
Chapter 6
Timing Contracts for Multi-Core
Embedded Control Systems

M. Al Khatib, A. Girard and T. Dang

Abstract In physical dynamical systems equipped with embedded controllers, tim-
ing contracts specify the time instants at which certain operations are performed
such as sampling, computation, and actuation. In the first part of this chapter, we
present a class of timing contracts specifying bounds on the sampling-to-actuation
delay and on the sampling period. We then review existing techniques that can han-
dle the problem of stability verification: given models of the physical plant and of
the controller and a timing contract, we verify that the resulting dynamical system
is stable. In the second part of the chapter, we consider the scheduling problem
of embedded controllers on a multiple core computational platform: given a set of
controllers, each of which is subject to a timing contract, we synthesize a dynamic
scheduling policy, which guarantees that each timing contract is satisfied and that
each of the shared computational resources is allocated to at most one embedded
controller at any time. The approach is based on a timed game formulation whose
solution provides a suitable schedule.

6.1 Introduction

Physical systems equipped with embedded controllers have a long history (aircrafts,
cars, robots, etc.) and are becoming ever more complex and pervasive (smart build-
ings, autonomous vehicles, etc.). Efficient usage of the computational resources in
embedded control systems while providing formal guarantees of stability requires a
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profound understanding of the interaction between their computational and physical
components. Models faithfully describing such cyber-physical integration combine
continuous as well as discrete dynamics whereby the former originates from the
behavior of the physical systems whereas the latter results from the behavior of com-
ponents like sensors, actuators, and other computation and communication resources.
One direction in modeling timing of events (sampling, computation, and actuation)
in this orchestration is given by timing contracts [11]. Under such contracts, the
control engineers are responsible for designing a control law that is robust to all
possible timing variations specified in the contract while the software engineers can
focus on implementing the proposed control law so as to satisfy the timing contract.
Consequently, we propose techniques that are useful within this framework.

In the first part of this chapter, we present a class of parameterized timing contracts
specifying bounds on the sampling-to-actuation delay and on the sampling period.
We then review existing techniques [6, 9, 10] that can handle the problem of stability
verification: given models of the physical plant and of the controller and a timing
contract, verify that the resulting dynamical system is stable. In this context, we
briefly present our approach [2, 3], based on the notion of reachable set, and which
is built on efficient over-approximation algorithms developed over the past decade
(see e.g., [19]).

In the second part, we consider the scheduling problem of embedded controllers
on a multiple core computational platform. Given a set of controllers, each of which
is subject to a timing contract, we synthesize a dynamic scheduling policy, which
guarantees that each timing contract is satisfied and that each of the shared com-
putational resources is allocated to at most one embedded controller at any time.
The approach is based on a timed game formulation [5] whose solution provides
a suitable schedule. Results on this second problem partially appear, in the case of
single core computational platforms in [4].

Notation

LetR,R+
0 ,R

+,N,N+ denote the sets of reals, nonnegative reals, positive reals, non-
negative integers, and positive integers, respectively. For I ⊆ R

+
0 , let NI = N ∩ I .

Finally, for a set S, we denote the set of all subsets of S by 2S .

6.2 Problem Formulation

The model considered in the chapter is represented by the block diagram given by
Fig. 6.1. Typically, the plant’s state z flows under continuous dynamics. Then, at each
sampling instant t sk , k ∈ N, the plant’s state is sampled by the sampler and is passed
through a network to the controller. The latter computes the control input u based on
z(t sk ) and updates the plant’s input at instant t

a
k , k ∈ N. The plant’s input is then held

constant by a zero-order hold until the next update arrives via the network.
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Fig. 6.1 Block diagram of a
sampled-data system

Fig. 6.2 Periodic
sampled-data systems

The following model allows us to capture the continuous dynamics of the plant
as well as the discrete dynamics, introduced by the sampler and the zero-order hold.

ż(t) = Az(t) + Bu(t), ∀t ∈ R
+
0 (6.1a)

u(t) = Kz(t sk ), tak < t ≤ tak+1 (6.1b)

where z(t) ∈ R
p is the state of the system, u(t) ∈ R

m is the control input, thematrices
A ∈ R

p×p, B ∈ R
p×m , K ∈ R

m×p, and k ∈ N. In addition, it is assumed that K is
designed such that thematrix A + BK isHurwitz and that for all t ∈ [0, ta0 ],u(t) = 0.

Traditionally, controllers assume that sampling is performed periodically and that
actuation is performed with as little latency as possible. This scenario is shown in
Fig. 6.2where the sampling instants are given by t sk = kh for all k ∈ N and h being the
sampling period. However outside this ideal case, variations in the timing sampling
and actuation instants can be captured by timing contracts, which make it possible
to take into account the temporal nondeterminism of the sequences of sampling and
actuation instants (t sk )k∈N and (tak )k∈N.

We assume that the sequences of sampling and actuation instants (t sk )k∈N and
(tak )k∈N satisfy a timing contract θ(τ , τ , h, h) given by
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0 ≤ t s0 ,
t sk ≤ tak ≤ t sk+1, ∀k ∈ N

τk = tak − t sk ∈ [ τ , τ ], ∀k ∈ N

hk = t sk+1 − t sk ∈ [ h, h], ∀k ∈ N

(6.2)

where τ ∈ R
+
0 , τ ∈ R

+
0 , h ∈ R

+, and h ∈ R
+ provide bounds on the sampling-

to-actuation delays (which include time for computation of the control law) and
sampling periods. Note that we impose h �= 0 to prevent Zeno behavior. Moreover,
these parameters must belong to the following set C so that the time intervals given
in (6.2) are always non-empty and it is always possible to choose t sk+1 ≥ tak :

C = {
(τ , τ , h, h) ∈ R

+
0 × R

+
0 × R

+ × R
+ : τ ≤ τ ≤ h, h ≤ h

}
.

Contract (6.2) is a general timing contract which includes or over-approximates
the different contracts introduced in [11]. Their relation to the timing contract (6.2)
is described as follows:

1. ZET Contract: The Zero Execution Time contract is given by (6.2) with τ =
τ = 0 and h = h = h ∈ R

+. In other words, the contract states that the sampling
and actuation instants are periodic and simultaneous such that t sk = tak = kh for
k ∈ N. As mentioned in [11], this contract is hardly achievable in practice since
computation always takes time in between the sampling and actuation instants.

2. LET Contract: The Logical Execution Time contract is given by (6.2) with
τ = τ = h = h = h ∈ R

+. The contract states that the sampling and actuation
instants are periodic such that t s0 = 0 and t sk = tak−1 = kh for k ∈ N

+.
3. DET Contract: The Deadline Execution Time contract is given by (6.2) with

τ = 0 and h = h = h ∈ R
+. The contract states that the sampling instants are

periodic, or t sk = kh for k ∈ N, and actuation instants are at some point tak in the
interval [t sk , t sk + τ ], with τ ≤ h.

4. TOLContract: The Timing Tolerance contract is defined by a nominal sampling
period h ∈ R

+, nominal sampling-to-actuation delay τ ∈ R
+
0 , and two jitters

J h, J δ ∈ R
+
0 with J τ ≤ τ and J h + J τ + τ ≤ h, such that t sk ∈ [kh, kh + J h]

and tak ∈ [t sk + τ − J τ , t sk + τ + J τ ], for k ∈ N (refer to Fig. 6.3). We cannot
exactly model this contract using (6.2). However, we can over-approximate it
using (6.2) with τ = τ − J τ , τ = τ + J τ , h = h − J h , and h = h + J h .

In the following, we formulate the two problems discussed in this chapter.

6.2.1 Stability Verification Problem

In our problem formulation, we consider the following notion of stability for system
(6.1)–(6.2), that guarantees the exponential convergence of the state to the origin,
i.e., z = 0, with a predefined rate β ∈ R

+:
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Fig. 6.3 Time variables included in a TOL contract. J hk ∈ [0, J h] and J τ
k ∈ [−J τ , J τ ]

Fig. 6.4 Block diagram of
N sampled-data systems
sharing J CPUs

Definition 6.1 (β-Stability) Let β ∈ R
+, system (6.1)–(6.2) is β-stable if there exist

C ∈ R
+ and ε′ ∈ R

+ such that

|z(t)| ≤ Ce−(β+ε′)(t−t s0 )|z(t s0)|, ∀t ∈ R
+. (6.3)

Consequently, in this work, we consider the following problem:

Problem 6.1 (Stability verification) Given β ∈ R
+, A ∈ R

p×p, B ∈ R
p×m , K ∈

R
m×p, (τ , τ , h, h) ∈ C , verify that (6.1)–(6.2) is β-stable.

The reader is referred to Sect. 6.3 where we provide an overview of existing
techniques that can solve Problem 6.1, and we present our own approach.

6.2.2 Scheduling Problem on Multiple CPUs

Consider a collection of N ∈ N
+ sampled-data systems {S1, . . . ,SN } of the

form (6.1) where each system Si = (Ai , Bi , Ki ) is subject to a timing contract

θ(τ i , τ i , hi , h
i
) of the form (6.2), with parameters (τ i , τ i , hi , h

i
) ∈ C , i ∈ N[1,N ].

In addition, we assume that these systems share J CPUs, as shown in Fig. 6.4, to
compute the value of their control inputs given by (6.1b).Note that no communication
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exists in between the CPUs or between the systems, but there exists communication
only between the systems and all J CPUs. Furthermore, the time required by CPU j
to compute inputs of system Si is assumed to belong to some known interval [cij , cij ]
with 0 ≤ cij ≤ cij , i ∈ N[1,N ], and j ∈ N[1,J ], where cij and cij denote the best and
worst case execution time, respectively.

The timing of events in the kth control cycle of systemSi starts at instant t
si
k when

sampling occurs. Then, systemSi gains access to the CPU j at instant tbik , at which
computation of the control input value begins. The CPU is released at instant t eik , at
which computation of the control input value ends. After that, actuation occurs at
instant taik . We denote by N(i, j) the set gathering indexes of the control cycles, at
which systemSi accesses the CPU j , where

⋃
j∈N[1,J ] N(i, j) = N for all i ∈ N[1,N ].

Then, the sequences (t sik )k∈N, (tbik )k∈N, (t eik )k∈N, and (taik )k∈N satisfy the following
constraints for all i ∈ N[1,N ]:

0 ≤ t si0
t sik ≤ tbik ≤ t eik ≤ taik ≤ t sik+1, ∀k ∈ N

cik = t eik − tbik ∈ [cij , cij ], ∀k ∈ N(i, j),∀ j ∈ N[1,J ]
τ i
k = taik − t sik ∈ [τ i , τ i ], ∀k ∈ N

hik = t sik+1 − t sik ∈ [hi , hi ], ∀k ∈ N.

(6.4)

In addition, a conflict arises if several systems request access to one of the J CPUs
at the same time. Let us define the following time sets, for i ∈ N[1,N ] and j ∈ N[1,J ]:

Com(Si , j) =
⋃

k∈N(i, j)

[tbik , t eik ).

Com(Si , j) is the union of time intervals when CPU j is used by systemSi . Then,
in order to prevent conflicting accesses to the CPU the following property must hold:

∀(m, n, j) ∈ N
2
[1,N ] × N[1,J ] with m �= n,

Com(Sm, j) ∩ Com(Sn, j) = ∅. (6.5)

Remark 6.1 It is straightforward to verify that for any sequences (t sik )k∈N, (tbik )k∈N,
(t eik )k∈N, and (taik )k∈N satisfying (6.4)–(6.5), the sequences (t sik )k∈N and (taik )k∈N satisfy
the timing contract θ(τ i , τ i , hi , h

i
).

We aim at synthesizing a dynamic scheduling policy, generating sequences of
timing events satisfying (6.4)–(6.5). The scheduler has control over the sampling and
actuation instants (t sik )k∈N, (taik )k∈N and over the instants (tbik )k∈N when computation
begins. Also, the scheduler assigns a CPU to compute the control input for each
system Si at each control cycle k ∈ N. However, the execution times (cik)k∈N, and
thus the instants when computation ends (t eik )k∈N, are determined by the environment
and are therefore uncontrollable from the point of view of the scheduler. Next, given
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Table 6.1 Methods that can solve instances of Problem 6.1 with description of the modeling and
computational approaches, list of restrictions, and possible extensions

References Models Algorithm Restrictions Extensions

[9] Difference
inclusions

LMI − τk > hk ;
controller
synthesis

[10] LMI − Scheduling

[15] LMI τ = τ = 0 Controller
synthesis

[16] LMI τ = τ = 0 −
[22] SOS τ = τ = 0 −
[12] Invariance τ = τ = 0 −
[18] Time-delay

systems
LMI h = 0 τk > hk ;

scheduling

[14] LMI h = h, τ = 0 Controller
synthesis;
quantization

[20] LMI τ = τ = 0 −
[13] Interconnected

systems
LMI h = τ = τ = 0 −

[6] Hybrid systems SOS − Nonlinear
dynamics;
scheduling

[17] LMI τ = 0, h = 0 Scheduling

that a task Ti , a task-set T , and timing contracts Θ are characterized as

Ti = (
(ci1, c

i
1), . . . , (c

i
J , c

i
J )

)
, i ∈ N[1,N ] (6.6a)

T = {T1, . . . , TN }, (6.6b)

Θ = {θ(τ 1, τ 1, h1, h
1
), . . . , θ(τ N , τ N , hN , h

N
)}, (6.6c)

we define the scheduling problem informally, at this point of the chapter, as

Problem 6.2 (Schedulability verification) Given a set of control tasksT and timing

contractsΘ = {θ(τ 1, τ 1, h1, h
1
), . . . , θ(τ N , τ N , hN , h

N
)} as in (6.6), verifywhether

or not there exists a scheduling policy with sequences of timing events satisfying
(6.4)–(6.5).

A precise formulation of the schedulability of the task-set T is provided in
Sect. 6.4 along with a solution to the schedulability verification problem based on
safety games over timed game automata.
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6.3 Stability Verification

Several approaches are presented in the literature to solve instances of Problem 6.1. A
non-exhaustive list is given in Table6.1. From the modeling perspective, the problem
can be tackled using difference inclusions, time-delay systems, or hybrid systems.
On the computational side, the approaches are based on semi-definite programming
(LinearMatrix Inequalities (LMI) or SumOf Squares (SOS) formulations), invariant
sets, or reachability analysis. Let us remark that approaches [6, 9, 10] appear to be
able to address all instances of Problem 6.1.

Regarding our approach to Problem 6.1, we solve the same problem for a more
general class of dynamic systems, given by a difference inclusion, and conclude
on the stability of system (6.1)–(6.2). Meanwhile, one essential ingredient that is
used in our study is the approximation scheme developed for over-approximating
the reachable set of (6.1)–(6.2) from a given initial set. Such an over-approximation
is provided in a previous work [2]. Let us first start by rewriting the system in terms
of impulsive systems, in order to interpret the reachable set we use in the sequel.

6.3.1 Reformulation Using Impulsive Systems

In our analysis, it is more practical to transform (6.1) into an impulsive system
with two types of resets each referring to a sampling or actuation instant. Such a
reformulation is convenient to develop stability conditions based on reachability
analysis. The system is thus given by

ẋ(t) = Acx(t), t �= t sk , t �= tak
x(t s+k ) = Asx(t

s
k ), k ∈ N

x(ta+
k ) = Aax(t

a
k ), k ∈ N

(6.7)

where x(t) ∈ R
n is the state of the system with n = p + 2m, (t sk )k∈N and (tak )k∈N are

given by (6.2), x(t+) = lim
τ→0,τ>0

x(t + τ), and

Ac =
⎛

⎝
A 0 B
0 0 0
0 0 0

⎞

⎠ , As =
⎛

⎝
Ip 0 0
K 0 0
0 0 Im

⎞

⎠ ,

Aa =
⎛

⎝
Ip 0 0
0 Im 0
0 Im 0

⎞

⎠ , x(t) =
⎛

⎝
z(t)

Kz(θ s(t))
u(t)

⎞

⎠ ,

(6.8)

with θ s(t) = t sk for t ∈ (t sk , t
s
k+1]. We consider in the following, system (6.7) under

timing contract (6.2).
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A notion for stability of the impulsive system guaranteeing the exponential con-
vergence of the state to the origin with a predefined rate β ∈ R

+ is given by

Definition 6.2 (β-Stability) Let β ∈ R
+, system (6.2)–(6.7) is β-stable if there exist

C ∈ R
+ and ε∗ ∈ R

+ such that

|x(t)| ≤ Ce−(β+ε∗)(t−t s0 )|x(t s0)|, ∀t ∈ R
+. (6.9)

Note that β-stability of system (6.2)–(6.7) is equivalent to the β-stability of (6.2)–
(6.1). We are now interested in verifying stability of embedded control systems in
the form given by (6.7) under one of the general timing contracts defined previously
in Sect. 6.2. Indeed, we can easily show that system (6.7) under the ZET and LET
contracts is stable if and only if the eigenvalues of thematrix ehAc Aa As and AaehAc As

are inside the unit circle, respectively. As for the DET or TOL contracts, we have
that stability of system (6.2)–(6.1) is guaranteed by the stability of system (6.2)–(6.7)
with an adequate choice of the timing contract parameters. It is noteworthy that in
the case of the TOL contract, stability of system (6.2)–(6.7) is only sufficient when
the parameters of the over-approximating timing contract are chosen as explained in
Sect. 6.2. Consequently, in this work, we consider an equivalent to Problem 6.1:

Problem 6.3 (Stability verification) Given β ∈ R
+, Ac, As , Aa ∈ R

n×n , (τ , τ , h, h)

∈ C , verify that (6.2)–(6.7) is β-stable.

6.3.2 A Stability Verification Approach Based on Difference
Inclusions

Our stability verification approach to solve Problem 6.3 is based on a reformulation
of the linear impulsive systems (6.2)–(6.7) in the general framework of difference
inclusions. Then, for a fairly large class of difference inclusions, we recall necessary
and sufficient conditions for stability, established in [3]. These conditions are based
on the successive images of a set under the dynamics of the difference inclusion. For
linear impulsive systems (6.2)–(6.7), these conditions allow us to design a stability
verification algorithm using reachability analysis techniques developed in [2].

Let us introduce first a general formulation based on difference inclusions and
later show how linear impulsive systems in the form of (6.2)–(6.7) can be embedded
in this framework. We consider discrete-time dynamical systems modeled by the
following difference inclusion:

ξk+1 ∈ Φ({ξk}), k ∈ N (6.10)

where ξk ∈ R
n is the state of the system, and Φ : 2Rn → 2R

n
is a set-valued map.

Stability for systems of the form (6.10) is considered in the following sense:
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Definition 6.3 (GES) System (6.10) is globally exponentially stable (GES) if there
exists (C, ε) ∈ R

+ × (0, 1) such that for all trajectories (ξk)k∈N of (6.10), we have

|ξk | ≤ Cεk |ξ0| , ∀k ∈ N. (6.11)

Next we verify the stability of a difference inclusion of the form (6.10). We make
first the following assumptions on the map Φ.

Assumption 6.1 For all S ⊆ R
n , λ ∈ R

+
0 , the following assertions hold:

(i) Φ(S ) = ⋃
z∈S Φ({z});

(ii) Φ(λS ) ⊆ λΦ(S );
(iii) ifS is bounded, then Φ(S ) is bounded.

Under item (i) of Assumption 6.1, for all S , S ′ ⊆ R
n , it follows that Φ(S ∪

S ′) = Φ(S ) ∪ Φ(S ′). Also, if S ⊆ S ′, then Φ(S ) ⊆ Φ(S ′). We define the
iterates ofΦ asΦ0(S ) = S for allS ⊆ R

n , andΦk+1 = Φ ◦ Φk for all k ∈ N. Let
(ξk)k∈N be a trajectory of (6.10) such that ξ0 ∈ S , then under item (i) of Assumption
6.1, for all k ∈ N, Φk(S ) is the set of all possible values of ξk .

Then, the stability verification problem, for systems of the form (6.10), can be
formulated as follows:

Problem 6.4 (Stability verification) Under Assumption 6.1, verify that system
(6.10) is GES.

Let β ∈ R
+ and suppose that S ⊆ R

n represents all the states of the system at
sampling instant t sk . Then, a scaled reachable set of system (6.2)–(6.7) at instant t sk+1
is given by the map Φ : 2Rn → 2R

n
such that

Φ(S ) =
⋃

τ∈[τ ,τ ]

⋃

w∈[max(0,h−τ),h−τ ]
e(w+τ)βewAc Aae

τ Ac AsS . (6.12)

The followingproposition establishes the equivalencebetween stability of systems
(6.2)–(6.7) and (6.10).

Proposition 6.1 Given β ∈ R
+. System (6.2)–(6.7) is β-stable if and only if system

(6.10) is GES with Φ given by (6.12).

The next proposition shows that themapΦ in (6.12) satisfies the previous assump-
tions.

Proposition 6.2 Let Φ be given by (6.12), then Φ satisfies Assumption 6.1.

It follows from Propositions 6.1 and 6.2 that Problem 6.3 can be reduced to
Problem 6.4. Therefore, in the next sections, we present necessary and sufficient
theoretical conditions for stability verification and an algorithm to solve Problem 6.4.
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6.3.2.1 Stability Verification: Theoretical Results

This section presents necessary and sufficient conditions, taken from [3], for stability
of system (6.10). The following result characterizes the stability of system (6.10) in
terms of the map Φ.

Theorem 6.2 LetS ⊆ R
n be bounded with 0 in its interior, under Assumption 6.1,

the following statements are equivalent:

(a) System (6.10) is GES;
(b) There exists (k, j, ρ) ∈ N

+ × N[0,k−1] × (0, 1) such that Φk(S ) ⊆ ρΦ j (S );
(c) There exists (k, ρ) ∈ N

+ × (0, 1) such that Φk(S ) ⊆ ρ
⋃k−1

j=0 Φ j (S ).

6.3.2.2 An Algorithm for Stability Verification

In this section, we present an algorithm for verifying the stability of system (6.10).
Indeed, the maps Φ involved in Theorem 6.2 can be impractical to compute exactly.
This is the case of linear impulsive system (6.2)–(6.7), which requires the com-
putation of the reachable set given by (6.12). In that case, we may use an over-
approximationΦ : 2Rn → 2R

n
, which is easier to compute and satisfies the following

assumption:

Assumption 6.3 For all S ⊆ R
n , the following assertions hold:

(i) Φ(S ) ⊆ Φ(S );
(ii) ifS is bounded then Φ(S ) is bounded.

The iterates of Φ are defined similarly to those of Φ. We now derive sufficient
conditions for stability of system (6.10) based on Φ.

Corollary 6.1 Under Assumptions 6.1 and 6.3, if S ⊆ R
n bounded with 0 in its

interior, and (k, i, ρ) ∈ N
+ × N[0,k−1] × (0, 1) such that Φ

k
(S ) ⊆ ρΦ

i
(S ), then

system (6.10) is GES.

Now, we propose a stability verification algorithm to solve Problem 6.4 based
on the sufficient condition given in Corollary 6.1. The algorithm consists of an
initialization step and a main loop. In the initialization step, we compute an initial set
S , which is then propagated in the main loop using the map Φ to check the stability
condition given by Corollary 6.1. The choice of the initial set is important in order
to try to minimize the value of the integer k such that the stability condition given
by Corollary 6.1 holds. Detailed approaches to compute the initial set S and the
over-approximation Φ can be found in [2].
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6.4 Scheduling of Embedded Controllers Under Timing
Contracts

Our aim in this section is to solve Problem 6.2 on schedulability verification.

6.4.1 Timed Game Automata and Safety Games

This section is intended to briefly introduce timed automata [1], timed game
automata [21], and safety games.

6.4.1.1 Timed and Timed Game Automata

Let C be a finite set of real-valued variables called clocks. We denote by B(C) the
set of conjunctions of clock constraints of the form c ∼ α where α ∈ R

+
0 , c ∈ C

and ∼∈ {<,≤,=,>,≥}. We define a timed automaton (TA) and a timed game
automaton (TGA) as in [8]:

Definition 6.4 A timed automaton is a sextuple (L , l0, Act,C, E, I ) where

• L is a finite set of locations;
• l0 ∈ L is the initial location;
• Act is a set of actions;
• C is a finite set of real-valued clocks;
• E ⊆ L × B(C) × Act × 2C × L is the set of edges;
• I : L → B(C) is a function that assigns invariants to locations.

Definition 6.5 A timed game automaton is a septuple (L , l0, Actc, Actu,C, E, I )
such that (L , l0, Actc ∪ Actu,C, E, I ) is a timed automaton and Actc ∩ Actu = ∅,
where Actc defines a set of controllable actions and Actu defines a set of uncontrol-
lable actions.

Formal semantics of TA and TGA are stated in [8]. Informally, semantics of a TA
is described by a transition system whose state consists of the current location and
value of the clocks. Then, the execution of a TA can be described by two types of
transitions defined as follows:

• time progress: the current location l ∈ L is maintained and the value of the clocks
grow at unitary rate; these transitions are enabled as long as the value of the clocks
satisfies I nv(l).

• discrete transition: an instantaneous transition from the current location l ∈ L to a
new location l ′ ∈ L labeled by an action a ∈ Act is triggered; these transitions are
enabled if there is an edge (l,G, a,C ′, l ′) ∈ E , such that the value of the clocks
satisfies G; in that case, the value of the clocks belonging to C ′ is reset to zero.
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Fig. 6.5 TGAi ,where plain anddashed edges correspond to controllable anduncontrollable actions,
respectively

The semantics of TGA is similar to that of TA with the specificity that discrete
transitions labeled by a controllable actions (i.e., a ∈ Actc) are triggered by a con-
troller, while discrete transitions labeled by uncontrollable actions (i.e., a ∈ Actu)
are triggered by the environment/opponent.

6.4.1.2 Safety Games

Safety games (see, e.g., [8]) are defined by a timed game automaton and a set of unsafe
locations Lu ⊆ L . A solution to the safety game is given by a winning strategy for
the controller such that under any behavior of the environment/opponent, the set of
unsafe locations is avoided by all controlled executions of the TGA.
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6.4.2 Reformulation into TGA

We propose a reformulation of the schedulability verification problem using timed
game automata and safety games.

Wefirst associate to each control task and timing contract a timedgame automaton,
as shown in Fig. 6.5 and formally defined as follows:

Definition 6.6 Let i ∈ N[1,N ], the timed game automaton generated by control task

Ti = (
(ci1, c

i
1), . . . , (c

i
J , c

i
J )

)
and timing contract θ(τ i , τ i , hi , h

i
) is

TGAi = (Li , li0, Act
i
c, Act

i
u,C

i , Ei , I nvi ),

where

• Li = {I ni t i , Presami , Precompi , Preaci ,Compi1, . . . ,CompiJ };• li0 = I ni t i ;
• Actic = {samplei , begini1, . . . , begin

i
J , actuate

i };
• Actiu = {endi

1, . . . , end
i
J , in

i };
• Ci = {ci , ki };
• Ei = {(I ni t i , ci ≥ 0, ini , {ci }, Presami ),

(Presami , ci ≥ hi , samplei , {ci }, Precompi ),
(Precompi , ci ≤ τ i − ci1, begin

i
1, {ki },Compi1), . . . ,

(Precompi , ci ≤ τ i − ciJ , begin
i
J , {ki },CompiJ ),

(Compi1, k
i ≥ ci1, end

i
1,∅, Preaci ), . . . , (CompiJ , k

i ≥ ciJ , end
i
J ,∅, Preaci ),

(Preaci , ci ≥ τ i , actuatei ,∅, Presami )};
• I nvi (I ni t i ) = {ci ≥ 0},

I nvi (Presami ) = {ci ≤ h
i },

I nvi (Precompi ) = {ci ≤ τ i − cimin},with cimin = min j∈N[1,J ](c
i
j ),

I nvi (Compi1) = {ki ≤ ci1}, . . . , I nvi (CompiJ ) = {ki ≤ ciJ },
I nvi (Preaci ) = {ci ≤ τ i }.
Intuitively, the set of locations Li denotes all the possible situations that a control

task Ti may be in and Ei denotes all the possible transitions between locations. If we
assume that the control loop has not started yet then this is modeled by the location
I ni t i . After that the control loop starts at a certain time that is determined by the envi-
ronment and thus an uncontrollable transition (I ni t i , ci ≥ 0, ini , {ci }, Presami )

takes place, where the task has to wait until sampling could occur. The latter is real-
ized by the location Presami . Then whenever possible, a controller (which is the
scheduler) has to decide when sampling must occur. When sampling takes place, the
control task will be waiting until a CPU is assigned to compute its control input. This
waiting situation is realized by the Precompi location. The mission of assigning
a CPU for task Ti is that of the scheduler, thus a possible controllable transition
occurs when the assignment of CPUj takes place declaring that the task is in a new
situation realized in TGAi by the location CompiJ . The task rests in this situation
until its execution on the CPU finishes which means that this duration is decided
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by the environment (which is the CPU and not the scheduler) and thus an uncon-
trollable transition from Compij to a new location Preaci means that the execution
has terminated and the control task is in the situation where actuation is to happen
next. The latter decision is taken by the scheduler, and thus is controllable, where the
control input is fed to the plant and the control task is back again in the pre-sampling
situation realized as before by the Presami location. In such a case, the control loop
is closed and the behavior of the control task is repeated infinitely. Note that all the
executions of TGAi explained informally above must respect the semantics of the
timed game automata introduced in Sect. 6.4.1.

Now let the sequences (t sik ), (taik ), (tbik ) and (t eik ) be given by the instants of the dis-
crete transitions labeled by actions samplei , actuatei , begini and endi , respectively.
It is easy to see that these sequences satisfy the constraints given by (6.4). Conversely,
one can check that all sequences satisfying (6.4) can be generated by executions of
TGAi . Moreover, let us restate that the controllable actions are samplei , actuatei ,
begini , which means that the scheduler determines the instants when sampling and
actuation occur and when computation begins. However, endi is uncontrollable,
which means that the execution time, and thus the instant at which computation ends
is determined by the environment.

Finally, CPU j is used by system Si if the current location of TGAi is Compij ,
with j ∈ N[1,J ]. To take into account the constraint given by (6.5), stating that two
systems cannot access any of the J CPUs at the same time, we need to define the
composition of the timed game automata defined above:

Definition 6.7 The timed game automaton generated by the set of control tasks
T = {T1, . . . , TN }, with Ti = (

(ci1, c
i
1), . . . , (c

i
J , c

i
J )

)
for all i ∈ N[1,N ], and tim-

ing contracts Θ = {θ(τ 1, τ 1, h1, h
1
), . . . , θ(τ N , τ N , hN , h

N
)} is given by TGA =

(L, l0, Actc, Actu,C, E, I nv) where

• L = L1 × · · · × LN , thus l = (l1, . . . , l N ) ∈ L denotes the location of TGA;
• l0 = (I ni t1, . . . , I ni t N );
• Actc = ⋃N

i=1 Act
i
c ;

• Actu = ⋃N
i=1 Act

i
u ;

• C = ⋃N
i=1 C

i ;
• E = {(lm, λ, act,C ′, ln) ∈ L × B(C) × (Actc ∪ Actu) × L : ∃i ∈ N[1,N ],
l jm = l jn ∀ j �= i and (lim, λ, act,C ′, lin) ∈ Ei };

• I nv(l) = ∧N
i=1 I nv

i (li ), i ∈ N[1,N ].

TGA describes the parallel evolution of the TGA1, . . . ,TGAN and thus models
the concurrent execution of the control tasks T1, . . . , TN .

6.4.3 Scheduling as a Safety Game

In our setting, we denote the safety game by (TGA, Lu), where the set of locations
corresponding to conflicting accesses to the CPUs Lu ⊆ L is defined by
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Lu = {l ∈ L : ∃(m, n, j) ∈ N
2
[1,N ] × N[1,J ],m �= n,

(lm = Compmj ) ∧ (ln = Compnj )}.
(6.13)

From the previous discussions, we define the following property:

Definition 6.8 (Schedulability) T is schedulable under timing contracts Θ if and
only if there is a winning strategy to (TGA, Lu).

From the practical point of view, the safety game, and thus Problem 6.2, can
be solved using the tool UPPAAL-TIGA [5]. The latter synthesizes also a winning
strategy when it exists, which provides us with a dynamic scheduling policy for
generating the sequences (t sik )k∈N, (tbik )k∈N, (t eik )k∈N, and (taik )k∈N satisfying (6.4)–
(6.5), for all i ∈ N[1,N ].

6.5 Illustrative Example

In this section, we are interested in synthesizing schedules for a given number N of
sampled-data systems, which are subject to timing contracts and whose control input
is computed by J shared CPUs, with J < N . Indeed, the schedule should guarantee
the stability of each system. We implemented the scheduling approach presented
in Sect. 6.4 using UPPAAL-TIGA [5], and used the stability verification algorithm
from [2] to verify stability.

6.5.1 One Processor

Example 6.1 We take N = 2 where the two systemsS1 = (A1, B1, K1) andS2 =
(A2, B2, K2) are taken from [7] and are given by the following matrices:

A1 =
(
0 1
0 −0.1

)
, B1 =

(
0
0.1

)
, K1 = (−3.75 −11.5

)
. (6.14)

A2 =
(

0 1
−2 0.1

)
, B2 =

(
0
1

)
, K2 = (

1 0
)
. (6.15)

6.5.1.1 Stability Verification

After setting β = 0, we use the stability verification algorithm in [2] to verify that
systems S1 and S2 are β-stable under timing contracts θ(0.1, 0.35, 0.3, 0.85) and
θ(0.2, 0.6, 0.8, 1.15), respectively. This means obviously that each of the two sys-
tems with any synthesized scheduling policy on a shared CPU, respecting the above
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timing contracts, is guaranteed to be stable. The computation times required for
stability verification are 1.96 and 1.5s, respectively.

6.5.1.2 Scheduling

Now,we consider the set of control tasksT = {T1, T2} running on a single processor,
or J = 1. After setting the best and worst case execution times for each task as
c11 = 0.12, c11 = 0.35, c2 = 0.04, and c2 = 0.12 we define task T1 = ((c11, c

1
1)), task

T2 = ((c21, c
2
1)), and the same set of timing contracts as in the previous section Θ =

{θ(0.1, 0.35, 0.3, 0.85), θ(0.2, 0.6, 0.8, 1.15)}.
In order to solve the scheduling problem, we associate to T the timed game

automaton TGA as given in Definition 6.7. Following the approach in Sect. 6.4,
we solve the safety game on TGA to find a strategy (if it exists) for the triggering
of controllable actions that occur at (t sik )k∈N, (tbik )k∈N, and (taik )k∈N, with i ∈ N[1,2],
guaranteeing that the set of bad states Lu of the system, given by (6.13), is never
reached regardless of when uncontrollable actions occurring at (t eik )k∈N, i ∈ N[1,2],
are exactly taken.

Using UPPAAL-TIGA, we successfully proved that T is schedulable under tim-
ing contracts Θ , and thus a scheduling policy was found. The computation time
required to solve the game was 1.37s.

Figure6.6 shows the timing of events resulting from this scheduling policy. The
first and second plots show that the timing contracts θ(0.1, 0.35, 0.3, 0.85) and
θ(0.2, 0.6, 0.8, 1.15) are respected for both systems S1 and S2, respectively. The
third plot shows that only one of the two systems gains access to the shared processor
at a time since it appears clearly that

∀(m, n) ∈ N
2
[1,2] with m �= n,

Com(Sm, 1) ∩ Com(Sn, 1) = ∅.

One can notice that in the first three control cycles of S2, the beginning of the
computation has to be delayed until the CPU is released by S1.

Using this scheduling policy, Fig. 6.7 shows results of simulating S1 and S2,
when they share a single processor to compute the value of their control inputs, for
the initial states z10 = (

2
3

)
and z20 = (

2
3

)
with t s10 = 0.4 and t s20 = 0.9. As shown,

trajectories of both systems converge to zero and therefore the scheduling policy in
this case guarantees the exponential stability of each system.

6.5.2 Two Processors

Example 6.2 Wetake N = 3,wherewehave two identical systemsS1 andS2 whose
matrices are given by (6.14) and another system S3 with matrices given by (6.15).
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Fig. 6.6 Timing of events (sampling, beginning/end of computation, and actuation) for systemsS1
(first plot) and S2 (second plot) during the first 3 s; dotted lines represent constraints on actuation
instants, while dashed lines represent constraints on sampling instants. In the third plot, the dot-
ted line represents Com(S2, t) (less frequent) and the dashed line represents Com(S1, t) (more
frequent)

Fig. 6.7 Trajectories for systemsS1 (left) andS2 (right) using the synthesized scheduling policy
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First, we consider a single processor to compute the control input of the three systems
(i.e., J = 1) where control tasks T1, T2, and T3 are given by T1 = T2 = (0.12, 0.25)
and T3 = (0.04, 0.1). We consider the set of contractsΘa = {θ(0.1, 0.35, 0.1, 0.35),
θ(0.1, 0.35, 0.1, 0.35)}, Θb = {θ(0.1, 0.35, 0.1, 0.35), θ(0.1, 0.2, 0.1, 0.2)}, and
Θc = {θ(0.1, 0.35, 0.1, 0.35), θ(0.1, 0.35, 0.1, 0.35), θ(0.1, 0.2, 0.1, 0.2)}. Follow-
ing the approach in Sect. 6.4 we can prove that each of the task-set {T1, T2}, the task-
set {T2, T3}, and obviously the task-set {T1, T2, T3} is not schedulable under timing
contracts Θa , Θb, and Θc respectively. On the other hand, this does not mean that
systemsS1,S2, andS3 cannot share two processors to compute their control input.

Now, we consider two CPUs, or J = 2, and define the task-set T = {T1, T2, T3}
with T1 = T2 = ((0.12, 0.25), (0.12, 0.25)) and T3 = ((0.04, 0.1), (0.04, 0.1)).
Then we associate to T the TGA as given in Definition 6.7 and solve the safety
game on TGA to find a strategy (if it exists) for the triggering of controllable actions
that occur at (t sik )k∈N, (tbik )k∈N, and (taik )k∈N, with i ∈ N[1,3], guaranteeing that the set
of bad states Lu of the system is never reached regardless of when uncontrollable
actions occurring at (t eik )k∈N, i ∈ N[1,3], are exactly taken.

Using UPPAAL-TIGA, we successfully proved that T is schedulable under tim-
ing contracts Θc, and thus a scheduling policy was found. The computation time
required to solve the game and output the scheduling policy was 10 s.

Figure6.8 shows the timing of events resulting from this scheduling policy. The
first three plots show that the contracts θ(0.1, 0.35, 0.1, 0.35), θ(0.1, 0.35, 0.1, 0.35),
and θ(0.1, 0.2, 0.1, 0.2) are respected for systemsS1,S2, andS3, respectively. The
fourth and fifth plots show that only one of the three systems gains access to each of
the two shared processors at a time since it appears clearly that

∀(m, n, j) ∈ N
2
[1,3] × N[1,2]with m �= n,

Com(Sm, j) ∩ Com(Sn, j) = ∅.

At this point, we should mention that we followed the stability verification
approach in [2] and proved that for β = 0, β-stability is guaranteed for systemsS1,
S2, and S3 under timing contracts θ(0.1, 0.35, 0.1, 0.35), θ(0.1, 0.35, 0.1, 0.35),
and θ(0.1, 0.2, 0.1, 0.2) respectively. Using this scheduling policy, Fig. 6.9 shows
results of simulating S1, S2, and S3 when they share two processors to com-
pute the value of their control inputs, for the initial states z10 = z20 = z30 = (

2
3

)
with

t s10 = t s20 = t s30 = 0.01s. As shown, trajectories of the three systems converge to zero
and therefore the scheduling policy in this case guarantees the exponential stability
of each system.

6.6 Conclusion

In this chapter, we proposed an approach for verifying stability and scheduling
embedded control systems under timing contracts on a multi-core platform using
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Fig. 6.8 Timing of events (sampling, beginning/end of computation, and actuation) for systemsS1
(first plot), S2 (second plot), S3 (third plot) during the first 3 s; dotted lines represent constraints
on actuation instants, while dashed lines represent constraints on sampling instants. In the fourth
and fifth plot, the dashed line (magnitude 1) represents Com(S1, j), dotted line (magnitude 1.5)
representsCom(S1, j), and the dotted-dashed line (magnitude 2) representsCom(S3, j) for j = 1
(fourth plot) and j = 2 (fifth plot)

Fig. 6.9 Trajectories for systems S1 (left), S2 (middle), and S3 (right) using the synthesized
scheduling policy
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reachability analysis and safety timed games, respectively. As a future work, it would
be interesting to consider preemptive scheduling since it is not trivial to extend the
present work to scheduling with preemption. Another direction for improving our
approach is to find optimal schedules in the sense that the control loop is to be closed
as soon as possible for each task to have the best possible performance.
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