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Preface

This volume contains the papers presented at FAW 2018: the 12th International
Frontiers of Algorithmics Workshop, held during May 8-10, 2018, at Guangzhou
University, in Guangzhou, P. R. China. The workshop provides a focused forum on
current trends of research on algorithms, discrete structures, and their applications, and
brings together international experts at the research frontiers in these areas to exchange
ideas and to present significant new results.

The Program Committee, consisting of 33 top researchers from the field, reviewed
38 submissions and decided to accept 23 papers. Each paper had three reviews, with
additional reviews solicited as needed. The review process was conducted entirely
electronically via EasyChair. We are grateful to EasyChair for allowing us to handle the
submissions and the review process and to the Program Committee for their insightful
reviews and discussions, which made our job easier.

Besides the regular talks, the program also included one keynote talk by Andrew
Chi-Chih Yao (Tsinghua University) and four invited talks by Yijia Chen (Fudan
University), Ran Duan (Tsinghua University), Nick Gravin (ITCS, Shanghai Univer-
sity of Finance and Economics), and Mingji Xia (Institute of Software, Chinese
Academy of Sciences).

We are very grateful to all the people who made this meeting possible: the authors
for submitting their papers, the Program Committee members and external reviewers
for their excellent work, and the five keynote and invited speakers. In particular, we
would like to thank Guangzhou University for hosting the conference and providing
organizational support and to the Institute for Theoretical Computer science (ITCS) at
Shanghai University of Finance and Economics for hosting the conference website and
providing some organizational support.

Finally, we would like to thank the members of the Editorial Borad of Lecture Notes
in Computer Science and the editors at Springer for their encouragement and coop-
eration throughout the preparation of this conference.

February 2018 Jianer Chen
Pinyan Lu
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Abstract. To strengthen the classical connectivity of graphs, two kinds
of generalized k-connectivities of a graph G, denoted by rj(G) and
ki (G), were introduced by Chartrand et al. [1] and Hager [7], respectively.
The former is the so-called cut-version definition of connectivity, whereas
the latter is the path-version definition of connectivity (a synonym was
also called the tree-connectivity by Okamoto and Zhang [32]). Since the
underlying topologies of interconnection networks are usually modeled
as undirected simple graphs, as applications of these two kinds of gener-
alized connectivities, one can be used to assess the vulnerability of the
corresponding network, and the other can serve to measure the capabil-
ity of connection for a set of k nodes in the network. So far the exact
values of these two types of generalized connectivities are known only for
small classes of graphs. In this paper, we study the two kinds of gener-
alized 3-connectivities in the n-dimensional alternating group networks
AN,,. Consequently, we determine the exact values: k5(AN,) = 2n — 3
for n > 4 and k3(AN,) =n — 2 for n > 3.

Keywords: Interconnection networks « Connectivity
Generalized connectivity + Alternating group networks

1 Introduction

As usual, the underlying topologies of interconnection networks are modeled as
undirected simple graphs, where vertices and edges in a graph represent process-
ing elements and their communication channels, respectively. In this paper, we

© Springer International Publishing AG, part of Springer Nature 2018
J. Chen and P. Lu (Eds.): FAW 2018, LNCS 10823, pp. 3-14, 2018.
https://doi.org/10.1007/978-3-319-78455-7_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78455-7_1&domain=pdf

4 J.-M. Chang et al.

study two kinds of generalized connectivities of alternating group networks. As
applications of the two types of generalized connectivities of graphs, one can be
used to assess the vulnerability of the corresponding network, and the other can
serve to measure the capability of connection for a set of nodes in the network.

Let G be a graph with vertex set V(G) and edge set F(G). For any two
vertices z,y € V(G), a path joining x and y in G is called an (z,y)-path, where
x is the starting vertex and y is the terminal vertex. We may extend this notion
to say that, for two disjoint subsets X,Y C V(G), an (X,Y)-path is a path
starting at a vertex x € X, ending at a vertex y € Y, and whose internal
vertices belonging to neither X nor Y. Also, we simply write (x, Y )-path instead
of (X,Y)-path if X = {z}. Two (x,y)-paths (resp., (X,Y)-paths) are internally
disjoint if they have no vertex and edge in common except for the starting vertex
and terminal vertex. In particular, a set of k internally disjoint (z,y)-paths is
also called a k-path container between z and y, and a set of k internally disjoint
(z,Y)-paths whose terminal vertices are distinct is referred to as a k-fan from
x to Y. Note that the term “container” is used to the study of evaluating how
much node failures can be tolerated in the network transmission [8].

The connectivity of a graph G, denoted by k(G), is the minimum number of
vertices whose removal from G results in a disconnected or trivial graph. A graph
G is k-connected if kK(G) = k. A well-known result by Whitney [35] (as a corollary
of Menger’s Theorem [29]) provided an equivalent definition of connectivity as
follows: A graph G is k-connected if and only if G admits a k-path container
between any pair of vertices. In addition, the following characterization of k-
connected graphs emerged from [6] is related to the concept of k-fan and is
customarily called the Fan Lemma (e.g. see [34, Theorem 4.2.23]).

Lemma 1 (see [6]). A graph G is k-connected if and only if |V (G)| = k+1 and,
for any vertex x € V(G) and Y C V(G) \ {z} with |Y| > k, there ezists a k-fan
in G fromx toY.

For a set of vertices S C V(G) with |S| > 2, two trees T and 7" in G that
connect S are called internally disjoint trees (IDTs for short) if E(T)NE(T") =0
and V(T)NV(T") = S (i.e., the two trees are vertex-disjoint in G\ S). Hereafter,
we use ¥(5) to denote the maximum number of pairwise IDTs that connect S in
G. By extending from a path container to a tree container, Hager [7] generalized
the path-version definition of connectivity as follows: For an integer k > 2,
the generalized k-connectivity of a graph G, denoted by ki(G), is defined as
kr(G) = min{y(S): S C V(G) and |S| = k}. Note that, for such a generalization
of connectivity, a synonym was also called the tree-connectivity by Okamoto and
Zhang [32].

Actually, almost at the same time, Chartrand et al. [1] proposed another gen-
eralization of the cut-version definition of connectivity as follows: For an integer
k > 2, the generalized k-connectivity of a graph G, denoted by x}(G), is the
minimum number of vertices of G whose removal produces a disconnected graph
with at least k components or a graph with fewer than k& vertices. Obviously,
for any graph G, we have k4(G) = k2(G) = k(G). However, for k > 3, these
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two types of generalized k-connectivities are indeed different. Recently, Sun and
Li [33] provided the sharp bounds of the difference between x. (G) and ki (G).

So far the study of x},(G) has received less attention, for more details we
refer to [5,30,31]. By contrast, there are many research results related to ki (G).
First of all, it has been proved in [20] that k3(G) < k(G) for every connected
graph G, while £;(G) < kr—1(G) is not true in general. Currently, the exact
values of ki (G) are known only for small classes of graphs, such as complete
graphs [2], complete bipartite graphs [15,32], complete equipartition 3-partite
graphs [16]. In fact, it has pointed out in [18,20] that the investigation of xx(G)
for general k is very difficult (see also [3] for complexity results), and thus suc-
ceeding research focused on the study of k3(G) (e.g., star graphs and bubble-
sort graphs [21], product graphs [12,14,23], and others [13,17,19,20]) and r4(G)
(e.g., hypercubes [28]). For more further investigations of k(G), see also [24,27],
a survey [26], and a recently published book [25].

Ji [10] introduced the alternating group network (which is defined later in the
next section) as an interconnection network topology for computing systems. In
this paper, for the n-dimensional alternating group network AN,,, we determine
the two types of generalized 3-connectivity of AN, as follows.

Theorem 1. Forn >4, k5(AN,) =2n — 3.

Theorem 2. Forn > 3, k3(AN,) =n — 2.

2 Background of Alternating Group Networks

Let Z, ={1,2,...,n} and A,, denote the set of all even permutations over Z,.
For n > 3, the n-dimensional alternating group network, denoted by AN, is a
graph with the vertex set of even permutations (i.e., V(AN,) = A,), and two
vertices p = (p1p2 -+ pn) and ¢ = (q1g2 - - - ¢ ) are adjacent if and only if one of
the following three conditions holds [10]:

(i) p1 =2, P2 = g3, p3 = q1, and p; = q; for j € Z, \ {1,2,3}.
(ii) p1 = g3, p2 = q1, p3 = g2, and p; = ¢; for j € Z,, \ {1,2,3}.
(iii) There exists an i € {4,5,...,n} such that p; = g2, p2 = q1, 3 = qi, Pi = g3,
and p; = g; for j € Z,, \ {1,2,3,1}.

The basic properties of AN,, are known as follows. AN,, contains n!/2 vertices
and n!(n — 1)/4 edges, which is a vertex-symmetric and (n — 1)-regular graph
with diameter [3n/2] —3 and connectivity n— 1. For n > 3 and i € Z,, let AN_
be the subnetwork of AN, induced by vertices with the rightmost symbol ¢ in
its permutation. It is clear that AN? is isomorphic to AN,,_;. In fact, AN,, has
a recursive structure, which can be constructed from n disjoint copies AN for
i € Zy, such that, for any two subnetworks AN! and AN/, i,j € Z,, and i # j,
there exist (n — 2)!/2 edges between them. Figurel depicts ANy, where each
part of shadows indicates a subnetwork isomorphic to AN3. For more properties
on alternating group networks, we refer to [4,9,10,36,37].



6 J.-M. Chang et al.

Fig. 1. Alternating group network ANy.

For notational convenience, if a vertex z belongs to a subnetwork AN, we
simply write z € AN} instead of x € V(AN.). By H = Ule AN}, it means
that H is a subgraph of AN, induced by the vertex set Ule V(AN?). Also,
the subgraph obtained from AN,, by removing a set F' of vertices is denoted by
AN,, — F. In particular, F' is called a vertez-cut if AN,, — F is disconnected.
An edge (x,y) € E(AN,) with two end vertices z € AN! and y € AN/ for
i # j is called an external edges between AN! and ANJ. In this case, r and
y are called out-neighbors to each other. By contrast, edges joining vertices in
the same subnetwork are called internal edges, and the two adjacent vertices are
called in-neighbors to each other. Let EJ = {(z,y): * € AN} and y € AN} }
be the set of external edges between AN! and ANJ when i # j. The following
are some basic properties of AN,,.

Lemma 2 (see [9,36,37]). For AN, withn > 4 and i,j € Z, with i # j, the
following holds:

(1) AN,, has no 4-cycle and 5-cycle.

(2) Each vertex of AN, has a set of n — 2 in-neighbors and exactly one out-
neighbor.

(3) Any two distinct vertices of AN} have different out-neighbors in AN, —
V(AN}).

(4) There are exactly |EL7| = (n — 2)!/2 edges between AN: and AN .

(5) Edges that cross between different subnetworks constitute a perfect matching
in AN,.

According to the property (2) in the above lemma, we use out(z) to denote
the unique out-neighbor of a vertex & € AN,,. Also, we denote N(z) the set of
in-neighbors of z, and let N[z] = N(x) U {z}. Figure2 shows the subnetwork
AN? and all out-neighbors of vertices in AN?2. From definition of AN,,, it is easy
to derive the following properties.
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34512
AN; O 13542 ANZ

O 41532

31524

ANE O 23514 ANZ

O 12534

Fig. 2. Alternating group subnetwork AN? and all out-neighbors associated with it.

Lemma 3. Forn > 4, let © € AN,, be any vertex. If y,z € N|x], then out(y)
and out(z) are contained in different subnetworks.

Lemma 4. Forn >4 and i € Zy, if v € AN} and j € Zy \ {i}, then there is
ezxactly one vertex y € N[z] such that out(y) € ANJ.

Lemma 5. Forn >4, let H= AN, — V(AN}) for somei € Z,,. Then x(H) =
n—2.

Proof. By Lemma 2, any two distinct vertices of AN/ have different out-
neighbors in H. Thus, the removal of AN! from AN,, leads to that the degree
of a vertex in H decreases by at most one. Thus, we have §(H) = n — 2, and
it follows that k(H) < 6(H) = n — 2. To show x(H) > n — 2, we claim that
there exists an (n — 2)-path container between any two vertices x,y € V(H).
The assertion is clearly true if z,y € ANj for some j € Z, \ {i} because
k(AN7?) = k(AN,_1) = n — 2. We now consider z € AN/ and y € ANF,
where j, k € Z,, \ {i} and j # k. By Lemma 4, there exists exactly one vertex
of N[z] (resp. N[y]) such that its out-neighbor is contained in AN’ for each
€ Zp\ {j} (resp. for each ¢ € Z, \ {k}). For each ¢ € Z, \ {i,j,k}, we let
(ug,v0) € EJ', where uy € N[x] C AN} and v, € ANY, and (wy, z¢) € EFY,
where wy € N[y] € ANF and z, € AN/, be such external edges. Note that it is
possible that wy = x or wy = y for a certain ¢. By the property (5) of Lemma 2,
(ug,vg) and (wy, z¢) are independent edges in AN,,, and thus v, # 2. Since AN/,
is connected and vy, z € ANY, there is a path, say Py, that connects vy and 2z, in
AN!. Thus, we have n — 3 internally disjoint (x,y)-paths Py for £ € Z, \ {i, j, k}
by setting
Py = {(z,ue), (ue,ve) } U Py U{(2¢,we), (we, y)}-

To complete the proof, we need an extra (x,y)-path P such that V(P)NV(P;) =
{z,y} for all £ € Z, \ {i,j,k}. Let U = {up: ¢ € Z, \ {3,4,k}} \ {z} and
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W = {we: € € Zn, \ {i,5,k}} \ {y}. Also, define H; = AN} — U and Hy =
ANF — W. Since k(ANj) = k(ANF) = n — 2 and H; is obtained from AN
(resp. Hy is obtained from ANY) by removing at most n — 3 vertices, this implies
that Hy (resp. Hz) is connected. Let H be the subgraph of AN,, induced by
V(H;) UV(Hs). Since the edge connecting a vertex of N[z] with out-neighbor
in AN (resp. a vertex of N[y] with out-neighbor in AN;) does not be removed
from H, it follows that H is connected and it contains an (z,y)-path P as our
desired. O

3 The Generalized 3-Connectivity x5(AN,)

To evaluate the size of the connected components of AN,, (n > 4) with a set of
faulty vertices, Zhou and Xiao [36] gave the following property.

Lemma 6 (see [36]). Forn =5, if F is a vertex-cut of AN,, with |F| < 2n—5,
then one of the following conditions holds:

(1) AN,, — F has two components, one of which is a trivial component (i.e., a
singleton).

(2) AN,, — F has two components, one of which is an edge, say (u,v). In par-
ticular, if |F| = 2n—5, F is composed of all neighbors of u and v, excluding
u and v.

Note that if F' is a vertex-cut of ANy with |F| = 3, then AN — F has two
component, one of which is a singleton, an edge, or a 3-cycle. In particular,
for the case of taking a 3-cycle as a component, it is easy to check the graph
ANy — {1342,2143, 3241} in Fig. 1.

From the definition of generalized connectivity, it is clear that k5(AN3) = 1.
Also, by brute-force checking AN, and ANs5, we found that the removal of no
more than four vertices in ANy (resp., six vertices in ANj) results in a graph
that is connected or contains exactly two components. Thus, the following lemma
establishes the lower bound of k4(AN,,) for n = 4,5.

Lemma 7. 5(ANy) > 5 and k5(AN5) > 7.

Proof of Theorem 1. We first prove k5(AN,,) < 2n — 3. Consider two vertices
z,y € AN,, where x = (p1p2p3 ...pn) € ANE™ and y = (p3papnps - Pn-1P1) €
ANP Tt is clear that  and y are nonadjacent and they have a common neighbor,
say z = (papapiPa - Pn) = 283 = yg.. Thus, z = out(y) € N(z) and out(z) =
(P2P1DnP4 - - - Pn—1p3) € ANP3. Let F = N(z) U N(y) U {out(z)}. Then, the
removal of F' from AN, results in a disconnected graph that contains three
components, including two isolated vertices x and y as components. By the
property (2) of Lemma 2, since every vertex has n — 2 in-neighbors, it follows
that k5(AN,) < |F|=2(n—2)+1=2n-3.

Next, we will prove k4(AN,) > 2n — 3. For n = 4 or n = 5, the results are
acquired in Lemma 7. We now consider n > 6 and let F' be any vertex-cut in
AN, such that |F'| < 2n — 4. For convenience, vertices in F' (resp., not in F') are
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called faulty vertices (resp., fault-free vertices). By Lemma 6, if |F| < 2n — 5,
then AN,,—F contains exactly two components, one of which is either a singleton
or an edge. To complete the proof, we need to show that the same result holds
for |F| =2n —4. Let F; = FNV(AN}) and f; = |F;| for each i € Z,,. We claim
that there exists some subnetwork, say AN, such that it contains f; > n — 2
faulty vertices. Since |F| = 2n — 4, if it is so, then there are at most two such
subnetworks. Suppose not, i.e., every subnetwork AN for j € Z,, has f; <n—3
faulty vertices. Since AN is (n — 2)-connected, AN} — F; remains connected
for each j € Z,. Recall the property (4) of Lemma 2 that there are (n — 2)!/2
independent edges between AN7 and ANJ' for each pair j,j’ € Z, with j # 5.
Since (n —2)1/2 > 2(n —3) > f; + f;» for n > 6, it guarantees that the two
subgraphs ANJ — F; and AN,{/ — Fj are connected by an external edge in
AN, — F. Thus, AN,, — F' is connected, and this contradicts to the fact that F is
a vertex-cut in AN,,. Moreover, for such subnetworks AN such that f; > n—2,
it is sure that some of F; must be a vertex-cut of AN!; otherwise, AN,, — F is
connected, a contradiction. We now consider the following two cases:

Case 1: There is exactly one such subnetwork, say AN, such that it contains
fi = n—2 faulty vertices. In this case, we have f; < n—3forall j € Z,\{i} and F;
is a vertex-cut of AN?. Let H be the subgraph of AN,, induced by the fault-free
vertices outside AN}, i.e., H= AN, — (V(AN}) U F). Since every subnetwork
AN in H has f; < n—3 faulty vertices, it is sure that H is connected. We denote
by C the component of AN,, — F that contains H as its subgraph. Consider the
following scenarios:

Case 1.1: f; = 2n — 4. In this case, there are no faulty vertices outside AN}.
That is, H = AN,, — V(AN}). Indeed, this case is impossible because if it is
the case, then every vertex of AN! — F; has the fault-free out-neighbor in H.
Thus, AN} — F; belongs to C, and it follows that AN, — F is connected, a
contradiction.

Case 1.2: f; = 2n — 5. Let uw € F \ F; be the unique faulty vertex outside
AN}, That is, H = AN,, — (V(AN}) U {u}). Since F; is a vertex-cut of AN},
we assume that AN — F; is divided into k disjoint connected components, say
C1,Cs,...,Cy. For each j € Zy, if |C;| > 2, then there is at least one vertex of
C; with its out-neighbor in H, and thus C; belongs to C. We now consider a
component that is a singleton, say C; = {v}. If out(v) # u, then out(v) must
be contained in H, and thus C; belongs to C. Clearly, there exists at most one
component C; = {v} such that out(v) = w. In this case, AN,, — F has exactly
two components {v} and C.

Case 1.3: f; = 2n — 6. Let uy,us € F \ F; be the two faulty vertices outside
AN} . That is, H = AN,, — (V(AN.)U{u1, us}). Since Fj is a vertex-cut of AN,
we assume that AN? — F; is divided into k disjoint connected components,
say C1,Cs,...,Ck. For each j € Zj, if |C;| > 3, then there is at least one
vertex of C; with its out-neighbor in H, and thus C; belongs to C. We now
consider a component C; with |C;| = 2, i.e., C; is an edge, say (vq,ve). If
{out(vy),out(ve)} # {u1,us}, then at least one of out(v;) and out(ve) must be
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contained in H, and thus C; belongs to C. Since f; = 2n — 6 and (v,w) has
2n — 6 neighbors (not including v and w) in AN}, there exists at most one
component C; = {(v1,v2)} such that {out(vq),out(ve)} = {ur,us}, If it is the
case of existence, then AN,, — F has exactly two components {(v1,v2)} and C.
Finally, we consider a component that is a singleton. Since f; = 2n —6 and every
vertex has degree n — 2 in AN}, we have n —2 < 2n — 6 < 2(n — 2) for n > 6.
Thus, at most one such component exists, say C; = {v}. If out(v) ¢ {u1,us},
then out(v) is contained in H, and thus C; belongs to C. Otherwise, AN,, — F'
has exactly two components {v} and C.

Case 1.4: n—2 < f; < 2n—7. In this case, there exist at least three faulty vertices
outside AN}, (i.e., (2n—4)—(2n—7) = 3). Since AN is isomorphic to AN,,_; and
F; is a vertex-cut of AN with no more than 2(n — 1) — 5 vertices, by Lemma 6,
AN} — F; has exactly two components, one of which is either a singleton or an
edge. Let C; and C5 be such two components for which 1 < |C;| < 2 < |Cs|. More
precisely, |Cs| = [V(AN)|— fi—|C1| > (n—1)/2~ fi—2 > (2n—4)— ; = || f;
for n > 6, where the last term |F| — f; is the number of faulty vertices outside
AN, Clearly, the above inequality indicates that there exist some vertices of
Cs such that their out-neighbors are contained in H, even if all out-neighbors
of vertices in F'\ F; are contained in C3. Thus, Cy belongs to C. Also, if there
is a vertex v € C with its out-neighbor in H, then C; belongs to C. Otherwise,
AN,, — F has exactly two components, one of which is either a singleton or an
edge.

Case 2: There exist exactly two subnetworks, say AN! and ANJ, such that
fi = n—2and f; > n— 2. Since F is a vertex-cut of AN,,, it implies that at
least one of the subgraphs AN/ — F; and AN} — F; must be disconnected. Also,
since |F| = 2n — 4, we have f; = f; =n —2 and f; =0 for all k € Z,, \ {¢,}.
Moreover, since both AN} and AN are isomorphic to AN,,_; and f; = f; =
n—2<2(n—1)—5 for n > 6, by Lemma 6, if AN} — F; (resp., AN — F}) is
disconnected, then it contains exactly two components. For the case that exactly
one of AN} — F; and AN] — F; is disconnected, through an argument similar
to the analysis of Case 1.4 for f; = n — 2 or f; = n — 2, we can show that
AN,, — F contains exactly two components, one of which is either a singleton
or an edge. Now, we consider that both F; and F; are vertex-cuts of AN} and
ANj, respectively, such that AN}, — F; = C; UCj and AN}, — F; = C; U (Y,
where Cj, C},C;,C% are disjoint components with 1 < |C3] < 2 < [C]] and
1 < |G| €2 < |C)|. Let H = AN,, — (V(AN,)) U V(AN})) and denote by
C the component of AN, — F that contains H as its subgraph. Since |C}| =
[V(AN))| = fi—1Cil > (n=1)1/2—=(n—2)—2>n—2= f; for n > 6, there
is at least one vertex of C! with its out-neighbor in H, and thus C/ belongs to
C. Similarly, we can show that C} belongs to C'. Next, we consider |C;| = 2
or |C;| = 2. Suppose that C; (resp., C;) is an edge, say (u,v). By Lemma 3,
out(u) and out(v) must be contained in different subnetworks, and thus at least
one of which must be in H. It follows that C; (resp., C;) belongs to C. Finally,
we consider C; = {u} and C; = {v}. In this case, since f; = f; = n — 2,
we have F; = N(u) and F; = N(v). We describe all subcases as follows: If
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out(u) € H (resp., out(v) € H), then C; (resp., C;) belongs to C. If out(u) € F)
and out(v) € Fj, then {u,out(u),v,out(v)} forms a 4-cycle, a contradiction to
the property (1) of Lemma 2. If exactly one of the conditions out(u) € F; and
out(v) € F; holds, then AN,, — F" has exactly two components, one of which is a
singleton {u} or {v}. If out(u) = v, then AN,, — F' has exactly two components,
one of which is an edge (u,v). O

Note that the lower bound of k5(AN,,) in the above proof mainly concern the
condition that n > 6 and |F| = 2n — 4. As a remark, if F' is a vertex-cut of ANj
with |F| = 6, then AN5 — F has two component, one of which is a singleton, an
edge, or a 3-cycle. In particular, for the case of taking a 3-cycle as a component,
we can consider F' = {13425, 13542, 21435, 21543, 32415, 32541} in Fig. 2. Also,
if Fis a vertex-cut of AN, with |F| = 4, then AN; — F has two component,
one of which is a singleton, an edge, a 3-cycle, a 2-path (i.e., P3) or a paw (i.e.,
K 3+ ¢). For the case of taking a 2-path (resp., a paw) as a component, we can
consider F' = {2431,3241,1342,1423} (resp., F' = {3241,1342,4213,1423}) in
Fig. 1. Thus, from the proof of Theorem 1 together with the remark, we obtain
the following result, which is an extension of Lemma 6.

Corollary 1. Let F is a vertez-cut of AN,, with |F| < 2n — 4. Then, the fol-
lowing conditions hold:

(1) If n =4, then AN,, — F has two components, one of which is a singleton,
an edge, a 3-cycle, a 2-path, or a paw.

(2) If n =5, then AN,, — F has two components, one of which is a singleton,
an edge, or a 3-cycle.

(3) If n > 6, then AN,, — F has two components, one of which is either a
singleton or an edge.

4 The Generalized 3-Connectivity x3(AN,,)

The following two properties establish an upper bound and a lower bound of
k3(G) for a connected graph G, respectively.

Lemma 8 (see [20]). Let G be a connected graph with minimum degree 6. Then
k3(G) < 6. In particular, if there exist two adjacent vertices of degree ¢ in G,
then k3(G) < § —1.

Lemma 9 (see [20]). Let G be a connected graph. For every two nonnegative
integers k and r € {0,1,2,3}, if K(G) = 4k +r, then k3(G) = 3k + [r/2].

Proof of Theorem 2. Since AN,, is (n — 1)-regular, by Lemma 8, we have
k3(AN,) < 6(AN,) — 1 = n — 2. We now prove that xk3(AN,) > n — 2 by
induction. For n = 3, since AGj is isomorphic to a 3-cycle, it is obvious that
k3(AN3) > 1 =n — 2. For n = 4, since K(AN4) = n —1 = 3, by Lemma 9 we
have k3(ANy) > [3/2] = n — 2. Suppose that n > 5 and the assertion holds for
AN, _1. Let S = {z,y, 2z}, where z,y and z are three distinct vertices of AN,,.
Without loss of generality, we may consider the following three cases:
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Case 1: z,y,2 € AN} (i.e., x,y and z belong to the same subnetwork). Let
H = AN, —V(AN]}). By Lemma 5, H is connected. Since AN} is isomorphic to
AN,,_1, by induction hypothesis we have x3(AN}) > (n —1) — 2 = n — 3. Thus,
there exist n — 3 IDTs that connect S in AN}. Let S’ = {/,y/,2'}, where 2/,
and 2’ are the out-neighbors of x,y and z respectively. Thus, it follows from the
property (3) of Lemma 2 that all vertices of S’ are distinct. Since S C V(H)
and H is connected, there is a tree T’ that connects S’ in H. Let T be the tree
obtained from 7" by adding three pendant edges (x,2’), (y,y’) and (z, 2’). Then,
T is a tree connecting S in AN,, and V(T) NV (AN}) = S. Now, counting the
n — 3 IDTs we mentioned before together with T', there exist at least n —2 IDTs
connecting S in AN,,, and hence k3(AN,) > n — 2.

Case 2: 7,y € AN} and z € AN? (i.e., z,y and z belong to two subnet-
works). Let H = AN,, — V(AN}). By Lemma 5 and since AN is isomorphic
to AN,,_1, we have k(H) = k(AN}) = n — 2, and thus there is an (n — 2)-
path container between z and y in AN}. Let Py, P, ..., P,_2 be such internally
disjoint (z,y)-paths. For each path P;, we choose a vertex w; € V(P;), and let
W = {wi,ws,...,w,—2}. Note that at most one of these paths, say P;, has
length 1. If so, we choose w; = x. For each i € Z,_3, we let w] = out(w;). By
the property (3) of Lemma 2, we have w; # w’ for i,j € Z,_o and i # j. Let
W' = {w),wh,...,wl,_5}. Since W C V(H) and x(H) =n — 2, by Lemma 1, if
z ¢ W', there exists an (n — 2)-fan from z to W’ in H. For i € Z,,_o, let P/ be
such (z,w})-path in this fan. On the other hand, if z = w] for some i € Z,,_2 (i.e.,
z € W), we may consider that P/ contains exactly one vertex z. Now, for each
i € Zy—_2, we can construct a tree T; in AN, by setting T; = P; U {(w;, w})} UP].
As a result, 71,715, ...,T,_5 are n — 2 IDTs that connect S in AN,,, and hence
/ﬁlg(ANn) >n— 2.

Case 3: v € AN}, y € AN? and z € AN? (i.e., z,y and z belong to different
subnetworks). For each i € {4,5,. n} we consider the following external edges
between subnetworks: (u;,u}) € E1 ¢ where ui € Nlz] € AN} and u, € AN},
(vi,vl) € E2% where v; € N[ ] C AN2 and v) € AN}, and (w;,w}) € E3* where
w; € N[z] € AN? and w; € AN.. Note that it is possible that u; = =, v; = y
or w; = z for a certain 7. By the property (5) of Lemma 2, (u;,u}), (vl, v;) and
(wl,wé) are independent edges in AN, and thus the three vertices u},v] and
w) are distinct. Since AN is connected and u}, v}, w} € AN, let T/ be a tree

79 Yo

in AN that connects the three vertices u}, v, and w;. Now, we can construct a
tree T; in AN,, by setting

Tl:Tle{(x7ul) (u“ 7,) (yavl) (Ui,vz{)’(z7wi)7(wi’w;)}'

Thus, Ty, Ts, ..., T, are n — 3 IDTs that connect S in AN,. To complete the
proof, we need an extra tree T to connect S such that V(T)NV(T;) = S
for all i € {4,5,...,n}. Let Hi = AN} — ({ug,us,...,un} \ {z}). Since
k(AN}) = n—2 and H; is obtained from AN, by removing at most n — 3 vertices,
this implies that H; is connected. Similarly, the two subgraphs Hy = AN?2 —
({vg,v5,...,vn} \ {y}) and Hz = AN? — ({ws,ws, ..., w,} \ {2}) are also con-
nected. Moreover, since each Hj, j € {1,2,3}, is obtained from AN; by remov-
ing vertices without out-neighbors in AN for k € {1,2,3}\ {j}, by Lemma 4,



Two Kinds of Generalized 3-Connectivities of Alternating Group Networks 13

the subgraph of AN,, induced by U?_, V(H;) is connected and it contains a tree
T connecting S as our desired. a

5 Concluding Remarks

In this paper, we determine the exact values of k5(AN,,) and k3(AN,,). A natu-
ral counterpart of the generalized connectivity is the so-called generalized edge-
connectivity introduced in [27]. For S C V(G), let ¢/(S) denote the maximum
number of edge-disjoint trees that connect S in G. The generalized k-edge-
connectivity of G is defined by A\ (G) = min{y’(S): S C V(G) and |S| = k}. An
easy observation shows that k;(G) < A\;(G) < §(G). Also, similar to Lemma 8, a
result in [22] showed that if there exist two adjacent vertices with the minimum
degree § in G, then A3(G) < 6 — 1. Accordingly, by Theorem 2, we conclude that
A3(AN,) =n—2forn > 3.

So far it seems that less effort has been devoted on the study of the two
types of generalized k-connectivity for larger k. As a future work, we would like
to study in this direction, especially, for some popular interconnection networks
such as hypercubes, star graphs, high dimensional tori, and their variants.
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Abstract. We study a maximization problem for geometric network
design. Given a set of n compact neighborhoods in R?, select a point in
each neighborhood, so that the longest spanning tree on these points (as
vertices) has maximum length. Here we give an approximation algorithm
with ratio 0.511, which represents the first, albeit small, improvement
beyond 1/2. While we suspect that the problem is NP-hard already in
the plane, this issue remains open.

Keywords: Maximum (longest) spanning tree - Neighborhood
Geometric network + Metric problem - Approximation algorithm

1 Introduction

In the Fuclidean Mazimum Spanning Tree Problem (EMST), given a set of
points in the Euclidean space RY, d > 2, one seeks a tree that connects these
points (as vertices) and has maximum length. The problem is easily solvable
in polynomial time by Prim’s algorithm or by Kruskal’s algorithm; algorithms
that take advantage of the geometry are also available [13]. In the Longest Span-
ning Tree with Neighborhoods (MAX-ST-N), each point is replaced by a point-
set, called region or neighborhood, and the tree must connect n representative
points, one chosen from each region (duplicate representatives are allowed), and
the tree has maximum length. The tree edges are straight line segments con-
necting pairs of points in distinct regions; for obvious reasons we refer to these
edges as bichromatic. As one would expect, the difficulty lies in choosing the
representative points; once these points are selected, the problem is reduced to
the graph setting and is thus easily solvable.

The input N consists of n (possibly disconnected) neighborhoods. For sim-
plicity, it is assumed that each neighborhood is a union of polyhedral regions;
the total vertex complexity of the input is V. However, it will be apparent from
the context that our methods extend to a broader class of regions, those approx-
imable by unions of polyhedral regions within a prescribed accuracy (for instance
unions of balls of arbitrary radii, etc.).

Examples. 1t is worth noting that a greedy algorithm does not necessarily find an
optimal tree. Let N' = { X1, X5, X3}, where X7 = {a, b}, Xo = {a,c}, X3 = {d},
Aabc is a unit equilateral triangle and d is the midpoint of be; see Fig. 1 (left).

© Springer International Publishing AG, part of Springer Nature 2018
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Fig. 1. Left: an example on which the greedy algorithm is suboptimal. Right: an exam-
ple of a long (still suboptimal) spanning tree with 10 regions N'= {A,SUS,EUE U
E,TUT,OUO,F,NUN,R,G,I} (some regions are disconnected); the blue segments
form a spanning tree on N and the green dots are the chosen representative points.
(Color figure online)

A (natural) greedy algorithm chooses two points attaining a maximum inter-
point distance with points in distinct regions, and then repeatedly chooses a
point in each new region as far as possible from some selected point. Here the
selection b € X1, ¢ € X3, d € X3 yields a spanning tree in the form of a star
centered at v; = b of length 3/2; on the other hand, selecting vertices v; € X,
i =1,...,3 at a,a,d, respectively, yields a spanning tree in the form of a 2-
edge star centered at vz = d of length 2 x v/3/2 = /3 (the edge lengths in the
underlying complete graph are v/3/2, v/3/2, and 0). Another example appears
in Fig. 1 (right).

We start by providing a factor 1/2 approximation to MAX-ST-N. We then
offer two refinement steps achieving a better ratio. The last refinement step
proves Theorem 1.

Theorem 1. Given a set N of n neighborhoods in R?® (with total vertex com-
plexity N), a ratio 0.511 approzimation for the mazimum spanning tree for the
regions in N can be computed in polynomial time.

Although our improvement in the approximation ratio for spanning trees is
very small, it shows that the “barrier” of 1/2 can be broken. On the other hand,
we show that every algorithm that always includes a bichromatic diameter pair
in the solution (as the vertices of the corresponding regions) is bound to have

an approximation ratio at most /2 — /3 = 0.517... (via Fig. 4 in Sect. 3).

Definitions and notations. A geometric graph G is a graph whose vertices (a
finite set) are points in R and whose edges consist of straight line segments. For
two points p,q € R, the Euclidean distance between them is denoted by |pql|.
The length of G, denoted len(G), is the sum of the Euclidean lengths of all edges
in G.

For a neighborhood X € N, let V(X) denote its set of vertices. Let V =
Uxen'V(X) denote the union of vertices of all neighborhoods in N; put N = |V].
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Given a set N of n neighborhoods, we define the following parameters.
A monochromatic diameter pair is a pair of points in the same region attaining
a maximum distance. A bichromatic diameter pair is a pair of points from two
regions attaining a maximum distance, i.e., p; € X;, p; € X;, where X;, X; € NV,
i # j, and |p;p;| is maximum. For X € N and p € X, let dyax(p) denote the
maximum distance between p and any point of a neighborhood Y € N\ {X}.
It is well known and easy to prove that both a monochromatic diameter and
bichromatic diameter pair are attained by pairs of vertices in the input instance.
An optimal (longest) Spanning Tree with neighborhoods is denoted by Topr; it
is a geometric graph whose vertices are the representative points of the n regions.

Preliminaries and related work. Computing the minimum or maximum
Euclidean spanning trees of a point set are classical problems in a geometric set-
ting [13,14]. A broad collection of problems in geometric network design, includ-
ing the classical Fuclidean Traveling Salesman Problem (ETSP), can be found
in the surveys [9,11,12]. While past research has primarily focused on minimiza-
tion problems, the maximization variants usually require different techniques
and so they are interesting in their own right and pose many unmet challenges;
e.g., see the section devoted to longest subgraph problems in the survey of Bern
and Eppstein [5]. The results obtained in this area in the last 20 years are rather
sparse; the few articles [4,8,10] make a representative sample.

Spanning trees for systems of neighborhoods have also been studied. For
instance, given a set of n (possibly disconnected) compact neighborhoods in R%,
select a point in each neighborhood so that the minimum spanning tree on these
points has minimum length [7,18], or maximum length [7], respectively. In the
cycle version first studied by Arkin and Hassin [3], called TSP with neighborhoods
(TSPN), given a set of neighborhoods in R, one must find a shortest closed
curve (tour) intersecting each region.

2 Approximation Algorithms

For simplicity, we present our algorithms for the plane, namely d = 2; the exten-
sion to higher dimensions is straightforward, and is briefly discussed at the end.

Let S = {p1,...,pn}, where p; = (z;,y;). Given a point p € S, the star
centered at p, denoted S, is the spanning tree on S whose edges connect p to
the other points. Using a technique developed in [8] (in fact a simplification of an
earlier approach used in [2]), we first obtain a simple approximation algorithm
with ratio 1/2.

Algorithm A1. Compute a bichromatic diameter of the point set V', pick an
arbitrary point (vertex) from each of the other n — 2 neighborhoods, and output
the longest of the two stars centered at one of the endpoints of the diameter.

Analysis. Let ab be a bichromatic diameter pair, and assume without loss of
generality that ab is a horizontal unit segment, where a = (0,0) and b = (1,0).
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Fig. 2. A bichromatic diameter pair a,b and the disk w.

We may assume that a € X; and b € X»; refer to Fig. 2. The ratio 1/2 (or 5
which is slightly better) follows from the next lemma in conjunction with the
obvious upper bound

len(Topr) <n —1. (1)

The latter is implied by the fact that each edge of Topr is bichromatic and thus
of length at most 1.

Lemma 1. Let S, and Sy be the stars centered at the points a and b, respectively.
Then len(S,) + len(Sy) > n.

Proof. Assume that a = py, b = ps. For each i = 3, ..., n, the triangle inequality
for the triple a, b, p; gives

lap;| + |bp;| > |ab| = 1.

By summing up we have
len(S,) + len(Sy) = Z(|api| + |bpi|) + 2|abl > (n—2)+2 =mn,
i=3
as required. 0

We next refine this algorithm to achieve an approximation ratio of 0.511. The
technique uses two parameters = and y, introduced below. The smallest value of
the ratio obtained over the entire range of admissible x and y is determined and
output as the approximation ratio of Algorithm A2.

Let o be the midpoint of ab, and w be the disk centered at o, of minimum
radius, say, z, containing at least |n/2] of the neighborhoods Xjs,..., X,; in
particular, this implies that we can consider |n/2] neighborhoods as contained in
w and [n/2] neighborhoods having points on the boundary dw or in the exterior
of w. We may assume that = < 0.2; if z > 0.2, the 0.511 approximation ratio
easily follows (with room to spare): Since for each of the regions not contained
in w, one of the connections from an arbitrary point of the region to a or b is at

least 4/ i + 2. If T is the spanning tree consisting of all such longer connections
together with ab, then

) > 145 5]+ ([5]-2) -2
4

(n—1)+1- 1
2 2 2
>5+8/§(n_1)+1_3\;()§25+8/3

Z 3 5 (n—1).
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So the approximation ratio is at least (5 + 1/29)/20 = 0.519....

Let the monochromatic diameter of V' be 1+ y, for some y € [—1,00); the
next lemma shows that y < 1, and so the monochromatic diameter of V is 1 +y,
for some y € [—1,1].

Lemma 2. For every X € N, diam(X) < 2.

Proof. Let pg be a diameter pair of X. Let r be an arbitrary point of an arbitrary
neighborhood Y € A\ {X}. By the triangle inequality, we have |pq| < |pr| +
|rq] <1+ 1 =2, as required. O

If y > 0.2, let a1,b; € X7 be a corresponding diameter pair; choose a point
in every other region and connect it to a; and b;. Since |a;b;| = 14y > 1.2, the
longer of the two stars centered at a; and by has length at least (n—1)(1+y)/2 >
0.6(n—1); this candidate spanning tree offers thereby this ratio of approximation.
We will subsequently assume that y € [—1,0.2].

As shown above a constant approximation ratio better than 1/2 can be
obtained if  or y is sufficiently large. In the complementary case (both x and
y are small), an upper bound of ¢n, for some constant ¢ < 1, on the length of
Topt can be derived. We continue with the technical details.

Algorithm A2. The algorithm computes one or two candidate solutions. The
first candidate solution 73 for the spanning tree is only relevant for the range
y >0 (if y < 0 its length could be smaller than n/2). Assume that one of the
regions, say, X7 achieves a diameter pair: aj, by € X7; recall that |a1b1| =1+ y.
Choose an arbitrary point in every other region and connect it to a; and b;.
Let T1 be the longer of the two stars centered at a; and b;. By the triangle
inequality, .
+ty
5 - (2)
The second candidate solution 75 for the spanning tree connects each of the
regions contained in w with either a or b at a cost of at least 1/2 (based on the
fact that max{|ap;|, |bp;|} > |ab|/2 = 1/2). For each region X;, i > 3, select the
vertex of X; that is farthest from o and connect it with a or b, whichever yields
the longer connection. As such, if X; is not contained in w, the connection length

is at least ,/% + 22. Finally add the unit segment ab. Then,

1en(T2)z1+{gJ%+({g] —2),/%+m2. (3)

The above expression can be simplified as follows. If n is even, (3) yields

len(Ty) > 1+ 2 + (2 - 1) V11 42

4 4

”‘1(1+m)+(53m>

len(Ty) > (n—1)

4 4 4

1
n <1+\/1+4x2>.

4

v
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If n is odd, (3) yields

~1 1
len(Ty) > 1+ 2 + (”+ —1) V1 + 422

1 1
1 2

- "4 <1+\/1+4x2> T (1—4\/1+4x2>
1

2n4 (1+\/1+4x2).

Consequently, for every n we have
-1
len(T) > ”T (1 +V1+ 4352) . (4)

Upper bound on len(Topr). Let £2 be the disk of radius R(y) centered at o,

where 3
V3 3 <
Ry)=47 - ry =0
Yt EY ify>0

Lemma 3. V is contained in §2.

Proof. Assume for contradiction that there exists a point p; € X; at distance
larger than R(y) from o. By symmetry, we may assume that |ap;| < |bp;| and
that p; lies in the closed halfplane above the line containing ab.

First consider the case y < 0; it follows that |bp;| > \/i + % =1.If7 = 2, then
b, p; € Xs, which contradicts the definition of y; otherwise b € X5 and p; € X;

are points in different neighborhoods at distance larger than 1, in contradiction
with the original assumption on the bichromatic diameter of V.

Next consider the case y > 0; it follows that |bp;| > \/i + (@ + %yy >
1+ y. If ¢ =2, then b, p; € Xo, which contradicts the definition of y; otherwise
b € X, and p; € X; are points in different neighborhoods at distance larger than
1, in contradiction with the original assumption on the bichromatic diameter of
V.

In either case (for any y) we have reached a contradiction, and this concludes
the proof. O

Recall that for a point p € X € N, diax(p) is the maximum distance between
p and any point of a neighborhood Y € N'\ {X}.

Lemma 4. Let N = {X1,...,X,} be a set of n neighborhoods and Topr be
an optimal spanning tree assumed to connect points (vertices) p; € X; for i =
1,...,n. For every j € [n], we have

leH(TOPT) S deaz(pi)'
i#j
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Proof. Consider Topt rooted at p;. Let m(v) denote the parent of a (non-root)
vertex v. Uniquely assign each edge m(v)v of Topt to vertex v. The inequality
len(m(v)v) < dpmax(v) holds for each edge of the tree. By adding up the above
inequalities, the lemma follows. a

Lemma 5. If X € N is contained in w, and p € X, then dpq(p) < min(1,z +
R(y))-

Proof. By definition, dyax(p) < 1. By Lemma 3, the vertex set V is contained
in £2; equivalently, all neighborhoods in N are contained in 2. By the triangle
inequality, dpmax(p) < |po| + R(y) < x 4+ R(y), as claimed. O

Lemma 6. The following holds:

(5)

len(Topr) < (n — 1) - min (1, Hx;rR(y)) .

Proof. Let Topr be a longest spanning tree of p1,...,p,, where p; € X;, for
t=1,...,n. View Topr as rooted at p; € Xi; recall that a € X;. By Lemma4,

n
len TOPT Z max pz
1=2

If X; is not contained in w, dmax(p;) < 1; otherwise, by Lemma5, dpax(pi) <
min(1,z + R(y)). By the setting of z in the definition of w, we have

len(Topr) < ([g] - 1) g EJ -min(1,z + R(y)).
If n is even, the above inequality yields

len(Topr) < (g - 1) + gmin(l,x + R(y))

_ n;l (1+2+ R(y)) + min(l,x—;R(y))—l

n —

<" laie4Ry).

while if n is odd, it yields

1 n-1 n—
len(Topr) < “—= + "= (z + R(y)) =

L (1+z+ R(y)).

Therefore len(Topr) < 25 (14 2 + R(y)) in both cases. Then the lemma fol-
lows by adjoining the trivial upper bound in Eq. (1). O

3 Analysis of Algorithm A2

We start with a preliminary argument for ratio 0.506 that comes with a simpler
proof. We then give a sharper analysis for ratio 0.511.
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A first bound on the approximation ratio of A2. First consider the case y < 0.
Then R(y) = v/3/2, so the ratio of A2 is at least

. len(T5) . 1+ V14422
min _— > min .

0<z<02len(Toprr) ~ <z < 0.2 min (4,24 v3 + 22)
y <0

A standard analysis shows that this ratio achieves its minimum

<1+2\/2f\/§> /4:0.508... when z = 1 — v/3/2.

When y > 0, the ratio of A2 is at least

. ( len(T1 ) 19H(T2 ) >
min max , )
0<z,y<02 len(Topr)’ len(Topr)

The inequalities (2), (4), (5) imply that this ratio is at least

max (1+y, (1 +V1+ 42?)/2) _ max (1+y, (1+v1+4a22)/2)
min (2,1 4z + R(y)) min(Z,l—i—@—&—x—i—%y)

Since the analysis is similar to that for deriving the refined bound we give next,
we state without providing details that this piecewise function reaches its mini-

mum value
(4\/??—1—2\/9—3\/??) /4:0.506...
y = (4\/3—3—2\/9—3\/5) /2:0.0137...
z=1+3/2-3+2\/3-v3=0.1180. ..

This provides a preliminary ratio 0.506 in Theorem 1.

when

and

A refined bound. Let m = |n/2]|. Assume for convenience that the regions
X3,..., X, are relabeled so that Xs,...,X,,+2 are contained in w and
Xin+t3, ..., X, are not contained in the interior of w. Recall that p; € X;
are the representative points in an optimal solution Topr. Let x; = |op;|, for
1=3,...,m+2; as such, x3,...,Ty,4+2 < z. Let the average of z3, ..., 2,42 be
Az, where A € [0,1], i.e., Zf:f T; = MAZ.

Observe that dmax(pi) < |opi| + R(y) = z; + R(y), for i = 3,...,m + 2.
Consequently, the upper bound in (5) can be improved to

len(Topr) < ”T_l (14 Az + R(y)). (6)

We next obtain an improved lower bound on len(73). Recall that Algo-
rithm A2 selects the vertex of X; that is farthest from o for every ¢ > 3, and
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connects it with a or b, whichever yields the longer connection. In particular,
the length of this connection is at least W/i + 2 for i = 3,...,m+ 2. Since the

function +/x is concave, Jensen’s inequality yields:

m—+2

Do 1+ 4a? > my 1+ 4022,
=3

hence we obtain the following sharpening of the lower bound in (4):

len(T3) > ”T_l (\/1 T a2 41+ 4x2) . (7)

In order to handle (6) and (7) we make a key substitution z = Az and simplify
the lower bound in (7). Recall that 0 < A <1, and so 0 < z <z and z € [0,0.2].
We now deduce from (6) and (7) that

len(Topr) < "T‘l (14 2+ R(y)), (8)
and 1
len(T5) > ”%\/ 14422, (9)

To analyze the approximation ratio we distinguish two cases:

Case 1: y < 0. Then R(y) = v/3/2, so the ratio of A2 is at least

) ( len(T%) ) . 2v/1 + 422
min max | ————~ | > min - .
0<2<0.2 len(Topr) 0< z<0.2 min (4,24 22+ /3)

When 4 < 24 22+ /3, we have z > 1 — v/3/2. Then

V1+422  /8—4V3
> =1/2-v3=0517....
5 > 5 \/2—+v3=0517

When 4 > 242z ++/3, or 2 < 1 —+/3/2, let

21 + 422

M= At

Then

F(2) = 8(2+V3)z—4
VIF422 (24 V3+22)"

Since 8 (2 + \/3) z—4 < 4 (2 + \/3) (2 — \/3) — 4 = 0, the function is non-
increasing on [0,1 — v/3/2] and so

f(z)zf<1—\/§/2) =/2-V3=0517....
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This concludes the proof for the first case.

Case 2: y > 0. Then the ratio of A2 is at least

X( len(Ty)  len(T3) )

min )
len(TOpT) len(TopT)

0<y,2<0.2

For 0 <y,z<0.2, let

max (1+y,\/1+422) max (1+y, \/1+422)

9(z,y) = — = :
2,1 R :
min (2,1 + z + R(y)) Inm(2,1+§+z+%y)

The inequalities (2), (8), (9) imply that the ratio of A2 is at least

min  g(2,y).

0<y,2<0.2

y
0.2

, I

v
11 P 1%
111
0 q 02 =

Fig. 3. The feasible region of the function g(z,y).

The curve v: 1+ 1y = V1 + 422 and the line £ : 2 = 1+§+z+%y split
the feasible region [0,0.2] x [0,0.2] into four subregions; see Fig.3. The curve
v intersects line ¢ at point p = (zo,yo), where zp = (8\‘737 V3 — 6) /26 =

0.1075... and yo = (8v3 — 2v27 - 9) /13 =0.0228... Set

pi=(1+yp)/2= (4\/§+2—<‘/ﬁ)/13=0.5114...

In region I, g(z,y) = (1 + y)/2. It reaches the minimum value p when y is

minimized, i.e., y = yo.
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. 1+y . P :
In region II, g(z,y) = . Its partial derivative is posi-
(,9) 1+3/2+z+2y/V3
tive, i.e.,
dg 1-3/6+2

= = 5 >0,
0 (1+V3/2+ 2+ 2y/V3)

s0 g(z,y) reaches its minimum value on the curve . On this curve, let

B V14422
C1—3B/6+ 2+ 2V1 +422/V/3

G(2) =g9(2y(2))

Its derivative is

&) = (4-2v3/3)z—1
VI 422 (1-V3/6+ 2 +2vI+422/v3)°

Note that the numerator of G’(z) is negative, i.e., (4 —2v3/3) z2—1 <42-1<0
for z € [0,0.2], thus G'(z) < 0. So the minimum value is p, and is achieved when
z is maximized, i.e., z = 2.

In region IV, g(z,y) = V14 422/2 which increases monotonically with
respect to z. So the minimum value is again p and is achieved when z is mini-
mized, i.e., z = zg.

In region III,

B V14422
1+v3/242+2y/V3

Its partial derivative is negative, i.e.,

@: —2¢/1 4 422
% B(1+V3/242+2y/V3)

s0 g(z,y) reaches its minimum value on the arc op C v or the segment pg C ¢,
where ¢ = (1 —1/3/2,0) is the intersection point of £ and the z-axis. Since these
two curves are shared with region II and IV respectively, by previous analyses,
g(z,y) reaches its minimum value p at point p.

In summary, we showed that

9(2,y)

5 <0,

min g(z,y) > p=0511...,
0<y,2<0.2

establishing the approximation ratio in Theorem 1.

Remark. The algorithm can be adapted to work in R? for any d > 3. In the
analysis, the disk w becomes the ball of radius z with the same defining property;
the disk {2 becomes the ball of radius R(y). All arguments and relevant bounds
still hold since they only rely on the triangle inequality; the verification is left
to the reader. Consequently, the approximation guarantee remains the same.
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An almost tight example. Let Aabe be an isosceles triangle with |ca| = |cb] = 1—
g, |abl =1, for asmalle > 0;e.g.,set ¢ = 1/(n—1). Let N = {X1,..., X,,}, where
Xy =ac, Xo = be, and X3, ..., X, are n—2 points at distance 1 —¢ from ¢, below

ab and whose projections onto ab are close to the midpoint of ab (see Fig. 4). The
spanning tree constructed by A2 is of length close to v/2 — v/3n = 0.517...n,
while the longest spanning tree has length at least (1 —e)(n —1) = n — 2; as
such, the approximation ratio of A2 approaches /2 — /3 = 0.517... for large
n. Note that this is a tight example for the case y < 0, for which the ratio of A2
is at least v/2 — v/3; and an almost tight example in general, since the overall
approximation ratio of A2 is 0.511. Moreover, the example shows that every
algorithm that always includes a bichromatic diameter pair in the solution (as
the vertices of the corresponding regions) is bound to have an approximation

ratio at most /2 — \/§

Fig. 4. A tight example.

Time complexity of Algorithm AZ2. 1t is straightforward to implement the algo-
rithm to run in quadratic time for any fixed d. All interpoint distances can be
easily computed in O(N?) time. Similarly the farthest point from o in each region
(over all regions) can all be computed in O(N) time. Subquadratic algorithms
for computing the diameter and farthest bichromatic pairs in higher dimensions
can be found in [1,6,15-17]; see also the two survey articles [9,11].

4 Conclusion

We gave two approximation algorithms for MAX-ST-N: a very simple one with
ratio 1/2 and another simple one (with slightly more elaborate analysis but
equally simple principles) with ratio 0.511. The following variants represent
extensions of the Euclidean maximum TSP for the neighborhood setting.

In the Fuclidean Maximum Traveling Salesman Problem, given a set of points
in the Euclidean space R?, d > 2, one seeks a cycle (a.k.a. tour) that visits these
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points (as vertices) and has maximum length; see [4]. In the Mazimum Traveling
Salesman Problem with Neighborhoods (MAX-TsP-N), each point is replaced
by a point-set, called region or neighborhood, and the cycle must connect n
representative points, one chosen from each region (duplicate representatives
are allowed), and the cycle has maximum length. Since the original variant with
points is NP-hard when d > 3 (as shown in [4]), the variant with neighborhoods
is also NP-hard for d > 3. The complexity of the original problem in the plane
is unsettled, although the problem is believed to be NP-hard [10]. In the path
variant, one seeks a path of maximum length.

The following problems are proposed for future study:

What is the computational complexity of MAX-ST-N?

. What approximations can be obtained for the cycle or path variants of MAX-

Tsp-N?
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Abstract. Motivated by an expensive computation performed by a
computational topology software RIVET [9], Madkour et al. [1] intro-
duced and studied the following graph partitioning problem. Given an
edge weighted graph and an integer k, partition the vertex set of the
graph into k connected components such that the weight of the heaviest
component is as small as possible, where the weight of each component is
the weight of a minimum spanning tree of the graph induced by the ver-
tices in that component. They showed that the problem is N P-hard even
for £ = 2 and provided some heuristic algorithms. They asked whether
the problem is polynomial time solvable when the input is a tree. Our
first result is an affirmative answer to their question. We give a polyno-
mial time algorithm to provide such a partition in a tree. We also give
an exact exponential algorithm taking O*(2") time on general graphs
(improving on the naive O* (k™) algorithm) (O™ notation ignores poly-
nomial factors). We also prove that the problem remains NP-complete
even when the weights on all the edges are the same and give a linear
time algorithm for this version of the problem when the graph is a tree.

1 Introduction

We investigate and propose efficient algorithms for a tree partitioning problem
that has been introduced recently. A spanning k-forest of an edge-weighted,
undirected graph G is a collection of k trees, 11, ..., T, each a subgraph of G,
such that each vertex of G is contained in exactly one T; for some i € {1,...,k}.
A minimum spanning k-forest of G is a spanning k-forest such that the quantity
max {w(T),...,w(T)} is minimum among all the spanning k-forests of G. Here
w(T;) is the total weight of the edges in T;. If F' is a spanning k-forest of G, then
the quantity w(F) = maz{w(T1),...,w(Ty)} is the weight of F.

Madkour et al. [1] considered the following problem.

Input: An edge-weighted, undirected graph G on n vertices, integer k > 1
Output: Minimum spanning k-forest of G.
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1.1 Related Work

Partitioning a graph into k-connected components is a problem well studied
in literature, having multiple variants. The special case where each connected
component is a tree forms a small subset of this problem [2-8]. Madkour et
al. [1] introduced and showed the problem N P-complete on general graphs even
for k = 2 and provided two heuristic algorithms for the problem, one based
on spectral clustering and the other based on dynamic programming. They left
open the complexity of the problem on trees.

A few variants of this problem are studied in [2,7,8]. The complexity of
the problem of partitioning a tree into k balanced parts is studied in [7]. The
problem of finding a k-partition of a graph in which the weight of each component
is defined based on the weight of its minimum spanning tree and the sum of
weights of its outgoing edges is studied in [8]. The closest variant to our problem
that has been previously studied is the problem that asks to find a minimum
spanning k-forest of a vertex weighted graph, here the weight of each component
in a spanning k-forest of a graph is the sum of weights of all the vertices in that
component. It is known [2] that this problem on trees can be solved in linear
time. In Sect. 2, we reduce our problem on trees having edges of equal weight
to this vertex weighted problem to obtain a linear time algorithm. However, for
the more general edge weighted version of the problem, this reduction fails, and
we provide a greedy based polynomial algorithm in Sect. 3. Our algorithm, not
only works for the general edge weighted version, but for the unweighted version,
it is, we believe, much simpler than the linear time algorithm obtained via the
vertex weighted version. Our algorithm follows a greedy local search strategy.

1.2 Paper Organization

Our main result of the paper is a polynomial time algorithm for the problem
on trees. As k — 1 edges are necessary and sufficient to remove from the tree to
get k connected components, this immediately gives an O(n*) algorithm for the
problem by trying all possible k — 1 subsets of the edge set. This already suggests
that the problem is quite different on trees, as for general graphs the problem
was N P-complete even for k = 2. In Sect. 3, we provide an O(kn?) algorithm
for the problem. Our algorithm follows the popular greedy local search method
similar to the one used in [10] for an approximation algorithm for the minimum
degree spanning tree problem. Starting from a partition obtained by removing
the k£ — 1 heaviest weight edges, iteratively we find an improved solution through
local swaps of edges until no improvement is possible. We show that such a
greedy solution stops in O(n) phases (where each phase takes O(kn?) time) and
produces the optimum solution.

In Sect. 2, we consider the class of graphs having all edges of equal weight.
Here, we first show that the problem remains N P-complete even on these
(unweighted) graphs. We then give a linear time algorithm for this version of
the problem on trees by reducing to the vertex weighted version of the problem
on trees.
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A brute force exponential algorithm in general graphs takes O(k™) time by
trying all possible partitions of the vertex set into k parts. We improve this to
0*(3™) using a Dynamic Programming approach in Sect. 4 and to O*(2") using
the well known problem of finding a k-partition of a set system (U, .S), where U
is a universe of elements and S is a collection of non-empty subsets of U. Finally
we conclude in Sect. 5 with some open problems.

2 Minimum Spanning k-forest of a Graph Having Equal
Weighted Edges

In this section we first show that the problem of finding the minimum spanning
k-forest of a graph having all edge weights equal is NP-complete. The decision
version of the problem of finding a minimum spanning k-forest of a graph for k =
2 is: Given a weighted graph G and a positive number W, decide whether G has
a minimum spanning 2-forest of weight W, this was proved to be NP-complete
on general graphs in [1]. We extend their proof by modifying the structure of
the graph constructed in their reduction to prove the following theorem.

Theorem 1. The problem of deciding whether a graph G having all edges of
equal weight has a minimum spanning 2-forest of weight W is NP-complete.

Proof. The reduction is from the NP-complete partition problem [12] where we
are given an m-element multiset of total weight 2WW and the goal is to determine
whether the set can be partitioned into two sets of equal weight.

Fig. 1. Graph G used in the proof of Theorem 1

Let M = {x1,...,zm,} be an m-element multiset of weight 21, without loss of
generality we assume that no z; € M is of weight greater than W. We construct
a graph G having all edges of weight one as shown in Fig. 1. G consists of m
stars where the i star S; has a centre vertex and z; — 1 other vertices adjacent
to the centre vertex. In addition G has two other vertices A and B adjacent to
all centre vertices.
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We need to prove that M can be partitioned into two sets of equal weight
W if and only if G has a minimum spanning 2-forest F' of weight W.

For proving the forward direction, let us suppose that there exists a partition
of M, say (Mj, Ms) such that M; and Ms have equal weight. Consider the
partition of V(G) into Vi and Vi where Vi = {A} U{V(S;) | z; € M;} and
Vo = {B}U{V(S;) | z; € Ms}. It is clear from our construction of G that G[V]
forms a tree and since the sum of the weights of all the edges incident on the
centre vertex of each S; € G[V1] is x; and M has weight W, the weight of G[V;]
is W. Similarly G[V3] is a tree of weight W. Therefore F = G[V41] U G[V2] is a
minimum spanning 2-forest of G of weight W.

Conversely, suppose that G has a minimum spanning 2-forest F' of weight
W, we need to prove that M can be partitioned into two sets of equal weight
W. We first note that no star in G is broken in F', if some star is broken then
F would contain an isolated vertex that is a tree of weight 0 which contradicts
our assumption that I’ is a minimum spanning 2-forest of G. Also we claim that
A and B occur in two different trees in F. We prove this by assuming that A
and B are in the same tree in F', since no star in (G is broken in F' and since F’
contains 2 trees in it, one star S; in G should be one of the two trees in F. It is
easy to see that the weight of S; is <W, as having a weight of >W would imply
that z; > W + 1 but we assumed that no such z; exists in M. Since the other
tree has all the other stars along with A and B in it, the number of nodes in it is
equal to 2W 4 2 — x; which is greater than or equal to W + 2, hence the weight
of this tree is >W + 1, which contradicts our assumption that the weight of F’
is W. Therefore A and B must belong to different trees in F'. Let T4 and T be
the trees rooted at A and B respectively. Each star S; in G must either belong
toTq or Tg. Let My ={x; | S; € Ty} and My = {z; | S; € Tr}. Since, z; — 1
is the weight of each star S; € T4, each star along with the edge from its centre
vertex to A contributes a weight of x;. As we know that the weight of Ty is W,
the weight of M; is also equal to W. Using a similar argument, the weight of
M, is also equal to W. Therefore (M7, Ms) partitions M into two equal parts.

Therefore the problem of deciding whether a graph G having all edges of
equal weight has a minimum spanning 2-forest of weight W is NP-hard. Since
this problem is clearly also NP, it is NP-complete. O

In the remainder of this section, we give a O(n) time algorithm for trees having
all edges of equal weight by reducing it to the vertex weighted version of the
problem [4]. Firstly we formally define this version of the problem in terms of a
spanning forest.

A spanning k-forest of a vertex-weighted, undirected graph G is a collection
of k trees, T1, ..., T}y, each a subgraph of G, such that each vertex of G is con-
tained in exactly one T; for some i € {1,...,k}; A minimum spanning k-forest
of G is a spanning k-forest such that the quantity max {w(Ty),...,w(Tk)}
is minimum among all the spanning k-forests of G. Here w(T;) is the total
weight of the vertices in T;. If F' is a spanning k-forest of GG, then the quan-
tity w(F) = max{w(Ty),...,w(Ty)} is the weight of F.
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The vertex weighted version of the problem of finding a minimum spanning k-
forest is formally defined below:

Input: A vertex-weighted, undirected graph G on n vertices, integer k > 1
Output: Minimum spanning k-forest of G.

Theorem 2 [2]. The minimum spanning k-forest of a vertex weighted tree can
be found in O(n) time.

The problem of finding a minimum spanning k-forest in an edge-weighted tree
having all edges of weight w can be reduced to the problem of finding a minimum
spanning k-forest of a tree having all vertices of weight w. Since the difference
between the weight of any subtree in the vertex weighted tree and edge weighted
tree is exactly one, an optimum solution for the vertex weighted version is an
optimum solution for the edge weighted version. Combining this observation
with Theorem 2, we obtain the following result.

Theorem 3. The minimum spanning k-forest of an edge weighted tree having
all edges of equal weight can be found in O(n) time.

This type of reduction to the vertex weighted case is infeasible for the case of
trees having edges of unequal weights. We observe that there is no easy way to
transfer the weight of the edges to the vertices since in a spanning k-forest we
may delete an edge of very large weight but we have to retain such a vertex,
thus obtaining no direction relation between the weight of the forests in the two
versions. In the subsequent section we propose a polynomial time algorithm for
general trees.

3 Minimum Spanning k-forest of a Tree

We propose a polynomial time algorithm for computing a minimum spanning
k-forest of an edge-weighted tree T'. The algorithm is as follows:

Input: Tree T(V,E), 1 < k < |V|
Output: Minimum spanning k-forest of T’

Step 1: Sort the edges of T" according to non increasing order of weights and
let e1,...,eg| be the edges in this order. Initialize C' = {ey,...,ex_1}.

Let S be the set of edges that have ever been in C' in the course of the algorithm,
initialize S = C'. Initialize F' with the spanning k-forest of T that results from
removing all the edges in C from T.

Step 2: Construct a (k — 1) by (n — k) table U, such that

| Ula,d=w(FUa\d), YacC,de E\C |

That is Ula, d] is the weight of the maximum component formed by adding a to
F and deleting d from F'.
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Step 3: Let minw = min{Ula,d] | a € C,d € E\ C}.
If (minw > w(F)) or (minw = w(F) but YU|a,d] such that Ula,d] = minw,
deb)
Return C' and F.
Else if (minw = w(F) and 3U][a, d] such that Ula,d] = minw, d ¢ S)
Arbitrarily choose an entry Ula, d] such that Ula,d] = minw and d ¢ S.
Else if (minw < w(F))
Arbitrarily choose an entry Ula, d] such that Ula, d] = minw giving priority
to Ula, d] for which d ¢ S if such a d exists.

F=FUa\d,C =CUd\aandifd ¢ S, S =SUd (here a and d are
the values corresponding to the entry Ula, d] chosen in this step).
Go to Step 2.

A pseudocode of the algorithm is given in Algorithm 1 (Page 10). In the rest
of this section, we argue about the correctness of the proposed algorithm followed
by an analysis of its running time. We will be using the notation C; to denote
the set C at the beginning of iteration i of the do while loop in Algorithm 1
(Step 2in the above description.) in further parts of this section.

Lemma 1. An edge will occur at most twice in C' during the entire execution
of Algorithm 1.

Proof. Assume that the claim is not true, and let = be the first edge that is
deleted for the third time from F. Let (4, z), (z, k), and (I, z) be the (add, delete)
pairs chosen in iterations t1,ts and t3 respectively, where t3 is the iteration in
which x is deleted from F' for the third time and ¢; and 5 are the previous two
iterations involving x. Firstly, we prove a claim which will be helpful for the
proof.

Claim. k is deleted from F' for the second time in iteration t,.

Proof. First, we need to prove that k£ has been deleted from F' in some iteration
before to. If k € Cy,, then it is trivially true. Otherwise if k ¢ Cy,, then we prove
that k has been deleted from F' in some iteration before t1. Consider the U table
in iteration ¢;. First U[j, z] < U[j, k] is true as (j, z) was chosen in iteration ;.
Since (z, k) was the (add, delete) edge pair chosen in iteration to and = was not
involved in any iteration between t; and t, it is equivalent to saying that (j, k)
was chosen in iteration ¢;. This combined with that fact that w(F") progressively
decreases or remains the same during the run of the algorithm, it cannot be the
case that Ulj,z] < Ulj, k| in iteration t;. Therefore it must be the case that
Ulj,z] = Ulj, k] in iteration t;.

As x was in C before iteration ¢; and Ulj,z] = U[j, k] in the U table in
iteration t1, and since (j, k) was not chosen in iteration ¢, we can clearly see
that k& must have been in C before iteration t; as per Step 3 of the algorithm
and hence must have been in C' before iteration to as well.

We note that k& has been in C before iteration to and was deleted from F in
iteration to, which implies that it was deleted from F' for the second time in
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iteration to. If not, then =z would have not been the first edge to have been
deleted from F for the third time. Hence we have proved that k is deleted from
F' for the second time in iteration . O

The U table mentioned henceforth in the proof is the one in iteration t,. Since
by assumption z is the first edge that was deleted for the third time and by the
above claim k is deleted from F' for the second time in 5, k£ will not be deleted
from F' between iterations to and t3 if replaced. Therefore, the iterations to and
t3 combined is equivalent to choosing the pair (I,k) in iteration to if I € Cy,,
which implies U[l, k] < Ulx, k] since the weight of F decreases in iteration ¢35 as
x has been cut before. If [ ¢ Ci,, let the sequence {k',...,l}, k' € Cy,, denote
the order of addition of cut edges in C' to F' leading to [ after iteration to, where
k' is the first edge in Cy, in the sequence. In this case U[k', k| < Ulz, k], since
the weight of F' decreases in iteration t3. This is a contradiction to our algorithm
selecting the (add, delete) edge pair (x, k) in iteration t,, it must have selected
(I,k)if Il € Cy, or (K k) if | ¢ C},. Hence we have proved by contradiction
that an edge will occur at most twice in C during the entire execution of the
Algorithm. O
Following corollary is immediate from Lemma 1.

Corollary 1. The do while loop (Steps 2 and 3) in Algorithm 1 is repeated at
most 2n — k times.

Lemma 2. Algorithm 1 returns an optimum solution, a minimum spanning k-
forest of T'.

Proof. Let A be the spanning k-forest of T returned by Algorithm 1 and let O
be a minimum spanning k-forest of T. Let C(A) and C(O) be the set of edges
of T not in A and O respectively, i.e. the set of cut edges.

Let us assume that A is not a minimum spanning k-forest of T, then it follows
that w(O) < w(A). We also assume that Ve € C(A)\C(0O) and f € C(O)\C(A),
w(E\C(0)\ fUe) > w(E\ C(0)). This is achieved by executing the following
step until no longer possible.

If 3e € C(A)\ C(O) and f € C(0O) \ C(A) such that w(E\ C(O)\ fUe) =
w(E \ C(0)), then change C(O) as follows, C(0O) = C(O) \ f Ue.

If Ajae 18 & maximum weight tree in A, then it cannot be a subtree in O as
w(0) < w(A). Therefore each Ay,q, has to be broken in O, and thus at least
one edge in each A4, must be in C(O) \ C(A). Thus we have,

Claim 1: YApmee € A, where A,p,q, 18 @ maximum weight tree in A, 3x € Apqz

such that x € C(0) \ C(A).

We say a tree A; € A is a subtree in O if Vo € A;, © ¢ C(O). Since the total
number of trees in A is k and |C(O)| = |C(A)| = k — 1, there must exist a tree
in A which does not have any edge from C(O). Thus we also have,

Claim 2: 3 a tree A,, € A that is a subtree in O. Formally 3A,,, € A such that
Vo € A, x ¢ C(O)\ C(A).
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We define a tree A; € A to be adjacent to a tree A,, € A, if Iy € C(A) connect-
ing A; and A,,, that is y is the cut edge between A; and A,, in A. For proving our
lemma, we now consider the two cases given below; these cases cover all possible
configurations of A. In the proof, I refers to the spanning k-forest modified at
the beginning of each iteration of the do while loop in Algorithm 1 (Step 2). On
termination of the algorithm, F' equals A. Let A,, € A be a subtree in O, by
Claim 2 such a tree exists.

Case 1: There exists a tree A; € A adjacent to A, such that A; is a subtree
in O.

Case 2: Every adjacent tree of A,, is not a subtree in O.

Claim. If A satisfies Case 1 or Case 2 then it is an optimum solution.

Proof. We prove Case 1 and Case 2 separately.

Case 1: Let Ay, qp be some maximum weight tree in A. By Claim 1, 3z € A4z,
such that 2 € C(O) \ C(A). Choose y to be the cut edge between A; and A,,
in A.

(i) A has exactly one maximum weight tree: Consider the U table at the end
of Algorithm 1. Since A,,4; is the only maximum weight tree and A; Uy U A,,
is a subtree in O, we can clearly see that Uly,z] < w(A). This contradicts the
termination of Algorithm 1.

(#1) A has more than one maximum weight tree: Consider the U table in the
final iteration, it is easy to see that Uly,z] = w(A) as there are more than
one maximum weight trees in A and Uly, x| cannot be greater than w(A) as
AUy U A, is a subtree in O. In this case, since the algorithm has terminated,
x should have been in S (the set of edges that have ever been in C during the
course of the algorithm) during the last iteration.

By our assumption, w(E \ C(O) \ z Uy) > w(0); therefore on removal from
A, z contributes to a better decrease in weight of A than y. We use this to prove
that the algorithm made a wrong choice in some iteration thereby contradicting
its working to prove the claim.

Let p be the iteration in which y was deleted from F' for the last time, that
is y was not added back to F' in any iteration after p as y € C(A). If « ¢ C,
it must have been better to delete x from F' in iteration p. Let k be the edge
added back to F' in iteration p, here Ulk,z] < U[k,y] in the U table in iteration
p since x being cut contributes to a better decrease in the weight of F' than y
being cut.

Let ¢ be the iteration in which = was added back to F' for the final time,
that is « was not deleted from F' in any iteration after ¢ as x ¢ C(A4). If z € C),
then iteration ¢ must have occurred after iteration p. This implies that y € Cj
as y is not added back to F' in any iteration after p. In this case, it must have
been better to add y to F in iteration q. Let k¥’ be the edge deleted from F in
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iteration g, here Uly, k'] < Ulx, k'] in the U table in iteration ¢ since = being in
C contributes to a better decrease in the weight of F' than y being in C.

This is a contradiction to our algorithm selecting the (add, delete) edge pair
(k,y) rather than the optimal pair (k,z) in iteration p if ¢ C, and the pair
(z, k') rather than the optimal pair (y, k') in iteration ¢ if x € C,,. Therefore the
claim is true.

Case 2: Choose the tree A; € A adjacent to A, for which the cut edge y between
A; and A, was first added to C for the last time (not deleted from C again).
The argument here is similar to (ii) of Case 1 with the chosen z and y. O

Figure 2 depicts edges « and y selected in both cases. Hence we have proved that

Algorithm 1 produces the optimum solution. a
-4mar 441 ‘4771 441 -4m
)
Y
T T

(a (b)
Fig. 2. Proof of optimality (a) Case 1 (b) Case 2

Lemma 3. Algorithm 1 runs in O(kn®) time.

Proof. The time taken to compute the k — 1 largest edges in a tree is O(nlogn).
Step 2 involves computing the U table, the table has (k — 1)(n — k) = O(kn)
entries. Computing each entry Ula, d] takes O(n) time, w(F Ua\ d) is computed
by performing DF'S multiple times until all nodes in F' are visited and by keeping
track of the weight of each component while traversing. Hence the time taken
for Step 2 is O(kn?). Choosing an edge pair (a,d) in U according to the cases
in Step 3 takes O(n) time. Returning the minimum spanning k-forest in Step
4 takes O(1) time. The number of times Steps 2 and 3 are executed is at most
2n — k from Corollary 1. Therefore, the total time taken by the algorithm is
O(nlogn + n(kn? +n) + 1) = O(kn?). O

Combining Lemmas 2 and 3, we obtain Theorem 4.

Theorem 4. For an undirected weighted tree T on n wvertices and a positive
integer k > 1, there exists an algorithm running in time O(kn3) which computes
the minimum spanning k-forest of T.
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Algorithm 1. Computes a Minimum Spanning k-Forest of T

1:

2
3
4:
5:
6.
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

procedure MSKF_TREES(T(V, E),k)
T - Input tree with n vertices
k - Required number of components
C - Set of k — 1 cut edges
S - Set of edges that have ever been in C
F - Spanning k-forest E \ C
w(F) - weight of F
U - (k—1)x(n— k) table, whose rows correspond to the edges in C' and
columns correspond to the edges in E \ C.
if £ > n then
return null
end if
e1,...,e g + Non increasing sorted order of edges in E.
C—{e1,...,en-1}
S—C
do
for a € C' do
forde E(T)\ C do
Ula,d] — w(FUa\d)
end for
end for
minw < minimum value in U
if (minw > w(F')) or
(minw = w(F) but VU|a, d] such that Ula,d] = minw, d € S) then
return C' and F
else if minw = w(F) and 3 Ula, d] = minw such that d ¢ S then
Arbitrarily choose any Ula, d] such that Ula,d] = minw and d ¢ S.
else if minw < w(F) then
if 3 Ula, d] = minw such that d ¢ S then
Arbitrarily choose any Ula, d] such that Ula,d] = minw and d ¢ S.
else
Arbitrarily choose any Ula, d] such that Ula, d] = minw.
end if
end if
C—CUd\a
F—FuUa\d
if d ¢ S then
S—Sud
end if
while (true)
end procedure
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4 Exact Exponential Algorithm for Finding a Minimum
Spanning k-forest of a Graph

In this section, we first propose a simple O*(3") for computing the minimum
spanning k-forest of a graph. Following this, we obtain a O*(2") algorithm for
the problem of counting the number of minimum spanning k-forests of a graph
by reducing it to an instance of the well known problem of finding a k-partition
of a set system. We use this algorithm as a black box to compute a minimum
spanning k-forest in O*(2") time.

A brute force exponential algorithm to compute a minimum spanning k-
forest in general graphs takes O*(k™) time by trying all possible partitions of
the vertex set into k parts. We improve the brute force time to O*(3™) using a
Dynamic Programming approach.

Let G(V, E) be an undirected weighted graph whose total weight is W and let
w and 7 be positive integers.

An optimum i-partition amongst all the i-partitions of G[S], S C V having
the weight of each part in the partition < w is a partition having the least
weighing maximum component.

Let T(S,4,w),S C V be the weight of a maximum component in an optimum
i-partition of G[S] having the weight of each part in the partition < w, if such
a partition exists, else it is co. Let w(G) represent the weight of a minimum
spanning tree of G.

We define P, the set of possible or candidate values of w, the weight of a
minimum spanning k-forest of G as follows,

P ={w(G[S]) | S CV,G[S] is connected} (1)

The value of T'(S,i,w), VS C V,1 <4 < k,w € P can be computed recursively
as follows.

max {w(G[S']),T(S - S8i—1, w)} w(G[S"]) S w
G[S’] is connected

T(S,i,w) = min
S'CS .
00 otherwise

i>1

w(G[S])  w(G[S]) <w
T’(S7 1, ’UJ) = G|[S]is connected
00 otherwise

T(¢)’ Z‘? w) = m’

(2)

Lemma 4. If F is a minimum spanning k-forest of G(V, E) having |V| = n
then w(F) = mei%{T(V, k,w)} and w(F) can be found in O(nt(V, k,w)) time,

where t(v,k,w) is the time required to compute T(V, k,w) for a fized w.
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Proof. If O is an optimum k-partition of G having the weight of each part in
the partition < w, then O — S” must be an optimal (k — 1)-partition of G — S’
having the weight of each part in it < w, where S’ is one component in O.

Therefore, we can infer that the problem has the optimal substructure prop-
erty. The smallest w € P for which T(V,k,w) # oo, gives the weight of a
minimum spanning k-forest of G. Note that T(V, k,w) = T(V, k,w’),Vw > w/',
w € P.

Since P has O*(2") possible values of w, we can do a binary search to find
the smallest w € P for which T(V, k,w) # oo in time O(nt(V, k,w)) time. O

Lemma 5. Given an undirected weighted graph G(V,E) on n vertices and a
positive integer 1 < k < n, w(F') the weight of a minimum spanning k-forest F’
can be computed in O*(3"™) time.

Proof. Since the number of subsets of a set S of cardinality |S| is 211, it follows
that the time taken for computing an entry T'(S,4,w) = 25, where S C V,
w e P,and 0 <i<k.

Also since the number of subsets of size j in V = (?), the time taken for

computing all the entries T(S,4,w) for a fixed i and w = ;zg (?) 27 = 3",
From Lemma 4, it follows that w(F') can be computed in O*(3"™) time. O

The following theorem follows from Lemmas4 and 5.

Theorem 5. For an undirected weighted graph G on n vertices and a positive
integer 1 < k < n, there exists an algorithm running in time O*(3™) which
computes the minimum spanning k-forest of G.

It is easy to see that keeping track of a subset S’ C S that gives the optimum
value for each T'(S, i, w) will help us to backtrack and compute a minimum span-
ning k-forest F' of G.

We can obtain a faster exact exponential algorithm by reducing the problem of
finding a minimum spanning k-forest of a graph to an instance of the well known
problem of finding a k-partition of a set system defined formally below:

Input: Integer k > 0 and a Set system (U,S), where U is a universe of
elements and S is a collection of non-empty subsets of U.

Output: A k-partition of (U,S)

S1,S2,...,8 is a k-partition of (U,S) if S; € S,1<i<k, S;USU...U
Sp=U, andSiﬂSj =¢ ,Vi # j.

The assumption is that (all the elements of) S can be enumerated in time O*(2™).
This additional assumption is needed to guarantee that the overall running time
of the inclusion-exclusion algorithm is O*(2").

Let pi(S) be the number of unordered k-partitions of (U, S), few existing results
to compute pg(S) are given below.
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Theorem 6 [11]. The number of (unordered) k-partitions py of a set system
(U, S) can be computed in

(i) O*(2™) time and exponential space
(i) O*(3™) time and polynomial space, assuming membership in S (“S’ € S
?7”), can be decided in polynomial time.

The set system (U, S) for the problem of finding a spanning k-forest of weight
at most w of a graph G is defined as follows.

U=V

S ={G[9] | 8" CV,G[S]is connected and w(G[S']) < w} ®)

Here, pi(S) denotes the number of spanning k-forests of weight at most w of
a graph G. If pi(S) > 0, then there exists a spanning k-forest of weight at
most w. Clearly, membership in .S is decidable in polynomial time as it involves
checking the connectivity and determining the weight of a minimum spanning
tree. Combining this with Theorem 6, the following theorem follows.

Theorem 7. For an undirected weighted graph G on n vertices and a positive
integer k > 1, the existence of a spanning k-forest of weight at most w of a graph
G can be determined in

(i) O*(2™) time and exponential space.
(i) O*(3™) time and polynomial space.

The above procedure determines the existence of a spanning k-forest of at most
weight w, to find it, we do the following. For each edge e in the graph, check
whether G\e has a spanning k-forest of weight at most w. If yes, then remove e
from G else do nothing. At the end, the G remaining is a spanning k-forest of
weight at most w. Combining this method along with Theorem 7 and Lemma 4
yields the following theorem.

Theorem 8. For an undirected weighted graph G on n vertices and a positive
integer k > 1, the minimum spanning k-forest of G can be computed in

(i) O*(2™) time and exponential space.
(i) O*(3™) time and polynomial space.

5 Conclusion

We have given an O(kn?) time algorithm for finding a minimum spanning k-
forest of a tree answering a question in an earlier paper. Also, for the special case
of a graph having equal weighted edges, we have shown the N P-Completeness
and proposed a O(n) time algorithm for such trees. A natural open problem
would be to find an algorithm for trees that can be extended to bounded tree
width graphs.
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Future work includes designing an algorithm for graphs having equal weighted
edges and improving the exact exponential algorithm with better runtime than
O*(2™) or showing a lower bound of 2(2") under some possible hypothesis.
Another open problem is to design approximation algorithms with a guaran-
teed quality of approximation. Analysing the quality of approximation for the
approximation algorithm in [1] is also an interesting problem.
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Abstract. This paper studies the problem of finding the path center on a tree in
which vertex weights are uncertain and the uncertainty is described by given
intervals. It is required to find a minmax regret solution, which minimizes the
worst-case loss in the objective function. An O(n log n)-time algorithm is
presented, improving the previous upper bound of O(n?).

1 Introduction

The objective of a location problem is to decide the location of facilities in a network so
as to minimize the communication or transportation costs [14, 15, 22, 24]. A network
usually involves two types of parameters: weights of nodes and lengths of edges.
Traditionally, the node weights and edge lengths of a network are assumed to be known
precisely. In real transportation systems, the weights and lengths of a network may
fluctuate or be inaccurate due to poor measurements. Thus, location models involving
uncertainty have attracted significant research efforts [11, 12, 17, 23]. One of the most
important ways for modeling network uncertainty is the minmax regret approach,
introduced by Kouvelis and Yu [16]. In the model, uncertainty of network parameters
is characterized by given intervals, and it is required to minimize the worst-case loss in
the objective function that may occur because of the uncertain parameters.

Minmax regret location problems have received considerable attention in the past
two decades. In network location theory, the shapes of facilities can be points, paths, or
trees. Path- and tree-shaped facilities are called extensive facilities [18]. For
point-shaped facility problems, most important ones have been studied comprehen-
sively on the minmax regret model [3-6, 8, 9, 16, 31]. However, for extensive facility
problems, there are only a few results on the minmax regret model, although there are
considerable results on the classical model [7, 18, 20, 26-28]. In a breakthrough paper
by Puerto et al. [21], polynomial algorithms were presented for the following three
important path-shaped problems: the minmax regret path center, path median, and path
centdian problems. Since these problems are NP-hard on general networks, their work
was confined to trees. The time complexities of their algorithms are, respectively, O
(n%), O(n*), and O(° log n). In [29, 30] the upper bounds of the minmax regret path
median and path centdian problems were improved to O(n%) and O(n*), respectively.

Contribution: The focus of this paper is the minmax regret path center problem on
trees. For this problem, Puerto er al.’s algorithm requires O(n”) time. This paper
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presents an O(n log n)-time algorithm. The bottleneck of Puerto et al.’s algorithm is to
compute the classical path centers of the given tree under n different settings of node
weights. For each setting, their algorithm finds the classical path center in O(n) time.
Our improvement is established on the following simple observation: the n settings of
node weights are almost the same. Based on this observation, we preprocess the given
tree in O(n log n) time to compute some useful auxiliary data structures; and then use
the computed data structures to find the path center under each setting in O(log n) time.

Section 2 gives notation and definitions. Section 3 describes Puerto et al. algorithm
[21] for finding a minmax regret path center of a tree. Section 4 presents efficient
algorithms for a problem, called the entry vertex problem, and its extension. Then,
using the algorithms in Sect. 4, Sect. 5 gives an improved O(n log n)-time algorithm.

2 Notation and Definitions

Let T = (V, E) be a tree, where V is the vertex set and E is the edge set. Let n = |V]. In
this paper, T also denotes the set of all points of the tree. Thus, the notation x € T means
that x is a point along any edge of 7, which may or may not be a vertex of 7. Each edge
e has a nonnegative length. For any two points p, g € T, let P(p, g) be the unique path
from p to g and d(p, q) be its length. Throughout this paper, we assume that 7 has been
preprocessed so that d(p, q) can be answered in O(1) time for any p, g € V. This
preprocessing requires O(n) time [10]. For a subgraph X of 7, the vertex set and edge
set of X are, respectively, V(X) and E(X). For each vertex v € V, the subgraph having a
vertex set {v} is simply denoted by v. For any vertex v € V and subgraph X of T, the
distance from v to X, denoted by d(v, X), is the shortest distance from v to any point of
X (i.e., d(v, X) = min,cx d(v, x)) and close(v, X) is the vertex or point in X nearest to
v. A path in T is called a v-path, where v € V, if v is one of its endpoints.

Each vertex v € Vis associated with an interval [w,, wj ], where 0 < w, < war .
The weight of each vertex v € V can be any value in the interval [w,, wj ]. Let X be the
Cartesian product of intervals [w;, w "], where v € V. Any element S € X is called a
scenario and represents a feasible assignment of weights to the vertices of 7. For any
scenario S € ¥ and any vertex v € V, let w5 be the weight of v under the scenario S.

Let S € X be a scenario. For any two subgraphs X and Y of T, the eccentricity from
X to Y under the scenario S is C3(X, Y) = max,cvx) wf d(v, Y), which is the maximum
weighted distance from any vertex in X to Y according to the scenario S. A path H that
minimizes C%(T, H) is called a path center of T under the scenario S. The finding of a
path center of T under a fixed scenario S is called the classical path center problem. We
use 1(S) to denote a path center of T under a scenario S.

For any path H in T, the regret of H with respect to a scenario S € ¥ is R5(H) =
C(T, H) — C5(T, n(S)) and the maximum regret of H is R*(H) = maxscs R5(H). The
minmax regret path center problem is to determine a path H in T that minimizes R*(H).
The determined path is called a minmax regret path center.

For ease of discussion, throughout this paper, we assume that each internal vertex
of T has exactly three neighbors. In case this is not true, the given tree is transformed
into an equivalent tree in linear time [13, 19]. Consider an internal vertex v € V. There
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are three subtrees of T attached to v through the edges incident on v. For each (u, v) €
E, we denote by T, the subtree of T attached to v through the edge (u, v), excluding this
edge and the vertex v. We define the subtrees of a path H to be the subtrees 7}’ such that
i is an internal node of H and j is the neighbor of i that is not on H. For any p, g € V,
define subtree(p, q) to be the union of the subtrees of P(p, g) (see Fig. 1). For ease of
description, sometimes we will orient 7 into a rooted tree. In such a case, for each node
v € V, we use p(v) and sib(v) to denote, respectively, its parent and sibling, and use T,
to denote the subtree of T rooted at v.

N e

subtree(p, q)
Fig. 1. Subtree T, and subtree(p, q).

3 Puerto, Ricca, and Scozzari’s Algorithm

Puerto et al. [21] had an O(n?)-time algorithm for finding a minmax regret path center
of a tree. This section reviews their algorithm.

Recall that t(S) denotes a path center of Tunder ascenario S. For any scenario S € X, let
a(S) = C3(T, n(S)). For each i € V, let S; be the scenario in which the weight of vertex i is
w;" and the weight of any other vertex v is w; . Based on an augmented tree approach
introduced by Averbakh and Berman [3], Puerto, Ricca, and Scozzari solved the minmax
regret path center problem by an elegant transformation to the classical path center
problem. Define an auxiliary tree 7" as follows. Let M be a number that is larger than a(S;)
forany i € V. The tree T'is obtained from 7 by appending to each vertex i € Va vertex i'and
an edge (i, i") with length (M — o(S))/w;t . Specific weights are assigned to the vertices of
T'. Foreach i € V, the weight of i is zero and the weight of iis w;" . Let P be a path in the
auxiliary tree T". The restriction of P to T'is the path obtained from P by deleting the edges
of P that are not in 7. Puerto, Ricca, and Scozzari gave the following nice property for
solving the minmax regret path center problem.

Lemma 1 [21]. Let P be a path center of T". Then, the restriction of P to T is a minmax
regret path center of T.

Based upon Lemma 1, Puerto, Ricca, and Scozzari solved the minmax regret path
center problem in O(n?) time as follows. First, a(S,) is computed for each i € V. By
using the linear-time algorithm in [7] for the classical path center problem on a tree, this
step is done in O(n?) time. Next, the auxiliary tree 7" is constructed, which requires O
(n) time. Finally, a solution is obtained by applying the algorithm in [7] again to 7.
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4 The Entry Vertex Problem

A rooted path center of a rooted tree with root r under a fixed scenario is an r-path
H that minimizes the eccentricity from the tree to H. For a rooted path center, the
endpoint other than the root is called its ferminal, which may be a vertex or an interior
point of an edge. A rooted tree may have more than one rooted path center. However, it
is easy to see that the shortest one is unique and can be obtained as follows: initially set
the terminal at the root and then continuously extend it toward a farthest vertex below
it, until the extension does not decrease the eccentricity.

The entry vertex problem is defined as follows. Let T = (V, E) be a tree with a fixed
scenario S. For any (i, v) € E, let QS(T;) be the shortest rooted path center of T, under
the scenario S, where T is considered as a rooted tree with root u. The entry vertex of a
vertex x to a path H is the vertex on H nearest to x. For any (u, v) € E and x € V(T}),
define ENTRY(x, T}) to be a query that returns the entry vertex of x to the shortest rooted
path center, QS(T;’), of T). (See Fig. 2) Note that ENTRY(x, T}) may not be the same as
close(x, QS(T; ), since only vertices can be entry vertices. The entry vertex problem is
to preprocess the tree 7 such that each ENTRY query can be answered efficiently.

This section shows that with an O(n log n)-time preprocessing, each ENTRY query
can be answered in O(log n) time.

ENTRY(x, 7]

————— o o'

ENTRY(x', T,

Fig. 2. Entry vertices to the shortest rooted path center of T.

4.1 Preprocessing

A query NobpE(p, g, k), where p, g € V and k is an integer, requests the k-th vertex on
the path from p to ¢. For any two vertices p, ¢ € V and scenario S € X, let M*(p,
q) = C3(subtree(p, q), P(p, q)), which is the eccentricity of P(p, g) from its subtrees.
We need the following two lemmas.

Lemma 2. With an O(n)-time preprocessing, a query NoDE(p, ¢, k) can be answered in
O(1) time for any p, g € V and integer k.

Lemma 3. Suppose that s (T,, v) of all (u, v) € E are given. Then, with an O(n)-time
preprocessing, M*(p, ¢) can be computed in O(1) time for any p, g € V.
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Given a rooted tree in which each node is associated with a cost, a query Ica(a,
b) requests the least common ancestor of two vertices a, b; a query la(v, [) requests the
level [ ancestor of a vertex v, where the level of a vertex is the number of edges from it
to the root; and a query Max(a, b) requests the largest cost of the vertices on a path P(a,
b). It was shown in [1, 13] that after an O(n) time preprocessing, each Ica, la, and Max
query can be answered in O(1) time. Using these results, it is not difficult to prove the
above two lemmas.

Using the divide-and-conquer approach, Tamir [25] gave an O(n log n)-time
algorithm to compute C*(T, v) for all v € V. Based on the same idea and the top tree
data structure in [2], we can show the following.

Lemma 4. The computation of CS(T;, v) for all (4, v) € E can be done in O(n log
n) time.

We proceed to describe the preprocessing algorithm. First, we compute C3(T v, V)
for every (u, v) € E. By Lemma 4, this step requires O(n log n) time. Next, by Lemmas
2 and 3, we preprocess T so that Nobg(p, ¢, k) and M5(p, g) can be obtained in O(1)
time for any p, g € V and integer k.

4.2 Algorithm for Queries

Consider a query ENTRY(x, 7). For notational simplicity, in this section, we assume
that T} is rooted at u. In addition, since the scenario S is fixed, we write C(-, -), M(-, -),
and Q(-), respectively, for 3¢, ), M5, ), and Q%(-). Our query algorithm finds the
answer in a binary search manner, mainly based upon the following.

Lemma 5. A vertex i of T, is on the path Q(7}) if and only if C(T}, i) > M(v, i).

Proof. Assume first that C(T;, i) > M(v, i). Consider an u-path H in T, not containing
i. Since C(T}, H) > C(T;, H) > C(T}, i) and C(T)), P(u, i)) = max{C(T;, i), M(v, )} = C
(T}, i), we have C(T)), H) > C(T,), P(u, i)). Thus, any u-path in 7,/ not containing i is not
a rooted path center. Therefore, the if-part holds.

Next, assume that i is a vertex on Q(7)). By contradiction, suppose that C(T;,
i) < M(v, i). Since Q(T}) passes through i, we have C(T;, Q(T})) < C(T}, i) < M(v, i).
Therefore, C(T}, O(T})) = max{C(T;, O(T})), M(v, i)} = M(v, i). Let t be any point of
edge (i, p(i)) such that 0 < d(i, 1) < (M(v, i) — C(T}, i))lw", where w" is the largest
weight in T;. Consider the path P(u, t), which is shorter than Q(T})). Clearly, C(T}, 1) <
C(T, iy +di 1) x w < M, i). Since C(T,, 1) < M(v, i), we have (T, P(u,
D) = max{C(T;, 1), M(v, i)} = M(v, i) = C(T},, O(T})), which contradicts that O(T}) is
the shortest rooted path center of T, . Therefore, C(T}, i) > M(v, i). Consequently, the
lemma holds. O

The entry vertex m = ENTRY(x, T})) is found as follows. By definition, m is the first
vertex on P(x, u) that is contained in Q(7})). All successors of m on P(x, u) are con-
tained in Q(T}); and all predecessors of m on P(x, u) are not contained in Q(T).
Therefore, m can be identified by performing binary search on P(x, u). With the help of
NobE queries, any node on P(x, u) can be accessed in O(1) time. By Lemma 5, whether
a vertex i is on Q(T})) can be checked in O(1) time by using the values of C(T}, i) and M

(v, i). After the preprocessing in Sect. 4.1, C(T}, i) = max{C(T%, i), C(T}, i)} and M(v,
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i) can be computed in O(1) time for any vertex i in 7,, where a and b are the two
children of i. Therefore, we have the following.

Theorem 1. With an O(n log n)-time preprocessing, each ENTRY query can be
answered in O(log n) time.

4.3 An Extended Problem

Our improvement on the minmax regret path center problem is based on solving an
extended version of the entry vertex problem, in which it is allowed to temporarily
increase the weight of a vertex during a query. For any i € Vand w > w7}, we use S|(i,
w) to denote the scenario obtained from S by increasing the weight of i to w. A query
EXTENDENTRY(x, T}, i, w) reports the entry vertex of x to the rooted path center of T
under the scenario S|(i, w), where (u, v) € E,x € V(T)),i € V,and w > wf. That is,
ExTENDENTRY(x, T, i, w) reports the entry vertex of x to the path Qsl(i’ W)(T; ). In the
following, we show that after an O(n log n)-time preprocessing, each EXTENDENTRY
query can also be answered in O(log n) time. Using the Ica algorithm in [13], it is not
difficult to prove the following lemma.

Lemma 6. With an O(n)-time preprocessing, close(x, P(p, q)) can be computed in O(1)
time for any three vertices p, ¢, x € V.

Lemma 7. With an O(n log n)-time preprocessing, csle: W)(TL‘{’ , v) and Mol "Xp, q) can
be computed in O(1) time for any i, p, ¢ € V, (u, v) € E, and w > w}

Proof. As in Sect. 4.1, we preprocess T so that CS(T; , v) for any (u, v) € E and MS(p,
q) for any vertices p, g € V can be computed in O(1) time. In addition, we preprocess
T so that close(x, P(p, q)) can be accessed in O(1) time for any x, p, g € V.

Foranyi eV, (u,v) € E, and w > wf, since S|(i, w) differs from S only in the
weight of i, cSl W)(T; , v) is computed in O(1) time as follows. First, determine whether
i € T by checking whether close(i, P(u, v)) = u. Next, if i € T", we set CI" (17,
V) = max{CS(le, v), w X d(i, v)}; otherwise, we set cSle W)(T;’, V) = CS(T;, v). For any
iLp,qgevV, 7RIS W)(p, q) is computed in O(1) time as follows. First, determine whether
i is a vertex in subtree(p, g) or an internal node of P(p, g) by checking whether close(i,
P(p, @) € {p, q}. Next, if i is a vertex in subtree(p, q) or an internal node of P(p, g), we
set MG W(p, q) = max{M(p, q), w x d(i, close(i, P(p, q)))}; otherwise, we set M1
(p, q) = M(p, q). Consequently, the lemma holds. O

Consider a query EXTENDENTRY(x, T}, i, w). According to the query algorithm in
Sect. 4.2, to show that this query can be answered in O(log n) time, it suffices to show
that CSI- (1Y, v), MIC"(p, ), and NobE(p, ¢, k) can be obtained in O(1) time for any
i,p,q €V, (u,v) € E, and integer k. As a result, by combining Lemmas 2 and 7, we
obtain the following.

Theorem 2. Let T be a tree with a fixed scenario S. With an O(n log n)-time pre-
processing, each EXTENDENTRY query can be answered in O(log n) time.
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5 An Improved Algorithm for the Path Center Problem

The bottleneck of the algorithm in [21] is to compute o(S;) for every i € V. Recall that
for any scenario S € X, a(S) denotes (T, Tc(S)) and for each i € V, S; denotes the
scenario in which the weight of vertex i is w;” and the weight of any other vertex v is

. In this section, we improve the upper bound of the minmax regret path center
problem on a tree by showing that the computation of all o(S;) can be done in
O(n log n) time.

Let S~ be the scenario in which the weight of every vertex v is w, . The scenario S~
differs from each S; only in the weight of vertex i. Our idea is to preprocess 7 under the
scenario S, so that each o(S;) can be determined efficiently. Let MS(p, q) and QS(T W)
be defined the same as in Sect. 4. For any (u, v) € E and scenario S, let )»S(T;’) = CS(T; ,
QS(T;)), which is the eccentricity from 7 to the rooted path center QS(T,;’). For
notational simplicity, in this section, C5 (-,-), C5i(-,-), M5 (-,-),M5(-,-),I5 (-), and
J5i(+) are simply denoted, respectively, by C(-, -), C'(-, -), M (-, -), M'(-, -), A (), and
INO]

Lemma 8. Suppose that C (T, v) for all (u, v) € E are given. In O(n) time, we can
compute A (7)) for all edges (u, v) € E.

Proof. In this proof, we assume that T is under the scenario S~. We orient T into a
rooted tree with an arbitrary root r. Since there always exists a rooted path center whose
terminal is a leaf, using the dynamic programming approach, all A (T))) are computed
in two phases.

Phase 1. This phase computes A" (7,,) for all x € V in a bottom-up manner as follows. If
x is a leaf, we have A" (T,) = 0. Assume that x is an internal vertex and let x;,
X, be its two children. Let H be a rooted path center of T,. If H passes through
x, since A (Ty) = C (T, H) = max{C (T,;, H), C (T, x)} and a rooted
path center of T, has the minimum eccentricity from 7,; among all x;-paths,
it can be concluded that A (T,) = max{A (Ty;), C (Ty, x)}. Similarly, if
H passes through x,, it can be concluded that A (T,) = max{C (Ty;, x),
A (Ty)}. Therefore, we compute A (Ty) as min{max{A (Ty;), C (T\, X)},
max{C (Ty1, x), & (T2)}}.

Phase 2. This phase computes 7((7‘];‘()6)) for all x € Vin a top-down manner as follows.
If x is the root r, we have ?C(T;‘(x)) =\ (&) = 0. Assume that x # r. A rooted

path center of T"< ) passes through either sib(x) or p(p(x)). If it passes through
sib(x), we have A~ (TX ) = max{A (Tspw), C (T” ()’

have A ( p(x) = max{C (Typer, p), A (T7 ()X), p(x))}. Therefore,

, p(x))}; otherwise, we

A (T ) ) can be computed in O(1) time.

The above computation requires O(n) time. Thus, the lemma holds. O
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Lemma 9. Suppose that the following can be accessed in O(1) time: A (7)) for any (u,
v) € E, C(T", v) for any (u, v) € E and i € V, and M'(p, q) for any i, p, ¢ € V; and
suppose that the entry vertex of i to Q% (T?) can be accessed in O (log n) time for any
(u,v) € Eand i € V. Then, ki(T,j) can be computed in O (log n) time for any (u, v) €
Eandie V.

Proof. We prove this lemma by presenting an algorithm. For ease of description,
assume that 7 is rooted at u and is under the scenario S;. First, compute m as the entry
vertex of i to Q5 (T?) in O (log n) time. Let m,, m, be the two children of m. Next, in O
(1) time, we find the values of Ci(Tnll, m) and C/(T,, m). By symmetry, assume that
C/(T,py, m) > C'(T,p, m). We first establish the following claim.

Claim. There is a rooted path center of 7) (under S;) that passes through m,.

Proof of the Claim. Let P(u,t) = Q5(T"). Clearly, any u-path containing Q5 (T?") is a
rooted path center. Thus, to prove this claim, we only need to show that the terminal ¢ is
a point of edge (m, m,) or is in T,,;,. Since m is a vertex on Q%(TY), Q%(T") can be
obtained by initially setting the terminal 7 at m and then continuously extending it
toward a farthest vertex below it, until the extension does not decrease the eccentricity.
Since C(T,,1, m) > C{(T,p, m), it is easy to conclude that at # = m an extension can
decrease the eccentricity only if it is toward the vertex m,. Therefore, ¢ is a point of
edge (m, my) or is in T,,;. Consequently, the claim follows.

We now complete the proof of the lemma. Let H be a rooted path center of T, that
passes through m;. Two cases are discussed.

Case 1: i € V(T,,)).
In this case, m; is not on the shortest path center QSI'(T; ). Otherwise, since
m is closer to x than m, m is not the entry vertex of i to Q5 (7). By Lemma
4, C(T,,, my) < M'(v, m;). Since H passes through m;, we have Ci(T,.1,
H) < C(T,, my) <M, m). Therefore, M(T") = C(T’, H)= max
{C(T,, H), C'(subtree(v, my), H} = max{C'(T,,, H), M'(v, m;)} = M'(v,
my). Consequently, in this case, we compute Xi(T,j) = M'(v, m;) in O(1)
time.

Case 2: i & V(T,,1).
Since i & V(T,,1), we have C(T,,1, H) = C (T,,,1, H) and thus C(T", H) =
max{C (T,,;, H), M‘(v, m;)}. Let H" be the union of P(u, m;) and Q> (T,)).
Under S, the path 0% (T,,;) has the minimum eccentricity from 7,,; among
all my-paths in T,,,. Consequently, it can be concluded that Ci(T;, H) =
max{C (T,,, H*), Mi(v, my} < Ci(T;, H). Therefore, H" is also a rooted
path center of T under S; and thus AYT") = max{C (T, H), M(v,
my)} = max{A (T,,1), M(v, m;)}. Consequently, in this case, we compute
A(T?) = max{A (T,,1), M'(v, my)} in O(1) time.

The above computation of Xi(T;) requires O (log n) time. Thus, the lemma
holds. O

A discrete 1-center of T under a scenario S is a vertex v € V that minimizes CS(T,
v). Tamir et al. [26] gave the following.
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Lemma 10 [26]. Let T be a tree with a fixed scenario and ¢ be its discrete 1-center.
Then, T has a path center that contains c.

We proceed to present an algorithm for computing o(S;) of all i € V. Consider the
computation for a fixed i € V. Assume that T is under the scenario S;. Let ¢ be a discrete
1-center of 7. By Lemma 10, there is a path center containing c. Let x, y, z be the three
children of ¢. Without losing any generality, assume that Ci(T v, c) > Ci(T ; ,C) > Ci(T o
c). Then, there exists a path center that passes through x and y [26]. For any path
H passing through x and y, we have Ci(T, H) = max{ Ci(T;, H), Ci(TC, H), Ci(TZC, c)}. Let
H’ be the union of Q%(T¢), P(x, ), and Q%(T¢). The path Q%(T¢) has the minimum
eccentricity from T¢ among all x-paths in 7¢; and the path QSf(TyC ) has the minimum
eccentricity from 7} among all y-paths in 7. Consequently, it can be concluded that H *
has the minimum eccentricity among all paths that pass through x and y. That is, H~ is a
path center of T. Therefore, o(S;) can be computed as C(T, H") = max{ Ci(T;', QS"(T;')),
C(T;, Q°(Ty)), C(T¢, o)} = max{N(Ty), M(Ty), C(T%, c)}.

Based upon the above discussion, an algorithm for computing all a(S;) is described
as follows.

Algorithm 1. ALLPATHCENTERS

Input: a tree 7= (V, E) and [w;, w,"] for each vertexi € V'

Output: o(S;) for each vertex i € V'

begin

1. preprocess T'so that C(T,", v), C(T,’, v), and M'(p, ¢) can be obtained in O(1) time
forany (u,v) e Eandi,p,q eV

preprocess T so that the entry vertex of x to O%(T") can be determined in O (log 1)
time for anyx, i € Vand (4, v) € E

3. compute A (7)) for every (u, v) € E

4.  compute the discrete 1-center of 7 under S; for eachi € V
5. for each vertex i € V' do /* compute a(S;)

6. begin
7
8
9

~

¢ « the discrete 1-center computed for S; in Line 4
(x, , z) < the three neighbors of ¢, where C(T, ¢) > C(T';, ¢) > C(T'S, ¢)

compute A7) and A(T)
10 o(Si) « max{M(T), M(Ty), C(T, o)}

11  end
12 return ({o(S)) |i € V})
end

Since S; = §7|(i, w;") for each i € V, by using Lemmas 4 and 7 with § = S, Line 1
requires O(n log n) time. By definition, when T is under S, the entry vertex of x to
QS*‘(T; ) is ExTeNDENTRY(X, T}, i, w;"). Therefore, by using Theorem 2 with § = S,
Line 2 requires O(n log n) time. By Lemma 8, Line 3 takes O(n) time. Yu et al. [31]
showed that a discrete 1-center of 7 under S; can be computed in O(n log n) time for
every i € V. Thus, Line 4 requires O(n log n) time. Consider the for-loop in Lines 5-11.
Lines 7, 8, 10 take O(1) time. By Lemma 9, after the preprocessing in Lines 1, 2, and 3,
the computation of Xi(T; )and A’ (Ty) in Line 9 can be done in O (log n) time. Therefore,
each iteration of the for-loop requires O (log n) time. As a result, we obtain the
following.
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Lemma 11. We can compute a(S;) for all i € V in O(n log n) time.

Theorem 3. The minmax regret path center problem on a tree can be solved in O(n log
n) time.
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Let G be an undirected graph whose each vertex is either a supply vertex or
a demand vertex. Each supply (resp. demand) vertex is assigned a nonnegative
integer supply value (resp. demand value), which represents the amount of flow
that the vertex can send (resp. has to receive). We consider partitioning G into
connected components by removing edges from G so that each connected com-
ponent has exactly one supply vertex and there exists a flow in each connected
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Abstract. Suppose that we are given a graph whose each vertex is either
a supply vertex or a demand vertex and is assigned a nonnegative integer
supply or demand value. We consider partitioning GG into connected com-
ponents by removing edges from G so that each connected component
has exactly one supply vertex and there exists a flow in each connected
component satisfying the supply/demand constraints. The problem that
determines the existence of such a partition is called the partition prob-
lem. Tto et al. (2005) showed that the partition problem is AP-complete
in general and it can be solved in linear time if the given graph is a tree.
When the graph does not have such a partition, we scale the demand val-
ues uniformly by scale factor r so that the obtained graph has a desired
partition. The maximum supply rate problem is the problem that finds
the maximum value of such r. Whereas the maximum supply rate prob-
lem is N"P-hard in general in the same way as the partition problem,
Morishita and Nishizeki (2015) gave a weakly polynomial-time algorithm
for the problem on trees.

In this paper, we give a first strongly polynomial-time algorithm for
the maximum supply rate problem on trees. Our algorithm is based on
the dynamic programming technique, in which we compute “surplus”
and “deficit” of the supply in subproblems from leaves to the root. We
use piecewise linear functions of r to represent them, and one of our
important contributions is to bound the size of the representation of
each function.
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component satisfying the supply /demand constraints. Ito et al. [1] introduce the
decision problem that asks whether G has such a partition, which they call the
partition problem. It is mentioned in [1,2] that we can also consider the prob-
lem with edge capacity constraints. The partition problem is a model of power
delivery networks and VLSI circuits [3,4].

It is obvious that not all graphs have such a partition. If G does not have
such a partition, we scale the demand values uniformly by scale factor r so that
the obtained graph has a partition. Morishita and Nishizeki [5] introduce the
maximum supply rate problem as the problem that finds the maximum value
of such r. The maximum supply rate problem is a special case of the partition
problem for parametric networks that are a model of power delivery networks,
in which demand values are changed by time, temperature, oil price, etc. [5,6].

We now give a formal definition of the partition problem and show some
known results. A power delivery network is expressed by an undirected graph
G = (V, E) with vertex set V and edge set E. Each vertex of G is either a supply
vertex or a demand vertex. That is, V =S U D and SN D = 0, where S is the
set of all supply vertices and D is the set of all demand vertices. Each supply
vertex v € S is assigned a nonnegative integer supply value s(v) € Z, and each
demand vertex v € D is assigned a nonnegative integer demand value d(v) € Z.
Here, Z denotes the set of all nonnegative integers. Each edge e € F is assigned
a nonnegative integer capacity c(e) € Z..

We partition G into some connected components by removing some edges
from G so that each connected component has exactly one supply vertex
and there exists a flow in each connected component satisfying the sup-
ply/demand/capacity constraints. Such a partition is called a feasible parti-
tion [5]. More precisely, a feasible partition consists of |S| subsets Vi, V3, ..., Vg
of V' such that V; N V; = 0 for each i,j (i # j), ViU---UVjg =V, and the
following conditions hold.

— For each 4, the subgraph G[V;] of G induced by V; is connected.
— For each 7, V; has exactly one supply vertex. That is, there exists a vertex
u; € V such that SNV; = {u;}.
— There exists a flow satisfying the following.
e The inflow of each demand vertex v € D is exactly d(v).
The outflow of each supply vertex v € S is at most s(v).
The flow does not pass through edges between V; and V; for distinct ¢, j.
The amount of flow passing through each edge e € E is at most the edge
capacity c(e).

The partition problem is the decision problem that asks whether a given graph
G has a feasible partition or not, and is N"P-complete even for series-parallel
graphs [1]. On the other hand, the partition problem on trees can be solved in
linear time by dynamic programming [1,2].

When G has no feasible partition, we try to modify the instance so that
the obtained instance has a feasible partition. A natural modification is to scale
every demand value uniformly by scale factor r, i.e., replacing the demand d(v)
of v with r - d(v). The mazimum supply rate is defined as the maximum value
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of r such that G has a feasible partition with respect to r - d, where r might be
greater than 1. The mazimum supply rate problem is the problem of finding the
maximum supply rate r*, which is introduced by Morishita and Nishizeki [5]. An
instance of the maximum supply rate problem is shown in Fig. 1. The maximum
supply rate is % in this instance.

4 7 5
10 20~ 5 9 12
10 4 &) 15 9 [12]
3 6£ 7@ 4;
(

a) A tree T having no partition.

@ W
4 7 5
010 (i 20 i@y S G50 @12 1y
3 6 7 4
)

(b) A new tree T" constructed from T and a feasible partition for the maximum supply
rate r* = 2/3.

Fig. 1. An example of the partition problem and the maximum supply rate problem,
where a supply vertex is represented as a square with a supply value, a demand vertex
is represented as a circle with a demand value, and an edge is represented as a line
with an edge capacity.

Since the partition problem is N"P-complete, the maximum supply rate prob-
lem is also A"P-hard even for series-parallel graphs [1]. However, if the graph is a
tree, we can solve the maximum supply rate problem in weakly polynomial-time
by guessing the maximum supply rate with a binary search and by applying the
linear time algorithm for the partition problem [5,6].

The main result of this paper is to show the following theorem.

Theorem 1. The maximum supply rate problem on trees can be solved in time
O(n?), where n is the number of vertices of the tree.

This theorem gives a first strongly polynomial-time algorithm for the maximum
supply rate problem on trees. In order to make the running time strongly poly-
nomial, we do not guess the maximum supply rate r* by binary search. We adopt
the dynamic programming approach instead. In our algorithm, we regard T as a
rooted tree by choosing an arbitrary vertex as the root. We pick up each vertex
v € V in the order from leaves to the root and compute “surplus” of the subtree
rooted at v (see Sect. 3 for details).
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We now point out two difficulties in designing the algorithm. The first dif-
ficulty is that information on the surplus cannot be represented as a dynamic
programming table of finite size. This is because the surplus depends on the
supply rate r that can take any nonnegative real number. To overcome this dif-
ficulty, we represent the surplus of each subtree as a piecewise linear function
of r. Note that a similar technique was also used in [5,6]. The second difficulty
is in obtaining a polynomial bound on the size of the function representation
of the surplus. If we adopt a naive piecewise linear function to represent the
surplus, then it is hard to obtain a polynomial bound on its size (see Sect. 3.1
for details). Our key idea is to represent the surplus by using multiple piecewise
linear functions. This makes the update formula quite simple and enables us to
show that the representation of the surplus has a polynomial size.

Theorem1 can be extended to a generalized problem in which the
supply (resp. demand) values are represented by monotonically decreasing
(resp. increasing) piecewise linear functions. By using the same argument as
Theorem 1, we show that this problem can also be solved in polynomial time.
See Sect. 5 for the formal statement of our result.

We here describe some related results. The mazimum partition problem intro-
duced by Ito et al. [1] is another optimization version of the partition problem.
If a graph does not have a feasible partition, we partition the graph into some
connected components so that each component has at most one supply vertex
and the sum of the demand values is at most the supply value in each com-
ponent with a supply vertex. That is, there might exist components without a
supply vertex. The maximum partition problem is the problem of finding such
a partition that maximizes the sum of the demand values in all the components
with supply vertices. This problem is also NP-hard even for a star with exactly
one supply vertex. For the maximum partition problem on restricted classes of
graphs, pseudo-polynomial-time algorithms and fully polynomial-time approx-
imation schemes are proposed in [1,2,7,8]. Recently, there has been studied a
heuristic method for solving the problem [9].

The remaining of this paper is organized as follows. In Sect. 2, we give pre-
liminary definitions. In Sect. 3, we give an outline of our algorithm and describe
a strongly polynomial-time algorithm for the maximum supply rate problem on
trees. In Sect. 4, we analyze the running time of our algorithm. Finally, in Sect. 5,
we extend our result to a problem on parametric networks.

2 Preliminaries

One may assume without loss of generality that a given tree T' = (V| E) is rooted
at an arbitrarily chosen vertex vyoot. For a vertex v € V', let T, be the subtree
of T rooted at v, S, be the set of supply vertices in T, and C,, be the set of the
children of v (see Fig.2). Note that C, = 0 if v is a leaf.

For a vertex v € V' and for a supply rate r > 0, we consider the instance of
the partition problem in which the graph is T, the supply vertex set is S, =
S NV(T,), the demand vertex set is D NV (T,), the supply value of x € S, is
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T, T, T T

wy wy w; wy

m :a supply vertex in Sy

Fig. 2. A subtree T, rooted at v.

s(z), and the demand value of x € DN V(T,) is r - d(z). For a supply vertex
u € Sy, we define f/(r) as the maximum of s(u) — >°,cpqy. 7 - d(z) among all
feasible partitions (V1,Va,...,Vg,|) of V(T,) such that u,v € Vi, that is,

fi(r) = max{s(u) - Z r-d(x)

xeDNVy

‘ (V1,Va,...,Vig,) is a feasible partition of V(T,), u,v € Vl}.

Define f¥(r) = —oo if T, has no feasible partition with u,v € Vj. Intuitively,
f¥(r) is the maximum amount of flow that can be delivered from u to the
outside of T, through v. We regard fl(r) as a function of r, and call it the
surplus function.

For v € V, define r*** as the maximum value of the supply rate such that
T, has a feasible partition, that is,
o = max{r | f*(r) >0 (Fu e S,)}.

v

max

max = 0 if T,, does not have a supply vertex. Note that
v is the maximum supply rate of T'.

For a vertex v € V and for a supply rate r > 0, we define the deficit function
gv (1) as follows. We add a dummy supply vertex uqum with s(uqum) = +o0 to T,
as a child of v, and connect v and uqum by a dummy edge with ¢(v, uqum) = +0c.
Let T be the obtained tree with | S, |+1 supply vertices, and consider the instance
of the partition problem in T} with respect to r-d. Note that if T has a feasible
partition, then it consists of |S,| + 1 vertex subsets. We define g,(r) as the
maximum of — 3 5y 7 d(x) among all feasible partitions (Vo, V1,...,V|s,|)
of V(T}) such that uqum € Vp, that is,

For convenience, define r
r

gu(r) ::max{— 3 red)

zeDNVy

‘ (Vo, Va,...,Vig,|) is a feasible partition of V(T}), tqum € VO}.
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Define g, (r) = —oo if T, has no feasible partition. Note that DNV = Vo\{udum }-
Intuitively, —g,(r) is the minimum amount of flow that has to enter T, from the
outside through v to fulfill the demands in T;,.

We now observe some properties of the surplus function f¥(r) and the deficit
function g, (r). By the definitions, they are monotonically decreasing piecewise
linear functions of r and can take the value —oo. One can see that g,(r) < 0,
and the equality holds if and only if » < 7*®*. One can also see that f¥(r) can
take nonnegative values or —oo. In order to deal with this property of f¥(r), for
x € R, we use the notation (z)* defined by

—o00 otherwise.

Similarly, for a function f: Ry — RU{—o0}, we define f*: Ry — RU{—o0}
by fT(z) = (f(z))T for x € Ry. Here, R, is the set of all nonnegative real
numbers.

Example 1. Figure 3a shows a subtree T, rooted at vy, where a supply vertex
is represented as a square with a supply value, a demand vertex is represented
as a circle with a demand value, and an edge is represented as a line with an
edge capacity. Subtree T,, does not have a feasible partition when the supply

0

1/6 13/5 el

a) Subtree T,. rooted at vr. b) Surplus function f.3(r) of Ty,
7 7 7

VG v, (1)
fo7 (1) 907 n a

7

5 A e

e L

0 r

172 Tio717 1
(c) Surplus function fJ¢(r) of T,,. (d) Deficit function g, (r) of T,,.

7

Fig. 3. An example of the surplus functions and the deficit function of T..
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rate is r > %, but it has a feasible partition that consists of Vi = {v1,vs3,v5,v7},
Vo = {v4,v6}, and V3 = {vo} when the supply rate is 0 < r < % Furthermore,
one can see that Vi = {vy, v, v7}, Vo = {v1,v3,v5}, and V3 = {v2} form a feasible
partition if 0 < r < %, and V} = {vg,v7}, Vo = {v1,v3,05}, and Vi = {v9, 04}
form a feasible partition if 0 < r < % This shows that T, has multiple feasible
partitions for some supply rate r. The surplus functions fy3(r) and f5(r) of
T,, are expressed as functions of r as shown in Figs. 3b and c, respectively. Note
that fu2(r) < fue(r)if 1 <r < 1 and f2(r) > f29(r) otherwise. One can see
that r2** = 2. The deficit function g, (r) of T,, is shown in Fig. 3d. Note that

G, (1) = 0 for r < rp* = %

3 Algorithm for the Maximum Supply Rate Problem

In this section, we give a strongly polynomial time algorithm for the maximum
supply rate problem on trees. We first give an outline of the algorithm in Sect. 3.1,
then describe the algorithm in detail in Sect. 3.2.

3.1 Outline

In a similar way to the algorithm for the partition problem on parametric power
supply networks [5,6], our algorithm is based on dynamic programming. Our
algorithm computes the surplus function f¥(r) (u € S,), the deficit function
gv (1), and the maximum value of the supply rate r'** for each vertex v of T
from leaves to the root. After finishing the computation, the algorithm outputs
ToeX as the solution 7* of the maximum supply rate problem.

It will be natural to consider the algorithm that computes f,(r) :=
max {f¥(r) | u € Sy} instead of f¥(r) (u € S,). Indeed, the function f,(r) for
each v € V can be computed from leaves to the root by dynamic programming
as well. However, since the updating formula of f,(r) is complicated, it is hard
to bound the size of the representation of f,(r), which makes the analysis of the
running time complicated. A key idea in our algorithm is to consider multiple
surplus functions f¥(r) instead of f,(r). Although it looks inefficient to increase
the number of functions, an advantage of our algorithm is that the updating
formula of the surplus functions is quite simple. In particular, we do not have to
compute the maximum of two or more functions in our algorithm. This enables
us to show that our algorithm runs in strongly polynomial time.

To analyze the sizes of the representations of the surplus functions and the
deficit functions, we define the number of intervals of a piecewise linear function
as follows. For a monotonically decreasing piecewise linear function f : Ry —
R U {—o0}, define the number of intervals of f as the minimum integer k such
that Ry can be partitioned into intervals Iy,..., I;t1, where f is linear on each
I (j =1,...,k) and f(r) = —oo for r € Iy41. Note that Ip4; might be the
empty set. The following observations play an important role in the analysis of
our algorithm.
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Observation 2. If f : Ry — RU{—o0} is a monotonically decreasing piece-
wise linear function whose number of intervals is at most k, then the number of
intervals of fT is at most k.

Observation 3. If f1, fo : Ry — RU{—00} are monotonically decreasing piece-
wise linear functions whose numbers of intervals are at most k1 and ko, respec-
tively, then the number of intervals of fi + fo is at most k1 + ko.

We note that, for monotonically decreasing piecewise linear functions f; and
f2 whose numbers of intervals are at most k; and ks, the number of intervals of
max{ f1, f2} is not necessarily bounded by kj + ks. Since the updating formula of
fo(r) requires the max operation, it is hard to bound the number of intervals of
fo(r). We emphasize again that the updating formula of f¥(r) does not require
the max operation. We only use the operations as in Observations 2 and 3, which
is essential to design a strongly polynomial-time algorithm.

3.2 Algorithm Description

As mentioned above, our algorithm computes the surplus functions, the deficit
function, and the maximum value of the supply rate for each vertex from leaves
to the root. The full description of our algorithm is as follows.

Step 1. Compute the surplus function and the deficit function for every leaf
v of T. If v is a supply vertex, then we have fJ(r) = s(v) and g,(r) = 0
for every r, and hence r"™* = oo. If v is a demand vertex, then we have
gv(r) = —r - d(v) for every r, and hence r**(r) = 0.

Step 2. Compute the surplus functions, the deficit function, and r)'** of each
internal vertex v from the leaves to the root by using those of its children as
follows.

Step 2-1. For each w € C,, define the new deficit function ¢/, (r) as

o) = {gww it — gu(r) < cfv,w),

—00 otherwise.

Recall that g,,(r) < 0. This modification means that if the flow value that
has to enter T, from the outside is larger than the edge capacity of (v, w),
ie.,, —gu(r) > c(v,w), then there is no feasible partition in T,,, which is
represented by g.,(r) = —oo.

Step 2-2. If v is a supply vertex, then execute the following (a)—(c).
(a) Compute f2(r) by

+
f(r) = (8(v)+ > gL;(T)) :

weCly,

This equation means that s(v) is reduced by —g,, (r) for each w € C,,.
If f¥(r) < 0, then f¥(r) = —oo since there is no feasible partition
in T,,. Since v cannot receive a flow from any other supply node, we
have f¥(r) = —oo for each u € S, \ {v}.
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(b) Compute r** by
o = max{r | fy(r) > 0}.

v

(c¢) Compute g,(r) by

—oo otherwise.

{o if < pmax,

If r < 2@ then we have g,(r) = 0 since there is at least one feasible

partition in 7T;. Otherwise, we have g,(r) = —oo since there is no
feasible partition even if we add a dummy node as in the definition
of gy (r).

Step 2-3. If v is a demand vertex, then execute the following (a)—(c).
(a) For each supply vertex u € S,, we compute f¥(r) by executing the
following steps.
— Choose x € (), such that the supply vertex u is contained in the
subtree Ty, i.e., u € S,.
— Define fI*(r) as

£ (r) = min{f(r), c(v,2)}.

This modification means that if the edge capacity of (v, z) is less
than the surplus function, i.e., f¥(r) > ¢(v, ), then u can deliver
a flow whose value is at most c¢(v,z) to v through z, which is
represented by fi*(r) = c(v, x).
— Compute f(r) by
+

f) =) —r-d) + Y gu(r)

weCy\{z}

This equation means that the flow value f.*(r) delivered by u
is reduced by r - d(v) and by —g,,(r) for each w € C, \ {z}. If
fi(r) <0, then f¥(r) = —oo since there is no feasible partition
in T,,.

(b) Compute ** by

o =max{r | fi(r) >0 (JueS,)}.

(c) Compute the deficit g, (r) by

0 if » < X,
g’U(T) = / .
—r-d() + > ,cc, 9u(r) otherwise.

If » < i then we have g,(r) = 0 since there is at least one fea-
sible partition in 7;. Otherwise, the flow value that v has to receive
increases of 7 - d(v).

Step 3. Output r* := 7** as the optimal solution.

The correctness of the algorithm is trivial by the definitions of f(r), g,(r),
and ri¥.
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4 Running Time

In this section, we analyze the running time of our algorithm in Sect. 3.2 and give
a proof of Theorem 1. Obviously, the surplus functions and the deficit functions
for all leaves can be computed in time O(n) as in Step 1. In order to analyze the
running time of Step 2, it is important to estimate the sizes of the representations
of the surplus functions and the deficit functions. Since the surplus functions
and the deficit functions are piecewise linear functions, it suffices to bound the
number of intervals of these functions. Let |T,| be the number of vertices in the
subtree T,,. We now show the following lemma.

Lemma 1. Forv €V, the number of intervals of f¥(r) is at most |T,| for each
u € Sy, and that of g,(r) is also at most |T,|.

Proof. We show the lemma by induction on |T),|.

— Suppose that |T,| = 1, i.e., v is a leaf.
As in Step 1, if v is a supply vertex, then we have f¥(r) = s(v) and g, (r) = 0.
If v is a demand vertex, then we have g, (r) = —r-d(v). Therefore, the number
of intervals of each function is exactly one, which is equal to |T5|.
— Suppose that |T,| > 2, i.e., v is not a leaf.
For each w € (), the induction hypothesis shows that the numbers of intervals
of f(r) (u € Sy) and that of g, (r) are at most |T,,|. Then, we consider
the numbers of intervals of f¥(r) and that of g,(r). Note that |T,| = 1 +
> wee, |Twl. Note also that the number of intervals of g;,(r) is at most [T,
since Step 2-1 of our algorithm defines ¢/, (r) from g, (r) by just shifting the
minimum value of 7 with g, (r) = —oo. We consider the following two cases
separately.
e Suppose that v is a supply vertex.
In this case, we compute f¥(r) for each u € S, and g,(r) in Step 2-2.
Since adding the constant value s(v) does not affect the intervals of the
piecewise linear function, by Observations 2 and 3, the number of intervals

of f¥(r) is at most
> ITwl < ITl.
weCy,

For u € S, \ {v}, the number of intervals of f(r) is zero since fJ(r) =
—00. The number of intervals of g, (r) is at most one since g, (r) can take
either 0 or —oo.
e Suppose that v is a demand vertex.

In this case, we compute f¥(r) for each u € S, and g,(r) in Step 2-3.
Recall that « € C, satisfies that u € S;. In (a), the number of intervals
of fI*(r) is at most that of f¥(r) plus one since we take the minimum
of f%(r) and the edge capacity c¢(v,z). This implies that the number of
intervals of f/*(r) is at most |7 |+ 1. We are now ready to consider f%(r).
Since adding the linear function —r - d(v) does not affect the intervals of
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the piecewise linear function, by Observations2 and 3, the number of
intervals of f¥(r) is at most

1+ > |Tw| = |Tol.

wEC'v

Similarly, since adding the linear function —r - d(v) does not affect the
intervals of the piecewise linear function, by Observation 3, the number
of intervals of g,(r) is at most

1+ ) |Tw| = |Tol.

weC,y,
These complete the proof of Lemma 1. a

By Lemma 1, since each of f¥(r) (v € S,) and g,(r) can be represented by
using O(n) linear functions, it can be computed in time O(n) in Step 2. Since
we compute |S,| + 1 = O(n) functions for each v € V, one iteration of Step 2 is
executed in time O(n?). Since the number of internal vertices is O(n), the total
running time is at most O(n?). This completes the proof of Theorem 1.

We note that one can easily obtain a feasible partition of a tree with respect
to the maximum supply rate r* by modifying our algorithm slightly.

5 Extension to the Maximum Supply Parameter Problem

We have already seen that there exists a strongly polynomial-time algorithm
for the maximum supply rate problem on trees. In this section, we extend our
algorithm to the problem on parametric networks (see e.g. [5,6,10]). A parametric
tree is a tree T = (V, E), in which each vertex is either a supply vertex or a
demand vertex, such that each of the supply values and the demand values is
represented as a piecewise linear function of a parameter. More precisely, suppose
that

— each supply vertex v € S is assigned a nonnegative monotonically decreasing
piecewise linear function s, : Ry — Ry, and

— each demand vertex v € D is assigned a nonnegative monotonically increasing
piecewise linear function d, : Ry — Ry

The supply value s,(r) and the demand value d,(r) are determined if we fix a
parameter r. In the maximum supply parameter problem, the input is a para-
metric tree and the objective is to find the maximum value of the parameter
r such that the tree has a feasible partition with respect to s,(r) and d,(r).
Note that the monotonicity of the functions implies that if there exists a feasible
partition for some parameter rg, then there exists a feasible partition for any
r < rg. Note also that the maximum supply rate problem is a special case of the
maximum supply parameter problem in which the supply values are represented
by constant functions and the demand values are represented by linear functions.
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In order to solve the maximum supply parameter problem on parametric
trees, we apply the same algorithm as in Sect. 3.2 in which s(v) and r - d(v) are
replaced with s,(r) and d,(r), respectively. In what follows, we show that this
algorithm solves the maximum supply parameter problem in polynomial time.
We basically use the same notation as in Sect. 3.2, and also use the following
notation. For a monotonically decreasing piecewise linear function f : Ry —
Ry U {—o0}, let I(f) denote the number of intervals of f. In order to make it
clear that f is a function of r, I(f) is also denoted by I(f(r)) in this paper.
For each vertex v € V, define K, as the sum of the numbers of intervals of the
supply/demand functions in T),, that is,

Kyi=> I(so(r)+ Y I(=du(r)).

vES, vEDNV(T,)

In the same way as Lemma 1, we give an upper bound on the numbers of intervals
of the surplus functions and the deficit functions as follows.

Lemma 2. Forv € V, we have I(f(r)) < 2K, for eachu € S, and I(g,(r)) <
2K, .

Proof. We show the lemma by induction on K.

— Suppose that v is a leaf.
As in Step 1, if v is a supply vertex, then we have f(r) = s,(r) and g, (r) = 0.
If v is a demand vertex, then we have g, (r) = —d,(r). Therefore, the number
of intervals of each function is at most K,, which is no more than 2K,,.
— Suppose that v is not a leaf.
For each w € C,, the induction hypothesis shows that I(f¥(r)) < 2K, (u €
Sw) and I(gy(r)) < 2K,,. Then, we consider I(f¥(r)) and I(g,(r)). Note
that I(g.,(r)) < 2K, holds since Step 2-1 of our algorithm defines g/, (r) from
9w (1) by just shifting the minimum value of r with g, (r) = —oco. We consider
the following two cases separately.
e Suppose that v is a supply vertex.
In this case, we compute f¥(r) for each u € S, and g,(r) in Step 2-2.
Since fY(r) is defined by

+
fi(r) = (sv(T)Jr > giu(r)> ;

weCy,

by Observations 2 and 3, we have
I(f(r) < I(su(r) + Y (gl (1) < I(su(r) + D 2K, < 2K,
wel, wel,

For u € S, \ {v}, we have I(f}(r)) = 0 since f}(r) = —oco. We can also
see that I(g,(r)) <1 since g,(r) can take either 0 or —oo.
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e Suppose that v is a demand vertex.
In this case, we compute f¥(r) for each u € S, and g,(r) in Step 2-3.
Recall that @ € C, satisfies that v € S;. Since f,*(r) is defined as the
minimum of f%(r) and the edge capacity c(v,z), we have I(f*(r)) <
1+ I(f*(r)) <1+ 2K,. Since f(r) is defined by

+

Ly = (L) —do)+ Y gul) |

wec’u\{x}

by Observations 2 and 3, we have

I(f(r) S T + T(=do() + Y (gl (r))
welC, \{z}
S142K, +1(—dy(r)+ > 2K, <2K,.
weCy\{z}

Note that we use I(—d,(r)) > 1 in the last inequality. Similarly, since
gv () is defined by

(r) 0 if » < e
w\T) =
I —dy(r) + > _ec, 9u(r) otherwise,

by Observation 3, we have

I(gu(r) < 14+ I(=dy(r) + Y 2K, <2K,.
weC,

These complete the proof of Lemma 2. |

By using Lemma?2, we show that our algorithm can solve the maximum
supply parameter problem in polynomial time.

Theorem 4. The maximum supply parameter problem on parametric trees can
be solved in time O(n?K), where n is the number of vertices of the parametric
tree and K = K, , is the sum of the numbers of intervals of all the functions

representing the demand values and the supply values.

Proof. We apply the same algorithm as in Sect. 3.2 in which s(v) and r - d(v)
are replaced with s,(r) and d,(r), respectively. By Lemma?2, the number of
intervals of each surplus/deficit function is O(K), and hence each surplus/deficit
function can be computed in time O(K). Since we compute |S,| +1 = O(n)
functions for each v € V, one iteration of Step 2 is executed in time O(nK).
Since the number of internal vertices is O(n), the total running time is at most
O(n*K). 0

Note that the input size of the maximum supply parameter problem is ©(n+K),
and hence the above running time is bounded by a polynomial in the input size.
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As a corollary of Theorem 4, we give a polynomial-time algorithm for another
variant of the maximum supply rate problem. When we consider practical appli-
cations, it is also natural to increase the supply values instead of decreasing the
demand values. We consider scaling the supply values uniformly by scale factor
q so that the obtained graph has a feasible partition. The minimum increment
rate is defined as the minimum value of ¢ such that the obtained graph has a
feasible partition with respect to q- s, and the minimum increment rate problem
is the problem that finds the minimum increment rate ¢*. We now show that the
minimum increment rate problem on trees can be solved in polynomial time.

Corollary 1. The minimum increment rate problem on trees can be solved in
time O(n?), where n is the number of vertices of the tree.

Proof. Let M be a sufficiently large number, e.g. M := (3, . p d(v))/ min{s(v) |
v €S, s(v) > 0}. If there is no feasible partition for increment ratio ¢ = M, then
we can immediately conclude that the minimum increment rate problem has no
feasible solution. Otherwise, consider the maximum supply parameter problem,
in which the demand value d'(v) is equal to d(v), and the supply value s'(v)
is the piecewise linear function max{M - s(v) — r - s(v), 0} of the parameter r.
Since K = O(n), we can find the optimal solution 7* of the maximum supply
parameter problem in time O(n3) by Theorem4. Then, we have that M — r*
is the minimum increment rate, which shows that the minimum increment rate
problem on trees can be solved in time O(n?). O
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Abstract. In this article, we study the maximum distance-d indepen-
dent set problem, a variant of the maximum independent set problem,
on unit disk graphs. We first show that the problem is NP-hard. Next,
we propose a polynomial-time constant-factor approximation algorithm
and a PTAS for the problem.
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Unit disk graph

1 Introduction

The independent set problem is one of the best known classical combinatorial
optimization problems in graph theory due to its many important applications,
including but not limited to networks, map labeling, computer vision, coding
theory, scheduling, clustering. Given an unweighted graph G = (V, E), a non-
empty subset of pairwise non-adjacent vertices of G is known as an independent
set of G. Any singleton set is a trivial independent set of G. The maximum inde-
pendent set problem asks to find an independent set of maximum possible size
in a given unweighted graph G, and such a set is called as maximum independent
set (MIS) of G. For an integer d > 2, a distance-d independent set (DdIS) of an
unweighted graph G = (V| E) is an independent set I of V' such that the shortest
path distance (i.e., the number edges on a shortest path) between any pair of
vertices in [ is at least d. For a given unweighted graph G, the objective of the
maximum distance-d independent set problem is to find a DdIS of maximum car-
dinality in G. A DdIS of maximum possible size is called as maximum distance-d
independent set (MDdIS). Observe that the MDdIS problem is a generalization
of the MIS problem and in fact for d = 2, the MDdIS problem and MIS problem
are the same.

Given a set P = {p1,p2,...,pn} of points in the plane, a unit disk graph
(UDG) corresponding to the point set P is a simple graph G = (V, E) satisfying
V =P, and E = {(pi,p;) | d(ps,p;) < 1}, where d(p;,p;) denotes the Euclidean
© Springer International Publishing AG, part of Springer Nature 2018
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distance between p; and p;. In other words, a unit disk graph is an intersection
graph of disks of unit diameter centered at the points in P.

An algorithm for a minimization (resp. maximization) problem is said to
be a p-factor approzimation algorithm if for every instance of the problem the
algorithm produces a feasible solution whose value is within a factor of p (resp. %)
of the optimal solution value and runs in polynomial-time of the input size. Here,
p is called the approximation factor or approximation ratio of the algorithm and
the optimization problem is said to have a p-factor approximation algorithm. A
polynomial-time approzimation scheme (PTAS) for an optimization problem is
a collection of algorithms {A.} such that for a given € > 0, A, is a (1 + ¢)-factor
approximation algorithm in case of minimization problem ((1 — €) in case of
maximization). The running time of A, is required to be polynomial in the size
of the problem depending on e.

2 Related Work

The MIS problem is known to be NP-hard for general graphs [12] and also
many subclasses of planar graphs, namely planar graphs of maximum degree
3 [11], planar graphs of large girth [23], cubic planar graphs [13], triangle-free
graphs [26], K s-free graphs [21], etc. In general, the MIS problem cannot be
approximated within a constant factor unless P = N P [2]. However, the problem
is polynomially solvable for bipartite graphs, outer-planar graphs, perfect graphs,
claw-free graphs, chordal graphs, etc. [14,17]. The MIS problem is well studied
on UDGs too and is shown to be NP-hard [5]. Unlike in general graphs, the
problem admits approximation algorithms [6,15,18-20,24] and approximation
schemes [6,7,18,25].

The MDJIS problem, for any fixed d > 3, is known to be NP-hard for bipartite
graphs [4] and planar bipartite graphs of maximum degree 3 [8]. It is also known
that getting an n2~¢factor approximation result, for any € > 0, on bipartite
graphs is NP-hard (this result also holds for chordal graphs when d > 3 is an
odd number) [8]. The problem is polynomially solvable for some intersection
graphs, such as interval graphs, trapezoid graphs, and circular arc graphs [1]. If
the input graph is restricted to be a chordal graph, then the problem is solvable
in polynomial time for any even d > 2; on the other hand, the problem is NP-
hard for any odd d > 3 [8]. Eto et al. [9] studied the problem on r-regular graphs
and planar graphs. The authors showed that for d > 3 and r > 3, the MDdIS

problem on r-regular graphs is APX-hard, and proposed O(r~1) and O(’“dg2 )-
factor approximation algorithms. When d = r = 3, they enhanced their O( T’d; )-
factor result to a 2-factor approximation result (recently, the approximation
factor is improved to 1.875 [10]). Finally, they proposed a PTAS in case of
planar graphs. Montealegre and Todinca studied the problem in graphs with

few minimal separators [22].
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2.1 Our Work

In this paper, we study the MDdIS problem on unit disk graphs and we call it the
geometric maximum distance-d independent set (GMDJIS) problem. We show
that the decision version of the GMDJIS problem (for d > 3) is NP-complete
on unit disk graphs. We also propose a 4-factor approximation algorithm, and a
PTAS for this problem.

2.2 Organization

The hardness of the GMDJIS problem is discussed in Sect.3. The proposed
4-factor approximation algorithm and PTAS are explained in Sects.4 and 5,
respectively. Finally, Sect.6 concludes the paper.

3 The GMDdJIS Problem on Unit Disk Graphs

For an integer d > 3, we define the GMDJIS problem formally as follows:

Given an unweighted unit disk graph G = (V, E) corresponding to a point set
P ={p1,p2,...,0n} in the plane, find a maximum cardinality subset I CV,
such that for every pair of vertices p;,p; € I, the length (number of edges) of
the shortest path between p; and p; is at least d.

For a fixed constant d > 3, the decision version of the GMDdIS problem is
defined as follows:

GEOMETRIC DISTANCE-d INDEPENDENT SET (GDJIS) PROBLEM

Input. An unweighted unit disk graph G = (V| E) defined on a point set P and
a positive integer k < |V].

Question. Does there exist a distance-d independent set of size at least k in G7

We show that the GDdIS (d > 3) problem belongs to the class of NP-complete
problems by reducing the NP-complete problem distance-d independent set prob-
lem (d > 3) on planar bipartite graphs with girth! at least d and mazimum degree
3, which is defined as follows:

DISTANCE-d INDEPENDENT SET ON PLANAR BIPARTITE GRAPHS

Input. An unweighted planar bipartite graph G = (V, E) with girth at least d
and maximum vertex degree 3, and a positive integer k < |V|.

Question. Does there exist a distance-d independent set of size at least k in G?

In [8], it has been shown that the distance-d independent set problem on
planar bipartite graphs with maximum degree 3 is NP-complete by reducing the
distance-2 independent set problem on planar cubic graphs. In fact, the reduced
graph in their reduction has girth at least d and hence the distance-d independent
set problem on planar bipartite graphs with maximum degree 3 and girth at least
d is NP-complete.

Our reduction is based on the concept of planar embedding of planar graphs.
The following lemma is very useful in our reduction.

! The length of a smallest cycle.
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Lemma 1 [5]. A planar graph G = (V, E) with mazimum degree 4 can be embed-
ded in the plane using O(|V'|?) area in such a way that its vertices are at integer
coordinates and its edges are drawn using azis-parallel line segments at integer
coordinates (i.e., edges lie on the lines x = i1,1ia,... and/ory = ji, ja, ..., where
11,12, .., J1,J2, - .. are integers).

This kind of embedding is known as orthogonal drawing of a graph. Biedl
and Kant [3] gave a linear time algorithm that produces an orthogonal drawing
of a given graph with the property that the number of bends along each edge is
at most 2.

Corollary 1. Let G = (V, E) be a planar bipartite graph with mazimum degree
3 and girth at least d(d > 3). The graph G can be embedded on a grid in the
plane, whose each grid cell is of size d X d, so that its vertices lie at points of
the form (i-d,j-d) and its edges are drawn using a sequence of consecutive line
segments drawn on the vertical lines of the form x = i-d and/or horizontal lines
of the form y = j - d, for some integers i and j (see Fig. 1).

Lemma 1 suggests that, any planar graph G of maximum degree 4 can be
embedded on a grid in the plane so that the following holds.

1. Each vertex v; of G is associated with a point with integer coordinates in the
plane.

2. An edge of G is represented as a sequence of alternating horizontal and/or
vertical line segments drawn on the grid lines. For example, see edges (v1, v4)
or (vg,vg) in Fig. 1(a). The edge (v, v4) is drawn as a sequence of four vertical
line segments and four horizontal line segments in the embedding (see (x1,x4)
in Fig. 1(b)). Similarly, the edge (v2, vg) is drawn as a sequence of two vertical
line segments in the embedding.

3. No two sets of consecutive line segments corresponding to two distinct edges
of G have a common point unless the edges are incident at a vertex in G.

Let G = (V, E) be an arbitrary instance of DdIS for planar bipartite graph
having maximum degree three and girth at least d. Let V = {vy,va,...,v,} and
E ={ej,ea,...,em}. We denote the shortest path distance between two vertices
v; and v; in G by dg(vi,v;), and v;, v, are said to be distance-d independent in
G if dg(’l}iﬂ}j) Z d.

We construct a graph G’ = (V’, E’) by embedding G on a grid in which each
cell is of size d x d as described in Corollary 1. Let V' = {21, 29,...,2,} be
the vertices in G’ corresponding to vy, vs,...,v, in G. The coordinate of each
member in V” is of the form (d-i,d- j), where 4, j are integers, and shown using
big dots in Fig. 1(c). Let £ be the number of line segments used for drawing all
the edges in G’. To make G’ a UDG we introduce a set Y of extra points on the
segments used to draw the edges of G’. Thus, the set of points in V' (hereafter
denoted by X)) together with Y form a UDG G”. Let (z;,z;) be an edge in G’
corresponding to the edge (v;,v;) in G and has ¢’ segments. We introduce ¢'d
points on the polyline denoting the edge (z;,z;) in such a way that (i) after
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Fig. 1. (a) A planar bipartite graph G of maximum degree 3, (b) its embedding G’ on
a grid of cell size 3 x 3, (c) adding of extra points to G’, (d) the obtained UDG G”.

adding the extra points, the length of the path from z; to z; thus obtained is
exactly £'d + 1, (ii) a point is placed at each of the co-ordinates of the form
(d-i,d-j), where 7 and j are integers (shown using small squares in Fig. 1(c)),
(iii) the segment adjacent to the point z; contains exactly d newly added points
and other segments on the path from z; to z; have d — 1 points (shown using
small circles in Fig. 1(c)), and (iv) only consecutive points on the path z; ~ x;
are within unit distance apart.

Now, we construct a UDG G’ = (V”,E"), where V/ = X UY, and E” =
{(piops) | pip; € V" and d(ps,py) < 1}. Here V7| = |X| + Y| = n + d,
and |E”| = ¢d + m, where m is the number of edges in G. Thus, G” can be
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constructed in polynomial time. We will use the term d-grid for a grid whose
each cell is of size d x d.

The notion of points and vertices of G” are used interchangeably in the rest
of the paper.

Lemma 2. Any DdIS of G"” contains at most { points from Y.

Proof. For each segment in the d-grid used to draw G’, the number of points of
Y appearing on it is d or d — 1. Thus, each segment may contain at most one
point from Y in the DdIS of G”. In particular, if two end-points of a segment
n of the d-grid (that are vertices of G”) are chosen in DdIS, then no point of
Y lying on 7 will be chosen. Now, the result follows from the fact that ¢ many
segments of the d-grid are used to draw G’. O

Lemma 3. G has a DAIS of cardinality at least k if and only if G” has a DdIS
of cardinality at least k + (.

Proof (Necessity). Let G have a DdIS D of size at least k. Let X' = {z; €
X | v; € D}. Let G;, denote a spanning tree of G with the set of vertices
Via ={v; € V(G) | dg(vi,vj) < a}. For each v; € D start traversing from x;
in G’ . Let Y; = {yp € Y | dg(i,9y9) = d.0,¥0 = 1,2,...,0'}, where ¢ is the
number of segments between z; and x;, where z; corresponds to v; € VM%J.
Let Y = U,,cxs Yi- The set X" UY" is a DdIS in G”. Observe that there are
some segments (corresponding to the edges which are not part of any Gi,[ 4 J)
that have not been traversed in the above process. Now, we consider every such
segment and choose the [4]-th point on it. Let Y be the set of chosen points.
Needless to say, Y is also a DdIS of G”.

Also, observe that there exists no pair of points y, € Y’ and yg € Y such
that dgv (Yo, ys) < d. On the contrary, suppose dgr (ya,ys) < d. Implies, yq
and ys are from two segments, each having one, incident at some z; € X \ X',
where z; corresponds to a leaf v; € G; | 4). Note that dgr(ya,z;) > |4] and

der(zj,yp) > [2]. Implies, dgr(Ya,ys) > d, arrived at a contradiction. Let
D' = X'"UY'UY”. As per our selection method each segment contributes one
point in Y UY". Thus, |D’| > k + £ since | X'| > k and |[Y'UY"| = /.
(Sufficiency). Let G” have a DdIS D’ of cardinality at least k + £ and D = {v; €
V| z; € D'NX}. Observe that |[D' NY| < ¢ (due to Lemma 2); so |[D| > k. We
shall show that, by suitably modifying D (i.e., by removing some of the vertices
in D), we get at least k points from X such that the set of corresponding vertices
in G is a DdIS of G. Consider a pair of vertices v;,v; € D such that de(v;,vj) <
d in G (if there is no such pair, then D is a DdIS of G with |D| > k). Let
zi,x; € D' N X be the vertices in G” corresponding to v;,v; € D, respectively.
Also, let ¢ be the number of segments on the path z; ~» z; corresponding to the
shortest path v; ~» v;. As each segment can contribute at most one point (from
Y) in any solution, D’ can contain at most ¢ + 1 points (including z; and xj)
from the path z; ~ ;.

We update D by deleting one of the conflicting vertices v;,v; from D. The
assumption that dg(v;,v;) < d implies that one of the segments on the path
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x; ~» x; has no point in D’ NY, so |[D'NY| < £ and we still have |D| > k after
removal.

Repeat the same for all pair of points in D for which the shortest path
distance is less than d in G. Therefore, |D| > k and D is a distance-d independent
set in G. O

Theorem 1. GDAIS problem is NP-complete for unit disk graphs.

4 Approximation Algorithm

In this section, we discuss a simple 4-factor approximation algorithm for the
GMDJIS problem, for a fixed constant d > 3. Let R be the rectangular region
containing the point set P (disk centers). Let G be the UDG defined on P. We
partition R into disjoint horizontal strips Hy, Ha, ..., H,, each of width d (H,
may be of width less than d). The basic idea behind our algorithm is as follows:

(i) Compute a feasible solution for each non-empty strip H; (1 < i < v)
independently as stated below:
We split the horizontal strip into squares of size d x d. In each square, we
compute an optimum solution of the GMDdIS problem defined on that
square. We consider all odd numbered squares and compute the union
S! 4 of optimum solutions of these squares. Similarly, the union S?,,,, of
optimum solutions of all even numbered squares are also computed. Each
of these is a feasible solution of GMDJIS problem in H; as the minimum
distance between each pair of considered squares is at least d. We choose
St =8¢ ., or S, such that |S'| = max(|S,..|,|S%4]) as the desired
feasible solution for the strip H;.
(ii) Compute Seyen and S,qq, which are the union of the solutions of even and
odd strips respectively, and
(iii) Report S* = Scyen OF Soqq such that |S*| = max(|Seven|, |Sodd|) as a solu-
tion to the GMDdIS problem.

Note that, thus, the solution obtained in the above process is a feasible solution
for the entire problem.

Lemma 4. If OPT is an optimum solution for the GMDIIS problem, then
max(|Sevenls [Soaal) = HOPT].

Proof. Let us denote by OPT an optimum solution for the given GMDdJIS prob-
lem, and by OPT" an optimum solution of the non-empty strip H;. Since any two
even (resp. odd) numbered strips, say H; and H;, are at least d distance apart,
the feasible solutions computed in any method for H; and H; are independent?.
Thus, both OPTpen = |J OPT? and OPT,qqa = |J OPT? are feasible

i is even % is odd

solutions for the given GMDdJIS problem.

2 By independent we mean for any p; € HiNP and p; € H;j NP, pi and p; are
distance-d independent and also, OPT* N OPT’ = (.
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Note that |OPT| < |OPTeyen| + |OPToaqq] < 2|OPT.|, where OPT, =
OPTeyen if |OPTeven| > |OPTodd|; otherwise OPT, = OPT,4,.

Also, note that we have not computed OPT" for the strip H;. Instead, we
have computed S¢ .. and Sf;dd by splitting the strip H; into d x d squares,
and accumulating the optimum solutions of even and odd numbered squares
separately. By the same argument as stated above, we have |OPT?| < 2|S%
where St =S¢ if [SL,.,| > |SE 4l otherwise S =S¢ ..

Combining both the inequalities, we have |OPT| < 4 max(|Seven|s |Sodd])-

)

4.1 Solving a d X d Square Optimally

Let Q@ C P be the set of points inside a d x d square x, and G, be the UDG
defined on Q (i.e., Gy is an induced subgraph of G with vertex set Q). Solving x
in time d*n®@) is trivial as the number of points of Q in any optimal solution
is O(d?) (by checking all possible subsets of size O(d?)). However, an optimal
solution in x can be obtained with a better running time.

Note that G, need not be a connected graph. Let Ci,Cs,...,C; be the
components of G such that any two components in G are at least d distance
apart® in G. The following lemmas Lemmas 5 and 6 give loose upper bounds on
the total number of components and the cardinality of a DdIS in any component,
respectively.

Lemma 5. The worst case number of components in Gy is O(d?).

In order to have the worst case size of a DdIS in G, we need to have an idea
about the worst case size of a DdIS in a component in G,.

Lemma 6. Let C' be any component of Gy. The number of mutually distance-d
independent points in C' is bounded by O(d).

Proof. Consider the square region x’ of size 3d x 3d whose each side is d distance
away from the corresponding side of . Let Q' C P be the subset of points in x’.
Partition x’ into cells of size ﬁ X 21% Thus, the number of cells in ¥’ is O(d?),
and in each cell the unit disks centered at the points inside that cell are mutually
connected. Let a pair of points p;, p; € C' which are distance-d independent. The
shortest path p; ~» p; between p; and p; entirely lies inside x’. If there is another
point py € C which is distance-d independent with both p; and p;, then py, is at
least distance g away from each point on the path p; ~» p;. Thus, the path from
pr to any point on the path p; ~» p; occupies at least O(d) cells, and none of
the points from these cells are distance-d independent to all the points p;, p;, P
Thus, the addition of each point in the set of mutually distance-d independent
points in x prohibits points in O(d) cells to belong in that set, and hence the

lemma follows. O

3 If there are two components of G having distance less than d in G, then we can
view them as a single component.
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Lemma 7. An optimal DAIS in x can be computed in d*n°® time.

Proof. Let M be a matrix containing distances of the all pair shortest paths
in GG. By definition, intersection of distance-d independent sets of any two com-
ponents is empty. Thus, a DdIS of maximum size in G, can be computed by
considering all components of the UDG Gy, and computing the union of the
DdIS of maximum sizes of those components. We consider each component of
G separately. For each component C, consider all possible tuples of size at most
O(d) (due to Lemma 6) and for each tuple, check whether they form a DdIS or
not by consulting the matrix M in O(d?) time. Thus, a maximum size DdIS in
C can be computed in O(d?|C|°@) time, and the total time for computing a
maximum size DdIS in G, is O(d?> Y. |C|9@) = ¢?|Q|O®, O
CEG,

Theorem 2. Given a set P of n points in the plane, we can always compute a
DdIS of size at least 1|OPT| in d*n®D time, where |OPT| is the cardinality of
a GMDdIS.

5 Approximation Scheme

In this section, using the shifting strategy [16], we propose a polynomial time
approximation scheme (PTAS) for the GMDJIS problem, for a given fixed con-
stant d > 3. Let R be an axis parallel rectangular region containing the point
set P (i.e., centers of the disks of the given UDG). Compute the all pair shortest
paths between every pair of vertices in the UDG G defined on P and store them
in a matrix M.

We use two-level nested shifting strategy. The first level executes k iterations,
where k > d. The i-th iteration (1 <4 < k) of the first level is as follows:

e Assuming R is left-open, partition R into vertical strips such that (a) first
strip is of width 4, (b) every even strip is of width d, and (c¢) every odd strip,
except the first strip, is of width k.

e Without loss of generality, assume that the points lying on the left boundary
of a strip belong to the adjacent strip to its left (i.e., every strip is left open
and right closed).

e Compute some desired feasible solutions for the odd strips (of width k). These
solutions can be merged to produce a solution of the entire problem since these
odd numbered strips are distance-d apart.

The second level of the nested shifting strategy is used to find a solution for
an iteration in the first level. We consider each non-empty odd strip separately,
and execute k iterations. In the i-th iteration, we partition it horizontally as in
the first level (mentioned in the first bullet above). We get a solution of a strip
by solving each k x k square in that strip optimally. The union of the solutions
of all the odd numbered squares/rectangles in that strip is the desired solution
of that vertical strip of the first level. Finally, we take the union of the solutions
of all the odd vertical strips to compute the solution of that iteration of the first
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level. Thus, we have the solutions of all the iterations of the first level. We report
the one having the maximum cardinality as the solution of the given GMDdIS
problem. The method of computing an optimum solution inside a k x k square
is described below.

5.1 Computing an Optimum Solution in a k X k Square

We apply a divide and conquer strategy to compute an optimum solution for
the GMDJIS problem defined on a set of points Q C P inside a square x of size
k x k. We partition y into four sub-squares, each of size % X %, using a horizontal
line £}, and a vertical lines £, (see Fig.2(b)). Let Q1 C Q be the subset of points
in x which are at most d distance away from ¢}, and/or ¢, (see Fig.2(c)). Let
Qs be a maximum cardinality subset of Q; such that all the points in Qs are

pairwise distance-d independent in P.
Lemma 8. |Qs| < O(k).

Proof. Consider a vertical (resp. horizontal) strip of size (k + 2d) x 4d (resp.
4d x (k + 2d)) around £, (resp. £p), and partition it into cells of size ﬁ X ﬁ
(showed as shaded region in Fig. 2(d)). Using the similar combinatorial argument
discussed in the proof of Lemma6, we can argue that the number of points
of Qp, in both strips, contributed to any optimum solution is O(k). Therefore

|Q2| < O(k) as Q2 C Q1. O
We apply the divide and conquer strategy on y as follows:

Step 1: Choose all possible subsets of points of sizes at most O(k) in Q.
Step 2: For each subset, do the following:
e Check whether they are mutually distance-d independent by consulting
M. If so, then they form Q.
e Consult the matrix M to delete the points in xy which are at most distance
d — 1 away from each member in Q.
e Recursively solve the four independent subproblems defined by the points
of @\ Q; in the four quadrants x1, X2, X3, x4 defined by ¢, and £,,.
4

e Return Q@ = Qo U (|J Q3), where Q} is the solution of the subproblem
i=1

on the points of x;.
e Retain the solution for the present subset if it is better than the solutio