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Abstract. This paper studies the problem of finding the path center on a tree in
which vertex weights are uncertain and the uncertainty is described by given
intervals. It is required to find a minmax regret solution, which minimizes the
worst-case loss in the objective function. An O(n log n)-time algorithm is
presented, improving the previous upper bound of O(n2).

1 Introduction

The objective of a location problem is to decide the location of facilities in a network so
as to minimize the communication or transportation costs [14, 15, 22, 24]. A network
usually involves two types of parameters: weights of nodes and lengths of edges.
Traditionally, the node weights and edge lengths of a network are assumed to be known
precisely. In real transportation systems, the weights and lengths of a network may
fluctuate or be inaccurate due to poor measurements. Thus, location models involving
uncertainty have attracted significant research efforts [11, 12, 17, 23]. One of the most
important ways for modeling network uncertainty is the minmax regret approach,
introduced by Kouvelis and Yu [16]. In the model, uncertainty of network parameters
is characterized by given intervals, and it is required to minimize the worst-case loss in
the objective function that may occur because of the uncertain parameters.

Minmax regret location problems have received considerable attention in the past
two decades. In network location theory, the shapes of facilities can be points, paths, or
trees. Path- and tree-shaped facilities are called extensive facilities [18]. For
point-shaped facility problems, most important ones have been studied comprehen-
sively on the minmax regret model [3–6, 8, 9, 16, 31]. However, for extensive facility
problems, there are only a few results on the minmax regret model, although there are
considerable results on the classical model [7, 18, 20, 26–28]. In a breakthrough paper
by Puerto et al. [21], polynomial algorithms were presented for the following three
important path-shaped problems: the minmax regret path center, path median, and path
centdian problems. Since these problems are NP-hard on general networks, their work
was confined to trees. The time complexities of their algorithms are, respectively, O
(n2), O(n4), and O(n5 log n). In [29, 30] the upper bounds of the minmax regret path
median and path centdian problems were improved to O(n2) and O(n4), respectively.

Contribution: The focus of this paper is the minmax regret path center problem on
trees. For this problem, Puerto et al.’s algorithm requires O(n2) time. This paper
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presents an O(n log n)-time algorithm. The bottleneck of Puerto et al.’s algorithm is to
compute the classical path centers of the given tree under n different settings of node
weights. For each setting, their algorithm finds the classical path center in O(n) time.
Our improvement is established on the following simple observation: the n settings of
node weights are almost the same. Based on this observation, we preprocess the given
tree in O(n log n) time to compute some useful auxiliary data structures; and then use
the computed data structures to find the path center under each setting in O(log n) time.

Section 2 gives notation and definitions. Section 3 describes Puerto et al. algorithm
[21] for finding a minmax regret path center of a tree. Section 4 presents efficient
algorithms for a problem, called the entry vertex problem, and its extension. Then,
using the algorithms in Sect. 4, Sect. 5 gives an improved O(n log n)-time algorithm.

2 Notation and Definitions

Let T = (V, E) be a tree, where V is the vertex set and E is the edge set. Let n = |V|. In
this paper, T also denotes the set of all points of the tree. Thus, the notation x 2 T means
that x is a point along any edge of T, which may or may not be a vertex of T. Each edge
e has a nonnegative length. For any two points p, q 2 T, let P(p, q) be the unique path
from p to q and d(p, q) be its length. Throughout this paper, we assume that T has been
preprocessed so that d(p, q) can be answered in O(1) time for any p, q 2 V. This
preprocessing requires O(n) time [10]. For a subgraph X of T, the vertex set and edge
set of X are, respectively, V(X) and E(X). For each vertex v 2 V, the subgraph having a
vertex set {v} is simply denoted by v. For any vertex v 2 V and subgraph X of T, the
distance from v to X, denoted by d(v, X), is the shortest distance from v to any point of
X (i.e., d(v, X) = minx2X d(v, x)) and close(v, X) is the vertex or point in X nearest to
v. A path in T is called a v-path, where v 2 V, if v is one of its endpoints.

Each vertex v 2 V is associated with an interval [w�
v , w

þ
v ], where 0 � w�

v � wþ
v .

The weight of each vertex v 2 V can be any value in the interval [w�
v , w

þ
v ]. Let R be the

Cartesian product of intervals [w�
v , w

þ
v ], where v 2 V. Any element S 2 R is called a

scenario and represents a feasible assignment of weights to the vertices of T. For any
scenario S 2 R and any vertex v 2 V, let wS

v be the weight of v under the scenario S.
Let S 2 R be a scenario. For any two subgraphs X and Y of T, the eccentricity from

X to Y under the scenario S is CS(X, Y) = maxv2V(X) wS
v d(v, Y), which is the maximum

weighted distance from any vertex in X to Y according to the scenario S. A path H that
minimizes CS(T, H) is called a path center of T under the scenario S. The finding of a
path center of T under a fixed scenario S is called the classical path center problem. We
use p(S) to denote a path center of T under a scenario S.

For any path H in T, the regret of H with respect to a scenario S 2 R is RS(H) =
CS(T, H) − CS(T, p(S)) and the maximum regret of H is R*(H) = maxS2R RS(H). The
minmax regret path center problem is to determine a path H in T that minimizes R*(H).
The determined path is called a minmax regret path center.

For ease of discussion, throughout this paper, we assume that each internal vertex
of T has exactly three neighbors. In case this is not true, the given tree is transformed
into an equivalent tree in linear time [13, 19]. Consider an internal vertex v 2 V. There
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are three subtrees of T attached to v through the edges incident on v. For each (u, v) 2
E, we denote by Tv

u the subtree of T attached to v through the edge (u, v), excluding this
edge and the vertex v. We define the subtrees of a path H to be the subtrees Ti

j such that
i is an internal node of H and j is the neighbor of i that is not on H. For any p, q 2 V,
define subtree(p, q) to be the union of the subtrees of P(p, q) (see Fig. 1). For ease of
description, sometimes we will orient T into a rooted tree. In such a case, for each node
v 2 V, we use p(v) and sib(v) to denote, respectively, its parent and sibling, and use Tv
to denote the subtree of T rooted at v.

3 Puerto, Ricca, and Scozzari’s Algorithm

Puerto et al. [21] had an O(n2)-time algorithm for finding a minmax regret path center
of a tree. This section reviews their algorithm.

Recall thatp(S) denotes a path center ofTunder a scenarioS. For any scenarioS2R, let
a(S) = CS(T, p(S)). For each i 2 V, let Si be the scenario in which the weight of vertex i is
wþ
i and the weight of any other vertex v is w�

v . Based on an augmented tree approach
introduced by Averbakh and Berman [3], Puerto, Ricca, and Scozzari solved the minmax
regret path center problem by an elegant transformation to the classical path center
problem. Define an auxiliary tree T′ as follows. LetM be a number that is larger than a(Si)
for any i2V. The treeT′ is obtained fromTby appending to each vertex i2V a vertex i′ and
an edge (i, i′) with length (M − a(Si))/wþ

i . Specific weights are assigned to the vertices of
T′. For each i 2 V, the weight of i is zero and the weight of i′ is wþ

i . Let P be a path in the
auxiliary tree T′. The restriction ofP to T is the path obtained fromP by deleting the edges
of P that are not in T. Puerto, Ricca, and Scozzari gave the following nice property for
solving the minmax regret path center problem.

Lemma 1 [21]. Let P be a path center of T′. Then, the restriction of P to T is a minmax
regret path center of T.

Based upon Lemma 1, Puerto, Ricca, and Scozzari solved the minmax regret path
center problem in O(n2) time as follows. First, a(Si) is computed for each i 2 V. By
using the linear-time algorithm in [7] for the classical path center problem on a tree, this
step is done in O(n2) time. Next, the auxiliary tree T′ is constructed, which requires O
(n) time. Finally, a solution is obtained by applying the algorithm in [7] again to T′.

p q
v

v
uT

subtree(p, q) 

u

Fig. 1. Subtree Tv
u and subtree(p, q).
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4 The Entry Vertex Problem

A rooted path center of a rooted tree with root r under a fixed scenario is an r-path
H that minimizes the eccentricity from the tree to H. For a rooted path center, the
endpoint other than the root is called its terminal, which may be a vertex or an interior
point of an edge. A rooted tree may have more than one rooted path center. However, it
is easy to see that the shortest one is unique and can be obtained as follows: initially set
the terminal at the root and then continuously extend it toward a farthest vertex below
it, until the extension does not decrease the eccentricity.

The entry vertex problem is defined as follows. Let T = (V, E) be a tree with a fixed
scenario S. For any (u, v) 2 E, let QS(Tv

u) be the shortest rooted path center of Tv
u under

the scenario S, where Tv
u is considered as a rooted tree with root u. The entry vertex of a

vertex x to a path H is the vertex on H nearest to x. For any (u, v) 2 E and x 2 V(Tv
u),

define ENTRY(x, Tv
u) to be a query that returns the entry vertex of x to the shortest rooted

path center, QS(Tv
u), of T

v
u . (See Fig. 2) Note that ENTRY(x, Tv

u) may not be the same as
close(x, QS(Tv

u)), since only vertices can be entry vertices. The entry vertex problem is
to preprocess the tree T such that each ENTRY query can be answered efficiently.

This section shows that with an O(n log n)-time preprocessing, each ENTRY query
can be answered in O(log n) time.

4.1 Preprocessing

A query NODE(p, q, k), where p, q 2 V and k is an integer, requests the k-th vertex on
the path from p to q. For any two vertices p, q 2 V and scenario S 2 R, let MS(p,
q) = CS(subtree(p, q), P(p, q)), which is the eccentricity of P(p, q) from its subtrees.
We need the following two lemmas.

Lemma 2. With an O(n)-time preprocessing, a query NODE(p, q, k) can be answered in
O(1) time for any p, q 2 V and integer k.

Lemma 3. Suppose that CS(Tv
u , v) of all (u, v) 2 E are given. Then, with an O(n)-time

preprocessing, MS(p, q) can be computed in O(1) time for any p, q 2 V.

u
v
uT

ENTRY(x, v
uT )

x

QS( v
uT )

x'

v

ENTRY(x', v
uT )

close(x', QS( v
uT ))

Fig. 2. Entry vertices to the shortest rooted path center of Tv
u .
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Given a rooted tree in which each node is associated with a cost, a query lca(a,
b) requests the least common ancestor of two vertices a, b; a query la(v, l) requests the
level l ancestor of a vertex v, where the level of a vertex is the number of edges from it
to the root; and a query MAX(a, b) requests the largest cost of the vertices on a path P(a,
b). It was shown in [1, 13] that after an O(n) time preprocessing, each lca, la, and MAX

query can be answered in O(1) time. Using these results, it is not difficult to prove the
above two lemmas.

Using the divide-and-conquer approach, Tamir [25] gave an O(n log n)-time
algorithm to compute CS(T, v) for all v 2 V. Based on the same idea and the top tree
data structure in [2], we can show the following.

Lemma 4. The computation of CS(Tv
u , v) for all (u, v) 2 E can be done in O(n log

n) time.
We proceed to describe the preprocessing algorithm. First, we compute CS(Tv

u , v)
for every (u, v) 2 E. By Lemma 4, this step requires O(n log n) time. Next, by Lemmas
2 and 3, we preprocess T so that NODE(p, q, k) and MS(p, q) can be obtained in O(1)
time for any p, q 2 V and integer k.

4.2 Algorithm for Queries

Consider a query ENTRY(x, Tv
u). For notational simplicity, in this section, we assume

that Tv
u is rooted at u. In addition, since the scenario S is fixed, we write C(�, �), M(�, �),

and Q(�), respectively, for CS(�, �), MS(�, �), and QS(�). Our query algorithm finds the
answer in a binary search manner, mainly based upon the following.

Lemma 5. A vertex i of Tv
u is on the path Q(Tv

u) if and only if C(Ti, i) � M(v, i).

Proof. Assume first that C(Ti, i) � M(v, i). Consider an u-path H in Tv
u not containing

i. Since C(Tv
u , H) � C(Ti, H) > C(Ti, i) and C(Tv

u , P(u, i)) = max{C(Ti, i),M(v, i)} = C
(Ti, i), we have C(Tv

u , H) > C(Tv
u , P(u, i)). Thus, any u-path in Tv

u not containing i is not
a rooted path center. Therefore, the if-part holds.

Next, assume that i is a vertex on Q(Tv
u). By contradiction, suppose that C(Ti,

i) < M(v, i). Since Q(Tv
u) passes through i, we have C(Ti, Q(Tv

u)) � C(Ti, i) < M(v, i).
Therefore, C(Tv

u , Q(T
v
u)) = max{C(Ti, Q(Tv

u)), M(v, i)} = M(v, i). Let t be any point of
edge (i, p(i)) such that 0 < d(i, t) � (M(v, i) − C(Ti, i))/w

*, where w* is the largest
weight in Ti. Consider the path P(u, t), which is shorter than Q(Tv

u). Clearly, C(Ti, t) �
C(Ti, i) + d(i, t) � w* � M(v, i). Since C(Ti, t) � M(v, i), we have C(Tv

u , P(u,
t)) = max{C(Ti, t), M(v, i)} = M(v, i) = C(Tv

u , Q(T
v
u)), which contradicts that Q(Tv

u) is
the shortest rooted path center of Tv

u . Therefore, C(Ti, i) � M(v, i). Consequently, the
lemma holds. □

The entry vertex m = ENTRY(x, Tv
u) is found as follows. By definition, m is the first

vertex on P(x, u) that is contained in Q(Tv
u). All successors of m on P(x, u) are con-

tained in Q(Tv
u); and all predecessors of m on P(x, u) are not contained in Q(Tv

u).
Therefore, m can be identified by performing binary search on P(x, u). With the help of
NODE queries, any node on P(x, u) can be accessed in O(1) time. By Lemma 5, whether
a vertex i is on Q(Tv

u) can be checked in O(1) time by using the values of C(Ti, i) and M
(v, i). After the preprocessing in Sect. 4.1, C(Ti, i) = max{C(Ti

a, i), C(T
i
b, i)} and M(v,
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i) can be computed in O(1) time for any vertex i in Tv
u , where a and b are the two

children of i. Therefore, we have the following.

Theorem 1. With an O(n log n)-time preprocessing, each ENTRY query can be
answered in O(log n) time.

4.3 An Extended Problem

Our improvement on the minmax regret path center problem is based on solving an
extended version of the entry vertex problem, in which it is allowed to temporarily
increase the weight of a vertex during a query. For any i 2 V and w � wS

i , we use S|(i,
w) to denote the scenario obtained from S by increasing the weight of i to w. A query
EXTENDENTRY(x, Tv

u , i, w) reports the entry vertex of x to the rooted path center of Tv
u

under the scenario S|(i, w), where (u, v) 2 E, x 2 V(Tv
u), i 2 V, and w � wS

i . That is,
EXTENDENTRY(x, Tv

u , i, w) reports the entry vertex of x to the path QS|(i, w)(Tv
u). In the

following, we show that after an O(n log n)-time preprocessing, each EXTENDENTRY

query can also be answered in O(log n) time. Using the lca algorithm in [13], it is not
difficult to prove the following lemma.

Lemma 6. With an O(n)-time preprocessing, close(x, P(p, q)) can be computed in O(1)
time for any three vertices p, q, x 2 V.

Lemma 7. With an O(n log n)-time preprocessing, CS|(i, w)(Tv
u , v) and MS|(i, w)(p, q) can

be computed in O(1) time for any i, p, q 2 V, (u, v) 2 E, and w � wS
i .

Proof. As in Sect. 4.1, we preprocess T so that CS(Tv
u , v) for any (u, v) 2 E and MS(p,

q) for any vertices p, q 2 V can be computed in O(1) time. In addition, we preprocess
T so that close(x, P(p, q)) can be accessed in O(1) time for any x, p, q 2 V.

For any i 2 V, (u, v) 2 E, and w � wS
i , since S|(i, w) differs from S only in the

weight of i, CS|(i, w)(Tv
u , v) is computed in O(1) time as follows. First, determine whether

i 2 Tv
u by checking whether close(i, P(u, v)) = u. Next, if i 2 Tv

u , we set CS|(i, w)(Tv
u ,

v) = max{CS(Tv
u , v), w � d(i, v)}; otherwise, we set CS|(i, w)(Tv

u , v) = CS(Tv
u , v). For any

i, p, q 2 V, MS|(i, w)(p, q) is computed in O(1) time as follows. First, determine whether
i is a vertex in subtree(p, q) or an internal node of P(p, q) by checking whether close(i,
P(p, q)) 62 {p, q}. Next, if i is a vertex in subtree(p, q) or an internal node of P(p, q), we
set MS|(i, w)(p, q) = max{MS(p, q), w � d(i, close(i, P(p, q)))}; otherwise, we set MS|(i,

w)(p, q) = MS(p, q). Consequently, the lemma holds. □
Consider a query EXTENDENTRY(x, Tv

u , i, w). According to the query algorithm in
Sect. 4.2, to show that this query can be answered in O(log n) time, it suffices to show
that CS|(i, w)(Tv

u , v),M
S|(i, w)(p, q), and NODE(p, q, k) can be obtained in O(1) time for any

i, p, q 2 V, (u, v) 2 E, and integer k. As a result, by combining Lemmas 2 and 7, we
obtain the following.

Theorem 2. Let T be a tree with a fixed scenario S. With an O(n log n)-time pre-
processing, each EXTENDENTRY query can be answered in O(log n) time.
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5 An Improved Algorithm for the Path Center Problem

The bottleneck of the algorithm in [21] is to compute a(Si) for every i 2 V. Recall that
for any scenario S 2 R, a(S) denotes CS(T, p(S)) and for each i 2 V, Si denotes the
scenario in which the weight of vertex i is wþ

i and the weight of any other vertex v is
w�
v . In this section, we improve the upper bound of the minmax regret path center

problem on a tree by showing that the computation of all a(Si) can be done in
O(n log n) time.

Let S� be the scenario in which the weight of every vertex v is w�
v . The scenario S

�

differs from each Si only in the weight of vertex i. Our idea is to preprocess T under the
scenario S�, so that each a(Si) can be determined efficiently. Let MS(p, q) and QS(Tv

u)
be defined the same as in Sect. 4. For any (u, v) 2 E and scenario S, let kS(Tv

u) = CS(Tv
u ,

QS(Tv
u)), which is the eccentricity from Tv

u to the rooted path center QS(Tv
u). For

notational simplicity, in this section, CS�ð�; �Þ;CSið�; �Þ;MS�ð�; �Þ;MSið�; �Þ; lS�ð�Þ, and
kSi (�) are simply denoted, respectively, by C−(�, �), Ci(�, �), M−(�, �), Mi(�, �), k−(�), and
ki(�).
Lemma 8. Suppose that C−(Tv

u , v) for all (u, v) 2 E are given. In O(n) time, we can
compute k−(Tv

u) for all edges (u, v) 2 E.

Proof. In this proof, we assume that T is under the scenario S�. We orient T into a
rooted tree with an arbitrary root r. Since there always exists a rooted path center whose
terminal is a leaf, using the dynamic programming approach, all k−(Tv

u) are computed
in two phases.

Phase 1. This phase computes k−(Tx) for all x 2 V in a bottom-up manner as follows. If
x is a leaf, we have k−(Tx) = 0. Assume that x is an internal vertex and let x1,
x2 be its two children. Let H be a rooted path center of Tx. If H passes through
x1, since k−(Tx) = C−(Tx, H) = max{C−(Tx1, H), C

−(Tx2, x)} and a rooted
path center of Tx1 has the minimum eccentricity from Tx1 among all x1-paths,
it can be concluded that k−(Tx) = max{k−(Tx1), C

−(Tx2, x)}. Similarly, if
H passes through x2, it can be concluded that k−(Tx) = max{C−(Tx1, x),
k−(Tx2)}. Therefore, we compute k−(Tx) as min{max{k−(Tx1), C

−(Tx2, x)},
max{C−(Tx1, x), k

−(Tx2)}}.
Phase 2. This phase computes k−(Tx

pðxÞ) for all x 2 V in a top-down manner as follows.

If x is the root r, we have k−(Tx
pðxÞ) = k−(∅) = 0. Assume that x 6¼ r. A rooted

path center of Tx
pðxÞ passes through either sib(x) or p(p(x)). If it passes through

sib(x), we have k−(Tx
pðxÞ) = max{k−(Tsib(x)), C

−(TpðxÞ
pðpðxÞÞ, p(x))}; otherwise, we

have k−(Tx
pðxÞ) = max{C−(Tsib(x), p(x)), k−(TpðxÞ

pðpðxÞÞ, p(x))}. Therefore,

k−(Tx
pðxÞ) can be computed in O(1) time.

The above computation requires O(n) time. Thus, the lemma holds. □
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Lemma 9. Suppose that the following can be accessed in O(1) time: k−(Tv
u) for any (u,

v) 2 E, Ci(Tv
u , v) for any (u, v) 2 E and i 2 V, and Mi(p, q) for any i, p, q 2 V; and

suppose that the entry vertex of i to QSiðTv
uÞ can be accessed in O (log n) time for any

(u, v) 2 E and i 2 V. Then, ki(Tv
u) can be computed in O (log n) time for any (u, v) 2

E and i 2 V.

Proof. We prove this lemma by presenting an algorithm. For ease of description,
assume that Tv

u is rooted at u and is under the scenario Si. First, compute m as the entry
vertex of i to QSiðTv

uÞ in O (log n) time. Let m1, m2 be the two children of m. Next, in O
(1) time, we find the values of Ci(Tm1, m) and Ci(Tm2, m). By symmetry, assume that
Ci(Tm1, m) � Ci(Tm2, m). We first establish the following claim.

Claim. There is a rooted path center of Tv
u (under Si) that passes through m1.

Proof of the Claim. Let P u; tð Þ ¼ QSiðTv
uÞ. Clearly, any u-path containing QSiðTv

uÞ is a
rooted path center. Thus, to prove this claim, we only need to show that the terminal t is
a point of edge (m, m1) or is in Tm1. Since m is a vertex on QSiðTv

uÞ, QSiðTv
uÞ can be

obtained by initially setting the terminal t at m and then continuously extending it
toward a farthest vertex below it, until the extension does not decrease the eccentricity.
Since Ci(Tm1, m) � Ci(Tm2, m), it is easy to conclude that at t = m an extension can
decrease the eccentricity only if it is toward the vertex m1. Therefore, t is a point of
edge (m, m1) or is in Tm1. Consequently, the claim follows.

We now complete the proof of the lemma. Let H be a rooted path center of Tv
u that

passes through m1. Two cases are discussed.

Case 1: i 2 V(Tm1).
In this case, m1 is not on the shortest path center QSiðTv

uÞ. Otherwise, since
m1 is closer to x than m, m is not the entry vertex of i to QSiðTv

uÞ. By Lemma
4, Ci(Tm1, m1) < Mi(v, m1). Since H passes through m1, we have Ci(Tm1,
H) � Ci(Tm1, m1) < Mi(v, m1). Therefore, ki(Tv

u) = Ci(Tv
u , H) = max

{Ci(Tm1, H), C
i(subtree(v, m1), H} = max{Ci(Tm1, H), M

i(v, m1)} = Mi(v,
m1). Consequently, in this case, we compute ki(Tv

u) = Mi(v, m1) in O(1)
time.

Case 2: i 62 V(Tm1).
Since i 62 V(Tm1), we have Ci(Tm1, H) = C−(Tm1, H) and thus Ci(Tv

u , H) =
max{C−(Tm1, H), M

i(v, m1)}. Let H
* be the union of P(u, m1) and QS−(Tm1).

Under S−, the path QS−(Tm1) has the minimum eccentricity from Tm1 among
all m1-paths in Tm1. Consequently, it can be concluded that Ci(Tv

u , H
*) =

max{C−(Tm1, H
*), Mi(v, m1)} � Ci(Tv

u , H). Therefore, H
* is also a rooted

path center of T under Si and thus ki(Tv
u) = max{C−(Tm1, H*), Mi(v,

m1)} = max{k−(Tm1), M
i(v, m1)}. Consequently, in this case, we compute

ki(Tv
u) = max{k−(Tm1), M

i(v, m1)} in O(1) time.

The above computation of ki(Tv
u) requires O (log n) time. Thus, the lemma

holds. □
A discrete 1-center of T under a scenario S is a vertex v 2 V that minimizes CS(T,

v). Tamir et al. [26] gave the following.
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Lemma 10 [26]. Let T be a tree with a fixed scenario and c be its discrete 1-center.
Then, T has a path center that contains c.

We proceed to present an algorithm for computing a(Si) of all i 2 V. Consider the
computation for a fixed i 2 V. Assume that T is under the scenario Si. Let c be a discrete
1-center of T. By Lemma 10, there is a path center containing c. Let x, y, z be the three
children of c. Without losing any generality, assume that Ci(Tc

x , c) � Ci(Tc
y , c) � Ci(Tc

z ,
c). Then, there exists a path center that passes through x and y [26]. For any path
H passing through x and y, we have Ci(T,H) = max{Ci(Tc

x ,H), C
i(Tc

y ,H), C
i(Tc

z , c)}. Let

H* be the union of QSiðTc
x Þ, P(x, y), and QSiðTc

y Þ. The path QSiðTc
x Þ has the minimum

eccentricity from Tc
x among all x-paths in Tc

x ; and the path QSiðTc
y Þ has the minimum

eccentricity from Tc
y among all y-paths in Tc

y . Consequently, it can be concluded that H
*

has the minimum eccentricity among all paths that pass through x and y. That is, H* is a
path center of T. Therefore, a(Si) can be computed as Ci(T, H*) = max{Ci(Tc

x , Q
Si (Tc

x )),
Ci(Tc

y , Q
Si (Tc

y )), C
i(Tc

z , c)} = max{ki(Tc
x ), k

i(Tc
y ), C

i(Tc
z , c)}.

Based upon the above discussion, an algorithm for computing all a(Si) is described
as follows.

Since Si = S−|(i, wþ
i ) for each i 2 V, by using Lemmas 4 and 7 with S = S−, Line 1

requires O(n log n) time. By definition, when T is under S−, the entry vertex of x to
QSiðTv

uÞ is EXTENDENTRY(x, Tv
u , i, w

þ
i ). Therefore, by using Theorem 2 with S = S−,

Line 2 requires O(n log n) time. By Lemma 8, Line 3 takes O(n) time. Yu et al. [31]
showed that a discrete 1-center of T under Si can be computed in O(n log n) time for
every i 2 V. Thus, Line 4 requires O(n log n) time. Consider the for-loop in Lines 5–11.
Lines 7, 8, 10 take O(1) time. By Lemma 9, after the preprocessing in Lines 1, 2, and 3,
the computation of ki(Tc

x ) and k
i(Tc

y ) in Line 9 can be done in O (log n) time. Therefore,
each iteration of the for-loop requires O (log n) time. As a result, we obtain the
following.
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Lemma 11. We can compute a(Si) for all i 2 V in O(n log n) time.

Theorem 3. The minmax regret path center problem on a tree can be solved in O(n log
n) time.
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