
Chapter 5
Template Complex Zonotope Based
Stability Verification

A. Adimoolam and T. Dang

Abstract In this paper, we consider the problem of verifying stability of computer
control systems whose behavior can be modeled by nearly periodic linear impulsive
systems. In these systems, the eigenstructure and stability of the dynamics are closely
related. A recently introduced set representation called complex zonotopes could
utilize the possibly complex eigenstructure of the dynamics to define contractive sets
for stability verification, which demonstrated good accuracy on some benchmark
examples. However, complex zonotopes had the drawback that it is not easy to
refine them in the stability verification procedure, while also we had to guess the
contractive complex zonotope instead of systematically synthesizing it. Overcoming
this drawback, in this paper we introduce a more general set representation called
template complex zonotope, which has the advantage that it is easy to refine and also
the contractive set can be systematically synthesized. We corroborate the efficiency
of our approach by experimenting on some benchmark examples.

5.1 Introduction

Embedded control systems combine computer software with the physical world, and
their global behavior can be modeled using hybrid systems. To assert correctness
of such systems, their global behavior under all possible nondeterminism resulting
from the interaction between continuous and discrete dynamics should be accurately
analyzed. Thus, one of the key ingredients for safe design and verification of embed-
ded control systems is a set representation which, on one hand, is expressive enough
to describe the evolution of sets of hybrid trajectories and, on the other hand, can be
manipulated by time-efficient algorithms. For most hybrid systems with nontrivial
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continuous dynamics, exact computation of hybrid trajectories is impossible, so the
focus is put on approximate computation of reachable states. In the area of abstract
interpretation within program verification, there is a similar need for data structures
for set manipulation, called abstract domains, which should be fine-grained enough
to be accurate, yet computationally tractable to deal with complex programs.

Two classical abstract domains are intervals [12] and convex polyhedra [13], and
their variants have been developed to achieve a good compomise between computa-
tional speed and precision, such as zones [28], octagons [29], linear templates [35],
zonotopes [19], and tropical polyhedra [4]. For hybrid model checking, convex poly-
hedra and their special classes such as parallelotopes and zonotopes are also among
popular set representations. Beyond polyhedral set representations, ellipsoids can
be used for reachable set computations [27]. In abstract interpretation, polynomial
inequalities are used for invariant computation via their reduction to linear inequal-
ities in [7] and polynomial equalities via Gröner basis methods [34]. Quadratic
templates are also proposed, where semi-definite relaxations are used for deriving
nonlinear invariants (for instance quadratic invariants inspired by Lyapunov func-
tions) [2, 15]. Recently, complex zonotopes [1] extended usual zonotopes to the
complex domain, which geometrically speaking are Minkowski sum of line seg-
ments and some ellipsoids. Other extensions of zonotopes, such as quadratic [3] and
more general polynomial zonotopes [6] have been proposed. Complex zonotopes are
however different from polynomial zonotopes because while a polynomial zonotope
is a set-valued polynomial function of intervals, a complex zonotope is a set-valued
function of unit circles in the complex plane.

Complex zonotopes can utilize the possibly complex eigenstructure of the dynam-
ics of linear impulsive systems to define contractive sets for stability verification.
This is an advantage over polytopes or usual zonotopes that can only utilize the real
eigenstructure but not the complex eigenstructure. For stability verification of nearly
periodic linear impulsive systems, complex zonotopes demonstrated good accuracy
on some benchmark examples. However, a drawback of complex zonotopes is that
adding more generators to it can violate the property of contraction with respect to
the dynamics. Therefore, it is not easy to refine complex zonotopes for verifying
stability for larger intervals of sampling times. Moreover, we had to heuristically
guess a suitable complex zonotope for stability verification instead of systematically
synthesizing it.

Overcoming the aforementioned drawback, in this paper, we introduce a more
general set representation called template complex zonotopes. In a template complex
zonotope, the bounds on the complex combining coefficients, called scaling factors,
are treated as variables, while the directions for the generators are fixed a priori
by a template of complex vectors. This allows us to systematically synthesize a
suitable template complex zonotope for stability verification, instead of guessing it
like in the case of complex zonotopes. Furthermore, template complex zonotopes
can be refined easily by adding any arbitrary set of vectors to the existing template,
because the scaling factors can be adjusted accordingly. We present experiments on
some benchmark examples where template complex zonotopes contract faster than
complex zonotopes, resulting in faster verification.
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Basic notation. We represent integers by Z, real numbers by R and complex
numbers by C. For integers p and q, the set of p × q matrices with entries drawn
from a set Ψ is denotedMp×q(Ψ ). If z is a vector of complex numbers, then real(z)
denotes the real part of z and the imaginary part is denoted img(z). For a positive
integer i , the i th component of z is denoted by zi . For a matrix X and positive
integers i, j , Xi j is the i th row and j th column entry of X . The diagonal square
matrix containing entries of z along the diagonal is denoted by D(z). If c is a scalar
complex number, its absolute value is |c| = (|real(c)|2 +|img(c)|2)1/2. The infinity
norm of a possibly complex n-dimensional vector z is ‖z‖∞ = maxni=1 |zi |. The
infinity norm of a possibly complex n × m matrix X is ‖X‖∞ = maxni=1

∑ |Xi j |.
The rest of the paper is organized as follows. We introduce template complex

zonotopes in Sect. 5.2 and discuss important operations on them like linear transfor-
mation, Minkowski sum and inclusion checking. In Sect. 5.3, we first define a nearly
periodic linear impulsive system and the problem of verifying global exponential
stability. Using Proposition 5.1, we relate the contraction of a template complex
zonotope to the eigenstructure of the dynamics, which is a motivation for using
template complex zonotopes for stability verification. Later in that section, we dis-
cuss how to find suitable template complex zonotopes and verify their contraction to
establish exponential stability of the system. In Sect. 5.4, we describe experiments
on two benchmark examples and their results which corroborate the efficiency of our
approach.

5.2 Template Complex Zonotopes

A template complex zonotope is a set representation in which each point is described
as a linear combination of a set of complex-valued vectors, called as a template, such
that the complex combining coefficients are bounded in absolute values by a set of
positive bounds called scaling factors.

Definition 5.1 (Template complex zonotope) For n,m ∈ Z>0, let V ∈ Mn×m(C) be
a template, c ∈ C

n be a center point and s ∈ R
m
≥0 be scaling factors. Then we define

a template complex zonotope as

C (V, c, s) = {
V ζ + c : ζ ∈ C

m ∧ ∀i ∈ {1, . . . ,m}, |ζi | ≤ si
}
.

Complex zonotopes, which were introduced in [1], are a special case of template
complex zonotopes where si = 1 for all i ∈ {1, . . . ,m}. The real projection of
a template complex zonotope can represent, in addition to polytopic zonotopes,
non-polyhedral convex sets. Therefore, they are also more expressive than usual
(real-valued) zonotopes. To illustrate, Fig. 5.1 represents the non-polyhedral real

projection of the template complex zonotope C (V, 0, s) where V =
(

(1+2i) 1 (2+i)
(1−2i) 1 (2−i)

)

and s = [1 1 1]T .
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Fig. 5.1 Real projection of a template complex zonotope

In the rest of the paper, unless otherwise stated, we assume that V is an n × m
complex matrix, s is an m × 1 column vector and c is a n × 1 column vector for
m, n ∈ Z>0.
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Operations on template complex zonotopes. Concerning linear transformation and
the Minkowski sum, computations on template complex zonotopes are similar to
those on usual (real-valued) zonotopes as stated in the following results, which can
be proved by the same techniques as that of a usual zonotope.

Lemma 5.1 (Linear transformation and Minkowski sum) Let A ∈ Mn×n(C), V ∈
Mn×m(C), G ∈ Mn×r (C), c, d ∈ C

n, s ∈ R
m
≥0, h ∈ R

r≥0 for some n,m, r ∈ Z>0.

1. Linear transformation: AC (V, c, s) = C (AV, Ac, s).

2. Minkowski sum: C (V, c, s) ⊕ C (G, d, h) = C

(

[V G] , (c + d),

(
s
h

))

.

Checking inclusion is a fundamental problem in reachability computation. For
stability verification, we are interested in efficiently checking the inclusion between
two template complex zonotopes centered at the origin.Although this problem is non-
convex in general, we derive an easily verifiable convex condition which is sufficient
(but not necessary), as follows. The inclusion checking method we propose in the
following can be extended to zonotopes centered anywhere.

Let us consider that we want to check the inclusion of a template complex
zonotope C (V a, 0, sa) inside a template complex zonotope C

(
V b, 0, sb

)
, where

V a ∈ Mn×r (C), V b ∈ Mn×m(C), sa ∈ R
r≥0 and sb ∈ R

m
≥0 for some n,m, r ∈ Z>0.

We relate any point in V a to a point in V b as follows. Consider X ∈ Mr×m(C) as a
matrix solving V aD(sa) = V bX , which we call a transfer matrix fromC (V a, 0, sa)
to C

(
V b, 0, sb

)
. Recall that D(sa) is the diagonal square matrix containing entries

of sa along its diagonal. Let any point z in C (V a, 0, s) be written as z = V aζ where
ζ is a combining coefficient whose absolute values are bounded by sa . By normal-
izing with the scaling factors, we can write ζ = D(s)ε for some ε : ‖ε‖∞ ≤ 1.
So, we get z = V aD(s)ε. Then using the relation for the transfer matrix, we
rewrite z = V bXε. If the absolute value of every component of Xε is less than
the corresponding value of sb, then Xε can be treated as a combining coefficient of
C

(
V b, 0, sb

)
for the point z and then z also belongs to C

(
V b, 0, sb

)
. This is true if∑m

j=1 |Xi j | ≤ sbi ∀i ∈ {1, . . . ,m}. This gives us a sufficient condition, stated in the
following theorem for inclusion of C (V a, 0, sa) in C

(
V b, 0, sb

)
.

Theorem 5.1 (Inclusion) Let V a ∈ Mn×r (C), V b ∈ Mn×m(C), sa ∈ R
r≥0 and

sb ∈ R
m
≥0 for some n,m, r ∈ Z>0. Then C (V a, 0, sa) ⊆ C

(
V b, 0, sb

)
if all the

following statements are true.

∃X ∈ Mm×r (C) :

V bX = V aD(sa) and ∀i ∈ {1, . . . ,m}
⎛

⎝
r∑

j=1

|Xi j |
⎞

⎠ ≤ sbi .
(5.1)

For fixed Va and Vb, the constraints in Theorem 5.1 are second-order conic con-
straints in the variables sa , sb, and X . Many convex optimization solvers can solve
such constraints efficiently upto a high numerical precision.
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5.3 Nearly Periodic Linear Impulsive System

A nearly periodic linear impulsive system is a hybrid system whose state evolves
continuously by a linear differential equation for some bounded time period, after
which there is an instantaneous linear impulse. Formally, a linear impulsive system
is specified by a tuple L = 〈Ac, Ar ,Δ〉 where Ac and Ar are n × n real matrices
called the linear field matrix and impulse matrix, respectively. The positive integer n
is the dimension of the state space and Δ = [tmin, tmax ] is an interval of nonnegative
reals, called the sampling period interval. The dynamics of the nearly periodic linear
impulsive system is described as follows. A function x : R≥0 → R

n is called a
trajectory of the system if there exists a sequence of sampling timesdefinition (ti )∞i=1
satisfying all the following:

(ti+1 − ti ) ∈ Δ ∀i ∈ Z>0 (uncertainty in sampling period)

ẋ(t) = Acx(t) ∀t ∈ R≥0 : t �= ti ∀i ∈ Z>0 (continuous)

x(t+i ) = Arx(t−i ) ∀i ∈ Z>0 (linear impulse)

(5.2)

We say that the linear impulsive system is globally exponentially stable (GES) if
all the trajectories of the system beginning at any point in the state space eventually
reach arbitrarily close to the origin at an exponential rate, as follows.

Definition 5.2 (Global exponential stability) The system (5.2) is globally exponen-
tially stable (GES) if there exist positive scalars c > 0 and λ ∈ [0, 1) such that for
all t ∈ R≥0, x(t) ≤ cλt‖x(0)‖.
We state the stability verification problem as follows.

Problem 5.1 (Stability verification problem) proposition Given Ac, Ar , tmin , find
the largest upper bound tmax on the sampling time to guarantee exponential stability.

Related work on stability verification of nearly periodic linear impulsive systems
A common approach to this problem is extending Lyapunov techniques, which

results in Lyapunov Krakovskii functionals [37, 39] (using the framework of time-
delay systems), and discrete-time Lyapunov functions [36]. Stability with respect to
time-varying input delay can also be handled by input/output approach [24]. Stability
verification problem for time-varying impulsive systems can also be formulated in a
hybrid systems framework [8, 20, 32], for which various Lyapunov-based methods
including discontinuous time-independent [31] or time-dependent Lyapunov func-
tions [17] were developed. Another approach involves using convex embedding [18,
21, 22]. In this approach, stability conditions can be checked using parametric Lin-
ear Matrix Inequalities (LMIs) [21], or as set contractiveness (such as, polytopic set
contractiveness) [10, 16, 25]. Inspired by these results on set contractiveness, con-
ditions [1] provides a stability condition, expressed in terms of complex zonotopes,
which is more conservative but can be efficiently verified. The novelty of this work is
in the extension of complex zonotopes to template complex zonotopes which allows
a systematic way to synthesize contractive zonotopic sets to verify stability.
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The state reached after a linear impulse followed by a continuous evolution for
time t is eAct Ar x . So, let us denote Ht = eAct Ar for any positive real t , which we
call as the reachability operator if t lies in the sampling period interval Δ. Given a
set Ψ ⊂ R

n , the set of all reachable points of Ψ , when acted upon by an impulse
followed by continuous evolution for sampling time period t ∈ Δ until before the
next impulse, is

⋃
t∈Δ HtΨ . It was shown previously in [16, 25] that a necessary and

sufficient condition for exponential stability is the existence of a convex, compact,
and closed set containing the origin in its interior, called a C-set, that contracts
between subsequent impulses. In other words, we can establish exponential stability
by finding a C-set Ψ such that HtΨ ⊆ λΨ for some λ ∈ [0, 1) and for all t ∈ Δ.
In this paper, we want to find contractive C-sets represented as template complex
zonotopes. We define contraction of a template complex due to a linear operator as
follows, which when less than one, implies that the zonotope is contractive.

Definition 5.3 For a template complex zonotope C (V, 0, s), the amount of con-
traction by a square matrix J ∈ Mn×n(R), denoted by χ(V, s, J ) is

χ(V, s, J ) = min
{
λ ∈ R≥0 : JC (V, 0, s) ⊆ λC (V, 0, s)

}
.

Our motivation for considering template complex zonotopes can be inferred from
the following proposition.

Proposition 5.1 Let V contain only the eigenvectors of Ht as its column vectors and
μbe the vector of eigenvalues corresponding the columns of V . Then HtC (V, 0, s) =
C (V, 0,D(|μ|)s).

For a fixed sampling time period, i.e., when tmin = tmax = t , we can infer from
the above proposition that the contraction of the template complex zonotope formed
by the eigenvector template is bounded by the largest absolute value of the eigenval-
ues. Therefore, when the sampling period is fixed, we can find contractive template
complex zonotopes for exponentially stable systems by choosing the template as the
collection of eigenvectors. However, we are interested in the case where the sampling
time period varies in the interval Δ, i.e., there are uncountably many reachability
operators parametrized over the time interval Δ. Motivated by the above analysis,
when the sampling period is uncertain, we choose the template as the collection
of eigenvectors of a few reachability operators and try to synthesize suitable scaling
factors for which the template complex zonotope contracts with respect to the chosen
finite set of reachability operators. However, later we also verify that the synthesized
template complex zonotope actually contracts with respect to all the (uncountably
many) reachability operators. First, we describe the procedure to synthesize the tem-
plate complex zonotope.

Synthesizing a candidate template complex zonotope. This step of systematically
synthesizing a suitable template complex zonotope that is likely to be contractive
constitutes the main improvement over the procedure proposed in [1]. Our criterion
for synthesizing the template complex zonotope is that it has to be contractive with
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respect to a few reachability operators (called reference operators), which is a neces-
sary condition for contraction with respect to the overall system dynamics. Since the
eigenstructure of the reachability operators is related to the stability of the system, we
include the eigenvectors of a few reachability operators in the template. For a fixed
number k ∈ Z>0 of reference operators, they can be chosen incrementally as follows.

Define k-sampled time points as Λk =
{
tmin + i (tmax−tmin)

k : i ∈ {0, . . . , k − 1}
}

.

Then, we define the set of k-sampled reachability operators as Γk = {Ht : t ∈ Λk}.
Let us denote the template of collection of eigenvectors of all operators in Γk as
Ek . For this template, we synthesize suitable scaling factors based on the following
theorem. The derivation of this theorem uses the inclusion checking condition from
Theorem 5.1.

Theorem 5.2 If Ek have rank n. For a vector of scaling factors s ∈ R
m
≥0, the template

complex zonotopeZ = C (Ek, 0, s) would represent a C-set and also HtZ ⊆ λZ
for λ ∈ (0, 1) if following are all satisfied.

s ∈ R
n
≥1 (sufficient condition for representing C-set)

∃Xt ∈ Mm×m(C) ∀t ∈ Λk s.t.

Ek Xt = Ht EkD(s) (transfer matrix condition)
m∑

j=1

∣
∣(Xt )i j

∣
∣ ≤ λsi ∀i ∈ {1, . . . ,m} (bounding contraction)

(5.3)

Therefore, we can synthesize a template complex zonotope that is contractive
with respect to a finite chosen number k > 0 of reference operators by solving for
the scaling factors satisfying the second-order conic constraints in (5.3).

Verifying contraction. To verify that this synthesized template complex zono-
tope actually contracts with respect to all the reachability operators Ht , where t
is parametrized over the whole sampling time interval Δ, we divide the sampling
interval into small enough subintervals and verify contraction in each interval. To
bound the amount of contraction in small intervals, we use some useful properties
of contraction, which were earlier derived in [1].

Let Ht+ρ be an operator where ρ lies in the interval (0, ε). For an order of Taylor
expansion r ∈ Z>0 and some δ ∈ [0, ε], define

Pt
r (ρ) =

r∑

i=0

Ai
cρ

i

i ! Ht and Et
r (δ) = Ar+1

c δr+1

(r + 1)! Ht .

Then based on Taylor expansion, we get that

Ht+ρ = Pt
r (ρ) + theoremEt

r (δ).

Furthermore, a bound on contraction as sumof contractions depending on ε is derived
in [1] as
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χ
(
V, s, Ht+ρ

) ≤
(

r
max
i=0

χ
(
V, s, Pt

r (ε)
)
)

+ εr+1

(r + 1)!χ
(
V, s, Ar+1

c Ht
)

(5.4)
The right-hand side of (5.4) can be bounded if we know a bound on the contraction
under a linear operation, which is derived as follows.

Lemma 5.2 Let J ∈ Mn×n(R). Define

β(V, s, J ) = min{‖X‖∞ : X ∈ Mm×m(C) ∧ VD(s)X = JVD(s)}

Then we have χ(V, s, J ) ≤ β(V, s, J ).

Proof If JVD(s) = VD(s)X ,wewant to prove that JC (V, 0, s) = C (JV, 0, s) ⊆
‖X‖∞C (V, 0, s). We deduce C (JV, 0, s) = {JV ζ : ∀i ∈ {1, . . . ,m}|ζi | ≤
si } = {JVD(s)ζ ′ : ‖ζ ′‖∞ ≤ 1} = {VD(s)Xζ ′ : ‖ζ ′‖∞ ≤ 1} ⊆ ‖X‖∞{VD(s)ζ ′ :
‖ζ ′‖∞ ≤ 1} = ‖X‖∞{V ζ : ∀i ∈ {1, . . . ,m}|ζi | ≤ si } = ‖X‖∞C (V, 0, s).

Then the contraction for sampling time interval (t, t + δ) can be bounded as follows.

Theorem 5.3 Let ρ ∈ (t, t + ε) and for r ∈ Z>0, Pt
r (ρ) = ∑r

i=0
Ai
cρ

i

i ! Ht . Define

ηr (V, s, t, ε) = (
maxri=0 β

(
V, s, Pt

r (ε)
))+ εr+1

(r+1)!β
(
V, s, Ar+1

c Ht
)
, where the bound

β(.) is defined in Lemma 5.2. Then χ
(
V, s, Ht+ρ

) ≤ ηr (V, s, t, ε)

Verification algorithm. We begin with k = 3 reference operators that correspond
to the two end points of the sampling interval and the middle point. The algorithm
first finds suitable scaling factors s that gives a template complex zonotope which
contracts with respect to these reference operators. Next, it checks whether the con-
traction of the template complex zonotope C (Ek, 0, s) with respect to all the reach-
ability operators is less than one. For checking contraction, we use the algorithm
earlier proposed in [1]. If successful, then exponential stability of the system is
verified. Otherwise, k is increased, the algorithm synthesizes the template complex
zonotope for the increased k and then checks contraction. If unsuccessful after amax-
imum value of k, the algorithm stops and the result is inconclusive. This is described
in Algorithm1. This algorithm has been implemented and we defer experimental
results to Sect. 5.4.

5.4 Experiments

We evaluated our algorithm on two benchmark examples of linear impulsive systems
below and compared it with other state-of-the-art approaches. For convex optimiza-
tion, we use CVX version 2.1 with MATLAB 8.5.0.197613 (R2015a). The reported
experimental results were obtained on Intel(R) Core(TM) i5-3470 CPU@ 3.20GHz.
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Algorithm 1 Exponential stability verification of system (5.2)
1: Initialize k = 3.
2: Choose M ∈ Z>0 as the largest value of k and tol as discretization parameter.
3: while k ≤ M do
4: Initialize t = tmin , h = tol, r as order of Taylor expansion (typically ≤ 2).
5: while h ≥ tol and t < tmax do
6: if ηr (Ek , s, t, h) < 1 then
7: t ← t + h; h ← h + tol
8: else
9: h ← h − tol
10: end if
11: end while
12: if t ≥ tmax then
13: —BreakLoop—
14: else
15: k ← k + 1.
16: end if
17: end while
18: if k ≤ M then
19: System is exponentially stable
20: else
21: Inconclusive
22: end if

Example 1 We consider a networked control system with uncertain but bounded
transmission period. A networked control system is composed of a plant and a con-
troller that interact with each other by transmission of feedback input from controller
to the plant. If the system dynamics is linear with linear feedback, then for uncertain
but bounded transmission period, we can equivalently represent it as a linear impul-

sive system where Ac =
⎛

⎝
Ap 0 Bp

0 0 0
0 0 0

⎞

⎠ , Ar =
⎛

⎝
I 0 0

BoCp Ao 0
DoCp Co 0

⎞

⎠ for some parameter

matrices Ap, Bp, Bo, Cp, Ao, Co, and Do. The sampling interval Δ of the linear
impulsive system specifies bounds on the transmission interval. Our example of a
networked control system is taken from Björn et al. [38]. The system is originally
described by discrete-time transfer functions, which has an equivalent state-space

representation with parameter matrices Ap =
(−1 0

1 0

)

, Bp =
(
1
0

)

, Cp = (
0 1

)
,

Ao = 0.4286, Bo = −0.8163, Co = −1 and Do = −3.4286. Given the lower bound
on the transmission period as tmin = 0.8, we want to find as high a value of tmax as
possible for which the system is GES.

Example 2 We consider the following linear impulsive system fromHetel et. al. [22]
that describes an LMI-based approach to verify stability. The specification is given

by Ac =
⎛

⎝
0 −3 1
1.4 −2.6 0.6
8.4 −18.6 4.6

⎞

⎠ and Ar =
⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠ .
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Table 5.1 Example 1

Reference tmin tmax

Value recommended in [38] 0.08 0.22

NCS toolbox [8] 0.08 0.4

Complex zonotope [1] 0.08 0.5

Template complex zonotope 0.08 0.58

Table 5.2 Example 2

Reference tmin tmax

Lyapunov, parametric
LMI [22]

0.1 0.3

Polytopic set
contractiveness [16]

0.1 0.475

Khatib et al. [25] 0.1 0.514

Complex zonotope [1] 0.1 0.49

Template complex zonotope 0.1 0.496

Table 5.3 Template complex zonotopes (TCZ) vs Complex zonotopes (CZ) [1]

CZ TCZ

Finding suitable zonotope Requires guessing Systematically synthesized

No. of impulses for contraction 2 (both examples) 1 (both examples)

Computation time (Example 1) 27.41 s 14.9443 s

Computation time (Example 2) 74.04 s 10.6097 s

Setting and Results. While implementing the algorithm for stability verification,
we used order Taylor expansion, a tolerance of tol = 0.01 for Example1 and
tol = 0.006 for Example2. We required k = 3 number of reachability operators
for both examples, for synthesizing a suitable template complex zonotope used in
checking contraction. We could verify exponential stability in a sampling interval
[0.08, 0.58] for Example1 and [0.1, 0.496] for Example2. The comparison of our
approach with the state-of-the-art NCS toolbox [8] and also other approaches is pre-
sented in Tables5.1 and 5.2. For the first example, our method outperforms other
approaches, while it is competitive with other approaches on the second example.
Furthermore, Table5.3 shows that the template complex zonotope based approach is
also faster than the complex zonotope approach of [1].



94 A. Adimoolam and T. Dang

5.5 Conclusion

We extended complex zonotopes to template complex zonotopes in order to improve
the efficiency of the computation of contractive sets and positive invariants. Tem-
plate complex zonotopes retain a useful feature of complex zonotopes, which is
the scope to incorporate the eigenvectors of linear dynamics among the generators
because the eigenstructure is related to existence of positive invariants. In addition,
compared to complex zonotopes, the advantage template complex zonotopes have
is the ability to regulate the contribution of each generator to the set by using the
scaling factors. Accordingly, we proposed a systematic and more efficient procedure
for verification of stability of nearly periodic impulsive systems. The advantage of
this new set representation is attested by the experimental results that are better or
competitive, compared to the state-of-the-art methods and tools on benchmark exam-
ples. This work also contributes a method for exploiting the eigenstructure of linear
dynamics to algorithmically determine template directions, required by most verifi-
cation approaches using template-based set representations. A number of directions
for future research can be identified. First, we intend to extend these techniques to
analysis to switched systems under constrained switching laws. Also computation-
ally speaking, our approach is close in spirit to abstract interpretation. Indeed, the
operations used to find contractive sets can be extended to invariant computation for
general hybrid systems with state-dependent discrete transitions.
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