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Stabilizability and Control Co-Design
for Discrete-Time Switched Linear
Systems
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Abstract In this work we deal with the stabilizability property for discrete-time
switched linear systems. First we provide a constructive necessary and sufficient
condition for stabilizability based on set-theory and the characterization of a uni-
versal class of Lyapunov functions. Such a geometric condition is considered as the
reference for comparing the computation-oriented sufficient conditions. The clas-
sical BMI conditions based on Lyapunov-Metzler inequalities are considered and
extended. Novel LMI conditions for stabilizability, derived from the geometric ones,
are presented that permit to combine generality with convexity. For the different
conditions, the geometrical interpretations are provided and the induced stabilizing
switching laws are given. The relations and the implications between the stabiliz-
ability conditions are analyzed to infer and compare their conservatism and their
complexity. The results are finally extended to the problem of the co-design of a
control policy, composed by both the state feedback and the switching control law,
for discrete-time switched linear systems. Constructive conditions are given in form
of LMI that are necessary and sufficient for the stabilizability of systems which are
periodic stabilizable.
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2.1 Introduction

Switched systems are characterized by dynamics that may change along the time
among a finite number of possible dynamical behaviors. Each behavior is determined
by a mode and the active one is selected by means of a function of time, or state,
or both, and referred to as switching law. The interest that such a kind of systems
rose in the last decades lies in their capability of modeling complex real systems, as
embedded or networked ones, and also for the theoretical issues involved, see [19,
20, 24].

Several conditions for stability have been proposed in the literature based on:
switched Lyapunov functions [8]; the joint spectral radius [15]; path-dependent Lya-
punov functions [18]; and thevariational approach [21]. If the existenceof polyhedral,
hence convex, Lyapunov functions has been proved to be necessary and sufficient
for stability [5, 22], convex functions result to be conservative for switched systems
with switching law as control input, see [6, 24]. Thus, nonconvex functions must
be considered for addressing stabilizability. Sufficient conditions for stabilizability
have been provided in literature, mainly based on min-switching policies introduced
in [26], developed in [17, 19] and leading to Lyapunov-Metzler inequalities [13, 14].
The fact that the existence of a min-switching control law is necessary and sufficient
for exponential stabilizability has been claimed in [24]. In the same work, as well as
in [6], it has been proved that the stabilizability of a switched system does not imply
the existence of a convex Lyapunov function. Thus, for stabilizability, nonconvex
Lyapunov functions might be considered, see for instance [14, 24].

We present here some recent results, mostly based on set-theory and convex
analysis, on stabilizability and control co-design for switched linear systems, see [10–
12]. We first propose a stabilizability approach based on set-theory and invariance,
see [2, 3, 16]. A geometric necessary and sufficient condition for stabilizability and
sufficient one for non-stabilizability of discrete-time linear switched systems are
presented in [10]. A family of nonconvex, homogeneous functions is proved to be a
universal class of Lyapunov functions for switched linear systems.

The geometric condition in [10] might, nonetheless, result to be often compu-
tationally unaffordable, although such a computational complexity appears to be
inherent to the problem itself, hence unavoidable. In the literature, computation-
oriented sufficient conditions for stabilizability have been provided that are based on
min-switching policies and lead to nonconvex control Lyapunov functions in form
of minimum of quadratics. Such functions are obtained as solutions to Lyapunov-
Metzler BMI conditions, [1, 14], and through an LQR-based iterative procedure,
[24]. New LMI conditions for stabilizability, which could conjugate computational
affordability with generality, are proposed here, see [12]. The LMI conditions are
proved to admit a solution if and only if the system is periodic stabilizable.Moreover,
we provide geometrical and numerical insights on different stabilizability conditions
to quantify their conservatism and the relations between them and with the necessary
and sufficient ones.
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The problem of co-designing both the switching law and the control input is even
more involved than the problem of stabilizability of autonomous switched systems.
This problem has been addressed in several works based on Lyapunov-Metzler BMI
conditions, as in [9], or on techniques based on LQR control approximation in [1,
27, 28]. Constructive LMI conditions are given here that are necessary and sufficient
for the stabilizability of systems which are periodic stabilizable, [11]. The conditions
are constructive and provide the switching law and a family of state feedback gains
stabilizing the system, although their complexity grows combinatorially with the
maximal length of modes sequences considered.

Notation: Given n ∈ N, define Nn = { j ∈ N : 1 ≤ j ≤ n}. The Euclidean-norm in
R

n is ‖x‖. The i th element of a finite set ofmatrices is denoted as Ai .We use the short-
cut P > 0 (resp. P ≥ 0) to define a symmetric positive definite (resp. semi-definite)
matrix, i.e., such that P = PT and its eigenvalues are positive (resp. non-negative).
Given P ∈ R

n×n with P > 0, define E (P) = {
x ∈ R

n : xT Px ≤ 1
}
. Given θ ∈ R,

R(θ) ∈ R
2 is the rotation matrix of angle θ . The set of q switching modes is

I = Nq , all the possible sequences of modes of length N is I N = ∏N
j=1 I , and

|σ | = N ifσ ∈ I N . Given N , M ∈ Nwith N ≤ M , denoteI [N :M] = ⋃M
i=N I i and

then NI = ∑N
k=1 q

k is the number of elements in I [1:N ]. Given σ ∈ I N , define:
Aσ = ∏N

j=1 Aσ j = AσN . . . Aσ1 , and define
∏N

j=M Aσ j = I if M > N . Given a ∈ R,
the maximal integer smaller than or equal to a is �a�. The set of Metzler matri-
ces of dimension N , i.e., matrices π ∈ R

N×N whose elements are nonnegative and∑N
j=1 π j i = 1 for all i ∈ NN , isMN .

2.2 Stabilizability of Discrete-Time Linear Switched
Systems

Consider the discrete-time switched system

xk+1 = Aσ(k)xk, (2.1)

where xk ∈ R
n is the state at time k ∈ N and σ : N → Nq is the switching law that, at

any instant, selects the transitionmatrix among the finite set {Ai }i∈Nq , with Ai ∈ R
n×n

for all i ∈ Nq . Given the initial state x0 and a switching law σ(·), we denote with
xσ
N (x0) the state of the system (2.1) at time N starting from x0 by applying the

switching law σ(·), that can be state-dependent, i.e., σ(k) = σ(x(k)) with slight
abuse of notation.

Assumption 2.1 The matrices Ai , with i ∈ Nq , are nonsingular.

Remark 2.1 Assumption 2.1 is not restrictive. In fact, the stable eigenvalues of the
matrices Ai are beneficial from the stability point of view of the switched systems
and poles in zero are related to the most contractive dynamics. Moreover, the results
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presented in the following can be extended to the general case with appropriate
considerations.

A concept widely employed in the context of set-theory and invariance is the
C-set, see [3, 5]. A C-set is a compact and convex set with 0 ∈ int(Ω). We define an
analogous concept useful for our purpose. For this, we first recall that a set Ω is a
star-convex set if there exists x0 ∈ Ω such that every convex combination of x and
x0 belongs to Ω for every x ∈ Ω .

Definition 2.1 A setΩ ⊆ R
n is a C∗-set if it is the union of a finite number of C-sets.

The gauge function of a C∗-set Ω ⊆ R
n is ΨΩ(x) = min

α≥0
{α ∈ R : x ∈ αΩ}.

Notice that every C∗-set is star-convex, i.e., there is z ∈ Ω such that every convex
combination of x and z belongs to Ω for all x ∈ Ω , but the converse is not true in
general. Some basic properties of the C∗-sets and their gauge functions are listed
below, see also [23].

Property 2.1 Any C-set is a C∗-set. Given a C∗-setΩ ⊆ R
n, we have that αΩ ⊆ Ω

for all α ∈ [0, 1], and the gauge function ΨΩ(·) is: homogeneous of degree one, i.e.,
ΨΩ(αx) = αΨΩ(x) for all α ≥ 0 and x ∈ R

n; positive definite; defined on R
n and

radially unbounded.

The gauge functions induced by C-sets have been used in the literature as
Lyapunov functions candidates, see [4]. In particular, it has been proved that they
provide a universal class of Lyapunov functions for linear parametric uncertain sys-
tems, [5, 22], and switched systems with arbitrary switching, [20]. We prove that
the gauge functions induced by C∗-sets form a universal class of Lyapunov function
for switched systems with switching control law. For this, we provide a definition of
Lyapunov function for the particular context, analogous to the one given in [5].

Definition 2.2 A positive definite continuous function V : Rn → R is a global con-
trol Lyapunov function for (2.1) if there exist a positive N ∈ N and a switching
law σ(·), defined on R

n , such that V is non-increasing along the trajectories xσ
k (x)

and decreasing after N steps, i.e., V (xσ
1 (x)) ≤ V (x) and V (xσ

N (x)) < V (x), for all
x ∈ R

n .

Definition 2.2 is a standard definition of global control Lyapunov function except
for the N -steps decreasing requirement. On the other hand, such a function implies
the convergence of every subsequence in j ∈ N of the trajectory, i.e., xσ

i+ j N (x) for
all i < N , then also the convergence of the trajectory itself. This, with the stability
assured by V (xσ

1 (x)) ≤ V (x), ensures global asymptotic stabilizability.

Definition 2.3 The system (2.1) is globally exponentially stabilizable if there are
c ≥ 0 and λ ∈ [0, 1) and, for all x ∈ R

n , there exists a switching law σ : N → Nq ,
such that

‖xσ
k (x)‖ ≤ cλk‖x‖, ∀k ∈ N. (2.2)
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A periodic switching law is given by σ(k) = i p(k) and p(k) = k − M �k/M� +
1, with M ∈ N and i ∈ I M , which means that the sequence given by i repeats
cyclically. We will consider conditions under which system (2.1) is stabilized by a
periodic σ(·).
Definition 2.4 The system (2.1) is periodic stabilizable if there exist a periodic
switching law σ : N → Nq , c ≥ 0 and λ ∈ [0, 1) such that (2.2) holds for all x ∈ R

n .

For stabilizability the switching function might be state-dependent whereas for
periodic stabilizability it must be not dependent on the state.

Lemma 2.1 The system (2.1) is periodic stabilizable if and only if there exist M ∈ N

and i ∈ I M such that Ai is Schur.

2.2.1 Geometric Necessary and Sufficient Condition

It is proved in [22] that for an autonomous linear switched system, the origin is
asymptotically stable if and only if there exists a polyhedral Lyapunov function,
see also [5, 20]. Analogous results can be stated in the case where the switching
sequence is a properly chosen selection, that is considering it as a control law. This
contribution is based on the following algorithm.

Algorithm 1 Computation of a contractive C∗-set for (2.1) satisfying Assumption
2.1.

• Initialization: given the C∗-set Ω ⊆ R
n , define Ω0 = Ω and k = 0;

• Iteration for k ≥ 0: Ωk+1 =
⋃

i∈Nq

Ω i
k+1 with Ω i

k+1 = A−1
i Ωk for all i ∈ Nq ;

• Stop if Ω ⊆ int
( ⋃

j∈Nk+1

Ω j

)
; denote Ň = k + 1 and

Ω̌ =
⋃

j∈NŇ

Ω j . (2.3)

From the geometrical point of view, Ω i
k+1 is the set of x mapped in Ωk through

Ai . Then Ωk+1 is the set of x ∈ R
n for which there exists a selection i(x) ∈ Nq such

that Ai(x)x ∈ Ωk . Thus, Ωk is the set of x that can be driven in Ω in at most k steps
and hence Ω̌ the set of x that can reach Ω in Ň or less steps.

Proposition 2.1 The sets Ωk for all k ≥ 0 are C∗-sets.

Algorithm 1 provides a C∗-set Ω̌ contractive in Ň steps, for every initial C∗-set
Ω ∈ R

n , if and only if the switched system (2.1) is stabilizable, as stated below.
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Theorem 2.2 [10] There exists a Lyapunov function for the switched system (2.1) if
and only if Algorithm 1 ends with finite Ň .

Then finite termination of Algorithm 1 is a necessary and sufficient condition
for the global asymptotic stabilizability of the switched system (2.1). An alternative
formulation of such a necessary and sufficient condition is presented below.

Theorem 2.3 [10] There exists a Lyapunov function for the switched system (2.1) if
and only if there exists a C∗-set whose gauge function is a Lyapunov function for the
system.

Theorem 2.3 states that the existence of a C∗-set induced Lyapunov function is
a necessary and sufficient condition for stabilizability of switched systems. Hence,
such functions, nonconvex and homogeneous of order one, form a class of universal
Lyapunov functions for the switched systems.

Remark 2.2 TheAlgorithm 1 terminates after a finite number of iterations only if the
switched system is stabilizable, there is no guarantee of finite termination in general
(which means it is a semi-algorithm, to be exact). An analogous, but just sufficient,
constructive condition ensuring that there is not a switching law such that the system
(2.1) converges to the origin is given in [10].

Besides aLyapunov function,Algorithm1provides a stabilizing switching control
law for system (2.1), if it terminates in finite time.

Proposition 2.2 [10] If Algorithm 1 ends with finite Ň then ΨΩ̌ : Rn → R is a
Lyapunov function for the switched system (2.1) and given the set valued map

Σ̌(x) = argmin
(i,k)

{ΨΩ i
k
(x) : i ∈ Nq , k ∈ NŇ } ⊆ Nq × NŇ , (2.4)

any switching law defined as (σ̌ (x), ǩ(x)) ∈ Σ̌(x), is a stabilizing switching law.
Furthermore, one getsΨΩ̌(x σ̌

ǩ(x)
(x)) ≤ λ̌ΨΩ̌(x) andΨΩ̌(x σ̌

j (x)) ≤ ΨΩ̌(x) for all j ∈
Nǩ(x), with λ̌ = min

λ
{λ ≥ 0 : Ω ⊆ λΩ̌} < 1.

It could be reasonable, to speed up the convergence of the trajectory of the system
to origin, to select among the elements of Σ(x), those whose k is minimal.

Remark 2.3 If the system is stabilizable, then the algorithm ends with finite Ň for
all initial C∗-set Ω . Clearly, the value of Ň and the complexity of the set Ω̌ depend
on the choice of Ω . In particular, if Ω is the Euclidean norm ball (or the union of
ellipsoids), the setsΩ i

k andΩk , with i ∈ Nq and k ∈ NŇ , are unions of ellipsoids, and
Ω̌ also. Then, the switching law computation reduces to check the minimum among
xT Pj x with j ∈ M̌ , where {Pj } j∈M̌ are the M̌ positive definite matrices defining Ω̌ ,

with M̌ = q + · · · + q Ň = (q Ň+1 − q)/(q − 1), for q > 1 and M̌ = Ň for q = 1.
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2.2.2 Duality Robustness-Control of Switched Systems

In this section, we recall some results from the literature on the stability of a switched
linear system with arbitrary switching law σ(·) to highlight the analogies with the
approaches proposed here for stabilizability.

Consider the linear switched system (2.1) and assume that the switching law is
arbitrary. This would mean that the switching law might be regarded as a parametric
uncertainty and the results in [4, 5, 22] on robust stability apply with minor adap-
tations, see also [20]. The following algorithm provides a polytopic contractive set,
and then an induced polyhedral Lyapunov function, for this class of systems, see [3].

Algorithm 2 Computation of a λ-contractive C-set for (2.1) with arbitrary
switching.

• Initialization: given the C-set Γ ⊆ R
n and λ ∈ [0, 1), define Γ0 = Γ and k = 0;

• Iteration for k ≥ 0: Γk+1 = Γ ∩
⋂

i∈Nq

λA−1
i Γk ;

• Stop if Γk ⊆ Γk+1; denote N̂ = k and Γ̂ = Γk .

The set Γ̂ is the maximal λ-contractive set in Γ for the switched system with
arbitrary switching law. Provided that Algorithm 2 terminates with finite N̂ , it can
be proved that the system is globally exponentially stable, see [5].

Remark 2.4 Notice the analogies between Algorithms 1 and 2: they share the same
iterative structure and they both generate contractive sets which induce Lyapunov
functions if they terminate in a finite time. The main substantial difference resides in
the use of intersection/union operators and in the family of sets generated, C∗-sets
by Algorithm 1 and C-sets by Algorithm 2. Interestingly, the C-sets are closed under
the intersection operation whereas C∗-sets are closed under the union.

Finally, for linear parametric uncertain systems, the existence of a polyhedral
Lyapunov function is a necessary and sufficient condition for asymptotic stability.

Theorem 2.4 [5, 22] There is a Lyapunov function for a linear parametric uncertain
system if and only if there is a polyhedral Lyapunov function for the system.

The result in Theorem 2.4 holds for general parametric uncertainty and applies
also for switched systems with arbitrary switching law, as remarked in [20].

Remark 2.5 As for the duality of Algorithms 1 and 2 highlighted in Remark 2.4,
evident conceptual analogies hold between Theorems 2.3 and 2.4. Then the class
of gauge functions induced by C∗-sets is universal for linear switched systems with
switching control law, in analogy with the class of polyhedral functions (i.e., induced
by C-sets) for the case of arbitrary switching law, [4, 5].
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2.3 Novel Conditions for Stabilizability and Comparisons

As seen above, system (2.1) is stabilizable if and only if there exists N ∈ N such that

Ω ⊆ int
( ⋃

i∈I [1:N ]
Ωi

)
with Ωi = Ωi (Ω) = {x ∈ R

n : Ai x ∈ Ω}. (2.5)

Since the stabilizability property does not depend on the choice of the initial C∗-set
Ω , even if N does, focusing on the case Ω = B and ellipsoidal pre-images entails
no loss of generality, see [10]. Then condition (2.3) can be replaced by

B ⊆ int
( ⋃

i∈I [1:N ]
Bi

)
with Bi = {x ∈ R

n : xTAT
i Ai x ≤ 1}, (2.6)

for what concerns stabilizability, although the value N might depend on the choice
of Ω . The set inclusions (2.5) or (2.6) are the stopping conditions of the algorithm
and then must be numerically checked at every step. The main computational issue
consists in determining if a C∗-set Ω is included into the interior of the union of
some C∗-sets. This problem is very complex in general, also in the case of ellipsoidal
sets where it relates to quantifier elimination over real closed fields [7]. On the other
hand, the condition given by Theorem 2.2 provides an exact characterization of the
complexity inherent to the problem of stabilizing a switched linear system.

Theobjective here is to consider alternative conditions for stabilizability to provide
geometrical and numerical insights and analyze their conservatism by comparison
with the necessary and sufficient one given in Theorem 2.2.

2.3.1 Lyapunov-Metzler BMI Conditions

The condition we are considering first is related to the Lyapunov-Metzler inequalities
that is sufficient and given by a set of BMI inequalities involving Metzler matrices.

Theorem 2.5 [14] If there exist Pi > 0, with i ∈ I , and π ∈ Mq such that

AT
i

⎛

⎝
q∑

j=1

π j i Pj

⎞

⎠ Ai − Pi < 0, ∀i ∈ I , (2.7)

holds, then the switched system (2.1) is stabilizable.

As proved in [14], the satisfaction of (2.7) implies that the homogeneous func-
tion induced by the set

⋃
i∈I E (Pi ) is a control Lyapunov function. A first rela-

tion between the Lyapunov-Metzler condition (2.7) and the geometric one (2.5) is
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provided below.Weprove that the satisfaction of (2.7) implies that the condition given
by Theorem 2.2 holds for the particular case of Ω = ⋃

i∈I AiE (Pi ) and N = 1.

Proposition 2.3 [12] If the Lyapunov-Metzler condition (2.7) holds then (2.5) holds
with N = 1 and Ω = ⋃

i∈I AiE (Pi ).

Proposition2.3 provides a geometrical meaning of the Lyapunov-Metzler con-
dition and a first relation with the necessary and sufficient condition given in
Theorem 2.2. In fact, for the general case of q ∈ N the Lyapunov-Metzler condi-
tion is just sufficient for

⋃
i∈I AiE (Pi ) ⊆ int

(⋃
i∈I E (Pi )

)
to hold. Moreover, it

is proved in [12] that the condition is also necessary for q = 2.

2.3.2 Generalized Lyapunov-Metzler Conditions

Two generalizations of the Lyapunov-Metzler condition can be given, by relaxing
the intuitive but unnecessary constraint stating that the number of ellipsoids and the
number of modes are equal.

Proposition 2.4 [12] If there exist M ∈ N and Pi > 0, with i ∈ I [1:M], and π ∈
MMI such that

A
T
i

( ∑

j∈I [1:M]
π j i Pj

)
Ai − Pi < 0, ∀i ∈ I [1:M],

holds, then the switched system (2.1) is stabilizable.

Proposition 2.4 extends the Lyapunov-Metzler condition (2.7), which is recovered
for M = 1. Another possible extension is obtained by maintaining the sequence
length in 1 but increasing the number of ellipsoids involved.

Proposition 2.5 [12] If for every i ∈ I there exist a set of indices Ki = Nhi , with
hi ∈ N; a set of matrices P (i)

k > 0, with k ∈ Ki , and there are π
(p,i)
m,k ∈ [0, 1], satis-

fying
∑

p∈I
∑

m∈K p
π

(p,i)
m,k = 1 for all k ∈ Ki , such that

AT
i

⎛

⎝
∑

p∈I

∑

m∈K p

π
(p,i)
m,k P (p)

m

⎞

⎠ Ai − P (i)
k < 0, ∀i ∈ I, ∀k ∈ Ki ,

holds, then the switched system (2.1) is stabilizable.

Geometrically, Proposition 2.5 provides a condition under which there exists a
C∗-set composed by a finite number of ellipsoids that is contractive.
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2.3.3 LMI Sufficient Condition

The main drawback of the necessary and sufficient condition for stabilizability is its
inherent complexity. TheLyapunov-Metzler-based approach leads to amore practical
BMI sufficient condition.Nevertheless, the complexity could be still computationally
prohibitive, see [25]. Our next aim is to formulate an alternative condition that could
be checked by convex optimization algorithms.

Theorem 2.6 [12] The switched system (2.1) is stabilizable if there exist N ∈ N and
η ∈ R

NI such that η ≥ 0,
∑

i∈I [1:N ] ηi = 1 and

∑

i∈I [1:N ]
ηiA

T
i Ai < I. (2.8)

We wonder now if the sufficient condition given in Theorem 2.6 is also necessary.
The answer is negative, in general, as proved by the following counter-example.

Example 2.1 The aim of this illustrative example is to show a case for which the
inclusion condition (2.6) is satisfied with N = 1, but there is not a finite value of N̂ ∈
N for which condition (2.8) holds. Consider the three modes given by the matrices

A1 =
[
a 0
0 a−1

]
, A2 =

[
a 0
0 a−1

]
R

(
2π

3

)
, A3 =

[
a 0
0 a−1

]
R

(−2π

3

)
,

with a = 0.6. Set Ω = B. By geometric inspection, condition (2.6) holds at the first
step, i.e., for N = 1, see [12]. On the other hand, Ai are such that det(AT

i Ai ) =
a2a−2 = 1 and tr(AT

i Ai ) = a2 + a−2 = 3.1378 while the determinant and trace of
the matrix defining B are 1 and 2, respectively. Notice that a2 + a−2 > 2 for every
a different from 1 or −1 and a2 + a−2 = 2 otherwise.

For every N and everyBi with i ∈ I [1:N ], the relatedAi is such that det(AT
i Ai ) =

1 and tr(AT
i Ai ) ≥ 2. Notice that, for all the matrices Q > 0 in R

2×2 such that
det(Q) = 1, then tr(Q) ≥ 2 and tr(Q) = 2 if and only if Q = I , since the deter-
minant is the product of the eigenvalues and the trace its sum. Thus, for every subset
of the ellipsoids Bi , determined by a subset of indices K ⊆ I [1:N ], we have that∑

i∈K ηiA
T
i Ai < I , cannot hold, since either tr(AT

i Ai ) > 2 or AT
i Ai = I . Thus the

LMI condition (2.8) is sufficient but not necessary.

Another interesting implication that follows from Example 2.1 concerns the sta-
bilizability through periodic switching sequences.

Proposition 2.6 [12] The existence of a stabilizing periodic switching law is suffi-
cient but not necessary for the stabilizability of the system (2.1).

In the proof of Proposition 2.6 we used the fact that the existence of a stabilizing
periodic switching law implies the satisfaction of the LMI condition, see [12]. One
might wonder if there exists an equivalence relation between periodic stabilizability
and condition (2.8). The answer is provided below.
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Theorem 2.7 [12] A stabilizing periodic switching law for the system (2.1) exists if
and only if condition (2.8) holds.

Note that, although periodic stabilizability and condition (2.8) are equivalent from
the stabilizability point of view, the computational aspects and the resulting controls
are different. Indeed, checking periodic stabilizability consists of an eigenvalue test
for a number of matrices exponential in M , see Lemma 2.1, while condition (2.8)
is an LMI that grows exponentially with N . On the other hand, M is always greater
or equal than N , much greater in general. Finally, notice that the periodic law is in
open loop whereas (2.8) leads to a state-dependent switching law.

The LMI condition (2.8) can be used to derive the controller synthesis techniques.
If (2.8) holds, then there is μ ∈ [0, 1) such that

∑

i∈I [1:N ]
ηiA

T
i Ai ≤ μ2 I. (2.9)

A stabilizing controller does not necessarily select at each time step k ∈ N the input to
be applied. This can be done only at {kp}p∈N with k0 = 0, and kp < kp+1 ≤ kp + N ,
for all p ∈ N. At time kp, the controller selects the sequence of inputs to be applied
up to step kp+1 − 1. The instant kp+1 is also determined by the controller at time kp.
More precisely, the controller acts as follows for all p ∈ N, let

i p = arg min
i∈I [1:N ]

(xTkpA
T
i Ai xkp ). (2.10)

Then, the next instant kp+1 is given by

kp+1 = kp + l(i p), (2.11)

with l(i p) length of i p, and the controller applies the sequence of inputs

σkp+ j−1 = i p, j , ∀ j ∈ {1, . . . , l(i p)}. (2.12)

Theorem 2.8 [12]Assume that (2.8) holds, and consider the control given by (2.10)–
(2.12). For all x0 ∈ R

n and k ∈ N, we have ‖xk‖ ≤ μk/N−1LN−1‖x0‖, where L ≥
‖Ai‖, for all i ∈ I and L ≥ 1, and the controlled system is globally exponentially
stable.

From Theorem 2.8, the LMI condition (2.8) implies that the switched system
with the switching rule given by (2.10)–(2.12) is globally exponentially stable. Nev-
ertheless, neither the Euclidean norm of x nor the function min

i∈I [1:N ]
(xTAT

i Ai x) are

monotonically decreasing along the trajectories. On the other hand a positive defi-
nite homogeneous nonconvex function decreasing at every step can be inferred for a
different switching rule.
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Proposition 2.7 [12] Given the switched system (2.1), suppose there exist N ∈ N

and η ∈ R
NI such that η ≥ 0,

∑
i∈I [1:N ] ηi = 1 and (2.8) hold. Then there is λ ∈

[0, 1) such that the function

V (x) = min
i∈I [1:N ]

(xTλ−niA
T
i Ai x), (2.13)

where ni is the length of i ∈ I [1:N ], satisfies V (Aσ(x)x) ≤ λV (x) for all x ∈ R
n,

with
i∗(x) = arg min

i∈I [1:N ]
(xTλ−niA

T
i Ai x), (2.14)

and σ(x) = i∗1 (x).

Remark 2.6 If the LMI (2.8) has a solution, then there exists a scalar μ ∈ [0, 1),
such that (2.9) is verified. The value of μ induces the rate of convergence λ for the
Lyapunov function (2.13). Thus onemight solve the optimization problemminμ2,η μ2

subject to (2.9), to get higher convergence rate.

2.3.4 Stabilizability Conditions Relations

The implications between the stabilizability conditions, whose proofs can be found
in [12], are summarized in Fig. 2.1. Remark that, compared to the Lyapunov-Metzler
inequalities (2.7), the LMI condition (2.8) concerns a convex problem and it is less
conservative. On the other hand, the dimension of the LMI problem might be con-
sistently higher than the BMI one. The direct extension to the case of output-based
switching design is not straightforward and requires further research. Nevertheless,
since the LMI condition and the periodic stabilizability are equivalent, if (2.8) has a
solution then an open-loop stabilizing switching sequence can be designed, and no
output is necessary to stabilize the system.

Fig. 2.1 Implications diagram of stabilizability conditions
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2.4 Control Co-design for Discrete-Time Switched Linear
Systems

Consider now the discrete-time controlled switched linear system

xk+1 = Aσk xk + Bσk uk, (2.15)

where xk ∈ R
n and uk ∈ R

m are the state and the control input at time k ∈ N,
respectively; σ : N → I is the switching law and {Ai }i∈I and {Bi }i∈I , with
Ai ∈ R

n×n and Bi ∈ R
n×m for all i ∈ I . A time-varying control policy ν : Rn ×

N → I × R
m×n , is such that ν(x, k) = (

σ(x, k), K (x, k)
) ∈ I × R

m×n , where
K (x, k) is the state feedback gain that may change at every instant, i.e., such that
uk(xk) = K (xk, k)xk .

Remark 2.7 As proved in [27], see Theorems 5 and 7 in particular, the attention can
be restricted without loss of generality to static control policies of the form

ν(x) = (
σ(x), K (x)

) ∈ I × R
m×n, (2.16)

such that ν(ax) = ν(x) for all x ∈ R
n and a ∈ R, and to piecewise quadratic Lya-

punov functions. Moreover K (x) belongs to a finite set, i.e., K (x) ∈ K = {κi }i∈NM .

The switched system in closed loop with (2.16) reads

xk+1 = (
Aσ(xk ) + Bσ(xk )K (xk)

)
xk, (2.17)

where σ(xk) = σk . We denote with xν
k (x0) ∈ R

n the state of the system (2.15) at
time k starting from x(0) = x0 by applying the control policy ν. Given σ ∈ I D we
denote with xσ

k (x0) the state of (2.17) at time k ≤ D starting at x0 under the switching
sequence σ . The dependence of xν

k and xσ
k on the initial conditions will be dropped.

Definition 2.5 The system (2.15) is globally exponentially stabilizable if there are a
control policy ν(x) as in (2.16), c ≥ 0 and λ ∈ [0, 1) such that ‖xν

k (x0)‖ ≤ cλk‖x0‖,
for all x0 ∈ R

n , with xk state of (2.17).

In Sects. 2.3.3 and 2.3.4 we proved that, for autonomous systems as (2.1), periodic
stabilizability is more conservative than generic stabilizability. On the other hand, the
equivalent condition is much more computationally tractable. Indeed, the condition
in case of periodic stabilizability is an LMI in the parameter N that might by much
smaller than the periodic cycle length. Hereafter we focus on a condition analogous to
the LMI one (2.8) for the controlled switched system (2.15) to determine a stabilizing
control policy (2.16) for periodic stabilizable systems.

From Remark2.7, the problem of co-design is equivalent to determine a stabi-
lizing static control policy as in (2.16), with finite number of feedback gains, and
a piecewise quadratic Lyapunov function for the system (2.17). Applying Theorem
2.7, the objective is to search for sequences of modes and feedback gains, fulfilling
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the LMI condition (2.8) in the context of co-design. That is, given a sequence ϑ ∈ I ,
of length J , and a time instant j ∈ NJ , a gain among the finite setK can be applied,
denoted as K ϑ

j and whose value has to be designed. Then, with a slight abuse of
notation, given J ∈ N and a sequence ϑ ∈ I J , we denote

Fϑ =
J∏

j=1

Fϑ j= FϑJ . . . Fϑ1= (AϑJ+ BϑJ K
ϑ
J ) . . . (Aϑ1+ Bϑ1K

ϑ
1 ). (2.18)

Thus a set of NI = ∑N
k=1 q

k matrices Fϑ , one for every ϑ ∈ I [1:N ], can be defined
as in (2.18) that are parameterized in the gains {K ϑ

j } j∈N|ϑ | . We focus on the control
policy for (2.15) of the form (2.16) where K (x) belongs to one of the elements of a
sequence associated to a mode inI [1:N ]. Then, K (x) is a gain among the

∑N
k=1 kq

k

possible, i.e., K (x) ∈ K where

K = {κi }i∈NM = {K ϑ
j ∈ R

m×n : ϑ ∈ I [1:N ], j ∈ N|ϑ |}, (2.19)

withM = ∑N
k=1 kq

k . Given a switching lawϑ : N → I and a sequence of feedback
gains K ϑ : N → R

m×n , we denote with xϑ
k (x) the state at time k starting at x if the

control νk = (ϑk, K ϑ
k ) is applied at k for all k ∈ N. As for the case without control

input, the concept of periodic ϑ-stabilizability can be given for the system (2.15).

Definition 2.6 The system (2.15) is periodic ϑ-stabilizable if there exist: a periodic
switching law ϑ : N → I and a periodic sequence K ϑ : N → R

m×n , both of cycle
length D ∈ N; c ≥ 0 and λ ∈ [0, 1) such that ‖xϑ

k (x)‖ ≤ cλk‖x‖ holds for all x ∈ R
n

and k ∈ N.

Clearly periodic ϑ-stabilizability is sufficient for exponential stabilizability of
(2.15) as in Definition 2.5. From Definition 2.6 and Theorem 2.7, the conditions

∑

i∈I [1:N ]
ηi = 1, (2.20)

∑

j∈I [1:N ]
η jF

T
j F j < I, (2.21)

are necessary and sufficient for periodic ϑ-stabilizability of system (2.15). Thus,
condition (2.21) is anLMI that provides the exact characterizationofϑ-stabilizability,
together with (2.20). Below we give a convex condition equivalent to (2.21).

Proposition 2.8 [11]Given N ∈ N,η ∈ R
NI withη > 0, and the set of gains (2.19),

condition (2.21) holds if and only if for every j ∈ I [1:N ] there exist | j | − 1 nonsin-
gular matrices G j,k ∈ R

n×n with k ∈ N| j |−1 and R j ∈ R
n×n such that R j = RT

j > 0
and
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

η j I X j,| j | 0 . . . 0 0 0
XT

j,| j | Y j,| j |−1 X j,| j |−1 . . . 0 0 0
0 XT

j,| j |−1 Y j,| j |−1 . . . 0 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . Y j,2 X j,2 0
0 0 0 . . . XT

j,2 Y j,1 X j,1

0 0 0 . . . 0 XT
j,1 R j

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

> 0 (2.22)

for every j ∈ I [1:N ] with X j,1 = η jF j1 and X j,k+1 = F jk+1G j,k and Y j,k = G j,k +
GT

j,k for all k ∈ N| j |−1 and ∑

j∈I [1:N ]
R j < I. (2.23)

The following theorems, based on Proposition 2.8, provide a necessary and suf-
ficient LMI condition for periodic ϑ-stabilizability of the controlled system (2.15),
see their proofs in [11]. Moreover, the explicit form of the control law (2.16) is given.

Theorem 2.9 [11]The system (2.15) is periodicallyϑ-stabilizable if andonly if there
exist N ∈ N; η ∈ R

NI such that η > 0 and (2.20) holds; and for every j ∈ I [1:N ]
there are:

• | j | − 1 nonsingular matrices G j,k ∈ R
n×n, with k ∈ N| j |−1;

• | j | matrices Z j,k ∈ R
m×n with k ∈ N| j |;

• a symmetric positive definite matrix R j ∈ R
n×n;

such that (2.22) and (2.23) hold with

X j,1 = η j A j1 + Bj1 Z j,1,

X j,k+1 = A jk+1G j,k + Bjk+1 Z j,k+1, ∀k ∈ N| j |−1,

Y j,k = G j,k + GT
j,k, ∀k ∈ N| j |−1,

(2.24)

and gains
K j

1 = η−1
j Z j,1,

K j
k+1 = Z j,k+1G

−1
j,k, ∀k ∈ N| j |−1,

(2.25)

for all j ∈ I [1:N ].

The following theorem provides a ϑ-stabilizability condition, a control policy and
a bound on the decreasing of the Euclidean norm every N steps at most.

Theorem 2.10 [11] Suppose there exist α > 1 and N ∈ N; η ∈ R
NI such that η >

0; matrices G j,k ∈ R
n×n with k ∈ N| j |−1, Z j,k ∈ R

m×n with k ∈ N| j | and R j ∈ R
n×n

as defined in Theorem 2.9 such that (2.22)–(2.24) hold and

∑

i∈I [1:N ]
ηi = α. (2.26)
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Then system (2.15) is periodically ϑ-stabilizable and ‖Fϑ(x)x‖2 < λ‖x‖2 holds for
all x ∈ R

n, with
ϑ = ϑ(x) = arg min

j∈I [1:N ]
(xTFT

j F j x),

and λ = α−1/2. Given x(t) = x, the stabilizing control policy is defined from (2.25)
within an horizon of length |ϑ | as

ν(x, k) = (σ (x, k), K (x, k)) = (
ϑk, K ϑ

k

)
(2.27)

to be applied at time t + k − 1, for all k ∈ N|ϑ |.

From Theorem2.10, the value α is related to λ and then could serve for obtaining
the fastest decreasing rate, for a given N , by solving the following LMI problem

α = sup
α,η,G j,k ,Z j,k ,R j

∑

j∈I [1:N ]
η j

s.t. (2.22) − (2.23) − (2.24),
(2.28)

with η,G j,k, Z j,k, R j as defined in Theorem 2.9.

Remark 2.8 Anonconvex control Lyapunov function V (x), decreasing at every step,
analogous to (2.13), and a state-dependent control policy ν(x) as in (2.16) can be
defined by solving on-line an LMI problem, see [11].

The interested reader is referred to [11] for a detailed comparison analysis, in
terms of conservatism and complexity, of this approach with respect to methods
from the literature, such as those presented in [9, 14, 27, 28].

2.5 Numerical Examples

Some illustrative examples, taken from [10–12], follow.

Example 2.2 Consider the system (2.1) with q = 4, n = 2 and

A1 =
[
1.5 0
0 −0.8

]
, A2 = 1.1 R(

2π

5
) A3 = 1.05 R(

2π

5
− 1), A4 =

[ −1.2 0
1 1.3

]
.

Thematrices Ai , with i ∈ N4, are not Schur, which implies that the system (2.1) is not
stabilizable by any constant switching law. We apply Algorithm1 withΩ = B

2. The
algorithm stops at the fifth iteration. Figure2.2 left, emphasizes thatB2 is included in⋃

k∈N5
Ωk . A stabilizing switching law and the related Lyapunov function are given

in Fig. 2.2 right, for the initial condition x0 = [−3 3]T .
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Fig. 2.2 Left: ballB2 in dashed and
⋃

k∈N5
Ωk in solid line. Trajectory starting from x0 = (−3, 3)T

in dotted line. Right: Lyapunov function and switching control law in time

Fig. 2.3 Ball B2 in dashed and ∪k∈Ni Ωk , for i ∈ Ni in solid line for Example 2.3, with θ = 0 (left)
and θ = π

5 (right)

Example 2.3 Consider the system (2.1) with q = 2, n = 2 and

A1 =
[
1.3 0
0 0.9

]
R(θ), A2 =

[
1.4 0
0 0.8

]
,

non-Schur. From Fig. 2.3, left, one can infer that the system is not stabilizable if
θ = 0. Nevertheless, taking θ = π

5 , Algorithm 1 stops after seven steps implying the
stabilizability of the system, see Fig. 2.3, right.

Example 2.4 Consider (2.1) with q = 2, n = 2, x0 = [−3 3]T and the non-Schur
matrices

A1 = 1.01R
(

π
5

)
, A2 =

[−0.6 −2
0 −1.2

]
.

Four switching laws are designed and compared: the geometric condition given
in Theorem 2.2, proving the stabilizability of the system; the min-switching strategy
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Fig. 2.4 State evolution and switching control induced by the geometric condition (2.6) (left), and
min-switching control (2.10)–(2.12) (right)

(2.10)–(2.12) related to the LMI condition (2.8); the switching control law given in
Proposition2.7 and the periodic switching law, that exists from Theorem 2.7.

As noticed in [10, 14], for systems with q = 2 the Lyapunov-Metzler inequalities
become two linear matrix inequalities once two parameters, both contained in [0, 1],
are fixed. Such LMIs have been checked for this example to be infeasible on a grid
of these two parameters, with step of 0.01. It is then reasonable to conclude that the
Lyapunov-Metzler inequalities are infeasible for this numerical example.

Then, an iterative procedure is applied to determine N ∈ N such that (2.6) is
satisfied. The result is that (2.6) holdswith N = 5 and then the homogeneous function
induced by the obtained set is a control Lyapunov function and the related min-
switching rule is a stabilizing law. The state evolution and the switching law are
depicted in Fig. 2.4, left.

The LMI condition (2.8) is solved with N = 7 and the min-switching law (2.10)–
(2.12) is applied to the system at first. The control results in the concatenation of
elements ofI [1,7], respectively of lengths {7, 6, 5, 7, 7, . . .}. The time-varying length
of the switching subsequences is a consequence of the state dependence of the min-
switching strategy. The resulting behavior is depicted in Fig. 2.4, right. Then, the
control law defined in Proposition 2.7, namely (2.14) with λ = 0.9661, is applied
and the result is shown in Fig. 2.5, left. The value of λ is obtained by solving the
optimization problem described in Remark2.6.

The periodic switching law of length M = 4 is then obtained, by searching the
shorter sequence of switching modes which yields a Schur matrix Ai . The resulting
evolution is represented in Fig. 2.5, right.

Finally a comparison between the switching laws is provided in Fig. 2.6, where
the time-evolution of the Euclidean distance of the state from the origin is depicted.

Example 2.5 Consider Example 2 in [27], that is a 4-dimensional system with 4
modes whose matrices are
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Fig. 2.5 State evolution andmin-switching control (2.14) (left) and periodic switching control with
M = 4 (right)

Fig. 2.6 Comparison
between the evolution of the
Euclidean norm of the state
for the different switching
laws: induced by geometric
condition (2.6) (star);
min-switching law
(2.10)–(2.12) (cross);
min-switching control (2.14)
(circle) and periodic rule
(square)
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A1 =

⎡

⎢⎢
⎣

0.5 −1 2 3
0 −0.5 2 4
0 −1 2.5 2
0 0 0 1.5

⎤

⎥⎥
⎦, A2 =

⎡

⎢⎢
⎣

−0.5 −1 2 1
0 1.5 −2 0
0 0 0.5 0

−2 −1 2 2.5

⎤

⎥⎥
⎦, A3 =

⎡

⎢⎢
⎣

1.5 0 0 0
1 1 0.5 −0.5
0 0.5 1 −0.5
1 0 0 0.5

⎤

⎥⎥
⎦

A4 =

⎡

⎢⎢
⎣

0.5 1 0 0
0 0.5 0 0
0 0 0.5 0
0 2 −2 0.5

⎤

⎥⎥
⎦, B1 =

⎡

⎢⎢
⎣

1
2
3
4

⎤

⎥⎥
⎦, B2 =

⎡

⎢⎢
⎣

4
3
2
1

⎤

⎥⎥
⎦, B3 =

⎡

⎢⎢
⎣

4
3
2
1

⎤

⎥⎥
⎦, B4 =

⎡

⎢⎢
⎣

1
2
3
4

⎤

⎥⎥
⎦ .

(2.29)
The conditions of Theorem2.10 are satisfied with horizon N = 3. Besides the inher-
ent computational benefit of having a stabilization condition in form of LMI with
respect to the algorithmic method presented in [27], also the control obtained is
substantially simpler and more efficient. Actually, in [27] stabilizability is proved
by means of an algorithm which inspects control horizons of length 7 resulting in
a piecewise quadratic function determined by 13 matrices. Moreover, a much faster
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Fig. 2.7 Evolutions of ‖x‖2 with control (2.27), in solid, with min-switching of Remark 2.8 in
dashed and with the periodic control in dotted with (2.29) (top) and with A4 multiplied by 2.5,
(bottom). In the top figure the solid and dotted lines are overlapped

convergence rate is obtained by solving the LMI problem (2.28), if compared with
the results in [27], see Fig. 2.7 where x0 = [1 1 0 −1]T and Fig. 4 in [27], top.

Finally, A4 being Schur, with 4 eigenvalues equal to 0.5, a trivial stabilizing
solution exists. Then we define a new A4 by multiplying the one in (2.29) by 2.5. All
the eigenvalues of the new A4 are then equal to 1.25. The evolutions of the Euclidean
norm of the state, for x0 = [1 1 0 −1]T , under the obtained controls are depicted in
Fig. 2.7, bottom.

2.6 Conclusions

We considered the problems of stabilizability and control co-design for switched
linear systems. Via a set-theory approach, a geometric necessary and sufficient con-
dition for the stabilizability have been provided, proving that the family of nonconvex,
homogeneous functions induced by a C∗-set is a universal class of Lyapunov func-
tions. Then, a novel LMI condition has been presented that overcomes the computa-
tional issues related to the geometric condition. Such a condition, togetherwith others
from the literature, have been analyzed and compared in terms of conservatism and
computational complexity. Finally, an LMI condition is given for control co-design
that is proved to be necessary and sufficient for the stabilizability of switched systems
that admit periodic control policies.
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