
Chapter 14
Discontinuities, Generalized Solutions,
and (Dis)agreement in Opinion Dynamics

F. Ceragioli and P. Frasca

Abstract This chapter is devoted to the mathematical analysis of some continuous-
timedynamical systemsdefinedbyordinarydifferential equationswith discontinuous
right-hand side, which arise as models of opinion dynamics in social networks.
Discontinuities originate because of specific communication constraints, namely,
quantization or bounded confidence. Solutions of these systems may or may not
converge to a state of agreement, where all components of the state space are equal.
After presenting three models of interest, we elaborate on the properties of their
solutions in terms of existence, completeness, and convergence.

14.1 Discontinuous Consensus-Seeking Systems

This chapter studies some continuous-time dynamical systems defined by ordinary
differential equations with discontinuous right-hand side. The dynamics under con-
sideration have been proposed in the last 15 years in the context of “consensus-
seeking” systems, which describe coordination phenomena in engineering, biology,
and social sciences. Given this range of applications, the reader will not be surprised
that we are dealing with rather abstract representations of reality.

The most basic consensus-seeking system takes the following form. Let x be an
N -dimensional vector, where each component xi is associated to an individual i ∈
I = {1, . . . , N } and evolves in time according to the ordinary differential equation

ẋi (t) =
N∑

j=1

ai j
(
x j (t) − xi (t)

)
i ∈ I . (14.1)
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Since we assume that the interaction weights ai j are nonnegative, this dynamics
postulates that each individual is attracted by the other individuals with whom it
interacts. Under very mild assumptions on the interaction pattern, this dynamics
converges to a state of agreement where all components xi are equal.

Variations to this dynamics have been proposed in order to accommodate a host
of phenomena, including time- and state-dependent interactions ai j (t, x). An inter-
esting case of state-dependent interactions is the following, which is termed bounded
confidence in the literature. Two individuals are assumed to influence each other if
their states are closer than a certain threshold (that we choose to be 1 for simplicity):

ẋi (t) =
N∑

j=1

a(xi (t), x j (t))
(
x j (t) − xi (t)

)
i ∈ I (BC)

where a(y, z) =
{
1 if |y − z| < 1

0 if |y − z| � 1.

This model, which is a continuous-time counterpart of the opinion dynamics studied
by Hegselmann and Krause [34], has been proposed by [8] and further considered
in [14]. Very similar models have been considered in [19, 35, 40, 49, 51]. We will
see that (BC) does not produce agreement, but clustering of individuals into groups
characterized by agreement within each group and disagreement between groups.

Another relevant phenomenon is quantization, which occurs both in engineering
and in social systems. In engineering, it can represent communication constraints,
where the state variable is communicated between individuals via a digital channel
with finite data rate, and thus constrained to take on discrete values. For the sake of
this analysis, we shall define the quantization of a real number simply by rounding it
to the closest integer: q(s) = �s + 1

2�. In this context, an effective consensus-seeking
system is the following “quantized states” system studied in [17]:

ẋi (t) =
N∑

j=1

ai j
(
q(x j (t)) − q(xi (t))

)
i ∈ I . (QS)

Note that the right-hand side features the quantized values of both states x j and xi :
the presence of the quantized state q(xi ) is crucial to ensure the “good” properties
of this dynamics, which will be discussed below.

In social systems, quantization may originate because the state variable is “com-
municated” as the display of an action or behavior, which can take on discrete values
only: for instance, the purchase of certain products. In this context, we have recently
proposed [15, 16] to investigate the following “quantized behaviors” model:
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ẋi (t) =
N∑

j=1

ai j [q(x j (t)) − xi (t)] i ∈ I = {1, . . . , N }. (QB)

Note that, in contrast with (QS), the right-hand side features the quantized value of
x j , but not of xi , which leads to more complex dynamics than (QS).

The reader can notice that the right-hand sides of equations (BC), (QS), and (QB)
are discontinuous in the state variable. Since the study of these non-smooth systems
relies on relatively sophisticated instruments that might not always be accessible
to the nonspecialists, we have included in this chapter an extended review of the
necessary mathematical machinery, which we hope can be of independent interest.
Nevertheless, readers are advised to consult the literature specific to the topic, for
instance, the tutorial [21] and the books [4, 24], as well as more specific works about
stability [6] or generalized solutions [12]. Additional references are provided in the
following sections.

The rest of this chapter is organized as follows. Section14.2 defines some useful
notation and summarizes well-known results from graph theory together with their
consequences for the consensus dynamics (14.1). Section14.3 presents some notions
of solutions that are relevant in this context, namely, those of Carathéodory and
Krasovskii. The section also contains results on existence and completeness of these
solutions for a general class of piecewise affine systems and specifically for the three
dynamics at hand. Section14.4 deals with equilibria (again, declined according to
the relevant notions of solutions) and describes the sets of equilibria for our three
dynamics. Section14.5 deals with convergence of their trajectories. We provide two
kinds of results: on the one hand, sufficient conditions to reach agreement, and on
the other hand, general statements about convergence to the equilibria (or to their
proximity).

Owing to the survey purpose thatwe set us for this chapter,we have avoided report-
ing the details of some proofs that can be easily found in the literature. Furthermore,
we restrict our presentation to assume symmetric interactions, namely, such that
ai j = a ji for all i, j in I . We made this choice for simplicity of exposition, even
though most results can be extended to nonsymmetric interactions.

14.2 Preliminaries

Notation. Given a subset S of RN , we denote by S its topological closure, by ∂S its
border, and by coS its closed convex hull. We let 0 = (0, . . . , 0)�, 1 = (1, . . . , 1)�
and ei , i = {1, . . . , N }, the vectors of the canonical basis of RN . We call consen-
sus point a point of the form α1 with α ∈ R. The N -dimensional identity matrix
is denoted by I , and ‖ · ‖ denotes the Euclidean norm both for vectors and matri-
ces. Given the vector x ∈ R

N , we denote its average by xave = 1
N 1

�x = 1
N

∑N
i=1 xi .

When x = x(t) we shall write xave(t) = 1
N

∑N
i=1 xi (t). The notation q(x) with

x ∈ R
N will denote the vector whose i th component is q(xi ).



290 F. Ceragioli and P. Frasca

Graph theory. Aweighted (undirected) graph G = (I ,E , A) consists of a node
set I = {1, . . . , N }, an edge set E ⊂ I × I , and a symmetric adjacency matrix
A ∈ R

N×N
+ such that ai j > 0 if (i, j) ∈ E , and ai j = 0 if ( j, i) /∈ E . We assume no

self-loops in the graph, that is aii = 0 for all i ∈ I . Nodes (vertices) are referred
to as agents or individuals, edges as links. Let di := ∑N

j=1 ai j be the degree of node
i ∈ I . Let D = diag(A1) be the diagonal matrix whose diagonal entries are the
degrees of each node. Let L = D − A be the Laplacian matrix of the graph G .
Note that by construction L1 = 0 and by symmetry 1�L = 0�. In case the graph is
state-dependent, we write G (x),E (x), A(x), D(x), L(x).

Given an edge (i, j), we shall refer to i and to j as the tail and the head of the
edge, respectively. A path is an ordered list of edges such that the head of each edge
is equal to the tail of the following one. The graph G is said to be connected if for any
i, j ∈ I there is a path from i to j inG . If the graph is connected, then the eigenvalue
0 of the Laplacian matrix L has algebraic multiplicity 1. The vector x − xave1 is the
projection of x on the subspace orthogonal to 1: consequently, if we denote by λ∗
the smallest nonzero eigenvalue of L , one has

(x − xave1)�L(x − xave1) � λ∗ ‖x − xave1‖2 ∀x ∈ R
N .

Convergence to agreement. Using the Laplacian matrix, dynamics (14.1) can be
compactly rewritten as

ẋ = −Lx . (14.2)

Its key properties, descending from the properties of the Laplacian that we recalled
above, are summarizedby the followingwell-known result and illustrated inFig. 14.1.

Theorem 14.1 (Real consensus) If the graph underlying (14.1) is connected and the
adjacency matrix A is symmetric, then for any solution x(t) of (14.1), the following
properties hold true:

1. (contractivity and boundedness) co{xi (t), i ∈ I } ⊆ co{xi (0), i ∈ I };
2. (average preservation) xave(0) = xave(t);
3. (equilibria) x∗ is an equilibrium point of (14.1) if and only if x∗ is a consensus

point;
4. (average consensus) limt→+∞ x(t) = xave(0)1.

14.3 Generalized Solutions and Basic Properties
of the Dynamics

In this section, we summarize some notions which are essential in order to deal with
systems whose right-hand side is discontinuous with respect to the state variable.

Let us consider the Cauchy problem
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Fig. 14.1 Evolution of a
solution of (14.1) from
random initial conditions on
a cycle graph on 25 nodes

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

t

x

ẋ = f (x) x(0) = x0, (14.3)

where x0 ∈ R
N and f : RN → R

N is measurable and locally bounded. We will
denote byΔ f the subset ofRN where f is discontinuous.When facing system (14.3),
one should first of all choose which type of generalized solution is the most suitable
for the system of interest. We shall consider Carathéodory solutions and Krasovskii
solutions.

14.3.1 Carathéodory Solutions

The notion of solution nearest to the classical one is that of Carathéodory solution.

Definition 14.1 (Carathéodory solution) Let I ⊂ R be an interval with 0 ∈ I and let
x0 ∈ R

N . An absolutely continuous function ϕ : I → R
N is aCarathéodory solution

of equation (14.3) on I with initial condition x0 if ϕ(0) = x0 and if it satisfies (14.3)
for almost all t ∈ I or, equivalently, if it is a solution of the integral equation

ϕ(t) = x0 +
∫ t

0
f (ϕ(s))ds.

We say that a local Carathéodory solution corresponding to the initial condition
x0 ∈ R exists if there exist a neighborhood I (x0) of x0, an interval of the form [0, T ),
and an absolutely continuous function ϕ : [0, T ) → I (x0) such that ϕ(0) = x0 and
ϕ(t) is a Carathéodory solution of (14.3) on [0, T ).
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Note that in themodelswe are considering the setΔ f of discontinuity points of the
vector field f (x) has a particularly simple structure, as it can be locally represented
as the union of a finite number of hyperplanes. This observation is made rigorous by
the following assumption.

Assumption 14.1 (On the discontinuity set) For any x0 ∈ Δ f , there exists a neigh-
borhood I (x0) of x0 and m affine functions s1, . . . , sm : I (x0) → R

N defined by

s�(x) = p�
� x − c� � ∈ {1, . . . ,m}

with p� ∈ R
N and c� ∈ R, such that s�(x0) = 0 for all � ∈ {1, . . . ,m} and

Δ f ∩ I (x0) = {x ∈ I (x0) : s1(x) = 0} ∪ . . . ∪ {x ∈ I (x0) : sm(x) = 0}.
Under Assumption 14.1, the neighborhood I (x0) of x0 is partitioned in 2m sectors

Sb(x0) defined by the signs of the functions s1, . . . , sm , indexed by means of b ∈
{−1, 1}m , and defined in the following way1:

Sb(x0) = {x ∈ I (x0) : s�(x) < 0 if b� = −1 and s�(x) � 0 if b� = 1, � = 1, . . . ,m}.

Assumption 14.2 (On the discontinuous vector field) The parts Sb(x0) are defined
so that the vector field f (x) is continuous on Sb(x0) for all b ∈ {−1, 1}m .

Without Assumption 14.2, the choice of the representation of the discontinuity
hyperplanes by means of p� and c� would not be unique, since the orientation of
the normal vector is arbitrary. Assumption 14.2 makes sure that the choice of the
representation is consistent with the functions a(·, ·) and q(·) in Eqs. (BC), (QS), and
(QB).

Under Assumptions 14.1 and 14.2, the vector field f (x) has 2m limit values as
x → x0, namely,

f b(x0) = lim
x∈Sb,x→x0

f (x).

Example 14.1 (BC dynamics with three individuals) Consider dynamics (BC) with
N = 3 and x0 = (0, 1, 2)�. Clearly, point x0 lies at the intersection of the two planes
of discontinuity x2 − x1 − 1 = 0 and x3 − x2 − 1 = 0, namely, defined by the nor-
mal vectors p1 = (−1, 1, 0)� and p2 = (0,−1, 1)�. In the sectors S(1,1), S(−1,1),

S(1,−1), S(−1,−1), we, respectively, identify the four limit values of the vector field

1It would be more precise to write Sb(x0, I (x0)) instead of Sb(x0), as it depends on I (x0). Note
however that if I (x0) and I ′(x0) are two distinct neighborhoods of x0, then the sets Sb(x0, I (x0))
and Sb(x0, I ′(x0)) coincide on I (x0) ∩ I ′(x0). Hence, neglecting I (x0) from the notation brings
no ambiguity.
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Fig. 14.2 Representation of
the limit values of the vector
field at a discontinuity point
where two hyperplanes
intersect, namely,
dynamics (BC) at point
(0, 1, 2)�
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This situation is represented in Fig. 14.2.

Under Assumptions 14.1 and 14.2, the study of existence and completeness of
Carathéodory solutions can be relatively simple. Nevertheless, one cannot expect
to have local existence in general: the negative example is given by the following
proposition [13, 33], illustrated in the fourth diagram of Fig. 14.3.

Proposition 14.1 (Nonexistence of Carathéodory solutions) Let x0 ∈ Δ f and
assume m = 1 in Assumption 14.1. If p�

1 f (−1)(x0) > 0 and p�
1 f (1)(x0) < 0, then

there exists no Carathéodory solution of (14.3) with initial condition x0.

An example of this situation is given by dynamics (QS).

Example 14.2 (Nonexistence in QS dynamics) Consider dynamics (QS) over an
undirected path graph with N = 3 whose adjacency matrix A has all non-null entries
equal to 1 and the initial condition x̄0 = (1, 3/2, 2)�. The right-hand side of the
system is clearly discontinuous at x̄0. There exists a neighborhood I (x̄0) of x̄0 such
thatΔ f ∩ I (x̄0) = {x ∈ R

N : x2 − 3/2 = 0} andwe thus define s1(x) = x2 − 3/2 =
(0, 1, 0)x − 3/2. We get that f (−1)(x̄0) = (0, 1,−1)� and f (1)(x̄0) = (1,−1, 0)�,
then (0, 1, 0) f (1)(x̄0) = −1 < 0 and (0, 1, 0) f (−1)(x̄0) > 0. By applying Proposi-
tion 14.1 we conclude that there are no Carathéodory solutions issuing from x̄0.

Instead, the following result provides a sufficient condition for the existence of
local Carathéodory solutions. It is inspired by the concept of directional continuity
in [44] but it allows also for solutions lying on the discontinuity set: this case, which
can be particularly subtle to be treated, is simplified here by the discontinuity being
a union of hyperplanes. Informally, the sufficient condition requires that, for each
discontinuity point, at least one among the “pieces” of the vector field either pulls
away from the discontinuity surface in its own sector, or is parallel to a discontinuity
hyperplane.
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Fig. 14.3 Representations of the possible orientations of the vector fields in the neighborhood of
a discontinuity hyperplane

Theorem 14.2 (Sufficient condition for Carathéodory solutions) Assume that
Assumptions 14.1 and 14.2 hold. Assume that for any x0 ∈ Δ f , there exists b̃ ∈
{−1, 1}m such that

1. [p�
� f b̃(x0)] b̃� � 0 for all � ∈ {1, . . . ,m};

2. if there exists �̄ ∈ {1, . . . ,m} such that [p�
�̄
f b̃(x0)] b̃�̄ = 0, then there exists a

neighborhood J (x0) such that, for all x ∈ J (x0) ∩ ∂Sb̃, both [p�
�̄
f (x)] b̃�̄ = 0

and the restriction f |(J (x0)∩∂Sb̃)\{x0} is continuous.

Then, there exists a local Carathéodory solution issuing from x0.

Proof If p�
� f b̃(x0) b̃� > 0 for all � ∈ {1, . . . ,m}, then the vector field points into the

interior of Sb̃ and a local solution can be easily constructed as in [44]. In the case
of condition 2, i.e., when the vector field f (x) is parallel to one of the discontinuity
hyperplanes in a neighborhood of x0 except, possibly, in x0, one can still construct
a sequence of Euler polygonal chains that lie on the hyperplane and converge to a
Carathéodory solution. �

Condition 2 in Theorem 14.2 is a relaxation of [13, Assumption (H3)], which is
made possible by the fact that discontinuities are (locally) hyperplanes. A simple
application of Theorem 14.2 is the following.

Example 14.3 (BC dynamics with three individuals—continued) Consider again
dynamics (BC) with N = 3 and x0 = (0, 1, 2)�, as illustrated in Fig. 14.2. We
observe that in the four sectors around x0,
p�
1 f (1,1)(x0) (1) = 0 and p�

2 f (1,1)(x0) (1) = 0.
p�
1 f (−1,1)(x0) (−1) = (−2)(−1) > 0 and p�

2 f (−1,1)(x0) (1) = (1)(1) > 0.
p�
1 f (1,−1)(x0) (1) = (1)(1) > 0 and p�

2 f (1,−1)(x0) (−1) = (−2)(−1) > 0.
p�
1 f (−1,−1)(x0) (−1) = (−1)(−1) > 0 and p�

2 f (−1,−1)(x0) (−1) = (−1)(−1) > 0.
Then, Theorem 14.2 implies local existence. Actually, one can see that in this case,
four solutions originate from x0, one for each sector: they are shown in Fig. 14.4 as
functions of time.

More in general, we can prove the existence of Carathéodory solutions of (BC)
for any initial condition. Carathéodory solutions of (BC) were studied in [7] where
existence and uniqueness of solutions were proved for almost all initial conditions.
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Fig. 14.4 Evolutions of the four solutions of (BC) that originate from x0 = (0, 1, 2)�

Here, we prove2 the existence for all initial conditions and we remark that in gen-
eral, we do not have uniqueness. The proof is a verification of the assumptions of
Theorem 14.2, where we see that the sole strictly positive case suffices.

Corollary 14.1 (Existence for BC) For any initial condition, there exists a local
Carathéodory solution of (BC).

Proof We denote by f (x) the right-hand side of (BC) and observe that Δ f = {x ∈
R : ∃ i, j ∈ I such that xi − x j = 1}. We first consider x0 ∈ Δ f in the case x0i −
x0 j = 1 for only one pair of indices i, j ∈ I . In this casem = 1 in Assumption 14.1,
s1(x) = xi − x j − 1 = (ei − e j )�x − 1, and as b is either −1 or 1,

S(−1)(x0) = {x ∈ R
N : xi − x j − 1 < 0},

( f (−1)(x0))i = ∑
h �= j :|x0h−x0 i |<1(xh − xi ) − 1,

( f (−1)(x0)) j = ∑
h �=i :|x0 i−x0 j |<1(xh − x j ) + 1,

as well as
S(1)(x0) = {x ∈ R

N : xi − x j − 1 � 0},
( f (1)(x0))i = ∑

h �= j :|x0 i−x0 i |<1(xh − xi ),

2Even though the corollary is new, it could have been deduced by inspecting the proofs in [7].
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( f (1)(x0)) j = ∑
h �=i :|x0 i−x0 j |<1(xh − x j ).

We then get (ei − e j )� f (−1)(x0) = ∑
h �= j :|xh−xi |<1(xh − xi ) − ∑

h �=i :|xh−xi |<1(xh − xi ) −2
and (ei − e j )� f (1)(x0) = ∑

h �= j :|xh−xi |<1(xh − xi ) − ∑
h �=i :|xh−xi |<1(xh − xi ).

If
[∑

h �= j :|xh−xi |<1(xh − xi ) − ∑
h �=i :|xh−xi |<1(xh − xi )

]
> 0, then [(ei − e j )� f (1)

(x0)](1) > 0 and condition 1 of Theorem 14.2 is verified and a Carathéodory solution

entering S(1) exists. If
[∑

h �= j :|xh−xi |<1(xh − xi ) − ∑
h �=i :|xh−xi |<1(xh − xi )

]
� 0 then

[(ei − e j )� f (−1)(x0)] = [(ei − e j )� f (1)(x0)] − 2 < 0 and [(ei − e j )� f (−1)(x0)]
(−1) > 0, so that a Carathéodory solution issuing from x0 and entering S(−1) exists.

In case m > 1 in Assumption 14.1, i.e., x0i − x0 j = 1 for more than one pair
(i, j), one starts by considering the set S(1,1,...,1) and the vector f (1,1,...,1)(x0). If
[p�

� f (1,1,...,1)(x0)](1) > 0 for all � ∈ {1, . . . ,m} then condition 1 of Theorem 14.2 is
verified. Otherwise, there exists �̄ ∈ {1, . . . ,m} such that [p�

�̄
f (1,1,...,1)(x0)](1) � 0.

In this case,we consider the set S(1,...,−1,...,1) and the vector f (1,...,−1,...,1)(x0). From the
previous step, we know that for � = 1, . . . , �̄ − 1 one has [p�

� f (1,...,−1,...,1)(x0)](1) >

0 and [p�
�̄
f (1,...,−1,...,1)(x0)](−1) = [p�

�̄
f (1,1,...,1)(x0) − 2](−1) > 0. Now, if for � =

�̄ + 1, . . . ,m one has [p�
� f (1,...,−1,...,1)(x0)](1) > 0, then condition 1 is satisfied; oth-

erwise, one goes on with the same procedure. We remark that if [p�
�̄
f (1,1,...1)(x0)] �

0, then [p�
�̄
f b(x0)] � 0 for all b ∈ {−1, 1}m . The procedure stops after at most m

steps, having checked all the sectors, returning a certificate for condition 1. �

Regarding (QB), the following corollary of Theorem 14.2 is proved in [16]: in
this case, condition 2 of Theorem 14.2 needs to be applied.

Corollary 14.2 (Existence for QB) For any initial condition, there exists a local
Carathéodory solution of (QB).

We emphasize that Carathéodory solutions may not be unique, as shown in Exam-
ple 14.3. Another example of nonuniqueness is given by (QB).

Example 14.4 Consider the discrete behavior dynamics (QB) over the undirected
path graph with N = 2 whose adjacency matrix A has non-null entries equal to
1 and the initial condition x̄0 = (1/2, 1/2)�. The right-hand side of the system is
clearly discontinuous at x̄0. There are two solutions issuing from this point which
correspond to the limit values of f (x) when restricted to the two sets S(−1,1) =
{x ∈ R

2 : xi − 1
2 < 0, i = 1, 2} and S(1,1) = {x ∈ R

2 : xi − 1
2 � 0, i = 1, 2}. These

solutions converge to (0, 0)� and (1, 1)�, respectively. Their trajectories are the
line segments joining the initial condition with the points (0, 0)� and (1, 1)�, see
Fig. 14.5.
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Fig. 14.5 Lack of unicity in
dimension 2 for
dynamics (QB), see
Example 14.4
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14.3.2 Krasovskii Solutions

In order to cope with nonexistence of solutions, other generalized solutions have
been introduced in the literature. In the context described here, Krasovskii solutions
can be easily and successfully used.

Definition 14.2 (Krasovskii solutions) Let I ⊂ R be an interval with 0 ∈ I and let
x0 ∈ R

N . An absolutely continuous function ϕ : I → R
N is a Krasovskii solution

of (14.3) with initial condition x0 if ϕ(0) = x0 and if for almost all t ∈ I it satisfies
the differential inclusion

ϕ̇(t) ∈ K f (ϕ(t)), (14.4)

where
K f (x) =

⋂

δ>0

co{ f (y) : y such that ‖x − y‖ < δ}.

Wesay that a local Krasovskii solution corresponding to the initial condition x0 ∈ R
N

exists if there exists a neighborhood I (x0) of x0, an interval of the form [0, T ) and
an absolutely continuous function ϕ : [0, T ) → I (x0) such that ϕ(0) = x0 and ϕ(t)
is a Krasovskii solution of (14.3) on [0, T ).

The following existence theorem is an immediate consequence of [4, Theorem 3,
page 98], as the vector field f (x) is measurable and locally bounded.

Theorem 14.3 For any initial condition, x0 ∈ R
N there exists a local Krasovskii

solution of (14.3).

We underline that any Carathéodory solution is also a Krasovskii solution.
Another type of generalized solutions often adopted for discontinuous systems is
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Filippov solutions [24]. Under Assumptions 14.1 and 14.2, Krasovskii solutions
coincide with Filippov solutions (see [33]).

14.3.3 Completeness of Solutions

Besides local existence, we are interested in solutions that are defined on unbounded
intervals. The following condition is well known: its proof is included for complete-
ness and tutorial purposes.

Proposition 14.2 (Prolongation by boundedness) Let (14.3) be a system that admits
local Carathéodory (Krasovskii) solutions for every initial condition in R

N . Let ϕ :
[0, T ) → R

N be a Carathéodory (Krasovskii) solution of (14.3). If ϕ(t) is bounded
on [0, T ), then it can be continued over [0, T ′) with T ′ > T .

Proof Assume by contradiction that there exists an initial condition x0 whose corre-
sponding maximal Carathéodory (Krasovskii) right solution has domain [0, T ) with
T < +∞ and let {tn} be a sequence such that tn > 0 and lim tn = T . Since x(t) is
bounded also the sequence {x(tn)} is bounded, and thus, there exists a subsequence
x(tnk ) converging to a point x

∗. Since x(t) is continuous this implies that there exists
limt→T x(t) = x∗ ∈ R

N . One can then pose a new Cauchy problem with initial con-
dition x(T ) = x∗ and then continue the Carathéodory (Krasovskii) solution on an
interval [T, T ′). We then get to a contradiction as the interval [0, T ) is not max-
imal for the considered Carathéodory (Krasovskii) solution with initial condition
x(0) = x0. �

This fact is useful because boundedness is easily established in our examples.

Proposition 14.3 (Boundedness) Any Krasovskii solution of (BC), (QS), and (QB)
defined on an interval of the form [0, T ) is bounded.

Proof Let m be any index in I such that xm(t) = min{xi (t), i ∈ I } and M any
index such that xM(t) = max{xi (t), i ∈ I }. In the cases of (BC) and (QS), it
is straightforward to verify that xm(t) is a nondecreasing function of time and,
similarly, that xM(t) is nonincreasing. More delicate is the case of (QB), which
we verify in detail. Let qm(t) = q(xm(t)). We have to distinguish three cases. If
xm(t) ∈ (

qm(t) − 1
2 , qm(t)

]
, then ẋm(t) = ∑

j amj [q(x j (t)) − xm(t)] � 0, because
by definition xi (t) � xm(t) for i ∈ I . If xm(t) ∈ (

qm(t), qm(t) + 1
2

)
, then xm(t)

may be decreasing as there may be other indices i such that q(xi (t)) = qm(t). Nev-
ertheless, ẋm(t) � 0 when xm(t) = qm(t) and then xm(t) remains lower bounded by
min{xm(0), qm(0)} The remaining case when xm(t) = qm(t) − 1

2 is more delicate
and specific to Krasovskii solutions. Indeed, there can exist an index � such that
x�(t) = xm(t) but q(y) = qm(t) − 1 for some points y in the neighborhood of x�,
which makes the (set valued) right-hand side include negative values. In such a case,
xm(t)would be allowed to decrease, but this fact would in turn lead to the situation of
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the second case. In conclusion, xm(t) is lower bounded by qm(0) − 1 and similarly
xM(t) is upper bounded by qM(0) + 1. �

Combining the previous two results, we readily obtain the following.

Corollary 14.3 (Completeness) Any Carathéodory solution of (QB) or of (BC), as
well as any Krasovskii solution of (QB), (QS), or (BC) is defined on [0,+∞).

This completeness result justifies the analysis of the limit behavior for the dynamics
of interest, which we shall undergo in Sect. 14.5. Before that, however, we turn our
attention to the study of equilibria.

14.4 Equilibria: Agreement and Beyond

In this section, we recall the definitions of equilibria that are natural in our context,
we briefly discuss some counterintuitive facts about generalized equilibria, and then
we study the equilibria of systems (BC), (QB), and (QS).

Equilibria are points where a solution can remain indefinitely.3 In the context of
generalized solutions, this general definition leads to distinguish between Carathéo-
dory equilibria and Krasovskii equilibria.

Definition 14.3 (Equilibria) A point x∗ is a Carathéodory (Krasovskii) equilibrium
of (14.3) if the function ϕ(t) ≡ x∗, t � 0 is a Carathéodory (Krasovskii) solution
of (14.3).

Carathéodory equilibria are characterized by the equation f (x) = 0 while Kra-
sovskii equilibria are characterized by the inclusion 0 ∈ K f (x). Thanks to the
multiplicity of solutions, there are examples of non-constant solutions issuing from
an equilibrium point.

Example 14.5 (Escaping from equilibria) Consider the bounded confidence sys-
tem (BC) with N = 2 and the initial condition x0 = (−1/2, 1/2)�. Let us denote
by f (x) the vector field defined by the right-hand side of (BC). Clearly, x0 is
a discontinuity point as x02 − x01 − 1 = 0 and m = 1 in Assumption 14.1. Let
s1(x) = x2 − x1 − 1 = (−1, 1)x − 1. Note that f (x0) = 0, then x0 is a Carathé-
odory equilibrium point for the system. On the other hand, f (−1)(x0) = (1,−1) and
[(−1, 1) f (−1)(x0)](−1) = (−2)(−1) = 2 > 0. A Carathéodory solution starts from
x0, enters S(−1), and converges to (0, 0).

Being f (x) in (14.3) allowed to be discontinuous, there may be points which are
attractive forCarathéodory solutionswithout beingCarathéodory equilibria: actually,
these pathological points are Krasovskii equilibria.

3Note that this is a “weak” notion of equilibrium: in case of multiple solutions, we do not require
that all solutions remain at the equilibrium.
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Example 14.6 (Attractive non-Carathéodory equilibria) Let us consider the quan-
tized behavior system (QB) over an undirected 4-node path graph with adjacency
matrix

A =

⎛

⎜⎜⎝

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎞

⎟⎟⎠ .

The point x0 = (0, 1
2 ,

1
2 , 1)

� is attractive for Carathéodory solutions issuing from
points in the set {x ∈ R

4 : −1/2 � x1, x2 < 1/2, 1/2 � x3, x4 � 3/2)}. Point x0
cannot be a Carathéodory equilibrium, because q(x02) = 1 �= x01 = 0, even though
it is aKrasovskii equilibrium.ACarathéodory solution originating from x0 converges
to (1, 1, 1, 1)�.

The following propositions concern equilibria of the systems under consideration.
For the dynamics (BC) the sets of Carathéodory and Krasovskii equilibria coincide.
The equilibria are precisely those states where individuals either agree or are enough
apart not to influence each other, as specified in the following simple result already
available in [8].

Proposition 14.4 (Equilibria of BC) The set of Krasovskii equilibria of (BC) is

F = {x ∈ R
N : for every (i, j) ∈ I × I , either xi = x j or |xi − x j | � 1}.

In the case of the quantized states dynamics (QS), Carathéodory equilibria and
Krasovskii equilibria differ. Carathéodory equilibria are not necessarily consensus
points, but the quantizations of their states must agree. The following proposition
was proved in [17].

Proposition 14.5 (Equilibria of QS) The set of Carathéodory equilibria of (QS) is

D = {x ∈ R
N : ∃h ∈ Z such that h − 1

2
� xi < h + 1

2
, ∀ i ∈ I }.

The set of Krasovskii equilibria of (QS) is D .

In case of the quantized behaviors Eq. (QB), we do not have a characterization of
the set of equilibria. On the one hand, we observe that consensus points of the form
h1 with h ∈ Z are Carathéodory equilibria. On the other hand, there exist equilibria
that are far from consensus and are attractive for some Carathéodory solutions. An
example is provided in the next result.

Proposition 14.6 (Far-from-consensus equilibrium of QB) Consider (QB) with an
N-node path as underlying graph and all nonzero entries of the adjacency matrix A
equal to 1. Then, there exists a Krasovskii equilibrium x∗ such that

x∗
N − x∗

1 =
{

(N−2)2

4 i f N is even
(N−1)(N−3)

4 i f N is odd.
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Proof The equilibrium can be constructed as follows. We select k ∈ Z
N such that

k1 = 0 and

ki − ki−1 =
{
i − 2, 2 � i � N+2

2

N − i, N+2
2 < i � N

and then we set
x∗
1 = k2
x∗
i = ki−1+ki+1

2 , i = 2, . . . , N − 1
x∗
N = kN−1.

It can be easily verified (details in [16]) that x∗ is a Krasovskii equilibrium. �

14.5 Disagreement and Distance from Consensus

In the models (BC), (QS), and (QB), we cannot expect to have the same converge
properties as (14.1): in fact, they are interesting as they attempt to explain agreement
and disagreement at the same time. For these models, we point out the occurrence
of disagreement, we give estimates of distance from consensus, and, when possible,
we give sufficient conditions for convergence to consensus.

14.5.1 Bounded Confidence Dynamics

In general, the following is the strongest convergence result that has been given
about (BC). An example of evolution is in Fig. 14.6.

Theorem 14.4 (Asymptotic behavior [14]) Any Krasovskii solution of (BC) con-
verges to a point inF .

In the wake of this fact, much research (from [8] to [49]) has been devoted to under-
stand to which point in F a solution converges. Since the interaction topology is
encoded in the state x by the definition of function a(·, ·), conditions should be given
in terms of the initial condition x(0). For instance, one can immediately observe that
if G (x0) is a complete graph, then the dynamics converges to a consensus. More
general, though not necessary, conditions for consensus are stated in [51].

Theorem 14.5 (Sufficient condition for consensus) If x0 ∈ R
N is such that

1. G (x0) is connected and
2. for any edge (i, j) ∈ E (x0), the set {k ∈ I : (i, k) ∈ E (x0) and ( j, k) ∈ E (x0)}

has cardinality not smaller than N
2 − 2,

then Krasovskii solutions issuing from x0 converge to the consensus point xave(0)1.
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Fig. 14.6 Evolution of a
solution of (BC) from a
random initial condition on
25 nodes
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The previous conditions imply that initial values cannot be too much spread. For
example, in the case of 10 agents, the distance amongagents forG (x0) to be connected
can be as large as 9, but in order to satisfy the second condition of Theorem 14.5, it
can be at most 3. Other sufficient conditions for consensus may be found by applying
the methods in [47].

14.5.2 Quantized States Dynamics

Convergence to the set of equilibria can also be proved for dynamics (QS), an example
of which is given in Fig. 14.7.

Theorem 14.6 (Sufficient conditions for discrete consensus [17]) Any Krasovskii
solution ϕ(t) of (QS) is such that dist (ϕ(t),D) → 0 as t → +∞.

We remark that the set D is not formed by consensus points, but points in D are
such that q(xi ) = q(x j ) for all i, j ∈ I . Thus, the 2-norm distance of Krasovskii
solutions from consensus is, asymptotically, at most

√
N/2.

The assumptions that L be symmetric and the interaction graph be undirected can
be lifted: recently, [50] has proved the same convergence property for more general
functions q and weaker connectivity. Namely, q only needs to be nondecreasing and
the graph can be directed and only needs to have a globally reachable node.4

4We refer the reader to [[23], Chap.1] for the relevant definitions about directed graphs.
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Fig. 14.7 Evolution of a
solution of (QS) on a cycle
graph on 25 nodes from the
same initial conditions as in
Fig. 14.6
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14.5.3 Quantized Behavior Dynamics

For this system, a general proof of convergence to the equilibria is missing. However,
some properties of solutions for large times can be established and are confirmed by
simulations, see Fig. 14.8.

Theorem 14.7 (Distance from consensus) If ϕ(t) is any Krasovskii solution of (QB)
and

M =
{
x ∈ R

N : inf
α∈R

‖x − α1‖ � ||A||
λ∗

√
N

2

}
,

then dist(ϕ(t), M) → 0 as t → +∞.

Proof First of all, we observe that system (QB) can be written

ẋ = −Lx + A(q(x) − x). (14.5)

Let y(t) = x(t) − xave(t)1. Then ẏ(t) = ẋ(t) − ẋave(t)1. Consider the function
V (y) = 1

2 y
�y. We have that

∇V (y)� ẏ =y� ẏ

=(x − xave1)�[ẋ − ẋave1]
=(x − xave1)� ẋ − x� ẋave1 + xave1� ẋave1

=(x − xave1)� ẋ − ẋavex
�1 + ẋaveN xave

=(x − xave1)� ẋ − ẋaveN xave + ẋaveN xave

=(x − xave)
� ẋ .
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As L1 = 0, we have

ẋ ∈ −L(x − xave1) + AK (q(x) − x) ⊆ −L(x − xave1) + A(K q(x) − x).

For any v ∈ K q(x) − x , it holds ‖v‖ �
√
N
2 . Then, if v ∈ K q(x) − x is such that

ẏ = −L(x − xave1) + Av, we have

∇V (y)� ẏ =(x − xave1)�[−L(x − xave1) + Av]
= − (x − xave1)�L(x − xave1) + (x − xave1)�Av

� − λ∗‖x − xave1‖2 + ‖x − xave1‖‖A‖
√
N

2

� ‖x − xave1‖
[
−λ∗‖x − xave1‖ + ‖A‖

√
N

2

]
.

We conclude that dist(x(t), M) → 0 as t → +∞, because otherwise V would
decrease unboundedly along solutions, which is forbidden by V being
nonnegative. �

We remark that this result is tight in the following sense: on some graphs, the
estimate on the limit set is asymptotically tight for large networks in the sense of the
Euclidean distance from the consensus. More precisely, if the graph is a path with
N nodes and weights are uniform, for all points in the attractor M it holds true that
1√
N

‖x − xave‖ = O(N 2) as N → ∞. At the same time, the equilibrium x∗ that was
constructed in the proof of Proposition 14.6 is such that (for odd N )

1√
N

‖x∗ − x∗
ave‖ = 1√

120
N 2 + o(N 2) as N → ∞.

Hence, the estimate of M cannot be improved in general in terms of distance from
consensus. Details of these computations can be found in [16].

Even though not guaranteed in general, the consensus is achieved on some topolo-
gies. An example of such result is the following.

Theorem 14.8 (Sufficient conditions for consensus) If the graph underlying sys-
tem (QB) is either complete or complete bipartite and its adjacency matrix A has
all non-null entries equal to 1, then all Krasovskii solutions of (QB) converge to a
consensus point.

The proof of this result, which can be found in [16], is based on showing that
maxi xi (t) − mini xi (t) is decreasing and converges to zero.



14 Discontinuous Opinion Dynamics 305

Fig. 14.8 Evolution of a
solution of (QB), assuming
the same initial conditions
and graph as in Fig. 14.7
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14.6 Discussion: The Origins of Disagreement in Opinion
Dynamics

The dynamics analyzed in this chapter are meant to describe opinion dynamics in
social networks. In this context, the nodes of the graph are individuals, an edge
between two nodes means that they socially interact and the i th component of the
state represents the value of the i th individual’s opinion. This graph-based modeling
approach has a strong support in mathematical sociology [27, 43] as well as in
economics [36] and in the physics of complex systems [5, 11, 32].

The basic assumption in these models of opinion dynamics is that if an indi-
vidual communicates with another, then his/her opinion is attracted by the others.
If one translates this assumption into a set of differential equations, then one gets
system (14.1), as already proposed in [1]. This dynamics asymptotically leads to
consensus, i.e., agreement of the individuals on the same opinion, except in case
there are different groups of individuals which do not communicate with each other,
i.e., the communication graph has separated connected components. However, it has
been noted that agreement is rare in societies [28], even if individuals do commu-
nicate: for this reason, more complex models have been elaborated with the aim of
explaining agreement and disagreement at the same time.

In this chapter, we have focused on a group of models involving different kinds of
threshold phenomena leading to discontinuities. Before going back to discuss their
features, it is important to mention that these are not the only possible explanations
for disagreement. In [29], disagreement is explained as the effect of obstinacy that
is translated into the dependence of any individual’s opinion on its initial value.
Stubbornness as the source of disagreement is also considered in other models, such
as [39, 42], also in connection with the occurrence of randomized asynchronous
interactions [2, 25, 45]. Another explanation has been proposed to be the presence
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of contrarians [31] or of negative interactions, i.e., negative weights in the adja-
cency matrix [3]. Similar dynamics on “signed graphs” may also feature randomized
interactions [46] or bounded confidence [18].

Going back to themodels considered in this chapter,we now try to summarize their
features in the opinion dynamics context, beginning with (BC). Bounded confidence
dynamics allow for the existence of complete Carathéodory solutions for every initial
condition and all Krasovskii solutions are proved to converge to an equilibrium. The
structure of these equilibria is a set of separated clusters of individuals sharing the
same opinion. In [8, 14], it is proved that, due to robustness issues, one can expect
the opinion values of different clusters to be approximately twice the threshold apart.
The most recent results on this matter are probably those in [49]. Actually, a fine
understanding of how the final opinions depend on the initial ones is still missing.
In this chapter, we have reported a sufficient condition for consensus, which asks for
the initial opinions to be already quite close to each other. Other models that involve
assumptions of bounded confidence include [9, 22, 26, 38, 52].

Consensus dynamics with quantization have first been studied with engineering
motivations, while seeking controlled dynamics that could lead to (approximate)
consensus despite the constraint of quantization [10, 41]. Proposed in this context
by [17], the quantized states dynamics (QS) does not allow for global existence
of Carathéodory solutions and thus requires to consider Krasovskii solutions: all
Krasovskii solutions converge to equilibria such that the quantized opinions are equal.
This is not exactly consensus, as individuals’ opinions may slightly differ, but they
agree on their quantized values. Consistently with its history, dynamics (QS) better
fits engineering applications than social dynamics5: we believe that a better model
of quantized social interactions is given by the quantized behavior dynamics (QB),
whichwe proposed in [15, 16]. Thismodel allows for the existence of complete Cara-
théodory solutions for every initial conditions, but Krasovskii solutions are preferred
to avoid the pathology of solutions converging to nonequilibrium point. In general,
a result of convergence to equilibria is missing, but a tight result of convergence to
a set is available. Remarkably, there can be equilibria very far from consensus, in
which the difference among different opinions of individuals is proportional to N 2.

Beyond the specific dynamics considered in this chapter, we believe that dynami-
cal models that involve discontinuities can be useful in the study of social dynamics:
we thus hope that the tools collected here can also be useful in the analysis of new
and richer models.

5The discretization of the opinions in social systems has been observed by social scientists [30,
Chap.10] and addressed in several models including [20, 37, 48].
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