gmpk = B.
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ABGKeyGen(pp, msk,Ai, ~A): On input public parameters pp, a master secret key
msk = {TA,i}i∈[l] and a set of attributes Ai as well as the universe of attributes
~A = {a0, . . .N−1}, where N = 2l the algorithm extracts attribute-based secret keys
via the following steps:

(1) Generate the tree from the attribute universe A, i.e. associate each attribute
aj with a leave of the tree dj, where j ∈ [0, N − 1]. To do so, we assign to each
attribute a binary string in {0, 1}ν by computing bin(Ai · uj mod q) = dj.
(2) Let R = (d0, . . . ,dN−1) and run Tcalc(R) to generate the complete tree and
the values u,v for the hash function of the root node F0(u,v).
(3) Use the set R and one of the tree leaves dj as input of TWitness algorithm
to generate the witness of the zero-knowledge proof: w =
(

(j1, . . . , jl), (dj1 , fj1), . . . , (djl , fjl), (wl, . . . ,w1)
) ∈ {0, 1}l × {0, 1}2l×

{0, 1}lνκ,
(4) The key issuing authority provides valid credentials for each user i with k

distinct attributes u
(i)
j , j ∈ [k], i ∈ [N]. To do so, it first computes a sum of the

different attributes and sets u(i) =
k∑

j=1

u(i)
j . It samples values zi by running the

algorithm SamplePre(Ai,q,TA,i, s,u(i)).
(5) The secret key of user i is given as a set of values skAi

= (zi, w(i),d(i)),
where d(i) = (d(i)j1

, . . . , d
(i)
jk

), describes a set of attributes, Ai of an user i. The
group public key is given as gpk = pp.
(6) It generates the verification key of the user vki as follows: Choose random

string τ ←r {0, 1}l. Run ExtBasis(
l∑

i=1

TAi = TA
′) to extent TA to the new

basis Tτ belonging to the extended matrix Aτ = [A|A0 +
l∑

j=1

τjAj] ∈ Z
ν×2μ
q .

Pick randomly a short vector yi
r← DZ2μ,s. Compute Aτ · yi = vi representing

the verification key vki.
(7) The algorithm also generates the secret and public key for the key issuing
authority, by running the Setup algorithm of the signature scheme from Defini-
tion 11.
Let pkkia = (A, {Ai}i∈[l],u,v) and a secret key skkia = TA.

〈Join(param, gpk, pki, skAi
)〉 , 〈Issue(param, pki, ik)〉: This interactive protocol

is initiated by the user i, who takes its verification key vki := vi and computes a
digital signature as defined in Definition 11, namely sigi(vi) and the key issuing
authority (KIA). The earlier sends its signature sigi(vi) to KIA. Key issuing
authority checks whether the verification key was already used by previous users
or not. Then KIA generates a certificate as follows:

(1) First KIA checks the validity of sigi and that the corresponding verification
key vi was not previously used by another user from the group.
(2) It chooses a new identifier represented by a bit-string of size l, i.e.
idi ∈ {0, 1}l.
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It uses its secret and public keys to generate Aidi
= [A|A0 +

l∑

j=1

idi[j]Aj] ∈
Z

ν×2μ
q

(3) It runs ExtBasis(Aidi
,TA) to get an extended basis TA,id of lattice

Λ⊥
q (Aidi

).
(4) KIA samples a vector ti ←r DZ2μ,s and runs the algorithm

SamplePre(Tidi
, ti,u). The output is: si = Aidi

· ti = [A|A0 +
l∑

j=1

idi[j]Aj]·

ti ∈ Z
2μ
q . Pick random matrices D,D1,D2 ←r Z

3(ν×μ)
q , then the equation above

is equal to the following: u + D · bin(D1 · bin(vi) + D2 · ti) mod q.
(5) KIA outputs a certificate (idi, ti, si).

ABGSign(param, skAi
, m, Γ): On input user’s attribute-based secret key skAi

=
(zi, w(i),d(i)), where w =

(

(j1, . . . , jl), (dj1 , fj1), . . . , (djl , fjl), (wl, . . . ,w1)
)

, a
message m and a predicate Γ the algorithm generates a signature of the message
as described in the five steps presented below. According the Bellare et al.
model [4] we first involve the one-time signature (OTS) scheme to sign the
message. OTS is modeled as random oracle and consists of three algorithms
(Setup, Sign, Verify). The signing proceeds as follows:
(1) The user runs Setup(λ) algorithm of the One-Time-Signature (OTS) scheme
to generate the verification and secret key (vkots, skots). Compute OTS signa-
ture of m: σots(skots,m).
(2) The user first hashes the verification and defines a matrix F = H(vkots)
∈ Z

l×μ
q .

(3) Taking predicate Γ, convert it to a linear span program matrix W ∈ Z
l×μ,

where each row i is assigned to the binary attribute with index i ∈ [l]. Each
column j ∈ [1, μ] represents a function of the predicate Γ.
(4) Using encryption’s public key pk = B and previously generated matrix F and
predicate matrix W compute the ciphertext of certificate certi = (idi, ti, si),
implementing the values (j1, . . . , jl) into the encryption as follows: take vec-
tors ti, si ∈ (

Z
2μ
q

)2, set xi = ti + si and choose e1 ← χ2μ, e2 ← χl. The cipher-
text is given by C = (c1, c2) =([B|0] · xi + e1, [W|F] · xi + e2 +

⌊
q
2

⌉ · (j1, . . . , jl,
0, . . . , 0)T)∈ Z

2μ
q × Z

l
q.

(5) Generate a NIZK proof introduced in the previous section to show the
possession of a valid tuple (zi,d(i), w(i),xi). Furthermore prove that C is an
encryption of (j1, . . . , jl) with random values xi. The public input of the pro-
tocol consists of the group public key and the ciphertext C. In order to achieve
soundness, the NIZK proof is run θ = ω(log n) times. The proof is given using
Fiat-Shamirs heuristic as Π = ({Comi}θ

i=1, Ch, {RSPi}θ
i=1), where the challenge is

a hash-function on input a message m, public parameters and commitment Comi.
The output is signature Σ = (Π, C, σots).

ABGVery(param, gpk, Σ): Parse signature Σ = (Π, C, σots). Return 1 if V(vk, C,
Π, F) = 1 and the proof Π verifies correctly. Otherwise return ⊥.
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ABGOpen(param, gmsk, Σ): Taking group master secret key gmsk = TB and signa-
ture Σ and public parameters which include the one-time signature verification
key vkots and the hash function H, the opening procedure is as follows:

(1) Taking the hash function H and the verification key vkots, it computes
F = H(vkots) and using the public key B it generates a matrix Gvk, such that
holds [B|0] · Gvk = [W|F] mod q.
(2) Decrypt the ciphertext using the obtained matrix Gvk as follows:
c2 − c1 · Gvk = (j1, . . . , jl, 0, . . . , 0).

Theorem 3. Our ABGSL scheme is fully-anonymous and fully traceable if the
underlying NIZK proof is simulation sound and zero-knowledge provable.

The proof of this theorem is given in AppendixC.

5 Conclusion

In this paper, we formalized a new zero-knowledge argument (ZKA), which rep-
resents a suitable tool for lattice-based constructions. The argument uses Merkle-
Damg̊ard compression function, as building blocks and recent lattice based con-
structions are based on the same tree structure. We employed the introduced
ZKA to security assurance of the proposed structure of attribute-based group
signature. The tree construction of ZKA allows to hide the attributes of our
ABGS scheme and to prove in zero-knowledge the correct construction of user’s
attribute-based secret key. We provided security proofs for both constructions,
ZKA and ABS, where the security of each tool is based on a lattice problem.

A Definitions

Discrete Gaussians. Let L be a subset of Zm. For a vector c ∈ R
m and a positive

σ ∈ R, define

ρs,c(x) = exp

(

−π
‖x − c‖2

s2

)

and ρs,c(L) =
∑

x∈L

ρs,c(x).

The discrete Gaussian distribution over L with center c and parameter s is given
by DL,s,c(y) = ρs,c(y)

ρs,c(L)
, for all y ∈ L. The distribution DL,s,c is usually defined over

the lattice L = Λ⊥
q (A) for A ∈ Z

n×m
q .

The security of our construction and the underlying building blocks is based on
the hardness of SIVP ~O(n) and LWE problems which we recall in the following two
definitions.
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B Non-interactive Zero-Knowledge Proof

A non-interactive proof system (G,K,P,V) for a relation R with setup con-
sists of four PPT algorithms: a setup algorithm G, a common reference string
(CRS) generation algorithm K, a prover P and a verifier V. The setup algorithm
outputs public parameters I and a commitment key ck. The CRS generation
algorithm takes (I, ck) as input and outputs a CRS Σ. The prover P takes as
input (I,Σ, x, ω), where x is the statement and ω is the witness, and outputs a
proof π. The verifier V takes as input (I,Σ, x, π) and outputs 1 if the proof is
acceptable and 0 otherwise. (G,K,P,V) is non-interactive proof system for R if
it has the following properties:

Completeness. A non-interactive proof is complete if an honest prover can con-
vince an honest verifier whenever the statement belongs to the language and the
prover holds a witness testifying to this fact. For all adversaries A we have:

Pr[(I, ck) ← G(1λ);Σ ← K(I, ck); (x, ω) ← A(I,Σ) :
π ← P(I,Σ, x, ω) : V(I,Σ, x, π) = 1 if (I, x, ω) ∈ R] = 1.

Soundness. A non-interactive proof is sound if it is impossible to prove a false
statement x which is not an element of a language L. We say (G,K,P,V) is
perfectly sound if for all adversaries A we have:

Pr[(I, ck) ← G(1λ);Σ ← K(I, ck); (x, π) ← A(I,Σ);
V(I,Σ, x, π) = 0 if x /∈ L] = 1.

Knowledge Extraction. We say that (G,K,P,V) is a proof of knowledge for R
if there exists a knowledge extractor E = (E1, E2) with the following properties:
For all PPT adversaries A we have

Pr[(I, ck) ← G(1λ);Σ ← K(I, ck) : A(I,Σ) = 1]

= Pr[I ← G(1λ); (Σ, ξ) ← E1(I, ck) : A(I,Σ) = 1].

For all adversaries A holds

Pr[(I, ck) ← G(1λ); (Σ, ξ) ← E1(I, ck); (x, π) ← A(I,Σ);
ω ← E2(Σ, ξ, x, π) : V(I,Σ, x, π) = 0 or (I, x, ω) ∈ R] = 1.

Zero-Knowledge. We say that (G,K,P,V) is a composable NIZK proof if there
exists a PPT simulator (S1,S2) such that for all PPT adversaries A we have

Pr[(I, ck) ← G(1λ);Σ ← K(I, ck) : A(I,Σ) = 1]

≈ Pr[I ← G(1λ); (Σ, τ) ← S1(I, ck) : A(I,Σ) = 1],

and for all adversaries A holds:

Pr[(I, ck) ← G(1λ); (Σ, τ) ← S1(I, ck); (x, ω) ← A(I,Σ, τ);
π ← P(I,Σ, x, ω) : A(π) = 1]

≈ Pr[(I, ck) ← G(1λ); (Σ, τ) ← S1(I, ck);
(I, x, ω) ← A(I,Σ, τ);π ← S2(I,Σ, τ, x) : A(π) = 1],



On New Zero-Knowledge Arguments for Attribute-Based Group Signatures 303

where A outputs (I, x, ω) ∈ R. We obtain a strong notion of zero-knowledge,
called composable zero-knowledge [15]. It implies standard zero-knowledge and is
simpler to work with, because it separates the computational indistinguishability
into two parts considering the CRS and the proofs respectively.

Simulation Soundness. We say that (G,K,P,V) is simulation sound if a PPT
adversary A cannot prove false statements even if he have seen simulated proofs
of arbitrary statements: For all PPT adversaries A we have

Pr[(I, ck) ← S1(1λ); (x, π) /∈ SQL

∧ x /∈ LandV(I, x, π) = 1] = ε(λ).

C Preimage Sampling Function

In this section, we recall the notion of preimage sampling functions (PSF) intro-
duced in [13]. The idea of that function is a combination of a trapdoor construc-
tion for integer lattices and an efficient discrete Gaussian sampling algorithm.
Let A ∈ Z

ν×μ
q be a uniform matrix and TA the corresponding basis for the lat-

tice Λ⊥(A), which can be used as a trapdoor for finding small non-zero solution
e ∈ Z

μ
q of the equation Ae = 0 mod q.

Definition 11 (PSF). Let λ be a security parameter, ν a security dimension
and μ a dimension of the lattice base. Let s ≥ Lω(

√
log m) be some discrete Gaus-

sian parameter. A PSF family consists of maps fA : DZμ,s → Z
ν
q with the domain

DZ
μ
q ,s = {e ∈ Z

μ : ‖e‖ ≤ √
ms} ⊆ Z

μ and is specified by the following four algo-
rithms:

TrapGen(1λ) : On input security parameter 1λ it outputs a uniform matrix

A ∈ Z
ν×μ
q and a basis TA of Λ⊥(A) such that

∥
∥
∥T̃A

∥
∥
∥ ≤ L, where L is the circuit

depth. The public parameters are (A, q) and the preimage-sampling trapdoor is
TA.
EvalFun(A, q, e) : On input public parameters (A, q) and a point e ∈ DZ

μ
q ,s, the

algorithm outputs the image fA(e) = Ae mod q ∈ Z
ν
q .

SampleDom(Iμ×μ, s): On input the identity matrix I
μ×μ and a Gaussian param-

eter s, it outputs a vector e ← SampleGaussian(Iμ×μ, s, 0), i.e. e ∼ DZ
μ
q ,s.

(SampleGaussian(Iμ×μ, s, c) algorithm works as follows. On input a basis Iμ×μ

for a Lattice Λ ⊂ R
μ a parameter s ≥ ω(

√
m) and a center c ∈ R

μ, it outputs a
lattice vector x ∈ Λ, such that x ∼ DΛ,s,c).
SamplePre(A, q,TA, s,u): On input public parameters (A, q) and a trapdoor
TA, a Gaussian parameter s and a target image u ∈ Z

n
q, the algorithm samples

e ∈ DZμ,s from DZμ,s, such that Ae = u( mod q). It first finds a solution c ∈ Z
μ

in the linear system Ac = u( mod q).
It samples a vector d ← SampleGaussian(TA, s,−c) ∼ DΛ⊥(A,s,−c) and outputs
vector e = c + d ∈ Z

μ.
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Lemma 1. There exists a PPT algorithm ExtBasis, that takes as input a
matrix B ∈ Z

n×m
q and a basis TA of Λ⊥

q (A), where A ∈ Z
n×m′
q is a submatrix

of B and outputs a basis TB of the extended lattice Λ⊥
q (B) with the property

∥
∥
∥T̃B

∥
∥
∥ ≤

∥
∥
∥T̃A

∥
∥
∥.

D Security Analysis of Theorem3

Proof. In order to provide the proof of this theorem we are using the following
lemmas:

Lemma 2. If the underlying public key encryption systems are IND-CCA secure
and the NIZK proof is simulation sound and zero-knowledge, then our ABGSL
scheme is fully-anonymous under the hardness of SIVPO(λ) problem.

Lemma 3. Our ABGS scheme is attribute anonymous under the hardness of
SIVPO(λ) problem and if the underlying public key encryption scheme is IND-
CCA secure and the underlying NIZK proofs is simulation-sound and computa-
tionally zero-knowledge provable.

Lemma 4. If the underlying public key encryption is IND-CCA secure, digital
signature scheme is unforgeable against chosen message attacks and the NIZK
proofs are simulation sound, then our ABGS scheme is fully-traceable under the
hardness of SIVPO(λ) problem.

Due to page limit we only provide a sketch of Lemma 1. The full proof will be
given in the full version of this paper.

Proof of Lemma 2. Let Auan be an adversary against the user’s full-anonymity
in the ABGSL scheme. We design an adversary Bγ ∈ (BSIVP,Bpke,Bsig) against
the SIVPO(λ) problem or against IND-CCA security of the underlying encryption
scheme or against unforgeability of the underlying signature scheme, respectively.
We show how to construct Bγ to simulate Auan.
Setup: Algorithm BSIVP simulates public parameters and master secret key by
first sampling the following vectors: a1i , . . . ,a

μ
i ∈ (

Z
ν
q

)μ, where i ∈ [0, l]. It sets
A = [a10| . . . |aμ

0 ] and analogously Ai = [a1i | . . . |aμ
i ], for each i ∈ [1, l]. BSIV P

samples for each i ∈ [l] a uniformly random matrix Bi and uses TrapGen algo-
rithm on input these matrices to generate msk = TA,i. To simulate public and
secret key of the underlying encryption scheme, Bpke runs its Setup(1λ) algo-
rithm of Regev’s encryption scheme on input security parameter and outputs and
a master secret key gmpk = B, gmsk = TB. Bpke forwards these values to Auan.
In order to simulate secret and public keys of key issuing authorities, algorithm
Bsig proceeds similarly to algorithm Bpke by running its own Setup algorithm
and outputting skkia, pkkia. The detailed description of the adversary Auan is
given in the following experiment:

(1.) (vkots, skots) ← Setupots(1
λ)

(2.) (gmpk, gmsk) ← Setupe(1
λ)



On New Zero-Knowledge Arguments for Attribute-Based Group Signatures 305

(3.) (pkkia, skkia) ← Setups(1
λ)

(4.) (crs, R′) ← SIM(generate, λ)
(5.) Set gpk = (λ, R′, gmpk, pkkia, vkots)

For all users i ∈ [n] run (pki, ski) ← Setups(1
λ).

Compute certi ← Sign(skkia, 〈i, pki〉). Make oracle queries to OSetup and
ODecrypt of the public key encryption scheme.
Queries to OABGOpen(·, ·): Whenever Auan calls its opening oracle on input a
message m and a signature σ, algorithm Bγ simulates these opening queries by
first simulating the secret key of the group manager. In case the oracle’s output
is m, it returns 1 to Auan adversary.
To simulate user’s attribute-based secret key, algorithm Bγ is invoked and pro-
ceeds as follows taking as input public parameters param and the simulated
master secret key msk = {TA,i}i∈[l]. It chooses a random set of attributes it
wants to be challenged on, Ai = {a1, . . . , aκ}, where κ ∈ [0, N − 1]. BSIV P asso-
ciates each attribute aj with a leaf of the Merkle-tree dj , where j ∈ [0, N − 1]
by assigning to each attribute aj a binary string in {0, 1}ν via the following
computation (bin · Ai · uj mod q) = dj. Let R = (d0, . . . ,dN−1). BSIV P runs
Tcalc(R) to generate the complete tree and the values u,v for the hash func-
tion of the root node F0(u,v). It uses the set R and one of the tree leaves dj

as input of TWitness algorithm to generates the witness of the zero-knowledge
proof:

w = ((j1, . . . , jl), (dj1 , fj1), . . . , (djl , fjl), (wl, . . . ,w1)) ∈ {0, 1}l × {0, 1}2l × {0, 1}lνκ,

To simulate the valid credentials provided by the key issuing authority for each
user i with k distinct attributes u(i)j , j ∈ [k], i ∈ [N], BSIV P first computes a sum

of the different attributes and sets u(i) =
k∑

j=1

u(i)
j . It samples values zi by run-

ning the algorithm SamplePre(Ai,q,TA,i, s,u(i)). It returns the attribute-based
secret key usk[i] = skAi

= (zi, w(i),d(i)), where the tuple d(i) = (d(i)j1
, . . . , d

(i)
jk

),
describes a set of attributes, Ai of an user i.
Challenge: When Auan outputs (state, i0, i1, m), it picks a bit b ∈ {0, 1} and
computes a signature σb ← ABGSign(param, usk[ib], m, Γ), simulator invokes its
BSIVP, who randomly simulates two messages m0, m1.
Furthermore Auan invokes the Bots algorithm to simulates the keys of OTS
scheme by running (vkots, skots) ← Setupots. The verification key vkots will be
a part of the NIZK proof. BSIVP signs vkots using simulated secret key usk[i],
where the secret key simulation is given by a random guess with probability 1/|K|
with the key space K. The guessing probability reduces Bγs advantage to win the
game. If the guess of the keys does not match with the real secret key, the sim-
ulation aborts. The signature procedure continues as follows: Taking K and the
verification key vkots as a message, it runs encapsulation algorithm of the under-
lying DEM scheme, σ̂ = Encrypt(vkots). Furthermore Bpke of the underlying
encryption scheme is invoked, which outputs a ciphertext encrypting user’s cer-
tificate certib , and signature σ̂, i.e. C ← Encrypt(gmpk, 〈ib, pkib , certib , σ̂, R′〉),
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where R′ is a randomness used in the NIZK proof. Finally taking as input a
message m, verification key vkots, ciphertext C and the corresponding proof π,
Bsig runs the signature algorithm of the underlying OTS scheme and outputs
σots ← Sign(m, vkots, C, π). Furthermore, simulator runs the NIZK proof π1 from
the ABS scheme to show the possession of a valid tuple (zi,d(i),w(i),xi). Fur-
thermore, it proves that C is an encryption of (j1, . . . , jl) with random values xi.
The final signature is equal to Σ = (C, π). We note that whenever Auan is submit-
ting a query (C, π′) to the opening oracle, simulator invokes its Bpke algorithm
and forwards the query to its decryption oracle. Finally it outputs a bit b and
terminates the simulation.
Distinguisher for Zero-Knowledge. Distinguisher involved in the NIZK
proof is given in the following description of the algorithm D(choose, λ, R′):

(1.) (vkots, skots) ← Setupots(1
λ)

(2.) (gmpk, gmsk) ← Setupe(1
λ)

(3.) (pkkia, skkia) ← Setups(1
λ)

(4.) (crs, R′) ← SIM(generate, λ)
(5.) Set gpk = (λ, R′, gmpk, pkkia, vkots)
End for:
(a). (state, i0, i1, m∗, vk∗

ots, Γ
∗) ← AOABGOpen(·)

uan (·);
(b). b ∈ {0, 1}, R ∈ {0, 1}λ;
(c). C∗ ← Encrypt(gmpk, 〈ib, pkib , certib , σ̂∗, R′〉);
(d). σots ← Signots(m

∗, vk∗
ots, C

∗, π∗).

We note that distinguisher D can answer any queries submitted by Auan, because
it is in possession of group manager’s secret key, which can be used to open
the signatures. The output of the challenge phase is a signature given as
(pke, pks, m, C) together with a witness. In the second stage, distinguisher takes
as input a proof π and creates a group signature Σ = (C, π, σots) and outputs it
to the adversary Auan. Finally, the distinguisher D outputs the same value as
that one of the output of Auan.
Soundness of NIZK proof. In order to prove simulation soundness of the
NIZK proof, we consider the following game where an adversary Ass against
simulation soundness of NIZK is playing against a challenger, who is represented
by the adversary against our ABGS scheme:

(1.) (vkots, skots) ← Setupots(1
λ)

(2.) (gmpk, gmsk) ← Setupe(1
λ)

(3.) (pkkia, skkia) ← Setups(1
λ)

(4.) (crs, R′) ← SIM(generate, λ)
(5.) Set gpk = (λ, R′, gmpk, pkkia, vkots)
End for:
(a). m∗, Γ∗, σ∗ ← AOABGOpen(param,gmsk,·)

uan (param, msk, ·);
(b). C ← Encrypt(pke, 〈ib, pkib , certib , σb, R′〉);
(c). σots ← Signots(m

∗, vk∗
ots, C

∗, π∗);
(d). π ← SIM(prove, crs, param, m∗, σ∗, skA, Γ∗).
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Make oracle queries to OABGKeyGen to simulate user’s attribute-based secret key
skAi

.
Run Verify(param, σots, π, C) of the NIZK proof. If Auan outputs a valid tuple
(σots, π

′, C), output (param, crs, σots, π
′, C).

Due to the page limit we provide only the final result of adversary’s success.
For the detailed analysis of this proof, we refer to the later full version of this
paper. Finally we conclude that the advantage of an adversary Auan is given by
the following combined inequation:

AdvU−ANO
Auan,ABGS

≤ AdvSim−Sound
Ass,ABGS

+ AdvIND−CCA
AindPKE

+ AdvZero−Knowledge
Azk,NIZK
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Abstract. At ICISC 2016, Duong et al. proposed two signature schemes
based on multivariate quadratic equations, CSSv and SVSv by improving
the security of the cubic UOV against Hashimoto’s attack. They claimed
that the schemes were secure against all known attacks. We show that
the schemes are insecure against key recovery attack using good keys
and HighRank attacks. From a practical point of view, we are able to
break their parameter at an 128-bit security level in 2 min by using the
HighRank attack.

Keywords: Equivalent key · Key recovery attack using good keys
Multivariate-quadratic scheme · HighRank attack

1 Introduction

The existence of a sufficiently large quantum computer that is capable of imple-
menting Shor’s algorithm [13] would be a real-world threat to break RSA, Diffie-
Hellman key exchange, DSA and ECDSA the most widely used public-key cryp-
tography in practice. Public-key cryptography based on multivariate quadratic
equations (MQ-PKC) is one of the most promising alternatives for classical
PKC. MQ-PKC is based on the NP-hard problem of solving random systems
of quadratic equations over finite fields, known as the MQ-problem. Since the
first MQ-encryption scheme was proposed by Imai and Matsumoto [9], there have
been proposed a number of MQ-schemes. However, most of MQ-schemes have
been broken except HFEv- variants [11,12] and Unbalanced Oil and Vinegar
(UOV) variants as signature schemes [2,8].

At Inscrypt 2015, Nie et al. [10] proposed a cubic UOV (CUOV) which is
a variant of UOV based on cubic polynomials with shorter signatures and a
smaller private key than UOV and Rainbow. However, Hashimoto [7] showed that
equivalent secret keys of CUOV could be recovered easily. Recently, Duong et
al. [4] proposed two new MQ-signature schemes, CSSv and SVSv. They claimed
that they were secure against Hashimoto’s attack and all other known attacks
of MQ-schemes. In this paper, we show that their schemes are entirely broken
by presenting key recovery attack using good keys and HighRank attacks.
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The rest of the paper is organized as follows. In Sect. 2, we describe the two
MQ-signature scheme, SVSv and CSSv. We present key recovery attacks using
good keys and HighRank attacks on the schemes in Sects. 3 and 4, respectively.
Concluding remarks are given in Sect. 5.

2 Improved Cubic UOV Signature Schemes

We describe two improved UOV signature schemes, SVSv and CSSv in [4].

2.1 SVSv

Key generation. Let Fq be a finite field of q elements and idk be an identity
map on F

k
q for k ≥ 1. A central map F of SVSv is defined by F = F̄ ◦ (F̂ × idv).

The map F̂ : F
n
q → F

o
q is given by F̂(x) = (f̂ (1)(x), . . . , f̂ (o)(x)) for o randomly

chosen affine polynomials f̂ (1), . . . , f̂ (o), where n = o + v + r for o, v, r ∈ N. The
map F̄ : F

o
q × F

v+r
q → F

o
q is given by F̄(x) = (f̄ (1)(x), . . . , f̄ (o)(x)), where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f̄ (1) = x2
1 + g1(yo+1, . . . , yn),

f̄ (2) = x1 · x2 + g2(yo+1, . . . , yo+v),
· · ·

f̄ (o) = xo−1 · xo + go(yo+1, . . . , yo+v),

and g1, . . . , go are randomly chosen quadratic polynomials. A public key is given
as P = T ◦ F ◦ S : F

n
q → F

o
q for two randomly chosen invertible affine map

T : F
o
q → F

o
q and S : F

n
q → F

n
q to hide the special structure of F . Then a secret

key is (T ,F ,S). The parameter r is defined so that symmetric matrices of the
quadratic parts of the polynomials in F have the same rank:

{
r = 2 if q ≡ 0 mod 2 & v ≡ 0 mod 2,

r = 1 otherwise.

Sign. Given a message m, do the followings after computing h = h(m) ∈ F
o
q:

1. Compute w = T −1(h).
2. Choose random vinegar values (yo+1, · · · , yn) ∈ F

o
q and substitute them into

g1, . . . , go. Compute x1 =
√

w1 − g1 =

{
(w1 − g1)1/2 q ≡ 1 mod 2
(w1 − g1)q/2 q ≡ 0 mod 2

. If x1 =

0, choose other random vinegar values. Inductively, compute xi = (wi −
gi)/xi−1 for i = 2, . . . , o. If xi = 0 for i = 2, · · · , o, choose other random
vinegar values. Solve the linear system given by f̂ (1), . . . , f̂ (o). If there is no
solution, choose other random vinegar values and try again.

3. Compute z = S−1(y1, · · · , yn). Then, z ∈ F
n
q is a signature of m.

Verify. Given (z, m), check P(z) = h(m). If it holds, accept the signature, other-
wise reject it.
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2.2 CSSv

Key generation. A central map F : F
n
q → F

o
q of CSSv is defined by F =

F̄ ◦ (F̂ × idv). The map F̂ is given by F̂(x) = (f̂ (1)(x), . . . , f̂ (o)(x)), where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f̂ (1) =
∑n

i=1

∑n
j=i a

(1)
ij · xixj +

∑n
i=1 b

(1)
i · xi + c(1),

f̂ (2) =
∑n

i=1 b
(2)
i · xi + c(2),

...
f̂ (o) =

∑n
i=1 b

(o)
i · xi + c(o),

f̂ (1) is a random quadratic polynomial and f̂ (2), · · · , f̂ (o) are affine maps in vari-
ables x1, · · · , xn. The map F̄ : F

n
q → F

o
q is given by F̄(x) = (f̄ (1)(x), . . . , f̄ (o)(x)),

where ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f̄ (1) = x1 + g1(xo+1, · · · , xn),
f̄ (2) = x1 · x2 + g2(xo+1, · · · , xn),

...
f̄ (o) = xo−1 · xo + go(xo+1, · · · , xn),

f̄ (2) is a cubic polynomial and the other polynomials are quadratic. The central
map F consists of one cubic polynomial f (2) and (o − 1) quadratic polynomials
f (1), f (3), · · · , f (o). Two invertible affine maps S : F

n
q → F

n
q and T : F

o
q → F

o
q are

used as hide functions, where S is chosen at random and a matrix T representing
T is

T =
(

�1×1 �1×1 �1×(o−2)

�(o−1)×1 0(o−1)×1 �(o−1)×(o−2)

)

∈ F
o×o
q (1)

A public map P is P = (p(1), · · · , p(o)) = T ◦ F ◦ S : F
n
q → F

o
q. A secret key

is (T ,F ,S). Note that p(1) is cubic, the other public polynomials are quadratic
due to the structure of T . Signing and verification of CSSv are similar to those
of SVSv.

3 Key Recovery Attacks on CSSv and SVSv

Now, we present key recovery attacks (KRAs) on CSSv and SVSv. In MQ-
schemes, there exist a large number of different secret keys for a given public
key [16]. Informally, suppose that <P, (S,F , T )> is a public/secret key pair
of an MQ-scheme, we call (S′,F ′, T ′) is an equivalent key of (S,F , T ) if P =
S ◦ F ◦ T = S′ ◦ F ′ ◦ T ′, where S′ and T ′ are invertible affine maps, and F ′

preserves all zero coefficients of F . If an attacker can find any of the equivalent
keys then he can forge signatures on any messages. Thus, the attacker tries to
find equivalent keys with a simple structure. Refer to [14–16] for more details on
equivalent keys and good keys.
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3.1 Key Recovery Attacks on CSSv

Phase 1. Let h = id1 × (h(2), · · · , h(o))× idv : F
n
q → F

n
q be an affine map, where

h(j) = f̂ (j) =
∑n

i=1 b
(j)
i · xi + c(j) for 2 ≤ j ≤ o. We define F̂ ′ by (F̂ × idv) ◦ h−1

which can be expressed by f̂ ′(1) × idn−1, where f̂ ′(1)(x1, · · · , xn) is a quadratic
polynomial. We set F0 = F̄ ◦ F̂ ′ = (f (1)

0 , f
(2)
0 , f

(3)
0 , · · · , f

(o)
0 ) given by

⎧
⎪⎨

⎪⎩

f
(1)
0 = f̂ ′(1)(x1, · · · , xn) + g1(xo+1, · · · , xn),

f
(2)
0 = f̂ ′(1)(x1, · · · , xn) · x2 + g2(xo+1, · · · , xn),

f
(j)
0 = f̄ (j) = xj−1 · xj + gj(xo+1, · · · , xn), for 3 ≤ j ≤ o.

(2)

The public key is written as

P = T ◦ F ◦ S = T ◦ F̄ ◦ (F̂ × idv) ◦ S = T ◦ F̄ ◦ (F̂ ′ ◦ h) ◦ S
= T ◦ (F̄ ◦ F̂ ′) ◦ (h ◦ S) = T ◦ F0 ◦ S ′,

(3)

where S ′ = h◦S : F
n
q → F

n
q is also an affine map. Since f

(2)
0 is the only cubic map

in the cental map F0 in (3), it occurs in only p(1) due to the special structure
of T . Thus, p(1) is the only cubic polynomial in the public map. We set P ′ =
(p′(1), · · · , p′(o−1)) : F

n
q → F

o−1
q with p′(j) = p(j+1) for 1 ≤ j ≤ o−1 by removing

p(1) from the public map. We also remove the first row and the second column of
T and f

(2)
0 of F0. We define T ′ by a (o−1)× (o−1) submatrix of T removed the

first row and the second column from T and T ′ : F
o−1
q → F

o−1
q by an affine map

corresponding T ′. We define a quadratic map F ′ = (f ′(1), f ′(2), · · · , f ′(o−1)) :
F

n
q → F

o−1
q by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f ′(1) = f
(1)
0 = f̂ ′(1)(x1, · · · , xn) + g1(xo+1, · · · , xn),

f ′(2) = f
(3)
0 = x2 · x3 + g3(xo+1, · · · , xn),

...
f ′(o−1) = f

(o)
0 = xo−1 · xo + go(xo+1, · · · , xn).

(4)

Then we get P ′ = T ′ ◦ F ′ ◦ S ′ by (3). From now, we mount the attacks on this
structure P ′ = T ′ ◦ F ′ ◦ S ′.

Phase 2. Our attack consists of o−2 steps: in each step N for N ∈ {1, · · · , o−2},
we remove the variable xN from all but the first public polynomial of P ′. This
is done by finding a good key S̃′′

N and T̃ ′′
N of P ′. At the end of each step, we

remove the first public polynomial and put it as F ′′(o−N) because it is the only
polynomial that contains xN , and repeat the procedure for the rest of the public
polynomials.

Step 1. Now, we want to remove x1 in the public map. Let P (i) be the i-th
symmetric matrix of the quadratic part of the public map P ′. We assume that



314 K.-A. Shim et al.

dimensions of all public matrices are n. Observe that x1 occurs in f ′(1) which is
the first polynomial of the central map F ′. Now we denote that

T ′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t′1,1 t′1,2 · · · t′1,j · · · t′1,o−1,
t′2,1 t′2,2 · · · t′2,j · · · t′2,o−1,
...

...
. . .

...
...

...
t′j,1 t′j,2 · · · t′j,j · · · t′j,o−1,
...

...
...

...
. . .

...
t′o−1,1 t′o−1,2 · · · t′o−1,j · · · t′o−1,o−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then we get P ′ = T ′ ◦ (F ′ ◦ S ′) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t′1,1 · (f ′(1) ◦ S ′) + t′1,2 · (f ′(2) ◦ S ′) + · · · t′1,o−1 · (f ′(o−1) ◦ S ′)
t′2,1 · (f ′(1) ◦ S ′) + t′2,2 · (f ′(2) ◦ S ′) + · · · t′2,o−1 · (f ′(o−1) ◦ S ′)

...
t′j,1 · (f ′(1) ◦ S ′) + t′j,2 · (f ′(2) ◦ S ′) + · · · t′j,o−1 · (f ′(o−1) ◦ S ′)

...
t′o−1,1 · (f ′(1) ◦ S ′) + t′o−1,2 · (f ′(2) ◦ S ′) + · · · t′o−1,o−1 · (f ′(o−1) ◦ S ′).

We suggest to find a linear combination of two public polynomials so that f ′(1) no
longer occurs. Without loss of generality, we choose P (1) and P (2). By the basic
elimination method, we see that t′2,1 ·P (1) − t′1,1 ·P (2) or P (2) +(−t′2,1 · t′−1

1,1 ) ·P (1)

does not contain (f ′(1) ◦ S ′). It is related to the following MinRank instance:

find λ ∈ Fq such that Rank
(
P (2) + λP (1)

)
< o − 1. (5)

Then λ = −t′2,1 · t′−1
1,1 is a solution of (5) if t1,1 	= 0. Observe that λ = −t′2,j · t′−1

1,j

for 2 ≤ j ≤ o − 1 are also solutions of (5), but there may be no solution of (5).
We will discuss this later. Similarly, λ = −t′k,1 · t′−1

1,1 is a solution of the following
analogous problem of (5)

findλ ∈ Fqsuch that Rank
(
P (k) + λP (1)

)
< o − 1 (6)

for each 3 ≤ k ≤ o − 1. We denote

T̃ ′′
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0 · · · 0
t̃′′2,1 1 · · · 0 · · · 0
...

...
. . .

...
...

...
t̃′′j,1 0 · · · 1 · · · 0
...

...
...

...
. . .

...

t̃′′o−1,1 0 · · · 0 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

:=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0 · · · 0
−t′2,1/t′1,1 1 · · · 0 · · · 0

...
...

. . .
...

...
...

−t′j,1/t′1,1 0 · · · 1 · · · 0
...

...
...

...
. . .

...
−t′o−1,1/t′1,1 0 · · · 0 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(7)
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then T ′
1 = T̃ ′′

1 ◦ T ′ is of the form T ′
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t
′(1)
1,1 t

′(1)
1,2 · · · t

′(1)
1,o−1

0 t
′(1)
2,2 · · · t

′(1)
2,o−1

...
...

...
...

0 t
′(1)
j,2 · · · t

′(1)
j,o−1

...
...

...
...

0 t
′(1)
o−1,2 · · · t

′(1)
o−1,o−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. We apply T ′
1

to the left side of P ′ then T̃ ′′
1 ◦ P ′ = T̃ ′′

1 ◦ (T ′ ◦ F ′ ◦ S ′) = (T̃ ′′
1 ◦ T ′) ◦ (F ′ ◦ S ′) =

T ′
1 ◦ (F ′ ◦ S ′). Consequently, only the first polynomial of T ′

1 ◦ (F ′ ◦ S ′) contains
(f ′(1) ◦ S ′), where T ′

1 ◦ (F ′ ◦ S ′) is written as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t
′(1)
1,1 · (f ′(1) ◦ S ′)+ t

′(1)
1,2 · (f ′(2) ◦ S ′) + · · · + t

′(1)
1,o−1 · (f ′(o−1) ◦ S ′),

t
′(1)
2,2 · (f ′(2) ◦ S ′) + · · · + t

′(1)
2,o−1 · (f ′(o−1) ◦ S ′),

...

t
′(1)
j,2 · (f ′(2) ◦ S ′) + · · · + t

′(1)
j,o−1 · (f ′(o−1) ◦ S ′),

...

t
′(1)
o−1,2 · (f ′(2) ◦ S ′) + · · · + t

′(1)
o−1,o−1 · (f ′(o−1) ◦ S ′).

(8)

Now, we remove x1 in S′(k) for 2 ≤ k ≤ n, where S ′ =
(S′(1), S′(2), S′(3), · · · , S′(n)). Observe that we substitute S′(k) with xk of F ′ when
we compute F ′ ◦ S ′. If only f ′(1) contains x1 then S ′(1) occurs only in the first
polynomial of F ′ ◦ S ′, so does x1. For it, we want to find S ′

1 = S ′ ◦ S̃ ′′
1 of the

form

S ′
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s
′(1)
1,1 s

′(1)
1,2 · · · s

′(1)
1,n

0 s
′(1)
2,2 · · · s

′(1)
2,n

...
...

...
...

0 s
′(1)
j,2 · · · s

′(1)
j,n

...
...

...
...

0 s
′(1)
n,2 · · · s

′(1)
n,n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= S ′ · S̃ ′′
1 , (9)

where all but the first column of S ′
1 consist of arbitrary values. We denote X̃ =

X−1 for any X. So we need to find S̃ ′′
1 of the form S̃ ′′

1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s̃′′
1,1 0 · · · 0 · · · 0

s̃′′
2,1 1 · · · 0 · · · 0
...

...
. . .

...
...

...
s̃′′

j,1 0 · · · 1 · · · 0
...

...
...

...
. . .

...
s̃′′

n,1 0 · · · 0 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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where s̃′′
j,1 ∈ Fq for 1 ≤ j ≤ n. From the first column of the second equality of

(9), we get

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s
′(1)
1,1

0
...
0
...
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= S ′ ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s̃′′
1,1

s̃′′
2,1
...

s̃′′
j,1
...

s̃′′
n,1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s̃′′
1,1

s̃′′
2,1
...

s̃′′
j,1
...

s̃′′
n,1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= S ′−1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s
′(1)
1,1

0
...
0
...
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

If S̃ ′
1,1 = 0, then s̃′′

1,1 = 0, so S̃ ′′
1 is not invertible. Otherwise, s

′(1)
1,1 can be any

nonzero value in Fq. Without loss of generality, we fix s
′(1)
1,1 =

(
s̃′′
1,1

)−1

and so

s̃′′
1,1 = 1. Then we get

S̃ ′′
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0 · · · 0
s̃′′
2,1 1 · · · 0 · · · 0
...

...
. . .

...
...

...
s̃′′

j,1 0 · · · 1 · · · 0
...

...
...

...
. . .

...
s̃′′

n,1 0 · · · 0 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (10)

After applying S̃ ′′
1 to the right side of T̃ ′′

1 ◦ P ′ = T ′
1 (F ′ ◦ S ′) of (8), we get

(T̃ ′′
1 ◦ P ′) ◦ S̃ ′′

1 = (T ′
1 ◦ F ′ ◦ S ′) ◦ S̃ ′′

1 = (T ′
1 ◦ F ′) ◦ (S ′ ◦ S̃ ′′

1 ) = (T ′
1 ◦ F ′) ◦ S ′

1

= T ′
1 ◦ (F ′ ◦ S ′

1)

so that

T ′
1◦(F ′◦S ′

1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t
′(1)
1,1 · (f ′(1) ◦ S ′

1) + t
′(1)
1,2 · (f ′(2) ◦ S ′

1) + · · · + t
′(1)
1,o−1 · (f ′(o−1) ◦ S ′

1)

t
′(1)
2,2 · (f ′(2) ◦ S ′

1) + · · · + t
′(1)
2,o−1 · (f ′(o−1) ◦ S ′

1)

...

t
′(1)
j,2 · (f ′(2) ◦ S ′

1) + · · · + t
′(1)
j,o−1 · (f ′(o−1) ◦ S ′

1)

...

t
′(1)
o−1,2 · (f ′(2) ◦ S ′

1) + · · · + t
′(1)
o−1,o−1 · (f ′(o−1) ◦ S ′

1).

Since x1 does not occur in (f ′(k) ◦ S ′
1) for all k except k = 1, x1 occurs in only

the first polynomial of T ′
1 ◦ (F ′ ◦S ′

1). If F ′′
1 = T̃ ′′

1 ◦P ′ ◦ S̃ ′′
1 = T ′

1 ◦F ′ ◦S ′
1 then we

can see that (F ′′
1 ,S ′′

1 , T ′′
1 ) is a good key of (F ′,S ′, T ′) (see Fig. 1, (7) and (10)).

To find this good key, we need to solve a system of the form

F (k)
i,j =

o−1∑

a=1

n∑

b=1

n∑

c=1

P ′(a)
bc t̃′′k,as̃′′

i,bs̃
′′
j,c. (11)
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Fig. 1. Form of F ′′
1 = T̃ ′′

1 ◦ P ′ ◦ S̃ ′′
1 = T ′

1 ◦ F ′ ◦ S ′
1.

We get equations from i = 1 or j = 1, but we fix i = 1 for convenience. We get
o − 2 cubic polynomials for j = 1, but we ignore the cubic polynomials because
we have enough number of quadratic equations. Since s̃′′

j,j = 1, s̃′′
j,c = 0 (j 	= c)

and t̃′′k,k = 1, t̃′′k,a = 0 (a 	= 1, k), the equations in (11) are changed to

F (k)
1,j = P ′(k)

1j + P ′(1)
1j t̃′′k,1 +

n∑

b=2

(P ′(k)
bj + P ′(1)

bj t̃′′k,1)s̃
′′
1,b (12)

for 2 ≤ j ≤ n and 2 ≤ k ≤ o − 1. That is, we get (n − 1)(o − 2) quadratic
equations from (12) with variables t̃′′k,1 and s̃′′

1,b for 2 ≤ k ≤ o− 1 and 2 ≤ b ≤ n.
This system is also easily solvable in practice [6]. Thomae considered a further
easy method to solve the system (12) in [15]. If we successively recover F ′′

1 , we
put F ′′(1) as the first polynomial of F ′′

1 (the only polynomial that x1 occurs)
and remove x1 from F ′′

1 . We denote P ′
1 : F

n−1
q → F

o−2
q by a new public map

after removing the first polynomial from F ′′
1 . We remove the first polynomial of

the central map F ′ and denote it by F ′
1. Then we get P ′

1 = T ′
1 ◦ F ′

1 ◦ S ′
1.

Step N(2 ≤ N ≤ o − 2). In the previous step N − 1, we get P ′
N−1 = T ′

N−1 ◦
F ′

N−1 ◦ S ′
N−1 that xN only occurs in the first polynomial of F ′

N−1. In this step,
we also find T̃ ′′

N and S̃ ′′
N , which have similar forms to (7) and (10), respectively,

that the variable xN occurs only in the first polynomial of F ′′
N = T̃ ′′

N ◦P ′
N−1◦S̃ ′′

N ,
similar to the previous steps. Then we put F ′′(N) as the first polynomial of F ′′

N

which is the only polynomial such that xN occurs, and remove it from F ′′
N . We

denote P ′
N : F

n−N
q → F

o−N−1
q by a new public map after removing the first

polynomial from F ′′
N . We remove the first polynomial of the central map F ′

N−1

and denote xN by F ′
N . Then we get P ′

N = T ′
N ◦F ′

N ◦S ′
N , where T ′

N = T̃ ′′
N ◦T ′

N−1

and S ′
N = S ′

N−1 ◦ S̃ ′′
N , which is similar to the end of the previous step.

Last Step. After Step o − 2, we denote F ′′(o−1) by the remaining public poly-
nomials. We define

F ′′ = (F ′′(1), · · · ,F ′′(o−1)) : F
n
q → F

o−1
q

T ′′ = T ′′
o−2 ◦ · · · ◦ T ′′

1 , S′′ = S′′
1 ◦ · · · ◦ S′′

o−2,
(13)
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where S′′
N and T ′′

N for 1 ≤ N ≤ o − 2 are determined by the following n × n
matrices and (o − 1) × (o − 1) matrices, respectively, as:

S′′
N =

(
I(N−1)×(N−1) 0(N−1)×(n−N+1)

0(n−N+1)×(N−1) S̃′′
N

)
, T ′′

N =

(
I(N−1)×(N−1) 0(N−1)×(o−N)

0(o−N)×(N−1) T̃ ′′
N

)
.

Let T ′′ and S ′′ be affine maps determined by the matrices
(
T ′′)−1

and
(
S′′)−1

,
respectively. Then (F ′′,S ′′, T ′′) is an equivalent key of (F ′,S ′, T ′).

Our attacks on CSSv are similar to those on MQQ-ENC scheme in [6,15]. So,
complexity for out attack can be estimated similarly as in [6,15]. By Theorem
3.44 of [15], complexities of our KRAs are O(q2mn4), where q is even, and is
O(qmn4), where q is odd. Complexity of solving the system (12) for finding
good keys on CSSv is determined by Step 1, because the number of variables
for finding good keys in other steps is bounded by the number of variables in
Step 1. Complexity of solving a semi-regular (random) system of m quadratic
equations in n variables over Fq by HF5 [1] can be estimated as

CHF5(q,m, n) = mink≥0 qk · O
((

m ·
(

n − k + dreg − 1
dreg

))α)

,

where the degree of regularity dreg is the index of the first non-positive coefficient

in the Sm,n =
(1 − z2)m

(1 − z)n
and 2 ≤ α ≤ 3 is the linear algebra constant of solving a

linear system. In Table 1, we summarize lower bounds (α = 2) of the complexities
of KRAs using good keys on CSSv for suggested parameters in [4] using HF5 [1].

Table 1. Lower bonds of complexities of our attacks on CSSv for the suggested param-
eters.

Security level Parameter (q, o, v) Claimed security [4] KRAs using good keys

80 (28, 26, 13) 280 250

100 (28, 34, 17) 2100 254

128 (28, 44, 22) 2128 258

Phase 3: How to Forge Signatures. We have recovered an equivalent key
(F ′′,S ′′, T ′′) of P ′ i.e., P ′ = T ′′ ◦ F ′′ ◦ S ′′. To invert the map F ′′, we first
choose yo+1, · · · , yn at random, and plug them into F ′′(o−1) to get a univariate
quadratic equation with the variable xo. If we solve it, then plug yo, · · · , yn into
F ′′(o−2) to get a univariate quadratic equation with the variable xo−1. Similar
process for F ′′(N) to find xN for N = o − 3, · · · , 1. If any of the quadratic
equations is not solvable, we choose other values yo+1, · · · , yn and try again.
Since (F ′′,S ′′, T ′′) is the equivalent key of P ′ not P, we cannot easily find F (2)

or its linear combination with F ′′(k), where 1 ≤ k ≤ o − 1 from p(1). Thus, if we
succeed to find a valid signature from the equivalent key (F ′′,S ′′, T ′′), we should
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check that it satisfies the equation p(1). For it, let d = (d1, d2, · · · , do) ∈ F
o
q. We

can find z ∈ F
n
q such that P ′(z) = (d2, · · · , do) ∈ F o−1

q using the equivalent key
(F ′′,S ′′, T ′′). Then z is a valid signature for (p(1)(z), d2, · · · , do). The probability
that p(1)(z) = d1 is about 1

q if we assume that the image of p(1) is uniform.

3.2 Key Recovery Attacks on SVSv and SVSv2

Since the central map of SVSv is very similar to that of CSSv, the attacks on
CSSv can be easily applied to SVSv.

Phase 1. Since (F̂×idv) : F
n
q → F

n
q is an affine map, S ′ = (F̂×idv)◦S : F

n
q → F

n
q

is also an affine map. Then we see that

P = T ◦ F ◦ S = T ◦
(
F̄ ◦ (F̂ × idv)

)
◦ S = T ◦ F̄ ◦

(
(F̂ × idv) ◦ S

)
= T ◦ F̄ ◦ S ′

So, we can consider F̄ as the central map of SVSv.

Phase 2. A main difference between the two schemes is that the central map
of CSSv has one cubic polynomial, while that of SVSv has all quadratic poly-
nomials. Unlike the attacks on CSSv, we first remove xo from the public map
using the fact that xo only occurs in f̄ (o). Hence, we do similar process in the
previous section in order of decreasing indices of variables, for SVSv. Except the
above difference, the attack on SVSv is the same as that on CSSv resulting in
the same complexity.

In [3], the authors showed that SVSv was insecure against HighRank attacks
and then proposed a modified version, SVSv2. Our KRAs can be easily applied
to SVSv2. Unlike SVSv, SVSv2 uses S : F

n+s
q 
→ F

n
q instead of S : F

n
q 
→ F

n
q .

For a projection map πn : F
n+s
q 
→ F

n
q with πn(x1, · · · , xn+s) = (x1, · · · , xn),

we let F ′ : F
n+s
q 
→ F

o
q := F̄ ◦ πn, and S0 be an affine map in F

n+s
q such that

S = πn ◦ S0. Then S ′ := (F̂ × idv+s) ◦ S0 is also an affine map in F
n+s
q . Since

F ′ = F̄ ◦ πn and (F̂ × idv) ◦ πn = πn ◦ (F̂ ◦ idv+s), we get

F ◦ S = (F̄ ◦ (F̂ × idv)) ◦ S = (F̄ ◦ (F̂ × idv)) ◦ (πn ◦ S0) = F̄ ◦ ((F̂ × idv) ◦ πn) ◦ S0

= F̄ ◦ (πn ◦ (F̂ × idv+s)) ◦ S0 = (F̄ ◦ πn) ◦ ((F̂ × idv+s) ◦ S0) = F ′ ◦ S ′.

Although the central map of SVSv2 has v + s vinegar variables unlike v vinegar
variables of SVSv, the map F ′ also has the same vulnerability as in SVSv. Thus,
the same attack can be applied to SVSv2.

4 HighRank Attack on CSSv and SVSv

In HighRank attacks, one tries to identify the variables appearing the lowest
number of times in the central polynomials. Here, we show that CSSv and SVSv
are entirely broken by the HighRank attacks.
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4.1 HighRank Attack on CSSv

Now, we present an efficient HighRank attack on CSSv by eliminating an variable
which appears in only one polynomial to remove the cubic polynomial in the cen-
tral map. The central map of CSSv is defined by F = F̄ ◦ (F̂ × idv). We let F̂ ′ =
(y1, f̂ (2), . . . , f̂ (o)) and F̄ ′ = (f (1)◦(F̂ ′×idv)−1, f (2)◦(F̂ ′×idv)−1, f̄ (3), . . . , f̄ (o)).
Then F can be written as F = F̄ ◦ (F̂ × idv) = F̄ ′ ◦ (F̂ ′ × idv). Since F̂ ′

consists of affine polynomials and S is affine map, we can get an affine map
S ′ = (F̂ ′ × idv) ◦ S. We let Pπ1 = π1 ◦ P for π1(x1, . . . , xo) = (x2, . . . , xo)
and F̄ ′

π2 = π2 ◦ F̄ ′ for π2(x1, . . . , xo) = (x1, x3, . . . , xo). Note that F̄ ′
π2 =

(f ′(1), f ′(2), · · · , f ′(o−1)) : F
n
q → F

o−1
q is defined by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f ′(1) = f (1) ◦ (F̂ ′ × idv)−1,

f ′(2) = x2 · x3 + g3(xo+1, · · · , xn),
...

f ′(o−1) = xo−1 · xo + go(xo+1, · · · , xn).

(14)

We define an affine map T ′ satisfying π1 ◦ T = T ′ ◦ π2. Then the matrix T ′

representing the affine map T ′ is an (o − 1) × (o − 1) sub-matrix of T obtained
by removing the first row and the second column of T . Finally, we get

Pπ1 = π1 ◦ T ◦ F̄ ′ ◦ S ′ = T ′ ◦ π2 ◦ F̄ ′ ◦ S ′ = T ′ ◦ F̄ ′
π2

◦ S ′.

We assume that the secret key of CSSv consists of the central map F̄ ′
π2

, and
two affine maps T ′ and S ′. Note that Pπ1 is obtained by removing the first
component of P and F̄ ′

π2
is obtained by removing the second component of

F̄ ′. Thus, Pπ1 and F̄ ′
π2

have no cubic polynomial as components. We define the
matrix F (k) to be the symmetric matrix associated to the homogenous quadratic
part of the k-th component of F̄ ′

π2
for k = 1, . . . , o − 1. Similarly, we define the

matrix P (k) to be the symmetric matrix associated to the homogenous quadratic
part of the k-th component of Pπ1 for k = 1, . . . , o − 1 and S′ to be an n × n
matrix determined by the linear part of S ′.

Now, we want to find two matrices S̃ and T̃ for the public key such that

S′ · S̃ =
(

S̃o ∗
0 ∗

)

and T̃ · T ′ =

⎛

⎜
⎜
⎜
⎝

∗ ∗ · · · ∗
0 ∗ · · · ∗
...

. . .
0 ∗ · · · ∗

⎞

⎟
⎟
⎟
⎠

, where S̃o is a o × o matrix.

Phase 1. We focus on the variables appearing the lowest number of times in
the central map. Note that the variable x1 appears in only one polynomial of
F ′

π2
. We can find a linear combination of two public polynomials such that x1 no

longer occurs. This can be done by finding λ ∈ Fq such that Rank(P (i)+λP (1)) <
n for i 	= 1 as in [6]. However, it may happen that Rank(P (i) + λP (1)) remains
unchanged for all λ ∈ Fq in finite fields of even characteristic. This is because
that the rank of an alternating bilinear form is always even. To cover all cases,
we find λ1, λ2 ∈ Fq simultaneously such that
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Rank((P (2) + λ1P
(1))||(P (3) + λ2P

(1))) < n. (15)

Let M be the n × 2n matrix (P (2) + λ1P
(1))||(P (3) + λ2P

(1)). Then M is not
alternating. After finding λ1, λ2 ∈ Fq satisfying Eq. (15), we compute the kernel
of M whose elements are the parts of S̃. This kernel can be used to find another
λi ∈ Fq such that

Rank((P (4) + λ3P
(1))|| · · · ||(P (o−1) + λo−2P

(1))) < n. (16)

For v ∈ Ker(M), there exist λi for i = 3, . . . , o − 2 such that

v · (P (4) + λ3P
(1))|| · · · ||(P (o−1) + λo−2P

(1)) = 0 (17)

since the variable x1 appears in only one polynomial of F̄ ′
π2

. Equation (17) implies
that v · P (1) is dependent to v · P (i) for i = 4, . . . , o − 1. Hence we can get λi

for i = 3, . . . , o − 2 from (v · P (1), v · P (j)) for j = 4, . . . , o − 1. We denote
P

(i+1)
j + λijP

(1)
j by P

(i)
j+1 for i = 1, . . . , o − 2 and j ≥ 0, where P

(i)
0 = P (i). Then

(S′T)−1 · P
(i)
1 · S′−1 are a linear combination of F (2), . . . , F (o−1). Note that the

variables x2 and xo appear in only one polynomial of F (2), . . . , F (o−1). Hence we
find λ1, λ2 ∈ Fq such that

Rank((P (2)
1 + λ1P

(1)
1 )||(P (3)

1 + λ2P
(1)
1 )) < n − 1. (18)

Let Mi = (P (2)
i + λ1P

(1)
i )||(P (3)

i + λ2P
(1)
i ) for i ≥ 0, where M0 = M . Then we

have Ker(Mi) ⊂ Ker(Mi+1). We solve Eq. (17) for P
(1)
1 using v ∈ Ker(M2) \

Ker(M1). In this case, there are two different solutions (λ1, . . . , λo−3) since we
can eliminate F (2) or F (o−1) to get P

(i)
2 . We take one solution to give a bigger

Ker(Mi) than the previous kernel. We repeat this process until the dimension
of Ker(Mi) becomes o. Finally, we extend the column vectors of S̃ to a basis

of F
n
q and let T̃ =

(
1 0
λT Io−2

)

where Io−2 is the identity matrix of order o − 2

and λ = (λ1, . . . , λo−2) such that P
(k−1)
1 = P

(k)
0 + λk−1P

(1)
0 for k = 2, . . . , o − 1.

Then complexity of our attack is O(n3w), where 2 ≤ w < 3 is the linear algebra
constant. It follows from Theorem 5 in [6].

Phase 2: How to Forge Signatures. We get k-th components of T̃ ◦ Pπ1 ◦ S̃
for k = 2, . . . , o − 1 as

S̃T · (S′T ·
n∑

j=2

tkjF
(j) · S′) · S̃ =

(
F̃

(k)
1 ∗
0 F̃

(k)
2

)

.

Thus, we get

F̃
(k)
1 = S̃T

o ·
n∑

j=2

tkjF
(k)
1 · S̃o and F̃

(k)
2 = S̃T

o ·
n∑

j=2

tkjF
(k)
2 · S̃o



322 K.-A. Shim et al.

and separate F
(k)
1 and F

(k)
2 in F (k). Since F

(k)
1 consists of sparse polynomials,

we can solve F̃ (x) = (F̃ (1)
1 (x), . . . , F̃ (o)

1 (x)) = δ for δ ∈ F
o
q using Gröbner basis

method. Algorithm 1 summarizes how to forge signatures of CSSv.

Algorithm 1. Signature Forgery of CSSv
INPUT: S̃, T̃ obtained from the HighRank attack, a public key P and a message m

OUTPUT: z such that P(z) = h(m)

1: Randomly choose (e1, . . . , ev) ∈ F
v
q .

2: Let x = (x1, · · · , xo, e1, · · · , ev) and T̃ ′ =

(
1 0

0T T̃

)

, where 0 is an 1 × (o − 1) zero

matrix.
3: Using Gröbner basis method, compute a solution μ of (T̃ ′ ◦ P ◦ S̃)(x) = T̃ ′(h(m)).
4: Compute z = S̃(μ) which is a signature of m.

Practical Attack. We implement this attack on CSSv with MAGMA v 2.19-
10 which contains an efficient implementation of Faugère’s F4 algorithm using
Gröbner basis [5]. The experiments are performed on Intel Xeon E5-2687W CPU
3.1 GHz with 256 GB RAM. The running times in Table 2 are the whole time to
mount the High-Rank attack including the time to solve each quadratic system
by using Gröbner basis. In Table 2, dreg is the largest degree appearing during
the computation of Gröbner basis.

Table 2. Results of practical attacks on CSSv for the suggested parameters.

CSSv(q, o, v) (28, 26, 13) (28, 34, 17) (28, 44, 22)

Security level 80 100 128

dreg 3 3 3

Time (second) 6.53 24.97 122.24

4.2 HighRank Attack on SVSv

The same HighRank attack can be easily mounted to SVSv since the central
map of SVSv is very similar to that of CSSv, moreover its central map con-
sists of quadratic polynomials. In SVSv, xi for 1 ≤ i ≤ o − 1 appears only two
polynomials, (f̄ (i), f̄ (i+1)) in the central map F̂ and xo appears only one polyno-
mial f̄ (o). According to the result in [17], to achieve a 128-bit security level, the
lowest number of times of all the variables in the central polynomials should be
appeared in more than 15 polynomials. In [3], the authors proposed an improved
version of SVSv, SVSv2, for preventing the HighRank attack. However, SVSv2
is still insecure against the attack since they modified SVSv by replacing two
affine maps maintaining the cental map F̂ . Thus, they have the same variables
appearing the lowest number of times in the central polynomials only once or
twice.
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5 Conclusion

We have shown that the two MQ-signature schemes, CSSv and SVSv are insecure
against the key recovery attacks using good keys and the HighRank attacks. In
particular, we have succeeded to forge signatures of CSSv on any message at an
128-bit security level in 2 min by using the HighRank attacks.
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Abstract. Nowadays, smartphones are widely adopted in people’s daily
lives. With the increasing capability, phone charging has become a basic
requirement and a large number of public charging facilitates are under
construction for this purpose. However, public charging stations may
open a hole for cyber-criminals to launch various attacks, especially
charging attacks, to steal phone user’s private information. Juice filming
charging (JFC) attack is one such threat, which can refer users’ sensitive
information from both Android OS and iOS devices, through automati-
cally monitoring and recording phone screen during the whole charging
period. Due to the potential damage of JFC attacks, there is a need to
investigate its influence in practical scenarios. Motivated by this, in this
work, we firstly conduct a large user survey with over 2500 participants
about their awareness and attitude towards charging attacks. We then
for the first time investigate the impact of JFC attack under three prac-
tical scenarios. Our work aims to complement the state-of-the-art and
stimulate more research in this area.

Keywords: Smartphone privacy · Android and iOS · Video recording
Charging station · Juice filming charging attack · Practical evaluation

1 Introduction

Mobile devices are widely adopted by millions of people, in which the number of
smartphone users is forecast to grow from 1.5 billion in 2014 to around 2.5 billion
in 2019. International Data Corporation (IDC) reported that phone shipments
grew 5.3% from 344.7 million in the second quarter of 2016, and vendors shipped
a total of 362.9 million smartphones worldwide in the third quarter of 2016 [6].
c© Springer International Publishing AG, part of Springer Nature 2018
H. Kim and D.-C. Kim (Eds.): ICISC 2017, LNCS 10779, pp. 327–338, 2018.
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Current smartphones are able to provide various tasks, so that more and more
users are likely to store their personal and private data on the phones. Due to the
increasing capability, people are often using smartphones in their daily lives (e.g.,
playing gaming app, video-chatting with friends), which may greatly increase the
demand of recharging their mobile devices. To meet this requirement, more and
more public charging stations are under construction.

For instance, Singapore Power (SP) promised to deploy up to 200 free mobile
charging stations for SG50 [24]. These stations will be launched progressively in
various busy locations including hospitals, tertiary institutions, libraries and
supermarkets, and will become available in one to two years. In particular, each
station will be equipped with 10 individual slots, which contain multiple charging
connectors such as mini and micro USBs that can fit most mobile phones and
tablets. These charging facilitates can greatly benefit smartphone users; however,
they may also expose a big threat on smartphone privacy and security, since
we are not sure that these charging facilities are not maliciously controlled by
cyber-criminals (e.g., charging station developers and managers, Government
agencies). For example, Lau et al. [8] in 2013 presented Mactans, a malicious
charger that can launch malware injection attacks using BeagleBoard after users
connect their phones to the charger. Spolaor et al. [23] proposed PowerSnitch, a
malicious application that can refer users’ data by analyzing power consumption
over a USB charging cable during the charging period. As a result, there is a
significant need to pay more attention to the defence of charging threats.

Mactans and PowerSnitch can work on either iOS or Android devices, while a
scalable charging attack was developed by Meng et al., called juice filming charg-
ing (JFC) attack, which can be effective on both Android and iOS platforms [16].
This attack can steal users’ sensitive information through automatically mon-
itoring and recording phone screen (including users’ input) during the period
of phone charging, as long as people keep charging and interacting with their
phones. Moreover, such attack can be launched automatically by integrating
with OCR technology [16]. As JFC attack does not install any piece on phone’s
side or require any permission from users, it may have a large impact on users’
privacy and increase the difficulty of detection. Previous studies have verified
that current anti-virus software are unable to detect JFC attacks [15,16].

Contributions. In literature, several simulated scenarios had been investigated
regarding charging threat, but there is no real evaluation under practical envi-
ronments. Due to the potential damage of charging attacks, in this work, we
focus on JFC attack and conduct an empirical study to investigate its influence
in three practical environments for the first time. In particular, we conduct a
large survey to study users’ attitude towards charging attacks and investigate
the influence of JFC attack based on practical setup. The contributions of our
work can be summarized as below.

– We conduct a large survey with over 2500 participants to explore users’
attitude and awareness towards charging attacks. There are two ways to
distribute the questions: online form and paper form. The collected results
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describe a security concern that most phone users are not aware of charging
threat.

– We then introduce how to launch JFC attack with a cloud and investigate
its practical impact on users’ privacy in three practical locations. To our
knowledge, this is the first work that evaluates the influence of JFC attack in
real scenarios. We are particularly interesting in the number and the total size
of collected videos, which determine how much information can be extracted.

The remaining parts are organized as follows. Section 2 introduces the back-
ground of JFC attack. Section 3 describes our survey and analyzes the obtained
results. In Sect. 4, we describe how to setup JFC attack in real scenarios and
investigate its practical influence. We discuss related studies in Sect. 5 and con-
clude this work in Sect. 6.

2 Background

JFC attack is able to steal users’ private information through automatically
video-capturing phone screens when users are playing their phones (or phone
screen awake) during the whole charging period [15]. This attack does not need
to install any additional parts or ask for any permissions on phone’s and user’s
side. By integrating with OCR technology, JFC attack can provide seven fea-
tures: (1) can be easy to implement but quite efficient; (2) with less user aware-
ness; (3) does not need to install any additional apps or components on phones;
(4) does not need to ask for any permissions; (5) be hard to be detected by cur-
rent anti-malware software; (6) can be scalable and effective on both Android OS
and iOS devices; and (7) can automatically handle collected videos and extract
information.

Threat model. There are two basic assumptions: (1) phone charging is a basic
and common demand for smartphone users, and (2) most smartphone users
would not treat public chargers as highly sensitive or dangerous. It is not hard
to observe that many smartphone users charge their phones in public places
such as airports, subways, shops and so on. Generally, charging attacks can be
divided into either public or private. In particular, a public charging attack works
mainly based on a public charger like charging interfaces provided by airports,
while a private charging attack often utilizes a private charger from friends or
other familiar persons.

Basic idea. The design of JFC attack is based on the observation that no per-
mission would be asked when plugging iPhones or Android phones to a projector,
but the projector can automatically display the phone screen. In addition, there
are no compelling notification on the screen when the device is being plugged,
or the indicators are very small and last only few seconds. Taking advantage
of these, JFC attack can automatically video-record users’ inputs by using a
VGA/USB interface. This attack reveals that the phone display can be leaked
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Fig. 1. The high-level architecture of juice filming charging attack.

through a standard micro USB connector that uses the Mobile High-Definition
Link (MHL) standard. For iPhones, the lighting connector is used.

The high-level setup of JFC attack is depicted in Fig. 1. When users connect
their phones to JFC charger facilities, the phone screens can be video-captured
into video files in the back-end. These collected sensitive videos can be stored
and processed to extract private information.

Real setup. To implement JFC attack, choosing an appropriate VGA/USB
interface is critical as there are many alternatives online. The previous stud-
ies like [15,16] employed a hardware interface called VGA2USB from Epiphan,
which is particularly a full-featured VGA/RGB frame grabber, and is responsible
for sending a digitized video signal from VGA to USB.1

The real setup is shown in Fig. 2: the connected iPhone screen could be cap-
tured in the computer end. It is easy to imagine that all phone screen information
would be captured by JFC attack including users’ inputs such as typed pass-
words, PIN code, email address, used application types and so on. It is worth
noting that the hardware interface and other cables can be replaced by smaller
devices or hidden by a power bank, which only provides an external charging
cable as shown in Fig. 3: Fig. 3(a) shows how to construct a JFC-based power
bank (e.g., [16]) and Fig. 3(b) describes a charger box that can be used to launch
JFC attack.2

Collected private information. In Fig. 4, we present several images of col-
lected phone screen via JFC attack. In particular, Fig. 4(a) shows the captured
screen for inputting a 6-digit PIN on an iPhone, Fig. 4(b) presents the captured
screen of bank login, and Fig. 4(c) shows the captured screen of Line chat. These
examples indicate that various information can be extracted by analyzing the
recorded videos, and that JFC attack may become a big threat for smartphone
privacy and security.

1 http://www.epiphan.com/products/vga2usb/.
2 http://www.coolthings.com/life-spot-smartphone-charging-station/.

http://www.epiphan.com/products/vga2usb/
http://www.coolthings.com/life-spot-smartphone-charging-station/
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Fig. 2. Real setup for juice filming charging attack using VGA2USB.

Fig. 3. (a) The construction of JFC-based power bank and (b) a charger box.
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Fig. 4. Collected private information by JFC attack. (a) PIN Input, (b) Bank Login,
and (c) Line Chat.

3 User Awareness

User awareness is a critical factor that affects the impact of a security threat such
as malware spread, spam and charging threat. In this section, we conduct a large
survey including over 2500 participants, with the purpose of investigating users’
awareness and attitude towards malware, charging attacks and public charger
usage. The survey results aim to complement existing studies like [15,16].

Participants. We have two ways to distribute our questions through either
online form or paper form. A total of 2570 participants attended our study
and gave their feedback including students, engineers, professors, researchers,
teachers, business people and senior people. All participants are volunteers and
have no security background (i.e., without attending any security related courses
before). They are aged from 18 to 65 and the detailed information of partici-
pants is summarized in Table 1. It is worth noting that up to 64.2% of them are
currently using Android phones and 1783 participants were distributed by an
online form.

Survey results. The main survey questions and users’ feedback are summarized
in Table 2. It is noticeable that 1253 (48.8%) of the participants had installed one
kind of anti-virus software on their smartphones. Encouragingly, there are 1082
(42.1%) participants can specify the name of at least one smartphone malware.
Similar to the previous study [16], these two questions present that common
smartphone users have paid more attention to defend against malware (i.e.,
nearly half of them had installed a security mechanism such as anti-virus to
protect their phones from malicious applications).

For the questions regarding smartphone charging, it is found that 1768
(68.8%) of the participants had the need to recharge their phones in public places.
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Table 1. Information of participants in the study.

Occupation Male Female

Students 773 801

Engineers 108 115

Professors/teachers 52 68

Researchers 101 130

Business people 102 91

Senior people 119 110

Table 2. User feedback in the survey about malware, charging threat and charger
usage.

Questions # of Yes # of No

Have you installed any anti-virus software on your
smartphones?

1253 1317

Can you specify any kind of smartphone malware? 1082 1488

Do you have the need to charge your
phone in public places like airport?

1768 802

Are you willing to use a public charging
station (e.g., in airport, shops)?

1455 1115

Do you have the potential to interact with
your phone during charging like chatting with friends?

1678 892

Do you know any charging attack (i.e., attacks
through a USB charging cable)?

582 1988

With the increase of phone usage, this number seems to continue increasing. Due
to the demand of charging, 1455 (56.6%) of the participants adopt the use of
a public charging station in several places (e.g., in shops, airports). During the
charging period, up to 1678 (65.2%) participants reported that they were likely
to interact with the phone. For example, they may check their emails and chat
with their friends or family members. Unfortunately, 1988 (77.3%) of them were
not aware of charging attacks.

Overall, the survey results demonstrate that users would pay less attention
to smartphone charging threat as compared to malicious applications (malware);
thus, charging attacks have a large potential to cause more victims than malicious
applications due to the lack of user awareness in practice. These observations
are in line with the observations in former studies [15,16].

4 Practical Impact

According to the above survey results, JFC attack has the potential to collect
users’ private information in large. In this section, different from the former
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Fig. 5. The high-level deployment for JFC chargers.

research [15,16], our motivation is to investigate the impact of JFC attack in
practical environments. We have two particular interests:

– The number of videos that could be collected from JFC attacks each day.
– The total size of recorded video that could be extracted for private informa-

tion each day.

Deployment. To launch JFC attack in practical scenarios, we seek approval and
collaborated with three organizations: a company (with over 200 personnel), a
university and a business hall. In particular, we deployed five JFC chargers for
each environment, where the chargers can keep uploading the recorded videos
to a cloud in the back-end, as shown in Fig. 5. After uploading the videos suc-
cessfully, the chargers can delete the corresponding videos locally in order to
save space for new videos. The back-end was capable of 250 G hardware space,
where one minute-video may need 30M space. The video processing with OCR
technology can be referred to [16]. The deployed location for each environment
is described as below.

– Company environment. Five chargers were deployed in one main dining room,
where most personnel would spend their time having breakfast, lunch and
even dinner.

– University environment. Five chargers were deployed at the ground floor of
two teaching buildings, so that students can use when they have a rest.

– Business hall environment. Five chargers were deployed around the hall, so
that visitors can use when queuing up (i.e., waiting for the number).

Data Collection and Results. To protect users’ privacy, we seek users’
approval and all data will be deleted after processing. At least one IT adminis-
trator helped monitor the whole process and make sure all steps are correct.
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Table 3. Extracted information in practical environments.

User information User information

Android unlock pattern/PIN for iPhones Gmail account and content

Other email account and content (e.g., Sina,
163)

Social networking account
(e.g., Facebook, Twitter, Wechat, QQ)

Bank account and bank message Visited website content

Social networking chat history
(e.g., Facebook, Twitter, Wechat, QQ)

Installed mobile applications

Email passwords (web-login) Phone number list

Smartphone settings Personal photos

We performed JFC attack in each environment for five days (i.e., from Mon-
day to Friday). The average number of recorded videos is shown in Fig. 6. The
opening hours for both the company and the business hall are from 8 am to 8
pm, so that we mainly recorded the information from 7 am to 10 pm by consid-
ering the university environment. The figure shows that JFC chargers can collect
more than 250, 500 and 350 videos each day for company environment, univer-
sity environment and business hall environment, respectively. More specifically,
it is found that JFC chargers could collect the highest number of videos during
the time period of 12–17. This is because most of their phones were out of power
due to the usage in the morning, and there is a high possibility of charging their
phones during this period.

Intuitively, each video has a different length and size, in which a longer video
may provide more private information about a smartphone user. As a result, one
of our interests is to explore the total size of collected videos. Figure 7 depicts the
average total size of collected videos for each environment. It is noticeable that
JFC chargers could collect 8.5 G, 20 G and 13 G data each day for company envi-
ronment, university environment and business hall environment, respectively.
From these collected videos, we can extract a large amount of private infor-
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mation about users, as shown in Table 3, such as Android unlock pattern, PIN
for iPhones, Email account and content, social networking chat history, visited
website, personal photos and so on. On the whole, our results validate that JFC
attack can make a large impact on smartphone users’ privacy. There is a need
to increase users’ awareness towards such attack.

5 Related Work

In literature, physical side channel is believed to be an effective method to infer
users’ private information and data. Such attacks are often based on oily residues
left on the touchscreen. Aviv et al. [1] had explored the feasibility of smudge
attacks on touch screens. They considered different lighting angles and light
sources and the results indicated that the pattern could be partially identifiable
in 92% and fully in 68% of the tested lighting and camera settings. Zhang et
al. [27] proposed a fingerprint attack against tapped passwords via a keypad
instead of graphical passwords. Their experiments on various platforms including
iPad, iPhone and Android phone demonstrated that the attack can reveal more
than 50% of the passwords in most cases. Raguram et al. [21] presented that
automated reconstruction of text typed on a mobile device’s virtual keyboard
is possible via compromising reflections such as those of the phone in the user’s
sunglasses. Their results showed that their approach could reconstruct fluent
translations of the recorded data.

Charging attacks are often ignored by phone users. To our knowledge, Lau
et al. [8] designed Mactans, an early malicious charger that used BeagleBoard
to conduct malware injection on iOS smartphones. However, a major drawback
is that their attack requires users to unlock the phone screen and install devel-
oper licenses in advance. Spolaor et al. [23] described PowerSnitch, a malicious
application that can refer personal data on smartphones by analyzing power
consumption over a USB charging cable. The scalability is a major limitations
for this charging attack. Juice filming charging (JFC) attack [15,16] is a scal-
able charging attack, which works on both Android and iOS devices, and can
record screen information during the whole charing period, without the need
to request any permission or action to unlock phone screen. In this work, we
conduct an empirical study to investigate the impact of JFC attack in practical
environments. Some other related work can be referred to [17–19].

6 Conclusion

As compared to mobile malicious applications, charging threats are often ignored
by the literature. In this paper, we focus on juice filming charging (JFC) attack,
which has the capability of referring users’ private data from both Android OS
and iOS devices, through automatically monitoring and recording phone screen
during the charging period. The rationale is that screen information can be
leaked through a standard micro USB connector that employs the Mobile High-
Definition Link (MHL) standard.
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Due to the potential damage of charging threat, we focus on JFC attack
and perform an empirical study for the first time to investigate the impact of
JFC attacks in practical environments. In particular, we conduct a user survey
with over 2500 participants about their awareness and attitude towards charg-
ing attacks, and then investigate the impact of JFC chargers in three practical
scenarios like company environment, university environment and business hall.
The results validate that JFC attack would have a large impact on smartphone
users’ privacy. Our work aims to stimulate more research in this area and raise
user awareness of such threat.

Acknowledgment. We would like to thank all participants for their efforts made in
the survey and the collaborating organizations for assisting the real deployment and
evaluation.
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Abstract. Detecting unknown malicious traffic is a challenging task.
There are many behavior-based detection methods which use the char-
acteristic of drive-by-download attacks or C&C traffic. However, many
previous methods specialize the attack techniques. Thus, the adaptabil-
ity is restricted. Moreover, they need to decide the feature vectors every
attack method. This paper proposes a generic detection method which
does not depend on attack methods and does not need devising fea-
ture vectors. This method reads network packets as a natural language
with Paragraph Vector an unsupervised algorithm, and learns the feature
automatically to detect malicious traffic. This paper conducts timeline
analysis and cross-dataset validation with the multiple datasets which
contain captured traffic from Exploit Kit (EK). The best F-measure
achieves 0.98 in the timeline analysis and 0.97 on the other dataset.
Finally, the result shows that using Paragraph Vector is effective on
unseen traffic in a linguistic approach.

Keywords: Drive by download · C&C · Neural network
Bag of Words · Word2vec · Paragraph Vector · Doc2vec
Support Vector Machine

1 Introduction

In recent years, Drive-by Download attack (DbD attack) and Spear Phishing
attack are main attack techniques on the Internet. In general, intrusion detec-
tion techniques on a network are classified roughly into pattern-matching-based
methods and methods using blacklists. The pattern-matching-based methods
are effective, if the malicious traffic contains a unique string pattern. IDS uses
fixed strings or regular expression to describe the signatures. However, recent
Exploit Kits (EKs) (e.g. Angler EK, RIG EK) communicate via a standard pro-
tocol to imitate benign http traffic. EK is a software kit designed to run on web
servers, with the purpose of identifying software vulnerabilities in client machines
communicating with it. EK discovers and exploits vulnerabilities to upload and
execute malicious code on the client via standard protocols. Some queries do not
contain the EK specific strings. Therefore, it is difficult to describe the signatures.
In this case, IDS can use the malicious destination server (e.g. Landing site, C&C
c© Springer International Publishing AG, part of Springer Nature 2018
H. Kim and D.-C. Kim (Eds.): ICISC 2017, LNCS 10779, pp. 339–350, 2018.
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server) address as the signature. A firewall or a proxy server can also use the
malicious destination server address as the blacklist. However, the attacker can
change the malicious destination servers to evade detection by network devices.
Some attackers use compromised hosts as stepping stones. Therefore, using the
blacklist does not play a critical role. In addition, the malicious server address
has to be already-known before the cyberattack. Thus, detecting unknown mali-
cious traffic is a challenging task.

There are many behavior-based detection methods to detect unknown mali-
cious traffic. These methods capture the characteristics of DbD attacks [22–24] or
C&C traffic [9,10], and detect unseen malicious traffic. Many previous methods,
however, can detect only DbD attacks or C&C traffic. Because these methods
usually use different detection techniques. If attackers modify the attack tech-
niques, these previous methods barely detect unseen malicious traffic. Besides
security researchers need to devise the feature vectors to capture the character-
istics. Furthermore, some attackers still use protocols other than http or https.
For instance, recent WannaCry ransomware uses Server Message Block (SMB) to
compromise Windows machines, load malware, and propagate to other machines
in a network. SMB is a transport protocol used by Windows computers for a
wide variety of purposes such as file or printer sharing.

This paper focuses on the characteristic that Neural Network (NN) learns
feature vector representation automatically. In this paper, we presume network
packets are written in a natural language, and attempt to learn the difference of
benign traffic and malicious traffic automatically with Paragraph Vector. Para-
graph Vector is an unsupervised algorithm that learns fixed-length feature rep-
resentations from variable-length pieces of texts. Then we input the extracted
feature vectors with the label into supervised learning models to classify benign
traffic and malicious traffic. The key idea of this research is reading network
packets as a natural language.

This paper proposes a generic detection method, which does not depend on
attack methods and does not need devising feature vectors. Our generic detec-
tion method does not rely on protocols and attack techniques, and does not
demand devising feature vectors. This paper conducts timeline analysis with the
dataset which contains captured traffic from Exploit Kit (EK) between 2014
and 2017. We used the most up-to-date captured traffic which was downloaded
from the website Malware-Traffic-Analysis.net [1]. This paper also demonstrates
cross-dataset validation by showing that an automated feature extraction scheme
learned from one dataset can be used successfully for classification on another
dataset. The best F-measure achieves 0.98 in the timeline analysis and 0.97
on the other dataset. Finally, the result shows that using Paragraph Vector is
effective on unseen traffic in a linguistic approach.

The main contributions of this paper are four-fold: (1) Proposed a generic
detection method which did not rely on protocols and attack techniques. (2)
Verified that the proposed method could detect up-to-date EKs. (3) Verified
that the proposed method was effective on another dataset. (4) Verified that
using Paragraph Vector is effective on unseen traffic in a linguistic approach.
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The rest of the paper is organized as follows. Next section briefly discusses
related works and makes clear the difference among our method and previous
methods. Section 3 describes Natural Language Processing (NLP) techniques
which include Paragraph Vector. Section 4 proposes a generic detection method
based on the NLP techniques. Section 5 shows experimental results applying the
proposed method to the multiple datasets. Section 6 discusses the results, and
reveals the performance and effectiveness.

2 Related Work

In general, the main studies of network intrusion detection include signature-
based detection and behavior-based detection. Signature-based detection relies
on an existing signature database to detect known malicious traffic, and barely
detects unknown malicious traffic. Therefore, many behavior-based detection
methods are proposed. For example, some methods focused on the traffic clas-
sification from packet traces [4–8]. Analyzing packets is, however, becoming
intractable on broadband networks. The alternative approach is classification
based on network logs such as DNS records, NetFlow or proxy server logs. There
are several methods which use NetFlow [9,10], DNS records [11–14] and proxy
server logs [15–22]. However, recent Exploit Kits (EKs) (e.g. Angler EK, RIG
EK) communicate via a standard protocol to imitate normal http communica-
tion. Furthermore, some attackers use compromised hosts as stepping stones.
Thus, detecting recent EKs from logs is becoming a challenging task. There-
fore, many methods use additional contents to distinguish malicious traffic from
seemingly benign traffic. For instance, some methods analyze JavaScript code to
detect these EKs [23,24].

These previous methods utilize the characteristic of DbD attacks or C&C
traffic well. However, their good contrivance can backfire. Many previous meth-
ods specialize the attack techniques, and the adaptability is limited. In addition,
many previous methods using machine learning technique demand devising fea-
ture vectors to distinguish malicious traffic. In other words, the essence of the
previous works was how to extract feature vectors from network traffic, logs and
contents. Our method is fundamentally different and based on the other view-
point. Our method is a generic intrusion detection method which can detect
many attack techniques with a simple technique. Our method does not demand
devising feature vectors. Because our method learns the difference of benign
traffic and malicious traffic automatically with NN.

3 Natural Language Processing (NLP) Technique

3.1 Word2vec

To calculate various measures to characterize a text, we have to transform the
text into a vector. Word2vec [2] is a model that produces word embedding.
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Word embedding is the collective name for a set of language modeling and fea-
ture learning techniques in NLP where words from the vocabulary are mapped
to vectors of real numbers. This model is a shallow, two-layer neural network
that is trained to reconstruct linguistic contexts of words. This model takes as its
input a large corpus of text and produces a vector space, with each unique word
in the corpus being assigned a corresponding vector in the space. Word vectors
are positioned in the vector space such that words that share common contexts
in the corpus are located in close proximity to each other in the space. Word2vec
is based on the distributional hypothesis, which motivates that the meaning of
a word can be gauged by its context. Thus, if two words occur in the same
position in two sentences, they are very much related either in semantics or syn-
tactic. Word2vec utilizes two algorithms to produce a distributed representation
of words. One is Continuous-Bag-of-Words (CBoW), and the other is skip-gram.
In the CBoW algorithm, the model predicts the current word from a window
of surrounding context words. In the skip-gram algorithm, the model uses the
current word to predict the surrounding window of context words. Word2vec
enables to calculate the semantic similarity between two words and infer similar
words semantically. However, Word2vec is a model that merely produces word
embedding. To calculate the semantic similarity between two documents, this
model has to be extended.

3.2 Paragraph Vector (Doc2vec)

An extension of Word2vec to construct embedding from entire documents has
been proposed [3]. This extension is called Doc2vec or Paragraph2vec, and has
been implemented. Doc2vec is based on the same distributional hypothesis,
which motivates that the meaning of a sentence can be gauged by its context.
Thus, if two sentences occur in the same position in two paragraphs, they are
very much related either in semantics or syntactic in the same way. Doc2vec
utilizes two algorithms to produce Paragraph Vector a distributed representa-
tion of entire documents. One is Distributed-Memory (DM), and the other is
Distributed-Bag-of-Words (DBoW). DM is an extension of CBoW, and the only
change in this model is adding a document ID as a window of surrounding context
words. DBoW is an extension of skip-gram, and the current word was replaced by
the current document ID. Doc2vec enables to calculate the semantic similarity
between two documents and infer similar documents semantically. Some imple-
mentations support also inference of document embedding on unseen documents.
This function is important to develop a practical system to detect unseen mali-
cious traffic. Because, unseen malicious traffic might include an unknown word
(e.g. newly-changed FQDN, random strings).

4 Proposed Method

4.1 Translating Network Packets into a Language

The key idea of our method is reading network packets as a natural language.
In order to apply NLP techniques, network packets have to be translated and
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Fig. 1. Summary lines in a transport layer.

Fig. 2. Summary lines in an application layer.

separated into words. However, reading network packets is becoming intractable
on broadband networks. Therefore, we need a lightweight translation method.
To translate network packets into a language, we use TShark [25] a network
protocol analyzer, which captures and decodes packet data from a network.
TShark displays a summary line for each received packet. The summary line
consists of some fields such as source and destination IP address, protocol, size
and basic contents. Our method uses these fields as separated words.

Figure 1 shows summary lines in a transport layer. In a transport layer, our
method uses protocol, port number, size and flags. Our method ignores other
parameters, because there are a very wide range of the types.

Figure 2 shows summary lines in an application layer. In an application layer,
our method uses all fields after protocol. Furthermore, our method separates
FQDN (Fully Qualified Domain Name) by “dot” (.). Then we can derive top
level domain name, sub domain name and so on, which means the country,
organization, use or the purpose (e.g. www, mail). Our method separates path
by “slash” (/) and “dot” (.), “question mark” (?), “equal” (=) and “and” (&).
Then, we can derive the directory name, file name, extension from the path. We
can also derive the variable names and values from the query string, which are
used in the running program on the server.

4.2 Proposed Method

Figure 3 shows an overview of our method. First, our method constructs a corpus
from known malicious traffic and benign traffic. Each traffic is translated and
separated by the previously mentioned method. In this paper, we use 2 reading
methods. Table 1 shows a summary of the reading methods. Each method reads
only each layer, and collects 100 summary lines for a paragraph.
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Fig. 3. An overview of the proposed method.

Table 1. A summary of the reading methods

Method Layer Contents

Method 1 Transport layer Protocol, port number, size

Method 2 Application layer FQDN, path, user agent

Then, the Doc2vec constructs a vector space from the corpus, and converts
each paragraph into vectors with the labels. These labeled vectors are training
data for a classifier. In this time, we use Support Vector Machine (SVM) for
the classifier. A SVM model is a representation of the training data as points in
space, mapped so that the training data of the separate categories are divided
by a clear gap that is as wide as possible. Test data are mapped into that same
space and predicted to belong to a category based on which side of the gap they
fall. Given a set of training data, each labeled as belonging to one or the other of
two categories, this training algorithm builds a model that assigns new examples
to one category or the other.

After that, we convert unknown traffic into vectors. These unlabeled vectors
are test data for the classifier. Finally, we input these unlabeled vectors to the
trained classifier, and can obtain a predicted label. The predicted label is either
malicious or benign.

4.3 Implementation

The proposed method was developed by Python-2.7 with open source machine
learning libraries, gensim-1.01 [26] and scikit-learn-0.18.0 [27].

Gensim is a Python library to realize unsupervised semantic modelling from
plain text, and includes a Doc2vec model. Table 2 shows the parameters for the
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Table 2. The parameters for the Doc2vec model

Dimensionality of the feature vectors 100

Window 15

Number of epochs 30

Training algorithm DBoW

Doc2vec model. We set the dimensionality of the feature vectors 100, and chose
DBoW which was an extension of skip-gram. The window is the maximum dis-
tance between the predicted word and context words used for prediction within
a document. Scikit-learn is a machine-learning library for Python that provides
tools for data mining with a focus on machine learning. The proposed method
uses a SVC function with a linear kernel for SVM.

5 Experiment

5.1 Dataset

To reveal the effectiveness to up-to-date EKs, we use captured pcap files from
EKs between 2014 and 2017 (MTA dataset), which were downloaded from the
website Malware-Traffic-Analysis.net [1]. We also use D3M (Drive-by Download
Data by Marionette) dataset and NCD (Normal Communication Data in MWS-
Cup 2014) for the cross-dataset validation. These datasets are parts of MWS
datasets [28], and include pcap files. MTA and D3M contain malicious traffic
and NCD contains benign traffic. Table 3 shows the detail.

The MTA dataset contains traffic from the following EKs, Angler EK, Fiesta-
EK, FlashPack-EK, Magnitude EK, Neutrino EK, Nuclear EK and RIG EK.
D3M is a set of packet traces collected from the web-client, high-interaction
honeypot system, which is based on Internet Explorer on Windows OS with
several vulnerable plugins, such as Adobe Reader, Flash Player, Java and so on.
This dataset contains traffic from EKs (e.g. Blackhole EK, Elenore, Mpack).

Table 3. The detail of the datasets.

MTA D3M

Year Size Year Size

2014 238M 2010 130M

2015 186M 2011 24.8M

2016 373M 2012 33.2M

2017 109M 2013 14.6M

- - 2014 23.3M

- - 2015 334M
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We extracted summary lines from these pcap files with TShark. After that,
we compounded the malicious summary lines and the benign summary lines into
a dataset at the same rate. We split the dataset into training data and test data
to conduct timeline analysis and cross-dataset validation. The proposed method
uses only training data to construct a corpus. Because, our method presumes that
the test data is completely unknown traffic in practical condition. To compare
the characteristics of our method, we also use a Bag-of-Words (BoW) model.
BoW is a simplifying representation used in natural language processing. The
most common type of features calculated from BoW is the number of times a
term appears in the sentence. In the timeline analysis, we chose an annual traffic
as training data, and the subsequent traffic is the test data.

5.2 Result

In this experiment, we use 3 metrics: Precision (P), Recall (R) and F-measure
(F). Table 4 shows the results of the timeline analysis.

Contrary to expectations, BoW was generally more effective than Doc2vec
with the method 1. The both F-measures maintain a generally constant values
over three years, and the best one has reached 0.96. This result means that word
frequency is the most distinctive feature in a transport layer.

Doc2vec was generally more effective than BoW with the method 2. The best
F-measure has reached 0.98 in the next year, and the both F-measures gradually
decrease. This result means that Doc2vec capture distinctive features other than
word frequency in an application layer.

Table 4. The result of the timeline analysis.

Method Training data Test data Model NCD (Benign) MTA (Malicious)

P R F P R F

1 2014 2015 BoW 0.97 0.93 0.95 0.93 0.97 0.95

Doc2vec 0.94 0.80 0.86 0.93 0.95 0.88

2016 BoW 1.00 0.92 0.96 0.92 1.00 0.96

Doc2vec 0.97 0.78 0.87 0.82 0.97 0.89

2017 BoW 0.99 0.92 0.95 0.92 0.99 0.96

Doc2vec 0.99 0.80 0.89 0.83 1.00 0.91

2 2014 2015 BoW 0.95 0.80 0.87 0.83 0.96 0.89

Doc2vec 0.99 0.98 0.98 0.98 0.99 0.98

2016 BoW 0.88 0.83 0.85 0.84 0.89 0.86

Doc2vec 0.88 0.97 0.92 0.96 0.87 0.92

2017 BoW 0.84 0.81 0.83 0.83 0.85 0.84

Doc2vec 0.77 0.98 0.86 0.96 0.69 0.80

Table 5 shows the results of the cross-dataset validation.
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Table 5. The result of the cross-dataset validation.

Method Training data Test data Model NCD (Benign) MTA (Malicious)

P R F P R F

1 MTA D3M BoW 0.57 0.96 0.71 0.90 0.36 0.52

Doc2vec 0.65 0.89 0.75 0.86 0.59 0.70

D3M MTA BoW 0.40 0.96 0.56 0.93 0.25 0.40

Doc2vec 0.59 0.93 0.72 0.95 0.66 0.78

2 MTA D3M BoW 0.89 0.88 0.88 0.87 0.89 0.88

Doc2vec 0.98 0.96 0.97 0.96 0.98 0.97

D3M MTA BoW 0.74 0.98 0.84 0.97 0.67 0.79

Doc2vec 0.79 0.99 0.88 0.99 0.74 0.85

BoW was not effective at all with the method 1. Furthermore, even Doc2vec
was not effective enough. Therefore, BoW is not effective in the other envi-
ronment at all. Besides, it is difficult to detect unseen malicious traffic from
transport layer information in the other environment.

Doc2vec was generally more effective than BoW with the method 2. In the
case that we used MTA for training data, the best F-measure has reached 0.97.
This result means that MTA is superior to D3M as a training data. Moreover,
using Doc2vec is effective to detect unseen malicious traffic from application
layer information in the other environment.

6 Discussion

6.1 Accuracy

As the results of the experiments, using Doc2vec in an application layer was
the most effective. In the timeline analysis, the best F-measure achieves 0.98 in
the next year. The F-measure achieves 0.80 even in 3 years. In the cross-dataset
validation, the best F-measure achieves 0.97. Thus, our method is precise, if we
can obtain good training data.

6.2 Mechanism

In a transport layer, word frequency was the most distinctive feature. The
most frequent words were traffic sizes. In a sense, this is rote memorization.
In fact, BoW was not effective in the other environment at all. Furthermore,
even Doc2vec was not effective enough. Therefore, we concluded that it was
difficult to detect unseen malicious traffic from transport layer information.

In an application layer, Doc2vec captured distinctive features other than
word frequency. In fact, Doc2vec was also effective in the other environment.
Needless to say, word frequency is a fundamental element in a linguistic app-
roach. However, unique word count in network traffic is unrestricted. Represent-
ing unrestricted traffic with only word frequency has serious limitations. Doc2vec
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is based on the distributional hypothesis that words occurring in similar con-
text tend to have similar meanings. Doc2vec enables to calculate the semantic
similarity between two traffic and infer similar traffic semantically. We believe
network traffic in an application layer has the context, and is like a natural
language. Hence, we concluded that our method could detect unseen malicious
traffic.

6.3 Adaptability

Our method can detect a variety of malicious traffic in the same method. All
we have to do is input malicious and benign pcap files. Our method can detect
malicious traffic regardless of the attack techniques. No prior knowledge of the
attack techniques is required. Our method is available in every protocols which
TShark can analyze in an application layer. If attackers change the attack tech-
niques or protocols, our methods learn the characteristic automatically. Besides
our method does not demand devising feature vectors. Hence, our method is
adaptable to many attack techniques.

6.4 Durability

Our method learns the difference of benign traffic and malicious traffic automat-
ically with neural networks. In neural networks, it is difficult to specify what
feature of an input data a specific feature map captures. This means that an
attacker cannot recognize the features either. Therefore, an attacker has no effec-
tive countermeasure to evade this method. The only option is imitating normal
communication completely. Thus, our method is effective and durable in the long
term.

6.5 Practical Use

The proposed method was effective in the other dataset. This means the proposed
method is powerful and versatile. In this paper, we used malicious and benign
pcap files. We can obtain these malicious pcap files easily from the websites,
which disclose malicious traffic data. We can also obtain benign pcap files easily
from everywhere. Thus, the proposed method has a few constraints in practical
use.

7 Conclusion

In this paper, we proposed how to construct a corpus from network packets and
a generic detection method, which does not depend on attack methods and does
not demand devising feature vectors. This paper conducted timeline analysis
with MTA dataset which contains captured traffic from EKs between 2014 and
2017. This paper also demonstrated cross-dataset validation which uses MTA
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dataset and D3M dataset. Consequently, the proposed method can detect up-
to-date traffic from EKs. We verified that the proposed method was effective
over three years, and effective on the other dataset too. The proposed method
achieved the F-measure of 0.98 in the timeline analysis and the F-measure of
0.97 on the other dataset. This result means that using Paragraph Vector is
effective on unseen traffic in a linguistic approach.

In this paper, we presumed network packets were written in a natural lan-
guage. We can presume any other logs such as IDS alerts, firewall logs, SIEM
(Security Information and Event Management) events are written in a natural
language in the same manner. We believe this would enable to classify the detail
automatically.
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Abstract. Deep neural networks (DNNs) perform effectively in machine
learning tasks such as image recognition, intrusion detection, and pattern
analysis. Recently proposed adversarial examples—slightly modified data that
lead to incorrect classification—are a severe threat to the security of DNNs.
However, in some situations, adversarial examples might be useful, i.e., for
deceiving an enemy classifier on a battlefield. In that case, friendly classifiers
should not be deceived. In this paper, we propose adversarial examples that are
friend-safe, which means that friendly machines can classify the adversarial
example correctly. To make such examples, the transformation is carried out to
minimize the friend’s wrong classification and the adversary’s correct classifi-
cation. We suggest two configurations of the scheme: targeted and untargeted
class attacks. In experiments using the MNIST dataset, the proposed method
shows a 100% attack success rate and 100% friendly accuracy with little dis-
tortion (2.18 and 1.53 for each configuration, respectively). Finally, we propose
a mixed battlefield application and a new covert channel scheme.

Keywords: Adversarial example � Covert channel � Deep neural network
Evasion attack

1 Introduction

Deep neural networks [1] are widely used in image recognition [2], speech recognition
[3], intrusion tolerance systems [4], natural language processing [5], and games [6];
therefore, the security and safety of neural networks has received considerable attention
in security research community. Szegedy et al. [7] presented adversarial examples in
image classification; in an evasion attack, images that are transformed slightly can be
incorrectly classified by a machine learning classifier, even when the changes are so
small that a human cannot recognize them easily. An attacker can cause a self-driving
car to take unwanted action by making slight changes to road signs [8]. Counter
measures to these attacks have been proposed [20–22], and subsequently, more
advanced attacks were developed to defeat the counter measures.
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This evasion attack can be utilized in military domains, with the adversarial
example used to deceive an enemy’s machine classifier. For example, battlefield road
signs could be modified to deceive an adversary’s self-driving vehicle. If the battlefield
is shared by enemy and friendly forces, friendly self-driving vehicles should not be
deceived by the attack.

In this paper, we propose an evasion attack scheme that creates adversarial
examples that are incorrectly classified by enemy classifiers and correctly recognized
by friendly classifiers. The proposed scheme has two configurations: targeted and
untargeted classes. In the targeted scheme, a transformer changes the original sample to
be recognized as a specific target class. In the untargeted scheme, the goal of trans-
formation is incorrect classification to any class other than the right class.

We evaluate our scheme on a standard dataset: MNIST [9], a digit-recognition task
(0–9). We use a defensive distillation classifier [10], which is a state-of-the-art
anti-evasion classifier as the enemy classifier distortion rates similar to those used in
state-of-the-art evasion attack schemes [11].

This paper makes the following contributions:

• We propose a scheme for generating adversarial examples that are friend-safe, i.e.,
that can be recognized by a friendly classifier. Our scheme is the first published
attempt that handles this problem. We propose two configurations: targeted and
untargeted class attacks.

• We apply our scheme to an anti-evasion classifier [10] and deceive it with 100%
success, while maintaining a 100% accuracy rate from our friendly classifier
without any modification or retraining. We discover that it is possible to achieve
both objectives simultaneously while maintaining low distortion.

• We analyze the difference in distortion between the targeted and untargeted scheme,
and the difference among targeted digits. This analysis is useful for attack planning
because distortion is related to the possibility that a person will detect an attack.

• We propose a new covert channel [12] scheme as another application, in which the
roles of the friend and adversary are reversed. The target class of an adversarial
example is the hidden information transferred via the covert channel.

The remainder of this paper is structured as follows: in the next section, related
work on attacks on machine learning is introduced. In Sect. 3, the proposed friend-safe
adversarial example generation is introduced. Experimental results of the proposed
scheme and findings are presented in Sect. 4. Discussion of the proposed scheme is
presented in Sect. 5. Section 6 concludes the paper.

2 Related Work

Barreno et al. [13] discussed several security issues of machine learning. They cate-
gorized attacks on machine learning into causative attacks, which influence learning
with control over training data, and exploratory attacks that exploit misclassifications
but do not affect training.

Poisoning attacks, a type of causative attack that adds malicious training data have
been proposed [14–16]. Although poisoning attacks are effective, they require that the
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attacker access training data while it is being used to train a victim model. This
assumption is unrealistic, so poisoning attacks are not considered a severe threat to
machine learning applications.

Szedgedy et al. [7] first presented the adversarial example, a kind of exploratory
attack. In this scheme, the attacker transforms an image slightly, causing this adver-
sarial example to be misclassified. The success rate of adversarial examples in [17] on
standard image sets such as ImageNet was greater than 97%. The amount of modifi-
cation needed was so small (about 4.02%) that humans could not detect the difference.
This attack was untargeted, meaning that it succeeds if an example is classified to any
class other than the correct one. Moosavi-Dezfooli et al. [18] proposed targeted attacks,
in which there is a misclassification class goal: the attacker transforms data to be
classified as a specific target class. In these attacks, it is assumed that attacker can
acquire victim’s classification result for any input data. Even in military scenarios, it is
not unrealistic to acquire an enemy’s weapon.

Counter measures to these attacks have been presented. Biggio et al. [19] proposed
a binary classifier for detecting adversarial examples. This work covered conventional
machine learning models, such as support vector machines [20] and logistic regression
[21], not deep neural networks. Goodfellow et al. [22] proposed a new neural network
activation function that is robust to adversarial examples. Applying this method
necessitates changing the neural network’s architecture.

Recently, Papernot et al. [10] proposed a defensive distillation scheme, in which an
initial and a distilled network are used: the class probability of the initial network’s
output is used as label for training the distilled network. This method prevents over-
fitting the distilled network, making it more robust to adversarial examples. In
experiments, their scheme reduced the success rate of evasion attacks to 0.45% from
95.89%.

One year later, Carlini et al. [11] showed that they could deceive a distilled network
with 100% success, and that their scheme could be applied to both targeted and
untargeted attacks.

In this manner, advanced attacks and their counter measures have been being
proposed continuously. However, there has been no published scheme for building
adversarial examples that do not affect friendly classifiers. In this paper, we use these
state-of-the-art technologies in our friend-safe adversarial example scheme and its
evaluation.

3 Proposed Method

To generate a friend-safe adversarial example, we propose a network architecture that
consists of a transformer, a friendly discriminator Dfriend, and an enemy discriminator
Denemy, as shown in Fig. 1. The transformer takes original sample x 2 X and original
class y 2 Y as input and converts the original sample to transformed example x�.

Dfriend and Denemy are pretrained classifiers and not changed during transformation.
They take x� as their input and provide their classification result (loss) to the
transformer.
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The goal of this architecture is that transformed example x� is incorrectly classified
by Denemy and correctly classified by Dfriend, minimizing the distortion from the original
sample. There are two configurations in which transformed example x� is incorrectly
classified by Denemy: targeted and untargeted adversarial examples. In mathematical
expressions, the operation functions of Denemy and Dfriend are denoted as fenemy xð Þ and
ffriend xð Þ.

Given the pretrained Dfriend, Denemy, and original input x 2 X, the problem is an
optimization problem that generates targeted adversarial example x�:

x� : argminx�L x; x�ð Þ s:t: ffriend x�ð Þ ¼ y and fenemy x�ð Þ ¼ y�;

where L �ð Þ is a chosen distance measure between original sample x and transformed
example x�, and y� 2 Y is the target class chosen by the attacker. An untargeted
adversarial example x� is generated similarly:

x� : argminx�L x; x�ð Þ s:t: ffriend x�ð Þ ¼ y and fenemy x�ð Þ 6¼ y:

To achieve this goal, the procedure consists of pretraining Dfriend and Denemy and a
transformation that generates friend-safe adversarial example x�.

First, Dfriend and Denemy are trained with the original MNIST sample to classify
original sample x:

fenemy xð Þ ¼ x 2 X ! y 2 Y and ffriend xð Þ ¼ x 2 X ! y 2 Y :

In our experiments, Dfriend and Denemy were trained to classify the original sample
with greater than 99% accuracy.

Second, the transformer accepts the original MNIST sample and original class as
input and produces transformed example x�. For this study, we modified the trans-
former architecture in [11], and x� is defined as

Fig. 1. Proposed architecture
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x� ¼ tanh xþwð Þ
2

;

where w is a modifier that is optimized by using tanh to smooth the gradient. The
classification loss of x� by Dfriend and Denemy is returned to the transformer.

The transformer then calculates the total loss lossT and generates a friend-safe
adversarial example by minimizing lossT iteratively. lossT is defined as:

lossT ¼ lossdistortion þ lossfriend þ lossenemy;

where lossdistortion is the distortion of transformed example, and lossfriend and lossenemy
are the classification loss of Dfriend and Denemy.lossdistortion is the distance between the
original sample x and the transformed example x�:

lossdistortion ¼ x� � tanh xð Þ
2

�
�
�
�

�
�
�
�

2

2
:

To satisfy ffriend x�ð Þ ¼ y, lossfriend should be minimized:

lossfriend ¼ g f x�ð Þ;

where g f kð Þ ¼ max Z kð Þi: i 6¼ org
� �� Z kð Þorg and org is the original class. Z �ð Þ [11,

17] is the probability of the class that is predicted by two discriminators, Dfriend and
Denemy. ffriend x�ð Þ has a higher probability of predicting the original class than other
classes by optimally minimizing lossfriend .lossenemy has two cases, used in targeted and
untargeted adversarial examples. To satisfy fenemy x�ð Þ ¼ y�, y� 2 Y in targeted adver-
sarial examples, lossenemy is defined as:

lossenemy ¼ get x�ð Þ;

where get kð Þ ¼ max Z kð Þi: i 6¼ t
� �

– Z kð Þt and t is the targeted class. fenemy x�ð Þ has a
higher probability of predicting targeted class y� than other classes by optimally
minimizing lossenemy. To satisfy fenemy x�ð Þ 6¼ y in an untargeted adversarial example,

lossenemy ¼ geu x�ð Þ;

where geu ¼ Z kð Þorg�max Z kð Þi: i 6¼ org
� �

and org is the original class. fenemy x�ð Þ has
a lower probability of predicting the original class than other classes by optimally
minimizing lossenemy. The detailed procedure for generating a friend-safe adversarial
example is described in Algorithm 1.
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4 Experiment and Evaluation

Through experiments, we show that the proposed scheme can generate a friend-safe
adversarial example that is incorrectly classified by an enemy classifier and correctly
classified by a friendly classifier while minimally distorting the original sample. We
used the Tensorflow [23] library, a widely used open source library for machine
learning on a Xeon E5-2609 1.7 GHz server.

4.1 Experimental Method

MNIST [9], a collection of handwritten digit images (0–9), was used as dataset in the
experiment. The experimental method consisted of (1) pretraining Dfriend and Denemy,
and (2) transforming the friend-safe adversarial example.

Algorithm 1. Friend-safe adversarial example generation in a transformer
Input: original sample , original class , targeted class ∗, number of iterations n, 

Targeted adversarial example generation: 
1. 0
2.
3. ∗
4. ∗ ←
5. For n step do
6. ∗ ← ℎ( ∗ )2
7. ( ∗) { ( ∗) ∶ i ≠ } - ( ∗)
8. ( ∗) { ( ∗) ∶ i ≠ t} – ( ∗)
9. Update to minimize the gradient of ∗ − ℎ( )2 22 + ( ∗) + ( ∗)

10. End for
11. return ∗
Untargeted adversarial example generation: 

1. 0
2.
3. ∗ ←
4. For n step do
5. ∗ ← ℎ( ∗ )2
6. ( ∗) { ( ∗) ∶ i ≠ } - ( ∗)
7. ( ∗) ( ∗) − { ( ∗) ∶ i ≠ org}
8. Update to minimize the gradient of ∗ − ℎ( )2 22 + ( ∗) + ( ∗)
9. End for

10. return ∗
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First, in pretraining, Dfriend and Denemy are common convolution neural networks
(CNNs) [24]. Their configuration and training parameters are shown in Tables 6 and 7
of the appendix. Denemy is a distilled model [10] in which the classifier’s output class
probability is used as input to a second phase of classifier training. To train Dfriend and
Denemy, 60,000 training and another 10,000 test samples were used. In tests, Dfriend and
Denemy correctly classified the original MNIST samples with 99.25% and 99.12%
accuracy, respectively.

Second, to generate the friend-safe adversarial sample, Adam [25] was used as an
optimizer to minimize the total loss with a learning rate of 1e�2 and an initial constant
equal to 1e�3. For a given number of iterations, the transformer updates output x� and
gives it to Dfriend and Denemy, from which it then received feedback. At the end of the
iterations, transformation result x� was evaluated based on the accuracy of Dfriend, the
attack success rate, and the amount of distortion. The accuracy of Dfriend is the coin-
cidence rate between the original class and the output class of Dfriend. The attack
success rate is the intended success rate that Denemy incorrectly classifies x�. The attack
success rate has two configuration: the targeted attack success rate and untargeted
attack success rate. The targeted attack success rate is the coincidence rate between
targeted class and the class output by Denemy. The untargeted attack success rate is the
rate of inconsistency between the original class and the output class of Denemy. Dis-
tortion is measured as the pixel distance from the original sample, such as the mean
square error.

4.2 Experimental Results

The evaluation of friend-safe adversarial examples x� was divided into two sections—
targeted and untargeted adversarial examples—in our experimental results.

Targeted adversarial example
Figure 2 shows an example in which friend-safe adversarial examples x� generated by
a transformer are incorrectly classified as a targeted class by Denemy for each original
sample over 1000 iterations with an average distortion of 2.03. In Fig. 2, a human
classifies all the friend-safe adversarial examples x� with their original class.

Table 1 shows the average distortion of each targeted class for the original sample
“7” in Fig. 2. The average distortion of this sample differs for each targeted class. For
example, targeting class “6” results in the maximum distortion of the “7,” whereas
targeting class “2” produces the minimum distortion, as shown in Table 1. The total
average distortion of the original “7” sample is approximately 2.18. Figure 6 in the
appendix shows the average distortion of each targeted class for each original sample,
which can be used in selecting targeted classes in some situations.

Table 2 shows the targeted transformation example “7”!“0” whose classification
is determined by the class score. For Denemy, the score of target class “0” (694) is
slightly higher than that of the original class (693). For Dfriend, the score of the original
class, “7,” is much higher than the scores of other classes. From this result, we know
that the transformation is minimized to the extent that the target class score is slightly
higher than the score of the original class while maintaining low distortion rates.
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Org Targeted class misclassified by Denemy

0 1 2 3 4 5 6 7 8 9

Fig. 2. Adversarial sample for each target class for each original sample

Table 1. Adversarial sample and distortion of an original “7” for each target class in Fig. 2

Org Targeted classes misclassified by Denemy
0 1 2 3 4 5 6 7 8 9

Rate 2.299 2.676 1.043 1.547 2.443 2.696 3.027 - 1.898 2.041

Table 2. Class score of adversarial example: “7”!“0” and in Table 1

Description Original (“7”) Friend-safe adversarial example
Denemy (“0”) Dfriend (“7”)

Sample image

Class score [ 0 0 0 0 0 0 1 0 0 0 ]
[694 -225 692 -262 -319

-533 -376 693 -142 -30.1] 
[-1.37 1.18 7.12 -0.38 0.43
-7.4 -6.48 10.5 -4.16 -3.76] 
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Figure 3 shows the targeted attack success rate, Dfriend accuracy, and average
distortion of 1000 examples. As the number of iterations increases, the targeted attack
success rate and Dfriend accuracy increase and the average distortion decreases. When
the targeted attack success rate count exceeds 500, Dfriend accuracy and the targeted
attack success rate reach 100%. At this point, the average distortion is less than 2.183.

The attack success rate increases more quickly than the friendly classifier’s accu-
racy, meaning that it requires more time to generate examples that are correctly clas-
sified by a friendly classifier. Table 3 shows the iterative process of generating an
example image. We think that because the image is generated from a zero matrix (black
image), it is easier to make an enemy result incorrect than to make a friendly result
correct.

Fig. 3. Targeted attack success rate and Dfriend accuracy, along with the average distortion, for
each number of iterations tested

Table 3. Images of the friend-safe adversarial example for the iterations shown in Fig. 3

Iteration 100 200 300 400 500

Image
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Untargeted adversarial example
Table 4 shows the confusion matrix of the untargeted adversarial example classified by
Denemy, testing 100 untargeted adversarial examples per original sample. Transforma-
tion mainly affects a few specific classes when a target class is not given. Transfor-
mation is made to any classes other than original class that requires minimal
modification.

Fig. 4. Untargeted attack success rate, Dfriend accuracy, and average distortion various numbers
of iterations

Table 4. Confusion matrix of Denemy for an untargeted class (400 iterations)

Original 
class

Output class
0 1 2 3 4 5 6 7 8 9

0 0 0 11 2 2 7 24 15 4 35
1 0 0 1 1 46 1 0 11 40 0
2 6 26 0 29 1 0 2 25 11 0
3 0 4 14 0 1 57 0 19 5 1
4 1 13 7 0 0 1 6 7 7 58
5 0 0 0 38 0 0 6 0 18 38
6 16 1 1 0 13 63 0 0 6 0
7 0 18 9 21 4 0 0 0 1 47
8 7 2 13 42 2 18 3 3 0 10
9 0 0 0 7 37 2 0 30 24 0
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Figure 4 shows the untargeted attack success rate, Dfriend accuracy, and average
distortion for several iteration counts. As in Fig. 3, as the number of iterations
increases, the untargeted attack success rate and Dfriend accuracy increase and the
average distortion decreases. When the iteration count exceeds 400, Dfriend accuracy
and the untargeted attack success rate reach 100%. At this point, the average distortion
is less than 1.536. The attack success rate saturates much faster than the friendly
classifier’s accuracy; this difference is larger than in targeted attacks. Hence, the lack of
target restrictions allows faster successful attacks.

Table 5 shows the iteration count and distortion that are required to achieving
100% accuracy in each case. The untargeted examples reach 100% faster than the
targeted examples, and distortion in the untargeted case is also smaller than in the
targeted case for the same iteration count. In both cases, the attack success rate is faster
than the friend’s accuracy. We discuss the implications of this result in the next section.

5 Discussion

We show that it is possible to generate an adversarial example that achieves a 100%
attack success rate and 100% accuracy by friendly classifiers simultaneously. When
both classifiers are more than 99% accurate, this is possible because the enemy and

Table 5. Comparison between targeted and untargeted attacks when the success rate is 100%

Description Targeted adversarial
example

Untargeted adversarial
example

Attack success rate Dfriend

accuracy
Attack success rate Dfriend

accuracy

Iteration count 500 500 300 400
Max distortion 6.645 6.645 4.016 3.440
Min distortion 0.232 0.232 0.249 0.234
Mean distortion 2.183 2.183 1.788 1.536

Fig. 5. New covert channel scheme using a friend-safe adversarial example
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friendly classifiers are different. It is impossible to generate such examples if the two
are exactly same. In the experiments in Sect. 4, the enemy uses a distilled classifier and
the friend employs a general CNN classifier. To study the possibility of generating
adversarial examples with two very similar models, we tested the same classifier
configuration for both the friend and enemy, and provided the same training data with
different sample order. With this setup, we found the same results: a friend-safe
adversarial example with a 100% attack success rate and 100% accuracy from friendly
classifiers (see Figs. 7 and 8 in the Appendix).

From Table 5, we found that untargeted attacks required less distortion, and are
ideal for when targeting is unnecessary or minimizing distortion is important. In
untargeted attacks, the attacker could estimate the probability of the to-be-recognized
class from Table 4. For example, when the original class was “9,” “4,” “7,” and “8”
have high probabilities of enemy’s recognition. In cases in which a specific target is not
necessary and minimizing distortion is important, but the attacker wants to know the
victim (enemy’s) classification result, the attacker can refer to Fig. 6 in the Appendix
and select a target class that has less distortion. For example, if an attacker wants to
make the victim recognize a road sign with the digit “9” as something other than “9”,
then he could select “7” as a target class, because “9”!“7” requires the least distor-
tion. In this case, he knows that the victim will recognize the road sign as “7” the target
class that the attacker selected.

As mentioned in the introduction, a friend-safe adversarial example is used as an
evasion attack against an enemy in a mixed battle field. In addition to this application,
we discovered an interesting covert channel scheme, shown in Fig. 5. In this scheme,
the roles of the friend and enemy are reversed. The sender makes an example that is
correctly recognized by a machine or human censor (enemy) and incorrectly classified
by the receiver (friend). The target class is hidden information that is transferred via the
covert channel.

6 Conclusion

In this paper, we proposed a new friend-safe adversarial example that will be incorrectly
classified byDenemy and correctly classified byDfriend, while minimizing distortion of the
original sample. In experimental results on MNIST data, Dfriend correctly classified
transformed examples as the original class with 100% accuracy, and the attack success
rate was 100% in both targeted and untargeted attacks, when the data distortion was
2.183 and 1.536, respectively. We discovered that distortion differs between target digit
classes; this information is useful for selecting a targeted class. We also presented
applications of the proposed scheme: a mixed battle field and a covert channel.

Future research will extend our experiments to other standard image datasets, such
as CIFAR and ImageNet. We will also work on generating friend-safe adversarial
example not through transformation, but by applying a generative scheme, as in a
generative adversarial network [26, 27]. Evaluation and analysis of the covert channel
that we proposed in our discussion of this study would be another interesting issue.
Finally, developing a counter measure to the proposed scheme will be another
challenge.
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Appendix

See Table 8.

Table 6. Dfriend and Denemy model architecture

Layer type MNIST data shape

Convolution+ReLU [3, 3, 32]
Convolution+ReLU [3, 3, 32]
Max pooling [2, 2]
Convolution+ReLU [3, 3, 64]
Convolution+ReLU [3, 3, 64]
Max pooling [2, 2]
Fully connected+ReLU [200]
Fully connected+ReLU [200]
Softmax [10]

Table 7. Dfriend and Denemy model parameters

Parameter Value

Batch size 128
Dropout 0.5
Momentum 0.9
Learning rate 0.1
Epochs 50

Table 8. Untargeted class of adversarial example safe for friend in Denemy

Description Original (“1”) Friend-safe adversarial example
Denemy (“8”) Dfriend (“1”) 

Sample image

Class score [ 0 1 0 0 0 0 0 0 0 0 ] [-441 1161 -388 -37.3 -93.1
 -186 -69.5 -459 1164 -245] 

[-6.92 22.9 -2.62 -5.18 -0.8 
3.34 -3.25 -4.27 1.13 -6.5] 
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Fig. 6. Average distortion of the targeted class for each of the original classes 0–9 (380
iterations)
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Fig. 7. Targeted attack success rate and Dfriend accuracy, and the average distortion per iteration,
in both models

Fig. 8. Untargeted attack success rate and Dfriend accuracy, as well as the average distortion per
iteration, in both models
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