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Abstract. In this paper we present the probability function based
on PID controller with non-integer integral and derivative orders. We
present how to change the probability of packet dropping during contin-
uous increase in buffer occupancy. The shape of the probability function
strictly depends on the parameters selection.

Keywords: Active queue management · PID controller
Dropping packets · Fractional calculus

1 Introduction

First AQM mechanism was proposed in 1993 by Floyd and Jacobson. Its perfor-
mance is based on a drop function giving probability that a packet is rejected. It
was named Random Early Detection (sometimes Random Early Discard). This
mechanism is based on previous preventive dropping packets even if there is
still place in the queue. The packets are dropped randomly and the probability
of packet rejection depends on the queue occupancy. The argument avg of this
function is a weighted moving average queue length:

avg = (1 − wq)avg′ + wqq

q is the current queue length, avg′ is the previous value of avg and wq is a weight
parameter, typically w << 1, thus avg varies much more slowly than q. Therefore
avg indicates permanent network congestion reflecting long-term changes of q.
If avg < Minth, all packets are admitted. There are two thresholds: Minth and
Maxth. If Minth < avg < Maxth, then dropping probability p increases linearly:

p = pmax
avg − Minth

Maxth − Minth
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The value pmax corresponds to the probability of packet rejection at avg = Maxth.
If avg > Maxth then all packets are dropped. Dropping probability p is thus
dependent on a network load - has small value for smaller load, and increases with
the increasing of congestion.

The choice of RED parameter is difficult. The proper parameter selection
problem was discussed in many articles (e.g. [2,18,25,26]). There are a lot of
modifications of the RED mechanism (e.g. [12]). We have also proposed and
evaluated a few variants, [1,4–9,11].

In this article we propose a different method of dropped packet probability cal-
culation based on the fractional order PIαDβ controller applied to active queue
management. First PI AQM controller was proposed by Hollot et al. [13,14]. Since
then a number of PI controllers have been proposed [19–21,27]. The paper [26]
compared performance of several of them. The articles [3,16,24] show that con-
trollers with non-integer integral and derivative orders have better performance
than classic ones. The first application of the fractional order PI controller as a
AQM policy in fluid flow model of a TCP connection was presented in [15]. In [10]
we discuss the PIα controller as an AQM mechanism. In particular we investi-
gate the influence of parameters of the controller on packet loss probability, queue
length (hence also transmission time) and its variability (jitter) which are usual
determinants of the quality of service for network transmissions.

In our paper the extension of the fractional PIα controller is presented.
The rest of this article is constructed as follows: Sect. 2 gives features of the
fractional order PID controller as AQM mechanism. In Sect. 3 we propose a
dropping probability function based on PIαDβ controller. Section 4 concludes
this article and discusses future works.

2 Fractional Calculus

The Fractional Calculus is a natural extension of normal integrals and deriva-
tives. The first mention of the possibility of integral order 1

2 appeared in 1695.
Dilemma recognized by Leibniz was resolved several years later. At the end of
the nineteenth century the basis of fractional calculus were created by Liouville,
Grunwald, Letnikow, Riemann.

The Fractional Order Derivatives and Integrals (FOD/FOI) definitions unify
the definition of derivative and integral to one differintegral definition. The most
popular formulas to calculate differintegral numerically are Grunwald-Letnikov
(GrLET) formula and Riemann-Liouville formulas (RL) [17,22,23].

Differintegral is a combined differentiation/integration operator. The
q-differintegral of f, denoted by

Δqf (1)

is the fractional derivative (for q > 0) or fractional integral (if q < 0). If q = 0,
then the q-th differintegral of a function is the function itself.
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If order of differintegral is greater then 0 then we calculate the derivative. If
the order is smaller then 0 then we calculate integral.

In the case of discrete systems (in the active queue management, packet
drop probabilities are determined at discrete moments of packet arrivals) there
is only one definition of differ-integrals of non-integer order. This definition is a
generalization of the traditional definition of the difference of integer order to
the non integer order and it is analogous to a generalization used in Grunwald-
Letnikov (GrLET) formula.

�qfk =
k∑

j=0

(−1)j

(
q

j

)
fk−1 (2)

where q ∈ R is generally a non-integer fractional order, fk is a differentiated
discrete function and

(
q
j

)
is generalized Newton symbol defined as follows:

(
q

j

)
=

⎧
⎨

⎩

1 for j = 0
q(q − 1)(q − 2)..(q − j + 1)

j!
for j = 1, 2, . . .

(3)

The following formulas show the relationships between the traditional and
the fractional approach.

For α = 1 we get the formula for the difference of the first order (only two
coefficients are non-zero).

�1xk = 1xk − 1xk−1 + 0xk−2 + 0xk−3 . . . (4)

For α = −1 we get the sum of all samples (the discrete integral of first order
equivalent).

�−1xk = 1xk + 1xk−1 + 1xk−2 + 1xk−3 . . . (5)

For α = 0.5 we get the weighted sum of all samples:

�0.5xk = 1xk − 0.5xk−1 − 0.125xk−2 − 0.0625xk−3 . . . (6)

For α = 1.5 we get:

�1.5xk = 1xk − 1.5xk−1 + 0.375xk−2 + 0.0625xk−3 . . . (7)

And adequately:

�−0.5xk = 1xk + 0.5xk−1 + 0.375xk−2 + 0.3125xk−3 . . . (8)
�−1.5xk = 1xk + 1.5xk−1 + 1.875xk−2 + 2.1875xk−3 . . . (9)
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3 The Packet Dropping Probability Function Based
on PIαDβ Controller

A proportional-integral-derivative controller (PID controller) is a traditional
mechanism used in feedback control systems. Earlier works show that the
non-integer order controllers have better behavior than classic controllers [24].
PIαDβ may be used instead of the RED mechanism to determine the probability
p of a packet drop in the following way:

pi = max{0,−(KP ek + KIΔ
αek + KDΔβek)} (10)

where KP ,KI ,KD are tuning parameters, ek is the error in current slot ek =
qd − q, q - actual queue size, qd - desired queue size, α and β are non integer
integral and derivative order.

As stated in the previous section the method of calculation of the controller
derivative and integral term (based on GrLET formula) is the same but the
integral orders (α) are always less than 0 and derivative orders (β) are greater
than 0.

For standard PID controller (for α = −1 and β = 1) the packet dropping
probability is defined as follows (see Eqs. 4 and 5):

pi = max{0,−(Kpei + Ki

0∑

j=i

ej + Kd(ej − ej−1)} (11)

In this proposition the dropping probability depends on five parameters: the
coefficients for the proportional, integral and derivative terms (Kp,Ki,Kd) and
integrals (α) and derivative (β) orders.

Figures presented in this section show the probability of packet dropping
p given by Eq. 10 and are based on the PIαDβ response. The figures present
how change the probability of packet dropping during continuous increase in
buffer occupancy as a result of the continuous packets incoming. Naturally, the
response depends on the choice of parameters.

The Figs. 1, 2, 3 and 4 present the PIα controller behavior. In Figs. 1 and
2 α = −1, therefore it is in fact a PI controller. The integral term in the PIα

creates a strong correlation between the packet dropping probability and the
history of the queue occupancy. This correlation is confirmed by the Fig. 4. This
figure shows two situations. In the first case the controller starts error calculation
at once. In the second case the controller begins work when the queue length
exceeds desired queue size. When the controller starts error calculation for empty
queue (start point = 0), its reaction is evidently delayed. This delay depends on
the integral order (see: Fig. 3).
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Fig. 1. Packet dropping probability based on a PIα controller response (the influence
of the parameter Kp), α = −1, Ki = 0.0008

Fig. 2. Packet dropping probability based on a PIα controller response (the influence
of the parameter Ki) α = −1, Kp = 0.00115
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Fig. 3. Packet dropping probability on a PIα controller response (the influence of the
integral order α) Kp = 0.00115, Ki = 0.0011

Fig. 4. Packet dropping probability on a PIα controller response (the influence of the
previous queue occupancy) Kp = 0.00115, Ki = 0.0011, α = −1
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Fig. 5. Packet dropping probability on a PDβ controller response (the influence of the
parameter Kp) Kd = 0.01, β = 1

Fig. 6. Packet dropping probability on a PDβ controller response (the influence of the
parameter Kd) Kp = 0.00115, β = 1
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Fig. 7. Packet dropping probability on a PDβ controller response (the influence of the
derivative order β) Kp = 0.00115, Kd = 0.01

The Figs. 5, 6, 7 and 8 present the PDβ controller behavior. The Figs. 5 and 6
present standard PD controller (β = 1). The controller derivative term increases
the dropping probability. The Fig. 8 presents the controller behavior in depen-
dence on queue history and derivative order. The derivative order temporarily
increases the controller response.

Figure 9 presents the packet dropping function based on standard PID con-
troller (α = −1, β = 1). This figure shows the proportional term influence
on controller response. The derivate order influence (β) on PIDβ controller
(α = −1) is shown in Fig. 10.

The last two figures present the PIαDβ controller responses. The Fig. 12
presents the derivative order β influence on packet dropping probability function
(α = 0.8). The Fig. 11 shows the integral order impact (derivative order β = 0.5).

4 Summary

The Internet Engineering Task Force (IETF) organization recommends to use
in IP routers active queue management mechanism (AQM). This mechanisms
drops packet in preventive way even if there is still place to store packets. In
classical AQM mechanisms (i.e. RED) packets are dropped randomly and the
probability of packet rejection increases together with queue occupancy. Many
variations of RED mechanism were developed to improve its performance. They
can be classified according to the modification of the method of control variable
or dropping packet function calculation.

This article introduces the new active queue management based on fractional
PIαDβ controller. In the proposed mechanism, the dropping packet probability
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Fig. 8. Packet dropping probability on a PDβ controller response (the influence of
the previous queue occupancy and the derivative order β) Kp = 0.00115, Kd = 0.01,
β = 2.5, 2.0, 1.0, 1.5, 0.8, 0.4
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Fig. 9. Packet dropping probability on a PIαDβ controller response (the influence of
the parameter Kp) Kd = 0.01, Ki = 0, 0011, α = −1, β = 1

Fig. 10. Packet dropping probability on a PIαDβ controller response (the influence of
the derivative order β) Kp = 0.00115, Kd = 0.01, Ki = 0, 0011, α = −1
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Fig. 11. Packet dropping probability on a PIαDβ controller response (the influence of
the derivative order β) Kp = 0.00115, Kd = 0.01, Ki = 0, 0011, α = −0.8

Fig. 12. Packet dropping probability on a PIαDβ controller response (the influence of
the integral order α) Kp = 0.00115, Kd = 0.01, Ki = 0, 0011, β = 0.5
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is calculated based on controller response. The AQM quality highly depends on
the proper selection of controller parameters. In the proposed solution controller
response depends on five parameters: proportional, integral and derivative terms
and derivative and integral orders.

In the article we present how to change the probability of packet dropping
during continuous increase in buffer occupancy. The shape of the probability
function strictly depends on the parameters selection.

We present a selection of parameters to show the influence of the proportional
term, integral term and derivative term on dropping function. The non-integer
derivative and integral order cause significant differences in the behavior of the
controller.

In future work the authors will show how the choice of fractional controller
parameters affects the behavior of the router queue. An interesting issue may
be to find a set of parameters that minimize queue length. Our article shows
that integral order delays eventually accelerates the controller reaction while
the derivative order strengthens or weakens controller response. Therefore, the
adaptive fractional controller with variable orders depending on the situation in
the queue may be more efficient in the router queues.
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17. Leszczyński, J., Ciesielski, M.: A numerical method for solution of ordinary differ-
ential equations of fractional order. LNCS, vol. 2328, pp. 695–702 (2006)

18. May, M., Diot, C., Lyles, B., Bolot, J.: Influence of active queue manage-
ment parameters on aggregate traffic performance. Technical report, Institut de
Recherche en Informatique et en Automatique (2000)

19. Melchor-Aquilar, D., Castillo-Tores, V.: Stability analysis of proportional-integral
AQM controllers supporting TCP flows. Computacion y Sistemas 10, 401–414
(2007)

20. Melchor-Aquilar, D., Niculescu, S.: Computing non-fragile PI controllers for delay
models of TCP/AQM networks. Int. J. Control 82, 2249–2259 (2009)

21. Michiels, W., Melchor-Aquilar, D., Niculescu, S.: Stability analysis of some classes
of TCP/AQM networks. Int. J. Control 79, 1136–1144 (2006)

22. Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional
Differential Equations. Wiley, New York (1993)

23. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
24. Podlubny, I.: Fractional order systems and PIλdμ controllers. IEEE Trans. Autom.

Control 44(1), 208–214 (1999)
25. Tan, L., Zhang, W., Peng, G., Chen, G.: Stability of TCP/RED systems in AQM

routers. IEEE Trans. Autom. Control 51(8), 1393–1398 (2006)
26. Unal, H., Melchor-Aguilar, D., Ustebay, D., Niculescu, S.I., Ozbay, H.: Comparison

of PI controllers designed for the delay model of TCP/AQM. Comput. Commun.
36, 1225–1234 (2013)

27. Ustebay, D., Ozbay, H.: Switching resilient PI controllers for active queue manage-
ment of TCP flows. In: Proceedings of the 2007 IEEE International Conference on
Networking, Sensing and Control, pp. 574–578 (2007)


	The AQM Dropping Packet Probability Function Based on Non-integer Order PID Controller
	1 Introduction
	2 Fractional Calculus
	3 The Packet Dropping Probability Function Based on PID Controller
	4 Summary 
	References


