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Preface

This volume contains the papers presented at FAW 2018: the 12th International
Frontiers of Algorithmics Workshop, held during May 8–10, 2018, at Guangzhou
University, in Guangzhou, P. R. China. The workshop provides a focused forum on
current trends of research on algorithms, discrete structures, and their applications, and
brings together international experts at the research frontiers in these areas to exchange
ideas and to present significant new results.

The Program Committee, consisting of 33 top researchers from the field, reviewed
38 submissions and decided to accept 23 papers. Each paper had three reviews, with
additional reviews solicited as needed. The review process was conducted entirely
electronically via EasyChair. We are grateful to EasyChair for allowing us to handle the
submissions and the review process and to the Program Committee for their insightful
reviews and discussions, which made our job easier.

Besides the regular talks, the program also included one keynote talk by Andrew
Chi-Chih Yao (Tsinghua University) and four invited talks by Yijia Chen (Fudan
University), Ran Duan (Tsinghua University), Nick Gravin (ITCS, Shanghai Univer-
sity of Finance and Economics), and Mingji Xia (Institute of Software, Chinese
Academy of Sciences).

We are very grateful to all the people who made this meeting possible: the authors
for submitting their papers, the Program Committee members and external reviewers
for their excellent work, and the five keynote and invited speakers. In particular, we
would like to thank Guangzhou University for hosting the conference and providing
organizational support and to the Institute for Theoretical Computer science (ITCS) at
Shanghai University of Finance and Economics for hosting the conference website and
providing some organizational support.

Finally, we would like to thank the members of the Editorial Borad of Lecture Notes
in Computer Science and the editors at Springer for their encouragement and coop-
eration throughout the preparation of this conference.

February 2018 Jianer Chen
Pinyan Lu
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Abstract. To strengthen the classical connectivity of graphs, two kinds
of generalized k-connectivities of a graph G, denoted by κ′

k(G) and
κk(G), were introduced by Chartrand et al. [1] and Hager [7], respectively.
The former is the so-called cut-version definition of connectivity, whereas
the latter is the path-version definition of connectivity (a synonym was
also called the tree-connectivity by Okamoto and Zhang [32]). Since the
underlying topologies of interconnection networks are usually modeled
as undirected simple graphs, as applications of these two kinds of gener-
alized connectivities, one can be used to assess the vulnerability of the
corresponding network, and the other can serve to measure the capabil-
ity of connection for a set of k nodes in the network. So far the exact
values of these two types of generalized connectivities are known only for
small classes of graphs. In this paper, we study the two kinds of gener-
alized 3-connectivities in the n-dimensional alternating group networks
ANn. Consequently, we determine the exact values: κ′

3(ANn) = 2n − 3
for n � 4 and κ3(ANn) = n − 2 for n � 3.

Keywords: Interconnection networks · Connectivity
Generalized connectivity · Alternating group networks

1 Introduction

As usual, the underlying topologies of interconnection networks are modeled as
undirected simple graphs, where vertices and edges in a graph represent process-
ing elements and their communication channels, respectively. In this paper, we
c© Springer International Publishing AG, part of Springer Nature 2018
J. Chen and P. Lu (Eds.): FAW 2018, LNCS 10823, pp. 3–14, 2018.
https://doi.org/10.1007/978-3-319-78455-7_1
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study two kinds of generalized connectivities of alternating group networks. As
applications of the two types of generalized connectivities of graphs, one can be
used to assess the vulnerability of the corresponding network, and the other can
serve to measure the capability of connection for a set of nodes in the network.

Let G be a graph with vertex set V (G) and edge set E(G). For any two
vertices x, y ∈ V (G), a path joining x and y in G is called an (x, y)-path, where
x is the starting vertex and y is the terminal vertex. We may extend this notion
to say that, for two disjoint subsets X,Y ⊂ V (G), an (X,Y )-path is a path
starting at a vertex x ∈ X, ending at a vertex y ∈ Y , and whose internal
vertices belonging to neither X nor Y . Also, we simply write (x, Y )-path instead
of (X,Y )-path if X = {x}. Two (x, y)-paths (resp., (X,Y )-paths) are internally
disjoint if they have no vertex and edge in common except for the starting vertex
and terminal vertex. In particular, a set of k internally disjoint (x, y)-paths is
also called a k-path container between x and y, and a set of k internally disjoint
(x, Y )-paths whose terminal vertices are distinct is referred to as a k-fan from
x to Y . Note that the term “container” is used to the study of evaluating how
much node failures can be tolerated in the network transmission [8].

The connectivity of a graph G, denoted by κ(G), is the minimum number of
vertices whose removal from G results in a disconnected or trivial graph. A graph
G is k-connected if κ(G) � k. A well-known result by Whitney [35] (as a corollary
of Menger’s Theorem [29]) provided an equivalent definition of connectivity as
follows: A graph G is k-connected if and only if G admits a k-path container
between any pair of vertices. In addition, the following characterization of k-
connected graphs emerged from [6] is related to the concept of k-fan and is
customarily called the Fan Lemma (e.g. see [34, Theorem 4.2.23]).

Lemma 1 (see [6]). A graph G is k-connected if and only if |V (G)| � k+1 and,
for any vertex x ∈ V (G) and Y ⊆ V (G) \ {x} with |Y | � k, there exists a k-fan
in G from x to Y .

For a set of vertices S ⊆ V (G) with |S| � 2, two trees T and T ′ in G that
connect S are called internally disjoint trees (IDTs for short) if E(T )∩E(T ′) = ∅
and V (T )∩V (T ′) = S (i.e., the two trees are vertex-disjoint in G\S). Hereafter,
we use ψ(S) to denote the maximum number of pairwise IDTs that connect S in
G. By extending from a path container to a tree container, Hager [7] generalized
the path-version definition of connectivity as follows: For an integer k � 2,
the generalized k-connectivity of a graph G, denoted by κk(G), is defined as
κk(G) = min{ψ(S) : S ⊆ V (G) and |S| = k}. Note that, for such a generalization
of connectivity, a synonym was also called the tree-connectivity by Okamoto and
Zhang [32].

Actually, almost at the same time, Chartrand et al. [1] proposed another gen-
eralization of the cut-version definition of connectivity as follows: For an integer
k � 2, the generalized k-connectivity of a graph G, denoted by κ′

k(G), is the
minimum number of vertices of G whose removal produces a disconnected graph
with at least k components or a graph with fewer than k vertices. Obviously,
for any graph G, we have κ′

2(G) = κ2(G) = κ(G). However, for k � 3, these
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two types of generalized k-connectivities are indeed different. Recently, Sun and
Li [33] provided the sharp bounds of the difference between κ′

k(G) and κk(G).
So far the study of κ′

k(G) has received less attention, for more details we
refer to [5,30,31]. By contrast, there are many research results related to κk(G).
First of all, it has been proved in [20] that κ3(G) � κ(G) for every connected
graph G, while κk(G) � κk−1(G) is not true in general. Currently, the exact
values of κk(G) are known only for small classes of graphs, such as complete
graphs [2], complete bipartite graphs [15,32], complete equipartition 3-partite
graphs [16]. In fact, it has pointed out in [18,20] that the investigation of κk(G)
for general k is very difficult (see also [3] for complexity results), and thus suc-
ceeding research focused on the study of κ3(G) (e.g., star graphs and bubble-
sort graphs [21], product graphs [12,14,23], and others [13,17,19,20]) and κ4(G)
(e.g., hypercubes [28]). For more further investigations of κk(G), see also [24,27],
a survey [26], and a recently published book [25].

Ji [10] introduced the alternating group network (which is defined later in the
next section) as an interconnection network topology for computing systems. In
this paper, for the n-dimensional alternating group network ANn, we determine
the two types of generalized 3-connectivity of ANn as follows.

Theorem 1. For n � 4, κ′
3(ANn) = 2n − 3.

Theorem 2. For n � 3, κ3(ANn) = n − 2.

2 Background of Alternating Group Networks

Let Zn = {1, 2, . . . , n} and An denote the set of all even permutations over Zn.
For n � 3, the n-dimensional alternating group network, denoted by ANn, is a
graph with the vertex set of even permutations (i.e., V (ANn) = An), and two
vertices p = (p1p2 · · · pn) and q = (q1q2 · · · qn) are adjacent if and only if one of
the following three conditions holds [10]:

(i) p1 = q2, p2 = q3, p3 = q1, and pj = qj for j ∈ Zn \ {1, 2, 3}.
(ii) p1 = q3, p2 = q1, p3 = q2, and pj = qj for j ∈ Zn \ {1, 2, 3}.
(iii) There exists an i ∈ {4, 5, . . . , n} such that p1 = q2, p2 = q1, p3 = qi, pi = q3,

and pj = qj for j ∈ Zn \ {1, 2, 3, i}.

The basic properties of ANn are known as follows. ANn contains n!/2 vertices
and n!(n − 1)/4 edges, which is a vertex-symmetric and (n − 1)-regular graph
with diameter �3n/2�−3 and connectivity n−1. For n � 3 and i ∈ Zn, let AN i

n

be the subnetwork of ANn induced by vertices with the rightmost symbol i in
its permutation. It is clear that AN i

n is isomorphic to ANn−1. In fact, ANn has
a recursive structure, which can be constructed from n disjoint copies AN i

n for
i ∈ Zn such that, for any two subnetworks AN i

n and AN j
n, i, j ∈ Zn and i 	= j,

there exist (n − 2)!/2 edges between them. Figure 1 depicts AN4, where each
part of shadows indicates a subnetwork isomorphic to AN3. For more properties
on alternating group networks, we refer to [4,9,10,36,37].
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Fig. 1. Alternating group network AN4.

For notational convenience, if a vertex x belongs to a subnetwork AN i
n, we

simply write x ∈ AN i
n instead of x ∈ V (AN i

n). By H =
⋃k

i=1 AN i
n, it means

that H is a subgraph of ANn induced by the vertex set
⋃k

i=1 V (AN i
n). Also,

the subgraph obtained from ANn by removing a set F of vertices is denoted by
ANn − F . In particular, F is called a vertex-cut if ANn − F is disconnected.
An edge (x, y) ∈ E(ANn) with two end vertices x ∈ AN i

n and y ∈ AN j
n for

i 	= j is called an external edges between AN i
n and AN j

n. In this case, x and
y are called out-neighbors to each other. By contrast, edges joining vertices in
the same subnetwork are called internal edges, and the two adjacent vertices are
called in-neighbors to each other. Let Ei,j

n = {(x, y) : x ∈ AN i
n and y ∈ AN j

n}
be the set of external edges between AN i

n and AN j
n when i 	= j. The following

are some basic properties of ANn.

Lemma 2 (see [9,36,37]). For ANn with n � 4 and i, j ∈ Zn with i 	= j, the
following holds:

(1) ANn has no 4-cycle and 5-cycle.
(2) Each vertex of ANn has a set of n − 2 in-neighbors and exactly one out-

neighbor.
(3) Any two distinct vertices of AN i

n have different out-neighbors in ANn −
V (AN i

n).
(4) There are exactly |Ei,j

n | = (n − 2)!/2 edges between AN i
n and AN j

n.
(5) Edges that cross between different subnetworks constitute a perfect matching

in ANn.

According to the property (2) in the above lemma, we use out(x) to denote
the unique out-neighbor of a vertex x ∈ ANn. Also, we denote N(x) the set of
in-neighbors of x, and let N [x] = N(x) ∪ {x}. Figure 2 shows the subnetwork
AN5

5 and all out-neighbors of vertices in AN5
5 . From definition of ANn, it is easy

to derive the following properties.
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AN1
5 AN2

5

AN3
5 AN4

5

AN5
5

Fig. 2. Alternating group subnetwork AN5
5 and all out-neighbors associated with it.

Lemma 3. For n � 4, let x ∈ ANn be any vertex. If y, z ∈ N [x], then out(y)
and out(z) are contained in different subnetworks.

Lemma 4. For n � 4 and i ∈ Zn, if x ∈ AN i
n and j ∈ Zn \ {i}, then there is

exactly one vertex y ∈ N [x] such that out(y) ∈ AN j
n.

Lemma 5. For n � 4, let H = ANn − V (AN i
n) for some i ∈ Zn. Then κ(H) =

n − 2.

Proof. By Lemma 2, any two distinct vertices of AN i
n have different out-

neighbors in H. Thus, the removal of AN i
n from ANn leads to that the degree

of a vertex in H decreases by at most one. Thus, we have δ(H) = n − 2, and
it follows that κ(H) � δ(H) = n − 2. To show κ(H) � n − 2, we claim that
there exists an (n − 2)-path container between any two vertices x, y ∈ V (H).
The assertion is clearly true if x, y ∈ AN j

n for some j ∈ Zn \ {i} because
κ(AN j

n) = κ(ANn−1) = n − 2. We now consider x ∈ AN j
n and y ∈ ANk

n ,
where j, k ∈ Zn \ {i} and j 	= k. By Lemma 4, there exists exactly one vertex
of N [x] (resp. N [y]) such that its out-neighbor is contained in AN �

n for each
� ∈ Zn \ {j} (resp. for each � ∈ Zn \ {k}). For each � ∈ Zn \ {i, j, k}, we let
(u�, v�) ∈ Ej,�

n , where u� ∈ N [x] ⊆ AN j
n and v� ∈ AN �

n, and (w�, z�) ∈ Ek,�
n ,

where w� ∈ N [y] ⊆ ANk
n and z� ∈ AN �

n, be such external edges. Note that it is
possible that u� = x or w� = y for a certain �. By the property (5) of Lemma 2,
(u�, v�) and (w�, z�) are independent edges in ANn, and thus v� 	= z�. Since AN �

n

is connected and v�, z� ∈ AN �
n, there is a path, say P ′

� , that connects v� and z� in
AN �

n. Thus, we have n− 3 internally disjoint (x, y)-paths P� for � ∈ Zn \ {i, j, k}
by setting

P� = {(x, u�), (u�, v�)} ∪ P ′
� ∪ {(z�, w�), (w�, y)}.

To complete the proof, we need an extra (x, y)-path P such that V (P )∩V (P�) =
{x, y} for all � ∈ Zn \ {i, j, k}. Let U = {u� : � ∈ Zn \ {i, j, k}} \ {x} and
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W = {w� : � ∈ Zn \ {i, j, k}} \ {y}. Also, define H1 = AN j
n − U and H2 =

ANk
n − W . Since κ(AN j

n) = κ(ANk
n) = n − 2 and H1 is obtained from AN j

n

(resp. H2 is obtained from ANk
n) by removing at most n−3 vertices, this implies

that H1 (resp. H2) is connected. Let H be the subgraph of ANn induced by
V (H1) ∪ V (H2). Since the edge connecting a vertex of N [x] with out-neighbor
in ANk

n (resp. a vertex of N [y] with out-neighbor in AN j
n) does not be removed

from H, it follows that H is connected and it contains an (x, y)-path P as our
desired. ��

3 The Generalized 3-Connectivity κ′
3(ANn)

To evaluate the size of the connected components of ANn (n � 4) with a set of
faulty vertices, Zhou and Xiao [36] gave the following property.

Lemma 6 (see [36]). For n � 5, if F is a vertex-cut of ANn with |F | � 2n − 5,
then one of the following conditions holds:

(1) ANn − F has two components, one of which is a trivial component (i.e., a
singleton).

(2) ANn − F has two components, one of which is an edge, say (u, v). In par-
ticular, if |F | = 2n−5, F is composed of all neighbors of u and v, excluding
u and v.

Note that if F is a vertex-cut of AN4 with |F | = 3, then AN4 − F has two
component, one of which is a singleton, an edge, or a 3-cycle. In particular,
for the case of taking a 3-cycle as a component, it is easy to check the graph
AN4 − {1342, 2143, 3241} in Fig. 1.

From the definition of generalized connectivity, it is clear that κ′
3(AN3) = 1.

Also, by brute-force checking AN4 and AN5, we found that the removal of no
more than four vertices in AN4 (resp., six vertices in AN5) results in a graph
that is connected or contains exactly two components. Thus, the following lemma
establishes the lower bound of κ′

3(ANn) for n = 4, 5.

Lemma 7. κ′
3(AN4) � 5 and κ′

3(AN5) � 7.

Proof of Theorem 1. We first prove κ′
3(ANn) � 2n − 3. Consider two vertices

x, y ∈ ANn where x = (p1p2p3 . . . pn) ∈ ANpn
n and y = (p3p2pnp4 · · · pn−1p1) ∈

ANp1
n . It is clear that x and y are nonadjacent and they have a common neighbor,

say z = (p2p3p1p4 · · · pn) = xg−
3 = yg∗

n. Thus, z = out(y) ∈ N(x) and out(x) =
(p2p1pnp4 . . . pn−1p3) ∈ ANp3

n . Let F = N(x) ∪ N(y) ∪ {out(x)}. Then, the
removal of F from ANn results in a disconnected graph that contains three
components, including two isolated vertices x and y as components. By the
property (2) of Lemma 2, since every vertex has n − 2 in-neighbors, it follows
that κ′

3(ANn) � |F | = 2(n − 2) + 1 = 2n − 3.
Next, we will prove κ′

3(ANn) � 2n − 3. For n = 4 or n = 5, the results are
acquired in Lemma 7. We now consider n � 6 and let F be any vertex-cut in
ANn such that |F | � 2n− 4. For convenience, vertices in F (resp., not in F ) are
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called faulty vertices (resp., fault-free vertices). By Lemma 6, if |F | � 2n − 5,
then ANn−F contains exactly two components, one of which is either a singleton
or an edge. To complete the proof, we need to show that the same result holds
for |F | = 2n − 4. Let Fi = F ∩ V (AN i

n) and fi = |Fi| for each i ∈ Zn. We claim
that there exists some subnetwork, say AN i

n, such that it contains fi � n − 2
faulty vertices. Since |F | = 2n − 4, if it is so, then there are at most two such
subnetworks. Suppose not, i.e., every subnetwork AN j

n for j ∈ Zn has fj � n−3
faulty vertices. Since AN j

n is (n − 2)-connected, AN j
n − Fj remains connected

for each j ∈ Zn. Recall the property (4) of Lemma 2 that there are (n − 2)!/2
independent edges between AN j

n and AN j′
n for each pair j, j′ ∈ Zn with j 	= j′.

Since (n − 2)!/2 > 2(n − 3) � fj + fj′ for n � 6, it guarantees that the two
subgraphs AN j

n − Fj and AN j′
n − Fj′ are connected by an external edge in

ANn −F . Thus, ANn −F is connected, and this contradicts to the fact that F is
a vertex-cut in ANn. Moreover, for such subnetworks AN i

n such that fi � n− 2,
it is sure that some of Fi must be a vertex-cut of AN i

n; otherwise, ANn − F is
connected, a contradiction. We now consider the following two cases:

Case 1: There is exactly one such subnetwork, say AN i
n, such that it contains

fi � n−2 faulty vertices. In this case, we have fj � n−3 for all j ∈ Zn\{i} and Fi

is a vertex-cut of AN i
n. Let H be the subgraph of ANn induced by the fault-free

vertices outside AN i
n, i.e., H = ANn − (V (AN i

n) ∪ F ). Since every subnetwork
AN j

n in H has fj � n−3 faulty vertices, it is sure that H is connected. We denote
by C the component of ANn − F that contains H as its subgraph. Consider the
following scenarios:

Case 1.1: fi = 2n − 4. In this case, there are no faulty vertices outside AN i
n.

That is, H = ANn − V (AN i
n). Indeed, this case is impossible because if it is

the case, then every vertex of AN i
n − Fi has the fault-free out-neighbor in H.

Thus, AN i
n − Fi belongs to C, and it follows that ANn − F is connected, a

contradiction.

Case 1.2: fi = 2n − 5. Let u ∈ F \ Fi be the unique faulty vertex outside
AN i

n. That is, H = ANn − (V (AN i
n) ∪ {u}). Since Fi is a vertex-cut of AN i

n,
we assume that AN i

n − Fi is divided into k disjoint connected components, say
C1, C2, . . . , Ck. For each j ∈ Zk, if |Cj | � 2, then there is at least one vertex of
Cj with its out-neighbor in H, and thus Cj belongs to C. We now consider a
component that is a singleton, say Cj = {v}. If out(v) 	= u, then out(v) must
be contained in H, and thus Cj belongs to C. Clearly, there exists at most one
component Cj = {v} such that out(v) = u. In this case, ANn − F has exactly
two components {v} and C.

Case 1.3: fi = 2n − 6. Let u1, u2 ∈ F \ Fi be the two faulty vertices outside
AN i

n. That is, H = ANn −(V (AN i
n)∪{u1, u2}). Since Fi is a vertex-cut of AN i

n,
we assume that AN i

n − Fi is divided into k disjoint connected components,
say C1, C2, . . . , Ck. For each j ∈ Zk, if |Cj | � 3, then there is at least one
vertex of Cj with its out-neighbor in H, and thus Cj belongs to C. We now
consider a component Cj with |Cj | = 2, i.e., Cj is an edge, say (v1, v2). If
{out(v1), out(v2)} 	= {u1, u2}, then at least one of out(v1) and out(v2) must be
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contained in H, and thus Cj belongs to C. Since fi = 2n − 6 and (v, w) has
2n − 6 neighbors (not including v and w) in AN i

n, there exists at most one
component Cj = {(v1, v2)} such that {out(v1), out(v2)} = {u1, u2}, If it is the
case of existence, then ANn − F has exactly two components {(v1, v2)} and C.
Finally, we consider a component that is a singleton. Since fi = 2n−6 and every
vertex has degree n − 2 in AN i

n, we have n − 2 < 2n − 6 < 2(n − 2) for n � 6.
Thus, at most one such component exists, say Cj = {v}. If out(v) /∈ {u1, u2},
then out(v) is contained in H, and thus Cj belongs to C. Otherwise, ANn − F
has exactly two components {v} and C.

Case 1.4: n−2 � fi � 2n−7. In this case, there exist at least three faulty vertices
outside AN i

n (i.e., (2n−4)−(2n−7) = 3). Since AN i
n is isomorphic to ANn−1 and

Fi is a vertex-cut of AN i
n with no more than 2(n − 1) − 5 vertices, by Lemma 6,

AN i
n − Fi has exactly two components, one of which is either a singleton or an

edge. Let C1 and C2 be such two components for which 1 � |C1| � 2 < |C2|. More
precisely, |C2| = |V (AN i

n)|−fi−|C1| � (n−1)!/2−fi−2 > (2n−4)−fi = |F |−fi

for n � 6, where the last term |F | − fi is the number of faulty vertices outside
AN i

n. Clearly, the above inequality indicates that there exist some vertices of
C2 such that their out-neighbors are contained in H, even if all out-neighbors
of vertices in F \ Fi are contained in C2. Thus, C2 belongs to C. Also, if there
is a vertex v ∈ C1 with its out-neighbor in H, then C1 belongs to C. Otherwise,
ANn − F has exactly two components, one of which is either a singleton or an
edge.

Case 2: There exist exactly two subnetworks, say AN i
n and AN j

n, such that
fi � n − 2 and fj � n − 2. Since F is a vertex-cut of ANn, it implies that at
least one of the subgraphs AN i

n −Fi and AN j
n −Fj must be disconnected. Also,

since |F | = 2n − 4, we have fi = fj = n − 2 and fk = 0 for all k ∈ Zn \ {i, j}.
Moreover, since both AN i

n and AN j
n are isomorphic to ANn−1 and fi = fj =

n − 2 � 2(n − 1) − 5 for n � 6, by Lemma 6, if AN i
n − Fi (resp., AN j

n − Fj) is
disconnected, then it contains exactly two components. For the case that exactly
one of AN i

n − Fi and AN j
n − Fj is disconnected, through an argument similar

to the analysis of Case 1.4 for fi = n − 2 or fj = n − 2, we can show that
ANn − F contains exactly two components, one of which is either a singleton
or an edge. Now, we consider that both Fi and Fj are vertex-cuts of AN i

n and
AN j

n, respectively, such that AN i
n − Fi = Ci ∪ C ′

i and AN j
n − Fj = Cj ∪ C ′

j ,
where Ci, C

′
i, Cj , C

′
j are disjoint components with 1 � |Ci| � 2 < |C ′

i| and
1 � |Cj | � 2 < |C ′

j |. Let H = ANn − (V (AN i
n) ∪ V (AN j

n)) and denote by
C the component of ANn − F that contains H as its subgraph. Since |C ′

i| =
|V (AN i

n)| − fi − |Ci| � (n − 1)!/2 − (n − 2) − 2 > n − 2 = fj for n � 6, there
is at least one vertex of C ′

i with its out-neighbor in H, and thus C ′
i belongs to

C. Similarly, we can show that C ′
j belongs to C. Next, we consider |Ci| = 2

or |Cj | = 2. Suppose that Ci (resp., Cj) is an edge, say (u, v). By Lemma 3,
out(u) and out(v) must be contained in different subnetworks, and thus at least
one of which must be in H. It follows that Ci (resp., Cj) belongs to C. Finally,
we consider Ci = {u} and Cj = {v}. In this case, since fi = fj = n − 2,
we have Fi = N(u) and Fj = N(v). We describe all subcases as follows: If
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out(u) ∈ H (resp., out(v) ∈ H), then Ci (resp., Cj) belongs to C. If out(u) ∈ Fj

and out(v) ∈ Fi, then {u, out(u), v, out(v)} forms a 4-cycle, a contradiction to
the property (1) of Lemma 2. If exactly one of the conditions out(u) ∈ Fj and
out(v) ∈ Fi holds, then ANn − F has exactly two components, one of which is a
singleton {u} or {v}. If out(u) = v, then ANn − F has exactly two components,
one of which is an edge (u, v). ��

Note that the lower bound of κ′
3(ANn) in the above proof mainly concern the

condition that n � 6 and |F | = 2n − 4. As a remark, if F is a vertex-cut of AN5

with |F | = 6, then AN5 − F has two component, one of which is a singleton, an
edge, or a 3-cycle. In particular, for the case of taking a 3-cycle as a component,
we can consider F = {13425, 13542, 21435, 21543, 32415, 32541} in Fig. 2. Also,
if F is a vertex-cut of AN4 with |F | = 4, then AN4 − F has two component,
one of which is a singleton, an edge, a 3-cycle, a 2-path (i.e., P3) or a paw (i.e.,
K1,3 + e). For the case of taking a 2-path (resp., a paw) as a component, we can
consider F = {2431, 3241, 1342, 1423} (resp., F = {3241, 1342, 4213, 1423}) in
Fig. 1. Thus, from the proof of Theorem 1 together with the remark, we obtain
the following result, which is an extension of Lemma 6.

Corollary 1. Let F is a vertex-cut of ANn with |F | � 2n − 4. Then, the fol-
lowing conditions hold:

(1) If n = 4, then ANn − F has two components, one of which is a singleton,
an edge, a 3-cycle, a 2-path, or a paw.

(2) If n = 5, then ANn − F has two components, one of which is a singleton,
an edge, or a 3-cycle.

(3) If n � 6, then ANn − F has two components, one of which is either a
singleton or an edge.

4 The Generalized 3-Connectivity κ3(ANn)

The following two properties establish an upper bound and a lower bound of
κ3(G) for a connected graph G, respectively.

Lemma 8 (see [20]). Let G be a connected graph with minimum degree δ. Then
κ3(G) � δ. In particular, if there exist two adjacent vertices of degree δ in G,
then κ3(G) � δ − 1.

Lemma 9 (see [20]). Let G be a connected graph. For every two nonnegative
integers k and r ∈ {0, 1, 2, 3}, if κ(G) = 4k + r, then κ3(G) � 3k + �r/2�.
Proof of Theorem 2. Since ANn is (n − 1)-regular, by Lemma 8, we have
κ3(ANn) � δ(ANn) − 1 = n − 2. We now prove that κ3(ANn) � n − 2 by
induction. For n = 3, since AG3 is isomorphic to a 3-cycle, it is obvious that
κ3(AN3) � 1 = n − 2. For n = 4, since κ(AN4) = n − 1 = 3, by Lemma 9 we
have κ3(AN4) � �3/2� = n − 2. Suppose that n � 5 and the assertion holds for
ANn−1. Let S = {x, y, z}, where x, y and z are three distinct vertices of ANn.
Without loss of generality, we may consider the following three cases:
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Case 1: x, y, z ∈ AN1
n (i.e., x, y and z belong to the same subnetwork). Let

H = ANn −V (AN1
n). By Lemma 5, H is connected. Since AN1

n is isomorphic to
ANn−1, by induction hypothesis we have κ3(AN1

n) � (n − 1) − 2 = n − 3. Thus,
there exist n − 3 IDTs that connect S in AN1

n. Let S′ = {x′, y′, z′}, where x′, y′

and z′ are the out-neighbors of x, y and z respectively. Thus, it follows from the
property (3) of Lemma 2 that all vertices of S′ are distinct. Since S′ ⊂ V (H)
and H is connected, there is a tree T ′ that connects S′ in H. Let T be the tree
obtained from T ′ by adding three pendant edges (x, x′), (y, y′) and (z, z′). Then,
T is a tree connecting S in ANn and V (T ) ∩ V (AN1

n) = S. Now, counting the
n−3 IDTs we mentioned before together with T , there exist at least n−2 IDTs
connecting S in ANn, and hence κ3(ANn) � n − 2.

Case 2: x, y ∈ AN1
n and z ∈ AN2

n (i.e., x, y and z belong to two subnet-
works). Let H = ANn − V (AN1

n). By Lemma 5 and since AN1
n is isomorphic

to ANn−1, we have κ(H) = κ(AN1
n) = n − 2, and thus there is an (n − 2)-

path container between x and y in AN1
n. Let P1, P2, . . . , Pn−2 be such internally

disjoint (x, y)-paths. For each path Pi, we choose a vertex wi ∈ V (Pi), and let
W = {w1, w2, . . . , wn−2}. Note that at most one of these paths, say P1, has
length 1. If so, we choose w1 = x. For each i ∈ Zn−2, we let w′

i = out(wi). By
the property (3) of Lemma 2, we have w′

i 	= w′
j for i, j ∈ Zn−2 and i 	= j. Let

W ′ = {w′
1, w

′
2, . . . , w

′
n−2}. Since W ′ ⊂ V (H) and κ(H) = n − 2, by Lemma 1, if

z /∈ W ′, there exists an (n − 2)-fan from z to W ′ in H. For i ∈ Zn−2, let P ′
i be

such (z, w′
i)-path in this fan. On the other hand, if z = w′

i for some i ∈ Zn−2 (i.e.,
z ∈ W ′), we may consider that P ′

i contains exactly one vertex z. Now, for each
i ∈ Zn−2, we can construct a tree Ti in ANn by setting Ti = Pi ∪{(wi, w

′
i)}∪P ′

i .
As a result, T1, T2, . . . , Tn−2 are n − 2 IDTs that connect S in ANn, and hence
κ3(ANn) � n − 2.

Case 3: x ∈ AN1
n, y ∈ AN2

n and z ∈ AN3
n (i.e., x, y and z belong to different

subnetworks). For each i ∈ {4, 5, . . . , n}, we consider the following external edges
between subnetworks: (ui, u

′
i) ∈ E1,i

n where ui ∈ N [x] ⊆ AN1
n and u′

i ∈ AN i
n,

(vi, v
′
i) ∈ E2,i

n where vi ∈ N [y] ⊆ AN2
n and v′

i ∈ AN i
n, and (wi, w

′
i) ∈ E3,i

n where
wi ∈ N [z] ⊆ AN3

n and w′
i ∈ AN i

n. Note that it is possible that ui = x, vi = y
or wi = z for a certain i. By the property (5) of Lemma 2, (ui, u

′
i), (vi, v

′
i) and

(wi, w
′
i) are independent edges in ANn, and thus the three vertices u′

i, v
′
i and

w′
i are distinct. Since AN i

n is connected and u′
i, v

′
i, w

′
i ∈ AN i

n, let T ′
i be a tree

in AN i
n that connects the three vertices u′

i, v
′
i and w′

i. Now, we can construct a
tree Ti in ANn by setting

Ti = T ′
i ∪ {(x, ui), (ui, u

′
i), (y, vi), (vi, v

′
i), (z, wi), (wi, w

′
i)}.

Thus, T4, T5, . . . , Tn are n − 3 IDTs that connect S in ANn. To complete the
proof, we need an extra tree T to connect S such that V (T ) ∩ V (Ti) = S
for all i ∈ {4, 5, . . . , n}. Let H1 = AN1

n − ({u4, u5, . . . , un} \ {x}). Since
κ(AN1

n) = n−2 and H1 is obtained from AN1
n by removing at most n − 3 vertices,

this implies that H1 is connected. Similarly, the two subgraphs H2 = AN2
n −

({v4, v5, . . . , vn} \ {y}) and H3 = AN3
n − ({w4, w5, . . . , wn} \ {z}) are also con-

nected. Moreover, since each Hj , j ∈ {1, 2, 3}, is obtained from AN j
n by remov-

ing vertices without out-neighbors in ANk
n for k ∈ {1, 2, 3} \ {j}, by Lemma 4,
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the subgraph of ANn induced by ∪3
i=1V (Hi) is connected and it contains a tree

T connecting S as our desired. ��

5 Concluding Remarks

In this paper, we determine the exact values of κ′
3(ANn) and κ3(ANn). A natu-

ral counterpart of the generalized connectivity is the so-called generalized edge-
connectivity introduced in [27]. For S ⊆ V (G), let ψ′(S) denote the maximum
number of edge-disjoint trees that connect S in G. The generalized k-edge-
connectivity of G is defined by λk(G) = min{ψ′(S) : S ⊆ V (G) and |S| = k}. An
easy observation shows that κk(G) � λk(G) � δ(G). Also, similar to Lemma 8, a
result in [22] showed that if there exist two adjacent vertices with the minimum
degree δ in G, then λ3(G) � δ −1. Accordingly, by Theorem 2, we conclude that
λ3(ANn) = n − 2 for n � 3.

So far it seems that less effort has been devoted on the study of the two
types of generalized k-connectivity for larger k. As a future work, we would like
to study in this direction, especially, for some popular interconnection networks
such as hypercubes, star graphs, high dimensional tori, and their variants.
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Abstract. We study a maximization problem for geometric network
design. Given a set of n compact neighborhoods in R

d, select a point in
each neighborhood, so that the longest spanning tree on these points (as
vertices) has maximum length. Here we give an approximation algorithm
with ratio 0.511, which represents the first, albeit small, improvement
beyond 1/2. While we suspect that the problem is NP-hard already in
the plane, this issue remains open.

Keywords: Maximum (longest) spanning tree · Neighborhood
Geometric network · Metric problem · Approximation algorithm

1 Introduction

In the Euclidean Maximum Spanning Tree Problem (EMST), given a set of
points in the Euclidean space R

d, d ≥ 2, one seeks a tree that connects these
points (as vertices) and has maximum length. The problem is easily solvable
in polynomial time by Prim’s algorithm or by Kruskal’s algorithm; algorithms
that take advantage of the geometry are also available [13]. In the Longest Span-
ning Tree with Neighborhoods (Max-St-N), each point is replaced by a point-
set, called region or neighborhood, and the tree must connect n representative
points, one chosen from each region (duplicate representatives are allowed), and
the tree has maximum length. The tree edges are straight line segments con-
necting pairs of points in distinct regions; for obvious reasons we refer to these
edges as bichromatic. As one would expect, the difficulty lies in choosing the
representative points; once these points are selected, the problem is reduced to
the graph setting and is thus easily solvable.

The input N consists of n (possibly disconnected) neighborhoods. For sim-
plicity, it is assumed that each neighborhood is a union of polyhedral regions;
the total vertex complexity of the input is N . However, it will be apparent from
the context that our methods extend to a broader class of regions, those approx-
imable by unions of polyhedral regions within a prescribed accuracy (for instance
unions of balls of arbitrary radii, etc.).

Examples. It is worth noting that a greedy algorithm does not necessarily find an
optimal tree. Let N = {X1,X2,X3}, where X1 = {a, b}, X2 = {a, c}, X3 = {d},
Δabc is a unit equilateral triangle and d is the midpoint of bc; see Fig. 1 (left).
c© Springer International Publishing AG, part of Springer Nature 2018
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a

b c

X1 X2

X3

d

A SET OF TEN REGIONS

Fig. 1. Left: an example on which the greedy algorithm is suboptimal. Right: an exam-
ple of a long (still suboptimal) spanning tree with 10 regions N = {A, S ∪ S, E ∪ E ∪
E, T ∪ T, O ∪ O, F, N ∪ N, R, G, I} (some regions are disconnected); the blue segments
form a spanning tree on N and the green dots are the chosen representative points.
(Color figure online)

A (natural) greedy algorithm chooses two points attaining a maximum inter-
point distance with points in distinct regions, and then repeatedly chooses a
point in each new region as far as possible from some selected point. Here the
selection b ∈ X1, c ∈ X2, d ∈ X3 yields a spanning tree in the form of a star
centered at v1 = b of length 3/2; on the other hand, selecting vertices vi ∈ Xi,
i = 1, . . . , 3 at a, a, d, respectively, yields a spanning tree in the form of a 2-
edge star centered at v3 = d of length 2 × √

3/2 =
√

3 (the edge lengths in the
underlying complete graph are

√
3/2,

√
3/2, and 0). Another example appears

in Fig. 1 (right).
We start by providing a factor 1/2 approximation to Max-St-N. We then

offer two refinement steps achieving a better ratio. The last refinement step
proves Theorem 1.

Theorem 1. Given a set N of n neighborhoods in R
d (with total vertex com-

plexity N), a ratio 0.511 approximation for the maximum spanning tree for the
regions in N can be computed in polynomial time.

Although our improvement in the approximation ratio for spanning trees is
very small, it shows that the “barrier” of 1/2 can be broken. On the other hand,
we show that every algorithm that always includes a bichromatic diameter pair
in the solution (as the vertices of the corresponding regions) is bound to have
an approximation ratio at most

√
2 − √

3 = 0.517 . . . (via Fig. 4 in Sect. 3).

Definitions and notations. A geometric graph G is a graph whose vertices (a
finite set) are points in R

d and whose edges consist of straight line segments. For
two points p, q ∈ R

d, the Euclidean distance between them is denoted by |pq|.
The length of G, denoted len(G), is the sum of the Euclidean lengths of all edges
in G.

For a neighborhood X ∈ N , let V (X) denote its set of vertices. Let V =
∪X∈N V (X) denote the union of vertices of all neighborhoods in N ; put N = |V |.
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Given a set N of n neighborhoods, we define the following parameters.
A monochromatic diameter pair is a pair of points in the same region attaining
a maximum distance. A bichromatic diameter pair is a pair of points from two
regions attaining a maximum distance, i.e., pi ∈ Xi, pj ∈ Xj , where Xi,Xj ∈ N ,
i �= j, and |pipj | is maximum. For X ∈ N and p ∈ X, let dmax(p) denote the
maximum distance between p and any point of a neighborhood Y ∈ N \ {X}.
It is well known and easy to prove that both a monochromatic diameter and
bichromatic diameter pair are attained by pairs of vertices in the input instance.
An optimal (longest) Spanning Tree with neighborhoods is denoted by TOPT; it
is a geometric graph whose vertices are the representative points of the n regions.

Preliminaries and related work. Computing the minimum or maximum
Euclidean spanning trees of a point set are classical problems in a geometric set-
ting [13,14]. A broad collection of problems in geometric network design, includ-
ing the classical Euclidean Traveling Salesman Problem (ETSP), can be found
in the surveys [9,11,12]. While past research has primarily focused on minimiza-
tion problems, the maximization variants usually require different techniques
and so they are interesting in their own right and pose many unmet challenges;
e.g., see the section devoted to longest subgraph problems in the survey of Bern
and Eppstein [5]. The results obtained in this area in the last 20 years are rather
sparse; the few articles [4,8,10] make a representative sample.

Spanning trees for systems of neighborhoods have also been studied. For
instance, given a set of n (possibly disconnected) compact neighborhoods in R

d,
select a point in each neighborhood so that the minimum spanning tree on these
points has minimum length [7,18], or maximum length [7], respectively. In the
cycle version first studied by Arkin and Hassin [3], called TSP with neighborhoods
(TSPN), given a set of neighborhoods in R

d, one must find a shortest closed
curve (tour) intersecting each region.

2 Approximation Algorithms

For simplicity, we present our algorithms for the plane, namely d = 2; the exten-
sion to higher dimensions is straightforward, and is briefly discussed at the end.

Let S = {p1, . . . , pn}, where pi = (xi, yi). Given a point p ∈ S, the star
centered at p, denoted Sp, is the spanning tree on S whose edges connect p to
the other points. Using a technique developed in [8] (in fact a simplification of an
earlier approach used in [2]), we first obtain a simple approximation algorithm
with ratio 1/2.

Algorithm A1 . Compute a bichromatic diameter of the point set V , pick an
arbitrary point (vertex) from each of the other n−2 neighborhoods, and output
the longest of the two stars centered at one of the endpoints of the diameter.

Analysis. Let ab be a bichromatic diameter pair, and assume without loss of
generality that ab is a horizontal unit segment, where a = (0, 0) and b = (1, 0).
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ba
ω

o

Fig. 2. A bichromatic diameter pair a, b and the disk ω.

We may assume that a ∈ X1 and b ∈ X2; refer to Fig. 2. The ratio 1/2 (or n
2n−2

which is slightly better) follows from the next lemma in conjunction with the
obvious upper bound

len(TOPT) ≤ n − 1. (1)

The latter is implied by the fact that each edge of TOPT is bichromatic and thus
of length at most 1.

Lemma 1. Let Sa and Sb be the stars centered at the points a and b, respectively.
Then len(Sa) + len(Sb) ≥ n.

Proof. Assume that a = p1, b = p2. For each i = 3, . . . , n, the triangle inequality
for the triple a, b, pi gives

|api| + |bpi| ≥ |ab| = 1.

By summing up we have

len(Sa) + len(Sb) =
n∑

i=3

(|api| + |bpi|) + 2|ab| ≥ (n − 2) + 2 = n,

as required. �	
We next refine this algorithm to achieve an approximation ratio of 0.511. The

technique uses two parameters x and y, introduced below. The smallest value of
the ratio obtained over the entire range of admissible x and y is determined and
output as the approximation ratio of Algorithm A2.

Let o be the midpoint of ab, and ω be the disk centered at o, of minimum
radius, say, x, containing at least 
n/2� of the neighborhoods X3, . . . , Xn; in
particular, this implies that we can consider 
n/2� neighborhoods as contained in
ω and �n/2 neighborhoods having points on the boundary ∂ω or in the exterior
of ω. We may assume that x ≤ 0.2; if x ≥ 0.2, the 0.511 approximation ratio
easily follows (with room to spare): Since for each of the regions not contained
in ω, one of the connections from an arbitrary point of the region to a or b is at

least
√

1
4 + x2. If T is the spanning tree consisting of all such longer connections

together with ab, then

len(T ) ≥ 1 +
1
2

⌊n

2

⌋
+

(⌈n

2

⌉
− 2

) √
1
4

+ x2

≥ 1 +
√

1 + 4x2

4
(n − 1) + 1 − 3

√
1 + 4x2

4

≥ 5 +
√

29
20

(n − 1) + 1 − 3
√

29
20

≥ 5 +
√

29
20

(n − 1).
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So the approximation ratio is at least (5 +
√

29)/20 = 0.519 . . .
Let the monochromatic diameter of V be 1 + y, for some y ∈ [−1,∞); the

next lemma shows that y ≤ 1, and so the monochromatic diameter of V is 1+y,
for some y ∈ [−1, 1].

Lemma 2. For every X ∈ N , diam(X) ≤ 2.

Proof. Let pq be a diameter pair of X. Let r be an arbitrary point of an arbitrary
neighborhood Y ∈ N \ {X}. By the triangle inequality, we have |pq| ≤ |pr| +
|rq| ≤ 1 + 1 = 2, as required. �	

If y ≥ 0.2, let a1, b1 ∈ X1 be a corresponding diameter pair; choose a point
in every other region and connect it to a1 and b1. Since |a1b1| = 1+ y ≥ 1.2, the
longer of the two stars centered at a1 and b1 has length at least (n−1)(1+y)/2 ≥
0.6(n−1); this candidate spanning tree offers thereby this ratio of approximation.
We will subsequently assume that y ∈ [−1, 0.2].

As shown above a constant approximation ratio better than 1/2 can be
obtained if x or y is sufficiently large. In the complementary case (both x and
y are small), an upper bound of cn, for some constant c < 1, on the length of
TOPT can be derived. We continue with the technical details.

Algorithm A2 . The algorithm computes one or two candidate solutions. The
first candidate solution T1 for the spanning tree is only relevant for the range
y ≥ 0 (if y < 0 its length could be smaller than n/2). Assume that one of the
regions, say, X1 achieves a diameter pair: a1, b1 ∈ X1; recall that |a1b1| = 1 + y.
Choose an arbitrary point in every other region and connect it to a1 and b1.
Let T1 be the longer of the two stars centered at a1 and b1. By the triangle
inequality,

len(T1) ≥ (n − 1)
1 + y

2
. (2)

The second candidate solution T2 for the spanning tree connects each of the
regions contained in ω with either a or b at a cost of at least 1/2 (based on the
fact that max{|api|, |bpi|} ≥ |ab|/2 = 1/2). For each region Xi, i ≥ 3, select the
vertex of Xi that is farthest from o and connect it with a or b, whichever yields
the longer connection. As such, if Xi is not contained in ω, the connection length

is at least
√

1
4 + x2. Finally add the unit segment ab. Then,

len(T2) ≥ 1 +
⌊n

2

⌋ 1
2

+
(⌈n

2

⌉
− 2

) √
1
4

+ x2. (3)

The above expression can be simplified as follows. If n is even, (3) yields

len(T2) ≥ 1 +
n

4
+

(n

4
− 1

) √
1 + 4x2

=
n − 1

4

(
1 +

√
1 + 4x2

)
+

(
5
4

− 3
4

√
1 + 4x2

)

≥ n − 1
4

(
1 +

√
1 + 4x2

)
.
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If n is odd, (3) yields

len(T2) ≥ 1 +
n − 1

4
+

(
n + 1

4
− 1

) √
1 + 4x2

=
n − 1

4

(
1 +

√
1 + 4x2

)
+

(
1 − 2

4

√
1 + 4x2

)

≥ n − 1
4

(
1 +

√
1 + 4x2

)
.

Consequently, for every n we have

len(T2) ≥ n − 1
4

(
1 +

√
1 + 4x2

)
. (4)

Upper bound on len(TOPT ). Let Ω be the disk of radius R(y) centered at o,
where

R(y) =

{√
3
2 if y ≤ 0√
3
2 + 2√

3
y if y ≥ 0

Lemma 3. V is contained in Ω.

Proof. Assume for contradiction that there exists a point pi ∈ Xi at distance
larger than R(y) from o. By symmetry, we may assume that |api| ≤ |bpi| and
that pi lies in the closed halfplane above the line containing ab.

First consider the case y ≤ 0; it follows that |bpi| >
√

1
4 + 3

4 = 1. If i = 2, then
b, pi ∈ X2, which contradicts the definition of y; otherwise b ∈ X2 and pi ∈ Xi

are points in different neighborhoods at distance larger than 1, in contradiction
with the original assumption on the bichromatic diameter of V .

Next consider the case y ≥ 0; it follows that |bpi| ≥
√

1
4 + (

√
3
2 + 2√

3
y)2 >

1 + y. If i = 2, then b, pi ∈ X2, which contradicts the definition of y; otherwise
b ∈ X2 and pi ∈ Xi are points in different neighborhoods at distance larger than
1, in contradiction with the original assumption on the bichromatic diameter of
V .

In either case (for any y) we have reached a contradiction, and this concludes
the proof. �	

Recall that for a point p ∈ X ∈ N , dmax(p) is the maximum distance between
p and any point of a neighborhood Y ∈ N \ {X}.

Lemma 4. Let N = {X1, . . . , Xn} be a set of n neighborhoods and TOPT be
an optimal spanning tree assumed to connect points (vertices) pi ∈ Xi for i =
1, . . . , n. For every j ∈ [n], we have

len(TOPT) ≤
∑

i�=j

dmax(pi).
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Proof. Consider TOPT rooted at pj . Let π(v) denote the parent of a (non-root)
vertex v. Uniquely assign each edge π(v)v of TOPT to vertex v. The inequality
len(π(v)v) ≤ dmax(v) holds for each edge of the tree. By adding up the above
inequalities, the lemma follows. �	
Lemma 5. If X ∈ N is contained in ω, and p ∈ X, then dmax(p) ≤ min(1, x +
R(y)).

Proof. By definition, dmax(p) ≤ 1. By Lemma 3, the vertex set V is contained
in Ω; equivalently, all neighborhoods in N are contained in Ω. By the triangle
inequality, dmax(p) ≤ |po| + R(y) ≤ x + R(y), as claimed. �	
Lemma 6. The following holds:

len(TOPT) ≤ (n − 1) · min
(

1,
1 + x + R(y)

2

)
. (5)

Proof. Let TOPT be a longest spanning tree of p1, . . . , pn, where pi ∈ Xi, for
i = 1, . . . , n. View TOPT as rooted at p1 ∈ X1; recall that a ∈ X1. By Lemma 4,

len(TOPT) ≤
n∑

i=2

dmax(pi).

If Xi is not contained in ω, dmax(pi) ≤ 1; otherwise, by Lemma 5, dmax(pi) ≤
min(1, x + R(y)). By the setting of x in the definition of ω, we have

len(TOPT) ≤
(⌈n

2

⌉
− 1

)
· 1 +

⌊n

2

⌋
· min(1, x + R(y)).

If n is even, the above inequality yields

len(TOPT) ≤
(n

2
− 1

)
+

n

2
min(1, x + R(y))

=
n − 1

2
(1 + x + R(y)) +

min(1, x + R(y)) − 1
2

≤ n − 1
2

(1 + x + R(y)) ,

while if n is odd, it yields

len(TOPT) ≤ n − 1
2

+
n − 1

2
(x + R(y)) =

n − 1
2

(1 + x + R(y)) .

Therefore len(TOPT) ≤ n−1
2 (1 + x + R(y)) in both cases. Then the lemma fol-

lows by adjoining the trivial upper bound in Eq. (1). �	

3 Analysis of Algorithm A2

We start with a preliminary argument for ratio 0.506 that comes with a simpler
proof. We then give a sharper analysis for ratio 0.511.
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A first bound on the approximation ratio of A2 . First consider the case y < 0.
Then R(y) =

√
3/2, so the ratio of A2 is at least

min
0 ≤ x ≤ 0.2

y < 0

len(T2)
len(TOPT)

≥ min
0 ≤ x ≤ 0.2

1 +
√

1 + 4x2

min
(
4, 2 +

√
3 + 2x

) .

A standard analysis shows that this ratio achieves its minimum(
1 + 2

√
2 − √

3
) /

4 = 0.508 . . . when x = 1 − √
3/2.

When y ≥ 0, the ratio of A2 is at least

min
0 ≤ x, y ≤ 0.2

max
(

len(T1)
len(TOPT)

,
len(T2)

len(TOPT)

)
.

The inequalities (2), (4), (5) imply that this ratio is at least

max
(
1 + y, (1 +

√
1 + 4x2)/2

)

min (2, 1 + x + R(y))
=

max
(
1 + y, (1 +

√
1 + 4x2)/2

)

min
(
2, 1 +

√
3
2 + x + 2√

3
y
) .

Since the analysis is similar to that for deriving the refined bound we give next,
we state without providing details that this piecewise function reaches its mini-
mum value (

4
√

3 − 1 − 2
√

9 − 3
√

3
)/

4 = 0.506 . . .

when

y =
(

4
√

3 − 3 − 2
√

9 − 3
√

3
)/

2 = 0.0137 . . .

and

x =
√

3/2 − 3 + 2
√

3 −
√

3 = 0.1180 . . .

This provides a preliminary ratio 0.506 in Theorem1.

A refined bound. Let m = 
n/2�. Assume for convenience that the regions
X3, . . . , Xn are relabeled so that X3, . . . , Xm+2 are contained in ω and
Xm+3, . . . , Xn are not contained in the interior of ω. Recall that pi ∈ Xi

are the representative points in an optimal solution TOPT. Let xi = |opi|, for
i = 3, . . . , m + 2; as such, x3, . . . , xm+2 ≤ x. Let the average of x3, . . . , xm+2 be
λx, where λ ∈ [0, 1], i.e.,

∑m+2
i=3 xi = mλx.

Observe that dmax(pi) ≤ |opi| + R(y) = xi + R(y), for i = 3, . . . , m + 2.
Consequently, the upper bound in (5) can be improved to

len(TOPT) ≤ n − 1
2

(1 + λx + R(y)) . (6)

We next obtain an improved lower bound on len(T2). Recall that Algo-
rithm A2 selects the vertex of Xi that is farthest from o for every i ≥ 3, and
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connects it with a or b, whichever yields the longer connection. In particular,

the length of this connection is at least
√

1
4 + x2

i for i = 3, . . . , m + 2. Since the
function

√
x is concave, Jensen’s inequality yields:

m+2∑

i=3

√
1 + 4x2

i ≥ m
√

1 + 4λ2x2,

hence we obtain the following sharpening of the lower bound in (4):

len(T2) ≥ n − 1
4

(√
1 + 4λ2x2 +

√
1 + 4x2

)
. (7)

In order to handle (6) and (7) we make a key substitution z = λx and simplify
the lower bound in (7). Recall that 0 ≤ λ ≤ 1, and so 0 ≤ z ≤ x and z ∈ [0, 0.2].
We now deduce from (6) and (7) that

len(TOPT) ≤ n − 1
2

(1 + z + R(y)) , (8)

and
len(T2) ≥ n − 1

2

√
1 + 4z2. (9)

To analyze the approximation ratio we distinguish two cases:

Case 1: y ≤ 0. Then R(y) =
√

3/2, so the ratio of A2 is at least

min
0 ≤ z ≤ 0.2

max
(

len(T2)
len(TOPT)

)
≥ min

0 ≤ z ≤ 0.2

2
√

1 + 4z2

min
(
4, 2 + 2z +

√
3
) .

When 4 ≤ 2 + 2z +
√

3, we have z ≥ 1 − √
3/2. Then

√
1 + 4z2

2
≥

√
8 − 4

√
3

2
=

√
2 −

√
3 = 0.517 . . . .

When 4 ≥ 2 + 2z +
√

3, or z ≤ 1 − √
3/2, let

f(z) =
2
√

1 + 4z2

2 +
√

3 + 2z
.

Then

f ′(z) =
8
(
2 +

√
3
)
z − 4

√
1 + 4z2

(
2 +

√
3 + 2z

)2 .

Since 8
(
2 +

√
3
)
z − 4 ≤ 4

(
2 +

√
3
) (

2 − √
3
) − 4 = 0, the function is non-

increasing on [0, 1 − √
3/2] and so

f(z) ≥ f
(
1 −

√
3/2

)
=

√
2 −

√
3 = 0.517 . . . .
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This concludes the proof for the first case.

Case 2: y ≥ 0. Then the ratio of A2 is at least

min
0 ≤ y, z ≤ 0.2

max
(

len(T1)
len(TOPT)

,
len(T2)

len(TOPT)

)
.

For 0 ≤ y, z ≤ 0.2, let

g(z, y) =
max

(
1 + y,

√
1 + 4z2

)

min (2, 1 + z + R(y))
=

max
(
1 + y,

√
1 + 4z2

)

min
(
2, 1 +

√
3
2 + z + 2√

3
y
) .

The inequalities (2), (8), (9) imply that the ratio of A2 is at least

min
0 ≤ y, z ≤ 0.2

g(z, y).

p

o

0.2

0.2q

I

II
III

IV

y

z

�

γ

Fig. 3. The feasible region of the function g(z, y).

The curve γ : 1 + y =
√

1 + 4z2 and the line 	 : 2 = 1 +
√
3
2 + z + 2√

3
y split

the feasible region [0, 0.2] × [0, 0.2] into four subregions; see Fig. 3. The curve
γ intersects line 	 at point p = (z0, y0), where z0 =

(
8 4
√

3 − √
3 − 6

) /
26 =

0.1075 . . . and y0 =
(
8
√

3 − 2 4
√

27 − 9
) /

13 = 0.0228 . . . Set

ρ := (1 + y0)/2 =
(
4
√

3 + 2 − 4
√

27
)/

13 = 0.5114 . . . (10)

In region I, g(z, y) = (1 + y)/2. It reaches the minimum value ρ when y is
minimized, i.e., y = y0.
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In region II, g(z, y) =
1 + y

1 +
√

3/2 + z + 2y/
√

3
. Its partial derivative is posi-

tive, i.e.,
∂g

∂y
=

1 − √
3/6 + z

(
1 +

√
3/2 + z + 2y/

√
3
)2 > 0,

so g(z, y) reaches its minimum value on the curve γ. On this curve, let

G(z) = g (z, y(z)) =
√

1 + 4z2

1 − √
3/6 + z + 2

√
1 + 4z2/

√
3
.

Its derivative is

G′(z) =

(
4 − 2

√
3/3

)
z − 1

√
1 + 4z2

(
1 − √

3/6 + z + 2
√

1 + 4z2/
√

3
)2 .

Note that the numerator of G′(z) is negative, i.e.,
(
4 − 2

√
3/3

)
z−1 < 4z−1 < 0

for z ∈ [0, 0.2], thus G′(z) < 0. So the minimum value is ρ, and is achieved when
z is maximized, i.e., z = z0.

In region IV, g(z, y) =
√

1 + 4z2/2 which increases monotonically with
respect to z. So the minimum value is again ρ and is achieved when z is mini-
mized, i.e., z = z0.

In region III,

g(z, y) =
√

1 + 4z2

1 +
√

3/2 + z + 2y/
√

3
.

Its partial derivative is negative, i.e.,

∂g

∂y
=

−2
√

1 + 4z2√
3

(
1 +

√
3/2 + z + 2y/

√
3
)2 < 0,

so g(z, y) reaches its minimum value on the arc op ⊂ γ or the segment pq ⊂ 	,
where q = (1 − √

3/2, 0) is the intersection point of 	 and the z-axis. Since these
two curves are shared with region II and IV respectively, by previous analyses,
g(z, y) reaches its minimum value ρ at point p.

In summary, we showed that

min
0 ≤ y, z ≤ 0.2

g(z, y) ≥ ρ = 0.511 . . . ,

establishing the approximation ratio in Theorem1.

Remark. The algorithm can be adapted to work in R
d for any d ≥ 3. In the

analysis, the disk ω becomes the ball of radius x with the same defining property;
the disk Ω becomes the ball of radius R(y). All arguments and relevant bounds
still hold since they only rely on the triangle inequality; the verification is left
to the reader. Consequently, the approximation guarantee remains the same.
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An almost tight example. Let Δabc be an isosceles triangle with |ca| = |cb| = 1−
ε, |ab| = 1, for a small ε > 0; e.g., set ε = 1/(n−1). Let N = {X1, . . . , Xn}, where
X1 = ac, X2 = bc, and X3, . . . , Xn are n−2 points at distance 1−ε from c, below
ab and whose projections onto ab are close to the midpoint of ab (see Fig. 4). The
spanning tree constructed by A2 is of length close to

√
2 − √

3n = 0.517 . . . n,
while the longest spanning tree has length at least (1 − ε)(n − 1) = n − 2; as
such, the approximation ratio of A2 approaches

√
2 − √

3 = 0.517 . . . for large
n. Note that this is a tight example for the case y ≤ 0, for which the ratio of A2
is at least

√
2 − √

3; and an almost tight example in general, since the overall
approximation ratio of A2 is 0.511. Moreover, the example shows that every
algorithm that always includes a bichromatic diameter pair in the solution (as
the vertices of the corresponding regions) is bound to have an approximation
ratio at most

√
2 − √

3.

c

a b

X1 X2

X3, . . . , Xn

Fig. 4. A tight example.

Time complexity of Algorithm A2 . It is straightforward to implement the algo-
rithm to run in quadratic time for any fixed d. All interpoint distances can be
easily computed in O(N2) time. Similarly the farthest point from o in each region
(over all regions) can all be computed in O(N) time. Subquadratic algorithms
for computing the diameter and farthest bichromatic pairs in higher dimensions
can be found in [1,6,15–17]; see also the two survey articles [9,11].

4 Conclusion

We gave two approximation algorithms for Max-St-N: a very simple one with
ratio 1/2 and another simple one (with slightly more elaborate analysis but
equally simple principles) with ratio 0.511. The following variants represent
extensions of the Euclidean maximum TSP for the neighborhood setting.

In the Euclidean Maximum Traveling Salesman Problem, given a set of points
in the Euclidean space R

d, d ≥ 2, one seeks a cycle (a.k.a. tour) that visits these



On the Longest Spanning Tree with Neighborhoods 27

points (as vertices) and has maximum length; see [4]. In the Maximum Traveling
Salesman Problem with Neighborhoods (Max-Tsp-N), each point is replaced
by a point-set, called region or neighborhood, and the cycle must connect n
representative points, one chosen from each region (duplicate representatives
are allowed), and the cycle has maximum length. Since the original variant with
points is NP-hard when d ≥ 3 (as shown in [4]), the variant with neighborhoods
is also NP-hard for d ≥ 3. The complexity of the original problem in the plane
is unsettled, although the problem is believed to be NP-hard [10]. In the path
variant, one seeks a path of maximum length.

The following problems are proposed for future study:

1. What is the computational complexity of Max-St-N?
2. What approximations can be obtained for the cycle or path variants of Max-

Tsp-N?
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Abstract. Motivated by an expensive computation performed by a
computational topology software RIVET [9], Madkour et al. [1] intro-
duced and studied the following graph partitioning problem. Given an
edge weighted graph and an integer k, partition the vertex set of the
graph into k connected components such that the weight of the heaviest
component is as small as possible, where the weight of each component is
the weight of a minimum spanning tree of the graph induced by the ver-
tices in that component. They showed that the problem is NP -hard even
for k = 2 and provided some heuristic algorithms. They asked whether
the problem is polynomial time solvable when the input is a tree. Our
first result is an affirmative answer to their question. We give a polyno-
mial time algorithm to provide such a partition in a tree. We also give
an exact exponential algorithm taking O∗(2n) time on general graphs
(improving on the naive O∗(kn) algorithm) (O∗ notation ignores poly-
nomial factors). We also prove that the problem remains NP -complete
even when the weights on all the edges are the same and give a linear
time algorithm for this version of the problem when the graph is a tree.

1 Introduction

We investigate and propose efficient algorithms for a tree partitioning problem
that has been introduced recently. A spanning k-forest of an edge-weighted,
undirected graph G is a collection of k trees, T1, . . . , Tk, each a subgraph of G,
such that each vertex of G is contained in exactly one Ti for some i ∈ {1, . . . , k}.
A minimum spanning k-forest of G is a spanning k-forest such that the quantity
max {w(T1), . . . , w(Tk)} is minimum among all the spanning k-forests of G. Here
w(Ti) is the total weight of the edges in Ti. If F is a spanning k-forest of G, then
the quantity w(F ) = max{w(T1), . . . , w(Tk)} is the weight of F .

Madkour et al. [1] considered the following problem.
Input: An edge-weighted, undirected graph G on n vertices, integer k > 1
Output: Minimum spanning k-forest of G.

Work done while the authors were visiting IMSc Chennai.
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1.1 Related Work

Partitioning a graph into k-connected components is a problem well studied
in literature, having multiple variants. The special case where each connected
component is a tree forms a small subset of this problem [2–8]. Madkour et
al. [1] introduced and showed the problem NP -complete on general graphs even
for k = 2 and provided two heuristic algorithms for the problem, one based
on spectral clustering and the other based on dynamic programming. They left
open the complexity of the problem on trees.

A few variants of this problem are studied in [2,7,8]. The complexity of
the problem of partitioning a tree into k balanced parts is studied in [7]. The
problem of finding a k-partition of a graph in which the weight of each component
is defined based on the weight of its minimum spanning tree and the sum of
weights of its outgoing edges is studied in [8]. The closest variant to our problem
that has been previously studied is the problem that asks to find a minimum
spanning k-forest of a vertex weighted graph, here the weight of each component
in a spanning k-forest of a graph is the sum of weights of all the vertices in that
component. It is known [2] that this problem on trees can be solved in linear
time. In Sect. 2, we reduce our problem on trees having edges of equal weight
to this vertex weighted problem to obtain a linear time algorithm. However, for
the more general edge weighted version of the problem, this reduction fails, and
we provide a greedy based polynomial algorithm in Sect. 3. Our algorithm, not
only works for the general edge weighted version, but for the unweighted version,
it is, we believe, much simpler than the linear time algorithm obtained via the
vertex weighted version. Our algorithm follows a greedy local search strategy.

1.2 Paper Organization

Our main result of the paper is a polynomial time algorithm for the problem
on trees. As k − 1 edges are necessary and sufficient to remove from the tree to
get k connected components, this immediately gives an O(nk) algorithm for the
problem by trying all possible k−1 subsets of the edge set. This already suggests
that the problem is quite different on trees, as for general graphs the problem
was NP -complete even for k = 2. In Sect. 3, we provide an O(kn3) algorithm
for the problem. Our algorithm follows the popular greedy local search method
similar to the one used in [10] for an approximation algorithm for the minimum
degree spanning tree problem. Starting from a partition obtained by removing
the k−1 heaviest weight edges, iteratively we find an improved solution through
local swaps of edges until no improvement is possible. We show that such a
greedy solution stops in O(n) phases (where each phase takes O(kn2) time) and
produces the optimum solution.

In Sect. 2, we consider the class of graphs having all edges of equal weight.
Here, we first show that the problem remains NP -complete even on these
(unweighted) graphs. We then give a linear time algorithm for this version of
the problem on trees by reducing to the vertex weighted version of the problem
on trees.
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A brute force exponential algorithm in general graphs takes O(kn) time by
trying all possible partitions of the vertex set into k parts. We improve this to
O∗(3n) using a Dynamic Programming approach in Sect. 4 and to O∗(2n) using
the well known problem of finding a k-partition of a set system (U, S), where U
is a universe of elements and S is a collection of non-empty subsets of U . Finally
we conclude in Sect. 5 with some open problems.

2 Minimum Spanning k-forest of a Graph Having Equal
Weighted Edges

In this section we first show that the problem of finding the minimum spanning
k-forest of a graph having all edge weights equal is NP-complete. The decision
version of the problem of finding a minimum spanning k-forest of a graph for k =
2 is: Given a weighted graph G and a positive number W , decide whether G has
a minimum spanning 2-forest of weight W , this was proved to be NP-complete
on general graphs in [1]. We extend their proof by modifying the structure of
the graph constructed in their reduction to prove the following theorem.

Theorem 1. The problem of deciding whether a graph G having all edges of
equal weight has a minimum spanning 2-forest of weight W is NP-complete.

Proof. The reduction is from the NP-complete partition problem [12] where we
are given an m-element multiset of total weight 2W and the goal is to determine
whether the set can be partitioned into two sets of equal weight.

Fig. 1. Graph G used in the proof of Theorem 1

Let M = {x1, . . . , xm} be an m-element multiset of weight 2W , without loss of
generality we assume that no xi ∈ M is of weight greater than W . We construct
a graph G having all edges of weight one as shown in Fig. 1. G consists of m
stars where the ith star Si has a centre vertex and xi − 1 other vertices adjacent
to the centre vertex. In addition G has two other vertices A and B adjacent to
all centre vertices.
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We need to prove that M can be partitioned into two sets of equal weight
W if and only if G has a minimum spanning 2-forest F of weight W .

For proving the forward direction, let us suppose that there exists a partition
of M , say (M1,M2) such that M1 and M2 have equal weight. Consider the
partition of V (G) into V1 and V2 where V1 = {A} ∪ {V (Si) | xi ∈ M1} and
V2 = {B} ∪ {V (Si) | xi ∈ M2}. It is clear from our construction of G that G[V1]
forms a tree and since the sum of the weights of all the edges incident on the
centre vertex of each Si ∈ G[V1] is xi and M1 has weight W , the weight of G[V1]
is W . Similarly G[V2] is a tree of weight W . Therefore F = G[V1] ∪ G[V2] is a
minimum spanning 2-forest of G of weight W .

Conversely, suppose that G has a minimum spanning 2-forest F of weight
W , we need to prove that M can be partitioned into two sets of equal weight
W . We first note that no star in G is broken in F , if some star is broken then
F would contain an isolated vertex that is a tree of weight 0 which contradicts
our assumption that F is a minimum spanning 2-forest of G. Also we claim that
A and B occur in two different trees in F . We prove this by assuming that A
and B are in the same tree in F , since no star in G is broken in F and since F
contains 2 trees in it, one star Si in G should be one of the two trees in F . It is
easy to see that the weight of Si is <W , as having a weight of ≥W would imply
that xi ≥ W + 1 but we assumed that no such xi exists in M . Since the other
tree has all the other stars along with A and B in it, the number of nodes in it is
equal to 2W + 2 − xi which is greater than or equal to W + 2, hence the weight
of this tree is ≥W + 1, which contradicts our assumption that the weight of F
is W . Therefore A and B must belong to different trees in F . Let TA and TB be
the trees rooted at A and B respectively. Each star Si in G must either belong
to TA or TB . Let M1 = {xi | Si ∈ TA} and M2 = {xi | Si ∈ TB}. Since, xi − 1
is the weight of each star Si ∈ TA, each star along with the edge from its centre
vertex to A contributes a weight of xi. As we know that the weight of TA is W ,
the weight of M1 is also equal to W . Using a similar argument, the weight of
M2 is also equal to W . Therefore (M1,M2) partitions M into two equal parts.

Therefore the problem of deciding whether a graph G having all edges of
equal weight has a minimum spanning 2-forest of weight W is NP-hard. Since
this problem is clearly also NP, it is NP-complete. ��
In the remainder of this section, we give a O(n) time algorithm for trees having
all edges of equal weight by reducing it to the vertex weighted version of the
problem [4]. Firstly we formally define this version of the problem in terms of a
spanning forest.

A spanning k-forest of a vertex-weighted, undirected graph G is a collection
of k trees, T1, . . . , Tk, each a subgraph of G, such that each vertex of G is con-
tained in exactly one Ti for some i ∈ {1, . . . , k}; A minimum spanning k-forest
of G is a spanning k-forest such that the quantity max {w(T1), . . . , w(Tk)}
is minimum among all the spanning k-forests of G. Here w(Ti) is the total
weight of the vertices in Ti. If F is a spanning k-forest of G, then the quan-
tity w(F ) = max{w(T1), . . . , w(Tk)} is the weight of F .
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The vertex weighted version of the problem of finding a minimum spanning k-
forest is formally defined below:

Input: A vertex-weighted, undirected graph G on n vertices, integer k > 1
Output: Minimum spanning k-forest of G.

Theorem 2 [2]. The minimum spanning k-forest of a vertex weighted tree can
be found in O(n) time.

The problem of finding a minimum spanning k-forest in an edge-weighted tree
having all edges of weight w can be reduced to the problem of finding a minimum
spanning k-forest of a tree having all vertices of weight w. Since the difference
between the weight of any subtree in the vertex weighted tree and edge weighted
tree is exactly one, an optimum solution for the vertex weighted version is an
optimum solution for the edge weighted version. Combining this observation
with Theorem 2, we obtain the following result.

Theorem 3. The minimum spanning k-forest of an edge weighted tree having
all edges of equal weight can be found in O(n) time.

This type of reduction to the vertex weighted case is infeasible for the case of
trees having edges of unequal weights. We observe that there is no easy way to
transfer the weight of the edges to the vertices since in a spanning k-forest we
may delete an edge of very large weight but we have to retain such a vertex,
thus obtaining no direction relation between the weight of the forests in the two
versions. In the subsequent section we propose a polynomial time algorithm for
general trees.

3 Minimum Spanning k-forest of a Tree

We propose a polynomial time algorithm for computing a minimum spanning
k-forest of an edge-weighted tree T . The algorithm is as follows:

Input: Tree T (V,E), 1 < k ≤ |V |
Output: Minimum spanning k-forest of T

Step 1: Sort the edges of T according to non increasing order of weights and
let e1, . . . , e|E| be the edges in this order. Initialize C = {e1, . . . , ek−1}.
Let S be the set of edges that have ever been in C in the course of the algorithm,
initialize S = C. Initialize F with the spanning k-forest of T that results from
removing all the edges in C from T .
Step 2: Construct a (k − 1) by (n − k) table U , such that

U [a, d] = w(F ∪ a \ d), ∀a ∈ C, d ∈ E \ C

That is U [a, d] is the weight of the maximum component formed by adding a to
F and deleting d from F .
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Step 3: Let minw = min{U [a, d] | a ∈ C, d ∈ E \ C}.
If (minw > w(F )) or (minw = w(F ) but ∀U [a, d] such that U [a, d] = minw,
d ∈ S)

Return C and F .
Else if (minw = w(F ) and ∃U [a, d] such that U [a, d] = minw, d /∈ S)

Arbitrarily choose an entry U [a, d] such that U [a, d] = minw and d /∈ S.
Else if (minw < w(F ))

Arbitrarily choose an entry U [a, d] such that U [a, d] = minw giving priority
to U [a, d] for which d /∈ S if such a d exists.

F = F ∪ a \ d, C = C ∪ d \ a and if d /∈ S, S = S ∪ d (here a and d are
the values corresponding to the entry U [a, d] chosen in this step).
Go to Step 2.

A pseudocode of the algorithm is given in Algorithm1 (Page 10). In the rest
of this section, we argue about the correctness of the proposed algorithm followed
by an analysis of its running time. We will be using the notation Ci to denote
the set C at the beginning of iteration i of the do while loop in Algorithm1
(Step 2 in the above description.) in further parts of this section.

Lemma 1. An edge will occur at most twice in C during the entire execution
of Algorithm 1.

Proof. Assume that the claim is not true, and let x be the first edge that is
deleted for the third time from F . Let (j, x), (x, k), and (l, x) be the (add, delete)
pairs chosen in iterations t1, t2 and t3 respectively, where t3 is the iteration in
which x is deleted from F for the third time and t1 and t2 are the previous two
iterations involving x. Firstly, we prove a claim which will be helpful for the
proof.

Claim. k is deleted from F for the second time in iteration t2.

Proof. First, we need to prove that k has been deleted from F in some iteration
before t2. If k ∈ Ct1 , then it is trivially true. Otherwise if k /∈ Ct1 , then we prove
that k has been deleted from F in some iteration before t1. Consider the U table
in iteration t1. First U [j, x] ≤ U [j, k] is true as (j, x) was chosen in iteration t1.
Since (x, k) was the (add, delete) edge pair chosen in iteration t2 and x was not
involved in any iteration between t1 and t2, it is equivalent to saying that (j, k)
was chosen in iteration t1. This combined with that fact that w(F ) progressively
decreases or remains the same during the run of the algorithm, it cannot be the
case that U [j, x] < U [j, k] in iteration t1. Therefore it must be the case that
U [j, x] = U [j, k] in iteration t1.

As x was in C before iteration t1 and U [j, x] = U [j, k] in the U table in
iteration t1, and since (j, k) was not chosen in iteration t1, we can clearly see
that k must have been in C before iteration t1 as per Step 3 of the algorithm
and hence must have been in C before iteration t2 as well.
We note that k has been in C before iteration t2 and was deleted from F in
iteration t2, which implies that it was deleted from F for the second time in
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iteration t2. If not, then x would have not been the first edge to have been
deleted from F for the third time. Hence we have proved that k is deleted from
F for the second time in iteration t2. ��
The U table mentioned henceforth in the proof is the one in iteration t2. Since
by assumption x is the first edge that was deleted for the third time and by the
above claim k is deleted from F for the second time in t2, k will not be deleted
from F between iterations t2 and t3 if replaced. Therefore, the iterations t2 and
t3 combined is equivalent to choosing the pair (l, k) in iteration t2 if l ∈ Ct2 ,
which implies U [l, k] < U [x, k] since the weight of F decreases in iteration t3 as
x has been cut before. If l /∈ Ct2 , let the sequence {k′, . . . , l}, k′ ∈ Ct2 , denote
the order of addition of cut edges in C to F leading to l after iteration t2, where
k′ is the first edge in Ct2 in the sequence. In this case U [k′, k] < U [x, k], since
the weight of F decreases in iteration t3. This is a contradiction to our algorithm
selecting the (add, delete) edge pair (x, k) in iteration t2, it must have selected
(l, k) if l ∈ Ct2 or (k′, k) if l /∈ Ct2 . Hence we have proved by contradiction
that an edge will occur at most twice in C during the entire execution of the
Algorithm. ��
Following corollary is immediate from Lemma 1.

Corollary 1. The do while loop (Steps 2 and 3) in Algorithm1 is repeated at
most 2n − k times.

Lemma 2. Algorithm 1 returns an optimum solution, a minimum spanning k-
forest of T .

Proof. Let A be the spanning k-forest of T returned by Algorithm 1 and let O
be a minimum spanning k-forest of T . Let C(A) and C(O) be the set of edges
of T not in A and O respectively, i.e. the set of cut edges.

Let us assume that A is not a minimum spanning k-forest of T , then it follows
that w(O) < w(A). We also assume that ∀e ∈ C(A)\C(O) and f ∈ C(O)\C(A),
w(E \ C(O) \ f ∪ e) > w(E \ C(O)). This is achieved by executing the following
step until no longer possible.

If ∃e ∈ C(A) \ C(O) and f ∈ C(O) \ C(A) such that w(E \ C(O) \ f ∪ e) =
w(E \ C(O)), then change C(O) as follows, C(O) = C(O) \ f ∪ e.

If Amax is a maximum weight tree in A, then it cannot be a subtree in O as
w(O) < w(A). Therefore each Amax has to be broken in O, and thus at least
one edge in each Amax must be in C(O) \ C(A). Thus we have,

Claim 1: ∀Amax ∈ A, where Amax is a maximum weight tree in A, ∃x ∈ Amax

such that x ∈ C(O) \ C(A).

We say a tree Al ∈ A is a subtree in O if ∀x ∈ Al, x /∈ C(O). Since the total
number of trees in A is k and |C(O)| = |C(A)| = k − 1, there must exist a tree
in A which does not have any edge from C(O). Thus we also have,

Claim 2: ∃ a tree Am ∈ A that is a subtree in O. Formally ∃Am ∈ A such that
∀x ∈ Am, x /∈ C(O) \ C(A).
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We define a tree Al ∈ A to be adjacent to a tree Am ∈ A, if ∃y ∈ C(A) connect-
ing Al and Am, that is y is the cut edge between Al and Am in A. For proving our
lemma, we now consider the two cases given below; these cases cover all possible
configurations of A. In the proof, F refers to the spanning k-forest modified at
the beginning of each iteration of the do while loop in Algorithm 1 (Step 2). On
termination of the algorithm, F equals A. Let Am ∈ A be a subtree in O, by
Claim 2 such a tree exists.

Case 1: There exists a tree Al ∈ A adjacent to Am such that Al is a subtree
in O.
Case 2: Every adjacent tree of Am is not a subtree in O.
Claim. If A satisfies Case 1 or Case 2 then it is an optimum solution.

Proof. We prove Case 1 and Case 2 separately.

Case 1: Let Amax be some maximum weight tree in A. By Claim 1, ∃x ∈ Amax,
such that x ∈ C(O) \ C(A). Choose y to be the cut edge between Al and Am

in A.

(i) A has exactly one maximum weight tree: Consider the U table at the end
of Algorithm 1. Since Amax is the only maximum weight tree and Al ∪ y ∪ Am

is a subtree in O, we can clearly see that U [y, x] < w(A). This contradicts the
termination of Algorithm 1.
(ii) A has more than one maximum weight tree: Consider the U table in the
final iteration, it is easy to see that U [y, x] = w(A) as there are more than
one maximum weight trees in A and U [y, x] cannot be greater than w(A) as
Al ∪ y ∪ Am is a subtree in O. In this case, since the algorithm has terminated,
x should have been in S (the set of edges that have ever been in C during the
course of the algorithm) during the last iteration.

By our assumption, w(E \ C(O) \ x ∪ y) > w(O); therefore on removal from
A, x contributes to a better decrease in weight of A than y. We use this to prove
that the algorithm made a wrong choice in some iteration thereby contradicting
its working to prove the claim.

Let p be the iteration in which y was deleted from F for the last time, that
is y was not added back to F in any iteration after p as y ∈ C(A). If x /∈ Cp

it must have been better to delete x from F in iteration p. Let k be the edge
added back to F in iteration p, here U [k, x] < U [k, y] in the U table in iteration
p since x being cut contributes to a better decrease in the weight of F than y
being cut.

Let q be the iteration in which x was added back to F for the final time,
that is x was not deleted from F in any iteration after q as x /∈ C(A). If x ∈ Cp,
then iteration q must have occurred after iteration p. This implies that y ∈ Cq

as y is not added back to F in any iteration after p. In this case, it must have
been better to add y to F in iteration q. Let k′ be the edge deleted from F in
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iteration q, here U [y, k′] < U [x, k′] in the U table in iteration q since x being in
C contributes to a better decrease in the weight of F than y being in C.

This is a contradiction to our algorithm selecting the (add, delete) edge pair
(k, y) rather than the optimal pair (k, x) in iteration p if x /∈ Cp and the pair
(x, k′) rather than the optimal pair (y, k′) in iteration q if x ∈ Cp. Therefore the
claim is true.
Case 2: Choose the tree Al ∈ A adjacent to Am for which the cut edge y between
Al and Am was first added to C for the last time (not deleted from C again).
The argument here is similar to (ii) of Case 1 with the chosen x and y. ��
Figure 2 depicts edges x and y selected in both cases. Hence we have proved that
Algorithm 1 produces the optimum solution. ��

Fig. 2. Proof of optimality (a) Case 1 (b) Case 2

Lemma 3. Algorithm 1 runs in O(kn3) time.

Proof. The time taken to compute the k −1 largest edges in a tree is O(n log n).
Step 2 involves computing the U table, the table has (k − 1)(n − k) = O(kn)
entries. Computing each entry U [a, d] takes O(n) time, w(F ∪a\d) is computed
by performing DFS multiple times until all nodes in F are visited and by keeping
track of the weight of each component while traversing. Hence the time taken
for Step 2 is O(kn2). Choosing an edge pair (a, d) in U according to the cases
in Step 3 takes O(n) time. Returning the minimum spanning k-forest in Step
4 takes O(1) time. The number of times Steps 2 and 3 are executed is at most
2n − k from Corollary 1. Therefore, the total time taken by the algorithm is
O(n log n + n(kn2 + n) + 1) = O(kn3). ��
Combining Lemmas 2 and 3, we obtain Theorem 4.

Theorem 4. For an undirected weighted tree T on n vertices and a positive
integer k > 1, there exists an algorithm running in time O(kn3) which computes
the minimum spanning k-forest of T.
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Algorithm 1. Computes a Minimum Spanning k-Forest of T
1: procedure mskf trees(T (V,E),k)

T - Input tree with n vertices
k - Required number of components
C - Set of k − 1 cut edges
S - Set of edges that have ever been in C
F - Spanning k-forest E \ C
w(F ) - weight of F
U - (k − 1) ∗ (n − k) table, whose rows correspond to the edges in C and

columns correspond to the edges in E \ C.
2: if k > n then
3: return null
4: end if
5: e1, . . . , e|E| ← Non increasing sorted order of edges in E.
6: C ← {e1, . . . , ek−1}
7: S ← C
8: do
9: for a ∈ C do

10: for d ∈ E(T ) \ C do
11: U [a, d] ← w(F ∪ a \ d)
12: end for
13: end for
14: minw ← minimum value in U
15: if (minw > w(F )) or
16: (minw = w(F ) but ∀U [a, d] such that U [a, d] = minw, d ∈ S) then
17: return C and F
18: else if minw = w(F ) and ∃ U [a, d] = minw such that d /∈ S then
19: Arbitrarily choose any U [a, d] such that U [a, d] = minw and d /∈ S.
20: else if minw < w(F ) then
21: if ∃ U [a, d] = minw such that d /∈ S then
22: Arbitrarily choose any U [a, d] such that U [a, d] = minw and d /∈ S.
23: else
24: Arbitrarily choose any U [a, d] such that U [a, d] = minw.
25: end if
26: end if
27: C ← C ∪ d \ a
28: F ← F ∪ a \ d
29: if d /∈ S then
30: S ← S ∪ d
31: end if
32: while (true)
33: end procedure



Efficient Algorithms for a Graph Partitioning Problem 39

4 Exact Exponential Algorithm for Finding a Minimum
Spanning k-forest of a Graph

In this section, we first propose a simple O∗(3n) for computing the minimum
spanning k-forest of a graph. Following this, we obtain a O∗(2n) algorithm for
the problem of counting the number of minimum spanning k-forests of a graph
by reducing it to an instance of the well known problem of finding a k-partition
of a set system. We use this algorithm as a black box to compute a minimum
spanning k-forest in O∗(2n) time.

A brute force exponential algorithm to compute a minimum spanning k-
forest in general graphs takes O∗(kn) time by trying all possible partitions of
the vertex set into k parts. We improve the brute force time to O∗(3n) using a
Dynamic Programming approach.
Let G(V,E) be an undirected weighted graph whose total weight is W and let
w and i be positive integers.

An optimum i-partition amongst all the i-partitions of G[S], S ⊆ V having
the weight of each part in the partition ≤ w is a partition having the least
weighing maximum component.

Let T (S, i, w), S ⊆ V be the weight of a maximum component in an optimum
i-partition of G[S] having the weight of each part in the partition ≤ w, if such
a partition exists, else it is ∞. Let w(G) represent the weight of a minimum
spanning tree of G.

We define P , the set of possible or candidate values of w, the weight of a
minimum spanning k-forest of G as follows,

P = {w(G[S]) | S ⊆ V,G[S] is connected} (1)

The value of T (S, i, w), ∀S ⊆ V, 1 ≤ i ≤ k,w ∈ P can be computed recursively
as follows.

T (S, i, w)
i>1

= min
S′⊆S

⎧
⎪⎨

⎪⎩

max
{

w(G[S′]), T (S − S′, i − 1, w)
}

w(G[S′]) ≤ w
G[S′] is connected

∞ otherwise

T (S, 1, w) =

⎧
⎨

⎩

w(G[S]) w(G[S]) ≤ w
G[S] is connected

∞ otherwise

T (φ, i, w) = ∞,

(2)

Lemma 4. If F is a minimum spanning k-forest of G(V,E) having |V | = n
then w(F ) = min

w∈P
{T (V, k, w)} and w(F ) can be found in O(nt(V, k, w)) time,

where t(v,k,w) is the time required to compute T (V, k, w) for a fixed w.
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Proof. If O is an optimum k-partition of G having the weight of each part in
the partition ≤ w, then O − S′ must be an optimal (k − 1)-partition of G − S′

having the weight of each part in it ≤ w, where S′ is one component in O.
Therefore, we can infer that the problem has the optimal substructure prop-

erty. The smallest w ∈ P for which T (V, k, w) �= ∞, gives the weight of a
minimum spanning k-forest of G. Note that T (V, k, w) = T (V, k, w′),∀w > w′,
w ∈ P .

Since P has O∗(2n) possible values of w, we can do a binary search to find
the smallest w ∈ P for which T (V, k, w) �= ∞ in time O(nt(V, k, w)) time. ��
Lemma 5. Given an undirected weighted graph G(V,E) on n vertices and a
positive integer 1 ≤ k ≤ n, w(F ) the weight of a minimum spanning k-forest F
can be computed in O∗(3n) time.

Proof. Since the number of subsets of a set S of cardinality |S| is 2|S|, it follows
that the time taken for computing an entry T (S, i, w) = 2|S|, where S ⊆ V,
w ∈ P , and 0 ≤ i ≤ k.

Also since the number of subsets of size j in V =
(
n
j

)
, the time taken for

computing all the entries T (S, i, w) for a fixed i and w =
∑j=n

j=0

(
n
j

)
2j = 3n.

From Lemma 4, it follows that w(F ) can be computed in O∗(3n) time. ��
The following theorem follows from Lemmas 4 and 5.

Theorem 5. For an undirected weighted graph G on n vertices and a positive
integer 1 < k ≤ n, there exists an algorithm running in time O∗(3n) which
computes the minimum spanning k-forest of G.

It is easy to see that keeping track of a subset S′ ⊆ S that gives the optimum
value for each T (S, i, w) will help us to backtrack and compute a minimum span-
ning k-forest F of G.

We can obtain a faster exact exponential algorithm by reducing the problem of
finding a minimum spanning k-forest of a graph to an instance of the well known
problem of finding a k-partition of a set system defined formally below:

Input: Integer k > 0 and a Set system (U,S), where U is a universe of
elements and S is a collection of non-empty subsets of U .
Output: A k-partition of (U, S)
S1, S2, . . . , Sk is a k-partition of (U, S) if Si ∈ S, 1 ≤ i ≤ k, S1 ∪ S2 ∪ . . . ∪
Sk = U , and Si ∩ Sj = φ ,∀i �= j.

The assumption is that (all the elements of) S can be enumerated in time O∗(2n).
This additional assumption is needed to guarantee that the overall running time
of the inclusion-exclusion algorithm is O∗(2n).

Let pk(S) be the number of unordered k-partitions of (U, S), few existing results
to compute pk(S) are given below.
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Theorem 6 [11]. The number of (unordered) k-partitions pk of a set system
(U, S) can be computed in

(i) O∗(2n) time and exponential space
(ii) O∗(3n) time and polynomial space, assuming membership in S (“S′ ∈ S
?”), can be decided in polynomial time.

The set system (U, S) for the problem of finding a spanning k-forest of weight
at most w of a graph G is defined as follows.

U = V

S = {G[S′] | S′ ⊆ V,G[S′] is connected and w(G[S′]) ≤ w} (3)

Here, pk(S) denotes the number of spanning k-forests of weight at most w of
a graph G. If pk(S) > 0, then there exists a spanning k-forest of weight at
most w. Clearly, membership in S is decidable in polynomial time as it involves
checking the connectivity and determining the weight of a minimum spanning
tree. Combining this with Theorem 6, the following theorem follows.

Theorem 7. For an undirected weighted graph G on n vertices and a positive
integer k > 1, the existence of a spanning k-forest of weight at most w of a graph
G can be determined in

(i) O∗(2n) time and exponential space.
(ii) O∗(3n) time and polynomial space.

The above procedure determines the existence of a spanning k-forest of at most
weight w, to find it, we do the following. For each edge e in the graph, check
whether G\e has a spanning k-forest of weight at most w. If yes, then remove e
from G else do nothing. At the end, the G remaining is a spanning k-forest of
weight at most w. Combining this method along with Theorem7 and Lemma 4
yields the following theorem.

Theorem 8. For an undirected weighted graph G on n vertices and a positive
integer k > 1, the minimum spanning k-forest of G can be computed in

(i) O∗(2n) time and exponential space.
(ii) O∗(3n) time and polynomial space.

5 Conclusion

We have given an O(kn3) time algorithm for finding a minimum spanning k-
forest of a tree answering a question in an earlier paper. Also, for the special case
of a graph having equal weighted edges, we have shown the NP -Completeness
and proposed a O(n) time algorithm for such trees. A natural open problem
would be to find an algorithm for trees that can be extended to bounded tree
width graphs.
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Future work includes designing an algorithm for graphs having equal weighted
edges and improving the exact exponential algorithm with better runtime than
O∗(2n) or showing a lower bound of Ω(2n) under some possible hypothesis.
Another open problem is to design approximation algorithms with a guaran-
teed quality of approximation. Analysing the quality of approximation for the
approximation algorithm in [1] is also an interesting problem.
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Abstract. This paper studies the problem of finding the path center on a tree in
which vertex weights are uncertain and the uncertainty is described by given
intervals. It is required to find a minmax regret solution, which minimizes the
worst-case loss in the objective function. An O(n log n)-time algorithm is
presented, improving the previous upper bound of O(n2).

1 Introduction

The objective of a location problem is to decide the location of facilities in a network so
as to minimize the communication or transportation costs [14, 15, 22, 24]. A network
usually involves two types of parameters: weights of nodes and lengths of edges.
Traditionally, the node weights and edge lengths of a network are assumed to be known
precisely. In real transportation systems, the weights and lengths of a network may
fluctuate or be inaccurate due to poor measurements. Thus, location models involving
uncertainty have attracted significant research efforts [11, 12, 17, 23]. One of the most
important ways for modeling network uncertainty is the minmax regret approach,
introduced by Kouvelis and Yu [16]. In the model, uncertainty of network parameters
is characterized by given intervals, and it is required to minimize the worst-case loss in
the objective function that may occur because of the uncertain parameters.

Minmax regret location problems have received considerable attention in the past
two decades. In network location theory, the shapes of facilities can be points, paths, or
trees. Path- and tree-shaped facilities are called extensive facilities [18]. For
point-shaped facility problems, most important ones have been studied comprehen-
sively on the minmax regret model [3–6, 8, 9, 16, 31]. However, for extensive facility
problems, there are only a few results on the minmax regret model, although there are
considerable results on the classical model [7, 18, 20, 26–28]. In a breakthrough paper
by Puerto et al. [21], polynomial algorithms were presented for the following three
important path-shaped problems: the minmax regret path center, path median, and path
centdian problems. Since these problems are NP-hard on general networks, their work
was confined to trees. The time complexities of their algorithms are, respectively, O
(n2), O(n4), and O(n5 log n). In [29, 30] the upper bounds of the minmax regret path
median and path centdian problems were improved to O(n2) and O(n4), respectively.

Contribution: The focus of this paper is the minmax regret path center problem on
trees. For this problem, Puerto et al.’s algorithm requires O(n2) time. This paper
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presents an O(n log n)-time algorithm. The bottleneck of Puerto et al.’s algorithm is to
compute the classical path centers of the given tree under n different settings of node
weights. For each setting, their algorithm finds the classical path center in O(n) time.
Our improvement is established on the following simple observation: the n settings of
node weights are almost the same. Based on this observation, we preprocess the given
tree in O(n log n) time to compute some useful auxiliary data structures; and then use
the computed data structures to find the path center under each setting in O(log n) time.

Section 2 gives notation and definitions. Section 3 describes Puerto et al. algorithm
[21] for finding a minmax regret path center of a tree. Section 4 presents efficient
algorithms for a problem, called the entry vertex problem, and its extension. Then,
using the algorithms in Sect. 4, Sect. 5 gives an improved O(n log n)-time algorithm.

2 Notation and Definitions

Let T = (V, E) be a tree, where V is the vertex set and E is the edge set. Let n = |V|. In
this paper, T also denotes the set of all points of the tree. Thus, the notation x 2 T means
that x is a point along any edge of T, which may or may not be a vertex of T. Each edge
e has a nonnegative length. For any two points p, q 2 T, let P(p, q) be the unique path
from p to q and d(p, q) be its length. Throughout this paper, we assume that T has been
preprocessed so that d(p, q) can be answered in O(1) time for any p, q 2 V. This
preprocessing requires O(n) time [10]. For a subgraph X of T, the vertex set and edge
set of X are, respectively, V(X) and E(X). For each vertex v 2 V, the subgraph having a
vertex set {v} is simply denoted by v. For any vertex v 2 V and subgraph X of T, the
distance from v to X, denoted by d(v, X), is the shortest distance from v to any point of
X (i.e., d(v, X) = minx2X d(v, x)) and close(v, X) is the vertex or point in X nearest to
v. A path in T is called a v-path, where v 2 V, if v is one of its endpoints.

Each vertex v 2 V is associated with an interval [w�
v , w

þ
v ], where 0 � w�

v � wþ
v .

The weight of each vertex v 2 V can be any value in the interval [w�
v , w

þ
v ]. Let R be the

Cartesian product of intervals [w�
v , w

þ
v ], where v 2 V. Any element S 2 R is called a

scenario and represents a feasible assignment of weights to the vertices of T. For any
scenario S 2 R and any vertex v 2 V, let wS

v be the weight of v under the scenario S.
Let S 2 R be a scenario. For any two subgraphs X and Y of T, the eccentricity from

X to Y under the scenario S is CS(X, Y) = maxv2V(X) wS
v d(v, Y), which is the maximum

weighted distance from any vertex in X to Y according to the scenario S. A path H that
minimizes CS(T, H) is called a path center of T under the scenario S. The finding of a
path center of T under a fixed scenario S is called the classical path center problem. We
use p(S) to denote a path center of T under a scenario S.

For any path H in T, the regret of H with respect to a scenario S 2 R is RS(H) =
CS(T, H) − CS(T, p(S)) and the maximum regret of H is R*(H) = maxS2R RS(H). The
minmax regret path center problem is to determine a path H in T that minimizes R*(H).
The determined path is called a minmax regret path center.

For ease of discussion, throughout this paper, we assume that each internal vertex
of T has exactly three neighbors. In case this is not true, the given tree is transformed
into an equivalent tree in linear time [13, 19]. Consider an internal vertex v 2 V. There
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are three subtrees of T attached to v through the edges incident on v. For each (u, v) 2
E, we denote by Tv

u the subtree of T attached to v through the edge (u, v), excluding this
edge and the vertex v. We define the subtrees of a path H to be the subtrees Ti

j such that
i is an internal node of H and j is the neighbor of i that is not on H. For any p, q 2 V,
define subtree(p, q) to be the union of the subtrees of P(p, q) (see Fig. 1). For ease of
description, sometimes we will orient T into a rooted tree. In such a case, for each node
v 2 V, we use p(v) and sib(v) to denote, respectively, its parent and sibling, and use Tv
to denote the subtree of T rooted at v.

3 Puerto, Ricca, and Scozzari’s Algorithm

Puerto et al. [21] had an O(n2)-time algorithm for finding a minmax regret path center
of a tree. This section reviews their algorithm.

Recall thatp(S) denotes a path center ofTunder a scenarioS. For any scenarioS2R, let
a(S) = CS(T, p(S)). For each i 2 V, let Si be the scenario in which the weight of vertex i is
wþ
i and the weight of any other vertex v is w�

v . Based on an augmented tree approach
introduced by Averbakh and Berman [3], Puerto, Ricca, and Scozzari solved the minmax
regret path center problem by an elegant transformation to the classical path center
problem. Define an auxiliary tree T′ as follows. LetM be a number that is larger than a(Si)
for any i2V. The treeT′ is obtained fromTby appending to each vertex i2V a vertex i′ and
an edge (i, i′) with length (M − a(Si))/wþ

i . Specific weights are assigned to the vertices of
T′. For each i 2 V, the weight of i is zero and the weight of i′ is wþ

i . Let P be a path in the
auxiliary tree T′. The restriction ofP to T is the path obtained fromP by deleting the edges
of P that are not in T. Puerto, Ricca, and Scozzari gave the following nice property for
solving the minmax regret path center problem.

Lemma 1 [21]. Let P be a path center of T′. Then, the restriction of P to T is a minmax
regret path center of T.

Based upon Lemma 1, Puerto, Ricca, and Scozzari solved the minmax regret path
center problem in O(n2) time as follows. First, a(Si) is computed for each i 2 V. By
using the linear-time algorithm in [7] for the classical path center problem on a tree, this
step is done in O(n2) time. Next, the auxiliary tree T′ is constructed, which requires O
(n) time. Finally, a solution is obtained by applying the algorithm in [7] again to T′.

p q
v

v
uT

subtree(p, q) 

u

Fig. 1. Subtree Tv
u and subtree(p, q).
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4 The Entry Vertex Problem

A rooted path center of a rooted tree with root r under a fixed scenario is an r-path
H that minimizes the eccentricity from the tree to H. For a rooted path center, the
endpoint other than the root is called its terminal, which may be a vertex or an interior
point of an edge. A rooted tree may have more than one rooted path center. However, it
is easy to see that the shortest one is unique and can be obtained as follows: initially set
the terminal at the root and then continuously extend it toward a farthest vertex below
it, until the extension does not decrease the eccentricity.

The entry vertex problem is defined as follows. Let T = (V, E) be a tree with a fixed
scenario S. For any (u, v) 2 E, let QS(Tv

u) be the shortest rooted path center of Tv
u under

the scenario S, where Tv
u is considered as a rooted tree with root u. The entry vertex of a

vertex x to a path H is the vertex on H nearest to x. For any (u, v) 2 E and x 2 V(Tv
u),

define ENTRY(x, Tv
u) to be a query that returns the entry vertex of x to the shortest rooted

path center, QS(Tv
u), of T

v
u . (See Fig. 2) Note that ENTRY(x, Tv

u) may not be the same as
close(x, QS(Tv

u)), since only vertices can be entry vertices. The entry vertex problem is
to preprocess the tree T such that each ENTRY query can be answered efficiently.

This section shows that with an O(n log n)-time preprocessing, each ENTRY query
can be answered in O(log n) time.

4.1 Preprocessing

A query NODE(p, q, k), where p, q 2 V and k is an integer, requests the k-th vertex on
the path from p to q. For any two vertices p, q 2 V and scenario S 2 R, let MS(p,
q) = CS(subtree(p, q), P(p, q)), which is the eccentricity of P(p, q) from its subtrees.
We need the following two lemmas.

Lemma 2. With an O(n)-time preprocessing, a query NODE(p, q, k) can be answered in
O(1) time for any p, q 2 V and integer k.

Lemma 3. Suppose that CS(Tv
u , v) of all (u, v) 2 E are given. Then, with an O(n)-time

preprocessing, MS(p, q) can be computed in O(1) time for any p, q 2 V.

u
v
uT

ENTRY(x, v
uT )

x

QS( v
uT )

x'

v

ENTRY(x', v
uT )

close(x', QS( v
uT ))

Fig. 2. Entry vertices to the shortest rooted path center of Tv
u .
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Given a rooted tree in which each node is associated with a cost, a query lca(a,
b) requests the least common ancestor of two vertices a, b; a query la(v, l) requests the
level l ancestor of a vertex v, where the level of a vertex is the number of edges from it
to the root; and a query MAX(a, b) requests the largest cost of the vertices on a path P(a,
b). It was shown in [1, 13] that after an O(n) time preprocessing, each lca, la, and MAX

query can be answered in O(1) time. Using these results, it is not difficult to prove the
above two lemmas.

Using the divide-and-conquer approach, Tamir [25] gave an O(n log n)-time
algorithm to compute CS(T, v) for all v 2 V. Based on the same idea and the top tree
data structure in [2], we can show the following.

Lemma 4. The computation of CS(Tv
u , v) for all (u, v) 2 E can be done in O(n log

n) time.
We proceed to describe the preprocessing algorithm. First, we compute CS(Tv

u , v)
for every (u, v) 2 E. By Lemma 4, this step requires O(n log n) time. Next, by Lemmas
2 and 3, we preprocess T so that NODE(p, q, k) and MS(p, q) can be obtained in O(1)
time for any p, q 2 V and integer k.

4.2 Algorithm for Queries

Consider a query ENTRY(x, Tv
u). For notational simplicity, in this section, we assume

that Tv
u is rooted at u. In addition, since the scenario S is fixed, we write C(�, �), M(�, �),

and Q(�), respectively, for CS(�, �), MS(�, �), and QS(�). Our query algorithm finds the
answer in a binary search manner, mainly based upon the following.

Lemma 5. A vertex i of Tv
u is on the path Q(Tv

u) if and only if C(Ti, i) � M(v, i).

Proof. Assume first that C(Ti, i) � M(v, i). Consider an u-path H in Tv
u not containing

i. Since C(Tv
u , H) � C(Ti, H) > C(Ti, i) and C(Tv

u , P(u, i)) = max{C(Ti, i),M(v, i)} = C
(Ti, i), we have C(Tv

u , H) > C(Tv
u , P(u, i)). Thus, any u-path in Tv

u not containing i is not
a rooted path center. Therefore, the if-part holds.

Next, assume that i is a vertex on Q(Tv
u). By contradiction, suppose that C(Ti,

i) < M(v, i). Since Q(Tv
u) passes through i, we have C(Ti, Q(Tv

u)) � C(Ti, i) < M(v, i).
Therefore, C(Tv

u , Q(T
v
u)) = max{C(Ti, Q(Tv

u)), M(v, i)} = M(v, i). Let t be any point of
edge (i, p(i)) such that 0 < d(i, t) � (M(v, i) − C(Ti, i))/w

*, where w* is the largest
weight in Ti. Consider the path P(u, t), which is shorter than Q(Tv

u). Clearly, C(Ti, t) �
C(Ti, i) + d(i, t) � w* � M(v, i). Since C(Ti, t) � M(v, i), we have C(Tv

u , P(u,
t)) = max{C(Ti, t), M(v, i)} = M(v, i) = C(Tv

u , Q(T
v
u)), which contradicts that Q(Tv

u) is
the shortest rooted path center of Tv

u . Therefore, C(Ti, i) � M(v, i). Consequently, the
lemma holds. □

The entry vertex m = ENTRY(x, Tv
u) is found as follows. By definition, m is the first

vertex on P(x, u) that is contained in Q(Tv
u). All successors of m on P(x, u) are con-

tained in Q(Tv
u); and all predecessors of m on P(x, u) are not contained in Q(Tv

u).
Therefore, m can be identified by performing binary search on P(x, u). With the help of
NODE queries, any node on P(x, u) can be accessed in O(1) time. By Lemma 5, whether
a vertex i is on Q(Tv

u) can be checked in O(1) time by using the values of C(Ti, i) and M
(v, i). After the preprocessing in Sect. 4.1, C(Ti, i) = max{C(Ti

a, i), C(T
i
b, i)} and M(v,
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i) can be computed in O(1) time for any vertex i in Tv
u , where a and b are the two

children of i. Therefore, we have the following.

Theorem 1. With an O(n log n)-time preprocessing, each ENTRY query can be
answered in O(log n) time.

4.3 An Extended Problem

Our improvement on the minmax regret path center problem is based on solving an
extended version of the entry vertex problem, in which it is allowed to temporarily
increase the weight of a vertex during a query. For any i 2 V and w � wS

i , we use S|(i,
w) to denote the scenario obtained from S by increasing the weight of i to w. A query
EXTENDENTRY(x, Tv

u , i, w) reports the entry vertex of x to the rooted path center of Tv
u

under the scenario S|(i, w), where (u, v) 2 E, x 2 V(Tv
u), i 2 V, and w � wS

i . That is,
EXTENDENTRY(x, Tv

u , i, w) reports the entry vertex of x to the path QS|(i, w)(Tv
u). In the

following, we show that after an O(n log n)-time preprocessing, each EXTENDENTRY

query can also be answered in O(log n) time. Using the lca algorithm in [13], it is not
difficult to prove the following lemma.

Lemma 6. With an O(n)-time preprocessing, close(x, P(p, q)) can be computed in O(1)
time for any three vertices p, q, x 2 V.

Lemma 7. With an O(n log n)-time preprocessing, CS|(i, w)(Tv
u , v) and MS|(i, w)(p, q) can

be computed in O(1) time for any i, p, q 2 V, (u, v) 2 E, and w � wS
i .

Proof. As in Sect. 4.1, we preprocess T so that CS(Tv
u , v) for any (u, v) 2 E and MS(p,

q) for any vertices p, q 2 V can be computed in O(1) time. In addition, we preprocess
T so that close(x, P(p, q)) can be accessed in O(1) time for any x, p, q 2 V.

For any i 2 V, (u, v) 2 E, and w � wS
i , since S|(i, w) differs from S only in the

weight of i, CS|(i, w)(Tv
u , v) is computed in O(1) time as follows. First, determine whether

i 2 Tv
u by checking whether close(i, P(u, v)) = u. Next, if i 2 Tv

u , we set CS|(i, w)(Tv
u ,

v) = max{CS(Tv
u , v), w � d(i, v)}; otherwise, we set CS|(i, w)(Tv

u , v) = CS(Tv
u , v). For any

i, p, q 2 V, MS|(i, w)(p, q) is computed in O(1) time as follows. First, determine whether
i is a vertex in subtree(p, q) or an internal node of P(p, q) by checking whether close(i,
P(p, q)) 62 {p, q}. Next, if i is a vertex in subtree(p, q) or an internal node of P(p, q), we
set MS|(i, w)(p, q) = max{MS(p, q), w � d(i, close(i, P(p, q)))}; otherwise, we set MS|(i,

w)(p, q) = MS(p, q). Consequently, the lemma holds. □
Consider a query EXTENDENTRY(x, Tv

u , i, w). According to the query algorithm in
Sect. 4.2, to show that this query can be answered in O(log n) time, it suffices to show
that CS|(i, w)(Tv

u , v),M
S|(i, w)(p, q), and NODE(p, q, k) can be obtained in O(1) time for any

i, p, q 2 V, (u, v) 2 E, and integer k. As a result, by combining Lemmas 2 and 7, we
obtain the following.

Theorem 2. Let T be a tree with a fixed scenario S. With an O(n log n)-time pre-
processing, each EXTENDENTRY query can be answered in O(log n) time.
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5 An Improved Algorithm for the Path Center Problem

The bottleneck of the algorithm in [21] is to compute a(Si) for every i 2 V. Recall that
for any scenario S 2 R, a(S) denotes CS(T, p(S)) and for each i 2 V, Si denotes the
scenario in which the weight of vertex i is wþ

i and the weight of any other vertex v is
w�
v . In this section, we improve the upper bound of the minmax regret path center

problem on a tree by showing that the computation of all a(Si) can be done in
O(n log n) time.

Let S� be the scenario in which the weight of every vertex v is w�
v . The scenario S

�

differs from each Si only in the weight of vertex i. Our idea is to preprocess T under the
scenario S�, so that each a(Si) can be determined efficiently. Let MS(p, q) and QS(Tv

u)
be defined the same as in Sect. 4. For any (u, v) 2 E and scenario S, let kS(Tv

u) = CS(Tv
u ,

QS(Tv
u)), which is the eccentricity from Tv

u to the rooted path center QS(Tv
u). For

notational simplicity, in this section, CS�ð�; �Þ;CSið�; �Þ;MS�ð�; �Þ;MSið�; �Þ; lS�ð�Þ, and
kSi (�) are simply denoted, respectively, by C−(�, �), Ci(�, �), M−(�, �), Mi(�, �), k−(�), and
ki(�).
Lemma 8. Suppose that C−(Tv

u , v) for all (u, v) 2 E are given. In O(n) time, we can
compute k−(Tv

u) for all edges (u, v) 2 E.

Proof. In this proof, we assume that T is under the scenario S�. We orient T into a
rooted tree with an arbitrary root r. Since there always exists a rooted path center whose
terminal is a leaf, using the dynamic programming approach, all k−(Tv

u) are computed
in two phases.

Phase 1. This phase computes k−(Tx) for all x 2 V in a bottom-up manner as follows. If
x is a leaf, we have k−(Tx) = 0. Assume that x is an internal vertex and let x1,
x2 be its two children. Let H be a rooted path center of Tx. If H passes through
x1, since k−(Tx) = C−(Tx, H) = max{C−(Tx1, H), C

−(Tx2, x)} and a rooted
path center of Tx1 has the minimum eccentricity from Tx1 among all x1-paths,
it can be concluded that k−(Tx) = max{k−(Tx1), C

−(Tx2, x)}. Similarly, if
H passes through x2, it can be concluded that k−(Tx) = max{C−(Tx1, x),
k−(Tx2)}. Therefore, we compute k−(Tx) as min{max{k−(Tx1), C

−(Tx2, x)},
max{C−(Tx1, x), k

−(Tx2)}}.
Phase 2. This phase computes k−(Tx

pðxÞ) for all x 2 V in a top-down manner as follows.

If x is the root r, we have k−(Tx
pðxÞ) = k−(∅) = 0. Assume that x 6¼ r. A rooted

path center of Tx
pðxÞ passes through either sib(x) or p(p(x)). If it passes through

sib(x), we have k−(Tx
pðxÞ) = max{k−(Tsib(x)), C

−(TpðxÞ
pðpðxÞÞ, p(x))}; otherwise, we

have k−(Tx
pðxÞ) = max{C−(Tsib(x), p(x)), k−(TpðxÞ

pðpðxÞÞ, p(x))}. Therefore,

k−(Tx
pðxÞ) can be computed in O(1) time.

The above computation requires O(n) time. Thus, the lemma holds. □
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Lemma 9. Suppose that the following can be accessed in O(1) time: k−(Tv
u) for any (u,

v) 2 E, Ci(Tv
u , v) for any (u, v) 2 E and i 2 V, and Mi(p, q) for any i, p, q 2 V; and

suppose that the entry vertex of i to QSiðTv
uÞ can be accessed in O (log n) time for any

(u, v) 2 E and i 2 V. Then, ki(Tv
u) can be computed in O (log n) time for any (u, v) 2

E and i 2 V.

Proof. We prove this lemma by presenting an algorithm. For ease of description,
assume that Tv

u is rooted at u and is under the scenario Si. First, compute m as the entry
vertex of i to QSiðTv

uÞ in O (log n) time. Let m1, m2 be the two children of m. Next, in O
(1) time, we find the values of Ci(Tm1, m) and Ci(Tm2, m). By symmetry, assume that
Ci(Tm1, m) � Ci(Tm2, m). We first establish the following claim.

Claim. There is a rooted path center of Tv
u (under Si) that passes through m1.

Proof of the Claim. Let P u; tð Þ ¼ QSiðTv
uÞ. Clearly, any u-path containing QSiðTv

uÞ is a
rooted path center. Thus, to prove this claim, we only need to show that the terminal t is
a point of edge (m, m1) or is in Tm1. Since m is a vertex on QSiðTv

uÞ, QSiðTv
uÞ can be

obtained by initially setting the terminal t at m and then continuously extending it
toward a farthest vertex below it, until the extension does not decrease the eccentricity.
Since Ci(Tm1, m) � Ci(Tm2, m), it is easy to conclude that at t = m an extension can
decrease the eccentricity only if it is toward the vertex m1. Therefore, t is a point of
edge (m, m1) or is in Tm1. Consequently, the claim follows.

We now complete the proof of the lemma. Let H be a rooted path center of Tv
u that

passes through m1. Two cases are discussed.

Case 1: i 2 V(Tm1).
In this case, m1 is not on the shortest path center QSiðTv

uÞ. Otherwise, since
m1 is closer to x than m, m is not the entry vertex of i to QSiðTv

uÞ. By Lemma
4, Ci(Tm1, m1) < Mi(v, m1). Since H passes through m1, we have Ci(Tm1,
H) � Ci(Tm1, m1) < Mi(v, m1). Therefore, ki(Tv

u) = Ci(Tv
u , H) = max

{Ci(Tm1, H), C
i(subtree(v, m1), H} = max{Ci(Tm1, H), M

i(v, m1)} = Mi(v,
m1). Consequently, in this case, we compute ki(Tv

u) = Mi(v, m1) in O(1)
time.

Case 2: i 62 V(Tm1).
Since i 62 V(Tm1), we have Ci(Tm1, H) = C−(Tm1, H) and thus Ci(Tv

u , H) =
max{C−(Tm1, H), M

i(v, m1)}. Let H
* be the union of P(u, m1) and QS−(Tm1).

Under S−, the path QS−(Tm1) has the minimum eccentricity from Tm1 among
all m1-paths in Tm1. Consequently, it can be concluded that Ci(Tv

u , H
*) =

max{C−(Tm1, H
*), Mi(v, m1)} � Ci(Tv

u , H). Therefore, H
* is also a rooted

path center of T under Si and thus ki(Tv
u) = max{C−(Tm1, H*), Mi(v,

m1)} = max{k−(Tm1), M
i(v, m1)}. Consequently, in this case, we compute

ki(Tv
u) = max{k−(Tm1), M

i(v, m1)} in O(1) time.

The above computation of ki(Tv
u) requires O (log n) time. Thus, the lemma

holds. □
A discrete 1-center of T under a scenario S is a vertex v 2 V that minimizes CS(T,

v). Tamir et al. [26] gave the following.
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Lemma 10 [26]. Let T be a tree with a fixed scenario and c be its discrete 1-center.
Then, T has a path center that contains c.

We proceed to present an algorithm for computing a(Si) of all i 2 V. Consider the
computation for a fixed i 2 V. Assume that T is under the scenario Si. Let c be a discrete
1-center of T. By Lemma 10, there is a path center containing c. Let x, y, z be the three
children of c. Without losing any generality, assume that Ci(Tc

x , c) � Ci(Tc
y , c) � Ci(Tc

z ,
c). Then, there exists a path center that passes through x and y [26]. For any path
H passing through x and y, we have Ci(T,H) = max{Ci(Tc

x ,H), C
i(Tc

y ,H), C
i(Tc

z , c)}. Let

H* be the union of QSiðTc
x Þ, P(x, y), and QSiðTc

y Þ. The path QSiðTc
x Þ has the minimum

eccentricity from Tc
x among all x-paths in Tc

x ; and the path QSiðTc
y Þ has the minimum

eccentricity from Tc
y among all y-paths in Tc

y . Consequently, it can be concluded that H
*

has the minimum eccentricity among all paths that pass through x and y. That is, H* is a
path center of T. Therefore, a(Si) can be computed as Ci(T, H*) = max{Ci(Tc

x , Q
Si (Tc

x )),
Ci(Tc

y , Q
Si (Tc

y )), C
i(Tc

z , c)} = max{ki(Tc
x ), k

i(Tc
y ), C

i(Tc
z , c)}.

Based upon the above discussion, an algorithm for computing all a(Si) is described
as follows.

Since Si = S−|(i, wþ
i ) for each i 2 V, by using Lemmas 4 and 7 with S = S−, Line 1

requires O(n log n) time. By definition, when T is under S−, the entry vertex of x to
QSiðTv

uÞ is EXTENDENTRY(x, Tv
u , i, w

þ
i ). Therefore, by using Theorem 2 with S = S−,

Line 2 requires O(n log n) time. By Lemma 8, Line 3 takes O(n) time. Yu et al. [31]
showed that a discrete 1-center of T under Si can be computed in O(n log n) time for
every i 2 V. Thus, Line 4 requires O(n log n) time. Consider the for-loop in Lines 5–11.
Lines 7, 8, 10 take O(1) time. By Lemma 9, after the preprocessing in Lines 1, 2, and 3,
the computation of ki(Tc

x ) and k
i(Tc

y ) in Line 9 can be done in O (log n) time. Therefore,
each iteration of the for-loop requires O (log n) time. As a result, we obtain the
following.
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Lemma 11. We can compute a(Si) for all i 2 V in O(n log n) time.

Theorem 3. The minmax regret path center problem on a tree can be solved in O(n log
n) time.
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Abstract. Suppose that we are given a graph whose each vertex is either
a supply vertex or a demand vertex and is assigned a nonnegative integer
supply or demand value. We consider partitioning G into connected com-
ponents by removing edges from G so that each connected component
has exactly one supply vertex and there exists a flow in each connected
component satisfying the supply/demand constraints. The problem that
determines the existence of such a partition is called the partition prob-
lem. Ito et al. (2005) showed that the partition problem is NP-complete
in general and it can be solved in linear time if the given graph is a tree.
When the graph does not have such a partition, we scale the demand val-
ues uniformly by scale factor r so that the obtained graph has a desired
partition. The maximum supply rate problem is the problem that finds
the maximum value of such r. Whereas the maximum supply rate prob-
lem is NP-hard in general in the same way as the partition problem,
Morishita and Nishizeki (2015) gave a weakly polynomial-time algorithm
for the problem on trees.

In this paper, we give a first strongly polynomial-time algorithm for
the maximum supply rate problem on trees. Our algorithm is based on
the dynamic programming technique, in which we compute “surplus”
and “deficit” of the supply in subproblems from leaves to the root. We
use piecewise linear functions of r to represent them, and one of our
important contributions is to bound the size of the representation of
each function.

1 Introduction

Let G be an undirected graph whose each vertex is either a supply vertex or
a demand vertex. Each supply (resp. demand) vertex is assigned a nonnegative
integer supply value (resp. demand value), which represents the amount of flow
that the vertex can send (resp. has to receive). We consider partitioning G into
connected components by removing edges from G so that each connected com-
ponent has exactly one supply vertex and there exists a flow in each connected
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component satisfying the supply/demand constraints. Ito et al. [1] introduce the
decision problem that asks whether G has such a partition, which they call the
partition problem. It is mentioned in [1,2] that we can also consider the prob-
lem with edge capacity constraints. The partition problem is a model of power
delivery networks and VLSI circuits [3,4].

It is obvious that not all graphs have such a partition. If G does not have
such a partition, we scale the demand values uniformly by scale factor r so that
the obtained graph has a partition. Morishita and Nishizeki [5] introduce the
maximum supply rate problem as the problem that finds the maximum value
of such r. The maximum supply rate problem is a special case of the partition
problem for parametric networks that are a model of power delivery networks,
in which demand values are changed by time, temperature, oil price, etc. [5,6].

We now give a formal definition of the partition problem and show some
known results. A power delivery network is expressed by an undirected graph
G = (V,E) with vertex set V and edge set E. Each vertex of G is either a supply
vertex or a demand vertex. That is, V = S ∪ D and S ∩ D = ∅, where S is the
set of all supply vertices and D is the set of all demand vertices. Each supply
vertex v ∈ S is assigned a nonnegative integer supply value s(v) ∈ Z+, and each
demand vertex v ∈ D is assigned a nonnegative integer demand value d(v) ∈ Z+.
Here, Z+ denotes the set of all nonnegative integers. Each edge e ∈ E is assigned
a nonnegative integer capacity c(e) ∈ Z+.

We partition G into some connected components by removing some edges
from G so that each connected component has exactly one supply vertex
and there exists a flow in each connected component satisfying the sup-
ply/demand/capacity constraints. Such a partition is called a feasible parti-
tion [5]. More precisely, a feasible partition consists of |S| subsets V1, V2, . . . , V|S|
of V such that Vi ∩ Vj = ∅ for each i, j (i �= j), V1 ∪ · · · ∪ V|S| = V , and the
following conditions hold.

– For each i, the subgraph G[Vi] of G induced by Vi is connected.
– For each i, Vi has exactly one supply vertex. That is, there exists a vertex

ui ∈ V such that S ∩ Vi = {ui}.
– There exists a flow satisfying the following.

• The inflow of each demand vertex v ∈ D is exactly d(v).
• The outflow of each supply vertex v ∈ S is at most s(v).
• The flow does not pass through edges between Vi and Vj for distinct i, j.
• The amount of flow passing through each edge e ∈ E is at most the edge

capacity c(e).

The partition problem is the decision problem that asks whether a given graph
G has a feasible partition or not, and is NP-complete even for series-parallel
graphs [1]. On the other hand, the partition problem on trees can be solved in
linear time by dynamic programming [1,2].

When G has no feasible partition, we try to modify the instance so that
the obtained instance has a feasible partition. A natural modification is to scale
every demand value uniformly by scale factor r, i.e., replacing the demand d(v)
of v with r · d(v). The maximum supply rate is defined as the maximum value
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of r such that G has a feasible partition with respect to r · d, where r might be
greater than 1. The maximum supply rate problem is the problem of finding the
maximum supply rate r∗, which is introduced by Morishita and Nishizeki [5]. An
instance of the maximum supply rate problem is shown in Fig. 1. The maximum
supply rate is 2

3 in this instance.

Fig. 1. An example of the partition problem and the maximum supply rate problem,
where a supply vertex is represented as a square with a supply value, a demand vertex
is represented as a circle with a demand value, and an edge is represented as a line
with an edge capacity.

Since the partition problem is NP-complete, the maximum supply rate prob-
lem is also NP-hard even for series-parallel graphs [1]. However, if the graph is a
tree, we can solve the maximum supply rate problem in weakly polynomial-time
by guessing the maximum supply rate with a binary search and by applying the
linear time algorithm for the partition problem [5,6].

The main result of this paper is to show the following theorem.

Theorem 1. The maximum supply rate problem on trees can be solved in time
O(n3), where n is the number of vertices of the tree.

This theorem gives a first strongly polynomial-time algorithm for the maximum
supply rate problem on trees. In order to make the running time strongly poly-
nomial, we do not guess the maximum supply rate r∗ by binary search. We adopt
the dynamic programming approach instead. In our algorithm, we regard T as a
rooted tree by choosing an arbitrary vertex as the root. We pick up each vertex
v ∈ V in the order from leaves to the root and compute “surplus” of the subtree
rooted at v (see Sect. 3 for details).



A Strongly Polynomial Time Algorithm 57

We now point out two difficulties in designing the algorithm. The first dif-
ficulty is that information on the surplus cannot be represented as a dynamic
programming table of finite size. This is because the surplus depends on the
supply rate r that can take any nonnegative real number. To overcome this dif-
ficulty, we represent the surplus of each subtree as a piecewise linear function
of r. Note that a similar technique was also used in [5,6]. The second difficulty
is in obtaining a polynomial bound on the size of the function representation
of the surplus. If we adopt a naive piecewise linear function to represent the
surplus, then it is hard to obtain a polynomial bound on its size (see Sect. 3.1
for details). Our key idea is to represent the surplus by using multiple piecewise
linear functions. This makes the update formula quite simple and enables us to
show that the representation of the surplus has a polynomial size.

Theorem 1 can be extended to a generalized problem in which the
supply (resp. demand) values are represented by monotonically decreasing
(resp. increasing) piecewise linear functions. By using the same argument as
Theorem 1, we show that this problem can also be solved in polynomial time.
See Sect. 5 for the formal statement of our result.

We here describe some related results. The maximum partition problem intro-
duced by Ito et al. [1] is another optimization version of the partition problem.
If a graph does not have a feasible partition, we partition the graph into some
connected components so that each component has at most one supply vertex
and the sum of the demand values is at most the supply value in each com-
ponent with a supply vertex. That is, there might exist components without a
supply vertex. The maximum partition problem is the problem of finding such
a partition that maximizes the sum of the demand values in all the components
with supply vertices. This problem is also NP-hard even for a star with exactly
one supply vertex. For the maximum partition problem on restricted classes of
graphs, pseudo-polynomial-time algorithms and fully polynomial-time approx-
imation schemes are proposed in [1,2,7,8]. Recently, there has been studied a
heuristic method for solving the problem [9].

The remaining of this paper is organized as follows. In Sect. 2, we give pre-
liminary definitions. In Sect. 3, we give an outline of our algorithm and describe
a strongly polynomial-time algorithm for the maximum supply rate problem on
trees. In Sect. 4, we analyze the running time of our algorithm. Finally, in Sect. 5,
we extend our result to a problem on parametric networks.

2 Preliminaries

One may assume without loss of generality that a given tree T = (V,E) is rooted
at an arbitrarily chosen vertex vroot. For a vertex v ∈ V , let Tv be the subtree
of T rooted at v, Sv be the set of supply vertices in Tv, and Cv be the set of the
children of v (see Fig. 2). Note that Cv = ∅ if v is a leaf.

For a vertex v ∈ V and for a supply rate r ≥ 0, we consider the instance of
the partition problem in which the graph is Tv, the supply vertex set is Sv =
S ∩ V (Tv), the demand vertex set is D ∩ V (Tv), the supply value of x ∈ Sv is
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Fig. 2. A subtree Tv rooted at v.

s(x), and the demand value of x ∈ D ∩ V (Tv) is r · d(x). For a supply vertex
u ∈ Sv, we define fu

v (r) as the maximum of s(u) − ∑
x∈D∩V1

r · d(x) among all
feasible partitions (V1, V2, . . . , V|Sv|) of V (Tv) such that u, v ∈ V1, that is,

fu
v (r) := max

{

s(u) −
∑

x∈D∩V1

r · d(x)

∣
∣
∣ (V1, V2, . . . , V|Sv|) is a feasible partition of V (Tv), u, v ∈ V1

}

.

Define fu
v (r) = −∞ if Tv has no feasible partition with u, v ∈ V1. Intuitively,

fu
v (r) is the maximum amount of flow that can be delivered from u to the

outside of Tv through v. We regard fu
v (r) as a function of r, and call it the

surplus function.
For v ∈ V , define rmax

v as the maximum value of the supply rate such that
Tv has a feasible partition, that is,

rmax
v := max{r | fu

v (r) ≥ 0 (∃u ∈ Sv)}.

For convenience, define rmax
v = 0 if Tv does not have a supply vertex. Note that

rmax
vroot

is the maximum supply rate of T .
For a vertex v ∈ V and for a supply rate r ≥ 0, we define the deficit function

gv(r) as follows. We add a dummy supply vertex udum with s(udum) = +∞ to Tv

as a child of v, and connect v and udum by a dummy edge with c(v, udum) = +∞.
Let T ′

v be the obtained tree with |Sv|+1 supply vertices, and consider the instance
of the partition problem in T ′

v with respect to r ·d. Note that if T ′
v has a feasible

partition, then it consists of |Sv| + 1 vertex subsets. We define gv(r) as the
maximum of −∑

x∈D∩V0
r · d(x) among all feasible partitions (V0, V1, . . . , V|Sv|)

of V (T ′
v) such that udum ∈ V0, that is,

gv(r) := max
{

−
∑

x∈D∩V0

r · d(x)

∣
∣
∣ (V0, V1, . . . , V|Sv|) is a feasible partition of V (T ′

v), udum ∈ V0

}

.
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Define gv(r) = −∞ if T ′
v has no feasible partition. Note that D∩V0 = V0\{udum}.

Intuitively, −gv(r) is the minimum amount of flow that has to enter Tv from the
outside through v to fulfill the demands in Tv.

We now observe some properties of the surplus function fu
v (r) and the deficit

function gv(r). By the definitions, they are monotonically decreasing piecewise
linear functions of r and can take the value −∞. One can see that gv(r) ≤ 0,
and the equality holds if and only if r ≤ rmax

v . One can also see that fu
v (r) can

take nonnegative values or −∞. In order to deal with this property of fu
v (r), for

x ∈ R, we use the notation (x)+ defined by

(x)+ :=

{
x if x ≥ 0,

−∞ otherwise.

Similarly, for a function f : R+ → R ∪ {−∞}, we define f+ : R+ → R ∪ {−∞}
by f+(x) = (f(x))+ for x ∈ R+. Here, R+ is the set of all nonnegative real
numbers.

Example 1. Figure 3a shows a subtree Tv7 rooted at v7, where a supply vertex
is represented as a square with a supply value, a demand vertex is represented
as a circle with a demand value, and an edge is represented as a line with an
edge capacity. Subtree Tv7 does not have a feasible partition when the supply

Fig. 3. An example of the surplus functions and the deficit function of Tv7 .
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rate is r > 3
5 , but it has a feasible partition that consists of V1 = {v1, v3, v5, v7},

V2 = {v4, v6}, and V3 = {v2} when the supply rate is 0 ≤ r ≤ 3
5 . Furthermore,

one can see that V1 = {v4, v6, v7}, V2 = {v1, v3, v5}, and V3 = {v2} form a feasible
partition if 0 ≤ r ≤ 10

17 , and V1 = {v6, v7}, V2 = {v1, v3, v5}, and V3 = {v2, v4}
form a feasible partition if 0 ≤ r ≤ 1

2 . This shows that Tv7 has multiple feasible
partitions for some supply rate r. The surplus functions fv3

v7
(r) and fv6

v7
(r) of

Tv7 are expressed as functions of r as shown in Figs. 3b and c, respectively. Note
that fv3

v7
(r) ≤ fv6

v7
(r) if 1

3 ≤ r ≤ 1
2 and fv3

v7
(r) ≥ fv6

v7
(r) otherwise. One can see

that rmax
v7

= 3
5 . The deficit function gv7(r) of Tv7 is shown in Fig. 3d. Note that

gv7(r) = 0 for r ≤ rmax
v7

= 3
5 .

3 Algorithm for the Maximum Supply Rate Problem

In this section, we give a strongly polynomial time algorithm for the maximum
supply rate problem on trees. We first give an outline of the algorithm in Sect. 3.1,
then describe the algorithm in detail in Sect. 3.2.

3.1 Outline

In a similar way to the algorithm for the partition problem on parametric power
supply networks [5,6], our algorithm is based on dynamic programming. Our
algorithm computes the surplus function fu

v (r) (u ∈ Sv), the deficit function
gv(r), and the maximum value of the supply rate rmax

v for each vertex v of T
from leaves to the root. After finishing the computation, the algorithm outputs
rmax
vroot

as the solution r∗ of the maximum supply rate problem.
It will be natural to consider the algorithm that computes fv(r) :=

max {fu
v (r) | u ∈ Sv} instead of fu

v (r) (u ∈ Sv). Indeed, the function fv(r) for
each v ∈ V can be computed from leaves to the root by dynamic programming
as well. However, since the updating formula of fv(r) is complicated, it is hard
to bound the size of the representation of fv(r), which makes the analysis of the
running time complicated. A key idea in our algorithm is to consider multiple
surplus functions fu

v (r) instead of fv(r). Although it looks inefficient to increase
the number of functions, an advantage of our algorithm is that the updating
formula of the surplus functions is quite simple. In particular, we do not have to
compute the maximum of two or more functions in our algorithm. This enables
us to show that our algorithm runs in strongly polynomial time.

To analyze the sizes of the representations of the surplus functions and the
deficit functions, we define the number of intervals of a piecewise linear function
as follows. For a monotonically decreasing piecewise linear function f : R+ →
R ∪ {−∞}, define the number of intervals of f as the minimum integer k such
that R+ can be partitioned into intervals I1, . . . , Ik+1, where f is linear on each
Ij (j = 1, . . . , k) and f(r) = −∞ for r ∈ Ik+1. Note that Ik+1 might be the
empty set. The following observations play an important role in the analysis of
our algorithm.
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Observation 2. If f : R+ → R ∪ {−∞} is a monotonically decreasing piece-
wise linear function whose number of intervals is at most k, then the number of
intervals of f+ is at most k.

Observation 3. If f1, f2 : R+ → R∪{−∞} are monotonically decreasing piece-
wise linear functions whose numbers of intervals are at most k1 and k2, respec-
tively, then the number of intervals of f1 + f2 is at most k1 + k2.

We note that, for monotonically decreasing piecewise linear functions f1 and
f2 whose numbers of intervals are at most k1 and k2, the number of intervals of
max{f1, f2} is not necessarily bounded by k1+k2. Since the updating formula of
fv(r) requires the max operation, it is hard to bound the number of intervals of
fv(r). We emphasize again that the updating formula of fu

v (r) does not require
the max operation. We only use the operations as in Observations 2 and 3, which
is essential to design a strongly polynomial-time algorithm.

3.2 Algorithm Description

As mentioned above, our algorithm computes the surplus functions, the deficit
function, and the maximum value of the supply rate for each vertex from leaves
to the root. The full description of our algorithm is as follows.

Step 1. Compute the surplus function and the deficit function for every leaf
v of T . If v is a supply vertex, then we have fv

v (r) = s(v) and gv(r) = 0
for every r, and hence rmax

v = ∞. If v is a demand vertex, then we have
gv(r) = −r · d(v) for every r, and hence rmax

v (r) = 0.
Step 2. Compute the surplus functions, the deficit function, and rmax

v of each
internal vertex v from the leaves to the root by using those of its children as
follows.
Step 2-1. For each w ∈ Cv, define the new deficit function g′

w(r) as

g′
w(r) =

{
gw(r) if − gw(r) ≤ c(v, w),
−∞ otherwise.

Recall that gw(r) ≤ 0. This modification means that if the flow value that
has to enter Tw from the outside is larger than the edge capacity of (v, w),
i.e., −gw(r) > c(v, w), then there is no feasible partition in Tv, which is
represented by g′

w(r) = −∞.
Step 2-2. If v is a supply vertex, then execute the following (a)–(c).

(a) Compute fv
v (r) by

fv
v (r) =

(

s(v) +
∑

w∈Cv

g′
w(r)

)+

.

This equation means that s(v) is reduced by −g′
w(r) for each w ∈ Cv.

If fv
v (r) < 0, then fv

v (r) = −∞ since there is no feasible partition
in Tv. Since v cannot receive a flow from any other supply node, we
have fu

v (r) = −∞ for each u ∈ Sv \ {v}.
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(b) Compute rmax
v by

rmax
v = max{r | fv

v (r) ≥ 0}.

(c) Compute gv(r) by

gv(r) =

{
0 if r ≤ rmax

v ,

−∞ otherwise.

If r ≤ rmax
v , then we have gv(r) = 0 since there is at least one feasible

partition in Tv. Otherwise, we have gv(r) = −∞ since there is no
feasible partition even if we add a dummy node as in the definition
of gv(r).

Step 2-3. If v is a demand vertex, then execute the following (a)–(c).
(a) For each supply vertex u ∈ Sv, we compute fu

v (r) by executing the
following steps.

– Choose x ∈ Cv such that the supply vertex u is contained in the
subtree Tx, i.e., u ∈ Sx.

– Define f ′u
x (r) as

f ′u
x (r) = min{fu

x (r), c(v, x)}.

This modification means that if the edge capacity of (v, x) is less
than the surplus function, i.e., fu

x (r) > c(v, x), then u can deliver
a flow whose value is at most c(v, x) to v through x, which is
represented by f ′u

x (r) = c(v, x).
– Compute fu

v (r) by

fu
v (r) =

⎛

⎝f ′u
x (r) − r · d(v) +

∑

w∈Cv\{x}
g′
w(r)

⎞

⎠

+

.

This equation means that the flow value f ′u
x (r) delivered by u

is reduced by r · d(v) and by −g′
w(r) for each w ∈ Cv \ {x}. If

fu
v (r) < 0, then fu

v (r) = −∞ since there is no feasible partition
in Tv.

(b) Compute rmax
v by

rmax
v = max{r | fu

v (r) ≥ 0 (∃u ∈ Sv)}.

(c) Compute the deficit gv(r) by

gv(r) =

{
0 if r ≤ rmax

v ,

−r · d(v) +
∑

w∈Cv
g′
w(r) otherwise.

If r ≤ rmax
v , then we have gv(r) = 0 since there is at least one fea-

sible partition in Tv. Otherwise, the flow value that v has to receive
increases of r · d(v).

Step 3. Output r∗ := rmax
vroot

as the optimal solution.

The correctness of the algorithm is trivial by the definitions of fu
v (r), gv(r),

and rmax
v .
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4 Running Time

In this section, we analyze the running time of our algorithm in Sect. 3.2 and give
a proof of Theorem 1. Obviously, the surplus functions and the deficit functions
for all leaves can be computed in time O(n) as in Step 1. In order to analyze the
running time of Step 2, it is important to estimate the sizes of the representations
of the surplus functions and the deficit functions. Since the surplus functions
and the deficit functions are piecewise linear functions, it suffices to bound the
number of intervals of these functions. Let |Tv| be the number of vertices in the
subtree Tv. We now show the following lemma.

Lemma 1. For v ∈ V , the number of intervals of fu
v (r) is at most |Tv| for each

u ∈ Sv, and that of gv(r) is also at most |Tv|.
Proof. We show the lemma by induction on |Tv|.
– Suppose that |Tv| = 1, i.e., v is a leaf.

As in Step 1, if v is a supply vertex, then we have fv
v (r) = s(v) and gv(r) = 0.

If v is a demand vertex, then we have gv(r) = −r ·d(v). Therefore, the number
of intervals of each function is exactly one, which is equal to |Tv|.

– Suppose that |Tv| ≥ 2, i.e., v is not a leaf.
For each w ∈ Cv, the induction hypothesis shows that the numbers of intervals
of fu

w(r) (u ∈ Sw) and that of gw(r) are at most |Tw|. Then, we consider
the numbers of intervals of fu

v (r) and that of gv(r). Note that |Tv| = 1 +∑
w∈Cv

|Tw|. Note also that the number of intervals of g′
w(r) is at most |Tw|

since Step 2-1 of our algorithm defines g′
w(r) from gw(r) by just shifting the

minimum value of r with gw(r) = −∞. We consider the following two cases
separately.

• Suppose that v is a supply vertex.
In this case, we compute fu

v (r) for each u ∈ Sv and gv(r) in Step 2-2.
Since adding the constant value s(v) does not affect the intervals of the
piecewise linear function, by Observations 2 and 3, the number of intervals
of fv

v (r) is at most ∑

w∈Cv

|Tw| ≤ |Tv|.

For u ∈ Sv \ {v}, the number of intervals of fu
v (r) is zero since fu

v (r) =
−∞. The number of intervals of gv(r) is at most one since gv(r) can take
either 0 or −∞.

• Suppose that v is a demand vertex.
In this case, we compute fu

v (r) for each u ∈ Sv and gv(r) in Step 2-3.
Recall that x ∈ Cv satisfies that u ∈ Sx. In (a), the number of intervals
of f ′u

x (r) is at most that of fu
x (r) plus one since we take the minimum

of fu
x (r) and the edge capacity c(v, x). This implies that the number of

intervals of f ′u
x (r) is at most |Tx|+1. We are now ready to consider fu

v (r).
Since adding the linear function −r · d(v) does not affect the intervals of
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the piecewise linear function, by Observations 2 and 3, the number of
intervals of fu

v (r) is at most

1 +
∑

w∈Cv

|Tw| = |Tv|.

Similarly, since adding the linear function −r · d(v) does not affect the
intervals of the piecewise linear function, by Observation 3, the number
of intervals of gv(r) is at most

1 +
∑

w∈Cv

|Tw| = |Tv|.

These complete the proof of Lemma 1. �
By Lemma 1, since each of fu

v (r) (u ∈ Sv) and gv(r) can be represented by
using O(n) linear functions, it can be computed in time O(n) in Step 2. Since
we compute |Sv| + 1 = O(n) functions for each v ∈ V , one iteration of Step 2 is
executed in time O(n2). Since the number of internal vertices is O(n), the total
running time is at most O(n3). This completes the proof of Theorem 1.

We note that one can easily obtain a feasible partition of a tree with respect
to the maximum supply rate r∗ by modifying our algorithm slightly.

5 Extension to the Maximum Supply Parameter Problem

We have already seen that there exists a strongly polynomial-time algorithm
for the maximum supply rate problem on trees. In this section, we extend our
algorithm to the problem on parametric networks (see e.g. [5,6,10]). A parametric
tree is a tree T = (V,E), in which each vertex is either a supply vertex or a
demand vertex, such that each of the supply values and the demand values is
represented as a piecewise linear function of a parameter. More precisely, suppose
that

– each supply vertex v ∈ S is assigned a nonnegative monotonically decreasing
piecewise linear function sv : R+ → R+, and

– each demand vertex v ∈ D is assigned a nonnegative monotonically increasing
piecewise linear function dv : R+ → R+.

The supply value sv(r) and the demand value dv(r) are determined if we fix a
parameter r. In the maximum supply parameter problem, the input is a para-
metric tree and the objective is to find the maximum value of the parameter
r such that the tree has a feasible partition with respect to sv(r) and dv(r).
Note that the monotonicity of the functions implies that if there exists a feasible
partition for some parameter r0, then there exists a feasible partition for any
r ≤ r0. Note also that the maximum supply rate problem is a special case of the
maximum supply parameter problem in which the supply values are represented
by constant functions and the demand values are represented by linear functions.
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In order to solve the maximum supply parameter problem on parametric
trees, we apply the same algorithm as in Sect. 3.2 in which s(v) and r · d(v) are
replaced with sv(r) and dv(r), respectively. In what follows, we show that this
algorithm solves the maximum supply parameter problem in polynomial time.
We basically use the same notation as in Sect. 3.2, and also use the following
notation. For a monotonically decreasing piecewise linear function f : R+ →
R+ ∪ {−∞}, let I(f) denote the number of intervals of f . In order to make it
clear that f is a function of r, I(f) is also denoted by I(f(r)) in this paper.
For each vertex v ∈ V , define Kv as the sum of the numbers of intervals of the
supply/demand functions in Tv, that is,

Kv :=
∑

v∈Sv

I(sv(r)) +
∑

v∈D∩V (Tv)

I(−dv(r)).

In the same way as Lemma 1, we give an upper bound on the numbers of intervals
of the surplus functions and the deficit functions as follows.

Lemma 2. For v ∈ V , we have I(fu
v (r)) ≤ 2Kv for each u ∈ Sv and I(gv(r)) ≤

2Kv.

Proof. We show the lemma by induction on Kv.

– Suppose that v is a leaf.
As in Step 1, if v is a supply vertex, then we have fv

v (r) = sv(r) and gv(r) = 0.
If v is a demand vertex, then we have gv(r) = −dv(r). Therefore, the number
of intervals of each function is at most Kv, which is no more than 2Kv.

– Suppose that v is not a leaf.
For each w ∈ Cv, the induction hypothesis shows that I(fu

w(r)) ≤ 2Kw (u ∈
Sw) and I(gw(r)) ≤ 2Kw. Then, we consider I(fu

v (r)) and I(gv(r)). Note
that I(g′

w(r)) ≤ 2Kw holds since Step 2-1 of our algorithm defines g′
w(r) from

gw(r) by just shifting the minimum value of r with gw(r) = −∞. We consider
the following two cases separately.

• Suppose that v is a supply vertex.
In this case, we compute fu

v (r) for each u ∈ Sv and gv(r) in Step 2-2.
Since fv

v (r) is defined by

fv
v (r) =

(

sv(r) +
∑

w∈Cv

g′
w(r)

)+

,

by Observations 2 and 3, we have

I(fv
v (r)) ≤ I(sv(r)) +

∑

w∈Cv

I(g′
w(r)) ≤ I(sv(r)) +

∑

w∈Cv

2Kw ≤ 2Kv.

For u ∈ Sv \ {v}, we have I(fu
v (r)) = 0 since fu

v (r) = −∞. We can also
see that I(gv(r)) ≤ 1 since gv(r) can take either 0 or −∞.
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• Suppose that v is a demand vertex.
In this case, we compute fu

v (r) for each u ∈ Sv and gv(r) in Step 2-3.
Recall that x ∈ Cv satisfies that u ∈ Sx. Since f ′u

x (r) is defined as the
minimum of fu

x (r) and the edge capacity c(v, x), we have I(f ′u
x (r)) ≤

1 + I(fu
x (r)) ≤ 1 + 2Kx. Since fu

v (r) is defined by

fu
v (r) =

⎛

⎝f ′u
x (r) − dv(r) +

∑

w∈Cv\{x}
g′
w(r)

⎞

⎠

+

,

by Observations 2 and 3, we have

I(fu
v (r)) ≤ I(f ′u

x (r)) + I(−dv(r)) +
∑

w∈Cv\{x}
I(g′

w(r))

≤ 1 + 2Kx + I(−dv(r)) +
∑

w∈Cv\{x}
2Kw ≤ 2Kv.

Note that we use I(−dv(r)) ≥ 1 in the last inequality. Similarly, since
gv(r) is defined by

gv(r) =

{
0 if r ≤ rmax

v ,

−dv(r) +
∑

w∈Cv
g′
w(r) otherwise,

by Observation 3, we have

I(gv(r)) ≤ 1 + I(−dv(r)) +
∑

w∈Cv

2Kw ≤ 2Kv.

These complete the proof of Lemma 2. �
By using Lemma 2, we show that our algorithm can solve the maximum

supply parameter problem in polynomial time.

Theorem 4. The maximum supply parameter problem on parametric trees can
be solved in time O(n2K), where n is the number of vertices of the parametric
tree and K := Kvroot

is the sum of the numbers of intervals of all the functions
representing the demand values and the supply values.

Proof. We apply the same algorithm as in Sect. 3.2 in which s(v) and r · d(v)
are replaced with sv(r) and dv(r), respectively. By Lemma 2, the number of
intervals of each surplus/deficit function is O(K), and hence each surplus/deficit
function can be computed in time O(K). Since we compute |Sv| + 1 = O(n)
functions for each v ∈ V , one iteration of Step 2 is executed in time O(nK).
Since the number of internal vertices is O(n), the total running time is at most
O(n2K). �
Note that the input size of the maximum supply parameter problem is Θ(n+K),
and hence the above running time is bounded by a polynomial in the input size.
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As a corollary of Theorem 4, we give a polynomial-time algorithm for another
variant of the maximum supply rate problem. When we consider practical appli-
cations, it is also natural to increase the supply values instead of decreasing the
demand values. We consider scaling the supply values uniformly by scale factor
q so that the obtained graph has a feasible partition. The minimum increment
rate is defined as the minimum value of q such that the obtained graph has a
feasible partition with respect to q · s, and the minimum increment rate problem
is the problem that finds the minimum increment rate q∗. We now show that the
minimum increment rate problem on trees can be solved in polynomial time.

Corollary 1. The minimum increment rate problem on trees can be solved in
time O(n3), where n is the number of vertices of the tree.

Proof. Let M be a sufficiently large number, e.g. M := (
∑

v∈D d(v))/min{s(v) |
v ∈ S, s(v) > 0}. If there is no feasible partition for increment ratio q = M , then
we can immediately conclude that the minimum increment rate problem has no
feasible solution. Otherwise, consider the maximum supply parameter problem,
in which the demand value d′(v) is equal to d(v), and the supply value s′(v)
is the piecewise linear function max{M · s(v) − r · s(v), 0} of the parameter r.
Since K = O(n), we can find the optimal solution r∗ of the maximum supply
parameter problem in time O(n3) by Theorem 4. Then, we have that M − r∗

is the minimum increment rate, which shows that the minimum increment rate
problem on trees can be solved in time O(n3). �
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Abstract. In this article, we study the maximum distance-d indepen-
dent set problem, a variant of the maximum independent set problem,
on unit disk graphs. We first show that the problem is NP-hard. Next,
we propose a polynomial-time constant-factor approximation algorithm
and a PTAS for the problem.
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Unit disk graph

1 Introduction

The independent set problem is one of the best known classical combinatorial
optimization problems in graph theory due to its many important applications,
including but not limited to networks, map labeling, computer vision, coding
theory, scheduling, clustering. Given an unweighted graph G = (V,E), a non-
empty subset of pairwise non-adjacent vertices of G is known as an independent
set of G. Any singleton set is a trivial independent set of G. The maximum inde-
pendent set problem asks to find an independent set of maximum possible size
in a given unweighted graph G, and such a set is called as maximum independent
set (MIS) of G. For an integer d ≥ 2, a distance-d independent set (DdIS) of an
unweighted graph G = (V,E) is an independent set I of V such that the shortest
path distance (i.e., the number edges on a shortest path) between any pair of
vertices in I is at least d. For a given unweighted graph G, the objective of the
maximum distance-d independent set problem is to find a DdIS of maximum car-
dinality in G. A DdIS of maximum possible size is called as maximum distance-d
independent set (MDdIS). Observe that the MDdIS problem is a generalization
of the MIS problem and in fact for d = 2, the MDdIS problem and MIS problem
are the same.

Given a set P = {p1, p2, . . . , pn} of points in the plane, a unit disk graph
(UDG) corresponding to the point set P is a simple graph G = (V,E) satisfying
V = P , and E = {(pi, pj) | d(pi, pj) ≤ 1}, where d(pi, pj) denotes the Euclidean
c© Springer International Publishing AG, part of Springer Nature 2018
J. Chen and P. Lu (Eds.): FAW 2018, LNCS 10823, pp. 68–80, 2018.
https://doi.org/10.1007/978-3-319-78455-7_6
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distance between pi and pj . In other words, a unit disk graph is an intersection
graph of disks of unit diameter centered at the points in P .

An algorithm for a minimization (resp. maximization) problem is said to
be a ρ-factor approximation algorithm if for every instance of the problem the
algorithm produces a feasible solution whose value is within a factor of ρ (resp. 1

ρ )
of the optimal solution value and runs in polynomial-time of the input size. Here,
ρ is called the approximation factor or approximation ratio of the algorithm and
the optimization problem is said to have a ρ-factor approximation algorithm. A
polynomial-time approximation scheme (PTAS) for an optimization problem is
a collection of algorithms {Aε} such that for a given ε > 0, Aε is a (1+ ε)-factor
approximation algorithm in case of minimization problem ((1 − ε) in case of
maximization). The running time of Aε is required to be polynomial in the size
of the problem depending on ε.

2 Related Work

The MIS problem is known to be NP-hard for general graphs [12] and also
many subclasses of planar graphs, namely planar graphs of maximum degree
3 [11], planar graphs of large girth [23], cubic planar graphs [13], triangle-free
graphs [26], K1,4-free graphs [21], etc. In general, the MIS problem cannot be
approximated within a constant factor unless P = NP [2]. However, the problem
is polynomially solvable for bipartite graphs, outer-planar graphs, perfect graphs,
claw-free graphs, chordal graphs, etc. [14,17]. The MIS problem is well studied
on UDGs too and is shown to be NP-hard [5]. Unlike in general graphs, the
problem admits approximation algorithms [6,15,18–20,24] and approximation
schemes [6,7,18,25].

The MDdIS problem, for any fixed d ≥ 3, is known to be NP-hard for bipartite
graphs [4] and planar bipartite graphs of maximum degree 3 [8]. It is also known
that getting an n

1
2−ε-factor approximation result, for any ε > 0, on bipartite

graphs is NP-hard (this result also holds for chordal graphs when d ≥ 3 is an
odd number) [8]. The problem is polynomially solvable for some intersection
graphs, such as interval graphs, trapezoid graphs, and circular arc graphs [1]. If
the input graph is restricted to be a chordal graph, then the problem is solvable
in polynomial time for any even d ≥ 2; on the other hand, the problem is NP-
hard for any odd d ≥ 3 [8]. Eto et al. [9] studied the problem on r-regular graphs
and planar graphs. The authors showed that for d ≥ 3 and r ≥ 3, the MDdIS
problem on r-regular graphs is APX-hard, and proposed O(rd−1) and O( rd−2

d )-
factor approximation algorithms. When d = r = 3, they enhanced their O( rd−2

d )-
factor result to a 2-factor approximation result (recently, the approximation
factor is improved to 1.875 [10]). Finally, they proposed a PTAS in case of
planar graphs. Montealegre and Todinca studied the problem in graphs with
few minimal separators [22].
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2.1 Our Work

In this paper, we study the MDdIS problem on unit disk graphs and we call it the
geometric maximum distance-d independent set (GMDdIS) problem. We show
that the decision version of the GMDdIS problem (for d ≥ 3) is NP-complete
on unit disk graphs. We also propose a 4-factor approximation algorithm, and a
PTAS for this problem.

2.2 Organization

The hardness of the GMDdIS problem is discussed in Sect. 3. The proposed
4-factor approximation algorithm and PTAS are explained in Sects. 4 and 5,
respectively. Finally, Sect. 6 concludes the paper.

3 The GMDdIS Problem on Unit Disk Graphs

For an integer d ≥ 3, we define the GMDdIS problem formally as follows:

Given an unweighted unit disk graph G = (V,E) corresponding to a point set
P = {p1, p2, . . . , pn} in the plane, find a maximum cardinality subset I ⊆ V ,
such that for every pair of vertices pi, pj ∈ I, the length (number of edges) of
the shortest path between pi and pj is at least d.

For a fixed constant d ≥ 3, the decision version of the GMDdIS problem is
defined as follows:

GEOMETRIC DISTANCE-d INDEPENDENT SET (GDdIS) PROBLEM

Input. An unweighted unit disk graph G = (V,E) defined on a point set P and
a positive integer k ≤ |V |.

Question. Does there exist a distance-d independent set of size at least k in G?

We show that the GDdIS (d ≥ 3) problem belongs to the class of NP-complete
problems by reducing the NP-complete problem distance-d independent set prob-
lem ( d ≥ 3) on planar bipartite graphs with girth1 at least d and maximum degree
3, which is defined as follows:

DISTANCE-d INDEPENDENT SET ON PLANAR BIPARTITE GRAPHS

Input. An unweighted planar bipartite graph G = (V,E) with girth at least d
and maximum vertex degree 3, and a positive integer k ≤ |V |.

Question. Does there exist a distance-d independent set of size at least k in G?

In [8], it has been shown that the distance-d independent set problem on
planar bipartite graphs with maximum degree 3 is NP-complete by reducing the
distance-2 independent set problem on planar cubic graphs. In fact, the reduced
graph in their reduction has girth at least d and hence the distance-d independent
set problem on planar bipartite graphs with maximum degree 3 and girth at least
d is NP-complete.

Our reduction is based on the concept of planar embedding of planar graphs.
The following lemma is very useful in our reduction.
1 The length of a smallest cycle.
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Lemma 1 [5]. A planar graph G = (V,E) with maximum degree 4 can be embed-
ded in the plane using O(|V |2) area in such a way that its vertices are at integer
coordinates and its edges are drawn using axis-parallel line segments at integer
coordinates (i.e., edges lie on the lines x = i1, i2, . . . and/or y = j1, j2, . . ., where
i1, i2, . . . , j1, j2, . . . are integers).

This kind of embedding is known as orthogonal drawing of a graph. Biedl
and Kant [3] gave a linear time algorithm that produces an orthogonal drawing
of a given graph with the property that the number of bends along each edge is
at most 2.

Corollary 1. Let G = (V,E) be a planar bipartite graph with maximum degree
3 and girth at least d(d ≥ 3). The graph G can be embedded on a grid in the
plane, whose each grid cell is of size d × d, so that its vertices lie at points of
the form (i · d, j · d) and its edges are drawn using a sequence of consecutive line
segments drawn on the vertical lines of the form x = i ·d and/or horizontal lines
of the form y = j · d, for some integers i and j (see Fig. 1).

Lemma 1 suggests that, any planar graph G of maximum degree 4 can be
embedded on a grid in the plane so that the following holds.

1. Each vertex vi of G is associated with a point with integer coordinates in the
plane.

2. An edge of G is represented as a sequence of alternating horizontal and/or
vertical line segments drawn on the grid lines. For example, see edges (v1, v4)
or (v2, v6) in Fig. 1(a). The edge (v1, v4) is drawn as a sequence of four vertical
line segments and four horizontal line segments in the embedding (see (x1, x4)
in Fig. 1(b)). Similarly, the edge (v2, v6) is drawn as a sequence of two vertical
line segments in the embedding.

3. No two sets of consecutive line segments corresponding to two distinct edges
of G have a common point unless the edges are incident at a vertex in G.

Let G = (V,E) be an arbitrary instance of DdIS for planar bipartite graph
having maximum degree three and girth at least d. Let V = {v1, v2, . . . , vn} and
E = {e1, e2, . . . , em}. We denote the shortest path distance between two vertices
vi and vj in G by dG(vi, vj), and vi, vj are said to be distance-d independent in
G if dG(vi, vj) ≥ d.

We construct a graph G′ = (V ′, E′) by embedding G on a grid in which each
cell is of size d × d as described in Corollary 1. Let V ′ = {x1, x2, . . . , xn} be
the vertices in G′ corresponding to v1, v2, . . . , vn in G. The coordinate of each
member in V ′ is of the form (d · i, d · j), where i, j are integers, and shown using
big dots in Fig. 1(c). Let � be the number of line segments used for drawing all
the edges in G′. To make G′ a UDG we introduce a set Y of extra points on the
segments used to draw the edges of G′. Thus, the set of points in V ′ (hereafter
denoted by X) together with Y form a UDG G′′. Let (xi, xj) be an edge in G′

corresponding to the edge (vi, vj) in G and has �′ segments. We introduce �′d
points on the polyline denoting the edge (xi, xj) in such a way that (i) after
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Fig. 1. (a) A planar bipartite graph G of maximum degree 3, (b) its embedding G′ on
a grid of cell size 3 × 3, (c) adding of extra points to G′, (d) the obtained UDG G′′.

adding the extra points, the length of the path from xi to xj thus obtained is
exactly �′d + 1, (ii) a point is placed at each of the co-ordinates of the form
(d · i, d · j), where i and j are integers (shown using small squares in Fig. 1(c)),
(iii) the segment adjacent to the point xi contains exactly d newly added points
and other segments on the path from xi to xj have d − 1 points (shown using
small circles in Fig. 1(c)), and (iv) only consecutive points on the path xi � xj

are within unit distance apart.
Now, we construct a UDG G′′ = (V ′′, E′′), where V ′′ = X ∪ Y , and E′′ =

{(pi, pj) | pi, pj ∈ V ′′ and d(pi, pj) ≤ 1}. Here |V ′′| = |X| + |Y | = n + �d,
and |E′′| = �d + m, where m is the number of edges in G. Thus, G′′ can be
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constructed in polynomial time. We will use the term d-grid for a grid whose
each cell is of size d × d.

The notion of points and vertices of G′′ are used interchangeably in the rest
of the paper.

Lemma 2. Any DdIS of G′′ contains at most � points from Y .

Proof. For each segment in the d-grid used to draw G′, the number of points of
Y appearing on it is d or d − 1. Thus, each segment may contain at most one
point from Y in the DdIS of G′′. In particular, if two end-points of a segment
η of the d-grid (that are vertices of G′′) are chosen in DdIS, then no point of
Y lying on η will be chosen. Now, the result follows from the fact that � many
segments of the d-grid are used to draw G′. ��
Lemma 3. G has a DdIS of cardinality at least k if and only if G′′ has a DdIS
of cardinality at least k + �.

Proof (Necessity). Let G have a DdIS D of size at least k. Let X ′ = {xi ∈
X | vi ∈ D}. Let Gi,α denote a spanning tree of G with the set of vertices
Vi,α = {vj ∈ V (G) | dG(vi, vj) ≤ α}. For each vi ∈ D start traversing from xi

in G′′. Let Yi = {yθ ∈ Y | dG′′(xi, yθ) = d.θ, ∀θ = 1, 2, . . . , �′}, where �′ is the
number of segments between xi and xj , where xj corresponds to vj ∈ Vi,� d

2 �.
Let Y ′ =

⋃
xi∈X′ Yi. The set X ′ ∪ Y ′ is a DdIS in G′′. Observe that there are

some segments (corresponding to the edges which are not part of any Gi,� d
2 �)

that have not been traversed in the above process. Now, we consider every such
segment and choose the 
d

2�-th point on it. Let Y ′′ be the set of chosen points.
Needless to say, Y ′′ is also a DdIS of G′′.

Also, observe that there exists no pair of points yα ∈ Y ′ and yβ ∈ Y ′′ such
that dG′′(yα, yβ) < d. On the contrary, suppose dG′′(yα, yβ) < d. Implies, yα

and yβ are from two segments, each having one, incident at some xj ∈ X \ X ′,
where xj corresponds to a leaf vj ∈ Gi,� d

2 �. Note that dG′′(yα, xj) ≥ �d
2 and

dG′′(xj , yβ) ≥ 
d
2�. Implies, dG′′(yα, yβ) ≥ d, arrived at a contradiction. Let

D′ = X ′ ∪ Y ′ ∪ Y ′′. As per our selection method each segment contributes one
point in Y ′ ∪ Y ′′. Thus, |D′| ≥ k + � since |X ′| ≥ k and |Y ′ ∪ Y ′′| = �.
(Sufficiency). Let G′′ have a DdIS D′ of cardinality at least k + � and D = {vi ∈
V | xi ∈ D′ ∩ X}. Observe that |D′ ∩ Y | ≤ � (due to Lemma 2); so |D| ≥ k. We
shall show that, by suitably modifying D (i.e., by removing some of the vertices
in D), we get at least k points from X such that the set of corresponding vertices
in G is a DdIS of G. Consider a pair of vertices vi, vj ∈ D such that dG(vi, vj) <
d in G (if there is no such pair, then D is a DdIS of G with |D| ≥ k). Let
xi, xj ∈ D′ ∩ X be the vertices in G′′ corresponding to vi, vj ∈ D, respectively.
Also, let �̂ be the number of segments on the path xi � xj corresponding to the
shortest path vi � vj . As each segment can contribute at most one point (from
Y ) in any solution, D′ can contain at most �̂ + 1 points (including xi and xj)
from the path xi � xj .

We update D by deleting one of the conflicting vertices vi, vj from D. The
assumption that dG(vi, vj) < d implies that one of the segments on the path



74 S. K. Jena et al.

xi � xj has no point in D′ ∩ Y , so |D′ ∩ Y | < � and we still have |D| ≥ k after
removal.

Repeat the same for all pair of points in D for which the shortest path
distance is less than d in G. Therefore, |D| ≥ k and D is a distance-d independent
set in G. ��
Theorem 1. GDdIS problem is NP-complete for unit disk graphs.

4 Approximation Algorithm

In this section, we discuss a simple 4-factor approximation algorithm for the
GMDdIS problem, for a fixed constant d ≥ 3. Let R be the rectangular region
containing the point set P (disk centers). Let G be the UDG defined on P . We
partition R into disjoint horizontal strips H1,H2, . . . , Hν , each of width d (Hν

may be of width less than d). The basic idea behind our algorithm is as follows:

(i) Compute a feasible solution for each non-empty strip Hi (1 ≤ i ≤ ν)
independently as stated below:
We split the horizontal strip into squares of size d× d. In each square, we
compute an optimum solution of the GMDdIS problem defined on that
square. We consider all odd numbered squares and compute the union
Si

odd of optimum solutions of these squares. Similarly, the union Si
even of

optimum solutions of all even numbered squares are also computed. Each
of these is a feasible solution of GMDdIS problem in Hi as the minimum
distance between each pair of considered squares is at least d. We choose
Si = Si

even or Si
odd such that |Si| = max(|Si

even|, |Si
odd|) as the desired

feasible solution for the strip Hi.
(ii) Compute Seven and Sodd, which are the union of the solutions of even and

odd strips respectively, and
(iii) Report S∗ = Seven or Sodd such that |S∗| = max(|Seven|, |Sodd|) as a solu-

tion to the GMDdIS problem.

Note that, thus, the solution obtained in the above process is a feasible solution
for the entire problem.

Lemma 4. If OPT is an optimum solution for the GMDdIS problem, then
max(|Seven|, |Sodd|) ≥ 1

4 |OPT |.
Proof. Let us denote by OPT an optimum solution for the given GMDdIS prob-
lem, and by OPT i an optimum solution of the non-empty strip Hi. Since any two
even (resp. odd) numbered strips, say Hi and Hj , are at least d distance apart,
the feasible solutions computed in any method for Hi and Hj are independent2.
Thus, both OPTeven =

⋃

i is even

OPT i and OPTodd =
⋃

i is odd

OPT i are feasible

solutions for the given GMDdIS problem.
2 By independent we mean for any pi ∈ Hi ∩ P and pj ∈ Hj ∩ P , pi and pj are
distance-d independent and also, OPT i ∩ OPT j = ∅.
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Note that |OPT | ≤ |OPTeven| + |OPTodd| ≤ 2|OPT∗|, where OPT∗ =
OPTeven if |OPTeven| > |OPTodd|; otherwise OPT∗ = OPTodd.

Also, note that we have not computed OPT i for the strip Hi. Instead, we
have computed Si

even and Si
odd by splitting the strip Hi into d × d squares,

and accumulating the optimum solutions of even and odd numbered squares
separately. By the same argument as stated above, we have |OPT i| ≤ 2|Si∗ |,
where Si∗ = Si

even if |Si
even| ≥ |Si

odd|; otherwise Si∗ = Si
odd.

Combining both the inequalities, we have |OPT | ≤ 4max(|Seven|, |Sodd|).
��

4.1 Solving a d × d Square Optimally

Let Q ⊆ P be the set of points inside a d × d square χ, and Gχ be the UDG
defined on Q (i.e., Gχ is an induced subgraph of G with vertex set Q). Solving χ

in time d4nO(d2) is trivial as the number of points of Q in any optimal solution
is O(d2) (by checking all possible subsets of size O(d2)). However, an optimal
solution in χ can be obtained with a better running time.

Note that Gχ need not be a connected graph. Let C1, C2, . . . , Cl be the
components of Gχ such that any two components in Gχ are at least d distance
apart3 in G. The following lemmas Lemmas 5 and 6 give loose upper bounds on
the total number of components and the cardinality of a DdIS in any component,
respectively.

Lemma 5. The worst case number of components in Gχ is O(d2).

In order to have the worst case size of a DdIS in Gχ, we need to have an idea
about the worst case size of a DdIS in a component in Gχ.

Lemma 6. Let C be any component of Gχ. The number of mutually distance-d
independent points in C is bounded by O(d).

Proof. Consider the square region χ′ of size 3d×3d whose each side is d distance
away from the corresponding side of χ. Let Q′ ⊆ P be the subset of points in χ′.
Partition χ′ into cells of size 1

2
√
2
× 1

2
√
2
. Thus, the number of cells in χ′ is O(d2),

and in each cell the unit disks centered at the points inside that cell are mutually
connected. Let a pair of points pi, pj ∈ C which are distance-d independent. The
shortest path pi � pj between pi and pj entirely lies inside χ′. If there is another
point pk ∈ C which is distance-d independent with both pi and pj , then pk is at
least distance d

2 away from each point on the path pi � pj . Thus, the path from
pk to any point on the path pi � pj occupies at least O(d) cells, and none of
the points from these cells are distance-d independent to all the points pi, pj , pk.
Thus, the addition of each point in the set of mutually distance-d independent
points in χ prohibits points in O(d) cells to belong in that set, and hence the
lemma follows. ��
3 If there are two components of Gχ having distance less than d in G, then we can
view them as a single component.
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Lemma 7. An optimal DdIS in χ can be computed in d2nO(d) time.

Proof. Let M be a matrix containing distances of the all pair shortest paths
in G. By definition, intersection of distance-d independent sets of any two com-
ponents is empty. Thus, a DdIS of maximum size in Gχ can be computed by
considering all components of the UDG Gχ, and computing the union of the
DdIS of maximum sizes of those components. We consider each component of
Gχ separately. For each component C, consider all possible tuples of size at most
O(d) (due to Lemma6) and for each tuple, check whether they form a DdIS or
not by consulting the matrix M in O(d2) time. Thus, a maximum size DdIS in
C can be computed in O(d2|C|O(d)) time, and the total time for computing a
maximum size DdIS in Gχ is O(d2

∑

C∈Gχ

|C|O(d)) = d2|Q|O(d). ��

Theorem 2. Given a set P of n points in the plane, we can always compute a
DdIS of size at least 1

4 |OPT | in d2nO(d) time, where |OPT | is the cardinality of
a GMDdIS.

5 Approximation Scheme

In this section, using the shifting strategy [16], we propose a polynomial time
approximation scheme (PTAS) for the GMDdIS problem, for a given fixed con-
stant d ≥ 3. Let R be an axis parallel rectangular region containing the point
set P (i.e., centers of the disks of the given UDG). Compute the all pair shortest
paths between every pair of vertices in the UDG G defined on P and store them
in a matrix M.

We use two-level nested shifting strategy. The first level executes k iterations,
where k � d. The i-th iteration (1 ≤ i ≤ k) of the first level is as follows:

• Assuming R is left-open, partition R into vertical strips such that (a) first
strip is of width i, (b) every even strip is of width d, and (c) every odd strip,
except the first strip, is of width k.

• Without loss of generality, assume that the points lying on the left boundary
of a strip belong to the adjacent strip to its left (i.e., every strip is left open
and right closed).

• Compute some desired feasible solutions for the odd strips (of width k). These
solutions can be merged to produce a solution of the entire problem since these
odd numbered strips are distance-d apart.

The second level of the nested shifting strategy is used to find a solution for
an iteration in the first level. We consider each non-empty odd strip separately,
and execute k iterations. In the i-th iteration, we partition it horizontally as in
the first level (mentioned in the first bullet above). We get a solution of a strip
by solving each k × k square in that strip optimally. The union of the solutions
of all the odd numbered squares/rectangles in that strip is the desired solution
of that vertical strip of the first level. Finally, we take the union of the solutions
of all the odd vertical strips to compute the solution of that iteration of the first



The Maximum Distance-d Independent Set Problem on Unit Disk Graphs 77

level. Thus, we have the solutions of all the iterations of the first level. We report
the one having the maximum cardinality as the solution of the given GMDdIS
problem. The method of computing an optimum solution inside a k × k square
is described below.

5.1 Computing an Optimum Solution in a k × k Square

We apply a divide and conquer strategy to compute an optimum solution for
the GMDdIS problem defined on a set of points Q ⊆ P inside a square χ of size
k×k. We partition χ into four sub-squares, each of size k

2 × k
2 , using a horizontal

line �h and a vertical lines �v (see Fig. 2(b)). Let Q1 ⊆ Q be the subset of points
in χ which are at most d distance away from �h and/or �v (see Fig. 2(c)). Let
Q2 be a maximum cardinality subset of Q1 such that all the points in Q2 are
pairwise distance-d independent in P .

Lemma 8. |Q2| ≤ O(k).

Proof. Consider a vertical (resp. horizontal) strip of size (k + 2d) × 4d (resp.
4d × (k + 2d)) around �v (resp. �h), and partition it into cells of size 1

2
√
2

× 1
2
√
2

(showed as shaded region in Fig. 2(d)). Using the similar combinatorial argument
discussed in the proof of Lemma6, we can argue that the number of points
of Q1, in both strips, contributed to any optimum solution is O(k). Therefore
|Q2| ≤ O(k) as Q2 ⊆ Q1. ��

We apply the divide and conquer strategy on χ as follows:

Step 1: Choose all possible subsets of points of sizes at most O(k) in Q1.
Step 2: For each subset, do the following:

• Check whether they are mutually distance-d independent by consulting
M. If so, then they form Q2.

• Consult the matrix M to delete the points in χ which are at most distance
d − 1 away from each member in Q2.

• Recursively solve the four independent subproblems defined by the points
of Q \ Q1 in the four quadrants χ1, χ2, χ3, χ4 defined by �h and �v.

• Return Q2 = Q2 ∪ (
4⋃

i=1

Qi
2), where Qi

2 is the solution of the subproblem

on the points of χi.
• Retain the solution for the present subset if it is better than the solutions
produced by earlier choices of Q2.

Lemma 9. The solution produced for the cell χ (of size k × k) in the afore-
said process is optimum, and the time complexity of the proposed algorithm is
k2mO(k), where m = |Q|.
Proof. Let OPTχ be an optimal solution for the points lying in χ. Note that our
process checks all combinations of points of size |OPTχ|. Thus, the combination
of points in OPTχ must appear at some stage in the process.

If T (m, k) denote the time complexity of computing the distance-d indepen-
dent set in χ, then T (m, k) = 4×T (m, k

2 )×mO(k) +O(k2), which is k2 ×mO(k)

in the worst case. ��
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Fig. 2. (a) A square χ of size k × k, (b) the horizontal and vertical lines �h and �v

divide χ into four squares, each of size k
2

× k
2
, (c) the points lying in the strips of width

of 2d belong to Q1, and (d) A strip of width 4d around the vertical line �v.

Using the analysis of [16], we have the following result.

Theorem 3. Given a set P of n points (centers of the unit disks) in the plane
and an integer k > 1, the proposed scheme produces a DdIS of size at least

1
(1+ 1

k )2
|OPT | in k2nO(k) time, where |OPT | is the cardinality of a GMDdIS.
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6 Conclusion

In this article, we studied the maximum distance-d independent set (MDdIS)
problem, a variant of the maximum independent set problem, on unit disk
graphs. The MDdIS problem asks to find a maximum cardinality subset of ver-
tices such that any two vertices in the subset are at distance at least d in the
graph. We proved that the problem is NP-hard on unit disk graphs, proposed a
4-factor approximation algorithm, and an approximation scheme for the prob-
lem. Results analogous to the above for the ordinary independent set problem
(i.e., for d = 2) are well known for many years.

Acknowledgements. The authors would like to thank the anonymous referees for
their valuable comments and suggestions.
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Abstract. Given an undirected weighted graph G = (V, E) with
nonnegative weight function obeying the triangle inequality, a set
{C1, C2, . . . , Ck} of cycles is called a cycle cover if V ⊆ ⋃k

i=1 V (Ci)
and its cost is given by the maximum weight of the cycles. The Minimum
Cycle Cover Problem aims to find a cycle cover of cost at most λ with the
minimum number of cycles. An O(n2) 24/5-approximation algorithm and
an O(n5) 14/3-approximation algorithm are given by Yu and Liu (Theor
Comput Sci 654:45–58, 2016). However, the original proofs for approxi-
mation ratios are incomplete. In this paper we first present a corrected
simplified analysis on the 24/5-approximation algorithm. Then we give
a new O(n3) approximation algorithm that achieves the same ratio 14/3
and has much simpler proof on the approximation ratio. Moreover, we
derive an improved 32/7-approximation algorithm that runs in O(n5).

Keywords: Vehicle routing · Cycle cover
Traveling Salesman Problem · Approximation algorithm

1 Introduction

Given an undirected weighted graph G = (V,E) with nonnegative weight func-
tion obeying the triangle inequality, a set {C1, C2, . . . , Ck} of cycles is called a
cycle cover if V ⊆ ⋃k

i=1 V (Ci) and the cost of a cycle cover is given by the
maximum weight of the cycles. The goal of the Minimum Cycle Cover Problem
(MCCP) is to find a cycle cover of cost at most λ with the minimum number
of cycles. This fundamental vehicle routing problem and its variants (min-max
cycle/tree/path cover problem, minimum tree/path cover problems, etc.) have
a wide range of application and have received considerable research attention in
the past twenty years (see [1–4,8–11]).

MCCP is NP-hard since it generalizes the well-known Traveling Salesman
Problem (TSP). Arkin et al. [1] first give a 6-approximation algorithm for
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J. Chen and P. Lu (Eds.): FAW 2018, LNCS 10823, pp. 81–95, 2018.
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MCCP. The same result can also be achieved by a combination of the edge-
doubling strategy with the 3-approximation algorithm, proposed by the same
authors, for a closely related Minimum Tree Cover Problem (MTCP) which
is obtained by replacing cycles with trees in MCCP. Khani and Salavatipour
[6] derived an improved 5/2-approximation algorithm for MTCP, which implies
a 5-approximation algorithm for MCCP. Recently, Yu and Liu [12] showed
that a ρ-approximation algorithm for TSP can be transformed into a 4ρ-
approximation algorithm for MCCP. They also proposed a simple O(n2) 24/5-
approximation algorithm and a matching-based O(n5) 14/3-approximation algo-
rithm for MCCP.

In the rooted version of MCCP (RMCCP), each cycle is required to contain
at least one vertex in some prescribed depot set D ⊆ V and the objective is
to cover the vertices in V \ D to minimize the number of cycles. Currently,
all the available results for RMCCP consider only the case of one single depot
vertex, which is called the Distance Constrained Vehicle Routing Problem by
Nagarajan and Ravi [7]. The authors developed an approximation algorithm of
ratio min{log n, log λ}, which is improved to log λ

log log λ by Friggstad and Swamy [5].
Actually, whether single-depot RMCCP admits a constant-factor approximation
algorithm is a major open problem in this area, although a 2-approximation
algorithm for the problem defined on a tree is given by Nagarajan and Ravi [7].

In this paper, we note that there are some missing cases in the analysis of the
24/5- and 14/3-approximation algorithms in [12]. In particular, the enumeration
of the configurations of the bad cycles is incomplete, as shown in Figs. 1 and 2.
The original goal of this paper is to give a corrected analysis on these algorithms.
In this course we not only correct the analysis but also simplify the proofs sig-
nificantly. For the 24/5-approximation algorithm in [12] we show a much simpler
proof. Based on the simplified approach and some new observations, we present
a new 14/3-approximation algorithm that runs in O(n3) and give an improved
32/7-approximation algorithm that runs in O(n5).

The rest of the paper is organized as follows. We formally state the problem
and give some preliminary results in Sect. 2. In Sect. 3 we analyze the simple
24/5-approximation algorithm while our new 14/3-approximation algorithm is
discussed in Sect. 4. And the improved 32/7-approximation algorithm is pre-
sented in Sect. 5.

2 Preliminaries

Given an undirected weighted graph G = (V,E) with vertex set V and edge
set E, w(e) denotes the weight or length of edge e. If e = (u, v), we also use
w(u, v) to denote the weight of e. For B > 0, G[B] denotes the subgraph of
G obtained by removing all the edges in E with weight greater than B. For a
subgraph H (e.g. tree, cycle, path) of G, let V (H), E(H) be the vertex set and
edge set of H, respectively. The weight of H is defined as w(H) =

∑
e∈E(H) w(e).

If H is connected, let MST (H) be the minimum spanning tree on V (H) and
its weight w(MST (H)) is simplified to wT (H). The distance between H and
another subgraph H ′ is given by
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d(H,H ′) = min{w(e) | e = (u, v) such that u ∈ V (H), v ∈ V (H ′)}.

A cycle C is also called a tour on V (C). A cycle (path, tree) containing only
one vertex and no edges is a trivial cycle (path, tree) and its weight is defined
as zero. A set {C1, C2, . . . , Ck} of cycles (some of them may be trivial cycles)
is called a cycle cover if V ⊆ ⋃k

i=1 V (Ci). And the cost of this cycle cover is
defined as max1≤i≤k w(Ci), i.e., the maximum weight of the cycles. By replacing
cycles with trees we can define tree cover and its cost similarly.

The Minimum Cycle Cover Problem (MCCP) is defined as follows. Given an
undirected weighted complete graph G = (V,E) with nonnegative and metric
(i.e., obeying the triangle inequality) weight function w(·) on E, the aim is to
find a cycle cover of cost at most λ with the minimum number of cycles.

In the above definition we assume that the graph is complete. This involves
no loss of generality since we can take the metric closure of a connected graph if it
is not complete. For a disconnected graph, we simply connect distinct connected
components by edges with sufficiently large weights. We also suppose w.l.o.g.
that the weights of the edges and λ are integers.

Given an instance of MCCP, OPT indicates its optimal value and each cycle
in the optimal solution is called an optimum cycle. By the triangle inequality,
we can assume w.l.o.g that any two optimum cycles are vertex-disjoint. We use
n to denote the number of vertices of G.

The following result on decomposing a tree of large weight into a series of
trees of small weight is very useful to design and analyze the algorithms for
MCCP.

Lemma 1. [3,6] Given B > 0 and a tree T with maxe∈E(T ) w(e) ≤ B, we
can decompose T into k ≤ max{�w(T )

B �, 1} edge-disjoint trees T1, T2, . . . , Tk with
w(Ti) ≤ 2B for each i = 1, 2, . . . , k in O(|V (T )|) time.

3 A Simple 24
5
-Approximation

The main idea of the 24/5-approximation algorithm in [12] is as follows. First,
we obtain the graph G[λ

5 ] by deleting all the edges with weight greater than
λ
5 . Then the connected components of G[λ

5 ] are partitioned into light compo-
nents F1, F2, . . . , Fl with wT (Fi) ≤ λ

2 (i = 1, 2, . . . , l) and heavy components
Fl+1, Fl+2, . . . , Fl+h with wT (Fi) > λ

2 (i = l + 1, l + 2, . . . , l + h). Next we con-
struct a tree cover of cost at most λ

2 by taking the minimum spanning trees
of all the light components as well as the trees of weight at most λ

2 obtained
by decomposing the minimum spanning trees of the h heavy components using
Lemma 1. Lastly, by doubling all the edges in the tree cover we derive a cycle
cover of cost at most λ. The following is the formal description of the algorithm.
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Algorithm MCCP1

Step 1. Delete all the edges with weight greater than λ
5 in G to obtain G[λ

5 ] with
light components F1, F2, . . . , Fl and heavy components Fl+1, Fl+2, . . . , Fl+h.

Step 2. Set T := ∅ and S := ∅.
(i) For each i = 1, 2, . . . , l, put MST (Fi) into T ;
(ii) For each s = l + 1, l + 2, . . . , l + h, decompose MST (Fs) by Lemma 1 into

a set of trees of weight at most λ
2 and put them into T .

(iii) For each tree in T , double all the edges to obtain an Eulerian graph and
shortcut the repeated vertices of the Eulerian tour of this graph to obtain
a cycle. And put this cycle into S.

Step 3. Return the cycle cover S.

By construction it is easy to see that S is a cycle cover of cost no greater
than λ. We proceed to show that the number of cycles in S is not greater than
24
5 OPT .

To analyze the algorithm, let OPT = k and C∗
1 , C∗

2 , . . . , C∗
k be the vertex-

disjoint optimum cycles. Given a subgraph H of G, if V (Fi) ∩ V (H) 	= ∅ for
some i with 1 ≤ i ≤ l + h, we say that Fi is incident to H or H is incident
to Fi. Therefore, all the optimum cycles can be classified into three types. The
first type of optimum cycles, called light cycles, are incident to only light com-
ponents. The second type of optimum cycles, i.e., heavy cycles, are incident to
only heavy components. The last type of optimum cycles, known as bad cycles,
are incident to at least one light component and at least one heavy component.
Let kl, kh, kb be the number of light, heavy and bad cycles, respectively. Clearly,
k = kl + kh + kb.

An edge e of an optimum cycle with weight w(e) > λ
5 is referred to as a

long edge. For a long edge e, if it is incident to only one connected component
of G[λ

5 ] we call it an internal long edge. Otherwise, i.e., e is incident to two
distinct connected components of G[λ

5 ], e is called an external long edge. For
any optimum cycle C, the number of external long edges of C is denoted by
Ex(C). Since w(C) ≤ λ, we have Ex(C) ≤ 4. Moreover, an optimum cycle
cannot include a single external long edge since a cycle is a closed path, which
implies Ex(C) ≥ 2. By these facts, all possible configurations of a bad cycle are
shown in Fig. 1. For example, the fourth configuration indicates that the bad
cycle is incident to two heavy components and one light component. There are
two external long edges that are incident to two distinct heavy components and
another two external long edges that are incident to one light component and
one heavy component.

For j = 1, 2, 3, denote by Bj the set of bad cycles incident to exactly j
light components and set kj = |Bj |. It can be seen from Fig. 1 that B1, B2, B3

contains exactly the bad cycles with configurations (1)–(6), (7)–(11) and (12),
respectively. Therefore, kb =

∑3
j=1 kj .

First we bound the number l of trees generated in the Step 2(i) of Algorithm
MCCP1.
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Fig. 1. The configurations of a bad cycle. The circles or ovals not intersecting with
the dashed line represent light or heavy components and the closed curves crossing the
dashed line indicate the bad cycles.

Lemma 2. l ≤ 4kl + kb + k2 + 2k3.

Proof. On the one hand, each light component is incident to at least one light or
bad cycle since the optimal solution is a feasible cycle cover. On the other hand,
each light cycle is incident to at most four light components and each bad cycle
in Bj (j = 1, 2, 3) is incident to j light components. Thus the number l of light
components is at most 4kl + k1 + 2k2 + 3k3 = 4kl + kb + k2 + 2k3. ��

By this lemma, if h = 0 Algorithm MCCP1 returns a 4-approximate solution
since in this case k = kl and Step 2(ii) does not generate any trees. So we assume
h ≥ 1 in the remaining discussion of this section.

Before we bound the number of trees generated in the Step 2(ii) of Algorithm
MCCP1, we give an upper bound on the total weight of the minimum spanning
trees of the heavy components.

Lemma 3.
∑l+h

s=l+1 wT (Fs) ≤ 6
5khλ + 4

5kbλ − 1
5 (k2 + 2k3)λ − h

5λ.

Proof. Let H0 be the subgraph (of G) consisting of kh heavy cycles and kb bad
cycles. Since each optimum cycle is of length at most λ, we have

w(H0) ≤ (kh + kb)λ. (1)

Next we obtain a subgraph H1 from H0 by the following three operations.
First, for each heavy cycle C with Ex(C) = 0 we delete an arbitrary edge of
it to transform it into a path. Second, for each heavy cycle C with Ex(C) ≥ 1
we delete all the external long edges to turn it into Ex(C) paths. Lastly, we
delete all the external long edges of the bad cycles to obtain more paths and
throw away the paths incident to light components. By construction the three
operations generate some paths in H1 and each path is incident to only one
heavy component.

Let p0 be the number of heavy cycles C with Ex(C) = 0. Apparently, the
first operation generates p0 paths. In the second operation the total number of
paths generated equals

qh =
∑

C is a heavy cycle in H0 with Ex(C)≥1

Ex(C).
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The total number of paths generated in the last operation equals
∑3

j=1 pj , where
pj(j = 1, 2, 3) is the number of paths derived by the bad cycles in Bj .

For j = 1, 2, 3, let qj =
∑

C∈Bj
Ex(C), then qb =

∑3
j=1 qj is the total number

of external long edges of the bad cycles. For each bad cycle C ∈ Bj(j = 1, 2, 3),
we have Ex(C) ≥ 1 by definition and by removing all its external long edges we
obtain Ex(C) paths. Since C is incident to j light components, at least j paths
among the Ex(C) paths are incident to light components and hence are thrown
away in the last operation of the construction of H1 (Note that an optimum cycle
may enter/leave the same light component several times, thus creating multiple
paths within the same component.) As a result, C derives at most Ex(C) − j
paths in H1. Therefore, we have

Claim. For j = 1, 2, 3, any bad cycle C ∈ Bj that derives at most r paths in
H1, it holds that Ex(C) ≥ r + j.

Using the above claim, the pj paths in H1 derived by the bad cycles in Bj

correspond to at least pj +jkj external long edges, i.e., qj ≥ pj +jkj . Therefore,

qb =
3∑

j=1

qj ≥
3∑

j=1

(pj + jkj) =
3∑

j=1

pj + kb + k2 + 2k3. (2)

Since we delete at least qh + qb external long edges from H0 to obtain H1,
we have

w(H1) ≤ w(H0) − (qh + qb) · λ

5
≤ (kh + kb)λ − (qh + qb) · λ

5
, (3)

where the first inequality follows from the definition of external long edges and
the second inequality follows from (1).

In H1, for each s = l + 1, l + 2, . . . , l + h we connect the ks paths incident
to Fs by ks − 1 edges in E(Fs) to obtain a spanning tree T̂s of V (Fs). This is
feasible since Fs is a connected component. The resulted subgraph H2 has h
connected components while H1 consists of qh +

∑3
j=0 pj connected components

(more exactly, paths) as shown before. So the total number of edges added to
H2 is

∑l+h
s=l+1(ks − 1) = qh +

∑3
j=0 pj − h. Since the weight of each edge in

⋃l+h
s=l+1 E(Fs) is at most λ

5 , we have

w(H2) ≤ w(H1) + (qh +
3∑

j=0

pj − h) · λ

5

≤ khλ +
p0
5

λ + (5kb +
3∑

j=1

pj − qb − h) · λ

5

≤ 6
5
khλ + (4kb − k2 − 2k3 − h) · λ

5

=
6
5
khλ +

4
5
kbλ − 1

5
(k2 + 2k3)λ − h

5
λ, (4)
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where the second inequality follows from (3) and the third inequality holds by
(2) and p0 ≤ kh.

Note that an edge in T̂s is either an edge in E(Fs) or an internal long edge.
Hence w(T̂s) ≥ wT (F̃s), where F̃s is obtained by adding to Fs all the internal
long edges whose end vertices are both included in V (Fs). Since each internal
long edge is of weight greater than λ

5 and each edge of E(Fs) is of weight no
greater than λ

5 , MST (Fs) is identical to MST (F̃s)(to see this, imagine running
Kruskal’s algorithm on F̃s. It will never add an edge of weight greater than λ

5 ,
since the edges of weight at most λ

5 already make F̃s connected.). Therefore,
w(T̂s) ≥ wT (F̃s) = wT (Fs). Taking the summation for s = l + 1, l + 2, . . . , l + h
and using inequality (4) prove the lemma. ��
Lemma 4. The Step 2(ii) of Algorithm MCCP1 generates at most 24

5 kh +
16
5 kb − 4

5 (k2 + 2k3) trees.

Proof. For each s = l + 1, l + 2, . . . , l + h, by taking B = λ
4 in Lemma 1 we can

decompose MST (Fs) into at most max{�wT (Fs)
λ/4 �, 1} trees of weight no more

than λ
2 . Moreover, since Fs is a heavy component we have wT (Fs) ≥ λ

2 . So it
holds that max{�wT (Fs)

λ/4 �, 1} = �wT (Fs)
λ/4 � ≤ wT (Fs)

λ/4 and the total number of trees
generated in Step 2(ii) of Algorithm MCCP1 is at most

l+h∑

s=l+1

wT (Fs)
λ
4

≤ 24
5

kh +
16
5

kb − 4
5
(k2 + 2k3),

where the inequality follows from Lemma 3. ��
By Lemmas 2 and 4, the number of trees generated by Algorithm MCCP1

is at most

l +
24
5

kh +
16
5

kb − 4
5
(k2 + 2k3) ≤ 4kl +

24
5

kh +
21
5

kb +
1
5
(k2 + 2k3)

≤ 4kl +
24
5

kh +
21
5

kb +
2
5
kb

= 4kl +
24
5

kh +
23
5

kb.

So we have

Lemma 5. |S| = |T | ≤ 24
5 k.

By this lemma and a simple analysis of the complexity of Algorithm MCCP1
we have

Theorem 1. There is an O(n2) 24
5 -approximation algorithm for MCCP.
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4 A Faster 14
3
-Approximation

In this section we present a 14/3-approximation algorithm for MCCP that runs
in O(n3) time while the Algorithm MCCP2 in [12] has a time complexity of
O(n5). To obtain the faster algorithm, we modify Algorithm MCCP1 in the
following ways. First, we delete the edges with weight greater than λ

6 instead of
λ
5 and redefine the light (heavy) components as components with the minimum
spanning tree weight no more than λ

12 (greater than λ
12 ). Second, we try to merge

the minimum spanning trees of some light components to obtain the trees in the
final tree cover.

As before let F1, F2, . . . , Fl and Fl+1, Fl+2, . . . , Fl+h be the light components
and heavy components, respectively. To decide which minimum spanning trees
of light components to be merged together, we solve a maximum cardinality
matching problem on the following graph H0.

Definition 1. The graph H0 has l vertices u1, u2, . . . , ul. For 1 ≤ i ≤ l, the
vertex ui corresponds to the light component Fi. For 1 ≤ i < j ≤ l, (ui, uj) is an
edge of H0 if and only if wT (Fi) + wT (Fj) + d(Fi, Fj) ≤ λ

2 .

The new algorithm is described as follows.

Algorithm MCCP3

Step 1. Delete all the edges with weight greater than λ
6 in G to obtain G[λ

6 ] with
light components F1, F2, . . . , Fl and heavy components Fl+1, Fl+2, . . . , Fl+h.

Step 2. Set T := ∅ and S := ∅. Find a maximum cardinality matching M0 in H0

and proceed to the following substeps:
(i) For any (ui, uj) ∈ M0, merge MST (Fi) with MST (Fj) by an edge e in G

corresponding to d(Fi, Fj) to obtain a tree and put it into T ;
(ii) For any vertex ui exposed by M0, put MST (Fi) into T ;
(iii) For each s = l + 1, l + 2, . . . , l + h, decompose MST (Fs) by Lemma 1 into a

set of trees of weight at most λ
2 and put them into T .

(iv) For each tree in T , double all its edges to obtain an Eulerian graph and
shortcut the repeated vertices of the Eulerian tour of this graph to obtain
a cycle. Put this cycle into S.

Step 3. Return the cycle cover S.

It can be seen that S is indeed a cycle cover of cost no greater than λ. We
next show the approximation ratio of the algorithm is 14/3.

Let OPT = k and C∗
1 , C∗

2 , . . . , C∗
k be the vertex-disjoint optimum cycles.

We define light, heavy, bad cycles as in the last section and let kl, kh, kb be the
number of light, heavy and bad cycles, respectively. We redefine a long edge as
an edge e of an optimum cycle with w(e) > λ

6 . The internal long edges, external
long edges and the function Ex(·) are defined as before except that the graph
G[λ

5 ] is replaced by G[λ
6 ]. For each optimum cycle C, we have Ex(C) ≤ 5 since

w(C) ≤ λ. For a bad cycle, besides the configurations shown in Fig. 1 which
involve at most four external long edges, there are some extra configurations
that involve five external long edges given in Fig. 2.
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The bad cycles are partitioned into four categories, i.e., B1, B2, B3, B4, where
Bj(j = 1, 2, 3, 4) is defined as the set of bad cycles incident to exactly j light
components. As shown in Figs. 1 and 2, B1 contains exactly the bad cycles
with configurations (1)–(6) and (13)–(18) while B2 consists of the bad cycles
with configurations (7)–(11) and (19)–(26). B3 is the set of bad cycles with
configurations (12) and (27)–(31). B4 include the bad cycles with configurations
(32). Set kj = |Bj | for j = 1, 2, 3, 4. Therefore, kb =

∑4
j=1 kj .

Fig. 2. The configurations of bad cycles with five external long edges.

The following lemma has been proven in [12].

Lemma 6. [12] For any optimum cycle C with Ex(C) = 5, each external long
edge of C is of weight no more than λ

3 .

It is the following critical observation that greatly simplifies the analysis of
the algorithm.

Lemma 7. For any bad cycle C ∈ B3 ∪ B4, there exists two light components
incident to C such that the distance between these two light components is at
most λ

3 .

Next we construct a matching M1 in H0. For each light cycle C incident to
five light components, it holds that Ex(C) = 5. Let Fi and Fj be any two of
the five light components connected by an external long edge of C. By Lemma 6
the weight of the external long edge is at most λ

3 . Therefore, wT (Fi)+wT (Fj)+
d(Fi, Fj) ≤ λ

12 + λ
12 + λ

3 = λ
2 and (ui, uj) ∈ E(H0). We put (ui, uj) into M1

unless ui or uj has already been matched with some other vertex in M1. For
each bad cycle C ∈ B3 ∪ B4, there exists two light components, say Fi, Fj ,
incident to C such that d(Fi, Fj) ≤ λ

3 by Lemma 7. As a result, (ui, uj) ∈ E(H0).
Again we put (ui, uj) into M1 unless ui or uj has already been matched with
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some other vertex in M1. After that, the construction of M1 is completed and
R = {u1, u2, . . . , ul} \V (M1) is the set of vertices in H0 that are left exposed by
M1. Clearly, |R| = l − 2|M1|.

By construction, each light cycle incident to five light components results
in either one edge in M1 and at most three exposed vertices in R or at most
four exposed vertices in R. And each light cycle incident to at most four light
components generates at most four exposed vertices in R. Each bad cycle in
Bj(j = 1, 2) is incident to exactly j light components and therefore derives at
most j exposed vertices in R. For a bad cycle in B3(B4), there exists two light
components such that the distance between them is no more than λ

3 and hence
derives either one edge in M1 and at most one exposed vertex (two exposed
vertices) in R or at most two (three) exposed vertices in R. So we have

l − |M1| = |M1| + |R| ≤ 4kl + k1 + 2k2 + 2k3 + 3k4

= 4kl + kb + k2 + k3 + 2k4, (5)

which implies

Lemma 8. Algorithm MCCP3 generates at most 4kl + kb + k2 + k3 +2k4 trees
in Step 2(i) and (ii).

By this lemma, we may assume h ≥ 1 in the rest of this section. To bound
the number of trees generated in Step 2(iii), we give an upper bound on the total
weight of the minimum spanning trees of the heavy components.

Lemma 9.
∑l+h

s=l+1 wT (Fs) ≤ 7
6khλ + 5

6kbλ − 1
6 (k2 + 2k3 + 3k4)λ − h

6λ.

Lemma 10. The number of trees generated in the Step 2(iii) of Algorithm
MCCP3 is at most 14

3 kh + 10
3 kb − 2

3 (k2 + 2k3 + 3k4).

By Lemmas 8 and 10 we deduce

Lemma 11. |S| = |T | ≤ 14
3 k.

By this lemma and a simple analysis of the complexity of Algorithm MCCP3
we have

Theorem 2. There is an O(n3) 14
3 -approximation algorithm for MCCP.

5 32
7
-Approximation

In this section we present a 32/7-approximation algorithm for MCCP that runs in
O(n5) time. To obtain the improved algorithm, we modify Algorithm MCCP3
in the following ways. First, we delete the edges with weight greater than λ

7

instead of λ
6 and redefine the light (heavy) components as components with the

minimum spanning tree weight no more than 3
28λ (greater than 3

28λ). Second,
besides merging the minimum spanning trees of some light components we also
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try to connect the minimum spanning trees of some other light components to
the heavy components before decomposition operation.

As before let F1, F2, . . . , Fl and Fl+1, Fl+2, . . . , Fl+h be the light components
and heavy components, respectively. Denote wmin(Fi) with 1 ≤ i ≤ l by the
minimum weight of edges in G with one vertex in V (Fi) and the other vertex in
⋃l+h

s=l+1 V (Fs). To decide which minimum spanning trees of light components to
be merged together and which minimum spanning trees of light components to
be connected to heavy components, we solve a series of minimum weight perfect
matching problems on the following graph Ha,b with weight function w̃(·).
Definition 2. Given nonnegative integers a, b with 0 ≤ a+b ≤ l, the graph Ha,b

has l+a+b vertices u1, u2, . . . , ul, x1, x2, . . . , xa, y1, y2, . . . , yb. For 1 ≤ i ≤ l, the
vertex ui corresponds to the light component Fi. If wT (Fi)+wT (Fj)+d(Fi, Fj) ≤
λ
2 , then add an edge (ui, uj) with w̃(ui, uj) = 0 to Ha,b. For all i = 1, 2, . . . , l
and j = 1, 2, . . . , a, add an edge (ui, xj) with w̃(ui, xj) = 0 to Ha,b. For each
i = 1, 2, . . . , l, if wmin(Fi) ≤ λ

2 , then for each j = 1, 2, . . . , b, add an edge (ui, yj)
with w̃(ui, yj) = wT (Fi) + wmin(Fi) to Ha,b. There are no other edges in Ha,b.

The improved algorithm is described as follows.

Algorithm MCCP4

Step 1. Delete all the edges with weight greater than λ
7 in G to obtain G[λ

7 ] with
light components F1, F2, . . . , Fl and heavy components Fl+1, Fl+2, . . . , Fl+h.

Step 2. For a = 0, 1, . . . , l, b = 0, 1, . . . , l − a set Ta,b := ∅ and Sa,b := ∅.
If there is a minimum weight perfect matching Ma,b in Ha,b, find it and
proceed to the following three substeps:

(i) For any (ui, uj) ∈ Ma,b, merge MST (Fi) and MST (Fj) by an edge e in G
corresponding to (ui, uj) to obtain a tree and put it into Ta,b;

(ii) For any (ui, xj) ∈ Ma,b, put MST (Fi) into Ta,b;
(iii) For any (ui, yj) ∈ Ma,b, connect MST (Fi) to some heavy component by

the edge corresponding to wmin(Fi). This results in h modified heavy com-
ponents F ′

l+1, F
′
l+2, . . . , F

′
l+h. For each i = l + 1, l + 2, . . . , l + h, decompose

MST (F ′
i ) by Lemma 1 into a set of trees of weight at most λ

2 and put them
into Ta,b.

(iv) For each tree in Ta,b, double all its edges to obtain an Eulerian graph and
shortcut the repeated vertices of the Eulerian tour of this graph to obtain
a cycle. Put this cycle into Sa,b.

Step 3. Among all the nonempty Sa,b, return the one contains the minimum
number of cycles.

It can be seen that each nonempty Sa,b is a cycle cover of cost no greater
than λ. We next show the approximation ratio of the algorithm is 32/7.

Let OPT = k and C∗
1 , C∗

2 , . . . , C∗
k be the vertex-disjoint optimum cycles.

We define light, heavy, bad cycles as in the last section and let kl, kh, kb be the
number of light, heavy and bad cycles, respectively. We redefine a long edge as
an edge e of an optimum cycle with w(e) > λ

7 . The internal long edges, external
long edges and the function Ex(·) are defined as before except that the graph
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G[λ
6 ] is replaced by G[λ

7 ]. For each optimum cycle C, we have Ex(C) ≤ 6 since
w(C) ≤ λ. And by the triangle inequality each of the external long edges of C
is of weight no more than λ

2 .
An external long edge is called a bridge if it has one vertex in some light

component and the other in some heavy component. The bad cycles are par-
titioned into six categories, i.e., B1, B2, . . . , B6. Bj(j = 1, 2, 4, 5) is defined as
the set of bad cycles incident to exactly j light components. For a bad cycle C
incident to exactly three light components, if only one of these light components
is incident to some bridge, C is categorized as in B3; otherwise, i.e., at least two
of these light components are incident to some bridge, C is categorized as in B6.
Set kj = |Bj | for j = 1, 2, . . . , 6. Therefore, kb =

∑6
j=1 kj .

Lemma 12. For any optimum cycle C with Ex(C) = 6, each external long edge
of C is of weight no more than 2

7λ.

Lemma 13. For any bad cycle C ∈ B3 incident to each light component in
Q = {Fi1 , Fi2 , Fi3}, then there exists two light components Fis , Fit ∈ Q with
wT (Fis) + wT (Fit) + d(Fis , Fit) ≤ λ

2 .

Lemma 14. For any bad cycle C ∈ B4 incident to each light component in
Q = {Fi1 , Fi2 , Fi3 , Fi4}, then there exists two light components Fis , Fit ∈ Q with
wT (Fis)+wT (Fit)+d(Fis , Fit) ≤ λ

2 and some light component Fir ∈ Q\{Fis , Fit}
that is incident to some bridge.

Next we construct a matching M1 in Ha′,b′ based on the optimum cycles.
Rather than give an explicit value for a′, b′ in advance, we increase the values
of a′, b′ whenever we need to match some vertex in {u1, u2, . . . , ul} to some x-
vertex or y-vertex in Ha′,b′ . After we complete the construction of M1, a′, b′ are
defined as the number of x-vertex or y-vertex used in the process, respectively.

Initially M1 = ∅. We add the edges to M1 in several steps. In each step we
consider a particular type of optimum cycles and the components incident to
it. In case we add an edge (ui, uj) to M1 to match a vertex ui /∈ V (M1) to
uj ∈ V (M1)(that is, uj is already matched to some other vertex in the previous
steps), we match ui to a new x-vertex. If ui, uj ∈ V (M1), we actually add no
edges to M1.

To start with, we consider all light cycles. For each light cycle C incident
to exactly six light components, we must have Ex(C) = 6. And we can choose
four light components Fi, Fj , Fs, Ft such that Fi and Fj is connected by some
external long edge e1 and Fs and Ft is connected by another external long edge
e2. By Lemma 12 each of w(e1) and w(e2) is at most 2

7λ. Given the weight
of the minimum spanning tree of each light component is at most 3

28λ, we have
wT (Fi)+wT (Fj)+d(Fi, Fj) ≤ 3

28λ·2+ 2
7λ = λ

2 and wT (Fs)+wT (Ft)+d(Fs, Ft) ≤
λ
2 . Therefore, (ui, uj), (us, ut) ∈ E(Ha′,b′). We put two edges (ui, uj), (us, ut)
into M1 and each of the two vertices corresponding to the remaining two light
components incident to C is matched to a copy of x-vertex.

For each light cycle C incident to five light components, it holds that
Ex(C) ≥ 5 and one of the external long edges, say e, has a length of at most λ

5 .
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Suppose Fi and Fj be the light components incident to e. We can add the edge
(ui, uj) to M1 since wT (Fi)+wT (Fj)+d(Fi, Fj) ≤ 3

28λ ·2+w(e) ≤ 3
14λ+ λ

5 ≤ λ
2 .

We also match each of the three vertices corresponding to the remaining three
light components incident to C to a copy of x-vertex. For each light cycle inci-
dent to at most four light components, say Fi1 , . . . , Fip(p ≤ 4), we simply match
Fij (j = 1, . . . , p) to a copy of x-vertex.

For each bad cycle in B1, let Fi be the only light component it is incident to.
We simply match Fi to a copy of x-vertex. For each bad cycle in B2, let Fi, Fj be
the two light components it is incident to. One of these two light component, say
Fi, has to be incident to some bridge. Then we match the vertex uj corresponding
to the other light component Fj to a copy of x-vertex. For each bad cycle in
B3, by Lemma 13 we can match two of the three vertices corresponding to the
three light components incident to it and match the vertex corresponding to
the remaining light component to a copy of x-vertex. For each bad cycle in B4,
by Lemma 14 we can match two of the four vertices corresponding to the four
light components incident to it and match the third vertex corresponding to the
third light component to a copy of x-vertex and guarantee that the last light
component is incident to some bridge.

For each bad cycle C ∈ B5 incident to five light components Fi1 , Fi2 , . . . , Fi5 ,
it has to be incident to exactly one heavy component, say Fi6 , and Ex(C) = 6.
We can assume without loss of generality that ej(j = 1, 2, . . . , 6) is the external
long edge of C that connects Fij with Fij+1 (set Fi7 = Fi1 for convenience).
Similar to the case of light cycles incident to six light components, we can add
edges (ui1 , ui2), (ui3 , ui4) to M1 and match ui5 to a copy of x-vertex. For each bad
cycle in B6, it is incident to three light components and two of them are incident
to some bridge, we simply match the vertex corresponding to the remaining light
component to a copy of x-vertex.

Now we have considered all the light and bad cycles. Let R be the set
of vertices in {u1, u2, . . . , ul} whose corresponding light components have not
been matched so far. Set b′ = |R|. Without loss of generality we suppose
that R = {ul−b′+1, ul−b′+2 . . . , ul}. It can be seen that for each i = 1, 2, . . . , b′

there exists some bridges connecting Fl−b′+i with some heavy component and
wmin(Fl−b′+i) ≤ λ

2 . So we match Fl−b′+i with a copy of y-vertex. That is, we
add the set M ′ = {(ul−b′+1, y1), (ul−b′+2, y2), . . . , (ul, yb′)} of edges to M1. This
completes the construction of M1. Clearly, M1 is a perfect matching in Ha′,b′ .
Thus we have

Lemma 15. There exists a perfect matching in Ha′,b′ .

Denote by M ′′ = M1 \ M ′. By construction, each light cycle results in at
most four edges in M ′′. And each bad cycle in B1, B2, B3, B4, B5, B6 induces at
most 1, 1, 2, 2, 3, 1 edges in M ′′, respectively. As a result,

|M ′′| =
l + a′ − b′

2
≤ 4kl + k1 + k2 + 2(k3 + k4) + 3k5 + k6

= 4kl + kb + k3 + k4 + 2k5, (6)

which implies
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Lemma 16. For a = a′ and b = b′, Algorithm MCCP4 generates at most
4kl + kb + k3 + k4 + 2k5 trees in Step 2(i) and (ii).

As before we may assume h ≥ 1 in the remaining discussion of this section.
To give an upper bound on the number of trees generated in Step 2(iii), we first
bound the total weight of the modified minimum spanning trees.

Lemma 17. For a = a′ and b = b′,

l+h∑

s=l+1

wT (F ′
s) ≤ 8

7
khλ +

6
7
kbλ − (2k3 + 2k4 + 4k5 + h) · λ

7
.

Lemma 18. For a = a′ and b = b′, the number of trees generated in the Step
2(iii) of Algorithm MCCP4 is at most 32

7 kh + 24
7 kb − 8

7 (k3 + k4 + 2k5).

By Lemmas 16 and 18 we deduce

Lemma 19. |Sa′,b′ | = |Ta′,b′ | ≤ 32
7 k.

By this lemma and a simple analysis of the complexity of Algorithm MCCP4
we have

Theorem 3. There is an O(n5) 32
7 -approximation algorithm for MCCP.
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Abstract. We study two NP-hard problems formulated in computa-
tional biology. The minimum tree cut/paste distance problem asks for
the minimum number of cut/paste operations we need to apply to trans-
form a tree to another tree. The minimum common integer partition
problem asks for a minimum-cardinality integer partition of a number
that refines two given integer partitions of the same number. We give
parameterized algorithms for both problems.

1 Introduction

In computational biology, we are given a set of data and asked to determine a
“ground truth.” Although the ground truth under concern itself can never be
known for sure, we do have many good approximations for it. Two families of
problems have thus arisen naturally. The first is to find the distance between two
given objects, which is defined to be the minimum number of (problem-specific)
editing operations that one need to apply to transform one object to the other.
Based on the type of objects and the allowed editing operations, there are a
plethora of such problems studied in literature. The second is to find an object
that is closest to the given set of objects. Again, for the same type of objects,
one can define significantly different versions by using different distance measures
and minimizing different objective functions, e.g., the total distances (which is
equivalently to the average distance) or the maximum distance between the
solution and all candidates. We approach these problems by considering their
parameterized complexity. A problem, parameterized by k, is fixed-parameter
tractable (FPT) if there is an algorithm running in time f(k) · nO(1), where n is
the input size and f is a computable function depending only on k [7].

The first problem we study is the minimum tree cut/paste distance prob-
lem, where the objects are directed, rooted, and unlabeled trees, and the editing
operations are cuts (edge deletions) and pastes (edge additions). In the study
of pedigree graphs (i.e., family trees), Kirkpatrick et al. [11] formulated this
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problem as a simplified case of the pedigree edit distance problem, and showed
that both of them are NP-hard. The second problem is the minimum common
integer partition problem, which is inspired by computational biology applica-
tion including log assignment and DNA fingerprint assembly [3,4,9]. We say
that a multiset A of positive integers is an integer partition of another multiset
{a1, a2, . . . , ap} of positive integers if the integers of A can form p sub-multisets
such that the multiset union of those p sub-multisets is A, and the sum of the
ith sub-multiset is ai for 1 ≤ i ≤ p. Given two multisets A1 and A2 of positive
integers, the minimum common integer partition problem asks for an integer
partition of both A1 and A2 that has the minimum cardinality.

The reduction from the minimum common integer partition problem to the
minimum tree cut/paste distance problem given by Kirkpatrick et al. [11] implies
that the former is equivalent to a very special case of the latter where both input
trees are spiders (i.e., trees of which only the root nodes can have degrees larger
than two). The size of an optimal solution for the former problem is the size of
an optimal solution for the latter problem plus min{|A1|, |A2|}.

A closely related problem is the minimum common string partition problem
[4], which, given two strings S1 and S2 with the same length, asks whether they
can be partitioned into the same set of substrings with the minimum cardinal-
ity. Although its name has a similar pattern as the minimum common integer
partition problem, it is actually a distance problem. We can easily extend the
definition of the minimum common string partition problem to define it in a
similar way as the minimum common integer partition problem, i.e., instead of
two strings, we take as input two multisets of strings. In so doing we can con-
sider the minimum common integer partition problem as a special case of the
minimum common string partition problem, where all letters in the strings are
the same, and hence only their lengths matter. On the other hand, the mini-
mum common string partition problem can be considered as a special case of
the minimum tree cut/paste distance problem: There is an easy reduction from
the minimum common string partition problem to the minimum tree cut/paste
distance problem such that their optimal solutions have the same size.

Damaschke [5] first considered their parameterized complexity and presented
an FPT algorithm for minimum common string partition with a combined
parameter, i.e., the number k of substrings and the so-called “repetition num-
ber.” Jiang et al. [10] followed suit by considering another combined param-
eter, k and the maximum occurrence of a letter. Whether it is FPT parame-
terized by only k had remained open until recently resolved by Bulteau and
Komusiewicz [2], who devised a very complicated algorithm. Since the afore-
mentioned reduction from minimum common string partition to minimum tree
cut/paste distance preserves the solution size k, an FPT algorithm for the latter
with parameter k would immediately imply an FPT algorithm for the former
with parameter k. This suggests that designing such an algorithm would be very
challenging. Therefore, we step back and consider a combined parameter, which
consists of k and the number � of leaves of the input trees. As usual, n denotes
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the number of nodes in the input trees. Our first result is an FPT algorithm for
the minimum tree cut/paste distance problem with this combined parameter.

Theorem 1. The minimum tree cut/paste distance problem can be solved in
2O(k log(�+k)) · nO(1) time.

The selection of the combined parameter is well justified if we turn to the spe-
cial case where both input trees are spiders. In a nontrivial instance, the optimal
solution is at least half of the number of leaves in the spiders (Proposition 9), so
Theorem 1 already implies the fixed-parameter tractability of the minimum com-
mon integer partition with parameter k. With the parameter-preserved reduction
from the minimum minimum common integer partition problem [11], this actu-
ally settles its fixed-parameter tractability. This algorithm obtained as such is
nevertheless inefficient. Our second result is a direct and more efficient FPT
algorithm for minimum common integer partition.

Theorem 2. The minimum common integer partition problem can be solved in
16k · nO(1) time.

The minimum common integer partition problem can be easily generalized
to allow more than two multisets in the input. Our algorithm can also be easily
adapted to the general setting. This general version has been extensively studied
from the aspect of approximation algorithms [3,13,14]. The best-known approxi-
mation ratio is 0.6t [13], where t is the number of multisets given in the input. In
particular, this implies a 1.2-approximation for the version studied in this paper.
The minimum tree cut/paste distance problem is a relatively new member of the
large family of tree edit distance problems. Based on the particular applications,
the trees might be rooted or unrooted, directed or undirected, labeled or unla-
beled; another common restriction is to consider only binary trees. The editing
operations considered include deleting nodes (or adding nodes viewed from the
other way), relabeling nodes [12], and pruning/regrafting subtree [8]. See the
survey of DasGupta et al. [6] for a in-depth coverage of related work. In the
aforementioned reduction from minimum common string partition to minimum
tree cut/paste distance, the resulting trees have a large number of leaves, and
thus it is not clear how our algorithm can be used in minimum common string
partition. We leave as an open problem to devise an FPT algorithm for minimum
tree cut/paste distance with only parameter k, and a more efficient parameter-
ized algorithm for minimum common string partition.

2 Preliminaries and Hardness Results

In this paper, all trees are unlabeled and rooted, hence, they have a special node
called the root. Recall that in a rooted tree, there is a parent-child relation-
ship between every pair of adjacent vertices, and thus the edge directions are
implicitly decided—they are directed from the parent to the child. For notational
convenience, without explicitly specifying the edge directions in the paper, we
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Fig. 1. Illustration that directions matter.

will use the terminology of undirected trees. We start from a formal definition
of the minimum tree cut/paste distance problem.

Minimum tree cut/paste distance
Input: two rooted trees T1 and T2 with |V (T1)| = |V (T2)|, and a non-

negative integer k;
Task: can T1 be isomorphic to T2 by applying at most k edge deletions

and at most k edge additions to T1?

Note that the definition does not require us to preserve the roots. We say a
tree T1 is transformed to another tree T2 if and only if T1 is isomorphic to T2

after applying some edge deletions and additions to it. Moreover, edge deletions
(resp., additions) corresponds to edge cut (resp., paste) operations. An easy fact
is that to transform a tree to another tree, we need exactly the same number
of cut operations and paste operations. However, it is worth stressing that the
edge directions do make the problem different from its undirected variant. To
transform tree T1 to tree T2 in Fig. 1, for example, we need one cut and one paste
operations, though these two trees are already equivalent ignoring directions.

Now let us consider a problem that is closely related to the minimum tree
cut/paste distance problem, called the minimum common integer partition prob-
lem. Let n be a positive integer. A multiset A = {a1, a2, . . . , ap} of p positive
integers is an integer partition of n if

∑p
i=1 ap = n, where p is denoted by |A|.

Abusing notation, we say that another integer partition A′ is an integer partition
of A if the integers of A′ can form p sub-multisets, i.e., {A′

1, · · · , A′
p}, such that

(i) for any i �= j ∈ [1, p], A′
i ∩ A′

j = ∅; (ii)
⋃

i∈[1,p] A
′
i = A′; and (iii) for any

i ∈ [1, p], A′
i is an integer partition of ai. Note that |A′| ≥ |A| since A is an

integer partition of itself. Given two integer partitions A1 and A2 of the same
integer n, the minimum common integer partition problem asks for a common
integer partition of A1 and A2 with the minimum cardinality.

Minimum common integer partition
Input: two integer partitions A1 and A2 of integer n, and a nonnegative

integer k;
Task: is there an integer partition A of both A1 and A2 such that

|A| ≤ min{|A1|, |A2|} + k?

Kirkpatrick et al. [11] have presented the following reduction from minimum
common integer partition to minimum tree cut/paste distance. Let ({a1, a2,
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· · · , ap}, {b1, b2, · · · , bq}, kcip) be a given instance of minimum common integer
partition. We construct tree T1 (resp., T2) by adding for each i with 1 ≤ i ≤ p
(resp., 1 ≤ j ≤ q) a distinct path from its root r1 (resp., r2) of length ai (resp.,
bj). Note that both T1 and T2 have 1 +

∑p
i=1 ap nodes; moreover, �(T1) = p and

�(T2) = q, where �(Ti) is the number of leaves in tree Ti.

Proposition 1 ([11]). The instance ({a1, a2, · · · , ap}, {b1, b2, · · · , bq}, kcip) is
a yes-instance of minimum common integer partition if and only if (T1, T2, kcip)
is a yes-instance of minimum tree cut/paste distance.

A node different from the root is a leaf if its degree is one—the root itself,
regardless its degree, is not considered a leaf. Let �(T ) denote the number of
leaves in tree T . A tree is called a spider if all nodes different from the root and
leaves have degree precisely two. Since both T1 and T2 constructed above are
spider trees, the minimum tree cut/paste distance problem is already NP-hard
on spider trees.

3 An Algorithm for Minimum Tree Cut/Paste Distance

We start from the parameterized version of the minimum tree cut/paste distance
problem with a combined parameter that consists of the editing number k and
� := max{�(T1), �(T2)}. Recall �(T ) is the number of leaves of tree T . It is easy
to use induction to verify that k cut and k paste operations can only change the
number of leaves by at most k. Hence if T2 has less than �(T1) − k or more than
�(T1) + k leaves, then we can safely return “NO.” We may henceforth assume
that �(T1) − k ≤ �(T2) ≤ �(T1) + k.

Let T be a rooted and unlabeled tree, and U be a set of nodes of it. We
use T [U ] to denote the sub-forest (or sub-tree) of T induced by the nodes of U .
Recall that node v is an ancestor of node u if v is visited by the path from the
root of T to u; hence v is an ancestor of itself. A node of T that has at least
two children is called a joint. If all the edges from every joint to its children are
removed, then every node will have its degree at most two; in other words, we
end with a collection of paths, and such a path is called a pipelines of T . We
take the liberty to consider a pipeline as a set of nodes; in this sense, all those
pipelines of T makes a partition of V (T ), marked as P(T ). For a node set X of
V (T ), we use P(T )|X = {X ∩ Vi | ∀Vi ∈ P(T ),X ∩ Vi �= ∅} to denote a partition
of node set X. Specially, if X is a sub-set of nodes of pipeline p of T , and T [X] is
connected (namely, a consecutive path), then we call T [X] a segment of pipeline
p. Note that a pipeline of a tree T may become a segment of some pipeline of
tree T ′, where T ′ is a tree that is obtained by cutting some edges from T .

Figure 2 shows an instance (T1, T2, k = 2) for the minimum tree cut/paste
distance problem, where both T1 and T2 have 11 nodes. The pipelines of T1

are {1}, {2, 4}, {7}, {8}, {3}, {5, 9}, {6}, {10}, and {11}, the pipelines of T2 are
{1, 2}, {3}, {4, 8}, {5}, {6}, {7}, {9}, {10}, and {11}. There are four joints in T1,
which are 1, 3, 4, and 6, and three joints in T2, which are 2, 3, and 5. One optimal
solution for the instance is that edges 〈1, 2〉 and 〈2, 4〉 are cut, and edges 〈4, 3〉
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and 〈4, 2〉 are added. Let X = {2}, then T1[X] is a segment of the pipeline of T1

whose node set is {2, 4}.

1

2 3

4 5 6

7 8
9

10 11

(a) T1

1

2
3

4
5

6
7 8 9 10 11

(b) T2

Fig. 2. An instance (T1, T2, k = 2) for the minimum tree cut/paste distance problem.

Let p be a path of a tree T . The length of p, denoted by len(p), is defined to
be the number of nodes in V (p). Since T is rooted, there is only one node that
is an ancestor of all nodes in V (p), which is called the top node of p, marked as
t(p). Moreover, there is only one node that all nodes in V (p) are its ancestors,
which is called the bottom node of p, marked as b(p). Note that the bottom node
and top node can be identical if p consists of only one node. Specially, if p is a
pipeline of T and the root of T is in V (p), then we call p is a root-pipeline. A
well-known fact states that the number of joints in a tree is at most �(T ) − 1,
thus, there are at most 2�(T ) − 1 pipelines of a tree.

Since the tree T1 will become a forest during edge deletion process, we will
consider a slightly more generalized version of the minimum tree cut/paste dis-
tance problem, the minimum cut/paste distance between a forest and a tree,
which is formally defined as follows:

Minimum cut/paste distance between a forest and a tree
Input: A forest F , a tree T , and two nonnegative integers, k− and k+,

where |V (F )| = |V (T )|, and k+ = k− + |F | − 1;
Task: can F be isomorphic to T by applying at most k− edge deletions

and at most k+ edge additions to F?

A solution to the minimum cut/paste distance between a forest and a tree
problem can be equivalently viewed as a one-to-one mapping φ : V (F ) �→ V (T ):
For an edge (resp., a non-edge) uv of F , it is cut (resp., added) by the solution
if φ(u)φ(v) is a non-edge (resp., an edge). Moreover, we say that u (resp, v) is
touched (by a cut/paste operation) if there is an edge (resp., a non-edge) uv
that participates in a cut/paste operation. For the instance showed in Fig. 2,
we have the mapping φ corresponding to the given optimal solution is that
φ(1) = 1, φ(2) = 11, φ(3) = 2, φ(4) = (5), φ(5) = 4, φ(6) = 3, φ(7) = 9, φ(8) =
(10), φ(9) = 8, φ(10) = 6, and φ(11) = 8.

Let (T1, T2, k) be an instance of the minimum tree cut/paste distance prob-
lem. Now we fix a hypothetic solution E−  E+ applied to T1; it can be two
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arbitrary sets of k edges if (T1, T2, k) is a no-instance. Considering the special
sub-set E∗

− of edges in E−, which connect joints and their children in T1. For
sure, |E∗

−| should be bounded by k. Hence, we can correctly guess the E∗
− from

E(T1) in O((2�(T1) − 1)k)-time. Now we have the following proposition.

Proposition 2. For any optimal solution, there is a unique set E∗
− of edges in

E(T1) such that no child of any joint of F1 = T1 − E∗
− will be cut-off from its

parent. Moreover, the set E∗
− of edges can be obtained in 2O(k log �)nO(1)-time.

Let E∗
− ⊆ E(T1) be a set of edges satisfying Proposition 2 for some optimal

solution, and F1 = T1 − E∗
−. Now we have (F1, T2, k−, k+) is an instance of

the minimum cut/paste distance between a forest and a tree problem, where
k− = k − |E∗

−| and k+ = k. We say an edge is contained in a pipeline if and only
if the two nodes of this edge are both in the pipeline. Next we will show that
for any optimal solution, all nodes touched by the solution are contained in at
most c1k pipelines of F1. Moreover, the images of all nodes of those pipelines of
F1 form at most c2k pipelines of T2, where c1 and c2 are constants. Recall that
a set V of nodes forms a set of pipelines of T if P(T )|V ⊆ P(T ).

Lemma 1. For some optimal solution of (F1, T2, k−, k+), there is a set P of
nodes in V (F1), such that (i) |P(F1)|P | � 2k + 1, (ii) P(F1)|P ⊆ P(F1), and
(iii) only nodes of P are touched by the solution. Moreover, let φ be the mapping
corresponding to the optimal solution, and Q denote node set

⋃
v∈P φ(v). Then

P(T2)|Q ⊆ P(T2), and |P(T2)|Q| � 4k + 1.

Corollary 1. Given a YES-instance (F1, T2, k−, k+). There is an algorithm that
outputs a family X of set pairs, {(P1, Q1), · · · , (Ph, Qh)} with |X | = 2O(k log �),
in 2O(k log �)nO(1)-time, and at least one pair (P,Q) ∈ X satisfies Lemma 1.

Let (P,Q) ∈ X be a pair of node sets from V (F1) and V (T2), respectively,
satisfying Lemma 1 for some optimal solution. As the assumption on F1, there
are some nodes in P that are joints of F1, and their images in T2 should be joints
as well. Moreover, the children of those joints in F1 will not be cut off. Hence,
their images should be non-root top nodes in T2. Let J be the set of nodes in
P , which is defined as {v | ∀ v is a joint of F1, v ∈ P}. Let D be the set of nodes
in P which is defined as {v | ∀ v is a non-root top node of F1, v ∈ P}. Then we
guess a mapping for J ∪ D.

Proposition 3. Let (P,Q) ∈ X be a pair of node sets from V (F1) and
V (T2), respectively, satisfying Lemma1 for some optimal solution, and φ be
the corresponding mapping. Let J ⊆ P and D ⊆ P be the node sets denoted
above. Then there is an algorithm that outputs a family of set pairs M =
{(J ′

1,D
′
1), · · · , (J ′

x,D′
x)} with |M| = 2O(k log k) in 2O(k log k)nO(1)-time, such that

there is a set pair (J ′,D′) ∈ M with
⋃

v∈J φ(v) = J ′ and
⋃

v∈D φ(v) = D′.

Let (J ′,D′) be a set pair of M satisfying Proposition 3. Let P ∗ and Q∗ denote
P/(J∪D) and Q/(J ′∪D′), respectively. Next we will show how to find a mapping
from P ∗ to Q∗, which corresponds to some optimal solution. Let A = P(F1)|P ∗
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and B = P(T2)|Q∗ be two partitions of P ∗ and Q∗, and φ be the mapping for the
optimal solution. Now we introduce an auxiliary edge-weighted bipartite graph
G = (L,R;E) under the mapping φ, where vertices of L and R correspond to
elements in A and B, respectively. For any two vertices v ∈ L and u ∈ R, let
Av ∈ A and Bu ∈ B be their corresponding node sets. Obviously, Av (resp., Bu)
forms either a pipeline or a segment of a pipeline of F1 (resp., T2). Hence, let pv

and qu denote the corresponding pipelines in F1 and T2, respectively. If u and
v have an edge incident to them in G, then we say φ maps a segment of pv to
a segment of qu. Moreover, the weight w(uv) is denoted by the length of the
segments.

Let p and q be paths of F1 and T2 respectively. The correlation sets of p and
q under some mapping φ are two non-empty nodes, X ⊆ V (p) and Y ⊆ V (q),
where for every node v ∈ V (p) with φ(v) ∈ V (q), node v is in X and Y =⋃

u∈X φ(u). Moreover, we say some node set X of a pipeline is orderly mapped
to a node set Y of another pipeline if for any edge uv of F1[X], φ(u)φ(v) is an
edge in T2 as well. For example, let a1a2 · · · at and b1b2 · · · bt denote two paths,
p1 and p2, of F1 and T2 respectively. Node set V (p1) is orderly mapped to node
set V (p2) if φ(ai) = bi for 1 � i � t.

Proposition 4. There is some optimal solution with mapping φ, such that for
the correlation sets X and Y of two pipelines p ∈ P(F1) and q ∈ P(T2), X and
Y form two segments of p and q respectively, and X is orderly mapped to Y .

Roughly say, Proposition 4 suggests us to consider such an optimal solution
that maps a node set X of some pipeline in F1 to a node set Y of some pipeline
in T2, and X,Y form two segments of their pipelines. Moreover, the mapping
between the two segments are orderly mapped. Therefore, we may henceforward
assume that if we say a node set of pipeline p is mapped to a node set of pipeline
q, then it means that a segment of p is orderly mapped to a segment of q.

Proposition 5. For any optimal solution, the auxiliary graph G contains no
more than 4k + 1 edges.

Corollary 2. For any pair of node sets P ∗ and Q∗ denoted above, there is a
family G of auxiliary graphs, where |G| = O((8k)8k) and G can be found in
O((8k)8k)-time.

Proposition 6. There is an auxiliary graph G ∈ G that is acyclic, if the instance
given is a yes-instance.

Now we have the following proposition, with which we can obtain a solution
to the minimum tree cut/paste distance problem from some auxiliary graph
in polynomial time. We say an auxiliary graph is feasible if the corresponding
solution of it is a feasible solution (namely, the cost is bounded by k, and T1 can
be transformed into T2), and it is infeasible otherwise.

Proposition 7. For an acyclic auxiliary graph G ∈ G, we either get a solution
or answer the auxiliary graph G is infeasible, in polynomial time.
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Algorithm tree-cut/paste-distance(T1, T2, k)
Input: two rooted trees T1, T2, and a non-negative integer k, where |V (T1)| =
|V (T2)|.
Output: is there a set of at most k cut and paste operations that transforms
T1 into T2.

1. guess a set E∗
− of edges from E(T1) satisfying Proposition 2;

2. guess two node sets P and Q satisfying Lemma 1 from V (F1) and V (T2);
3. let M be a class of set pairs satisfying Proposition 3 for J and D;
4. for each (J ′, D′) ∈ M do
4.1 P ∗ = P/(J ∪ D), and Q∗ = Q/(J ′ ∪ D′);
4.2 let G be a set of auxiliary graphs satisfying Corollary 2;
4.3 for each G ∈ G and G is acyclic do
4.3.1 find a leaf v of G and let u be its unique neighbor;

// n(∗) is the number of nodes in the corresponding pipeline;
4.3.2 if n(v) > n(u) then continue;
4.3.3 w(uv) ← n(v); n(u) ← n(u) − n(v); delete v from G;
4.3.4 if G is not empty then goto Step 4.3.1;
4.3.5 elseif G is feasible by Proposition 7 then return “YES”;
4.3.6 else continue;
5. return “NO.”

Fig. 3. The algorithm for minimum tree cut/paste distance.

Putting them together, we obtain the algorithm for minimum tree cut/paste
distance (Fig. 3); here by “guess” we mean to find the desired object by enumer-
ation. We are now ready to prove Theorem1.

Proof (Proof of Theorem 1). We use the algorithm described in Fig. 3 for illus-
tration. We verify first its correctness. Step 1 finds all those edges in T1 that
are leaving joints for some optimal solution. Step 2 finds two “correct” node
sets, P and Q, from F1 and T2 respectively, which is done via enumerating all
possible pairs of such node sets. For a pair (P,Q), step 3 enumerates all possi-
ble (J ′,D′) for (J,D), and the mapping between them. Since Proposition 3, at
least one of those mapping will match the solution. Step 4.2 builds a family G
of auxiliary graphs for the nodes in P/(J ∪ D) and Q/(J ′ ∪ D′), and step 4.3
gives the mapping for each auxiliary graphs of G. According to Propositions 5
and 6, there is acyclic G ∈ G that matches the solution. Step 4.3 either obtains a
feasible solution or realizes the solution basing this auxiliary graph is infeasible,
thus, it will continue to try next auxiliary graph. The correctness of step 4.3 is
guaranteed by Proposition 7. If we try all possible G in G, and we do not find a
feasible solution, then we say it is a no-instance. Otherwise, we return a feasible
solution.

We now analyze the running time. Step 1 can be finished in 2O(k log �) ·nO(1)-
time since Proposition 2. Step 2 can be done in 2O(k log �) · nO(1)-time according
to Corollary 1. Step 3 can be done in 2O(k log k) · nO(1)-time since Proposition 3.
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Step 4.1 can be done in constant time, and step 4.2 can be done in 2O(k log k)·nO(1)

since Corollary 2. Step 4.3 can be finished in polynomial time since Proposition 7.
Together all steps, we have the algorithm can be finished in 2O(k log(�+k)) ·nO(1).

We would like to remark that there is a massive constant in the exponential
part O(k log(� + k)). Moreover, the analysis of the time complexity is far from
tight, and it is done in this way for the purpose of simplicity.

4 An Algorithm for Minimum Common Integer Partition

We now turn to the minimum common integer partition problem. Instead of
presenting an algorithm for it directly, we work on the minimum tree cut/paste
distance problem restricted to spider trees. Together with the reduction by Kirk-
patrick et al. [11] (Proposition 1), a parameterized algorithm for minimum tree
cut/paste distance implies a parameterized algorithm for minimum common inte-
ger partition. Recall that in a spider tree T only the root r of T has degree more
than two. Let d be the degree of r and {v1, · · · , vd} be the children of r, then we
call each edge rvi a top-edge of T . Let (T1, T2, k) be an instance of the minimum
tree cut/paste distance problem on spider trees. The degrees of the roots r1 of
T1 and r2 of T2 are d1 and d2 respectively. To avoid triviality, we may assume
|V (T1)| = |V (T2)|, and without loss of generality d1 ≥ d2 ≥ 3.

Using greedy algorithm, it is easy to devise a solution with at most d1 − 1
cut operations, which maps the root node r1 of T1 to the root node r2 of T2.

Lemma 2. There always exists an optimal solution for (T1, T2, k) such that (1)
it needs at most d1 − 1 cut operations, and (2) maps r1 to r2.

This algorithm given above is indeed the 2-approximation algorithm men-
tioned by Woodruff [14]. It provides an upper bound for the optimal solutions.
Henceforward, let us assume that all optimal solutions mentioned following
both map r1 to r2. The remaining thing is to show a mapping from nodes in
V (T1)/{r1} to nodes in V (T2)/{r2}. Let P and Q denote {p1, · · · , pd1} and
{q1, · · · , qd1}, which form partitions of node sets V (T1)/{r1} and V (T2)/{r2}.
We call them the non-trivial pipeline sets of T1 and T2, respectively. Obviously,
every pipeline in the non-trivial pipeline set of any spider tree is not a root-
pipeline.

Next we will show that if there are pipelines p ∈ P and q ∈ Q that have
the same length, then we may delete both of them, and consider the remaining
instance (T1 − V (p), T2 − V (q), k).

Proposition 8. Let (T1, T2, k) be an instance of minimum tree cut/paste dis-
tance on spider trees, and P and Q be the non-trivial pipeline sets. If there are
pipelines p ∈ P and q ∈ Q that have the same length, then we have (T1, T2, k) is
a yes-instance if and only if (T1 − V (p), T2 − V (p), k) is a yes-instance.

Assume that no pipelines p ∈ P and q ∈ Q have the same length for instance
(T1, T2, k). Since one cut and paste operations only change the lengths of two
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pipelines in P. Therefore, we have the following proposition is trivially true.
Recall that d1 � d2 � 3.

Proposition 9. Let (T1, T2, k) be an instance of minimum tree cut/paste dis-
tance on spider trees such that no pipelines p ∈ P and q ∈ Q have the same
length, where P and Q are the non-trivial pipeline sets of T1 and T2, respec-
tively. Then any optimal solution has size at least d1/2.

Dynamic Programming. Now we begin to show the dynamic programming
algorithm. Let (T1, T2, k) be an instance of minimum tree cut/paste distance
on spider trees such that no pipelines p ∈ P and q ∈ Q have the same length,
where P and Q are the non-trivial pipeline sets of T1 and T2, respectively. There
are 2d1+d2+1 slots in the dynamic programming table, and each slot can be
presented by a tuple (P ′,Q′, f), where P ′ ⊆ P,Q′ ⊆ Q, and f ∈ {0, 1}. For a
slot S = (P ′,Q′, f), we use �(S) to denote |P ′| − |Q′|, and opt(S) to mark the
minimum number of cut operations this slot used, where P ′ =

⋃
p∈P′ V (P ) and

Q′ =
⋃

q∈Q′ V (q). A slot is good to some optimal solution, if it can reach the
optimal solution.

Lemma 3. There is an optimal solution with the mapping φ for (T1, T2, k), such
that if a slot S = (P ′,Q′, f) is good to the solution, then (1) when �(S) > 0,
only a segment with length |�(S)| of some pipeline in P ′ is unmapped; (2) when
�(S) < 0, only a segment with length |�(S)| of some pipeline in Q′ is unmapped;
and (3) when f = 1, the unmapped segment contains the top node of its pipeline,
otherwise, it contains the bottom node.

Now we show the dynamic programming equations. Initially, let S = (∅, ∅, ∗)
and opt(S) be 0. For any slot S = (P ′,Q′, f) satisfying one of the following
x cases, we use the corresponding dynamic programming equations, for all p ∈
P/P ′ and q ∈ Q/Q′.

Case-1: If �(S) = 0, then we use S0 to denote (P ′ ∪ {p},Q′ ∪ {q}, 0), and

opt(S0) = min{opt(S0), opt(S)} �(S) = 0, len(p) < len(q)
opt(S0) = min{opt(S0), opt(S) + 1} �(S) = 0, len(p) > len(q) (1)

Case-2: If �(S) > 0 and f = 0, then we use S1, S0 and S∗ to denote (P ′,Q′ ∪
{q}, 1), (P ′,Q′ ∪ {q}, 0), and (P ′ ∪ {p},Q′ ∪ {q}, 0), respectively, and

opt(S0) = min{opt(S0), opt(S) + 1} len(q) < �(S)
opt(S1) = min{opt(S1), opt(S)} len(q) � �(S)
opt(S∗) = min{opt(S∗), opt(S) + 1} len(p) < len(q) � �(S)

(2)

Case-3: If �(S) > 0 and f = 1, then we use S0 to denote (P ′,Q′ ∪ {q}, 0), and

opt(S0) = min{opt(S0), opt(S) + 1} len(q) < �(S)
opt(S0) = min{opt(S0), opt(S)} len(q) � �(S) (3)
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Case-4: If �(S) < 0 and f = 0, then we use S1, S0 and S∗ to denote (P ′ ∪
{p},Q′, 1), (P ′ ∪ {p},Q′, 0), and (P ′ ∪ {p},Q′ ∪ {q}, 0), respectively, and

opt(S0) = min{opt(S0), opt(S)} len(q) � |�(S)|
opt(S1) = min{opt(S1), opt(S) + 1} len(p) > |�(S)|
opt(S∗) = min{opt(S∗), opt(S) + 1} len(q) < len(p) � |�(S)|

(4)

Case-5: If �(S) < 0 and f = 1, then we use S0 to denote (P ′ ∪ {p},Q′, 0),
respectively, and

opt(S0) = min{opt(S0), opt(S)} len(q) � |�(S)|
opt(S0) = min{opt(S0), opt(S) + 1} len(q) > |�(S)| (5)

Proposition 10. Case 1–5 are safe for the minimum tree cut/paste distance
problem on spider trees.

Proof (Proof of Theorem 2). According to the dynamic programming equations
listed above, we add pipelines for each slot, and it can be done in O(d1d2)-time.
Moreover, the correctness of the dynamic programming algorithm is kept by
Lemma 3 and Proposition 10. Since Proposition 9, k � d1/2 � d2/2. The running
time of the dynamic programming algorithm is bounded by O(22k+2k+1k2) =
O(16k)nO(1).

Combined with the reduction of Kirkpatrick et al. [11], the dynamic program-
ming algorithm implies an O(16k)-time algorithm for the minimum common
integer partition problem.
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Abstract. The discrete k-watchtower problem for a polyhedral terrain
T with n vertices is to find k vertical segments, called watchtowers, of
smallest common height, whose bottom end-points (bases) lie on some
vertices of T , and every point of T is visible from the top end-point
of at least one of those vertical segments. Agarwal et al. [1] proposed
a polynomial time algorithm using parametric search technique for this
problem with k = 2. Surprisingly, no result is known for the problem
when k > 2. In this paper, we propose an easy to implement algorithm
to solve k-watchtower problem in R

3 for a fixed constant k. Our algorithm
does not use parametric search.

Keywords: Watchtower problem · Polyhedral terrains · Visibility

1 Introduction

A polyhedral terrain in R
3 is a connected 3D polyhedral surface such that for

each point v = (x, y, z) on the surface, z = g(x, y) for some linear function
g [9]. In other words, any vertical line intersects a terrain at most once and
the orthogonal projection of a terrain on the XY -plane is a (bounded) planar
subdivision. In general, a polyhedral terrain in R

d is the graph of a continuous,
piecewise-linear (d − 1)- variate function [1].

The problem of placing watchtowers on a polyhedral terrain is a matter of
great interest due to its application in surveillance, navigation, computer vision,
modelling and graphics, geographic information system, etc. Here the objective
is to place a given (k) number of watchtowers on the vertices of a polyhedral
terrain such that every point in the surface of the terrain is visible from at least
one of the watchtowers and the maximum height among these watchtowers is
minimized. This is also known as discrete k-watchtower problem where base of
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each watchtower is restricted to the vertices of the terrain. In the continuous
version, base of watchtower can be placed anywhere in the terrain.

Cole and Sharir [3] showed that the problem of finding minimum number
of guards, where guards are to be placed on the terrain without any elevation,
to guard the terrain is NP-hard. Sharir [7] proposed polynomial time algorithm
for the continuous one watchtower placement problem for polyhedral terrain in
R

3 that runs in O(n log2 n) time. Later the time complexity of the problem was
improved to O(n log n) by Zhu [10]. Agarwal et al. [1] proposed a deterministic
polynomial time algorithm for the discrete two watchtower problem for polyhe-
dral terrain in R

3. The time complexity of their algorithm is O(n11/3polylog(n)),
and it uses the parametric search technique of Meggido [5]; here n is the num-
ber of vertices of the polyhedral terrain. Agarwal et al. [1] mentioned the k-
watchtower problem for k > 2 as open. For the continuous version of the problem
in R

3, no result is known for k > 1.
In this paper, we propose a general polynomial time algorithm for discrete

k-watchtower problem for any fixed integer k > 2. In Sect. 3, we first develop
an algorithm to decide whether it is feasible to guard the entire terrain using
k-watchtowers for a given height h, that runs in O(nk+3k2α2(n) log n) time. We
use this decision procedure to do a binary search over the height to find the
optimum height. As the domain of height is continuous, we need to discretise
it. In Sect. 4, we describe the details of this discretisation. The running time
of our algorithm is O(nk+3k2α2(n) log2 n + n7α3(n) log n). The strength of our
algorithm is that it is simpler to implement as we do not use parametric search.

2 Preliminaries

We use [k] as a shorthand notation of {1, 2, . . . , k}. Without loss of generality,
we assume that each facet of the polyhedral terrain is a triangle. In other words,
a terrain in R

3 is denoted by T (V,E, F ), where V , E and F denote the set of
vertices, edges and facets of T , respectively. The boundary of a facet f ∈ F is
denoted by δf .

A watchtower is a vertical line segment whose bottom end point/base lies on
a vertex of T . We use u(h) to denote a watchtower based at a vertex u ∈ T and
at a height h from u. A point p ∈ T is said to be visible from the watchtower
u(h) if the line segment p, u(h) lies fully above the terrain.

We say that k watchtowers u1(h), u2(h), . . . , uk(h) guard the entire terrain T
if each point on the terrain T is visible from at least one of those k watchtowers;
we refer to (u1, u2, . . . , uk) as a guard k-tuple at height h.

The invisibility region Hu(h)(f) consists of all the points on the facet f that
are not visible from u(h). The region f \Hu(h)(f) is referred to as visibility region
of u(h) in the facet f . Note that if Hu(h)(f) �= ∅, then Hu(h)(f) is a collection of
invisibility polygons. We denote each vertex and edge of an invisibility polygon
as breakpoint and invisibility segment, respectively. Similarly, Hu(h)(e) consists
of all the points on the edge e ∈ E that are not visible from u(h). Note that if
Hu(h)(e) �= ∅, then Hu(h)(e) is a collection of invisibility intervals on the edge e.
We use Hu(h) to denote all the points of T that are not visible from u(h).
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Computing Hu(h)(f) : Observe that boundary of Hu(h)(f) is formed by shad-
ows of some edges of T on the facet f assuming a light source at u(h). As noted by
Agarwal et al. [1, Sect. 5], Hu(h)(f) is the upper envelope of O(n) line segments,
where each line segment is generated due to intersection of facet f with another
plane defined by u(h) and an edge in E . Here E = E∪{line segment v, v′|v ∈ V },
where v′ is a projection of v on the XY plane (assuming that all the points of
V are above the XY plane). Thus, the combinatorial complexity of Hu(h)(f)
is O(nα(n)), where α is inverse Ackerman function [8]. Due to the result of
Hershberger [4], we can compute the region Hu(h)(f) in O(n log n) time.

It is easy to see that for an edge e that is shared by two facets f1 and f2,
we can obtain the sorted list of invisibility intervals of Hu(h)(e) after computing
both Hu(h)(f1) and Hu(h)(f2), and spending O(n log n) time.

However, Agarwal et al. [1, Sect. 5] mentioned that considering all the facets,
the combinatorial complexity of the region Hu(h) is O(n2), and we can also
compute the region Hu(h) in nearly quadratic time.

3 The Decision Procedure

The decision version of the problem is as follows: Given a polyhedral terrain T ,
height h ∈ R and a constant k ∈ N, decide whether there exists a guard k-tuple
at height h for the terrain T .

Lemma 1. A k-tuple (u1, u2, . . . , uk) ∈ V k is a guard k-tuple at height h for
the terrain T if and only if the following two properties are satisfied:

(i) Each edge is collectively visible from k watchtowers u1(h), u2(h), . . . , uk(h)
i.e. there exist no edge e ∈ E such that there is a common point in the inter-
section of k invisibility intervals on e due to these k watchtowers. Formally,
∩k

i=1Hui(h)(e) = φ, ∀e ∈ E.
(ii) Each facet is collectively visible from k watchtowers u1(h), u2(h), . . . , uk(h)

i.e. there does not exist a facet f such that there is a common point in
the intersection of k invisibility polygons on f due to these k watchtowers.
Formally, ∩k

i=1Hui(h)(f) = φ, ∀f ∈ F .

Proof. The necessity of the above statement is trivially true. Let’s consider suf-
ficiency condition i.e. if above two properties are satisfied then the entire terrain
T (V,E, F ) is visible from the given k watchtowers. The property (ii) ensures
that each facet f ∈ F is visible from at least one of the k watchtowers. However,
it is not sufficient to guard the entire terrain as there may exist some part of edge
or some vertices which are not visible by any of the watchtowers. For example, in
Fig. 1 for two watchtowers; the left portion the shared edge between two facets is
not visible by either of the two watchtowers, though both the facets are visible.
This situation can be generalized for k watchtowers as well. The property (i)
ensures that each edge and vertex of the terrain is visible. Therefore, satisfying
these two properties imply that all the elements in set V , E and F of T are
visible from the said k watchtowers. �	
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Fig. 1. Facets f1 and f2 are visible but part of the shared edge e is not visible from
both u(h) and v(h)

The decision procedure proceeds in two steps. In the first step, it discards
all k-tuples (u1, u2, . . . , uk) ∈ V k that do not satisfy the property (i) of the
Lemma 1. Considering the remaining k-tuples, in the second step, it rejects each
of those k-tuples that violates property (ii) of the Lemma.

First Step: Given an edge e and k-watchtowers of height h at u1, u2, . . . , uk ∈ V ,
we can compute Hui(h)(e)end ∀i ∈ [k] as mentioned in Sect. 2 in O(nk log n) time.
Note that in each list, the end-points are already in sorted order. To check the
existence of a point p ∈ e such that p ∈ ∩k

i=1Hui(h)(e), we need to merge these
sorted k lists. Using a min-heap of size k, we can do this in O(nk log k) time. If
such a point p ∈ e exists, then e is not completely visible by the k-watchtowers
{u1(h), u2(h), . . . , uk(h)}. For a given k-tuple, we check this observation for all
edges e ∈ E in O(n2k log n) time, and reject the tuple if we find an edge which
is not guarded. Since we need to repeat this process for all possible k-tuples in
V , the overall time complexity of this step is O(nk+2k log n).

Second Step: For a given facet f and k watchtowers of height h at
u1, u2, . . . , uk ∈ V , first we compute Hui(h)(f) for all i ∈ [k]. Now, we need
to test whether ∩k

i=1Hui(h)(f) = ∅ or not.
Let Si(f) be the set of all edges of Hui

(f), and S(f) = ∪k
i=1Si(f). As number

of line segments in Si(f) is O(nα(n)), we have |S(f)| = O(nkα(n)), where
|A| denotes the number of elements in set A. Let IS(f) be the set of points
generated by pairwise intersection of the line segments in S(f). Here, |IS(f)| =
O(n2k2α2(n)). The necessary and sufficient condition that k watchtowers can
guard a given facet f is as follows.

Lemma 2. A facet f ∈ F is guarded by u1(h), . . . , uk(h) if and only if there
does not exist any point p ∈ IS(f) satisfying the following:

– p is inside the invisibility regions (boundary included) Hui(h)(f) ∀ i ∈ [k].

Proof. The necessity of above statement is trivially true. So, let us consider the
sufficiency condition i.e. if the above condition is true then the facet f is com-
pletely visible from k watchtowers. For a contradiction, let us assume that there
exists a point p′ at the facet f which is not visible by any of the k watchtowers.
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This means that this point p′ is inside or on the boundary of common intersec-
tion region R of Hui(h)(f), i ∈ [k]. The extreme points of this closed region R
are in the set IS(f) and the proof follows. �	

For each i ∈ [k], we separately create a data structure Di by triangulating
the interior of the polygons in Hui(h)(f) and also the exterior of Hui(h)(f). In
Di, each interior and exterior triangles are given weight 1 and 0, respectively.
Since the combinatorial complexity of each Hui(h)(f) is O(nα(n)), the size of
each of these data structures is O(nα(n)), and can be created in O(nα(n) log n)
time, and point location can be performed in O(log n) time [2].

Now, for each point p ∈ IS(f), we search p in all the data structures Di, i ∈ [k].
In each Di, we identify the triangle in which p lies, and add its weight in a
counter χ(p). If χ(p) = k, p is not guarded. Thus, for each point p ∈ IS(f), we
spend O(k log n) time to decide whether q is inside common invisibility region
∩k

i Hui(h)(f). We need to do this test for all the points in ∪f∈F IS(f). Since
|IS(f)| = O(n2k2α2(n)), the total number of intersection points in ∪f∈F IS(f) is
O(n3k2α2(n)).

Thus, Step 2 takes total O(nk+3k2α2(n) log n) time, and we have the
following.

Lemma 3. Given a height h ∈ R and a polyhedral terrain T , we can decide
whether there exists k-watchtowers of height h that can guard the terrain T in
O(nk+3k2α2(n) log n) time. We can also report all possible sets of k watchtowers
of height h that can guard the terrain within same amount of time.

4 Algorithm via Discretisation of Height

Given a polyhedral terrain T , in this section, we discuss the algorithm for finding
the minimum height h∗ for which we can find k-watchtowers of height h∗ that
can guard T .

Overview of the Algorithm. Our algorithm consists of two phases. In each phase,
we enumerate a set of discrete heights, and perform binary search on them using
the decision procedure described in the previous section.

In the first phase, we consider each vertex u ∈ V as a possible location of
a watchtower. Starting from h = 0, if we increase the height of the watchtower
continuously until u(h) sees the whole terrain, the invisibility region Hu(h)(f)
on each facet f ∈ F shrinks continuously. During this process, the shadow of
an edge appears or disappear at some specific heights, called critical heights.
Considering each vertex as a possible location of a watchtower, we enumerate
all the critical heights. The number of such critical heights is O(n4), where n is
the number of vertices of the watchtower. We perform binary search among the
sorted list Lcritical of these critical heights. For each choice of critical height, we
test whether this height is feasible for guarding T by any tuple of k watchtowers
(see Sect. 3). Thus, we get a pair of consecutive heights h′, h′′ ∈ Lcritical such
that h′ is not feasible but h′′ is feasible, and the optimum height h∗ ∈ (h′, h′′].
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Note that we have at least one k-tuple (ui, u2, . . . , uk) ∈ V k such that each
point on T is visible by at least one of the watchtowers {ui(h′′)|i ∈ [k]}, and
there is no common intersection region of the invisible regions Hui(h′′), i ∈ [k].
We may further decrease the height from h′′ as long as there is no point p ∈ T
that is invisible from all of the watchtowers. This event will occur when all of
the invisible regions Hui(h) has a common intersection point. In this situation,
we can not decrease the height of watchtowers corresponding to the k-tuple
(ui, u2, . . . , uk) to guard the whole terrain. In the second phase, we enumerate
all possible (contact) heights where this type of events might occur considering
all possible positions of watchtowers. As in the first phase, we sort this set of
contact heights to obtain a sorted list Lcontact of (contact) heights. Finally, to
obtain the optimum h∗, we perform a binary search using the decision procedure
discussed in Sect. 3.

4.1 Phase 1: Critical-Height Generation

Recall that a typical invisibility region Hu(h)(f) is a collection of simple invisi-
bility polygons. For each invisibility polygon, at least one invisibility segment is
a portion of the boundary of f . Now, let us consider the breakpoints of Hu(h)(f)
that are not the end-points of δf . These breakpoints can, in general, be catego-
rized as follows:

Category-1: This type of breakpoint is generated by the projection of each
vertex of T on the facet f .

Category-2: This type of breakpoint is generated by the intersection of the
projections of each pair of edges in E \ {edges of δf} of T on the facet f .

Category-3: This type of breakpoint is generated by the intersection of the
projection of edge e ∈ E \ {edges of δf} of T on the facet f and an edge of
the facet f .

Thus, each breakpoint of Hu(h)(f) is associated with either a vertex v ∈ T ,
or two edges from E \ δf , or one edge from δf and another from E \ δf .

Initially, let’s consider that height h = 0, and a watchtower is based at
u ∈ T . Now, we increase the height continuously until u(h) sees the entire terrain.
During this process, we observe some distinct heights where the topology (set of
breakpoints) of Hu(h)(f) changes. We refer to such a height as a critical height.
We can classify the events corresponding to these as follows.

Type-A Event: When a breakpoint p of Category-1 appears/disappears from
the facet f at some height h, we call this event as Type-A event.

Type-B Event: When two breakpoint p, q of Category-2 merge to form a single
breakpoint of Hu(h)(f); we call such an event as Type-B Event. This happens
when two breakpoints that are consecutive on the boundary of invisibility
region (but not on δf) merge to form a single vertex.

Type-C Event: When two breakpoint p, q, such that at least one of them is
Category-3, merge to form a single breakpoint of Hu(h)(f), we call such an
event as Type-C Event.
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It is easy to see that no other event can change the topology of Hu(h)(f).
Considering all the facets f ∈ F and all positions u ∈ V , first we analyze the
Type-A events; next we consider Type-B and Type-C events together.

Type-A Events: Let p be a breakpoint of Category-1. It is projection of a
vertex p′ ∈ V due to a watchtower based at a vertex u ∈ V . Assume that we
are continuously increasing the height of the watchtower based at u, and the
breakpoint p appears at some critical height h. This happens when the tip of the
watchtower u(h), the vertex p′ ∈ V and some edge e ∈ E become coplanar (see
Fig. 2). Consider the plane defined by p′ and e. Note that this plane intersects
the vertical line passing through u at a height h.

Fig. 2. Computing critical heights for Type-A events

Let adj(u) be the set of edges in E that are adjacent to u, i.e., adj(u) =
{uy|uy ∈ E, y ∈ V \ {u}}. Each vertex-edge pair (v, e), v ∈ V \ {u} & e ∈
E \adj(u) defines a plane. Thus, we have O(n2) such planes. Intersection of each
plane with the vertical line at u ∈ V gives a critical height at u for Type-A event.
Considering all the vertices u ∈ V , we have O(n3) critical heights corresponding
to all Type-A event, and all of these can be enumerated in O(n3) time.

Type-B and Type-C Events: We first consider the Type-B events. Let p1, p2
be two Category-2 breakpoints that are consecutive on the boundary of Hu(h)(f).
Let e1, e2 be the edges of Hu(h)(f) incident to p1, and e2, e3 be the edges of
Hu(h)(f) incident to p2. Let e1, e2, e3 are projections of edges e′

1, e
′
2, e

′
3 ∈ E,

respectively. Assume that we are continuously increasing the height of the watch-
tower based at u; at some critical height h′, we notice that p, q merge to form a
single breakpoint. Clearly, this event happens when the projections of e′

1, e
′
2 and

e′
3 intersect at a common point on f . In other words, this happens for a view-

point from where the edges e′
1, e

′
2 and e′

3 appear to intersect at a single point.
Plantinga and Dyer [6] showed that this viewing direction is:
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d = [(p11+t(p11−p12)−p21)×(p21−p22)]×[(p11+t(p11−p12−p21)×(p21−p22)],

where pi1, pi2 are the two end points of the edge e′
i, i ∈ [3], and 0 ≤ t ≤ 1. Note

that d is given as Cartesian coordinates, and it is a quadratic function on t.
Thus, for a given vertex v = (x, y, z) ∈ V , we can find the corresponding critical
heights due to a triple of edges e′

1, e
′
2 and e′

3 in O(1) time.
Assuming a vertex u ∈ V as a possible position of watchtower, we need to

consider each triple of edges e′
1, e

′
2, e

′
3 ∈ E, define the corresponding viewing

direction d and compute its intersection with the vertical line at u ∈ V . Thus,
the number of Type-B events for a vertex u ∈ V is O(n3). Considering all the
vertices in V , we have in total O(n4) Type-B events.

Note that a Type-C event corresponds to the event when at least one of the
edges from e1, e2 and e3 of Hu(h)(f) is a part of the facet f . Thus, this event
corresponds to the viewing direction from where e′

1, e
′
2 and e′

3 appear to intersect
at a single point, and one of the edges is on the boundary of the facet f . It is easy
to note that during the process of enumerating all critical heights corresponding
to the Type-B events, we also enumerated critical heights corresponding to Type-
C events.

Let Lcritical be the sorted list of the union of all the critical heights gener-
ated by Type-A, Type-B and Type-C events considering all the vertices u ∈ V
together. It is easy to see the following.

Lemma 4. Given a polyhedral terrain T with n vertices, the size of the sorted
list Lcritical is O(n4), and this can be computed in O(n4 log n) time.

Lemma 5. If hi, hi+1 (hi+1 > hi) are two consecutive critical heights in
Lcritical, then the topology of Hu(h)(f) will be same for any h ∈ [hi, hi+1), where
u ∈ V and f ∈ F .

Lemma 6. It is not possible that the optimum height h∗ is larger than the max-
imum height in the list Lcritical.

Lemma 7. A pair of consecutive heights (h′, h′′) in Lcritical such that h′ is not
feasible but h′′ is feasible, can be computed in O(nk+3k2α2(n) log2 n) time.

Proof. We can find (h′, h′′) by performing a binary search on the sorted list
Lcritical. As each decision of the binary search takes O(nk+3k2α2(n) log n) time
(Lemma 3), the lemma follows. �	

4.2 Phase 2: Contact-Height Generation

Let (u1, u2, . . . , uk) ∈ V k be a guard k-tuple at the optimal height h∗. From
above discussion, we know that h∗ ∈ (h′, h′′], and for a fixed watchtower base
ui ∈ V and facet f ∈ F , the topology of invisibility region Hui(h)(f) remain
same for any height h ∈ [h′, h′′) (see Lemma 5). Since h∗ > h′, from Lemma 1,
we know that at least one of the following happens:

– there exists a facet f ∈ T such that the common invisibility region
∩k

i Hui(h′)(f) in not empty,
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– there exists an edge e ∈ E that has non-empty common invisibility interval,
in other words, ∩k

i=1Hui(h′)(e) �= ∅.

Note that the common invisibility region ∩k
i=1Hui(h′)(f) is a collection of

polygons. If we increase the height continuously from h′ then the common invis-
ibility region shrinks continuously, and at some specific height it converges into
a point (see Fig. 3). When this event occurs, then at least three invisibility seg-
ments from ∪k

i=1Hui(h′)(f) meet at a point.

Fig. 3. Shrinking (a–d) of common invisibility region ∩k
i=1Hui(h′)(f) due to increase

in heights (arrow indicates the half-plane that is not visible)

Similarly, the common invisibility interval ∩k
i=1Hui(h′)(e) is a collection of

intervals along the edge e. If we increase the height continuously from h′ then
the common invisibility interval shrinks continuously, and at some specific height
it converges into a point. When this event occurs, then at least two invisibility
segments from ∪k

i=1Hui(h′)(f1)
⋃

∪k
i=1Hui(h′)(f2) meet at a point on the edge

e ∈ E, where the facets f1 and f2 share the edge e.
In this phase, we enumerate each height h ∈ (h′, h′′) where any of the follow-

ing events occur:

Type-D Event: Any three invisibility segments e1, e2, e3 from ∪ui∈V Hui(h′)(f)
intersect at a point; e1, e2, e3 must be due to at least two (at most three)
watchtowers based at two (three) different vertices. Note that, if e1, e2, e3
are due to a single watchtower then e1, e2, e3 are three edges of an invisibil-
ity region Hui(h′)(f). This case is already considered as a Type-B event in
Phase 1.

Type-E Event: Any two invisibility segments e1, e2 from ∪ui∈V Hui(h′)(f1)
⋃

∪ui∈V Hui(h′)(f2) and the edge e3 intersect at a point, where e3 is shared by
both the facets f1 and f2; e1, e2 must be due to at least two watchtowers based
at two different vertices. Note that if e1, e2 are due to a single watchtower
then this case is already considered as a Type-C event in Phase 1.

We refer each height corresponding to the above two types of events as contact
height. From the above discussions, it is easy to prove the following.

Lemma 8. If h∗ �= h′′, then h∗ must be a contact height.
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Proof. Let (u1, u2, . . . , uk) ∈ V k be a guard k-tuple at the optimal height h∗.
If h∗ �= h′′, then the optimum height h∗ depends on the following two cases;

one of them is sure to occur.

Case 1: for a facet f , the common invisibility region ∩k
i=1Hui(h′)(f) converges

to a point, and for each facet f ′ ∈ F \ f and edge e′ ∈ E, we have
∩k

i=1Hui(h′)(f ′) = ∅ and ∩k
i=1Hui(h′)(e′) = ∅.

Case 2: for an edge e, the common invisibility interval ∩k
i=1Hui(h′)(e) con-

verges to a point, and for each facet f ′ ∈ F and edge e′ ∈ E \ e, we have
∩k

i=1Hui(h′)(f ′) = ∅ and ∩k
i=1Hui(h′)(e′) = ∅.

In Case 1, we know that at least three invisibility segments from
∪k

i=1Hui(h′)(f) meet at a point. If more than three invisibility segments of
∪k

i=1Hui(h′)(f) meet at a point, then each 3-tuple of those segments produce
the same contact height h∗. With a similar argument, for Case 2, we can show
that h∗ is a contact height. �	

Let e be an invisibility segment of Hui(h′)(f) due to the watchtower ui(h′).
Note that e must be along the line of intersection between the facet f and a plane
defined by u(h′) and an edge e′ ∈ E . Recall that E = E ∪ {line segment v, v′|v ∈
V }, where v′ is a projection of v on the XY plane (assuming that all the points of
V are above the XY plane). We use e(h) to denote the position of the invisibility
segment e at height h ∈ (h′, h′′], i.e., e(h) lies along the intersection of the facet
f and the plane defined by the edge e′ and the point ui(h). Using elementary
geometry, we prove the following three lemmata.

Lemma 9. Let (a, b, c + h) be the Cartesian co-ordinates of the watchtower
ui(h). Let pj = (aj , bj , cj), j ∈ [2] be the two end points of the edge e′ ∈ E.
Let lx + my + nz = D be the equation of the plane containing the facet f . The
vector form of equation of the line containing the segment e(h) is: 〈x,y, z〉 =

〈0,
f3(h)−C

n D

f2(h)−C
n m

,
f3(h)− f2(h)

m D

C− f2(h)
m n

〉+t〈nf2(h)−mC, lC−nf1(h),mf1(h)−lf2(h)〉, where

f1(h) = (b − b1)(c2 − c1) − (c + h − c1)(b2 − b1),
f2(h) = (c + h − c1)(a2 − a1) − (a − a1)(c2 − c1),
C = (a−a1)(b2 − b1)− (b− b1)(a2 −a1) and f3(h) = a1f1(h)+ b1f2(h)+ c1C.

Proof. Let P be the plane defined by the point ui(h) and the edge e′. We have
two vectors

−−−−−→
p1, ui(h) = 〈a−a1, b−b1, c+h−c1〉 and −−−→p1, p2 = 〈a2−a1, b2−b1, c2−

c1〉 that lie completely in the plane P . So, the vector −→n1 =
−−−−−→
p1, ui(h) × −−−→p1, p2 is

orthogonal to the plane P . We have −→n1 = 〈f1(h), f2(h), C〉, where

f1(h) = (b − b1)(c2 − c1) − (c + h − c1)(b2 − b1),
f2(h) = (c + h − c1)(a2 − a1) − (a − a1)(c2 − c1), and
C = (a − a1)(b2 − b1) − (b − b1)(a2 − a1).

The equation of the plane P is f1(h)(x −a1)+f2(h)(y −b1)+C(z −c1) = 0,
i.e.,

f1(h)x + f2(h)y + Cz = f3(h) (1)
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Here f3(h) = a1f1(h) + b1f2(h) + c1C is a linear function of h.
We know that the equation of the plane F containing the facet f is

lx + my + nz = D (2)

This planes have normal vector −→n2 = 〈l,m, n〉. Let L denote the line of intersec-
tion of the two planes P and F .

Then, the direction vector of the line L is: −→v = −→n1×−→n2 = 〈f4(h), f5(h), f6(h)〉,
where f4(h) = nf2(h) − mC,
f5(h) = lC − nf1(h) and
f6(h) = mf1(h) − lf2(h).

Now, we need to find a point p on the line L to construct the equation of the
line. We consider p0 to be a point on the line L with x = 0. Thus, substituting

x = 0 in the Eqs. 1 and 2 of the planes, we get p0 = (0, f3(h)−C
n D

f2(h)−C
n m

,
f3(h)− f2(h)

m D

C− f2(h)
m n

).

Thus the vector form of the line L is 〈x ,y , z 〉 = −→p0 + t−→v
= 〈0,

f3(h)−C
n D

f2(h)−C
n m

,
f3(h)− f2(h)

m D

C− f2(h)
m n

〉 + t〈f4(h), f5(h), f6(h)〉

= 〈0,
f3(h)−C

n D

f2(h)−C
n m

,
f3(h)− f2(h)

m D

C− f2(h)
m n

〉 + t〈nf2(h) − mC, lC − nf1(h),mf1(h) − lf2(h)〉.
�	

Lemma 10. Let ei be an invisibility segment of Hui(h′)(f) due to the watchtower
ui(h′), for each i ∈ [3]. The number of contact heights h ∈ (h′, h′′) generated due
to the meeting of the invisibility segments e1(h), e2(h) and e3(h) at a single point
can be at most three, and all of them can be enumerated in O(1) time.

Proof. According to Lemma 9, the vector form of equation of the line Li on the
plane F containing ei(h) is as follows:

〈x , y , z 〉

= 〈0,
fi,3(h) − Ci

n
D

fi,2(h) − Ci
n
m

,
fi,3(h) − fi,2(h)

m
D

Ci − fi,2(h)

m
n

〉 + t〈nfi,2(h) − mCi, lCi − nfi,1(h),mfi,1(h)

− lfi,2(h)〉,

where each fi,j(h), i, j ∈ [3] is a linear function of h.
Projecting Li on the XY plane, we get the line L′

i as

〈x ,y〉 = 〈0,
fi,3(h) − Ci

n D

fi,2(h) − Ci

n m
〉 + t〈nfi,2(h) − mCi, lCi − nfi,1(h)〉.

Converting this vector form of equation in slope-intercept form, we get

y =
lCi − nfi,1(h)
nfi,2(h) − mCi

x +
fi,3(h) − Ci

n D

fi,2(h) − Ci

n m

=
lCi − nfi,1(h)
nfi,2(h) − mCi

x +
nfi,3(h) − CiD

nfi,2(h) − mCi
.
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For the sake of simplicity, we rewrite this expression of L′
i as: y = φi,1(h)

φi,3(h)
x +

φi,2(h)
φi,3(h)

, where each φi,j(h), i, j ∈ [3] is a linear function on h.
Now, to get the contact height h at which the invisibility segments

e1(h), e2(h) and e3(h) intersect at a single point, we find the equation of area of
the triangle formed by L′

1, L
′
2 and L′

3 and find roots of this equation.
We know that the area of triangle formed by three lines y = m1x + c1,

y = m2x + c2 and y = m3x + c3 is given by

Δ =

∣
∣
∣
∣
∣
∣

−m1 1 −c1
−m2 1 −c2
−m3 1 −c3

∣
∣
∣
∣
∣
∣

2

2.K1.K2.K3

Where K1 =
∣
∣
∣
∣
−m2 1
−m3 1

∣
∣
∣
∣, K2 = −

∣
∣
∣
∣
−m1 1
−m3 1

∣
∣
∣
∣ and K3 =

∣
∣
∣
∣
−m1 1
−m2 1

∣
∣
∣
∣ are the cofactors of

−c1,−c2,−c3, respectively, in the above matrix.
Using above formula, the area of triangle formed by L′

1, L
′
2 and L′

3 is Δ =
Φ1(h)

2

Φ2(h)Φ3(h)Φ4(h)
, where Φ1(h) is a cubic function in h, and Φ2(h), Φ3(h) and Φ4(h)

are quadratic function in h.
We need to solve one cubic equation Φ1(h) = 0 to find the heights where the

area Δ = 0. Thus, we have at most three distinct heights at which L1, L2 and
L3 intersect at a common point. �	

Lemma 11. Let e1 be an invisibility segment of Hui(h′)(f1) due to the watch-
tower ui(h′), and e2 be an invisibility segment of Huj(h′)(f2) due to the watch-
tower uj(h′), i �= j. Let e3 ∈ E be the edge that is shared by both the facets f1
and f2 . The number of contact heights h ∈ (h′, h′′) generated due to the meeting
of the invisibility segments e1(h), e2(h) and the edge e3 at a common point can
be at most one, and it can be enumerated in O(1) time.

Proof. Let lix +miy + niz = Di be the equation of the plane Fi containing the
facet fi, i ∈ [2]. According to Lemma 9, the vector form of equation of the line
Li on the plane Fi containing ei(h) is as follows:

〈x , y , z 〉

= 〈0,
fi,3(h)−Ci

ni
D

fi,2(h)−Ci
ni

mi

,
fi,3(h)−

fi,2(h)
mi

Di

Ci−
fi,2(h)

mi
ni

〉 + t〈nifi,2(h) − miCi, liCi − nfi,1(h),mifi,1(h)

−lifi,2(h)〉,

where each fi,j(h), i ∈ [2], j ∈ [3] is a linear function of h.
Let the vector form of equation of the line containing the edge e3 be 〈x, y, z〉 =

〈α, β, λ〉 + t〈p, q, r〉.
It is easy to see that ρi = ( αfi(h)

fi(h)−p , αq+β(fi(h)−p)
fi(h)−p , αr+λ(fi(h)−p)

fi(h)−p ) is the inter-
section point of the two lines Li and e3, where fi(h) = nifi,2(h) − miCi. The

length of the line segment ρ1, ρ2 is τ(h) = α
√

q2+r2+1(f2(h)−f1(h))

(f1(h)−p)(f2(h)−p) . When L1, L2

and e3 intersect at a common point then the length of τ(h) = 0. So, we need
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to solve a linear equation: f2(h) − f1(h) = 0 on h to find the critical heights
corresponding to this event. Thus the lemma follows. �	

Lemma 12. Total number of contact height is O(n7α3(n)), and the sorted list
Lcontact of all the contact heights can be enumerated in O(n7α3(n) log n) time.

Proof. For each triple of invisibility segments from ∪ui∈V Hui(h′)(f), we have at
most three distinct contact heights due to Type-D events, and we can enumer-
ate them in O(1) time(From Lemma 10). Since the total number of invisibility
segments in ∪ui∈V Hui(h′)(f) is O(n2α(n)), the total number of contact heights
(due to Type-D events) for the facet f is O(n6α3(n)). Considering all facets, total
number of contact heights due to Type-D events is O(n7α3(n)), and we can enu-
merate all of them in O(n7α3(n)) time. Using similar argument and Lemma 11,
it is easy to see that the total number of contact heights due to Type-E events
is O(n5α2(n)), and we can enumerate them in O(n5α2(n)) time. As we need
sorting to obtain the sorted list Lcontact containing all the contact heights, the
total time complexity is O(n7α3(n) log n). �	

Theorem 13. Given polyhedral terrain T in R
3 with n vertices and a fixed

integer k, we can find a guard k-tuple for the terrain T with minimum height in
O(nk+3k2α2(n) log2 n + n7α3(n) log n) time.

5 Conclusion

We propose a simple to implement algorithm for k-watchtower problem, for any
fixed integer k. Note that the time complexity for 3-watchtower problem using
our algorithm is O(n7α3(n) log n) where the dominating term is the number of
contact heights enumerated in the phase 2 of the algorithm. A natural direc-
tion of future work is to improve the time complexity for k = 3. On the other
hand, for k > 3, the time needed by the decision procedure is the bottleneck
of our algorithm. Whether one can improve the time complexity of the decision
procedure further remains open.

Acknowledgement. The authors wish to acknowledge anonymous reviewer for useful
comments on the previous version of the paper.
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Abstract. Graph Coloring and its generalization list coloring are fun-
damental graph optimization problems with various applications. Most
versions of the problems are hard in several paradigms including approx-
imation and parameterized complexity. We consider a few versions of
the problems that are polynomial time solvable, and try to extend the
notion of feasible algorithms by parameterizing suitably in the paradigm
of parameterized complexity. More specifically,

– It is known that given a planar graph with any list of size 5 for each
vertex, there is a proper coloring of the graph such that each vertex
gets its color from its list. We show that if the graph is k vertices away
from a planar graph, then deciding whether such a coloring exists is
para-NP-hard when parameterized by k, i.e. it is NP-hard for even
constant values of k. It is known that any graph with maximum degree
3 is 3-colorable unless the graph is a 4-clique. We show that if the graph
is k vertices away from a maximum degree 3 graph, then determining
whether it is 3-colorable is para-NP-hard when parameterized by k.

– It is known that if each vertex has a list of size 2, then the list coloring
which asks whether there is a coloring respecting the lists is polyno-
mial time solvable. We show that if only k vertices have lists of size
more than 2, then the problem becomes W[1]-hard.

– It is known that determining whether a graph on n vertices is n −
k colorable, is fixed-parameter tractable on k. We consider the list
coloring variation of it where each vertex has a list of size n − k and
we ask whether the graph has a coloring respecting the lists of colors.
We show that the problem has an XP algorithm, i.e. an algorithm
with runtime nO(k). At least this shows that the problem cannot be
para-NP-hard unless P = NP . We leave open the question whether
the problem is fixed-parameter tractable.

– Finally, it is known that 2−List coloring is polynomial time solv-
able. If there is no such coloring, then we address the following nat-
ural question: are there k vertices or edges whose removal results in
a feasible coloring. We show that these versions are fixed-parameter
tractable when parameterized by k. These generalize the odd cycle
transversal problem and edge-bipartization problem which are well-
studied problems particularly in parameterized complexity.
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1 Introduction

1.1 Problems and Motivation

The graph coloring problem is one of the fundamental combinatorial optimiza-
tion problems with applications in scheduling, register allocation, pattern match-
ing and many other active research areas. Given a graph G = (V,E), the graph
coloring problem is a way to assign colors/labels to vertices of a graph such that
no two adjacent vertices share the same color. Such a coloring is also known as
a proper coloring. The smallest number of colors needed to color a graph G is
called its chromatic number, and is denoted by χ(G). Determining whether a
graph is 3-colorable is NP-hard [7] while the 2-coloring problem has a linear time
algorithm. It is even hard to approximate the chromatic number in polynomial
time. The 3-coloring problem remains NP-complete even on 4-regular planar
graphs [6]. There are some generalizations and variations of ordinary graph col-
orings which are motivated by practical applications. For example, sometimes a
set of feasible colors L(v) is attached with each vertex v ∈ V and we may require
that the vertex v be colored from a color from L(v). This takes us to the list
coloring problem, and clearly this is a generalization of standard graph coloring,
and hence is considerably harder.

List coloring problem
Input: A graph G = (V,E) and a list of |V | many set of colors, L(v) for
each v ∈ V
Question: Find an assignment of colors c : V → ∪v∈V L(v) such that for any
vertex v, c(v) ∈ L(v) and for any two adjacent vertices u and v, c(v) �= c(u)

A list is �-regular if each set contains exactly l colors. �-regular List
coloring problem is to decide whether G = (V,E) has a coloring that respects
L, where L is �-regular. A graph G is �-choosable if for every l−regular list
L of G, there exists a coloring which respects L.

choosablity problem
Input: A graph G = (V,E) and an integer l
Question: Determine whether G is �-choosable

Cai [2] in one of the earliest papers on parameterizations of graph coloring
studied various parameterizations. He showed surprisingly that it is NP-hard to
determine whether a graph that is two vertices away from a bipartite graph is
3-colorable. A graph is k vertices away from a graph satisfying a property (say
planar or bipartite), if there are k vertices in the graph whose removal results
in a graph satisfying the property. We say that such a graph is planar + kv if
it has k vertices whose deletion results in a planar graph. We consider such
parameterizations in this paper for graph coloring and list coloring and give
hardness and FPT (fixed-parameter tractable) results.

We begin with the notions of parameterized complexity before we explain
our results.
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1.2 Parameterized Complexity

The goal of Parameterized Complexity is to find ways of solving NP-hard prob-
lems more efficiently than brute force: here the aim is to restrict the combina-
torial explosion to a parameter that is hopefully much smaller than the input
size. A parameterization of a problem is assigning a positive integer parameter k
to each input instance. Formally we say that a parameterized problem is fixed-
parameter tractable (FPT) if there is an algorithm A (called a fixed parameter
algorithm), a computable function f , and a constant c such that, given problem
instance (x, k), A correctly solves the problem in time bounded by f(k) · |(x, k)|c,
where x is the input and k is the parameter [4]. There is also an accompanying
theory of parameterized intractability using which one can identify parameter-
ized problems that are unlikely to admit FPT algorithms. These are essentially
proved by showing that the problem is W-hard.

A parameterized problem is called slice-wise polynomial (XP) if there exists
an algorithm A, two computable functions f, g such that, given problem instance
(x,k), the algorithm A correctly solves the problem in time bounded by f(k) ·
|(x, k)|g(k), where x is the input and k is the parameter [4]. The complexity
class containing all slice-wise polynomial problems is called XP. We say that
a parameterized problem is para-NP-hard if the problem is NP-hard for some
fixed constant value of the parameter. para-NP-hard problems are not in XP
unless P = NP.

1.3 Our Results

We start with parameterization of simple polynomial time solvable cases of Col-
oring and List coloring. Thomassen [15] showed that every planar graph is
5-choosable. Therefore, by definition of choosability, planar graph is always a
Y es instance for 5-regular List coloring. Our first result is that 5-regular
List coloring is para-NP-hard for planar + kv graphs.

Garey et al. [7] showed that Coloring is polynomial time solvable for graphs
with maximum degree 3, actually all such graphs other than 4-clique are 3-
colorable. Now an interesting question is, if we are given a graph which has a
set of k vertices whose deletion makes the graph maximum degree 3, how hard
is Coloring on this graph. First we define the problem formally. We denote
graph of maximum degree d by Gd.

G3 + kv Coloring Parameter: k
Input: A graph G = (V,E) with a set S ⊆ V , |S| = k where G \ S is
maximum degree 3 graph.
Question: Determine whether G is 3-colorable.

We show this also to be para-NP-hard.
In case of general graphs no results are known for List coloring. Observe

that for general graph k-regular List coloring is para-NP-hard as the
problem is a generalization of k-coloring. It is known that if we ask whether the
graph can be properly colored with (n − k) colors, then the problem is FPT [4].
We consider a similar variation on List coloring.
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(n − k)-regular List coloring Parameter: k
Input: A graph G = (V,E) and a (n − k)-regular list L, where n = |V |
Question: Determine whether there exists a feasible coloring of G with
respect to L

We show that (n − k)-regular List coloring is in XP which is the most
technical part of the paper. It remains as an open problem whether the problem
is fixed-parameter tractable.

It is known [5] that 2-regular List coloring is polynomial time solv-
able for general graphs. As we cannot see a formal proof, we give it here for
completeness. We have the following theorem.

Theorem 1. 2-regular List coloring is polynomial time solvable for gen-
eral graphs.

Proof. Let G = (V,E) be a graph and L be a 2-regular list assignment for G.
This problem can be reduced to 2-cnf SAT which is polynomial time solvable [1].
For each u ∈ V , define a variable xu. xu is set to true if the first color from its
list is assigned to vertex u, otherwise xu is set to false. For each edge (u, v) ∈ E,
add clauses depending on the common colors in L(u) and L(v). No clauses need
to be added if there are no common colors. There are four cases:

1. First color of L(u) and first color of L(v) is same. Add clause (xu ∨ xv).
2. First color of L(u) and second color of L(v) is same. Add clause (xu ∨ xv).
3. Second color of L(u) and first color of L(v) is same. Add clause (xu ∨ xv).
4. Second color of L(u) and second color of L(v) is same. Add clause (xu ∨ xv).

These clauses ensure that adjacent vertices do not get the same color because
if any two adjacent vertices get the same color then at least one of the clauses
will be falsified. Suppose that there exists an assignment that satisfies the 2-cnf
SAT formula. If xu is true, then u is assigned the first color in its list, otherwise
it is assigned the second color. Conversely, if there exists a coloring of G with
the given L, then xu is set to true if it is assigned the first color from its list,
otherwise it is set to false. Now, since no two adjacent vertices are assigned same
color, none of the clauses will be falsified. �

Two natural questions are: (1) if a graph G = (V,E) is not colorable with
respect to a 2-regular list L then is it possible to color at least k vertices of the
graph respecting L? This problem is known to be W[1]-hard [9]. In this paper
we address the second natural question (which is sometimes called ‘parameteric
dual’ defined below).

Vertex Parameterized 2−regular List coloring Parameter: k
Input: A graph G = (V,E) with a 2-regular list assignment L.
Question: Determine whether it is possible to color n− k vertices of G with
respect to L.

This is the same as asking whether we can delete k vertices and obtain a list
coloring of the graph. If the lists (of size 2) of each vertex is the same, then note
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that this problem is the same as asking whether there are k vertices whose dele-
tion results in a bipartite graph, which is the well-studied odd cycle transversal
(OCT) problem [11,14]. We show that Vertex Parameterized 2−regular List
coloring, which is a generalization of OCT, is also FPT.

We also consider a closely related problem that is whether we can delete k
edges such that resultant graph can be colored satisfying the given 2−regular
list assignment. We define the problem formally as follows:

Edge Parameterized 2−regular List coloring Parameter: k
Input: A graph G = (V,E) with a 2-regular list assignment L.
Question: Can we delete at most k edges such that the resultant graph can
be colored respecting L?

This problem is generalization of the well known edge bipartization problem.
We show that this problem is also FPT.

As mentioned earlier, 2-regular List coloring is polynomial time solv-
able. In a 2-regular List coloring instance, all vertices have lists of colors
of size exactly 2. Another parameterization we consider is that if only k vertices
have lists of colors of size more than 2, then how does the complexity of List
coloring change. We first define the problem formally.

Parameterized 2−regular List coloring Parameter: k
Input: A graph G = (V,E) and, a set S ⊆ V , |S| ≤ k and a list assignment
L such that the size of lists of colors of vertices in V \ S is at most 2.
Question: Determine whether it is possible to color the graph respecting L

We show that Parameterized 2−regular List coloring is W[1]-hard. On
the other hand, if the maximum size of lists of colors for the vertices in S is m,
then we show that if m bounded by a constant or is also a parameter, then the
problem becomes FPT.

1.4 Organization of the Paper

In Sect. 2 we show the para-NP-hardness results on planar + kv graphs and
G3 + kv graphs. Next we show that Parameterized 2−regular List color-
ing is W[1]-hard and that it becomes FPT with stronger parameterization or
constant upper bound on the size of lists of colors. In Sect. 3 we present the
XP algorithm for (n − k)-regular List coloring. In Sect. 4 we show that
the Vertex Parameterized 2-regular List coloring and Edge Parameterized
2-regular List coloring are FPT.

1.5 Related Work

Besides the results of Cai [2] mentioned in the introduction, there are other
works on parameterizing the vertex coloring problems on graphs which are close
to some special families. Formally if F is a graph family, then F + kv is another
family of graphs, which have only k vertices whose deletion results into F graph.
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Now for example, Coloring problem, when parameterized by k, is W[1]-hard
for chordal + kv graphs, interval + kv graphs and complete + kv graphs [12].

It is known that not every graph is k-choosable. Therefore a natural ques-
tion is, given a graph G and a list can we find a coloring in polynomial time. In
a recent paper [5] Dabrowski et al. have addressed many such List coloring
problems.

2 Hardness Results

Theorem 2. 5-regular List coloring is para-NP-hard on planar+ kv
graphs.

Proof. We will prove that 5-regular List coloring is para-NP-hard on pla-
nar + 1v graphs. It is known that 4-regular List coloring is NP-complete
for planar graphs even if every list contains four colors from {1, 2, 3, 4, 5}[5]. We
will show a polynomial reduction from this problem to our problem.

Suppose we are given an instance G = (V,E) with the 4-regular list assign-
ment. We create 5 copies of this instance and call them G1, G2, G3, G4 and G5.
Now we add a new color 6 in lists of all vertices of G1. Similarly, we add colors
7, 8, 9 and 10 to all vertices of G2, G3, G4 and G5 respectively. Now we add a
special vertex s with list of colors {6, 7, 8, 9, 10}. We make this vertex s adjacent
to all vertices in Gi ∀1 ≤ i ≤ 5. The resultant graph is planar + 1v graph because
each Gi is planar and union of Gis is also a planar graph. Also each vertex in the
new instance has 5 colors in the lists. Hence this coloring instance is 5-regular
List coloring instance on planar + 1v graph. We show that the new instance
is colorable if and only if the original instance is an Yes instance.

If the original instance is a Yes instance, then each copy of the original vertices
can be given the same colors and the vertex s can be given any color from its list.
Conversely, if the new instance can be list colored, then we can color the original
instance as follows: Say the vertex s is colored with color 6, then no vertex in
G1 can get color 6, so we can color the original instance from the colors that
corresponding vertices in G1 are colored from. Similarly, if s were colored from
color 7, 8, 9 or 10, we would have considered G2, G3, G4 or G5 respectively.

Therefore 5-regular List coloring is NP-hard on planar + 1v graph. �

Theorem 3. G3 + kv Coloring is para-NP-hard.

Proof. We will show that 3-Coloring is NP-hard on G3 + 3v graph.
It is known that List coloring problem is NP-complete for 3-regular pla-

nar bipartite graphs that have list assignment in which each list is one of
{1, 2},{2, 3},{1, 3},{1, 2, 3} and all neighbours of each vertex with three colors in
its list have two colors in their lists [3]. We will show a polynomial time reduction
from this problem. Say we are given an instance G = (V,E) of this problem.
We add three vertices a,b,c. We will add edge (a, v) for all v ∈ V which have
{2, 3} in the list. We add edge (b, v) for all v ∈ V which have {1, 3} in the list.
Similarly we add edge (c, v) for all v ∈ V which have {1, 2} in the list. Since the
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given instance was a 3-regular planar bipartite graph, the resultant graph will
be a G3 + 3v graph. Now we claim that this new graph is 3-colorable if and only
if the given instance is a Yes instance. If the original instance can be colored
respecting the list assignment, then we can color vertices in V with the same
colors and a with 1 because any neighbor of a will not have gotten color 1, since
they had {2, 3} in their lists. Similarly we can color b with 2 and c with color 3.

Conversely, if the new instance is 3-colorable, then we can color the original
instance respecting the given list assignment as follows: Say vertex a gets color
i and so b and c cannot get the same color. Now say the set of vertices that get
color i is Va, then we will color them with color 1 in original instance. Similarly,
we can color vertices in Vb with color 2 and vertices in Vc with color 3.

Therefore, 3-Coloring is NP-hard on G3 + 3v graph which proves para-
NP-hardness of Coloring on G3 + kv graphs. �

Theorem 4. Parameterized 2−regular List coloring is W[1]-hard.

Proof. We will show a parameterized reduction from k-Independent Set prob-
lem which is known to be W[1]-hard [4]. We are given an instance G = (V,E).
Now the problem is to find whether there exists an independent set of size at
least k. With each vertex vi ∈ V , we associate a list of colors {i, 0}. Now, we add
a clique of size k, in which each vertex has list of colors {1, 2, 3, ..., n}. Also, we
make each vertex of this clique adjacent to all vertices of V . It can be observed
that the new instance is an instance of original problem which we wanted to
prove W[1]-hard because only k vertices have lists of size more than 2. Now we
prove the claim that there exists an independent set of size at least k if and only
if this graph can be colored respecting the list assignment.

Let S ⊆ V be an independent set of size k in G, then the vertices in S
can be colored from color 0 and therefore the vertices of clique can use the k
colors corresponding to the second colors in the lists of those k vertices in S. The
remaining vertices of V \S can be colored from the first colors in their respective
lists. So the new instance can be colored.

Conversely, say the new instance can be colored respecting the list assign-
ment. Since the vertices in clique must use k colors out of {1, 2, 3, ..., n}, so
at least k vertices in V must have been colored with the color 0 which is the
desired independent set of size at least k. Hence, Parameterized 2−regular
List coloring is W[1]-hard. �

Now, we will show that if the size of lists of colors for these k vertices is also
bounded by m and m is also a parameter, then the problem becomes FPT.

Theorem 5. Parameterized 2−regular List coloring is FPT with param-
eter (k,m), where m is the maximum size of list of colors for the vertices
in S.

Proof. Consider the vertices in S. There are at most mk ways to color these
vertices. We try all these possibilities in at most mk iterations and in each
iteration, for the remaining vertices, the problem becomes 2−List coloring
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which is polynomial time solvable as shown in previous section. So if m is a con-
stant or parameter, the algorithm is FPT algorithm and therefore the problem
is FPT. �

3 (n − k)-regular List coloring Is in XP

It is known that determining whether the vertices of a graph can be colored
properly with n − k colors is fixed-parameter tractable when parameterized by
k [4]. The exact parameterized complexity class of (n − k)-regular List col-
oring is still unknown. In this section we present, an XP algorithm for this
problem.

Let G = (V,E) be any graph and L be a (n−k)-regular list assignment such
that L(v) denotes the list of colors corresponding to the vertex v. We begin by
observing the following rule which can be applied to the graph repeatedly until
no longer possible.

Reduction Rule 5. Delete any vertex with degree less than (n − k).

Observation 6. Reduction Rule 5 is safe and can be implemented in polynomial
time.

Proof. Consider a vertex v which has degree dv less than (n − k) . Since each
vertex has (n − k) colors in its list, vertex v also has (n − k) colors. Coloring
requires that no adjacent vertices get the same color, so v cannot be colored with
the colors that its neighbours are colored from. Since v has less than (n − k)
neighbours, so at least one color will always be left for v to be colored. Therefore
it can be observed that G \ v can be colored respecting the list assignment if
and only if G can be colored too. Checking the degrees of vertices and delet-
ing a vertex from the graph are well known to be implemented in polynomial
time. �

The following more general claim follows from the proof of correctness of the
reduction rule above, as we can greedily color the vertices.

Lemma 1. If the size of the list of every vertex is more than its degree then
there exists a list coloring respecting the lists.

We keep applying Reduction Rule 5 till it is no longer applicable and hence
from now onwards we assume that every vertex has degree at least (n − k).

We need the following simple observation which we use in our algorithm.

Lemma 2. List coloring is polynomial time solvable on a clique.

Proof. We are given a clique C of size n and a list assignment L of colors.
Since, in a clique, no two vertices can be assigned same color, therefore at most
one vertex can be colored by any color. We create a bipartite graph, with all the
vertices of C in one part, and a set of vertices, one corresponding to each distinct
color in the lists of vertices in C, in the other part. We add an edge between a
vertex v which corresponds to a vertex in C and a vertex x which corresponds
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to a color x, if and only if the color x appears in the list of v. Now, it can be
observed that the size of maximum matching gives us the maximum number of
vertices in C that can be colored satisfying L. Finding maximum matching in
a bipartite graph is polynomial time solvable [8]. Therefore List coloring is
polynomial time solvable on cliques. �

Lemma 3. If there exists a set of k colors using which it is possible to color at
least 2k vertices of G respecting L, then there is a feasible coloring for G with
respect to L.

Proof. Let Ck be the set of k colors, from which it is possible to color s vertices,
where s ≥ 2k. Now, we assume that we will not use any color of Ck to color
any other vertex. So we can delete these k colors from the lists of other vertices.
Also we can delete those s vertices from the graph, because we will not use their
colors in the remaining graph. Now the size of the list of colors of any vertex will
decrease by at most k. Hence each vertex will still have at least n − 2k colors in
its list. Since we are left with at most n − s vertices in the graph and s ≥ 2k,
each vertex can have degree at most n − 2k − 1 and has at least n − 2k colors in
its list. So from Lemma 1, there is a feasible coloring respecting L. �

Lemma 4. If there does not exist a set of k colors using which it is possible to
color more than or equal to 2k vertices of G respecting L, then, in time nO(k),
we can determine whether G has a feasible coloring with respect to L or not.

Proof. Let R be the set of colors that are used by more than one vertex in the
optimal coloring if it exists. Since there does not exist any set of k colors using
which at least 2k vertices can be colored, |R| < k. Let C be the union of the
lists of colors of all vertices in V . Clearly |C| < n(n − k), and hence the number
of all possible subsets of C of size k is less than n2k. Therefore, in time nO(k),
we can guess a set S of colors of size k such that R ⊆ S. Now, we will guess all
possible sets of vertices that can be colored from the colors in S.

We denote the set of vertices that have color i in their lists by Vi. It can be
observed that the size of any Vi can be at most n. Also, since the degree of each
vertex is at least (n − k) , the total number of independent sets in any Vi is at
most n · 2k (as a vertex is non-adjacent to at most k other vertices). Therefore
the total possible sets of vertices, that can be colored from the colors in S, is at
most (n · 2k)k. Since, we are sure that colors other than those in S don’t color
more than one vertex in the graph, the remaining vertices get a unique color.
We can remove the colors of S from the lists of the remaining vertices and make
them all adjacent to each other (as no pair of them will be colored with the same
color anyway). Thus the problem now reduces to list coloring a clique which can
be solved in polynomial time using Lemma 2. It can be observed that we have
maintained the overall complexity upper bounded by nO(k). �

Theorem 7. In time nO(k) given G = (V,E) and (n − k) regular list L, algo-
rithm 1 determines whether there exist a color assignment respecting L.
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Proof. Let the total number of colors be r. Now the idea is to build r graphs,
one corresponding to each color, which will be induced from the vertices which
have that corresponding color in their list. Now, the task is simply to find sets
of independent vertices from the graphs corresponding to each color such that
the union covers all vertices Since we know that each vertex has degree at least
(n − k), there can be at most n . 2k independent sets in each graph. So we
iterate over all possibilities of choosing k colors and then the vertices that can
be colored from them (by choosing indepedent sets from their corresponding
graphs) in nO(k) time. We now have two possibilities.

1. Suppose, we can choose k colors such that we can color at least 2k vertices
from those colors, then we can return Yes (from Lemma 3).

2. In the other case, there cannot be more than k colors which contribute to
more than 1 vertex in the optimum solution. Now from Lemma 4, we keep
guessing k colors and assume that those colors which contribute to more than
1 color in the optimum solution will be covered in some iteration. In that case,
since the remaining colors contribute at most one vertex, finding the size of
the maximum matching in the constructed graph provides the solution.

Observe that the run time of the Algorithm is dominated by line number 13 and
15 which are nO(k). �

4 Deleting k Vertices or Edges to Satisfy 2−regular
List coloring

Theorem 8. Vertex Parameterized 2−regular List coloring is FPT.

Proof. We modify the proof of Theorem1 for this. Let G = (V,E) be a graph
and L be a 2-regular list for G. We reduce our problem to All-but-k 2-sat. All-
but-k 2-sat is to determine whether in given a 2-cnf formula, it is possible to
remove at most k clauses so that the resulting 2-cnf formula is satisfiable. It
is known that All-but-k 2-sat is FPT [10,13]. From G we create an equivalent
2-cnf formula F as follows.

For each u ∈ V , we make two variables xu and yu. So, we have 2|V | variables.
We will set xu to true if the vertex u is assigned the first color in its list and yu
to true and xu to false if vertex u is assigned the second color in its list. Now we
construct a 2-cnf formula by adding two types of clauses.

– Type 1: For each vertex u ∈ V , we add the clause (xu ∨ yu). Also for each
edge (u, v), we add clauses such that both vertices do not get the same color.
For example, if the list for vertex u is {a, b} and that for vertex v is {b, c},
then we add clause (yu ∨ xv).
After adding the clauses corresponding to all vertices and edges, we repeat
each of these Type 1 clauses k + 1 times.

– Type 2: We add clauses (xu ∨ yu) for all u ∈ V .
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Algorithm 1. (n − k)-regular List coloring

1: Input : Graph G = (V,E) and (n − k) regular list assignment L such that L(v)
denotes the list of colors corresponding to the vertex v.

2: Parameter : k.
3: Output : Y es if G can be colored respecting the given list assignment, No

otherwise.
4: Recursively delete vertices of degree less than n − k.
5: R ← ∪v∈V L(v)
6: r ← |R|
7: for i ← 1 to r do
8: Vi ← {v ∈ V | i ∈ L(v)}
9: Ei ← {(u, v) ∈ E | u ∈ Vi and v ∈ Vi}

10: Ci ← (Vi, Ei)
11: end for
12: C ← ⋃i=1

r Ci

13: for each S ⊆ C such that |S| = k do
14: Let S be {S1, S2, S3, ..., Sk}
15: for each possible combination {T1, T2, T3, ..., Tk} where Ti ⊆ V (Si) ∀1 ≤ i ≤ k

and Ti is independent in Si do
16: T ← ⋃i=1

k Ti

17: if |T | ≥ 2k then
18: return Yes;
19: else
20: G′ ← G \ T
21: CM ← New vertices corresponding to colors in G′

22: VM ← V (G′) ∪ CM

23: construct GM from vertices VM with adding edges between the vertex v,
which corresponds to a vertex from G′, and a vertex corresponding to color c if and
only if c ∈ L(v)

24: M ← maximum matching in GM

25: if |T | + |M | ≥ n then
26: return Yes;

27: end for
28: end for

return No

The resultant formula is the equivalent 2-cnf formula. Now, we claim that ∃S ⊆
V , |S| ≤ k, such that the graph induced from V − S is list colorable if and only
if at least (m − k) clauses of the resultant expression can be satisfied, where m
is the total number of clauses. We can note that m ≤ (k + 1)(2|E|) + |V |) + |V |.
Suppose that there exists an assignment of variables that satisfies at least m−k
clauses i.e. at most k clauses are falsified by this assignment. Now, these k clauses
can be Type 2 only, because each of Type 1 clauses appears k+1 times. These k
clauses will be corresponding to k vertices in V . Since the rest of all the clauses in
SAT expression can be satisfied, so in our graph, we can delete those k vertices,
to color the remaining n − k vertices. Conversely suppose that there exists a
S ⊆ V , |S| ≤ k, such that induced graph from V \ S can be colored. We can



Some (in)tractable Parameterizations of Coloring and List-Coloring 137

assign false to both xu and yu for each such vertex u ∈ S. So at most k Type
2 clauses will be falsified. It can easily be seen that the rest all clauses can be
satisfied.

Therefore the FPT reduction is proven. Since we know that All-but-k 2-sat
is FPT, so this problem is also FPT. �

As mentioned before, this result generalizes the result that the odd cycle
transversal problem is fixed-parameter tractable. There is a related edge ver-
sion (called edge bipartization) which asks whether we can delete k edges to
make a graph bipartite. An analogous list-coloring version is whether we can
delete k edges from a given graph to satisfy a 2-regular list coloring. As in the
case of edge bipartization [16], we give a parameter preserving reduction from
the edge version to the vertex version to show

Theorem 9. Given a 2-regular list coloring instance, determining whether there
are k edges from the graph whose removal results in a list 2-coloring of the graph
is fixed-parameter tractable.

Fig. 1. Example reduction from G1 to G2

Proof. The proof goes along the lines of the parameter preserving reduction from
edge bipartization to odd cycle transversal. Given an instance G1 = (V1, E1) of
Edge Parameterized 2−regular List coloring problem, we will reduce to
equivalent instance G2 = (V2, E2) of Vertex Parameterized 2−regular List
coloring problem. From G1 we construct G2 as followes. V2 consists of two
types of vertices:

Type 1: VI = {uij | vi ∈ V1, 1 ≤ j ≤ k + 1}
Type 2: VII = {wij , wji |∀(vi, vj) ∈ E1}

For a sample reduction please refer to Fig. 1. Now we set V2 = VI ∪VII . Note
that we have named the vertices in VI by a u and those in VII by a w. We can
call vertices in VI by u vertices and those in VII by w vertices. The edges in E2

also consist of two sets:
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Type 1: EI = { {uij , wim} | vi ∈ V1, 1 ≤ j ≤ k + 1, (vi, vm) ∈ E1}
Type 2: EII = { {wab, wba} | el = {va, vb} ∈ E1}

Now we set E2 = EI ∪ EII . We give the list assignment of colors in G2 in
the following manner. List of colors for each uij is same as the list of vi in G1.
Also list for wij is same as the list of vi in G1. Construction of equivalent Vertex
Parameterized 2−regular List coloring instance is complete now. Now we
show that the edge parameterized instance G1 can be colored if and only if vertex
parameterized instance G2 can be colored.

First assume there exists a set of k edges Ek in G1 such that after deleting Ek

from G1, remaining graph can be colored. Then, for each edge el = (va, vb) ∈ Ek,
we can delete any one of of wab or wba. This step deletes exactly k vertices. Now,
in remaining G2, say the list of colors for the vertex uij is {c1, c2} which is same
as of vi in G1. If vi is colored with c1, then we color uij with c2 and if vi is
colored with c2, then we color uij with c1. For each vertex wij , we can color it
with the same color as of vi. It can be observed that the there won’t be any
violations in the coloring.

Now for other way proof, assume there exists a set Sk ⊂ V2 of at most k
vertices whose deletion makes graph G2 colorable. It can be observed that for
each i, the set {uij | 1 ≤ j ≤ k + 1} will be colored with same color, because
otherwise there will be no color left for some w vertex. Also it should be noted
that deleting any u vertex does not help in coloring, because in that case we need
to delete k + 1 copies to get rid of the constraint caused by it. So, all vertices in
Sk are w vertices. Now, we can delete the k edges in graph G1 which correspond
to the k vertices in Sk. It can then be observed that the vertex vi in G1 can
be colored from the color which is not used by uij and this doesn’t violate any
coloring constraint. �

5 Conclusions

We have filled up some gaps in the parameterizations of coloring and list-coloring
and shown FPT results and hardness results for some natural parameterization.
The main open problem we leave with is whether (n − k)-regular List col-
oring is fixed-parameter tractable.
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Abstract. The P2-packing problem asks for whether a graph contains
k vertex-disjoint paths each of length two. We continue the study of its
kernelization algorithms, and develop a 5k-vertex kernel.

1 Introduction

Packing problems make one of the most important family of problems in com-
binatorial optimization. One example is H-packing for a fixed graph H, i.e.,
to find the maximum number of vertex-disjoint copies of H from a graph G.
It is trivial when H consists of a single vertex, and it is the well-known max-
imum matching problem, which can be solved in polynomial time, when H is
an edge. The problem can be easily reduced to the maximum matching prob-
lem when each component of H has at most two vertices. The smallest H on
which the H-packing problem is NP-complete is P2, the graph on three vertices
and two edges [11]. The P2-packing problem is thus a natural starting point of
investigating H-parking problems in general, and has been extensively studied
[7,9,10,12].

In the parameterized setting, the P2-packing problem asks whether a graph
G contains k vertex-disjoint paths each of length two. Recall that given an
instance (G, k), a kernelization algorithm produces in polynomial time an equiv-
alent instance (G′, k′)—(G, k) is a yes-instance if and only if (G′, k′) is a yes-
instance—such that k′ ≤ k. The size of G′ is upper bounded by some function
of k′, and (G′, k′) is a polynomial kernel when the function is a polynomial func-
tion. Prieto and Sloper [13] first developed a 15k-vertex kernel for the P2-packing
problem, which were improved to 7k [14] and then 6k [2]. We further improve it
to 5k.
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Theorem 1. The P2-packing problem has a 5k-vertex kernel.

Although our improvement seems modest, it is a solid step toward the ulti-
mate goal of this line of research, a kernel of only 3k vertices. Note that the
problem remains NP-hard when G has exactly 3k vertices. Indeed, what Kirk-
patrick and Hell [11] proved is that it is NP-hard to decide whether a graph can
be partitioned into vertex-disjoint P2’s. The existence of a 3k-vertex kernel for
the P2-packing problem would indicate that it is practically equivalent to the
P2-partition problem. Moreover, our algorithm implies directly an approxima-
tion algorithm of ratio 5/3; a 4.5k-vertex kernel, provided that it satisfies certain
properties, would imply an approximation algorithm of ratio 1.5, better than the
best known ratio 1.5+ ε [6]. We remark that the problem is MAX-SNP-hard [8],
and remains so even on bipartite graphs with maximum degree three [12].

We also note that there are efforts on a simplified version of the problem:
Chang et al. [1] claimed a 5k-vertex kernel for the problem on net-free graphs,
which however contains a critical bug, according to Xiao and Kou [15].

A very natural tool for the problem is a generalization of the crown structure;
it was first used by Prieto and Sloper [13], and all later work follows suit. If there
exists a set C of vertices such that there are precisely |N(C)| vertex-disjoint P2’s
in the subgraph induced by N(C) ∪ C, but G[C] does not contain any P2, then
we may take the |N(C)| paths and consider the subgraph G − N(C) ∪ C. This
remains our main reduction rule; the difficulty, hence one of our contributions,
is how to find such a structure if one exists.

As all the previous kernelization algorithms for the problem, we start from
finding a maximal P2-packing P in a greedy way. Let V (P) denote the vertices
on paths in P, and we call other vertices, i.e., V (G) \ V (P), extra vertices. We
may assume that the graph contains no component of one or two vertices. Then
each component in G − V (P) has to be connected with V (P). By some classic
results from matching theory, as long as the number of extra vertices is large
enough, a reducible structure can be identified. This leads to the first kernel of
15k vertices [13], and is the starting point of all later work.

The later improvements follow a similar scheme. It tries to find a P2-packing
larger than P using local search; once the local search gets stuck, a careful study
of the configuration would reveal new reducible structures. Wang et al. [14]
observed that a pair of adjacent extra vertices is more helpful for the local search
than two nonadjacent ones. They used two simple exchange rules to consolidate
extra vertices that are only adjacent to vertices in V (P). For example, if the
two ends of a path on five vertices are extra vertices, (i.e., the three vertices in
the middle are picked to be a path in P,) they would change it so that the two
vertices not picked are adjacent. The key idea of Chen et al. [2] is that extra
vertices adjacent to the ends of a path in P are usually more helpful than those
adjacent to the middle vertex of the path.

Our local search procedure is more systematic and comprehensive; it actually
subsumes observations from both Wang et al. [14] and Chen et al. [2]. After the
initial step very similar to [13], if no reducible structure has been found, we
assign the extra vertices to paths in P such that each path receives a small
number of them. Each path, together with assigned vertices, defines a unit. We
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put units with at least five vertices into two categories, depending on whether
there is a vertex that participates in all P2’s inside this unit. We introduce several
nontrivial exchange rules to migrate vertices from “large” units to “small” units.
Their applications may lead to (1) a larger P2-packing than P, or (2) a reducible
structure, whereupon we repeat the procedure with a larger number of units or
a smaller graph respectively. After they are exhaustively applied, a unit contains
at most six vertices, and the number of six-vertex units is upper bounded by the
number of small units (on four or three vertices). The bound on the size of the
kernel follows immediately.

2 Preliminaries

All graphs discussed in this paper are undirected and simple. The vertex set and
edge set of a graph G are denoted by V (G) and E(G) respectively. For a set
U ⊆ V (G) of vertices, we denote by G[U ] the subgraph induced by U , whose
vertex set is U and whose edge set comprises all edges of G with both ends in
U . We use G − U as a shorthand for G[V (G) \ U ], and it is further simplified as
G − v when U contains a single vertex v. A component is a maximal connected
induced subgraph, and an edge component is a component on two vertices.

Reduction Rule 1. If a component C of G has at most 6 vertices, delete C
and decrease k by the maximum number of vertex-disjoint P2’s in C.

The following technical definition would be crucial for our main reduction
rule.

Definition 1. Let C be a set of vertices and N(C) = {v1, v2, . . . , v�}. We say
that C is a reducible set (of G) (of G) if the maximum degree in G[C] is at most
one and one of the following holds.

(i) There are � edge components {C1, . . . , C�} in G[C] such that vi is adjacent
to Ci for 1 ≤ i ≤ �.

(ii) There are 2� components {C1, . . . , C2�} in G[C] such that vi is adjacent to
C2i−1 and C2i for 1 ≤ i ≤ �.

For readers familiar with previous work, a remark is worthwhile here. Our
reducible set is a generalization of the well-known crown decomposition [3]. Our
definition (i) coincides with the “fat crown” defined in [13]. Our definition (ii)
coincides with the “double crown” defined in [13] when each component of G[C]
is a single vertex. In definition (ii), however, we allow a mixed of single-vertex
components and edge components.1

Reduction Rule 2. If there is a reducible set C, delete N(C)∪C and decrease
k by |N(C)|.
1 One may define the reducible set in a way that an edge component is regarded
as two single-vertex components. This definition might reveal more reducible sets.
However, it would slightly complicate our presentation without helping our analysis
in the worst case, and hence we choose to use the simpler one.
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We use opt(G) to denote the maximum number of vertex-disjoint P2’s in
graph G.

Lemma 1. If C is a reducible set of graph G, then opt(G) = opt(G − N(C) ∪
C) + |N(C)|.

Proof. Let A = N(C) and G′ = G − A ∪ C. For each vertex v ∈ A, we can pick
in G[C] an edge component or two vertices from two components to form a P2.
Thus we have |A| vertex-disjoint P2’s using only vertices in A∪C. Together with
a maximum P2-packing of G′, we have opt(G) ≥ opt(G′) + |A|.

On the other hand, any P2-packing of G contains at most |A| vertex-disjoint
P2’s involving vertices in A. Hence opt(G) ≤ opt(G − A) + |A|. By definition,
the maximum degree in G[C] is at most one, and hence vertices of C participate
in no P2 in G − A. Therefore, opt(G − A) = opt(G′) and opt(G) ≤ opt(G′)
+ |A|. ��

To identify reducible sets, we will rely on tools from maximum matching in
bipartite graphs. In several steps of our algorithm, we will formulate an auxiliary
bipartite graph B; to avoid confusion, we use nodes to refer to elements in V (B).
The two sides of B are denoted by L and R. The Hall’s theorem states that there
is a matching of B saturating L if and only if |L′| ≤ |N(L′)| for all L′ ⊆ L [4]. We
will use the Hopcroft-Karp algorithm [5]: In polynomial time we can find either
a matching of B saturating L or an inclusion-wise minimal set L′ ⊆ L such
that |N(L′)| < |L′|. Note that there is a matching between N(L′) and L′ that
saturates N(L′): Otherwise by the Hall’s theorem, there exists R′ ⊆ N(L′) such
that |R′| > |N(R′) ∩ L′|, but then L∗ = L′ \ N(R′) also satisfies |N(L∗)| < |L∗|,
contradicting the minimality of L′. Here N(R′) ∩ L′ is nonempty because every
node in R′ is a neighbor of some node in L′.

Lemma 2 ([5]). Given a bipartite graph B, we can find in polynomial time a
matching saturating L or a set L′ ⊆ L such that there is a matching between
N(L′) and L′ that saturates N(L′).

3 The Unit Partition

Following the standard starter, our first step is to find a maximal P2-packing P
of the input graph G. We will use these paths as “seeds” to partition V (G) into
fewer than k units. We then locally change the units so that they satisfy certain
properties. During the process, if we find (1) a P2-packing larger than P, or (2)
a reducible set, then we restart the procedure with a new P2-packing, or a new
graph respectively.

Denote by V (P) the set of vertices in the paths in P. The maximality of P
guarantees that each component of the subgraph G − V (P) is either a single
vertex or an edge. We construct an auxiliary bipartite graph B1 as follows:

– for each component C of G − V (P), introduce a node uC into L;
– for each vertex v ∈ V (P), introduce two nodes v1, v2 into R; and
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– add edges uCv1 and uCv2 if vertex v is adjacent to component C (of G−V (P))
in G.

Lemma 3. If there is no matching of B1 saturating all nodes in L, then we can
find in polynomial time a reducible set.

Proof. By Lemma 2, we find in polynomial time a subset L′ ⊆ L such that there
is a matching of B1 between NB1(L

′) and L′ that saturates all nodes in NB1(L
′).

Let C ′ be the vertices in the components represented by nodes in L′, and let
A′ be the set of vertices represented by nodes in NB1(L

′). We claim that C ′ is
a reducible set. Note that for each vertex v ∈ V (P), the set NB1(L

′) contains
either both or neither of {v1, v2}. For each v ∈ A′, the two components in G[C ′],
whose nodes are matched to v1 and v2, are adjacent to v. By the construction
of B1, G[C ′] has maximum degree at most one and N(C ′) = A′. Hence C ′ is a
reducible set. ��

In the following, we may assume that we have a matching M of B1 satu-
rating all nodes in L. For a path P ∈ P on vertices u, v, w, we create a unit
that contains u, v, w, and all vertices in those components matched to nodes
u1, u2, v1, v2, w1, w2 by M . Abusing the notation, we also use unit to refer to
the subgraph induced by it. The path P is the base path of this unit. Since all
nodes in L are matched in M , the collection of units is a partition of the vertex
set V (G), and we call it an unreduced unit partition.

Exchange Rule 1. If a unit contains two vertex-disjoint P2’s, then replace the
base path of this unit with these two P2’s.

Exchange Rule 1 enlarges the P2-packing and significantly slashes the number
of possible configurations of units. In the following we may assume that a unit
has precisely one vertex-disjoint P2.

We say that a unit is democratic if it contains one of the graphs in Fig. 1 as
a subgraph. We call a democratic unit a net-, pendant-, C5-, or bull-unit if it
contains net, pendant, C5, or bull but none of the previous ones as a subgraph.
This order ensures, among others, that a bull-unit has to be an induced bull.
(Indeed, only pendant-unit can have extra edges.) A bull-unit contains a unique
vertex of degree 2, which we call the nose of the bull-unit. It is easy to check
that there remains a P2 in a democratic unit after any vertex removed.

net pendant C5

v

bull

Fig. 1. Four subgraphs characterizing democratic units. A pendant-unit may contain
extra edges not shown here, while the other three cannot. The vertex v is the nose of
the bull-unit.
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(4, 0) (3, 1) (3, 0) (2, 2) (2, 1) (2, 0)

(1, 4) (1, 3) (1, 2) (0, 4)

Fig. 2. Ten subgraphs characterizing despotic units. The square vertices are the core
vertices, while the round vertices make the peripheral. Each edge component of the
peripheral is a twig, and each single-vertex component is a leaf. Each unit in the first
row has at least two twigs, while the second row has at most one. For the units with
the same number of twigs, they are ordered by the number of leaves (hence the total
number of vertices). Note that a unit may contain extra edges.

A unit that has more than four vertices but is not democratic is called
despotic. Each graph F in Fig. 2 has a special vertex v (the square vertex at
the bottom) such that its removal leaves a graph of maximum degree at most
one. In other words, each component of F −v is an edge or an isolated vertex; we
call them a twig and a leaf respectively. We label F by a pair (a, b), which are
the numbers of, respectively, twigs and leaves of F . We say that a despotic unit
is an (a, b)-unit if it can be made, by deleting edges, graph (a, b) but not graph
(a′, b′) with a′ > a. A consequence of enforcing this order (of maximizing twigs)
is that there cannot be any edge between two leaves in any unit: For example, if
an edge is added to connect the two leaves of graph (2, 2), then it also contains
graph (3, 0) as a subgraph. For a unit U , we also use d1(U) and d2(U) to denote
the numbers of, respectively, twigs and leaves; i.e., d1(U) = a and d2(U) = b
when U is an (a, b)-unit. The special vertex is the core, while all other vertices
(including twigs and leaves) the peripheral, of the unit.

In passing we should mention that although we draw twigs in the way that
only one vertex in a twig is adjacent to the core, we do not actually differentiate
them (disregarding whether only one or both of them are adjacent to the core).

We are left with the small units (of three or four vertices), which turn out to
be singular in our algorithm. Although they are the smallest units, great care is
needed to deal with them. Recall that our aim is to bound the number of vertices
by summing all units in final graph; hence we would like to maximize the number
of small units. In this sense, the role of a small unit as an “exporter” would be
marginal, and hence we do not categorize them into many types. We abuse the
notation to denote them in a similar way as despotic units. A four-vertex unit
is a (0, 3)-unit if it has precisely three edges and all of them have a common
end, and a (0, 1)-unit otherwise. A three-vertex unit is a (0, 0)-unit, disregarding
whether it has two or three edges. See Fig. 3 for an illustration of small units.
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Note that (0, 1)-unit and (0, 0)-unit are special in the sense that they have three
core vertices.

(0, 3) (0, 1) (0, 0)

Fig. 3. Characterizations of small units. The square vertices are the core vertices, while
the round vertices make the peripheral. Note that a (0, 3)-unit cannot contain extra
edges, while the other two can.

We need to verify that the types defined above include all the possible units
generated. We remark that (1, 4)-units do not exist in an unreduced unit parti-
tion, and they can only be introduced by exchange rules to be discussed in the
next section.

Proposition 1 (*). 2 On an unreduced unit partition, if Exchange Rule 1 is not
applicable, then the following hold.

(i) Each unit on five or more vertices is either democratic or despotic; and if
it is despotic, its type is not (1, 4).

(ii) Each unit on three or four vertices is a small unit in Fig. 3.
(iii) In an (a, b)-unit, any edge not shown in the graph (a, b) is incident to one

core vertex.

Recall that when producing the unit partition, we assign each component of
G−V (P) to the same P2 in P. In other words, if there exists an edge between two
units, at least one end of this edge is in the their base paths. We however lose this
property with the new partition of core vertices and peripheral vertices: There
might be edges between peripheral vertices and democratic units, and edges
between two peripheral vertices in different units. We now apply the following
rules to restore it, whose correctness is straightforward. Since at most three units
are involved, the exchange rules can be applied in polynomial time.

Exchange Rule 2. If any of the following holds true, we produce a larger P2-
packing than P.

(i) There is an edge between a vertex u1 of a democratic unit and a vertex u2

of another unit where u1 is not a nose and u2 is not a core vertex.
(ii) There is an edge between the nose of a bull-unit and a twig of a despotic

unit.
(iii) There is an edge between a twig of a despotic unit and a peripheral vertex

of another unit.
(iv) There are two edges among three leaves from three despotic/small units.

2 Proofs of propositions marked with ∗ are omitted due to space limit.
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In Exchange Rule 2, (i) and (ii) deal with edges incident to a democratic unit,
while (iii) and (iv) deal with edges between peripheral vertices. The remaining
edges between different units are characterized by the following proposition.

Proposition 2 (*). Let U be a unit partition on which none of Exchange Rule
1 and 2 is applicable, and let u1u2 be an edge between two different units U1 and
U2. If neither u1 nor u2 is a core vertex, then for both i = 1, 2, the vertex ui is
either a leaf or the nose of a bull-unit.

The following rule deals with edges between leaves or noses of bull-units. It
consolidates leaves to make twigs, or transforms bull-units to net-units.

Exchange Rule 3. (i) If there is an edge between a nose u1 of a bull-unit U1

and a leaf u2 of a despotic/small unit U2, move u2 from U2 to U1.
(ii) For an edge u1u2 between two leaves from two units U1 and U2, if U1 is

a (1, 4)-unit, move u1 from U1 to U2; and if neither U1 nor U2 is a (1, 4)-unit
and |U1| ≥ |U2|, move u1 from U1 to U2.3

Remark that Exchange Rule 3(ii) creates insupportable units, i.e., units not
represented by graphs in Figs. 1–3, only if u1 is added to a (1, 4)-unit U2, i.e.,
there is an edge between two leaves from two (1, 4)-units. We will prove that this
does not happen in our algorithm.

Proposition 3 (*). On a unit partition U containing only units represented by
graphs in Figs. 1–3, if no edge exists between two leaves of two (1, 4)-units, then
after applications of Exchange Rule 3(ii), the new unit partition still contains
only units represented by graphs in Figs. 1–3.

We conclude the preparation phase by introducing reduced unit partitions.
A reduced unit partition is a unit partition that consists of units represented
by graphs in Figs. 1–3, on which none of above rules (Reduction Rule 1 and
Exchange Rule 1–3) are applicable. The following lemma summarizes the prop-
erties of a reduced unit partition.

Lemma 4 (*). For a reduced unit partition, the following properties hold.

(i) In the subgraph induced on all peripheral vertices, each vertex in a twig has
degree one, and each leaf has degree zero.

(ii) The neighborhood of the set of peripheral vertices consists of core vertices.
(iii) Each net-unit is adjacent to some core vertices, and only core vertices.

4 Main Rules

We are ready to present our main exchange rules on the reduced unit partition.
They move twigs and leaves among units. If neither a larger packing nor a
3 Actually, when neither U1 nor U2 is a (1, 4)-unit, we can move vertices in an arbitrary
direction. We choose this way to simplify our proof.
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reducible structure emerges, then we are able to eliminate all the units with
more than six vertices, and bound the number of units on six vertices.

We start with those units U with d1(U) ≥ 2, and the idea is to cut a twig
from them and graft it to a small unit. We build an auxiliary bipartite graph
B2 = (L ∪ R;E) as follows:

– for each core vertex, introduce a node into L;
– for each twig, introduce a node into R;
– add an edge between a node x ∈ L and a node y ∈ R if the core vertex

represented by x is adjacent to the twig represented by y.

For a node x ∈ L, we use the core vertex of x to refer to the core vertex
represented by x. For a node y ∈ R, the twig of y refers to the twig represented
by y. We say that y1x2y2 · · · x� is a twig-alternating path if (1) xi ∈ L and yj ∈ R
for 2 ≤ i ≤ � and 1 ≤ j ≤ � − 1; and (2) xi and yj are from the same unit if and
only if i = j. Note that we don’t have x1 and y�.

Exchange Rule 4. On a reduced unit partition, if there is a twig-alternating
path y1x2y2 · · · x� where

(i) the unit U1 containing the twig of y1 is a (2, 2)-unit or has d1(U1) > 2; and
(ii) the unit U2 containing the core vertex of x� has d1(U2) = 0,

then for i = 1, . . . , � − 1, move the twig of yi to the unit containing the core
vertex of xi+1 (Fig. 4).

⇒

Fig. 4. An illustration for Exchange Rule 4. After a chain of operations, a twig is
“moved” from the first unit to the last one.

Proposition 4 (*). After applying Exchange Rule 4 for a twig-alternating path
P = y1x2y2 · · · x�, the following hold.

(i) The unit U1 containing the twig of y1 becomes a (d1(U1) − 1, d2(U1))-unit.
(ii) The unit containing the twig of yi retains its type for 2 ≤ i ≤ � − 1.
(iii) If the unit U2 containing the core vertex of x� has d2(U2) ≥ 2, then it

becomes a (d1(U1)+1, d2(U1))-unit. Otherwise, U2 is a (0, 1)- or (0, 0)-unit
and becomes a unit with two vertex-disjoint P2’s, or a democratic/despotic
unit with six or five vertices.

Remark that an unreduced unit partition contains no (1, 4)-units, and
Exchange Rule 4 will be the only rule that introduces (1, 4)-units. If Exchange
Rule 4 is not applicable, twig-alternating paths ensure a reducible set.
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Lemma 5. On a reduced unit partition, if there exists a unit U with d1(U) =
d2(U) = 2 or d1(U) > 2, but Exchange Rule 4 is not applicable, then we can find
a reducible set in polynomial time.

Proof. Let T be the twigs whose representing nodes can be reached by twig-
alternating paths from the representing nodes of twigs of U . Let C be the set
of vertices in the twigs of T , and A = N(C). By Lemma 4, G[C] consists of
edge components and A consists of core vertices. Since Exchange Rule 4 is not
applicable, for each core vertex in A, its unit has at least one twig in T , i.e.,
there is a distinct twig attached to it. Hence C is a reducible set. ��

We next migrate leaves in a similar way as Exchange Rule 4. We build an
auxiliary bipartite graph B3 = (L ∪ R;E) as follows:

– for each core vertex, introduce a node into L;
– for each leaf, introduce a node into R;
– add an edge between a node x ∈ L and a node y ∈ R if the core vertex

represented by x is adjacent to the leaf represented by y.

Again, for a node in B3, we use the vertex of it as a shorthand for the vertex
represented by it. We say that y1x2y2 · · · x� is a leaf-alternating path if (1) xi ∈ L
and yj ∈ R for 2 ≤ i ≤ � and 1 ≤ j ≤ � − 1; and (2) xi and yj are from the same
unit if and only if i = j.

Exchange Rule 5. On a reduced unit partition without (4, 0)-, (3, 1)-, or (3, 0)-
units, if there is a leaf-alternating path y1x2y2 · · · x� where

(i) the unit U1 containing the leaf of y1 is not a (0, 3)-unit and has d2(U1) ≥ 3;
and

(ii) the unit U2 containing the core vertex of x� is a unit with d2(U2) ≤ 1.

then for i = 1, . . . , �−1, move the leaf of yi to the unit containing the core vertex
of xi+1.

Proposition 5 (*). After applying Exchange Rule 5 for a leaf-alternating path
P = y1x2y2 · · · x�, the following hold.

(i) The unit U1 containing the leaf of y1 becomes a (d1(U1), d2(U1) − 1)-unit.
(ii) The unit containing the leaf of yi retains its type for 2 ≤ i ≤ � − 1.
(iii) If the unit U2 containing the core vertex of x� has d2(U2) ≥ 2, then it

becomes a (d1(U1), d2(U2)+1)-unit. Otherwise, U2 is a (0, 1)- or (0, 0)-unit
and it becomes a small unit with four vertices or a democratic/despotic unit
with five vertices.

A lemma similar to Lemma 5 holds for Exchange Rule 5.

Lemma 6 (*). On a reduced unit partition without (4, 0)-, (3, 1)-, or (3, 0)-
units, if there exists a unit U (not (0, 3)-unit) with d2(U) ≥ 3, but Exchange
Rule 5 is not applicable, then we can find a reducible set in polynomial time.
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After an application of Exchange Rule 4 or 5, core vertices of a (0, 1)-unit or
(0, 0)-unit may become peripheral, and hence may turn a reduced unit partition
into unreduced. Therefore we may need to reapply Exchange Rules 1–3. Precisely
we use Exchange Rule 4 to eliminate (4, 0)-, (3, 1)-, (3, 0)- and (2, 2)-units; and
when Exchange Rule 4 is not applicable, we use Exchange Rule 5 to eliminate
(1, 4)-, (1, 3)- and (0, 4)-units. Although Exchange Rule 5 may turn a (2, 1)-unit
into a (2, 2)-unit that triggers Exchange Rule 4, we will show in the next section
Exchange Rule 4–5 can be applied at most O(k) times.

At this point, (2, 1)-, (2, 0)-, and (1, 2)-units are the only despotic units. Only
net-units and (2, 1)-units have more than five vertices, and it remains to bound
the number of them by the number of small units. For democratic units, we use
snet, sbull, spendant, and sC5 to denote the number of, respectively, net-units,
bull-units, pendant-units, and C5-units. For other units, we use sa,b to denote
the number of (a, b)-units.

We construct an auxiliary bipartite graph B4 as follows:

– for each net-unit and each twig, add a node into L;
– for each vertex not in any net-unit or twig, add a node into R;
– for two nodes x ∈ L and y ∈ R, add an edge xy if the vertex represented by

y is adjacent to the net-unit or twig represented by x in G.

Here we regard a net-unit as a unit with a removable twig. Note that by Lemma 4,
there is no isolated node in L, and each node in N(L) represents a core vertex.

Exchange Rule 6. On a reduced unit partition where (2, 1)-, (2, 0)-, and (1, 2)-
units are the only despotic units, if snet + s2,1 + s2,0 > s0,3 + s0,1 + s0,0 and there
is a matching M of B4 that saturates L, then find a larger P2-packing than P
as following.

(i) For each net-unit U , find two P2’s in G[U ∪{v}], where v is the vertex whose
representing node is matched to U by M . Delete P2’s involving vertices of
U ∪ {v}, and add these two new P2’s.

(ii) Each twig T makes a P2 together with the vertex v whose representing node
is matched to T by M . Delete P2’s involving vertices in V (T ) ∪ {v}, and
add the new P2.

Lemma 7. Exchange Rule 6 is correct.

Proof. For each net-, (2, 1)- or (2, 0)-unit, we find two new P2’s. For each (1, 2)-
unit, we find one new P2. The number of new P2’s are 2(snet + s2,1 + s2,0)+ s1,2.
Since nodes in N(L) represent core vertices, no defining P2’s of pendant-, C5-
or bull-units are deleted. Hence the number of P2’s in the new P2-packing is at
least

2(snet + s2,1 + s2,0) + s1,2 + spendant + sC5 + sbull >

(snet + s2,1 + s2,0) + (s0,3 + s0,1 + s0,0) + s1,2 + spendant + sC5 + sbull,

which is the size of P as (2, 1)-, (2, 0)-, and (1, 2)-units are the only despotic
units. ��
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If no matching saturating L, then we can find in polynomial time, by
Lemma 2, a subset L′ ⊆ L and a matching of B4 between N(L′) and L′ that
saturates N(L′). Now we apply our second non-trivial reduction rule, where
the “reducible set” contains net-units and edge components. Each net-unit con-
tributes a P2 and an extra edge.

Reduction Rule 3. For a node set L′ ⊆ L of B4, let s′
net be the number of

net-units represented by L′, and X be the set of vertices in the net-units or twigs
represented by L′. If there exists a matching of B4 between N(L′) and L′ that
saturates N(L′), then remove X ∪ N(X) and decrease k by s′

net + |N(X)|.

Lemma 8. Reduction rule 3 is safe: opt(G) = opt(G − (X ∪ N(X))) + s′
net +

|N(X)|.

Proof. Let G′ = G− (X ∪N(X)). Note that N(X) is precisely the set of vertices
represented by N(L′). Let v be a vertex in N(X). If its representing node is
matched to a twig, then v and the twig together make a P2. Otherwise, it is
matched to a net-unit U ; i.e., U is adjacent to v. We can find two adjacent
vertices in U such that they together with v make another P2, and their removal
from U leaves a P2. Thus the number of P2’s we can find in G[X ∪ N(X)] is
|N(X)| + s′

net. Therefore, opt(G) ≥ opt(G − (X ∪ N(X))) + s′
net + |N(X)|.

Any P2-packing of G contains at most |N(X)| vertex-disjoint P2’s involving
vertices in N(X), hence opt(G) ≤ opt(G − N(X)) + |N(X)|. And each compo-
nent in the subgraph of G − N(X) induced on X, is either a net-unit or a twig
represented by a node in L′. Thus opt(G−N(X)) = opt(G−(X∪N(X)))+s′

net,
and opt(G) ≤ opt(G − (X ∪ N(X))) + s′

net + |N(X)|. ��

Corollary 1. On a reduced unit partition where (2, 1)-, (2, 0)-, and (1, 2)-units
are the only despotic units, if snet + s2,1 + s2,0 > s0,3 + s0,1 + s0,0, then at least
one of Exchange Rule 6 and Reduction Rule 3 is applicable.

5 Kernelization Algorithm

We are now ready to summarize the kernelization algorithm and prove Theo-
rem 1. Throughout our algorithm (see Fig. 5), we maintain a reduced unit parti-
tion by Reduction Rule 1 and Exchange Rule 1–3, and restart if a reducible struc-
ture or a larger P2-packing is found. For units with more than five vertices, we
apply Exchange Rule 4–5 to eliminate those with d1(U) ≥ 3 or d1(U)+d2(U) ≥ 4.
Although some six-vertex units cannot be eliminated, their number is upper
bounded by the number of small units after applying Exchange Rule 6 and
Reduction Rule 3 exhaustively. Putting all these together, we obtain the kernel.

To prove Theorem 1, the first two steps are to show (1) the correctness of
our algorithm, and (2) the polynomial running time of our algorithm. The main
difficulty of proving these two lemmas is that applications of Exchange Rule 4–5
may introduce edges between peripheral vertices which triggers Exchange Rule 3
(ii) and creates new units with d1(U) ≥ 3 or d1(U) + d2(U) ≥ 4. At first glance,
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Input: a graph G and an integer k.
Output: a graph G′ with |V (G′)| ≤ 5k and an integer k′.

1. if k ≤ 0 then return a trivial yes-instance.
2. if |V (G)| ≤ 5k then return (G, k).
3. Apply Reduction Rule 1 exhaustively.
4. Set P to be an arbitrary maximal P2-packing.
5. if |P| ≥ k then return a trivial yes-instance.
6. if (Lemma 3) then

apply Reduction Rule 2; goto 1.
7. else set U to be an unreduced unit partition.
8. if Exchange Rule 1 or 2 is applicable then

apply it; goto 5.
9. if Exchange Rule 3 is applicable then

apply it; goto 8.
10. if there is a (4, 0)-, (3, 1)-, (3, 0)- or (2, 2)-unit then

if Exchange Rule 4 is applicable then
apply it; goto 8.

else apply Reduction Rule 2 (Lemma 5); goto 1;
11. if there is a (1, 4)-, (1, 3)- or (0, 4)-unit then

if Exchange Rule 5 is applicable, then
apply it; goto 8.

else apply Reduction Rule 2 (Lemma 6); goto 1.
12. if the number of net-, (2, 1)- and (2, 0)-units is larger than

the number of small units then
if Exchange Rule 6 is applicable then

apply it; goto 5.
else apply Reduction Rule 3 (Corollary 1); goto 1.

13. return a trivial no-instance.

Fig. 5. A summary of our algorithm. A trivial yes-instance can be an empty graph
and k = 0; while a trivial no-instance can be an empty graph and k = 1. Note that we
execute step 11 only when step 10 has been applied exhaustively and execute step 12
only when step 10 and 11 have been applied exhaustively.

this may (1) create insupportable units, and (2) cause deadlock. By careful study,
we will show in the following that both cases will not happen.

Lemma 9 (*). The algorithm is correct and terminates in polynomial time.

By Lemma 9, our algorithm is a valid kernelization algorithm. Now Theo-
rem 1 follows by counting numbers of different units.

Proof (Proof of Theorem 1). Our algorithm returns a reduced unit partition with
only democratic units, and units satisfying d1(U) ≤ 2 and d1(U) + d2(U) ≤ 3.
Moreover, we have snet + s2,1 + s2,0 ≤ s0,3 + s0,1 + s0,0. The number of vertices
in the resulting graph is
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6snet + 5(spendant + sC5 + sbull) + 6s2,1 + 5(s2,0 + s1,2) + 4(s0,3 + s0,1) + 3s0,0

≤5(snet + s2,1 + spendant + sC5 + sbull + s2,0 + s1,2) + (snet + s2,1) + 4(s0,3 + s0,1 + s0,0)

≤5(snet + s2,1 + spendant + sC5 + sbull + s2,0 + s1,2) + 5(s0,3 + s0,1 + s0,0)

≤5(snet + s2,1 + spendant + sC5 + sbull + s2,0 + s1,2 + s0,3 + s0,1 + s0,0)

<5k,

which proves the main theorem. ��
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Abstract. A binary matrix M has the consecutive ones property (C1P )
for rows (resp. columns) if there is a permutation of its columns (resp.
rows) that arranges the ones consecutively in all the rows (resp. columns).
If M has the C1P for rows and the C1P for columns, then M is said to
have the simultaneous consecutive ones property (SC1P ). We focus on
the classical complexity and fixed parameter tractability of Simultane-
ous Consecutive Ones Submatrix (SC1S) and Simultaneous Consecutive
Ones Editing (SC1E) [1] problems here. SC1S problems focus on delet-
ing a minimum number of rows, columns and rows as well as columns to
establish the SC1P whereas SC1E problems deal with flipping a mini-
mum number of 1-entries, 0-entries and 0-entries as well as 1-entries to
obtain the SC1P . We show that the decision versions of the SC1S and
SC1E problems are NP-complete. We consider the parameterized ver-
sions of the SC1S and SC1E problems with d, being the solution size, as
the parameter and are defined as follows. Given a binary matrix M and
a positive integer d, d-SC1S-R (d-SC1S-C) problem decides whether
there exists a set of rows (columns) of size at most d whose deletion
results in a matrix with the SC1P . The d-SC1S-RC problem decides
whether there exists a set of rows as well as columns of size at most
d whose deletion results in a matrix with the SC1P . The d-SC1P -0E
(d-SC1P -1E) problem decides whether there exists a set of 0-entries (1-
entries) of size at most d whose flipping results in a matrix with the
SC1P . The d-SC1P -01E problem decides whether there exists a set of
0-entries as well as 1-entries of size at most d whose flipping results in
a matrix with the SC1P . Using a related result from the literature [2],
we show that d-SC1P -0E on general binary matrices is fixed-parameter
tractable with a run time of O∗(45.5625d). We also give FPT algorithms
for SC1S and SC1E problems on certain restricted binary matrices.
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1 Introduction

Binary matrices having simultaneous consecutive ones property are fundamental
in recognizing biconvex graphs [3], recognizing proper interval graphs [4], identify-
ing blocks of matrices (in applications arising from integer linear programming) [5]
and finding clusters from metabolic networks [6]. A binary matrix has the consec-
utive ones property (C1P ) for rows (resp. columns) [7], if there is a permutation
of its columns (resp. rows) that arranges the ones consecutively in all the rows
(resp. columns). A binary matrix has the simultaneous consecutive ones property
(SC1P ) [1], if we can permute the rows and columns in such a way that the ones
in every column and in every row occur consecutively. That is, a binary matrix has
the SC1P if it satisfies the C1P for both rows and columns. Matrices with the C1P
and the SC1P are related to interval graphs and proper interval graphs respec-
tively. They can be recognized efficiently and have forbidden submatrix character-
izations. There exist several linear-time and polynomial-time algorithms for test-
ing the C1P for columns [8–13]. These algorithms can also be used for testing the
C1P for rows. The column permutation (if one exists) to obtain the C1P for rows
will not affect the consecutive ones property of the columns (if one exists) and vice
versa. Thus, testing the SC1P can also be done in linear time.

Not all binary matrices have the SC1P . We consider the Simultaneous
Consecutive Ones Submatrix (SC1S) and Simultaneous Consecutive Ones Edit-
ing (SC1E) [1] problems to deal with matrices that do not have the SC1P .
SC1S problems focus on deleting a minimum number of rows (columns) and
rows as well as columns to establish the SC1P whereas SC1E problems deal
with flipping a minimum number of 1-entries (0-entries) and 1-entries as well
as 0-entries to obtain the SC1P . We pose the following optimization problems:
SC1S-row deletion, SC1S-column deletion and SC1S-row-column deletion in
the SC1S category, and, SC1P -1-Flipping, SC1P -0-Flipping and SC1P -01-
Flipping in the SC1E category. Given a binary matrix M, the SC1S row,
column, and row-column deletion finds a minimum number of rows, columns,
and rows as well as columns respectively, which on deletion results in a matrix
satisfying the SC1P . On the other hand, the SC1P 1-flipping, 0-flipping and
01-flipping finds a minimum number of entries containing ones, zeroes, and both
zeroes and ones respectively, to be flipped to satisfy the SC1P . We show that
the decision versions of the above defined problems are NP-complete. We refer
to the parameterized versions of the above problems parameterized by d as d-
SC1S-R, d-SC1S-C, d-SC1S-RC, d-SC1P -1E, d-SC1P -0E and d-SC1P -01E
respectively, with d being the number of rows that can be deleted, columns that
can be deleted, rows as well as columns that can be deleted, 1-entries that can
be flipped, 0-entries that can be flipped, and 0-entries as well as 1-entries that
can be flipped respectively.

Parameterized Complexity: Fixed-parameter tractability is one of the ways
to deal with NP-hard problems. In parameterized complexity, the run-time of
an algorithm is measured not only in terms of the input size, but also in terms
of a parameter. A parameter is an integer associated with an instance of a
problem. It is a measure of some property of the input instance. A problem is



156 M. R. Rani et al.

fixed-parameter tractable with respect to parameter d, if there exists an algo-
rithm that solves the problem in f(d).nO(1) time, where f is a computable func-
tion depending only on d and n is the size of the input instance. The time
complexity of such algorithms can be expressed as O∗(f(d)). We recommend the
interested reader to [14] for a more comprehensive overview of the topic.

A matrix can be considered as a set of rows (columns) together with an order
on this set [15]. Throughout this paper, the term matrix refers to a binary matrix,
and for a given matrix M , mij refers to the entry corresponding to ith row and jth

column of the matrix. Matrix having at most x ones in each column and at most
y ones in each row is denoted as (x, y)-matrix. A (2, ∗)-matrix can contain at
most two ones per column and there is no bound on the number of ones per row.
A (∗, 2)-matrix has no restriction on the number of ones per column and have at
most two ones per row. Given an m × n matrix M , let R(M) = {r1, r2, . . . , rm}
and C(M) = {c1, c2, . . . , cn} denote the sets of rows and columns, respectively.
Here, ri and cj denote the binary vectors corresponding to row ri and column cj
of M , respectively. For a subset R

′ ⊆ R(M) of rows, M [R
′
] and M \ R

′
denote

the submatrix induced on R
′
and R(M) \R

′
respectively. Similarly, for a subset

C
′ ⊆ C(M) of columns, the submatrix induced on C

′
and C(M)\C

′
are denoted

by M [C
′
] and M\C

′
respectively. Let A = {ij | mij = 1} and B = {ij | mij = 0}

be the set of indices of all 1-entries and 0-entries respectively in M . For the sake
of completeness, the formal definitions of the problems d-SC1S-R, d-SC1S-C,
d-SC1S-RC, d-SC1P -0E and d-SC1P -01E are given as follows.

Simultaneous Consecutive Ones Submatrix Problems
Instance: < M, d >- An m × n matrix M and an integer d ≥ 0.
Parameter: d.
d-SC1S-R: Does there exist a set of rows R

′ ⊆ R(M), such that |R′ | ≤ d
and M \ R

′
satisfies the SC1P?

d-SC1S-C: Does there exist a set of columns C
′ ⊆ C(M), such that

|C ′ | ≤ d and M \ C
′
satisfies the SC1P?

d-SC1S-RC: Does there exist a set of rows R
′ ⊆ R(M), and a set of

columns C
′ ⊆ C(M), with |R′ | + |C ′ | ≤ d such that ((M\R

′
)\C

′
) satisfies

the SC1P?
Simultaneous Consecutive Ones Editing Problems

Instance: < M, d >- An m × n matrix M and an integer d ≥ 0.
Parameter: d.
d-SC1P-1E: Does there exist a set A

′ ⊆ A, with |A′ | ≤ d such that the
resultant matrix obtained by flipping the entries of A

′
in M satisfies the

SC1P?
d-SC1P-0E: Does there exist a set B

′ ⊆ B, with |B′ | ≤ d such that the
resultant matrix obtained by flipping the entries of B

′
in M satisfies the

SC1P?
d-SC1P-01E: Does there exist a set I ⊆ A ∪ B, with |I| ≤ d such that
the resultant matrix obtained by flipping the entries of I in M satisfies the
SC1P?
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Complexity Status: Oswald and Reinelt [1] posed the d-SC1P -1E problem as
k-augmented simultaneous consecutive ones property and showed that it is NP-
complete. To the best of our knowledge, the parameterized problems posed under
the SC1S and SC1E category except d-SC1P -1E are not explicitly mentioned in
the literature. Also the parameterized complexity of SC1S and SC1E problems
are not known prior to this work.

Our Results: We investigate the classical complexity and the fixed-parameter
tractability of SC1S and SC1E problems (defined above). We show the NP-
completeness result for all the SC1S and SC1E problems except d-SC1P -1E,
which was shown to be NP-complete in [1]. Using a related result from the
literature [2], we present a fixed-parameter tractable algorithm for d-SC1P -0E
problem on general binary matrices (where there is no restriction on the number
of ones in rows and columns) with a run-time of O∗(45.5625d). We also obtain
an improved run-time of O∗(6d) for d-SC1P -0E on (2, ∗) and (∗, 2) matrices.

For (2, 2)-matrices, we show that SC1S and the SC1E problems are solvable
in polynomial-time. For other problems, the FPT results obtained on restricted
matrices are listed in the following table:

Problem (2, ∗)-matrix (∗, 2)-matrix

d-SC1S-R/C/RC O∗(4d/3d/7d) O∗(3d/4d/7d)

d-SC1P -1E/0E/01E O∗(6d/6d/12d) O∗(6d/6d/12d)

The fixed-parameter tractable algorithm for d-SC1S-R on (2, ∗)-matrices can
be used to show that proper interval vertex deletion [16] on triangle-free graphs is
FPT (using Lemma 7) with a run-time of O∗(4d), where d denotes the number
of possible vertex deletions. We also observe that the SC1S and the SC1E
problems admit constant factor polynomial-time approximation algorithms on
(2, ∗)-matrices and (∗, 2)-matrices.

Techniques Used: Our results rely on the following forbidden submatrix char-
acterization of the SC1P (see Fig. 1) by Tucker [3].

Theorem 1 ([3, Theorem 11]). A matrix M has the SC1P if and only if no
submatrix of M , or of the transpose of M , is a member of the configuration (see
Sect. 2) of MIk(k ≥ 1), M21 , M22 , M31 , M32 and M33 .

That is, a matrix M has the SC1P if and only if no submatrix of M is a
member of the configuration of MIk(k ≥ 1), M21 , M22 , M31 , M32 , M33 or their
transposes. For ease of reference, we refer to the fixed-size forbidden matrices in
the forbidden submatrix characterization of SC1P as X. i.e.

X = {M21 ,M22 ,M31 ,M32 ,M33 ,M
T
21 ,M

T
22 ,M

T
31 ,M

T
32 ,M

T
33}.

We used the following results to search and destroy the forbidden matrices of X
and MIk/MT

Ik
(where k ≥ 1) from M . Lemmas 1 and 2 state the run-time

to find a forbidden matrix of X and MIk/MT
Ik

in M . Lemma 1 is obtained
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from ([15, Proposition 3.2]), by considering the maximum possible size of the
forbidden submatrix in X as 6 × 5 (shown in Fig. 1).

Lemma 1. Let M be a matrix of size m × n. Then a minimum size submatrix
in M that is isomorphic to one of the forbidden matrices of X can be found in
O(m6n) time.

We obtain the following lemma from ([15, Proposition 3.4]), by considering
the maximum number of ones in each row of M as n.

Lemma 2. Let M be a matrix of size m × n. Then a minimum size submatrix
of type MIk or MT

Ik
(k ≥ 1) in M can be found in O(n3m3) time.

To destroy MIk/MT
Ik

(where k ≥ 1), we consider the representing graph
GMIk

/GMT
Ik

(Definition 2). Following result shows that GMIk
/GMT

Ik

is a chord-
less cycle.

Lemma 3 ([15, Observation 3.1]). The representing graph of MIk/M
T
Ik
, i.e.,

(GMIk
/GMT

Ik

), is a chordless cycle of length 2k + 4.

It is clear from Lemma 3, that searching for both MIk and its transpose is
equivalent to searching for MIk alone.

Fig. 1. A subset of the forbidden submatrices for the SC1P [3].

Organization of the paper: In Sect. 2, we give necessary preliminaries and
observations. In Sect. 3, we first present hardness results for the problems d-
SC1S-R, d-SC1S-C, d-SC1S-RC, d-SC1P -0E and d-SC1S-01E. Then we
present an FPT algorithm for the problem d-SC1P -0E on general binary matri-
ces. We also give FPT algorithms for the problems posed under SC1S and SC1E
category on certain restricted classes of matrices. Last section draws conclusions
and gives an insight to further work.
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2 Preliminaries

In this section, we present definitions and notations related to binary matrix and
graphs associated with binary matrices.

Graphs: All graphs discussed in this paper shall always be undirected and simple.
We refer the reader to [17] for the standard definitions and notations related to
graphs. A Hamiltonian path is a path that visits every vertex exactly once. A
chord in a cycle is an edge that is not part of the cycle but connects two non-
consecutive vertices in the cycle. A hole or chordless cycle is a cycle of length at
least four, where no chords exist. A graph is chordal if it contains no hole. That
is, in a chordal graph, every cycle of length at least 4 contains a chord.

Lemma 4 ([18, Theorem 2]). In a graph G = (V,E), a chordless cycle can be
detected in O(|V | + |E|)-time, where |V | and |E| are the number of vertices and
edges in G respectively.

A graph G = (V,E) is called a triangle-free (C3-free) graph if it does not contain
C3 as a subgraph. A connected component of G is a maximal connected subgraph
of G. Deletion of a vertex v ∈ V means, deleting v and all edges incident on v. A
graph is a proper interval graph if it is an interval graph that has an intersection
model in which no interval properly contains another. Given a graph, the problem
of deciding whether there exists a set of vertices of size at most k whose deletion
results in a proper interval graph is known as proper interval vertex deletion [16]
problem.

A graph G = (V,E) is bipartite if V can be partitioned into two disjoint
vertex sets V1 and V2 such that every edge in E has one endpoint in V1 and the
other endpoint in V2. A bipartite graph is denoted as G = (V1, V2, E), where
V1 and V2 are the two partitions of V . A bipartite graph is chordal bipartite if
each cycle of length at least 6 has a chord. A bipartite graph H, which is an
even chordless cycle of length 2n can be converted to a chordal bipartite graph
by adding n − 2 edges. This observation is also mentioned in a different form in
([2, Lemma 4.2]). The number of ways to achieve this is given in the following
lemma.

Lemma 5 ([2, Lemma 4.3]). Given a bipartite graph H = (V1, V2, E) which is
an even chordless cycle of length 2n (where n ≥ 3), then the number of ways to
make H a chordal bipartite graph by adding n − 2 edges is equal to the number
of ternary trees with n − 1 internal nodes and is no greater than 8n−1.

We used the following Lemma to get a tighter upper bound of 6.75n−1.

Lemma 6 [19]. limn→∞ n! =
√

2πn(
n

e
)
n
.

A bipartite graph G = (V1, V2, E) is biconvex if both V1 and V2 can be ordered
so that for every vertex v in V1 ∪ V2, neighbours of v occur consecutively in the
ordering. Given a bipartite graph, deciding if there exists a set of vertices of
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size at most k, whose deletion results in a biconvex graph is known as biconvex
deletion problem. The results in [20,21] shows that biconvex deletion problem
is NP-complete. A bipartite graph G = (V1, V2, E) is called a chain graph [22]
if there exists an ordering π of the vertices in V1, π : {1, 2, . . . , |V1|} → V1 such
that N(π(1)) ⊆ N(π(2)) ⊆ . . . ⊆ N(π(|V1|)), where N(π(i)) denotes the set of
neighbours of π(i) in G. Given a bipartite graph G = (V1, V2, E), the problem of
deciding whether k number of edges can be added to G to make it a chain graph
is known as Minimum Chain Completion problem. Yannakakis showed that Min-
imum Chain Completion problem is NP-complete [23]. He also developed finite
forbidden induced subgraph characterization for chain graphs. Accordingly a
bipartite graph G = (V1, V2, E) is a chain graph if and only if it does not contain
2K2 as an induced subgraph. Given a bipartite graph, the problem of deciding
whether k number of edges can be added and removed to the graph to make it
a chain graph is called k-chain editing problem. k-chain editing is known to be
NP-Complete [24].

Matrices: Given an m × n matrix M , the n × m matrix M
′

with m
′
ji = mij

is called the transpose of M , and is denoted by MT . Two matrices M and M
′

are isomorphic, if M is a permutation of the rows and columns of M
′
. We say,

a matrix M contains M
′
, if M contains a submatrix that is isomorphic to M

′
.

The configuration of an m × n matrix M is defined to be the set of all m × n
matrices which can be obtained from M by row and column permutations. The
following lemma shows a characterization of the proper interval graph.

Lemma 7 [15]. A graph is a proper interval graph if and only if its maximal-
clique matrix (vertex-clique incidence matrix) has the SC1P .

Definition 1. The half adjacency matrix [15] of a bipartite graph G = (V1, V2

E) with V1 = {u1, . . . , un1} and V2 = {v1, . . . , vn2} is an n1 × n2 matrix MG

with mij = 1 if and only if {ui, vj} ∈ E, where 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2.

Every matrix M can be viewed as the half adjacency matrix of a bipartite graph,
referred to as the representing graph GM of M . The representing graph GM [15]
of a matrix Mm×n is obtained as follows:

Definition 2. For a matrix M, GM contains a vertex corresponding to every row
and every column of M, and there is an edge between two vertices corresponding
to ith row and jth column of M if and only if the corresponding entry mij = 1,
where 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Following lemma shows a characterization of the half adjacency matrices of
biconvex graphs.

Lemma 8 [3]. A bipartite graph is biconvex if and only if its half adjacency
matrix has the SC1P .

Following lemma is based on the finite forbidden induced subgraph characteri-
zation of chain graphs.
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Lemma 9 [23]. A bipartite graph G = (V1, V2, E) is a chain graph if and only

if its half adjacency matrix MG does not contain
(

1 0
0 1

)
as a submatrix.

The half-adjacency matrix of a chain graph satisfies the SC1P , however the con-
verse is not true. A graph G can also be represented using edge-vertex incidence
matrix denoted by M(G) and is defined as follows.

Definition 3. For a graph G = (V,E), the rows and columns of M(G) corre-
spond to edges and vertices of G respectively. The entries of M(G) is defined
by mij = 1, if edge ei is incident on vertex vj, and mij = 0 otherwise, where
1 ≤ i ≤ m and 1 ≤ j ≤ n.

Following lemma shows that G is a path if M(G) has the C1P for rows.

Lemma 10 ([15, Theorem 2.2]). If G is a connected graph and the edge-vertex
incidence matrix M(G) of G has the C1P for rows, then G is a path.

3 Our Results

3.1 Hardness Results

Even though the number of forbidden submatrices to establish the SC1P is less
than the number of forbidden submatrices for the C1P , the problems posed
in this paper, to obtain the SC1P turn out to be NP-complete. We refer to
the decision versions of the optimization problems SC1S-row deletion, SC1S-
column deletion, SC1S-row-column deletion, SC1P -0-Flipping and SC1P -01-
Flipping defined in Sect. 1 as k-SC1S-R, k-SC1S-C, k-SC1S-RC, k-SC1P -0E
and k-SC1P -01E, where k denotes the number of allowed operations. Here, we
show that these problems are NP-complete.

The following theorem proves the NP-completeness of the k-SC1S-R problem
using Hamiltonian path as a candidate problem.

Theorem 2. Given an m × n matrix M , deciding if there exists a set of rows
R

′ ⊆ R(M), such that |R′ | ≤ k and M \ R
′
has the SC1P is NP-complete.

Proof. We first show that k-SC1S-R ∈ NP. Given a matrix M and an integer
k, the certificate chosen is the given set of rows R

′ ⊆ R(M). The verification
algorithm affirms that |R′ | ≤ k, and then it checks whether deleting these k
rows from M yields a matrix with the SC1P . This certificate can be verified in
polynomial-time.

We prove that k-SC1S-R problem is NP-hard by showing that Hamiltonian-
Path ≤p k-SC1S-R. Let G = (V,E) be a graph with |V | = n and |E| = m, and
M(G)m×n be the edge-vertex incidence matrix (see Definition 3) obtained from
G. Without loss of generality, assume that G is connected and let k be m−n+1.
We show that G has a Hamiltonian path if and only if there exists a set of rows
of size k in M(G) whose deletion results in a matrix M

′
(G), that satisfy the

SC1P .
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Assume that G contains a Hamiltonian path. In M(G), delete the rows that
correspond to edges which are not part of the Hamiltonian path in G. Since
Hamiltonian path contains n − 1 edges, the number of rows remaining in M(G)
will be n − 1 which is equal to m − k and hence the number of rows deleted will
be k. Now order the columns and rows of M(G) with respect to the sequence of
vertices and edges respectively in the Hamiltonian path. Clearly, the resulting
matrix has the SC1P .

To prove the other direction, let M
′
(G) be the matrix obtained by deleting

k rows from M(G) and assume that M
′
(G) has the SC1P . Now, the number

of rows in M
′
(G) is m − k which is equal to n − 1. Let G

′
be the subgraph

obtained from M
′
(G), by considering M

′
(G) as an edge-vertex incidence matrix

of G
′
. Since M

′
(G) has the SC1P , it has the C1P for rows. Also, note that

M
′
(G) has n − 1 rows. We claim that the subgraph G

′
is connected, otherwise

one of the connected components of G
′

must contain a cycle which contradicts
the fact that M

′
(G) has the C1P for rows. This implies that G

′
is a path (see

Lemma 10) of length n − 1, which clearly indicates that G has a Hamiltonian
path. The column permutation needed to convert M

′
(G) into a matrix that has

the C1P for rows gives the relative order of vertices of G’s Hamiltonian path.
This proves the NP-completeness of k-SC1S-R. 
�
Corollary 1. The problem k-SC1S-C is NP-complete.

Proof. The NP-completeness of k-SC1S-C can be proved similar to Theorem 2
(NP-completeness of k-SC1S-R) by considering M as the vertex-edge incidence
matrix and k as the number of columns to be deleted. 
�
To prove the NP-completeness of the k-SC1S-RC problem, we use the biconvex
deletion problem (Sect. 2) as a candidate problem. The following theorem proves
the NP-completeness of k-SC1S-RC.

Theorem 3. The k-SC1S-RC problem is NP-complete.

Proof. It is easy to show that k-SC1S-RC ∈ NP . We prove that k-SC1S-RC
problem is NP-hard by showing that biconvex deletion problem ≤p k-SC1S-
RC. Let G = (V1, V2, E) be a bipartite graph and M be a half adjacency matrix
(see Definition 2) of G. Using Lemma 8, it can be shown that G has a set of
vertices V ′

1 ⊆ V1 and V ′
2 ⊆ V2 with |V ′

1 | + |V ′
2 | ≤ k, whose deletion results in a

biconvex graph if and only if there exists a set of rows R′ ⊆ R(M) and columns
C ′ ⊆ C(M), with |R′| + |C ′| ≤ k in M whose deletion results in a matrix M ′,
that satisfy the SC1P . Therefore k-SC1S-RC is NP-complete. 
�

The following theorem proves the NP-completeness of the k-SC1P -0E prob-
lem using the chain completion problem (Sect. 2) on bipartite graphs as a can-
didate problem.

Theorem 4. The k-SC1P -0E problem is NP-complete.
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Proof. We first show that k-SC1P -0E ∈ NP . Given a matrix M and an integer
k, the certificate is a set A′ of indices corresponding to 0-entries in M . The
verification algorithm checks that |A′| ≤ k and whether flipping these 0-entries
in M yields a matrix with the SC1P . This verification can be done in polynomial
time.

We prove that k-SC1P -0E problem is NP-hard by showing that chain com-
pletion problem ≤p k-SC1P -0E. The half-adjacency matrix of any chain graph
can be observed to satisfy the SC1P , however the converse is not true. Given a
bipartite graph G = (V1, V2, E) with V1 = m and V2 = n, we create a 2m × 2n

binary matrix MGnew
as follows. MGnew

=
[
Jm,n MG

0m,n Jm,n

]
=

[
A B
D C

]
, where MG

is the half adjacency matrix of G, Jm,n is an m × n matrix with all entries as
one and 0m,n is an m × n matrix with all entries as zero. It can be noted that
adding an edge in G corresponds to flipping a 0-entry in B. We show that G can
be converted to a chain graph G′ by adding at most k edges if and only if there
are at most k number of 0-flippings in MGnew

, such that the resultant matrix
MG′

new
satisfies the SC1P .

Suppose G′ is a chain graph, then
[
1 0
0 1

]
cannot occur exclusively in B (from

Lemma 9). By construction of MGnew
, it can be observed that

[
1 0 0
0 1 0

]
and

⎡
⎣1 0

0 1
0 0

⎤
⎦

cannot occur as submatrices in MG′
new

. From Fig. 1, it is clear that one of the
configurations of these two matrices occur as a submatrix in all the forbidden
submatrices of the SC1P, except MI1 . Hence MI1 is the only forbidden submatrix
of the SC1P that could appear in MG′

new
. However, if MG′

new
contains MI1 , then

it would further imply that B′(matrix obtained after flipping the 0-entries of B)

contains
[
1 0
0 1

]
as a submatrix, which contradicts the assumption that G′ is a

chain graph. Therefore, if k edges can be added to G to make it a chain graph,
then k 0-entries can be flipped in MGnew

to make it satisfy the SC1P .
Conversely, suppose that k = k1 + k2 0-flippings are performed on MGnew

to
make it satisfy the SC1P , where k1 and k2 refer to the number of 0-flippings per-
formed in B and D respectively. Let us assume that the corresponding bipartite
graph G′, obtained after the flipping of zeroes in B is not a chain graph. Since
G′ is not a chain graph, it contains 2K2 as an induced subgraph, which further

means that B′ contains
[
1 0
0 1

]
as a submatrix. The construction of MGnew

implies

that MG′
new

has MI1 as a submatrix (considering the remaining 3 quadrants of
MG′

new
), which leads to a contradiction. Hence G′ is a chain graph. Therefore,

k-SC1P -0E is NP-complete. 
�
The following theorem proves the NP-completeness of the k-SC1P -01E problem
using the k-chain editing problem (Sect. 2) on bipartite graphs as a candidate
problem.

Theorem 5. The k-SC1P -01E problem is NP-complete.
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Algorithm 1. Algorithm d-SC1P -0-Flipping(M,d)
Input: An instance 〈Mm×n, d〉 where M is a binary matrix and d ≥ 0.

Output: Return Yes, if there exists a set of indices, B
′ ⊆ B with |B′ | ≤ d such that

the resultant matrix obtained by flipping the indices of B
′

in M has the SC1P ,
otherwise return No.

1: if M has the SC1P and d ≥ 0 then return Yes.
2: if d < 0 then return No. Branching Step:

3: if M contains a forbidden submatrix M ′ from X then,
Branch into at most 18 instances Ii = 〈Mi, di〉 where i ∈ {1, 2, . . . , 18}
Set Mi ← M with ith 0-entry of M

′
flipped (where 0-entries of M ′ are named

in row-major order).
Update di ← d − 1 // Decrement parameter by 1.

For some i ∈ {1, 2, . . . , 18}, if d-SC1P -0-Flipping(Mi, di) returns Yes, then return
Yes, else if all instances return No, then return No.

4: else
5: if M contains either MIk or MT

Ik
then,

6: Find a minimum size MIk or MT
Ik

in M , (say M ′)
7: if k > d then, return No.
8: else
9: Branch into at most O(46d) (number of ways to destroy M ′) instances

Ii = 〈Mi, di〉 where i ∈ {1, 2, . . . , 46d}.
Set Mi ← M with k appropriate 0-entries of M ′ flipped.
Update di ← d − k // Decrement parameter by k.

10: end if
11: end if
12: end if

For some i ∈ {1, 2, . . . , O(46d)}, if d-SC1P -0-Flipping(Mi, di) returns Yes, then
return Yes, else if all instances return No, then return No.

Proof. The NP-completeness of k-SC1P -01E can be proved similar to the NP-
completeness of k-SC1P -0E (Theorem 4) by considering MGnew

as follows:

MGnew
=

[
Jm,mn MG

0mn,mn Jmn,n

]
where G = (P,Q,E) is a bipartite graph, with |P|=m

and |Q|=n and MG being the half adjacency matrix of G.

3.2 An FPT Algorithm for d-SC1P -0E Problem

Here, we present an FPT algorithm d-SC1P -0-Flipping (Algorithm 1) for the
problem d-SC1P -0E on general binary matrices. Given a binary matrix M
and a nonnegative integer d, Algorithm 1 destroys forbidden submatrices in M
using a simple search tree based branching algorithm. The algorithm recursively
branches if M contains a forbidden matrix from X (see Sect. 1) as well as MIk or
MT

Ik
(where k ≥ 1). If M contains a forbidden matrix from X, then the algorithm

branches into at most eighteen subcases, since the largest forbidden matrix of X
has eighteen 0-entries. In each subcase, flip one of the 0-entry of the forbidden
submatrix found in M and decrement the parameter d by one. Otherwise, if M
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contains a forbidden submatrix of type MIk or MIk
T , then the algorithm finds a

minimum size forbidden matrix M ′ of type MIk or MIk
T in M . If the value of k

is greater than d, then the algorithm returns No (using Corollary 2), otherwise
the algorithm branches into at most O(46d)-subcases (using Lemma 11). In each
subcase, flip k 0-entries of the forbidden submatrix M ′ found in M and decre-
ment the parameter d by k. This process is continued in each subcase until its d
value becomes zero or until it satisfies the SC1P . Algorithm 1 returns Yes if any
of the subcases returns Yes, otherwise it returns No. Flipping a 0-entry in M
is equivalent to adding an edge in the representing graph GM of M . From this
fact and Lemma 3, it follows that to destroy MIk and MIk

T in M , it is sufficient
to destroy chordless cycles of length greater than four in GM (i.e. make GM a
chordal bipartite graph (Sect. 2) by addition of edges).

Corollary 2. The minimum number of 0-flippings required to destroy an MIk

or MT
Ik
, where (k ≥ 1) is k.

Proof. It follows from Lemma 3 and 5.

Observation 1. The number of 0-entries in an MIk or MT
Ik
, where (k ≥ 1) is

O(k2).

The above observation leads to a O∗(d2d) algorithm for d-SC1P -0E. But, using
the result of the following lemma, we get a O∗(45.5625d) algorithm for d-SC1P -
0E.

Lemma 11. Given a bipartite graph H = (V1, V2, E) which is an even chordless
cycle of length 2n (where n ≥ 3), then the number of ways to make H a chordal
bipartite graph by adding n − 2 edges is at most 6.75n−1.

Proof. Number of ways to make H a chordal bipartite graph = Number of ternary
trees with n − 1 internal nodes (using Lemma 5).

Number of ternary trees with n internal nodes =

(
3n+1

n

)
3n + 1

=

(
3n
n

)
2n + 1

=
(3n)!

(2n + 1)(2n)!n!

limn→∞ n! =
√

2πn(
n

e
)
n
(using Lemma 6).

limn→∞

(
3n
n

)
2n + 1

=

√
2π(3n)(

3n

e
)
3n

√
2π(2n)(

2n

e
)
2n

× √
2π(n)(

n

e
)
n × (2n + 1)

=
√

3 × 33n√
4πn × 22n × (2n + 1)(

3n
n

)
2n + 1

= O(
33n√

n × 22n × (2n + 1)
) ∼ O(

33n

22n
) = O(6.75n)
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Therefore, number of ternary trees with n internal nodes = O(6.75n).
Hence, the number of ways to make H a chordal bipartite graph is same as

the number of ternary trees with n − 1 internal nodes and is O(6.75n−1). 
�
Theorem 6. d-SC1P -0E problem on a matrix Mm×n, can be solved in
O∗(45.5625d)-time, where d denotes the number of 0-entries that can be flipped.
Consequently it is FPT.

Proof. The technique used in Algorithm 1 employs a search tree. Each node in
the search tree has at most 18d or O(46d) subproblems, depending on whether we
are destroying the fixed size forbidden matrices or MIk respectively. In the worst
case, the parameter d is decremented by one at each level. This occurs when the
chordless cycle found is of length six. So, the total number of branches will be
6.75

6
2−1 (using Lemma 11). Therefore the tree has at most O(46d) leaves. The

size of the search tree is O(46d). A submatrix M
′
of M , that is isomorphic to one

of the forbidden matrices in X and MIk or MT
Ik

can be found in O(m6n)-time
(using Lemma 1) and O(m3n3)-time (using Lemma 2) respectively. Therefore the
total time complexity of Algorithm 1 is O∗(45.5625d). 
�
For (2, 2)-matrices, the problems d-SC1S-R, d-SC1S-C, d-SC1S-RC, d-SC1P -
1E, d-SC1P -0E and d-SC1P -01E defined in Sect. 1 turn out to be polynomial
time solvable, because these problems correspond to removing chordless cycles in
a certain graph representation of the matrix by deleting vertices/edges depending
on the variant considered. Since the chordless cycles in graphs associated with
(2, 2)-matrices are disjoint, it is easy to determine an optimal solution. For (2, ∗)
and (∗, 2)-matrices, the SC1S and SC1E problems are FPT and admit constant
factor polynomial-time approximation algorithms. The details are omitted due
to space constraint.

4 Conclusion

We showed that the decision versions of the SC1S and SC1E problems are NP-
complete. We showed that d-SC1P -0E problem is fixed-parameter tractable on
general binary matrices. We also show that the parameterized versions of SC1S
and SC1E problems on (2, ∗)-matrices and (∗, 2)-matrices are FPT. We also
observe that the fixed-parameter tractability of d-SC1S-R problem on (2, ∗)-
matrices shows that proper interval vertex deletion problem is FPT on triangle
free graphs with a run-time of O∗(4d).
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Abstract. In this paper, we study the kernelization of the Induced
Matching problem on planar graphs, the Parameterized Planar 4-Cycle
Transversal problem and the Parameterized Planar Edge-Disjoint 4-
Cycle Packing problem. For the Induced Matching problem on planar
graphs, based on Gallai-Edmonds structure, a kernel of size 26k is pre-
sented, which improves the current best result 28k. For the Parameter-
ized Planar 4-Cycle Transversal problem, by partitioning the vertices in
given instance into four parts and analyzing the size of each part inde-
pendently, a kernel with at most 51k − 22 vertices is obtained, which
improves the current best result 74k. Based on the kernelization process
of the Parameterized Planar 4-Cycle Transversal problem, a kernel of size
51k−22 can also be obtained for the Parameterized Planar Edge-Disjoint
4-Cycle Packing problem, which improves the current best result 96k.

1 Introduction

Given an instance (I, k) of a parameterized problem Q, the kernelization process
is to transform (I, k) into a new instance (I ′, k′) in polynomial time such that
(I, k) is a yes-instance of Q if and only if (I ′, k′) is a yes-instance of Q, where
k′ ≤ k, and |I ′| ≤ f(k) for some computable function f . In this paper, we
study the kernelization of the Induced Matching problem on planar graphs,
the Parameterized Planar 4-Cycle Transversal problem, and the Parameterized
Planar Edge-Disjoint 4-Cycle Packing problem.

Induced matching
In graph theory, a matching in a graph G = (V,E) is a set of edges without

common vertices. A matching M of G is an induced matching of G if no edge
in E − M has both endpoints contained in V (M) (V (M) is the set of vertices
contained in M). The Induced Matching problem is to decide whether a given
graph G has an induced matching of size at least k. The Induced Matching
problem was introduced by Stockmeyer and Vazirani [29], and has attracted lots
of attention. Duckworth et al. [9] proved that the Induced Matching problem

This work is supported by the National Natural Science Foundation of China under
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on general graphs is NP-complete. The NP-hardness of the problem was also
studied on many restricted graph classes, such as, the bipartite graphs with
maximum degree three [23], planar bipartite graphs [9], 3-regular planar graphs
[9], C4-free bipartite graphs [23], chair-free graphs [19], line-graphs [19], and
Hamiltonian graphs [19]. The Induced Matching problem is polynomial time
solvable in many graph classes, such as, trees [11,12], interval-filament graphs
[16], AT-free graphs [16], circular arc graphs [16], chordal graphs [5], weakly
chordal graphs [7], line-graphs of Hamiltonian graphs [19], polygon-circle graphs
[6], (P5,Dm)-free graphs [19,24], (Pk,K1,n)-free graphs [19,24], trapezoid graphs
[12], interval-dimension graphs [12], and comparability graphs [12].

Duckworth et al. [9] proved that the Induced Matching problem is APX-
complete on r-regular graphs (r ≥ 3) and bipartite graphs with maximum degree
three. Orlovich et al. [27] gave that in general graphs, the Induced Matching
problem cannot be approximated within a factor of n1/2−ε for any ε > 0. Chleb́ık
and Chleb́ıková [8] proved that it is NP-hard to approximate the Induced Match-
ing problem within factor of r/2O(

√
lnr) for r-regular graphs. Duckworth et al.

[9] gave an approximation algorithm for the problem on r-regular graphs (r ≥ 3)
with ratio r−1, and proposed a polynomial-time approximation scheme (PTAS)
for the Induced Matching problem on planar graphs of maximum degree three.
Gotthilf and Lewenstein [13] gave an approximation algorithm for the Induced
Matching problem with ratio 0.75r + 0.15.

In this paper, we study the following problem.

Induced Matching problem on planar graphs: Given a planar graph G =
(V,E) and an integer k, find an induced matching of size at least k in G, or
report that no such matching exists.

Moser and Thilikos [25] proved that the Induced Matching problem on gen-
eral graph is W[1]-hard. It was pointed out in [26] that the Induced Matching
problem is even W[1]-hard on bipartite graphs. Based on the kernelization meth-
ods in [1], Moser and Sikdar [26] gave a linear kernel for the Induced Matching
problem on planar graphs. Kanj et al. [18] improved the above kernel result to
40k. Erman et al. [10] gave that every n-vertex twinless planar graph contains
an induced matching of size (n + 9)/28, and a kernel of size 28k was obtained,
which is the current best result. A kernel of size 2k(1 + d + d2) was presented
for the Induced Matching problem on degree-bounded graphs with maximum
degree d by Moser and Sikdar [26].

In this paper, we study the Induced Matching problem on planar graphs.
The key point to get the improved kernel is based on the analysis of Gallai-
Edmonds decomposition structure. Several new reduction rules are presented,
which results in a kernel of size 26k for the Induced Matching problem on planar
graphs.

s-Cycle Transversal
The s-Cycle Transversal problem has been widely studied in extremal graph
theory [2], graph coloring [35] and computational biology [28], which is to find a
set S of edges of size at most k in a given graph G such that S intersects every
cycle of length s in G, where s is a constant. When s is small, several related
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problems have also been studied, such as the chromatic numbers in graphs with-
out 3-cycles [30] and 5-cycles [31], designing Low-Density Parity-Check (LDPC)
codes [15] based on Taner graphs without 4-cycles.

The s-Cycle Transversal problem for any fixed s ≥ 3 is known to be NP-
complete on general graphs [34]. Brügmann et al. [4] showed that the s-Cycle
Transversal problem remains NP-complete on planar graphs for s = 3. Xia and
Zhang [32] proved that the s-Cycle Transversal problem is NP-complete on pla-
nar graphs for any fixed s ≥ 3. Krivelevich [21] presented a 2-approximation
algorithm for the 3-Cycle Transversal problem. Kortsarz et al. [20] showed that
a (2 − ε)-approximation algorithm for 3-Cycle Transversal problem implies a
(2 − ε)-approximation algorithm for Vertex Cover problem. Kortsarz et al. [20]
presented a generalized (s− 1)-approximation algorithm for s-Cycle Transversal
problem for odd number s.

The s-Cycle Transversal and related problems have also been studied from
parameterized complexity point of view, which are defined as follows.

Parameterized 4-Cycle Transversal: Given an undirected graph G = (V,E)
and an integer k, find a subset E′ ⊆ E with |E′| ≤ k such that each 4-cycle in
G contains at least one edge from E′, or report that no such subset exists.

Parameterized (≤s)-Cycle Transversal: Given an undirected graph G =
(V,E), a constant s and an integer k, find a subset E′ ⊆ E with |E′| ≤ k such
that each (≤s)-cycle in G contains at least one edge from E′, or report that no
such subset exists.

Parameterized Planar 4-Cycle Transversal: Given a planar graph G =
(V,E) and an integer k, find a subset E′ ⊆ E with |E′| ≤ k such that each
4-cycle in G contains at least one edge from E′, or report that no such subset
exists.

A kernel with 6k vertices and a kernel with 11k/3 vertices in general graphs
and planar graphs for 3-Cycle Transversal problem were presented in [4], respec-
tively. Xia and Zhang [32] gave that the Parameterized 4-Cycle Transversal prob-
lem and the Parameterized (≤4)-Cycle Transversal problem admit a kernel with
6k2 vertices on general graphs. By applying the region decomposition technique
developed by Guo and Niedermeier [14], Xia and Zhang [32] obtained several
kernelization results on planar graphs: a kernel with 74k vertices for Parameter-
ized 4-Cycle Transversal problem, a kernel with 32k vertices for Parameterized
(≤4)-Cycle Transversal and a kernel with 266k vertices for the Parameterized
(≤5)-Cycle Transversal problem. Xia and Zhang [33] studied the kernelization
of the Parameterized (≤s)-Cycle Transversal problem, and obtained a kernel of
size 36s3k for s > 5.

In this paper, we study the kernelization of the Parameterized Planar 4-
Cycle Transversal problem. We give several reduction rules and partition the
vertices in given instance into four parts to bound the size of reduced instance.
A kernel with at most 51k−22 vertices is obtained for the Parameterized Planar
4-Cycle Transversal problem, which improves the current best result 74k. The
kernelization process for the Parameterized Planar 4-Cycle Transversal problem
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can be applied to the kernelization of the Parameterized Planar Edge-Disjoint
4-Cycle Packing problem, which is to decide whether k edge-disjoint 4-cycles can
be found in a given planar graph G. We can get that the Parameterized Planar
Edge-Disjoint 4-Cycle Packing problem admits a kernel of size 51k − 22, which
improves the current best result given in [17].

2 Preliminaries

Given a graph G = (V,E), for two vertices u, v in G, let uv denote the edge
between u and v. For a vertex v ∈ G, let N(v) = {u|vu ∈ E}. For a vertex v
in G, let deg(v) denote the degree of v. A vertex in G with degree d is called
a degree-d vertex. For a subset V ′ ⊆ V , let G − V ′ denote the graph obtained
by removing the vertices in V ′ and all its incident edges from G. For a subset
E′ ⊆ E(G), let G−E′ denote the graph obtained by deleting all edges in E from
G. Assume that all paths discussed in this paper are simple. For two sets A,B,
let A\B denote A − B. A 4-cycle in G is a cycle in G with four vertices and
four edges. An edge subset S is called a 4-Cycle Transversal set of G if G \ S is
4-cycle free. For any cycle C in G, let E(C) be the set of edges contained in C.

For two vertices u, v in G, if u and v have the same neighborhood, i.e.,
N(u) = N(v), then u, v are called twin-vertices. A graph G is called a twinless
graph if no twin-vertices are contained in G. For a subset V ′ of V , the subgraph
induced by V ′ is denoted by G[V ′]. For a set S of edges of G, let V (S) denote
the set of vertices contained in S. For a set M of edges of G, if no two edges
in M have common vertices, then M is a matching of G, all the vertices in M
are called matched vertices, and the vertices in V \V (M) are called unmatched
vertices. The size of a matching M is the number of edges in M , denoted by |M |.
A maximum matching is a matching that contains the largest possible number of
edges. A matching is a perfect matching if all the vertices in graph are matched
vertices. For a set S of edges of G, S is an induced matching of G if S satisfies
the following properties: (1) S is a matching of G; (2) no edge in E\S has both
endpoints contained in V (S). For an induced matching S of G, the size of S is the
number of edges contained in S, denoted by |S|. For a graph G, the independence
number of G is the size of the maximum independent set of G.

Given a graph G = (V, E), a 4-cycle packing P = {C1, C2, . . . , Ct} of size
t is a collection of t edge-disjoint 4-cycles, i.e., each element Ci ∈ P is a 4-cycle
and E(Ci) ∩ E(Cj) = ∅ for any two different 4-cycles Ci, Cj ∈ P. A 4-cycle
packing is maximal if it is not properly contained in any strictly larger 4-cycle
packing in G. The set of vertices in 4-cycles in P is denoted by V (P).

3 Improved Kernel for the Induced Matching Problem
on Planar Graphs

Given an instance (G, k) of the Induced Matching problem on planar graphs, we
first give several reduction rules for the problem.
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Rule 3.1 [26]. For a vertex v in G with degree zero, delete v from G.

Rule 3.2 [26]. For a vertex v in G, if v contains at least two degree-1 neighbors,
denoted by {u1, u2, · · · , ui} (i ≥ 2), then delete arbitrarily i − 1 vertices from
{u1, u2, · · · , ui}.

Rule 3.3 [26]. For two vertices u, v with |N(u) ∩ N(v)| ≥ 2, if N(u) ∩ N(v)
contains at least two degree-2 vertices, denoted by {w1, w2, · · · , wj} (j ≥ 2),
then delete arbitrarily j − 1 vertices from {w1, w2, · · · , wj}.

Rule 3.4. For any two twin-vertices u, v in G, delete one of {u, v}.
It is easy to see that if the induced matching contains vertex from {u, v},

then only one of {u, v} is contained in the induced matching, and any one of
{u, v} can be in the induced matching.

Rule 3.5. For any two vertices u, v in G, if there is a degree-2 vertex w in
N(u)∩N(v), u has a degree-1 neighbor x, and v has a degree-1 neighbor y, then
vertex w can be deleted.

Lemma 1. Rule 3.5 is correct and can be applied in O(n3) time.

Proof. Assume that (G, k) is an instance of the Induced Matching problem on
planar graphs. We prove this lemma based on the following cases.

(1) no edge from {[u,w], [u, x], [v, w], [v, y]} is contained in any induced
matching of size at least k of G.

Assume that S is an induced matching of size k of G without containing any
edge from {[u,w], [u, x], [v, w], [v, y]}. By deleting vertex w, S is still an induced
matching of size k in G[V \{w}].

(2) one edge from {[u,w], [v, w]} is contained in an induced matching of size
at least k in G.

Without loss of generality, assume that edge [v, w] is contained in an induced
matching S of size k in G. Let S′ = (S\{[v, w]}) ∪ {[v, y]}. It is easy to see that
S′ is an induced matching of size k in G.

This reduction rule can be executed in the following way: for each possible w
in G, check any two vertices u, v in N(w), and decide whether u, v have degree-1
vertices in their neighbors, respectively. It is easy to see that Rule 3.5 can be
applied in O(n3) time. 	

Rule 3.6. For any three vertices v1, v2, v3 in G, if there is degree-3 vertex u in
N(v1)∩N(v2)∩N(v3), v1 has a degree-1 neighbor x, v2 has a degree-1 neighbor
y, and v3 has a degree-1 neighbor z, then vertex u can be deleted.

Lemma 2. Rule 3.6 is correct and can be applied in O(n4) time.

Proof. Assume that (G, k) is an instance of the Induced Matching problem on
planar graphs. We prove this lemma based on the following cases.

(1) no edge from {[u, v1], [u, v2], [u, v3]} is contained in any induced matching
of size at least k of G.
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Assume that S is an induced matching of size k of G without containing
any edge from {[u, v1], [u, v2], [u, v3]}. By deleting vertex u, S is still an induced
matching of size k in G[V \{u}].

(2) one edge from {[u, v1], [u, v2], [u, v3]} is contained in an induced matching
of size at least k in G.

Without loss of generality, assume that edge [u, v1] is contained in an induced
matching S of size k in G. Let S′ = (S\{[u, v1]})∪{[v1, x]}. It is easy to see that
S′ is an induced matching of size k in G.

This reduction rule can be executed in the following way: for each possible
u in G, check any three vertices v1, v2, v3 in N(w), and decide whether v1, v2, v3
have degree-1 vertices in their neighbors, respectively. It is easy to see that Rule
3.6 can be applied in O(n4) time. 	


We first introduce the terminologies related to Gallai-Edmonds structure [22].
Given a graph G, if for each vertex v in G, G\{v} has a perfect matching,

then G is called a factor-critical graph. For a subset V ′ of vertices in G, let
N(V ′) denote all the vertices of G which are adjacent to at least one vertex in
V ′. For a matching M in G, M is called a near-perfect matching of G if there is
exactly one unmatched vertex in G.

Theorem 1 (The Gallai-Edmonds Structure Theorem) [22]. For a given graph
G, let D be the set of vertices which are not covered by at least one maximum
matching of G, let A be the set of vertices in V \D which are adjacent to at least
one vertex in D, and let C = V \(A ∪ D). Then,

(a) the components of the subgraph induced by D are factor-critical,
(b) the subgraph induced by C has a perfect matching,
(c) if M is any maximum matching of G, it contains a near-perfect matching

of each component of G[D], a perfect matching of each component of G[C]
and matches all vertices of A with vertices in distinct components of G[D],

(d) the size of the maximum matching is 1/2(|V |−c(G[D])+|A|), where c(G[D])
is the number of components in G[D].

For simplicity, a Gallai-Edmonds structure of graph G is denoted by
(C,A,D).

Lemma 3 [22]. For a given graph G = (V,E), a Gallai-Edmonds structure
(C,A,D) of G can be obtained in polynomial time.

The relationship between maximum matching and induced matching can be
obtained as follows.

Lemma 4 [18]. Let G be a minor-closed family of graphs and let c be a constant
such that any graph in G is c-colorable. Moreover, let G be a graph from G and
let M be a matching in G. Then G contains an induced matching of size at least
|M |/c.
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For an instance (G, k) of the Induced Matching problem on planar graphs,
apply Rules 3.1–3.6 whenever possible on G. Let (G′ = (V ′, E′), k′) be the
reduced instance such that no rule is applicable on G′.

Theorem 2. The Induced Matching problem on planar graphs admits a kernel
of size 26k.

Proof. For a Gallai-Edmonds structure (C,A,D) of G′, the components in G′[D]
are divided into two parts S, T such that T contains the set of components, each
of which has at least three vertices, and S contains the set of isolated vertices in
G′[D]. Let T2i+1 (i ≥ 1) be a subset of T such that each component in T2i+1 has
2i + 1 vertices. Assume that T =

⋃h
i=1 T2i+1. Let S1 = {u|u ∈ S, deg(u) = 1},

S2 = {u|u ∈ S, deg(u) = 2}, and S3 = {u|u ∈ S, deg(u) ≥ 3}. Since Rule 3.4 is
not applicable on G′, G′ contains no twin-vertices. Therefore, in the subgraph
induced by the vertices in A ∪ D, by Euler formula, |S2| ≤ 3|A| − 6, and |S3| ≤
2|A| − 4. We discuss the size of S by the following cases.

(1) 0 ≤ |S1| < |A|/2.
Under this case, we can get that:

|S| = |S1| + |S2| + |S3|
≤ |S1| + 3|A| − 6 + 2|A| − 4
≤ |S1| + 5|A| − 10
< 5.5|A| − 10

(2) |A|/2 ≤ |S1| ≤ |A|.
By Rule 3.5, if there exists a degree-2 vertex w in common neighbors of
u, v and both u, v have degree-1 neighbors, then vertex w can be deleted.
Therefore, if |A|/2 ≤ |S1| ≤ |A|, then the number of degree-2 vertices in S2

is bounded by 3|A| − 6 − (|S1| − |A|/2). Then, we can get that

|S| = |S1| + |S2| + |S3|
≤ |S1| + 3|A| − 6 − (|S1| − |A|/2) + 2|A| − 4
≤ 5.5|A| − 10

By the above two cases, we can get that |S| ≤ 5.5|A| − 10.
For a subset T2i+1 of T and for a maximum matching M in G′, at least i

edges of T2i+1 can be added into M . Therefore, we can get that

|M |
|V ′| ≥ |A| +

∑h
i=1 i|T2i+1| + 1/2|C|

|A| + 5.5|A| − 10 +
∑h

i=1(2i + 1)|T2i+1| + |C|
>

1
6.5

Then, |V ′| < 6.5|M |. Let I be any induced matching of size k in G′. By
Lemma 4 and the Four-color theorem of planar graphs, |M | ≤ 4|I|. Therefore,
|V ′| < 6.5 · 4|I| ≤ 26k. 	
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4 Improved Kernel for the Parameterized Planar 4-Cycle
Transversal Problem

For a given instance (G = (V,E), k) of the Parameterized Planar 4-Cycle
Transversal problem, we firstly find a maximal 4-cycle packing P in G, and
let Q = V − V (P). We can get that the size of V (P) is at most 4k, and Q
contains no 4-cycle. The remaining task is to bound the size of Q. We first give
several reduction rules.

Rule 4.1. If there exists an edge e ∈ E which is not contained in any 4-cycle,
then delete e from G; if there exists a vertex v in G not contained in any cycle,
then delete v from G.

It is easy to see that Rule 4.1 is safe and can be executed in polynomial time.
For any vertex v in G and any cycle C in P, if v is connected to at least one
vertex in C, then we call v is adjacent to C. For each cycle C ∈ P, let Q(C)
denote the set of vertices in Q that are adjacent to C.

Rule 4.2. If there is a 4-cycle C ∈ P with V ′ = Q(C) ∪ V (C) such that G[V ′]
contains at least two edge-disjoint 3-cycles, then replace C by these 4-cycles
in P.

Rule 4.3. If there are two 4-cycles C1, C2 ∈ P with V ′′ = Q(C1) ∪ V (C1) ∪
Q(C2) ∪ V (C2) such that G[V ′′] contains at least three edge-disjoint 4-cycles,
then replace C1, C2 in P by these 4-cycles in P.

Each execution of Rule 4.2 and Rule 4.3 can be done in polynomial time,
and increases the number of 4-cycles in P by at least 1.

For a given instance (G, k) of the Parameterized Planar 4-Cycle Transversal
problem, Rule 4.3 is applied when Rule 4.2 is not applicable on graph G. Note
that after each application of Rule 4.3, the updated 4-cycle packing P is still
maximal. For simplicity, a maximal 4-cycle packing P is called a proper 4-cycle
packing if neither Rule 4.2 nor Rule 4.3 is applicable to update P.

In the following, we assume that P is a proper 4-cycle packing obtained by
applying Rules 4.1–4.3 exhaustively, and let Q = V −V (P). We now discuss the
properties of the edges in G[Q]. For an edge e = uv in G[Q], if there exists a
cycle C in P such that u, v with two adjacent vertices in C form a 4-cycle, then
edge uv is called a single edge in G[Q], and we say e is adjacent to cycle C.

Lemma 5. Let C be an arbitrary 4-cycle in P, and let R be the set of vertex-
disjoint single edges in G[Q] adjacent to C. If |R| ≥ 2, then all the single edges
in R must be adjacent to a unique edge in C.

For a 4-cycle C in G, if only one edge of C is shared with other 4-cycles in
G, then C is called a dangling cycle in G.

Rule 4.4. For a dangling 4-cycle C in G, all the edges in C can be deleted from
G, and k = k − 1.
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Let (G, k) be the reduced instance of the Parameterized Planar 4-Cycle
Transversal problem by exhaustively applying reduction Rules 4.1–4.4. We now
analyze the size of G. Assume that P is a proper 4-cycle packing in G, and
let Q = V − V (P). We divide the vertices in Q into the following parts:
Q1 = {v ∈ Q||N(v) ∩ V (P)| = 1}, Q2 = {v ∈ Q||N(v) ∩ V (P)| = 2},
Q3 = {v ∈ Q||N(v) ∩ V (P)| ≥ 3}, Q0 = Q \ (Q1 ∪ Q2 ∪ Q3).

Since P is a proper 4-cycle packing in G and reduction Rule 4.1 is not appli-
cable on G, we can get that Q0 = ∅. We now bound the size of Q3.

Lemma 6. |Q3| ≤ max{0, 2|V (P)| − 4}.

In the following, we will bound the size of Q1 and Q2. For any two distinct
vertices u, v in P, let Q2(uv) = {w ∈ Q2|N(w) ∩ V (P) = {u, v}}. Assume that
T is the set of all non-empty subsets Q2(uv) for each distinct vertices u, v in P.

Lemma 7. Each subset in T has size one.

Lemma 8. |T | ≤ 3|V (P)| − 6.

In graph G, a path with three vertices and two edges is called a 3-path. For
any two 3-paths p1 = (x1, x2, x3) and p2 = (y1, y2, y3), p1 is called connected to
p2 if p1, p2 satisfies the following properties: for any vertex xi (1 ≤ i ≤ 3), there
exists a unique vertex yj in p2 (1 ≤ j ≤ 3) such that xiyj is an edge in G.

Lemma 9. For any arbitrary 4-cycle C ∈ P, there exists at most one 3-path in
G[Q] connected to a 3-path of C.

For a single edge e in G[Q], we first claim that the two endpoints of edge
e = uv are not both from Q1. Assume that u, v are both from Q1, and are
connected to an edge e′ = u′v′ of 4-cycle C in P. It is easy to see that 4-cycle
constructed by vertices u, v, u′, v′ is a dangling 4-cycle, which can be handled by
Rule 4.4, a contradiction. Thus, we can get that for each single edge e with one
vertex from Q1 in G[Q], e is adjacent to the unique edge in a 4-cycle of P, and
the other endpoints of e must be from Q2 ∪ Q3.

Suppose that e1 = {a, b} and e2 = {c, d} are two single edges in G[Q] which
are adjacent to the same edge e = {u, v} of a 4-cycle in P, where a, c are the
vertices in Q2 ∪ Q3, b, d are the vertices in Q1. Assume that a, c are adjacent to
u, and b, d are adjacent to v. We first claim that e1 and e2 cannot share a vertex.
Assume that e1 and e2 share a vertex. If a = c, then a 4-cycle {a, b, v, d} can
be found, which is edge-disjoint with the 4-cycles in P, contradicting with the
maximality of P. Other cases of sharing vertices of e1 and e2 can be similarly
discussed.

Assume that e is a single edge in G[Q] which is adjacent to an edge e′ of a
4-cycle in P. Let u be one vertex in e from Q1, and let v be the other endpoint
of e which is from Q2 ∪ Q3. It is not hard to see that vertex u can be adjacent
to exactly one vertex in Q2 ∪ Q3, and vertex v can be adjacent to exactly one
vertex of Q1. Otherwise, one of reduction rules can be applied again. We now
bound the number of vertices in Q1.
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Lemma 10. The number of vertices in Q1 is at most 6|V (P)| + 3k − 12.

Proof. It is not hard to get that the vertices in Q1 might form single edges and
3-paths. By Lemma 9, we get that for any arbitrary 4-cycle C ∈ P, there exists
at most one 3-path in G[Q] that is connected to 3-path of C. Assume that P ′ is
a 3-path in G[Q] that is connected to 3-path of C. The vertices in P ′ might be
from Q1 and Q2 ∪ Q3. The vertices in the 3-paths whose vertices are all from
Q1 are bounded by 3k. Thus, the remaining task is to consider the vertices in
3-paths that contain vertices from Q2 ∪ Q3, and the vertices in the single edges
that contain vertices from Q2 ∪ Q3.

Let Q′
2 be a subset of Q2 such that each vertex in Q′

2 has at least one neighbor
in Q1, and let Q′

3 be a subset of Q3 such that each vertex in Q′
3 has at least

one neighbor in Q1. In order to bound the number of vertices in Q1, we first
construct an auxiliary graph H as follows: (1) add vertices Q1 ∪Q′

2 ∪Q′
3 ∪V (P)

into H; (2) for a vertex u in Q1 and a vertex v in Q′
2 ∪Q′

3 ∪V (P), if there exists
an edge between u and v in G, then add edge uv into H. Based on the auxiliary
graph H, another auxiliary graph H ′ can be constructed in the following way:
(1) add vertices Q′

2 ∪ Q′
3 ∪ V (P) into H ′; (2) for any vertex u ∈ Q′

2 ∪ Q′
3 and

any vertex v ∈ V (P), if there exists a vertex w in Q1 such that uw and wv
are the edges in H, then add edge uv into H ′. It is easy to see that H ′ is a
bipartite planar graph and triangle-free, and each vertex in Q′

2 ∪ Q′
3 has degree

at least three. By the above discussion, for any vertex u in Q′
2 ∪ Q′

3 and any
vertex v in V (P), u and v can have at most one common neighbor from Q1 in G.
Thus, no two vertices in H ′ have multiple edges. The number of vertices in Q1 is
exactly the number of edges in H ′. The number of vertices contained in Q′

2 ∪Q′
3

is bounded by 2|V (P)| − 4. Therefore, the number of edges in H ′ is bounded by
2((2|V (P)|−4)+ |V (P)|)−4 = 6|V (P)|−12. Thus, the total number of vertices
in Q1 is at most 6|V (P)| + 3k − 12. 	


For an isolated vertex v in G[Q], if v is connected to the vertices of C, such
as a, c or b, d, then it is called vertex v is connected to 4-cycle C.

Lemma 11. For any arbitrary 4-cycle C ∈ P, if an isolated vertex v in G[Q]
is connected to C, then no single edge or 3-path in G[Q] can be connected to C.
Similarly, if a single edge in G[Q] is connected to C, then no isolated vertex or
3-path in G[Q] can be connected to C; if a 3-path in G[Q] is connected to C,
then no isolated vertex or single edge can be connected to C.

Theorem 3. The Parameterized Planar 4-Cycle Transversal problem admits a
kernel of at most 51k − 22 vertices.

Proof. For the reduced instance (G, k) of the Parameterized Planar 4-Cycle
Transversal problem, the size of G is bounded by |V (P)| + |Q1| + |Q2| + |Q3|.
The size of V (P) is bounded by 4k. By Lemma 8, the number of vertices in Q2

is bounded by 3|V (P)| − 6, and by Lemma 6, the number of vertices in Q3 is
bounded by 2|V (P)|−4. By Lemma 10, the number of vertices in Q1 is bounded
by 6|V (P)| + 3k − 12. Thus, the total number of vertices in the reduced graph
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G is |V (G)| = |V (P)| + |Q1| + |Q2| + |Q3| ≤ |V (P)| + (6|V (P)| + 3k − 12) +
(3|V (P)| − 6) + (2|V (P)| − 4) ≤ 51k − 22. 	


The kernelization process for the Parameterized Planar 4-Cycle Transversal
problem can be applied to the kernelization of the Parameterized Planar Edge-
Disjoint 4-Cycle Packing.

Corollary 1. The Parameterized Planar Edge-Disjoint 4-Cycle Packing prob-
lem admits a kernel of at most 51k − 22 vertices.
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graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007.
LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73420-8 34

15. Halford, T.R., Grant, A.J., Chugg, K.M.: Which codes have 4-cycle-free tanner
graphs. IEEE Trans. Inf. Theory 52(9), 4219–4223 (2006)

16. Heggernes, P., Hof, P.V., Lokshtanov, D., Paul, C.: Irredundancy in circular arc
graphs. Discret. Appl. Math. 44(1–3), 79–89 (1993)

https://doi.org/10.1007/978-3-540-30140-0_19
https://doi.org/10.1007/11671411_21
https://doi.org/10.1007/11671411_21
https://doi.org/10.1007/978-3-540-73420-8_34
https://doi.org/10.1007/978-3-540-73420-8_34


180 Q. Feng et al.

17. Jiang, M., Xia, G., Zhang, Y.: Edge-disjoint packing of stars and cycles. Theor.
Comput. Sci. 640, 61–69 (2016)

18. Kanj, I., Pelsmajer, M.J., Schaefer, M., Xia, G.: On the induced matching problem.
J. Comput. Syst. Sci. 77, 1058–1070 (2011)

19. Kobler, D., Rotics, U.: Finding maximum induced matchings in subclasses of claw-
free and P5-free graphs, and in graphs with matching and induced matching of
equal maximum size. Algorithmica 37(4), 327–346 (2003)

20. Kortsarz, G., Langberg, M., Nutov, Z.: Approximating maximum subgraphs with-
out short cycles. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.)
APPROX/RANDOM-2008. LNCS, vol. 5171, pp. 118–131. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85363-3 10

21. Krivelevich, M.: On a conjecture of Tuza about packing and covering of triangles.
Discret. Math. 142(1–3), 281–286 (1995)

22. Lovász, L., Plummer, M.D.: Matching Theory. North Holland, Amsterdam (1986)
23. Lozin, V.V.: On maximum induced matchings in bipartite graphs. Inf. Process.

Lett. 81(1), 7–11 (2002)
24. Lozin, V.V., Rautenbach, D.: Some results on graphs without long induced paths.

Inf. Process. Lett. 88(4), 167–171 (2003)
25. Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced

subgraphs. In: Proceedings of the Second Workshop on Algorithms and Complexity
in Durham, pp. 107–118 (2006)

26. Moser, H., Sikdar, S.: The parameterized complexity of the induced matching prob-
lem. Discret. Appl. Math. 157, 715–727 (2009)

27. Orlovich, Y., Finke, G., Gordon, V., Zverovich, I.: Approximability results for the
maximum and minimum maximal induced matching problems. Discret. Optim. 5,
584–593 (2008)

28. Pevzner, P., Tang, H., Tesler, G.: De novo repeat classification and fragment assem-
bly. Genome Res. 14(9), 1786–1796 (2004)

29. Stockmeyer, L.J., Vazirani, V.V.: NP-completeness of some generalizations of the
maximum matching problem. Inf. Process. Lett. 15(1), 14–19 (1982)

30. Thomassen, C.: On the chromatic number of triangle-free graphs of large minimum
degree. Combinatorica 22(4), 591–596 (2002)

31. Thomassen, C.: On the chromatic number of pentagon-free graphs of large mini-
mum degree. Combinatorica 27(2), 241–243 (2007)

32. Xia, G., Zhang, Y.: Kernelization for cycle transversal problems. In: Proceedings
of AAIM, pp. 293–303 (2010)

33. Xia, G., Zhang, Y.: On the small cycle transversal of planar graphs. Theor. Comput.
Sci. 412(29), 3501–3509 (2011)

34. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: Proceedings
of STOC, pp. 253–264 (1978)

35. Zhu, J., Bu, Y.: Equitable list colorings of planar graphs without short cycles.
Theor. Comput. Sci. 407(1–3), 21–28 (2008)

https://doi.org/10.1007/978-3-540-85363-3_10


Other Algorithms



On Bayesian Epistemology
of Myerson Auction

Xiaotie Deng1(B) and Keyu Zhu2(B)

1 School of Electronics Engineering and Computer Science, Peking University,
Science Building, No. 5 Yiheyuan Lu, Haidian District, Beijing 100871, China

xiaotie@pku.edu.cn
2 Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China

HyperSpaceX@sjtu.edu.cn

Abstract. Bayesian Epistemology bases its analysis of the objects under
study on a prior, a probability distribution, which is in turn the sub-
ject matter in statistical learning, and that of machine learning at least
implicitly. We are interested in a game setting where the agents to be
learned may shift in accordance with the data collector’s strategies. We
focus on this issue of learning and exploiting for Myerson auction where a
seller wants to gain information on bidders’ value distributions to achieve
the maximum revenue. We show that a world of the power-law distri-
bution would enable the auctioneer to achieve both but the bidders can
consistently lie about their probability distribution to improve utility
under the other distributions.

Keywords: Statistical learning · Bayesian Epistemology
Probability distribution cheating · Myerson auction
Bidding game Nash equilibrium

1 Introduction

The Bayesian Epistemology has been widely applied to keep our logic thinking
in terms of probability consistent, and hence has been adopted to deal with
data in presence of random perturbations of various kinds. It has become one
of the most useful data analytic tools, and expectably will play a much more
important role in today’s era of big data. On the other hand, the coming of a huge
amount of data creates the conditions for the law of large numbers to hold, and
hence derives increasingly accurate characterizations of the world for statistical
learning, and more generally machine learning, to perform better and better.
The acclaimed “the end of theory” [1] advocated a future for petabyte data
and its technologies to advance sciences “even without coherent models, unified
theories, or really any mechanistic explanation at all”, with a new empiricism
where data may speak on their own, free of theory [8].
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In guarding the tradition of mathematical and logic rigor in economics,
Debreu suggested that “Being denied a sufficiently secure experimental base,
economic theory has to adhere to the rules of logical discourse and must renounce
the facility of internal inconsistency” [2]. The coming of the big data era, with
information and communication technology (ICT) enabled economical activities,
has brought in the possibility to connect theoretical understanding with reality
especially for electronically conducted transactions and services. Economics the-
ories, at the level of microeconomics, are under re-examination to be applied to
the highly electronic market based environment. As an example, the generalized
second price auction designed for the sponsored search market to sell billions of
“clicks” has received intensively studies in recent years [5]. Here transactions on
selling each click can be completely recorded and fully analyzed to test the exact
level of matching between theory and economic data in this and other similar
cases.

Bayesian statistics has been the key link in reconciling the gap between the
probability calculus as a reasoning methodology and the data foundation for
empirical relevance to reality. It uses parameter modeling to create a prior of
the uncertain world based on empirical data, then applies the model to make
predictions about future, turning new data to potential outcomes. This method-
ology has received warm welcome by both side of the methodology. Practicians
designed models, parameter fitted on training data, verified on testing data,
applied their models to make predictions and to decide operations in the real
world. Theorists have derived new concepts and developed new branches of sci-
entific investigations. One of the most interesting work is that of revelation
principle and maximum revenue auction, commonly known as the Myerson auc-
tion [9]. The Myerson auction assures that, given that bidders’ value (or prior)
distributions are common knowledge [6], the seller achieves the optimal expected
revenue among all truthful auction protocols. Here the priors of the bidders are
assumed to be known to all and this theorem has focused on the second half
of the methodology of Bayesian Statistics. In an effort to implement Myerson
auction, it would be an immediate task to complement the theorem to find the
priors for the whole process to function.

We are interested to take this example of Myerson auction to develop an
understanding whether there can be a consistent view to merge the two stages of
Bayesian statistical learning process to have a comprehensive Bayesian epistemic
methodology under this setting. We find out interesting probability distributions
for which this is possible for full implementation of Myerson auction, and others
for which deviation from the seller’s theoretical optimum is inevitable. Our dis-
covery establishes a rather limited scenario where learning can be done at the
same time of optimal pricing but more broadly opens up an issue whether and
under what scenario we are able learn and exploit the learning outcome.

Our Model and Results: We consider a Myerson auction among n bidders
with independent true prior distributions. They have the right to make bids
following distributions not necessarily identical to their true prior distributions.
Assume that their true prior and bidding distributions belong to a specific class
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of distributions. Then we figure out that for the class of power-law distributions,
bidders stick to following their true prior distributions. This leads to the best
scenario for the auctioneer to implement the Myerson auction: the bidders will
follow their true prior distributions and bid true values of the item simultane-
ously. For half-normal distribution class, bidders have the incentive to deviate
from their true prior distributions and follow distributions with smaller variance.
Similar results are found under the exponential distribution assumption.

Related Works: The misreporting distribution game under Myerson auction
has received interests from different points of views recently. For independent
and identical prior distributions, the misreporting game’s equilibrium compu-
tation issue was studied in [3]. [10] derived a classic type revenue equivalence
property of the fake distribution game which allows players’ best response strate-
gies to be selected arbitrary distributions using a nice technical tool to use the
quantile space in the bidding language. In this work our interest is to question
the potential of a complete Bayesian epistemic approach in the practicality of
Myerson auction, and show so for the power-law distribution. As the power-law
distribution is the most common in economic value distributions [7], the results
for Myerson auction’s validity in this case bring in a possibility to include the
prior finding component to the Bayesian Epistemology.

Presentation Structure: We present essential preliminary work in Sect. 2.
In Sect. 3, we formally introduce our main model and discuss three classes of
distributions in the three subsections.

2 Preliminaries

We will use the terms “bidder” and “agent” interchangeably throughout the
paper. Consider the following auction environment: there is one auctioneer, who
has one unit of item for sale. Let N be the set of agents participating in the
auction and |N | = n. Each agent has a value (which is also referred to by the use
of type in the literatures) to this item, generated from some prior distribution.
Let vector t = (t1, . . . , tn) denote their bids in the auction, and let fi(·) represent
the density function of agent i’s prior value distribution (or rather behaved
distribution by consistent biddings) while Fi(·) represents the corresponding
cumulative density function of agent i. To distinguish the true information from
the reported information, we apply a bar notation ¯ to highlight the true value
(or prior). In this paper, we always assume that the true prior distributions across
the agents are independent. The auctioneer then proposes an auction consisting
of an allocation rule and a payment rule to sell this item. Basically, a mechanism
will take each bidder’s bid (ti) as the input, to produce the output assignment
probability for each bidder to be the winner, Q(t) = (q1(t), q2(t), . . . , qn(t)), the
payment charged on all the bidders, p(t) = (p1(t), p2(t), · · · pn(t)).

Myerson auction [9] specifies allocation rule Q(t) and payment rule p(t),
based on a crucial concept called the virtual value.
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Definition 1. For any probability density function fi(·) for agent i, ∀i ∈ N , its
virtual valuation function [9] is defined as φi(ti) = ti − 1−Fi(ti)

fi(ti)
, where Fi(·)

is the cumulative distribution function with respect to fi(·).
Myerson auction basically offers the item to the agent with the highest virtual

value and charges a price that the minimum possible type the winner would bid
to win this item. More precisely, let ci(t−i) denote infimum of all winning bids
for each agent i against the others’ bids t−i, given as follows

ci(t−i) = inf{ti : φi(ti) ≥ 0, φi(ti) ≥ φj(tj),∀ j �= i} .

Thus the allocation and pricing rules, Qi(t) and pi(t) are shown below

Qi(t−i, ti) =

{
1 ti > ci(t−i) ,

0 ti < ci(t−i) .

pi(t) =

{
ci(t−i) Qi(t) = 1 ,

0 Qi(t) = 0 .

Ties are broken randomly by assigning each bidder with the equal winning
probability and its associated payment (which may be different from one to
another, dependent on their distributions).

2.1 Myerson Auction Against Strategic Bidding Distributions

In the repeated statistical learning process for repeated auctions, the auction-
eer strives to achieve its double goals of learning bidders’ value distributions
and making use of them to achieve Myerson optimal auction. Our bidding lan-
guage requires the submission of two terms from the agents in N , probability
distributions and the agents’ bids for the item. As in statistical learning, the
classes of probability distributions under consideration are characterized by their
corresponding parameters. We focus on several classes of parameter distribu-
tions, including power-law, half-normal and exponential distributions. An agent
is assumed to have the same probability distribution in the repeated auction
process but may have different true values at each round.

Upon receiving the parameter distributions and the bids from all bidders,
the auctioneer consistently applies the allocation and payment rule according
to the Myerson auction with respect to the submitted distributions. Arguably,
the consistency in reporting the underlying value distribution can be guaranteed
by the learning effort through the repeated auctions. We study how well the
Myerson auction can be launched under this setting, namely, study its profit
guarantees under the equilibrium of bidders’ strategies, as defined subsequently.

Definition 2. For a class of priors with parameters, the strategy set can be
denoted by S = ×n

i=1Si which consists of individual strategy set

Si = {fi(·) | fi(·) is a probability density function}
for any i ∈ [n], where fi is encoded by parameters.
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This strategy set is all we know about partial information for everyone’s true
prior, and we are interested in understanding the power of Myerson auction in
this case.

We quantify agent strategic behavior via the standard definition of utility as
follows:

Definition 3. For each agent i, the expected utility Ui(f1, . . . , fn) with
respect to the strategy (f1(·), . . . , fn(·))∈S is defined as∫

Rn

(
n∏

i=1

fi(ti))(Q(t)t(t) − p(t))dt ,

where t(t) is bidder i’s true value of the good for sale correspondent to his/her bid
for this good. (In the latter sections, we introduce mapping criteria to quantify
this relationship between bids and true values.)

Definition 4. A particular choice of strategies is a Nash equilibrium if and
only if for each agent i, there is no incentive for him or her changing the strat-
egy for a higher expected utility Ui supposing that the others’ strategies remain
unchanged. That is to say, (f1(·), . . . , fn(·)) ∈ S is a Nash equilibrium if and
only if ∀gi ∈ Si and i ∈ [n],

Ui(f1, . . . , fn) ≥ Ui(f1, . . . , fi−1, gi, fi+1, . . . , fn) .

Definition 5. A mechanism is dominant strategy incentive compatible
(DSIC) if and only if each bidder’s expected utility is optimized by making bids
according to his or her true prior distribution characterized by f i no matter
what others’ value distributions their bids follow. In other words, ∀i ∈ [n] and
(f1(·), . . . , fn(·)) ∈ S,

Ui(f1, . . . , fi−1, f̄i, fi+1, . . . , fn) ≥ Ui(f1, . . . , fn) .

Definition 6. A distribution is regular if and only if its virtual valuation func-
tion is monotonically increasing.

Definition 7. For a regular distribution, the reserve price is φ−1(0), where φ
is the corresponding virtual valuation function.

3 Main Model

3.1 Power-Law Distributions

To begin with, we constrain individual strategy sets by presuming that prior
distributions of all of the bidders, including their true prior distributions, belong
to a subordinate category of power-law distributions. In other words, Si(α, β) =
{gi(·) | gi(t) = 1

[( β
α−1 )

1
α−1 ,+∞)

βt−α,∀α > 1, β > 0}. Here α is observed to be

a constant number in the interval (2, 3) in many application problems such as
wages, city size and key parameters in complex network [7]. Since α is a fixed
value, individual strategy set Si(α, β) consisting of functions with the single
parameter β > 0 and can be simplified as Si(β) without any ambiguity.
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Theorem 1. Our mechanism is DSIC if each bidder i bids according to the
power-law distribution characterized by βi with true prior distribution character-
ized by βi. It implies that the unique Nash equilibrium happens at (β1, . . . , βn).

Detailed proofs can be found in [3] (Sect. 3). The scheme of the proof is that
the auctioneer implements Myerson auction with respect to reported prior dis-
tributions from agents and each agent aims to maximize their expected utility
by selecting a strategy, i.e., a prior distribution to report. Then we analyze each
agent’s behavior according to its incentive. One thing to notice is that calcu-
lating expected utility is not straightforward since we need to map winning bid
from reported prior distribution to true value of true prior distribution with a
technique, Mapping Criterion. In the following two sections, we consider two
different distribution classes under this framework of the proof.

3.2 Half-Normal Distributions

In this section, we constrain individual strategy sets by assuming that prior dis-
tributions of all of the bidders, including their true prior distributions, belong to
the class of half-normal distributions. In other words, S(σ) = {g(·) | g(t) =

1[0,+∞)

√
2√

πσ
e− t2

2σ2 ,∀σ > 0}. Naturally, the aforementioned virtual valuation
function of S(σ) can be given by the following formula

φσ(t) = t −
1 − ∫ t

0

√
2√

πσ
e− x2

2σ2 dx
√
2√

πσ
e− t2

2σ2

, ∀ t ≥ 0 .

Then we move on to prove two lemmas in order to explore several desirable
properties of the formula above.

Lemma 1 (Regularity). Every half-normal distribution characterized by σ >
0 is regular.

Proof. With Definition 6, we merely need to verify that φσ(t) is an increasing
function when t is non-negative. Take the derivative and we have

φ
′
σ(t) = 2 −

(
1 − ∫ t

0

√
2√

πσ
e− x2

2σ2 dx
)

t
σ2

√
2√

πσ
e− t2

2σ2

= 2 − t

σ2

∫ +∞

t

e
t2−x2

2σ2 dx

≥ 2 − t

σ2

∫ +∞

t

e
t

σ2 (t−x)dx = 2 − 1 = 1 > 0 .

Since the first derivative of the virtual valuation function φσ(t) is strictly positive
for any t ≥ 0, we claim that every half-normal distribution is regular.

Moreover, we figure out that e
t2

2σ2
∫ +∞

t
e− x2

2σ2 dx < σ2

t , for any σ > 0 and t > 0.
This inequality offers an upper bound which we employ to our proof below. In
addition to monotonicity, we introduce another lemma to explore an underlying
property of graphs of virtual valuation functions with different σ > 0.
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Lemma 2. φσ1(t) > φσ2(t),∀σ2 > σ1 > 0, t ≥ 0.

Proof. Let

m(t) =
t√
2π

+ e
t2
2 (1 − Φ(t))(1 − t2) , ∀ t ≥ 0 ,

where Φ(t) =
∫ t

−∞
1√
2π

e− x2
2 dx. We continue to prove the function m(x) is posi-

tive for any x ≥ 0 and its limit is 0 as x approaches plus infinity. Upper and lower
tail bounds of standard normal distributions enable us to complete a relatively
elegant proof.

t

t2 + 1
<

∫ +∞

t

e
t2−x2

2 dx =
√

2πe
t2
2 (1 − Φ(t)) <

1
t

, ∀ t > 0 .

The upper bound is not difficult to obtain since we recall the previous inequality
e

t2
2

∫ +∞
t

e− x2
2 dx < σ2

t and take σ = 1. Let

Δ(t) =
∫ +∞

t

e
t2−x2

2 dx − t

t2 + 1
.

Since 0 ≤ limt→+∞
∫ +∞

t
e

t2−x2
2 dx ≤ limt→+∞ 1

t = 0, we claim that

limt→+∞ Δ(t) = 0. Additionally, the first derivative Δ
′
(t) = −e− t2

2 2
√
2π

(t2+1)2 is

strictly negative for any t > 0. Due to the fact that Δ(0) =
√
2π
2 > 0, the func-

tion Δ(t) is positive, which actually completes our proof of the lower bound.
Therefore, m

′
(t) = t2√

2π
− e

t2
2 (1 − Φ(t))(t3 + t) is strictly negative because of

the newly established lower bound. Also, we can estimate the limit of m(t) as t
approaches plus infinity.

2t√
2π(t2 + 1)

< m(t) <
1√
2πt

,∀t > 0 .

With the squeeze theorem, the limit of m(t) exists and is equal to 0. Note that
the function m(t) is strictly decreasing with its limit 0 and m(0) = 1

2 > 0. Thus,
m(t) is strictly positive, whatever the non-negative t. Let

M(t, σ) = σe
t2

2σ2

(
1 − Φ(

t

σ
)
)

.

For any fixed t ≥ 0, we are supposed to verify that the function M(t, σ) is
strictly increasing with respect to the variable σ. Take the partial derivative and
we obtain

∂M(t, σ)
∂σ

= m(
t

σ
) > 0,∀σ > 0 .

And
φσ1(t) − φσ2(t) =

√
2π(M(t, σ2) − M(t, σ1)) > 0 ,

whenever σ2 > σ1 > 0 and t ≥ 0 because of the property of the monotonic
function M(t, σ).
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Corollary 1. ∂φ−1
σ (t)
∂σ ≥ 0, ∀σ > 0, t > φσ(0).

Proof. Let τ > σ. The inequality φσ(t) > φτ (t) holds due to Lemma 2 and there
exists a point T > t such that φτ (T ) = φσ(t) because of Lemma 1. Therefore,
we obtain

∂φ−1
σ (t)
∂σ

= lim
τ→σ+

T − t

τ − σ
≥ 0 .

The bidder is unlikely to win if the virtual value of his or her bid is less than the
reserve price. Without loss of generality, let r(σ) denote the reserve price with
respect to the half-normal distribution characterized by the single parameter σ.

Proposition 1. σφ−1
1 ( t

σ ) = φ−1
σ (t), ∀t ≥ 0, σ > 0.

t = φσ(s) = s −
1 − ∫ s

0

√
2√

πσ
e− x2

2σ2 dx
√
2√

πσ
e− s2

2σ2

,

t

σ
= φ1(

s

σ
) =

s

σ
−

1 − ∫ s
σ

0

√
2√
π
e− x2

2 dx
√
2√
π
e− s2

2σ2

.

Thus, σφ−1
1 ( t

σ ) = φ−1
σ (t) because of Lemma 1.

Corollary 2 (Linearity of Reserve Price). r(σ) is a linear function. In other
words, r(σ) = σr(1),∀σ > 0.

Proof. It is clear that r(σ) = φ−1
σ (0). According to Proposition 1, we have r(σ) =

σr(1) for any σ > 0.

Proposition 2 (Mapping Criterion). There exists a unique mapping between
two half-normal distributions from S(σ), characterized by σ1, σ2 respectively, pre-
serving p-fractile, ∀p ∈ [0, 1]. To put it differently, π : t1 → t2 = σ2

σ1
t1, subject to∫ +∞

t1

√
2√

πσ1
e
− t2

2σ2
1 =

∫ +∞
t2

√
2√

πσ2
e
− t2

2σ2
2 .

Remark 1. We can calculate bidders’ true values of the item for sale with this
criterion as long as we obtain private information on their true prior distributions
on which we base our work on expected utility of each bidder.

Then we start our analysis of bidders’ strategies by discussing a relatively
simple scenario where only one bidder gets involved in the auction.

Warm-Up: Single Bidder

Theorem 2. Suppose that the bidder’s true value follows a true prior distribu-

tion f(t) = 1[0,+∞)
2√
2πσ

e− t2

2σ2 . When he or she is allowed to make bids according
to another half-normal distribution characterized by σ, it is the dominant strategy
for the bidder to reduce σ to 0 in terms of the bidder’s expected utility, whatever
the true prior distribution.
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Proof. The expected utility of the bidder can be given by the following formula

U(σ, σ) =
∫ +∞

r(σ)

(
σ

σ
t − r(σ)

)
2√
2πσ

e− t2

2σ2 dt

x= t
σ=====

∫ +∞

r(1)

(σx − σr(1))
2√
2π

e− x2
2 dx .

For any fixed σ > 0, the expected utility function is a linear function with respect
to the parameter σ with a constant negative slope − ∫ +∞

r(1)
r(1) 2√

2π
e− x2

2 dx. Thus,
the bidder is motivated to select a half-normal distribution with a sufficient small
parameter σ. Note that the optimal strategy here is exactly a Dirac delta function

δσ(t) = lim
σ→0+

1[0,+∞)
2√
2πσ

e− x2

2σ2 .

Multiple Bidders

Theorem 3. Suppose that n bidders participate in the auction (n ≥ 2).
For bidder i, his or her true value follows a true prior distribution f(t) =

1[0,+∞)
2√
2πσi

e
− t2

2σ2
i . When he or she is allowed to make bids according to another

half-normal distribution characterized by σi, bidder i always has an incentive to
lower the value of σi if σi ≥ σi, whatever the true prior distribution and bidder
j’s strategy, ∀j �= i.

Proof. Before establishing main results in this section, we move on to intro-
duce several notations for the convenience of our proof. Let fj(tj) =

1[0,+∞)
2√
2πσj

e
− t2j

2σ2
j denote the distribution which bidder j’s bids follow, ∀j ∈ [n].

Consider two separate regions of integration,

D1(σi, σ−i) = {t | ti ≥ r(σi), 0 ≤ max
j �=i

φσj
(tj) ≤ φσi

(ti)} ,

D2(σi, σ−i) = [r(σi),+∞) ×
∏
j �=i

[0, r(σj)] .

We leverage the notation X(n−1),−i slightly different from previous sections.
Here, X(n−1),−i is considered as the largest observation among all these n random
variables except Xi, where Xi is a random variable of each bidder i’s virtual
values with respect to bids. Consider the expected utility function

Ui(σ, σi) =
∫

t:φσi
(ti)≥max{φσj

(tj),0},∀j �=i

(ti(ti) − pi(t))f(t)dt ,

where σ = (σ1, . . . , σn). The region of integration is actually the combination of
D1(σi, σ−i) and D2(σi, σ−i). With order statistics, we can further simplify the
integration over the region D1(σi, σ−i) as follows∫ +∞

0

fX(n−1),−i
(t−i)dt−i

∫ +∞

φ−1
σi

(t−i)

(
σiti
σi

− φ−1
σi

(t−i)
)

fi(ti)dti ,



192 X. Deng and K. Zhu

where

fX(n−1),−i
(t−i)dt−i = d

⎛
⎝∏

j �=i

∫ φ−1
σj

(t−i)

0

fj(tj)dtj

⎞
⎠ .

Similarly, the integration over the the region D2(σi, σ−i) can be given by the
following formula

∏
j �=i

(∫ r(σj)

0

fj(tj)dtj

)∫ +∞

r(σi)

(
σiti
σi

− r(σi)
)

fi(ti)dti .

We split our discussion into two parts with respect to regions, D1(σi, σ−i) and
D2(σi, σ−i). First, we calculate the expected utility Ui(σi, σ−i) |D1 over the fixed
region D1(σi, σ−i) as follows

∫ +∞

0

fX(n−1),−i
(t−i)dt−i

∫ +∞

φ−1
σi

(t−i)

(
σiti
σi

− φ−1
σi

(t−i)
)

fi(ti)dti .

For the convenience of our proof, we normalize the formula above into the fol-
lowing one∫ +∞

0

fX(n−1),−i
(t−i)dt−i

∫ +∞

φ−1
1 (

t−i
σi

)

(
σix − φ−1

σi
(t−i)

)
f(x)dx ,

where f(x) is the probability density function of the standard half-normal dis-
tribution. We wonder what difference the deviation from σi makes to the partial
expected utility of bidder i. Thus, we take the derivative of the parameter σi

and have

∂Ui(σi, σ−i) |D1

∂σi
= −

∫ +∞

0

fX(n−1),−i
(t−i)dt−i

[ ∫ +∞

φ−1
1 (

t−i
σi

)

∂φ−1
σi

(t−i)
∂σi

f(x)dx

+
∂φ−1

1 ( t−i

σi
)

∂σi

σi − σi

σi
φ−1

σi
(t−i)f

(
φ−1
1 (

t−i

σi
)
) ]

≤ 0 , ∀ σi ≥ σi > 0 ,

where we apply the inequality in Corollary 1. Then we take a look at the second
region D2(σi, σ−i) and obtain similar results.

Ui(σi, σ−i) |D2 =
∏
j �=i

(∫ r(σj)

0

fj(tj)dtj

)∫ +∞

r(σi)

(
σiti
σi

− r(σi)
)

fi(ti)dti

=
∏
j �=i

(∫ r(σj)

0

fj(tj)dtj

)∫ +∞

r(1)

(σix − r(σi)) f(x)dx .

Take the partial derivative of σi and we figure out that

∂Ui(σi, σ−i) |D2

∂σi
= −

∏

j �=i

(∫ r(σj)

0

fj(tj)dtj

) ∫ +∞

r(1)

r(1)f(x)dx < 0 , ∀ σi ≥ σi > 0 .
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Combining these two parts, we have

∂Ui(σi, σ−i)
∂σi

=
∂Ui(σi, σ−i) |D1

∂σi
+

∂Ui(σi, σ−i) |D2

∂σi
< 0 , ∀ σi ≥ σi > 0 .

It means that for each bidder i, he or she is motivated to make bids following a
half-normal distribution characterized by σi which is strictly less than σi.

Theorem 4. Nash equilibrium happens at (σ1, . . . , σn) where σi < σi for any
i ≤ n if Nash equilibrium exists under this setting.

Proof. According to Theorem 3, each bidder always has an incentive to deviate
from his or her true prior distribution by lowering the value of σi whenever
σi ≥ σi. This result indicates that Nash equilibrium can only be achieved where
σi is strictly less than σi.

3.3 Exponential Distribution

In this section, we consider the class of exponential distributions and obtain
results similar to the previous section of half-normal distributions. We specify
individual strategy sets as S(λ) = {g(·) | g(t) = 1[0,+∞)λe−λt} and express
the virtual valuation function characterized by the single parameter λ using the
following formula

φλ(t) = t − 1 − ∫ t

0
λe−λxdx

λe−λt
= t − 1

λ
.

Apparently, the inequalities in Lemmas 1 and 2 still hold with λ substituted
for σ since the function φλ is a linear function with a constant slope being
1, whatever the value of the parameter λ. Furthermore, the mapping criterion
here is specified as π : t1 → t2 = λ1

λ2
t1 between two exponential distributions

characterized by λ1 and λ2 respectively. Then we move on to consider the case
of multiple bidders involved in the auction just as we analyze the last case.

Multiple Bidders

Theorem 5. Suppose that n bidders participate in the auction (n ≥ 2).
For bidder i, his or her true value follows a true prior distribution f(t) =
1[0,+∞)λie

−λit. When he or she is allowed to make bids according to another
exponential distribution characterized by λi, bidder i always has an incentive
to increase the value of λi if λi ≤ λi, whatever the true prior distribution and
bidder j’s strategy, ∀j �= i.

Proof. Let fj(tj) = 1[0,+∞)λje
−λjtj denote the distribution bidder j’s bids fol-

low for any j ∈ [n]. Consider the expected utility function in this case

Ui(λ, λi) =
∫

t:φλi
(ti)≥max{φλj

(tj),0},∀j �=i

(ti(ti) − pi(t))f(t)dt .
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Note that the region of integration of the formula above consists of two almost
disjoint areas

D1(λi, λ−i) = {t | ti ≥ 1
λi

, 0 ≤ max
j �=i

φλj
(tj) ≤ φλi

(ti)} ,

D2(λi, λ−i) = [
1
λi

,+∞] ×
∏
j �=i

[0,
1
λj

] .

The integration over the region D1 can be transformed into the following one∫ +∞

0

fX(n−1),−i
(t−i)dt−i

∫ +∞

t−i+
1

λi

(
λi

λi

ti − t−i − 1
λi

)
fi(ti)dti ,

where we introduce the concept of fX(n−1),−i defined before. Likewise, we obtain
the integration over the region D2(λi, λ−i) as follows

∏

j �=i

∫ 1
λj

0
fj(tj)dtj

∫ +∞

1
λi

(
λi

λi

ti − 1

λi

)
fi(ti)dti =

∏

j �=i

∫ 1
λj

0
fj(tj)dtj

∫ +∞

1

(
x

λi

− 1

λi

)
f(x)dx ,

where f(x) = 1[0,+∞)e
−x. Take the partial derivative of the parameter λi respec-

tively, we obtain

∂Ui(λi, λ−i) |D1

∂λi

=

∫ +∞

0
fX(n−1),−i

(t−i)dt−i

[ ∫ +∞

λit−i+1

1

λ2
i

f(x)dx − t−i

(
λi

λi

− 1

) (
t−i +

1

λi

)
f(λit−i + 1)

]

≥ 0 , ∀ λi ∈ (0, λi] ,

∂Ui(λi, λ−i) |D2

∂λi
=

∏
j �=i

∫ 1
λj

0

fj(tj)dtj

∫ +∞

1

1
λ2

i

f(x)dx > 0 , ∀ λi ∈ (0, λi] .

Thus, combining these two parts, we complete our proof of Theorem5

∂Ui(λi, λ−i)
∂λi

=
∂Ui(λi, λ−i) |D1

∂λi
+

∂Ui(λi, λ−i) |D2

∂λi
> 0 , ∀λi ∈ (0, λi] .

Theorem 6. Nash equilibrium happens at (λ1, . . . , λn) where λi > λi for any
i ∈ [n] if Nash equilibrium exists under this setting.

Proof. According to Theorem 5, each bidder always has an incentive to deviate
from his or her true prior distribution by increasing the value of λi whenever
λi ≤ λi. This result indicates that Nash equilibrium can only be achieved where
λi is strictly greater than λi.

3.4 Pictorial Representation

We present our results pictorially in order to show that bidders do have an
incentive to misreport their prior distributions in Fig. 1.
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Fig. 1. (Left) Suppose that the others bid according to the negative exponential distri-
bution characterized by 1. We draw two different plots of individual expected utility on
the condition that true prior distributions of the selected bidder are characterized by 3
and 5 respectively. It turns out that this bidder’s optimal strategy is to bid according
to a distribution with the parameter λ strictly larger than 3 (in the first plot) or 5 (in
the second plot) when total numbers of agents range from 20 to 35. (Right) suppose
that the others bid according to the negative exponential distribution characterized by
1. We draw two different plots of individual expected utility on the condition that total
numbers of agents are 12 and 20 respectively. It turns out that the selected bidder’s
optimal strategy is to bid according to a distribution with the parameter λ strictly
larger than that of its true prior when its true prior distributions are characterized by
3, 4, 5 and 6.

4 Conclusions

Our work shows a possibility where exploration and exploitation can be achieved
against agents of values following the power-law distribution, but not the half-
normal distributions nor negative exponential distribution. In general, the nor-
mal distribution is the most adopted distribution because of law of large num-
bers [4]. It is not difficult to see that other distributions share the same property
of being able to cheat to benefit. This does not show a contradiction to Myer-
son auction’s maximality property. The difference is that our study starts at a
lower knowledge hierarchical level, where agent’s value distribution is exhibited
through their bids, and common knowledge is assumed as an ex post outcome.
The power-law distribution has been observed to present itself often in eco-
nomics [7]. The fact it becomes a key factor in our positive results is interesting.
We would like to explore the matter further to investigate a possibility this may
lead to a better understanding of the data driven scientific research paradigm
more extensively.
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Abstract. A (k, n)-superimposed code is a well known and widely used
combinatorial structure that can be represented by a t×n binary matrix
such that for any k columns of the matrix and for any column c chosen
among these k columns, there exists a row in correspondence of which
column c has an entry equal to 1 and the remaining k− 1 columns have
entries equal to 0. Due to the many situations in which superimposed
codes find applications, there is an abundant literature that studies the
problem of constructing (k, n)-superimposed codes with a small number
t of rows. Motivated by applications to conflict-free communication in
multiple-access networks, group testing, and data security, we study the
problem of constructing superimposed codes that have the additional
constraints that the number of 1’s in each column of the matrix is con-
stant, and equal to an input parameter w. Our results improve on the
known literature in the area. We also extend our findings to other impor-
tant combinatorial structures, like selectors.

1 Superimposed Codes

A (k, n)-superimposed code consists of a t × n binary matrix such that for any
k columns of the matrix and for any column c chosen among these k columns,
there exists a row in correspondence of which column c has an entry equal to 1
and the remaining k − 1 columns have entries equal to 0.

Superimposed codes (also known as cover-free families [23], strongly selec-
tive families [13], disjunct matrices [20]) find applications in a surprising variety
of areas: Compressed sensing [5,16,31], cryptography and data security [37,47],
computational biology [2,18], multi-access communication [17,46], database the-
ory [33], pattern matching [15,41], distributed coloring [38], secure distributed
computation [6], and circuit complexity [11], among the others. Due to the impor-
tance of the many different problems where superimposed codes find applica-
tions, considerable effort has been devoted to the design of algorithms for the
construction of superimposed codes with good parameters.

Typically, the parameter to optimize is the number t of rows of the matrix
representing the superimposed code. It is impossible to summarize here the long
list of important contributions to this area and we address the reader to the
survey paper [21] and Chap. 7 of [20] for a (partial) account of the literature.
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Recent important results are contained in the papers by Porat and Rotschild [42]
and by Bshouty [8], who were the first to give polynomial time algorithms for the
construction of superimposed codes with t = O(k2 log2 n). Recall that for any
(k, n)-superimposed code it holds the fundamental lower bound t = Ω(k2 logk n)
[1,22,27,43], therefore the constructions by Porat and Rotschild [42] and by
Bshouty [8] are not too far from being optimal.

Although in many situations the most relevant parameter is indeed the num-
ber t of rows of the superimposed code (oftentimes referred to as the length of
the code), there are many other circumstances where other parameters of the
code have a greater importance. We illustrate a few of them in the following
subsections, in order put our successive investigations in the proper context.

1.1 Conflict Resolution in Wireless Networks with Bounded
Number of Transmissions

One of the early applications of superimposed codes was for conflict resolution
in multiaccess channels [46]. In this scenario one has a multiaccess channel, n
stations that have access to it, and at most a k � n of them might be active at
the same time, i.e., might want to transmit over the channel. The goal is to let
all active station to successfully transmit over the channel. The basic constraint
is that an active station successfully transmits if and only if it transmits singly
on the channel. Following the model and assumptions laid out in the seminal
paper by Massey and Mathys [39], we assume that time is divided into time
slots and that transmissions occur during these time slots. All stations have
a global clock and active stations start transmitting at the same time slot. In
a distributed model, a scheduling algorithm can be represented by a set of n
Boolean vectors of length t, identified by integers from 1 through n, each of which
corresponds to a distinct station, with the meaning that station j is scheduled to
transmit at step i if and only if the i-th entry of its associated Boolean vector j
is 1. A conflict resolution algorithm for the above described multiaccess system
is a scheduling protocol that allows active stations to transmit successfully. A
non adaptive conflict resolution algorithm is a protocol that for each step i =
1, . . . , t establishes which stations should transmit at step i without looking at
what happened over the channel at the previous steps. A non adaptive conflict
resolution algorithm can be represented by the Boolean matrix having as columns
the n Boolean vectors associated with the scheduling of the transmissions of the
n stations. Entry (i, j) of such a matrix is 1 if and only is station j is scheduled to
transmit at step i. A crucial parameter is the number of rows of the matrix, since
it represents the number of time slots the conflict resolution algorithm needs to
let all k active stations transmit with success.

It is clear that there is a perfect equivalence between non adaptive conflict
resolution algorithms in the above described scenario and (k, n)-superimposed
codes. Indeed, superimposed codes ensures that each station, out of k conflict-
ing ones, has a time slot in which it transmits singly (and therefore successfully)
over the multi access channel. It is equally clear why it is important to construct
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(k, n)-superimposed codes with a small number t of rows, since t naturally corre-
sponds to the worst case number of time slots required by the associated conflict
resolution protocol, that is, the time-efficiency of the conflict resolution proto-
col. However, there can be other parameters of conflict resolution protocols one
wants to optimize. Indeed, in order to save energy, it would be desirable that
the protocol requires each station to transmit a bounded number w of time. This
aspect is particularly important when stations are autonomous sensors, that
have severe energy constraints [7]. Motivated by these energy constraints, sev-
eral authors have started to investigate communications protocols that require
a bounded number of transmissions for each node in the network [30,32,34]. In
our scenario, energy constraints suggest the following natural algorithmic prob-
lem: find the minimum integer t(k, n, w) such there exists a (k, n)-superimposed
code of length t(k, n, w), whose columns have exactly w ones.1 We notice that
the property that each column has exactly w ones is not much stronger than
requiring that each column has at most w ones, since a code satisfying the latter
property can be converted to a code satisfying the former property by adding at
most w − 1 rows. Adding rows cannot destroy the code property.

Finally, we remark that the number of attempted transmission as a proxy
for the energy consumption of a transmission station has been used in other
contexts, as well (e.g., [4,9,10]).

1.2 Group Testing

The problem of finding superimposed codes, where the number of 1’s in each
column is limited, naturally arises also in the area of Group Testing. In Group
Testing one has a population [n] = {1, . . . , n} of n individuals, an unknown
set P ⊆ [n] of positive individuals, |P | ≤ k, and one wants to determine P by
performing tests of the form “is A ∩ P �= ∅?”, where A is a chosen subset of [n].
This is an important problem, with many applications in different areas [19,20].

It is well known that (k, n)-superimposed codes are equivalent to non adap-
tive algorithms to solve the Group Testing problem [20], where tests corre-
sponds to subsets of [n] whose characteristic vectors are the rows of the (k, n)-
superimposed code. Non adaptive algorithms are procedures in which the tests
can be performed in parallel, since no test executed by the algorithm requires
the knowledge of the outcomes of previous executed tests. In practice, non adap-
tive tests are by far the most preferable ones. The usual parameter one wants
to optimize is the number of tests, that is, the number of rows of the (k, n)-
superimposed code. However, a moment of thought reveals that the number of
1’s in each column is also a crucial parameter. To see why this is so, let us
remind that the original motivation for which Group Testing was introduced
were to economize the blood testing of troops during WWII (see Chap. 1 of
[19]). Here, blood samples of individual soldiers are pooled together and tested
to see whether at least one member of the group is infected. If one employs

1 From now on, the number of 1’s in a binary vector will be denoted as the weight of
that vector.
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the tests given by a given (k, n)-superimposed code, then its number of rows
represents the total number of performed tests, and the number w of 1’s in the
generic column i represents the number of times person i is tested, that is, the
number of unit of bloods of person i the algorithm needs. It is clear that w should
be keep limited, since individual blood samples cannot be recycled, once pooled
together.

There are other practical situations in which it is desirable to limit the
number of times individual items are tested in a group testing procedure. For
instance, Sobell and Groll [45] describe several scenarios in the area of product
testing in which groups of items are tested together, and the outcome of each
test tell us whether or not the group of items contains at least a defective one.
The final goal is to discover all the malfunctioning items. Usually, those tests
are kind of “stress tests” (for instance, to discover whether gas containers might
leak, they are filled up to a pressure higher than the operating one), therefore
it is important to limit the number of times each item is tested since too many
stress tests could by themselves break things. Again, this limitation corresponds
to bounding the weight of each column in the employed superimposed code.

It is time to recall that the almost optimal-length superimposed codes of
[8,42] (with number of rows t = O(k2 log2 n)) have, in each column, a number
w of 1’s that is w = Θ(k log n). This means that in a group testing proce-
dure that employes such superimposed codes, one needs Θ(k log n) samples from
each individual, to remain in the blood testing scenario. In view of the recent
resurgence of the blood testing motivations of Group Testing in distressed area
(see [24,26,48] and references therein quoted) classical constructions of (k, n)-
superimposed codes are not appropriate. The same conclusion holds for other
applications of Group Testing. Hence, the study of above introduced parameter
t(k, n, w) has its importance.

1.3 Additional Applications

There are several situations in Data Security where (k, n)-superimposed codes
find applications. In some of them [37,47], superimposed codes are used to dis-
tribute to parties some pieces of information that is not possessed by any other
coalitions of at most k − 1 other participants. The method is obvious: give par-
ticipant j a “key” αi if and only if in the i-th row of the j-th column of the
superimposed code there is a 1. The number of 1’s in each column represents
the amount of information that the corresponding participants receive. In many
practical scenarios, one wants to keep bounded that amount and the total num-
ber of keys to generate. Therefore, the parameter t(k, n, w) again comes into
play. Finally, superimposed codes in which the number of 1’s in each column is
limited find applications also in the scenario considered in [3,29].

2 Our Results in Perspective

Motivated by the scenarios described in the previous section, in which it is
important to keep the weight w bounded, in this paper we intend to study the
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tradeoff between the length of superimposed codes and the weight w of the
columns in the code. We first formally define the main object of our studies.

Definition 1. Let k,w, n be positive integers, k ≤ n. A (k,w, n)-superimposed
code is a t-rows n-columns binary matrix M such that each column has weight
w and for any k-tuple of columns of M the following property holds: For any
column c of the given k-tuple, there is a row i ∈ {1, . . . , t} such that column c
has 1 in row i and all remaining k − 1 columns of the k-tuple have all 0 in row
i. The number of rows t of the matrix M is called the length of the (k,w, n)-
superimposed code.

The property that characterizes superimposed codes can be equivalently stated
as follows: For any column c of M and for any other k −1 columns (all different
from c) there is a row i ∈ {1, . . . , t} such that column c has 1 in row i and all
remaining columns of the (k − 1)-tuple have all 0 in row i.

For given k,w, n, let us denote by t(k,w, n) the minimum t such that a
(k,w, n)-superimposed code of length t exists. The classical bounds on the length
of unrestricted superimposed codes are, clearly, bounds on minw t(k,w, n). Here
we are interested in finding good upper and lower bound on t(k,w, n), for any
value of the parameter w. The following theorem is one of the main results of
our paper.

Theorem 1. There exists a (k,w, n)-superimposed code of length t, where t is
the minimum integer such that the following inequality holds:

e

(
w(k − 1) − w−1

2

t − w−1
2

)w

k

[(
n

k

)
−

(
n − k + 1

k

)]
≤ 1. (1)

Quite surprisingly (in view of the practical importance of weight-limited super-
imposed codes, as highlighted in the previous section) there are not many results
in the literature to which compare our Theorem 1. Erdös, Frankl, and Füredi
proved a results on extremal set theory [23] that, translated in our language,
says that a (k,w, n)-superimposed code of length t always exists, provided that

n ≥
(

t


w
k �

)
×

(
w


w
k �

)−2

. (2)

We can show that our result is much better, in the sense that it produces
(k,w, n)-superimposed codes of shorter length. Recently, Gandikota et al. [28]
proved that a (k, n)-superimposed code of length t in which all columns have
weight at most w always exists, provided that

(
w(k − 1)

t

)w (
n

k − 1

)
(n − k + 1) < 1. (3)

One can see that the bounds t(k,w, n) ≤ t one gets from our Theorem 1 is always
better than the bound t(k,w, n) ≤ t + w − 1 one would get from (3). A way to
see this is to notice that
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(and in general the first term of the inequality is much smaller than the second),
moreover
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for k <
√

n (see below for a justification of the importance of this interval of
values). The computations that leads to above inequality are somewhat cumber-
some and they are deferred to the extended version of this paper. However, it is
clear that our improvement is much more significant, mainly in the important
regime where the parameter k is much smaller with respect to n. It is indeed cus-
tomarily, in Group Testing for instance, to assume that k � n. This assumption
is dictated by the practical scenarios where Group Testing finds real applications.
Moreover, there is a well known result [44] proving that for k = Ω(

√
n) opti-

mal superimposed codes have length equal to n, so there is nothing to optimize
in that regime of k. Our improvement, although significant, does not implies an
asymptotic improvement in the order of magnitude. We point out, however, that
having success in doing so would imply beating the O(k2 log n) upper bound on
weight-unrestricted superimposed codes, a problem that is open since the 60’s.

We can also extend our findings to combinatorial objects strictly related
to superimposed codes and that, likewise, find applications in different areas.
In this version of the paper, we limit ourselves to the constructions of selectors
[14,18], satisfying the same additional constraints on the weight of their columns
discussed before. Selectors find applications in several areas, most notably in
optimal two-stage Group Testing and in the efficient construction of optimal
protocols for conflict resolution in multiple access channel with feedback [36].
This extension will be briefly analyzed in Sect. 4.

3 Proof of Theorem1

In order to prove Theorem1, we need the following technical result, whose proof
is given in AppendixA.

Fact 1. Given integers a, b, c with c ≤ a ≤ b, it holds that
(

a

c

)
×

(
b

c

)−1

≤
(

a − c−1
2

b − c−1
2

)c

(4)

Furthermore, we need to recall the celebrated Lovász Local Lemma for the
symmetric case (see Knuth’s exercises 317 and 319 in [35]), as stated below.

Lemma 1. Let A1, A2, . . . , Ab be events in an arbitrary probability space. Sup-
pose that each event Ai is mutually independent of the set of all the other events
Aj except for at most d, and that Pr(Ai) ≤ Q for all 1 ≤ i ≤ b. If eQd ≤ 1, then
Pr(∩b

i=1Āi) > 0, where e = 2.71828 . . . is the base of the natural logarithm.
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We are now ready to prove Theorem 1.

Proof of Theorem 1. Let M be a t × n binary matrix, where each column
c is a t × 1 binary vector of weight w, and it is generated independently with
probability

Pr(c) =
(

t

w

)−1

.

Let A be any subset of indices of columns of M . Let us denote by M(A) the
submatrix of M consisting of the |A|-tuple of columns of M whose indices belong
to A. For a given column ci of M and set of column-indices B, |B| = k − 1,
i /∈ B, let us consider the “bad” event Eci,B such that for each row in which
ci has 1, it occurs that at least one of the remaining k − 1 columns of M(B)
has 1 in that same row. There are n

(
n−1
k−1

)
such an events. We want to compute

the probability Pr(Eci,B). We know that the number of different 1’s that can
be in the k − 1 columns of M(B) is at most w(k − 1). Therefore, the number of
columns ci having each of its w 1’s in the same rows where some of the columns
of M(B) have 1, is upper bounded by

(
w(k−1)

w

)
. Therefore, for each ci and B as

above, we have that
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)
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) . (5)

By using Fact 1, we can further bound Pr(Eci,B) as follows:
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)w
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Let {1, 2, . . . , n} = [n] be the set of column indices of matrix M . Fixed an event
Eci,X , all events Ecj ,Y are independent from Eci,X if Y ⊆ [n] \ (X ∪ {i}) and
j /∈ Y . The number of such events is

(
n − k

k − 1

)
(n − k + 1) = k

(
n − k + 1

k

)
.

Therefore, for any given Eci,X the number of events Ecj ,Y that are dependent
from Eci,X is upper bounded by d, where

d = n

(
n − 1
k − 1

)
− k

(
n − k + 1

k

)
= k

[(
n

k

)
−

(
n − k + 1

k

)]
. (7)

According to Lemma 1, if parameters Q and d, as defined in (6) and (7) respec-
tively, satisfy eQd ≤ 1 then the probability that none of the “bad” events Eci,B

occurs is strictly positive. That is, there is a strictly positive probability that for
each column ci of matrix M and for any subset B of k − 1 indices of columns
of M , there exists an index row r ∈ {1, . . . , t} such that column ci has 1 in the
row indexed by r and all remaining k −1 columns with indices in B have all 0 in
the row indexed by r. In other terms, it is positive the probability that matrix
M is a (k,w, n)-superimposed code. �
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Remark. We would like to remark that we could have used a simple union
bound to prove an result analogous to our Theorem1, but weaker. If we had
proceeded in this way, we would have proved that there exists a (k,w, n)-
superimposed code of length t, provided that t satisfies the inequality

(
w(k−1)

w

)
(
t
w

)
(
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k − 1

)
(n − k + 1) < 1. (8)

or, in a weaker form, provided that t is such that
(

w(k − 1) − w−1
2

t − w−1
2

)w (
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k − 1

)
(n − k + 1) < 1. (9)

It is immediate to see that also this simpler way to proceed gives a bound (9)
that is better that the bound (3) by Gandikota et al. [28].

One can de-randomize the obvious algorithm deriving from Theorem1 by
using the important result of [40]. The algorithm one would get has complexity
O(nk), that might look proibitive. However, please notice that superimposed
codes need to be constructed once and for all, and not every time one has to use
them in a given application. One can also see that in order to satisfy inequality
(1) in Theorem 1 it is sufficient to choose the parameter t in such a way that

t ≥ w − 1
2

+
(

w(k − 1) − w − 1
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)]) 1
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Hence, we have the following corollary to Theorem1.

Corollary 1. There exists a (k,w, n)-superimposed code of length t, where
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One can get a more “readable” (but much weaker) expression of Corollary 1 by
using the well known inequality
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If we parametrize the weight w in terms of the other parameter k, as
w = kj for integer j, then (10) tell us how the length of the superimposed
codes decreases, as the allowed weight of the columns of the superimposed code
increases, in the following nice way:

Corollary 2. There exists a (k, kj, n)-superimposed code of length at most
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We can obtain another interesting consequence of (10) by plugging into it
the value w = k log n, in order to get the following result.

Corollary 3. There exists a (k, k log n, n)-superimposed code of length at most

2

(
e1+

1
k

k1−1/k

) 1
log n

k

(
k − 3

2

)
log n + O(k log n).

Considering that e1+
1
k

k1−1/k < 1 for k ≥ 5, Corollary 3 implies the existence of
(k, k log n, n)-superimposed codes of length O(k2 log n) (and this is well known),
where the hidden constant in the Big-Oh notation is strictly smaller than 2. For
all the practical values of the parameters, our derived bound is better than the
best known upper bound on the length of weight-unconstrained superimposed
codes given in [12], that reads

min
w

t(k,w, n) ≤ k + 1
Bk

log n, where Bk = max
q>1

− log[1 − (1 − 1/q)k]
q

.

We have already noticed that results from [23] allow to say that there exists
a (k,w, n)-superimposed code with length t such that
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The upper bound on t(k,w, n) one can extract from (11) is

t(k,w, n) ≤ e

2
[w(2k − 1) + k] (nek)

k
w +

w

2k
. (12)

It is evident that our upper bound (10) is better. In the full version of the
paper we will provide numerical comparison between the bound obtained from
(10) and the exact value obtainable from (11) showing that our improvement is
significant.

4 Selectors

Selectors can be considered as generalization of superimposed codes and they
were introduced in [18]. Since then, they have been found applications in many
different areas, most notably to obtain optimal two-stage group testing algorithm
[18,25], optimal protocols in the multiple access scenario of [36] (see also [14]). In
this section, we intend to study selectors in which the weight of each columns is
forced to be equal to an input parameter w. The motivations for this constrained
are similar to the ones illustrated in the first section of this paper.

Definition 2. Let k,w, n, p be positive integers, 1 ≤ p ≤ k ≤ n. A (p, k, w, n)-
selector is a w-weighted t × n binary matrix M (i.e., in which all columns have
weight w) such that for any k-tuple of columns of M the following property
holds: At least p rows of the identity matrix Ik appear among the selected k
columns of M . The number of rows t of the matrix M is called the length of the
(p, k, w, n)-selector.
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It is clear that for p = k we get the usual definition of (k,w, n)-superimposed
codes. In the following we introduce a property of a binary matrix and then we
prove that a matrix enjoying such a property is a selector. We will use it to
bound the length of a selector.

Definition 3. Let M be a t-rows n-columns w-weighted binary matrix. We say
that M enjoys the (p, k)-property, for 1 ≤ p ≤ k ≤ n, if for any k-tuple of
columns of M and any k − p + 1 columns chosen among the selected k, there
exists a row of the identity matrix Ik whose 1 appears among the selected k−p+1
columns of M .

Lemma 2. Let M be a t-rows n-columns w-weighted binary matrix. Let 1 ≤
p ≤ k ≤ n. If M enjoys the (p, k)-property then M is a (p, k, w, n)-selector.

Proof. By contradiction, assume that M enjoys the (p, k)-property but M is
not a (p, k, w, n)-selector. Since M is not a (p, k, w, n)-selector there exists a k-
tuple of columns of M , whose set of indices is K, |K| = k, for which no more
than α ≤ p − 1 rows of the identity matrix Ik appear im M(K). Let us write
K = K ′ ∪ K ′′, K ′ ∩ K ′′ = ∅, where K ′ contains the column indices where such
α ≤ p−1 rows of Ik have a 1. Clearly, |K ′′| ≥ k−p+1 and in the rows of M(K)
does not appear any row of Ik whose 1 appears in the k − α ≥ k − p + 1 column
indices belonging to K ′′. This is in contradiction with the (p, k)-property of M .

�

Lemma 2 allows to reduce the problem of finding a (p, k, w, n)-selector of
small length to the problem of finding a t-rows n-columns w-weighted binary
matrix enjoying the (p, k)-property whose number of rows t is small. We use this
trick to prove the main result of this section.

Theorem 2. Let 1 ≤ p ≤ k ≤ n. There exists a (p, k, w, n)-selector of length t,
where t is such that the following inequality holds

e

(
w(k − 1) − w−1

2

t − w−1
2

)w(k−p+1) (
k

p − 1

)[(
n

k

)
−

(
n − k

k

)]
≤ 1. (13)

Proof. Let M be a t-rows n-columns w-weighted random binary matrix, where
each column c is generated independently with probability

Pr(c) =
(

t

w

)−1

.

We want to prove that it is positive the probability that matrix M is a (p, k, w, n)-
selector; that is, there is a strictly positive probability that for each subset K of
k indices of columns of M , at least p rows of the identity matrix Ik appear in
M(K).

Let A,B ⊆ [n], A ∩ B = ∅, |A| = k − p + 1 and |B| = p − 1. Let us consider
the event EA,B such that in M(A ∪ B) there exists a row of the identity matrix
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Ik whose 1 appears among the k − p + 1 columns of M(A). The probability of
the opposite “bad” event EA,B that this does not hold is upper bounded by

Pr(EA,B) ≤
((

w(k−1)
w

)
(
t
w

)
)k−p+1

. (14)

By Fact 1 we get

Pr(EA,B) ≤
(

w(k − 1) − w−1
2

t − w−1
2

)w(k−p+1)

= Q. (15)

By Lemma 2, we are interested in estimating the probability that none of the
events EA,B hold. There are

(
n

k − p + 1

)(
n − (k − p + 1)

p − 1

)

such an events. Fixed an event EA,B , all the events EA′,B′ such that A′ ⊆
[n]\(A∪B) and B′ ⊆ [n]\(A∪B∪A′) are independent from EA,B . The number
of such event is (

n − k

k − p + 1

)(
(n − k) − (k − p + 1)

p − 1

)
,

and the number of events from which any event EA,B can depend is upper
bounded by

d =
(

n

k − p + 1

)(
n − (k − p + 1)

p − 1

)
−

(
n − k

k − p + 1

)(
(n − k) − (k − p + 1)

p − 1

)

=
(

k

p − 1

)[(
n

k

)
−

(
n − k

k

)]
. (16)

By Lemma 1, if parameters Q and d, defined as in (15) and (16) respectively,
satisfy eQd ≤ 1 then the probability that none of the “bad” events EA,B occurs
is strictly positive and the theorem is proved. �

By choosing the parameter t in such a way inequality (13) in Theorem 2 is
satisfied, we get the following corollary.

Corollary 4. There exists a (p, k, w, n)-selector of length t, where

t ≤
⌈

w − 1
2

+
(

w(k − 1) − w − 1
2

)(
e

(
k

p − 1

)[(
n

k

)
−

(
n − k

k

)]) 1
w(k−p+1)

⌉
.

By setting w = k
k−p+1 log n in above Corollary, and by performing simple

algebra, one gets that there exists a (p, k, w, n)-selector of length at most

2

(
e1+

p
k

k1− p−1
k (p − 1)

p−1
k

) 1
log n

k

k − p + 1

(
k − 3

2

)
log n + O

(
k

k − p + 1
log n

)
.
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The second term in above espression is < 1 for k ≥ 9, allowing us to recover the
bounds of [18,25], on weight-unrestricted selectors, with a much smaller constant
multiplying the leading factor.

Acknowledgements. We would like to thank the referees for their careful reading of
the paper and their many useful suggestions.

Appendix A: Proof of Fact 1

We first state and prove the following technical estimate.

Fact 2. Given integers a, b, c with c ≤ a ≤ b, it holds that

a

b
· a − c

b − c
≤

(
a − c

2

b − c
2

)2

(17)

Proof. Since c ≤ a ≤ b, we have a(a−c) ≤ b(b−c) and then a(a−c)c2 ≤ b(b−c)c2.
Adding the quantity 4ab(a − c)(b − c) to both members of the above inequality,
we have a(a − c)c2 + 4ab(a − c)(b − c) ≤ b(b − c)c2 + 4ab(a − c)(b − c), that
immediately gives a(a − c)(2b − c)2 ≤ b(b − c)(2a − c)2 proving the fact. ��

We can now prove Fact 1, that is,
Given integers a, b, c with c ≤ a ≤ b, it holds that:(

a

c

)
×

(
b

c

)−1

≤
(

a − c−1
2

b − c−1
2

)c

Proof.
(

a

c

)
×

(
b

c

)−1

=
a!

(a − c)!
· (b − c)!

b!

=
a

b
· a − 1

b − 1
· . . . · a − (c − 2)

b − (c − 2)
· a − (c − 1)

b − (c − 1)
. (18)

To upper bound expression (18), we consider two cases according to the situation
in which c is even or odd.

– Let c be even. The c factors in the product a
b · a−1

b−1 · . . . · a−(c−2)
b−(c−2) · a−(c−1)

b−(c−1) can
be paired two by two as follows:

a − i

b − i
· a − (c − 1 − i)

b − (c − 1 − i)
for i = 0, . . . , 
 c−1

2 � − 1 (19)

Considering that a−(c−1−i)
b−(c−1−i) = a−i−(c−1−2i)

b−i−(c−1−2i) , we can apply Fact 2 to each pair
in (19) having

a − i

b − i
· a − (c − 1 − i)

b − (c − 1 − i)
=

a − i

b − i
· a − i − (c − 1 − 2i)

b − i − (c − 1 − 2i)

≤
(

a − i − c−1−2i
2

b − i − c−1−2i
2

)2

=
(

a − c−1
2

b − c−1
2

)2
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for i = 0, . . . , 
 c−1
2 � − 1 and Fact 1 follows in this case.

– Let c be odd. The product a
b · a−1

b−1 · . . . · a−(c−2)
b−(c−2) · a−(c−1)

b−(c−1) has an odd number of

factors and, except for the factor
a − c−1

2

b − c−1
2

in the middle, the remaining c − 1

factors can be paired two by two as in (19). Reasoning as in the c even case,
we can prove Fact 1 also in the odd case. �
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Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 270–280. Springer, Heidelberg
(2005). https://doi.org/10.1007/11537311 24

https://doi.org/10.1007/978-1-4612-0751-1_8
https://doi.org/10.1007/978-1-4612-0751-1_8
https://doi.org/10.1007/978-3-319-21840-3_9
https://doi.org/10.1007/3-540-48169-9_10
https://doi.org/10.5772/65986
https://doi.org/10.1007/978-3-319-18173-8_5
http://arxiv.org/abs/1710.01800
https://doi.org/10.1007/11537311_24


210 L. Gargano et al.

15. Clifford, R., Efremenko, K., Porat, E., Rothschild, A.: k -mismatch with don’t cares.
In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 151–
162. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75520-3 15

16. Cormode, G., Muthukrishnan, S.: Combinatorial algorithms for compressed sens-
ing. In: Flocchini, P., Gxcasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp.
280–294. Springer, Heidelberg (2006). https://doi.org/10.1007/11780823 22

17. De Bonis, A., Vaccaro, U.: Constructions of generalized superimposed codes with
applications to group testing and conflict resolution in multiple access channels.
Theoret. Comput. Sci. 306, 223–243 (2003)

18. De Bonis, A., Ga̧sieniec, L., Vaccaro, U.: Optimal two-stage algorithms for group
testing problems. SIAM J. Comput. 34(5), 1253–1270 (2005)

19. Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications. World
Scientific, River Edge (2000)

20. Du, D.Z., Hwang, F.K.: Pooling Design and Nonadaptive Group Testing. World
Scientific, Singapore (2006)

21. D’yachkov, A.G.: Lectures on designing screening experiments, arXiv:1401.7505
(2014)

22. D’yachkov, A.G., Rykov, V.V.: Bounds on the length of disjunct codes. Probl.
Pereda. Inf. 18(3), 7–13 (1982)
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Abstract. Urban package delivery by single vehicle can be modeled as online
Steiner travelling salesman problem. This paper investigates the scenario that
delay time of traffic congestion is certain and of real-time information to delivery
vehicle, the vehicle can obtain specific delay time of traffic congestion just upon
reaching an end vertex of the corresponding edge. Given a graph G = (V, E) and
a subset D in V, the goal is to design a minimum-weight closed tour that departs
from the depot s in D and returns to s after visiting each destination node in D at
least once. When delivery vehicle encounters at most k times of traffic conges-
tion, we first show min kþ 1; qR þ 1f g is a lower bound on competitive ratio for
the problem, where qR is the ratio compared sum of delay time of all congested
edges with cost of optimal route. We further present an online algorithm for the
problem with its competitive ratio proved to be very close to the lower bound.

Keywords: Package delivery � Traffic congestion � Competitive analysis

1 Introduction

Package delivery service, especially “last mile” delivery service, is one of the key
factor that leads E-commerce to succeed. As delivery vehicle in urban traffic network
may face with complex traffic network and uncertain traffic conditions, it is essential to
design effective delivery route for vehicles. Related researches mainly focus on Steiner
Travelling Salesman Problem and Canadian Travelling Salesman Problem.

1.1 Literature Review

The Steiner Travelling Salesman Problem (STSP), coined by Cornuéjols et al. [1], is a
special case of the General Routing Problem introduced by Orloff [5]. In STSP
problem, we are given an edge-weighted undirected graph G = (V, E) and a set D�V of
destination nodes. The optimization goal is to find a minimum-weight closed tour that
departs from depot s 2 D and returns to depot s after visiting each node in D at least
once. Ratliff and Rosenthal [3] studied a very special case of STSP, that is order-
picking in a rectangular warehouse which contains crossovers only at ends of aisles,
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they proposed an algorithm for picking up an order in minimum time. More results on
STSP problem with applications in order-picking are summarized in [6].

The Canadian Travelling Salesman Problem (CTP) is introduced by Papadim-
itriou and Yannakakis [4]. In CTP problem, we are given one edge-weighted graph
G = (V, E), the goal is to find a shortest path from a source vertex s 2 V to a
destination vertex t 2 V . The variation is denoted as k-CTP problem when there are at
most k times of edge blockages. Bar-Noy and Schieber [8] considered CTP problem
with recoverable edge blockages and introduced k-CTP problem, they presented a
strategy that minimizes the worst-case length. Westphal [9] firstly analyzed k-CTP
problem by competitive analysis, they proved that there is no deterministic online
algorithms within a (2k + 1)-competitive ratio for k-CTP problem and presented
BACKTRACK algorithm that meets the lower bound, they also proposed a lower
bound of (k + 1) on competitive ratio for online randomized algorithms. Bender and
Westphal [11] recently proved this lower bound is tight by constructing a randomized
online algorithm.

In recent works, Liao and Huang [12] studied double-valued graph problem,
which is a generalization of k-CTP. They presented an adaptive algorithm with
competitive ratio of min{r, 2k + 1} when the number of traffic jams is up to a given
constant k, where r is the worst-case performance ratio. They further extended the
algorithm to recoverable k-CTP problem. Zhang et al. [7] studied the STSP problem
with online non-recoverable edge blockages, in which blocked edges are of
real-time information for the salesman. They proposed a lower bound of (k + 1) on
competitive ratio for the problem, and presented an online exponential-time optimal
algorithm, they also presented an online polynomial-time algorithm within a
(k + 4)-competitive ratio.

1.2 Our Contributions

Recall assumptions in previous research, either there is no traffic congestion or traffic
congestion (edge blockage) is not recoverable. In this paper, we study a more practical
scenario that traffic congestion is recoverable, meaning that one traffic congestion can
recover after some delay time. We consider the traffic congestion that is caused by
traffic regulations or road constructions, and further assume delay time of traffic con-
gestion is certain and of real-time information to delivery vehicle. When delivery
vehicle encounters at most k times of traffic congestion, we first present a lower bound
on competitive ratio for the problem, and further propose an online deterministic
algorithm with its competitive ratio proved to be very close the lower bound.

The rest of this paper is organized as follows. In Sect. 2, we formally define STSP
problem with certain delay time, and introduce some basic assumptions. Section 3
presents a lower bound on competitive ratio for the problem. In Sect. 4, we present an
online polynomial-time near optimal algorithm for the problem, with its competitive
ratio very close to the presented lower bound. Section 5 concludes this paper with some
possible future work.
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2 Preliminaries

2.1 Problem Statement

Urban traffic network can be modeled as a connected, undirected, and edge-weighted
graph G ¼ V ;Eð Þ, delivery destinations (customers’ locations) can be modeled as
nodes in set D�V . Delivery vehicle is required to depart from a depot s 2 D, visit each
destination in D to deliver packages, and finally return to depot s. Without loss of
generality, we assume that edge weight, travel time and distance are used inter-
changeably in this paper. For each edge e ¼ u; vf g 2 E, its original weight w eð Þ denote
the shortest traversal time from vertex u to vertex v. If the edge is not congested,
delivery vehicle need to spend w eð Þ to travel this edge, otherwise, the edge needs some
certain delay time q eð Þ to recover and vehicle needs to spend w2 eð Þ ¼ q eð Þþw eð Þ to
travel this edge. We further assume that delivery vehicle meets at most k times of traffic
congestion during its delivery process. Let d ¼ e1; e2; . . .; ekf g denote the sequence of
online congested edges learnt by delivery vehicle, which will be revealed to the vehicle
during the traversal. Let di ¼ e1; e2; . . .; eif g denote the first i congested edges that are
learnt by vehicle, let qi ¼ fqðe1Þ; q e2ð Þ; . . .; qðeiÞg further denote the sequence of
delay time of corresponding congested edges, where 1� i� k. The goal is to design a
provably good delivery route for the vehicle to deliver packages facing with online
traffic congestion, that departs from depot s and comes back to s after visiting each
destination node in D at least once.

In this paper, we call above problem as online blocked Steiner Travelling Salesman
Problem with Certain Delay Time (online STSP-CDT problem). This way, an instance
of this problem can be denoted as I ¼ V ;E;D; s; d;qð Þ. Our discussion is based on
following assumptions.

Assumptions.

(a) All destination nodes are connected in remainder graph such that feasible closed
tours always exist.

(b) The traffic congestion is of real-time information to delivery vehicle.

The graph is assumed to be always connected as otherwise package delivery will
not succeed. Moreover, traffic congestion can be radioed to delivery vehicle in an
online fashion with assistance of intelligent traffic system and widely used mobile
devices. Assumption (b) means that delivery vehicle learns about congestion infor-
mation once the congestion occurs, since adversary can choose when and which edge
to block, this is equivalent to that delivery vehicle learns about one traffic congestion
just on arrival at one vertex of the congested edge.

In this paper, we use A(I) to denote length (traversal time) of the closed tour
obtained by an algorithm A on instance I ¼ V ;E;D; s; d; qð Þ. And we use OPT(I) to
denote length of optimal (shortest) closed tour on I for the corresponding offline STSP-
CDT problem where delivery vehicle knows all traffic congestion in advance. The
competitive ratio is defined as
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cA ¼ sup
I

A Ið Þ
OPT Ið Þ

� �

Where the supremum is taken over all instances. If rA is finite, the algorithm A is called
rA-competitive. Note rA � 1 for any online algorithm, thus 1 is a trivial lower bound on
competitive ratio for STSP-CDT problem.

3 A Lower Bound

Recall that traffic congestion is of real-time information, delivery vehicle learns about
one congested edge e ¼ u; vf g just on arrival at vertex u or vertex v. In this section, we
present a lower bound on competitive ratio for online STSP-CDT problem. We prove
the lower bound by following instance I ¼ V ;E;D; s; d; qð Þ, in which graph G ¼
V ;Eð Þ is shown in Fig. 1, destination set is D ¼ s; vkþ 2; vkþ 3; . . .; v2kþ 2f g, edges in
G are labeled with original weights, where e is a small positive real number, sequence
of online congested edges is d ¼ f vm; vmþ 1þ kð Þj1�m� 2kþ 2g. In the instance, we
assume delay time of each congestion is a constant equal to q.

Theorem 1. For online STSP-CDT problem with at most k times of traffic congestion,
there is no online deterministic algorithm that can achieve a competitive ratio less than

min 1þ k; 1þ qRf g, where qR ¼
P

e2d q eð Þ
OPT .

Proof. We prove the lower bound by above instance with n ¼ 1. Recall assumption in
online STSP-CDT problem, delivery vehicle can obtain delay time of a congested edge
e = {u, v} just on arrival at vertex u or vertex v, and there are at most k times of traffic
congestion. Clearly, there is not any congested edges in e ¼ s; vmf gj1�m� kþ 1f g in
the worst case. Without loss of generality, we suppose the vehicle chooses e ¼ s; vif g
to traverse. Then adversary will block edge vi; viþ kþ 1f g when vehicle arrives at node
vi as otherwise vehicle can get one shorter route. If vehicle passes through this con-
gested edge to visit the next destination, the cost is at most eþ qð Þ. If vehicle chooses
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Fig. 1. The underlying graph G = (V, E) in the instance I
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another path to visit the next destination, the cost is at least 2þ eð Þ. There are two cases
according to the value of q.

Case 1. q\2. When the vehicle meets a new congested edge vi; viþ kþ 1f g, he has to
pass through it with traversal cost less than 2þ eð Þ. Vehicle can visit v3kþ 4 through
edges viþ kþ 1; viþ 2kþ 2f g and viþ 2kþ 2; v3kþ 4f g, adversary can’t congest any edges
connected with vertex v3kþ 4, which is similar to initial analysis. Delivery vehicle can
visit another destination vjþ kþ 1 along edge v3kþ 4; vjþ 2kþ 2

� �
and vjþ 2kþ 2; vjþ kþ 1

� �
.

As e is sufficiently smaller than 1, the vehicle can come back to v3kþ 4 to visit the next
destination. Then, adversary would block edge vjþ kþ 1; vjþ 2kþ 2

� �
. Vehicle would

pass through the new blocked edge with cost equal to qþ 2eð Þ. And so on for the next
k − 2 distinct attempts to go back to v3kþ 4 by the vehicle, the adversary would congest
exactly (k − 2) out of (k − 1) edges in set ffvtþ kþ 1; vtþ 2kþ 2gjt 2 f1; 2; . . .; kþ 1g
nfi; jgg. Corresponding (k − 2) congested edges and ffvjþ kþ 1; vjþ 2kþ 2g; fvi; viþ
kþ 1gg can form the congested sequence d. At last, vehicle moves from v3kþ 4 to depot
s without new traffic congestion, resulting in a closed tour with its length equal to

A Ið Þ� 1þ eþ qð Þþ 2eþ 4eþ qð Þ � k � 1ð Þþ 3eþ 1 ¼ 2þ kqþ 4kþ 2ð Þe

The length of the optimal (offline) closed tour on I is

OPT Ið Þ ¼ 1þ 3eþ 4e k � 1ð Þþ 3eþ 1 ¼ 2þ 4kþ 2ð Þe

It follows that

cA � A Ið Þ
OPT Ið Þ �

2þ kqþ 4kþ 2ð Þe
2þ 4kþ 2ð Þe ! 1þ kq

2
¼ 1þ qR;when e ! 0:

Case 2. q[ 2. When delivery vehicle meets one congestion in edge vi; viþ kþ 1f g,
vehicle have to go back to depot s and visit another destination. So on for the next
k − 1 distinct attempts to travel exactly (k − 1) out of f vt; vtþ kþ 1f g
jt 2 1; 2; . . .; kþ 1f gn if gg. The vehicle will succeed in its (k + 1)st try, by visiting
destination vmþ kþ 1 along f s; vmf g; fvm; vmþ kþ 1gg, visiting v3kþ 4 along
f vmþ kþ 1; vmþ 2kþ 2f g; fvmþ 2kþ 2; v3kþ 4gg, and visiting the other destinations with
minimal normal costs. Finally, vehicle goes back to depot s, resulting in a closed tour
with length equal to

A Ið Þ ¼ 2kþ 1þ 3eþ 4e k � 1ð Þþ 3eþ 1 ¼ 2kþ 2þ 4kþ 2ð Þe

On the other hand, the length of the optimal (offline) closed tour on I is

OPT Ið Þ ¼ 1þ 3eþ 4e k � 1ð Þþ 3eþ 1 ¼ 2þ 4kþ 2ð Þe
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It follows that

cA � A Ið Þ
OPT Ið Þ �

2þ 2kþ 4kþ 2ð Þe
2þ 4kþ 2ð Þe ! 1þ k;when e ! 0:

Case 1 and Case 2 prove this theorem.

4 An Algorithm for Online STSP-CDT Problem

In this section, we present an online algorithm Greedy Routing for online STSP-CRT
problem, and show that it is near-optimal in terms of competitive ratio.

4.1 Notations

ST: denote the simple Steiner tree spanning all destination vertices in D;
CT: denote the approximate closed tour derived by Greedy Routing;
ei ¼ v0i; v

00
i

� �
: denote the ith congestion encountered by delivery vehicle, where v0i is

the first vertex of the congestion,v0i is the second node;
di: denote the first i times of traffic congestion learned by delivery vehicle;
dbi : denote the closest visited destination vertex to vertex v0i in CT;
dai : denote the closest unvisited destination vertex to vertex v00i in CT;
vc: denote current position at which delivery vehicle is located;
ldiG u; vð Þ: denote the shortest path from destination node u to destination node

v under graph G = (V, E, D, s) with known congested sequence di,
which is derived by Dijkstra’s algorithm;

ldiCT u; vð Þ: denote the travelling path from node u to node v along CT with di;

4.2 Execution of Greedy Routing

Initially, Greedy Routing constructs a simple Steiner Tree (ST) derived by algorithm
Subtree Traversal [13], then it constructs an approximate closed tour (CT) by a
depth-first-search traversal on ST. Let delivery vehicle move along CT, during the
traversal, vc updates as delivery vehicle moves, di updates once encountering new
congested edge. The algorithm Greedy Routing mainly consists of 3 routing strategies.

Strategy 1. Move along CT irrespective of remaining traffic congestion;
Strategy 2. Move along CT until meeting the next congestion;
Strategy 3. Go back to dbi from vertex v0i, move to dai along ldiG dbi ; d

a
i

� �
;
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Greedy Routing firstly calculates ratio r ¼ j k�ið Þmaxiþ 1� t� kfqðetÞgj
STj j , and follows dif-

ferent routing strategies according to different conditions.
If r� k � i, follows Strategy 1. Otherwise, it follows Strategy 2. When vehicle

learns about new congested edge eiþ 1 ¼ v0iþ 1; v
00
iþ 1

� �
on arrival at its first node v0iþ 1.

If it satisfies following condition (Direct-moving condition)

q eiþ 1ð Þþw eiþ 1ð Þþ ldiCT v0iþ 1; d
a
iþ 1

� �� ldiG v0iþ 1; d
b
iþ 1

� �þ ldiG dbiþ 1; d
a
iþ 1

� �

it follows Strategy 2 that passes through the blocked edge eiþ 1 to visit daiþ 1 until next
congestion. Otherwise, it follows Strategy 3 that backtracks to the last destination dbiþ 1,

and follows a new shortest path ldiþ 1
G dbiþ 1; d

a
iþ 1

� �
derived by a single-source shortest

path algorithm in graph G = (V, E, D, s), and then continues following CT until
meeting a new congested edge.
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4.3 Competitive Analysis on Greedy Routing

Notice vehicle’s visiting sequence to destination nodes in D can’t change during the
traversal, and it is the same with visiting sequence in initial tour CT. We make d0 ¼
dnþ 1 ¼ s and further denote the visiting sequence as d0 ! d1 ! . . . ! dnþ 1. Recall
that delivery vehicle must continue moving along CT after each time it handles the
traffic congestion, no matter which strategy it follows by algorithm Greedy Routing. It
takes the vehicle an additional cost each time it meets new congestion. Thus,

ld0CT di; diþ 1ð Þ� ld1CT di; diþ 1ð Þ� . . .� ldkCT di; diþ 1ð Þ; for 80\i\n

Further, we have

ld0CT di; dj
� �� ld1CT di; dj

� �� . . .� ldkCT di; dj
� �

; for 80� i\j� n

Lemma 1. If the ratio r > k − i for each iteration i during the trip, total length of
closed tour derived by Greedy Routing is at most min ðkþ 2ÞOPT ; 2OPTf
þ P

e2d q eð Þg, when there are at most k times of traffic congestion.

Proof. Recall that delivery vehicle learns about one congested edge ei ¼ v0i; v
00
i

� �
only

on arrival at its first node v0i, we denote dbi as the closest visited destination before node
v0i, for i 2 1; 2; . . .; kf g. It is clearly that 0� b1 � . . .� bi � . . .� bk � n, and ei appears
only once in the tour ldi�1

CT dbi ; dbi þ 1ð Þ. We further denote dbkþ 1 ¼ s, denote li as the cost
(i.e. the traversal time) from destination dbi to destination dbiþ 1 in final closed tour
derived by algorithm Greedy Routing. Let’s consider the process traveling from dbi to
dbiþ 1 . Firstly, delivery vehicle travels from dbi to the first node v

0
i of new congested edge

ei ¼ v0i; v
00
i

� �
along CT with di�1, i.e. li1 ¼ ldiCT dbi ; v

0
i

� �
. Then, vehicle meets ei, and tries

to visit dbi þ 1 by Greedy Routing, with a cost equal to

li2 ¼ minf ldi�1
CT ðv0i; dbi þ 1Þþ qðeiÞ; ldi�1

G ðv0i; dbiÞþ ldiGðdbi ; dbi þ 1Þg

Finally, vehicle travels from dbi þ 1 to dbiþ 1 along CT, i.e. li3 ¼ ldiCT dbi þ 1; dbiþ 1

� �
.

Thus, traversal cost li ¼
P3

i¼1 lij, for each all i = 1, 2, …, k. see Fig. 2.

Fig. 2. The discussion in the traversal cost li

Single Vehicle’s Package Delivery Strategy with Online Traffic Congestion 219



According to which strategy Greedy Routing chooses, the above expression can be
further discussed as follows

If q eið Þþw eið Þþ ldi�1
CT v00i ; dbi þ 1

� �� ldi�1
CT v0i; dbi

� �þ ldiCT dbi ; dbi þ 1ð Þ, the delivery
vehicle would pass through the congested edge and continue following CT until next
congestion eiþ 1. As we know that li2 ¼ ldi�1

CT ðv0i; dbi þ 1Þþ q eið Þ, and that

ldi�1
CT dbi ; v

0
i

� �þ ldi�1
CT v0i; dbi þ 1

� �þ ldiCT dbi þ 1; dbiþ 1

� �� ldiCT dbi ; dbiþ 1

� �
;

Thus, li � ldiCT dbi ; dbiþ 1

� �þ q eið Þ, which is also shown in Fig. 2(a).

If q eið Þþw eið Þþ ldi�1
CT v00i ; dbi þ 1

� �
[ ldi�1

CT v0i; dbi
� �þ ldiCT dbi ; dbi þ 1ð Þ, it would go back

to the previous destination dbi , move to dbi þ 1 following a new shortest path, then
continue following CT until next congestion eiþ 1. We can get followings
ldi�1
CT dbi;v

0
i

� �� ldi�1
CT dbi;dbi þ 1

� �
, ldiG v0i; dbi

� �� ldi�1
G dbi ; dbi þ 1ð Þ and

ldi�1
CT dbi;dbi þ 1;

� �þ ldiCT dbi þ 1;dbiþ 1;

� �� ldiCT dbi;dbiþ 1

� �

Thus, li � ldiCT dbi þ 1;dbiþ 1

� �þ ldi�1
CT dbi;dbi þ 1

� �þ ldi�1
G dbi;dbi þ 1

� �þ ldiG dbi;dbi þ 1
� �

Which is also shown in Fig. 2(b)
Obviously, the cost from depot s to db1 can be formulated as l0 ¼ ld0CT s; db1ð Þ. We

further denote lGR as the traversal cost by Greedy Routing. Clearly, lGR ¼ Pk
i¼0 li, and

we analyze the relationship between lR and the corresponding optimal traversal cost.

Case 1. All congestion ei ¼ v0i; v
00
i

� �
satisfies

q eið Þþw eið Þþ ldi�1
CT v00i ; dbi þ 1

� �� ldi�1
CT v0i; dbi

� �þ ldiCT dbi ; dbi þ 1ð Þ

Recall that |ST| denote the weight (cost) of a simple Steiner tree ST. It’s clearly that
STj j �OPT . Thus, we have

lGR ¼
Xk

i¼0
li

� ld0CT s; db1ð Þþ
Xk

i¼1
ldiCT dbi ; dbiþ 1

� �þw2 eið Þ � w1 eið Þ
h i

� ldkCT s; db1ð Þþ
Xk

i¼1
ldkCT dbi ; dbiþ 1

� �þ Xk

i¼1
w2 eið Þ � w1 eið Þ� 	

� 2 STj j þ
Xk

i¼1
w2 eið Þ � w1 eið Þ� 	

� 2OPT þ
Xk

i¼1
w2 eið Þ � w1 eið Þ� 	

The third inequality holds by Lemma 1, the last inequality holds by STj j �OPT .

Case 2. There exists k1 � k congested edges ei1 ; ei2 ; . . .; eik1f g that satisfy following
inequality q eið Þþw eið Þþ ldi�1

CT v00i ; dbi þ 1
� �

[ ldi�1
CT v0i; dbi

� �þ ldiCT dbi ; dbi þ 1ð Þ, while other
congested edges don’t. Total traversal cost can be formulated as

220 S. Li and Y. Xu



lGR ¼
Xk

i¼0
li

� ld0CT s; db1ð Þþ
Xk1

j¼1
l
dij
CT dbij ; dbijþ 1


 �
þ q eij

� �h i

þ
X

j 2 1; 2; . . .; kf g
j 6¼ i1; . . .; ik1

ldjCT dbj;dbjþ 1

� �þ 2ldjCT dbj;dbjþ 1

� �h i

� ld0CT s; db1ð Þþ
Xk

j¼1
ldkCT dbj ; dbjþ 1

� �þ 2
Xk

j¼1
ldkG dbj ; dbjþ 1

� �
� 2 STdkj j þ 2k � max

1� j� k
ldkG dbj ; dbjþ 1

� �n o

� kþ 2ð Þ � OPT

in which the second inequation holds for that
Xk1

j¼1
qðeijÞþ

X
j 2 1; 2; . . .; kf g
j 6¼ i1; i2; . . .; ik1

2ldjG dbj ; dbj þ 1
� �� 2

Xk

j¼1
ldkG dbj ; dbj þ 1
� �

Case 1 and case 2 prove Lemma 1.

Theorem 3. For online STSP-CDT problem, algorithm Greedy Routing runs in
polynomial time, and when the times of online traffic congestion is up to a given

constant k, Greedy Routing is minfkþ 2; qR þ 2g-competitive, where qR ¼
P

e2d q eð Þ
OPT .

Proof. Step 1 to Step 3 in algorithm Greedy Routing can be done in Oðjvj3Þ. In each
iteration in Step 4, a shortest path ldiG dbiþ 1; d

a
iþ 1

� �
is computed in Oðjvj2Þ time. Either

pass through the blocked edge eiþ 1 ¼ v0iþ 1; v
00
iþ 1

� �
or travel along ldiþ 1

G dbiþ 1; d
a
iþ 1

� �
,

vehicle would continue following CT which can be done at most in Oðjvj2Þ time as
well. Thus, Step 4 in algorithm Greedy Routing can be done in Oð vj j þ kjvj2Þ. It follows
that the overall running time is in Oðmax vj j þ kf g � jvj2Þ.

If the ratio r < k initially, then delivery vehicle chooses Strategy 1 that follows the
path CT, and the total traversal cost is at most

lGR\ld0CT d0; dnþ 1ð Þþ lwd0
CT d0ð Þ� 2 STj j þ k STj j � kþ 2ð ÞOPT

And the competitive ratio is at most cGR ¼ lGR
OPT � kþ 2.

If vehicle follows the path CT until the next congestion. Assume without loss of
generality that r\k � i firstly hold when vehicle arrives at vc before learning the next
blocked edge ei ¼ v0i; v

00
i

� �
, for some iteration i. Then total cost can be formulated as

follows

lGR ¼
Xi�1

j¼0
lj þ ldi�1

CT dbi ; v
0
i

� �þ ldiCT dbi þ 1; dnþ 1ð Þþ lwdi
CTðdbi þ 1Þ

þ min ldiCT v0i; dbi þ 1
� �þ q eið Þ; ldi�1

G v0i; dbi
� �þ ldiG dbi ; dbi þ 1ð Þ

n o
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take notice that

min ldiCT v0i; dbi þ 1
� �þ q eið Þ; ldi�1

G v0i; dbi
� �þ ldiG dbi ; dbi þ 1ð Þ

n o

� ldi�1
G v0i; dbi

� �þ ldiG dbi ; dbi þ 1ð Þ

and that

Xi�1

j¼0
lj � ldi�1

CT d0; dbið Þþ 2 i� 1ð Þ max
1� j� i�1

ldi�1
G dbj ; dbj þ 1

� �

� ldiCT d0; dbið Þþ 2 i� 1ð ÞOPT
2

:

Thus, we further have that

lGR � ldiCT d0; db1ð Þþ 2 i� 1ð ÞOPT
2

þ ldiCT dbi ; dbi þ 1ð Þþ 2ldiG dbi ; dbi þ 1ð Þ
þ ldiCT dbi þ 1; dnþ 1ð Þþ lwdi

CT dbi þ 1ð Þ
� ldiCT d0; dnþ 1ð Þþ 2 i� 1ð ÞOPT

2
þ 2ldiG dbi ; dbi þ 1ð Þþ lwdi

CT dbi þ 1ð Þ

� 2 STj j þ 2 i� 1ð ÞOPT
2

þOPT þ k � ið ÞSTEi

� kþ 2ð ÞOPT

The competitive ratio is at most cGR ¼ lGR
OPT � kþ 2.

Otherwise, if r[ k � i holds for each iteration i during the trip. Then, total cost is

at most min kþ 2ð ÞOPT ; 2OPT þ Pk
i¼1 q eið Þ

n o
. The competitive ratio is at most

cGR �
min kþ 2ð ÞOPT; 2OPTþ Pk

i¼1 q eið Þ
n o

OPT
�min kþ 2; qR þ 2f g

where qR ¼ Pk
i¼1 q eið Þ.

This proves the theorem.

5 Conclusion

This paper studies single vehicle’s delivery strategy in urban traffic network with traffic
congestion of certain delay time. Recall assumptions in previous research that either
there is no traffic congestion or traffic congestion is not recoverable. In this paper, we
study a more practical scenario that traffic congestion is recoverable, meaning that
traffic congestion can recover after some delay time. We assume delay time of traffic
congestion is certain to delivery vehicle on arrival at the first node of the edge. When
the number of online congested edges is up to a given constant k, we firstly present a
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lower bound of min 1þ k; 1þ qRf g on competitive ratio for the problem, where qR is
the ratio compared sum of delay time of online congestion with cost of optimal route.
We further present an online polynomial-time algorithm Greedy Routing with its
competitive ratio no more than min 2þ k; 2þ qRf g.

Theoretically, it would be interesting to design deterministic algorithm for STSP
problem with online uncertain congestion where delay time of congestion is random.
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Abstract. Weak consistency is a memory model that is frequently con-
sidered for shared memory systems. Its most distinguishable feature lies in
a category of operations in two types: data operations and synchronization
operations. For highly parallel shared memory systems, this model offers
greater performance potential than strong models such as sequential con-
sistency by permitting unconstrained optimization on updates propaga-
tion before synchronization is invoked. It captures the intuition that delay-
ing updates produced by data operations before triggering a synchroniza-
tion operation does not typically affect the program correctness.

To formalize the connection between concrete executions and the cor-
responding specification, we propose in this work a new approach to
define weak consistency. This formalization, defined in terms of dis-
tributed histories abstracted from concrete executions, provides an addi-
tional perception of the concept and facilitates automatic analysis of sys-
tem behaviors. We then investigate the problems on verifying whether
implementations have correctly implemented weak consistency. Specif-
ically, we consider two problems: (1) the testing problem that checks
whether one single execution is weakly consistent, a critical problem
for designing efficient testing and bug hunting algorithms, and (2) the
model checking problem that determines whether all executions of an
implementation are weakly consistent. We show that the testing prob-
lem is NP-complete, even for finite processes and short programs. The
model checking problem is proven to be undecidable.

1 Introduction

Many modern computer architectures and multiprocessors support shared mem-
ory in hardware, a design that facilitates fast access and provides user-friendly
programming perspective to memory. A shared memory system permits con-
current accesses from multiple processes to a single address space. To avoid
undesirable behaviors, memory consistency must be properly maintained. Infor-
mally, a memory consistency specifies the guarantees that a system makes on the
value of read operations from the shared memory. Strong models such as atomic
consistency (also known as linearizability) [1] and sequential consistency (SC) [2]
c© Springer International Publishing AG, part of Springer Nature 2018
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are intuitively composed but restrictive in performance as they would severely
restrict the set of possible optimization, such as pipelining write accesses and
caching write operations. Also, implementing these strong consistency criteria in
message-passing system is very expensive. For better performance, in the past
several decades many weaker consistency models, for example weak consistency
(WC) [3], causal consistency (CC) [4] and PRAM consistency [5], have been
proposed, explored and revised as various attempts.

Weak consistency was proposed by Dubois et al. [3] as weak ordering, with
a motivation to address the logical problems of memory accesses buffering arose
from multiprocessor systems. Adve and Hill generalized weak consistency to the
order strictly necessary for programmers with “SC for DRF” [6], which was re-
specified and served as the cornerstone for Java memory model [7] and C++
[8]. A weak consistent system distinguishes two types of variables: shared pro-
gram variables that are visible to all processes; and synchronizing variables for
concurrent executions synchronization. The latter can be recognized by instruc-
tions such as TEST AND SET (TAS), COMPARE AND SWAP (CAS), or spe-
cial LOAD and STORE instructions. In the Java memory model, for example,
to allow synchronization races but not data races, variables having potential
to race must be tagged as synchronization, using keywords such as volatile
or atomic. Programmers can also create synchronization locks implicitly with
Java’s monitor-like synchronized methods.

Based on the type of variable it accesses, an operation in a weakly consistent
system is either a data operation and a synchronization operation. The latter
works in a way similar to fence instructions, whose initiation suggests all previous
references to the shared variables have completed and all future references have to
wait. The idea of exploiting fence operations to achieve synchronized concurrency
is also widely adopted by many commercial models. For example, the Power
model [9] implemented by IBM PowerPC is similar in spirit to weak consistency
by utilizing varieties of fences to synchronize concurrently executing processes.
PowerPC uses an instruction called Hwsync to keep all writes in a consistent
total order, it can also achieve sequentially consistent behaviors if Hwsync is
used together with address dependencies and message passing [10]. In addition
to PowerPC, another commercial example implementing a model that relies
heavily on proper synchronization is ARM multiprocessor [11]. Similarly, ARM
has multiple flavors of fences, including one data memory barrier that can order
all memory accesses.

Generally, developing distributed implementations to satisfy a relaxed con-
sistency model is very challenging because of the complicated issues related to
communication. At different stages of development, developers rely on different
testing and verification techniques to validate the system they have built so far.
This highlights the need for more research on the feasibility and efficiency of
algorithms that are utilized during the development. We thus investigate in this
paper two fundamental problems: (1) the testing problem that asks whether one
given execution of an implementation is weakly consistent, and (2) the model
checking problem (or verifying problem) that asks whether all the executions
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of an implementation are weakly consistent. The behaviors of implementations
we consider in this study are restricted to the setting of read/write memory
(RWM) abstraction, which is at the base of many distributed data structures
used in practice.

We show that the complexity of the testing problem is NP-complete. The
is achieved by reducing the serialization problem, a NP-complete problem for
database transactions to TWC-read problem, which is a restricted version of the
testing problem. We also investigate the problems with limited accesses per process
and limited processes in an instance. Both problems are proven to be NP-complete,
even when the access number is limited to two and the process number to three. For
the TWC-read problem restricted to two processes, we prove there exists a polyno-
mial algorithm. We then prove that the model checking problem is undecidable by
a reduction from thePostCorrespondingProblem (PCP).The idea is to relate each
PCP instance to a WC implementation, such that the instance has a valid witness
exactly when the implementation is weakly consistent. Due to space constraints,
we defer some proofs to the long version [12].

The remainder of this paper is organized as follows. Section 2 presents the
notion of distributed history and the specification for read/write memory.
Section 3 briefly reviews the intuition behind WC and then shows how to for-
malize this concept. We present in Sects. 4 and 5 the complexity results for
the testing problem. The decidability result of the model checking problem is
proved in Sect. 6. Section 7 discusses the related work. Finally, Sect. 8 concludes
the paper.

2 Preliminaries

2.1 Sets, Relations and Labeled Posts

Given a set E and a relation R ⊆ E × E, we denote by e1 ≺R e2 the fact that
(e1, e2) ∈ R. We write (R)+ to denote the transitive closure of R. A relation is
a strict partial order if it is transitive and irreflexive.

A poset is a pair (E,≺) where ≺ is a strict partial order. Given a set Σ, a Σ
labeled poset ρ is a tuple (E,≺, ι) where (E,≺) is a poset and ι : E → Σ is the
labeling function.

We introduce a relation on labeled posets, denoted �. Let σ = (E,≺, ι), σ′ =
(E,≺′, ι′) be two posets labeled by the same set Σ. We denote by σ � σ′ the fact
that σ imposes less constraints on operations in E. Formally, σ � σ′ if ≺⊆≺′

and ι = ι′, i.e., for all operation e ∈ E, ι(e) = ι′(e).

2.2 Histories and Specifications

A distributed system is a composition of a set of processes/participants invoking
methods on shared objects (registers, queues, etc.). An object implements a pro-
gramming interface (API) defined by a set of methods M with input and output
from a data domain D. The behaviors of a system can be characterized by a set
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of executions. Each execution is a labeled poset consist of a collection of events,
representing operation invocations by different participants, and a relation on
events, describing abstractly how the system processes the corresponding oper-
ations. These executions can be characterized by distributed histories. Formally,

Definition 1. A distributed history is a poset H = {E,≺PO, ι} labeled by M ×
D × D, where E is a countable set of events; ≺PO⊂ (E × E) is a strict partial
order called program order; and ι : E → (M × D × D) is a labeling function.

The labeling function ι maps each event to its corresponding operation that
invoke a method from M. To model events that return no value, we use a value
⊥∈ D, which is often omitted for better readability.

The consistency of shared objects is a criterion that links the distributed exe-
cutions to a particular specification, which characterizes the admissible behav-
iors for a program that uses the objects. To model the read/write memory, a
sequential specification will suffice. We define the specification Sr/w as a set of
sequences where each value read matches the most recent write. Formally, it is
the smallest set of sequences by inductively adopting the following rules:

– ε ∈ Sr/w,
– σ · w(v, d) ∈ Sr/w if σ ∈ Sr/w,
– σ · r(v, 0) ∈ Sr/w if σ ∈ Sr/w and σ contains no write on v,
– σ · r(v, d) ∈ Sr/w if σ ∈ Sr/w and the last write on v in σ is w(v, d),

where v ∈ V, d ∈ D and ε is the empty sequence.

3 Weak Consistency

3.1 Weak Consistency: Informal Description

Dubois et al. [3] introduced the concept of WC by enforcing on storage accesses
the following constraints:

Definition 2. In a multiprocessor system, storage accesses are weakly ordered
if (1) accesses to synchronizing variables are strongly ordered, (2) no access to a
synchronizing variable is allowed to be performed until all previous writes have
completed everywhere, and (3) no data access (read or write operation) is allowed
to be performed until all previous accesses to synchronizing variables have been
performed everywhere.

Weak consistency categorizes memory accesses into two types, and imposes
different ordering constraints based on the access type. For data operations,
buffered requests to memory are allowed to pass each other in store buffer, a
behavior referred to as jockeying [3] and is often permitted between requests
for different memory locations. The synchronization operations are requested to
be strongly ordered [3], but jockeying with data operations is forbidden. Infor-
mally, weak consistency ensures that reordering memory operations to shared
data between synchronization operations does not typically affect program
correctness.
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Example 1. History (a) in Fig. 1 is weakly consistent while (b) is not. Because
of jockeying, it is possible for P3 in (a) to read the initial value of x even when a
previous read on y returns the latest value. In (b), however, the sync operation
forces out all previous updates to P2, making the read r(x, 0) impossible.

P1:

P2:

P3:

w(x, 1) w(y, 1)

r(y, 1) SYNC r(x, 1)

r(y, 1) r(x, 0)

(a) (b)

P2:

P1: w(x, 1) SYNC w(y, 1)

r(y, 1) r(x, 0)

Fig. 1. The visualization of WC, where SYNC represents a synchronization operation
on a variable other than x and y. Initially, x = y = 0.

3.2 Weak Consistency: A Formal Definition

We present here a characterization of concrete executions of concurrent systems
implementing weak consistency. This characterization links each execution to a
set of sequences, among which there is at least one can provide a reasonable
explanation as to why the execution is weakly consistent.

Given a history H with an event set E, we denote by ES the set of synchro-
nization events and ED the set of data events. Two events from different processes
can be ordered only if there exists an intervening synchronization between them.
To capture this property, we introduce happen-before relations for events in any
history. Two types of relation are considered: program order ≺PO, and synchro-
nization order ≺SO. Formally, let eu and ev be any two operations occurring in
H. Then:

– eu ≺PO ev iff eu occurs before ev in the same process.
– eu ≺SO ev iff eu, ev ∈ ES ∧ var(eu) = var(ev) and eu is performed before ev,

where var(e) ∈ V is the variable accessed by e. The concept of performed is
borrowed from [6], where a read is said to be performed at a point in time
when no subsequent write, from the same or another process, can affect the
value returned. Similarly, a write performed when all subsequent reads return
the written value until another write to the same memory location is performed.

Definition 3 (Weak Order). A weak order ≺WO of a history H is the
irreflexive transitive closure of program order and synchronization order, that
is ≺WO= (≺PO ∪ ≺SO)+. The set of events happening before e w.r.t. the ≺WO

is denoted by 
e� = {e′ ∈ E : e′ ≺WO e}.
Intuitively, 
e� is the weak past of e, i.e., the set of operations whose effects are

visible to e. To associate any weakly consistent history to the sequential specifi-
cation, we need to define a way to explain how events on a history are generated.
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For example, it should explain which write is responsible for a read that is access-
ing the same variable. This is achieved by defining a function, called observation
function below, that links each event to an event set, which, if considered together
with ≺WO, will be sufficient to explain why the history is admissible by the speci-
fication Sr/w.

Definition 4. Given a history H, a function τ : E → 2E is an observation func-
tion on E, if ∀e ∈ E, τ(e) = {e} ∪ 
e� ∪ Ce for some set Ce ⊆ E whose elements
are concurrent events of e. The set τ(e) is called an observation set of e.

The observation set τ(e) is actually a snapshot of updates observed by e. It
should confirm to all constraints imposed by WC. Apart from the constraints
required by ≺WO, it should also respect what we call update inheritance —
updates observed by one event are inherited to its successors. Specifically, if
an event e observes updates happened before a synchronization, then all events
observed e should also have observed those updates. Formally, for two events
eu, ev ∈ E, if

(a) eu ∈ τ(ev) and at least one of eu, ev belongs to ES , or
(b) eu ∈ ES ∧ ∃ew.(ew ∈ τ(ev) ∧ eu ∈ τ(ew)), (*)

then τ(eu) ⊆ τ(ev). We call such a function a observation closed function (OCF).

Definition 5. A history H is weakly consistent with respect to Sr/w if there
exists an OCF τ such that for any e ∈ E, there exists a sequence σe ∈ Sr/w such
that (τ(e),≺WO, ι) � σe.

Example 2. To illustrate, the history in Fig. 1(b) has no OCF τ for its event set.
For otherwise we have ew(x,1) ∈ τ(eSYNC) and τ(eSYNC) ⊆ τ(er(x,1)), and by the
condition (*) the observation set τ(er(x,0))will contain ew(x,1), implying the update
on x is observable to er(x,0), whose return value should thus be 1 instead of 0.

4 The Testing Problem of Weak Consistency

We first investigate the testing problem of weak consistency (TWC), which is
relevant for instance in the context of testing a given distributed object. We show
this problem is NP-complete by a reduction from the serializability problem for
database histories.

The membership in NP can be easily proved, this follows from the fact that,
for any given instance (history) H, one can guess an observation function τ ,
and a sequence σe ∈ Sr/w for each event e, and then check in polynomial time
whether τ is an OCF and the relation � in Definition 5 holds.

To prove the NP-hardness, we first define a restricted version of the TWC
problem and reduce the restricted problem to the serializability problem. We
consider the case in which for each read, it is known precisely which write was
responsible for the value read. We call this the TWC-read problem. The function
mapping each read to the responsible write is called a read-mapping.
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The serializability problem for database transactions is one exploring the
existence of a schedule that is equivalent to one that executes the transactions
serially in some order. One major type of the problem is view serializability
[13], in which we are given a history, a total order on a set of reads and writes,
where each read or write is associated with a particular transaction. The problem
asks if there is a total order on the transactions that preserves the reads-from
mapping of the original history. The view serializability problem is NP-complete
[13]. TWC-read is a problem more general than view serializability by permitting
solutions in which the accesses for a processor (transaction) are in order but may
not be consecutive. To illustrate, the instance in Fig. 2 is a “yes” instance for
TWC-read problem, but a “no” instance for view serializability, because both
P = P1P2 and P = P2P1 have reads-from violations.

P1 : w(x, 0), w(y, 1), r(x, 1)

P2 : r(y, 1), w(x, 1)

Fig. 2. A “yes” instance of the TWC-read problem

Lemma 1. The TWC-read problem is NP-complete.

Proof. Given H, an instance of a view serializability problem, we construct an
instance of TWC-read as follows. Let v be a variable not accessed by any oper-
ation in H, and #α a synchronization operation on a variable α. Let Pi be the
sequence of operations in H for transaction i (i ∈ {1, .., n}), where each write in
a transaction is assigned a unique value to write, and each read is assigned the
value of the closest previous write to the same address in H.

For all transactions i, let P ′
i = w(v, i)#αPi#αr(v, i). Our TWC-read instance

is H′ =‖i∈{1,..,n} P ′
i . The intervening #α guarantees the update to v is observed

by other transactions before Pi initiates and updates from other transactions
were brought in before reading v. This construction ensures that for each P ′

i once
the write w(v, i) starts, the remainder (i.e. #αPi#αr(v, i)) must be scheduled
consecutively. If two transactions P ′

i , P
′
j interleaves, then at least one of them,

say P ′
i , will return for its last read a value other than i, and thus violates the

read-from relation. It follows that H′ is in TWC-read if and only if H is view
serializable. ��

The above result on TWC-read implies that the general TWC problem is at
least NP-hard, since the problem is also in NP, we have the following theory.

Theorem 1. Checking whether a distributed history H is weakly consistent with
respect to Sr/w is NP-complete.

5 Restricted TWC Problems

The previous section shows that the TWC problem is generally NP-complete.
In this section, we investigate two restricted TWC problems that consider only
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instances with limited number of accesses or processes. Such problems are inter-
esting because many multiprocessors usually have a small number of processors,
e.g., 8, 16 or 32; and when it comes to testing, the size of instances are usually small.

We show that these restricted problems remain NP-complete, even when the
number of accesses per process is limited to two and the number of processes to
three, which implies the testing problem of weak consistency is intrinsically hard.
For a very rare case of the problem, in which only two processes are involved
and a read-mapping is provided, we prove there exists a polynomial algorithm.

5.1 Restricting the Number of Accesses

We now investigate the TWC problem in which each process perform at most
two data accesses and each data variable is written to at most twice. We show
this problem is NP-complete.

The result is proved by a reduction from 3SAT. Let F be a 3SAT instance.
For a literal li in a clause, we use the notation B(li) to represent T (True) if li is
a positive literal (i.e., a variable), and F (False) otherwise. We need to simulate
the logical connectives (i.e., an OR and an AND), as well as an assignment of
variables that remains in effect until the formula is evaluated. We observe that
(1) a read must wait for its responsible write to occur, (2) the second access at
a process must wait for the first. Then the assignment to vi can be simulated by
following columns, of which each one represents a sequence.

w(vi, T ) r(x, 1) w(vi, F ) r(x, 1)
#α #α

r(vi, T ) r(vi, F ),

where x is initially 0 and #α a synchronization operation on variable α.
An OR is simulated by separating the literals of a clause into three reads,

whose executions determine the truth value of that clause. For each clause,
Ci = lp ∨ lq ∨ lr, we have four sequences:

r(lp,B(lp)) r(lq,B(lq)) r(lr,B(lr)) r(di, T )
w(di, T ) w(di, T ) w(ci, T ) w(ci, T )

By the above two observations, this ensures that Ci can not be true unless
clause i is satisfied by the guessed truth assignment.

The AND relation of clauses can be easily simulated by a single sequence
r(c1, T ), r(c2, T ), ..., r(cm, T ), w(x, 1). But this sequence involves m + 1 > 2 data
operations. To have only two accesses per process, we separate this sequence into
m + 1 sequence: a single write w(x, 1) and m sequences ending with a read r(x, 0):

w(x, 1) r(c1, T ) r(c2, T ) ... r(cm, T )
#α #α ... #α

r(x, 0) r(x, 0) ... r(x, 0)
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The above write w(x, 1) is possible only when every read on Ci has returned
true, that is all clauses have been satisfied by the guessed assignment. This
ensures the initial assignment to each vi remain in effect until the satisfiability
of F has been simulated.

Lemma 2. Let F be an instance of 3SAT, and W the instance of the TWC
problem constructed as described above. Then W is weakly consistent if and only
if F is satisfiable.

Proof (sketch). Assume there is a satisfying assignment for F . We can construct
a corresponding schedule for W such that it can be sequentially ordered by
that schedule. Then W is sequentially consistent and, hence, weakly consistent.
Conversely, if W is weakly consistent, the first value written to each variable vi

forms the satisfying assignment. ��
By this lemma, the following result is straightforward.

Theorem 2. The TWC problem, restricted to instance in which each sequence
contains at most two data operations and each data variable occurs in at most
two write operations, is NP-complete.

5.2 Restricting the Number of Processes

We have shown that the TWC problem is NP-complete with O(n) processes (n
is the number of data variables). In this problem, the number of processes per
instance grows proportionally with the number of variables, this raises another
question: what is the complexity for TWC problems with a fixed small number
of processes. This question is answered by the theory below, showing that the
problem remains NP-complete even when the number of processes per instance
is limited to three.

To simulate a 3SAT instance, the proof of Lemma 2 constructs a disjoint
set of processes for each variable. This strategy can not be transferred here as
the number of processes is limited. We consider to analyze the problem with a
reduction from 1-in-3 SAT problem, a variant of 3SAT where the input instance
is the same, but the question is to determine whether there exists a satisfying
assignment so that exactly one literal in each clause is set to true. This problem
is known to be NP-complete. A monotone version of this problem, positive 1-in-
3 SAT, where each clause contains only positive literals, remains NP-complete.
For a given positive 1-in-3 SAT instance F , we construct an instance W of
the TWC problem, using only three processes, such that F has a satisfying
assignment exactly when W is weakly consistent. The TWC instance W for
each F is depicted in Fig. 3.

The synchronization parts (as illustrated by # in the figure) separate the
construction into m + 1 stages. The key idea behind this construction is to use
the value at the end of the (INIT) stage as the assignment. The history is weakly
consistent if every stage is weakly consistent. For each clause, each of the three
processes is satisfied by a particular assignment. The subtle part is the writes
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Processor 1 Processor 2 Processor 3

w(v1, F )
...

w(vn, F )

w(u, 1)
#α

r(u, 3)

r(vx1 , T )
r(vy1 , F )
r(vz1 , F )
w(vx1 , F )
w(vy1 , T )

...

...

...

w(v1, T )
...

w(vn, T )

w(u, 2)
#α

r(u, 3)

r(vy1 , T )
r(vz1 , F )
r(vx1 , F )
w(vy1 , F )
w(vz1 , T )

...

...

...

r(u, 1)
r(u, 2)

#α

w(u, 3)

r(vz1 , T )
r(vx1 , F )
r(vy1 , F )
w(vz1 , F )
w(vx1 , T )

...

...

...

(INIT)

(#)

(C1)

(#)
(Cm)

Fig. 3. Transforming an instance of positive 1-in-3 SAT to an instance of TWC. The
3SAT instance contains n variables v1, ..., vn and m clauses: C1, ..., Cm, where Ci =
(vxi ∨ vyi ∨ vzi) for some xi, yi, zi ∈ [1..n]. (Color figure online)

highlighted in blue. Once a way of satisfying a clause is settled, the writes free
up the other two processes by negating variables, and then return all variables
to their initial setting (for the next stage). Conversely, for any assignment of F
that does not satisfy this clause, there is no way to prove the weak consistency
of this stage.

Theorem 3. The TWC problem restricted to three processes is NP-complete.

In the above reduction, each clause of the 3SAT instance requires at least
three processes for the simulation procedure. This is the simplest reduction we
are aware of, leaving open the TWC problem restricted to two processes. Never-
theless, we prove below there is a polynomial algorithm for TWC-read problem
restricted to two processes.

5.3 TWC-Read Problem with Two Processes is in P

For an instance H of two-processes TWC-read problem, every read in H knows
precisely its responsible write, which means if two write w(v, d1), w(v, d2) are
accessing the same location v, then d1 and d2 must differ. To solve the two pro-
cesses TWC-read problem, we begin by constructing an OCF, τ , capturing all
events been observed by each access. The instance H is in TWC-read exactly
when there exists a witness OCF that respects certain constraints, and involves
none of the anomalous forms (as defined in the proof for Lemma 3). Constructing
this OCF and checking whether certain conditions are met can be done in poly-
nomial time. That is, there is a polynomial algorithm to solve this problem in
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two steps: (1) constructing for an instance a witness OCF, (2) checking whether
this OCF meets required conditions.

Lemma 3. The TWC-read problem restricted to two processes is in P.

6 Undecidability of Verifying Weak Consistency

We consider in this section the model checking problem of weak consistency. For
systems where memory coherence is properly maintained, WC implies SC under
the assumption that every memory access is synchronized by the same sync
variable [14]. This implies the model checking problem of WC is undecidable
since the same problem of SC is generally undecidable [15]. Nevertheless, we
offer here another proof with PCP reduction, which may provide some additional
insight into the reason why verifying weak consistency is undecidable. For the
sake of argument, we assume the implementations are regular and specification
is restricted to Sr/w with a fixed number of variables whose domain sizes are also
fixed, and thus the specification corresponds to a particular regular language.

Definition 6. Let Σ be an alphabet with at least two letters. An instance of
PCP is given by two sequences U = {u1, ..., un} and V = {v1, ..., vn} of words
over Σ. The problem is to determine whether there is a sequence (i1, ..., ip) with
ij ∈ {1, ..., n} and p > 1 such that ui1 · · · uip = vi1 · · · vip .

Theorem 4. [16] The Post Correspondence Problem is undecidable.

A pair of words 〈u, v〉 ∈ 〈Σ∗ × Σ∗〉 is a witness of a PCP instance P if they
can be decomposed into u = ui1 · ui2 · · · uip and v = vi1 · vi2 · · · vip such that
ui = U [i] and vi = V [i]. If there is also u = v, we call such a pair a valid
witness, which corresponds to a positive answer to the PCP problem. Our goal
is to build an implementation I that is not weakly consistent with respect to
the read/write memory if and only if the instance P has a valid witness. That
is the implementation I produces, for each pair of words 〈u, v〉, an execution
Huv that is not weakly consistent if and only if 〈u, v〉 forms a valid witness. The
construction of each history Huv relies on ten processes and seven variables (six
data variable and one synchronization variable).

Theorem 5. Given an implementation I as a regular language, checking
whether all executions of I are weakly consistent with respect to Sr/w is unde-
cidable.

7 Related Work

The testing problems of relaxed consistency models have been intensively inves-
tigated in the literature. Wei et al. [17] proved that complexity of testing PRAM
consistency is NP-complete. Bouajjani et al. [18] studied the complexity of ver-
ifying causal consistency for one history. It was proved that the problem is NP-
complete for all the three variations of CC (causal consistency, causal convergence
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and causal memory). A recent work by Furbach et al. [19] showed that the testing
problem for any criterion weaker than sequential consistency and stronger than
slow consistency is NP-complete. This range covers many relaxed memory consis-
tency models, including (a weaker variation of) CC, TSO, PSO and PRAM con-
sistency, but it does not cover WC. It is easy to construct executions that conform
to WC but violate slow consistency.

For the model checking problem, it was shown that verifying linearizability
is EXPSPACE-complete when the number of processes is bounded and unde-
cidable otherwise [20]. Alur et al. [15] proved that checking sequential consis-
tency is in general undecidable. The same conclusion holds for systems with
only four objects. Wang et al. [21] studied the model checking problem of quasi-
linearizability and proved that it is undecidable. For consistency criteria weaker
than sequential consistency, eventual consistency has been shown to be decidable
[22], and causal consistency was proved to be undecidable [18] in general.

The method we used to formalize weak consistency in terms of distributed
histories is inspired by the work of [23], which extends the definition of CC to
all abstract data types. Their work uses transition systems to specify sequen-
tially abstract data types, which is modeled as transducers, a model that is very
similar to Mealy machines [24]. Their approach for CC, however, does not easily
transfer here. For WC, we have to consider the different roles played by data
and synchronization operations, while causal consistency does not distinguish
memory access categories.

8 Conclusion

This paper explores the complexity of deciding whether an execution of a shared
memory system is weakly consistent. We prove that the TWC problem is NP-
complete, even for systems with only three processes or programs in which each
process is permitted to have only two memory (data) accesses. We show the
TWC-read problem is also NP-complete, which implies tagging each read with
the identity of the responsible write does not reduce the complexity. However, for
TWC-read, if we restrict the process number to two, then a polynomial algorithm
exists.

A new approach is proposed to formalize weak consistency. This new formal-
ization, unlike those from previous work [3,6], is given in terms of distributed
histories abstracted from concrete executions, making possible a direct appli-
cation of this formalization into automatic verification. We have also explored
the model checking problem of weak consistency. Generally, deciding whether an
implementation has correctly implemented the read/write memory is undecid-
able, even when the implementation and specification are both regular. These
results on TWC and the model checking problem suggest that reasoning about
weak consistency is intrinsically hard.

Although the read-mapping does not help with reducing the complexity, it
would be interesting to investigate the TWC and model checking problem for
implementations under certain constraints, such as data independence, a prop-
erty ensuring the system behaviors are independent to particular data values
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stored at particular memory locations. These investigations remain future work.
Moreover, as release consistency [25] is a consistency model that refines weak
consistency by dividing synchronization into two types, the results presented in
this work may well be applicable (with minor adaptations) to release consistency.

Acknowledgement. We thank the anonymous reviewers for their helpful feedback.
This research was supported by National Natural Science Foundation of China Grant
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Abstract. Two models of nearly balanced random constraint satisfac-
tion problems, called Model NB and UB respectively, are defined in
this paper. By nearly balanced it means that most variables appear in
the same number of constraints. Exact satisfiability thresholds for these
models are proven, which are of the same values as that for Model RB.
Experiments on random instances around the thresholds for these three
models are conducted. The results show that these balanced models are
much harder to solve than their unbalanced counterpart.

Keywords: Random instances · Phase transition · Hardness

1 Introduction

Since the discovery of the satisfiability phase transitions and many hard instances
around the satisfiability thresholds of random constraint satisfaction problems,
in e.g. [1,6–16,18,20–22,24,25,27,28], benchmarks based on random constraint
satisfaction have become important tools in algorithm evaluations [23]. The ini-
tial standard models A,B,C,D [17,24] all suffered from asymptotic unsatisfiabil-
ity [1,18], thus were unable to generate many hard instances as benchmarks.
Subsequent models were constructed to overcome this deficiency of standard
models [1,17,21,24], either by embedding structures [16,17], or by controlling
parameters [11,12,27,28].

In this paper, partially inspired by previous results in [2–4], we define two
nearly balanced CSP models with both embedded structures and controlled
parameters to generate even harder instances as benchmarks. By nearly bal-
anced it means that most variables appear in the same number of constraints.
We embed perhaps the simplest structure into the constraint hypergraphs, that
is, to make the hypergraphs nearly regular, in a simple way as in configuration
models [5].
c© Springer International Publishing AG, part of Springer Nature 2018
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We control parameters of our models as in Model RB [27,28], the revised B
Model, which probably is the most applied random CSP model in generating
benchmarks, besides the classical random k-SAT model. Model RB is flexible
in generating various kinds of instances, ranging from Boolean Satisfiability,
Pseudo-Boolean, Vertex Cover (equivalently Independent Set and Clique), to
Integer Programming, etc. [26] Model RB is also robust in hiding optimal solu-
tions into the instances while keeping their hardness [27].

Our first model is called Model NB, which is a nearly balanced revised B
model. Our second model is called Model UB, whose constraint hypergraphs are
uniform, i.e. each constraint involves the same number of variables, while Model
NB is not uniform. Exact phase transitions of Model NB and UB are shown,
where the satisfiability thresholds are of the same values as that of Model RB.
Experiments are conducted with complete solver, and also with local search
solver on forced satisfiable instances, on Model NB and UB, as well as on Model
RB. The results show that Model UB is only slightly harder than Model NB,
but both Model NB and UB are much harder than Model RB, at least ten times
harder in moderate input size.

This paper is structured as follows. After introducing CSPs, Model RB and
Model RD, as well as notions on hypergraphs (Sect. 2), we define Model NB and
Model UB (Sect. 3) and show exact thresholds of satisfiability for these models
(Sect. 4). Experimental results are presented (Sect. 5) before Conclusion (Sect. 6).

2 Preliminaries

In constraint satisfaction problem (CSP), each instance is a triple (V,D, C),
where V = {v1, . . . , vn} is a set of n variables, domain D = {1, . . . , d} is a
set of d values, C = {C1, . . . , Cm} is a set of m constraints. Each constraint Ci is
a pair (Si, Ri), where constraint scope Si = (vi1 , . . . , vik

) with arity k is a k-tuple
of different variables, and constraint relation Ri ⊆ Dk with constraint slackness
|Ri|/|Dk|. An assignment a = (a1, . . . , an) is a mapping from V to D, where ai

is the value of vi. A constraint Ci = (Si, Ri) is satisfied by assignment a, if the
ki-tuple of values assigned to variables in Si is contained in Ri. A solution is an
assignment that satisfies all constraints. A CSP instance is satisfiable, if it has a
solution, otherwise unsatisfiable.

Model RB and RD were introduced by [28]. Let n,m, d, k, p be number of vari-
ables, number of constraints, domain size, constraint arity and constraint slack-
ness, respectively. Model RB and Model RD are defined with growing domain
size d = nα and superlinear number m = rn ln n of constraints, where constants
α > 0, r > 0 (called density parameter), and k = 2, 3, · · · , as follows.

1. Select with repetition m = rn ln n random constraint scopes, and for each
scope select without repetition k variables into it;

2. Select uniformly at random without repetition p · dk compatible assignments
for each constraint (for Model RB), or select each assignment for the k vari-
ables with probability p as compatible independently (for Model RD).
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Model RB and RD have been shown with exact satisfiability phase transition
[28], as well as with many hard instances both theoretically [19,27,29] and exper-
imentally [27].

Let H = (V, E) be a hypergraph, consisting of a set V of vertices, and a
set E of hyperedges, where each hyperedge is a subset of V . The constraint
hypergraph of a CSP instance consists of variables as vertices and constraint
scopes as hyperedges. The degree of a vertex v in a hypergraph is the number
of hyperedges which contain v. If for all vertices, the degrees are at the same
value, we call the hypergraph regular. If for all vertices, the degrees differ by at
most one, we call the hypergraph balanced. If for most (i.e. n − o(n)) vertices,
the degrees differ by at most one, we call the hypergraph nearly balanced. If all
hyperedges contain the same number of vertices, we call the hypergraph uniform.

It is not convenient to study the probability space of random balanced hyper-
graphs. Instead, we study the probability space of random balanced multihyper-
graphs. A multihypergraph H = (V, E) consists of a set V of vertices and a
multiset E of hyperedges. We can similarly define multihypergraphs to be the
regular, balanced, nearly balanced and uniform as above. In double multihyper-
graphs, besides multihyperedges, each hyperedge can also be a multiple subset
of V . Hence the degree of a vertex in a (double) multihypergraph is the total
number of its appearance in the hyperedges. For double multihypergraphs, the
appearance of the same vertex is summed up.

3 Model NB and Model UB

For n vertices, m hyperedges, and k vertices in each hyperedge, let NB(n,m, k)
denote the set of all such nearly balanced double multihypergraphs, and
UB(n,m, k) the set of all such nearly balanced uniform multihypergraphs. The
average degree of such hypergraph is km/n. Define δ = �km/n�, then such a
hypergraph has km − nδ vertices of degree δ + 1, and all others of degree δ.

For random graphs, the so-called configuration model is used to generate
graphs with a given distribution of degrees (see e.g. page 52 in [5]). We extend
the configuration model to hypergraphs to generate (nearly) balanced multihy-
pergraphs as follows. Let W =

⋃n
j=1 Wj be a fixed set of km =

∑n
j=1 dj labeled

vertices, where Wj = {vj,i|i = 1, 2, · · · , dj} and dj is degree of the j-th vertex.
A configuration F is a partition of W into m subsets of labeled vertices, such
that each subset has k labeled vertices. These subsets are called hyperedges of
F . Let Φ be the set of configurations. So

|Φ| =
∏m−1

i=0

(
km−ik

k

)

m!
=

(km)!
m!(k!)m

.

Each F can be transformed into a multihypergraph φ(F ) = G = (V, E) with
V = {v1, . . . , vn}, and hyperedges E = {{vi|Wi ∩ e �= ∅}|e is a subset in F}.
Such a G can also be a double multihypergraph, where vi appears |Wi ∩ e| times
in the hyperedge transformed from e. So for a random G in NB(n,m, k),

Pr(G) =
1

|Φ| =
m!(k!)m

(km)!
. (1)
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As multihypergraphs, G may be not uniform, i.e. the number of vertices in
a hyperedge maybe less than k. Such hyperedges are called degenerated. We use
following algorithm to make G uniform when k is not very large.

Algorithm 1. Making multihypergraph uniform
1 uniform(G)

Input: A balanced multihypergraph G = (V, E)
Output: A balanced uniform hypergraph G′ = (V, E ′)

2 begin
3 for each degenerated hyperedge e1 in E do
4 randomly choose k − 1 nondegenerate hyperedge e2, . . . , ek;
5 while true do
6 if every vertex in multiset E = e1 ∪ e2 ∪ . . . ek occurs at most k

times then
7 randomly put each duplicated vertices into at most k different

set e′
1, e

′
2, . . ., e

′
k and randomly put other vertices in

e′
1, e

′
2, . . . , e

′
k such that every set has the same number of

vertices; replace e1, e2, . . . , ek by e′
1, e

′
2, . . . , e

′
k in E ;

8 break;

9 else
10 continue;

We give a simple explanation of the correctness of Algorithm 1 when k ≤ √
n.

The most interesting case is when k is not very large. Since e1 is a degenerated
hyperedge, there are at most k − 1 different vertices in e1. For these k − 1
vertices, there are at most (k − 1)δ duplicated vertices out of e1. Thus when
(k − 1)δ ≤ m − k, there are k − 1 nondegenerate hyperedges which can pass the
judgment in line 6. Notice that δ = �km/n� and if k ≤ √

n, k = o(m), we get
(k − 1)δ ≤ m − k. So if we try enough steps, the algorithm can end up.

We can sample G from UB(n,m, k) by first sampling G from NB(n,m, k)
and then running Algorithm1. To sample G from NB(n,m, k), we use the con-
figuration model, by taking a random permutation on the set W and cutting it
into m intervals each of length k, which costs O(km) time.

Now we define Model NB and Model UB, as well as Model ND and Model
UD, as follows. For constants α > 0, r > 0 (called density parameter), 0 < p < 1
(called constraint slackness), and integer k = 2, 3, · · · , let n,m = rn ln n, d =
nα, k, p be number of variables, number of constraints, domain size, constraint
arity and constraint slackness, respectively.

– Sample a hypergraph from NB(n,m, k) (for Model NB and ND) or
UB(n,m, k) (for Model UB and UD); For model UB and UD, the hyper-
graph can be seen as a constraint graph directly; For model NB and ND,
the selected hypergraph can not be the constraint graph, so we delete the
duplicate vertices in every hyperedge and we get the constraint graph;
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– For each hyperedges of cardinality k′, select uniformly at random without
repetition p · dk′

compatible assignments (for Model NB and UB), or select
each assignment for the k′ variables with probability p as compatible inde-
pendently (for Model ND and UD).

Below we only consider Model NB and UB, since the properties of Model ND
and Model UD are similar. Model RB and UB have the same arity k for all
constraints. In Model NB, the arity of each constraint is at most k.

Theorem 1. Assume that r > 0 and k = 2, 3, · · · are constants and m =
rn ln n. Also assume that δ = km

n = rk ln n is an integer. Let H = (V, E) be the
random constraint hypergraph of Model NB and UB. For any constant ε > 0, we
have the following results:

1. Except O(ln1+ε n) vertices, all the remaining vertices in H have degree δ with
high probability.

2. Except O(ln2+ε n) constraints, all the remaining constraints have arity k with
high probability.

Proof. For fixed vertex v, let Deg(v) denote the degree of v. If Deg(v) < δ, we
call v degenerated. If a constraint C has arity less than k, we call the constraint
degenerated. Use the idea of random permutation, the probability of Deg(v) = δ

is Pr(Deg(v) = δ) = (m
δ )δ!kδ(km−δ)!

(km)! = kδm(m−1)···(m−δ+1)
km(km−1)···(km−δ+1) ≥ (km−kδ

km )δ =

f(n
k )

k2m
n2 , where f(x) = (1 − 1/x)x. When x is unbounded, f(x) approaches

a constant 1/e > 0, 1 − e−x approaches x, the expected number of degener-

ated vertices E(N) = n(1 − f(n/k)
k2m
n2 ) approaches n(1 − e− k2m

n2 ) = O(ln n).
According to Markov inequality, we have the first conclusion. If the number of
degenerated vertices is nd, the degenerated constraints is at most δnd/2. Hence
the number of degenerated constraints is at most O(δ ln1+ε n) = O(ln2+ε n) with
high probability. ��

4 Phase Transitions of Model NB and UB

In this section, we give the proof of phase transitions of Model NB and UB. The
proof framework is similar to the previous papers [12,28]. But since the balanced
model is different from the previous random model, the term and the interval of
the summation formula is different in details, thus resulting in a more complex
proof than [28].

For Model NB, define the following events:

– Sat(a, i): assignment a satisfies constraint Ci;
– Sat(a): a is a solution, that is a satisfies all constraints;
– Sat(a, b, i): both a and b satisfy Ci;
– Sat(a, b): both a and b are solutions;
– Sat: the random instance is satisfiable.
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The similarity number of pairs of assignments is defined as S(a, b) = n −
Ham(a, b), where Ham(a, b) is the Hamming distance between a and b.

Theorem 2. Let constants α > 0, r > 0, 0 < p < 1, and k = 2, 3, · · · . Let
d = nα, m = rn ln n, rcr = −α/ ln p. For α > 1/k and p > 1/k, we have

lim
n→∞ Pr(Sat) =

{
0, r > rcr

1, r < rcr

Proof. The number of solutions N is
∑

a∈Dn I(a), where

I(a) =
{

1, if a is a sulotion,
0, otherwise.

The expectation of N is E(N) =
∑

a∈Dn Pr(Sat(a)) = dn
∏m

i=1 Pr(Sat(a, i)) =
dnpm. By the Markov Inequality, Pr(Sat) = Pr(N ≥ 1) ≤ E(N). When r > rcr,
limn→∞ Pr(Sat) ≤ limn→∞ E(N) = 0.

By the Cauchy-Schwartz Inequality, Pr(Sat) = Pr(N �= 0) ≥ E
2(N)

E(N2) . The
expectation of N2 is E(N2) =

∑
a,b∈Dn E(I(a)I(b)) =

∑
a,b∈Dn Pr(Sat(a, b)).

Clearly, Pr(Sat(a, b)) =
∏m

i=1 Pr(Sat(a, b, i)).
For a constraint Ci of arity ki, the number of incompatible tuples is qi =

(1 − p)dki . Consider the following two cases:

1. Each variable of Ci is assigned the same value in a as that in b. In this case,
Pr(Sat(a, b, i)) =

(
dki−1

qi

)
/
(
dki

qi

)
= p.

2. Otherwise, Pr(Sat(a, b, i)) =
(
dki−2

qi

)
/
(
dki

qi

) ≤ p2.

Suppose the similarity number of (a, b) is S(a, b) = S, then the probability of

the first case is (Sδ
k )k!(nδ−k)!

(nδ)! = (Sδ
k )

(nδ
k ) . Denoted this probability by σS,i, then the

probability of the second case is 1 − σS,i. For S ≤ n, Sδ−i
nδ−i ≤ Sδ

nδ = S
n , so

σS,i =
(
Sδ
k

)
/
(
nδ
k

)
= Sδ(Sδ−1)...(Sδ−k+1)

nδ(nδ−1)...(nδ−k+1) ≤ (
S
n

)k
. Thus Pr(Sat(a, b, i)) =

(dki −1
qi

)
(dki

qi
)

·

σS,i + (dki −2
q )

(dki

q )
· (1 − σS,i) ≤ p · σS,i + p2 · (1 − σS,i) ≤ p · (

S
n

)k
+ p2 · (1 − (

S
n

)k
).

Let AS be the set of assignment pairs whose similarity number is S. Then
|AS | = dn

(
n
S

)
(d − 1)n−S and E(N2) =

∑n
S=0 |AS |Pr(Sat(aS , bS)), where

(aS , bS) ∈
AS . Thus E(N2) ≤ ∑n

S=0 dn
(

n
S

)
(d − 1)n−S

(
p · (

S
n

)k
+ p2 ·

(
1 − (

S
n

)k
))m

. For

S = 0,
(

S
n

)k
= 0, and

∑n
S=0

(
n
S

)
(d − 1)n−S = dn. Thus E(N2) ≤ d2np2m +

∑n
S=1 dn

(
n
S

)
(d−1)n−S

((
p

(
S
n

)k
+ p2

(
1 − (

S
n

)k
))m

− p2m
)

. Finally, 1
Pr(Sat) ≤

E(N2)
E2(N) ≤ 1 +

∑n
S=1

(n
S)(d−1)n−S

((
p+(1−p)(S

n )k
)m−pm

)

dnpm . By Theorem 3, which will
be proven in the below,

lim
n→∞

n∑

S=k

(
n
S

)
(d − 1)n−S

((
p + (1 − p)

(
S
n

)k
)m

− pm
)

dnpm
= 0.
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Thus when r < rcr, limn→∞ Pr(Sat) = 1. ��
Theorem 3. For constants α > 0, r > 0, 0 < p < 1 and integer k ≥ 2, let
d = nα, m = rn ln n and rcr = −α/ ln p. When α > 1/k, p > 1/k and r < rcr,
we have limn→∞

∑n
S=1 FS = 0, where

FS =

(
n
S

)
(d − 1)n−S

((
p + (1 − p)

(
S
n

)k
)m

− pm
)

dnpm
.

This theorem is proven by a series of propositions as follows. For convenience,
in the following we let

x =
S

n
, t = −m ln p

n ln d
= −rn ln n ln p

n ln nα
= −r ln p

α
.

Then 1
n ≤ x < 1, t is a positive constant, and t < 1 if and only if r < rcr. We

also let

y = xk, f(y) =
(

1 +
1 − p

p
y

)m

.

Then FS can be rewritten as

FS =
(

n

S

)(
1
d

)S (

1 − 1
d

)n−S

(f(y) − 1) . (2)

Proposition 1. For constant λ ∈ (0,min{1 − 1
k , α − 1

k}), limn→∞
∑ n

n1/k+λ

S=1

FS = 0.

Proof. Let hn(x) = ln ln d + ln n + t(1−p)
−p ln pnxk ln d + k ln x.

Lemma 1. f(y) − 1 < t(1−p)
−p ln p · ehn(x).

Proof. Since f(0) = 1, by Mean Value Theorem, there exists θy ∈ (0, xk)

such that f(y) − f(0) = 1−p
p m

(
1 + 1−p

p θy

)m−1

y. Since θy ∈ (0, xk), there

exists θx ∈ (0, x) such that θk
x = θy, we have

(
1 + 1−p

p xk
)m

− 1 =

1−p
p m

(
1 + 1−p

p θk
x

)m−1

xk ≤ 1−p
p m

(
1 + 1−p

p xk
)m−1

xk. Since ln(1 + z) < z for

all z > 0,
(
1 + 1−p

p xk
)m

− 1 < 1−p
p m · em ln(1+ 1−p

p xk)+k ln x < t(1−p)
−p ln p · ehn(x). ��

Lemma 2. hn(x) < −kλ
2 ln n, for 1

n < x < 1
n1/k+λ .

Proof. Since hn(x) is increasing in x, hn(x) < hn

(
1

n1/k+λ

)
. Since d = nα, by

definition of hn(x), hn

(
1

n1/k+λ

)
is a sum of four terms, where the first and third

terms are o(ln n) and the forth term is (−1−kλ+o(1)) ln n. Thus hn

(
1

n1/k+λ

)
=

(−kλ + o(1)) ln n < −kλ
2 ln n. ��
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Thus f(y) − 1 = o(1) by Lemmas 1 and 2. By formula (2),
∑ n

n1/k+λ

S=1 FS =(
∑ n

n1/k+λ

S=1

(
n
S

) (
1
d

)S (
1 − 1

d

)n−S
)

o(1). Since
∑n

S=0

(
n
S

) (
1
d

)S (
1 − 1

d

)n−S = 1, we

have
∑ n

n1/k+λ

S=1 FS = o(1). The proof of Proposition 1 is finished. ��
Let H(x) = −x ln x− (1−x) ln(1−x) be the natural entropy function. Then

0 ≤ H(x) ≤ ln 2, H(1 − x) = H(x).

Proposition 2. For some constant η ∈ (0, 1), limn→∞
∑ηn

S= n

n1/k+λ
FS = 0.

Proof. Since
(

n
S

) ≤ enH(S
n ), we get ln(FS) < nH(x) − nx ln d +

n(1 − x) ln(1 − d−1) + ln(f(y) − 1). Since ln(f(y) − 1) < ln(f(y)) =
tn ln d
− ln p ln

(
1 + 1−p

p xk
)

and ln(1 + z) < z for all z > −1, we have ln(FS) <

n
(
H(x) + x ln d−1 + t(1−p)

−p ln pxk ln d
)
. When x ∈ [

1
n1/k+λ , η

]
, xn ln d is a polyno-

mial of n. Since 1−p
−p ln p is decreasing in p and p > 1/k, we can choose a sufficiently

small constant η > 0 such that t(1−p)
−p ln pxk−1 is sufficiently small. So we need only

to prove limn→∞
H(x)
x ln d −1 < 0, which implies that FS is exponentially small with

S in the corresponding interval. It is easy to find that limn→∞
H(x)
x ln d ≤ 1+kλ

αk . By
λ < α − 1

k (Proposition 1), we have 1+kλ
αk < 1. ��

Lemma 3 (Lemma 3.2 in [12]). Let constant 0 < η < 1. If k > 1/p, then

g(x) =
ln

(
1 + 1−p

p xk
)

x
≤ − ln p, ∀x ∈ [η, 1].

Proposition 3. For all constants 0 < η < γ < 1, limn→∞
∑γn

S=ηn FS = 0.

Proof. As in Proposition 2, ln(FS)
n < H(x) − x ln d + (1 − x) ln(1 − d−1) +

t ln d
− ln p ln

(
1 + 1−p

p xk
)
, where H(x) + (1 − x) ln(1 − d−1) is bounded when

x ∈ [η, γ]. Note that t − 1 is negative and ln d → ∞, we have x ln d−1 +
t ln d
− ln p ln

(
1 + 1−p

p xk
)

= x ln d

(

−1 + t
− ln p · ln(1+ 1−p

p xk)
x

)

≤ x ln d(−1 + t
− ln p ·

(− ln p)) = (t − 1)x ln d ≤ (t − 1)η ln d. Since limn→∞(t − 1)η ln d = −∞, FS is
exponentially small for x ∈ [μ, ρ], we have limn→∞

∑γn
S=ηn FS = 0. ��

Proposition 4. For some constant γ ∈ (0, 1), limn→∞
∑n

S=γn FS = 0.

Proof. This Proposition is similar to Proposition 3.2 in [12]. Due to its role in
our proofs, we sketch a proof as follows. For

(
p + (1 − p)xk

)m−pm ≤ 1−pm < 1,
pmdn = d(1−t)n, let τ = 1 − t. Note that

∑n
S=γn FS ≤ nFS and

nFS ≤ n
(

n
nx

)
(d − 1)n(1−x)

dnpm
<

nenH(1−x)(d − 1)n(1−x)

dτn
.
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Since limx→1 H(1 − x) = 0 and (d − 1)n(1−x) < dn(1−x), there is a constant
0 < γ < 1, such that when x ∈ [γ, 1], we have H(1 − x)/ ln d + (1 − x) < τ/2.
Hence ∀x ∈ [ρ, 1],

lim
n→∞ nFS ≤ lim

n→∞
n

dτn/2
· d(H(1−x)/ ln d+(1−x))n

dτn/2
= 0.

��
For Model UB, similar results to Theorem 2 can also be obtained. Here we

only sketch a proof of the phase transition of Model UB. First in the Algorithm1,
the ‘If’ statement in line 6 is true with high probability. So the algorithm runs
in linear time with high probability. By symmetry, for the i-th constraint, the
probability of a fixed scope is 1/

(
n
k

)
, though the joint distribution of all scopes

is not very clear. For both Model NB and UB, the compatible assignments are
chosen independently for different constraints, thus for same parameters, the
first moment E(N) is the same for both model. But the second moment E(N2)
is different. In fact, the only difference is that in Model UB, σ′

S,i =
(
S
k

)
/
(
n
k

)
.

Since σ′
S,i ≤ σS,i and E(N2) is increasing in σS,i, the second moment of Model

UB is not larger than that of Model NB. Therefore, using the second moment
method, we can conclude the exact phase transition of Model UB.

5 Experimental Hardness of Model NB/UB

The experiments are conducted on a server with Intel(R) Xeon(R) E7520
1.87 GHz (16 cores) and 15.7G RAM under Linux. A complete solver Abscon
and a local search solver CSP4j with TABU engine (see http://www.cril.univ-
artois.fr/CPAI08/).

The experimental parameters are d = n0.6, k = 2, p = 0.7, n ∈ {40, 50, 60}.
When t goes from 0.1 to 1.9 with step length 0.1, m is determined by
−tn ln d/ ln p accordingly. On each parameter point, 50 random instances are
generated and averaged on. There are five experiments. The results are shown
in the following four figures and three tables.

Table 1 shows the variance of running time, Table 2 shows the minimum and
maximum time used by Abscon for n = 60 of unforced instances.

Table 1. The average time (s) and the standard deviation of 50 instances around the
threshold (Abscon)

Model n =50 n=60 n = 60, forced sat

#avg StDev #avg StDev #avg StDev

RB 1.51 0.28 4.18 2.09 2.94 1.54

NB 3.47 0.89 71.5 24.7 35.67 30.75

UB 4.65 1.07 110.7 36.99 53.8 44.5

http://www.cril.univ-artois.fr/CPAI08/
http://www.cril.univ-artois.fr/CPAI08/
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Table 2. The minimum and maximum time (s) around the threshold for n = 60
(Abscon)

Model RB NB UB

Min Max Min Max Min Max

Time 1.61 11.12 29.36 119.17 32.86 197.42

In Fig. 1, Abscon is used to show phase transition of Model NB and UB.
There are clear satisfiability phase transitions around the threshold t = 1. In
Fig. 2, Abscon is used to compare hardness between Model RB, NB and UB.
Model NB is much harder to solve than Model RB, when n = 60. The hardest
instances locate clearly around the threshold t = 1. In Fig. 3, Abscon is used
to compare hardness of forced satisfiable instances between Model RB, NB and
UB. In Fig. 4, CSP4j with TABU engine is used on forced satisfiable instances.
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Fig. 1. Satisfiability phase transitions around t = 1 (Abscon)
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Fig. 3. CPU time in a logarithmic scale of forced sat instances (Abscon)
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Fig. 4. CPU time in a logarithmic scale of forced sat instances (CSP4j Tabu)

6 Conclusion

In this paper, two model of nearly balanced random constraint satisfaction prob-
lems called Model NB and UB are defined. Exact satisfiability thresholds are
proven for these models. Experiments on random instances around the thresh-
olds have been conducted. The results show that these balanced models are much
harder to solve than their unbalanced counterpart Model RB. Thus, the nearly
balanced models are more efficient in generating hard instances than the unbal-
anced models. Moreover, Model UB is only slightly harder than Model NB, thus
being strictly balanced or uniform only helps a little. For practical purposes,
being nearly balanced is already enough. We hope that these results are of use
for future constructions of more challenging benchmarks.
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9. Creignou, N., Daudé, H.: Generalized satisfiability problems: minimal elements and
phase transitions. Theor. Comput. Sci. 302(1–3), 417–430 (2003)
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Abstract. We design new exact exponential time algorithms for the well
known NP-hard allocation problems- Makespan minimization, the Santa
Claus problem (with and without capacity constraints) and the Bin pack-
ing problem. These problems are very well-studied in the paradigm of
approximation algorithms. However the best known exact, exponential-
time algorithms for all of the above problems has complexity of O∗(3m)
[6], where m is the number of jobs except for Bin Packing which has a
O∗(2m) inclusion exclusion based algorithm (where m is the number of
items) [8]. We introduce a new dynamic programming formulation which
helps solve Makespan minimization and Santa Claus problem more effi-
ciently in O∗(2m) time and gives a completely different approach with
the same time complexity in case of Bin Packing. In addition, Jansen
et al. [6] showed that unless the ETH (exponential time hypothesis) is
false, there is no exact algorithm that runs in time 2o(m).

1 Introduction

We consider allocation problems where the input consists of a set of jobs, a set
of machines, and a valuation of machine-job pairs. The valuations we consider
are unrestricted and thus we consider the most general form of the problems in
question. The Santa Claus Problem is to assign an indivisible set J of m jobs
to a set M of n machines (labeled from 1 to n) such that minimum valuation of
any machine for the set of jobs assigned to it is maximised (each machine i has
valuation of vi(S) for the job set S). In other words we need to find an allocation
T : M → 2J such that mini(vi(T (i))) is maximised. When each machine can
be allocated at most k jobs, where k is given as part of the input, we get the
Santa Claus Problem with capacity constraints. Makespan minimization is the
min-max counterpart of Santa Claus problem. It is the problem of assigning an
indivisible set J of m jobs to a set M of n machines (labeled from 1 to n) such
that maximum valuation of any machine for the set of jobs it gets is minimized.
In other words we need to find an allocation T such that maxi(vi(T (i))) is
minimised. Bin packing is the problem of allocating m objects(given)of different
volumes into some number of bins, say k, such that each bin holds objects of
total volume at most V (given). We need to find the minimum possible value
of k for which such a packing is possible. The definition makes the valuation
function in the Bin packing problem inherently additive as volume of a set of
c© Springer International Publishing AG, part of Springer Nature 2018
J. Chen and P. Lu (Eds.): FAW 2018, LNCS 10823, pp. 251–262, 2018.
https://doi.org/10.1007/978-3-319-78455-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78455-7_19&domain=pdf
http://orcid.org/0000-0002-8441-8740


252 S. Annamalai and N. S. Narayanaswamy

objects is sum of volumes of individual objects. Additive valuation functions
are very natural and play an important role in our results. Additive valuation
functions are those functions f : M ∗ 2J → R (2J is power set of J) such that
f(m,S) =

∑
i∈S f(m, i): the valuation of a subset S for a machine m is equal to

the sum of valuations of machine m for each individual machine in the set S.

Related Work. All the allocation problems we have studied in this paper
have been well-studied in the world of approximation algorithms, and relatively
recently The Santa Claus problem has been extensively studied [1–4]. While the
world of parameterized and exact exponential time algorithms is a very rich
area, we find surprisingly few theoretical results related to the area of schedul-
ing and resource allocation, while these areas have many heuristic approaches
that are applied extensively in practice. A very basic scheduling problem is the
problem of ordering jobs(weighted) into a single machine such that the total
penalty incurred by the machine is minimized. Here the total penalty is the sum
of penalties of each job. Fomin and Kratsch [5] and Woeginger [8] designed an
O∗(2m) algorithm for this problem. Lente et al. [7] in their survey had described
an O∗(3m) time algorithm for a generalization of this problem by considering
the variant with multiple machines. Jansen et al. [6] gave an O∗(3m) algorithm
for makespan minimization, Bin packing and a set of other problems. They also
showed that unless the ETH(exponential time hypothesis) is false, there is no
algorithm with running time 2o(m). Their algorithm is very natural, and is the
starting point for our work. We describe the algorithm in Sect. 2.

Our Results. Our exact algorithms use techniques which are completely dif-
ferent from those used in the approximation algorithms. We observe that the
algorithm of Jansen et al. [6] works for the more generic case of non additive
valuations which satisfy the monotonicity property. A function f defined on the
power set of a universe satisfies the monotonicity property if S′ ⊆ S implies that
f(S′) ≤ f(S). We then present O∗(2m) algorithms for the unrestricted Santa
Claus problem, the Santa Claus problem with capacity constraints, makespan
minimization and Bin packing-all under the assumption of additive valuation
functions. Our contribution is in identifying for these problems a new optimal
substructure that gives a more efficient bottom-up evaluation. This optimal sub-
structure circumvents the seemingly inherent running time of 3m by algorithms
whose basic idea is nested enumeration when the jobs are allocated to machines
which are arranged in a linear order.

2 Santa Claus Problem with Non Additive Valuations

We present the O(n ∗ 3m) dynamic programming approach proposed by Jansen
et al. [6] for solving the Santa Claus Problem. We do not present the proofs
here due to space limitations. Here n is the number of machines and they are
labelled from 1 to n. J is the set of m jobs which are labeled from 1 to m. Define
vi(S), i ∈ [1, n], S ⊆ J to be the valuation of ith machine for the set S of jobs.
For an allocation T of jobs to the machines, T (i) denotes the set of jobs assigned
to machine i.
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Optimal Substructure: The algorithm assigns jobs to machines in the increas-
ing order of the machine labels. The subproblems are denoted by the pair (i, S)
where S ⊆ J and 1 ≤ i ≤ n. For a subproblem (i, S), Fi,S denotes the optimal
value to the problem of assigning a set S of jobs to the machines [1 · · · i].
– Fi,S denotes the highest value x such that we can assign the set of jobs S

to the machine [1 · · · i] satisfying the constraint that each machine gets a
valuation of at least x.

– Let Gi,S(j) for j < i , denote the set of jobs assigned to machine j in an
optimal allocation to the subproblem (i, S).

– Let the optimal allocation for the subproblem (i, S) be T ∗ and let S′ ⊆ S
denote the set of jobs assigned to machine i by T ∗.

We now show that we can safely assume that the allocation to the first i − 1
machines is the same as Fi−1,S\S′ .

Lemma 1. There exists an optimal T ′∗ such that T ′∗(i) = S′ (T ′∗ assigns S′ to
machine i) and T ′∗(j) = Gi−1,S\S′(j),∀j < i (the allocation of T ′∗ to machines
[1 · · · i − 1] is the same as some optimal allocation to Fi−1,S\S′).

Dynamic Programming Formulation. As a consequence of Lemma 1, it fol-
lows that if we know S′ ⊆ S that is allocated to i in an optimum allocation,
then the recursive subproblem to solve is to compute Fi−1,S\S′ . The value of the
allocation thus obtained is min(Fi−1,S\S′ , vi(S′)), and we iterate this over all
S′ ⊆ S. We assume that the values vi(S) for all i ∈ [1 · · · n] and S ⊆ J are in a
n ∗ 2m 2D- array with V [i][S] containing the value vi(S). We then initialise the
base cases F [1][S] = v1(S) as it is best to assign all the jobs to the only machine.
We will then compute Fi,S for each set S ⊆ J and 1 ≤ i ≤ n in a bottom-up
fashion using the recursive formulation Fi,S = minS′⊆S(Fi−1,S\S′ , vi(S′)).

Running Time Analysis. The number of such pairs of subsets S, S′ is clearly
3m (each element in [1 · · · m] can either be present in none or only S or both S
and S’). So the whole table can computed in O(n ∗ 3m) time.

3 A O∗(2m) Algorithm for the Santa Claus Problem

Outline. We first do a binary search on the maximum possible value that can
be achieved for each machine. Once we fix this value T , the algorithm checks if
there is an allocation of jobs to machines such that each machine gets a valuation
which is greater than or equal to T . As in [6], we consider the machines in the
order from 1 to n and assume that the jobs are being allocated in that order. Now
for a subset S of jobs, define F (S) to be a pair {p, q} if, using the subset S of jobs,
there is an allocation of set S of jobs to machines 1 to p which allocates a value of
at least T and machine p+1 gets a value of q and the pair {p, q} is the maximum
possible for the subset S of jobs. Here the maximum is defined according to the
comparison operator, (a1, a2) > (b1, b2) ⇐⇒ a1 > b1 or (a1 = b1 ∧ a2 > b2). To
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compute F (S) we look at all subsets {S′|S′ ⊆ S, |S′| = |S| − 1}. Let us take one
such S′ and look at the value F (S′). Let {p′, q′} be the value of F (S′). Now we
add the element which is in S and not in S′ to the machine p′ +1 and update q′

accordingly. This is one possible answer for F (S) and we show that doing this
for all the possible subsets ensures that we obtain the correct value for F (S).

3.1 Dynamic Programming Formulation

Let w(p, q) denote the value of job q to machine p.

1. Do a binary search on the value of the optimum allocation (over integer
space from minimum possible T to maximum possible T ). Let T denote the
candidate value.

2. Check if there is an allocation that achieves the value T as follows.
(a) Consider all subsets S of the set J of jobs in the increasing order of their

cardinality.
(b) For a subset S, compute the value F (S) as follows

– Initialise F(S) to {0, 0}.
– Consider all subsets S′ of S such that S′ ∪ {x′} = S and x′ ∈ S and

let x′ be the corresponding missing element from S′.
– Let F (S′) be {p′, q′} .
– Allocate x′ to machine p′ + 1 and update q′ ← q′ + w(p′ + 1, x′)
– If q′ ≥ T , then update F (S) ← max(F (S), {p′ + 1, 0}) (we have

satisfied p′ + 1 too)
– If q′ < T , then F (S) ← max(F (S), {p′, q′}).

(c) If F (J) = {n, 0} then T is possible, otherwise T is not possible.

The following pseudo-code Santa-Claus(n,m, V ) implements the algorithm and
is useful to calculate the running time of the algorithm.
1: function Santa-Claus(n,m, V )

� n is the number of machines, m is the number of jobs in J
� V is the matrix with valuations. V [i][j] is the valuation of ith machine to
jth job.

2: Tmin ← 0, Tmax ← sum of all values in V .
3: Do a binary search for T in range [Tmin, Tmax] using Check-Validity-

Santa-Claus to find the largest value Topt for which the function returns
TRUE.

4: return Topt

5: end function
6:

7: function Check-Validity-Santa-Claus(n,m, V, T )
� Returns true if each machine can get value at least T

8: Let F be an array, indexed by subsets of [1,m], of 2m pairs with initialised
to {0, 0}.

9: F [∅] = {0, 0}.
10: Each array location in F corresponds to F (S) for some S ⊆ J .
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11: for all nonempty S ⊆ J = [1 · · · m] in increasing order of |S| do
12: for all x′ ∈ S do
13: S′ ← S \ {x′}
14: {p′, q′} ← F [S′]
15: if q′ + V [p′ + 1][x′] < T then
16: F [S] ← max(F [S], {p′, q′ + V [p′ + 1][x′]})
17: else
18: F [S] ← max(F [S], {p′ + 1, 0})
19: end if
20: end for
21: end for
22: if F [J ] = {n, 0} then return TRUE
23: elsereturn FALSE
24: end if
25: end function

We now prove the correctness of the above algorithm. Due to the additive
nature of the valuation function, it is clear that the binary search gives the
correct answer. Assume throughout the rest of discussion in this section that
we have a fixed value T and are checking for its feasibility. Let XS denote an
allocation of the subset S of jobs to machines. Let p + 1 be the first machine
that does not get a value T in XS and let p + 1 get a load of value q in XS . Let
V (XS) denote {p, q}.

Lemma 2. For a subset S of J , F [S] computed in the function Check-Validity-
Santa-Claus is the maximum for T . In other words, for each allocation XS,
F [S] ≥ V (XS).

Proof. We will show that ∀XS V (XS) ≤ F [S]. We will show this by induction
on the cardinality of the set S. The base case is when S = ∅. In this case
F [∅] = {0, 0} and no machine can get a non-empty set of jobs and machine
1 gets load 0 with the empty set of jobs. The induction hypothesis is that for
all S such that |S| < k, k ≥ 0 and any allocation XS of jobs from S to the
machines, V (XS) ≤ F [S]. Given the induction hypothesis, we show that for all
S such that |S| ≤ k, k ≥ 0 and any allocation XS of jobs from S to the machines
V (XS) ≤ F [S]. Consider a subset S of jobs with cardinality k. Consider any
allocation XS of jobs in S to the machines. Let V (XS) = {p, q}. Now there are
2 cases.

Case 1: q �= 0. XS has at least one job assigned to p + 1, and let x′ be any one
such job. Consider the set S′ = S \ {x′}, and let XS′ be the allocation induced
by XS on the subset S′ (removing the allocation of x′ to p + 1 alone). Now, we
know by the induction hypothesis that F (S′) ≥ V (XS′) = {p, q − w(p + 1, x′)},
since |S′| = k − 1. In the function Check-Validity-Santa-Claus the value of F (S)
obtained on adding x′ to F (S′) ensures that F (S) is at least {p, q} = V (XS).

Case2: q = 0. XS has at least one job assigned to p. Let one such job be x′. By
the definition of V (XS), p has a load of at least T . Therefore, in the allocation
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XS when the job x′ is removed then p gets a load of at least T − w(p, x′). Now
consider the set S′ = S \ {x′}, and let XS′ be the allocation induced by XS on
the subset S′(removing the allocation of x′ to p). By the induction hypothesis
we know that F (S′) ≥ V (XS′), since |S′| = k − 1. Now V (XS′) is at least
{p − 1, T − w(p, x′)} and hence by I.H F (S′) ≥ {p − 1, T − w(p, x′)} and due to
the update rule F (S) = max(F (S), g(F (S′), x′)) we get F (S) ≥ {p, 0} = V (XS)
Therefore, the claim is true for a set S consisting of k jobs, given that it is true
for any set with less than k jobs. This completes the proof by induction. Hence
the lemma.

Theorem 1. The function Santa-Claus(n,m, V ) computes an optimum alloca-
tion of jobs to machines in time O(log(Tmax)2m).

Proof. From Lemma 2 it follows that for each S ⊆ J , F [S] computed by the
function Check-Validity-Santa-Claus(n,m, V, T ) is the maximum for each value
of T . Further, the function returns true if and only if F [S] = {n, 0} if it finds an
allocation in which each machine gets a value of at least T . Since the algorithm
does a binary search over the range of all possible values for T , it follows that it
computes the value of an optimum allocation, and the execution of the algorithm
also yields an optimum valued allocation.

Running Time Analysis. The binary search adds a factor which is log(Tmax)
which is polynomial in the input size. Inside each iteration of binary search, there
is a function call to the Check-Validity-Santa-Claus function. The slowest steps
in the function are in the for-loop in line 11 which contribute to 2m iterations
each with an O(n) operation. So the overall complexity is O(log(Tmax) ∗ n ∗ 2m)
which is O(2m ∗ poly(input size)) .

4 O∗(2m) Algorithms for Makespan Minimization and
Bin Packing

To solve the makespan minimization and Bin packing problems, we modify the
algorithm which we described in Sect. 3 for the Santa Claus problem. A common
utility for both the problems is the following problem we denote by (T,m, n, V ):
Given each job-machine valuation is given in V , is it possible to allocate m
jobs (objects) to machines(bins) so that each machine(bin) has a load(volume)
of at most T and number of machines(bins) is n? Let us assume that we have
this function which tells us whether there is an allocation or not for the given
(T,m, n, V ) in O∗(2m) time. Then for makespan minimization, n the number of
machines and V are given in the problem, and performing a binary search on
T to find the smallest T for which (T,m, n, V ) has an allocation gives us the
minimum makespan. This gives us a O∗(2m ∗ log(ans)) running time which is
still O∗(2m). For Bin packing problem, T (the capacity of each bin) is given in
the problem, and for each job (object) , the job-machine evaluation is identical
for all machines(bins) as all the bins are identical in case of Bin packing. We
find the smallest value of n, by binary search, for which problem (T,m, n, V )
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has an allocation. This gives us a O∗(2m ∗ log(m)) running time which is still
O∗(2m). So solving the problem (T,m, n, V ) in O∗(2m) time gives us a O∗(2m)
time algorithm for both the problems. We now describe an algorithm to solve
this problem.

Outline. We now describe the algorithm for makespan minimization, and in
the algorithm replacing jobs with objects and machines with bins immediately
gives the description for Bin packing. We have a similar dynamic programming
approach to the one we used in the Santa Claus problem Sect. 3. Here define
F (S) for a subset S of jobs to be the pair {p, q} if machines [1, p] are filled with
a value less than or equal to T (cant be used again) and machine p + 1 is filled
upto a value of q and {p, q} is the minimum possible for the subset S of jobs.
The lesser-than relation < is defined as follows: (a1, a2) < (b1, b2) ⇐⇒ a1 <
b1 or (a1 = b1 ∧ a2 < b2). To compute F (S) we consider all subsets S′ which are
exactly one element short of S (i.e. {S′|S′ ⊆ S, |S′| = |S| − 1}). Let F (S′) be
{p′, q′} for one such S′ = S \ {x′}. On allocating x′ to machine p′ + 1, check if
its load does not exceed T and update F (S) accordingly. If the load exceeds T ,
then we can not add it to p′ + 1. Since the machines are non-identical, it could
happen that the valuation of machine p′ + 2 to x′ is more than T , in which case
we will have to look at p′ + 3 and so on. If there is a smallest positive integer
δ(δ > 1) such that the job can be allocation to machine p′′ = p′ + δ, then one
possible value of F (S) is {p′′ −1, w(p′′, x)}. If there does not exist such a δ, then
T is an infeasible value for makespan and we proceed to find an allocation for
a larger value of T . In the case of binpacking the the number of bins n will be
inferred as infeasible for the given problem (T,m, n, V ) and we proceed to find
an allocation with a larger value of n.

4.1 Dynamic Programming Formulation

Recall that J is the set of m jobs, there are n machines, and w(p, q) denotes the
valuation of job p to machine q.

1. We consider all subsets of the set J of jobs in the increasing order of their
cardinality

2. When we consider a subset S, we compute value of F (S) as follows.
– Initialise F(S) to {∞,∞}.
– Consider all subsets S′ of S such that S′ ∪ {x′} = S
– Let F (S′) be {p′, q′}
– If q′ + w(p′ + 1, x′) is less that or equal to T , then F (S) ←

min(F (S), {p′, q′ + w(p′ + 1, x′)}).
– Otherwise, let p′′(p′′ ≥ p′ + 2) be the first machine where x′

can be added with value not exceeding T . Then update F (S) ←
min(F (S), {p′′ − 1, w(p′′, x′)}).

3. If F (J) ≤ {n − 1, T} then there is an allocation of makespan T , otherwise
there is no allocation of makespan T .

The following pseudo-code implements the algorithm unambiguously and is use-
ful to calculate the running time of the algorithm.
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1: function Check-Subroutine(n,m, V, T )
� n machines linearly ordered from 1 to n, m jobs in the set J
� V is the matrix with valuations- V [i][j] is the valuation of ith machine to
jth job.
� Returns true if there is an allocation of all jobs to machines with makespan
at most T

2: let F be an array, indexed by subsets of [1,m], of 2m pairs with initialised
to {∞,∞}.

3: F [∅] ← {0, 0}
4: for all nonempty S ⊆ [1 · · · m] in increasing order of |S| do
5: for all x′ ∈ S do
6: S’ ← S \ {x′}
7: {p′, q′} ← F[S’]
8: if q′ + V [p′ + 1][x′] ≤ T then
9: F [S] ← min(F [S], {p′, q′ + V [p′ + 1][x′]})

10: else
11: p′′ ← smallest index greater than p′+1 such that V [p′′][x′] ≤ T
12: F [S] ← min(F [S], {p′′ − 1, V [p′′][x′]})
13: end if
14: end for
15: end for
16: if F [J ] ≤ {n − 1, T} then

return TRUE
17: else

return FALSE
18: end if
19: end function

Correctness. Let XS denote an allocation of the subset S of jobs to machines.
Throughout this discussion, we will only look at valid allocations(those which
assign a value of at most T to each machine). Let p + 1 be the last machine
(recall that the machines are linearly ordered from 1 to n) that gets a non zero
value and let the value it gets be q. Then V (XS) is defined to be {p, q}. The
proof of the following Lemma and Theorem are similar to the proof of Lemma
2 and we omit the proof in this version of the paper.

Lemma 3. For each subset S ⊆ J , F [S] is at most V (XS) for any valid alloca-
tion XS and in fact the following holds, minXS

V (XS) = F [S].

Theorem 2. The function Check-Subroutine correctly checks whether there is
an allocation of jobs to the n machines with makespan at most T in time O∗(2m).

Proof. From Lemma 3 it follows that for each S ⊆ J , F [S] computed by the
function Check-Subroutine(n,m, V, T ) is correct for each value of T . The function
returns true if and only if F [S] ≤ {n − 1, T}.

Running Time Analysis. The running time is governed by the subproblem for
each subset of J . For each subset S, the time taken to compute F (S) accounts



Exact Algorithms for Allocation Problems 259

for O(m) time, which is for each subset S′ ⊂ S of cardinality one smaller than
that of S. So the complexity of Check-Subroutine(n,m, V, T ) is again O∗(2m).

Therefore, we can binary search on the range of values for T or n and minimize
makespan or the number of bins, respectively.

5 Santa Claus Problem with Capacity Constraints

In this section we present a O∗(2m) algorithm to find the optimum max-min
allocation of jobs along with the constraint that each machine should get at
most k jobs, where k is an additional input parameter. Clearly when k = m we
get the Santa Claus problem studied in Sect. 3. As in the previous algorithms
the problem of finding an optimum allocation is reduced to checking if there is
a feasible allocation of a fixed value T , and we show in Theorem 3 this can be
done in time O∗(2m). Recall that the machines are considered according to a
fixed linear order by the algorithm.

Structure of an Optimum Allocation. For a subset S of jobs and 0 ≤ i ≤ k,
let Xi

S denote an allocation of the set S of jobs to the machines. For an allocation
Xi

S let us consider the prefix of machines in the linear order that are allocated a
non-empty set of jobs. Let c(Xi

S) denote the number of machines in this prefix.
An allocation Xi

S of the set S of jobs to the machines is defined to be a valid
allocation if it satisfies that following conditions:

– Each machine is allocated at most k jobs.
– Each of the first c(Xi

S) − 1 machines is allocated a set of jobs of total value
at least T .

– If i > 0, the c(Xi
S)-th machine is allocated a set of i jobs.

– If i = 0, then the c(Xi
S)-th machine is allocated a set of jobs of total value at

least T .

The value of a valid allocation Xi
S denoted by V (Xi

S) = {p, q}, where machines
1 to p are allocated a set of at most k jobs of total value at least T and machine
p + 1 is allocated a set of jobs of total value q and exactly i jobs.

Note: Let us consider an allocation Xi
S where i ≥ 1 and V (Xi

S) = {p, q}. If
q ≥ T , then the allocation Xi

S is also represented as X0
S and V (X0

S) = {p+1, 0}.
This representation is symmetric as follows: Given a valid allocation X0

S of value
{p, 0}, the i for which it can be represented as Xi

S is well-defined- the value of
i is the number of jobs allocated to the machine p. Let the value of the jobs
assigned to p be q. The value of the allocation Xi

S is {p − 1, q}. For an X0
S the

corresponding Xi
S as defined here plays a very crucial role in the second case of

Lemma 4.

For each i ∈ [0, k] and each S ⊆ J , define F (S, i), to be the maximum valued
pair {p, q} such that there is valid allocation of jobs in S with value {p, q} where
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machine p has exactly i jobs. Recall that the maximum is defined according to the
comparison operator where (a1, a2) > (b1, b2) if a1 > b1 or (a1 = b1 ∧ a2 > b2).
At this point, we would like to contrast the F (S, i) and F (S) in the Santa Claus
problem in Sect. 3 where F (S) was {p, q}, q had to be less than T . However,
in the definition of F (S, i), it might happen that q is more than T . This is
because we need the best pair which corresponds to an allocation in which the
last machine has been allocated i jobs.

We formally define F (S, i) for each S ⊆ J and 0 ≤ i ≤ k as follows. To
define F (S, 0), we consider the pair {p, q} which is defined to be the maximum
of F (S, j) for all j ∈ [1, k].

F (S, 0) = {0, 0}, if S = ∅
F (S, 0) = {p, 0}, if q < T

= {p + 1, 0}, otherwise.

For a set S′ such that S = S′ ∪{x′}, let F (S′, i− 1) be denoted by {p′, q′}. Now
for S ⊆ J and 1 ≤ i ≤ k, we define the function F [S][i] recursively as follows,

F (S, i) = {0, 0}, if S = ∅
F (S, i) = max

S′∪{x′}=S
max((F (S′, i), {p′, q′ + w(p′ + 1, x′)}))

Finally if F (J, 0) is {n, 0} then the value T is possible and otherwise it is not.
The following algorithm describes the bottom-up computation of the values of
F [S][i].
1: function Check-Validity-Capacity-Santa-Claus(n,m, V, T, k)

� n machines each of capacity k, m jobs in J .
� V is the matrix with valuations. V [i][j] is the valuation of ith machine to
jth job.
� Returns true if there is an allocation in which each machine is allocated
at most k jobs and at least a load of T

2: let F be a 2m × (k + 1)-array of pairs with initialised to {−∞,−∞}.
3: F [∅][0 · · · k] ← {0, 0}
4: for all nonempty S ⊆ [1 · · · m] in increasing order of |S| do
5: {p, q} ← {0, 0}
6: for all i ∈ [1, k] do
7: for all x′ ∈ S do
8: S′ ← S \ {x′}
9: {p′, q′} ← F [S′][i − 1]

10: F [S][i] ← max(F [S][i], F [S′][i])
11: F [S][i] ← max(F [S][i], {p′, q′ + V [p′ + 1][x′]})
12: end for
13: {p, q} ← max({p, q}, F [S][i])
14: end for
15: if q < T then
16: F [S][0] ← {p, 0}
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17: else
18: F [S][0] ← {p + 1, 0}
19: end if
20: end for
21: if F [J ][0] = {n, 0} then

return TRUE
22: else

return FALSE
23: end if
24: end function

Correctness

Lemma 4. For each subset S ⊆ J and 0 ≤ i ≤ k, F (S, i) computed by function
Check-Validity-Capacity-Santa-Claus has a value at least the value of any valid
allocation Xi

S of jobs in S to the machines.

Proof. We will prove this by induction on the cardinality of S ⊆ J . The base
case is when S = ∅ , F (S, 0) is {0, 0} which is as good as the value of the only
allocation X0

S of the empty set which can satisfy 0 machines. Let us assume that
the lemma is true for all S ⊆ J with |S| < b. Given this assumption, we show
that for each set S with b jobs and each valid allocation Xi

S , F (S, i) ≥ V (Xi
S).

Case 1: i > 0. Let V (Xi
S) be denoted by {p, q}. Now, let x be any one of

the jobs assigned to machine p + 1. If we remove the allocation of job x to
machine p + 1, we get a valid allocation Xi−1

S′ where machine p + 1 has i −
1 jobs with V (Xi−1

S′ ) = {p, q − w(p + 1, x)}. By the induction hypothesis, it
follows that F (S′, i − 1) ≥ V (Xi−1

S′ ) = {p, q − w(p + 1, x)}. Let F (S′, i − 1) be
denoted by {p′, q′}. In the function Check-Validity-Capacity-Santa-Claus F (S, i)
is updated by the statement F (S, i) ← max(F (S, i), {p′, q′ +w(p′ +1, x)}). Since
{p′, q′} ≥ {p, q − w(p + 1, x)}, we show that F (S, i) ≥ {p, q} based on the
only two possible cases: when p′ = p and when p′ > p. If p′ > p, then clearly
F (S, i) ≥ {p′, q′ + w(p′ + 1, x)} is at least {p, q}, due to the definition of the
greater-than relation between pairs. In the case when p′ = p, since {p′, q′} ≥
{p, q − w(p + 1, x)}, it follows that q′ ≥ q − w(p + 1, x). Therefore it follows that
{p′, q′ + w(p′ + 1, x)} ≥ {p, q}. Consequently it follows that F (S, i) ≥ V (Xi

S),
thus completing the proof by induction in this case.

Case 2: i = 0. Let V (X0
S) = {p, 0}. Let machine p be allocated l jobs which

have a total value of q. Since X0
S is a valid allocation, l ≤ k and q ≥ T . Clearly,

the allocation X0
S can be represented as X l

S (see Note just after definition of the
value of Xi

S) and V (X l
S) = {p−1, q}. Now, by applying the conclusion in Case 1,

it follows that F (S, l) ≥ V (X l
S) = {p−1, q} ≥ {p−1, T}. In the function Check-

Validity-Capacity-Santa-Claus F (S, 0) is updated by taking the maximum value
of F (S, j) for all j ∈ [1, k]. Therefore F (S, 0) ≥ F (S, l). Further, since F (S, l) ≥
{p − 1, T} the If-statement in Line 15 ensures that F (S, 0) = {p, 0} = V (X0

S).
Hence the proof by induction is complete in this case.
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Theorem 3. The function Check-Validity-Capacity-Santa-Claus correctly checks
whether there is a valid allocation in time O∗(2m).

Proof. From Lemma 4 we know that for each S ⊆ J and 1 ≤ i ≤ k, the value for
F (S, i) computed by the algorithm is the maximum value possible by any valid
allocation. Further, the function returns true if and only if F [S][0] = {n, 0}. This
completes the proof that function correctly checks if there is a valid allocation
(that assigns a load of T to each machine and at most k jobs to each machine).

Complexity Analysis. Each entry in the 2m × (k + 1)-array F is calculated in
O(m) time. Therefore, the function takes time O(2m ∗k ∗m) and this is O∗(2m).
Hence the theorem is proved.
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Abstract. Given a set P of n elements, and a function d that assigns
a non-negative real number d(p, q) for each pair of elements p, q ∈ P ,
we want to find a subset S ⊆ P with |S| = k such that cost(S) =
min{d(p, q) | p, q ∈ S} is maximized. This is the max-min k-dispersion
problem. In this paper, exact algorithms for the max-min k-dispersion
problem are studied. We first show the max-min k-dispersion problem
can be solved in O(nωk/3 logn) time. Then, we show two special cases
in which we can solve the problem quickly. Namely, we study the cases
where a set of n points lie on a line and where a set of n points lie on
a circle (and the distance is measured by the shortest arc length on the
circle). We obtain O(n)-time algorithms after sorting.

Keywords: Dispersion problem · Algorithm

1 Introduction

The facility location problem and many of its variants have been studied exten-
sively [8,9]. Typically, we are given a set of locations on which facilities can
be placed and an integer k, we want to place k facilities on some locations in
such a way that a given objective is minimized. In the dispersion problem, we
want to minimize the interference between the placed facilities. As an exam-
ple scenario, consider that we are planning to open several chain stores in a
city. We wish to locate the stores mutually far away from each other to avoid
self-competition. Another example is a case where facilities are mutually obnox-
ious, such as nuclear power plants and oil storage tanks. See more applications,
including result diversification, in [6,16,21,23].
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More specifically, in the max-min k-dispersion problem, we are given a set P
of n elements which represent possible locations, and a function d that assigns a
non-negative real number d(p, q) for each pair of elements p, q ∈ P . Throughout
this paper, we assume that d is symmetric (i.e., d(p, q) = d(q, p) for all p, q ∈ P ,
and d(p, p) = 0 for all p ∈ P ), but we do not assume that d satisfies the triangle
inequality. The value d(p, q) represents the distance between p and q. We are
also given an integer k with k ≤ n. Then, we want to find a subset S ⊆ P with
|S| = k such that cost(S) = min{d(p, q) | p, q ∈ S} is maximized.

The max-min k-dispersion problem was recognized in the early days of
research for location theory. At least, Shier [22] wrote and published a paper
about k-dispersion on trees in 1977, and connected the problem with the k-
center problem. The related literature up to the mid 1980’s was reviewed by
Kuby [15]. Erkut [10] proved the problem is NP-hard even when the triangle
inequality is satisfied. A geometric version was studied by Wang and Kuo [25],
where points lie in the d-dimensional space, and the distance is Euclidean. Then,
they proved the following: when d = 1, the problem can be solved in O(kn) time
by dynamic programming after O(n log n)-time sorting; when d = 2, the problem
is NP-hard. The running time for d = 1 was recently improved to O(n log log n)
(after sorting) [2] by sorted matrix search method [13]. (For a good survey for
the sorted matrix search method see [1, Sect. 3.3].)

Ravi et al. [21] proved that the max-min k-dispersion cannot be approximated
within any factor in polynomial time, and cannot be approximated within the
factor of two in polynomial time when the distance satisfies the triangle inequal-
ity, unless P = NP. They also gave a polynomial-time algorithm with approx-
imation ratio two when the triangle inequality is satisfied. Thus, the factor of
two is tight.

In the max-sum k-dispersion problem, the objective is to maximize the sum
of distances between k facilities. The proof by Erkut [10] can easily be adapted
to show that the max-sum k-dispersion problem is NP-hard. It is not known
whether the problem is still NP-hard on the 2-dimensional Euclidean space.
Ravi et al. [21] gave an O(n log n+kn)-time exact algorithm when the points lie
on a line, a polynomial-time factor-four approximation algorithm when the trian-
gle inequality is satisfied, and a polynomial-time factor-(π/2+ ε) approximation
algorithm for the 2-dimensional Euclidean space (note that π/2 ≈ 1.571). The
factor of four was improved to two by Birnbaum and Goldman [4] and Hassin et
al. [14]. Fekete and Meijer [11] studied the case for the d-dimensional space with
the L1 distance, and gave an O(n)-time exact algorithm when k is fixed (after
sorting the points by x-coordinates and y-coordinates), and a polynomial-time
approximation scheme when k is part of the input. Polynomial-time approxima-
tion schemes for the Euclidean distance, or more generally for the negative-type
metric were given by Cevallos et al. [5,6]. For other variations, see [3,7].

In this paper, exact algorithms for the max-min k-dispersion problem are
studied. The main contributions are twofold.

First, we review an intimate relationship between the max-min k-dispersion
problem and the maximum independent set problem. A reduction to prove the
NP-hardness of the max-min k-dispersion problem uses the k-independent set



Exact Algorithms for the Max-Min Dispersion Problem 265

problem [21], and we prove the reverse reduction is possible. Namely, we show
that if the k-independent set problem can be solved in T (n, k) time, then the
max-min k-dispersion problem can be solved in O((T (n, k) + n2) log n) time.
Note that the k-independent set problem can be solved in O(nωk/3) time [20],
where ω < 2.373 is the matrix multiplication exponent (See Le Gall [17] for
the current best bound on ω). Therefore, our result implies that the max-min
k-dispersion problem can be solved in O(nωk/3 log n) time. We will also discuss
some consequences of these reductions.

Then, we turn our attention to two special cases in which we can solve the
problem quickly.

We study the case when a set of n points lie on a line, and obtain an O(n)-time
algorithm after sorting. This is an improvement over the recent O(n log log n)-
time algorithm [2]. In our algorithm, we employ the tree partitioning algorithm
by Frederickson [13]. Next, we consider the case when a set of n points lies on
a circle on the Euclidean plane, and the distance is measure by the shortest arc
length on the circle. Then, we obtain an O(n)-time algorithm after sorting.

The remainder of this paper is organized as follows. In Sect. 2, we consider a
relationship between the max-min k-dispersion problem and the k-independent
set problem. Section 3 gives an algorithm to solve the max-min dispersion prob-
lem when P is a set of points on a line. Section 4 gives an algorithm to solve
the max-min dispersion problem when P is a set of points on a circle. Finally,
Sect. 5 concludes the paper.

2 Relationship with the Maximum Independent Set
Problem

2.1 General Case

First, we reduce the max-min k-dispersion problem to the k-independent set
problem. Here, we remind the definition of the max-min k-dispersion problem. In
the max-min k-dispersion problem, we are given a set P of n elements, a function
d that assigns a non-negative real number d(p, q) for each pair of elements p, q
of P , and an integer k such that k ≤ n. Then, we want to find a subset S ⊆ P
with |S| = k that maximizes cost(S) = min{d(p, q) | p, q ∈ S}.

In k-independent set problem, we are given an undirected graph G = (V,E),
and we want to determine whether there exists a subset S ⊆ V of k vertices such
that each pair of vertices in S is non-adjacent, and find such a set S if exists.

For our reduction, we consider the following question Q(r) for a given real
number r: does there exist a set of k locations such that the distance of any two
locations is at least r?

Observe that the optimal value for the max-min k-dispersion problem is the
maximum of r such that the answer to Q(r) is yes. We also observe that the
optimal value lies in the set of possible distances {d(p, q) | p, q ∈ P}, and the
answers to Q(r) have the following monotonicity: if the answer to Q(r) is yes, and
r′ < r, then the answer to Q(r′) is also yes. Therefore, if Q(r) can be answered



266 T. Akagi et al.

correctly for any r, then we can solve the max-min k-dispersion problem by
performing binary search over the all possible O(n2) candidates after sorting the
distances d(p, q). The sorting takes O(n2 log n2) = O(n2 log n) time.

To answer the question Q(r) above, we use the k-independent set problem.
To this end, we construct the following undirected graph G(r) = (V,E). The
vertex set V is identical to P . Two locations p, q ∈ P are joined by an edge in
G(r) if and only if d(p, q) < r. Remind that we have the symmetry assumption
d(p, q) = d(q, p) for all p, q ∈ P , and thus the undirected graph is well-defined.

Let S ⊆ V be an independent set of size k in G(r). Then, by definition, every
pair of two vertices p, q ∈ S satisfies d(p, q) ≥ r. This implies that cost(S) ≥ r,
and the answer to Q(r) is yes. On the other hand, if the answer to Q(r) is yes,
then there exists a set S of k locations such that d(p, q) ≥ r for all p, q ∈ S. This
means that S is an independent set in G(r). Therefore, it follows that G(r) has
an independent set of size k if and only if the answer to Q(r) is yes.

Now we analyze the running time. We assume that the k-independent set
problem can be solved in T (n, k) time on n-vertex undirected graphs. Sorting
the distances takes O(n2 log n) time as discussed above. Then, we perform binary
search to find the maximum r such that the answer to Q(r) is yes among the
O(n2) candidates for r. The number of iterations is O(log n2) = O(log n). For
each iteration, we construct the graph G(r), which takes O(n2) time, and solve
the k-independent set problem, which takes T (n, k) time. Therefore, the overall
running time is O(n2 log n + (n2 + T (n, k)) log n) = O((T (n, k) + n2) log n).

The current best bound for T (n, k) is O(nωk/3) [20], where ω is the matrix
multiplication exponent. Since ω ≥ 2, we obtain the following theorem.

Theorem 1. The max-min k-dispersion problem can be solved in O(nωk/3 log n)
time.

On the other hand, the k-independent set problem can be reduced to the max-
min k-dispersion problem as follows [21]. Let G = (V,E) be an undirected graph
given as an instance of the k-independent set problem. Then, we construct the
following instance of the max-min k-dispersion problem. The set of locations is
V . The distance d(p, q) between p, q ∈ V is defined as follows: d(p, q) = 1 if p and
q are adjacent in G, and d(p, q) = 2 otherwise. Then, G has an independent set
S of size k if and only if there exists a set S of k locations such that cost(S) = 2.

This reduction does not only prove the NP-hardness of the max-min k-
dispersion problem, but also proves the W[1]-hardness of the problem, when k is
a parameter, as the k-independent set problem is W[1]-hard when k is a param-
eter. W[1]-hardness is a concept in parameterized complexity theory. Refer to
[12].

In summary, up to a logarithmic-factor overhead in the running time, the
max-min k-dispersion problem is equivalent to the k-independent set problem.

2.2 On the Euclidean Plane

The discussion above also applies to some special cases. We now look at the case
when P is a set of points on the Euclidean plane.
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We look at the construction of the graph G(r) more carefully. Remind that
in G(r), two vertices p, q ∈ P are joined by an edge if and only if d(p, q) < r.
This matches the definition of a unit disk graph. Here, we remind the definition
of a unit disk graph. A unit disk graph is an undirected graph defined by a set
of unit disks. The vertex set is the set of unit disks, and two disks are joined
by an edge if and only if the disks intersect. Usually, disks are considered to be
closed, but the results below also hold for open disks.

To view G(r) as a unit disk graph, we consider an open disk of radius r/2
that has a center at each point p ∈ P . Then, two such disks centered at p, q ∈ P
intersect if and only if d(p, q) < r. If we scale the whole picture by the factor of
2/r, then we obtain G(r) as a unit disk graph.

It is known that the k-independent set problem on unit disk graphs can be
solved in nO(

√
k) time [18]. Therefore, from the discussion above, we obtain the

following theorem.

Theorem 2. The max-min k-dispersion problem can be solved in nO(
√

k) time
when P lies on the Euclidean plane.

On the other hand, if the optimal value for the max-min k-dispersion problem
is r, then there exists a set of k pairwise disjoint open disks of radius r/2 that
have their centers in P . This means that if the max-min k-dispersion problem can
be solved in T (n, k) time when P is a set of points on the Euclidean plane, then
the k-independent set problem on unit disk graphs can be solved in T (n, k) time,
too. Since the k-independent set problem on unit disk graphs cannot be solved
in no(

√
k) time under the exponential time hypothesis [19], we can also conclude

that the max-min k-dispersion problem on the Euclidean plane cannot be solved
in no(

√
k) time under the exponential time hypothesis. Thus, the running time

in Theorem 2 is essentially optimal.

3 Max-Min Dispersion on a Line

In this section we show one can solve the k-dispersion problem in O(n) time if
P is a set of points on a line and the order of P on the line is given. The idea
of our algorithm is a reduction to the path partitioning problem [13], which can
be solved in O(n) time.

Let T be a tree in which each vertex v has a non-negative weight w(v), and
k be an integer. The tree k-partitioning problem is to delete k − 1 edges in the
tree so as to maximize the lightest weight of the remaining subtrees, where the
weight of a subtree is defined by the sum of the weights of its vertices. The tree
k-partitioning problem can be solved in O(n) time [13], where n is the number of
vertices in the tree. If the input tree is a path, then it is the path k-partitioning
problem.

Given an instance (P, k) of the max-min k-dispersion problem such that P is
a set of points on a line and k ≥ 3, we can transform it to an instance (P ′, k −1)
of the path (k − 1)-partitioning problem as follows. First, we construct a path
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6

0 0

4 7 4 3 7 3 4 7 7

6 4 7 4 3 7 3 4 7 7

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

(a)

(b)

Fig. 1. (a) A 4-dispersion problem on a line, and (b) the corresponding 3 path-
partitioning problem on a line.

P ′ = (V ′, E′). Assume P = {p1, p2, . . . , pn} and the points appear in this order
on the line from left to right. Define V ′ = {p′

0, p
′
1, . . . , p

′
n}, E′ = {ei = (p′

i−1, p
′
i) |

pi ∈ V }, w(p′
i) = d(pi, pi+1) for each i = 1, 2, . . . , n − 1, and w(p′

0) = w(p′
n) = 0.

See an example in Fig. 1. A solution of the max-min 4-dispersion problem in
Fig. 1(a) is {p1, p4, p8, p11} and its cost is 17. A solution of the path 3-partitioning
problem in Fig. 1(b) is {e4, e8} and its cost is 17. One can observe that an optimal
solution of the max-min k-dispersion problem contains {p1, pn}, and if an optimal
solution of the max-min k-dispersion problem is {p1, pn} ∪ {pi1 , pi2 , . . . , pik−2},
then a solution of the path k − 1-partitioning problem is {ei1 , ei2 , . . . , eik−2}.

Since one can solve the path k-partitioning problem in O(n) time [13], one
can solve the max-min k-dispersion problem in O(n) time.

Theorem 3. The max-min k-dispersion problem can be solved in O(n) time
when P is a set of n points on a line and the order of P on the line is given.

4 Max-Min k-dispersion on a Circle

In this section, we show one can solve the k-dispersion problem in O(n) time
if P is a set of points on a circle and the order of P on the circle is given.
The distance is measured by the arc length of the circle. We assume (1) the
length of the circumference, and (2) the length of the clockwise arc from some
designated point to each point are given. So, one can compute the central angle
corresponding to a given arc in constant time.

Let P be a set of points on a circle and each point has a non-negative weight,
and k be an integer. The circle partitioning problem deletes k edges on the circle
so as to maximize the lightest weight of the remaining subpath. So, this is the
circle version of the path k-partition problem, explained in Sect. 3. One can solve
the circle partition problem in O(n) time [24].

Theorem 4. One can solve the max-min k-dispersion problem in O(n) time
when P is a set of points on a circle and the order of the points on the circle is
given.
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The algorithm is rather complicated. Therefore, we seek for a simpler algo-
rithm for k = 3, which runs O(n) time.

The outline of the algorithm is as follows. For each point pi ∈ P , we compute
the best three points including pi, and then output the best three points among
them.

Algorithm 1. Find-3-dispersion-on-a-circle(P ,k)
cost = 0
Ans = ∅
for i = 1 to n do

find a set S of three points including pi with maximum cost(S)
if cost(S) > cost then

cost = cost(S)
Ans = S

end if
end for
Output Ans

Now we introduce some definitions. Given pi ∈ P , let p�
i and pr

i be the points
on the circle such that pi, p

�
i , p

r
i are the three corners of the equilateral triangle.

Let A� = (pi, p
�
i) be the arc of the circle between pi and p�

i with central angle
120◦, Ar = (pi, p

r
i ) be the arc of the circle between pi and pr

i with central angle
120◦, and At = (p�

i , p
r
i ) be the (open) arc of the circle between p�

i and pr
i with

central angle 120◦.
A set S = {pi, p�, pr} is of type-LR with respect to pi if p� ∈ A� and pr ∈ Ar.

Similarly, S is of type-LL with respect to pi if p� ∈ A� and pr ∈ A�, is of type-RR
with respect to pi if p� ∈ Ar and pr ∈ Ar, and is of type-LT with respect to pi

if p� ∈ A� and pr ∈ At, is of type-TT with respect to pi if p� ∈ At and pr ∈ At,
etc.

We have the following lemma.

Lemma 1. When P is a set of points on a circle, an optimal solution S of the
max-min 3-dispersion problem is of type-LR or type-TT with respect to some
pi ∈ S.

Proof. By case analysis. Assume S = {pi, p�, pr} and pi, p� and pr appear in
the clockwise order on the circle. If S is of type-LL with respect to pi, then S
is of type-LR with respect to p� (Fig. 2(a)). If S is of type-RR with respect to
pi, then S is of type-LR with respect to pr (Fig. 2(b)). If S is of type-LT with
respect to pi, then either (1) the arc of the circle between p� and pr has the
central angle less than 120◦ and S is of type-LR with respect to p� (Fig. 2(c)),
or (2) the arc of the circle between p� and pr has the central angle at least 120◦

and S is of type-TT with respect to pr (Fig. 2(d)). If S is type-TR with respect
to pi, then we can prove either (1) S is of type-LR with respect to pr (Fig. 2(e)),
or (2) S is of type-TT with respect to p� (Fig. 2(f)). Q.E.D.
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Fig. 2. Proof of Lemma 1.

Lemma 2. (a) If an optimal solution S = {pi, p�, pr} is of type-TT with respect
to pi, then p� is the first point in P on the circle after p�

i in the clockwise
order, and pr is the first point in P on the circle after pr

i in the counterclock-
wise order.

(b) If an optimal solution S = {pi, p�, pr} is of type-LR with respect to pi, then
p� is the first point in P on the circle after p�

i in the counterclockwise order,
and pr is the first point in P on the circle after pr

i in the clockwise order.

Proof. (a) Since S is of type-TT , min{d(pi, p�), d(p�, pr), d(pr, pi)} = d(p�, pr)
holds. Thus, choosing S so as to maximize d(p�, pr) results in the S with the
maximum cost.

(b) Since S is of type-LR, min{d(pi, p�), d(p�, pr), d(pr, pi)} �= d(p�, pr) holds.
Thus, choosing S so as to maximize d(pi, p�) and d(pi, pr) results in S with
the maximum cost. Q.E.D.

We need to compute for each pi the first point in P on the circle after p�
i in

the clockwise order, and it takes O(n) time in total. Similarly, we can compute
for each pi the first point in P on the circle after pr

i in the counterclockwise
order, and it takes O(n) time in total. We perform this as preprocessing.

Then, for each pi we need O(1) time to find (1) the set S of three points of
type-LR with respect to pi with maximum cost(S), and (2) the set S of three
points of type-TT with respect to pi with maximum cost(S), and then choose
the larger one. This is the set S of three points including pi with maximum
cost(S).
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Thus, we have the following theorem.

Theorem 5. Algorithm 1 solves the max-min 3-dispersion problem in O(n) time
when P is a set of points on a circle and the order of points on the circle is given.

5 Conclusion

In this paper, we have presented some algorithms to solve the max-min disper-
sion problems. In general, the max-min k-dispersion problem can be solved in
O(nωk/3 log n) time by reducing the problem to the maximum independent set
problem. This method implies that the max-min k-dispersion problem can be
solved in nO(

√
k) time when the input is a set of points in the Euclidean plane.

We then consider two special cases for which the problem can be solved faster.
If P is a set of points on a line and the ordering of the points on the line is given,
one can solve the dispersion problem in O(n) time. If P is a set of points on
a circle and the ordering of the points on the circle is given, one can solve the
k-dispersion problem in O(n) time.

One open problem is to solve the problem more efficiently if P is the set of
corner vertices of a convex polygon.
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Abstract. Algorithms for range partial sum query on high dimensional
integer grids typically focus on orthogonal ranges, which by definition
demands fixed right triangles between all adjacent boundary edges. We
extend the algorithm to solve 2D homothetic triangular range queries
in 〈O(Nα(N)), O(α2(N))〉 (〈preprocessing bound, query bound〉 of both
time and space since they are identical.), where N is the total number of
grid points and α(·) is a functional equivalence of the inverse Ackermann
function. This asymmetric bound improves over the existing bound for
orthogonal ranges. By the property of homotheticity, we mean that the
angles between any two adjacent boundaries are arbitrarily fixed con-
stants. The technique and bounds of our work can be extended to even
higher dimensional grids.

Keywords: Range partial sum query · Triangular reduction
Non-orthogonal homothetic range

1 Introduction

In this paper, we consider the following range partial sum query problem (range
query problem for short). Given a static d-dimensional integer grid A of dimen-
sion n1 × n2 . . . × nd with each grid point1 holding a value drawn from a semi-
group (S,⊕), how fast can we answer online, if preprocessing is allowed, partial
sum queries of a simple shape region Q (i.e. no self-intersection of boundary
edges). For a static grid, we disallow dynamic insertion or deletion of any point
values.

sum(Q) =
∑

(k1,...,kd)∈Q

A(k1, . . . , kd). (1)
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Our problem differs from the classic orthogonal range query problem in that
orthogonal range by definition demands right triangles (90◦) between any two
adjacent boundary edges, while we allow arbitrarily fixed angles. We only require
that all angles are known to the preprocessing algorithm and can not change in
the subsequent queries. We use the general term triangular query to stand for
triangular shape range partial sum query in a 2D-grid, tetrahedral shape range
partial sum query in a 3D-grid, and/or similar extensions to higher dimen-
sional grids. Since (S,⊕) is a semigroup, ⊕ operation is an associative oper-
ator, i.e. (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) holds for all x, y, z in the semigroup. No
other restrictions are imposed on this semigroup as is sometimes done by sim-
ilar problems in the literature. For instances, we do not assume idempotence,
i.e. a ⊕ a = a,∀a ∈ S, which is required by the Berkman-Vishkin’s algorithm
[1]; We do not assume any partial or total ordering among elements in S as do
RMQ (Range Minimum Query) algorithms; We do not assume the existence of
an inverse operation of ⊕, otherwise a trivial algorithm exists [2].

We use the same arithmetic model for complexity analysis as in Yao [2,3],
Chazelle and Rosenberg [4,5]. In the arithmetic model, the space bound is given
in units of semigroup elements instead of bits. The preprocessing and query
time are calculated in number of ⊕ operations, ignoring the time to find the
proper memory cells2. We use the notation 〈O(f(N)), O(g(N))〉 to denote the
complexity bounds of a pair of preprocessing and corresponding query algorithm,
respectively. Usually, the space and time bounds of these algorithms are identical
so that we do not differentiate.

Motivation

This research was motivated by our study on the Pochoir stencil compiler
[8], where we have to query the properties of an arbitrary d-dimensional
octagonal shape region. The octagonal shape comes from the projection of a
(d+1)-dimensional hyper-zoid3 onto a d-dimensional spatial grid. Apparently, a
straightforward way to answer an octagonal range query is to decompose it into a
set of rectangular and triangular shape queries. The range query is about partial
sum because each grid point may contains various properties for the compiler to
collect in order to generate an efficient kernel function for the region.

Our Contributions

1. We extend the range partial sum query problem on integer grid from orthogo-
nal to non-orthogonal shapes. In particular, we solve the 2D triangular prob-
lem in 〈O(Nα(N)), O(α2(N))〉 (〈preprocessing bound, query bound〉 of either

2 In the RAM model, we can locate a proper memory cell in a recursive divide-and-
conquer tree by finding the Lowest Common Ancestor (LCA) of the end vertices i of
the query range. The LCA problem can in turn be solved by a ±1 RMQ algorithm
with linear preprocessing time and O(1) query time [6,7].

3 “Hyper-zoid” is a trapezoidal analogue in a (d + 1)-dimensional grid, where d > 1.
The (d + 1)-dimensional grid composes of a d-dimensional spatial grid plus a 1-
dimensional temporal axis.
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time or space since they are identical.), where N is the total number of grid
points and α(·) is a functional equivalence of the inverse Ackermann function
[9]. This result improves over the previous result on rectangular problem, i.e.
the 〈Nα2(N), α2(N)〉 bounds [4,5].

2. We make the following algorithmic contributions:
(a) We generalize the “dimension reduction” technique introduced by

Chazelle and Rosenberg [4,5] to “triangular data reduction” (“triangular
reduction” in short) in Sect. 3;

(b) We show that an arbitrary triangular problem can be reduced to an Isosce-
les Right Triangular (IRT) problem, which can be solved similar to the
square problem (Sect. 2) based on the observation that it has only one
degree of freedom for scaling;

(c) We generalize a recursive algorithmic scheme to get an α(·) bound in the
end of Sect. 2.

3. We conjecture that the optimal bounds of homothetic triangular problem
in an arbitrary d-dimensional integer grid, where d > 1 is a constant, is
〈O(Nα(N)), O(αd(N))〉, in contrast to the 〈O(Nαd(N)), O(αd(N))〉 bounds
of orthogonal problem.

2 Square Shape Range Partial Sum Query Problem

This section considers a simpler problem where the query ranges are of square
shape, i.e. the height over width must be a fixed 1 : 1 aspect ratio, the study
of which will serve as a warm-up for the later homothetic triangular problem
to be discussed in Sect. 3. Intuitively, the square problem can be solved more
efficiently because a rectangle can scale independently on either dimension, i.e.
having two degrees of freedom, while a square has only one in order to keep the
1 : 1 aspect ratio.

Lemma 1. There is an algorithm of 〈O(n1n2 log(n1 + n2)), O(1)〉 bounds to
solve the 2D square range partial sum query problem on an integer grid of dimen-
sions N = n1 × n2,

Proof. We prove the lemma by construction as follows. Without loss of gener-
ality, we assume that n1 ≥ n2. Referring to Fig. 1, the preprocessing algorithm
works as follows.

1. We divide the n1 × n2 grid into a 2× 2 subgrids, each of dimension n1/2 ×
n2/2. We store on each point p inside a subgrid g four partial sums reduced
from all values contained within the maximum rectangle bounded by p and
one of the four corner vertices of g. We call this procedure corner reduc-
tion , respectively the partial sums corner values. The corner reduction can
accomplish in O(n1n2) time and space using dynamic programming.

2. We recursively divide each subgrid into a 2 × 2 array of subgrids, each of
dimension n1/22 × n2/22, and perform corner reductions for every points
within every subsubgrids. This procedure continues until the size of each
subgrid reaches O(1).
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Apparently, the cost of dynamic programming at each level of recursion
is O(n1n2), and there are O(log n2) levels of recursion. The total prepro-
cessing overhead, for either time or space, thus sums up to P�,0(n1, n2) =
O(n1n2 log n2).

Given an arbitrary square query range with dimension e� ∈ [n2/2k+1, n2/2k)
for some integer k ∈ [0, log n2], i.e. 0 ≤ k ≤ log n2, it can stride at most four
intersecting subgrids at recursion level k, i.e. subgrid of dimension n1/2k × n2/2k,
because of the fixed 1 : 1 aspect ratio. In other words, there will be exactly one
corner vertex of the four intersecting subgrids sitting inside the square query
range. If we assume that locating the intersecting corner vertex as well as the
four neighboring subgrids is free (as is true in the arithmetic model or the RAM
model, see the footnote in Sect. 1), the partial sum of the query range is then a
simple summation of the four corner values stored in the vertices. Q�,0(n1, n2) =
3 = O(1). We name the procedure corner query . 	

Theorem 1. There is an algorithm of 〈O(n1n2α(n1 + n2)), O(α2(n1 + n2))〉
bounds to solve the 2D square range partial sum query problem on an integer
grid of dimension N = n1 × n2.

Proof. Referring to Figs. 1 and 2, we prove the theorem by constructing a recur-
sive algorithmic scheme as follows. The inputs to the recursive algorithmic
scheme are:

1. A square algorithm of 〈P�,k(n1, n2) = O(n1n2f(n1 + n2)), Q�,k(n1, n2) =
O(1)〉 bounds, where the subscript k indicates the k-th recursive application
to the scheme, and f(n) < n − 2 is a function of problem dimension n.

2. A 1D algorithm of 〈P−,k(n) = O(nf(n)), Q−,k(n) = O(1)〉 [2,3,9].

For simplicity, we assume that n1 = Θ(n2) in the following analysis.
The preprocessing algorithm recursively partitions the input grid of dimen-

sion n1 × n2 into a 2D n1
f(n1+n2)

× n2
f(n1+n2)

array of subgrids, each of dimension
f(n1+n2)×f(n1+n2), until the size of each subgrid reaches O(1). At each level
of recursion, the preprocessing algorithm P�,k+1 conducts corner reductions, line
reductions, and block reductions on subgrids as follows.

1. Corner reduction: The algorithm performs corner reductions for every
point with respect to the containing subgrid as in Lemma1. The prepro-
cessing overhead of each subgrid is O(f2(n1 + n2)) and sums up to O(n1n2)
over the entire input grid.

2. Line reduction: Firstly, the algorithm reduces each horizontal line segment
of length f(n1 + n2) within each subgrid into one single value by the ⊕ oper-
ation. That is, a horizontal line of length n2 is reduced to a 1D array of
n2/f(n1+n2) reduced values. The algorithm then calculates the partial sums
of the f(n1 + n2) reduced values (from horizontal line segments) within each
subgrid with respect to the top and bottom boundary edges, respectively.
That is, for the input grid with n1 rows of horizontal lines, there will be 2n1

(one n1 rows comes from the reduction with respect to the top edge, another



Non-orthogonal Homothetic Range Partial-Sum Query on Integer Grids 277

n1 rows comes from the reduction with respect to the bottom edge) arrays,
each of n2/f(n1 + n2) line values. Thirdly, the algorithm applies the 1D
preprocessing algorithm, i.e. P−,k, to the 2n1 arrays of horizontal line values.
Symmetrically, the algorithm applies the line reductions to all vertices line
values. The horizontal line reduction takes 2n1 · P−,k

(
n2

f(n1+n2)

)
= O(n1n2)

time and space, which is asymptotically the same as the vertical line reduc-
tion. The overall line reductions thus sum up to O(n1n2) space and time as
well.

3. Block reduction: The algorithm reduces all points within each subgrid into a
single partial sum by the ⊕ operation and get a 2D array of n1

f(n1+n2)
× n2

f(n1+n2)

block values. We then apply the preprocessing algorithm of P�,k, i.e. the
input square algorithm, to the array of block values. The block reduction
will take P�,k(n1/f(n1 + n2), n2/f(n1 + n2)) = O( n1

f(n1+n2)
· n2

f(n1+n2)
·

f( n1
f(n1+n2)

)) = O(n1n2) for either time or space.

Recursive reduction: We recursively apply the above corner, line, and block
reductions to all 2 × 2 array of subgrids of dimension 2f(n1 + n2) × 2f(n1 + n2)
with subsubgrids of dimension f(f(n1 + n2)) × f(f(n1 + n2)). By a recursive
application to all such 2 × 2 array of subgrids, we cover the case when a lower
level (with recursion level > k) square query range sits between the boundary
of two adjacent subgrids based on the fact that it can not stride more than four
subgrids of level-k.

The preprocessing overhead of one round of above reductions can be calcu-
lated as follows. If we define f (i)(n) = n if i = 0 and f (i)(n) = f(f (i−1)(n))
if i > 0, it’s not hard to see that the preprocessing overhead of any 2D
array of dimension 2f (k)(n1 + n2) × 2f (k)(n1 + n2) with subgrids of dimension
f (k+1)(n1+n2)×f (k+1)(n1+n2) sum up to O((f (k)(n1+n2))2). Since the entire
n1×n2 grid has O(( n1n2

f(k)(n1+n2)
)2) such 2D arrays, the overall overheads over the

entire grid sum up to O(n1n2) for any recursion level. Since the preprocessing
proceeds recursively for f∗(n1 +n2) levels4, the overall preprocessing overheads,
for either time or space, are O(n1n2f

∗(n1 + n2)).
The query algorithm works as follows. Assuming that the input square query

range is of dimension e� ∈ [f (k+1)(n1 + n2), f (k)(n1 + n2)), i.e. the square is
of dimension e� × e�, the key observation is that it can stride at most one
2 × 2 array of subgrids of dimension 2f (k)(n1 + n2) × 2f (k)(n1 + n2). Since we
have preprocessed all such 2 × 2 array of subgrids, we can answer the query at
recursion level k by that specific 2 × 2 array of subgrids. More specifically, it
can be answered by an “inter-block query”, i.e. a partial sum on the results
returned from the following queries: one square query on the data structure
preprocessed by “block reduction”, two horizontal line queries (1D queries), two
vertical line queries (1D queries) by “line reduction”, and four corner queries by
“corner reduction”. Since we assume that we can locate a proper recursion level
and the specific 2 × 2 array of subgrids in O(1) time and the query time of all

4 We define f∗(n) = 0 if n ≤ 1, otherwise f∗(n) = 1 + f∗(f(n)).
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input algorithms at any recursion level is O(1), the total query overhead sums
up to O(1) as well.

This completes one round of application to the recursive algorithmic scheme
for the square problem. The resulting algorithm is of 〈O(n1n2f

∗(n1+n2)), O(1)〉
bounds. If we keep supplying the resulting more advanced algorithm into the
above recursive algorithmic scheme, we eventually will get the optimal 〈O(n1n2

α(n1 +n2)), O(α2(n1 +n2)〉 algorithm, where α(n) = min{k| log

k︷ ︸︸ ︷∗ ∗ . . . ∗(n) ≤ 2}
is a functional equivalence of the inverse Ackermann function [9].

We need a bit more explanation on the query bound. The recurrence of query
time is Q�,k+1(n1, n2) = Q�,k(n1/f(n1+n2), n2/f(n1+n2))+4Q−,k(n2/f(n1+
n2)) + 3 according to the above “inter-block query” procedure. Since the query
overhead of 1D algorithm Q−,α(n) = O(α(n)) and the recursive application can
continue up to α(n1 + n2) rounds, we have Q�,α(n1+n2)(n1, n2) = 4

∑α(n1+n2)
k=0

Q−,k(n1, n2) + 3α(n1 + n2) = O(α2(n1 + n2)). 	


Fig. 1. This diagram depicts the corner,
line, and block reductions.

Fig. 2. This diagram demonstrates
several possible square shape queries

In summary, our approach, namely the “recursive algorithmic scheme”,
has the following general framework.

1. We design an initial algorithm I that solves the problem correctly, but not
necessarily very efficiently.

2. We develop a recursive algorithmic scheme M, into which we plug I and make
the resulting algorithm M(I) behave functionally identical to I, but with
asymptotically different (ideally improved) complexity bound. M remains
oblivious of the internal structure of I, but the knowledge of the asymptotic
bounds of I may help.

3. We repeat the above two steps for several rounds where in any given iteration
i > 0 the input algorithm M(i−1)(I) is the resulting algorithm from the (i−1)-
th application of the recursive algorithmic scheme M. The goal of repeated
self-application is to reach even better bounds (ideally an α(·) bound).
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3 Triangular Range Query Problem

This section discusses the 2D triangular problem. We assume that all angles of
the triangular shape are fixed constants and known to the preprocessing algo-
rithm. We argue that this is not a weaker version of the classic orthogonal range
query problem because an orthogonal range by definition requires fixed right
angles between all adjacent boundaries.

Outline of the high-level idea:

1. Reducing an arbitrary triangular range query problem to an isosceles right
triangular (IRT for short) problem: We have an observation that there is
always a smallest feature triangle of the query triangular shape, and we
can tile up the entire grid by feature parallelograms composed of feature
triangles and corresponding inverted. A feature triangle is a smallest tri-
angle that has the query triangular shape and has all its vertices on the grid
points. Similarly, we have the notion of feature parallelogram . Referring to
Fig. 5, if we reduce every feature triangle and its corresponding feature par-
allelogram (left-hand side) to two partial sum values (Δ and � respectively
in the figure) and store them as a new grid point, we get a new reduced grid
on the right-hand side. By the reduction, an arbitrary triangular range query
on the original grid (left-hand side) is equivalent to an IRT query on one of
the reduced grids (right-hand side) by aligning its oblique line with one of
the tilings of feature parallelograms. To align with all possible input query
ranges, we can have up to O(|Δ|) different reduced grids, where |Δ| is the
number of points internal to a feature triangle. In the rest of paper, we use
the term “triangle” to stand for IRT unless otherwise specified.

2. Extending the notion of data reduction to triangular prefix/suffix reduction.
3. The key observation is then an input IRT range of dimension eΔ will stride

at most one 3 × 3 array of subgrids of dimension 3(eΔ/2) × 3(eΔ/2), where
eΔ/2 is the dimension of the IRT’s largest embedded square.

Organization: We first address how to preprocess all triangular prefix/suffix
partial sums in linear time and space by Lemma2; We then construct an ini-
tial algorithm in Theorem2 and a recursive algorithmic scheme in Theorem 3,
respectively.

Definitions and Conventions throughout the section:

1. All coordinate systems in the figures of this paper have horizontal axis indexed
from left to right (small coordinate on the left and large on the right), and
vertical axis from bottom to top (small coordinate on the bottom and large
on the top).

2. Referring to Fig. 3, for columns to the left of Lv, we define the triangular
prefix “v(i, j).Δprefix” as the partial sum of the largest IRT bounded between
the bottom-left vertex (i, j) and partition line Lv, where i is the horizontal
coordinate and j is the vertical coordinate, respectively.
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3. Referring to Fig. 4, for columns to the right of Lv, we define the triangular
suffix “v(i, j).Δ suffix” as the partial sum of the largest IRT bounded between
the top-right vertex (i, j) and partition line Lv.

4. Note that it depends on the orientations of IRT and the partition line whether
the reduction to the left, right, upper, lower side of the partition line is for
triangular prefix or suffix.

5. We define an IRT’s core length (e�) as the dimension of its largest embedded
square. We denote an IRT’s dimension, i.e. the horizontal/vertical base, by
eΔ. Clearly, eΔ = 2e�.

Fig. 3. Triangular prefix

Fig. 4. Triangular suffix

Fig. 5. This diagram shows how to
reduce an arbitrary triangular problem
to an IRT problem. In this diagram,
every grid point on the right-hand side
holds two values, i.e. the partial sum of
a feature triangle (Δ) and of its feature
parallelogram (�).

Lemma 2. For an IRT range query on a reduced grid, we can preprocess all
triangular prefixes and suffixes with respect to a given partition line in time and
space linear to the size of grid.

Proof. Referring to Figs. 3 and 4, we assume without loss of generality a vertical
partition line Lv. Initially, each grid point on the reduced grid stores two values,
one is the partial sum of a feature triangle (Δ) and the other is the partial
sum of the corresponding feature parallelogram (�). We compute the triangular
prefixes and suffixes by dynamic programming with respect to Lv as follows.
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1. We can compute all triangular prefixes to the left of Lv column by column
by the recurrences of (2) and (3).

v(i, j).Δprefix = v(i, j).Δ + v(i + 1, j + 1).Δprefix +v(i + 1, j).� (2)
v(i, j).� = v(i + 1, j). � +v(i, j).� (3)

In the recurrences, v(i, j).Δ and v(i, j).� is the partial sum of feature trian-
gle and corresponding feature parallelogram stored at cell (i, j), and v(i, j).�
denotes the partial sum of one horizontal line segment bounded between coor-
dinate (i, j) and Lv. By the dynamic programming recurrences, we can com-
pute all triangular prefixes in time and space linear to the size of grid.

2. We can compute all triangular suffixes to the right of Lv column by column
by the recurrences of (4).

v(i, j).Δ suffix = v(i, j).Δ + v(i − 1, j − 1).Δ suffix +v(i, j − 1). �� (4)

In the recurrence, v(i, j − 1). �� stands for the partial sum of one vertical
line segment bounded between cell (i, j − 1) and the horizontal base of the
largest IRT bounded between (i, j) and Lv. In Fig. 4, v(i, j − 1). �� is the
vertical line segment shaded by mini-grid.
Observing that the length of v(i, j). �� is always i − 1 for all �� on the
same column i, we denote it by di = i − 1, i ≥ 1. We can then compute
all v(i, j). �� values column by column by the following simple dynamic
programming algorithm.

For the i-th column to the right of Lv, we partition it into segments of
length di = i − 1, i ≥ 1. We then compute by dynamic programming for
every point on the column the partial sum from itself to the top and bottom
vertices of the holding segment and store them as v(i, j). � and v(i, j). �,
respectively. Now, it’s clear that any v(i, j). �� can be computed in O(1)
time by summing up one � and one � value of cell (i, j) with respect to the
top and bottom vertices of the holding segment.

Since the preprocessing time for �� values are amortized O(1) for every grid
point, it’s not hard to see that the entire preprocessing overhead of triangular
suffixes are linear as well by (4). 	


Theorem 2. There exists an algorithm that can solve the 2D triangular range
partial sum query on a grid of dimension n1 ×n2 in bounds of 〈O(n1n2 log(n1 +
n2)), O(1)〉.
Proof. To simplify the discussion, we assume without loss of generality that
n1 ≥ n2 and n1 = Θ(n2). Referring to Figs. 6 and 7, we construct a preprocessing
algorithm for 2D triangular range query problem as follows:

1. We divide the n1 × n2 grid into a 2 × 2 array of subgrids, each of dimen-
sion n1/2 × n2/2, ignoring the at most one (1) row or column difference
between subgrids to simplify the discussion. More generally, referring to
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Fig. 6. Perform corner reduction (up to 2
directions) in initial triangular algorithm

Fig. 7. Perform triangular prefix/suffix
(up to 2x) in initial triangular algorithm

Fig. 8. Query in initial triangular
algorithm

Fig. 9. Query in recursive algorithmic scheme
for triangles

Fig. 7, at each recursion level k, where k ∈ [0, log n2], we divide each grid
of dimension n1/2k × n2/2k into a 2 × 2 array of subgrids, each of dimension
n1/2k+1 × n2/2k+1. Within each subgrid, we perform corner reductions for
all points with respect to two vertices, depending on the orientation of the
query triangular shape; We also compute triangular prefixes and suffixes for
all grid points up to 2x of the subgrid’s dimension with respect to every ver-
tical boundaries. The reason behind the 2x triangular prefixes and suffixes
computation will become clear in the query algorithm. Since the preprocess-
ing complexity for both corner reduction and triangular prefixes/suffixes are
linear, the overall overhead for any recursion level is clearly linear.

2. Summing up the overhead over all log n2 recursion levels and O(|Δ|) different
tilings yields the claimed preprocessing bound, where |Δ| is a constant for
any given query triangular shape.

The query algorithm works as follows. Given an arbitrary input triangular
query range, we firstly align its oblique line to one of the O(|Δ|) tilings, thus
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reduce it to an IRT range query. Analogous to the case of square range query
(Lemma 1), we have an observation that an IRT range query with core length
e� ∈ [n2/2k+1, n2/2k) can stride at most one 3×3 array of subgrids with dimen-
sion 3(n1/2k) × 3(n2/2k), thus can be answered by summing up one triangular
prefix (up to 2x of the subgrid’s dimension), one triangular suffix, and up to
three (3) corner queries as shown in Fig. 8. 	

Theorem 3. There exists a recursive algorithmic scheme that can solve the 2D
triangular range partial sum query on a grid of dimension n1 × n2 in bounds of
〈O(n1n2α(n1 + n2)), O(α2(n1 + n2))〉.
Proof. Referring to Fig. 9, we construct a recursive algorithmic scheme as follows.

We assume an input triangular algorithm with 〈PΔ,i(n1, n2) = O(n1n2f(n1+
n2)), QΔ,i(n1, n2) = O(1)〉 bounds, and an input 1D algorithm with 〈P−,i(n) =
O(nf(n)), Q−,i(n) = O(1)〉 bounds, where f(n) < n − 2 is a function of the
input problem’s dimension and subscript i specifies the rounds of repeated self-
application to the recursive algorithmic scheme as in the case of square problem
(proof of Theorem 1). Again, we assume n1 = Θ(n2) to simplify the discussion.

Analogous to the recursive algorithmic scheme for the square problem (proof
of Theorem 1), at recursion level k, the preprocessing algorithm PΔ,i partitions

an f (k)(n1 + n2) × f (k)(n1 + n2) grid into a f(k)(n1+n2)
f(k+1)(n1+n2)

× f(k)(n1+n2)
f(k+1)(n1+n2)

array

of subgrids, each of dimension f (k+1)(n1 + n2) × f (k+1)(n1 + n2), and conducts
corner reductions, line reductions, triangular prefix/suffix reduction, and block
reductions on all subgrids. Recursively, it preprocesses all 3 × 3 subgrids of
dimension 3f (k+1)(n1 + n2) × 3f (k+1)(n1 + n2) with subsubgrids of dimension
f (k+2)(n1 +n2)×f (k+2)(n1 +n2), and so on. In order to align the oblique line of
input (reduced) IRT query range with one of the 2D arrays, we have to preprocess
for f (k+1)(n1 +n2) differently aligned 2D arrays of subgrids at level k. Since the
preprocessing overhead for one such array is O((f (k)(n1+n2))2/f (k+1)(n1+n2)),
the overhead over all differently aligned arrays is then O((f (k)(n1 + n2))2), and
sum up to O(n1n2) over the entire grid.

The query algorithm works as follows. Assuming that the input (reduced) IRT
range has core length e� ∈ [f (k+1)(n1 + n2), f (k)(n1 + n2)), the key observation
is that the range can stride at most one 3 × 3 array of subgrids of dimension
3f (k)(n1 + n2) × 3f (k)(n1 + n2). Since we have preprocessed all such 3 × 3
subgrids, we can answer the query by summing up at most the following results,
i.e. one triangular query on the data structure preprocessed by “block reduction”,
one horizontal and one vertical line queries (1D queries), one corner query, one
triangular prefix and one triangular suffix query. The query time is O(1) following
a similar argument as in the proof of Theorem1.

The claimed final preprocessing and query bounds then follow similarly to
that of Theorem 1. 	


4 Future Work and Open Problems

We have shown an asymmetric upper bound of 〈O(O(Nα(N)), O(αd(N))〉 for
the homothetic triangular range partial sum query problem. The reason behind
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asymmetry is that we employ the 1D algorithm [2,9] in our recursive algorithmic
scheme. An interesting open problem is whether this bound is tight? A more
interesting problem is how to handle general non-orthogonal range partial sum
query problem without losing much in complexity bounds, i.e. the angles between
adjacent boundaries of input query ranges may change from query to query?

5 Related Work

To the best of our knowledge, all previous research on range partial sum query
problem assumed orthogonal ranges. Yao [2] devised the first 1D partial sum
algorithm with an 〈O(Nα(N)), O(α(N))〉 bound. Seidel [9] provided an excellent
graphical illustration and simplification of the algorithm. Chazelle and Rosen-
berg [4] later extended the algorithm to arbitrary d-dimensional grid with bounds
of 〈O(Nαd(N)), O(αd(N))〉 by the technique of “dimension reduction”. In their
later work [5], Chazelle and Rosenberg proved a lower bound of the 1D offline
problem, where the queries are known ahead of time. They further conjectured
that their multi-dimensional extension is optimal.

Other works in the literature studied variants of the problem, such as the
dynamic version that allows insertions and deletions [10], or special cases such
as RMQ (Range Minimum Query), where properties such as idempotence and
ordering among elements can be utilized [11–18].

Classic orthogonal range searching problem in computational geometry [19]
assumes a contiguous space and sparse points, while in our setting we assume
an integer grid where every point holds a valid value.
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Abstract. In this paper, an iterative algorithm is designed to compute the
sparse graphs for traveling salesman problem (TSP) according to the frequency
quadrilaterals so that the computation time of the algorithms for TSP will be
lowered. At each computation cycle, the algorithm first computes the average
frequency f ðeÞ of an edge e with N frequency quadrilaterals containing e in the
input graph G(V, E). Then the 1/3|E| edges with low frequency are eliminated to
generate the output graph with a smaller number of edges. The algorithm can be
iterated several times and the original optimal Hamiltonian cycle is preserved
with a high probability. The experiments demonstrate the algorithm computes
the sparse graphs with the O(nlog2n) edges containing the original optimal
Hamiltonian cycle for most of the TSP instances in the TSPLIB. The compu-
tation time of the iterative algorithm is O(Nn2).

Keywords: Traveling salesman problem � Probability model
Frequency quadrilateral � Iterative algorithm � Sparse graph

1 Introduction

Traveling Salesman Problem (TSP) is a well-known NP-hard problem in combinatorial
optimization. Given the complete graph Kn on the n vertices {1, 2,���, n}, there is a
distance function d(u, v) > 0 between any pairwise vertices u; v 2 f1; 2; � � � ; ng. For
the symmetric TSP, we have d(u, v) = d(v, u). The objective of TSP is to find such a
permutation r = (r1, r2,���, rn) of the n vertices rk 2 f1; 2; � � � ; ng 1� k � nð Þ where
the total distance d rð Þ ¼ d r1; rnð Þþ Pn�1

k¼1 d rk; rkþ 1ð Þ is the minimum. Namely, the
cycle r = (r1, r2,���, rn) with the minimum distance d(r) is the optimal Hamiltonian
cycle (OHC) and the other cycles rs are called the Hamiltonian cycles (HC). TSP has
been proven to be NP-complete [1] and there are no exact polynomial-time algorithms
unless P = NP.

TSP is the ultimate model of many complex discrete optimization problems, such as
the network optimization, VLSI, and machine scheduling, etc. The methods for TSP are
usually referred to resolve these complicate problems. Thus, TSP is extensively studied
in combinatorics, operation research and computer science, etc. The algorithms for TSP
[2] have become one of the prosperous branches in the research. The research
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illustrated that the exact algorithms generally need O(an) time to resolve TSP where
a > 1. For example, the time complexity of dynamic programming for TSP is O(n22n)
owing to Held and Karp [3], and independently Bellman [4]. The state-of-art branch
and bound [5] or cutting plane methods [6, 7] are feasible for TSP with thousands of
vertices. Due to the exponential number of constraints, the exact methods for TSP often
need long-time computation to resolve the big scale of TSP instances.

Since the computation time of the exact algorithms is hard to reduce, some
researchers turn to the approximation algorithms or heuristics for TSP. The approxi-
mation algorithms mainly depend on the good properties of some special computation
models, such as special graphs or trees, to reduce the computation time. The minimum
spanning tree-based algorithm [8] and Christofide’s algorithm [9] spend the O(n2) and
O(n3) time to produce the 2-approximation and 1.5-approximation for metric TSP,
respectively. The computation time of the approximation algorithms usually have close
relationships with the approximation ratio. The nearer the approximation approaches
the optimal solution, the longer the computation time of the approximation algorithms
will require [2]. The experiments illustrated that the Lin-Kernighan heuristics (LKH)
was competitive to generate the approximation [10] within 5% of the optimal solution
in nearly O(n2.2) time. One sees the heuristic algorithms are efficient to compute the
approximations. On the other hand, they cannot guarantee to find the optimal solution,
especially for the large scale of TSP.

Besides the above methods for TSP on the Kn, some researchers pursue the methods
for TSP on the sparse graphs. The sparse graphs include a small number of edges so
that the search space of the OHC is greatly reduced. For example, the TSP on the
bounded degree graphs can be resolved in time O((2 − e)n) [11] where e relies on the
maximum degree of a vertex. In the research of approximation algorithm, Gharan and
Saberi [12] proposed the polynomial-time approximation schemes based upon the
bounded genus graphs where the constant factor is 22:51ð1þ 1

nÞ for the planar TSP. For
the metric TSP with bounded intrinsic dimension, Bartal et al. [13] have designed the
randomized polynomial-time algorithm that is able to compute a (1 + e)-approximation
to the optimal solution where e > 0. For the TSP on the Kn, there are no such good
results. Whether one pursues the optimal solution or explores the approximations for
the TSP, he or she will get the better results on the sparse graphs than those on the
complete graph Kn. The question is how to reduce the TSP on the Kn to the TSP on the
sparse graphs.

This topic is the research of this paper. Given the TSP on the Kn, our objective is to
eliminate the number of the irrelevant edges as most as possible and lose the number of
the OHC edges as least as possible. After many irrelevant edges are trimmed, the sparse
graphs will be obtained. If the sparse graph contains the original OHC, the exact or
approximation algorithms will consume less time to find the OHC or approximations in
the sparse graphs. Otherwise, if the sparse lose a few OHC edges, the exact or
approximation algorithms will find the approximations in the sparse graphs.

To eliminate the edges out of the OHC, the difference between the OHC edges and
the other edges will be explored. According to the k-opt moves, Hougardy and
Schroeder [14] proved some edges cannot belong to the OHC. They presented a
three-stage combinatorial algorithm to trim a lot of irrelevant edges. The experiments
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showed the Concorde TSP solver was speeded up 11 times to resolve the Euclidean
TSP instance d2103 on the sparse graph.

Our work computes a sparse graph for TSP according to the frequency graph. In
previous work [15–17], we compute the frequency graph with a set of the optimal
4-vertex paths with given endpoints where the frequency of the OHC edges is much
higher than the average frequency of all the edges. The results benefit from the good
property of these specific optimal paths which have many intersections of edges with
the OHC. Since the frequency of the OHC edges are much bigger than that of most of
the other edges, the minimum frequency of the OHC edge can be taken as the fre-
quency threshold to eliminate the other edges with low frequency so that it is possible
to compute a sparse graph for TSP.

In a following paper [18], Wang and Remmel computed the frequency graphs with
the frequency quadrilaterals rather than the specific optimal 4-vertex paths. They listed
the six frequency quadrilaterals for a weighted quadrilateral ABCD in the Kn. Based on
the six frequency quadrilaterals, they formulated a binomial distribution model to

derive the lower bound of the frequency of the OHC edge e as 7
3 þ 4

3 n�3ð Þ
� �

N
j k

where

N represents the number of the frequency quadrilaterals containing e. The probability

that an OHC edge has the minimum frequency 7
3 þ 4

3 n�3ð Þ
� �

N
j k

tends to zero for big

N and n. In average case, the event that an OHC edge e has the frequency above
3þ 2

n�2

� �
N

� �
has the maximum probability. It means that the frequency of the OHC

edges will be bigger than 3þ 2
n�2

� �
N

� �
in most cases. The experiments showed that

the actual minimum frequency of the OHC edge was bigger than 3þ 2
n�2

� �
N

� �
for

most TSP instances. Moreover, the minimum frequency of the OHC edges increases
according to n. Therefore, it is feasible to compute a residual graph using the frequency
3N as a frequency threshold.

Given the Kn, we first compute the corresponding frequency graph with the fre-
quency quadrilaterals in Kn. After we eliminate the edges with low frequency according
to the minimum frequency of the OHC edge, we will obtain the first preserved graph
G1 containing the OHC. A natural idea is that we can repeat the procedure for the edges
in the G1 if the edges in the G1 are included in many quadrilaterals. That is, we
compute the frequency graph of G1 and trim the edges with lower frequency according
to the other minimum frequency of the OHC edge. Furthermore, if the preconditions in
the preserved graphs are sufficient, this procedure can be iterated several times until the
final preserved graph is sparse enough. Based on the sparse graphs, the computation
time of the algorithms for TSP will be greatly reduced. Once the sparse graph has the
good properties, such as planarity, k-edge connected, bounded degree, bounded
tree-width or genus, etc., the complexity of TSP will be lowered. A first question is how
many possible edges we should eliminate at each computation cycle according to the
minimum frequency of the OHC edge? The second question is how many cycles we
can run the procedure to guarantee the preserved graphs to contain the OHC. Since the
answers to the first question only concerns the number of the deleted edges at each
computation cycle, the stop computation cycle must be given to terminate the com-
putation procedure to output the sparse graph for TSP.
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The outline of this paper is given as follows. In Sect. 2, we shall briefly introduce
the frequency quadrilaterals and the probability model for the OHC edges. A criterion
is derived to eliminate how many possible edges whereas the OHC edges are kept
intact. In Sect. 3, we shall introduce the iterative algorithm to compute a sparse graph
based on the frequency quadrilaterals. The maximum computation cycle and the stop
computation cycle are also given. The iterative algorithm is tested with tens of
real-world TSP examples in Sect. 4. The preserved graphs in the computation process
will be shown. The conclusions and possible future research are given in the last
section.

2 The Frequency Quadrilaterals

The frequency quadrilateral is a kind of special frequency graph Ki where i = 4 [18].
The frequency quadrilateral is computed with the six optimal 4-vertex paths in one
corresponding quadrilateral. Here we only consider the frequency quadrilaterals
derived from the general weighted quadrilaterals K4. Each weighted quadrilateral just
includes 6 optimal 4-vertex paths (OP4) and one OHC. The OP4s with given endpoints
in a quadrilateral ABCD is computed as follows.

Given a quadrilateral ABCD in Kn, it includes six edges (A, B), (A, C), (A, D), (B,
C), (B, D) and (C, D). The distances of the six edges are d(A, B), d(A, C), d(A, D), d(B,
C), d(B, D) and d(C, D), respectively. Appoint two endpoints, such as A and B, there
are two 4-vertex paths P1 = (A, C, D, B) and P2 = (A, D, C, B) containing the four
vertices A, B, C and D. Their distances are computed as d(P1) = d(A, C) + d(C, D) + d
(B, D) and d(P2) = d(A, D) + d(C, D) + d(B, C). We assume the distances of the two
paths are unequal, i.e., d P1ð Þ 6¼ d P2ð Þ. One path must be shorter than the other one. We
take the shorter path P1 or P2 as the OP4 for the two end vertices A and B. Since we
have six pairs of endpoints according to the four vertices A, B, C and D, there are six
OP4s in the quadrilateral ABCD. According to the distances of edges, the 6 OP4s are
computed with the four-vertex and three-line inequality array [19].

For example in Fig. 1, Fig. 1(a) is the quadrilateral ABCD where the OHC = (A, C,
B, D, A). Figure 1(b) is the inequality array d(A, D) + d(B, C) < d(A, C) + d(B, D) < d
(A, B) + d(C, D) according to the distances of edges and the six OP4s derived based on
the inequality array. Figure 1(c) is the frequency quadrilateral ABCD computed with
the 6 OP4s. It is clear that the 4 edges (A, D), (A, C), (B, C) and (B, D) with the top
frequencies 5, 5, 3 and 3 belong to the OHC = (A, C, B, D, A).

Fig. 1. The quadrilateral ABCD (a), the inequality array and the six OP4s (b), and the frequency
quadrilateral ABCD (c)
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In a frequency quadrilateral ABCD, the pairwise non-adjacent edges have the same
frequency 5, 3 or 1. For example in Fig. 1, the edges (A, D) & (B, C) have the
frequency 5, the edges (A, C) & (B, D) have the frequency 3, and the edges (A, B) & (C,
D) have the frequency 1, respectively. It is the distances of the pairwise non-adjacent
edges that conclude their frequencies. The bigger the summed distance of the two
non-adjacent edges is, the smaller their frequency will be. For example in Fig. 1, the
summed distances of the three pairs of non-adjacent edges (A, D) & (B, C), (A, C) & (B,
D) and (A, B) & (C, D) are 4.0, 8.5 and 11.8, respectively. However, their frequencies
are 5, 3 and 1, respectively.

The distances of the edges in a quadrilateral ABCD are various. According to the
three summed distances of the three pairs of non-adjacent edges, they will produce six
inequality arrays. Each inequality array determines a set of six OP4s and a corre-
sponding frequency quadrilateral. Thus, six distinct frequency quadrilaterals ABCD are
computed and shown in Fig. 2(a)–(f) [18]. The summed distance array of the quadri-
lateral ABCD is listed below the corresponding frequency quadrilateral ABCD.

Although there are a number of weighted quadrilaterals, they are classified into six
kinds according to the six frequency quadrilaterals in Fig. 2. For each kind of
quadrilaterals ABCD, the distances of the six edges conform to the same inequality
array. In addition, their OHC is determined by the corresponding inequality array. Let’s
analyze the six frequency quadrilaterals for a quadrilateral ABCD. Firstly, the fre-
quency of the six edges in each frequency quadrilateral is f = 5, 3 and 1. The frequency
of edges in the frequency quadrilaterals composes a stable frequency space {1, 3, 5}.
For the three adjacent edges containing a vertex, such as AB, AC and AD, they have the
different frequency. Therefore, the difference between adjacent edges can be clearly

Fig. 2. The six frequency quadrilaterals ABCD for a quadrilateral ABCD

290 Y. Wang and J. Remmel



characterized by their frequency. In addition, the two adjacent edges containing a
vertex with the big frequency 5 and 3 are included in the OHC whereas another
adjacent edge with the frequency 1 is not. Next, the two non-adjacent edges have the
equal frequency. If one edge belongs to the OHC, the opposite edge must be in the
OHC and vice versa. If we find two adjacent OHC edges in a quadrilateral, the other
two OHC edges are also concluded.

Secondly, we see the frequency of an edge in the six frequency quadrilaterals. For
an edge e 2 f A; Bð Þ; A; Cð Þ; A; Dð Þ; B; Cð Þ; B; Dð Þ; C; Dð Þg, it has the frequency
f = 5, 3 and 1 twice in the six frequency quadrilaterals, respectively. If the frequency
f 2 f5; 3; 1g of e is taken as a random variable, we see the probability p that e has the
frequency f = 5, 3 and 1 is equal to 1/3 based on the six frequency quadrilaterals. We
note the probability p(f = 5) = p(f = 3) = p(f = 1) = 1/3 for e whose frequency f = 5, 3
and 1 in a random frequency quadrilateral containing the e.

Given a TSP with n vertices, there are n
4

� 	
weighted quadrilaterals. Each

quadrilateral includes six edges. Thus, every edge is included in n� 2
2

� 	
quadrilat-

erals. For an edge e in each of these corresponding frequency quadrilaterals, the
possible frequency of e may be 5, 3 or 1. Given a random frequency quadrilateral
containing e, we assume the frequency quadrilateral has the equal probability to be one
of the six frequency quadrilaterals in Fig. 2. Thus, the probability p(f = 5) = p
(f = 3) = p(f = 1) = 1/3 that e has the frequency 5, 3 and 1 in the frequency quadri-
laterals. When we compute the frequency F(e) of e with N frequency quadrilaterals
containing e, the frequency F(e) = (5p(f = 5) + 3p(f = 3) + p(f = 1))N = 3N. It is the
average frequency of all edges.

For the OHC edges, there are some special frequency quadrilaterals where their
frequency f = 5, 3 rather than 1. In the Kn, each two adjacent OHC edges are included
in n − 3 quadrilaterals and each two opposite OHC edges are contained in a quadri-
lateral. In the corresponding frequency quadrilateral containing two opposite OHC
edges, the frequency of the two OHC edges are 5 or 3. Otherwise, the two opposite
OHC edges will be replaced by the other two non-adjacent edges in the quadrilateral.
According to the observations, Wang and Remmel [18] constructed the n − 3 fre-
quency quadrilaterals for an OHC edge e where its frequency is 3 or 5. In the rest
frequency quadrilaterals, they assume the frequency 1, 3 and 5 of e has the equal
probability 1/3. Thus, they gave the probability that e 2 OHC has the frequency 1, 3
and 5 in a frequency quadrilateral as p f ¼ 5ð Þ ¼ p f ¼ 3ð Þ ¼ 1

3 þ 1
3 n�2ð Þ and

pðf ¼ 1Þ ¼ 1
3 � 2

3 n�2ð Þ. When we compute the frequency of e 2 OHC with N random

frequency quadrilaterals containing e, the expected frequency FðeÞ ¼ 3Nþ 2N
n�2. One

sees the expected frequency of an edge e 2 OHC computed with N random frequency
quadrilaterals is bigger than the expected frequency 3N of a common edge.

According to the probability p f ¼ 5ð Þ ¼ p f ¼ 3ð Þ ¼ 1
3 þ 1

3 n�2ð Þ and

pðf ¼ 1Þ ¼ 1
3 � 2

3 n�2ð Þ, we know that the probability pðf ¼ 3; 5Þ[ 2
3 for an OHC edge

e in a frequency quadrilateral in Kn. When we compute the frequency of an edge with
N frequency quadrilaterals containing e, the total frequency of an OHC edge will be
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bigger than 3N. Certainly, the average frequency f eð Þ of the OHC edge e will be bigger
than 3. Therefore, it is necessary to consider the edges e with the frequency F
(e) > 3N or f eð Þ[ 3 for TSP. We are interested in how many edges with the frequency
F(e) > 3N or f eð Þ[ 3 when each of them is computed with N frequency quadrilaterals.

Given an edge e in the six frequency quadrilaterals in Fig. 2, there are four fre-
quency quadrilaterals where e has the frequency 3 and 5. Thus, the probability pðf � 3Þ
of the case f � 3 for an edge e is equal to 2/3, i.e., pðf � 3Þ ¼ 2=3. It says the e has the
probability 2/3 that its frequency is bigger than the expected frequency 3 in a random
frequency quadrilateral. When we choose N random frequency quadrilaterals con-
taining e, there will be 2N

3


 �
frequency quadrilaterals where the frequency is above 3

and N
3


 �
frequency quadrilaterals where the frequency is below 3. If we take 3 as the

frequency threshold to eliminate the edges with smaller frequency, the edge e will be
preserved 2N

3


 �
times. Thus, the probability that e is preserved is 2

3 when we take f = 3 as
the frequency threshold to eliminate the edges with lower frequency. In this case, the
total frequency F(e) = 3N and average frequency f eð Þ ¼ 3. If we take the total fre-
quency F = 3N or average frequency f ¼ 3 as the frequency threshold, the edges
e with the probability pðf � 3Þ� 2=3 in each frequency quadrilateral will be preserved.

Considering the n
2

� 	
edges in the Kn, we will preserve at most 2

3
n
2

� 	
edges with the

big frequency for TSP. Since the OHC edge e has the big frequency F(e) > 3N or
f eð Þ[ 3, the OHC edges will be preserved with a big probability. In fact, an OHC edge
e has the probability pðf � 3Þ� 2=3 in each frequency quadrilateral so it is preserved.

It mentions that we will preserve some edges with the probability pðf � 3Þ� 2=3
when we take F = 3N or f ¼ 3 as the frequency threshold. For example, the edges
have the probability p(f = 5) > 1/2 and p(f = 3) + p(f = 5) < 2/3. Thus, more irrele-
vant edges with the big frequency F(e) > 3N and average frequency f (e) > 3 will be
preserved. If the edges in the preserved graph are contained in many frequency
quadrilaterals, it is necessary to iterate the computation process to eliminate these edges
in the next computation cycles. In the following section, we will give the iterative
algorithm to trim these edges step by step until a sparse graph for TSP is computed.

3 The Iterative Algorithm

We fist give the iterative algorithm and then discuss the stop computation cycle. Given

an original graph G0(V0, E0), |V0| = n and E0j j ¼ n
2

� 	
in general. When the frequency

of every edge is computed with N frequency quadrilaterals in G0(V0, E0), we choose
2
3 E0j j
 �

edges with top frequency to compose a second graph G1(V0, E1) for TSP
according to the probability p f ¼ 5ð Þ ¼ p f ¼ 3ð Þ ¼ 1

3 þ 1
3 n�2ð Þ and p(f = 1) = 1

3�
2

3 n�2ð Þ . After that, if N is big for the edges in G1(V0, E1), we can use the same method to

compute a third graph G2(V0, E2) with an even smaller number of edges where

E2j j ¼ 2
3

� �2
E0j j

h i
. Furthermore, if N is still big for the edges in Gk(V0, Ek) where k > 2,
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we can keep executing the computation until a sparse graph containing 2
3

� �k
E0j j

h i
edges is generated. We expect the final sparse graph to include O(nlog2n) edges so that
the better polynomial-time algorithms or polynomial-time approximate schemes are
designed for TSP based on these sparse graphs. It notes that N should be sufficiently big
for the edges in Gk(V0, Ek) at each computation cycle where k � 0. Otherwise, the
probability p5(e) and p3(e) of the OHC edges will be much smaller than the p f ¼ 5ð Þ ¼
p f ¼ 3ð Þ ¼ 1

3 þ 1
3 n�2ð Þ and smaller than that of the other edges. One will wonder the

probability p(f = 5), p(f = 3) of the OHC edges will become smaller in the preserved
graphs and they will be eliminated in the computation process. We will explore the
change of the probability p(f = 5), p(f = 3) and p(f = 1) for the OHC edges in the
computation process in another paper. Here we will focus on the algorithm to compute
the sparse graphs for TSP. In the next section, we will see the OHC edges usually have
the bigger average frequency than that of the 1/3 Ekj j edges to be eliminated in the
preserved graphs for the TSP instances. Under the assumption, we give the iterative
algorithm in Table 1.

The first step is to input an initial weighted graph G0(V0, E0) with n vertices and |E0|

edges. Generally, |V0| = n and E0j j ¼ n
2

� 	
. Assign the initial value of computation

cycle k = 0. In the following steps, the iterative algorithm generates a sparse graph with
less than cn edges where c � log2n½ �. At the kth computation cycle where k � 0, the
algorithm begins with a input graph Gk(V0, Ek) and outputs the next preserved graph

Gk+1(V0, Ek+1) with |Ek+1 = 2
3

� �kþ 1
E0j j

h i
edges according to the average frequency of

edges in the Gk(V0, Ek). We use the average frequency of edges instead of their total
frequency to avoid bias to some edges since the edges will be contained in different
number of frequency quadrilaterals in the in Gk(V0, Ek). The average frequency f eð Þ of
every edge e in Gk(V0, Ek) is computed as follows. Firstly, the N quadrilaterals con-
taining the edge e are chosen and the frequency f(e) of e is enumerated from the 6 OP4s

Table 1. The iterative algorithm to compute a sparse graph for TSP
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in each of the quadrilaterals. Given the frequency of e is fj(1 � j � N) in the jth

frequency quadrilateral, the average frequency of e is computed as f ðeÞ ¼ 1
N

PN
j¼1 fj. In

the iterative computation process, the number of the frequency quadrilaterals con-
taining every edge in Gk(V0, Ek) will not be equal. It is fair to compare the average
frequency of edges rather than their total frequency in Gk(V0, Ek). Therefore, it is
rational to keep the 2

3 Ekj j
 �
edges with the big average frequency for TSP.

After the average frequency f eð Þs of the |Ek| edges are computed, we order them
from big to small values to form a frequency sequence at step 4. Given the average
frequency of the jth edge is f j 1� j � jEkjð Þ, we note the frequency sequence as

ðf 1; f 2; � � � ; f Ekj jÞ where f 1 is the maximum frequency and f Ekj j is the minimum fre-

quency. At the 5th step, the previous 2
3 Ekj j
 �

edges are chosen to compose the next
graph Gk + 1(V0, Ek + 1). To continue the recursive computations, we replace the graph
Gk(V0, Ek) with the graph Gk + 1(V0, Ek + 1) and assign k : = k + 1. That is, the edge set
Ek in the Gk is substituted with the edge set Ek + 1 in Gk + 1. The iterative algorithms
will always be executed until the terminal condition |Ek + 1| � cn is met. At last, it
outputs the final sparse graph with less than cn edges.

When we run the iterative algorithm based on the frequency quadrilaterals, the
preserved graphs will have the smaller and smaller number of edges according to the
computation cycle k. Given through k iterations, we will obtain a sparse graph with cn
edges. The maximum iterations kmax is given as formula (1). Many researchers take the
graphs with O(nlog2n) edges as the sparse graphs. The number O(nlog2n) increases
nearly in a linear way according to n. Thus, we take c = log2n for general TSP

instances. The maximum computation cycle becomes kmax ¼ log2
3

2log2n
n�1

� �j k
. At the

kthmax computation cycle, the iterative algorithm will output a sparse graph with
[nlog2n] edges for general TSP.

kmax ¼ log2
3

2c
n� 1

� 	� 
ð1Þ

If every K4 includes only one OHC and the six OP4s, the average frequency of the
OHC edges will be bigger than the expected frequency 3 whereas the average fre-
quency some of the other edges will be below 3. In this case, we can eliminate 1

3 edges
with small average frequency. This is the theoretical case. For real-world instances,
some K4s in the Kn include more than six OP4s as they contain the equal-weight edges.
The selection of the right 6 OP4s becomes hard to compute a unique frequency
quadrilateral. If the wrong OP4s in these K4s are used, the average frequency of some
OHC edges in the Kn will become smaller. These OHC edges will be eliminated with a
big probability. For general TSP, the iterative algorithm will work well to compute a
sparse graph for TSP. Even though for the special TSP examples, the experiments
showed that the iterative algorithm still works if we add the random small distances to
the edges’ distances in advance [18].
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We are interested in how many OHC edges will be lost in the computation process.
At the (k + 1)th computation cycle, we will maintain 2

3 Ekj j
 �
edges in the preserved

graph. In other words, we will throw away 1
3 Ekj j
 �

edges according to the average
frequency of edges. In the graph Gk(V0, Ek), the probability that an edge e is abandoned
is p(e 62 Ek + 1) = 1/3. The OHC includes n edges. If we do not consider the frequency
of edges, the probability that an edge e 2 OHC in Gk(V0, Ek) is pðe 2 OHCÞ ¼ n

Ekj j

where jE0j ¼ n
2

� 	
. At the kth (k � 1) computation cycle, the number of the edges in

the input graph Gk − 1(V0, Ek − 1) is 2
3

� �k�1
E0j j

h i
. We assume the graph Gk − 1(V0,

Ek − 1) includes the OHC so that the probability of an edge e 2 OHC is pðe 2 OHCÞ ¼
n

2
3ð Þk�1

E0j j
. Every edge has the probability 1/3 to be abandoned at the kth computation

cycle. Thus, the probability that the edge e 2 OHC is abandoned in the next graph
Gk(V0, Ek) is computed as formula (2).

p e 2 OHC ^ e 62 Ekð Þ ¼ 1
3
� n

2
3

� �k�1
E0j j

ð2Þ

If one or more OHC edges are lost at the kth computation cycle, we have

np e 2 OHC ^ e 62 Ekð Þ� 1 . Therefore, the formula (3) holds if jE0j ¼ n
2

� 	
.

k� 2þ log2
3

n
n� 1

� �j k
ð3Þ

As n ! ∞, k � 2. It means the iterative algorithm can be executed at least 2 times
without losing the OHC edges. If m OHC edges are lost where m is a small constant,

we can derive the computation cycles k� 2þ log2
3

1
m

� �j k
. The computation cycle

becomes bigger as m rises. It means that we can run the algorithm more times to
compute a sparse graph on condition that only a small number of the OHC edges are
lost. For example, if m ¼ 9

4, we can run the algorithm at least k = 4 times. However, we
may lose only m < 3 OHC edges.

In fact, the formula (2) is the average probability for an arbitrary edge e in any
given n edges in Gk − 1(V0, Ek − 1). In our algorithm, we maintain the edges according
to the frequency of edges rather than the random selection. For each of the edges in the
OHC, their average frequency computed with the N frequency quadrilaterals in
Gk − 1(V0, Ek − 1) will be bigger than the average frequency of all of the edges. In the
frequency sequence ðf 1; f 2 � � � f Ek�1j jÞ, if the number of edges with the average fre-

quency below the 3 is bigger than 1
3 Ek�1j j
 �

, the probability that the OHC edges will be
maintained in Gk(V0, Ek) tends to 1 but not 2/3. Moreover, the probability that an OHC
edge is neglected in Gk(V0, Ek) is small than 1/3 based on the frequency quadrilaterals.
Therefore, the edges in the OHC have a much bigger probability that they will be
maintained to the Gk(V0, Ek) as N is big enough. According to the average frequency of
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edges, the probability p e 2 OHC ^ e 62 Ekð Þ will be much smaller than that computed
with the formula (2) based on the random selection. Thus, we can run the iterative
algorithm more times than that restricted by formula (3) for general TSP. Meanwhile,
we will obtain an even sparser graph containing the OHC for TSP.

Many incomplete quadrilaterals will appear in the computation process because the
2
3 Ek�1j j
 �

edges with small frequency are abandoned at the kth computation cycle.
These incomplete quadrilaterals contain less than 6 edges as well as less than 6 OP4s. If
these incomplete quadrilaterals are used to compute the frequency of edges, the average
frequency of edges will not equal 3. The probability p f ¼ 5ð Þ ¼ p f ¼ 3ð Þ ¼ pðf ¼
1Þ ¼ 1

3 will not be right based on these incomplete frequency graphs. The probability
that an edge e has the frequency above 3 is not equal to 2

3 in the various incomplete
frequency quadrilaterals. Therefore, we should use a different ratio rather than 1

3 to
discard the number of edges according to their average frequency, especially in the later
computation stage.

In the later computation process, most of edges in the preserved graphs will only be
included in the incomplete quadrilaterals. According to various incomplete quadrilat-
erals, it is hard to find a suitable ratio to delete the proper number of edges in Gk(V0,
Ek). If we use the constant ratio 1

3 to abandon the edges with small frequency, some or
many OHC edges will be neglected, too. To guarantee the OHC edges in the last
preserved graph, we will find the stop computation cycle ks to terminate the iterative
algorithm.

If N is big enough for an edge e 2 OHC in Gk(V0, Ek), the average frequency of
e will be bigger than the average frequency of the total |Ek| edges based on frequency
quadrilaterals. Thus, the average frequency of e 2 OHC will be bigger than 3 when it is
computed with N frequency quadrilaterals. We enumerate the number of edges with the
average frequency less than 3 and note it as N\f . When we use the constant ratio 1

3 to

trim the 1
3 Ekj j edges with small frequency, the OHC will be maintained in the preserved

graph if N\f [
1
3 Ekj j. It means we just eliminate the 1

3 Ekj j edges whose average
frequency is below 3. However, we will eliminate some OHC edges if we meet
N\f � 1

3 Ekj j in the graph Gk(V0, Ek). Therefore, the inequality N\f � 1
3 Ekj j is taken as

the restriction to determine the stop computation cycle ks and terminate the iterative
algorithm. Given a TSP, the iterative algorithm can always run until it reaches the stop
computation cycle. Once N\f � 1

3 Ekj j, we should be careful to implement the iterative
computation. Some OHC edges whose average frequency is above but near to the
expected frequency 3 will be abandoned at this computation cycle.

In the computation process, the number of edges with the average frequency below
3 will become less and less according to k. On the other hand, the number of edges with
average frequency above 3 will become relatively bigger according to k. Therefore, we
can always find such a preserved graph Gk(V0, Ek) where N\f � 1

3 Ekj j. If the minimum
average frequency of the OHC edge is still bigger than 3 or the average frequency of
the OHC edges is further beyond that of the 1

3 Ekj j edges with small frequency, we may
proceed the iterative algorithm one or a few more times even though the N\f � 1

3 Ekj j .
In this case, the computation cycle k will be close to kmax and the residual graph will be
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very sparse. However, we cannot guarantee to preserve all of the OHC edges in the
following preserved graphs for the worst cases of TSP once k > ks. In the actual
computation process, we enumerate the edges with the average frequency below the
expected frequency 3 simultaneously. Once N\f � 1

3 Ekj j, it means that we may throw
away some OHC edges at this computation cycle. It is the time to stop the iterative
algorithm and take the output graph with |Ek−1| edges for TSP.

It mentions that many incomplete quadrilaterals will be generated in the compu-
tation process. Figure 3(a) and (b) shows two kinds of incomplete quadrilaterals we
consider in our algorithm, especially at the final stages of the algorithm. Their possible
frequency quadrilaterals (1), (2) are shown on their right sides. These incomplete
frequency quadrilaterals are computed with the OP4s in the two incomplete quadri-
laterals. In the frequency quadrilaterals (1) and (2), the numbers on the edges are their
frequency. Obviously, the probability 4/5 and 1 that we preserve the edges based on the
two incomplete frequency quadrilaterals is bigger than 2/3 according to frequency
quadrilaterals. It means we should throw away 1

5 Ekj j and 0 edges according to their
frequency or average frequency computed with the two kinds of incomplete frequency
quadrilaterals. It suggests us to keep more edges in the computation process when we
use a lot of such incomplete frequency quadrilaterals. In the later computation cycles,
we will have many such incomplete quadrilaterals. In this case, we generally cannot use
the constant ratio 1

3 to eliminate the 1
3 Ekj j edges with low frequency to compute the next

sparse graph for TSP.

4 The Experiments and Analysis

The experiments occupy 10 pages which exceed the pages limitation of the proceed-
ings. We delete the experimental results for the proceedings. The full version of the
paper has been submitted to the https://arxiv.org/. The TSP instances are selected from
TSPLIB [20]. The optimal solutions of these TSP instances are computed with Con-
corde online [21].

Fig. 3. Two kinds of incomplete quadrilaterals and their corresponding frequency graphs
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5 Conclusions

We design a heuristic algorithm based on the frequency quadrilaterals to compute the
sparse graph for TSP. When the frequency of an edge e is computed with N frequency
quadrilaterals containing e, the frequency of the OHC edges will be bigger than the
average frequency 3N of all of edges when N is big enough. The probability model
shows it is likely 2

3 Ej j
 �
edges whose frequency is above the average frequency 3.

Thus, we can eliminate 1
3 Ej j
 �

edges with low frequency so as to compute a preserved
graph for TSP. We iterate the elimination process until a sparse graph is obtained for
TSP as N is big enough in the preserved graphs. In an ideal case, a sparse graph with cn

edges is computed at the log2
3

2c
n�1

� �j kth
computation cycles where c ¼ log2n. We tested

the algorithm with tens of various TSP instances. The experimental results showed that
our probability model works well for general TSP instances. The sparse graphs with O
(nlog2(n)) edges are computed for these instances. It says the average frequency of the
OHC edges is bigger than that of the 1/3 edges to be eliminated not only in the Kn, but
also in the preserved graphs that the algorithm computes. Thus, the OHC edges are
always preserved in the computation process until the stop computation cycle is
arrived.

In the near future, the properties of the residual graphs will be analyzed. We expect
the sparse graphs have the good properties, such as bounded degree, genus, tree-width
and planarity, etc. so that we can design the polynomial-time algorithms or
polynomial-time approximation algorithms for TSP based on the sparse graphs. In
addition, the other terminal conditions will be explored to compute the sparse graphs
with good properties.
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Abstract. In this paper, we propose two algorithms for determining
the optimal length tree-like refutation of linear feasibility in Unit Two
Variable Per Inequality (UTVPI) constraints. Given an infeasible UTVPI
constraint system (UCS), a refutation certifies its infeasibility. The prob-
lem of finding refutations in a UCS finds applications in domains such
as program verification and operations research. In general, there exist
several types of refutations of feasibility in constraint systems. In this
paper, we focus on a specific type of refutation called a tree-like refu-
tation. Tree-like refutations are complete, in that if a system of linear
constraints is infeasible, then it must have a tree-like refutation. Associ-
ated with a refutation is its length which corresponds to the total number
of constraints (including repeats) that are used to establish the infeasibil-
ity of the corresponding linear constraint system. Our goal in this paper
is to find the optimal (minimum) length tree-like refutation (OTLR) of
an infeasible UCS. We show that an OTLR of a UCS can be found in
O(m · n · k) time, where m is the number of constraints, n is the num-
ber of variables in the system, and k is the length of an OTLR. We also
propose a true-biased, randomized algorithm for this problem. This algo-
rithm runs in O(m·n·log n) time, and returns an OTLR with probability
(1 − 1

e
).

1 Introduction

In this paper, we discuss the design and analysis of algorithms for the problem
of determining optimal-length tree-like refutations (OTLR) of linear feasibility
in a class of constraints called Unit Two Variable per Inequality (UTVPI) con-
straints. These constraints arise in a number of applications including program
verification, abstract interpretation [1] and packing. Our focus in this paper is on
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refutations of linear feasibility in these constraints. In particular, we will focus
on tree-like refutations. We shall show that this problem is in P.

The principal contributions of this paper are as follows:

1. A deterministic polynomial time algorithm for the problem of finding an
OTLR of linear feasibility of a UCS (Sect. 5).

2. A fast, randomized algorithm for the same problem (Sect. 6).

2 Constraint Preliminaries

In this section, we discuss the terminology used in this paper. System (1) denotes
a system of linear inequalities (or linear program), where A has dimensions m×n,
x ∈ Rn, and b is an m-vector.

A · x ≤ b (1)

Definition 1. A constraint of the form ai·xi ≤ bi is called an absolute constraint
if ai ∈ {1,−1}.
Definition 2. A constraint of the form ai ·xi+aj ·xj ≤ bij is called a difference
constraint, if ai, aj ∈ {1,−1} and ai = −aj.

A conjunction of difference constraints is called a difference constraint system
(DCS).

Definition 3. A constraint of the form ai · xi + aj · xj ≤ bij is called a Unit
Two Variable per Inequality (UTVPI) constraint, if ai, aj ∈ {1,−1}.

A conjunction of UTVPI constraints is called a UTVPI constraint system
(UCS).

In the above definitions, bij is called the defining constant of the constraint.
For instance, x1 ≤ 5 is an absolute constraint, x1 − x2 ≤ 4 is a difference
constraint, and x1 + x2 ≤ 4 is a UTVPI constraint.

We are interested in certificates of infeasibility. In particular, we are inter-
ested in resolution refutations. In linear programs (systems of linear inequalities),
resolution refutations are accomplished via repeated applications of the following
rule:

∑n
i=1 ai · xi ≤ b1

∑n
i=1 a

′
i · xi ≤ b2∑n

i=1(ai + a′
i) · xi ≤ b1 + b2

(2)

Rule (2) is known as the Addition rule in the literature.

Definition 4. A constraint obtained by the application of the Addition rule to
two constraints is called a derived constraint.

Note that when the Addition rule is used, one or both of the constraints
involved could themselves be derived constraints.
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Definition 5. Given a system of linear constraints L, a refutation of feasibility
is a sequence of constraints such that:

1. Each constraint is either in L or can be derived from two preceding constraints
by the Addition rule.

2. The last constraint establishes infeasibility in the form of the contradiction
0 ≤ −b, b > 0.

Example 1. Suppose we are given the following difference constraint system:

l1 : x1 − x2 ≤ −1 l2 : x2 − x3 ≤ −1 l3 : x3 − x4 ≤ 1
l4 : x4 − x1 ≤ 1 l5 : x3 − x1 ≤ −1 (3)

The following is a refutation of System (3):

1. Apply the addition rule to l1 and l2 to get l6 : x1 − x3 ≤ −2.
2. Apply the addition rule to l5 and l6 to get 0 ≤ −3.

Clearly, this is a contradiction. Therefore, the constraints l1, l2, and l5 form
a refutation that certifies the infeasibility of System (3).

It is easy to see that refutation using Rule (2) is sound in that any assign-
ment satisfying the antecedents must satisfy the consequent. Furthermore, it is
complete in that if System (1) is unsatisfiable, then repeated applications of
Rule (2) will result in a contradiction of the form: 0 ≤ −b, b > 0. The complete-
ness of the Addition rule was established by Farkas (see [2]). Farkas’ observation
is known as Farkas’ Lemma and we state it below. For a proof of the lemma and
its implications, see [13].

Lemma 1. Let A · x ≤ b denote a system of m linear constraints over
n variables. Then, either ∃x A · x ≤ b or (mutually exclusively) ∃y ∈
R+

m y · A = 0, y · b < 0.

In Lemma 1, the vector y can be chosen from the set of non-negative inte-
gers, without affecting its correctness. When y is integral, it can be interpreted
as representing the number of times each constraint is used in the correspond-
ing refutation. In this paper, we are interested only in cases where the Farkas’
variables, y, are integral.

Lemma 1, along with the fact that linear programs must have basic feasible
solutions, establishes that the linear programming problem is in the complexity
class NP ∩ coNP. Farkas’ lemma is one of several lemmata that consider pairs
of linear systems in which exactly one element of the pair is feasible. These
lemmata are collectively referred to as “Theorems of the Alternative” [10]. The
y variables are called the Farkas’ variables corresponding to the system A · x ≤ b
and they serve as a witness that certifies the infeasibility of this system.

When considering UCSs, we can restrict the Addition rule as follows:

ai · xi + aj · xj ≤ bij −aj · xj + ak · xk ≤ bjk
ai · xi + ak · xk ≤ bij + bjk

.

This is a restricted version of the addition rule known as the transitive inference
rule [17]. Even with this restriction, the transitive inference rule is complete [8].
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Example 2. Consider the constraints x1 + x2 ≤ 3 and −x2 + x3 ≤ 4. Using the
transitive inference rule, we can derive the constraint x1 + x3 ≤ 7.

2.1 Constraint Network Presentation

The algorithms in this paper utilize the constraint network introduced in [17].
Let U : A · x ≤ b denote the UCS and let X denote the set of all solutions to U.
Corresponding to this constraint system, we construct the constraint network
G = 〈V,E,b〉 as follows. For each variable xi, create a node in V. For ease
of reference, both a variable and its corresponding node are denoted as xi. G
is stored as an adjacency list. Constraints are represented as edges using the
following rules:

(a) A constraint of the form xi−xj ≤ bij is represented as an undirected “gray”

edge, (xj

bij
xi), or (xi

bij
xj), with cost bij .

(b) A constraint of the form −xi − xj ≤ bij is represented by an undirected

“black” edge, (xi

bij
xj), with cost bij .

(c) A constraint of the form xi + xj ≤ bij is represented by an undirected

“white” edge, (xi

bij
xj), with cost bij .

Finally, we add a node x0 to the network. This node permits the addition of
absolute constraints. Each absolute constraint xi ≤ bi is replaced by a pair of

constraints xi +x0 ≤ bi and xi −x0 ≤ bi. The corresponding edges (x0
bi
xi) and

(x0
bi
xi) are added to the constraint network. Note that the constraint network

has (n + 1) nodes and m′ ≤ m + 2 · n edges. We have that m′ ≤ m + 2 · n since
each absolute constraint adds two edges instead of one and there are at most
2 · n absolute constraints.

Because we have multiple types of edges, each node xi has four lists:

(1) A list of (xj , bij) such that the edge (xi

bij
xj) is in G.

(2) A list of (xj , bij) such that the edge (xi

bij
xj) is in G.

(3) A list of (xj , bij) such that the edge (xi

bij
xj) is in G.

(4) A list of (xj , bij) such that the edge (xi

bij
xj) is in G.

This allows us to easily process all edges involving xi and all neighbors of xi.
Note that the nature of gray edges prevents the adjacency list from being fully

symmetric. If G has the edge (xi

bij
xj), then (xj , bij) appears in list (1) for xi,

and (xi, bij) appears in list (1) for xj . However, if G has the edge (xi

bij
xj),

then (xj , bij) appears in list (3) for xi, and (xi, bij) appears in list (4) for xj .

Definition 6. A k-path in our constraint network is a sequence of (k+1) nodes,
x1, x2, . . . xk+1, and k edges e1, e2, . . . ek, such that ei is the edge corresponding
to one of the constraints between xi and xi+1 in the UTVPI constraint system.



304 P. Wojciechowski et al.

Definition 7. A k-path is considered valid if it has the following property: For
every i from 2 to k, the coefficients of xi in the constraints corresponding to the
edges ei and ei−1 have opposite signs.

Note that summing all the constraints corresponding to a valid path results
in a UTVPI constraint.

Definition 8. The cost of a path is the sum of the costs of the edges along that
path.

Definition 9. A cycle is a valid k-path for which x1 = xk+1.

Note that a cycle can consist of edges and nodes that occur more than once.
Thus, the notion of a cycle in this paper differs from the traditional notion of a
cycle in a directed graph.

We also utilize the concept of edge reductions introduced in [17].

Definition 10. An edge reduction is an operation which determines a single
edge equivalent to a two-edge path and represents the addition of the two UTVPI
constraints which correspond to the edges in question. If this addition results in
a UTVPI constraint, the reduction is said to be valid.

Example 3. Consider the following 2-paths:

1. (xi

bij
xj

bjk
xk): The first edge corresponds to the constraint xi+xj ≤ bij and

the second edge corresponds to the constraint xj + xk ≤ bjk. Summing these
constraints produces the non-UTVPI constraint xi + 2xj + xk ≤ bij + bjk.
In other words, this path cannot be reduced to an edge. Thus, this edge
reduction and the corresponding path are not valid.

2. (xi

bij
xj

bjk
xk): The first edge corresponds to the constraint xi+xj ≤ bij and

the second edge corresponds to the constraint −xj −xk ≤ bjk. Summing these
constraints produces a UTVPI constraint and hence this path can be reduced

to the edge (xi

bij+bjk
xk). Thus, this edge reduction and the corresponding

path are valid.

We use Definition 10 to define paths in the constraint network.

Definition 11. We say that a path has type t, if it can be reduced to a single
edge of type t, where t ∈ { , , , } by a series of valid edge reductions.

Using this we can define a negative cost gray cycle.

Definition 12. A negative cost gray cycle is a path which can be reduced to

an edge (xi
bi

xi) or (xi
bi

xi) for some node xi such that bi < 0.

It was shown in [17] that a UCS is infeasible if and only if the corresponding
constraint network contains a negative cost gray cycle.
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3 Statement of Problem

In this section, we utilize Farkas’ Lemma to formally define the OTLR problem.
We first need to define tree-like refutations and relate them to negative cost gray
cycles.

Definition 13. A tree-like refutation is a refutation in which each derived
constraint can be used at most once.

Note that in tree-like refutations, the input constraint system can be used
multiple times. Thus, any derived constraint can be derived multiple times.

Example 4. Consider the following system:

l1 : x1 − x2 ≤ −2 l2 : −x1 + x3 ≤ 1 l3 : −x1 − x3 ≤ 1
l4 : x2 + x4 ≤ −2 l5 : −x4 − x5 ≤ 1 l6 : −x4 + x5 ≤ 1 (4)

Fig. 1. Tree-like refutation

Figure 1 depicts the following tree-like refutation of System (4):

1. Apply the addition rule to l1 and l4 to get l7 : x1 + x4 ≤ −4.
2. Apply the addition rule to l2 and l7 to get l8 : x3 + x4 ≤ −3.
3. Apply the addition rule to l3 and l8 to get l9 : −x1 + x4 ≤ −2.
4. Apply the addition rule to l5 and l9 to get l10 : −x1 − x5 ≤ −1.
5. Apply the addition rule to l5 and l10 to get l11 : −x1 − x4 ≤ 0.
6. We could derive the contradiction 0 ≤ −4 by applying the addition rule to l7

and l11. However, l7 is a derived constraint and thus cannot be reused in a
tree-like refutation. Thus, it must first be rederived.
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7. Apply the addition rule to l1 and l4 to get l12 : x1 + x4 ≤ −4.
8. Apply the addition rule to l11 and l12 to get 0 ≤ −4.

Note that the summation of constraints is commutative. Thus, the contradic-
tion resulting from a tree-like refutation C of a linear system U can be obtained
by summing (with repeats) the constraints in C that are also in U.

Example 5. The contradiction (0 ≤ −4) obtained by the preceding tree-like refu-
tation of System (4) can be obtained by summing the constraints as follows

2 · l1 + l2 + l3 + 2 · l4 + l5 + l6.

The contradiction (0 ≤ −3) obtained by the refutation of System (3) can be
obtained by summing the constraints as follows

l1 + l2 + l5.

Note that this refutation does not need to reuse either original constraints
or derived constraints. Thus it is a read-once refutation.

As a direct consequence of Farkas’ Lemma, tree-like refutations are
complete [2].

Definition 14. The length of a tree-like refutation, C, is equal to the total
number of constraints in C that are in the original system. Each time a constraint
is reused, it contributes to the length of C.

Example 6. Consider the tree-like refutation of System (4). In this refutation
the constraints l1 and l4 are used twice and the other constraints (l2, l3, l5, and
l6) are used once. Thus, this refutation has length 8.

We formally define an OTLR as follows:

Definition 15. An optimal length tree-like refutation (OTLR) of a system of
constraints U is a tree-like refutation of U with the smallest length.

From Farkas’ Lemma, the OTLR problem can be modeled as the following
integer program:

min
m∑

i=1

yi (5)

y · A = 0

y · b < 0
y ∈ Z+

m

We now observe that, unlike DCSs, UCSs may require refutations that use
constraints more than once. Curiously, every infeasible UCS has a refutation in
which each constraint is used at most twice [17].
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Example 7. Consider the following system:

l1 : x1 − x2 ≤ −3 l2 : −x1 + x4 ≤ 1 l3 : −x1 − x4 ≤ 1
l4 : x2 + x3 ≤ 1 l5 : x2 − x3 ≤ 1 (6)

First observe that l1 is the only constraint with a negative defining constant.
Hence, it must be included in any refutation. This constraint corresponds to the

edge (x1
−3

x2). Thus, this edge must appear in any cycle corresponding to the
refutation.

In order to eliminate x1, we must include both l2 and l3 in the refutation.
If we do not include both, then x4 will not be eliminated. These constraints

correspond to the path (x1
1
x4

1
x1). Note that this path ends on node x1.

Thus, this path must precede the edge (x1
−3

x2) in the cycle corresponding to
the refutation.

Similarly, to eliminate −x2, we must include both l4 and l5. If we do not
include both, then x3 will not be eliminated. These constraints correspond to

the path (x2
1
x3

1
x2). Note that this path starts from node x2. Thus, this path

must follow the edge (x1
−3

x2) in the cycle corresponding to the refutation.
Summing the constraints used so far results in the constraint x2 − x1 ≤ 1.

Thus, to finish the refutation we must include the constraint l1 a second time.

This means that the edge (x2
−3

x1) must be added to the end of the cycle.

Thus, the refutation corresponds to cycle (x1
1
x4

1
x1

−3
x2

1
x3

1
x2

−3
x1)

in Fig. 2.

This cycle reduces to the edge (x1
−2

x1). Therefore, it is a negative cost
gray cycle.

Fig. 2. Example constraint network (without node x0)

From the preceding example we see a relationship between negative cost
gray cycles and tree-like refutations. This relationship is substantiated by the
following theorem.

Theorem 1. A UCS U has a tree-like refutation of length l if and only if the
corresponding constraint network G has a negative cost gray cycle of length l.

Proof. In the journal version of the paper.
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4 Motivation and Related Work

Unit Two Variable Per Inequality (UTVPI) constraints arise in a number of
problem domains, including but not limited to program verification [7], abstract
interpretation [1,8], real-time scheduling [3] and operations research.

The focus of this paper is on proofs of linear infeasibility in UCSs. Such proofs
are very important from the perspective of designing certifying algorithms. In
a certifying algorithm, both positive and negative answers must be accompa-
nied by “certificates” which attest to the validity of the answer. For general
linear programs, strong duality (Farkas’ lemma) enables us to derive proofs of
infeasibility.

Proofs of infeasibility are also referred to as refutations. There exist a number
of refutation types, depending upon how the input constraints can be used in the
construction of a proof of infeasibility. Our focus is on a class of refutations called
resolution refutations. In resolution refutations, there is only one inference rule,
viz., the transitive inference rule. The three major types of (resolution) refuta-
tions are read-once, tree-like and dag-like [4,5]. As already established in the
previous section, read-once proofs are not complete for the purpose of refuting
linear feasibility in UCSs. However, both tree-like and dag-like proof systems are
complete. In this paper, we will focus exclusively on tree-like refutations.

Optimal length proofs (refutations) of various types and for various constraint
systems have been studied extensively in the literature. In [15], optimal-length
tree-like proofs were studied for 2CNF formulae. In [16], it was established that
read-once, tree-like, and dag-like proofs coincide for difference constraints sys-
tems.

In [11], a randomized algorithm was proposed for the optimal length refuta-
tion problem in difference constraints. This paper generalizes that algorithm for
a larger class of constraints.

We also note that [8] proposes an alternate network representation for UCSs.
However, this network cannot handle absolute constraints.

5 A Path Following Approach

In this section, we exploit the observations in Sect. 2.1 to design a simple, path
following algorithm for the OTLR problem. From Theorem1, a negative cost
gray cycle in G corresponds to a tree-like refutation of the original UCS. Thus,
the shortest such cycle in G corresponds to an OTLR of the original UCS. The
following observations result in Algorithms 5.1 and 5.2.

1. Let d
(k,t)
i (j) denote the length of the shortest path of type t from node xi to

node xj with at most k edges.
2. Let d

(k)
i () contain d

(k,t)
i (j) for all j = 1 . . . n and t ∈ { , , . }.

3. We initially set d
(0,t)
i (i) = 0 and d

(0,t)
i (j) = ∞ for each t ∈ { , , , }

and j 	= i.
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4. From [17], we have that,

d
(k+1, )
i (j) = min

{
d
(k, )
i (r) + b(xr xj), r is a neighbor of j

d
(k, )
i (r) + b(xr xj), r is a neighbor of j

d
(k+1, )
i (j) = min

{
d
(k, )
i (r) + b(xr xj), r is a neighbor of j

d
(k, )
i (r) + b(xr xj), r is a neighbor of j

d
(k+1, )
i (j) = min

{
d
(k, )
i (r) + b(xr xj), r is a neighbor of j

d
(k, )
i (r) + b(xr xj), r is a neighbor of j

(7)

d
(k+1, )
i (j) = min

{
d
(k, )
i (r) + b(xr xj), r is a neighbor of j

d
(k, )
i (r) + b(xr xj), r is a neighbor of j

5. If we have a negative cost gray cycle of length k centered around an arbitrary

node xi, then d
(k, )
i (i) < 0. Observe that any path which reduces to the

edge (xi
bi

xi) also reduces to the edge (xi
bi

xi) since these are the same

edge. This means that d
(k, )
i (i) = d

(k, )
i (i). Thus, it is only necessary to

check one of these values.

Function Shortest-Path-UTVPI(G = 〈V,E,b〉, d(k)i (), d
(k−1)
i ())

1: for (j = 0 to n) do
2: for (t ∈ { , , , }) do

3: d
(k,t)
i (j) ← ∞.

4: for (each edge (xr xj) ∈ E) do

5: d
(k, )
i (j) ← min{d(k, )

i (j), d
(k−1, )
i (r) + b(xr xj)}

6: d
(k, )
i (j) ← min{d(k, )

i (j), d
(k−1, )
i (r) + b(xr xj)}

7: for (each edge (xr xj) ∈ E) do

8: d
(k, )
i (j) ← min{d(k, )

i (j), d
(k−1, )
i (r) + b(xr xj)}

9: d
(k, )
i (j) ← min{d(k, )

i (j), d
(k−1, )
i (r) + b(xr xj)}

10: for (each edge (xr xj) ∈ E) do

11: d
(k, )
i (j) ← min{d(k, )

i (j), d
(k−1, )
i (r) + b(xr xj)}

12: d
(k, )
i (j) ← min{d(k, )

i (j), d
(k−1, )
i (r) + b(xr xj)}

13: for (each edge xr xj ∈ E) do

14: d
(k, )
i (j) ← min{d(k, )

i (j), d
(k−1, )
i (r) + b(xr xj)}

15: d
(k, )
i (j) ← min{d(k, )

i (j), d
(k−1, )
i (r) + b(xr xj)}

Algorithm 5.1: Shortest Path Computation for UTVPI Constraints
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Function Shortest-Negative-Gray-Cycle(G = 〈V,E,b〉)
1: for (k = 1 to (2 · n + 2)) do
2: for (i = 0 to n) do

3: Shortest-Path-UTVPI(G, d
(k)
i (), d

(k−1)
i ()).

4: if (d
(k, )
i (i) < 0) then

5: return (k).
6: return (−1). {No negative gray cycle was detected.}

Algorithm 5.2: Deterministic Algorithm for UTVPI Constraints

5.1 Resource Analysis

We first analyze the running time of Algorithm 5.1.

Lemma 2. Given d
(k−1)
i (), Algorithm 5.1 computes d(k)i () in O(m′) time, where

m′ is the number of edges in the constraint network.

Proof. Observe that Algorithm 5.1 implements the recurrence relation defined
by System (7). Computing d

(k,t)
i is accomplished by relaxing all of the edges

in G. Relaxing an edge takes O(1) time, and G has m′ edges. Therefore, the
running time of Algorithm5.1 is O(m′). 
�

We now analyze the running time of Algorithm5.2. Let T (n,m′) denote the
running time of Algorithm5.2 on a network with (n + 1) nodes and m′ edges.
Also let q ∈ O(1) denote the time for a single edge relaxation. Observe that the
for loop in lines 2 to 5 has O(n) iterations. From Lemma 2, we know that line 3
takes O(m′) time. Therefore, the total running time is:

T (n,m′) ≤
k∑

i=1

n∑

j=0

q · m′ = q · m′ · (n + 1) · k ∈ O(m′ · n · k) = O(m · n · k).

5.2 Correctness

We now prove the correctness of Algorithm 5.2. First we need the following
lemma from [17].

Lemma 3. If the UCS U is infeasible, then the corresponding constraint net-
work G has a negative cost gray cycle with at most (2 · n + 2) edges.

Theorem 2. Algorithm5.2 always returns the length of an OTLR of the UCS
U corresponding to the input network G or −1 if U is feasible.

Proof. We first address the correctness of Algorithm 5.1. As stated in Lemma 2,
the algorithm is an implementation of System (7). From [17], System (7) correctly
calculates d

(k+1)
i () from d

(k)
i ().
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If Algorithm 5.2 returns k 	= −1, then for some node xi, d
(k, )
i (i) < 0.

This means that xi is located on a negative cost gray cycle of length k. From
Theorem 1, this means that U has a tree-like refutation of length k.

We also know that for all nodes xj , d
(l, )
j (j) ≥ 0 for all 0 < l < k. Thus,

G has no negative cost gray cycles of length less than k. From Theorem 1, this
means that U has no tree-like refutations of length less than k. Thus k is the
length of an OTLR of U.

If Algorithm 5.2 returns −1, then for all nodes xj , d
(l, )
j (j) ≥ 0 for all

0 < l ≤ (2 · n + 2). Thus, G has no negative cost gray cycles with (2 · n + 2) or
fewer edges. By Lemma 3, U must be feasible. 
�

6 A Randomized Approach

In this section, we propose a randomized algorithm for an OTLR problem in
UCSs. This algorithm is a generalization of the randomized algorithm for finding
shortest negative cost cycles in a directed graph [11].

In each iteration, the algorithm (Algorithm6.1) processes a randomly chosen
node. Let vr denote the node chosen by the rth iteration of this process. The
algorithm proceeds by generating the shortest paths from vr to every node in
the network G having at most

⌈
2·n+2

r

⌉
edges (see Lemma 3).

Algorithm 6.1 represents our strategy to find the shortest negative cost cycle
in a UTVPI constraint network with arbitrarily costed edges.

Function Shortest-Negative-Gray-Cycle(G = 〈V,E,b〉)
1: if (G has a negative cost gray cycle) then
2: Let l be the number of edges in the cycle.
3: else
4: return (−1).
5: for (r = 1 to (n + 1)) do
6: Let xi be a node in V chosen uniformly and at random.
7: for (k = 1 to

⌈
2·n+2

r

⌉
) do

8: Shortest-Path-UTVPI(G, d
(k)
i (), d

(k−1)
i ()).

9: if (d
(k, )
i (i) < 0) and (k < l) then

10: l ← k.
11: return (l).

Algorithm 6.1: Randomized Algorithm for UTVPI Constraints

6.1 Resource Analysis

Let T (n,m′) denote the running time of Algorithm6.1 on a network with (n+1)
nodes and m′ edges. Also let q1 ∈ O(1) denote the amount of time taken by a
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single edge relaxation. The check on line 1 can be accomplished in O(m′ ·n) time
[17]. Indeed, some negative cost gray cycle (not necessarily the one having the
fewest number of edges) is returned by the linear feasibility algorithm in [17].
Let q2 · m′ · (n + 1) be the amount of time taken by this process. The for loop
on lines 5 has O(n) iterations. From Lemma 2, it follows that each iteration of
the for loop on line 7 takes O(m′) time. Thus, we have that:

T (n,m′) ≤ q2 · m′ · (n + 1) +
∑n+1

r=1

∑ 2·n+2
r �

k=1
q1 · m′

= q2 · m′ · (n + 1) + q1 · m′ ·
(∑n+1

r=1

∑ 2·n+2
r �

k=1
1
)

= q2 · m′ · (n + 1) + q1 · m′ ·
(∑n+1

r=1

⌈
2 · n + 2

r

⌉)

≤ q2 · m′ · (n + 1) + q1 · m′ · 2 · (n + 1) · (Hn+1)
∈ O(m′ · n · log n)
= O(m · n · log n)

where Hn is the nth harmonic number.

6.2 Correctness

We now establish that Algorithm 6.1 returns an OTLR of G with high proba-
bility.

Theorem 3. Algorithm6.1 returns the OTLR with probability at least (1 − 1
e ).

Proof. If G has no negative cost gray cycles, then Algorithm6.1 returns −1.
Thus, Algorithm 6.1 always returns the correct answer in this case.

If G has a negative cost gray cycle, then let C denote an OTLR of G. Let NC

be the number of nodes in C and |C| be the length of C. Note that |C| ≤ 2 ·NC

[17].
Let us compute the probability that C is discovered during the rth iteration

of the for loop on line 3. If r ≤
⌈
n+1
NC

⌉
, then r ≤

⌈
2·n+2
2·NC

⌉
≤

⌈
2·n+2

|C|
⌉
. This

means that |C| ≤ ⌈
2·n+2

r

⌉
. Thus, C will be discovered if xi lies on C. This has

a probability of NC

n+1 .
Let Er be the event that the rth node processed by the algorithm is not a

node of C. Note that these events are independent. We have that C not being
discovered corresponds to the event

⋂n
r=1 Er [9]. Thus, the probability that C is

not discovered by Algorithm6.1 is

P

(
n⋂

r=1

Er

)

≤ P

⎛

⎜
⎝

⌈
n+1
NC

⌉
⋂

r=1

Er

⎞

⎟
⎠ =

⌈
n+1
NC

⌉
∏

r=1

P (Er) ≤
(

1 − NC

n + 1

)
⌈

n+1
NC

⌉

≤ 1
e
.

It follows that Algorithm 6.1 succeeds with probability at least (1 − 1
e ) = 0.632.


�
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Clearly, we can boost the probability of success by running the same pro-
cedure multiple times. Indeed, the expected number of runs before finding an
OTLR is 2.

7 Conclusion

In this paper, we studied the problem of determining an OTLR of a UCS. In par-
ticular, we designed two polynomial time algorithms for this problem. The first
of these algorithms is deterministic and is based on a path-following approach
in a constraint network. The second algorithm is also a polynomial time path-
following approach, but it uses randomization and has a non-zero probability of
returning a non-optimal refutation.

From our perspective, there are two open problems that are worth pursuing:

1. Implementing and studying the algorithms in this paper in the context of
SMT solvers such as Yices [14].

2. Establishing the computational complexities of determining optimal length
read-once and dag-like refutations in UCSs.
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