
Chapter 13
Modeling and Co-Design of Control
Tasks over Wireless Networking
Protocols

A. D’Innocenzo

Abstract In this chapter, we provide a brief overview of the state of the art on control
over wireless communication protocols and present some recent advances in the
co-design of controller and communication protocol configuration (i.e., scheduling
and routing) subject to stochastic packet drops.

13.1 Introduction

Wireless networked control systems (WNCS) are distributed control systems where
the communication between sensors, actuators, and computational units is supported
by awireless communication network.WNCSs have awide spectrumof applications,
ranging from smart grids to remote surgery, passing through industrial automation,
environment monitoring, intelligent transportation, and unmanned aerial vehicles, to
name few.

The use of WNCS in industrial automation results in flexible architectures and
generally reduces installation, debugging, diagnostic, and maintenance costs with
respect to wired networks (see e.g., [3, 33] and references therein). However mod-
eling, analysis, and co-design of WNCS are challenging open research problems
since they require to take into account the joint dynamics of physical systems,
communication protocols, and network infrastructures. Recently, a huge effort has
been made in scientific research on WNCSs, see e.g., [5, 8, 10, 19, 24, 28, 31, 40,
43, 68, 74, 78, 81, 84] and references therein for a general overview.

The challenges in analysis and co-design of WNCSs are best explained by
considering wireless industrial control protocols. In this chapter, we focus on a
networking protocol specifically developed for wireless industrial automation, i.e.,
WirelessHART, [35–37]. Indeed WirelessHART is not a niche technology, as many
high-impact technological companies, such as Siemens, ABB, Emerson, sent to the
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market devices and industrial automation solutions based on the WirelessHART
protocol. Due to its novelty, plenty of research activity on WirelessHART is still in
progress in order to analyze the real capabilities of the standard and the applica-
tion limits. In particular, the WirelessHART specification creates the opportunity for
designers to implement ad hoc algorithms to configure the network configuration:
we fill this gap by providing novel algorithms for co-designing controller and net-
work configuration from a control performance point of view, and in particular, we
investigate the design of redundancy when routing actuation data to a LTI system
connected to the controller via a wireless network. We show with an example that
the optimal co-design of controller gain and routing can strongly improve the control
performance [21].

Pursuing the objective described above, we first consider the modeling, stability
analysis, and controller design problems in a purely nondeterministic setting, when
the actuation signal is subject to switching propagation delays due to dynamic routing
[50]. We show how to model these systems as pure switching linear systems and
provide an algorithm for robust stability analysis. We show that the stability analysis
problem is NP-hard in general and provide an algorithm that computes in a finite
number of steps the look-ahead knowledge of the routing policy necessary to achieve
controllability and stabilizability.

We then consider, in a stochastic setting, the case when actuation packets can be
delivered from the controller to the actuator via multiple paths, each associated with
a delay and with time-varying packet loss probability. The packet dropouts have been
modeled in the WNCS literature either as stochastic or nondeterministic phenomena
[43]. The proposed nondeterministic models specify packet losses in terms of time
averages or in terms ofworst-case bounds on the number of consecutive dropouts (see
e.g., [40]). For what concerns stochastic models, a vast amount of research assumes
memoryless packet drops, so that dropouts are realizations of a Bernoulli process
[31, 68, 74]. Other works consider more general correlated (bursty) packet losses
and use a transition probability matrix of a finite-state (time-homogeneous) Markov
chain (see e.g., the finite-state Markov modeling of Rayleigh, Rician, and Nakagami
fading channels in [72] and references therein) to describe the stochastic process that
rules packet dropouts (see [30, 74]). In these works, WNCSwith missing packets are
modeled as time-homogeneousMarkov jump linear systems, which are an important
family of stochastic hybrid systems that we use to model packet losses. In particular,
it has been shown (e.g., in [21, 30, 74, 77]) that discrete-time Markov jump linear
systems (MJLS, [17]) represent a promising mathematical model to jointly take into
account the dynamics of a physical plant and nonidealities ofwireless communication
such as packet losses. A MJLS is, basically, a switching linear system where the
switching signal is a Markov chain. The transition probability matrix of the Markov
chain can be used to model the stochastic process that rules packet losses due to
wireless communication. However, in most real cases, such probabilities cannot be
computed exactly and are time-varying. We can take into account this aspect by
assuming that the Markov chain of a MJLS is time-inhomogeneous, i.e., a Markov
chain having its transition probability matrix varying over time, with variations that
are arbitrary within a polytopic set of stochastic matrices.
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Given such mathematical model, the first problem we address is providing nec-
essary and sufficient conditions for the stochastic notion of mean square stability
(MSS). Some recent works addressed the above problem: in [2], a sufficient condi-
tion for stochastic stability in terms of linear matrix inequality feasibility problem is
provided, while in [16] a sufficient condition for MSS of system with interval transi-
tion probability matrix, which in turn can be represented as a convex polytope [38],
is presented in relation to spectral radius; in general, only sufficient stability condi-
tions have been derived for MJLS with time-inhomogeneous Markov chains having
transition probability matrix arbitrarily varying within a polytopic set of stochastic
matrices. We derive necessary and sufficient conditions [60] for MSS of discrete-
time MJLS with time-inhomogeneous Markov chains. Having solved the stability
problem, we extend the framework of MJLSs replacing the time-inhomogeneous
Markov chain with a time-inhomogeneous Markov Decision Process and provide
the optimal solution of the finite time horizon LQR problem considering the issue
of joint minimization of costs of continuous and discrete control inputs for the worst
possible disturbance in transition probabilities [61].

In addition to the investigations described above, we also addressed the problem
of stabilizing a WNCS in presence of long- term link failures and malicious attacks.
More precisely, we addressed the co-design problem of controller and communica-
tion protocol, and in particular routing and scheduling, when the physical plant is a
MIMO LTI system and the communication nodes are subject to failures and/or mali-
cious attacks. We first characterize by means of necessary and sufficient conditions
the set of network configurations that invalidate controllability and observability of
the plant. Then, we investigate the problem of detecting and isolating communica-
tion nodes affected by failures and/or malicious attacks and provide necessary and
sufficient conditions for the solvability of this problem. This latter line of research is
not illustrated in this chapter for space limitations, and we refer the interested reader
to the papers [24–26].

This chapter is organized as follows. In Sect. 13.2, we provide a high-level descrip-
tion of the WirelessHART communication protocol. In Sect. 13.3, we first define
our mathematical framework (i.e., time-inhomogeneous MJSLSs), which takes into
account accuratemodels of packet dropouts; thenwe showwith amotivating example
that co-designing the controller and the routing strategy can lead to a strong improve-
ment of the control performance. In Sect. 13.4, we summarize and discuss our tech-
nical results on co-design of controller and network configuration. In Sect. 13.5 we
draw conclusions and directions for future work.

13.2 The WirelessHART Protocol

In this section, we introduce WirelessHART, one of the most relevant protocols cur-
rently used in industrial environments, emphasizing the features that will be analyzed
and addressed in our mathematical models and co-design algorithms for WNCS.
WirelessHART, [35–37] is one of the first wireless communication standards specif-
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ically designed for process automation applications. The standard has been finalized
in 2007, at the beginning of 2010 it has been ratified as an IEC standard, and is based
upon the physical layer of IEEE 802.15.4. When WirelessHART was developed,
many requirements deemed critical for the industrial environment were not defined
in IEEE 802.15.4, thus further specifications have been added in the data link layer
(DLL). This newMAC protocol combines frequency hopping with a TDMA scheme
utilizing a centralized a priori slot allocation mechanism. Indeed, it is commonly
thought that TDMA-based protocols offer good opportunities for energy-efficient
operation of sensor nodes, as they allow them to enter sleep mode when they are
not involved in any communications. Such allocation of the shared channel regular-
izes the dynamical behavior introduced by multi-hop transmission: indeed, TDMA
schemes avoid collisions and thus induce a periodic time-varying behavior, where
delays and transmission times are well predictable, which can be nicely analyzed by
considering sophisticated mathematical models like Markov Jump Linear Systems
or Markov Decision Processes. In the results, illustrated in this chapter, we concen-
trate on modeling the joint dynamics of a closed-loop dynamical system and the
WirelessHART data link and network layers.

About data link layer, the timing hierarchy of WirelessHART can be split in
three timescale layers, as depicted in Fig. 13.1. The lowest layer consists of individual
time slots: within each time slot, one data packet and the corresponding immediate
acknowledgment packet are exchanged. A time slot in WirelessHART has a fixed
length of 10 ms., and two types of time slots are available: dedicated time slots (slot
is allocated to one specific sender–receiver pair) and shared time slots (more than
one device may try to transmit a message).Within a dedicated time slot, transmission

Fig. 13.1 WirelessHART timing hierarchy
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of the source message starts at a specified time after the beginning of a slot. This
short time delay allows the source and destination to set their frequency channel
and allows the receiver to begin listening on the specified channel. Since there is a
tolerance on clocks, the receiver must start to listen before the ideal transmission start
time and continue listening after that ideal time. Once the transmission is complete,
the destination device indicates by transmitting an ACK whether it received the
source device data link packet successfully or not, indicating in this latter case a
specific class of detected errors. At the second layer, a contiguous group of time
slots of fixed length forms a superframe. At the third layer, a contiguous group of
superframes forms a network cycle. Within each cycle, each field device obtains at
least one time slot for data transmission, but certain devices may have more time
slots than others because they provide data with more important requirements or
have additional forwarding duties.

About network layer, in advanced applications point-to-point communications
are unreliable also because it is very difficult to place devices to maintain line of
sight all the time. The best architecture solution for wireless communication is a
mesh topology network, which can provide multipath redundancy. Nodes, in fact,
can multicast the same information to one or more of its neighbors with the goal
of mitigating the risk of unplanned outages and ensure continuity of operation by
instantly responding to and reducing the effects of a point of failure anywhere along
the critical data path. In order to guarantee timely and reliable data delivery, routing
topology and transmission schedule are centrally computed by a network manager
device (which has global knowledge of the network state) and then disseminated to
all devices in the network. WirelessHART allows two strategies to route packets:
graph routing and source routing.

In source routing, a single fixed route of devices is decided by the source node and
written in the header of the packet. Then, each device in the route forwards the packet
to the next specified device until the destination is reached. There are no alternate
routes in this mode, so if any device fails on a route, the whole route fails. Source
routing is mostly used for network diagnostics.

In graph routing, the network manager defines a set of routing graphs, consisting
of a set of acyclic directed graphs each connecting a source node to a destination node
through some relay nodes on the network, and communicates them to each device.
When a source node needs to send a packet, it writes a routing graph ID in the header
of the packet to be sent. As the packet arrives at each node, the node forwards (or
consumes, if it is the destination node) the packet according to the corresponding
routing graph. Each relay node can be configured with multiple neighbors to create
redundancy in the packet’s forwarding. Thanks to such redundancy, graph routing is
mostly used for sensing and actuation data communication.

As discussed above, the WirelessHART standard specifies the communication
stack as well as the interfaces and tasks for the devices comprising a WirelessHART
network. However it does not specify how these tasks should be accomplished, which
provides interesting opportunities to develop improved and optimized solutions. An
example is the exploitation of routing redundancy by jointly configuring the schedul-
ing at the data link layer and the routing graph at the network layer. WirelessHART



266 A. D’Innocenzo

does not specify the algorithms and performance metrics to be used for scheduling
and routing, and a designermust implement the best policies according to the specific
application: we will provide in the next sections methods for co-designing controller
and network from the control performance point of view.

13.3 Mathematical Framework and Motivating Example

In this section, we first introduce our reference mathematical framework and then
provide an example showing that the joint design of network communication policies
and control has a relevant impact on the control performance of a closed-loop system.

13.3.1 Time-Inhomogeneous Discrete-Time Markov Jump
(switched) Linear Systems

Linear systems subject to abrupt parameter changes due, for instance, to environ-
mental disturbances, component failures, changes in subsystems interconnections,
changes in the operation point for a nonlinear plant, etc., can be modeled by a set
of discrete-time linear systems with modal transition given by a discrete-time finite-
state Markov chain. This family of systems is known as discrete-time Markov(ian)
jump linear systems, often abbreviated as MJLSs.

The transition probabilities of a Markov chain are frequently time-varying and
unavailable to the modeler, and a large body of research has been devoted to deal
with these uncertainties and also to the identification of the Markov chain using
available observations (see [13] and references therein for an introduction to the topic
of estimation of such transition probabilities, which always introduces estimation
errors). In order to account for uncertainties and time-variance inherent to real-world
scenarios, the time-inhomogeneous polytopicmodel of transition probabilities is very
general and widely used in the literature.

In this section,we present a rigorousmathematicalmodel ofMJLSswith polytopic
uncertainties on transition probabilities and also the model of their natural extention,
i.e., Markov jump switched linear systems (MJSLSs).

A discrete-time Markov jump linear systems can be defined as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk+1 = Aθkxk+Bθkuk+Hθkvk,

yk = Fθkxk+Gθkwk,

zk = Cθkxk+Dθkuk,

x0 = x0, θ0 = ϑ0, p0 = p0,

(13.1)

where k∈T is a discrete-time instant, T is a discrete-time set, T=Z0, with Z0 indi-
cating the set of all nonnegative integers andZ the set of integers. Then, xk is a vector
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of nx either real or complex state variables of the Markov jump linear system, where
nx∈Z+ with Z+ the set of positive integers, and xk ∈F

nx with Fnx an nx-dimensional
linear space with entries in F. Note that F indicates the set of either real numbers R
or complex numbers C: in general, when studying MJLSs, it is a standard practice
to work with complex fields [17], but one can consider complex operators acting on
C

m,n as real (block) matrices acting on R
2m,2n [49].

For what concerns other system variables in the aforementioned state-space rep-
resentation of an MJLS, uk stands for a vector of nu control input variables, uk ∈F

nu ;
then, vk ∈F

nv and wk ∈F
nw are vectors of exogenous input variables, known as pro-

cess noise and observation noise, respectively; yk ∈F
ny represents a vector of mea-

sured state variables available to the controller; zk ∈F
nz denotes a vector of measured

system output variables. Clearly, nu, nv, nw, ny, nz∈Z+.
In the following, wewriteFm,n to denote a set ofmatrices withm rows, n columns,

and entries in F. Consequently, the elements of the systemmatrices Aθk , Bθk , etc., are
also defined on a field of either real or complex numbers F. The subscript θk indicates
that systemmatrices active in a time instant k are determined by the value of the jump
variable θk , which is a random variable having the setM�{i ∈Z+ : i≤N } as its state
space, where N ∈Z+ is the cardinality of the set, formally |M|=N . The set M is
generally referred to as the (index) set of operational modes of the Markov jump
linear system. We denote by θk as the identity function of the set of operational
modes, i.e., θk : M→M, and ∀i ∈M, we have that θk(i) = i .

For every operational mode, there is a correspondent system matrix, and the
collection of the systemmatrices of each type is generally represented by a sequence
of N matrices, which are not necessarily all distinct. Specifically, A�(Ai )

N
i=1∈

NF
nx,nx is a sequence of the so-called state matrices, each of which is associated to

an operational mode of the (switching) system. Noticeably, NFm,n indicates a linear
space made up of all N -sequences of m×n matrices with entries in F. Similarly,
B�(Bi )

N
i=1∈NF

nx,nu is an N -sequence of input matrices; C�(Ci )
N
i=1∈NF

nz,nx is a
sequence of output matrices; D�(Di )

N
i=1∈NF

nz,nu is a sequence of direct transition
(also known as feed-forward or feedthrough) matrices; F�(Fi )

N
i=1∈NF

ny,nx is a
sequence ofobservationmatrices;G�(Gi )

N
i=1∈NF

ny,nw is a sequence ofobservation
noise matrices; and H�(Hi )

N
i=1∈NF

nx,nv is a sequence of process noise matrices.
The transitions, or jumps, between operational modes of an MJLS are governed

by a discrete-time Markov chain θ , which is a collection of random variables θt
all taking values in the same state space, i.e., {θt : t ∈T}, and satisfying the Markov
property. The initial probability distribution of theMarkov chain is defined ∀i ∈M by
pi (0) � Pr(θ0= i), and the initial probability distribution of all the operationalmodes
is defined as the vector p0 � [p1(0) . . . pN (0)]′ ∈R

N ,1. The transition probability
between the operational modes i, j ∈M of a Markov jump linear system is formally
defined as

pi j (k) � Pr(θk+1= j | θk = i) , (13.2)

where ∀i ∈M and ∀k∈T,
∑N

j=1 pi j (k)=1. The corresponding transition probability
matrix is defined as
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P(k) �
[
pi j (k)

] ∈ R
N ,N . (13.3)

The initial conditions for aMarkov jump linear system consist of the initial state of
the dynamical systemx0 = x0∈F

nx , the initial state of theMarkov chain θ0 = ϑ0∈M

and the initial probability distribution of the states of the Markov Chain denoted by
p0 = p0∈R

N
0 s.t.

∥
∥ p0

∥
∥
1=1, with ‖ · ‖1 the standard 1−norm of a vector andRN

0 the
N -dimensional linear space with entries in the set of nonnegative real numbers R0.

Although in engineering problems the operation modes are not often available,
there are enough cases where the knowledge of random changes in system structure
is directly available to make these applications of great interest [9, 17]. The typical
examples include a ship steering autopilot, control of pH in a chemical reactor,
combustion control of a solar-powered boiler, fuel–air control in a car engine, and
flight control systems [17]. In this chapter, we focus on the fact that MJLSs’ model is
well suited also for theWNCS scenario, when a channel estimation is performed (see
e.g., [57] and the references therein), so the channel state information is known at each
time step. In fact, the knowledge of θk at each time instant k is a standard assumption
in the setting of MJLSs, and in this chapter we do the following assumption.

Assumption 13.1 At every time step k∈T, the jump variable θk is measurable and
available to a controller.

Depending on the considered problem, (some of) the system’s vector variables
xk , uk , yk , and zk may also be viewed as measurable.

We have previously discussed that in most real cases the transition probability
matrix P(k) introduced in (13.3) cannot be computed exactly and is time-varying,
and that there exists a considerable number of works on discrete-time Markov jump
systems (both linear and nonlinear) with polytopic uncertainties, which can be either
time-varying or time-invariant. From now on, we assume that P(k) is varying over
time, with variations that are arbitrary within a polytopic set of stochastic matrices.
In order to express this statement formally, let V∈Z+ be a number of vertices of
a convex polytope, and V be an index set of vertices of a convex polytope, i.e.,
V�{i ∈Z+ : i ≤V }. Then, the set of vertices of a convex polytope of transition
probability matrices is formally defined as

VP �
{
Pl ∈R

N ,N : l∈V
}
. (13.4)

Clearly, being a transition probability matrix, each vertex Pl satisfies (13.2) and
(13.3). These vertices are obtained from measurement on the real system or via
numerical reasoning, taking into account accuracy and precision of the measuring
instruments and/or numerical algorithms. They bound the possible values each tran-
sition probability can assume. Then, the polytopic time-inhomogeneous assumption
is stated as follows.

Assumption 13.2 The time-varying transition probabilitymatrix P(k) is polytopic,
that is, for all k∈T, one has that
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P(k) =
∑V

l=1
λl(k)Pl, λl(k) ≥ 0,

∑V

l=1
λl(k) = 1, (13.5)

where for each l∈V, Pl ∈VP⊂VR
N ,N , i.e., Pl are elements of a given finite set of

transition probabilitymatrices,which are the vertices of a convexpolytope;moreover,
λl(k) are unmeasurable.

Assumption13.2 plays an important role also in our model of Markov jump
switched linear system, which is a dynamical system having the same form as (13.1),
with the only difference being that the operationalmodes of the systemare determined
by the stochastic variable sk that represents a standard Markov Decision Process. A
Markov Decision Process is a quintuple (M,A,Pr, g, γ ), where

• M is a finite set of states of a process, with |M|=N .
• A is a finite (index) set of actions among which a decision maker (a.k.a. a discrete
controller or a supervisor) is able to chose, i.e., A�{i ∈Z+ : i≤M}. Typically,
only a subset of A is available in any given state of an MDP.1 We take this into
account by defining for each state i ∈M the related set Ai of actions α available
in that state. We write this statement symbolically as Ai ⊆A, α∈Ai .

• Pr is state- and action-dependent transition probability distribution. For any k∈T,
i, j ∈M, α∈Ai , the future transition probability distribution, conditioned on the
present state sk of theMDP and the action αk to be taken from that state, is denoted
by

pα
i j (k) � Pr{sk+1= j | sk = i, αk =α}. (13.6)

Being a probability distribution, pα
i j (k)∈R0 and satisfies ∀k∈T, i, j ∈M, and

α∈Ai ∑N

j=1
pα
i j (k) = 1. (13.7)

For any α /∈Ai , the action is not available in a given state of the MDP. Hence,
∀ j ∈M

pα
i j (k) � 0. (13.8)

In the following, we assume that the transition probability matrices constituting
Pr are varying over time, with variations that are arbitrary within a polytopic set
of stochastic matrices according to Assumption13.2.

• Selecting an (available) action in any given state of a Markov decision process
entails a (nonnegative) cost, which is seen as a function g : M×A→G, where
G⊆R0 is a set of immediate costs.

• γ is a discounting factor, which represents the difference in importance between
future costs and present costs; γ ∈R0, γ ≤1. Since taking the discount factor into

1For instance, in a decision problem of the optimal transmission power management in a wireless
communication, the possible actions available to a controller may be those of increasing or decreas-
ing of a transmission power: in a finite set of transmission power levels, it is impossible to increase
a power from a maximum level or decrease it from a minimum level.
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account does not affect any theoretical results or algorithms in the finite-horizon
case (but might affect the decision maker’s preference for policies) [71, p. 79], we
do not consider a discounting factor here.

In the sameway as done before for aMarkov jumpvariable,wemake the following
assumption.

Assumption 13.3 The state sk of the Markov decision process is measurable and
available for the discrete controller at each time step k∈T.

We are now ready to define a MJSLS as the following system of recursive equa-
tions, where the system’s variables and matrices are the same as above:

⎧
⎪⎨

⎪⎩

xk+1 = Askxk+Bskuk
zk = Cskxk+Dskuk,

x0 = x0, s0 = s0, p0 = p0.

(13.9)

13.3.2 Co-design of Controller and Routing Redundancy

As discussed in Sect. 13.2, routing and scheduling schemes in a WNCS where the
network is based on aWirelessHART-like protocol have a direct and relevant impact
on closed-loop performance and the aforementioned standards leave the possibility,
for the designers, to implement complex and time-varying routing and scheduling ad
hoc optimal policies. Indeed, tomake aWirelessHARTWNCS robust to transmission
nonidealities routing redundancy can be exploited by relaying data via multiple paths
and then appropriately recombining them, which is reminiscent of network coding.
Basically, if a communication path fails, another one can be available to maintain
the communication flow. As paths are characterized by different communication
properties, such as delays and packet losses, the routing designmust take into account
the effect on the control performance of the closed-loop system.

In this section, we illustrate a motivating example from [21], where we model
a WNCS implementing WirelessHART as a MJSLS and address the problem of
optimally co-designing controller and routing with respect to a control performance
index, e.g., the classical quadratic cost used in LQR.

Consider a state-feedback WNCS as in Fig. 13.2, where the communication
between the controller and the actuator can be performed via a set of r routing
paths {ρi }ri=1 in a wireless multi-hop communication network. Each path ρi is char-
acterized by a delay di ∈ N

+ and a packet loss probability pi ∈ [0, 1] that represents
the probability that the packet transmitted on that path will not reach the actuator
due to communication failure. Therefore let us define, for each path ρi , the stochas-
tic process σi (k) ∈ {0, 1}, with σi (k) = 0 if the packet expected to arrive via the
routing path ρi at time k suffered a packet drop and σi (k) = 1 if the packet is suc-
cessfully received at time k. For simplicity we assume that σi (k) is a sequence of
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Fig. 13.2 State-feedback control scheme

i.i.d. random variables, each characterized by a Bernoulli distribution with probabil-
ity measure P[σi (k) = 0] = pi . It is also assumed here that the events of occurrence
of packet losses in the different paths are i.i.d.: as a consequence the stochastic pro-
cess σ(k)

.= [σ1(k), . . . , σr (k)]′ is a vector of i.i.d. random variables, where σ(k)
can assume 2r values. The controller cannot measure the signal σ(k), i.e., it is not
possible to measure the occurrence of packet losses. It is assumed that, in general,
the controller can decide for each time instant k the set of paths where data will be
sent: i.e., the controller can decide to send data at time k on all paths, on a subset of
paths, on one path, or even not to send any data. To this aim let us define for each path
i the discrete control signal ai (k) ∈ {0, 1}, with ai (k) = 1 if the controller decides to
send a packet via the routing path i at time k, and ai (k) = 0 if no packet is sent via
path i at time k. Consequently, the discrete control signal a(k)

.= [a1(k), . . . , ar (k)]′,
where a(k) can be chosen among 2r different values.

Let the plant be a discrete-time LTI system described by the matrices AP ∈ R
	×	,

BP ∈ R
	×m and assume thatwe canmeasure the full system’s state, then the dynamics

of the networked system are as follows:
{
x(k + 1) = Aσ(k)x(k) + Ba(k)u(k)

y(k) = x(k)
(13.10)

with

Aσ(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

AP Λ1(σ (k)) Λ2(σ (k)) · · · Λr (σ (k))
0 Γ1 0 · · · 0
0 0 Γ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Γr

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
(	+ν(r)×	+ν(r)),
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Ba(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0
a1(k)Im ⊗ ed1 0 · · · 0

0 a2(k)Im ⊗ ed2 · · · 0
...

...
. . .

...

0 0 · · · ar (k)Im ⊗ edr

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
(	+ν(r)×mr),

with

Λi (σ (k))
.= σi (k)

[
BP 0 · · · 0] ∈ R

	×mdi ,

Γi
.=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 Im · · · 0 0
...

...
. . .

...
...

0 0 · · · Im 0
0 0 · · · 0 Im
0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
mdi×mdi ,

andwith ν(i)
.= m

i∑

j=1
d j , Im them-dimensional identitymatrix, ei a columnvector of

appropriate dimension with all zero entries except the i − th entry equal to 1, and ⊗
the Kronecker product. Note that in the feedback scheme presented, it is assumed that
the controller can measure the whole state x(k) = [xP(k)′xN (k)′]′ of (13.10), where
xP(k) ∈ R

	 is the state of the plant and xN (k) ∈ R
ν(r) are state variables modeling

the delay induced by each path. It is assumed that the controller can measure the state
xP(k) of the plant via sensors. Also, the controller is aware of the current and past
actuation signals u(k) that have been sent to the actuator, as well as of the current
and past signals a(k): as a consequence the controller has direct access to the state
of xN (k), which models the actuation commands that are expected to arrive at the
actuator, but is not aware of their actual arrival to the actuator since σ(k), which
models packet drops, is not measurable.

We consider in this example the simpler case when routing is designed a priori,
i.e., ∀k ≥ 0, a(k) = ak : note that with this assumption system (13.10) is a MJLS as
defined in (13.2). Let us now consider an instance of system (13.10) characterized
by a four-dimensional unstable randomly generated plant

AP =

⎡

⎢
⎢
⎣

1.1062 −1.0535 0.7944 −0.4543
0.0202 −0.0654 0.9697 −0.6888
0.1131 −0.5755 1.7434 −0.7174
0.0745 −0.2565 0.2999 0.7252

⎤

⎥
⎥
⎦ , BP =

⎡

⎢
⎢
⎣

−0.1880
0.0182
0.1223
0.2066

⎤

⎥
⎥
⎦ ,

and by a wireless network characterized by two paths: ρ1 with packet loss probability
p1 = 0.25 and delay d1 = 1 and ρ2 with packet loss probability p2 = 0 and delay
d2 = 5. We setup the following standard LQR optimization problem:
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Problem 13.1 Given System (13.10) and a routing sequence ak, k = 0, 1, . . . , N −
1, design for any k ∈ {0, . . . , N − 1} an optimal state-feedback control policy
u∗(k) = K ∗(θ(k), k)x(k) minimizing the following objective function:

J(θ0, x0) � min
u

∑T−1

k=0
E

(‖zk‖22
) + E

(
x∗
T ZθT xT

)
(13.11)

with θ and zk as in (13.1) and Z�(Zi )
N
i=1∈NF

nx,nx
0 a sequence of the terminal cost

weighting matrices.

We solve Problem13.1 using the optimal LQR solution for MJLS for comparing
the performance of three simple routing strategies: (1) using for all time instants
only path ρ1; (2) using for all time instants only path ρ2; using for all time instants
both paths simultaneously. Solution is computed for a time horizon T = 300. For
a detailed description of the weight matrices of the cost function (13.11) and the
initial conditions we refer the reader to [21]. For each routing strategy, 5K MC
simulations of the state trajectories are performed. Figure13.3 shows the trajectories
of the first component of the extended state vector when only path ρ1 is used. The
system can be stabilized, but clearly the variance of the trajectories is large. This
routing policy is clearly a bad choice. Figure13.4 shows the trajectories when only
pathρ2 is used (red) andwhen both pathsρ1 andρ2 are used (blue and green). Routing
data only to path ρ2 clearly generates always the same trajectory since p2 = 0. The
system trajectories are stable but the associated cost is quite large because of the
delay, as evidenced by the overshoot and the settling time performances. Figure13.4
evidences that routing data via both paths ρ1 and ρ2 the control performance strongly

Fig. 13.3 State trajectories routing only via path ρ1 (blue) and their average (red)
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Fig. 13.4 State trajectory routing only via path ρ2 (red dashed); state trajectories routing via both
paths ρ1 and ρ2 (blue) and their average (green)

Table 13.1 Cost averaged
over 5K MC simulations

Averaged cost

Via path ρ1 ∼ 900

Via path ρ2 ∼ 250

Via paths ρ1, ρ2 ∼ 100

improves: in particular, the trajectory of the system computed by averaging over all
MC simulations is characterized by much smaller overshoot and faster settling time.
The single trajectories generated routing data via both paths ρ1 and ρ2 clearly have
some variance due to the high packet loss probability p1: however, in the 5K MC
simulations, the performance of any of the single trajectories is much better than the
case when only path ρ2 is used. Table13.1 shows the tremendous improvement of the
controller performance obtained by exploiting both paths and co-designing optimal
control and routing redundancy.

13.4 Main Results

In the previous section, we have illustrated that time-inhomogeneous MJSLSs rep-
resent a mathematical model to jointly take into account the dynamics of a physical
plant and nonidealities of wireless communication such as packet losses, and that
their exploitation for optimal design of routing redundancy can strongly improve the
closed-loop control performance. In this section, we illustrate recent advances related
to the co-design of controller and communication protocol configuration subject to
stochastic packet drops.
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13.4.1 Stability Analysis of Linear Systems with Switching
Delays

In our research line, as a first approach to address the above problem, we considered
in [50] the case when routing is purely nondeterministic and packet losses are not
present. We will exploit the mathematical framework of switching linear systems,
which can be considered a special case of a time-inhomogeneous MJLS, where
the polytopic uncertainty set contains all stochastic transition probability matrices.
Because of the TDMA scheduling each path is characterized by a fixed delay in
forwarding the data (see [24] for details), as a consequence each actuation data is
delayed of a finite number of time steps according to the chosen routing and our
system is characterized by switching time-varying delays of the input signal.

Systems with time-varying delays have attracted increasing attention in recent
years (see e.g., [41, 44, 75] and references therein). In [46], it is assumed that the
time-varying delay is approximatively known and numerical methods are proposed
to exploit this partial information for adapting the control law in real time. The
LMI-based design procedures that have been developed for switching systems with
time-varying delays (see e.g., [45, 86]) do not take into account the specific structure
of the systems induced by the fact that the switching is restricted on the delay-part of
the dynamics. Our goal is to leverage this particular structure in order to improve our
theoretical understanding of the dynamics at stake in these systems. This enables us
to design tailored controllers, whose performance or guarantees are better than for
classical switching systems. Our modeling choice is close to the framework in [44].
However, our setting is more general and realistic in that, differently from [44], it
allows for several critical phenomena to happen: in our model, control commands
generated at different times can reach the actuator simultaneously, their arrival time
can be inverted, and it is even possible that at certain times no control commands
arrive at the actuator. An investigation similar to ours, applied to the different setting
of Lyapunov exponents of randomly switching systems, has been pursued in [76].

In our setting assume that, at each time t , the controller is aware of the propagation
delays of the actuation signals sent at times t, t + 1, . . . , t + N − 1. We assume that
N can be larger than 1, i.e., that the controller is aware of the current and N − 1 next
future routing path choices and keeps memory of the past delays: we define N the
look-ahead parameter and we call this situation the delay-dependent case.

The practically admissible values for N depend on the protocol used to route
data: indeed, note that in several practical situations, the networking protocol can be
designed to choose at any time t the future routing paths up to t + N − 1.

As a first contribution, we show that our particular networked systems can be
modeled bypure switching systems,where the switchingmatrices assumeaparticular
form.As a direct consequence, thewell-knownLMI stability conditions for switching
systems (see e.g., [70]) can be directly used to compute the worst rate of growth with
fixed and arbitrarily small conservativeness. Also, while it is well known that the
stability analysis problem is NP-hard for general switching systems [14], we prove
that it is NP-hard even in our particular case of switching delays.



276 A. D’Innocenzo

As a second contribution, we address the controller design problem. We first
consider the case when one can design the communication system such that we have
an arbitrarily large but finite look-ahead N . Of course, we are interested in requiring
the smallest N : to this aim, we first provide an algorithm for efficiently constructing
this controller, or deciding it does not exist. In case it exists, we prove a general upper
bound N ∗ on the needed look-ahead, depending only on the dimension of the plant
and the set of delays. This result has strong practical implications, since it implies
(if a system is controllable) that it is never necessary to have infinite look-ahead and
moreover a look-ahead equal to N ∗ is always sufficient. If N ≥ N ∗, stabilizability
is equivalent to controllability of a projection of the initial system (as is customary
for linear time-invariant systems). This implies that our techniques are also valid for
the stabilizability problem.

The results described above, presented in [50], provide necessary stability and
controllability conditions when extending our modeling framework to the stochastic
setting in order to address packet loss models, which is the main topic of the next
section.

13.4.2 Analysis and Design of Time-Inhomogeneous
Discrete-Time MJSLS

In this section, we first provide necessary and sufficient stability conditions for time-
inhomogeneous discrete-time MJLS ([60, 62]). Then we illustrate optimal solutions
for the LQR problem for time-inhomogeneous discrete-time MJSLS ([61]). In [59]
we recently addressed the optimal filtering problemandproved a separation principle.

The robust stability problem: Let us consider an autonomous discrete-timeMarkov
jump linear system described by the following state-space model:

{
xk+1 = Aθkxk+Hθkvk,

x0 = x0, θ0 = ϑ0.
(13.12)

Let us denote by E(·) the expected value of a random variable, and by ‖·‖ either any
vector norm or any matrix norm. Then, themean square stability of a system (13.12)
is defined as follows.

Definition 13.1 [17, p. 36–37] A Markov jump linear system (13.12) is mean
square stable if for any initial condition x0∈F

nx and θ0∈Θ0 there exist xe ∈F
nx

and Qe ∈F
nx,nx+ (independent from initial conditions x0 and θ0), such that

lim
k→∞

‖E(xk) − xe‖ = 0, (13.13a)

lim
k→∞

∥
∥E

(
xkx

∗
k

) − Qe

∥
∥ = 0. (13.13b)
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Remark 13.1 It is worth mentioning [17, p. 37, Remark 3.10] that in noiseless case,
i.e., when vk =0 in (13.12), the conditions (13.13) defining mean square stability
become

lim
k→∞E(xk) = 0, lim

k→∞E
(
xkx

∗
k

) = 0. (13.14)

There exist also other forms of stability for Markov jump linear systems without
process noise, notably exponential mean square stability (EMSS) and stochastic
stability (SS), that we define as follows.

Definition 13.2 [17] An MJLS (13.12) is exponentially mean square stable if for
some reals β ≥1, 0<ζ <1, we have for all initial conditions x0∈F

nx and θ0∈Θ0 that,
for every k∈T, if vk =0, then

E
(‖xk‖2

) ≤ βζ k ‖x0‖22 (13.15)

We observe that ‖·‖2 denotes the Euclidean norm, also known as L2-norm or simply
2-norm.

Definition 13.3 [17] A Markov jump linear system (13.12) is stochastically stable
if for all initial conditions x0∈F

nx and θ0∈Θ0, we have that, if vk =0 for every k∈T,
then ∑∞

k=0
E

(‖xk‖2
) ≤ ∞. (13.16)

In the time-homogeneous case, i.e., when the transition probability matrix defined
by (13.2) and (13.3), is such that P(k)= P for all k∈T, there is a condition based
on a value of a spectral radius of a matrix associated to the second moment of
xk that is necessary and sufficient for the mean square stability of system (13.12);
furthermore, in the noiseless setting, MSS, EMSS, and SS are equivalent [17, pp.
36–44]. Specifically, the matrix related to the second moment of xk that we have
mentioned above is

Λ �
(
PT ⊗ In2x

) (⊕N

i=1

(
Āi ⊗ Ai

)
,
)

(13.17)

where ⊗ denotes the Kronecker product, In2x is the identity matrix of size n2x, and the
direct sum⊕ of the manipulated elements of a sequence of state matrices A produces
a block diagonal matrix, having the matrices

(
Āi ⊗Ai

)
on the main diagonal blocks.

The necessary and sufficient condition for the mean square stability of time-
homogeneous Markov jump linear systems we have hinted at before is

ρ(Λ) < 1, (13.18)

where ρ(·) denotes the spectral radius of a matrix. This condition for mean square
stability does not hold in time-inhomogeneous case. The results of this section are
based on a noiseless version of (13.12), i.e., when vk =0 for every k∈T. They are
based on our first work on MJLSs [60].
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Let us consider a noiseless autonomous discrete-timeMarkov jump linear system
described by the following system of difference equations

{
xk+1 = Aθkxk,

x0 = x0, θ0 = ϑ0
(13.19)

where, as before, xk ∈F
nx is a system’s state vector, A�(Ai )

N
i=1∈NF

nx,nx is a
sequence of state matrices, each of which is associated to an operational mode;
while x0∈F

nx and θ0∈Θ0 are initial conditions. Let the transition probability matrix
P(k)=[pi j (k)] of the system (13.19) be polytopic time-inhomogeneous, i.e., satis-
fying Assumption13.2.

Theorem 13.4 [60] The discrete-time Markov jump linear system (13.19) with
unknown and time-varying transition probability matrix P(k)∈convVP is mean
square stable if and only if ρ̂(VΛ)<1.

In Theorem 13.4 convVP denotes the convex hull of the set of transition probability
matrix vertices as defined in (13.4) and ρ̂(·) denotes the joint spectral radius (JSR)2 of
the set ofmatrix verticesVΛobtainedby replacing in (13.17) the transitionprobability
matrix P with the vertices VP. While it is well known that the stability analysis
problem for general switching systems (that is, deciding whether the joint spectral
radius is smaller than 1) is NP-hard [14], we proved that it is NP-hard even in our
particular model.

Theorem 13.5 [60] Given a discrete-time Markov jump linear system (13.19) with
unknown time-varying transition probability matrix P(k)∈convVP, unless P=N P,
there is no polynomial-time algorithm that decides whether it is mean square stable.

Our last but not least important result on stability of autonomous noiseless Markov
jump linear systems as in (13.19) having polytopic time-inhomogeneous transition
probabilities has been presented in the following theorem.

Theorem 13.6 [60] The following assertions are equivalent.

1. The system (13.19) is mean square stable (MSS);
2. The system (13.19) is exponentially mean square stable (EMSS);
3. The system (13.19) is stochastically stable (SS).

We developed an extension of the above results in presence of bounded-energy
disturbance in [62].

The switched LQR problem. Using the approach inSect. 13.3.2 it is possible to com-
pute, for a finite set of predefined routing policies, the associated expected quadratic
cost and choose the optimal policy. To further improve the performance one can

2It is well known that the maximal rate of growth among all products of matrices from a bounded
set is given by its JSR ρ̂(·), which is the generalization of the notion of spectral radius to sets of
matrices. See [49] and references therein for a detailed treatment of the JSR theory.
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dynamically choose, for each time step and according to the plant state measure-
ment, the routing choice: we address this problem by considering the mathematical
framework of time-inhomogeneous MJSLS. In particular, we consider the problem
of joint cost minimization of continuous and discrete control inputs for the worst
possible disturbance of the transition probabilities. The provided solution has been
derived in [61] and consists of a finite set of recursive-coupled Riccati difference
equations. This result is an extension of state of the art which is nontrivial from
the technical point of view, since in the proof we needed to show that due to the
time-varying nature of perturbations, at generic time step k the vertex that attains
the maximum is unknown and state dependent. With respect to previous works on
MJLSs having exactly known transition probabilities, we also needed to define and
address the issue of explosion of the number of coupled Riccati difference equations.

Let us consider the discrete-time Markov jump switched linear system (13.9)
with the switching between operational modes of the system being governed by a
Markov decision process (M,A,Pr, g, γ ). Its transition probabilities associated to
each action available in an operational mode are polytopic time-inhomogeneous, as
by Assumption13.2. Also, all the operational modes of the system are considered to
be measurable (Assumptions13.3). We recall that the state-space representation of
the system (13.9) under consideration is

⎧
⎪⎨

⎪⎩

xk+1 = Askxk+Bskuk
zk = Cskxk+Dskuk,

x0 = x0, s0 = s0, p0 = p0

where the system variables and matrices are those of Sect. 13.3.1. Without loss of
generality [17, Remark 4.1, p. 74] we assume that for each i ∈M C∗

i Di = 0 and
D∗

i Di � 0.
For each k∈T, we denote byπk the hybrid control pair (αk, uk), whereαk ∈Ai and

uk are respectively a discrete and a continuous action at time instant k. The sequence
π of hybrid control pairs (πk)

T−1
k=0 is called hybrid control sequence. At each time

step (or decision epoch, in MDP terminology) k, a particular choice uk of uk is
called the continuous control law; similarly, αk is denominated discrete switching
control law. The pair (αk, uk) forms the hybrid control law π k , and the sequence of
hybrid control laws over the horizon T constitutes a finite horizon feedback policy,
π � (π k)

T−1
k=0 � (αk, uk)

T−1
k=0 . We also indicate by pα

s• �
(
pα
sk•(k)

)T−1

k=0
the sequence of

length T ∈T of the transition probability row vectors pα
i•(k), with k∈TT−1. Note that

the transition probability row vectors pα
i•(k) belong to a polytopic set of transition

probability row vectors induced by the tranisition probability matrix vertices Vα
P

similarly to Assumption13.2. For more details the reader is referred to [61].
We cast an optimal linear quadratic state-feedback control problem for Markov

jump switched linear systems with bounded perturbations of the transition proba-
bilities as a min-max problem of optimizing robust performance, i.e., finding the
minimum over the finite-horizon feedback policy of the maximum over the transition
probability disturbance obtained in correspondence of the chosen feedback policy.
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This problem can be cast from the game-theoretic point of view, where at each time
step k∈T the perturbation-player (environment and/or malicious adversary) tries to
maximize the cost while the controller tries to minimize the cost. The game-theoretic
formulation of the optimal robust control problem requires to make explicit the fol-
lowing assumption on the information structure for the controller and the adversary.

Assumption 13.7 The perturbation-player has no information on the choice of the
controller and vice versa.

The problem of designing the optimal mode-dependent state-feedback Markov
jump controller, which is robust to all possible polytopic perturbations in transition
probabilities, is formally defined as follows.

Problem 13.2 Given a discrete-time Markov jump switched linear system (13.9)
with unknown and time-varying transition probability row vectors pα

i•(k)∈Vα
P and

satisfying Assumption13.2, find the mode-dependent state feedback policy π that
achieves the following optimal cost of robust control.

J(s0, x0)�min
π

max
pα
s•

∑T−1

k=0
E

(‖zk‖22+g(sk, αk)
)+E

(
x∗
T ZsT xT

)
(13.20)

with Z�(Zi )
N
i=1∈NF

nx,nx
0 being a sequence of the terminal cost weighting matrices.

Our solution to Problem13.2 has been derived in [61] based on the dynamic program-
ming approach in Bellman’s optimization formulation [12], by backward induction.
Note that even if the cost g(sk, αk) of performing a discrete action αk in an opera-
tional mode sk here is treated as time-invariant, the result will obviously remain the
same in the case of the time-varying cost g(sk, αk, k), as long as the current value of
the cost is known by the decision maker.

Exploiting the optimal solution defined in Problem13.2 in the example of
Sect. 13.3.2 the dynamic routing choice results in an event-driven policy that depends
at each time step on the current state measurement. Note that the controller may also
decide not to send control data over the network. This approach is closely related
to the Event-Triggered control paradigm (see ([7, 39, 65] and references therein),
where a triggering condition based on current state measurements is continuously
monitored and control actuations are generated and applied when the plant state
deviates more than a certain threshold from a desired value.

13.5 Conclusions and Future Work

This chapter presents an overview of some recent results on co-design of controller
and network parameters of WNCS implementing communication protocols similar
to the WirelessHART standard.
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We leverage the class of discrete-time Markov jump linear systems, putting a
specific focus on dealing with abrupt and unpredictable dynamic perturbations of
transition probabilities between the operational modes of such systems and adding
to the model the possibility to make discrete decisions, i.e., defining the class of
time-inhomogeneous discrete-time Markov jump switching linear systems. In order
to account for uncertainties and time-variance inherent to real world scenarios, we
use the time-inhomogeneous polytopic model of transition probabilities, which is
very general and widely used. We illustrate that time-inhomogeneous MJSLS rep-
resent a mathematical model to jointly take into account the dynamics of a physical
plant and non-idealities of wireless communication such as packet losses, and that
their exploitation for optimal design of routing redundancy can strongly improve the
closed-loop control performance. We provide novel results in this setting addressing
the robust stability and the switched LQR problems.

Our interest in this particular class of systems is inspired by their application
as possible models for WNCS implementing communication protocols specifically
developed for automation applications: we believe that this topic is timely, especially
in view of the ongoing efforts made by academia and industry in developing a fifth
generation of mobile technology (5G), which also uses models based on Markov
chains and is expected to meet the requirements of ultra-reliable, low-latency com-
munications for factory automation and safety-critical internet of things. Based on
the research illustrated in this chapter we will attempt to improve our models of
the communication protocols and wireless communication non-idealities and our
analysis and design algorithms, with the aim of bringing substantial improvements
in wireless closed-loop automation systems of the next generation by optimally co-
designing the controller as well as the different layers of the communication protocol
stack.
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