
Chapter 11
Resilient Self-Triggered Network
Synchronization

D. Senejohnny, P. Tesi and C. De Persis

Abstract In this chapter, we investigate Self-Triggered synchronization of linear
oscillators in the presence of communication failures caused by denial-of-Service
(DoS). A general framework is considered in which network links can fail indepen-
dent of each other. A characterization of DoS frequency and duration to preserve
network synchronization is provided, along with an explicit characterization of the
effect of DoS on the time required to achieve synchronization. A numerical example
is given to substantiate the analysis.

11.1 Introduction

Cyber-physical systems (CPSs) exhibit a tight conjoining of computational and phys-
ical components. The fact that any breach in the cyberspace can have a tangible
effect on the physical world has recently triggered attention toward cybersecurity
also within the engineering community [1, 2]. In CPSs, attacks to the cyber-layer are
mainly categorized as either denial-of-service (DoS) attacks or deception attacks.
The latter affects the reliability of data by manipulating the transmitted packets over
network; see [3, 4]. On the other hand,DoS attacks are primarily intended to affect the
timeliness of the information exchange, i.e., to cause packet losses; see for instance
[5, 6] for an introduction to the topic. This chapter aims at considering the effect of
DoS attacks.
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In the literature, the issue of resilience against DoS has been mostly investigated
in centralized settings [7–14]. Very recently, [15, 16] explored this problem in a
distributed setting with emphasis on consensus-like networks. The main goal of this
chapter is to address the issue of resilience against DoS for network coordination
problems in which node dynamics are more general than simple integrators. Specif-
ically, we study synchronization networks of the same type as in [17]. Inspired by
[18] and [19], we consider a Self-Triggered coordination scheme, in which the avail-
able information to each agent is used to update local controls and to specify the
next update time. We consider Self-Triggered coordination schemes since they are
of major interest when synchronization has to be achieved in spite of possibly severe
communication constraints. In this respect, a remarkable feature of Self-Triggered
coordination lies in the possibility of ensuring coordination properties in the absence
of any global information on the graph topology and with no need to resort to syn-
chronous communication.

The primary step in the analysis of distributed coordination problems in the pres-
ence of DoS pertains to the modeling of DoS itself. In [12, 13], a general model
is considered that only constrains DoS patterns in terms of their average frequency
and duration. This makes it possible to describe a wide range of DoS-generating
signals, e.g., trivial, periodic, random, and protocol-aware jamming [5, 6, 20, 21].
The occurrence of DoS has a different effect on the communication, depending on
the network architecture. For networks operating through a single access point, in the
so-called “infrastructure” mode, DoS may cause all the network links to fail simul-
taneously [15]. In this chapter, we consider instead a more general scenario in which
the network links can fail independent of each other, thus extending the analysis to
“ad-hoc” (peer-to-peer) network architectures. In this respect, a main contribution of
this chapter is an explicit characterization of the frequency and duration of DoS at
the various network links under which coordination can be preserved. In addition to
extending the results of [19] to independent polling of neighbors, we also provide an
explicit characterization of the effects of DoS on the coordination time. A prelimi-
nary and incomplete account of this work without the relevant proofs has appeared
in [22].

The problem of network coordination under communication failures can be
viewed as a coordination problem in the presence of switching topologies. For
purely continuous-time systems, this problemhas been thoroughly investigated under
assumptions such as, point-wise, period-wise, and joint connectivity [23–25]. In
CPSs, however, due to the presence of a digital communication layer, the situation is
drastically different. In fact, the presence of a digital communication layer implies
that the time span between any two consecutive transmissions cannot be arbitrar-
ily small. As a consequence, the classic connectivity notions developed for purely
continuous-time systems are not directly applicable to a digital setting as the one con-
sidered here. In this respect, we introduce a notion of persistency-of-communication
(PoC), which requires graph (link) connectivity be be satisfied over periods of time
that are consistent with the constraints imposed by the communication medium
[15, 16].
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The remainder of this chapter is organized as follows. In Sect. 11.2, we formulate
the problem of interest and provide the results for Self-Triggered synchronization.
In Sect. 11.3, we describe the considered class of DoS patterns. The main results are
provided in Sect. 11.4. A numerical example is given in Sect. 11.5. Finally, Sect. 11.6
ends the chapter with concluding remarks.

Notation: The following notation is used throughout this chapter. The stacking of
N column vectors x1, x2, . . . , xn is denoted by x , i.e., x = [

x�
1 x�

2 . . . x�
n

]�
. The

N - dimensional identity matrix is denoted by IN . Vectors of all ones and zeros are
denoted by 1 and 0, respectively. The �th component of vector x is denoted by x� or,
interchangeably, by [x]�.

11.2 Self-Triggered Synchronization

11.2.1 System Definition

We consider a connected and undirected graph G = (I ,E ), whereI := {1, 2, · · · ,
N } is the set of nodes and E ⊆ I × I is the set of links (edges). Given a node
i ∈ I , we shall denote by Ni = { j ∈ I : (i, j) ∈ E } the set of its neighbors, i.e.,
the set of nodes that exchange information with node i , and by di = |Ni |, i.e., the
cardinality ofNi . Notice that the order of the elements i and j in (i, j) is irrelevant
since the graph is assumed undirected. Throughout the chapter, we shall refer to G as
the “nominal” network (the network configuration when communication is allowed
for every link).

We assume that each network node is a dynamical system consisting of a linear
oscillator with dynamics

ẋ i = Axi + Bui (11.1)

where (A, B) is a stabilizable pair and all eigenvalues of A lie on imaginary axis with
unitary geometricmultiplicity; xi , ui ∈ R

n represent node state and control variables.
The network nodes exchange information according to the configuration described
by the links of G . To achieve synchronization with constrained flow of information,
we employ a hybrid controller with state variables (x, η, ξ, θ) ∈ R

n×N × R
n×N ×

R
n×d × R

n×d , where d := ∑N
i=1 d

i . The controller also makes use of a quantization
function.

The specific quantizer of choice is signε : R → {−1, 0, 1}, which is given by

signε(z) :=
{
sign(z) if |z| ≥ ε

0 otherwise
(11.2)
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where ε > 0 is a sensitivity parameter, which is selected at the design stage to
trade-off between synchronization accuracy and communication frequency. The flow
dynamics are given by

η̇i = (A + BK )ηi +
∑

j∈N i

ξ i j (11.3a)

ξ̇ i j = Aξ i j (11.3b)

θ̇ i j = −1 (11.3c)

ui = Kηi , (11.3d)

where A + K B is Hurwitz; ηi ∈ R
n and ξ i j ∈ R

n are controller states, and θ i j ∈ R
n

is the local clock over the link (i, j) ∈ E , where θ i j (0) = 0. As it will become clear
in the sequel, the superscript “i j” appearing in ξ and θ indicates that these variables
are common to nodes i and j . The continuous evolution of the edge-based controller
dynamic holds as long as the set

S (θ, t) := {(i, j, �) ∈ I × I × L : θ
i j
� (t−) = 0} (11.4)

is nonempty, where s(t−) denotes the limit from below of a signal s(t), i.e.,
s(t−) = limτ↗t s(τ ), and where � ∈ L := {1, 2, . . . , n}. At these time instants, in
the “nominal” operating mode, a discrete transition (jump) occurs, which is given by

xi�(t) = xi�(t
−)

ηi
�(t) = ηi

�(t
−)

ξ
i j
� (t) =

⎧
⎪⎨

⎪⎩

[eAt signε(e
−AtD i j (η(t) − x(t)))]� if (i, j, �) ∈ S (θ, t)

ξ
i j
� (t−) otherwise

θ
i j
� (t) =

⎧
⎪⎨

⎪⎩

f i j� (t) if (i, j, �) ∈ S (θ, t)

θ
i j
� (t−) otherwise

(11.5)

for every i ∈ I , j ∈ Ni , and � ∈ L .
Here, D i j (α(t)) = α j (t) − αi (t) and f i j� : Rn → R>0 is given by

f i j� (x) = max

{∣
∣[e−AtD i j (η(t) − x(t))

]
�

∣
∣

2(di + d j )
,

ε

2(di + d j )

}

. (11.6)

Note that for all (i, j) ∈ E we have θ i j (t) = θ j i (t) and ξ i j (t) = −ξ j i (t) for all
t ∈ R�0. As such, (11.1)–(11.5) can be regarded as an edge-based synchronization
protocol. Here, the term “Self-Triggered”, first adopted in the context of real-time
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systems [26], expresses the property that the data exchange between nodes is driven
by local clocks, which avoids the need for a common global clock.

A few comments are in order.

Remark 11.1 (Controller structure) The controller emulates the node dynamics
(11.1), with an extra coupling term as done in [17]. The coupling is through the
variable ξ i j , which is updated at discrete times and emulates the open-loop behavior
of (11.1) during its the controller continuous evolution [19]. Slightly different from
[17], the coupling term ξ i j takes into account the discrepancy between node and
controller states. This choice of coupling is due to the use of the quantizer (11.2)
which triggers at discrete instances. �

Remark 11.2 (Clock variable θ
i j
� ) Each clock variable θ

i j
� plans ahead the update

time of component � of controller state ξ i j . Whenever θ
i j
� reaches zero, the �th

component of the controller state and clock variables is updated. In order to avoid
arbitrarily fast sampling (Zeno phenomena), we use the threshold ε in the update of
the function f i j in (11.6). In particular, this implies that for every edge (i, j) ∈ E

and for any time T , no more than n� 2(di+d j )T
ε

+ 1	 number of updates can occur
over an interval of length T . �

11.2.2 Practical Self-Triggered Synchronization

Inspired by [17], we analyze (11.1)–(11.5) using the change of coordinates

xi (t) = xi (t)

X i (t) = e−At (ηi (t) − xi (t))

U i j (t) = e−Atξ i j (t)

θ i j (t) = θ i j (t).

(11.7)

Accordingly, the network-state variables become (x,X ,U , θ) ∈ R
n×N × R

n×N ×
R

n×d × R
n×d with corresponding flow dynamics

ẋ i (t) = (A + BK )xi (t) + BKeAtX i (t) (11.8a)

Ẋ i (t) =
∑

j∈N i

U i j

U̇ i j (t) = 0 (11.8b)

θ̇ i j (t) = −1

and discrete transitions (jumps)



224 D. Senejohnny et al.

xi�(t) = xi�(t
−) (11.9a)

X i
� (t) = X i

� (t−)

U i j
� (t) =

⎧
⎪⎨

⎪⎩

signε (D i j
� (X (t)) if (i, j, �) ∈ S (θ, t)

U i j
� (t−) otherwise

(11.9b)

θ
i j
� (t) =

⎧
⎪⎨

⎪⎩

gi j� (X (t)) if (i, j, �) ∈ S (θ, t)

θ
i j
� (t−) otherwise

where (i, j, �) ∈ I × I × L and

gi j� (X (t)) = max

⎧
⎨

⎩

∣∣∣D i j
� (X (t))

∣∣∣

2(di + d j )
,

ε

2(di + d j )

⎫
⎬

⎭
. (11.10)

Notice that the notion of local time in both coordinates is the same. The reason for
considering this change of coordinates is to transform the original synchronization
problem into a consensus problem that involves integrator variables X i .

The result which follows is the main result of this section.

Theorem 11.1 (Practical Synchronization) Let all the eigenvalues of A lie on the
imaginary axis with geometric multiplicity equal to one. Let (x,X ,U , θ) be the
solution to system (11.8) and (11.9). Then, there exist a finite time T such that X
converges within the time T to a point X∗ = [X 1∗

�
, . . . ,X N∗

�]� in the set

E :=
{
X ∈ R

nN : |D i j
� (X )| < δ ∀ (i, j, �) ∈ I × I × L

}
, (11.11)

where δ = ε(N − 1), andU (t) = 0 for all t ≥ T . Moreover, for any arbitrary small
εc ∈ R>0 there exist a time Tc(εc) � T such that

∣∣xi�(t) − x j
� (t)

∣∣ < 2εc + √
n δ ∀(i, j, �) ∈ I × I × L (11.12)

for all t � Tc(εc), where n is the dimension of the vector x.

Proof See the appendix. �

Equations (11.11) and (11.12) involve a notion of “practical” synchronization.
This amounts to saying that the solutions eventually synchronize up to an error,
which can be made as small as desired by reducing ε (at the expense of an increase
in the communication cost since, in view of (11.6), the minimum inter-transmission
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timedecreaseswith ε). Theorem11.1will be used as a reference frame for the analysis
of Sect. 11.4. The case of asymptotic synchronization can be pursued along the lines
of [18].

11.3 Network Denial-of-Service

We shall refer to denial-of-service (DoS, in short) as the phenomenon by which
communication between the network nodes is interrupted.We shall consider the very
general scenario in which the network communication links can fail independent of
each other. From the perspective of modeling, this amounts to considering multiple
DoS signals, one for each network communication link.

11.3.1 DoS Characterization

Let {hi jn }n∈Z≥0 with hi j0 ≥ 0 denote the sequence of DoS off/on transitions affecting
the link (i, j), namely the sequence of time instants at which the DoS status on
the link (i, j) exhibits a transition from zero (communication is possible) to one
(communication is interrupted). Then

Hi j
n := {hi jn } ∪ [

hi jn , hi jn + τ i j
n

[
(11.13)

represents the nth DoS time-interval, of a length τ
i j
n ∈ R�0, during which commu-

nication on the link (i, j) is not possible.
Given t, τ ∈ R≥0, with t ≥ τ , let

Ξ i j (τ, t) :=
⋃

n∈Z≥0

Hi j
n

⋂
[τ, t] (11.14)

and
Θ i j (τ, t) := [τ, t] \ Ξ i j (τ, t) (11.15)

where \ denotes relative complement. In words, for each interval [τ, t],Ξ i j (τ, t) and
Θ i j (τ, t) represent the sets of time instants where communication on the link (i, j)
is denied and allowed, respectively.

The first question to be addressed is that of determining a suitable modeling
framework forDoS. Following [13], we consider a generalmodel that only constrains
DoS attacks in terms of their average frequency and duration. Let ni j (τ, t) denote the
number of DoS off/on transitions on the link (i, j) occurring on the interval [τ, t].
Assumption 11.2 (DoS frequency) For each (i, j) ∈ E , there exist ηi j ∈ R≥0 and
τ
i j
f ∈ R>0 such that
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ni j (τ, t) ≤ ηi j + t − τ

τ
i j
f

(11.16)

for all t, τ ∈ R≥0 with t ≥ τ . �

Assumption 11.3 (DoS duration) For each (i, j) ∈ E , there exist κ i j ∈ R≥0 and
τ
i j
d ∈ R>1 such that

|Ξ i j (τ, t)| ≤ κ i j + t − τ

τ
i j
d

(11.17)

for all t, τ ∈ R≥0 with t ≥ τ . �

In Assumption11.2, the term “frequency” stems from the fact that τ i j
f provides a

measure of the “dwell time” between any two consecutive DoS intervals on the link
(i, j). The quantity ηi j is needed to render (11.16) self-consistent when t = τ = hi jn
for some n ∈ Z�0, in which case ni j (τ, t) = 1. Likewise, in Assumption11.3, the
term “duration” is motivated by the fact that τ

i j
d provides a measure of the fraction

of time (τ i j
d > 1) the link (i, j) is under DoS. Like ηi j , the constant κ i j plays the

role of a regularization term. It is needed because during a DoS interval, one has
|Ξ(hi jn , hi jn + τ

i j
n )| = τ

i j
n � τ

i j
n /τ

i j
d since τ

i j
d > 1, with τ

i j
n = τ

i j
n /τ

i j
d if and only if

τ
i j
n = 0. Hence, κ i j serves to make (11.17) self-consistent. Thanks to the quantities

ηi j and κ i j , DoS frequency and duration are both average quantities.

11.3.2 Discussion

The considered assumptions only pose limitations on the frequency of the DoS status
and its duration. As such, this characterization can capture many different scenarios,
including trivial, periodic, random and protocol-aware jamming [5, 6, 20, 21]. For
the sake of simplicity, we limit our discussion to the case of radio frequency (RF)
jammers, although similar considerations can be made with respect to spoofing-like
threats [27].

Consider for instance the case of constant jamming, which is one of the most
common threats that may occur in a wireless network [5, 28]. By continuously
emitting RF signals on the wireless medium, this type of jamming can lower the
packet send ratio (PSR) for transmitters employing carrier sensing as a medium
access policy as well as lower the packet delivery ratio (PDR) by corrupting packets
at the receiver. In general, the percentage of packet losses caused by this type of
jammer depends on the jamming-to-signal ratio and can be difficult to quantify as it
depends, among many things, on the type of anti-jamming devices, the possibility
to adapt the signal strength threshold for carrier sensing, and the interference signal
power, which may vary with time. In fact, there are several provisions that can be
taken in order to mitigate DoS attacks, including spreading techniques, high-pass
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filtering, and encoding [21, 29]. These provisions decrease the chance that a DoS
attack will be successful, and, as such, limit in practice the frequency and duration
of the time intervals over which communication is effectively denied. This is nicely
captured by the considered formulation.

As another example, consider the case of reactive jamming [5, 28]. By exploiting
the knowledge of the 802.1i MAC layer protocols, a jammer may restrict the RF
signal to the packet transmissions. The collision period need not be long since with
many CRC error checks a single-bit error can corrupt an entire frame. Accordingly,
jamming takes the form of a (high-power) burst of noise, whose duration is deter-
mined by the length of the symbols to corrupt [29, 30]. Also, this case can be nicely
accounted for via the considered assumptions.

11.4 Main Result

11.4.1 Resilient Self-Triggered Synchronization

When DoS disrupts link communications, the former controller state ξ
i j
� is not avail-

able any more. In order to compensate for the communication failures, the control
action is suitably modified as follows during the controller discrete updates,

xi�(t) = xi�(t
−)

X i
� (t) = X i

� (t−)

U i j
� (t) =

⎧
⎪⎪⎨

⎪⎪⎩

signε (D i j
� (X )) if (i, j, �) ∈ S (θ, t) ∧ t ∈ Θ i j (0, t)

0 if (i, j, �) ∈ S (θ, t) ∧ t ∈ Ξ i j (0, t)

U i j
� (t−) otherwise

θ
i j
� (t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

gi j� (t) if (i, j, �) ∈ S (θ, t) ∧ t ∈ Θ i j (0, t)
ε

2(di + d j )
if (i, j, �) ∈ S (θ, t) ∧ t ∈ Ξ i j (0, t)

θ
i j
� (t−) otherwise

(11.18)

In words, the control action U i j is reset to zero whenever the link (i, j) is in DoS
status.1 In addition toU , also the local clocks aremodified uponDoS, yielding a two-
mode sampling logic. Let {t i j�k

}�k∈Z≥0 denote the sequence of transmission attempts
for �th component of ξ i j over the link (i, j) ∈ E . Then, when a communication

1Notice that this requires that the nodes are able to detect the occurrence of DoS. This is the case, for
instance, with transmitters employing carrier sensing as medium access policy. Another example is
when transceivers use TCP-like protocols.
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attempt is successful t i j�k+1
= t i j�k

+ gi j� (t), and when it is unsuccessful t i j�k+1
= t i j�k

+ ε/

(2(di + d j )).
In order to characterize the overall network behavior in the presence of DoS. The

analysis is subdivided into two main steps: (i) we first prove that all the edge-based
controllers eventually stop updating their local controls; and (ii) we then provide con-
ditions on the DoS frequency and duration such that synchronization, in the sense
of (11.12), is preserved. This is achieved by resorting to a notion of persistency-of-
Communication (PoC), which naturally extends the PoE condition [25] to a digital
networked setting by requiring graph connectivity over periods of time that are con-
sistent with the constraints imposed by the communication medium.

As for (i), we have the following result.

Proposition 11.1 (Convergence of the solutions) Let (x,X ,U , θ) be the solutions
to (11.8) and (11.18). Then, there exists a finite time T∗ such that, for any (i, j) ∈ E ,
it holds that U i j

� (t) = 0 for all � ∈ L and for all t � T∗.

Proof See the appendix. �

The above result does not allow one to conclude anything about the final dis-
agreement vector in the sense that given a pair of nodes (i, j), the asymptotic value
of |X j

� (t) − X i
� (t)| and/or |x j

� (t) − xi�(t)| can be arbitrarily large. As an example,
if node i is never allowed to communicate then X i (t) = X i (0) and the oscillator
state xi (t) satisfies ẋ i (t) = Axi (t)with initial condition −X i (0) for all t ∈ R�0. In
order to recover the same conclusions as in Theorem11.1, bounds on DoS frequency
and duration have to be enforced. The result which follows provides one such char-
acterization. Let (i, j) ∈ E be a generic network link, and consider a DoS sequence
on (i, j), which satisfies Assumptions11.2 and 11.3. Define

αi j := 1

τ
i j
d

+ Δ
i j
∗

τ
i j
f

(11.19)

where

Δi j
∗ := ε

2(di + d j )
. (11.20)

As for (ii), we have the following result.

Proposition 11.2 (Persistency-of-communication (PoC)) Consider any link (i, j) ∈
E employing the transmission protocol (11.18). Also consider any DoS sequence on
(i, j), which satisfies Assumptions11.2 and 11.3 with ηi j and κ i j arbitrary, and τ

i j
d

and τ
i j
f such that αi j < 1. Let

Φ i j := κ i j + (ηi j + 1)Δi j
∗

1 − αi j
. (11.21)
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Then, for any given unsuccessful transmission attempt t i j�k
, at least one successful

transmission occurs over the link (i, j) within the interval [t i j�k
, t i j�k

+ Φ i j ].

Proof See the appendix. �

The following result extends the conclusions of Theorem11.1 to the presence of
DoS.

Theorem 11.4 Let (x,X ,U , θ) be the solution to (11.8) and (11.18). For each
(i, j) ∈ E , consider any DoS sequence that satisfies Assumptions11.2 and 11.3 with
ηi j and κ i j arbitrary, and τ

i j
d and τ

i j
f such that αi j < 1. Then, X converges in a

finite time T∗ to a point X ∗ in (11.11), and U (t) = 0 for all t ≥ T∗. Moreover, for
every εc ∈ R>0 there exists a time Tc(εc) � T∗ such that (11.12) is satisfied for all
t � Tc(εc).

Proof By Proposition11.1, all the local controls become zero in a finite time T∗. In
turn, Proposition11.2 excludes that this is due to the persistence of a DoS status.
Then the result follows along the same lines as in Theorem11.1. �

Remark 11.3 One main reason for considering DoS comes from studying network
coordination problems in the presence of possibly malicious attacks. In fact, the pro-
posed modeling framework allows to consider DoS patterns that need not follow a
given class of probability distribution, which is instead a common hypothesis when
dealing with “genuine” DoS phenomena such as network congestion or communica-
tion errors due to low-quality channels. In this respect, [16] discusses how genuine
DoS can be incorporated into this modeling framework. �

11.4.2 Effect of DoS on the Synchronization Time

By Theorem11.4, Ẋ becomes zero in a finite time T∗ after which the network states
x exponentially synchronize. Thus, it is of interest to characterize T∗, which amounts
to characterizing the effect of DoS on the time needed to achieve synchronization.

Lemma 11.1 (Bound on the convergence time) Consider the same assumptions as
in Theorem11.4. Then,

T∗ �
[
1

ε
+ dmax

εdmin
+ 4dmax

ε2
Φ

] ∑

i∈I

∑

�∈L
(ηi

�(0) − xi�(0))
2, (11.22)

where dmin := mini∈I di and Φ := max(i, j)∈E Φ i j .
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Proof Consider the same Lyapunov function V as in the proof of Theorem11.1.
Notice that, by construction of the control law and the scheduling policy, for
every successful transmission t i j�k

characterized by |D i j
� (X (t i j�k

)| � ε, the function
V decreases with rate not less than ε/2 for at least ε/(4dmax) units of time, in which
case V decreases by at least ε2/(8dmax) =: ε∗. Considering all the network links,
such transmissions are in total no more than �V (0)/ε∗	 since, otherwise, the func-
tion V would become negative. Hence, it only remains to compute the time needed
to have �V (0)/ε∗	 of such transmissions. In this respect, pick any t∗� � 0 such that
consensus has still not been reached on the �th component of X . Note that we can
haveU i j

� (t∗� ) = 0 for all (i, j) ∈ E . However, this condition can last only for a lim-
ited amount of time. In fact, if U i j

� (t∗� ) = 0 then the next transmission attempt, say
li j� , over the link (i, j) and component-� will necessarily occur at a time less than or
equal to t∗� + Δ

i j
∗ with Δ

i j
∗ � ε/(4dmin). Let Q := [t∗� , t∗� + Δ

i j
∗ ], and suppose that

over Q some of the controls U i j
� have remained equal to zero. This implies that

for some (i, j) ∈ E we necessarily have that li j� is unsuccessful. This is because if
U i j

� (t) = 0 for all (i, j) ∈ E and all t ∈ Q thenX i
� (t) = X i

� (t∗� ) for all i ∈ I and
all t ∈ Q. Hence, if all the li j� were successful, we should also have U i j

� (li j� ) �= 0
for some (i, j) ∈ E since, by hypothesis, consensus is not reached at time t∗� . Hence,
applying Proposition11.2 we conclude that at least one of the controls U i j

� will
become nonzero before li j� + Φ i j . As each vector component � has the same Δ

i j
∗ , at

least one of the control vectors U i j will become nonzero before the same amount
of time. Overall, this implies that at least one control will become nonzero before
ε/(4dmin) + Φ units of time have elapsed. Since t∗� is generic, we conclude that
V decreases by at least ε∗ every ε/(4dmax) + ε/(4dmin) + Φ units of time, which
implies that

T∗ �
[

ε

4dmax
+ ε

4dmin
+ Φ

]
V (0)

ε∗
. (11.23)

The thesis follows by recalling that V (0) can be rewritten as

V (0) = 1

2

∑

i∈I

∑

�∈L
(X i

� (0))2. (11.24)

�

11.5 A Numerical Example

We consider a random (connected) undirected graph with N = 6 nodes and with
di = 2 for all i ∈ I . Each node has harmonic oscillator dynamics of the form
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Table 11.1 DoS average duty cycle over links

Link (i, j) Duty cycle (%) Link (i, j) Duty cycle (%)

{1, 2} 56.07 % {1, 4} 55.12 %

{2, 3} 55.2 % {3, 6} 56.3 %

{4, 5} 66.06 % {5, 6} 59.72 %
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Fig. 11.1 Evolution of x , corresponding to the solution to (11.1)–(11.3) and (11.18) for a random
graph with N = 6 nodes in the presence of DoS

ẋ i (t) =
[
0 1

−1 0

]
xi (t) +

[
0
1

]
ui (t). (11.25)

The nodes initial values are randomly within interval [−2, 2] and (η(0), ξ(0), θ(0))
= (0, 0, 0).

In the simulations, we considered DoS attacks which affect each of the network
links independently. For each link, the corresponding DoS pattern takes the form of a
pulse-width-modulated signal with variable period and duty cycle (maximum period
of 0.4sec and maximum duty cycle equal to 55%), both generated randomly. These
patterns are reported in Table11.1 for each network link.

The evolution of x , corresponding to the solutions to (11.1)–(11.3) and (11.18)
with ε = 0.04 is depicted in Fig. 11.1. One sees that x exhibits a quite smooth
response. In fact, the impact of loss of information can be better appreciated by
looking at the controller dynamics, which are reported in Figs. 11.2 and 11.3. This
can be explained simply by noting that the controller state ξ is affected by DoS
directly while x is affected by DoS indirectly since ξ enters the node dynamics after
being filtered twice.
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Fig. 11.2 Evolution of the controller state η in the absence of DoS
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Fig. 11.3 Evolution of the controller state η in the presence of DoS
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Fig. 11.4 Locus of the
points 1/τd + Δ∗/τ i jf = 1 as
a function of (τd , τ f ) with
Δ∗ = 0.05 (blue solid line).
The horizontal axis
represents τd and the vertical
axis represents τ f . Notice

that Δ∗ = Δ
i j∗ for all

(i, j) ∈ E , so that the locus
of point does not vary with
(i, j). The various “∗”
represent the values of
(τ

i j
d , τ

i j
f ) for the network

links
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As afinal comment, note that for eachDoSpattern one can compute corresponding
values for (ηi j , κ i j , τ

i j
f , τ

i j
d ). They can be determined by computing ni j (τ, t) and

|Ξ i j (τ, t)| of each DoS pattern (cf. Assumptions11.2 and 11.3) over the considered
simulation horizon. Figure11.4 depicts the values obtained for τ

i j
f and τ

i j
d for each

(i, j) ∈ E . One sees that these values are consistent with the requirements imposed
by the PoC condition.

11.6 Conclusions

In this chapter, we have investigated Self-Triggered synchronization of group of
harmonic oscillators in presence of denial-of-service at communication links. In the
considered framework each of the network links fail independently, which is relevant
for peer-to-peer networks architectures. A characterization of DoS frequency and
duration is provided underwhich network synchronization is preserved, alongwith an
explicit estimate of the effect of DoS on the time required to achieve synchronization.

Appendix

Proof of Theorem11.1 As a first step, we analyze the consensus of subsystem
(X ,U , θ). Afterward, we will investigate the synchronization of the states xi

throughout the relation X i (t) = e−At (ηi (t) − xi (t)).
Consider theLyapunov functionV (X ) = 1

2X
�X , and let t i j�k

:= max{t i jl : t i jl �
t, l ∈ Z�0}. The derivative of V along the solutions to (11.8) satisfies
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V̇ (X (t)) =
N∑

i=1

X i�(t) Ẋ i (t)

= −
∑

(i, j)∈E
(X j (t) − X i (t))�U i j (t i j�k

)

= −
∑

(i, j)∈E

n∑

�=1

D i j
� (X (t)) signε(D

i j
� (X (t i j�k

))).

(11.26)

During the continuous evolution |Ḋ i j
� (X (t))| ≤ di + d j for t ∈ [t ik, t ik+1[, where

D i j (X (t)) = X j (t) − X i (t). Exploiting this fact and recalling the definition of
gi j� (X (t)) in (11.10), it holds that if |D i j

� (X (t i j�k
))| ≥ ε then

|D i j
� (X (t))| ≥ |D i j

� (X (t i j�k
))| − (di + d j )(t − t i j�k

)

≥ |D i j
� (X (t i j�k

))|
2

(11.27)

and

signε(D
i j
� (X (t))) = signε(D

i j
� (X (t i j�k

))). (11.28)

Using (11.27) and (11.28) we conclude that

V̇ (X (t)) ≤ −
∑

(i, j)∈E

∑

�∈L :
|D i j

� (X (t i j�k
))|≥ε

|D i j
� (X (t i j�k

))|
2

(11.29)

In view of (11.29), there must exist a finite time T such that, for every (i, j) ∈ E and
every k, � with t i j�k

� T , it holds that |D i j
� (X (t i j�k

))| < ε. This is because, otherwise,
V would become negative. The inequality in (11.11) follows by recalling that, in a
graph with N nodes the graph diameter is N − 1. This shows that X converges in
a finite time T to a point X∗ in the set E .

We now focus on x . In view of (11.2), U converges to zero in a finite time.
Moreover, in view of (11.7), we have that ηi (t) − xi (t) converges to eAtX i∗ and ξ

to 0 in a finite time. As for η, recall that ηi has flow and jump dynamics given by

η̇i (t) = (A + BK )ηi (t) +
∑

j∈N i

ξ i j (t)

ηi (t) = ηi (t−).

(11.30)

Hence, η converges exponentially to the origin since ξ converges to 0 is a finite time
and A + BK isHurwitz. Combining this factwith the property thatηi (t) − xi (t) con-
vergence asymptotically to eAtX i∗ , we have that xi (t) convergence asymptotically to
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−eAtX i∗ . This implies that for any node i ∈ I and any εc ∈ R>0, there exists a time
Tc(εc) after which ‖xi (t) + eAtX i∗ ‖ ≤ εc, where ‖·‖ stands for Euclidean norm.

Notice that, in general, X i∗ �= X j
∗ for i �= j in accordance with the practical

consensus property (11.11). Therefore, the solutions xi and x j for all (i, j) ∈ I ×
I will achieve practical consensus as well. In particular, an upper bound on their
disagreement level can be estimated as

‖xi (t) − x j (t)‖ ≤ ‖xi (t) + eAtX i
∗ ‖ + ‖x j (t) + eAtX i

∗ ‖
� ‖xi (t) + eAtX i

∗ ‖ + ‖x j (t) + eAtX j
∗ ‖ + ‖eAtX i

∗ − eAtX j
∗ ‖

≤ 2εc + ‖eAt (X j
∗ − X i

∗ )‖ (11.31)

≤ 2εc + √
n δ

where the last inequality is obtained from (11.11) and the fact that A has purely
imaginary eigenvalues by hypothesis. This concludes the proof. �

Proof of Proposition 1 Reasoning as in the proof of Theorem11.1, it is an easy
matter to see that in the presence of DoS (11.29) modifies into

V̇ (X (t)) ≤ −
∑

(i, j)∈E

∑

�∈L :
|D i j

� (X (t i j�k
))|≥ε ∧

t i j�k
∈Θ i j (0,t)

|D i j
� (X (t i j�k

))|
2

. (11.32)

In words, the derivative of V decreases whenever, for some (i, j) ∈ E , � ∈ L ,
two conditions are met: (i) |D i j

� (X (t i j�k
))| � ε, which means that i and j are not

component-wise ε-close; and (ii) communication on the link that connects i and j is
possible.

From (11.32) there must exist a finite time T∗ such that, for every {i, j, �} ∈
E × L and every k with t i j�k

� T∗, it holds that |D i j
� (X (t i j�k

))| < ε or t i j�k
∈ Ξ i j (0, t).

This is because, otherwise, V would become negative. The proof follows by recalling
that in both the cases |D i j

� (X (t i j�k
))| < ε and t i j�k

∈ Ξ i j (0, t) the controlU i j
� (t) is set

equal to zero. �

Proof of Proposition11.2 Consider any link (i, j) ∈ E , and suppose that a certain
transmission attempt t i j�k

is unsuccessful. We claim that a successful transmission

over the link (i, j) does always occur within [t i j�k
, t i j�k

+ Φ i j ]. We prove the claim
by contradiction. To this end, we first introduce a number of auxiliary quantities.
Denote by H̄ i j

n := {hi jn } ∪ [hi jn , hi jn + τ
i j
n + Δ

i j
∗ [the nth DoS interval over the link

(i, j) prolonged by Δ
i j
∗ units of time. Also, let

Ξ̄ i j (τ, t) :=
⋃

n∈Z≥0

H̄ i j
n

⋂
[τ, t] (11.33)

Θ̄ i j (τ, t) := [τ, t] \ Ξ̄ i j (τ, t). (11.34)
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Suppose then that the claim is false, and let t�� denote the last transmission attempt over
[t i j�k

, t i j�k
+ Φ i j ]. Notice that this necessarily implies |Θ̄ i j (t i j�k

, t�� )| = 0. To see this, first

note that, in accordancewith (11.18), the inter-sampling time over the interval [t i j�k
, t�� ]

is equal to ε/(2(di + d j )) = Δ
i j
∗ . Hence, we cannot have |Θ̄ i j (t i j�k

, t�� )| > 0 since this

would imply the existence of a DoS-free interval within [t i j�k
, t�� ] of length greater than

Δ
i j
∗ , which is not possible since, by hypothesis, no successful transmission attempt

occurs within [t i j�k
, t�� ]. Thus |Θ̄ i j (t i j�k

, t�� )| = 0. Moreover, since t�� is unsuccessful,

it must be contained in a DoS interval, say Hi j
q . This implies [t�� , t�� + Δ

i j
∗ [⊆ H̄ i j

q .
Hence, we have

|Θ̄ i j (t i j�k
, t�� + Δi j

∗ )| = |Θ̄ i j (t i j�k
, t�� )| + |Θ̄ i j (t�� , t

�
� + Δi j

∗ )|
= 0 (11.35)

However, condition |Θ̄(t i j�k
, t�� + Δ

i j
∗ )| = 0 is not possible. To see this, notice that

|Θ̄ i j (t i j�k
, t)| = t − t i j�k

− |Ξ̄ i j (t i j�k
, t)|

� t − t i j�k
− |Ξ i j (t i j�k

, t)| − (n(t i j�k
, t) + 1)Δi j

∗
� (t − t i j�k

)(1 − αi j ) − κ i j − (ηi j + 1)Δi j
∗ (11.36)

for all t � t i j�k
where the first inequality follows from the definition of the set Ξ̄ i j (τ, t)

while the second one follows fromAssumptions11.2 and 11.3. Hence, by (11.36), we
have |Θ̄ i j (t i j�k

, t)| > 0 for all t > t i j�k
+ (1 − αi j )−1(κ i j + (ηi j + 1)Δi j

∗ ) = t i j�k
+ Φ i j .

Accordingly, |Θ̄(t i j�k
, t�� + Δ

i j
∗ )| = 0 cannot occur because t�� + Δ

i j
∗ > t i j�k

+ Φ i j . In
fact, by hypothesis, t�� is defined as the last unsuccessful transmission attempt within
[t i j�k

, t i j�k
+ Φ i j ], and, by (11.18), the next transmission attempt after t�� occurs at time

t�� + Δ
i j
∗ . This concludes the proof. �
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