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Preface

In modern industrial applications and other scientific domains, control theory plays
a fundamental role to achieve high performances, optimal production levels, pro-
duct and service quality, energy savings, and last but not least operational safety.
However, in order to achieve these generic goals, different issues due to the
heterogeneity of the phenomena affecting the controlled systems have to be taken
into account: nonlinearities, time-varying parameters, uncertainties, time delays,
signal discontinuities, disturbances, and limitation of the available information and
computational resources, among others. Neglecting these effects can lead to eco-
nomic losses or even disastrous effects (e.g., airplane crashes, plant explosions,
etc.). Although in the last years the modern control theory has addressed many
of the features above, there are still many theoretical and practical open problems.
Also, an important challenge is the development of methods considering the
simultaneous presence of these features in the systems. Hence, new analysis and
design methods to cope with the complexity of these phenomena, aiming at
achieving robust stability and performance of the feedback loops, are of major
relevance both in scientific and technological contexts. Control systems are
nowadays implemented over communication networks, in the so-called networked
control paradigm. Networked control systems (NCSs), or more generally
cyber-physical systems (CPS), are spatially distributed systems for which the
communication between sensors, actuators, and controllers is supported by a shared
communication network. CPSs offer many advantages such as low installation and
maintenance costs, reduced system wiring, and increased flexibility of the system.
However, their rapid development also led to new technical problems: asynchro-
nism (due to limited computational resource, concurrency, and multitask scheduling
algorithms), complex energy management (where switching among several func-
tioning modes must be considered), communication latency and data loss (due to
the use of networks), etc. The overall system reliability is a major requirement,
since in many applicative domains embedded controllers are involved in
safety-critical activities.

v



It is important to mention that, in general, the conception of the control systems
addresses separately the problem related to the design of the control loop and that
one related to its implementation using some computational resources, possibly
affected by imprecise communications. An integrated approach, in which the
constraints due to computational resources and limited information are taken into
account, allows the development of control systems with certification guarantees of
stability, robustness, and performance. The implicit goal is then to optimize the use
of available resources. These separated designs can be very suboptimal, incurring
some severe performance losses and significant additional costs. It turns out that
these losses and costs become more and more critical for modern (and large scale)
applications such as the use of numerous sensors in cars, sensor networks, airspace
applications, and the deployment of cellular and internet networks.

Moreover, systems to be controlled usually have a nonlinear behavior, and under
network delays, asynchronous samplings, or computational resources constraints,
controlling them becomes more and more difficult, especially with a prescribed
performance requirement. In particular, the hybrid nature of the system (mixing a
continuous dynamics and discrete control sampling) should be taken into account.

Combining the field of control theory, communication theory, and computational
resources management, the main goal of the current book is to present different
aspects and solutions in order to take into account the complex phenomena and
issues mentioned above. In particular, this book pertains to gather several facets of
systems subject to information and computational constraints. Then, this book
constitutes a large overview of results and techniques with respect to the recent
literature, including hybrid dynamical systems, switched systems, Event-Triggered
architecture, sampled-data systems, and distributed systems for CPS.

At this aim, this book is organized as follows:

• Part I is devoted to switched and sampled-data systems and consists of Chaps.
1–6.

• Part II is devoted to Event-Triggered architecture and consists of Chaps. 7–11.
• Part III is devoted to distributed control of CPS and consists of Chaps. 12–17.

Note that this partition is somewhat arbitrary as most of the chapters are inter-
connected, and mainly reflects the editors’ biases and interests.

The idea of this book inherits from the organization of the international work-
shop CO4 organized on the topics in Toulouse in October 26–28, 2016, with the
support of ANR.1 Hence, we would like to thank the contributors of this book
because their constant encouragement, enthusiasm, and patience have been essential
for the realization of this book.

1The French National Research Agency, public body providing funding for project-based research
under the authority of the French Ministry of research.
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We hope that this volume will help in claiming many of the problems for
controls researchers, and to alert graduate students to the many interesting ideas at
the frontier between control theory, information theory, and computational theory.
There are, of course, many areas which are not represented through a chapter, and
therefore we would like to apologize to those whose areas are not profiled.

Toulouse, France Sophie Tarbouriech
December 2017 Antoine Girard

Laurentiu Hetel
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Chapter 1
Minimal- and Reduced-Order Models
for Aperiodic Sampled-Data Systems

M. Baştuğ, L. Hetel and M. Petreczky

Abstract Networked and embedded control systems are ubiquitous nowadays in
practical applications. The detailed models for such systems can be very complex
due to the interactions of different subsystems in the network, the inherent complex-
ity of the models of the subsystems, and due to the sampling phenomenon itself.
In turn, simulations for control synthesis or performance specifications can easily
become intractable. Hence, computing low-order accurate models for such systems
can be of great importance. In this chapter, we precisely address this problem by
studying two main topics for aperiodic sampled-data systems which are used as
modeling abstractions for networked control systems: First, we formulate minimal
order models capturing the whole behavior of the system with taking into account
all possible sampling patterns. Second, we investigate a model reduction method to
further simplify the models without losing much of the accuracy.

1.1 Introduction

Minimality of a state-space model of a system implies that there is no other model
with a smaller state-space dimension (i.e., less number of state variables) which
represents the input–output behavior of the system [23]. Hence, when only the input–
output behavior of the system is of interest, converting a non-minimal state-space
representation to a minimal one can be considered as the first, and most natural, step
of model reduction. For models which are already minimal, such a simplification is
of course not possible. In turn, for such models, model reduction techniques [2] can
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be used to approximate the input–output behavior of a given system by reducing the
number of states of an existing minimal state-space model.

The chapter considers these two problems, the formulation of minimality and
model reduction of state-space models, for aperiodic sampled-data systems. Such
systems are used as a modeling framework for networked and embedded control
systems [9, 12, 18, 20, 22, 40]. Aperiodic sampled-data systems can be represented
as impulsive systems [17, 28], time-delay systems [13], linear fractional representa-
tions (LFRs) [27, 29], and discrete-time linear parameter-varying (LPV) polytopic
systems [10, 15, 21].

The aperiodic sampling patterns studied in this chapter cover two general cases.
Namely, if the inter-sample time is time-varying and takes its values in between a
fixed arbitrarily small minimum and maximum real value between two consecutive
sampling instants, such systems can be represented by discrete-time LPV models
through convex embedding. Whereas if the inter-sample time takes its value from a
finite set of values in between any two consecutive sampling instants, linear time-
invariant (LTI) systems sampled in such manner can be represented by discrete-time
linear switched systems. Hence, first, the connection between the minimality of the
sampled LTI system and the resulting model, discrete-time LPV or linear switched
system depending on the sampling pattern, is investigated. Then, an approach of
momentmatching [2] basedmodel reduction for the case of linear switchedmodels of
sampled-data systems is given. The given approach can be summarized as a moment
matching based model reduction method on the linear switched model acquired from
the original LTI plant. It is proven that for the given approach, as long as the original
continuous-timeLTIplant is stable, the resulting reduced-order linear switchedmodel
of the sampled-data system is quadratically stable. This model reduction approach
is illustrated with two numerical examples containing a stable and an unstable plant
model, respectively.

The results about minimality in this chapter can be related to the work in [25]
where the controllability and observability of a class of sampled-data systems are
inspected. However, in [25] the controllability and observability conditions are given
for a very specific type of sampling pattern (namely, an asynchronous and periodical
one). Some other papers dealingwith the problemof reachability and/or observability
of sampled-data systems are [1, 14, 37, 38]. Model reduction for sampled-data
systems has been considered previously on [3, 34]. Both papers deal with the case
of periodical sampling and are valid only for the case when the considered plant is
stable. In contrast, in this chapter, the general aperiodic sampling case considered
and the considered plant is allowed to be unstable.

The chapter represents an extended version of the Refs. [4, 7]. The main dif-
ferences of the chapter with [4, 7] are as follows: The minimality argument in [7]
is extended to the linear switched models of aperiodic sampled-data systems. The
proofs of the lemmas and the main theorem related to the conservation of stability by
the proposed model reduction method are presented in detail in this chapter, whereas
[4] contains no proofs. In addition, the current chapter includes two numerical exam-
ples (one containing an unstable plant) which have not appeared previously in any
of these references.
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The chapter is structured as follows. In Sect. 1.2, we present a brief overview
of modeling the input–output behavior of a sampled continuous-time LTI plant on
sampling instants, for two general scenarios of aperiodic sampling. In Sect. 1.3, we
provide a review of realization theory for LTI, LPV, and linear switched (LS) systems,
as a preliminary for the subsequent discussion onminimality. In Sect. 1.4, we state the
main result on minimality. In Sect. 1.5, we present a model reduction method based
on moment matching, to approximate the high-order models of the sampled-data
system. In Sect. 1.6, we prove that the given model reduction method preserves the
stability of the original model. Finally, in Sect. 1.7, we illustrate the model reduction
method with two numerical examples.

1.2 Modeling of Aperiodic Sampled-Data Systems

In this section, we review the process of modeling an aperiodically sampled
continuous-time LTI systemwith a discrete-timemodel. In the following, wewill use
Z, N, and R+ to denote, respectively, the set of integers, the set of natural numbers
including 0, and the set [0,+∞) of nonnegative real numbers.

An LTI SS representation ΣLTI is a tuple ΣLTI = (A, B, C) with A ∈ R
n×n , B ∈

R
n×m , C ∈ R

p×n . The state x(t) ∈ R
n and the output y(t) ∈ R

p of the LTI system
ΣLTI at time t � 0 is defined by1

ΣLTI

{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t), ∀t ∈ R+.
(1.1)

In the following, dim(ΣLTI)will be used to denote the dimension n of the state space
of ΣLTI.

Let ΣLTI = (A, B, C) be a continuous-time LTI SS representation of the form
(1.1). Let the state x(tk) and output y(tk) ofΣLTI be sampled in arbitrary time instants
tk , k ∈ N such that t0 = 0 and tk+1 − tk ∈ H ⊂ R for all k ∈ N to form the constant
control signal u(t) = uk for all t ∈ [tk, tk+1), k ∈ N. Note that the sequence tk , k ∈ N

is monotonically increasing. The resulting sampled-data system ΣSD can be repre-
sented as follows:

ΣSD

⎧⎪⎨
⎪⎩

ẋ(t) = Ax(t) + Buk, t ∈ [tk, tk+1), k ∈ N

yk = Cx(tk)

tk+1 = tk + hk, hk ∈ H .

(1.2)

1Unless stated otherwise, we take x(0) = x0 = 0 for all classes of systems discussed in the chapter
for notational simplicity. We remark that the given results can easily be extended to the case of
nonzero initial states.
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In (1.2), x(t) ∈ R
n is the state, uk ∈ R

m is the constant input, and y(t) is the output
at time t ∈ R+; A ∈ R

n×n , B ∈ R
n×m , and C ∈ R

p×n are the same as the system
parameters (A, B, C) of ΣLTI. We call the set H as the sampling interval set and
the number hk as the kth sampling interval. We will use the shorthand notation
ΣSD = (A, B, C) for the sampled-data system of the form (1.2). Note that different
from the model (1.1) and (1.2) has also hk , k ∈ N as the control parameter in addition
to the input u(t) = uk, t ∈ [tk, tk+1), k ∈ N.

The state xk = x(tk) and output yk of the sampled-data system ΣSD in (1.2) at
sampling instants tk , k ∈ N can be written by induction as

xk+1 = x(tk+1) = eAhk xk +
(∫ hk

0
eAsds

)
Buk, ∀k ∈ N,

yk = Cxk .

(1.3)

Let

Θ(hk) =
∫ hk

0
eAsds. (1.4)

It is easy to see that the following holds:

eAhk = In + AΘ(hk). (1.5)

Replacing (1.5) in (1.3) and defining the matrix functions Φ : H → R
n×n and Γ :

H → R
n×m as Φ(hk) = eAhk = In + AΘ(hk) and Γ (hk) = Θ(hk)B, (1.3) can be

rewritten as

Σdisc

{
xk+1 = Φ(hk)xk + Γ (hk)uk,

yk = Cxk, ∀k ∈ N.
(1.6)

With Eq. (1.6), the sampled LTI plant ΣSD in (1.2) is modeled by a discrete-time,
time-varying linear systemΣdisc whose read-out map (map represented by thematrix
C) is time invariant. Here, the discrete-time instants k ∈ N of (1.6) correspond to the
time instants tk ∈ R+, k ∈ N for the original sampled-data system ΣSD. In addition,
the state xk and the output yk of (1.6) correspond to the state x(tk) and output y(tk)
ofΣSD at the sampling instants tk ∈ R+ when u(t) = uk for t ∈ [tk, tk+1). Hence, we
have built the relationship between the sampled-data system ΣSD = (A, B, C) and
the corresponding discrete-time, linear time-varying system representation Σdisc.

In the following, we will consider two different sampling scenarios, described as
follows:

Scenario 1: The sampling interval set H is infinite and defined as H = (0, h]
with h ∈ R+\{0}. In other words, the sampling interval between each sampling
instants could take its value in between a fixed minimum and maximum value. One
way of modeling the sampled plant with such a scenario is to create a discrete-time
LPV SS representation through convex embedding of the value of the state transition
matrix of the plant model, for different time intervals [10, 15, 21].
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Scenario 2: The sampling interval setH is finite and defined asH = {ĥ1, . . . ,

ĥM} where ĥ1, . . . , ĥM ∈ R+ and M ∈ N\{0}. In other words, the sampling interval
in between any two consecutive sampling instants takes its value from a finite set.
Modeling the sampled plant for such a scenario could be achieved by creating a
discrete-time LS SS model [11, 16, 39]. Intuitively, such a linear switched model
would have as many discrete modes (linear subsystems) as the number of elements
in the allowed finite sampling interval set.

In the following, we will use the terms “the case when the sampling interval set
H is infinite” and “the case when the sampling interval set H is finite” to refer to
Scenario 1 and Scenario 2, respectively.

1.2.1 Modeling Aperiodic Sampled-Data Systems with LPV
SS Representations

One important approach to design control for the model (1.6) for the case when
H = (0, h] is to embed the function Θ(hk), hk ∈ H (hence the functions Φ(hk)

and Γ (hk) also) inside a convex polytope. This approach results in a discrete-time
LPV SS model with affine dependence of the state on the scheduling signal at each
time instant. Below we summarize this procedure.

Notation 1 Let a, b ∈ N. In the following, we use Ib
a to denote the set Ib

a = {c ∈ N |
a � c � b}.

The procedure of LPV modeling of the sampled-data plant ΣSD relies on the
embedding of the function Θ(hk) into a convex polytope [10, 15, 19]. The general
idea is that thematrix functionΘ(hk) ∈ R

n×n can bewritten as a convex combination
of Nv real matrix vertices D1, . . . , DNv ∈ R

n×n . Hence

Θ(hk) =
Nv∑

i=1

αk
i Di , ∀hk ∈ H , k ∈ N, (1.7)

where 0 � αk
i ∈ R for all k ∈ N, i ∈ I

Nv
1 and αk

1 + · · · + αk
Nv

= 1 for all k ∈ N. Note
that the coefficients αk

1, . . . , α
k
Nv

are functions of hk for each k ∈ N. For notational
simplicity, this dependency is not explicitly denoted. Using (1.7), (1.6) can be rewrit-
ten as the following SS representation:

xk+1 = ALPV(pk)xk + BLPV(pk)uk

yk = Cxk, ∀k ∈ N, x0 = 0,
(1.8)

where pk = [
αk
1 . . . αk

Nv

]T ∈ R
Nv is the scheduling signal at time k ∈ N. The matrix

functions ALPV(pk), BLPV(pk) are given by
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ALPV(pk) = ALPV
0 +

Nv∑
i=1

ALPV
i αk

i , BLPV(pk) = BLPV
0 +

Nv∑
i=1

BLPV
i αk

i (1.9)

for all k ∈ N, where ALPV
0 = In , BLPV

0 = 0n×m and ALPV
i = ADi , BLPV

i = Di B for
all i ∈ I

Nv
1 . A state-space model of the form (1.8) belongs to the class of discrete-time

LPV SS representations [32, 36]. Hence, from now on, we will refer to the system
representations of the form (1.8) as LPV SS representations and formally define
the tuple ΣLPV = ({(ALPV

i , BLPV
i , C)}Nv

i=0) with ALPV
i ∈ R

n×n , BLPV
i ∈ R

n×m for all
i ∈ I

Nv
0 , C ∈ R

p×n as an LPV SS representation. We remark that the discrete-time
LPV SS representation described by (1.8) completely models the behavior of ΣSD in
sampling instants.

1.2.2 Modeling Aperiodic Sampled-Data Systems with LS SS
Representations

In this subsection, we continue with the discussion of modeling aperiodic sampled-
data systems for the case when the sampling interval set H is finite, i.e., H =
{ĥ1, . . . , ĥM}, M ∈ N\{0}. Since in this case, the sampling interval hk between any
two consecutive sampling instants can take its values only from the finite set H =
{ĥ1, . . . , ĥM} one approach to design control for the model (1.6) is to create an LS
SS model from (1.6). The idea is that since the set H has M elements, Θ(hk) can
only take M different values for all k ∈ N. In turn, (1.6) can be used to create an LS
SS representation with M discrete modes. Below we summarize this procedure.

Let the matrices ALS
1 , . . . , ALS

M ∈ R
n×n and BLS

1 , . . . , BLS
M ∈ R

n×m be defined by

ALS
i = In + AΘ(ĥi ), ∀i ∈ I

M
1 ,

BLS
i = Θ(ĥi )B, ∀i ∈ I

M
1 .

(1.10)

Using (1.10), (1.6) can be rewritten as the following SS representation:

ΣLS

{
xk+1 = ALS

qk
xk + BLS

qk
uk

yk = Cxk, ∀k ∈ N,
(1.11)

where qk ∈ I
M
1 is called the value of the switching sequence at time k ∈ N.

Models of the form (1.11) are a subclass of discrete-time LS SS representations
where the read-outmap represented by thematrixC is constant and independent from
the value of the switching signal qk at each time instant k ∈ N. Hence, from now on,
wewill refer to the system representations of the form (1.11) as LSSS representations
and formally define the tuple ΣLS = ({(ALS

i , BLS
i , C)}M

i=1) with ALS
i ∈ R

n×n , BLS
i ∈

R
n×m for all i ∈ I

M
1 , C ∈ R

p×n as an LS SS representation. We remark that when the
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switching sequence is chosen such that qk = i where hk = ĥi , i ∈ I
M
1 , the discrete-

time LS SS representation described by (1.11) completely models the behavior of
ΣSD in sampling instants for the case whenH is finite. More clearly, note that each
linear mode (ALS

i , BLS
i , C), i ∈ I

M
1 corresponds to the i th element of the sampling

interval setH = {ĥ1, . . . , ĥM}, i.e., if the kth sampling interval hk , k ∈ N is chosen
as hk = ĥi , i ∈ I

M
1 , then the value of the switching signal at time instant k is qk = i .

In the following, analogous to the LTI case, dim(ΣLS) will be used to denote the
dimension n of the state space of ΣLS and the number n will be called the order of
ΣLS.

We provide the problem statement of the first part of the chapter as follows.

Problem 1.1 Given theminimal continuous-time LTI systemΣLTI of the form (1.1),
show that

(i) the discrete-time LPV SS representation (1.8) computed for sampling
Scenario 1 is also minimal.

(ii) the discrete-time LS SS representation (1.11) computed for sampling
Scenario 2 is also minimal.

In the next section,wewill continuewith a reviewof realization theory for discrete-
time LTI, LPV, and LS SS representations to formalize the problem statement given
above.

1.3 Review of Realization Theory for LTI, LPV, and LS SS
Models

In this section, we present a brief summary of the concepts related to the realization
theory of LTI, LPV, and LS SS representations. The provided review is expected to
serve as a preliminary for the following discussion on minimality.

1.3.1 Review: Realization Theory of LTI SS Representations

First, we start with the review of some classical concepts related to the realization
theory of LTI systems.

Notation 2 Let r ∈ N\{0}. The set of continuous and absolutely continuous maps
of the form R+ → R

r is denoted by C(R+,Rr ) and AC(R+,Rr ), respectively; and
the set of Lebesgue measurable maps of the form R+ → R

r which are integrable on
any compact interval is denoted by Lloc(R+,Rr ).

We define the input-to-state map X x0
ΣLTI

and input-to-output map Y x0
ΣLTI

of a system
ΣLTI of the form (1.1) as the maps
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X x0
ΣLTI

: Lloc(R+,Rm) → AC(R+,Rn); u �→ X x0
ΣLTI

(u),

Y x0
ΣLTI

: Lloc(R+,Rm) → C(R+,Rp); u �→ Y x0
ΣLTI

(u),

defined by letting t �→ X x0
ΣLTI

(u)(t) be the solution to the first equation of (1.1) with
x(0) = x0, and letting Y x0

ΣLTI
(u)(t) = C X x0

ΣLTI
(u)(t) for all t ∈ R+ as in second equa-

tion of (1.1).
Let f be a map of the form

f : Lloc(R+,Rm) → C(R+,Rp). (1.12)

An LTI SS representation ΣLTI of the form (1.1) is a realization of a map f of the
form (1.12) if for all u ∈ Lloc(R+,Rm); f (u) = Y 0

ΣLTI
(u).

Moreover,we say thatΣLTI is aminimal realizationof f , if for anyother realization
Σ̂LTI of f , dim(ΣLTI) � dim(Σ̂LTI).

A state x f ∈ R
n of an LTI SS realization ΣLTI is called reachable from the zero

initial state if there exists a time instant T ∈ R+ and an input u ∈ Lloc(R+,Rm) such
that X0

ΣLTI
(u)(T ) = x f . Let RLTI denote the set of all reachable states of an LTI SS

realization ΣLTI. The LTI SS realization ΣLTI is called reachable ifRLTI = R
n .

A state x1 ∈ R
n ofΣLTI is called unobservable if there exists another state x2 ∈ R

n

such that Y x1
ΣLTI

= Y x2
ΣLTI

. Let OLTI denote the set of all unobservable states of an LTI
SS realization ΣLTI. The LTI SS realization ΣLTI is called observable if OLTI = {0}.

We conclude with recalling that LTI SS realization ΣLTI is minimal if and only if
it is reachable and observable.

1.3.2 Review: Realization Theory of LPV SS Representations

This subsection is devoted to a brief overview of some concepts related to the real-
ization theory of discrete-time LPV SS representations. A detailed discussion on the
topic can be found in [33].

Notation 3 Let ΣLPV = ({(ALPV
i , BLPV

i , C)}Nv
i=0) be a discrete-time LPV SS repre-

sentation of the form (1.8) of the plant ΣLTI = (A, B, C) of the form (1.1), sampled
with respect to Scenario 1, i.e.,H = (0, h]. In the sequel, we use the following nota-
tion and terminology: If s = s0 . . . sN is a sequence with N + 1 elements, N ∈ N,
we denote the number N as |s| = N and call |s| as the length of the sequence |s|.
We use U to denote the set of finite sequences in R

m, i.e., U = {u = u0 . . . uN |
u0, . . . , uN ∈ R

m, N ∈ N}; P to denote the set of finite sequences in R
Nv , i.e., P =

{p = p0 . . . pN | p0, . . . , pN ∈ R
Nv , N ∈ N}; X to denote the set of finite sequences

in R
n, i.e., X = {x = x0 . . . xN | x0, . . . , xN ∈ R

n, N ∈ N}; and Y to denote the set
of finite sequences in R

p, i.e., Y = {y = y0 . . . yN | y0, . . . , yN ∈ R
p, N ∈ N}. In

addition, we will write U × P = {(u, p) ∈ U × P | |u| = |p|}.
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We define the input-to-state map X x0
ΣLPV

and input-to-output map Y x0
ΣLPV

of a system
ΣLPV of the form (1.8) as the maps

U × P → X; (u, p) �→ X x0
ΣLPV

(u, p) = x,

U × P → Y; (u, p) �→ Y x0
ΣLPV

(u, p) = y,

defined by letting k �→ X x0
ΣLPV

(u, p)k be the solution to the first equation of (1.8)
with x̂0 = x0, and letting Y x0

ΣLPV
(u, p)k = C X x0

ΣLPV
(u, p)k for all k ∈ N as in second

equation of (1.8).
Let f̂ be a map of the form

f̂ : U × P → Y. (1.13)

An LPV SS representation ΣLPV of the form (1.8) is a realization of a map f̂ of the
form (1.13) if for all (u, p) ∈ U × P; f (u, p) = Y 0

ΣLPV
(u, p).

Moreover, we say that ΣLPV is a minimal realization of f̂ , if for any other real-
ization Σ̄LPV of f̂ , dim(ΣLPV) � dim(Σ̄LPV).

A state x f ∈ R
n of an LPV SS realization ΣLPV is called reachable from the

zero initial state if there exists a time instant T ∈ N, and a sequence (u, p) ∈ U × P
with |u| = T such that X0

ΣLPV
(u, p)T = x f . Let RLPV denote the smallest subspace

containing the set of all reachable states of an LPV SS realization ΣLPV. The LPV
SS realization ΣLPV is called reachable ifRLPV = R

n .
A state x1 ∈ R

n is called unobservable if there exists another state x2 ∈ R
n such

that Y x1
ΣLPV

(u, p) = Y x2
ΣLPV

(u, p) for all (u, p) ∈ U × P. LetOLPV denote the set of all
unobservable states of an LPV SS realization ΣLPV. The LPV SS realization ΣLPV

is called observable if OLPV = {0}.
Finally, we recall that the LPV SS realization ΣLPV is minimal if and only if it is

reachable and observable [33].

1.3.3 Review: Realization Theory of LS SS Representations

In this subsection, we provide a brief review some concepts related to the realization
theory of discrete-time LS SS representations. We follow the outline presented in
[31].

Notation 4 Let ΣLS = ({(ALS
i , BLS

i , C)}M
i=1) be a discrete-time LS SS representa-

tion of the form (1.11) of the plant ΣLTI = (A, B, C) of the form (1.1), sampled with
respect to Scenario 2, i.e., H = {ĥ1, . . . , ĥM}, M ∈ N\{0}. In addition to Nota-
tion 3, in the sequel, we use the following notation and terminology: Q to denote the
set of finite sequences in I

M
1 = {1, . . . , M}, i.e., Q = {q = q0 . . . qN | q0, . . . , qN ∈

I
M
1 , N ∈ N}. In addition, we will write U × Q = {(u, q) ∈ U × Q | |u| = |q|}.
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We define the input-to-state map X x0
ΣLS

and input-to-output map Y x0
ΣLS

of a system
ΣLS of the form (1.11) as the maps

U × Q → X; (u, q) �→ X x0
ΣLS

(u, q) = x,

U × Q → Y; (u, q) �→ Y x0
ΣLS

(u, q) = y,

defined by letting k �→ X x0
ΣLS

(u, q)k be the solution to the first equation of (1.11) with
x̂0 = x0, and letting Y x0

ΣLS
(u, q)k = C X x0

ΣLS
(u, q)k for all k ∈ N as in second equation

of (1.11).
Let f̂ be a map of the form

f̂ : U × Q → Y. (1.14)

An LS SS representation ΣLS of the form (1.11) is a realization of a map f̂ of the
form (1.14) if for all (u, q) ∈ U × Q; f (u, q) = Y 0

ΣLS
(u, q).

Moreover,we say thatΣLS is aminimal realization of f̂ , if for any other realization
Σ̄LS of f̂ , dim(ΣLS) � dim(Σ̄LS).

A state x f ∈ R
n of an LS SS realization ΣLS is called reachable from the zero

initial state if there exists a time instant T ∈ N, and a sequence (u, q) ∈ U × Q
with |u| = T such that X0

ΣLS
(u, q)T = x f . Let RLS denote the smallest subspace

containing the set of all reachable states of an LS SS realization ΣLS. The LS SS
realization ΣLS is called reachable ifRLS = R

n .
A state x1 ∈ R

n is called unobservable if there exists another state x2 ∈ R
n such

that Y x1
ΣLS

(u, q) = Y x2
ΣLS

(u, q) for all (u, q) ∈ U × Q. Let OLS denote the set of all
unobservable states of an LS SS realizationΣLS. The LS SS realizationΣLS is called
observable if OLS = {0}.

In [31], it is shown that the LS SS realization ΣLS is minimal if and only if it is
reachable and observable.

1.4 Preservation of Minimality for LPV and LS SS Models
of Aperiodic Sampled-Data Systems

In this section, we state themain result related tominimality of sampled-data systems
with aperiodic sampling. The following theorem states this result formally.

Theorem 1.1 Let ΣLTI = (A, B, C) be a continuous-time LTI SS representation
of the form (1.1) and ΣSD = (A, B, C) be the corresponding sampled-data system of
the form (1.2). Let ΣLPV = ({(ALPV

i , BLPV
i , C)}Nv

i=0) be the LPV SS representation of
the form (1.8) modeling the sampled-data system ΣSD for H = (0, h] (Scenario
1), and ΣLS = ({(ALS

i , BLS
i , C)}M

i=1) be the LS SS representation of the form (1.11)



1 Minimal- and Reduced-Order Models for Aperiodic Sampled-Data Systems 13

modeling the sampled-data system ΣSD for H = {ĥ1, . . . , ĥM} (Scenario 2). In
addition, let the set H for Scenario 2 be such that it contains at least one sampling
interval ĥ∗ satisfying

h∗(λ − μ) 	= 2cπ j, c = ±1,±2, . . . . (1.15)

where λ and μ are any pair of eigenvalues of A.
(i) If ΣLTI = (A, B, C) is minimal, then ΣLPV = ({(ALPV

i , BLPV
i , C)}Nv

i=0) is also
minimal.

(ii) If ΣLTI = (A, B, C) is minimal, then ΣLS = ({(ALS
i , BLS

i , C)}M
i=1) is also

minimal.

The proof of this theorem is constructed on the classical result on reachability and
observability under periodic sampling [24, 35], which is represented by the property
(1.15). See [5] for the relation between the case of aperiodic sampling.

Proof (Theorem 1.1 (i): Preservation of Minimality for LPV SS Models of Aperi-
odic Sampled-Data Systems) The proof is based on showing if ΣLTI = (A, B, C) is
reachable and observable, the resulting ΣLPV = ({(ALPV

i , BLPV
i , C)}Nv

i=0) will also be
reachable and observable. See Sect. 1.3 for the formal definitions of reachability and
observability of LTI and LPV SS representations. In addition, see [5] for the detailed
proof of the theorem.

Proof (Theorem 1.1 (ii): Preservation of Minimality for LS SS Models of Aperiodic
Sampled-Data Systems) Let H = {ĥ1, . . . , ĥM} be the sampling interval set. By
the assumption of the theorem, there exists a h = ĥi ∈ H , i ∈ I

M
1 such that the

pair
(

Ā, B̄
)
is reachable and the pair

(
C, Ā

)
is observable, where Ā := eAh and

B̄ := (
∫ h
0 eAsds)B. Let the sampling interval sequence is chosen such that hk =

tk+1 − tk = h for all k ∈ N. Then, the proof follows by similar arguments as in the
proof of Theorem 1.1 (i) given in [5].

1.5 A Model Reduction Method for Aperiodic
Sampled-Data Systems

The fact that the considered sampling interval setH is finite creates the possibility
of developing a simple moment matching type model reduction method to compute
a reduced-order approximation for the sampled-data system, from its minimal LS
SS representation. Below we state the problem considered in this section.

Problem 1.2 Let ΣLTI be a continuous-time LTI plant model of order n, which is
to be sampled aperiodically with respect to the finite setH = {ĥ1, . . . , ĥM} to form
the sampled-data system ΣSD. Compute a discrete-time model Σ̄LS of order r < n
which is an approximation of the input–output behavior ofΣSD in sampling instants.
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The proposed model reduction approach for the solution of this problem can be
summarized as follows:

Let ΣSD = (A, B, C,H ) be the sampled-data system with H = {ĥ1, . . . , ĥM}
of the form (1.2) corresponding to the continuous-time LTI plant ΣLTI = (A, B, C)

of the form (1.1). Let ΣLS = ({(ALS
i , BLS

i , C)}M
i=1) of the form (1.11) be the corre-

sponding LS SSmodel for the sampled-data systemΣSD. Compute fromΣLS another
LS SS model Σ̄LS = ({( ĀLS

i , B̄LS
i , C̄)}M

i=1) of order r < n who approximates the
input–output behavior of ΣLS.

First, we recall the concepts of Markov parameters and moment matching for LTI
and LS SS representations, and the analogy between two cases. Then, we present the
model reduction method in detail.

1.5.1 Review: Moment Matching for LTI SS Representations

Let ΣLTI = (A, B, C) be an LTI SS representation of the form (1.1) and its input–
output map Y x0

ΣLTI
be defined as in Sect. 1.3.1. A moment’s reflection lets us see that

the kth Taylor series coefficient Mk of Y 0
ΣLTI

around t = 0 for the unit impulse input
will be

Mk = CAk B, k ∈ N (1.16)

where A0 defined to be In . The coefficients Mk , k ∈ N are called the Markov param-
eters or the moments of the system ΣLTI. Hence, it is possible to approximate the
input–output behavior of ΣLTI by another system Σ̄LTI (possibly of reduced order),
whose first some number of Markov parameters are equal to the corresponding ones
of ΣLTI. If this number is chosen to be N ∈ N, we will call such approximations as
N -partial realizations of ΣLTI. More precisely, a continuous-time LTI SS represen-
tation Σ̄LTI = ( Ā, B̄, C̄) is an N -partial realization of another continuous-time LTI
SS representation ΣLTI = (A, B, C) if

CAk B = C̄ Āk B̄, k = 0, . . . , N .

The problem of model reduction of LTI systems by moment matching can now
be stated as follows. Consider an LTI system ΣLTI = (A, B, C) of the form (1.1)
and fix N ∈ N. Find another LTI system Σ̄LTI of order r strictly less than n such that
Σ̄LTI is an N -partial realization of ΣLTI.

For a detailed account on how to compute N -partial realizations for the LTI case,
see [2]. For the purpose of this chapter, we will focus on the moment matching
problem for the linear switched SS representations which model the sampled-data
system with respect to the sampling interval set H = {ĥ1, . . . , ĥM }.
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1.5.2 Review: Moment Matching for LS SS Representations

Let ΣLS = ({(ALS
i , BLS

i , C)}M
i=1) be an LS SS representation of the form (1.11)

modeling the sampled-data system for the sampling interval setH = {ĥ1, . . . , ĥM}
(Scenario 2) and its input–output map Y x0

ΣLS
be defined as in Sect. 1.3.3. Using (1.11),

one can see that the coefficients appearing in the output of ΣLS for any pair of input
and switching sequences (u, σ ) ∈ U × Q are of the form

C BLS
j , j ∈ I

D
1 (1.17)

and
C ALS

k1 . . . ALS
kL

BLS
j ; k1, . . . , kL , j ∈ I

D
1 , L ∈ N\{0}. (1.18)

In [30], it is shown that these coefficients uniquely define the map Y x0
ΣLS

. Analo-
gously to the linear case, we will call the coefficients of the form (1.17) and (1.18)
as the Markov parameters of ΣLS = ({(ALS

i , BLS
i , C)}M

i=1). Specifically, we will
call the Markov parameters of the form (1.17) as the Markov parameters of length 0
and the Markov parameters of the form (1.18) as the Markov parameters of length
L for any L ∈ N\{0}.

In [7, 8], it is shown that similarly to the LTI case, it is possible to approximate
the input–output behavior of ΣLS by another LS SS representation Σ̄LS (possibly of
reduced order), whose Markov parameters up to a certain length N ∈ N are equal
with the corresponding ones of ΣLS.2 Again, we will call such approximations as
N -partial realizations of ΣLS. More precisely, a discrete-time LS SS representation
Σ̄LS = ({( ĀLS

i , B̄LS
i , C̄)}M

i=1) is an N -partial realization of another discrete-time LS
SS representation ΣLS = ({(ALS

i , BLS
i , C)}M

i=1) if

C BLS
j = C̄ B̄LS

j , j ∈ I
M
1

and
C ALS

k1 . . . ALS
kL

BLS
j = C̄ ĀLS

k1 . . . ĀLS
kL

B̄LS
j

for all k1, . . . , kL , j ∈ I
M
1 and L ∈ I

N
1 . Note that an N -partial realization Σ̄LS ofΣLS

will have the same output with ΣLS for all time instants up to N , i.e., k ∈ I
N
0 , for all

input and switching sequences. The reason why the output of an N -partial realization
is indeed an approximation for the output of the original system model for also the
time instants k > N can be found in [6].

The problem of model reduction of LS models of sampled-data systems by
moment matching can now be stated as follows: Consider an LS SS model ΣLS =
({(ALS

i , BLS
i , C)}M

i=1) of the form (1.11) of order n and fix N ∈ N. Find another LS

2Even though the results in [7, 8] are stated in the continuous-time context, the analogous results on
N -partial realizations of discrete-timeLSSS representations are also valid. See [6] for an application
of these results for the model reduction of affine LPV systems in the discrete-time context.
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SS model Σ̄LS of order r strictly less than n such that Σ̄LS = ({( ĀLS
i , B̄LS

i , C̄)}M
i=1)

is an N -partial realization of ΣLS.
Next, we recall a theorem of model reduction with N -partial realizations for the

LS case [7]. This theorem (Theorem1.2) can be considered as the formulation of the
solution of the moment matching problem in the LS case. It can be formulated in two
dual ways [7], namely the reachability or the observability ways. However, here we
present only the formulation based on partial reachability spaces for simplicity. For
this purpose, we define the N -reachability spaceRN

LS, N ∈ N of an LS SS realization
ΣLS = ({(ALS

i , BLS
i , C)}M

i=1) of the form (1.11) inductively as follows:

R0
LS = span

⋃
i0∈IM

1

im(Bi0),

RN
LS = R0

LS +
∑
j∈IM

1

im(A jR
N−1
LS ), N � 1.

(1.19)

Theorem 1.2 (Moment Matching for LS SS Representations, [7]) Let ΣLS =
({(ALS

i , BLS
i , C)}M

i=1) be a discrete-time LS SS representation of the form (1.11)which
models the sampled-data system ΣSD of the form (1.2) for the sampling interval set
H = {ĥ1, . . . , ĥM} (Scenario 2). Let N ∈ N and V ∈ R

n×r be a full column rank
matrix such that

RN
LS = im(V ). (1.20)

If Σ̄LS = ({( ĀLS
i , B̄LS

i , C̄)}M
i=1) is an LS SS representation such that for each i ∈ I

M
1 ,

the matrices ĀLS
i , B̄LS

i , C̄ are defined as

ĀLS
i = V −1ALS

i V , B̄LS
i = V −1BLS

i , C̄ = CV, (1.21)

where V −1 is a left inverse of V , then Σ̄LS is an N-partial realization of ΣLS.

Note that the key of model reduction lies in the number of columns of the full
column rank projection matrix V ∈ R

n×r such that r < n. Choosing the number N
small enough such that the matrix V satisfies the condition (1.20) and it has r < n
columns results in the reduced-order N -partial realization Σ̄LS of order r . A simple
algorithm with polynomial computational complexity to compute the matrix V in
Theorem 1.2 is given in [7].

1.5.3 The Model Reduction Approach

Now the model reduction approach for aperiodic sampled-data systems can be stated
in detail as follows:

Procedure 1 (ModelReductionofSampled-DataSystems) LetΣSD = (A, B, C,H )

be the sampled-data system withH = {ĥ1, . . . , ĥM} of the form (1.2) corresponding
to the continuous-time LTI plant ΣLTI = (A, B, C) of the form (1.1) of order n. Let
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ΣLS = ({(ALS
i , BLS

i , C)}M
i=1) of the form (1.11) be the corresponding LS SS model

for the sampled-data system ΣSD. Let N ∈ N and V ∈ R
n×r be a full column rank

matrix such that
RN

LS = im(V ). (1.22)

Consider the matrices

Φ̄(ĥi ) = V −1Φ(ĥi )V , Γ̄ (ĥi ) = V −1Γ (ĥi ), C̄ = CV , ∀ĥi ∈ H ,

where V −1 is a left inverse of V . Then the time-varying model

Σ̄disc

{
x̄k+1 = Φ̄(hk)x̄k + Γ̄ (hk)uk,

ȳk = C̄ x̄k, ∀hk ∈ H , ∀k ∈ N,
(1.23)

is an N-partial realization of the model (1.11).

Note that the time-varying reduced-order model Σ̄disc on (1.23) can as well be
written as the approximation LS SS model Σ̄LS = ({( ĀLS

i , B̄LS
i , C̄)}M

i=1) of order
r < n for ΣLS where

ĀLS
i = Φ̄(ĥi ), B̄LS

i = Γ̄ (ĥi ), C̄ = CV , i ∈ I
M
1 .

Hence, in the following, Σ̄LS is also used to refer to the reduced-order model of the
sampled-data system Σ̄disc on (1.23), which is computed by Procedure 1.

Note also that the outputs yk of Σdisc in (1.6) and ȳk of Σ̄disc in (1.23) for any
input u ∈ U will be the same for all k ∈ I

N
0 . In other words,

CΦ(hk) . . . Φ(hi )Γ (hi ) = C̄Φ̄(hk) . . . Φ̄(hi )Γ̄ (hi ),

for all k ∈ I
N
0 and i ∈ I

k
0, where hl ∈ H for all l ∈ I

k
i . The relationship betweenΣdisc

of (1.6) and Σ̄disc of (1.23) can be constructed by stating that

x̄k = V −1xk , Φ̄(hk) = V −1Φ(hk)V , Γ̄ (hk) = V −1Γ (hk)

for all hk ∈ H and k ∈ N.

1.6 Conservation of Stability

In this section, we will show that as long as the original continuous-time LTI system
ΣLTI is stable, the reduced-order discrete-time LS SS representation Σ̄LS modeling
the sampled-data system computed by Procedure 1 will be quadratically stable. As
the final result of this section, we will extend this conservation of stability argument
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for the representations of the form (1.6) of aperiodic sampled-data systems. We will
start with presenting two technical lemmas for the purpose of stating this result.

In the sequel, we denote the fact that a matrix G is positive definite (resp. positive
semi-definite, negative definite, and negative semi-definite)withG > 0 (resp.G � 0,
G < 0, and G � 0).

Definition 1.1 (Quadratic stability) Let ΣLS = ({(ALS
i , BLS

i , C)}M
i=1) be an LS SS

representation of the form (1.11). The LS SS representation ΣLS is quadratically
stable if and only if there exists a symmetric positive definite P ∈ R

n×n such that

ALS
i

T
P ALS

i − P < 0, ∀i ∈ I
M
1 . (1.24)

Lemma 1.1 Let ΣLTI = (A, B, C) be an LTI SS representation. For any H =
{ĥ1, . . . , ĥM} with M ∈ N\{0}, the LS SS model ΣLS = ({(ALS

i , BLS
i , C)}M

i=1) of the
sampled-data system ΣSD = (A, B, C,H ) is quadratically stable if ΣLTI is stable.

Proof The stability of ΣLTI = (A, B, C) implies the stability of the autonomous
system Σaut

LTI = (A, 0, 0). Then there exists a P > 0, PT = P such that

x(t)TPx(t) − x(0)TPx(0) < 0, (1.25)

for all x(0) ∈ R
n, x(0) 	= 0 and t ∈ R+\{0}. Replacing x(t) with eAt x(0) in (1.25)

yields that for all x(0) ∈ R
n, x(0) 	= 0 and for all t ∈ R+\{0}

x(0)T
(

eATt PeAt − P
)

x(0) < 0. (1.26)

In turn (1.26) implies

eAT ĥi PeAĥi − P < 0, ∀ĥi ∈ H .

Using (1.6), we conclude that

ΦT(ĥi )PΦ(ĥi ) − P < 0, ∀ĥi ∈ H .

The proof of the statement follows by noticing that Φ(ĥi ) = ALS
i , for all i ∈ I

M
1 .

Lemma 1.1 establishes the connection between the stability of ΣLTI and the
quadratic stability of ΣLS. The following lemma establishes the remaining part of
the conservation of stability argument stated at the beginning of this section.

Lemma 1.2 Let ΣLS = ({(ALS
i , BLS

i , C)}M
i=1) be a quadratically stable LS SS rep-

resentation of the form (1.11) and P > 0 be a solution of (1.24). If the left inverse
V −1 of the matrix V ∈ R

n×r in Theorem 1.2 is chosen as V −1 = (V TPV )−1V TP,
then Σ̄LS = ({( ĀLS

i , B̄LS
i , C̄)}D

i=1) in Theorem 1.2 is also quadratically stable.
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Proof Below, we will use the following simple claims:
(C1) If S ∈ R

n×n is symmetric negative (respectively positive) definite, then Ŝ =
V TSV is also symmetric negative (respectively positive) definite.

(C2) V −1 = (V TPV )−1V TP =⇒ V −1P−1(V −1)T = (V TPV )−1.
(CS) (Schur complement lemma for positive/negative definiteness). Let S ∈ R

n×n

be a symmetric positive definite matrix and G ∈ R
n×n . Then GTSG − S < 0 ⇐⇒

GS−1GT − S−1 < 0.
Note that, by the assumption of the theorem, (1.24) holds. Multiplying (1.24) by

V T from left and V from right for all i ∈ I
M
1 and using (C1) yields

V T ALS
i

T
P ALS

i V − V TPV < 0, ∀i ∈ I
M
1 .

By (CS) it follows that

ALS
i V (V TPV )−1V T ALS

i
T − P−1 < 0, ∀i ∈ I

M
1 . (1.27)

In turn, multiplying (1.27) by V −1 from left and (V −1)T from right for all i ∈ I
M
1

and using (C1) yields

V −1ALS
i V (V TPV )−1V T ALS

i
T
(V −1)T − V −1P−1(V −1)T < 0, (1.28)

for all i ∈ I
M
1 . Using (C2) and choosing P̄ = V TPV , the inequality (1.28) can be

rewritten as
A
LS
i P̄−1 A

LS
i

T − P̄−1 < 0, ∀i ∈ I
M
1 . (1.29)

Finally, using (CS) one more time for (1.29) yields

A
LS
i

T
P̄ A

LS
i − P̄ < 0, ∀i ∈ I

M
1 . (1.30)

Since P̄ = V TPV is symmetric and positive definite by (C1), (1.30) proves the
quadratic stability of Σ̄LS = ({( ĀLS

i , B̄LS
i , C̄)}M

i=1).

Remark 1.1 Note that even though Lemma 1.2 is presented in this chapter as a step
on proving the stability of the reduced-order models for the sampled-data systems
computed with Procedure 1, on the condition of stability of the original plant; it
can also be considered as an independent stability result for model reduction of
discrete-time LS SS representations.

With Lemma 1.2 we have established the connection between the quadratic sta-
bility ofΣLS and Σ̄LS. As the main result of this section, with the following theorem,
we relate the conservation of stability argument to the discrete-time, time-varying
representations of the reduced-order aperiodic sampled-data systems of the form
(1.23), respectively.
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Theorem 1.3 Let ΣLTI = (A, B, C) be stable. Then, the model Σ̄disc of the form
(1.23) corresponding to Σ̄LS computed with Procedure 1 is quadratically stable.

Proof The proof follows directly from the subsequent application of Lemmas 1.1
and 1.2 to ΣLTI.

1.7 Numerical Examples

In this section, two generic numerical examples are presented to illustrate the pro-
posed model reduction method, Procedure 1.3

Example 1.1 For the first example, the procedure is applied to compute a reduced-
order model for a single-input single-output (SISO), stable systemΣLTI = (A, B, C)

of order 50, sampled with respect to a finite H (Scenario 2) to form the sampled-
data systemΣSD = (A, B, C,H )withH = {ĥ1, ĥ2, ĥ3, ĥ4} = {1, 1.5, 2, 3}. First,
the original LTI SS representation ΣLTI is used to construct to LS SS representation
ΣLS which models the behavior of the sampled-data system with respect to the
sampling interval setH . The modelΣLS is then used to get the reduced-order LS SS
representation Σ̄LS using Theorem 1.2. The reduced-order LS SS representation Σ̄LS

in this case is a 2-partial realization of order 18. For simulation, the output sequence
yk of the original sampled-data system ΣSD and ȳk of the reduced-order LS model
Σ̄LS are acquired for k = I

K
0 where K + 1 is the number of sampling instants of the

simulation; by applying the samewhiteGaussian noise input sequence u = u0 . . . uK ,
uk ∈ N (0, 1) for all k ∈ I

K
0 and sampling sequence h = h0 . . . hK , hk ∈ H for all

k ∈ I
K
0 . The total time horizon is chosen as [0, 50]. For each simulation, the distance

of the values ȳk to the values yk , k ∈ I
K
0 are compared with the best fit rate (BFR)

[26] which is defined as

BFR = 100%max

⎛
⎝1 −

√∑K
k=0‖yk − ȳk‖22√∑K
k=0‖yk − ym‖22

, 0

⎞
⎠ , (1.31)

where ym is the mean of the sequence {yk}K
k=0. Over 200 such simulations, the com-

puted mean of the BFRs is 98.5037%, whereas the best is 99.5113% and the worst
is 95.5948%. The output sequence {ȳk}K

k=0 giving the closest value to the mean of
the BFRs over this 200 simulations is illustrated in Fig. 1.1 together with the original
output sequence {yk}K

k=0.

Example 1.2 In the second example, the procedure is applied to compute a reduced-
order model for a SISO unstable system ΣLTI = (A, B, C) of order 10 sampled to

3The implementation of the procedure onMatlab is freely available (with the examples) for exper-
imentation from https://sites.google.com/site/mertbastugpersonal/. The original system parameters
used and reduced-order system parameters computed can be obtained from the same site.

https://sites.google.com/site/mertbastugpersonal/
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Fig. 1.1 (Example1.1): The
output of the reduced-order
model Σ̄LS compared with
the output of the original
model ΣLS. For this
simulation, the BFR is
98.5004%
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form the sampled-data system ΣSD = (A, B, C,H ) with H = {ĥ1, ĥ2, ĥ3, ĥ4} =
{0.1, 0.15, 0.2, 0.3}. First, the original LTI SS representationΣLTI is used to construct
to LS SS representation ΣLS which models the behavior of the sampled-data system
with respect to the sampling interval set H . The model ΣLS is then used to get the
reduced-order LS SS representation Σ̄LS using Theorem 1.2. The reduced-order LS
SS representation Σ̄LS in this case is a 0-partial realization of order 4. The simulations
are done with the input and sampling sequences with the specifications analogous to
the ones given for Example 1. For this example, the total time horizon is chosen as
[0, 5]. When such 200 simulations are done with this model, the mean of the BFRs
is computed as 96.0565%, the best as 97.5042%, and the worst as 79.3883%. Again,

Fig. 1.2 (Example1.2): The
output of the reduced-order
model Σ̄LS compared with
the output of the original
model ΣLS. For this
simulation, the BFR is
96.0535%
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the output sequence giving the closest value to the mean of the BFRs over this 200
simulations is illustrated in Fig. 1.2 together with the original output sequence.

1.8 Conclusions

The relation between theminimality property of a continuous-timeLTI system and its
discrete-time model, which models the behavior of the system in sampling instants,
is investigated for two general scenarios of aperiodic sampling. For both of the
considered sampling scenarios, it is shown that if the original continuous-time LTI
SS model is minimal, i.e., reachable and observable, then the resulting discrete-time
models are minimal as well. Then, a procedure for model reduction of sampled-
data systems by moment matching is proposed for the latter sampling scenario. The
procedure relies on computing a reduced-order discrete-time model from the LS SS
model of the sampled-data system. The procedure is illustrated on some numerical
examples. It is shown that the stability of the original continuous-time LTI plant
guarantees the quadratic stability of the resulting reduced-order discrete-time LS SS
model with respect to any finite allowed sampling interval set.
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Chapter 2
Stabilizability and Control Co-Design
for Discrete-Time Switched Linear
Systems

M. Fiacchini, M. Jungers, A. Girard and S. Tarbouriech

Abstract In this work we deal with the stabilizability property for discrete-time
switched linear systems. First we provide a constructive necessary and sufficient
condition for stabilizability based on set-theory and the characterization of a uni-
versal class of Lyapunov functions. Such a geometric condition is considered as the
reference for comparing the computation-oriented sufficient conditions. The clas-
sical BMI conditions based on Lyapunov-Metzler inequalities are considered and
extended. Novel LMI conditions for stabilizability, derived from the geometric ones,
are presented that permit to combine generality with convexity. For the different
conditions, the geometrical interpretations are provided and the induced stabilizing
switching laws are given. The relations and the implications between the stabiliz-
ability conditions are analyzed to infer and compare their conservatism and their
complexity. The results are finally extended to the problem of the co-design of a
control policy, composed by both the state feedback and the switching control law,
for discrete-time switched linear systems. Constructive conditions are given in form
of LMI that are necessary and sufficient for the stabilizability of systems which are
periodic stabilizable.
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2.1 Introduction

Switched systems are characterized by dynamics that may change along the time
among a finite number of possible dynamical behaviors. Each behavior is determined
by a mode and the active one is selected by means of a function of time, or state,
or both, and referred to as switching law. The interest that such a kind of systems
rose in the last decades lies in their capability of modeling complex real systems, as
embedded or networked ones, and also for the theoretical issues involved, see [19,
20, 24].

Several conditions for stability have been proposed in the literature based on:
switched Lyapunov functions [8]; the joint spectral radius [15]; path-dependent Lya-
punov functions [18]; and thevariational approach [21]. If the existenceof polyhedral,
hence convex, Lyapunov functions has been proved to be necessary and sufficient
for stability [5, 22], convex functions result to be conservative for switched systems
with switching law as control input, see [6, 24]. Thus, nonconvex functions must
be considered for addressing stabilizability. Sufficient conditions for stabilizability
have been provided in literature, mainly based on min-switching policies introduced
in [26], developed in [17, 19] and leading to Lyapunov-Metzler inequalities [13, 14].
The fact that the existence of a min-switching control law is necessary and sufficient
for exponential stabilizability has been claimed in [24]. In the same work, as well as
in [6], it has been proved that the stabilizability of a switched system does not imply
the existence of a convex Lyapunov function. Thus, for stabilizability, nonconvex
Lyapunov functions might be considered, see for instance [14, 24].

We present here some recent results, mostly based on set-theory and convex
analysis, on stabilizability and control co-design for switched linear systems, see [10–
12]. We first propose a stabilizability approach based on set-theory and invariance,
see [2, 3, 16]. A geometric necessary and sufficient condition for stabilizability and
sufficient one for non-stabilizability of discrete-time linear switched systems are
presented in [10]. A family of nonconvex, homogeneous functions is proved to be a
universal class of Lyapunov functions for switched linear systems.

The geometric condition in [10] might, nonetheless, result to be often compu-
tationally unaffordable, although such a computational complexity appears to be
inherent to the problem itself, hence unavoidable. In the literature, computation-
oriented sufficient conditions for stabilizability have been provided that are based on
min-switching policies and lead to nonconvex control Lyapunov functions in form
of minimum of quadratics. Such functions are obtained as solutions to Lyapunov-
Metzler BMI conditions, [1, 14], and through an LQR-based iterative procedure,
[24]. New LMI conditions for stabilizability, which could conjugate computational
affordability with generality, are proposed here, see [12]. The LMI conditions are
proved to admit a solution if and only if the system is periodic stabilizable.Moreover,
we provide geometrical and numerical insights on different stabilizability conditions
to quantify their conservatism and the relations between them and with the necessary
and sufficient ones.
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The problem of co-designing both the switching law and the control input is even
more involved than the problem of stabilizability of autonomous switched systems.
This problem has been addressed in several works based on Lyapunov-Metzler BMI
conditions, as in [9], or on techniques based on LQR control approximation in [1,
27, 28]. Constructive LMI conditions are given here that are necessary and sufficient
for the stabilizability of systems which are periodic stabilizable, [11]. The conditions
are constructive and provide the switching law and a family of state feedback gains
stabilizing the system, although their complexity grows combinatorially with the
maximal length of modes sequences considered.

Notation: Given n ∈ N, define Nn = { j ∈ N : 1 ≤ j ≤ n}. The Euclidean-norm in
R

n is ‖x‖. The i th element of a finite set ofmatrices is denoted as Ai .We use the short-
cut P > 0 (resp. P ≥ 0) to define a symmetric positive definite (resp. semi-definite)
matrix, i.e., such that P = PT and its eigenvalues are positive (resp. non-negative).
Given P ∈ R

n×n with P > 0, define E (P) = {
x ∈ R

n : xT Px ≤ 1
}
. Given θ ∈ R,

R(θ) ∈ R
2 is the rotation matrix of angle θ . The set of q switching modes is

I = Nq , all the possible sequences of modes of length N is I N = ∏N
j=1 I , and

|σ | = N ifσ ∈ I N . Given N , M ∈ Nwith N ≤ M , denoteI [N :M] = ⋃M
i=N I i and

then NI = ∑N
k=1 q

k is the number of elements in I [1:N ]. Given σ ∈ I N , define:
Aσ = ∏N

j=1 Aσ j = AσN . . . Aσ1 , and define
∏N

j=M Aσ j = I if M > N . Given a ∈ R,
the maximal integer smaller than or equal to a is �a�. The set of Metzler matri-
ces of dimension N , i.e., matrices π ∈ R

N×N whose elements are nonnegative and∑N
j=1 π j i = 1 for all i ∈ NN , isMN .

2.2 Stabilizability of Discrete-Time Linear Switched
Systems

Consider the discrete-time switched system

xk+1 = Aσ(k)xk, (2.1)

where xk ∈ R
n is the state at time k ∈ N and σ : N → Nq is the switching law that, at

any instant, selects the transitionmatrix among the finite set {Ai }i∈Nq , with Ai ∈ R
n×n

for all i ∈ Nq . Given the initial state x0 and a switching law σ(·), we denote with
xσ
N (x0) the state of the system (2.1) at time N starting from x0 by applying the

switching law σ(·), that can be state-dependent, i.e., σ(k) = σ(x(k)) with slight
abuse of notation.

Assumption 2.1 The matrices Ai , with i ∈ Nq , are nonsingular.

Remark 2.1 Assumption 2.1 is not restrictive. In fact, the stable eigenvalues of the
matrices Ai are beneficial from the stability point of view of the switched systems
and poles in zero are related to the most contractive dynamics. Moreover, the results
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presented in the following can be extended to the general case with appropriate
considerations.

A concept widely employed in the context of set-theory and invariance is the
C-set, see [3, 5]. A C-set is a compact and convex set with 0 ∈ int(Ω). We define an
analogous concept useful for our purpose. For this, we first recall that a set Ω is a
star-convex set if there exists x0 ∈ Ω such that every convex combination of x and
x0 belongs to Ω for every x ∈ Ω .

Definition 2.1 A setΩ ⊆ R
n is a C∗-set if it is the union of a finite number of C-sets.

The gauge function of a C∗-set Ω ⊆ R
n is ΨΩ(x) = min

α≥0
{α ∈ R : x ∈ αΩ}.

Notice that every C∗-set is star-convex, i.e., there is z ∈ Ω such that every convex
combination of x and z belongs to Ω for all x ∈ Ω , but the converse is not true in
general. Some basic properties of the C∗-sets and their gauge functions are listed
below, see also [23].

Property 2.1 Any C-set is a C∗-set. Given a C∗-setΩ ⊆ R
n, we have that αΩ ⊆ Ω

for all α ∈ [0, 1], and the gauge function ΨΩ(·) is: homogeneous of degree one, i.e.,
ΨΩ(αx) = αΨΩ(x) for all α ≥ 0 and x ∈ R

n; positive definite; defined on R
n and

radially unbounded.

The gauge functions induced by C-sets have been used in the literature as
Lyapunov functions candidates, see [4]. In particular, it has been proved that they
provide a universal class of Lyapunov functions for linear parametric uncertain sys-
tems, [5, 22], and switched systems with arbitrary switching, [20]. We prove that
the gauge functions induced by C∗-sets form a universal class of Lyapunov function
for switched systems with switching control law. For this, we provide a definition of
Lyapunov function for the particular context, analogous to the one given in [5].

Definition 2.2 A positive definite continuous function V : Rn → R is a global con-
trol Lyapunov function for (2.1) if there exist a positive N ∈ N and a switching
law σ(·), defined on R

n , such that V is non-increasing along the trajectories xσ
k (x)

and decreasing after N steps, i.e., V (xσ
1 (x)) ≤ V (x) and V (xσ

N (x)) < V (x), for all
x ∈ R

n .

Definition 2.2 is a standard definition of global control Lyapunov function except
for the N -steps decreasing requirement. On the other hand, such a function implies
the convergence of every subsequence in j ∈ N of the trajectory, i.e., xσ

i+ j N (x) for
all i < N , then also the convergence of the trajectory itself. This, with the stability
assured by V (xσ

1 (x)) ≤ V (x), ensures global asymptotic stabilizability.

Definition 2.3 The system (2.1) is globally exponentially stabilizable if there are
c ≥ 0 and λ ∈ [0, 1) and, for all x ∈ R

n , there exists a switching law σ : N → Nq ,
such that

‖xσ
k (x)‖ ≤ cλk‖x‖, ∀k ∈ N. (2.2)
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A periodic switching law is given by σ(k) = i p(k) and p(k) = k − M �k/M� +
1, with M ∈ N and i ∈ I M , which means that the sequence given by i repeats
cyclically. We will consider conditions under which system (2.1) is stabilized by a
periodic σ(·).
Definition 2.4 The system (2.1) is periodic stabilizable if there exist a periodic
switching law σ : N → Nq , c ≥ 0 and λ ∈ [0, 1) such that (2.2) holds for all x ∈ R

n .

For stabilizability the switching function might be state-dependent whereas for
periodic stabilizability it must be not dependent on the state.

Lemma 2.1 The system (2.1) is periodic stabilizable if and only if there exist M ∈ N

and i ∈ I M such that Ai is Schur.

2.2.1 Geometric Necessary and Sufficient Condition

It is proved in [22] that for an autonomous linear switched system, the origin is
asymptotically stable if and only if there exists a polyhedral Lyapunov function,
see also [5, 20]. Analogous results can be stated in the case where the switching
sequence is a properly chosen selection, that is considering it as a control law. This
contribution is based on the following algorithm.

Algorithm 1 Computation of a contractive C∗-set for (2.1) satisfying Assumption
2.1.

• Initialization: given the C∗-set Ω ⊆ R
n , define Ω0 = Ω and k = 0;

• Iteration for k ≥ 0: Ωk+1 =
⋃

i∈Nq

Ω i
k+1 with Ω i

k+1 = A−1
i Ωk for all i ∈ Nq ;

• Stop if Ω ⊆ int
( ⋃

j∈Nk+1

Ω j

)
; denote Ň = k + 1 and

Ω̌ =
⋃

j∈NŇ

Ω j . (2.3)

From the geometrical point of view, Ω i
k+1 is the set of x mapped in Ωk through

Ai . Then Ωk+1 is the set of x ∈ R
n for which there exists a selection i(x) ∈ Nq such

that Ai(x)x ∈ Ωk . Thus, Ωk is the set of x that can be driven in Ω in at most k steps
and hence Ω̌ the set of x that can reach Ω in Ň or less steps.

Proposition 2.1 The sets Ωk for all k ≥ 0 are C∗-sets.

Algorithm 1 provides a C∗-set Ω̌ contractive in Ň steps, for every initial C∗-set
Ω ∈ R

n , if and only if the switched system (2.1) is stabilizable, as stated below.
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Theorem 2.2 [10] There exists a Lyapunov function for the switched system (2.1) if
and only if Algorithm 1 ends with finite Ň .

Then finite termination of Algorithm 1 is a necessary and sufficient condition
for the global asymptotic stabilizability of the switched system (2.1). An alternative
formulation of such a necessary and sufficient condition is presented below.

Theorem 2.3 [10] There exists a Lyapunov function for the switched system (2.1) if
and only if there exists a C∗-set whose gauge function is a Lyapunov function for the
system.

Theorem 2.3 states that the existence of a C∗-set induced Lyapunov function is
a necessary and sufficient condition for stabilizability of switched systems. Hence,
such functions, nonconvex and homogeneous of order one, form a class of universal
Lyapunov functions for the switched systems.

Remark 2.2 TheAlgorithm 1 terminates after a finite number of iterations only if the
switched system is stabilizable, there is no guarantee of finite termination in general
(which means it is a semi-algorithm, to be exact). An analogous, but just sufficient,
constructive condition ensuring that there is not a switching law such that the system
(2.1) converges to the origin is given in [10].

Besides aLyapunov function,Algorithm1provides a stabilizing switching control
law for system (2.1), if it terminates in finite time.

Proposition 2.2 [10] If Algorithm 1 ends with finite Ň then ΨΩ̌ : Rn → R is a
Lyapunov function for the switched system (2.1) and given the set valued map

Σ̌(x) = argmin
(i,k)

{ΨΩ i
k
(x) : i ∈ Nq , k ∈ NŇ } ⊆ Nq × NŇ , (2.4)

any switching law defined as (σ̌ (x), ǩ(x)) ∈ Σ̌(x), is a stabilizing switching law.
Furthermore, one getsΨΩ̌(x σ̌

ǩ(x)
(x)) ≤ λ̌ΨΩ̌(x) andΨΩ̌(x σ̌

j (x)) ≤ ΨΩ̌(x) for all j ∈
Nǩ(x), with λ̌ = min

λ
{λ ≥ 0 : Ω ⊆ λΩ̌} < 1.

It could be reasonable, to speed up the convergence of the trajectory of the system
to origin, to select among the elements of Σ(x), those whose k is minimal.

Remark 2.3 If the system is stabilizable, then the algorithm ends with finite Ň for
all initial C∗-set Ω . Clearly, the value of Ň and the complexity of the set Ω̌ depend
on the choice of Ω . In particular, if Ω is the Euclidean norm ball (or the union of
ellipsoids), the setsΩ i

k andΩk , with i ∈ Nq and k ∈ NŇ , are unions of ellipsoids, and
Ω̌ also. Then, the switching law computation reduces to check the minimum among
xT Pj x with j ∈ M̌ , where {Pj } j∈M̌ are the M̌ positive definite matrices defining Ω̌ ,

with M̌ = q + · · · + q Ň = (q Ň+1 − q)/(q − 1), for q > 1 and M̌ = Ň for q = 1.
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2.2.2 Duality Robustness-Control of Switched Systems

In this section, we recall some results from the literature on the stability of a switched
linear system with arbitrary switching law σ(·) to highlight the analogies with the
approaches proposed here for stabilizability.

Consider the linear switched system (2.1) and assume that the switching law is
arbitrary. This would mean that the switching law might be regarded as a parametric
uncertainty and the results in [4, 5, 22] on robust stability apply with minor adap-
tations, see also [20]. The following algorithm provides a polytopic contractive set,
and then an induced polyhedral Lyapunov function, for this class of systems, see [3].

Algorithm 2 Computation of a λ-contractive C-set for (2.1) with arbitrary
switching.

• Initialization: given the C-set Γ ⊆ R
n and λ ∈ [0, 1), define Γ0 = Γ and k = 0;

• Iteration for k ≥ 0: Γk+1 = Γ ∩
⋂

i∈Nq

λA−1
i Γk ;

• Stop if Γk ⊆ Γk+1; denote N̂ = k and Γ̂ = Γk .

The set Γ̂ is the maximal λ-contractive set in Γ for the switched system with
arbitrary switching law. Provided that Algorithm 2 terminates with finite N̂ , it can
be proved that the system is globally exponentially stable, see [5].

Remark 2.4 Notice the analogies between Algorithms 1 and 2: they share the same
iterative structure and they both generate contractive sets which induce Lyapunov
functions if they terminate in a finite time. The main substantial difference resides in
the use of intersection/union operators and in the family of sets generated, C∗-sets
by Algorithm 1 and C-sets by Algorithm 2. Interestingly, the C-sets are closed under
the intersection operation whereas C∗-sets are closed under the union.

Finally, for linear parametric uncertain systems, the existence of a polyhedral
Lyapunov function is a necessary and sufficient condition for asymptotic stability.

Theorem 2.4 [5, 22] There is a Lyapunov function for a linear parametric uncertain
system if and only if there is a polyhedral Lyapunov function for the system.

The result in Theorem 2.4 holds for general parametric uncertainty and applies
also for switched systems with arbitrary switching law, as remarked in [20].

Remark 2.5 As for the duality of Algorithms 1 and 2 highlighted in Remark 2.4,
evident conceptual analogies hold between Theorems 2.3 and 2.4. Then the class
of gauge functions induced by C∗-sets is universal for linear switched systems with
switching control law, in analogy with the class of polyhedral functions (i.e., induced
by C-sets) for the case of arbitrary switching law, [4, 5].
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2.3 Novel Conditions for Stabilizability and Comparisons

As seen above, system (2.1) is stabilizable if and only if there exists N ∈ N such that

Ω ⊆ int
( ⋃

i∈I [1:N ]
Ωi

)
with Ωi = Ωi (Ω) = {x ∈ R

n : Ai x ∈ Ω}. (2.5)

Since the stabilizability property does not depend on the choice of the initial C∗-set
Ω , even if N does, focusing on the case Ω = B and ellipsoidal pre-images entails
no loss of generality, see [10]. Then condition (2.3) can be replaced by

B ⊆ int
( ⋃

i∈I [1:N ]
Bi

)
with Bi = {x ∈ R

n : xTAT
i Ai x ≤ 1}, (2.6)

for what concerns stabilizability, although the value N might depend on the choice
of Ω . The set inclusions (2.5) or (2.6) are the stopping conditions of the algorithm
and then must be numerically checked at every step. The main computational issue
consists in determining if a C∗-set Ω is included into the interior of the union of
some C∗-sets. This problem is very complex in general, also in the case of ellipsoidal
sets where it relates to quantifier elimination over real closed fields [7]. On the other
hand, the condition given by Theorem 2.2 provides an exact characterization of the
complexity inherent to the problem of stabilizing a switched linear system.

Theobjective here is to consider alternative conditions for stabilizability to provide
geometrical and numerical insights and analyze their conservatism by comparison
with the necessary and sufficient one given in Theorem 2.2.

2.3.1 Lyapunov-Metzler BMI Conditions

The condition we are considering first is related to the Lyapunov-Metzler inequalities
that is sufficient and given by a set of BMI inequalities involving Metzler matrices.

Theorem 2.5 [14] If there exist Pi > 0, with i ∈ I , and π ∈ Mq such that

AT
i

⎛

⎝
q∑

j=1

π j i Pj

⎞

⎠ Ai − Pi < 0, ∀i ∈ I , (2.7)

holds, then the switched system (2.1) is stabilizable.

As proved in [14], the satisfaction of (2.7) implies that the homogeneous func-
tion induced by the set

⋃
i∈I E (Pi ) is a control Lyapunov function. A first rela-

tion between the Lyapunov-Metzler condition (2.7) and the geometric one (2.5) is
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provided below.Weprove that the satisfaction of (2.7) implies that the condition given
by Theorem 2.2 holds for the particular case of Ω = ⋃

i∈I AiE (Pi ) and N = 1.

Proposition 2.3 [12] If the Lyapunov-Metzler condition (2.7) holds then (2.5) holds
with N = 1 and Ω = ⋃

i∈I AiE (Pi ).

Proposition2.3 provides a geometrical meaning of the Lyapunov-Metzler con-
dition and a first relation with the necessary and sufficient condition given in
Theorem 2.2. In fact, for the general case of q ∈ N the Lyapunov-Metzler condi-
tion is just sufficient for

⋃
i∈I AiE (Pi ) ⊆ int

(⋃
i∈I E (Pi )

)
to hold. Moreover, it

is proved in [12] that the condition is also necessary for q = 2.

2.3.2 Generalized Lyapunov-Metzler Conditions

Two generalizations of the Lyapunov-Metzler condition can be given, by relaxing
the intuitive but unnecessary constraint stating that the number of ellipsoids and the
number of modes are equal.

Proposition 2.4 [12] If there exist M ∈ N and Pi > 0, with i ∈ I [1:M], and π ∈
MMI such that

A
T
i

( ∑

j∈I [1:M]
π j i Pj

)
Ai − Pi < 0, ∀i ∈ I [1:M],

holds, then the switched system (2.1) is stabilizable.

Proposition 2.4 extends the Lyapunov-Metzler condition (2.7), which is recovered
for M = 1. Another possible extension is obtained by maintaining the sequence
length in 1 but increasing the number of ellipsoids involved.

Proposition 2.5 [12] If for every i ∈ I there exist a set of indices Ki = Nhi , with
hi ∈ N; a set of matrices P (i)

k > 0, with k ∈ Ki , and there are π
(p,i)
m,k ∈ [0, 1], satis-

fying
∑

p∈I
∑

m∈K p
π

(p,i)
m,k = 1 for all k ∈ Ki , such that

AT
i

⎛

⎝
∑

p∈I

∑

m∈K p

π
(p,i)
m,k P (p)

m

⎞

⎠ Ai − P (i)
k < 0, ∀i ∈ I, ∀k ∈ Ki ,

holds, then the switched system (2.1) is stabilizable.

Geometrically, Proposition 2.5 provides a condition under which there exists a
C∗-set composed by a finite number of ellipsoids that is contractive.
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2.3.3 LMI Sufficient Condition

The main drawback of the necessary and sufficient condition for stabilizability is its
inherent complexity. TheLyapunov-Metzler-based approach leads to amore practical
BMI sufficient condition.Nevertheless, the complexity could be still computationally
prohibitive, see [25]. Our next aim is to formulate an alternative condition that could
be checked by convex optimization algorithms.

Theorem 2.6 [12] The switched system (2.1) is stabilizable if there exist N ∈ N and
η ∈ R

NI such that η ≥ 0,
∑

i∈I [1:N ] ηi = 1 and

∑

i∈I [1:N ]
ηiA

T
i Ai < I. (2.8)

We wonder now if the sufficient condition given in Theorem 2.6 is also necessary.
The answer is negative, in general, as proved by the following counter-example.

Example 2.1 The aim of this illustrative example is to show a case for which the
inclusion condition (2.6) is satisfied with N = 1, but there is not a finite value of N̂ ∈
N for which condition (2.8) holds. Consider the three modes given by the matrices

A1 =
[
a 0
0 a−1

]
, A2 =

[
a 0
0 a−1

]
R

(
2π

3

)
, A3 =

[
a 0
0 a−1

]
R

(−2π

3

)
,

with a = 0.6. Set Ω = B. By geometric inspection, condition (2.6) holds at the first
step, i.e., for N = 1, see [12]. On the other hand, Ai are such that det(AT

i Ai ) =
a2a−2 = 1 and tr(AT

i Ai ) = a2 + a−2 = 3.1378 while the determinant and trace of
the matrix defining B are 1 and 2, respectively. Notice that a2 + a−2 > 2 for every
a different from 1 or −1 and a2 + a−2 = 2 otherwise.

For every N and everyBi with i ∈ I [1:N ], the relatedAi is such that det(AT
i Ai ) =

1 and tr(AT
i Ai ) ≥ 2. Notice that, for all the matrices Q > 0 in R

2×2 such that
det(Q) = 1, then tr(Q) ≥ 2 and tr(Q) = 2 if and only if Q = I , since the deter-
minant is the product of the eigenvalues and the trace its sum. Thus, for every subset
of the ellipsoids Bi , determined by a subset of indices K ⊆ I [1:N ], we have that∑

i∈K ηiA
T
i Ai < I , cannot hold, since either tr(AT

i Ai ) > 2 or AT
i Ai = I . Thus the

LMI condition (2.8) is sufficient but not necessary.

Another interesting implication that follows from Example 2.1 concerns the sta-
bilizability through periodic switching sequences.

Proposition 2.6 [12] The existence of a stabilizing periodic switching law is suffi-
cient but not necessary for the stabilizability of the system (2.1).

In the proof of Proposition 2.6 we used the fact that the existence of a stabilizing
periodic switching law implies the satisfaction of the LMI condition, see [12]. One
might wonder if there exists an equivalence relation between periodic stabilizability
and condition (2.8). The answer is provided below.
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Theorem 2.7 [12] A stabilizing periodic switching law for the system (2.1) exists if
and only if condition (2.8) holds.

Note that, although periodic stabilizability and condition (2.8) are equivalent from
the stabilizability point of view, the computational aspects and the resulting controls
are different. Indeed, checking periodic stabilizability consists of an eigenvalue test
for a number of matrices exponential in M , see Lemma 2.1, while condition (2.8)
is an LMI that grows exponentially with N . On the other hand, M is always greater
or equal than N , much greater in general. Finally, notice that the periodic law is in
open loop whereas (2.8) leads to a state-dependent switching law.

The LMI condition (2.8) can be used to derive the controller synthesis techniques.
If (2.8) holds, then there is μ ∈ [0, 1) such that

∑

i∈I [1:N ]
ηiA

T
i Ai ≤ μ2 I. (2.9)

A stabilizing controller does not necessarily select at each time step k ∈ N the input to
be applied. This can be done only at {kp}p∈N with k0 = 0, and kp < kp+1 ≤ kp + N ,
for all p ∈ N. At time kp, the controller selects the sequence of inputs to be applied
up to step kp+1 − 1. The instant kp+1 is also determined by the controller at time kp.
More precisely, the controller acts as follows for all p ∈ N, let

i p = arg min
i∈I [1:N ]

(xTkpA
T
i Ai xkp ). (2.10)

Then, the next instant kp+1 is given by

kp+1 = kp + l(i p), (2.11)

with l(i p) length of i p, and the controller applies the sequence of inputs

σkp+ j−1 = i p, j , ∀ j ∈ {1, . . . , l(i p)}. (2.12)

Theorem 2.8 [12]Assume that (2.8) holds, and consider the control given by (2.10)–
(2.12). For all x0 ∈ R

n and k ∈ N, we have ‖xk‖ ≤ μk/N−1LN−1‖x0‖, where L ≥
‖Ai‖, for all i ∈ I and L ≥ 1, and the controlled system is globally exponentially
stable.

From Theorem 2.8, the LMI condition (2.8) implies that the switched system
with the switching rule given by (2.10)–(2.12) is globally exponentially stable. Nev-
ertheless, neither the Euclidean norm of x nor the function min

i∈I [1:N ]
(xTAT

i Ai x) are

monotonically decreasing along the trajectories. On the other hand a positive defi-
nite homogeneous nonconvex function decreasing at every step can be inferred for a
different switching rule.
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Proposition 2.7 [12] Given the switched system (2.1), suppose there exist N ∈ N

and η ∈ R
NI such that η ≥ 0,

∑
i∈I [1:N ] ηi = 1 and (2.8) hold. Then there is λ ∈

[0, 1) such that the function

V (x) = min
i∈I [1:N ]

(xTλ−niA
T
i Ai x), (2.13)

where ni is the length of i ∈ I [1:N ], satisfies V (Aσ(x)x) ≤ λV (x) for all x ∈ R
n,

with
i∗(x) = arg min

i∈I [1:N ]
(xTλ−niA

T
i Ai x), (2.14)

and σ(x) = i∗1 (x).

Remark 2.6 If the LMI (2.8) has a solution, then there exists a scalar μ ∈ [0, 1),
such that (2.9) is verified. The value of μ induces the rate of convergence λ for the
Lyapunov function (2.13). Thus onemight solve the optimization problemminμ2,η μ2

subject to (2.9), to get higher convergence rate.

2.3.4 Stabilizability Conditions Relations

The implications between the stabilizability conditions, whose proofs can be found
in [12], are summarized in Fig. 2.1. Remark that, compared to the Lyapunov-Metzler
inequalities (2.7), the LMI condition (2.8) concerns a convex problem and it is less
conservative. On the other hand, the dimension of the LMI problem might be con-
sistently higher than the BMI one. The direct extension to the case of output-based
switching design is not straightforward and requires further research. Nevertheless,
since the LMI condition and the periodic stabilizability are equivalent, if (2.8) has a
solution then an open-loop stabilizing switching sequence can be designed, and no
output is necessary to stabilize the system.

Fig. 2.1 Implications diagram of stabilizability conditions
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2.4 Control Co-design for Discrete-Time Switched Linear
Systems

Consider now the discrete-time controlled switched linear system

xk+1 = Aσk xk + Bσk uk, (2.15)

where xk ∈ R
n and uk ∈ R

m are the state and the control input at time k ∈ N,
respectively; σ : N → I is the switching law and {Ai }i∈I and {Bi }i∈I , with
Ai ∈ R

n×n and Bi ∈ R
n×m for all i ∈ I . A time-varying control policy ν : Rn ×

N → I × R
m×n , is such that ν(x, k) = (

σ(x, k), K (x, k)
) ∈ I × R

m×n , where
K (x, k) is the state feedback gain that may change at every instant, i.e., such that
uk(xk) = K (xk, k)xk .

Remark 2.7 As proved in [27], see Theorems 5 and 7 in particular, the attention can
be restricted without loss of generality to static control policies of the form

ν(x) = (
σ(x), K (x)

) ∈ I × R
m×n, (2.16)

such that ν(ax) = ν(x) for all x ∈ R
n and a ∈ R, and to piecewise quadratic Lya-

punov functions. Moreover K (x) belongs to a finite set, i.e., K (x) ∈ K = {κi }i∈NM .

The switched system in closed loop with (2.16) reads

xk+1 = (
Aσ(xk ) + Bσ(xk )K (xk)

)
xk, (2.17)

where σ(xk) = σk . We denote with xν
k (x0) ∈ R

n the state of the system (2.15) at
time k starting from x(0) = x0 by applying the control policy ν. Given σ ∈ I D we
denote with xσ

k (x0) the state of (2.17) at time k ≤ D starting at x0 under the switching
sequence σ . The dependence of xν

k and xσ
k on the initial conditions will be dropped.

Definition 2.5 The system (2.15) is globally exponentially stabilizable if there are a
control policy ν(x) as in (2.16), c ≥ 0 and λ ∈ [0, 1) such that ‖xν

k (x0)‖ ≤ cλk‖x0‖,
for all x0 ∈ R

n , with xk state of (2.17).

In Sects. 2.3.3 and 2.3.4 we proved that, for autonomous systems as (2.1), periodic
stabilizability is more conservative than generic stabilizability. On the other hand, the
equivalent condition is much more computationally tractable. Indeed, the condition
in case of periodic stabilizability is an LMI in the parameter N that might by much
smaller than the periodic cycle length. Hereafter we focus on a condition analogous to
the LMI one (2.8) for the controlled switched system (2.15) to determine a stabilizing
control policy (2.16) for periodic stabilizable systems.

From Remark2.7, the problem of co-design is equivalent to determine a stabi-
lizing static control policy as in (2.16), with finite number of feedback gains, and
a piecewise quadratic Lyapunov function for the system (2.17). Applying Theorem
2.7, the objective is to search for sequences of modes and feedback gains, fulfilling
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the LMI condition (2.8) in the context of co-design. That is, given a sequence ϑ ∈ I ,
of length J , and a time instant j ∈ NJ , a gain among the finite setK can be applied,
denoted as K ϑ

j and whose value has to be designed. Then, with a slight abuse of
notation, given J ∈ N and a sequence ϑ ∈ I J , we denote

Fϑ =
J∏

j=1

Fϑ j= FϑJ . . . Fϑ1= (AϑJ+ BϑJ K
ϑ
J ) . . . (Aϑ1+ Bϑ1K

ϑ
1 ). (2.18)

Thus a set of NI = ∑N
k=1 q

k matrices Fϑ , one for every ϑ ∈ I [1:N ], can be defined
as in (2.18) that are parameterized in the gains {K ϑ

j } j∈N|ϑ | . We focus on the control
policy for (2.15) of the form (2.16) where K (x) belongs to one of the elements of a
sequence associated to a mode inI [1:N ]. Then, K (x) is a gain among the

∑N
k=1 kq

k

possible, i.e., K (x) ∈ K where

K = {κi }i∈NM = {K ϑ
j ∈ R

m×n : ϑ ∈ I [1:N ], j ∈ N|ϑ |}, (2.19)

withM = ∑N
k=1 kq

k . Given a switching lawϑ : N → I and a sequence of feedback
gains K ϑ : N → R

m×n , we denote with xϑ
k (x) the state at time k starting at x if the

control νk = (ϑk, K ϑ
k ) is applied at k for all k ∈ N. As for the case without control

input, the concept of periodic ϑ-stabilizability can be given for the system (2.15).

Definition 2.6 The system (2.15) is periodic ϑ-stabilizable if there exist: a periodic
switching law ϑ : N → I and a periodic sequence K ϑ : N → R

m×n , both of cycle
length D ∈ N; c ≥ 0 and λ ∈ [0, 1) such that ‖xϑ

k (x)‖ ≤ cλk‖x‖ holds for all x ∈ R
n

and k ∈ N.

Clearly periodic ϑ-stabilizability is sufficient for exponential stabilizability of
(2.15) as in Definition 2.5. From Definition 2.6 and Theorem 2.7, the conditions

∑

i∈I [1:N ]
ηi = 1, (2.20)

∑

j∈I [1:N ]
η jF

T
j F j < I, (2.21)

are necessary and sufficient for periodic ϑ-stabilizability of system (2.15). Thus,
condition (2.21) is anLMI that provides the exact characterizationofϑ-stabilizability,
together with (2.20). Below we give a convex condition equivalent to (2.21).

Proposition 2.8 [11]Given N ∈ N,η ∈ R
NI withη > 0, and the set of gains (2.19),

condition (2.21) holds if and only if for every j ∈ I [1:N ] there exist | j | − 1 nonsin-
gular matrices G j,k ∈ R

n×n with k ∈ N| j |−1 and R j ∈ R
n×n such that R j = RT

j > 0
and
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

η j I X j,| j | 0 . . . 0 0 0
XT

j,| j | Y j,| j |−1 X j,| j |−1 . . . 0 0 0
0 XT

j,| j |−1 Y j,| j |−1 . . . 0 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . Y j,2 X j,2 0
0 0 0 . . . XT

j,2 Y j,1 X j,1

0 0 0 . . . 0 XT
j,1 R j

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

> 0 (2.22)

for every j ∈ I [1:N ] with X j,1 = η jF j1 and X j,k+1 = F jk+1G j,k and Y j,k = G j,k +
GT

j,k for all k ∈ N| j |−1 and ∑

j∈I [1:N ]
R j < I. (2.23)

The following theorems, based on Proposition 2.8, provide a necessary and suf-
ficient LMI condition for periodic ϑ-stabilizability of the controlled system (2.15),
see their proofs in [11]. Moreover, the explicit form of the control law (2.16) is given.

Theorem 2.9 [11]The system (2.15) is periodicallyϑ-stabilizable if andonly if there
exist N ∈ N; η ∈ R

NI such that η > 0 and (2.20) holds; and for every j ∈ I [1:N ]
there are:

• | j | − 1 nonsingular matrices G j,k ∈ R
n×n, with k ∈ N| j |−1;

• | j | matrices Z j,k ∈ R
m×n with k ∈ N| j |;

• a symmetric positive definite matrix R j ∈ R
n×n;

such that (2.22) and (2.23) hold with

X j,1 = η j A j1 + Bj1 Z j,1,

X j,k+1 = A jk+1G j,k + Bjk+1 Z j,k+1, ∀k ∈ N| j |−1,

Y j,k = G j,k + GT
j,k, ∀k ∈ N| j |−1,

(2.24)

and gains
K j

1 = η−1
j Z j,1,

K j
k+1 = Z j,k+1G

−1
j,k, ∀k ∈ N| j |−1,

(2.25)

for all j ∈ I [1:N ].

The following theorem provides a ϑ-stabilizability condition, a control policy and
a bound on the decreasing of the Euclidean norm every N steps at most.

Theorem 2.10 [11] Suppose there exist α > 1 and N ∈ N; η ∈ R
NI such that η >

0; matrices G j,k ∈ R
n×n with k ∈ N| j |−1, Z j,k ∈ R

m×n with k ∈ N| j | and R j ∈ R
n×n

as defined in Theorem 2.9 such that (2.22)–(2.24) hold and

∑

i∈I [1:N ]
ηi = α. (2.26)
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Then system (2.15) is periodically ϑ-stabilizable and ‖Fϑ(x)x‖2 < λ‖x‖2 holds for
all x ∈ R

n, with
ϑ = ϑ(x) = arg min

j∈I [1:N ]
(xTFT

j F j x),

and λ = α−1/2. Given x(t) = x, the stabilizing control policy is defined from (2.25)
within an horizon of length |ϑ | as

ν(x, k) = (σ (x, k), K (x, k)) = (
ϑk, K ϑ

k

)
(2.27)

to be applied at time t + k − 1, for all k ∈ N|ϑ |.

From Theorem2.10, the value α is related to λ and then could serve for obtaining
the fastest decreasing rate, for a given N , by solving the following LMI problem

α = sup
α,η,G j,k ,Z j,k ,R j

∑

j∈I [1:N ]
η j

s.t. (2.22) − (2.23) − (2.24),
(2.28)

with η,G j,k, Z j,k, R j as defined in Theorem 2.9.

Remark 2.8 Anonconvex control Lyapunov function V (x), decreasing at every step,
analogous to (2.13), and a state-dependent control policy ν(x) as in (2.16) can be
defined by solving on-line an LMI problem, see [11].

The interested reader is referred to [11] for a detailed comparison analysis, in
terms of conservatism and complexity, of this approach with respect to methods
from the literature, such as those presented in [9, 14, 27, 28].

2.5 Numerical Examples

Some illustrative examples, taken from [10–12], follow.

Example 2.2 Consider the system (2.1) with q = 4, n = 2 and

A1 =
[
1.5 0
0 −0.8

]
, A2 = 1.1 R(

2π

5
) A3 = 1.05 R(

2π

5
− 1), A4 =

[ −1.2 0
1 1.3

]
.

Thematrices Ai , with i ∈ N4, are not Schur, which implies that the system (2.1) is not
stabilizable by any constant switching law. We apply Algorithm1 withΩ = B

2. The
algorithm stops at the fifth iteration. Figure2.2 left, emphasizes thatB2 is included in⋃

k∈N5
Ωk . A stabilizing switching law and the related Lyapunov function are given

in Fig. 2.2 right, for the initial condition x0 = [−3 3]T .
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Fig. 2.2 Left: ballB2 in dashed and
⋃

k∈N5
Ωk in solid line. Trajectory starting from x0 = (−3, 3)T

in dotted line. Right: Lyapunov function and switching control law in time

Fig. 2.3 Ball B2 in dashed and ∪k∈Ni Ωk , for i ∈ Ni in solid line for Example 2.3, with θ = 0 (left)
and θ = π

5 (right)

Example 2.3 Consider the system (2.1) with q = 2, n = 2 and

A1 =
[
1.3 0
0 0.9

]
R(θ), A2 =

[
1.4 0
0 0.8

]
,

non-Schur. From Fig. 2.3, left, one can infer that the system is not stabilizable if
θ = 0. Nevertheless, taking θ = π

5 , Algorithm 1 stops after seven steps implying the
stabilizability of the system, see Fig. 2.3, right.

Example 2.4 Consider (2.1) with q = 2, n = 2, x0 = [−3 3]T and the non-Schur
matrices

A1 = 1.01R
(

π
5

)
, A2 =

[−0.6 −2
0 −1.2

]
.

Four switching laws are designed and compared: the geometric condition given
in Theorem 2.2, proving the stabilizability of the system; the min-switching strategy
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Fig. 2.4 State evolution and switching control induced by the geometric condition (2.6) (left), and
min-switching control (2.10)–(2.12) (right)

(2.10)–(2.12) related to the LMI condition (2.8); the switching control law given in
Proposition2.7 and the periodic switching law, that exists from Theorem 2.7.

As noticed in [10, 14], for systems with q = 2 the Lyapunov-Metzler inequalities
become two linear matrix inequalities once two parameters, both contained in [0, 1],
are fixed. Such LMIs have been checked for this example to be infeasible on a grid
of these two parameters, with step of 0.01. It is then reasonable to conclude that the
Lyapunov-Metzler inequalities are infeasible for this numerical example.

Then, an iterative procedure is applied to determine N ∈ N such that (2.6) is
satisfied. The result is that (2.6) holdswith N = 5 and then the homogeneous function
induced by the obtained set is a control Lyapunov function and the related min-
switching rule is a stabilizing law. The state evolution and the switching law are
depicted in Fig. 2.4, left.

The LMI condition (2.8) is solved with N = 7 and the min-switching law (2.10)–
(2.12) is applied to the system at first. The control results in the concatenation of
elements ofI [1,7], respectively of lengths {7, 6, 5, 7, 7, . . .}. The time-varying length
of the switching subsequences is a consequence of the state dependence of the min-
switching strategy. The resulting behavior is depicted in Fig. 2.4, right. Then, the
control law defined in Proposition 2.7, namely (2.14) with λ = 0.9661, is applied
and the result is shown in Fig. 2.5, left. The value of λ is obtained by solving the
optimization problem described in Remark2.6.

The periodic switching law of length M = 4 is then obtained, by searching the
shorter sequence of switching modes which yields a Schur matrix Ai . The resulting
evolution is represented in Fig. 2.5, right.

Finally a comparison between the switching laws is provided in Fig. 2.6, where
the time-evolution of the Euclidean distance of the state from the origin is depicted.

Example 2.5 Consider Example 2 in [27], that is a 4-dimensional system with 4
modes whose matrices are
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Fig. 2.5 State evolution andmin-switching control (2.14) (left) and periodic switching control with
M = 4 (right)

Fig. 2.6 Comparison
between the evolution of the
Euclidean norm of the state
for the different switching
laws: induced by geometric
condition (2.6) (star);
min-switching law
(2.10)–(2.12) (cross);
min-switching control (2.14)
(circle) and periodic rule
(square)
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A1 =

⎡

⎢⎢
⎣

0.5 −1 2 3
0 −0.5 2 4
0 −1 2.5 2
0 0 0 1.5

⎤

⎥⎥
⎦, A2 =

⎡

⎢⎢
⎣

−0.5 −1 2 1
0 1.5 −2 0
0 0 0.5 0

−2 −1 2 2.5

⎤

⎥⎥
⎦, A3 =

⎡

⎢⎢
⎣

1.5 0 0 0
1 1 0.5 −0.5
0 0.5 1 −0.5
1 0 0 0.5

⎤

⎥⎥
⎦

A4 =

⎡

⎢⎢
⎣

0.5 1 0 0
0 0.5 0 0
0 0 0.5 0
0 2 −2 0.5

⎤

⎥⎥
⎦, B1 =

⎡

⎢⎢
⎣

1
2
3
4

⎤

⎥⎥
⎦, B2 =

⎡

⎢⎢
⎣

4
3
2
1

⎤

⎥⎥
⎦, B3 =

⎡

⎢⎢
⎣

4
3
2
1

⎤

⎥⎥
⎦, B4 =

⎡

⎢⎢
⎣

1
2
3
4

⎤

⎥⎥
⎦ .

(2.29)
The conditions of Theorem2.10 are satisfied with horizon N = 3. Besides the inher-
ent computational benefit of having a stabilization condition in form of LMI with
respect to the algorithmic method presented in [27], also the control obtained is
substantially simpler and more efficient. Actually, in [27] stabilizability is proved
by means of an algorithm which inspects control horizons of length 7 resulting in
a piecewise quadratic function determined by 13 matrices. Moreover, a much faster
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Fig. 2.7 Evolutions of ‖x‖2 with control (2.27), in solid, with min-switching of Remark 2.8 in
dashed and with the periodic control in dotted with (2.29) (top) and with A4 multiplied by 2.5,
(bottom). In the top figure the solid and dotted lines are overlapped

convergence rate is obtained by solving the LMI problem (2.28), if compared with
the results in [27], see Fig. 2.7 where x0 = [1 1 0 −1]T and Fig. 4 in [27], top.

Finally, A4 being Schur, with 4 eigenvalues equal to 0.5, a trivial stabilizing
solution exists. Then we define a new A4 by multiplying the one in (2.29) by 2.5. All
the eigenvalues of the new A4 are then equal to 1.25. The evolutions of the Euclidean
norm of the state, for x0 = [1 1 0 −1]T , under the obtained controls are depicted in
Fig. 2.7, bottom.

2.6 Conclusions

We considered the problems of stabilizability and control co-design for switched
linear systems. Via a set-theory approach, a geometric necessary and sufficient con-
dition for the stabilizability have been provided, proving that the family of nonconvex,
homogeneous functions induced by a C∗-set is a universal class of Lyapunov func-
tions. Then, a novel LMI condition has been presented that overcomes the computa-
tional issues related to the geometric condition. Such a condition, togetherwith others
from the literature, have been analyzed and compared in terms of conservatism and
computational complexity. Finally, an LMI condition is given for control co-design
that is proved to be necessary and sufficient for the stabilizability of switched systems
that admit periodic control policies.
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Chapter 3
Stability Analysis of Singularly
Perturbed Switched Linear Systems

J. Ben Rejeb, I.-C. Morărescu, A. Girard and J. Daafouz

Abstract This chapter proposes a methodology for stability analysis of singularly
perturbed switched linear systems. We emphasize that, besides the stability of each
subsystem, we need a dwell-time condition to guarantee the overall system stability.
The main results of this study provide a characterization of an upper bound on the
dwell time ensuring the overall system’s stability. Remarkably, this bound is the sum
of two terms. The first one is an upper bound on the dwell time ensuring stability of
the reduced-order linear switched system,which is zero if all the reducedmodes share
a common Lyapunov function. The magnitude of the second term is of order of the
parameter defining the ratio between the two timescales of the singularly perturbed
system.

3.1 Introduction

Switched systems are a class of hybrid systems consisting of several dynamical
subsystems and a switching signal that specifies the active subsystem at each instant
of time. They are encountered inmany engineering applications, such asmotor engine
control [1] or networked control systems [2]. Significant results related to stability
analysis of switched systems can be found in [3–5]. A remarkable fact is that even
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when all the subsystems are asymptotically stable, the overall switched system may
diverge under certain switching signals [6]. Nevertheless, when all the switching
modes share a common Lyapunov function, the overall system is asymptotically
stable independently of the switching signal.

Another feature that characterizes many real systems is the presence of processes
that evolve on different timescales [7–10]. In this case, the standard stability analysis
becomes more difficult and singular perturbation theory [11, 12] has to be used. This
theory is based on Tikhonov approach that proposes to approximate the dynamics by
decoupling the slow dynamical processes from the faster ones. The stability analysis
is done separately for each timescale and under appropriate assumptions one can
conclude on the stability of the overall system. Significant results related to stability
analysis and approximation of solutions of singularly perturbed systems can be found
in [13–15].

Stability analysis and stabilization of singularly perturbed linear switched sys-
tems are considered in [16, 17]. Interestingly, it is shown in [17] that even though the
switched dynamics on each timescale are stable, the overall system may be destabi-
lized by fast switching signals. Clearly, this is in contrast with classical results on
continuous singularly perturbed linear systems [12] and is a motivation for develop-
ing dedicated techniques for stability analysis of singularly perturbed hybrid systems.
Moreover, the switching signal can destabilize the overall dynamics even if all the
reduced-order slow systems share a common Lyapunov function [17]. This con-
tradicts the intuition that stabilizing the switched reduced-order systems we obtain
stability of original system.

In this paper, we present a different stability methodology that results in a better
characterization of the upper bound on the dwell time ensuring the overall system’s
stability. This bound is given as the sum of two terms. The first one corresponds to an
upper bound on the minimum dwell time ensuring the stability of the reduced-order
linear hybrid system describing the slow dynamics. The order of magnitude of the
second term is determined by that of the parameter ε defining the ratio between the
two timescales of the singularly perturbed system. In particular, it follows that when
the reduced-order system has a common quadratic Lyapunov function, the first term
is zero and the minimum dwell time ensuring the stability of the overall system goes
to zero as fast as ε when the timescale parameter ε goes to zero.

Notation

Throughout this paper, R+, Rn , and R
n×m denote, respectively, the set of nonnega-

tive real numbers, the n-dimensional Euclidean space, and the set of all n × m real
matrices. The identity matrix of dimension n is denoted by In . We also denote by
0n,m ∈ R

n×m the matrix whose components are all 0. For a matrix A ∈ R
n×n , ‖A‖

denotes the spectral norm i.e., induced 2-norm. A ≥ 0 (A ≤ 0) means that A is pos-
itive semidefinite (negative semidefinite). We write A� and A−1 to, respectively,
denote the transpose and the inverse of A. For a symmetric matrix A ≥ 0, A

1
2 is
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the unique symmetric matrix B ≥ 0 such that B2 = A. The matrix A is said to be
Hurwitz if all its eigenvalues have negative real parts. A is said to be Schur if all its
eigenvalues have modulus smaller than one. The matrix A is said to be positive if all
its coefficients are positive. We also use x(t−) = lim

δ→0, δ>0
x(t − δ). Given a function

η : (0, ε∗) → R, we say that η(ε) = O(ε) if and only if there exists ε0 ∈ (0, ε∗) and
c > 0, such that for all ε ∈ (0, ε0), |η(ε)| ≤ cε.

3.2 Problem Formulation

In this paper, we consider a switched system of the form:

(
ẋ(t)
εż(t)

)
= Aσk

(
x(t)
z(t)

)
, ∀t ∈ (tk, tk+1], k ∈ N (3.1)

where x(t) ∈ R
nx , z(t) ∈ R

nz , 0 = t0 < t1 < . . . are the instants of switches, σk ∈
I with I finite set of indices, Ai are the matrices of appropriate dimensions for
all i ∈ I , and ε > 0 is a small parameter characterizing the timescale separation
between the slow dynamics of x and the fast dynamics of z.

For i, i ′ ∈ I let

Ai =
(
Ai
11 Ai

12
Ai
21 Ai

22

)
,

where Ai
11 ∈ R

nx×nx , and Ai
22, A

i
12, A

i
21 are of appropriate dimensions.

Let us impose the following standard assumption [12] in the singular perturbation
theory framework:

Assumption 3.1 Ai
22 is non-singular for all i ∈ I .

Then, we perform the following time-dependent change of variable:

(
x(t)
y(t)

)
= Pσk

(
x(t)
z(t)

)
, ∀t ∈ [tk, tk+1), k ∈ N (3.2)

where, for all i ∈ I

Pi =
(

Inx 0nx ,nz
(Ai

22)
−1Ai

21 Inz

)
.

It is worth noting that the matrix Pi is invertible and for all i ∈ I

P−1
i =

(
Inx 0nx ,nz

−(Ai
22)

−1Ai
21 Inz

)
.

The switching dynamics (3.1) in the variables x, y becomes
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(
ẋ(t)
ε ẏ(t)

)
=

(
Aσk
0 Bσk

1
εBσk

2 Aσk
22 + εBσk

3

)(
x(t)
y(t)

)
, ∀t ∈ [tk, tk+1), k ∈ N (3.3)

where for all i ∈ I one has

Ai
0 = Ai

11 − Ai
12(A

i
22)

−1Ai
21, Bi

1 = Ai
12,

Bi
2 = (Ai

22)
−1Ai

21A
i
0, Bi

3 = (Ai
22)

−1Ai
21A

i
12.

It is noteworthy that, when (3.1) is expressed in the variables x, y, at all the switching
instants tk, k ∈ N, an instantaneous jump will occur:

(
x(tk)
y(tk)

)
= Rσk−1→σk

(
x(t−k )

y(t−k )

)
, ∀k ≥ 1 (3.4)

where

Ri→ j =
(

Inx 0nx ,nz
(A j

22)
−1A j

21 − (Ai
22)

−1Ai
21 Inz

)
.

Therefore, the switching linear system (3.1) is equivalent with the switching linear
impulsive system (3.3)–(3.4).One can formally introduce the reduced-order switched
system with single timescale:

ẋ(t) = Aσk
0 x(t), ∀t ∈ [tk, tk+1), k ∈ N. (3.5)

The goal of this chapter is to investigate the stability of the singularly perturbed
switched linear system (3.3)–(3.4) for small values of the parameter ε, and its relation
to the stability of the reduced-order model (3.5). In particular, we aim at character-
izing an upper bound on the minimum dwell time ensuring stability.

3.3 Preliminaries

In this section, we provide some results on the Lyapunov stability of singularly
perturbed linear systems, which will be used in the next sections to prove the main
results of the paper concerning the stability of (3.3)–(3.4).

Let us consider the singularly perturbed linear system:

{
ẋ(t) = A11x(t) + A12z(t)

εż(t) = A21x(t) + A22z(t),
(3.6)

where x(t) ∈ R
nx , z(t) ∈ R

nz and ε > 0 is a small parameter. Let us assume that A22

is non-singular and proceed with the change of variable
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(
x(t)
y(t)

)
=

(
Inx 0nx ,nz

A−1
22 A21 Inz

)(
x(t)
z(t)

)
. (3.7)

In the variables x, y the system becomes

{
ẋ(t) = A0x(t) + B1y(t)

ε ẏ(t) = A22y(t) + ε(B2x(t) + B3y(t)),
(3.8)

where

A0 = A11 − A12A
−1
22 A21, B1 = A12,

B2 = A−1
22 A21A0, B3 = A−1

22 A21A12.

Let us make the following assumption:

Assumption 3.2 A0 and A22 are Hurwitz.

Under the previous assumption, there exist symmetric positive definitematrices Qs ≥
Inx , Q f ≥ Inz and positive numbers λs and λ f such that

A�
0 Qs + Qs A

�
0 ≤ −2λs Qs

A�
22Q f + Q f A

�
22 ≤ −2λ f Q f

Then, let us define b1 = ∥∥Q 1
2
s B1Q

− 1
2

f

∥∥, b2 = ∥∥Q 1
2
f B2Q

− 1
2

s

∥∥ and b3 = ∥∥Q 1
2
f Q f

B3Q
− 1

2
f

∥∥.
Proposition 3.1 Under Assumption3.2,

V (x, y) = x�Qsx + y�Q f y

is a Lyapunov function for system (3.8) for all ε ∈ (0, ε1] where

ε1 = λ f

(b1+b2)2

4λs
+ b3

. (3.9)

Proof By computing the time derivative of V along the trajectories of (3.8), one has

V̇ = 2x�Qs ẋ + 2y�Q f ẏ

= 2x�Qs A0x + 2

ε
y�Q f A22y + 2x�Qs B1y + 2y�Q f B2x + 2y�Q f B3y

≤ − 2λs x
�Qsx − 2λ f

ε
y�Q f y + 2(b1 + b2)‖x‖‖y‖ + 2b3‖y‖2

≤ − 2λs x
�Qsx − 2λ f

ε
y�Q f y + 2(b1 + b2)

√
x�Qsx

√
y�Q f y + 2b3y

�Q f y,
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where b1 = ‖Qs B1‖, b2 = ‖Q f B2‖ and b3 = ‖Q f B3‖. Then, it follows that

V̇ ≤ −(
2λ f

ε
− 2b3 − (b1 + b2)2

2λs
)y�Q f y.

Let ε1 > 0 be given by

ε1 = λ f

(b1+b2)2

4θλs
+ b3

(3.10)

Then, for all ε ∈ (0, ε1],
V̇ ≤ 0 (3.11)

�
In the following, let us denote Ws(t) = √

x(t)�Qsx(t) andW f (t) = √
y(t)�Q f y(t).

Proposition 3.2 Under Assumption3.2, let ε1 be given by (3.9), then for all ε ∈
(0, ε1] and t ≥ 0

W f (t) ≤ W f (0)e
− λ f

ε
t + εβ1

√
V (0),

where β1 =
√

b22+b23
λ f

.

Proof Computing the time derivative of W f gives

Ẇ f = 2y�Q f ẏ

2
√
y�Q f y

≤ − λ f

ε
y�Q f y + y�Q f (B2x + B3y)√

y�Q f y

≤ −λ f

ε
W f + ‖y‖(b2‖x‖ + b3‖y‖)√

y�Q f y
≤ −λ f

ε
W f + (b2‖x‖ + b3‖y‖)

≤ −λ f

ε
W f +

√
b22 + b23

√
‖x‖2 + ‖y‖2 ≤ −λ f

ε
W f +

√
b22 + b23

√
V

Using (3.11) it follows that

Ẇ f (t) ≤ −λ f

ε
W f (t) +

√
b22 + b23

√
V (0).

Integrating this we get the desired inequality. �
Proposition 3.3 Under Assumption3.2, let ε1 be given by (3.9), and let ε2 ∈
(0, ε1] ∩ (0, λ f

λs
) then for all ε ∈ (0, ε2] and t ≥ 0

Ws(t) ≤ Ws(0)e
−λs t + εβ2W f (0) + εβ3

√
V (0),

where β2 = b1
λ f −ε2λs

and β3 = b1β1

λs
.
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Proof Computing the time derivative of Ws gives

Ẇs = 2x�Qs ẋ

2
√
x�Qsx

≤ −λs x�Qsx + x�Qs B1y√
x�Qsx

≤ − λsWs + b1‖x‖‖y‖√
x�Qsx

≤ −λsWs + b1W f .

Using Proposition3.2, one gets

Ẇs(t) ≤ −λsWs(t) + b1W f (0)e
−λ f

ε
t + εb1β1

√
V (0).

Then, we have

Ws(t) ≤ e−λs tWs(0) + b1W f (0)
∫ t

0
e− λ f

ε
se−λs (t−s)ds

+ εb1β1

√
V (0)

∫ t

0
e−λs (t−s)ds

≤ e−λs tWs(0) + b1
λ f

ε
− λs

W f (0)
(
e−λs t − e− λ f

ε
t
)

+ εb1β1

λs

√
V (0)

(
1 − e−λs t

)
.

Then, ε ≤ ε2 <
λ f

λs
gives

Ws(t) ≤ e−λs tWs(0) + b1ε

λ f − ε2λs
W f (0) + εb1β1

λs

√
V (0).

�

3.4 Stability Analysis

We now study the stability of system (3.3)–(3.4). In the rest of the chapter, we
impose the following additional assumption on the singularly perturbed system at
hand, related to the stability of the slow and fast dynamics of each mode.

Assumption 3.3 Ai
0 and Ai

22 are Hurwitz for all i ∈ I .

From the previous assumption, we can deduce that there exist symmetric positive
definite matrices Qi

s ≥ Inx , Q
i
f ≥ Inz , i ∈ I , and positive numbers λi

s and λi
f such

that for all i ∈ I :
Ai�
0 Qi

s + Qi
s A

i
0 ≤ −2λi

s Q
i
s

Ai�
22Q

i
f + Qi

f A
i
22 ≤ −2λi

f Q
i
f .
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We denote λs = min
i∈I

λi
s and λ f = min

i∈I
λi

f . For each i ∈ I , let bi1 = ∥∥(Qi
s)

1
2

B1(Qi
f )

− 1
2

∥∥, bi2 = ∥∥(Qi
f )

1
2 B2(Qi

s)
− 1

2

∥∥, bi3 = ∥∥(Qi
f )

1
2 Q f B3(Qi

f )
− 1

2

∥∥ and b j =
max
i∈I

bij , j = 1, . . . , 3.

Let ε1 be given by (3.9), then it follows fromProposition3.1 that the linear dynam-
ics of (3.3) are all Lyapunov stable, for ε ∈ (0, ε1]. Let ε2 ∈ (0, ε1] ∩ (0, λ f

λs
) and

β1, β2, β3 be defined as in Propositions3.2 and 3.3. Let us also introduce the fol-
lowing functions:

{
Ws(t) = √

x(t)�Qσk
s x(t)

W f (t) =
√
y(t)�Qσk

f y(t)
, ∀t ∈ [tk, tk+1), k ∈ N.

Lemma 3.1 Under Assumption3.3, let ε ∈ (0, ε2], and let τk = tk+1 − tk for a
sequence (tk)k≥0 of event times. Then for all k ∈ N,

Ws(t
−
k+1) ≤ Ws(tk)(e

−λsτk + εβ3) + W f (tk)ε(β2 + β3)

W f (t
−
k+1) ≤ Ws(tk)εβ1 + W f (tk)

(
e− λ f

ε
τk + εβ1

)
.

Proof This is straightforward fromPropositions3.2 and 3.3 by remarking that
√
V ≤

Ws + W f .

In the following, we complete the characterization of the variation of Ws and W f by
analyzing their behavior when a switch occurs. Let γ11, γ21, γ22 be defined as

γ11 = max
i,i ′∈I

∥∥(Qi ′
s )

1
2 (Qi

s)
− 1

2
∥∥,

γ21 = max
i,i ′∈I

∥∥(Qi ′
f )

1
2
(
(A j

22)
−1A j

21 − (Ai
22)

−1Ai
21

)
(Qi

s)
− 1

2
∥∥,

γ22 = max
i,i ′∈I

∥∥(Qi ′
f )

1
2 (Qi

f )
− 1

2
∥∥.

(3.12)

Note that γ11 = 1 and γ22 = 1 if and only if Qi
s = Qi ′

s and Q
i
f = Qi ′

f for all i, i
′ ∈ I .

Then, we have the following result.

Lemma 3.2 Let a sequence (tk)k≥0 of event times, then for all k ≥ 1,

Ws(tk) ≤ γ11Ws(t
−
k )

W f (tk) ≤ γ21Ws(t
−
k ) + γ22W f (t

−
k ).

Proof The first inequality can be proven as follows:

Ws(tk) =
√
x(tk)�Qσk

s x(tk) = ∥∥(Qσk
s )

1
2 x(tk)

∥∥
= ∥∥(Qσk

s )
1
2 x(t−k )

∥∥ = ∥∥(Qσk
s )

1
2 (Qσk−1

s )−
1
2 (Qσk−1

s )
1
2 x(t−k )

∥∥
≤ γ11

∥∥(Qσk−1
s )

1
2 x(tk)

∥∥ = γ11Ws(t
−
k ).
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The second inequality is obtained similarly using the jump map given in (3.4). �

In order to keep the notation simple, we introduce the positive matrix parameterized
by τ > 0:

Mτ =
(
e−λsτ + εβ3 ε(β2 + β3)

εβ1 e− λ f
ε

τ + εβ1

)
.

Let us also consider the positive matrix

Γ =
(

γ11 0
γ21 γ22

)
.

Lemma 3.3 Under Assumption3.3, let ε ∈ (0, ε2], and let τk = tk+1 − tk for a
sequence (tk)k≥0 of event times. Then for all k ∈ N,

(
Ws(tk+1)

W f (tk+1)

)
≤ Γ Mτk

(
Ws(tk)
W f (tk)

)
.

Proof The result is obtained by simply combining Lemmas3.2 and 3.3. �

Lemma 3.4 Under Assumption3.3, let ε ∈ (0, ε2] and let τ ∗ ≥ 0 such that the pos-
itive matrix Γ Mτ ∗ is Schur. Then, for all sequences (tk)k≥0 of event times satisfying
the dwell-time property τk ≥ τ ∗, for all k ∈ N, the system (3.3)–(3.4) is globally
asymptotically stable.

Proof Let τ ∗ be such that τk ≥ τ ∗, for all k ∈ N. From Lemma3.3, it follows that
for all k ∈ N, (

Ws(tk)
W f (tk)

)
≤ Γ Mτk−1 . . . Γ Mτ0

(
Ws(t0)
W f (t0)

)
.

Remarking that the coefficient of the positive matrix Mτ is decreasing with respect
to τ , it follows that (

Ws(tk)
W f (tk)

)
≤ (

Γ Mτ ∗
)k (

Ws(t0)
W f (t0)

)
.

Hence, if the positive matrix Γ Mτ ∗ is Schur, then both sequences (Ws(tk))k≥0 and
(W f (tk))k≥0 go to 0, and the system (3.1) is globally asymptotically stable. �

Hence, the stability of system (3.3)–(3.4) can be investigated by studying the
spectral properties of the positive matrix Γ Mτ ∗ . Let us remark that values τ ∗ such
that Γ Mτ ∗ is Schur provide upper bounds on the minimal dwell time between two
events that ensure the stability of the singularly perturbed linear hybrid system. In
the following, we establish sufficient conditions for deriving such values τ ∗.

Theorem 3.4 Under Assumption3.3, let γ11 > 1. Then, there exists ε∗ > 0 and a
function η : (0, ε∗) → R

+ with η(ε) = O(ε), such that for all ε ∈ (0, ε∗), for all
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sequences (tk)k≥0 of event times satisfying a dwell-time property τk ≥ τ ∗, for all
k ∈ N, where

τ ∗ >
ln(γ11)

λs
+ η(ε),

the system (3.1) is globally asymptotically stable.

Proof Let us remark that

Γ Mτ ∗ =
(

γ11e−λsτ
∗ + εδ1 εδ2

γ21e−λsτ
∗ + εδ3 γ22e− λ f

ε
τ ∗ + εδ4

)
,

where
δ1 = γ11β3, δ2 = γ11(β2 + β3),

δ3 = γ21β3 + γ22β1, δ4 = γ21(β2 + β3) + γ22β1.

Moreover, the positive matrix Γ Mτ ∗ is Schur if and only if there exists p ∈ R
2+, such

that
(
Γ Mτ ∗

)�
p < p (see e.g., [18]). Let us look for p under the form (1, aε)� with

a > δ2. Then,
(
Γ Mτ ∗

)�
p < p is equivalent to

{
γ11e−λsτ

∗ + εδ1 + aεγ21e−λsτ
∗ + aε2δ3 < 1

εδ2 + aεγ22e− λ f
ε

τ ∗ + aε2δ4 < aε.
(3.13)

The first inequality of (3.13) is equivalent to

τ ∗ >
−1

λs
ln

(1 − εδ1 − aε2δ3

γ11 + aεγ21

)
= ln(γ11)

λs
+ η(ε),

where

η(ε) = 1

λs

(
ln(1 + aεγ21

γ11
) − ln(1 − εδ1 − aε2δ3)

)
. (3.14)

It is clear that η(ε) = O(ε). Moreover, let us remark that η(ε) is only defined if
1 − εδ1 − aε2δ3 > 0, that is, if ε < ε3 where

ε3 =
−δ1 +

√
δ21 + 4aδ3

2aδ3
.

The second inequality of (3.13) is equivalent to

τ ∗ >
−ε

λ f
ln

(a − δ2 − aεδ4

aγ22

)

⇐⇒ τ ∗ >
ε

λ f
ln

( aγ22

a − δ2 − aεδ4

)
.
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As τ ∗ >
ln(γ11)

λs
+ η(ε) ≥ ln(γ11)

λs
, then the previous inequality holds if

ln(γ11)

λs
>

ε

λ f
ln

( aγ22

a − δ2 − aεδ4

)
. (3.15)

By remarking that the right-hand side of the inequality goes to 0 when ε goes to
0, one concludes that that exists ε4 > 0 such that for all ε ∈ (0, ε4), (3.15) holds.
Then, the theorem is proved by setting ε∗ = min(ε2, ε3, ε4). �

Remark 3.1 Theorem3.4 shows that the dwell time ensuring stability of the singu-
larly perturbed switched system (3.1) can be written as the sum of a constant part and
of a function of ε, which goes to 0 when ε goes to 0. Interestingly, the constant part
only depends on λs and γ11, which can be determined from the reduced-order model
(3.5). Moreover, it is easy to show that the system (3.5) is globally asymptotically
stable for all switching signals with dwell time τ ∗ >

ln(γ11)
λs

.

Theorem3.4 dealswith the casewhen γ11 > 1.When γ11 = 1, the following result
can be proved using similar reasonings as in Theorem3.4.

Theorem 3.5 Under Assumption3.3, let γ11 = 1. Then, there exists ε∗ > 0 and a
function η : (0, ε∗) → R

+ with η(ε) = O(ε), such that for all ε ∈ (0, ε∗), for all
sequences (tk)k≥0 of event times satisfying a dwell-time property τk ≥ τ ∗, for all
k ∈ N, where

τ ∗ > η(ε),

the system (3.1) is globally asymptotically stable.

Remark 3.2 The previous theorems show that when γ11 = 1, the dwell time ensuring
stability of the singularly perturbed switched system (3.1) goes to 0 when ε goes to 0.
It is interesting to remark that in that case, the reduced-order system (3.5) is globally
asymptotically stable for all switching signals without any dwell-time condition.

3.5 Numerical Examples

In this section, we provide numerical illustrations of the previous results. First, we
reconsider the numerical example in [9] to show that an arbitrary switching law may
destabilize the overall dynamics even if all the reduced-order slow systems share a
common Lyapunov function. Moreover, by applying the previous analysis, we give a
dwell time that explicitly depends on the timescale parameter. Second, we consider
the case when the reduced-order systems (3.5) do not share a common Lyapunov
function.

Consider the following singularly perturbed switched system [9] :

(
ẋ(t)
εż(t)

)
= Aσk

(
x(t)
z(t)

)
, ∀t ∈ [tk, tk+1), k ∈ N (3.16)
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0 2 4 6 8 10 12 14 16 18 20
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Time(s)
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 z(t)

Fig. 3.1 State’s trajectories for (3.16) with A1, A2 defined by (3.17) and tk+1 − tk = 0.35s

where σk ∈ I = {1, 2} and the state matrices take the following numerical values :

A1 =
(−1 0

5 −1

)
; A2 =

(−1 5
0 −1

)
. (3.17)

Since A1
0 = A2

0 = −1 and A1
22 = A2

22 = −1, Assumption3.3 holds.
Then, let us consider that the two switching modes share a common Lyapunov

function. So that
Q1

s = Q2
s = 1, and Q1

f = Q2
f = 1.

Our aim is to show numerically that asymptotic stability of each subsystem i ∈ I
is not a sufficient condition for the stability of a switched system. Indeed, a switch-
ing law with a sufficiently high switching frequency may destabilize the singularly
perturbed switched system. This result is illustrated in Fig. 3.1 with ε = 0.076 and
the initial condition [x(0), z(0)]� = [1, 1]�.

Simulating the system with tk+1 − tk = 0.35s, we can see that the switched
dynamics diverge.

Using the change of variable (3.2) with

P1 =
(

1 0
−5 1

)
, P2 =

(
1 0
0 1

)
,

it is easy to check that

R1→2 =
(
1 0
5 1

)
, R2→1 =

(
1 0

−5 1

)
.
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Fig. 3.2 State’s trajectories for (3.16) with A1, A2 defined by (3.17) and tk+1 − tk = 0.7001s

Then, γ11 = 1 and following Theorem3.5 an upper bound on the minimum stabi-
lizing dwell time is 0.588 = O(ε) which is better than the dwell time given in [9].
Simulating the system with tk+1 − tk = 0.7001s, Fig. 3.2 shows that the expected
stability is obtained.

Let us now consider another choice for the state matrices A1, A2 in (3.16):

A111 =
( −0.92 −2.8

−8.25 −6.5

)
, A112 =

(
1 −2
1 3

)
, A121 =

(
0.5 7
4 0

)
, A122 =

( −2 0
0 − 1.5

)
;

A211 =
(

2.7 −1
0.34 −6

)
, A212 =

(
0.5 4
1 1

)
, A221 =

(
1 3

−2 0

)
, A222 =

(−1.5 0
0 −2

)
.

(3.18)

Again, one can easily observe that Assumption3.3 holds:

A1
0 =

(−6 0
0 −2

)
, A2

0 =
(−1 0

0 −4

)
, A1

22 =
(−2 0

0 −1.5

)
, A2

22 =
(−1.5 0

0 −2

)

Letting λs = 8 and λ f = 2.5, we obtain γ11 = 1.554 > 1.
According to Theorem3.4, an upper bound on the minimum stabilizing dwell time
is given by ln(γ11)

λs
+ O(ε) where ln(γ11)

λs
= 0.0441s.

For ε = 10−3 and the initial condition [x(0), z(0)]� = [2,−3,−4, 1]�, Figs. 3.3
and 3.4 show the convergence to zero of the singularly perturbed switched system
with tk+1 − tk = 0.0447s,
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Fig. 3.3 Slow state’s trajectories for (3.16) with A1, A2 defined by (3.18) and tk+1 − tk = 0.0447s
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Fig. 3.4 Fast state’s trajectory for (3.16) with A1, A2 defined by (3.18) and tk+1 − tk = 0.0447s

3.6 Conclusion

In this paper, we analyzed a class of singularly perturbed switched linear systems.
Starting from the known fact that switches can destabilize the overall system although
each mode is stable, we investigated the dwell-time condition preserving stability.
We showed that the dwell time required to ensure stability of the overall system is
the sum of two terms. The first one essentially consists of a dwell time ensuring the
reduced-order system which is zero when reduced-order systems share a common
Lyapunov function. The second term depends on the scale parameter defining the
ratio between the two timescales and goes to zero when the parameter goes to zero.
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Chapter 4
Stability of LTI Systems with Distributed
Sensors and Aperiodic Sampling

C. Fiter, T.-E. Korabi, L. Etienne and L. Hetel

Abstract This chapter is dedicated to the stability analysis of sampled-data lin-
ear time-invariant systems with asynchronous sensors and aperiodic sampling. The
study is performed using an input/output interconnection modeling, and tools from
the robust control theory. Two approaches are presented. One is based on the small
gain theorem, while the other is based on the dissipativity theory. Tractable sta-
bility criteria that allow an estimation of the maximal admissible sampling period
are obtained for both approaches. Finally, experimental results performed on an
inverted pendulum benchmark are presented. They confirm the applicability of both
approaches and allow for some comparisons between both results.

4.1 Introduction

Networked control systems (NCSs) are often required to share limited communi-
cation and computation resources, which may lead to fluctuations of the sampling
interval [2, 19]. These variations bring up new challenges from the control theory
point of view, since they may be sources of unstability. In order to cope with this
phenomenon, several researches have recently been conducted to analyze the stabil-
ity of systems with arbitrarily time-varying sampling intervals (see the survey [10]).
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Time-delay approaches [5, 6, 17], hybrid systems approaches [12, 15], discrete-time
approaches [3, 4, 9], and input/output stability approaches [7, 11, 14, 16] have been
used to address this problem.

Most of the studies have concerned the stability analysis of systems with one
sensor measuring the whole system’s state. A problem that must be addressed in
practical applications is how to guarantee the stability of a system with multiple
sensors. In the case of periodic sampling, this problem has been solved a while ago
in the context of multirate systems [1]. However, measurements are usually aperiodic
and asynchronous. To the best of our knowledge, this problemhas not yet been studied
in the literature.

In this work, we propose to tackle this issue in the case of linear time-invariant
(LTI) systems, using two approaches from the robust control theory. Both approaches
are based on a modeling of the system as an interconnection between a continuous-
time (sampling-free) closed-loop system and an operator representing the sampling
effects. This new model can be seen as an extension of the one proposed in [7] in the
single sensor case. The first result, based on the small gain theorem, provides simple
numerical tools to design an overall upper bound on the sampling intervals that guar-
antees the system’s stability. The second result, which is based on the dissipativity
theory, allows through the use of Linear Matrix Inequalities (LMIs) to compute an
upper bound on the sampling interval for each and every sensor that guarantees the
system’s stability.

The chapter is constructed as follows. First, in Sect. 4.2, we present the system
under study and formulate the problem. In Sect. 4.3, we propose the new modeling
of the system that will be used for the whole analysis. Then, in Sects. 4.4 and 4.5,
we present the two stability analysis approaches, based, respectively, on the small
gain theorem and on the dissipativity theory. Finally, in Sect. 4.6, we illustrate our
results with experiments on an inverted pendulum benchmark, before concluding in
Sect. 4.7.

Notation: IM denotes the set {1, . . . , M}. The Euclidean norm of a vector x is
denoted by |x |, and its L2 norm is denoted by ‖x‖L2

. The L2 induced norm of an
operator G is denoted by ‖G‖L2−L2

. A function β : R≥0 → R≥0 is said to be of class
K if it is continuous, zero at zero and strictly increasing. It is said to be of classK∞ if
it is of classK , and it is unbounded. A function β : R≥0 × R≥0 → R≥0 is said to be
of classK L if β(., t) is of classK for each t ≥ 0, and β(s, .) is nonincreasing and
satisfies limt→∞ β(s, t) = 0 for each s ≥ 0. We use diag(N1, . . . , NM) to denote a
block diagonal matrix which contains the blocks Ni (i ∈ IM) on its diagonal, and
zeros everywhere else.

4.2 Problem Formulation

We consider the linear time-invariant (LTI) systemwith distributed sensors presented
in Fig. 4.1.
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U(t)
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U(t)= FX̂(t)

tM
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Fig. 4.1 System description

This system is mathematically defined by

Ẋ(t) = AX (t) + BU (t),∀t ≥ 0,
X (0) = X0 ∈ R

n,
(4.1)

with X ∈ R
n the system state, X0 ∈ R

n the initial state, U ∈ R
m the input, and A

and B matrices of appropriate dimensions.
We consider that the state X is divided into M subparts xi , i ∈ IM , each linked to

one sensor:
X (t) = [

xT
1 (t) . . . xT

M(t)
]T

,

with xi ∈ R
ni and

M∑

i=1

ni = n.

These subparts of the state are transmitted to the controller in an asynchronous
manner. For each of them,we consider amonotonously increasing sampling sequence
with bounded sampling intervals

σ i = {
t i
k

}
k∈N with t i

k+1 − t i
k ∈ (0, hi ] . (4.2)

We assume that t i
0 = 0 for all i ∈ IM .

The sampled state is denoted X̂(t) = [
x̂ T
1 (t) . . . x̂ T

M(t)
]T
, with

x̂i (t) = xi (t
i
k),∀t ∈ [

t i
k, t i

k+1

)
, k ∈ N, i ∈ IM . (4.3)

The control is considered as a linear state-feedback using the known, sampled version
of the state:

U (t) = F X̂(t), (4.4)
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where F ∈ R
m×n is a given feedback gain.

The aim of this work is to design methods for checking the stability of system
(4.1)–(4.4).

4.3 System Modeling

In this section, adapting the approach proposed in [11] in the single sensor case, and
further used in [7, 14, 16], we remodel the system as an interconnection between a
continuous-time closed-loop system and an operator representing the sampling effect
on all the subparts of the system’s state.

We define the sampling system error

E(t) = X̂(t) − X (t) = [
eT
1 (t) . . . eT

M(t)
]T

, (4.5)

where, for all i ∈ IM ,

ei (t) = x̂i (t) − xi (t), ∀t ≥ 0,
= xi (t i

k) − xi (t), ∀t ∈ [
t i
k, t i

k+1

)
, k ∈ N.

(4.6)

Let us remark that the sampling error can be described as a reset integrator

ei (t) = −
∫ t

t i
k

ẋi (θ)dθ, ∀t ∈ [
t i
k, t i

k+1

)
, k ∈ N.

For each i ∈ IM , we define the operator

Δi : L ni
2e [0,∞) �→ L ni

2e [0,∞)

z �→ Δi z

(Δi z) (t) = −
∫ t

t i
k

z(θ)dθ,∀i ∈ IM ,∀t ∈ [
t i
k, t i

k+1

)
. (4.7)

Finally, the system (4.1)–(4.4) can be represented by the interconnection of G :
E �→ Y , the LTI system described by

G :
{

Ẋ(t) = AclX (t) + BclE(t),

Y (t) = CclX (t) + DclE(t),
(4.8)

with Acl = Ccl = A + B F , Bcl = Dcl = B F , Y (t) = [
yT
1 (t) . . . yT

M(t)
]T
, and the

operator Δ : Y �→ E defined by
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Fig. 4.2 System’s
representation as an
interconnected system

G

E Y

+

f

Δ : E = ΔY, (4.9)

with Δ = diag(Δ1, . . . , ΔM).

Here, Acl represents the nominal (closed-loop) state matrix, and E the sampling-
induced error described by operator Δ in (4.7).

This representation of the system as an interconnection (4.8) and (4.9) will be
used throughout the rest of the chapter for the stability analysis.

Note that this interconnection can also be rewritten so as to explicitly see the
influence of the initial state x0. Indeed, let G : L ∞

2 [0,∞) �→ L ∞
2 [0,∞) be the

linear operator described by the transfer function

Ĝ(s) = Ccl(s I − Acl)
−1Bcl + Dcl = s(s I − Acl)

−1Bcl.

If we consider the free response of system (4.8)

f (t) = Acle
Aclt x0,∀t ≥ 0,

we can rewrite the system as the interconnection

Y = G E + f,

E = ΔY.
(4.10)

This interconnection is presented in Fig. 4.2.

4.4 Small Gain Approach

The first stability approach we consider is based on the small gain theorem [13].
Before presenting the main result of this approach, we need to provide a technical
lemma.

Lemma 4.1 The L2 induced norm of the operator Δ is upper bounded by hmax ,
where hmax = maxi∈IM {hi } .

Proof Using (4.6) for all i ∈ IM and t ∈ [t i
k, t i

k+1), k ∈ N, we consider
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ei (t) = −
∫ t

t i
k

yi (θ)dθ, ∀t ∈ [t i
k, t i

k+1), k ∈ N.

Then, using Jensen’s inequality [8], we get

eT
i (t)ei (t) =

(∫ t

t i
k

yi (θ)dθ

)T (∫ t

t i
k

yi (θ)dθ

)

,

≤ (t − t i
k)

(∫ t

t i
k

yT
i (θ)yi (θ)dθ

)

,

≤ hi

(∫ t

t i
k

yT
i (θ)yi (θ)dθ

)

.

Applying further inequalities, we can compute an upper bound on ‖ei‖L2
:

‖ei‖2L2
=

∫ ∞

0
eT

i (t)ei (t)dt,

=
∞∑

k=0

∫ t i
k+1

t i
k

eT
i (t)ei (t)dt,

≤
∞∑

k=0

∫ t i
k+1

t i
k

hi

∫ t

t i
k

yT
i (θ)yi (θ)dθdt,

≤ hi

∞∑

k=0

∫ t i
k+1

t i
k

∫ t i
k+1

t i
k

yT
i (θ)yi (θ)dθdt,

= hi

∞∑

k=0

(t i
k+1 − t i

k)

∫ t i
k+1

t i
k

yT
i (θ)yi (θ)dθ,

≤ h2
i

∞∑

k=0

∫ t i
k+1

t i
k

yT
i (θ)yi (θ)dθ,

= h2
i

∫ ∞

0
yT

i (θ)yi (θ)dθ,

= h2
i ‖yi‖2L2

.

We have found that
‖ei‖2L2

≤ h2
i ‖yi‖2L2

,∀i ∈ IM . (4.11)

From this equation, considering the sampling error E as described in (4.5), and
using some majorations, we may also compute an upper bound on ‖E‖L2

:
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‖E‖2L2
=

∫ ∞

0
E T (t)E(t)dt,

=
∫ ∞

0

M∑

i=1

eT
i (t)ei (t)dt,

=
M∑

i=1

∫ ∞

0
eT

i (t)ei (t)dt,

≤
M∑

i=1

h2
i

∫ ∞

0
yT

i (θ)yi (θ)dθ,

≤ h2
max

M∑

i=1

∫ ∞

0
yT

i (θ)yi (θ)dθ,

= h2
max

∫ ∞

0

M∑

i=1

yT
i (θ)yi (θ)dθ,

= h2
max

∫ ∞

0
Y T (θ)Y (θ)dθ,

= h2
max ‖Y‖2L2

.

Therefore, we have obtained that

‖E‖2L2
≤ h2

max ‖Y‖2L2
,

which ends the proof. �

Before giving the main result of this section, we recall the following definition
[13].

Definition 4.1 (L2-stability) A linear system F is said to be finite-gain L2-stable
from w to Fw with an induced gain less than γ if F is a linear operator from L2 to
L2 and if there exist positive real constants γ and ξ such that for all w ∈ L2,

‖Fw‖L2 ≤ γ ‖w‖L2 + ξ.

Theorem 4.1 The interconnection (4.10) is L2-stable if ‖G‖∞ < 1
hmax

.

Proof We use the small gain theorem to provide the stability condition. A direct
consequence of this theorem is the fact that if

‖G‖L2−L2
‖Δ‖L2−L2

< 1,

the interconnection (4.10) isL2-stable.
Since G is linear, itsL2-induced norm can be calculated [20] using the H∞ norm

of its transfer function:
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‖G‖L2−L2
= ‖G‖∞ := sup

w∈R
σ̄ (Ĝ( jw)).

Since ‖Δ‖L2
≤ hmax, according to Lemma 4.1, the interconnection (4.10) isL2-

stable if

‖G‖L2−L2
= ‖G‖∞ <

1

hmax
.

�

Remark 4.1 The condition proposed in the previous theorem can be easily imple-
mented inMATLAB. It depends solely on the system, and on the overall upper bound
on the sampling intervals hmax . However, this approach does not make it possible to
take into account the difference in the upper bounds of each sensor ({h1, . . . , hM})
in the analysis. In the next section, we propose an approach that solves this problem.

4.5 Dissipativity-Based Approach

In this section, we propose another stability approach inspired by the dissipativity
theory [18] for the interconnected system (4.8) and (4.9). We first start by providing
a few tools and definitions.

Let us define a sequence γ that includes all the sampling sequences σ i = {
t i
k

}
k∈N,

i ∈ IM , in chronological order:

γ = {ts}s∈N , with t0 = 0 and ts+1 = min
i∈IM , k∈N

{
t i
k : t i

k > ts
}
, ∀s ∈ N. (4.12)

For any i ∈ IM and s ∈ N, let us also define the coefficient

ki,s = max
{
k ∈ N : t i

k ≤ ts
}
, (4.13)

which represents the index of the last sample sent to the controller before the time
ts , by sensor i . Intuitively, the time t i

ki,s
, for i ∈ IM and s ∈ N represents the last time

before ts that sensor i sent a measure to the controller.
It is important to remark that for all s ∈ N, ts+1 − ts ∈ (0, hmin], where hmin =

mini∈IM {hi } .

In order to give a better understanding of the notation that were just introduced, we
show in Fig. 4.3 an example of construction of a sequence γ in the case of a system
with two sensors. The values of the scalars ki,s obtained from these sequences are
shown in Table4.1.

Before giving the main results, we recall the following stability definition:

Definition 4.2 (GUAS) The equilibrium point X = 0 of system (4.1)–(4.4) is glob-
ally uniformly asymptotically stable (GUAS) if there exists a class K L function
β(., .), such that
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t0 t1 t2 t3 t4 t5 t6 t7

t11t10

t20 t21 t22 t23

t12 t13 t14 · · ·

· · ·

· · ·

Sequence 1

Sequence

Sequence 2

Fig. 4.3 An example of sampling sequences with 2 sensors

Table 4.1 Value of the coefficients ki,s in the example

s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 · · ·
i = 1 (sensor 1) 0 1 1 1 2 2 3 4 · · ·
i = 2 (sensor 2) 0 0 1 2 2 3 3 3 · · ·

|X (t)| ≤ β(|X (t0)| , t − t0), ∀t ≥ t0, ∀X (t0) ∈ R
n . (4.14)

Theorem 4.2 Consider the sampled-data system (4.1)–(4.4) and the equivalent rep-
resentation (4.8) and (4.9). Consider the definition of ei (t) in (4.6). Assume that

1. There exist M continuous functions Si (yi , ei ) which satisfy the integral property

∫ t

t i
k

Si (yi (θ), ei (θ))dθ ≤ 0, ∀t ∈ [
t i
k, t i

k+1

)
, k ∈ N, i ∈ IM . (4.15)

2. There exist a differentiable positive define function V : Rn → R and class K
functions β1 and β2 verifying

β1(|X |) ≤ V (X) ≤ β2(|X |), ∀X ∈ R
n. (4.16)

3. There exists a scalar α > 0 such that

V̇ (X (t)) + αV (X (t)) ≤
M∑

i=1

e−ατi (t)Si (yi (t), ei (t)),

∀t ∈ [
ts, ts+1) , ∀s ∈ N, with τi (t) = t − t i

ki,s
, where ki,s is defined in (4.13).

(4.17)

Then the equilibrium point X = 0 of the system (4.1)–(4.4) is GUAS.

Proof Consider s ∈ N and t ∈ [ts, ts+1). From (4.17), we have

eαt
(
V̇ (X (t)) + αV (X (t)

) ≤
M∑

i=1

eαt i
ki,s Si (yi (t), ei (t)).

By integrating this equation on the interval [ts, t], we get
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eαt V (X (t)) − eαts V (X (ts)) ≤
M∑

i=1

eαt i
ki,s

∫ t

ts

Si (yi (θ), ei (θ))dθ,

which leads to

V (X (t)) ≤ e−α(t−ts )V (X (ts)) + e−αt
M∑

i=1

eαt i
ki,s

∫ t

ts

Si (yi (θ), ei (θ))dθ. (4.18)

Therefore, we can see that for any s ∈ N, we have

V (X (ts+1)) ≤ e−α(ts+1−ts )V (X (ts)) + e−αts+1

M∑

i=1

eαt i
ki,s

∫ ts+1

ts

Si (yi (θ), ei (θ))dθ.

(4.19)
Replacing V (X (ts)) in (4.18) by its expression (4.19) leads to

V (X (t)) ≤ e−α(t−ts )
[
e−α(ts−ts−1)V (X (ts−1))

+e−αts

M∑

i=1

eαt i
ki,s−1

∫ ts

ts−1

Si (yi (θ), ei (θ))dθ

]

+e−αt
M∑

i=1

eαt i
ki,s

∫ t

ts

Si (yi (θ), ei (θ))dθ,

and thus

V (X (t)) ≤ e−α(t−ts−1)V (X (ts−1)) + e−αt
M∑

i=1

[
eαt i

ki,s−1

∫ ts

ts−1

Si (yi (θ), ei (θ))dθ

+eαt i
ki,s

∫ t

ts

Si (yi (θ), ei (θ))dθ

]
.

(4.20)
Then, by recursivity, replacing V (X (ts−1)) in (4.20) by its expression (4.19) and so
on, we can show that

V (X (t)) ≤ e−α(t−t0)V (X (t0)) + e−αt
M∑

i=1

⎡

⎣

⎛

⎝
s∑

j=1

e
αt i

ki, j−1

∫ t j

t j−1

Si (yi (θ), ei (θ))dθ

⎞

⎠

+eαt i
ki,s

∫ t

ts

Si (yi (θ), ei (θ))dθ

]
.

(4.21)
Let us now consider some k ∈ N and i ∈ IM . By construction, there exist positive
integers s1 and s2, with s1 < s2, such that t i

k = ts1 and t i
k+1 = ts2 . From the definition

of elements ts and ki,s in (4.12) and (4.13), respectively (see also Fig. 4.3 andTable4.1
for an example), one can see that for any s̄ ∈ {s1, s1 + 1, . . . , s2 − 1}, ki,s̄ = k, and
thus t i

ki,s̄
= t i

k . Therefore, using this property, we can rewrite (4.21) as
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V (X (t)) ≤ e−α(t−t0)V (X (t0)) + e−αt
M∑

i=1

⎡

⎣

⎛

⎝
ki,s−1∑

k=0

eαt i
k

∫ t i
k+1

t i
k

Si (yi (θ), ei (θ))dθ

⎞

⎠

+eαt i
ki,s

∫ t

t i
ki,s

Si (yi (θ), ei (θ))dθ

]

.

(4.22)
Then, using assumption (4.15), one can see that all the integral terms are negative,
and thus one gets

V (X (t)) ≤ e−α(t−t0)V (X (t0)). (4.23)

Finally, assumption (4.16) leads to

|X (t)| ≤ β−1
1 (V (X (t0))e−α(t−t0)),

≤ β−1
1 (β2(|X (t0)|)e−α(t−t0)),

:= β(|X (t0)|, t − t0), ∀t > t0,

(4.24)

which concludes the proof. �

Theorem 4.2 is based on the existence of M functions Si , i ∈ IM , satisfying
assumption (4.15). In the following, we show that such functions exist.

First, we start by providing a technical lemma.

Lemma 4.2 Consider the set of operators Δi defined in (4.7) for any zi ∈ L ni
2e and

t ∈ [
t i
k, t i

k+1

)
, k ∈ N. We have the following inequality:

∫ t

t i
k

(Δi zi )(ρ)T (Δi zi )(ρ) − h2
i zT

i (ρ)zi (ρ)dρ ≤ 0. (4.25)

It follows that the M functions Si such that

Si (yi (θ), ei (θ)) = eT
i (θ)ei (θ) − h2

i yT
i (θ)yi (θ),

with ei = Δi yi , as defined in (4.7), satisfy the assumption (4.15).

Proof Using the same steps as in the proof of Lemma 4.1, we can show that

(Δi zi )
T (ρ)(Δi zi )(ρ) ≤ hi

(∫ ρ

t i
k

zT
i (θ)zi (θ)dθ

)

, ∀ρ ∈ [t i
k, t i

k+1], k ∈ N.

Therefore we have, for all t ∈ [t i
k, t i

k+1] and k ∈ N,
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∫ t

t i
k

(Δi zi )
T (ρ)(Δi zi )(ρ)dρ ≤

∫ t

t i
k

hi

∫ ρ

t i
k

zT
i (θ)zi (θ)dθdρ,

≤ hi

∫ t

t i
k

∫ t

t i
k

zT
i (θ)zi (θ)dθdρ,

= hi (t − t i
k)

∫ t

t i
k

zT
i (θ)zi (θ)dθ,

≤ h2
i

∫ t

t i
k

zT
i (θ)zi (θ)dθ,

which ends the proof. �
Lemma 4.2 proves the existence of functions Si satisfying condition (4.15) in

Theorem 4.2. In the following, we show the existence of a more general, parameter-
dependent, class of functionsSi satisfying that condition. The idea is to use a scaling
matrix Ri that gives an additional degree of liberty in the choice of theSi functions.
This will be useful later to reduce the conservatism of the stability conditions.

Lemma 4.3 Consider the set of operators Δi in (4.7) and (4.9). Then for any zi ∈
L ni

2e , 0 < RT
i = Ri ∈ R

m×m we have the following inequality:

N (t) =
∫ t

t i
k

[
(Δi zi )

T (ρ)Ri (Δi zi )(ρ) − h2i zT
i (ρ)Ri zi (ρ)

]
dρ ≤ 0, ∀t ∈ [t i

k , t i
k+1), k ∈ N.

(4.26)

It follows that the M functions Si such that

Si (yi (θ), ei (θ)) = eT
i (θ)Ri ei (θ) − h2

i yT
i (θ)Ri yi (θ),

with ei = Δi yi , as defined in (4.7), satisfy the assumption (4.15).

Proof First of all, we note that since RT
i = Ri > 0, then there existsUi ∈ R

n×n such
that Ri = U T

i Ui . Therefore, for any t ∈ [t i
k, t i

k+1), k ∈ N we have

N (t) =
∫ t

t i
k

[
(Ui (Δi zi )(ρ))T (Ui (Δi zi )(ρ)) − h2

i (Ui yi (ρ))T (Ui yi (ρ))
]

dρ.

From (4.7) we can see that Ui (Δi zi ) = Δi (Ui zi ). Then

N (t) =
∫ t

t i
k

[
(Δi (Ui zi )(ρ))T (Δi (Ui zi )(ρ)) − h2

i (Ui yi (ρ))T (Ui yi (ρ))
]

dρ.

Therefore, we can write

N (t) =
∫ t

t i
k

[
(Δiψi (ρ))T (Δiψi (ρ)) − h2

i ψ
T
i (ρ)ψi (ρ)

]
dρ,
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with ψi (ρ) = Ui zi (ρ), which can be seen to be negative from Lemma 4.2. �

We have now shown that theSi functions satisfying the assumption (4.15) exist.
The next step consists on showing that we can obtain a function V which satisfies
conditions (4.16) and (4.17), based on theSi functions in Lemma 4.3.

Remark 4.2 The Si functions presented in Lemmas 4.2 and 4.3 were inspired by
the ones proposed in [16], where it was studied the stability of bilinear systems with
aperiodic sampling and a single sensor measuring the whole state.

4.5.1 Numerical Criteria

The goal of this section is to provide tractable LMI conditions that guarantee the
stability conditions of Theorem 4.2, using Lemma 4.3. The main result is as follows.

Theorem 4.3 If there exist symmetric positive definite matrices Ri ∈ R
ni ×ni (i ∈

IM ), P ∈ R
n×n, and a scalar α > 0 such that the LMIs

[
AT

cl P + P Acl + αP + AT
cl L̄(λ)Acl P Bcl + AT

cl L̄(λ)Bcl

∗ −R̄(λ) + BT
cl L̄(λ)Bcl

]

≤ 0 (4.27)

are satisfied for all λ = [
λ1, . . . , λM

]T ∈ {0, 1}M , with

R̄(λ) = diag(e−αh1λ1 R1, . . . , e−αhM λM RM),

and
L̄(λ) = diag(e−αh1λ1h2

1R1, . . . , e−αhM λM h2
M RM),

then the equilibrium X = 0 of system (4.1)–(4.4) is GUAS.

Proof The goal is to provide sufficient conditions for the existence of functions V
and Si that satisfy the conditions of Theorem 4.2. Consider a quadratic function
V (X (t)) = X T (t)P X (t) and the representation of the system in (4.8) where Y (t) =
AclX (t) + BclE(t). Multiplying the LMIs (4.27) by

(
X T (t), E T (t)

)
on the left and

by its transpose on the right implies that

2X T (t)P(AclX (t) + BclE(t)) + αX T (t)P X (t)

≤ ET (t)R̄(λ)E(t) − Y T (t)L̄(λ)Y (t), ∀λ ∈ {0, 1}M .
(4.28)

Let us now define

R̃(t) = diag(e−ατ1(t) R1, . . . , e
−ατM (t) RM),
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and
L̃(t) = diag(e−ατ1(t)h2

1R1, . . . , e
−ατM (t)h2

M RM).

Taking into account the fact that for any t ∈ [ts, ts+1), s ∈ N, one has τi (t) =
t − t i

ki,s
∈ [0, hi ) for all i ∈ IM , it is clear that L̃(t) ∈ conv{L̄(λ) : λ ∈ {0, 1}M} and

R̃(t) ∈ conv{R̄(λ) : λ ∈ {0, 1}M }. Then, since (4.28) is satisfied, by convexity we
obtain

2X T (t)P(AclX (t) + BclE(t)) + αX T (t)P X (t)

≤ ET (t)R̃(t)E(t) − Y T (t)L̃(t)Y (t), ∀t ∈ [ts, ts+1), s ∈ N.
(4.29)

This leads to
2X T (t)P(AclX (t) + BclE(t)) + αX T (t)P X (t)

≤
M∑

i=1

e−ατi (t)(eT
i (t)Ri ei (t) − h2

i yT
i (t)Ri yi (t)),

(4.30)

which is equivalent to

V̇ (X (t)) + αV (X (t)) ≤
M∑

i=1

e−ατi (t)Si (yi (t), ei (t)), ∀t ∈ [
ts, ts+1) , s ∈ N,

(4.31)
with the functionsSi defined inLemma4.3 that satisfy (4.15). Therefore, assumption
(4.17) in Theorem 4.2 is satisfied.

Furthermore, we can show that using Lemma 4.3 in [13] for a quadratic function
V (X (t)) = X T (t)P X (t), assumption (4.16) is satisfied with functions β1 and β2

defined such that β1(|X |) = λmin(P)|X |2 and β2(|X |) = λmax (P)|X |2.
Therefore,we can see that the quadratic functionV and theSi functions inLemma

4.3 satisfy all the conditions of Theorem 4.2, if the LMIs in (4.27) are feasible, which
ends the proof. �
Remark 4.3 Theorem 4.3 provides tractable LMI conditions for LTI systems with
distributed, asynchronous sensors. Unlike the result obtained in the previous section,
in Theorem 4.1, which depends on the overall upper bound hmax = maxi∈IM {hi },
the conditions of Theorem depend explicitly on each sensor’s sampling upper bound
hi , i ∈ IM .

4.6 Validation of the Results on an Inverted Pendulum
Benchmark

In this section, we show some experimentations performed on an inverted pendulum
benchmark, using the results from the previous sections. The system is obviously
nonlinear, so we will use for analysis a linearization of the model around its unstable
equilibrium point (upper position).
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0 x

Fig. 4.4 Inverted pendulum at CRIStAL

4.6.1 Benchmark Description

The inverted pendulum (see Fig. 4.4) consists of a cart which is driven by a linear
motor and apendulum.Thependulum isfixed and left free on the cart. The systemalso
consists of two sensors: the first onemeasures the linear position of the cart where the
secondonemeasures the angular position of the pendulum.Anestimation of the linear
and angular velocity is calculated using a filtered derivative. The communication
between the system and the calculator (computer) is assured by a Dspace card. The
control task is performed using SIMULINK and the ControlDesk software, which
can allow us to see in real time the informations coming from the sensors and also
to send commands to the linear motor.

4.6.2 Dynamic Model

The Lagrangian of the system is represented by the following equation:

L = 1

2
Mv21 + 1

2
mv22 − mgl cos θ, (4.32)

where θ stands for the angular displacement measured from the equilibrium position.
M and m represent the mass of the cart and the point mass, respectively. v1 and v2
are, respectively, the velocity of the cart and the velocity of the point mass m. l is
the length of the rod, and g is the gravitational constant. After replacing v1 and v2
by their expression, and simplifying the result, the Lagrangian is given by

L = 1

2
(M + m)ẋ2 − mlẋ θ̇ cos θ + 1

2
ml2θ̇2 − mgl cos θ, (4.33)

where x denotes the cart’s position. Using the equation of Euler–Lagrange, one can
easily calculate the equations of motion of the system
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(M + m)ẍ − ml sin θ θ̇2 + ml cos θ θ̈ = N ,

ml2θ̈ + ml cos θ ẍ − mgl sin θ = 0,
(4.34)

where N = αU is the force exercised on the cart. The matrix representation of these
equations is

⎡

⎢⎢
⎣

ẋ
ẍ
θ̇

θ̈

⎤

⎥⎥
⎦ =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

ẋ

(−mgl cos θ + ml2θ̇2) sin θ

l(M + m sin2 θ)

θ̇

((M + m)g − ml cos θ θ̇2) sin θ

l(M + m sin2 θ)

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

+

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

0
l

l(M + m sin2 θ)

0
− cos θ

l(M + m sin2 θ)

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

N . (4.35)

We will consider the linearization of (4.35) at the upper position:

⎡

⎢
⎢
⎣

ẋ
ẍ
θ̇

θ̈

⎤

⎥
⎥
⎦ =

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

0 1 0 0

0 0
−mg

M
0

0 0 0 1

0 0
(m + M)g

Ml
0

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

⎡

⎢⎢
⎢
⎣

x
ẋ

θ

θ̇

⎤

⎥⎥
⎥
⎦

+

⎡

⎢⎢⎢
⎢⎢
⎣

0
α

M
0

−α

Ml

⎤

⎥⎥⎥
⎥⎥
⎦

U. (4.36)

The parameters describing the linear model (4.36) are given in Table4.2.

4.6.3 Theoretical Results

In the following, we consider a feedback control gain (4.4):

F = [
5.825 5.883 24.94 5.140

]
,

which was obtained using a placement of the poles {−100,−2 + 2i,−2 − 2i,−2}.

Table 4.2 Inverted pendulum benchmark parameters

Parameters Values Characteristics

M 3.9249 Kg Mass of the cart

m 0.2047 Kg Mass of the m point

l 0.2302 m Length of the rod

g 9.81 N/kg Gravitational constant

α 25.3 N/V Motor’s gain



4 Stability of LTI Systems with Distributed Sensors and Aperiodic Sampling 79

Fig. 4.5 Stability domain
obtained with the
dissipativity-based approach
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We consider the case of M = 2 sensors, one measuring x1 = [
x ẋ

]T
, and one

measuring x2 = [
θ θ̇

]T
.

Using the result from the small gain approach (Theorem 4.1), we can show that the
interconnected system (4.10) isL2-stable if hmax = maxi∈IM {hi } < 1

‖G‖∞ = 1.3ms.

Note that although this approach allows to design an admissible upper bound
hmax for the sampling intervals, it does not make it possible to take into account the
difference in the upper bounds of the two sensors (h1 and h2) in the analysis.

Using the LMI result from the dissipativity-based approach (Theorem 4.3), it is
possible to design admissible upper bounds on the sampling intervals for each sensor.
The obtained stability domain is shown in Fig. 4.5.

On top of allowing the design of each sensor’s admissible sampling interval upper
bound separately, this approach seems to bemuch less conservative than the previous
one.

4.6.4 Experimental Results

In this section, we present the experimentations performed using our benchmark. The
results have been obtained using randomly varying sampling intervals with upper
bounds h1 = 7ms and h2 = 5ms (see Fig. 4.6 to see the profile of the sampling
intervals). Note that these upper bounds are within the stability domain obtained
with the dissipativity approach, which is presented in Fig. 4.5.

The evolution of the position x and angular position θ is presented in Fig. 4.7,
where large perturbations have been introduced at t = 3.1s, t = 16.4s, and t =
25.9s, by acting on the pendulummanually. One can see that the pendulum stabilizes
even in the presence of sampling intervals variations and asynchronicity of both
sensors. The absence of oscillating patterns can be explained by the presence of dry
friction.
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Fig. 4.6 Profile of the sampling of x and ẋ (on top), and of θ and θ̇ (at the bottom)
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Fig. 4.7 Evolution of the position x (top) and the angular position θ (bottom) of the inverted
pendulum subject to perturbations for h1 = 7ms and h2 = 5ms
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4.7 Conclusion

This chapter was dedicated to the stability analysis of LTI sampled-data systemswith
asynchronous sensors and aperiodic sampling. The study is based on tools from the
robust control theory, and on a modeling of the system as an input/output intercon-
nection between an operator, representing the sampling error, and a continuous-time
(i.e., sampling-free) closed-loop system. Two approaches have been presented. The
first one is based on the small gain theorem and provides a tractable estimation of the
overall (with respect to all the sensors) maximum allowable sampling period. The
second approach is based on the dissipativity theory. It provides simple numerical
stability criterion using LMIs. An advantage of that approach compared to the pre-
vious one is that it allows for computing an estimation of the maximum allowable
sampling for each and every sensor of the system. Experimentations have been per-
formed on an inverted pendulum benchmark and confirm the applicability of both
approaches. The results seem to indicate that the dissipativity-based approach is less
conservative than small gain-based one. In further studies, it would be interesting to
consider additional phenomena in one study, such as delays or quantization.
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Chapter 5
Template Complex Zonotope Based
Stability Verification

A. Adimoolam and T. Dang

Abstract In this paper, we consider the problem of verifying stability of computer
control systems whose behavior can be modeled by nearly periodic linear impulsive
systems. In these systems, the eigenstructure and stability of the dynamics are closely
related. A recently introduced set representation called complex zonotopes could
utilize the possibly complex eigenstructure of the dynamics to define contractive sets
for stability verification, which demonstrated good accuracy on some benchmark
examples. However, complex zonotopes had the drawback that it is not easy to
refine them in the stability verification procedure, while also we had to guess the
contractive complex zonotope instead of systematically synthesizing it. Overcoming
this drawback, in this paper we introduce a more general set representation called
template complex zonotope, which has the advantage that it is easy to refine and also
the contractive set can be systematically synthesized. We corroborate the efficiency
of our approach by experimenting on some benchmark examples.

5.1 Introduction

Embedded control systems combine computer software with the physical world, and
their global behavior can be modeled using hybrid systems. To assert correctness
of such systems, their global behavior under all possible nondeterminism resulting
from the interaction between continuous and discrete dynamics should be accurately
analyzed. Thus, one of the key ingredients for safe design and verification of embed-
ded control systems is a set representation which, on one hand, is expressive enough
to describe the evolution of sets of hybrid trajectories and, on the other hand, can be
manipulated by time-efficient algorithms. For most hybrid systems with nontrivial
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continuous dynamics, exact computation of hybrid trajectories is impossible, so the
focus is put on approximate computation of reachable states. In the area of abstract
interpretation within program verification, there is a similar need for data structures
for set manipulation, called abstract domains, which should be fine-grained enough
to be accurate, yet computationally tractable to deal with complex programs.

Two classical abstract domains are intervals [12] and convex polyhedra [13], and
their variants have been developed to achieve a good compomise between computa-
tional speed and precision, such as zones [28], octagons [29], linear templates [35],
zonotopes [19], and tropical polyhedra [4]. For hybrid model checking, convex poly-
hedra and their special classes such as parallelotopes and zonotopes are also among
popular set representations. Beyond polyhedral set representations, ellipsoids can
be used for reachable set computations [27]. In abstract interpretation, polynomial
inequalities are used for invariant computation via their reduction to linear inequal-
ities in [7] and polynomial equalities via Gröner basis methods [34]. Quadratic
templates are also proposed, where semi-definite relaxations are used for deriving
nonlinear invariants (for instance quadratic invariants inspired by Lyapunov func-
tions) [2, 15]. Recently, complex zonotopes [1] extended usual zonotopes to the
complex domain, which geometrically speaking are Minkowski sum of line seg-
ments and some ellipsoids. Other extensions of zonotopes, such as quadratic [3] and
more general polynomial zonotopes [6] have been proposed. Complex zonotopes are
however different from polynomial zonotopes because while a polynomial zonotope
is a set-valued polynomial function of intervals, a complex zonotope is a set-valued
function of unit circles in the complex plane.

Complex zonotopes can utilize the possibly complex eigenstructure of the dynam-
ics of linear impulsive systems to define contractive sets for stability verification.
This is an advantage over polytopes or usual zonotopes that can only utilize the real
eigenstructure but not the complex eigenstructure. For stability verification of nearly
periodic linear impulsive systems, complex zonotopes demonstrated good accuracy
on some benchmark examples. However, a drawback of complex zonotopes is that
adding more generators to it can violate the property of contraction with respect to
the dynamics. Therefore, it is not easy to refine complex zonotopes for verifying
stability for larger intervals of sampling times. Moreover, we had to heuristically
guess a suitable complex zonotope for stability verification instead of systematically
synthesizing it.

Overcoming the aforementioned drawback, in this paper, we introduce a more
general set representation called template complex zonotopes. In a template complex
zonotope, the bounds on the complex combining coefficients, called scaling factors,
are treated as variables, while the directions for the generators are fixed a priori
by a template of complex vectors. This allows us to systematically synthesize a
suitable template complex zonotope for stability verification, instead of guessing it
like in the case of complex zonotopes. Furthermore, template complex zonotopes
can be refined easily by adding any arbitrary set of vectors to the existing template,
because the scaling factors can be adjusted accordingly. We present experiments on
some benchmark examples where template complex zonotopes contract faster than
complex zonotopes, resulting in faster verification.
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Basic notation. We represent integers by Z, real numbers by R and complex
numbers by C. For integers p and q, the set of p × q matrices with entries drawn
from a set Ψ is denotedMp×q(Ψ ). If z is a vector of complex numbers, then real(z)
denotes the real part of z and the imaginary part is denoted img(z). For a positive
integer i , the i th component of z is denoted by zi . For a matrix X and positive
integers i, j , Xi j is the i th row and j th column entry of X . The diagonal square
matrix containing entries of z along the diagonal is denoted by D(z). If c is a scalar
complex number, its absolute value is |c| = (|real(c)|2 +|img(c)|2)1/2. The infinity
norm of a possibly complex n-dimensional vector z is ‖z‖∞ = maxni=1 |zi |. The
infinity norm of a possibly complex n × m matrix X is ‖X‖∞ = maxni=1

∑ |Xi j |.
The rest of the paper is organized as follows. We introduce template complex

zonotopes in Sect. 5.2 and discuss important operations on them like linear transfor-
mation, Minkowski sum and inclusion checking. In Sect. 5.3, we first define a nearly
periodic linear impulsive system and the problem of verifying global exponential
stability. Using Proposition 5.1, we relate the contraction of a template complex
zonotope to the eigenstructure of the dynamics, which is a motivation for using
template complex zonotopes for stability verification. Later in that section, we dis-
cuss how to find suitable template complex zonotopes and verify their contraction to
establish exponential stability of the system. In Sect. 5.4, we describe experiments
on two benchmark examples and their results which corroborate the efficiency of our
approach.

5.2 Template Complex Zonotopes

A template complex zonotope is a set representation in which each point is described
as a linear combination of a set of complex-valued vectors, called as a template, such
that the complex combining coefficients are bounded in absolute values by a set of
positive bounds called scaling factors.

Definition 5.1 (Template complex zonotope) For n,m ∈ Z>0, let V ∈ Mn×m(C) be
a template, c ∈ C

n be a center point and s ∈ R
m
≥0 be scaling factors. Then we define

a template complex zonotope as

C (V, c, s) = {
V ζ + c : ζ ∈ C

m ∧ ∀i ∈ {1, . . . ,m}, |ζi | ≤ si
}
.

Complex zonotopes, which were introduced in [1], are a special case of template
complex zonotopes where si = 1 for all i ∈ {1, . . . ,m}. The real projection of
a template complex zonotope can represent, in addition to polytopic zonotopes,
non-polyhedral convex sets. Therefore, they are also more expressive than usual
(real-valued) zonotopes. To illustrate, Fig. 5.1 represents the non-polyhedral real

projection of the template complex zonotope C (V, 0, s) where V =
(

(1+2i) 1 (2+i)
(1−2i) 1 (2−i)

)

and s = [1 1 1]T .
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Fig. 5.1 Real projection of a template complex zonotope

In the rest of the paper, unless otherwise stated, we assume that V is an n × m
complex matrix, s is an m × 1 column vector and c is a n × 1 column vector for
m, n ∈ Z>0.
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Operations on template complex zonotopes. Concerning linear transformation and
the Minkowski sum, computations on template complex zonotopes are similar to
those on usual (real-valued) zonotopes as stated in the following results, which can
be proved by the same techniques as that of a usual zonotope.

Lemma 5.1 (Linear transformation and Minkowski sum) Let A ∈ Mn×n(C), V ∈
Mn×m(C), G ∈ Mn×r (C), c, d ∈ C

n, s ∈ R
m
≥0, h ∈ R

r≥0 for some n,m, r ∈ Z>0.

1. Linear transformation: AC (V, c, s) = C (AV, Ac, s).

2. Minkowski sum: C (V, c, s) ⊕ C (G, d, h) = C

(

[V G] , (c + d),

(
s
h

))

.

Checking inclusion is a fundamental problem in reachability computation. For
stability verification, we are interested in efficiently checking the inclusion between
two template complex zonotopes centered at the origin.Although this problem is non-
convex in general, we derive an easily verifiable convex condition which is sufficient
(but not necessary), as follows. The inclusion checking method we propose in the
following can be extended to zonotopes centered anywhere.

Let us consider that we want to check the inclusion of a template complex
zonotope C (V a, 0, sa) inside a template complex zonotope C

(
V b, 0, sb

)
, where

V a ∈ Mn×r (C), V b ∈ Mn×m(C), sa ∈ R
r≥0 and sb ∈ R

m
≥0 for some n,m, r ∈ Z>0.

We relate any point in V a to a point in V b as follows. Consider X ∈ Mr×m(C) as a
matrix solving V aD(sa) = V bX , which we call a transfer matrix fromC (V a, 0, sa)
to C

(
V b, 0, sb

)
. Recall that D(sa) is the diagonal square matrix containing entries

of sa along its diagonal. Let any point z in C (V a, 0, s) be written as z = V aζ where
ζ is a combining coefficient whose absolute values are bounded by sa . By normal-
izing with the scaling factors, we can write ζ = D(s)ε for some ε : ‖ε‖∞ ≤ 1.
So, we get z = V aD(s)ε. Then using the relation for the transfer matrix, we
rewrite z = V bXε. If the absolute value of every component of Xε is less than
the corresponding value of sb, then Xε can be treated as a combining coefficient of
C

(
V b, 0, sb

)
for the point z and then z also belongs to C

(
V b, 0, sb

)
. This is true if∑m

j=1 |Xi j | ≤ sbi ∀i ∈ {1, . . . ,m}. This gives us a sufficient condition, stated in the
following theorem for inclusion of C (V a, 0, sa) in C

(
V b, 0, sb

)
.

Theorem 5.1 (Inclusion) Let V a ∈ Mn×r (C), V b ∈ Mn×m(C), sa ∈ R
r≥0 and

sb ∈ R
m
≥0 for some n,m, r ∈ Z>0. Then C (V a, 0, sa) ⊆ C

(
V b, 0, sb

)
if all the

following statements are true.

∃X ∈ Mm×r (C) :

V bX = V aD(sa) and ∀i ∈ {1, . . . ,m}
⎛

⎝
r∑

j=1

|Xi j |
⎞

⎠ ≤ sbi .
(5.1)

For fixed Va and Vb, the constraints in Theorem 5.1 are second-order conic con-
straints in the variables sa , sb, and X . Many convex optimization solvers can solve
such constraints efficiently upto a high numerical precision.
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5.3 Nearly Periodic Linear Impulsive System

A nearly periodic linear impulsive system is a hybrid system whose state evolves
continuously by a linear differential equation for some bounded time period, after
which there is an instantaneous linear impulse. Formally, a linear impulsive system
is specified by a tuple L = 〈Ac, Ar ,Δ〉 where Ac and Ar are n × n real matrices
called the linear field matrix and impulse matrix, respectively. The positive integer n
is the dimension of the state space and Δ = [tmin, tmax ] is an interval of nonnegative
reals, called the sampling period interval. The dynamics of the nearly periodic linear
impulsive system is described as follows. A function x : R≥0 → R

n is called a
trajectory of the system if there exists a sequence of sampling timesdefinition (ti )∞i=1
satisfying all the following:

(ti+1 − ti ) ∈ Δ ∀i ∈ Z>0 (uncertainty in sampling period)

ẋ(t) = Acx(t) ∀t ∈ R≥0 : t �= ti ∀i ∈ Z>0 (continuous)

x(t+i ) = Arx(t−i ) ∀i ∈ Z>0 (linear impulse)

(5.2)

We say that the linear impulsive system is globally exponentially stable (GES) if
all the trajectories of the system beginning at any point in the state space eventually
reach arbitrarily close to the origin at an exponential rate, as follows.

Definition 5.2 (Global exponential stability) The system (5.2) is globally exponen-
tially stable (GES) if there exist positive scalars c > 0 and λ ∈ [0, 1) such that for
all t ∈ R≥0, x(t) ≤ cλt‖x(0)‖.
We state the stability verification problem as follows.

Problem 5.1 (Stability verification problem) proposition Given Ac, Ar , tmin , find
the largest upper bound tmax on the sampling time to guarantee exponential stability.

Related work on stability verification of nearly periodic linear impulsive systems
A common approach to this problem is extending Lyapunov techniques, which

results in Lyapunov Krakovskii functionals [37, 39] (using the framework of time-
delay systems), and discrete-time Lyapunov functions [36]. Stability with respect to
time-varying input delay can also be handled by input/output approach [24]. Stability
verification problem for time-varying impulsive systems can also be formulated in a
hybrid systems framework [8, 20, 32], for which various Lyapunov-based methods
including discontinuous time-independent [31] or time-dependent Lyapunov func-
tions [17] were developed. Another approach involves using convex embedding [18,
21, 22]. In this approach, stability conditions can be checked using parametric Lin-
ear Matrix Inequalities (LMIs) [21], or as set contractiveness (such as, polytopic set
contractiveness) [10, 16, 25]. Inspired by these results on set contractiveness, con-
ditions [1] provides a stability condition, expressed in terms of complex zonotopes,
which is more conservative but can be efficiently verified. The novelty of this work is
in the extension of complex zonotopes to template complex zonotopes which allows
a systematic way to synthesize contractive zonotopic sets to verify stability.
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The state reached after a linear impulse followed by a continuous evolution for
time t is eAct Ar x . So, let us denote Ht = eAct Ar for any positive real t , which we
call as the reachability operator if t lies in the sampling period interval Δ. Given a
set Ψ ⊂ R

n , the set of all reachable points of Ψ , when acted upon by an impulse
followed by continuous evolution for sampling time period t ∈ Δ until before the
next impulse, is

⋃
t∈Δ HtΨ . It was shown previously in [16, 25] that a necessary and

sufficient condition for exponential stability is the existence of a convex, compact,
and closed set containing the origin in its interior, called a C-set, that contracts
between subsequent impulses. In other words, we can establish exponential stability
by finding a C-set Ψ such that HtΨ ⊆ λΨ for some λ ∈ [0, 1) and for all t ∈ Δ.
In this paper, we want to find contractive C-sets represented as template complex
zonotopes. We define contraction of a template complex due to a linear operator as
follows, which when less than one, implies that the zonotope is contractive.

Definition 5.3 For a template complex zonotope C (V, 0, s), the amount of con-
traction by a square matrix J ∈ Mn×n(R), denoted by χ(V, s, J ) is

χ(V, s, J ) = min
{
λ ∈ R≥0 : JC (V, 0, s) ⊆ λC (V, 0, s)

}
.

Our motivation for considering template complex zonotopes can be inferred from
the following proposition.

Proposition 5.1 Let V contain only the eigenvectors of Ht as its column vectors and
μbe the vector of eigenvalues corresponding the columns of V . Then HtC (V, 0, s) =
C (V, 0,D(|μ|)s).

For a fixed sampling time period, i.e., when tmin = tmax = t , we can infer from
the above proposition that the contraction of the template complex zonotope formed
by the eigenvector template is bounded by the largest absolute value of the eigenval-
ues. Therefore, when the sampling period is fixed, we can find contractive template
complex zonotopes for exponentially stable systems by choosing the template as the
collection of eigenvectors. However, we are interested in the case where the sampling
time period varies in the interval Δ, i.e., there are uncountably many reachability
operators parametrized over the time interval Δ. Motivated by the above analysis,
when the sampling period is uncertain, we choose the template as the collection
of eigenvectors of a few reachability operators and try to synthesize suitable scaling
factors for which the template complex zonotope contracts with respect to the chosen
finite set of reachability operators. However, later we also verify that the synthesized
template complex zonotope actually contracts with respect to all the (uncountably
many) reachability operators. First, we describe the procedure to synthesize the tem-
plate complex zonotope.

Synthesizing a candidate template complex zonotope. This step of systematically
synthesizing a suitable template complex zonotope that is likely to be contractive
constitutes the main improvement over the procedure proposed in [1]. Our criterion
for synthesizing the template complex zonotope is that it has to be contractive with
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respect to a few reachability operators (called reference operators), which is a neces-
sary condition for contraction with respect to the overall system dynamics. Since the
eigenstructure of the reachability operators is related to the stability of the system, we
include the eigenvectors of a few reachability operators in the template. For a fixed
number k ∈ Z>0 of reference operators, they can be chosen incrementally as follows.

Define k-sampled time points as Λk =
{
tmin + i (tmax−tmin)

k : i ∈ {0, . . . , k − 1}
}

.

Then, we define the set of k-sampled reachability operators as Γk = {Ht : t ∈ Λk}.
Let us denote the template of collection of eigenvectors of all operators in Γk as
Ek . For this template, we synthesize suitable scaling factors based on the following
theorem. The derivation of this theorem uses the inclusion checking condition from
Theorem 5.1.

Theorem 5.2 If Ek have rank n. For a vector of scaling factors s ∈ R
m
≥0, the template

complex zonotopeZ = C (Ek, 0, s) would represent a C-set and also HtZ ⊆ λZ
for λ ∈ (0, 1) if following are all satisfied.

s ∈ R
n
≥1 (sufficient condition for representing C-set)

∃Xt ∈ Mm×m(C) ∀t ∈ Λk s.t.

Ek Xt = Ht EkD(s) (transfer matrix condition)
m∑

j=1

∣
∣(Xt )i j

∣
∣ ≤ λsi ∀i ∈ {1, . . . ,m} (bounding contraction)

(5.3)

Therefore, we can synthesize a template complex zonotope that is contractive
with respect to a finite chosen number k > 0 of reference operators by solving for
the scaling factors satisfying the second-order conic constraints in (5.3).

Verifying contraction. To verify that this synthesized template complex zono-
tope actually contracts with respect to all the reachability operators Ht , where t
is parametrized over the whole sampling time interval Δ, we divide the sampling
interval into small enough subintervals and verify contraction in each interval. To
bound the amount of contraction in small intervals, we use some useful properties
of contraction, which were earlier derived in [1].

Let Ht+ρ be an operator where ρ lies in the interval (0, ε). For an order of Taylor
expansion r ∈ Z>0 and some δ ∈ [0, ε], define

Pt
r (ρ) =

r∑

i=0

Ai
cρ

i

i ! Ht and Et
r (δ) = Ar+1

c δr+1

(r + 1)! Ht .

Then based on Taylor expansion, we get that

Ht+ρ = Pt
r (ρ) + theoremEt

r (δ).

Furthermore, a bound on contraction as sumof contractions depending on ε is derived
in [1] as
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χ
(
V, s, Ht+ρ

) ≤
(

r
max
i=0

χ
(
V, s, Pt

r (ε)
)
)

+ εr+1

(r + 1)!χ
(
V, s, Ar+1

c Ht
)

(5.4)
The right-hand side of (5.4) can be bounded if we know a bound on the contraction
under a linear operation, which is derived as follows.

Lemma 5.2 Let J ∈ Mn×n(R). Define

β(V, s, J ) = min{‖X‖∞ : X ∈ Mm×m(C) ∧ VD(s)X = JVD(s)}

Then we have χ(V, s, J ) ≤ β(V, s, J ).

Proof If JVD(s) = VD(s)X ,wewant to prove that JC (V, 0, s) = C (JV, 0, s) ⊆
‖X‖∞C (V, 0, s). We deduce C (JV, 0, s) = {JV ζ : ∀i ∈ {1, . . . ,m}|ζi | ≤
si } = {JVD(s)ζ ′ : ‖ζ ′‖∞ ≤ 1} = {VD(s)Xζ ′ : ‖ζ ′‖∞ ≤ 1} ⊆ ‖X‖∞{VD(s)ζ ′ :
‖ζ ′‖∞ ≤ 1} = ‖X‖∞{V ζ : ∀i ∈ {1, . . . ,m}|ζi | ≤ si } = ‖X‖∞C (V, 0, s).

Then the contraction for sampling time interval (t, t + δ) can be bounded as follows.

Theorem 5.3 Let ρ ∈ (t, t + ε) and for r ∈ Z>0, Pt
r (ρ) = ∑r

i=0
Ai
cρ

i

i ! Ht . Define

ηr (V, s, t, ε) = (
maxri=0 β

(
V, s, Pt

r (ε)
))+ εr+1

(r+1)!β
(
V, s, Ar+1

c Ht
)
, where the bound

β(.) is defined in Lemma 5.2. Then χ
(
V, s, Ht+ρ

) ≤ ηr (V, s, t, ε)

Verification algorithm. We begin with k = 3 reference operators that correspond
to the two end points of the sampling interval and the middle point. The algorithm
first finds suitable scaling factors s that gives a template complex zonotope which
contracts with respect to these reference operators. Next, it checks whether the con-
traction of the template complex zonotope C (Ek, 0, s) with respect to all the reach-
ability operators is less than one. For checking contraction, we use the algorithm
earlier proposed in [1]. If successful, then exponential stability of the system is
verified. Otherwise, k is increased, the algorithm synthesizes the template complex
zonotope for the increased k and then checks contraction. If unsuccessful after amax-
imum value of k, the algorithm stops and the result is inconclusive. This is described
in Algorithm1. This algorithm has been implemented and we defer experimental
results to Sect. 5.4.

5.4 Experiments

We evaluated our algorithm on two benchmark examples of linear impulsive systems
below and compared it with other state-of-the-art approaches. For convex optimiza-
tion, we use CVX version 2.1 with MATLAB 8.5.0.197613 (R2015a). The reported
experimental results were obtained on Intel(R) Core(TM) i5-3470 CPU@ 3.20GHz.
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Algorithm 1 Exponential stability verification of system (5.2)
1: Initialize k = 3.
2: Choose M ∈ Z>0 as the largest value of k and tol as discretization parameter.
3: while k ≤ M do
4: Initialize t = tmin , h = tol, r as order of Taylor expansion (typically ≤ 2).
5: while h ≥ tol and t < tmax do
6: if ηr (Ek , s, t, h) < 1 then
7: t ← t + h; h ← h + tol
8: else
9: h ← h − tol
10: end if
11: end while
12: if t ≥ tmax then
13: —BreakLoop—
14: else
15: k ← k + 1.
16: end if
17: end while
18: if k ≤ M then
19: System is exponentially stable
20: else
21: Inconclusive
22: end if

Example 1 We consider a networked control system with uncertain but bounded
transmission period. A networked control system is composed of a plant and a con-
troller that interact with each other by transmission of feedback input from controller
to the plant. If the system dynamics is linear with linear feedback, then for uncertain
but bounded transmission period, we can equivalently represent it as a linear impul-

sive system where Ac =
⎛

⎝
Ap 0 Bp

0 0 0
0 0 0

⎞

⎠ , Ar =
⎛

⎝
I 0 0

BoCp Ao 0
DoCp Co 0

⎞

⎠ for some parameter

matrices Ap, Bp, Bo, Cp, Ao, Co, and Do. The sampling interval Δ of the linear
impulsive system specifies bounds on the transmission interval. Our example of a
networked control system is taken from Björn et al. [38]. The system is originally
described by discrete-time transfer functions, which has an equivalent state-space

representation with parameter matrices Ap =
(−1 0

1 0

)

, Bp =
(
1
0

)

, Cp = (
0 1

)
,

Ao = 0.4286, Bo = −0.8163, Co = −1 and Do = −3.4286. Given the lower bound
on the transmission period as tmin = 0.8, we want to find as high a value of tmax as
possible for which the system is GES.

Example 2 We consider the following linear impulsive system fromHetel et. al. [22]
that describes an LMI-based approach to verify stability. The specification is given

by Ac =
⎛

⎝
0 −3 1
1.4 −2.6 0.6
8.4 −18.6 4.6

⎞

⎠ and Ar =
⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠ .
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Table 5.1 Example 1

Reference tmin tmax

Value recommended in [38] 0.08 0.22

NCS toolbox [8] 0.08 0.4

Complex zonotope [1] 0.08 0.5

Template complex zonotope 0.08 0.58

Table 5.2 Example 2

Reference tmin tmax

Lyapunov, parametric
LMI [22]

0.1 0.3

Polytopic set
contractiveness [16]

0.1 0.475

Khatib et al. [25] 0.1 0.514

Complex zonotope [1] 0.1 0.49

Template complex zonotope 0.1 0.496

Table 5.3 Template complex zonotopes (TCZ) vs Complex zonotopes (CZ) [1]

CZ TCZ

Finding suitable zonotope Requires guessing Systematically synthesized

No. of impulses for contraction 2 (both examples) 1 (both examples)

Computation time (Example 1) 27.41 s 14.9443 s

Computation time (Example 2) 74.04 s 10.6097 s

Setting and Results. While implementing the algorithm for stability verification,
we used order Taylor expansion, a tolerance of tol = 0.01 for Example1 and
tol = 0.006 for Example2. We required k = 3 number of reachability operators
for both examples, for synthesizing a suitable template complex zonotope used in
checking contraction. We could verify exponential stability in a sampling interval
[0.08, 0.58] for Example1 and [0.1, 0.496] for Example2. The comparison of our
approach with the state-of-the-art NCS toolbox [8] and also other approaches is pre-
sented in Tables5.1 and 5.2. For the first example, our method outperforms other
approaches, while it is competitive with other approaches on the second example.
Furthermore, Table5.3 shows that the template complex zonotope based approach is
also faster than the complex zonotope approach of [1].
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5.5 Conclusion

We extended complex zonotopes to template complex zonotopes in order to improve
the efficiency of the computation of contractive sets and positive invariants. Tem-
plate complex zonotopes retain a useful feature of complex zonotopes, which is
the scope to incorporate the eigenvectors of linear dynamics among the generators
because the eigenstructure is related to existence of positive invariants. In addition,
compared to complex zonotopes, the advantage template complex zonotopes have
is the ability to regulate the contribution of each generator to the set by using the
scaling factors. Accordingly, we proposed a systematic and more efficient procedure
for verification of stability of nearly periodic impulsive systems. The advantage of
this new set representation is attested by the experimental results that are better or
competitive, compared to the state-of-the-art methods and tools on benchmark exam-
ples. This work also contributes a method for exploiting the eigenstructure of linear
dynamics to algorithmically determine template directions, required by most verifi-
cation approaches using template-based set representations. A number of directions
for future research can be identified. First, we intend to extend these techniques to
analysis to switched systems under constrained switching laws. Also computation-
ally speaking, our approach is close in spirit to abstract interpretation. Indeed, the
operations used to find contractive sets can be extended to invariant computation for
general hybrid systems with state-dependent discrete transitions.

Acknowledgements This work is partially supported by the ANR MALTHY project (grant
ANR-12-INSE-003).
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26. Kouramas, K.I., Raković, S.V., Kerrigan, E.C., Allwright, J.C., Mayne, D.Q.: On the minimal
robust positively invariant set for linear difference inclusions. In: CDC-ECC’05, pp. 2296–
2301. IEEE (2005)

27. Kurzhanski, A., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: HSCC. LNCS,
vol. 1790, pp. 202–214. Springer, Berlin (2000)

28. Miné, A.: A new numerical abstract domain based on difference-bound matrices. In: PADO,
pp. 155–172 (2001)

29. Miné, A.: The octagon abstract domain. High. Order Symb. Comput. 19(1), 31–100 (2006)
30. Naghshtabrizi, P.: Delay Impulsive Systems: A Framework for Modeling Networked Control

Systems. University of California, Santa Barbara (2007)
31. Naghshtabrizi, P., Hespanha, J.P., Teel, A.R.: Exponential stability of impulsive systems with

application to uncertain sampled-data systems. Syst. Control. Lett. 57(5), 378–385 (2008)
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Chapter 6
Timing Contracts for Multi-Core
Embedded Control Systems

M. Al Khatib, A. Girard and T. Dang

Abstract In physical dynamical systems equipped with embedded controllers, tim-
ing contracts specify the time instants at which certain operations are performed
such as sampling, computation, and actuation. In the first part of this chapter, we
present a class of timing contracts specifying bounds on the sampling-to-actuation
delay and on the sampling period. We then review existing techniques that can han-
dle the problem of stability verification: given models of the physical plant and of
the controller and a timing contract, we verify that the resulting dynamical system
is stable. In the second part of the chapter, we consider the scheduling problem
of embedded controllers on a multiple core computational platform: given a set of
controllers, each of which is subject to a timing contract, we synthesize a dynamic
scheduling policy, which guarantees that each timing contract is satisfied and that
each of the shared computational resources is allocated to at most one embedded
controller at any time. The approach is based on a timed game formulation whose
solution provides a suitable schedule.

6.1 Introduction

Physical systems equipped with embedded controllers have a long history (aircrafts,
cars, robots, etc.) and are becoming ever more complex and pervasive (smart build-
ings, autonomous vehicles, etc.). Efficient usage of the computational resources in
embedded control systems while providing formal guarantees of stability requires a
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profound understanding of the interaction between their computational and physical
components. Models faithfully describing such cyber-physical integration combine
continuous as well as discrete dynamics whereby the former originates from the
behavior of the physical systems whereas the latter results from the behavior of com-
ponents like sensors, actuators, and other computation and communication resources.
One direction in modeling timing of events (sampling, computation, and actuation)
in this orchestration is given by timing contracts [11]. Under such contracts, the
control engineers are responsible for designing a control law that is robust to all
possible timing variations specified in the contract while the software engineers can
focus on implementing the proposed control law so as to satisfy the timing contract.
Consequently, we propose techniques that are useful within this framework.

In the first part of this chapter, we present a class of parameterized timing contracts
specifying bounds on the sampling-to-actuation delay and on the sampling period.
We then review existing techniques [6, 9, 10] that can handle the problem of stability
verification: given models of the physical plant and of the controller and a timing
contract, verify that the resulting dynamical system is stable. In this context, we
briefly present our approach [2, 3], based on the notion of reachable set, and which
is built on efficient over-approximation algorithms developed over the past decade
(see e.g., [19]).

In the second part, we consider the scheduling problem of embedded controllers
on a multiple core computational platform. Given a set of controllers, each of which
is subject to a timing contract, we synthesize a dynamic scheduling policy, which
guarantees that each timing contract is satisfied and that each of the shared com-
putational resources is allocated to at most one embedded controller at any time.
The approach is based on a timed game formulation [5] whose solution provides
a suitable schedule. Results on this second problem partially appear, in the case of
single core computational platforms in [4].

Notation

LetR,R+
0 ,R

+,N,N+ denote the sets of reals, nonnegative reals, positive reals, non-
negative integers, and positive integers, respectively. For I ⊆ R

+
0 , let NI = N ∩ I .

Finally, for a set S, we denote the set of all subsets of S by 2S .

6.2 Problem Formulation

The model considered in the chapter is represented by the block diagram given by
Fig. 6.1. Typically, the plant’s state z flows under continuous dynamics. Then, at each
sampling instant t sk , k ∈ N, the plant’s state is sampled by the sampler and is passed
through a network to the controller. The latter computes the control input u based on
z(t sk ) and updates the plant’s input at instant t

a
k , k ∈ N. The plant’s input is then held

constant by a zero-order hold until the next update arrives via the network.
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Fig. 6.1 Block diagram of a
sampled-data system

Fig. 6.2 Periodic
sampled-data systems

The following model allows us to capture the continuous dynamics of the plant
as well as the discrete dynamics, introduced by the sampler and the zero-order hold.

ż(t) = Az(t) + Bu(t), ∀t ∈ R
+
0 (6.1a)

u(t) = Kz(t sk ), tak < t ≤ tak+1 (6.1b)

where z(t) ∈ R
p is the state of the system, u(t) ∈ R

m is the control input, thematrices
A ∈ R

p×p, B ∈ R
p×m , K ∈ R

m×p, and k ∈ N. In addition, it is assumed that K is
designed such that thematrix A + BK isHurwitz and that for all t ∈ [0, ta0 ],u(t) = 0.

Traditionally, controllers assume that sampling is performed periodically and that
actuation is performed with as little latency as possible. This scenario is shown in
Fig. 6.2where the sampling instants are given by t sk = kh for all k ∈ N and h being the
sampling period. However outside this ideal case, variations in the timing sampling
and actuation instants can be captured by timing contracts, which make it possible
to take into account the temporal nondeterminism of the sequences of sampling and
actuation instants (t sk )k∈N and (tak )k∈N.

We assume that the sequences of sampling and actuation instants (t sk )k∈N and
(tak )k∈N satisfy a timing contract θ(τ , τ , h, h) given by
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0 ≤ t s0 ,
t sk ≤ tak ≤ t sk+1, ∀k ∈ N

τk = tak − t sk ∈ [ τ , τ ], ∀k ∈ N

hk = t sk+1 − t sk ∈ [ h, h], ∀k ∈ N

(6.2)

where τ ∈ R
+
0 , τ ∈ R

+
0 , h ∈ R

+, and h ∈ R
+ provide bounds on the sampling-

to-actuation delays (which include time for computation of the control law) and
sampling periods. Note that we impose h �= 0 to prevent Zeno behavior. Moreover,
these parameters must belong to the following set C so that the time intervals given
in (6.2) are always non-empty and it is always possible to choose t sk+1 ≥ tak :

C = {
(τ , τ , h, h) ∈ R

+
0 × R

+
0 × R

+ × R
+ : τ ≤ τ ≤ h, h ≤ h

}
.

Contract (6.2) is a general timing contract which includes or over-approximates
the different contracts introduced in [11]. Their relation to the timing contract (6.2)
is described as follows:

1. ZET Contract: The Zero Execution Time contract is given by (6.2) with τ =
τ = 0 and h = h = h ∈ R

+. In other words, the contract states that the sampling
and actuation instants are periodic and simultaneous such that t sk = tak = kh for
k ∈ N. As mentioned in [11], this contract is hardly achievable in practice since
computation always takes time in between the sampling and actuation instants.

2. LET Contract: The Logical Execution Time contract is given by (6.2) with
τ = τ = h = h = h ∈ R

+. The contract states that the sampling and actuation
instants are periodic such that t s0 = 0 and t sk = tak−1 = kh for k ∈ N

+.
3. DET Contract: The Deadline Execution Time contract is given by (6.2) with

τ = 0 and h = h = h ∈ R
+. The contract states that the sampling instants are

periodic, or t sk = kh for k ∈ N, and actuation instants are at some point tak in the
interval [t sk , t sk + τ ], with τ ≤ h.

4. TOLContract: The Timing Tolerance contract is defined by a nominal sampling
period h ∈ R

+, nominal sampling-to-actuation delay τ ∈ R
+
0 , and two jitters

J h, J δ ∈ R
+
0 with J τ ≤ τ and J h + J τ + τ ≤ h, such that t sk ∈ [kh, kh + J h]

and tak ∈ [t sk + τ − J τ , t sk + τ + J τ ], for k ∈ N (refer to Fig. 6.3). We cannot
exactly model this contract using (6.2). However, we can over-approximate it
using (6.2) with τ = τ − J τ , τ = τ + J τ , h = h − J h , and h = h + J h .

In the following, we formulate the two problems discussed in this chapter.

6.2.1 Stability Verification Problem

In our problem formulation, we consider the following notion of stability for system
(6.1)–(6.2), that guarantees the exponential convergence of the state to the origin,
i.e., z = 0, with a predefined rate β ∈ R

+:
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Fig. 6.3 Time variables included in a TOL contract. J hk ∈ [0, J h] and J τ
k ∈ [−J τ , J τ ]

Fig. 6.4 Block diagram of
N sampled-data systems
sharing J CPUs

Definition 6.1 (β-Stability) Let β ∈ R
+, system (6.1)–(6.2) is β-stable if there exist

C ∈ R
+ and ε′ ∈ R

+ such that

|z(t)| ≤ Ce−(β+ε′)(t−t s0 )|z(t s0)|, ∀t ∈ R
+. (6.3)

Consequently, in this work, we consider the following problem:

Problem 6.1 (Stability verification) Given β ∈ R
+, A ∈ R

p×p, B ∈ R
p×m , K ∈

R
m×p, (τ , τ , h, h) ∈ C , verify that (6.1)–(6.2) is β-stable.

The reader is referred to Sect. 6.3 where we provide an overview of existing
techniques that can solve Problem 6.1, and we present our own approach.

6.2.2 Scheduling Problem on Multiple CPUs

Consider a collection of N ∈ N
+ sampled-data systems {S1, . . . ,SN } of the

form (6.1) where each system Si = (Ai , Bi , Ki ) is subject to a timing contract

θ(τ i , τ i , hi , h
i
) of the form (6.2), with parameters (τ i , τ i , hi , h

i
) ∈ C , i ∈ N[1,N ].

In addition, we assume that these systems share J CPUs, as shown in Fig. 6.4, to
compute the value of their control inputs given by (6.1b).Note that no communication
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exists in between the CPUs or between the systems, but there exists communication
only between the systems and all J CPUs. Furthermore, the time required by CPU j
to compute inputs of system Si is assumed to belong to some known interval [cij , cij ]
with 0 ≤ cij ≤ cij , i ∈ N[1,N ], and j ∈ N[1,J ], where cij and cij denote the best and
worst case execution time, respectively.

The timing of events in the kth control cycle of systemSi starts at instant t
si
k when

sampling occurs. Then, systemSi gains access to the CPU j at instant tbik , at which
computation of the control input value begins. The CPU is released at instant t eik , at
which computation of the control input value ends. After that, actuation occurs at
instant taik . We denote by N(i, j) the set gathering indexes of the control cycles, at
which systemSi accesses the CPU j , where

⋃
j∈N[1,J ] N(i, j) = N for all i ∈ N[1,N ].

Then, the sequences (t sik )k∈N, (tbik )k∈N, (t eik )k∈N, and (taik )k∈N satisfy the following
constraints for all i ∈ N[1,N ]:

0 ≤ t si0
t sik ≤ tbik ≤ t eik ≤ taik ≤ t sik+1, ∀k ∈ N

cik = t eik − tbik ∈ [cij , cij ], ∀k ∈ N(i, j),∀ j ∈ N[1,J ]
τ i
k = taik − t sik ∈ [τ i , τ i ], ∀k ∈ N

hik = t sik+1 − t sik ∈ [hi , hi ], ∀k ∈ N.

(6.4)

In addition, a conflict arises if several systems request access to one of the J CPUs
at the same time. Let us define the following time sets, for i ∈ N[1,N ] and j ∈ N[1,J ]:

Com(Si , j) =
⋃

k∈N(i, j)

[tbik , t eik ).

Com(Si , j) is the union of time intervals when CPU j is used by systemSi . Then,
in order to prevent conflicting accesses to the CPU the following property must hold:

∀(m, n, j) ∈ N
2
[1,N ] × N[1,J ] with m �= n,

Com(Sm, j) ∩ Com(Sn, j) = ∅. (6.5)

Remark 6.1 It is straightforward to verify that for any sequences (t sik )k∈N, (tbik )k∈N,
(t eik )k∈N, and (taik )k∈N satisfying (6.4)–(6.5), the sequences (t sik )k∈N and (taik )k∈N satisfy
the timing contract θ(τ i , τ i , hi , h

i
).

We aim at synthesizing a dynamic scheduling policy, generating sequences of
timing events satisfying (6.4)–(6.5). The scheduler has control over the sampling and
actuation instants (t sik )k∈N, (taik )k∈N and over the instants (tbik )k∈N when computation
begins. Also, the scheduler assigns a CPU to compute the control input for each
system Si at each control cycle k ∈ N. However, the execution times (cik)k∈N, and
thus the instants when computation ends (t eik )k∈N, are determined by the environment
and are therefore uncontrollable from the point of view of the scheduler. Next, given
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Table 6.1 Methods that can solve instances of Problem 6.1 with description of the modeling and
computational approaches, list of restrictions, and possible extensions

References Models Algorithm Restrictions Extensions

[9] Difference
inclusions

LMI − τk > hk ;
controller
synthesis

[10] LMI − Scheduling

[15] LMI τ = τ = 0 Controller
synthesis

[16] LMI τ = τ = 0 −
[22] SOS τ = τ = 0 −
[12] Invariance τ = τ = 0 −
[18] Time-delay

systems
LMI h = 0 τk > hk ;

scheduling

[14] LMI h = h, τ = 0 Controller
synthesis;
quantization

[20] LMI τ = τ = 0 −
[13] Interconnected

systems
LMI h = τ = τ = 0 −

[6] Hybrid systems SOS − Nonlinear
dynamics;
scheduling

[17] LMI τ = 0, h = 0 Scheduling

that a task Ti , a task-set T , and timing contracts Θ are characterized as

Ti = (
(ci1, c

i
1), . . . , (c

i
J , c

i
J )

)
, i ∈ N[1,N ] (6.6a)

T = {T1, . . . , TN }, (6.6b)

Θ = {θ(τ 1, τ 1, h1, h
1
), . . . , θ(τ N , τ N , hN , h

N
)}, (6.6c)

we define the scheduling problem informally, at this point of the chapter, as

Problem 6.2 (Schedulability verification) Given a set of control tasksT and timing

contractsΘ = {θ(τ 1, τ 1, h1, h
1
), . . . , θ(τ N , τ N , hN , h

N
)} as in (6.6), verifywhether

or not there exists a scheduling policy with sequences of timing events satisfying
(6.4)–(6.5).

A precise formulation of the schedulability of the task-set T is provided in
Sect. 6.4 along with a solution to the schedulability verification problem based on
safety games over timed game automata.
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6.3 Stability Verification

Several approaches are presented in the literature to solve instances of Problem 6.1. A
non-exhaustive list is given in Table6.1. From the modeling perspective, the problem
can be tackled using difference inclusions, time-delay systems, or hybrid systems.
On the computational side, the approaches are based on semi-definite programming
(LinearMatrix Inequalities (LMI) or SumOf Squares (SOS) formulations), invariant
sets, or reachability analysis. Let us remark that approaches [6, 9, 10] appear to be
able to address all instances of Problem 6.1.

Regarding our approach to Problem 6.1, we solve the same problem for a more
general class of dynamic systems, given by a difference inclusion, and conclude
on the stability of system (6.1)–(6.2). Meanwhile, one essential ingredient that is
used in our study is the approximation scheme developed for over-approximating
the reachable set of (6.1)–(6.2) from a given initial set. Such an over-approximation
is provided in a previous work [2]. Let us first start by rewriting the system in terms
of impulsive systems, in order to interpret the reachable set we use in the sequel.

6.3.1 Reformulation Using Impulsive Systems

In our analysis, it is more practical to transform (6.1) into an impulsive system
with two types of resets each referring to a sampling or actuation instant. Such a
reformulation is convenient to develop stability conditions based on reachability
analysis. The system is thus given by

ẋ(t) = Acx(t), t �= t sk , t �= tak
x(t s+k ) = Asx(t

s
k ), k ∈ N

x(ta+
k ) = Aax(t

a
k ), k ∈ N

(6.7)

where x(t) ∈ R
n is the state of the system with n = p + 2m, (t sk )k∈N and (tak )k∈N are

given by (6.2), x(t+) = lim
τ→0,τ>0

x(t + τ), and

Ac =
⎛

⎝
A 0 B
0 0 0
0 0 0

⎞

⎠ , As =
⎛

⎝
Ip 0 0
K 0 0
0 0 Im

⎞

⎠ ,

Aa =
⎛

⎝
Ip 0 0
0 Im 0
0 Im 0

⎞

⎠ , x(t) =
⎛

⎝
z(t)

Kz(θ s(t))
u(t)

⎞

⎠ ,

(6.8)

with θ s(t) = t sk for t ∈ (t sk , t
s
k+1]. We consider in the following, system (6.7) under

timing contract (6.2).
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A notion for stability of the impulsive system guaranteeing the exponential con-
vergence of the state to the origin with a predefined rate β ∈ R

+ is given by

Definition 6.2 (β-Stability) Let β ∈ R
+, system (6.2)–(6.7) is β-stable if there exist

C ∈ R
+ and ε∗ ∈ R

+ such that

|x(t)| ≤ Ce−(β+ε∗)(t−t s0 )|x(t s0)|, ∀t ∈ R
+. (6.9)

Note that β-stability of system (6.2)–(6.7) is equivalent to the β-stability of (6.2)–
(6.1). We are now interested in verifying stability of embedded control systems in
the form given by (6.7) under one of the general timing contracts defined previously
in Sect. 6.2. Indeed, we can easily show that system (6.7) under the ZET and LET
contracts is stable if and only if the eigenvalues of thematrix ehAc Aa As and AaehAc As

are inside the unit circle, respectively. As for the DET or TOL contracts, we have
that stability of system (6.2)–(6.1) is guaranteed by the stability of system (6.2)–(6.7)
with an adequate choice of the timing contract parameters. It is noteworthy that in
the case of the TOL contract, stability of system (6.2)–(6.7) is only sufficient when
the parameters of the over-approximating timing contract are chosen as explained in
Sect. 6.2. Consequently, in this work, we consider an equivalent to Problem 6.1:

Problem 6.3 (Stability verification) Given β ∈ R
+, Ac, As , Aa ∈ R

n×n , (τ , τ , h, h)

∈ C , verify that (6.2)–(6.7) is β-stable.

6.3.2 A Stability Verification Approach Based on Difference
Inclusions

Our stability verification approach to solve Problem 6.3 is based on a reformulation
of the linear impulsive systems (6.2)–(6.7) in the general framework of difference
inclusions. Then, for a fairly large class of difference inclusions, we recall necessary
and sufficient conditions for stability, established in [3]. These conditions are based
on the successive images of a set under the dynamics of the difference inclusion. For
linear impulsive systems (6.2)–(6.7), these conditions allow us to design a stability
verification algorithm using reachability analysis techniques developed in [2].

Let us introduce first a general formulation based on difference inclusions and
later show how linear impulsive systems in the form of (6.2)–(6.7) can be embedded
in this framework. We consider discrete-time dynamical systems modeled by the
following difference inclusion:

ξk+1 ∈ Φ({ξk}), k ∈ N (6.10)

where ξk ∈ R
n is the state of the system, and Φ : 2Rn → 2R

n
is a set-valued map.

Stability for systems of the form (6.10) is considered in the following sense:
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Definition 6.3 (GES) System (6.10) is globally exponentially stable (GES) if there
exists (C, ε) ∈ R

+ × (0, 1) such that for all trajectories (ξk)k∈N of (6.10), we have

|ξk | ≤ Cεk |ξ0| , ∀k ∈ N. (6.11)

Next we verify the stability of a difference inclusion of the form (6.10). We make
first the following assumptions on the map Φ.

Assumption 6.1 For all S ⊆ R
n , λ ∈ R

+
0 , the following assertions hold:

(i) Φ(S ) = ⋃
z∈S Φ({z});

(ii) Φ(λS ) ⊆ λΦ(S );
(iii) ifS is bounded, then Φ(S ) is bounded.

Under item (i) of Assumption 6.1, for all S , S ′ ⊆ R
n , it follows that Φ(S ∪

S ′) = Φ(S ) ∪ Φ(S ′). Also, if S ⊆ S ′, then Φ(S ) ⊆ Φ(S ′). We define the
iterates ofΦ asΦ0(S ) = S for allS ⊆ R

n , andΦk+1 = Φ ◦ Φk for all k ∈ N. Let
(ξk)k∈N be a trajectory of (6.10) such that ξ0 ∈ S , then under item (i) of Assumption
6.1, for all k ∈ N, Φk(S ) is the set of all possible values of ξk .

Then, the stability verification problem, for systems of the form (6.10), can be
formulated as follows:

Problem 6.4 (Stability verification) Under Assumption 6.1, verify that system
(6.10) is GES.

Let β ∈ R
+ and suppose that S ⊆ R

n represents all the states of the system at
sampling instant t sk . Then, a scaled reachable set of system (6.2)–(6.7) at instant t sk+1
is given by the map Φ : 2Rn → 2R

n
such that

Φ(S ) =
⋃

τ∈[τ ,τ ]

⋃

w∈[max(0,h−τ),h−τ ]
e(w+τ)βewAc Aae

τ Ac AsS . (6.12)

The followingproposition establishes the equivalencebetween stability of systems
(6.2)–(6.7) and (6.10).

Proposition 6.1 Given β ∈ R
+. System (6.2)–(6.7) is β-stable if and only if system

(6.10) is GES with Φ given by (6.12).

The next proposition shows that themapΦ in (6.12) satisfies the previous assump-
tions.

Proposition 6.2 Let Φ be given by (6.12), then Φ satisfies Assumption 6.1.

It follows from Propositions 6.1 and 6.2 that Problem 6.3 can be reduced to
Problem 6.4. Therefore, in the next sections, we present necessary and sufficient
theoretical conditions for stability verification and an algorithm to solve Problem 6.4.
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6.3.2.1 Stability Verification: Theoretical Results

This section presents necessary and sufficient conditions, taken from [3], for stability
of system (6.10). The following result characterizes the stability of system (6.10) in
terms of the map Φ.

Theorem 6.2 LetS ⊆ R
n be bounded with 0 in its interior, under Assumption 6.1,

the following statements are equivalent:

(a) System (6.10) is GES;
(b) There exists (k, j, ρ) ∈ N

+ × N[0,k−1] × (0, 1) such that Φk(S ) ⊆ ρΦ j (S );
(c) There exists (k, ρ) ∈ N

+ × (0, 1) such that Φk(S ) ⊆ ρ
⋃k−1

j=0 Φ j (S ).

6.3.2.2 An Algorithm for Stability Verification

In this section, we present an algorithm for verifying the stability of system (6.10).
Indeed, the maps Φ involved in Theorem 6.2 can be impractical to compute exactly.
This is the case of linear impulsive system (6.2)–(6.7), which requires the com-
putation of the reachable set given by (6.12). In that case, we may use an over-
approximationΦ : 2Rn → 2R

n
, which is easier to compute and satisfies the following

assumption:

Assumption 6.3 For all S ⊆ R
n , the following assertions hold:

(i) Φ(S ) ⊆ Φ(S );
(ii) ifS is bounded then Φ(S ) is bounded.

The iterates of Φ are defined similarly to those of Φ. We now derive sufficient
conditions for stability of system (6.10) based on Φ.

Corollary 6.1 Under Assumptions 6.1 and 6.3, if S ⊆ R
n bounded with 0 in its

interior, and (k, i, ρ) ∈ N
+ × N[0,k−1] × (0, 1) such that Φ

k
(S ) ⊆ ρΦ

i
(S ), then

system (6.10) is GES.

Now, we propose a stability verification algorithm to solve Problem 6.4 based
on the sufficient condition given in Corollary 6.1. The algorithm consists of an
initialization step and a main loop. In the initialization step, we compute an initial set
S , which is then propagated in the main loop using the map Φ to check the stability
condition given by Corollary 6.1. The choice of the initial set is important in order
to try to minimize the value of the integer k such that the stability condition given
by Corollary 6.1 holds. Detailed approaches to compute the initial set S and the
over-approximation Φ can be found in [2].
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6.4 Scheduling of Embedded Controllers Under Timing
Contracts

Our aim in this section is to solve Problem 6.2 on schedulability verification.

6.4.1 Timed Game Automata and Safety Games

This section is intended to briefly introduce timed automata [1], timed game
automata [21], and safety games.

6.4.1.1 Timed and Timed Game Automata

Let C be a finite set of real-valued variables called clocks. We denote by B(C) the
set of conjunctions of clock constraints of the form c ∼ α where α ∈ R

+
0 , c ∈ C

and ∼∈ {<,≤,=,>,≥}. We define a timed automaton (TA) and a timed game
automaton (TGA) as in [8]:

Definition 6.4 A timed automaton is a sextuple (L , l0, Act,C, E, I ) where

• L is a finite set of locations;
• l0 ∈ L is the initial location;
• Act is a set of actions;
• C is a finite set of real-valued clocks;
• E ⊆ L × B(C) × Act × 2C × L is the set of edges;
• I : L → B(C) is a function that assigns invariants to locations.

Definition 6.5 A timed game automaton is a septuple (L , l0, Actc, Actu,C, E, I )
such that (L , l0, Actc ∪ Actu,C, E, I ) is a timed automaton and Actc ∩ Actu = ∅,
where Actc defines a set of controllable actions and Actu defines a set of uncontrol-
lable actions.

Formal semantics of TA and TGA are stated in [8]. Informally, semantics of a TA
is described by a transition system whose state consists of the current location and
value of the clocks. Then, the execution of a TA can be described by two types of
transitions defined as follows:

• time progress: the current location l ∈ L is maintained and the value of the clocks
grow at unitary rate; these transitions are enabled as long as the value of the clocks
satisfies I nv(l).

• discrete transition: an instantaneous transition from the current location l ∈ L to a
new location l ′ ∈ L labeled by an action a ∈ Act is triggered; these transitions are
enabled if there is an edge (l,G, a,C ′, l ′) ∈ E , such that the value of the clocks
satisfies G; in that case, the value of the clocks belonging to C ′ is reset to zero.
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Fig. 6.5 TGAi ,where plain anddashed edges correspond to controllable anduncontrollable actions,
respectively

The semantics of TGA is similar to that of TA with the specificity that discrete
transitions labeled by a controllable actions (i.e., a ∈ Actc) are triggered by a con-
troller, while discrete transitions labeled by uncontrollable actions (i.e., a ∈ Actu)
are triggered by the environment/opponent.

6.4.1.2 Safety Games

Safety games (see, e.g., [8]) are defined by a timed game automaton and a set of unsafe
locations Lu ⊆ L . A solution to the safety game is given by a winning strategy for
the controller such that under any behavior of the environment/opponent, the set of
unsafe locations is avoided by all controlled executions of the TGA.



110 M. Al Khatib et al.

6.4.2 Reformulation into TGA

We propose a reformulation of the schedulability verification problem using timed
game automata and safety games.

Wefirst associate to each control task and timing contract a timedgame automaton,
as shown in Fig. 6.5 and formally defined as follows:

Definition 6.6 Let i ∈ N[1,N ], the timed game automaton generated by control task

Ti = (
(ci1, c

i
1), . . . , (c

i
J , c

i
J )

)
and timing contract θ(τ i , τ i , hi , h

i
) is

TGAi = (Li , li0, Act
i
c, Act

i
u,C

i , Ei , I nvi ),

where

• Li = {I ni t i , Presami , Precompi , Preaci ,Compi1, . . . ,CompiJ };• li0 = I ni t i ;
• Actic = {samplei , begini1, . . . , begin

i
J , actuate

i };
• Actiu = {endi

1, . . . , end
i
J , in

i };
• Ci = {ci , ki };
• Ei = {(I ni t i , ci ≥ 0, ini , {ci }, Presami ),

(Presami , ci ≥ hi , samplei , {ci }, Precompi ),
(Precompi , ci ≤ τ i − ci1, begin

i
1, {ki },Compi1), . . . ,

(Precompi , ci ≤ τ i − ciJ , begin
i
J , {ki },CompiJ ),

(Compi1, k
i ≥ ci1, end

i
1,∅, Preaci ), . . . , (CompiJ , k

i ≥ ciJ , end
i
J ,∅, Preaci ),

(Preaci , ci ≥ τ i , actuatei ,∅, Presami )};
• I nvi (I ni t i ) = {ci ≥ 0},

I nvi (Presami ) = {ci ≤ h
i },

I nvi (Precompi ) = {ci ≤ τ i − cimin},with cimin = min j∈N[1,J ](c
i
j ),

I nvi (Compi1) = {ki ≤ ci1}, . . . , I nvi (CompiJ ) = {ki ≤ ciJ },
I nvi (Preaci ) = {ci ≤ τ i }.
Intuitively, the set of locations Li denotes all the possible situations that a control

task Ti may be in and Ei denotes all the possible transitions between locations. If we
assume that the control loop has not started yet then this is modeled by the location
I ni t i . After that the control loop starts at a certain time that is determined by the envi-
ronment and thus an uncontrollable transition (I ni t i , ci ≥ 0, ini , {ci }, Presami )

takes place, where the task has to wait until sampling could occur. The latter is real-
ized by the location Presami . Then whenever possible, a controller (which is the
scheduler) has to decide when sampling must occur. When sampling takes place, the
control task will be waiting until a CPU is assigned to compute its control input. This
waiting situation is realized by the Precompi location. The mission of assigning
a CPU for task Ti is that of the scheduler, thus a possible controllable transition
occurs when the assignment of CPUj takes place declaring that the task is in a new
situation realized in TGAi by the location CompiJ . The task rests in this situation
until its execution on the CPU finishes which means that this duration is decided
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by the environment (which is the CPU and not the scheduler) and thus an uncon-
trollable transition from Compij to a new location Preaci means that the execution
has terminated and the control task is in the situation where actuation is to happen
next. The latter decision is taken by the scheduler, and thus is controllable, where the
control input is fed to the plant and the control task is back again in the pre-sampling
situation realized as before by the Presami location. In such a case, the control loop
is closed and the behavior of the control task is repeated infinitely. Note that all the
executions of TGAi explained informally above must respect the semantics of the
timed game automata introduced in Sect. 6.4.1.

Now let the sequences (t sik ), (taik ), (tbik ) and (t eik ) be given by the instants of the dis-
crete transitions labeled by actions samplei , actuatei , begini and endi , respectively.
It is easy to see that these sequences satisfy the constraints given by (6.4). Conversely,
one can check that all sequences satisfying (6.4) can be generated by executions of
TGAi . Moreover, let us restate that the controllable actions are samplei , actuatei ,
begini , which means that the scheduler determines the instants when sampling and
actuation occur and when computation begins. However, endi is uncontrollable,
which means that the execution time, and thus the instant at which computation ends
is determined by the environment.

Finally, CPU j is used by system Si if the current location of TGAi is Compij ,
with j ∈ N[1,J ]. To take into account the constraint given by (6.5), stating that two
systems cannot access any of the J CPUs at the same time, we need to define the
composition of the timed game automata defined above:

Definition 6.7 The timed game automaton generated by the set of control tasks
T = {T1, . . . , TN }, with Ti = (

(ci1, c
i
1), . . . , (c

i
J , c

i
J )

)
for all i ∈ N[1,N ], and tim-

ing contracts Θ = {θ(τ 1, τ 1, h1, h
1
), . . . , θ(τ N , τ N , hN , h

N
)} is given by TGA =

(L, l0, Actc, Actu,C, E, I nv) where

• L = L1 × · · · × LN , thus l = (l1, . . . , l N ) ∈ L denotes the location of TGA;
• l0 = (I ni t1, . . . , I ni t N );
• Actc = ⋃N

i=1 Act
i
c ;

• Actu = ⋃N
i=1 Act

i
u ;

• C = ⋃N
i=1 C

i ;
• E = {(lm, λ, act,C ′, ln) ∈ L × B(C) × (Actc ∪ Actu) × L : ∃i ∈ N[1,N ],
l jm = l jn ∀ j �= i and (lim, λ, act,C ′, lin) ∈ Ei };

• I nv(l) = ∧N
i=1 I nv

i (li ), i ∈ N[1,N ].

TGA describes the parallel evolution of the TGA1, . . . ,TGAN and thus models
the concurrent execution of the control tasks T1, . . . , TN .

6.4.3 Scheduling as a Safety Game

In our setting, we denote the safety game by (TGA, Lu), where the set of locations
corresponding to conflicting accesses to the CPUs Lu ⊆ L is defined by
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Lu = {l ∈ L : ∃(m, n, j) ∈ N
2
[1,N ] × N[1,J ],m �= n,

(lm = Compmj ) ∧ (ln = Compnj )}.
(6.13)

From the previous discussions, we define the following property:

Definition 6.8 (Schedulability) T is schedulable under timing contracts Θ if and
only if there is a winning strategy to (TGA, Lu).

From the practical point of view, the safety game, and thus Problem 6.2, can
be solved using the tool UPPAAL-TIGA [5]. The latter synthesizes also a winning
strategy when it exists, which provides us with a dynamic scheduling policy for
generating the sequences (t sik )k∈N, (tbik )k∈N, (t eik )k∈N, and (taik )k∈N satisfying (6.4)–
(6.5), for all i ∈ N[1,N ].

6.5 Illustrative Example

In this section, we are interested in synthesizing schedules for a given number N of
sampled-data systems, which are subject to timing contracts and whose control input
is computed by J shared CPUs, with J < N . Indeed, the schedule should guarantee
the stability of each system. We implemented the scheduling approach presented
in Sect. 6.4 using UPPAAL-TIGA [5], and used the stability verification algorithm
from [2] to verify stability.

6.5.1 One Processor

Example 6.1 We take N = 2 where the two systemsS1 = (A1, B1, K1) andS2 =
(A2, B2, K2) are taken from [7] and are given by the following matrices:

A1 =
(
0 1
0 −0.1

)
, B1 =

(
0
0.1

)
, K1 = (−3.75 −11.5

)
. (6.14)

A2 =
(

0 1
−2 0.1

)
, B2 =

(
0
1

)
, K2 = (

1 0
)
. (6.15)

6.5.1.1 Stability Verification

After setting β = 0, we use the stability verification algorithm in [2] to verify that
systems S1 and S2 are β-stable under timing contracts θ(0.1, 0.35, 0.3, 0.85) and
θ(0.2, 0.6, 0.8, 1.15), respectively. This means obviously that each of the two sys-
tems with any synthesized scheduling policy on a shared CPU, respecting the above
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timing contracts, is guaranteed to be stable. The computation times required for
stability verification are 1.96 and 1.5s, respectively.

6.5.1.2 Scheduling

Now,we consider the set of control tasksT = {T1, T2} running on a single processor,
or J = 1. After setting the best and worst case execution times for each task as
c11 = 0.12, c11 = 0.35, c2 = 0.04, and c2 = 0.12 we define task T1 = ((c11, c

1
1)), task

T2 = ((c21, c
2
1)), and the same set of timing contracts as in the previous section Θ =

{θ(0.1, 0.35, 0.3, 0.85), θ(0.2, 0.6, 0.8, 1.15)}.
In order to solve the scheduling problem, we associate to T the timed game

automaton TGA as given in Definition 6.7. Following the approach in Sect. 6.4,
we solve the safety game on TGA to find a strategy (if it exists) for the triggering
of controllable actions that occur at (t sik )k∈N, (tbik )k∈N, and (taik )k∈N, with i ∈ N[1,2],
guaranteeing that the set of bad states Lu of the system, given by (6.13), is never
reached regardless of when uncontrollable actions occurring at (t eik )k∈N, i ∈ N[1,2],
are exactly taken.

Using UPPAAL-TIGA, we successfully proved that T is schedulable under tim-
ing contracts Θ , and thus a scheduling policy was found. The computation time
required to solve the game was 1.37s.

Figure6.6 shows the timing of events resulting from this scheduling policy. The
first and second plots show that the timing contracts θ(0.1, 0.35, 0.3, 0.85) and
θ(0.2, 0.6, 0.8, 1.15) are respected for both systems S1 and S2, respectively. The
third plot shows that only one of the two systems gains access to the shared processor
at a time since it appears clearly that

∀(m, n) ∈ N
2
[1,2] with m �= n,

Com(Sm, 1) ∩ Com(Sn, 1) = ∅.

One can notice that in the first three control cycles of S2, the beginning of the
computation has to be delayed until the CPU is released by S1.

Using this scheduling policy, Fig. 6.7 shows results of simulating S1 and S2,
when they share a single processor to compute the value of their control inputs, for
the initial states z10 = (

2
3

)
and z20 = (

2
3

)
with t s10 = 0.4 and t s20 = 0.9. As shown,

trajectories of both systems converge to zero and therefore the scheduling policy in
this case guarantees the exponential stability of each system.

6.5.2 Two Processors

Example 6.2 Wetake N = 3,wherewehave two identical systemsS1 andS2 whose
matrices are given by (6.14) and another system S3 with matrices given by (6.15).
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Fig. 6.6 Timing of events (sampling, beginning/end of computation, and actuation) for systemsS1
(first plot) and S2 (second plot) during the first 3 s; dotted lines represent constraints on actuation
instants, while dashed lines represent constraints on sampling instants. In the third plot, the dot-
ted line represents Com(S2, t) (less frequent) and the dashed line represents Com(S1, t) (more
frequent)

Fig. 6.7 Trajectories for systemsS1 (left) andS2 (right) using the synthesized scheduling policy
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First, we consider a single processor to compute the control input of the three systems
(i.e., J = 1) where control tasks T1, T2, and T3 are given by T1 = T2 = (0.12, 0.25)
and T3 = (0.04, 0.1). We consider the set of contractsΘa = {θ(0.1, 0.35, 0.1, 0.35),
θ(0.1, 0.35, 0.1, 0.35)}, Θb = {θ(0.1, 0.35, 0.1, 0.35), θ(0.1, 0.2, 0.1, 0.2)}, and
Θc = {θ(0.1, 0.35, 0.1, 0.35), θ(0.1, 0.35, 0.1, 0.35), θ(0.1, 0.2, 0.1, 0.2)}. Follow-
ing the approach in Sect. 6.4 we can prove that each of the task-set {T1, T2}, the task-
set {T2, T3}, and obviously the task-set {T1, T2, T3} is not schedulable under timing
contracts Θa , Θb, and Θc respectively. On the other hand, this does not mean that
systemsS1,S2, andS3 cannot share two processors to compute their control input.

Now, we consider two CPUs, or J = 2, and define the task-set T = {T1, T2, T3}
with T1 = T2 = ((0.12, 0.25), (0.12, 0.25)) and T3 = ((0.04, 0.1), (0.04, 0.1)).
Then we associate to T the TGA as given in Definition 6.7 and solve the safety
game on TGA to find a strategy (if it exists) for the triggering of controllable actions
that occur at (t sik )k∈N, (tbik )k∈N, and (taik )k∈N, with i ∈ N[1,3], guaranteeing that the set
of bad states Lu of the system is never reached regardless of when uncontrollable
actions occurring at (t eik )k∈N, i ∈ N[1,3], are exactly taken.

Using UPPAAL-TIGA, we successfully proved that T is schedulable under tim-
ing contracts Θc, and thus a scheduling policy was found. The computation time
required to solve the game and output the scheduling policy was 10 s.

Figure6.8 shows the timing of events resulting from this scheduling policy. The
first three plots show that the contracts θ(0.1, 0.35, 0.1, 0.35), θ(0.1, 0.35, 0.1, 0.35),
and θ(0.1, 0.2, 0.1, 0.2) are respected for systemsS1,S2, andS3, respectively. The
fourth and fifth plots show that only one of the three systems gains access to each of
the two shared processors at a time since it appears clearly that

∀(m, n, j) ∈ N
2
[1,3] × N[1,2]with m �= n,

Com(Sm, j) ∩ Com(Sn, j) = ∅.

At this point, we should mention that we followed the stability verification
approach in [2] and proved that for β = 0, β-stability is guaranteed for systemsS1,
S2, and S3 under timing contracts θ(0.1, 0.35, 0.1, 0.35), θ(0.1, 0.35, 0.1, 0.35),
and θ(0.1, 0.2, 0.1, 0.2) respectively. Using this scheduling policy, Fig. 6.9 shows
results of simulating S1, S2, and S3 when they share two processors to com-
pute the value of their control inputs, for the initial states z10 = z20 = z30 = (

2
3

)
with

t s10 = t s20 = t s30 = 0.01s. As shown, trajectories of the three systems converge to zero
and therefore the scheduling policy in this case guarantees the exponential stability
of each system.

6.6 Conclusion

In this chapter, we proposed an approach for verifying stability and scheduling
embedded control systems under timing contracts on a multi-core platform using
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Fig. 6.8 Timing of events (sampling, beginning/end of computation, and actuation) for systemsS1
(first plot), S2 (second plot), S3 (third plot) during the first 3 s; dotted lines represent constraints
on actuation instants, while dashed lines represent constraints on sampling instants. In the fourth
and fifth plot, the dashed line (magnitude 1) represents Com(S1, j), dotted line (magnitude 1.5)
representsCom(S1, j), and the dotted-dashed line (magnitude 2) representsCom(S3, j) for j = 1
(fourth plot) and j = 2 (fifth plot)

Fig. 6.9 Trajectories for systems S1 (left), S2 (middle), and S3 (right) using the synthesized
scheduling policy



6 Timing Contracts for Multi-Core Embedded Control Systems 117

reachability analysis and safety timed games, respectively. As a future work, it would
be interesting to consider preemptive scheduling since it is not trivial to extend the
present work to scheduling with preemption. Another direction for improving our
approach is to find optimal schedules in the sense that the control loop is to be closed
as soon as possible for each task to have the best possible performance.
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Chapter 7
Time-Regularized and Periodic
Event-Triggered Control for Linear
Systems

D. P. Borgers, V. S. Dolk, G. E. Dullerud, A. R. Teel and W. P. M. H. Heemels

Abstract In this chapter, we provide an overview of our recent results for the anal-
ysis and design of Event-Triggered controllers that are tailored to linear systems
as provided in Heemels et al., IEEE Trans Autom Control 58(4):847–861, 2013,
Heemels et al., IEEE Trans Autom Control 61(10):2766–2781, 2016, Borgers et al.,
IEEE Trans Autom Control, 2018. In particular, we discuss two different frame-
works for the stability and contractivity analysis and design of (static) periodic
Event-Triggered control (PETC) and time-regularized continuous Event-Triggered
control (CETC) systems: the lifting-based framework of Heemels et al., IEEE Trans
Autom Control 61(10):2766–2781, 2016, which applies to PETC systems, and the
Riccati-based framework of Heemels et al., IEEE Trans Autom Control 58(4):847–
861, 2013, Borgers et al., IEEE Trans Autom Control (2018), which applies to both
PETC systems and time-regularized CETC systems. Moreover, we identify the con-
nections and differences between the two frameworks. Finally, for PETC and time-
regularized CETC systems, we show how the Riccati-based analysis leads to new
designs for dynamic Event-Triggered controllers, which (for identical stability and
contractivity guarantees) lead to a significantly reduced consumption of communi-
cation and energy resources compared to their static counterparts.
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7.1 Introduction

Inmost digital control systems, themeasured output of the plant is periodically trans-
mitted to the controller, regardless of the state the system is in. This possibly leads
to a waste of (e.g., computation, communication, and energy) resources, as many of
the transmissions are actually not needed to achieve the desired control performance
guarantees. In recent years, many Event-Triggered control (ETC) strategies have
been proposed, which generate the transmission (event) times based on the current
state or output of the system and the most recently transmitted measurement data,
thereby bringing feedback into the process of deciding when control tasks are exe-
cuted and corresponding measurement and control data is transmitted. In contrast, in
periodic time-triggered control, the control execution process could be considered as
an open-loop mechanism. By using feedback in the control execution process, mea-
surement data is only transmitted to the controller when this is really necessary in
order to be able to guarantee the required stability and performance properties of the
system. Clearly, in the interconnected world we live in with many networked control
applications including cooperative robotics, vehicle platooning, Internet-of-things,
and so on, it is important to use the available (computation, communication, and
energy) resources of the system carefully in order to avoid congesting the compu-
tational devices or communication networks, or draining batteries. The use of ETC
can play an important role in achieving this.

A major challenge in the design of ETC strategies is meeting certain control
performance specifications (quality-of-control), such as global asymptotic stability,
bounds on convergence rates, orLp-gain requirements, while simultaneously satis-
fying constraints on the resource utilization (required quality-of-service), including
a guaranteed positive lower bound on the inter-event times and thus the absence
of Zeno behaviour (an infinite number of events in finite time). In [5, 15], it was
shown that this combination of quality-of-control and (required) quality-of-service
specifications is hard to achieve, especially for continuous Event-Triggered control
(CETC) schemes, in which the event condition is continuously monitored (which
also requires continuous measuring of the state or output of the plant), as proposed
in, e.g., [12, 20, 21, 24, 32, 33, 41, 51].

In the recent years, two main solutions were proposed to tackle this problem:

• CETC schemes that adopt aminimal waiting time between two event times (“time-
regularization”), see, e.g., [1, 2, 13, 14, 18, 24, 29, 39, 42–44] and the references
therein;

• Periodic Event-Triggered control (PETC) schemes that check the event conditions
only at periodic sampling times that are equidistantly distributed along the time
axis, see, e.g., [24, 25, 28, 29, 36] and the references therein.

In this chapter, we provide an overview of our recent results for the analysis
and design of PETC and time-regularized CETC schemes that are tailored to linear
systems as provided in [8, 25, 26]. In particular, we discuss two different analysis
and design frameworks: the framework as developed in [26], which uses ideas from
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lifting [4, 10, 16, 45, 46, 53], and the framework as developed in [6–8, 25], which
exploits matrix Riccati differential equations.

The lifting-based framework of [26] applies to PETC systems, and leads to the
important result that the stability and contractivity in L2-sense (meaning that the
L2-gain is smaller than 1) of PETC closed-loop systems (which are hybrid systems)
is equivalent to the stability and contractivity in �2-sense (meaning that the �2-gain is
smaller than 1) of an appropriate discrete-time piecewise linear system [26]. These
new insights are obtained by adopting a lifting-based perspective on this analysis
problem, which leads to computable �2-gain (and thusL2-gain) conditions, despite
the fact that the linearity assumption, which is usually needed in the lifting literature,
is not satisfied.

The Riccati-based framework of [6–8, 25] applies both to PETC systems and to
time-regularized CETC systems, and exploits matrix Riccati differential equations
for the construction of appropriate Lyapunov/storage functions in the stability and
performance analysis. For the PETC case, we identify the connections and differ-
ences between the Riccati-based and lifting-based approaches. Moreover, for PETC
and time-regularized CETC systems, we show how the Riccati-based analysis leads
to new designs for dynamic Event-Triggered controllers. Interestingly, the inclu-
sion of a dynamic variable in the event-generator can lead to a significantly reduced
consumption of communication and energy resourceswhile leading to identical guar-
antees on stability and performance as their static counterparts, see also [13, 14, 21,
37, 38] in which designs of dynamic ETC schemes for general nonlinear systems
were proposed for the first time.

Both frameworks lead to computationally friendly semi-definite programming
conditions, and can also be used for applications in many other domains, including
reset control, networked control systems, and switching sampled-data controllers [4,
9–11, 19, 45, 46, 53].

The chapter is organized as follows. In Sect. 7.2, we introduce the considered
Event-Triggered control setups. For PETC systems, we introduce the lifting-based
framework in Sect. 7.3, and the Riccati-based framework in Sect. 7.4. In Sect. 7.5,
we show how the Riccati-based framework of Sect. 7.4 can be modified in order to
analyze stability and contractivity of time-regularized CETC systems. We illustrate
the results by a numerical example in Sect. 7.6, which also shows that our new
frameworks tailored to linear systems are much less conservative than our previous
results for nonlinear systems in [13, 14], in the sense that tighter performance bounds
can be obtained. Finally, we discuss several directions of extensions of the two
frameworks in Sect. 7.7, and summarize the chapter in Sect. 7.8.

7.1.1 Notation

By N we denote the set of natural numbers including zero, i.e., N := {0, 1, 2, . . . }.
For vectors xi ∈ R

ni , i ∈ {1, 2, . . . , N }, we denote by (x1, x2, · · · , xN ) the vector
[x�

1 x
�
2 · · · x�

N ]� ∈ R
n with n = ∑N

i=1 ni . For a matrix P ∈ R
n×n , we write P � 0
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(P � 0) if P is symmetric and positive (semi-)definite, and P ≺ 0 (P � 0) if P
is symmetric and negative (semi-)definite. By I and O we denote the identity
and zero matrix of appropriate dimensions, respectively. For brevity, we some-
times write symmetric matrices of the form

[
A B
B� C

]
as

[
A B
� C

]
or

[
A �
B� C

]
. For a left-

continuous signal f : R≥0 → R
n and t ∈ R≥0, we use f (t+) to denote the limit

f (t+) = lims→t,s>t f (s).
For X,Y Hilbert spaces with inner products 〈·, ·〉X and 〈·, ·〉Y , respectively, a

linear operator U : X → Y is called isometric if 〈Ux1,Ux2〉Y = 〈x1, x2〉X for all
x1, x2 ∈ X . We denote by U ∗ : Y → X the (Hilbert) adjoint operator that satisfies
〈Ux, y〉Y = 〈x,U ∗y〉X for all x ∈ X and all y ∈ Y . The induced normofU (provided
it is finite) is denoted by ‖U‖X,Y = supx∈X\{0}

‖Ux‖Y
‖x‖X

. If the induced norm is finite we
say thatU is a bounded linear operator. If X = Y wewrite ‖U‖X and if X,Y are clear
from the context we use the notation ‖U‖. An operatorU : X → X with X a Hilbert
space is called self-adjoint if U ∗ = U . A self-adjoint operator U : X → X is called
positive semi-definite if 〈Ux, x〉 ≥ 0 for all x ∈ X . Given a positive semi-definite
U , we say that the bounded linear operator A : X → X is the square root of U if A
is positive semi-definite and A2 = U . This square root exists and is unique, see [31,
Theorem 9.4-1]. We denote it by U 1/2.

To a Hilbert space X with inner product 〈·, ·〉X , we can associate the Hilbert
space �2(X) consisting of infinite sequences x̃ = {x̃0, x̃1, x̃2, . . .} with x̃i ∈ X , i ∈
N, satisfying

∑∞
i=0 ‖x̃i‖2X < ∞, and the inner product 〈x̃, ỹ〉�2(X) = ∑∞

i=0〈x̃i , ỹi 〉X .
We denote �2(R

n) by �2 when n ∈ N≥1 is clear from the context. We also use the
notation �(X) to denote the set of all infinite sequences x̃ = {x̃0, x̃1, x̃2, . . .} with
x̃i ∈ X , i ∈ N. Note that �2(X) can be considered a subspace of �(X). As usual,
we denote by R

n the standard n-dimensional Euclidean space with inner product
〈x, y〉 = x�y and norm |x | = √

x�x for x , y ∈ R
n . L n

2 ([0,∞)) denotes the set of
square-integrable functions defined on R≥0 := [0,∞) and taking values in R

n with

L2-norm ‖x‖L 2 =
√∫ ∞

0 |x(t)|2dt and inner product 〈x, y〉L 2 = ∫ ∞
0 x�(t)y(t)dt

for x , y ∈ L n
2 ([0,∞)). If n is clear from the context we also writeL2. We also use

square-integrable functions on subsets [a, b] of R≥0 and then we write L n
2 ([a, b])

(or L2([a, b]) if n is clear from context) with the inner product and norm defined
analogously. The setL n

2,e([0,∞)) consists of all locally square-integrable functions,
i.e., all functions x defined on R≥0, such that for each bounded domain [a, b] ⊂
R≥0 the restriction x |[a,b] is contained in L n

2 ([a, b]). We also will use the set of
essentially bounded functions defined onR≥0 or [a, b] ⊂ R≥0, which are denoted by
L n∞([0,∞)) orL n∞([a, b]) with the norm given by the essential supremum denoted
by ‖x‖L∞ for an essentially bounded function x . A functionβ : R≥0 → R≥0 is called
aK -function if it is continuous, strictly increasing, and β(0) = 0.
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Fig. 7.1 Event-Triggered
control setup
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7.2 Event-Triggered Control Setup

In this paper, we consider the Event-Triggered control setup as shown in Fig. 7.1, in
which the plant P is given by

P :

⎧
⎪⎨

⎪⎩

d
dt x p = Apxp + Bpu + Bpww

y = Cyxp + Dyu

z = Czxp + Dzu + Dzww

(7.1)

and the controller C is given by

C :
{

d
dt xc = Acxc + Bc ŷ

u = Cuxc + Du ŷ.
(7.2)

For ease of exposition, we stick to the configuration of Fig. 7.1, although different
control setups are possible as well, see, e.g., [25].

In (7.1) and (7.2), xp(t) ∈ R
nxp denotes the state of the plant P , y(t) ∈ R

ny its
measured output, z(t) ∈ R

nz the performance output, and w(t) ∈ R
nw a disturbance

at time t ∈ R≥0. Furthermore, xc(t) ∈ R
nxc denotes the state of the controller C ,

u(t) ∈ R
nu is the control input at time t ∈ R≥0, and ŷ(t) ∈ R

ny denotes the output
that is available at the controller, given by

ŷ(t) = y(tk), t ∈ (tk, tk+1], (7.3)

where the sequence {tk}k∈N denotes the event (or transmission) times, which are
generated by the event-generator.

In this chapter, we consider periodic event-generators, and continuous event-
generators with time-regularization. We will provide their designs in Sects. 7.2.1
and 7.2.2, respectively. In order to do so, we will first define the state ξ :=
(xp, xc, ŷ) ∈ R

nξ , with nξ = nxp + nxc + ny , and the matrix Y ∈ R
2ny×nξ as

Y :=
[
Cy DyCu DyDu

O O I

]

(7.4)

such that ζ := (y, ŷ) = Y ξ .
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7.2.1 Periodic Event-Triggered Control

In a periodic Event-Triggered control (PETC) setup, the plant output y is sampled
periodically at fixed sample times sn = nh, n ∈ N, where h ∈ R>0 is the sample
period. At each sample time sn , n ∈ N, the event-generator decides whether or not the
measured output y(sn) should be transmitted to the controller. Hence, the sequence
of event times {tk}k∈N is a subsequence of the sequence of sample times {sn}n∈N.

In this work, we consider periodic event-generators of the form

t0 = 0, tk+1 = inf{t > tk | ζ�(t)Qζ(t) > 0, t = nh, n ∈ N}, (7.5)

where the scalar h ∈ R>0 and the matrix Q ∈ R
2ny×2ny are design parameters. A

possible choice for Q is given by

Q =
[

(1 − σ 2)I −I
−I I

]

(7.6)

with σ ∈ (0, 1), such that (7.5) reduces to

t0 = 0, tk+1 = inf{t > tk | |ŷ(t) − y(t)|2 > σ 2|y(t)|2, t = nh, n ∈ N},

which can be seen as the digital version of static continuous event-generators [41]
of the type

t0 = 0, tk+1 = inf{t ≥ tk | |ŷ(t) − y(t)|2 > σ 2|y(t)|2, t ∈ R≥0}.

Other control setups and other choices of Q are also possible, see, e.g., [25].
By introducing a timer variable τ ∈ [0, h], which keeps track of the time that

has elapsed since the latest sample time, the closed-loop PETC system consisting
of (7.1)–(7.3), and (7.5) can be written as the hybrid system

d
dt

[
ξ

τ

]

=
[
Aξ + Bw

1

]

, τ ∈ [0, h], (7.7a)

[
ξ+
τ+

]

=
[
Jξ

0

]

, τ = h and ζ�Qζ > 0, (7.7b)

[
ξ+
τ+

]

=
[

ξ

0

]

, τ = h and ζ�Qζ ≤ 0, (7.7c)

z = Cξ + Dw, (7.7d)

where
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A =
⎡

⎣
Ap BpCu BpDu

O Ac Bc

O O O

⎤

⎦ , B =
⎡

⎣
Bpw

O
O

⎤

⎦ , J =
⎡

⎣
I O O
O I O
Cy DyCu DyDu

⎤

⎦ ,

C = [
Cz DzCu DzDu

]
, and D = Dzw.

(7.8)

At sample times sn = nh, n ∈ N, the reset (7.7b) occurs when an event is triggered by
the event-generator, otherwise the state (ξ, τ ) jumps according to (7.7c). In between
the sample times, the system evolves according to the differential equation (7.7a),
where

(
ξ(s+

n ), τ (s+
n )

)
given by (7.7b) or (7.7c) denotes the starting point for the

solution to (7.7a) in the interval (sn, sn+1], n ∈ N. Hence, the solutions are considered
to be left-continuous signals.

7.2.2 Time-Regularized Continuous Event-Triggered Control

In this chapter, we also consider continuous event-generators with time-
regularization, of the form

tk+1 = inf{t ≥ tk + h | ζ�(t)Qζ(t) > 0}, (7.9)

where now the scalar h ∈ R≥0 is a timer threshold (a waiting time), which enforces a
MIET of (at least) h time units. If we again choose Q as in (7.6), then (7.9) constitutes
the time-regularized version of (7.2.1).Note that the practical implementation of (7.9)
requires continuous monitoring of the output y, which can be difficult to achieve on
digital platforms.

The closed-loop CETC system consisting of (7.1)–(7.3) and (7.9) can be written
as the hybrid system

d
dt

[
ξ

τ

]

=
[
Aξ + Bw

1

]

, τ ∈ [0, h] or ζ�Qζ ≤ 0 (7.10a)

[
ξ+
τ+

]

=
[
Jξ

0

]

, τ ∈ [h,∞) and ζ�Qζ > 0 (7.10b)

z = Cξ + Dw, (7.10c)

where the timer variable τ ∈ R≥0 now keeps track of the time that has elapsed since
the latest event time. The matrices A, B, C , D, and J are again given by (7.8).

7.2.3 Stability and Performance

As the objective of the paper is to study the L2-gain and internal stability of the
systems (7.7) and (7.10), let us first provide rigorous definitions of these important
concepts.
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Definition 7.1 The hybrid system (7.7) or (7.10) is said to have an L2-gain from
w to z smaller than γ if there exist a γ0 ∈ [0, γ ) and a K -function β such that, for
any w ∈ L2 and any initial conditions ξ(0) = ξ0 and τ(0) = h, the corresponding
solution to (7.7) or (7.10) satisfies ‖z‖L 2 ≤ β(|ξ0|) + γ0‖w‖L 2 . Sometimes, we also
use the terminology γ -contractivity (in L2-sense) if this property holds. Moreover,
1-contractivity is also called contractivity (inL2-sense).

Definition 7.2 The hybrid system (7.7) or (7.10) is said to be internally stable if there
exists a K -function β such that, for any w ∈ L2 and any initial conditions ξ(0) =
ξ0 and τ(0) = h, the corresponding solution to (7.7) or (7.10) satisfies ‖ξ‖L 2 ≤
β(max(|ξ0|, ‖w‖L 2)).

A few remarks are in order regarding this definition of internal stability. The re-
quirement ‖ξ‖L 2 ≤ β(max(|ξ0|, ‖w‖L 2)) is rather natural in this context as we are
working with L2-disturbances and investigate L2-gains. Indeed, just as in Defini-
tion 7.1, where a bound is required on theL2-normof the output z (expressed in terms
of a bound on |ξ0| and ‖w‖L 2), we require in Definition 7.2 that a similar (though less
strict) bound holds on the state trajectory ξ . Apart from internal stability, both design
frameworks also lead to global attractivity of the origin (i.e., limt→∞ ξ(t) = 0 for all
w ∈ L2, ξ(0) = ξ0 and τ(0) = h) and Lyapunov stability of the origin, see Propo-
sition 7.1 for the lifting-based framework and [8] for the Riccati-based framework.

Remark 7.1 In this chapter, we focus on the contractivity of the systems (7.7)
and (7.10) as γ -contractivity can be studied by proper scaling of the matrices C
and D in (7.7), i.e., Cscaled = γ −1C and Dscaled = γ −1D.

7.3 Lifting-Based Static PETC

In this section, we give an overview of ourwork [26], which provides a framework for
the contractivity and internal stability analysis of the static PETC system (7.7) using
ideas from lifting [4, 10, 16, 45, 46, 53]. Toobtain necessary and sufficient conditions
for internal stability and contractivity of (7.7), we use a procedure consisting of three
main steps:

• In Sect. 7.3.2, we apply lifting-based techniques to (7.7) (having finite-dimensional
input andoutput spaces) leading to adiscrete-time systemwith infinite-dimensional
input and output spaces (see (7.15) below). The internal stability and contractivity
of both systems are equivalent.

• In Sect. 7.3.3, we apply a loop transformation to the infinite-dimensional system
(7.15) in order to remove the feedthrough term, which is the only operator in the
system description having both its domain and range being infinite dimensional.
This transformation is constructed in such a manner that the internal stability and
contractivity properties of the system are not changed. This step is crucial for



7 Time-Regularized and Periodic Event-Triggered Control for Linear Systems 129

translating the infinite-dimensional system to a finite-dimensional system in the
last step.

• In Sect. 7.3.4, the loop-transformed infinite-dimensional system is converted into
a discrete-time finite-dimensional piecewise linear system (again without chang-
ing the stability and the contractivity properties of the system). Due to the finite
dimensionality of the latter system, stability and contractivity in �2-sense can be an-
alyzed, for instance, using well-known Lyapunov-based arguments. We elaborate
on these computational aspects (which also exploit semi-definite programming)
in Sect. 7.3.5.

These three steps lead to themain result as formulated inTheorem7.2,which states
that the internal stability and contractivity (inL2-sense) of (7.7) is equivalent to the
internal stability and contractivity (in �2-sense) of a discrete-time finite-dimensional
piecewise linear system. To facilitate the analysis, we first introduce the necessary
preliminary definitions in Sect. 7.3.1.

7.3.1 Preliminaries

Consider the discrete-time system of the form

ξk+1 = χ(ξk, vk) (7.11a)

rk = ψ(ξk, vk) (7.11b)

with vk ∈ V , rk ∈ R, ξk ∈ R
nξ , k ∈ N, with V and R Hilbert spaces, and χ : Rnξ ×

V → R
nξ and ψ : Rnξ × V → R.

For this general discrete-time system, we also introduce �2-gain specifications
and internal stability.

Definition 7.3 The discrete-time system (7.11) is said to have an �2-gain from v to
r smaller than γ if there exist a γ0 ∈ [0, γ ) and a K -function β such that, for any
v ∈ �2(V ) and any initial state ξ0 ∈ R

nξ , the corresponding solution to (7.11) satisfies

‖r‖�2(R) ≤ β(‖ξ0‖) + γ0‖v‖�2(V ). (7.12)

Sometimes, we also use the terminology γ -contractivity (in �2-sense) if this property
holds. Moreover, 1-contractivity is also called contractivity (in �2-sense).

Definition 7.4 The discrete-time system (7.11) is said to be internally stable if there
is a K -function β such that, for any v ∈ �2(V ) and any initial state ξ0 ∈ R

nξ , the
corresponding solution ξ to (7.11) satisfies

‖ξ‖�2 ≤ β(max(|ξ0|, ‖v‖�2(V )). (7.13)
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Note that this internal stability definition for the discrete-time system (7.11) par-
allels the continuous-time version in Definition 7.2. Moreover, since ‖ξ‖�∞ ≤ ‖ξ‖�2

and ‖ξ‖�2 < ∞ implies limk→∞ ξk = 0, we also have global attractivity and Lya-
punov stability properties of the origin when the discrete-time system is internally
stable.

7.3.2 Lifting the System

To study contractivity, we introduce the lifting operator W : L2,e[0,∞) → �(K )

with K = L2[0, h] given for w ∈ L2,e[0,∞) by W (w) = w̃ = {w̃0, w̃1, w̃2, . . .}
with

w̃k(s) = w(kh + s) for s ∈ [0, h] (7.14)

for k ∈ N. Using this lifting operator, we can rewrite the model in (7.7) as

ξk+1 = Âξ+
k + B̂w̃k (7.15a)

ξ+
k =

{
Jξk, ξ�

k Y
�QY ξk > 0

ξk, ξ�
k Y

�QY ξk ≤ 0
(7.15b)

z̃k = Ĉξ+
k + D̂w̃k (7.15c)

in which ξ0 is given and ξk = ξ(kh), k ∈ N≥1, ξ+
k = ξ(kh+) (assuming that ξ is

left-continuous) for k ∈ N, and w̃ = {w̃0, w̃1, w̃2, . . .} = W (w) ∈ �2(K ) and z̃ =
{z̃0, z̃1, z̃2, . . .} = W (z) ∈ �(K ). Here we assume in line with Definition 7.1 that
τ(0) = h in (7.7). Moreover,

Â : Rnξ → R
nξ , B̂ : K → R

nξ , Ĉ : Rnξ → K , and D̂ : K → K

are given for x ∈ R
nξ and ω ∈ K by

Âx = eAhx (7.16a)

B̂ω =
∫ h

0
eA(h−s)Bω(s)ds (7.16b)

(Ĉx)(θ) = CeAθ ξ (7.16c)

(D̂ω)(θ) =
∫ θ

0
CeA(θ−s)Bω(s)ds + Dω(θ), (7.16d)

where θ ∈ [0, h].
It follows that (7.15) is contractive if and only if (7.7) is contractive. In fact, we

have the following proposition
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Proposition 7.1 [26] The following statements hold:

• The hybrid system (7.7) is internally stable if and only if the discrete-time system
(7.15) is internally stable.

• The hybrid system (7.7) is contractive if and only if the discrete-time system (7.15)
is contractive.

• In case (7.7) is internally stable, it also holds that limt→∞ ξ(t) = 0 and ‖ξ‖L∞ ≤
β(max(|ξ0|, ‖w‖L 2)) for all w ∈ L2, ξ(0) = ξ0 and τ(0) = h.

7.3.3 Removing the Feedthrough Term

Following [4], we aim at removing the feedthrough operator D̂ as this is the only
operator with both its domain and range being infinite dimensional. Removal can
be accomplished by using an operator-valued version of Redheffer’s lemma, see [4,
Lemma 5]. The objective is to obtain a new system (without feedthrough term) and
new disturbance inputs ṽk ∈ K , new state ξ̄k ∈ R

nξ , and new performance output
r̃k ∈ K , k ∈ N, given by

ξ̄k+1 = Āξ̄+
k + B̄ṽk (7.17a)

ξ̄+
k =

{
J ξ̄k, ξ̄�

k Y
�QY ξ̄k > 0

ξ̄k, ξ̄�
k Y

�QY ξ̄k ≤ 0
(7.17b)

r̃k = C̄ ξ̄+
k (7.17c)

such that (7.15) is internally stable and contractive if and only if (7.17) is internally
stable and contractive. To do so, we first observe that a necessary condition for
the contractivity (7.15) is that ‖D̂‖K < 1. Indeed, ‖D̂‖K ≥ 1 would imply that
for any 0 ≤ γ0 < 1 there is a w̃0 ∈ K \ {0} with ‖D̂w̃0‖K ≥ γ0‖w̃0‖K , which, in
turn, would lead for the system (7.15) with ξ0 = 0 and thus ξ+

0 = 0 and disturbance
sequence {w̃0, 0, 0, . . .} to a contradiction with the contractivity of (7.15). We can
now find an equivalent system of the form (7.17), with bounded linear operators

Ā : Rnξ → R
nξ , B̄ : K → R

nξ , and C̄ : Rnξ → K .

These operators are given by [26, Sect. IV.B]

Ā = Â + B̂ D̂∗(I − D̂ D̂∗)−1Ĉ, (7.18a)

B̄ = B̂(I − D̂∗ D̂)−
1
2 , (7.18b)

C̄ = (I − D̂ D̂∗)−
1
2 Ĉ . (7.18c)

Hence, we establish the following result.
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Theorem 7.1 [26] If ‖D̂‖K < 1, then internal stability and contractivity of sys-
tem (7.15) with Â, B̂, Ĉ , and D̂ as in (7.16) are equivalent to internal stability and
contractivity of system (7.17) with Ā, B̄, and C̄ as in (7.18).

7.3.4 From Infinite-Dimensional to Finite-Dimensional
Systems

The system (7.17) is still an infinite-dimensional system, although the operators Ā, B̄,
and C̄ have finite rank and therefore have finite-dimensional matrix representations.
Following (and slightly extending) [4], we now obtain the following result.

Theorem 7.2 [26] Consider system (7.7) and its lifted version (7.15) with ‖D̂‖K <

1. Define the discrete-time piecewise linear system

ξk+1 =
{
A1ξk + Bdvk, ξ�

k Y
�QY ξk > 0

A2ξk + Bdvk, ξ�
k Y

�QY ξk ≤ 0
(7.19a)

rk =
{
C1ξk, ξ�

k Y
�QY ξk > 0

C2ξk, ξ�
k Y

�QY ξk ≤ 0,
(7.19b)

k ∈ N, with A1 = Ad J , A2 = Ad , C1 = Cd J , and C2 = Cd , where Ad is defined by

Ad = Â + B̂ D̂∗(I − D̂ D̂∗)−1Ĉ (7.20a)

and Bd ∈ R
nξ ×nv and Cd ∈ R

nr×nξ are chosen such that

Bd B
�
d = B̄ B̄∗ = B̂(I − D̂∗ D̂)−1 B̂∗ and

C�
d Cd = C̄∗C̄ = Ĉ∗(I − D̂ D̂∗)−1Ĉ . (7.20b)

The system (7.7) is internally stable and contractive if and only if the system (7.19)
is internally stable and contractive.

Hence, this theorem states that under the assumption ‖D̂‖K < 1 (which is a
necessary condition for contractivity of (7.7)) the internal stability and contractivity
(in L2-sense) of (7.7) is equivalent to the internal stability and contractivity (in �2-
sense) of a discrete-time finite-dimensional piecewise linear system given by (7.19).
In the next section, we will show how the matrices Ad , Bd , and Cd in (7.19) can be
constructed, how the condition ‖D̂‖K < 1 can be tested, and how internal stability
and contractivity can be tested for the system (7.19).
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7.3.5 Computing the Discrete-Time Piecewise Linear System

To explicitly compute the discrete-time system (7.19) provided in Theorem 7.2,
we need to determine the operators B̂ D̂∗(I − D̂ D̂∗)−1Ĉ , B̂(I − D̂∗ D̂)−1 B̂∗, and
Ĉ∗(I − D̂ D̂∗)−1Ĉ to obtain the triple (Ad , Bd ,Cd) in (7.19). For the sake of self-
containedness, we recall the procedure proposed in [9] to compute this triple, assum-
ing throughout that ‖D̂‖K < 1.

First, we verify that ‖D̂‖K < 1, which is a necessary condition for the contrac-
tivity of (7.7). Define the Hamiltonian matrix

H :=
[
A+BMD�C BMB�

−C�LC − (
A+BMD�C

)�

]

(7.21)

in which L := (I − DD�)−1 and M := (I − D�D)−1, and the matrix exponential

F(τ ) := e−Hτ =
[
F11(τ ) F12(τ )

F21(τ ) F22(τ )

]

. (7.22)

The condition ‖D̂‖K < 1 is equivalent to the following assumption [26].

Assumption 7.3 λmax(D�D) < 1 and F11(τ ) is invertible for all τ ∈ [0, h].
Invertibility of F11(τ ) for all τ ∈ [0, h] can always be achieved by choosing h suffi-
ciently small, as F11(0) = I and F11 is a continuous function.

The procedure to find Ad , Bd , and Cd boils down to computing F(h), which then
leads to

Ad = F̄−1
11 , (7.23)

and

Bd B
�
d = −F̄−1

11 F̄12, (7.24a)

C�
d Cd = F̄21 F̄

−1
11 , (7.24b)

wherewe used the notation F̄11 := F11(h), F̄12 := F12(h), F̄21 := F21(h), and F̄22 :=
F22(h).

This provides the matrices needed for explicitly determining the discrete-time
piecewise linear system (7.19) for which the internal stability and contractivity tests
need to be carried out.

To guarantee the internal stability and contractivity of a discrete-time piecewise
linear system as in (7.19) (in order to guarantee these properties for the hybrid
system (7.7) using Theorem 7.2), we aim at finding a Lyapunov function V : Rnξ →
R�0 that satisfies the dissipation inequality [47, 52]

V (ξk+1) − V (ξk) < −r�
k rk + v�

k vk, k ∈ N, (7.25)
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and require that it holds along the trajectories of the system (7.19). An effective
approach is to use versatile piecewise quadratic Lyapunov/storage functions [17, 30]
of the form

V (ξ) =
{

ξ�P p
1 ξ with p = min{q ∈ {1, . . . , N } | ξ ∈ Ωq } when ξ�Y�QY ξ > 0

ξ�P p
2 ξ with p = min{q ∈ {1, . . . , N } | ξ ∈ Ωq } when ξ�Y�QY ξ ≤ 0

(7.26)
based on the regions

Ωp :=
{
ξ ∈ R

nξ
∣
∣ X pξ ≥ 0

}
, p ∈ {1, . . . , N } (7.27)

in which the matrices X p, p ∈ {1, . . . , N }, are such that {Ω1,Ω2, . . . ,ΩN } forms
a partition of Rnξ , i.e., ∪N

p=1Ωp = R
nξ and the intersection of Ωp ∩ Ωq is of zero

measure for all p, q ∈ {1, . . . , N } with p �= q.
This translates into sufficient LMI-based conditions for stability and contractivity

using three S-procedure relaxations [30], as formulated next.

Theorem 7.4 If there exist symmetric matrices P p
i ∈ R

nξ ×nξ , scalars a p
i , cpqi j , d

pq
i j ∈

R>0, and symmetric matrices E p
i ,U pq

i j ,W pq
i j ∈ R

nξ ×nξ

≥0 , with i, j ∈ {1, 2}, p, q ∈
{1, 2, . . . , N }, such that

[
P p
i + (−1)i a p

i Y
�QY − X�

p E
p
i X p

] � 0 (7.28a)

and

[
P p
i − C�

i Ci − A�
i P

q
j Ai −A�

i P
q
j Bd

−Bd P
q
j Ai I − B�

d Pq
j Bd

]

+
[

(−1)i cpqi j Y
�QY + (−1) j d pq

i j A�
i Y

�QY Ai (−1) j d pq
i j A�

i Y
�QY Bd

(−1) j d pq
i j B�

d Y
�QY Ai (−1) j d pq

i j B�
d Y

�QY Bd

]

−
[
X�

p U
pq
i j X p + A�

i X
�
q W

pq
i j Xq Ai A�

i X
�
q W

pq
i j Xq Bd

B�
d X�

q W
pq
i j Xq Ai B�

d X�
q W

pq
i j Xq Bd

]

≺ 0 (7.28b)

hold for all i, j ∈ {1, 2} and all p, q ∈ {1, 2, . . . , N }, then the discrete-timepiecewise
linear system (7.19) is internally stable and contractive.

Two comments are in order regarding this theorem. First, note that due to the
strictness of the LMIs (7.28), we guarantee that the �2-gain is strictly smaller than 1,
which can be seen from appropriately including the strictness into the dissipativity
inequality (7.25). Moreover, due to the strictness of the LMIs we also guarantee
internal stability. Second, the LMI conditions of Theorem 7.4 are obtained by per-
forming a contractivity analysis on the discrete-time piecewise linear system (7.19)
using three S-procedure relaxations:
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(i) require that ξ�P p
i ξ is positive only when (−1)iξ�Y�QY ξ ≤ 0 and X pξ ≥ 0

(this corresponds to the terms containing a p
i and E p

i in (7.28a), respectively);
(ii) use a relaxation related to the current time instant, i.e., if V (ξk) = ξ�

k P p
i ξk , then

it holds that (−1)iξ�
k Y

�QY ξk ≤ 0 and X pξk ≥ 0 (this corresponds to the terms
containing cpqi j and U pq

i j in (7.28b), respectively);
(iii) use a relaxation related to the next time instant, i.e., if V (ξk+1) = ξ�

k+1P
q
j ξk+1,

then it holds that (−1) jξ�
k+1Y

�QY ξk+1 ≤ 0 and Xqξk+1 ≥ 0 (this corresponds

to the terms containing d pq
i j and W pq

i j in (7.28b), respectively).

Theorem 7.4 can be used to guarantee the internal stability and contractivity
of (7.19) and hence, the internal stability and contractivity for the hybrid system (7.7).
In the next section, we will rigorously show that these results form significant im-
provements with respect to the earlier conditions for contractivity of (7.7) presented
in [11, 22, 25] and [48]. In Sect. 7.6, we also illustrate this improvement using two
numerical examples.

7.4 Riccati-Based PETC

In this section, we recall the LMI-based conditions for analyzing the stability and
contractivity analysis for the static PETC system (7.7) provided in [11, 25, 48], and
show the relationship to the conditions obtained in Sect. 7.3.2. This also reveals that
the conditions in Sect. 7.3.2 are (significantly) less conservative.

However, instead of reducing the conservatism in the stability and contractivity
analyses of [11, 25, 48], we have shown in [7, 8] that we can also exploit this
conservatism in order to reduce the amount of transmissions even further (with the
same stability and performance guarantees as the static counterpart). This leads to
the design of dynamic periodic event-generators, which we also cover in this section.

7.4.1 Static PETC

We follow here the setup discussed in [25], which is based on using a timer-dependent
storage function V : Rnξ × R�0 → R�0, see [47], satisfying

d
dt V ≤ −z�z + w�w, (7.29)

during the flow (7.7a), and

V (Jξ, 0) < V (ξ, h), for all ξ with ξ�Y�QY ξ > 0, (7.30a)

V (ξ, 0) < V (ξ, h), for all ξ with ξ�Y�QY ξ ≤ 0, (7.30b)
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during the jumps (7.7b) and (7.7c). From these conditions, we can guarantee that the
L2-gain from w to z is smaller than or equal to 1, see, e.g., [27].

In fact, in [25], V (ξ, τ ) was chosen in the form

V (ξ, τ ) = ξ�P(τ )ξ, τ ∈ [0, h], (7.31)

where P : [0, h] → R
nξ ×nξ is a continuously differentiable function with P(τ ) � 0

for τ ∈ [0, h]. The function P will be chosen such that (7.31) becomes a storage
function [47, 52] for the PETC system (7.7), (7.5) with the supply rate θ−2z�z −
w�w. In order to do so, we select the function P : [0, h] → R

nξ ×nξ to satisfy the
Riccati differential equation (where we omitted τ for compactness of notation)

d
dτ P = −A�P − PA − C�C − (PB + C�D)M(D�C + B�P). (7.32)

Note that the solution to (7.32) exists under Assumption 7.3, see also [3, Lemma 9.2].
As shown in the proof of [25, Theorem III.2], this choice for the matrix function P
implies the “flow condition” (7.29). The “jump condition” (7.30) is guaranteed in
[25] by LMI-based conditions that lead to a proper choice of the boundary value
Ph := P(h).

To formulate the result of [25], we again consider the Hamiltonian matrix (7.21)
and thematrix exponential (7.22). The function P : [0, h] → R

nξ ×nξ is then explicitly
defined for τ ∈ [0, h] by

P(τ ) = (F21(h − τ) + F22(h − τ)P(h)) (F11(h − τ) + F12(h − τ)P(h))−1 ,

(7.33)
provided that Assumption 7.3 holds.

Before stating the next theorem (which is a slight variation of [25, Theorem III.2]),
let us introduce the notation P0 := P(0), Ph := P(h), and a matrix S̄ that satisfies
S̄ S̄� := −F̄−1

11 F̄12. Amatrix S̄ exists under Assumption 7.3, because this assumption
will guarantee that the matrix −F̄−1

11 F̄12 is positive semi-definite.

Theorem 7.5 [7] If there exist matrices NT , NN ∈ R
2ny×2ny with NT , NN � 0 and

Ph ∈ R
nξ ×nξ with Ph � 0, and scalars β,μ ∈ R≥0, such that

[
Ph − Y�(NT + μQ)Y − J� (

F̄−�
11 Ph F̄

−1
11 + F̄21 F̄

−1
11

)
J J� F̄−�

11 Ph S̄

� I − S̄�Ph S̄

]

� 0,

(7.34)[
Ph − Y�(NN − βQ)Y − (

F̄−�
11 Ph F̄

−1
11 + F̄21 F̄

−1
11

)
F̄−�
11 Ph S̄

� I − S̄�Ph S̄

]

� 0, (7.35)

and Assumption 7.3 hold, then the static PETC system (7.7) is internally stable and
contractive.

Here, (7.29) is guaranteed by the choice of the function P : [0, h] → R
nξ ×nξ , (7.30a)

is guaranteed by (7.34), and (7.30b) is guaranteed by (7.35).
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In the spirit of Sect. 7.3.5, we can obtain that the LMI-based conditions in this
proposition are equivalent to a conservative check of the �2-gain being smaller than
or equal to 1 for the discrete-time piecewise linear system (7.19). In particular, the
stability and contractivity tests in Theorem 7.5 use a common quadratic storage func-
tion (although extension towards a piecewise quadratic storage function is possible,
see [8]) and only one of the S-procedure relaxations discussed in Sect. 7.3.5 (only (ii)
is used). In addition to this new perspective on the results in [11, 22, 25], a strong
link can be established between the existing LMI-based conditions described in The-
orem 7.5 and the lifting-based conditions obtained in this section, as formalized
next.

Theorem 7.6 [26] If the conditions of Theorem7.5 hold and the regions in (7.27) are
chosen such that for each i = 1, 2, . . . , N there is a ξ̄i ∈ R

nξ such that
ξ̄�
i Xi ξ̄i > 0,1 then ‖D̂‖K < 1 and the conditions of Theorem 7.4 hold.

This theorem reveals an intimate connection between the results obtained in [11,
22, 25] and the new lifting-based results obtained in the present paper. Indeed, as
already mentioned, the LMI-based conditions in [11, 22, 25] as formulated in The-
orem 7.5 boil down to an �2-gain analysis of a discrete-time piecewise linear sys-
tem (7.19) based on a quadratic storage function using only a part of the S-procedure
relaxations possible (only using (7.3.5), while the S-procedure relaxations (i) and (ii)
mentioned at the end of Sect. 7.3.5 are not used). Moreover, Theorem 7.6 shows that
the lifting-based results using Theorems 7.4 and 7.2 never provide worse estimates
of the L2-gain of (7.7) than the results as formulated in Theorem 7.5. In fact, since
the stability and contractivity conditions based on (7.19) can be carried out based
on more versatile piecewise quadratic storage functions and more (S-procedure) re-
laxations (see Theorem 7.4), the conditions in Theorems 7.4 and 7.2 are typically
significantly less conservative than the ones obtained in [11, 22, 25].

Remark 7.2 When Q is given by (7.6) with σ = 0, the static PETC system (7.7)
reduces to a sampled-data system. Moreover, in this case the related discrete-time
piecewise linear system reduces to a discrete-time LTI system, for which the l2-gain
conditions using a common quadratic Lyapunov/storage function are nonconserva-
tive (see [19, Lemma 5.1]). Hence, for sampled-data systems, Theorems 7.5 and 7.4
are equivalent and nonconservative.

7.4.2 Dynamic PETC

Although it is shown above that the stability and contractivity analysis in Theorem7.5
is conservative, it does provide an explicit Lyapunov/storage function for the PETC

1This condition implies that each region has a non-empty interior thereby avoiding redundant regions
of zero measure.
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system (7.7), which the lifting-based approach does not. Moreover, that this con-
servatism can be exploited in order to further reduce the amount of communication
in the system, while preserving the internal stability and contractivity guarantees
[7, 8].

The idea is as follows. First, introduce the buffer variable η ∈ R (which will be
included in the event-generator), and define the signal ô : R≥0 → R

2ny × [0, h] × R

as
ô(t) := (ζ(sn), τ (t), η(t)), t ∈ (sn, sn+1], n ∈ N, (7.36)

which is the information that is available to the event-generator at time t ∈ R≥0.
The dynamic variable η will evolve according to

d
dt η = Ψ (ô), t ∈ (sn, sn+1), n ∈ N, (7.37a)

η+ = ηT (ô), t ∈ {tk}k∈N, (7.37b)

η+ = ηN (ô), t ∈ {sn}n∈N \ {tk}k∈N, (7.37c)

where the functions Ψ : R2ny × [0, h] × R → R, ηT : R2ny × [0, h] × R → R and
ηN : R2ny × [0, h] × R → R are to be designed. Note that at transmission times tk ,
k ∈ N, the variable η is updated differently than at the other sample times sn �= tk ,
n, k ∈ N, at which no transmission occurs.

The Lyapunov/storage function V given by (7.46) is often decreasing more than
strictly necessary along jumps (7.7b) and (7.7c). To further reduce the amount of
communication, we will store the “unnecessary” decrease of V as much as possible
in a dynamic variable η, which acts as a buffer. For contractivity and internal stability,
we need that the new Lyapunov/storage functionU (ξ, τ, η) = V (ξ, τ ) + η satisfies

d
dt U (ξ, τ, η) < w�w − z�z, τ ∈ (0, h] (7.38a)

U (ξ+, τ+, η+) ≤ U (ξ, τ, η), τ = h. (7.38b)

When a transmission is necessary according to the static event-generator (7.5), we
might choose not to transmit at this sample time. As the state then jumps according
to (7.7c), we can no longer guarantee that V does not increase along this jump.
However, an increase of V can be compensated by reducing η, and hence we can
defer the transmission until the buffer η is no longer large enough. The transmission
only needs to occur if the buffer η would become negative otherwise.

First, we choose the flow dynamics (7.37a) of η as

Ψ (ô) = −ρη, for τ ∈ (0, h], (7.39)

for any arbitrary decay rate ρ ∈ R>0. Together with (7.32), this choice of (7.39)
implies that (7.38a) holds.

Remark 7.3 AsΨ is given by (7.39), it follows that η(sn+1) = eρhη(s+
n ). Thus, since

the event-generator only needs to know the value of η at sample times sn , n ∈ N,
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the variable η does not need to continuously evolve according to (7.39) in the event-
generator. Instead, we can use the discrete-time dynamics just described.

For the functions ηT and ηN , we provide the following two designs. Together with
the inequalities (7.34) and (7.35), both designs ensure that (7.38b) holds.

(1) State-based dynamic PETC:

ηT (ô) = η + ξ�(Ph − J�P0 J )ξ, (7.40a)

ηN (ô) = η + ξ�(Ph − P0)ξ. (7.40b)

(2) Output-based dynamic PETC:

ηT (ô) = η + ζ� (NT + μQ) ζ, (7.41a)

ηN (ô) = η + ζ� (NN − βQ) ζ. (7.41b)

Here, the scalars ρ, μ, and β, and the matrices NT , NN , P0, and Ph follow from the
stability analysis of the static PETC system in Theorem 7.5.

The first design requires that the full state ξ(sn) is known to the event-generator
at sample time sn , n ∈ N. This is the case when y = (xp, xc) (e.g., when C is a static
state-feedback controller in which case y = xp and nxc = 0), as then ζ = ξ . When
y = xp and nxc �= 0, a copy of the controller could be included in the event-generator
in order to track the controller state xc.

The second design is more conservative, but can also be used in case the event-
generator does not have access to the complete vector (xp, xc), in which case ζ �= ξ .
Hence, this choice can be used for output-based dynamic PETC.

Finally, from the definition ofU it is clear that for all ξ ∈ R
nξ , τ ∈ [0, h], and all

η ∈ R≥0, it holds that

c1|ξ |2 + |η| ≤ U (ξ, τ, η) � c2|ξ |2 + |η|, (7.42)

where c1 and c2 are defined by

c1 = min
τ∈[0,h] λmin(P(τ )), and (7.43a)

c2 = max
τ∈[0,h] λmax (P(τ )), (7.43b)

and satisfy c2 ≥ c1 > 0. In order to ensure that U is a proper storage function, we
now only need to ensure that η does not become negative (i.e., that η(t) ∈ R≥0 for
all t ∈ R≥0).

First, assume that we start with η(0) ≥ 0. Next, note that in between jumps η

evolves according to the differential equation (7.39). When after a jump at sample
time sn ,n ∈ N,wehave thatη(s+

n ) ≥ 0, thendue to (7.39)wehave thatη(t) ≥ 0 for all
t ∈ (sn, sn+1]. Hence, it only remains to show that η does not become negative due to
the jumps at the sample times sn , n ∈ N. From (7.35), we know that ηN (ô(sn)) ≥ 0
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when η(sn) ≥ 0 and ζ(sn)�Qζ(sn) ≤ 0. This implies that, as long as η(sn) ≥ 0,
ηN (ô(sn)) can only become negative when ζ(sn)�Qζ(sn) > 0 (in which case the
static periodic event-generator (7.5) would trigger a transmission). Moreover, in
case ζ(sn)�Qζ(sn) > 0, we know from (7.34) that ηT (ô(sn)) ≥ 0 when η(sn) ≥ 0.
In other words, to ensure nonnegativity of η, we only need to trigger a transmission at
the sample times sn , n ∈ N, at which ηN (ô(sn)) < 0. Hence, we propose to generate
the sequence of event/transmission times {tk}k∈N by a new dynamic periodic event-
generator of the form

t0 = 0, tk+1 = inf{t > tk | ηN (ô(t)) < 0, t = nh, n ∈ N}. (7.44)

Here, the scalar h ∈ R>0 and the matrix Q ∈ R
2ny×2ny are design parameters, in

addition to the functions Ψ , ηT , and ηN . Note that the function ηN appears both in
the update dynamics (7.37c), as well as in the triggering condition in (7.44).

The closed-loopdynamicPETCsystemconsistingof (7.1)–(7.3), (7.37), and (7.44)
can be written as the hybrid system

d
dt

⎡

⎣
ξ

τ

η

⎤

⎦ =
⎡

⎣
Aξ + Bw

1
Ψ (ô)

⎤

⎦ , τ ∈ [0, h] (7.45a)

⎡

⎣
ξ+
τ+
η+

⎤

⎦ =
⎡

⎣
Jξ

0
ηT (ô)

⎤

⎦ , τ = h and ηN (ô) < 0 (7.45b)

⎡

⎣
ξ+
τ+
η+

⎤

⎦ =
⎡

⎣
ξ

0
ηN (ô)

⎤

⎦ , τ = h and ηN (ô) ≥ 0 (7.45c)

z = Cξ + Dw. (7.45d)

Theorem 7.7 [7] If η(0) ≥ 0 and the conditions of Theorem 7.5 hold, then the
dynamic PETC system (7.45) with (7.39) and (7.40a) or (7.41a) is internally stable
and contractive.2 Moreover, if the signal w is uniformly bounded, then also η is
uniformly bounded.

While the static periodic event-generator (7.5) only has design parameters h and
Q, the state-based dynamic event-generator (7.44) with (7.39) and (7.40a) has design
parameters h, Q, ρ, P0, and Ph , and the output-based dynamic event-generator (7.44)
with (7.39) and (7.41a) has design parameters h, Q, ρ, NT , NN , μ, and β. However,
for fixed h, Q, inequalities (7.34) and (7.35) are LMIs, in which case the parameters
Ph , P0, NT , NN , μ, and β can be synthesized (and optimized) numerically via semi-
definite programming (e.g., using Yalmip/SeDuMi in Matlab). Of course, manual
tuning of one or more of these parameters is also possible, but can be difficult given
the large design space.

2In the sense that Definitions 7.1 and 7.2 hold along solutions to the dynamic PETC system (7.45)
with (7.39) and (7.40a) or (7.41a).
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7.5 Riccati-Based Time-Regularized CETC

In the previous section, we analyzed internal stability and contractivity of the static
PETC system (7.7) making use of matrix Riccati differential equations. Similar ideas
can also be used to analyze internal stability and contractivity of the static CETC
system with time-regularization as in (7.10), which we will discuss in this section.
Moreover, just as in the previous section, this analysis also gives rise to a state-based
and an output-based dynamic continuous event-generator design, which we will also
provide here.

7.5.1 Static CETC

To analyze contractivity and stability of the system (7.10), we will now use a Lya-
punov/storage function V of the form

V (ξ, τ ) =
{

ξ�P(τ )ξ, when τ ∈ [0, h)

ξ�P(h)ξ, when τ ∈ [h,∞),
(7.46)

wherewe select P : [0, h] → R
nξ ×nξ to satisfy theRiccati differential equation (7.32),

such that again P : [0, h] → R
nξ ×nξ is a continuously differentiable function with

P(τ ) � 0 for τ ∈ [0, h].
In order to guarantee contractivity and stability of the system (7.10), we need that

d
dt V ≤ −z�z + w�w, (7.47)

during flow (7.10a), and

V (Jξ, 0) < V (ξ, h), for all ξ with ξ�Y�QY ξ > 0, (7.48)

during the jumps (7.10b).
Note that (7.48) and (7.30a) are identical, as well as (7.47) and (7.29) as long as

τ ∈ [0, h]. Hence, in contrast to Theorem 7.5, inequality (7.35) is not required, but
is replaced by the condition

d
dt V ≤ −z�z + w�w, for all ξ with ξ�Y�QY ξ ≤ 0 (7.49)

when τ > h. This leads to the following theorem.

Theorem 7.8 [6] Consider the CETC system (7.10) with (7.9), and Q ∈ R
2ny×2ny .

If there exist matrices NN , NT ∈ R
2ny×2ny , NN , NT � 0, and Ph ∈ R

nξ ×nξ , Ph � 0,
and scalars β,μ ∈ R≥0, such that
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[
A�Ph + Ph A + C�C + Y�(NN − βQ)Y �

B�Ph+D�C D�D − I

]

≺ 0, (7.50)

(7.34) and Assumption 7.3 hold, then the system is internally stable and contractive.

Here, (7.47) is guaranteed by the choice of the function P : [0, h] → R
nξ ×nξ when

τ ∈ [0, h] and by (7.50) when τ > h, and (7.48) is again guaranteed by (7.34).

7.5.2 Dynamic CETC

Similar to the PETC case, by adding a dynamic variable in the continuous event-
generator, the conservatism in Theorem7.8 can be exploited in order to further reduce
the amount of communication in the system, while preserving the internal stability
and contractivity guarantees.

Again,we introduce the buffer variable η ∈ R (whichwill be included in the event-
generator). As in the CETC case, the output y(t) can be measured continuously, now

o(t) := (ζ(t), τ (t), η(t)) (7.51)

is the information that is available at the event-generator at time t ∈ R≥0,
The variable η will evolve according to

d
dt η = Ψ (o), t ∈ (tk, tk+1), (7.52a)

η+ = ηT (o), t = tk, (7.52b)

where o(t) = (ζ(t), τ (t), η(t)) is the information that is available at the event-
generator at time t ∈ R≥0, and where the functions Ψ : R2ny × R

2≥0 → R and
ηT : R2ny × R

2≥0 → R≥0 are to be designed.
Next,we design the dynamics (7.52) of the variableηwith the goal of enlarging the

(average) inter-event times compared to the static continuous event-generator (7.9),
while maintaining the same stability and performance guarantees.

We now choose the flow dynamics (7.52a) of η as

Ψ (o) =
{ −2ρη, when τ ∈ [0, h) (7.53a)

−2ρη + ζ�(NN − βQ)ζ, when τ ∈ [h,∞), (7.53b)

for any arbitrary decay rate ρ ∈ R>0, and we again have two designs for the jump
dynamics (7.52b) of η.

(1) State-based dynamic CETC:

ηT (o) = η + ξ� (
Ph − J�P0 J

)
ξ, (7.54)

(2) Output-based dynamic CETC:
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ηT (o) = η + ζ� (NT + μQ) ζ (7.55)

In order to ensure that U (ξ, τ, η) = V (ξ, τ ) + η is a proper storage function, we
now only need to ensure that η does not become negative (i.e., that η(t) ∈ R≥0 for all
t ∈ R≥0). Hence, we propose to generate the sequence of jump/event times {tk}k∈N
by a dynamic continuous event-generator with time-regularization of the form

t0 = 0, tk+1 = inf{t ≥ tk + h | η(t) < 0}. (7.56)

The closed-loop dynamic CETC system consisting of (7.1)–(7.3), (7.52), and
(7.56) can be written as the hybrid system

d
dt

⎡

⎣
ξ

τ

η

⎤

⎦ =
⎡

⎣
Aξ + Bw

1
Ψ (o)

⎤

⎦ , τ ∈ [0, h] or η ≥ 0 (7.57a)

⎡

⎣
ξ+
τ+
η+

⎤

⎦ =
⎡

⎣
Jξ

0
ηT (o)

⎤

⎦ , τ > h and η < 0 (7.57b)

z = Cξ + Dw. (7.57c)

Theorem 7.9 [6] If η(0) ≥ 0 and the conditions of Theorem 7.8 hold, then the
dynamic CETC system (7.57) with (7.53) and (7.54) or (7.55) is internally stable
and contractive.3 Moreover, if the signal w is uniformly bounded, then also η is
uniformly bounded.

7.6 Numerical Example

Consider the unstable batch reactor of [27, 35, 50], with nxp = 4, nxc = 2, ny =
nw = nu = nz = 2, and plant and controller dynamics given by (7.1) and (7.2) with

Ap =

⎡

⎢
⎢
⎣

1.3800 −0.2077 6.7150 −5.6760
−0.5814 −4.2900 0.0000 0.6750
1.0670 4.2730 −6.6540 5.8930
0.0480 4.2730 1.3430 −2.1040

⎤

⎥
⎥
⎦ , Bp =

⎡

⎢
⎢
⎣

0.0000 0.0000
5.6790 0.0000
1.1360 −3.1460
1.1360 0.0000

⎤

⎥
⎥
⎦ ,

Bpw =
[
10 0 10 0
0 5 0 5

]

, Cy = Cz =
[
1 0 1 −1
0 1 0 0

]

, Dy = Dz = Dzw =
[
0 0
0 0

]

,

Ac =
[
0 0
0 0

]

, Bc =
[
0 1
1 0

]

, Cu =
[−2 0

0 8

]

, Du =
[
0 −2
5 0

]

.

3In the sense that Definitions 7.1 and 7.2 hold along solutions to the dynamic CETC system (7.57)
with (7.53) and (7.54) or (7.55).
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Note that for this system, themeasured output y is not equal to the full plant/controller
state (xp, xc), and thus we cannot use (7.40), (7.54), but we have to resort to (7.41)
for the dynamic PETC case and to (7.55) for the dynamic CETC case.

We choose h = 0.1, ρ = 10−3, and Q given by (7.6). For each choice of σ , we
use a bisection algorithm to minimize the L2-gain γ (by appropriately scaling the
matrices C and D, as discussed in Remark 7.1) based on Theorems 7.4, 7.5, and 7.8.
For the lifting-based approach of Theorem 7.4, we use a single region Ω1 = R

nξ ,
i.e., we choose p = 1 and X1 = O . The matrices NT and NN and scalars β and μ

follow from Theorem 7.5 for the dynamic PETC case, and from Theorem 7.8 for the
dynamic time-regularized CETC case.

Figure7.2a shows the guaranteed L2-gain γ as a function of σ for both PETC
approaches and the time-regularized CETC approach. Here, we see that using the
Riccati-based framework, a smaller L2-gain can be guaranteed by using a time-
regularized CETC scheme than by using a PETC scheme. This makes sense intuitive-
ly, as after h time units have elapsed, a time-regularized continuous event-generator
can trigger an event as soon as its event condition is violated, while a periodic event-
generator can only do so at a sample time sn , n ∈ N. Figure7.2a also shows that
for a static PETC system, the lifting-based approach of Theorem 7.4 provides better
L2-gain estimates than the Riccati-based approach of Theorem 7.5. However, the
L2-gain estimate of Theorem 7.5 also holds for both dynamic PETC strategies, while
theL2-gain estimate of Theorem 7.4 only holds for the static PETC strategy.

Figure7.2b shows τavg = (total number of events)/(simulation time), the average
inter-event times for the static and (output-based) dynamic event-generators, which
have been obtained by simulating the systems for 100 time units with ξ(0) = 0,
τ(0) = h, and η(0) = 0, and disturbance w given by

w(t) = e−0.2t

[
5 sin(3.5t)
− cos(3t)

]

. (7.58)

Finally, Fig. 7.2c shows the actual ratio ‖z‖L 2/‖w‖L 2 for disturbance w given
by (7.58), which has been obtained from the same simulations.

In Fig. 7.2c, we see that the dynamic event-generators exploit (part of) the conser-
vatism in theL2-gain analysis of Theorems 7.8 and 7.5 to postpone the transmissions.
This leads to higher ratios ‖z‖L 2/‖w‖L 2 (but still below the guaranteed bounds in
Fig. 7.2b), but also to consistently larger τavg , as can be seen in Fig. 7.2b.

Based on this example, we can conclude that for PETC systems, the lifting-based,
and Riccati-based frameworks each has their own advantages. The lifting-based
framework provides tighterL2-gain guarantees, while the Riccati-based framework
allows to extend the transmission intervals by using a dynamic event-generator. For a
fixedσ and agivendesiredperformance, the lifting-based framework allows for larger
h (hence, for larger minimum inter-event times) while the Riccati-based framework
may lead to larger average inter-event times τavg by using a dynamic event-generator.
Which framework is better thus depends on whether large minimum or average inter-
event times are desired.
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Fig. 7.2 Guaranteed
L2-gain γ for varying σ (a),
average inter-event times
τavg for disturbance w given
by (7.58) and different
event-generators (b), and
actual ratio ‖z‖L 2/‖w‖L 2

for disturbance w given
by (7.58) (c)
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For the time-regularized CETC case, only the Riccati-based framework applies,
which for this example yields (almost exactly) the same performance guarantees
as the lifting-based PETC approach, with the same minimum inter-event time h,
but often larger τavg . However, the designed continuous event-generator may be
difficult to implement on a digital platform, as it requires continuous measuring of
the output y.

To compare both frameworks with the (static or dynamic) time-regularized CETC
solutions of [13, 14], note that for a given and L2-gain γ , the waiting time h (or
τMI ET in the terminology of [14]) of the continuous event-generator proposed in [13,
14] cannot exceed the maximally allowable transmission interval (MATI) of [27].
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Moreover, for the same example in [27, Sect. IV],we can calculate thatwhenusing the
sampled-data protocol, no notion of stability can be guaranteed for MATI larger than
0.063. In contrast, here we guarantee internal stability andL2-stability for h = 0.1.
Hence, our frameworks tailored to linear systems are clearly much less conservative
than our previous results for nonlinear systems in [13, 14]. See also [6] for a direct
comparison between the static and dynamic continuous event-generators in Sect. 7.5
and the event-generators proposed in [13, 14].

7.7 Extensions

The results presented in this chapter can be extended in several ways.
First of all, the results in Sects. 7.4 and 7.5 can be extended toward the case with

communication delays, as long as these delays are upper bounded by the sampling
time or time threshold h, see [8]. In order to do so, for each possible delay d ∈ [0, h],
a function Pd : [0, d] → R

nξ ×nξ satisfying the Riccati differential equation (7.32)
needs to be synthesized. Hence, only a finite number of possible transmission delays
can be considered using this approach. However, when the delays can have any value
from a continuous interval, this situation can be effectively approximated by using a
gridding approach, see also [8, Remark III.7]. Similar ideas can be used to extend the
lifting-based approach in Sect. 7.3 toward delays. Moreover, certain Self-Triggered
schemes (e.g., [23, 34, 49]) can also be captured in this lifting-based framework,
see [40].

Second, our proposed frameworks can be extended toward decentralized setups in
a similar manner as in [25, Sect.V] for the static PETC case. However, this requires
that the clocks of all local event-generators are synchronized.

These extensions emphasize the usefulness of our new ETC solutions for linear
systems, but also uncovers two potential drawbacks. In our earlier work [14], we con-
sidered decentralized CETC setups for nonlinear systems with transmission delays.
These results can also be particularized to linear systems, giving rise to continuous
event-generators with time-regularization that are similar (although more conserva-
tive) to those proposed in Sect. 7.5. However, the analysis proposed in [14] does
not require clock synchronization for all local event-generators, and also directly
allows that the transmission delays can have any value from a continuous interval.
Hence, although the analysis in [14] (in the case of linear systems) provides less
tight performance guarantees than our new results tailored to linear systems that we
have proposed in this chapter, it does not suffer from the drawbacks that clocks need
to be synchronized (in case of decentralized event-generators) and that only a finite
number of possible transmission delays can be allowed.
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7.8 Summary

In this chapter, we have provided an overview of our recent results in the design
of time-regularized ETC and PETC schemes that are tailored to linear systems as
provided in [8, 25, 26]. In particular,wehave shown that stability and the contractivity
inL2-sense (meaning that theL2-gain is smaller than 1) of static PETC closed-loop
systems (which are hybrid systems) are equivalent to the stability and the contractivity
in �2-sense (meaning that the �2-gain is smaller than 1) of an appropriate discrete-time
piecewise linear system. These new insights are obtained by adopting a lifting-based
perspective on this analysis problem, which led to computable �2-gain (and thus
L2-gain) conditions, despite the fact that the linearity assumption, which is usually
needed in the lifting literature, is not satisfied.

We have also reviewed the results in [8] that lead to the design of time-regularized
CETC and PETC schemes based on Lyapunov/storage functions exploiting matrix
Riccati differential equations. Moreover, we have identified the connections between
the two approaches.

Additionally, we have discussed new designs of so-called (time-regularized and
periodic) dynamic ETC strategies focused on linear systems. Interestingly, the inclu-
sion of a dynamic variable in the event-generator can lead to a significantly reduced
consumption of communication and energy resourceswhile leading to identical guar-
antees on stability and performance as their static counterparts.

Via a numerical example, we have demonstrated that a Riccati-based CETC de-
sign, a Riccati-based PETC design, and a lifting-based PETC design each has their
own advantages. Hence, which choice of design framework is better depends on the
system at hand.
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event-triggered output feedback controllers. IEEE Trans. Autom. Control. 61(9), 2682–2687
(2016)
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Chapter 8
Event-Triggered State-Feedback via
Dynamic High-Gain Scaling for
Nonlinearly Bounded Triangular
Dynamics

J. Peralez, V. Andrieu, M. Nadri and U. Serres

Abstract This paper focuses on the construction of Event-Triggered state feedback
laws. The approach followed is a high-gain approach. The event which triggers an
update of the control law is based on a dynamical system inwhich the state is the high-
gain parameter. This approach allows to design a control law ensuring convergence
to the origin for nonlinear systems with triangular structure and a specific upper
bound on the nonlinearities which is more general than a linear growth condition.

8.1 Introduction

The implementation of a control law on a process requires the use of an appropriate
sampling scheme. In this regards, periodic control (with a constant samplingperiod) is
the usual approach that is followed for practical implementation on digital platforms.
Indeed, periodic control benefits fromahuge literature, providing amature theoretical
background (see e.g., [2, 10, 12, 19, 20]) and numerous practical examples. The
use of a constant sampling period makes easier the closed-loop analysis and the
implementation, allowing solid theoretical results and a wide deployment in the
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industry. However, the rate of control execution being fixed by a worst case analysis
(the chosen period must guarantee the stability for all possible operating conditions),
this may lead to an unnecessary fast sampling rate and then to an overconsumption
of available resources.

The recent growth of shared networked control systems for which communi-
cation and energy resources are often limited goes with an increasing interest in
aperiodic control design. This can be observed in the comprehensive overview on
Event-Triggered and Self-Triggered control presented in [15]. Event-Triggered con-
trol strategies introduce a triggering condition assuming a continuous monitoring
of the plant (that requires a dedicated hardware) while in Self-Triggered strategies,
the control update time is based on predictions using previously received data. The
main drawback of Self-Triggered control is the difficulty to guarantee an acceptable
degree of robustness, especially in the case of uncertain systems.

Most of the existing results on Event-Triggered and Self-Triggered control for
nonlinear systems are based on the input-to-state stability (ISS) assumption which
implies the existence of a feedback control law ensuring an ISS property with respect
to measurement errors [1, 9, 23, 27]. In this ISS framework, an emulation approach
is followed: the knowledge of an existing robust feedback law in continuous time
is assumed then some triggering conditions are proposed to preserve stability under
sampling (see also the approach of [26]).

Another proposed approach consists in the redesign of a continuous-time stabiliz-
ing control. For instance, the authors of [18] adapted the original universal formula
introduced by Sontag for nonlinear systems affine in the control. The relevance of this
methodwas experimentally shown in [28] where the regulation of an omnidirectional
mobile robot was addressed.

Althoughaperiodic control literature has proved an interestingpotential, important
fields still need to be further investigated to allow a wider practical deployment.

The high-gain approach is a very efficient tool to address the stabilizing control
problem in the continuous-time case. It has the advantage to allow uncertainties in
the model and to remain simple. Different approaches based on high-gain techniques
have been followed in the literature to tackle the output feedback problem in the
continuous-time case (see for instance [5, 6, 16]) andmore recently for the (periodic)
discrete-in-time case (see [25]). In the context of observer design, [8] proposed the
design of a continuous discrete time observer, revisiting high-gain techniques in order
to give an adaptive sampling stepsize.

In this work, we follow the strategy introduced in [8] and we address the Event-
Triggered state feedback control. The results obtained extend the one of a conference
paper which has been published in [21]. Compared to this one, the considered class
of system has been extended. Moreover, all proofs are given. Note also that some
of the results which are given here have been recently used in combination with an
observer in the context of output feedback design (see [22]).

In high-gain designs, the asymptotic convergence is obtained by dominating the
nonlinearities with high-gain techniques. In the proposed approach, the high-gain
is dynamically adapted with respect to time-varying nonlinearities in order to allow
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an efficient trade-off between the high-gain parameter and the sampling step size.
Moreover, the proposed strategy is shown to ensure the existence of a minimum
inter-execution time.

The paper is organized as follows. The control problem and the class of considered
systems is given in Sect. 8.2. In Sect. 8.3, some preliminary results concerning linear
systems are given. The main result is stated in Sect. 8.4 and its proof is given in
Sect. 8.5. Finally Sect. 8.6 contains an illustrative example.

8.2 Problem Statement

8.2.1 Class of Considered Systems

In thiswork,we consider the problemof designing a stabilizingEvent-Triggered state
feedback for the class of uncertain nonlinear systems described by the dynamical
system

ẋ(t) = Ax(t) + Bu(t) + f (x(t), u(t)), (8.1)

where the state x is in R
n , u : R → R is the control signal in L

∞(R+,R), where
A ∈ R

n×n is the upper shift matrix, B = (0, . . . , 0, 1) ∈ R
n and f = ( f1, . . . , fn)

is a vector field on Rn . We consider the case in which the vector field f satisfies the
following assumption.

Assumption 8.1 (Nonlinear bound) There exist a nonnegative continuous function
c, positive real numbers c0, c1 and q such that for all x ∈ R

n , we have

| f j (x, u)| �c(x)
(|x1| + |x2| + · · · + |x j |

)
, (8.2)

with

c(x) =c0 +
n∑

j=1

c j |x j |q j , (8.3)

where q j < 1
j−1 for j = 2, . . . , n and with no constraints on q1.

Notice that Assumption 8.1 is more general than the incremental property introduced
in [25] since the function c is not constant but depends on x . This bound can be related
also to [16, 24] in which continuous-in-time output feedback law are designed.
However, in these works the function c depends only on x1 without any particular
restriction (it may not be polynomial). Note moreover that in our context, we do not
consider inverse dynamics.
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This work is related to two other results which have been recently obtained in the
context of Event-Triggered high-gain technics. The two other contexts which have
been considered can be described as follows.

• Observer design case in [8]. For all x ∈ R
n , e in Rn and u, we have

| f j (x + e, u) − f j (x, u)| � Γ (u)
(|e1| + |e2| + · · · + |e j |

)
, (8.4)

where Γ is any continuous function.
• Output feedback case in [22]. There exist positive real numbers c0, c1, q such
that for all x ∈ R

n , we have

| f j (x, u)| � c(x1)
(|x1| + |x2| + · · · + |x j |

)
, (8.5)

where c is function defined by

c(x1) = c0 + c1|x1|q . (8.6)

Note also that in a preliminary version of this work in [21], the bound (8.5) was also
considered in the context of state-feedback.

8.2.2 Updated Sampling Time Controller

In the sequel, we restrict ourselves to a sample-and-hold implementation, i.e., the
input is assumed to be constant between any two execution times. The control input
u is defined through a sequence (tk, uk)k∈N in R+ × R in the following way:

u(t) = uk, ∀t ∈ [tk, tk+1), k ∈ N. (8.7)

It can be noticed that for u to be well defined for all positive time, we need that
limk→+∞ tk = +∞.

Our control objective is to design the sequence (tk, uk)k∈N such that the origin of
the obtained closed loop system is asymptotically stable. In addition to a feedback
controller that computes the control input, Event-Triggered control systems need
a triggering mechanism that determines when the control input has to be updated
again. This rule is said to be static if it only involves the current state of the system,
and dynamic if it uses an additional internal dynamic variable [13].

For simplicity, we also assume that the process of measurement, computing the
control u(tk) and updating the actuators can be neglected. This assumption reflects
that in many implementations, this time is much smaller than the time elapsed
between the instants tk and tk+1 [14].
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8.2.3 Notation

We denote by 〈·, ·〉 the canonical scalar product on R
n and by ‖ · ‖ the induced

Euclidean norm; we use the same notation for the corresponding induced matrix
norm. Also, we use the symbol ′ to denote the transposition operation.

In the following, the notation ξ(t−) stands for lim
τ→t
τ<t

ξ(τ ). Also, to simplify the

presentation, we introduce the notation ξk = ξ(tk) and ξ−
k = ξ(t−k ).

8.3 Preliminary Results: The Linear Case

In high-gain designs, the idea is to consider the nonlinear terms (the fi ’s) as distur-
bances. A first step consists in synthesizing a robust control for the linear part of
the system, neglecting the effects of the nonlinearities. Then, the convergence and
robustness are amplified through a high-gain parameter to deal with the nonlineari-
ties.

Therefore, let us first focus on a general linear dynamical system

ẋ(t) = Ax(t) + Bu(t), (8.8)

where the state x evolves in R
n and the control u is in R. The matrix A is in R

n×n

and B is a column vector in Rn .
In this preliminary case, we review a well-known result concerning periodic sam-

pling approaches. Indeed, an emulation approach is adopted for the stabilization
of the linear part: a feedback law is designed in continuous time and a triggering
condition is chosen to preserve stability under sampling.

It is well known that if there exists a feedback control law (continuous-in-time)
u(t) = Kx(t) that asymptotically stabilizes the system then there exists a strictly
positive inter-execution time δk = t k+1 − tk such that the discrete-in-time control
law u(t) = Kx(tk) for t in [tk, tk+1) renders the system asymptotically stable. This
result is rephrased in Lemma 8.1 below whose proof is postponed in Appendix and
for which we do not claim any originality.

Lemma 8.1 Suppose the pair (A, B) is stabilizable, that is there exists a matrix K
inRn rendering (A + BK )Hurwitz. Then there exists a positive real number δ∗ such
that for all δ in [0, δ∗) and the sequence (tk, uk)k∈N defined as

t0 = 0, tk+1 = tk + δ, uk = Kxk, ∀k ∈ N, (8.9)

makes the origin of the dynamical system (8.8) a globally and asymptotically stable
equilibrium.

This result which is based on robustness is valid for general matrices A and B.
The proof is based on the fact that if A + BK is Hurwitz, the origin of the discrete
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time linear system defined for all k in N as

xk+1 = Fc(δ)xk, (8.10)

where Fc(δ) = exp(Aδ) + ∫ δ

0 exp(A(δ − s))BKds is asymptotically stable for δ

sufficiently small.
However, when we consider the particular case in which A and B satisfy the

triangular form as in (8.1) (integrator chain), it is shown in the following theorem
that the inter-execution time can be selected arbitrarily large as long as the control
is modified.

Theorem 8.2 (Chain of integrator) Suppose the matrix A ∈ R
n×n is the upper shift

matrix, and B = (0, . . . , 0, 1) ∈ R
n. Then, for all gain matrix K in R

n such that
A + BK is Hurwitz, there exists a positive real number α∗ such that for all α in
[0, α∗) and for all δ > 0 the state feedback control law

u(t) = KL x(tk), ∀t ∈ [tk, t k+1),∀k ∈ N (8.11)

L = diag(Ln, Ln−1, . . . , L), (8.12)

L = α

δ
, (8.13)

where the sequence (tk)k∈N defined as t0 = 0, t k+1 = tk + δ renders the origin of the
dynamical system (8.8) a globally asymptotically stable equilibrium.

Before proving this theorem, we emphasize that in the particular case of the chain
of integrator the sampling period time δ can be selected arbitrarily large.

Proof of Theorem 8.2: In order to analyze the behavior of the closed-loop system,
let us mention the following algebraic properties of the matrix L :

L A = L AL , L BK = LBK . (8.14)

Let us introduce the following change of coordinates:

X = L

Ln+1
x =

[ x1
L

x2
L2

· · · xn
Ln

]′
. (8.15)

Employing (8.14), it yields that in the new coordinates the closed-loop dynamics are
for all t in [tk, tk+1):

Ẋ(t) = L(AX (t) + BK Xk). (8.16)

By integrating the previous equality and employing (8.13) it yields for all k in N:

Xk+1 =
[
exp(ALδ) +

∫ δ

0
exp(AL(δ − s))LBKds

]
Xk

= Fc(α)Xk .
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In other word, this is the same discrete dynamics than the one given in (8.10) for
system (8.8) in closed-loop with the state feedback K Xk . Consequently, according to
Lemma 8.1, there exists a positive real number α∗ such that X = 0 (and thus x = 0)
is a GAS equilibrium for the system (8.16) provided that Lδ is in [0, α∗). �

8.4 Main Result: The Nonlinear Case

We consider now the nonlinear system (8.1). Let K and α be chosen to stabilize the
linear part of the system and consider the control

uk = KLk xk, (8.17)

Lk = diag
(
Ln
k , L

n−1
k , . . . , Lk

)
. (8.18)

It remains to select the sequences Lk and δk to deal with the nonlinearities.
In the context of a linear growth condition (i.e., if the bound c(x) defined in

Assumption 8.1 is replaced by a constant), the authors of [25] have shown that a
(well-chosen) constant parameter Lk can guarantee the global stability, provided
that Lk is greater than a function of the bound. Here, we need to adapt the high-gain
parameter to follow a function of the time-varying bound.

Following the idea presented in [8] in the context of observer design, we consider
the following update law for the high-gain parameter:

L̇(t) = a2L(t)M(t)c(x(t)), ∀t ∈ [tk, tk + δk) (8.19)

Ṁ(t) = a3M(t)c(x(t)), ∀t ∈ [tk, tk + δk) (8.20)

Lk = L−
k (1 − a1α) + a1α, ∀k ∈ N (8.21)

Mk = 1, ∀k ∈ N (8.22)

with a1α < 1, initial conditions L(t0) � 1 and M(t0) = 1, and where a1, a2, a3 are
positive real numbers to be chosen. For a justification of this type of high-gain update
law, the interested reader may refer to [8] where is it shown that this update law is
a continuous discrete version of the high-gain parameter update law introduced in
[24].

Remark 8.1 Notice that the functions L(·) and M(·) are strictly increasing on any
time interval [tk, tk + δk) and that Lk � 1 for all k ∈ N.

Finally, the execution times tk are given by the following relations:

t0 = 0, tk+1 = tk + δk, (8.23)

δk = min{s ∈ R+ | sL((tk + s)−) = α}. (8.24)
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Equations (8.23)–(8.24) constitute the triggering mechanism of the Event-Triggered
strategy. This mechanism does not directly involve the state value x but the additional
dynamic variable L and so can be referred as a dynamic triggering mechanism [13].
The relationship between Lk and δk comes from Eq. (8.13). It highlights the trade-off
between high-gain value and inter-execution time (see [11, 25]).

We are now ready to state our main result which proof is given in Sect. 8.5.

Theorem 8.3 Let Assumption 8.1 holds. Then there exist positive real numbers a1,
a2, a3, α∗, and a gain K such that, for all α in [0, α∗], there exists a positive real
number �max such that the set,

{x = 0, L � �max} ⊂ R
n × R,

is GAS along the solution of system (8.1) with the Event-Triggered feedback (8.17)–
(8.24). More precisely, there exists a class K L function β such that the solution
(x(·), L(·)) initiated from (x(0), L(0)) with L(0) � 1 is defined for all t � 0 and
satisfies

|x(t)| + |L̃(t)| � β(|x(0)| + |L̃(0)|, t), (8.25)

where L̃(t) = max{L(t) − �max}. Moreover, there exists a positive real number δmin

such that δk > δmin for all k and so ensures the existence of a minimal inter-execution
time.

8.5 Proof of Theorem 8.3

Let us introduce the following scaled coordinates along a trajectory of system (8.1)
(compare with (8.15)). They will be used at different places in this paper.

X (t) = S (t)x(t), (8.26)

S (t) = diag

(
1

L(t)b
, · · · ,

1

L(t)n+b−1

)
= L (t)

L(t)n+b
, (8.27)

where 1 > b > 0 is such that

( j + b − 1)q j < 1 , ∀1 � j � n, (8.28)

with q j given in Assumption 8.1. Note that since by assumption we have q j < 1
j−1

for j > 1, it is always possible to find such b. Note that the matrix-valued function
L (·) satisfies:

L (t)A = L(t)AL (t), (8.29)

L (t) exp(At) = exp(L(t)At)L (t), (8.30)

L (t)BK = L(t)BK . (8.31)
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8.5.1 Selection of the Gain Matrix K

Let D be the diagonal matrix in R
n×n defined by D = diag(b, 1 + b, . . . , n + b −

1). Let P be a symmetric positive definite matrix and K a vector in R
n such that

(always possible, see [7]) (8.32), (8.33) and

P(A + BK ) + (A + BK )′P � −I, (8.32)

p1 I � P � p2 I, (8.33)

p3P � PD + DP � p4P, (8.34)

with p1, . . . , p4 positive real numbers.
With the matrix K selected, it remains to select the parameters a1, a2, a3, and α∗.

This is done in Propositions 8.1 and 8.2. Proposition 8.1 focuses on the existence of
(xk, Lk) for all k inN, whereas, based on a Lyapunov analysis, Proposition 8.2 shows
that a sequence of quadratic function of scaled coordinates is decreasing. Based on
these two propositions, the proof of Theorem 8.3 is given in Sect. 8.5.4 where it is
shown that the time function L is bounded.

8.5.2 Existence of the Sequence (tk, xk, Lk)k∈N

Thefirst step of the proof is to show that the sequence (xk, Lk)k∈N = (x(tk), L(tk))k∈N
is well defined. Note that it does not imply that x(t) is defined for all t since for the
time being it has not been shown that the sequence tk is unbounded. This will be
obtained in Sect. 8.5.4 when proving Theorem 8.3.

Proposition 8.1 (Existence of the sequence) Let a1, a3, and α be positive, and
a2 � 2n

p3
. Then, the sequence (tk, xk, Lk)k∈N is well defined.

Proof of Proposition 8.1: We proceed by contradiction. Assume that k ∈ N is such
that (tk, xk, Lk) is well defined but (tk+1, xk+1, Lk+1) is not. This means that there
exists a time t∗ > tk such that x(·) and L(·) are well defined for all t in [tk, t∗) and
such that

lim
t→t∗

(|x(t)| + |L(t)|) = +∞. (8.35)

Since L(·) is increasing and, in addition, for all t in [tk, t∗) we have (according to
(8.24)) L(t) � α

(t−tk )
, we get:

L∗ = lim
t→t∗

L(t) � α

(t∗ − tk)
< +∞. (8.36)
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Consequently, limt→t∗ |x(t)| = +∞, which together with (8.26) and (8.27) yields

lim
t→t∗

|X (t)| = +∞. (8.37)

On the other hand, denoting V (X (t)) = X (t)′PX (t), we have along the solution of
(8.1) and for all t in [tk, t∗)

˙︷ ︷
V (X (t)) = Ẋ(t)′PX (t) + X (t)′P Ẋ(t), (8.38)

where

Ẋ(t) = Ṡ (t)x(t) + S (t)ẋ(t)

= − L̇(t)

L(t)
DS (t)x(t) + S (t) [Ax(t) + BKLk xk + f (x(t))]

= − L̇(t)

L(t)
DX (t) + L(t)AX (t) + L(t)BK Xk + S (t) f (x(t)).

With the previous equality, (8.38) becomes for all t in [tk, t∗)

˙︷ ︷
V (X (t)) = − L̇(t)

L(t)
X (t)′(PD + DP)X (t) (8.39)

+L(t)[X (t)′(A′P + PA)X (t) + 2X (t)′PBK Xk ] + 2X (t)′PS (t) f (x(t)).

Since M � 1, we have with (8.19) and (8.34) for all t in [tk, t∗)

− L̇(t)

L(t)
X (t)′(PD + DP)X (t) � − p3

L̇(t)

L(t)
X (t)′PX (t)

= − p3a2M(t)c(x1(t))V (X (t))

� − p3a2c(x1(t))V (X (t)).

Moreover, using Young’s inequality, we get

2X (t)′PBK Xk � X (t)′PX (t) + Xk(K
′B ′P + PBK )Xk .

Hence, we have, for all t in [tk, t∗)

˙︷ ︷
V (X (t)) � −p3a2c(x1(t))V (X (t))

+L[X (t)′(A′P + PA)X (t) + X ′
k(K

′B′P + PBK )Xk ] + 2nc(x1(t))V (X (t))

� (−p3a2c(x1(t)) + L(t)λ1 + 2nc(x1(t))) V (X (t)) + L(t)λ2Vk ,
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Fig. 8.1 Time evolution of Lyapunov function V

where1 λ1 = max{0, λmax(A′P+PA)

λmin(P)
} and λ2 = max{0, λmax(K ′B ′P+PBK )

λmin(P)
}. Bearing in

mind that L(t) � L∗ for all t in [tk, t∗) and since a2 � 2n
p3
, the previous inequal-

ity becomes

˙︷ ︷
V (X (t)) � L∗λ1V (X (t)) + L∗λ2Vk .

This gives for all t in [tk, t∗)

V (t) � exp(λ1L
∗(t − tk))Vk +

∫ t−tk

0
exp

(
λ1L

∗(t − tk − s)
)
λ2Vkds (8.40)

�
[
exp(λ1α) + (exp(λ1α) − 1)

λ2

λ1

]
Vk . (8.41)

Hence, limt→t∗ |X (t)| < +∞ which contradicts (8.37) and thus, ends the proof. �

8.5.3 Lyapunov Analysis

This section is devoted to the Lyapunov analysis. It is shown that a good choice of
the parameters a1, a2, and a3 in the high-gain update law (8.19)–(8.22) yields the
decrease of the sequence (V (Xk))k∈N (see Fig. 8.1).

Remark 8.2 Drawing on the results obtained in [24] on lower triangular systems,
the dynamic scaling (8.27) includes a number b. Although the decrease of V (Xk)

can be obtained with b = 1, it will be required that bq < 1 in order to ensure the
boundedness of L(·) (see Eq. (8.65) in Sect. 8.5.4).

The aim of this subsection is to show the following intermediate result.

1If Z is a symmetric matrix, λmax(Z) and λmin(Z) denote its largest and its smallest eigenvalue,
respectively.
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Proposition 8.2 (Decrease of scaled coordinates) There exist positive real numbers
a1 (sufficiently small), a2 (sufficiently large), and α∗ such that for a3 = 2n and for
all α in [0, α∗] the following property is satisfied:

Vk+1 − Vk � −
(

α

p2

)2

Vk (8.42)

Proof of Proposition 8.2: Let a2 � 2n
p3
. Then, according to Proposition 8.1, the

sequence (tk, xk, Lk)k∈N is well defined. Let k be in N. The nonlinear system (8.1)
with control (8.17) gives the closed-loop dynamics

ẋ(t) = Ax(t) + BKLk xk + f (x(t)), ∀t ∈ [tk, tk + δk).

Integrating the preceding equality between tk and tk+1 yields

xk+1 = exp(Aδk)xk +
∫ δk

0
exp(A(δk − s))BKLk xkds

+
∫ δk

0
exp(A(δk − s)) f (x(tk + s))ds.

Employing the algebraic properties (8.29)–(8.31) and (8.26) we get,

Sk

(
exp(Aδk)xk +

∫ δk

0
exp(A(δk − s))BKLk xkds

)
= Fc(αk)Xk, (8.43)

where αk = δk Lk and Fc is defined in (8.10). Hence,

xk+1 = (Sk)
−1Fc(δk Lk) +

∫ δk

0
exp(A(δk − s)) f (x(tk + s))ds. (8.44)

Employing the algebraic properties (8.29)–(8.31)weget,when leftmultiplying (8.44)
byS −

k+1,

S −
k+1xk+1 = R + S −

k+1(Sk)
−1Fc(αk)Xk, (8.45)

where

R =
∫ δk

0
exp(L−

k+1A(δk − s))S −
k+1 f (x(tk + s))ds. (8.46)

Note that, since we have Xk+1 = ΨS −
k+1xk+1 with Ψ = Sk+1(S

−
k+1)

−1, (8.45)
yields

V (Xk+1) = (ΨS −
k+1xk+1)

′PΨS −
k+1xk+1 = V (Xk) + T1 + T2,
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with

T1 =X ′
k Fc(αk)

′S −1
k S −

k+1Ψ PΨS −
k+1S

−1
k Fc(αk)Xk − V (Xk),

T2 =2X ′
k Fc(αk)

′S −1
k S −

k+1Ψ PΨ R + R′Ψ PΨ R.

The next two lemmas provide upper bounds for T1 and T2. The term T1, which will
be shown to be negative, guarantees that the Lyapunov function decreases, whereas
the term T2 is handled by robustness. Let β be defined by

β = n
∫ δk

0
c(x1(tk + s))ds. (8.47)

Lemma 8.2 Let a1 � 2
p4 p2

and a3 = 2n. Then, there exists α∗ > 0 sufficiently small

such that for all α in [0, α∗)

T1 � −
(

α

p2

)2

V (Xk) − ‖S −
k+1xk‖2(e2β − 1)

p3 p1a2
2n

. (8.48)

Lemma 8.3 There exists a positive continuous real-valued function N such that the
following inequality holds:

T2 � ‖S −
k+1xk‖2(e2β − 1)N (α).

The proofs of Lemmas 8.2 and 8.3 are postponed in Appendix.
With the two bounds obtained for T1 and T2, we get

V (Xk+1) − V (Xk) � −
(

α

p2

)2
V (Xk) +

∥∥
∥S−

k+1xk
∥∥
∥
2
(e2β − 1)

[
− p3 p1a2

2n
+ N (α)

]
.

For a2 � 2n
N (α)

p3 p1
the result follows. �

8.5.4 Boundedness of L and Proof of Theorem 8.3

Although the construction of the updated law for the high-gain parameter (8.19)–
(8.22) follows the idea developed in [8], the study of the behavior of the high-gain
parameter is more involved. Indeed, in the context of observer design of [8], the
nonlinear function c was assumed to be essentially bounded while in the present
work, c is depending on x . This implies that the interconnection structure between
state and high-gain dynamics must be further investigated.
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Proof of Theorem 8.3 Assume a1, a2, a3, and α∗ meet the conditions of Propositions
8.1 and 8.2. Consider solutions (x(·), L(·), M(·)) for system (8.1) with the Event-
Triggered state feedback with initial condition x(0) inRn , L(0)) � 1 and M(0) = 1.
With Proposition 8.1, the sequence (tk, xk, Lk)k∈N is well defined.

The existence of a strictly positive dwell time is obtained from the following
proposition whose proof of this proposition is given in Appendix.

Proposition 8.3 There exist �max > 0, a class K function γ and a nondecreasing
function in both argument ρ such that

L̃k+1 �
(
1 − a1α

2

)
L̃k + γ (Vk), ∀k ∈ N, (8.49)

with L̃k = max{Lk − �max, 0}, γ (s) = 0 for all s in [0, 1], and for all t for which
L(t) exists

1 � L(t) � ρ(L̃0, V0). (8.50)

With this proposition in hand, note that it yields for all k in N, δk � α

ρ(L̃0,V0)
> 0.

Consequently, there is a dwell time and the solutions are complete. (i.e.,
∑

k δk =
+∞). Moreover, for all k in N, Lk

L−
k+1

� 1
ρ(L̃0,V0)

. Consequently, inequality (8.42)

becomes
Vk+1 �

(
1 − σ(L̃0, V0)

)
Vk,

where σ(L̃0, V0) = αN (α)

ρ(L0,V0)2(n−1+b) is a decreasing function of both arguments. This

gives Vk � (1 − σ(L̃0, V0))
kV0, for all k in N. With (8.49), it yields L̃k � β̃(L̃0 +

V0, k) where

β̃(s, k) =
(
1 − a1α

2

)k
⎛

⎝s +
k∑

j=1

γ
(
(1 − σ(s, s))k− j s

)

(
1 − a1α

2

)k− j

⎞

⎠ .

The function β̃ is of classK in s. Moreover, since γ (s) = 0 for s � 1, this implies
that there exists k∗(s) such that the mapping k �→ β̃(s, k) is decreasing for all k �
k∗(s). Moreover, we have limk→∞ β̃(s, k) = 0. On another hand, since δk � α, it
implies that k � t

α
for all t in [tk, tk+1).

L̃(t) � L̃k+1

1 − a1α
� β̃(L̃0 + V0, k + 1)

1 − a1α
. (8.51)

Finally, with (8.41), it yields

V (t) � ξ(α)(1 − σ(L̃0, V0))
t
α V0. (8.52)
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With the right-hand side of (8.50) and the definition of the Lyapunov function V , we
have

p1 + μq1

2ρ(L̃0, V0)2(n−1+b)
‖x(t)‖2 � V (t), (8.53)

Moreover, we also have

V0 � 2(p2 + μq2) ‖x(0)‖2 . (8.54)

From inequalities (8.51)–(8.54) and the properties of the function β̃, it yields readily
that there exists a class K L function β such that inequality (8.25) holds.

8.6 Illustrative Example

We apply our approach to the following uncertain third-order system proposed in
[16]: ⎧

⎪⎨

⎪⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = θx21 x3 + u,

(8.55)

where θ is a constant parameter in which only a magnitude bound θmax is known.
The stabilization of this problem is not trivial even in the case of a continuous-in-
time controller. The difficulties arise from the nonlinear term x21 x3 that makes the x3
dynamic not globally Lipschitz, and from the uncertainty on the θ value, preventing
the use of a feedback to cancel the nonlinearity.

However, system (8.55) belongs to the class of systems (8.1) and Assumption 8.1
is satisfiedwith c(x1) = θmaxx21 . Hence, by Theorem 8.3, a Event-Triggered feedback
controller (8.17)–(8.24) can be constructed. Simulations were conducted with a gain
matrix K and a coefficient α selected as

K = [−1 −3 −3
]′

, α = 0.4

to stabilize the linear part of the system (8.55). Parameters a1, a2, and a3 were then
selected through a trial and error procedure as follows:

a1 = 1, a2 = 1, a3 = 1.

Simulation results are given in Figs. 8.2 and 8.3. The evolution of the control and
state trajectories are displayed in Fig. 8.2. The corresponding evolution of the Lya-
punov function V and the high-gain L are shown in Fig. 8.2. We can see how the
inter-execution times δk adapts to the nonlinearity. Interestingly, it allows a signif-
icant increase of δk when the state is close to the origin: L(t) then goes to 1 and
consequently δk increases toward value α (α = 0.4 in this simulation).
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Fig. 8.2 Control signal and state trajectories of (8.55) with (x1, x2, x3) = (5, 5, 10) as initial
conditions

Fig. 8.3 Simulation results

8.7 Conclusion

In this paper, a novel Event-Triggered state feedback law has been given. This law
is based on a high-gain methodology. The event which triggers an update of the
control law is based on a dynamical system in which state is the high-gain parameter.
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This approach allows to design control laws ensuring convergence to the origin
for nonlinear systems with triangular structure and a specific upper bound on the
nonlinearities. Current research line focuses on the design of a Event-Triggered
output feedback (see [4]).

8.8 Proofs of Lemmas

Proof of Lemma 8.1

The proof of Lemma 8.1 is based on this Lemma.

Lemma 8.4 Let P be a positive definite matrix such that (8.32) and (8.33) hold then
there exists δm such that for all δ � δm, we have

PFc(δ) + Fc(δ)
′P − P � − δ

2p2
P. (8.56)

Proof Let v in Rn be such that ‖v‖ = 1. Consider the mapping

ν(δ) = v′ (PFc(δ) + Fc(δ)
′P − P

)
v.

Note that ν(0) = 0. Moreover, we have

dν

dδ
(0) = v′ (P(A + BK ) − (A + BK )′P

)
v � −‖v‖2 .

This yields the existence of a positive real number δm such that for all δ � δm , we
have

ν(δ) � − δ

2
‖v‖2 � − δ

2p2
v′Pv.

This property being true for every v in Sn−1, we have

Fc(δ)
′PFc(δ) �

(
1 − δ

2p2

)
P.

To prove Lemma 8.1, let δ � δm and P be a positive definite matrix such that
(8.32) and (8.33) hold and consider V (x) = x ′Px . We have for all t in [tk, tk+1)

V (x(t)) �
(
1 − δ

2p2

)k (
1 − t − tk

2p2

)
V (x0).

Hence, this yields that the origin is globally and asymptotically stable.
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Proof of Lemma 8.2

In order to prove Lemma 8.2, we need the following lemma which will be proved in
the next section.

Lemma 8.5 Let Ψ = Sk+1(S
−
k+1)

−1. The matrix P satisfies the following property
for all a1 and α such that a1α < 1:

Ψ PΨ �
(
1 + α

a1 p4
2

)
P. (8.57)

Applying Lemma 8.5 to T1 yields the following inequality:

T1 �
(
1 + α

a1 p4
2

)
V
(
S −

k+1S
−1
k Fc(αk)Xk

)− V (Xk).

On another hand, we have, for all v in Rn

v′S −
k+1PS

−
k+1v − vSk PSkv = v′

(∫ tk+1

tk

dS (s)

ds
PS (s) + S (s)P

dS (s)

ds
ds

)
v.

However, we have for all s in [tk, t k+1)

dS

ds
(s) = − L̇(s)

L(s)
DS (s).

Consequently, it yields

v′S −
k+1PS

−
k+1v − vSk PSkv = v′

(∫ tk+1

tk

− L̇(s)

L(s)
S (s)[DP + PD]S (s)ds

)
v.

Note that since L(0) > 1, it yields that L(t) > 1 on the time of existence of the
solution. Moreover, we have also L̇ � 0 and taking into account the bounds on P in
(8.33) and on DP + PD in (8.34), we get

v′S −
k+1PS

−
k+1v − vSk PSkv

� v′
(
p3

∫ tk+1

tk

− L̇(s)

L(s)
S (s)PS (s)ds

)
v

= v′
(
p3

∫ tk+1

tk

−a2M(s)c(s)S (s)PS (s)ds

)
v

= v′
(
p3

∫ tk+1

tk

−a2 exp

(
a3

∫ tk+1

tk

c(r)dr

)
c(s)S (s)PS (s)ds

)
v

� −p3 p1a2v
′
(∫ tk+1

tk

exp

(
a3

∫ tk+1

tk

c(r)dr

)
c(s)‖S (s)‖2ds

)
v
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Note that since Lk � L−
k+1, we finally get

v′S −
k+1PS

−
k+1v − vSk PSkv

� −p3 p1a2v
′
(∫ tk+1

tk

exp

(
a3

∫ tk+1

tk

c(r)dr

)
c(s)‖S −

k+1‖2ds
)
v

= − p3 p1a2
a3

v′
(
exp

(
a3

∫ tk+1

tk

c(r)dr

)
− 1

)
‖S −

k+1‖2v

� − p3 p1a2
a3

(
exp

(
a3

∫ tk+1

tk

c(r)dr

)
− 1

)
‖S −

k+1v‖2.

The previous inequality with v = S −1
k Fc(αk)Xk , a3 = 2n and the notation (8.47)

yield

T1 �
(
1 + α

a1 p4
2

)
V (Fc(αk)Xk) − V (Xk)

− p3 p1a2
2n

(
e2β − 1

) ‖S −
k+1S

−1
k Fc(αk)Xk‖2.

Note that αk � α. Consequently, with Lemma 8.4 and α sufficiently small, this yields

T1 �
[(

1 + α
a1 p4
2

)(
1 − α

p2

)
− 1

]
V (Xk)

− p3 p1a2
2n

(
e2β − 1

) ‖S −
k+1S

−1
k Fc(αk)Xk‖2.

With a1 � 2
p4 p2

this yields

T1 � −
(

α

p2

)2

V (Xk) − p3 p1a2
2n

(
e2β − 1

) ‖S −
k+1S

−1
k Fc(αk)Xk‖2.

However, we have

S −
k+1(Sk)

−1Fc(αk)Xk = [
exp(Aα) + Rc(α)G(Lk, L

−
k+1)

]
S −

k+1xk, (8.58)

where

Rc(α) =
∫ α

0
exp(A(α − s))dsBKc,

G(Lk, L
−
k+1) =

(
Lk

L−
k+1

)n+1

Sk(S
−
k+1)

−1.



170 J. Peralez et al.

Now, we have

[exp(Aα) + Rc(α)G(Lk, L
−
k+1)]′

[
exp(Aα) + Rc(α)G(Lk, L

−
k+1)

]

= exp((A + A′)α) + exp(A′α)Rc(α)G(Lk, L
−
k+1)

+ G(Lk, L
−
k+1)Rc(α)′ exp(Aα) + Rc(α)′Rc(α)G(Lk, L

−
k+1)

2.

Note that L−
k+1 � Lk . Hence,

∥
∥G(Lk, L

−
k+1)

∥
∥ � 1. (8.59)

Moreover, for all ε > 0, employing the continuity of the mapping |R(·)| and
| exp(A′·)| and the fact that |R(0)| = 0, we can find sufficiently small α, such that
we have

‖Rc(α)‖ � ε ,
∥∥exp(A′α)

∥∥ � 1 + ε , ‖exp(Aα)‖ � 1 + ε,

and
exp((A + A′)α) � (1 − ε)I.

Hence,

[
exp(Aα) + Rc(α)G(Lk , L

−
k+1)

]′ [
exp(Aα) + Rc(α)G(Lk , L

−
k+1)

]
� (1 − 3ε − 3ε2)I

So, select ε such that (1 − 3ε − 3ε2) = 1
2 (for instance) yields

T1 � −
(

α

p2

)2

V (Xk) − p3 p1a2
2n

(
e2β − 1

) ‖S −
k+1xk‖2 .

Proof of Lemma 8.5

In order to prove Lemma 8.5, we need the following lemma which will be proved in
the next section.

Lemma 8.6 The matrix P satisfies the following property for all a1 and α such that
a1α < 1

Ψ PΨ � ψ0(α)Pψ0(α),

where

ψ0(α) = diag

(
1

(1 − a1α)b
, . . . ,

1

(1 − a1α)n+b−1

)
.

Given v in Sn−1 = {v ∈ R
n | ‖v‖ = 1}, consider the function

ν(α, v) = v′ψ0(α)Pψ0(α)v.
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We have

ψ0(0) = I ,
∂ψ0

∂α
(0) = a1D,

then

ν(0, v) = v′Pv,
∂ν

∂α
(0, v) = a1v

′ [PD + DP] v.

So using the inequalities in (8.32)–(8.34)

∂ν

∂α
(0, v) � a1 p4v

′Pv.

Now, we can write

ν(α, v) = v′Pv + α
∂ν

∂α
(0, v) + ρ(α, v),

with limα→0
ρ(α,v)

α
= 0. This equality implies that

ν(α, v) � v′Pv [1 + αa1 p4] + ρ(α, v).

The vector v being in a compact set and the function r being continuous, there exists
α∗ such that for all α in [0, α∗) we have ρ(α, v) � α

a1 p4
2 v′Pv for all v. This gives

ν(α, v) � v′Pv
[
1 + α

a1 p4
2

]
,∀ α ∈ [0, α∗),∀ v ∈ Sn−1.

This property being true for every v, this ends the proof of Lemma 8.5.

Proof of Lemma 8.3

First, we seek for an upper bound of the norm of S −
k+1 f (x(tk + s)). We have

‖S −
k+1 f (x(tk + s))‖2 =

n∑

j=1

(
(L−

k+1)
−b− j+1 f j (x(tk + s))

)2

�
n∑

j=1

(L−
k+1)

2(−b− j+1)

(
j∑

i=1

c(tk + s)|xi (tk + s)|
)2

= c(tk + s)2
n∑

j=1

(
j∑

i=1

(L−
k+1)

−b− j+1|xi (tk + s)|
)2

.

Since L−
k+1 � 1, we have (L−

k+1)
−b− j+1 � (L−

k+1)
−b−i+1 whenever 1 � i � j . It

yields
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‖S −
k+1 f (x(tk + s))‖2 � c(tk + s)2

n∑

j=1

(
n∑

i=1

(L−
k+1)

−b−i+1|xi (tk + s)|
)2

� c(tk + s)2
n∑

j=1

n‖S −
k+1x(tk + s)‖2

= n2c(tk + s)2‖S −
k+1x(tk + s)‖2. (8.60)

Hence, from (8.46) and (8.60), we get

‖R‖ �
∫ δk

0
exp

(
L−
k+1‖A‖(δk − s)

)
nc(tk + s)‖S −

k+1x(tk + s)‖ds

= exp(‖A‖ α)

∫ δk

0
exp

(−L−
k+1‖A‖s) nc(tk + s)‖S −

k+1x(tk + s)‖ds. (8.61)

Moreover, we have for all s in [0; δk)

S −
k+1 ẋ(tk + s) = S −

k+1Ax(tk + s) + S −
k+1BKLk xk + S −

k+1 f (x(tk + s)).

Denoting by w(s) the expression S −
k+1x(tk + s), this gives

d

ds
‖w(s)‖ = 〈ẇ(s), w(s)〉

‖w(s)‖
� ‖ẇ(s)‖
�
∥
∥∥L−

k+1Aw(s)
∥
∥∥+

∥
∥∥S−

k+1BKLk xk
∥
∥∥+

∥
∥∥S−

k+1 f (x(tk + s)
∥
∥∥

� (L−
k+1 ‖A‖ + nc(tk + s)) ‖w(s)‖ +

∥
∥
∥BK (L−

k+1)
−b−n+1Lk xk

∥
∥
∥ , by (8.60)

� (L−
k+1 ‖A‖ + nc(tk + s)) ‖w(s)‖ + L−

k+1 ‖BK‖ ‖w(0)‖ .

Hence, integrating the previous inequality, we obtain

‖w(s)‖ �
∫ s

0
(L−

k+1‖A‖ + nc(tk + r))‖w(r)‖dr + ‖BK‖‖ ‖w(0)‖ L−
k+1s + ‖w(0)‖ .

Since (L−
k+1‖A‖ + nc(tk + s)) is a continuous nonnegative function and

(‖BK‖ L−
k+1s + 1) ‖w(0)‖ is nondecreasing, applying a variant of the Gronwall–

Bellman inequality (see [3, Theorem 1.3.1]), it becomes

‖w(s)‖ � (‖BK‖ L−
k+1s + 1) ‖w(0)‖ × exp

(∫ s

0
(L−

k+1‖A‖ + nc(tk + r)dr

)
,
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and we have

‖S −
k+1x(tk + s)‖

� (‖BK‖ L−
k+1s + 1) exp

(∫ s

0
L−
k+1‖A‖ + nc(tk + r)dr

)∥∥S −
k+1xk

∥∥

= (‖BK‖ L−
k+1s + 1) exp

(
L−
k+1‖A‖s) exp

(∫ s

0
nc(tk + r)dr

)∥∥S −
k+1xk

∥∥ .

(8.62)

Consequently, according to (8.61) and (8.62), we get

‖R‖ �

exp(‖A‖ α)

∫ δk

0
nc(tk + s)(‖BK‖ L−

k+1s + 1) exp

(∫ s

0
(nc(tk + r)dr

)∥
∥
∥S−

k+1xk
∥
∥
∥ ds

� exp(‖A‖ α)

∫ δk

0
nc(tk + s)(‖BK‖α + 1) exp

(∫ s

0
(nc(tk + r)dr

)∥
∥
∥S−

k+1xk
∥
∥
∥ ds

� exp(‖A‖ α)(α ‖BK‖ + 1)
∫ δk

0
nc(tk + s) exp

(∫ s

0
(nc(tk + r)dr

)
ds
∥
∥∥S−

k+1xk
∥
∥∥

= exp(‖A‖ α)(α ‖BK‖ + 1)

[

exp

(∫ δk

0
(nc(tk + r)dr

)

− 1

]∥∥
∥S−

k+1xk
∥∥
∥ .

On another hand, employing (8.58), we have

∥∥S −
k+1(Sk)

−1Fc(αk)Xk

∥∥ �
[‖exp(Aα)‖ + ‖Rc(α)‖ ∥∥G(Lk, L

−
k+1

∥∥)
] ∥∥S −

k+1xk
∥∥ .

Hence, employing Lemma 8.6 and Eq. (8.59), this gives the existence of two contin-
uous function N1 and N2 such that

T2 =R′Ψ PΨ R + 2X ′
k Fc(αk)

′S −1
k S −

k+1Ψ PΨ R,

�‖S −
k+1xk‖2N1(α)

[
exp

(
n
∫ δk

0
c(tk + r)dr

)
− 1

]2

+ ∥∥S −
k+1xk

∥∥2 N2(α)

[
exp

(
n
∫ δk

0
c(tk + r)dr

)
− 1

]
,

where

N1(α) = exp(2‖A‖α)(α ‖BK‖ + 1)2
‖P‖

(1 − a1α)2(n−b+1)
,
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N2(α) = 2 exp(‖A‖α)(α ‖BK‖ + 1)
(‖exp(Aα)‖ + ‖Rc(α)‖) ‖P‖

(1 − a1α)2(n−b+1)
.

Proof of Lemma 8.6

Consider the matrix function defined as

P(s) = diag(sb, . . . , sn+b−1)Pdiag(sb, . . . , sn+b−1).

Note that for all v in Rn

d

ds
v′P(s)v = 1

s
v′diag(sb, . . . , sn+b−1)(D′P + PD)diag(sb, . . . , sn+b−1)v > 0.

Hence, P is an increasing function. Furthermore, we have

Ψ PΨ =Sk+1(S
−
k+1)

−1PSk+1(S
−
k+1)

−1

=diag

⎛

⎝
(
L−
k+1

Lk+1

)b

, . . . ,

(
L−
k+1

Lk+1

)n+b−1
⎞

⎠ P

× diag

⎛

⎝
(
L−
k+1

Lk+1

)b

, . . . ,

(
L−
k+1

Lk+1

)n+b−1
⎞

⎠

=P

(
L−
k+1

L−
k+1(1 − a1α) + a1α

)

,

Hence, as
L−
k+1

L−
k+1(1 − a1α) + a1α

� 1

1 − a1α
,

we get the inequality of Lemma 8.6, i.e., Ψ PΨ � P
(

1
1−a1α

)
.

Proof of Proposition 8.3

Inequality (8.42) of Proposition 8.2 implies that (Vk)k∈N is a nonincreasing sequence.
Consequently, being nonnegative, (Vk)k∈N is bounded. One infers, using inequality
(8.41), that V (t) is bounded. Hence, by the left parts in inequality (8.33), we get
that, on the time Tx (= ∑

δk) of existence of the solution, X (t) is bounded. Then we
get that x j (t)

L(t)b+ j−1 for j = 1, . . . n are bounded. Summing up, there exists a class K
function γ such that

|x j (t)|
L(t)b+ j−1

� γ (Vk) � γ (V0), ∀( j, t, k) ∈ {1, . . . n} × [tk, Tx ) × N. (8.63)



8 Event-Triggered State-Feedback via Dynamic High-Gain … 175

With this result in hand, let us analyze the high-gain dynamics. According to equa-
tions (8.19) and (8.20), we have, for all k and all t in [tk, tk+1), L̇(t) = a2

a3
L(t)Ṁ(t),

which implies that

L(t) = exp

(
a2
a3

∫ t

tk

Ṁ(s)ds

)
Lk

= exp

(
a2
a3

M(t) − a2
a3

)
Lk, ∀t ∈ [tk, tk+1), k ∈ N. (8.64)

Consequently, from (8.21)

Lk+1 = exp

(
a2
a3

(M−
k+1 − 1)

)
Lk(1 − a1α) + a1α.

Moreover, we have

Ṁ(t) = a3M(t)c(x(t))

= a3M(t)

⎛

⎝c0 +
n∑

j=1

c j |x j |q j

⎞

⎠

� a3M(t)

⎛

⎝c0 +
n∑

j=1

c jγ (Vk)
q j L(t)(b+ j−1)q j

⎞

⎠ (by (8.63)).

Picking b = max j {(b + j − 1)q j }, it yields,

Ṁ(t) � a3

⎛

⎝c0 +
n∑

j=1

c jγ (Vk)
q j

⎞

⎠M(t)L(t)b (since L(t) � 1)

� c̃(γ (Vk))M(t) exp

(
a2
a3

b(M(t) − 1)

)
Lb
k , (by (8.64))

where c̃(γ (Vk)) = a3(c0 +∑n
j=1 c jγ (Vk)

q j ). Let ψ(t) be the solution to the scalar
dynamical system

ψ̇(t) = ψ(t) exp

(
a2
a3

b(ψ(t) − 1)

)
, ψ(0) = 1.

ψ(·) is defined on [0, Tψ) where Tψ is a positive real number possibly equal to
+∞. Note that we have (see, e.g., [17, Theorem 1.10.1]) that for all t such that
0 � c̃(γ (Vk))(t − tk)Lb

k < Tψ

M(t) � ψ
(
c̃(γ (Vk))(t − tk)L

b
k

)
.



176 J. Peralez et al.

Consequently, for all k such that c̃(γ (Vk))αL
b−1
k < Tψ

M−
k+1 � ψ

(
c̃(γ (Vk))δk L

b
k

)
� ψ

(
c̃(γ (Vk))αL

b−1
k

)
,

where the last inequality follows from the fact that L(·) is nondecreasing on [tk, tk+1).
It follows, employing (8.8) that, for all k such that c̃(γ (Vk))αLb

k < Tψ ,

Lk+1 � Fk(Lk), (8.65)

where
Fk(L) = exp

(
ψ
(
c̃(γ (Vk))αL

b−1
)− 1

)
L(1 − a1α) + a1α.

Note that, since b < 1, limL→+∞ Lb−1 = 0. Thus,

lim
L→+∞

Fk(L)

L
= 1 − a1α < 1.

Consequently, there exists an increasing function �1 such that for all L > �1(Vk)

c̃(γ (Vk))αL
b−1 < Tψ, Fk(L) <

(
1 − a1α

2

)
L . (8.66)

On the other hand, consider the following nonlinear system with input χ in Rn:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

L̇(t) = a2L(t)M(t)

⎛

⎝c0 +
n∑

j=1

c jχ j (t)
q j L(t)b

⎞

⎠

Ṁ(t) = a3M(t)

⎛

⎝c0 +
n∑

j=1

c jχ j (t)
q j L(t)b

⎞

⎠ ,

(8.67)

We assume that the norm of the input signal satisfies the bound

|χ j (·)| � γ (v), (8.68)

where v is a given positive real number. Notice that the couple (L , M)which satisfies
Eqs. (8.19) and (8.20) between [tk, tk+1) is also a solution of the previous nonlinear
system with input χ j (t) = X j (t)which satisfies (8.68) with v = Vk . Let φs,t denotes
the flow of (8.67) issued from s, i.e., φs,t (a, b) is the solution of (8.67) that takes
value (a, b) at t = s. Let C1, C2, be the two compact subsets of R2 defined by

C1 = {1 � L � �1(v), M = 1} , C2 = {1 � L � 2�1(v), 0 � M � 2}.

The set C1 is included in the interior of C2, and we have the following Lemma.
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Lemma 8.7 There exists a nonincreasing function d such that for all input function
χ which satisfies the bound (8.68) the following holds.

∀k ∈ N, ∀t � d(v), φtk ,tk+t (C1) ⊂ C2. (8.69)

The proof of Lemma 8.7 is given in Appendix. Let

�2(v) = max

{
2�1(v),

α

d(v)

}
.

Note that Lk satisfies the following properties:

Lk > �1(Vk) =⇒ Lk+1 �
(
1 − a1α

2

)
Lk (8.70)

Lk � �1(Vk) =⇒ Lk+1 � �2(Vk) (8.71)

Equation (8.70) follows immediately from (8.65) and (8.66). We now prove (8.71).
Notice that, because L−

k+1 � 1 and a1α < 1, (8.21) implies

Lk+1 � L−
k+1. (8.72)

Suppose first that δk � d(Vk). In that case, (Lk, Mk) ∈ C1. Then (8.72) and (8.69)
with v = Vk yield

Lk+1 � L−
k+1 = L

(
(tk + δk)

−) � 2�1(Vk) � �2(Vk).

Suppose now that δk > d(Vk). Since δk L
−
k+1 = α, it follows that

Lk+1 � α

δk
� α

d(Vk)
� �2(Vk).

Note that properties (8.70) and (8.71) in combination with the fact that the sequence
(Vk)k∈N is decreasing imply that

Lk � max{L0, �2(V0)}, k ∈ N.

Moreover, for all k in N and all t in [tk, tk+1)

L(t) � L−
k+1 (since L̇(t) � 0)

= Lk+1 − a1α

1 − a1α
by (8.21)

� max{L0, �2(V0)}
1 − a1α

,

and the result holds with ρ(L0, V0) = max{L̃0+�2(1),�2(V0)}
1−a1α

.
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Proof of Lemma 8.7

Let ΩL and ΩM be the increasing functions

ΩL(v) = 4a2�1(v)

⎛

⎝c0 +
n∑

j=1

c jγ (v)q j (2�1(v))
b

⎞

⎠ ,

ΩM(v) = 2a3

⎛

⎝c0 +
n∑

j=1

c jγ (v)q j (2�1(v))
b

⎞

⎠ .

Note that if (L(t), M(t)) is in C2 and χ(t) satisfies the bound (8.68), we have

L̇(t) � ΩL(v), Ṁ(t) � ΩM(v). (8.73)

We claim that the function d = min
{

1
ΩL

, 1
ΩM

}
satisfies the properties of Lemma 8.7.

Assume this is not the case. Hence, there exists M(tk), L(tk) in C1, χ which satisfies
the bound (8.68) and t∗ � d(v) such that (L(tk + t∗), M(tk + t∗)) /∈ C2. Let s∗ be
the time at which the solution leaves C2. More precisely, let s∗ = inf{s | tk � s �
tk + t∗, (L(s), M(s)) /∈ C2}. Note that (L(s∗), M(s∗)) is at the border of C2 and
tk < s∗ < tk + d(v). Moreover, with (8.73), it yields

M(s∗) � 1 + (s∗ − tk)ΩM(v) < 1 + d(v)ΩM(v) � 2.

Similarly, we have

L(s∗) < L(tk) + d(v)ΩL � L(tk) + 1 � 2�1(v),

where the last inequality is obtained since�1(v) � 1.This implies that (L(s∗), M(s∗))
is not at the border of C2 which contradicts the existence of t∗.
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Chapter 9
Insights on Event-Triggered Control
for Linear Systems Subject to
Norm-Bounded Uncertainty

S. Tarbouriech, A. Seuret, C. Prieur and L. Zaccarian

Abstract The chapter deals with the design of Event-Triggered rules to stabilize a
class of uncertain linear control systems where the uncertainty affecting the plant
is assumed to be norm-bounded. The event-triggering rule uses only local informa-
tion, namely the control updates are generated only by the output signals available
to the controller. The proposed approach combines a hybrid framework to describe
the closed-loop system with techniques based on looped functionals. The suggested
design conditions are formulated in terms of linear matrix inequalities (LMIs), ensur-
ing global robust asymptotic stability of the closed-loop system. A tunable parameter
allows guaranteeing an adjustable dwell-time property of the solutions. The effec-
tiveness of the approach is evaluated on an example taken from the literature.

9.1 Introduction

In recent years, sampled-data control designs for linear or nonlinear plants have
been studied in several works. In particular, robust stability analysis with respect to
aperiodic sampling has been widely studied (see, for example, [7, 17, 23] and refer-
ences therein), where variations on the sampling intervals are seen as a disturbance,
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an undesired perturbation of the periodic case. The objective is then to provide
an analysis of such systems using the discrete-time approach [8, 17], the input
delay approach [12, 31], or the impulsive systems approach [22]. Furthermore,
an alternative and interesting vision of sampled-data systems has been proposed
in [3, 5], suggesting to adapt the sampling sequence to certain events related to
the state evolution (see, for example, [4, 15, 18, 20, 34, 38]). This is called “Event-
Triggered sampling”, which naturally mixes continuous and discrete-time dynamics.
Thus, the Event-Triggered algorithm design can be rewritten as the stability study
of a hybrid dynamical system, which has been carried out in different contexts in
[13, 14, 27, 29].

In the context of Event-Triggered control, two objectives can be pursued: (1) the
controller is a priori designed and only the Event-Triggered rules have to be designed,
or (2) the joint design of the control law and the event-triggering conditions has to be
performed. The first case is called the emulation approach, whereas the second one
corresponds to the co-design problem. A large part of the existing works is dedicated
to the design of efficient event-triggering rules, that is the design done by emulation:
see, for example, [2, 16, 26, 35, 37] and references therein. Moreover, most of the
results on Event-Triggered control consider that the full state is available, which can
be unrealistic from a practical point of view. Hence, it is interesting to address the
design of Event-Triggered controllers by using only measured signals. Some works
have addressed this challenge as, for example, in [36] where the dynamic controller
is an observer-based one, [1], where the co-design of the output feedback law and
the event-triggering conditions is addressed by using the hybrid framework.

The results proposed in the current chapter take place in the context of the emu-
lation approach, when the predesigned controller is issued from a hybrid dynamic
output feedback controller, with the aim at using only the available signals. The
controller under consideration is a continuous controller possibly including some
reset loop as in [28] (see also [10, 11, 32] for more details on reset control sys-
tems). Actually, the approach proposed combines a hybrid framework to describe
the sampled-data system with Lyapunov-based techniques. Constructive conditions,
in the sense that linear matrix inequality (LMI) conditions are associated to a con-
vex optimization scheme, are proposed to design the Event-Triggered rule ensuring
asymptotic stability of the closed-loop system. Differently from [1], a condition
involving the allowable maximal sampling period T can be deduced by solving a set
of LMIs proposed using a similar approach to the one in [21]. Furthermore, comple-
mentary to most of the results in the literature, uncertainty affecting the continuous
plant is considered in our approach. The results of this chapter are complementary
to those in [33] where polytopic uncertainties (rather than norm bounded ones) are
considered with similar design approaches.

The chapter is organized as follows. In Sect. 9.2, the system under consideration
is defined, together with the sampled-data architecture. The problem that we intend
to solve is also formally stated in Sect. 9.2, describing the associated hybrid formu-
lation. Section9.3 is dedicated to presenting the main conditions, allowing to design
the event-triggering rules in both the nominal and the uncertain cases. The condition
to design the associated dwell-time is also derived. We point out that the contribution
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is twofold. On the first hand, we provide a new Event-Triggered algorithm yielding
robust stability controllers for the closed-loop system. Secondly, the stability condi-
tions depend on a dwell-time T , which appears as an explicit tuning parameter for
the selection of the control law. Section9.4 illustrates the results and compares them
with some existing approach. Finally, in Sect. 9.5, some concluding remarks end the
chapter.

Notation. The sets N, R+, Rn , Rn×n and S
n denote respectively the sets of posi-

tive integers, positive scalars, n-dimensional vectors, n × n matrices and symmetric
matrices in R

n×n . If a matrix P in S
n+, it means that P is symmetric positive def-

inite. The superscript “�” stands for matrix transposition, and the notation He(P)

stands for P + P�. The Euclidean norm is denoted | · |. Given a compact set A ,
the notation |x |A := min{|x − y|, y ∈ A } indicates the distance of the vector x
from the setA . The symbols I and 0 represent the identity and the zero matrices of
appropriate dimensions.

9.2 Problem Formulation

The chapter dealswith linear systems fed by an output feedback sampled-data control
described by the following hybrid dynamical system

⎧
⎨

⎩

ẋ = Ax + Bu,

u̇ = 0,
σ̇ ∈ gT (σ ),

(x, u, σ ) ∈ C ,

⎧
⎨

⎩

x+ = x,
u+ = KCx,
σ+ = 0,

(x, u, σ ) ∈ D,

(9.1)

where x ∈ R
n represents the state of the system and u ∈ R

m represents the zero order
holder of the system input since the last sampling time. The output y of the system
is given by

y = Cx ∈ R
p. (9.2)

System (9.1)–(9.2) can appear when connecting, for instance, a linear continuous-
time plant with a dynamic output feedback controller.

Remark 9.1 In [28], a reset controller is considered, which corresponds tomodifying
system (9.1)–(9.2) by considering x+ = J x , where J is a matrix of appropriate
dimensions.

To study stability properties for (9.1), the hybrid formalism of [13, 27, 30] can be
used. Matrices A, B,C characterize the system dynamics and matrix K corresponds
to the controller gain. While C is assumed to be constant and known, let us assume



184 S. Tarbouriech et al.

that matrices A and B are constant but uncertain (see, for example, [24, 39]) and
expressed by [

A B
] = [ A0 B0

]+ DF
[
E1 E2

]
, (9.3)

with A0, B0, D, E1 and E2 constant and known matrices. These matrices define the
structure of the uncertainty. A0 and B0 define the nominal case and the uncertainty
parameter is F , which is supposed to be constant and belongs to the set:

F = {F ∈ R
f × f ; F�F � I

}
. (9.4)

Timer σ ∈ [0, 2T ] flows by keeping track of the elapsed time since the last sample
(where it was reset to zero) according to the following set-valued dynamics:

gT (σ ) :=
{
1 σ � 2T
[0, 1] σ = 2T,

(9.5)

whose rationale is that whenever σ < 2T , its value exactly represents the elapsed
time since the last sample, moreover σ ∈ [T, 2T ] implies that at least T seconds
have elapsed since the last sample.

Remark 9.2 The use of a set-valued map for the right hand side gT of the flow
equation for σ enables us to confine the timer σ to a compact set [0, 2T ]. Note also
that with the selection in (9.5), the regularity conditions in [14, As. 6.5] and the
desirable robustness properties of stability of compact attractors established in [14,
Chap. 7] are satisfied.

In (9.1), the so-called flow and jump sets C and D must be suitably selected
to induce a desirable behavior of the sampled-data system, and are the available
degrees of freedom in the design of the Event-Triggered algorithm addressed here.
In particular, the problem that we intend to solve in this chapter can be summarized
as follows.

Problem 9.1 Given an uncertain linear plant and a hybrid controller defined by
(9.1)–(9.5), design an event-triggering rule, with a prescribed dwell-time T that
makes the closed loop globally asymptotically stable to a compact set wherein x = 0
and u = 0.

Problem 9.1 corresponds to an emulation problem (see, for example [16, 26, 35,
37] and the references therein) since we assume that the controller gain K is given.

9.3 Event-Triggered Design

In order to address Problem 9.1, we focus on hybrid dynamics (9.1) for suitably
selecting the flow and jump sets C and D , whose role is precisely to rule when a
sampling should happen, based on the available signals to the controller, namely
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output y = Cx , the last sampled input u and timer σ . Then, we select the following
sets C and D :

C := (F × [0, 2T ]) ∪ (Rn+m × [0, T ]) (9.6a)

D := (J × [0, 2T ]) ∩ (Rn+m × [T, 2T ]) , (9.6b)

where sets F and J are selected as

F :=
{

(x, u);
[

y
u − Ky

]�
M

[
y

u − Ky

]

� 0

}

, (9.6c)

J :=
{

(x, u);
[

y
u − Ky

]�
M

[
y

u − Ky

]

� 0

}

, (9.6d)

where matrix M =
[

M1 M2

M�
2 M3

]
∈ R

(p+m)×(p+m) has to be designed, and y is defined in

(9.2). Solution (9.6) to the considered Event-Triggered problem is parametrized by
M and T .

Note that the jump set selection in (9.6b) ensures that all solutions satisfy a dwell-
time constraint corresponding to T . Moreover the definition of the flow and jump sets
provided in (9.6) meets the one provided in the recent paper [25]. The novelty of this
definition, which is also used in [33], relies on the consideration of a general matrix
M . For example, selecting M2 = 0 leads to the definition of the flow and jump sets
usually employed in the literature, issued from an Input-to-State (or Input-to-Output)
analysis. See [25] for more details.

9.3.1 Nominal Case

In this section, the design is addressed for the nominal case, namely A = A0 and
B = B0 (which corresponds to F = 0 in (9.3)).

Theorem 9.1 Assume that, for a given T > 0, there exist matrices P ∈ S
n+, M =

[
M1 M2

M�
2 M3

]
∈ S

p+m satisfying

ΨC (A0, B0) :=
[
He(P(A0 + B0KC))−C�M1C �

B�
0 P − M�

2 C −M3

]

< 0,

ΨD (A0, B0, T ) :=
[

I

KC

]�
Λ(A0, B0, T )�PΛ(A0, B0, T )

[
I

KC

]

− P < 0,

(9.7)
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with

Λ(A0, B0, T ) := [I 0
]
e

[
A0 B0

0 0

]

T ∈ R
n×(n+m). (9.8)

Then the compact attractor

A := {(x, u, σ ) : x = 0, u = 0, σ ∈ [0, 2T ]} (9.9)

is globally asymptotically stable for the nominal closed-loop dynamics (9.1), (9.6)
with

[
A B

] = [ A0 B0
]
.

Proof To prove this result one uses a non-smooth Lyapunov function and the hybrid
invariance principle given in [33]. In particular, the following function is considered,
with the standard notation |z|2P := z�Pz:

V (x, u, σ ) :=e−ρ min{σ,T }
∣
∣
∣
∣
∣
Λ(T−min{σ, T })

[
x

u

]∣
∣
∣
∣
∣

2

P︸ ︷︷ ︸
=:V0(x,u,σ )

+ η|u|2
︸︷︷︸
=:Vu(u)

, (9.10)

with Λ given in (9.8), and where ρ and η are sufficiently small positive scalars.
Let us first denote ξ := (x, u, σ ). We can also notice that in (9.6a) the flow set is

the union of two sets, and then one can split the analysis in three cases:

• Case 1: σ ∈ [0, T );
• Case 2: σ = T ;
• Case 3: (x, u) ∈ F and σ ∈ [T, 2T ].
Then along flowing solutions one gets:

• In Case 1, after some simplifications (as done in [33]) we get:

V̇ (ξ)=−ρe−ρ min{σ,T }
∣
∣
∣
∣
∣
Λ(T − min{σ, T })

[
x

u

]∣
∣
∣
∣
∣

2

P

= −ρV0(ξ) � 0,

• In Case 3 (which also addresses Case 2, because no flowing is possible for a
solution from σ = T , unless (x, u) ∈ F ), from inequality ΨC (A0, B0) < 0 in
(9.7), there exists a sufficiently small ε > 0 such that ΨC (A0, B0) < −ε I , and
then one obtains the following strict decrease property:

V̇ (ξ) � −ε

∣
∣
∣
∣
∣

[
x

u − Ky

]∣
∣
∣
∣
∣

2

, if (x, u) ∈ F and σ � T . (9.11)

Therefore, the Lyapunov function V is strictly decreasing along flows.

Along jumps, it is easy to verify that, for all ξ ∈ D , after some calculations (see
again [33]), the condition ΨD (A0, B0, T ) < 0 ensures that
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V+(ξ) = e−ρT V0(ξ) � e−ρT V (ξ), (9.12)

which proves the strict decrease of the Lyapunov function, across any jump from a
point outside A .

One can finally show that no “bad” complete solution exists, which keeps V
constant and nonzero. If any such “bad” complete solution existed, then it would
start outside A (where V (ξ) �= 0) and it could not jump, because otherwise, from
(9.12), a decrease of V would be experienced across the jump. However, any solution
flowing forever outside A would eventually reach a point where σ > T , and (9.11)
would imply again some decrease of V . The proof is then completed by applying the
invariance principle in [33]. �

Remark 9.3 Let us provide some comments on the conditions of Theorem 9.1.

• The satisfaction of ΨC (A0, B0) < 0 imposes that the Lyapunov function V in
(9.10) is decreasing while flowing with σ � T (which requires (x, u) ∈ F ).

• The satisfactionofΨD (A0, B0, T ) < 0 canbe interpreted as an asymptotic stability
criterion for system (9.1) when the control updates are performed periodicallywith
a period T , which motivates the union and intersection in (9.6a) and (9.6b).

Remark 9.4 The interest of the proposed approach with respect to the literature,
where the dwell time is computed a posteriori, resides in the fact that Theorem 9.1
includes a guaranteed dwell-time T as a tuning parameter. In particular, if one can
find a solution to the LMI conditions (9.7) for a given parameter T , then this same T
can be employed in the definition of the flow and jumps sets (9.6) and is a guaranteed
dwell time for all solutions of (9.1), (9.6). This method can be compared to [35] or
[1] where a similar triggering rule includes a dwell time constraint, but in the current
case, the dwell time T is a parameter for the design of event triggering algorithm.

Remark 9.5 Theorem 9.1 can be stated when an additional reset control component,
as mentioned in Remark 9.1, is included in the jump dynamics of system (9.1)–(9.6).
Preliminary results in this direction are provided in [28].

9.3.2 Uncertain Case

Let us address now the case where matrices A and B are uncertain as defined in
(9.3)–(9.4). In this case, it is difficult to verify the inequality ΨD (A, B, T ) < 0,
which will depend nonlinearly on the uncertain parts. Nevertheless, it is possible
to adapt the result developed in [31, Theorem 1], which are based on the recent
developments arising from stability analysis of periodic sampled-data systems (see
also [19]). Then, the following lemma can be proven by using the looped-functional
approach developed in [6, 31].
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Lemma 9.1 For a given positive scalar T and matrices A, B, K ,C as defined in
(9.3)–(9.4), if there exist P, Z ∈ S

n+, Q, X ∈ S
n, R ∈ R

n×n, Y ∈ R
2n×n such that

inequalities
ΨD 1(A, B, T ) := F0(A, B, T ) + T F1(A, B) < 0,

ΨD 2(A, B, T ) :=
[
F0(A, B, T ) TY

� −T Z

]

< 0,
(9.13)

hold for all pairs (A, B) satisfying (9.3)–(9.4), where

F0(A, B, T ) := He(e�
S Pe1−e�

12Re2 −Ye12) − e�
12Qe12 − T e�

2 Xe2,

F1(A, B) := He(e�
S Qe12+e�

S Re2) + e�
S ZeS + 2e�

2 Xe2,

and eS := [A BKC
]
, e1 := [In 0

]
, e2 := [0 In

]
and e12 := [In −In

]
, then inequal-

ity ΨD (A, B, T ) < 0 in (9.7) holds for any pair (A, B) satisfying (9.3)–(9.4).

By adapting Lemma 9.1 to the case of norm-bounded uncertainty, we can derive
the following theorem solving Problem 9.1. It is based on the non-smooth hybrid
Lyapunov function introduced in (9.10), which is weak in the sense that it does
not provide a strict decrease both during flow and across jumps (samplings) of the
proposed Event-Triggered sampled-data system. The proof then relies on the non-
smooth invariance principle presented in [33].

Theorem 9.2 Givenpositive scalar T > 0andmatrices A0, B0, D, E1, E2 as defined

in (9.3)–(9.4). Assume that there exist matrices P ∈ S
n+, M =

[
M1 M2

M�
2 M3

]
∈ S

p+m, and

matrices Z ∈ S
n+, Q,U ∈ S

n, R ∈ R
n×n and Y ∈ R

2n×n and positive scalars εi ,
i = 0, 1, 2, 3 satisfying conditions

ΘC :=
[
ΨC (A0, B0) + ε0e�

C eC �
[
D�P 0

] −ε0 I

]

< 0, (9.14)

ΘD 1 :=
[
F0(A0, B0, T ) + T F1(A0, B0) + (ε1 + T ε3)e�

D eD �

D�(Pe1 + T (Qe12 + Re2 + Ze0)) −ε1 I

]

< 0,(9.15)

ΘD 2 :=
⎡

⎢
⎣

F0(A0, B0, T ) + ε2e�
D eD � �

TY� −T Z �

D�Pe1 0 −ε2 I

⎤

⎥
⎦ < 0, (9.16)

ΘD 3 := ε3 I − D�ZD > 0, (9.17)

with

F0(A0, B0, T ) := He(e�
0 Pe1−e�

12Re2−Ye12) − e�
12Qe12 − T e�

2 Xe2
F1(A0, B0) := He(e�

0 Qe12+e�
0 Re2) + e�

0 Ze0 + 2e�
2 Xe2
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and e0 := [A0 B0KC
]
, eC = [E1 + E2KC E2

]
, eD = [E1 E2KC

]
, e1 := [In 0

]
,

e2 := [0 In
]
and e12 := [In −In

]
. Then the compact attractorA in (9.9) is globally

asymptotically stable for the uncertain closed-loop dynamics (9.1)–(9.6) that is for
each pair (A, B) satisfying (9.3)–(9.4).

Proof The proof of the theorem follows by showing that (9.14)–(9.17) imply the
two conditions in (9.7) (with [A0 B0] replaced by [A B]), and then the proof can be
completed by following the same exact steps as those in the proof of Theorem 9.1.

First condition in (9.7). Condition ΨC (A0, B0) < 0 of (9.7) has to be replaced by
ΨC (A, B) < 0 where (A, B) have the expression in (9.3). After some calculations,
this substitution gives:

ΨC (A, B) = ΨC (A0, B0) + He

⎛

⎜
⎝

[
PD

0

]

F
[
E1 + E2KC E2

]

︸ ︷︷ ︸
=eC

⎞

⎟
⎠ < 0 (9.18)

Using the fact that F�F � I , this expression can be upper-bounded as follows:

ΨC (A, B) � ΨC (A0, B0) + ε0e
�
C eC + ε−1

0

[
PD

0

][
PD

0

]�
(9.19)

for any positive scalar ε0. By using a Schur complement on the rightmost term of
(9.19), one obtains the matrix ΘC in (9.14). Then its follows that inequality (9.14)
implies that ΨC (A, B) < 0.

Second condition in (9.7). To prove this second condition, we use Lemma 9.1 and
show that (9.15)–(9.17) imply (9.13). In particular, the expressions of F0(A, B, T )

and F1(A, B) in Lemma 9.1 are developed by substituting eS = e0 + DFeD , as
defined in Theorem 9.2. Indeed, we note that

ΨD1(A, B, T ) = ΨD1(A0, B0, T ) + He
(
e�D F�D�(Pe1 + T Qe12 + T Re2 + T Ze0)

)

+T e�D F�D�ZDFeD ,

ΨD2(A, B, T ) = ΨD2(A0, B0, T ) +
⎡

⎣
He
(
e�D F�D�Pe1

)
0

0 0

⎤

⎦ ,

where we recall that eD = [ E1 E2KC
]
. First we note that, since ΘD 3 > 0 and

F�F � I , the last term of ΨD 1(A, B, T ) can be upper-bounded by ε3T e�
D eD . Fol-

lowing the same procedure as forΘC in (9.19), and using F�F � I , for any positive
selection of ε1, ε2 we have,
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ΨD1(A, B, T ) � ΨD1(A0, B0, T ) + (ε1 + T ε3)e
�
D eD

+ε−1
1 (Pe1 + T (Qe12 + Re2 + Ze0))

�DD�(Pe1 + T (Qe12 + Re2 + Ze0))

ΨD2(A, B, T ) � ΨD2(A0, B0, T ) +
[
ε2e

�
D eD + ε−1

2 e�1 PDD�Pe1 0

0 0

]

.

Finally the expression of ΘD 1 and ΘD 2 are retrieved by application of the Schur
complement. This shows that (9.15)–(9.17) imply the two conditions in (9.13), and
also the second inequality in (9.7) is proven to hold, which completes the proof. �

9.3.3 Optimization and Computational Issues

Note first that conditions of Theorems 9.1 and 9.2 are linear in all the decision
variables provided that K and T are given, as classically in an emulation problem.
It is important to note that if matrix A0 + B0KC is Hurwitz, there always exists a
small enough positive scalar T such that the conditions of Theorems 9.1 or 9.2 are
feasible. Indeed, the Event-Triggered rule is defined through two design parameters,
which are matrix M and dwell-time T . The implicit objective is to reduce the number
of control updates.

Let us observe that in the LMI ΘC < 0 in (9.14) (see also (9.7)), the blocks
He(P(A0 + B0KC)) − C�M1C and −M3 are required to be negative definite. A
natural optimization procedure could then consist in minimizing the effect of the
off-diagonal term PB0 − C�M2, which could be performed by minimizing the size
of the positive definite matrix M3 appearing on the diagonal. Obtaining small values
of the diagonal term−M3 will indeed reduce also the off-diagonal term in (9.7). This
optimization problem can be formulated in terms of an LMI optimization as follows

min
P,M,Z ,Q,U,R,Y,ε0,ε1,ε2,ε3

Trace(M3),

subject to:

ΘC < 0,ΘD 1 < 0,ΘD 2 < 0,ΘD 3 > 0

P > I, M1 < 0,

(9.20)

In the optimization problem (9.20), the additional constraint P > I is imposed
for well conditioning the LMI constraints. In addition, constraint M1 < 0 has been
included in order to obtain negative definiteness of He(P(A0 + B0KC)) in (9.7),
which avoids exponentially unstable continuous dynamics, thereby giving more
graceful inter-sample transients. Furthermore, the fact of minimizing the trace of
M3 aims at increasing the negativity of matrix M3, which leads to larger flow sets
(see equation (9.6)). Since the jump set is the closed complement of the flow set, it
is expected that solutions will flow longer and jump less in light of larger flow sets.
Moreover, the dwell-time T being also a design parameter, whose role is connected
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to the expected average sampling rate of the Event-Triggered implementation, one
can seek for maximizing its value through problem (9.20) by iteratively increasing
T and testing the conditions.

9.4 Illustrative Example

In this example,we consider that system (9.1) is issued from the connection of a linear
plant with a dynamical output feedback controller, inspired from [1, 9]. Furthermore,
this example can be viewed as a complementary example to that one tackled in [33],
where polytopic uncertainties were considered. Hence, we consider the following
plant:

{
ẋ p = Apxp + Bpu p = (Ap0 + DpFEp1)xp + (Bp0 + DpFEp2)u p,

yp = Cpxp,
(9.21)

for which the nominal data is given by

Ap0 =
[

0 1

−2 3

]

, Bp0 =
[
0

1

]

, Cp = [−1 4
]

(9.22)

and the matrices describing the norm-bounded uncertainty are defined by:

Dp =
[
0

1

]

, Ep1 = [0 ω0
]
, Ep2 = 0.1ω0 (9.23)

with a positive constant ω0. The following controller obtained using an optimization
process provided in [1] is also considered:

{
ẋc = Acxc + Bcyp,

u p = Ccxc + Dcyp,
(9.24)

With plant (9.21) interconnected to the controller (9.24), denote the overall state

by x :=
[
xp
xc

]
. The complete closed-loop system under consideration in this chapter

can be reformulated as system (9.1) with

[
A B
K C

]

=

⎡

⎢
⎢
⎣

Ap 0 Bp 0
0 Ac 0 Bc

Dc Cc Cp 0
I 0 0 I

⎤

⎥
⎥
⎦ (9.25)

Similarly, from (9.3) one can define the nominal and uncertain parts as follows:
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A0 =
[
Ap0 0

0 Ac

]

; B0 =
[
Bp0 0

0 Bc

]

D =
[
Dp

0

]

; E1 = [Ep1 0
] ; E2 = [Ep2 0

]

(9.26)

9.4.1 Nominal Case

The nominal case corresponds to setting ω0 = 0. Let us note that in [1], some
improvements with respect to the literature (for instance with respect to [9]) have
been reported in the nominal case. More precisely, the authors of [1] obtained a
dwell-time T = 0.0114s, whereas by using the conditions of Theorem 9.1, one can
verify that there exist values of the design parameter T up to 0.113s providing fea-
sible designs. This corresponds to a parameter T ten times larger than the solution
provided in [1], which well illustrates the potential of the proposed method. More-
over, it is worth pointing out that the numerical results obtained from the application
of Theorem 9.1 (which is only applicable to the nominal case) are very similar to the
maximal guaranteed dwell-time obtained by Theorem 9.2 specialized to the nominal
case by setting E1 = 0 and E2 = 0. This means that the conservatism introduced by
Theorem 9.2, to be able to provide an Event-Triggered algorithm for the system, is
quite limited compared to Theorem 9.1.

Figure9.1 shows several simulation results of the nominal system obtained for
four dwell-time parameters T selected in Theorem 9.1. The caption of the figure also
shows the number of control updates (Nu) that have been required by each Event-
Triggered simulation. While increasing T leads apparently to a notable reduction
of the number of control updates, it can also be seen in Fig. 9.1d that the selection
of a too large guaranteed dwell-time has several drawbacks. First of all, a similar
number of control updates Nu are required for simulations (c) and (d). The sampling
algorithm in (c) is still able to often trigger the sampling well after T = 0.1 times
after the previous update, and the inter-sampling time may reach up to 0.8s. The
sampling algorithm employed in (d) results in a periodic implementation of the
control law. As another consequence, the simulation provided in (d) shows some
undesirable oscillatory behavior that makes this emulation rule not effective with
respect to some performance index.

Apart from that, the three simulations depicted in Fig. 9.1a, b, c are quite similar
if one only regards the x state response. The main difference can be seen in the
triggering rule and in the number of control updates Nu . Indeed, a trend can be seen in
these simulations, which consists in noting that increasing the dwell-time parameter
T allows to notably reduce the number of control updates, while obtaining similar
responses in the x variable. Of course, regarding the previous remarks on Fig. 9.1d,
increasing too much T up to the maximal feasibility value of the LMI conditions of
Theorem 9.2 (or Theorem 9.1), is not a good option to obtain effective emulation
algorithms.
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(a) T = 0.01s, Nu = 537.
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(b) T = 0.05s, Nu = 256.
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(c) T = 0.10s, Nu = 174.
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(d) T = 0.11s, Nu = 177.

Fig. 9.1 Figure representing the state of the plant xp , the inter-sampling times (with the dwell time
T ) and the control input u issued from Theorem 9.2 for several values or T for the same initial
condition xp(0) = [10 − 5]�, xc(0) = [0 0]�

9.4.2 Uncertain Case

In order to illustrate the uncertain case, corresponding to the situation where ω0 is
not equal to 0 anymore, we have conducted the following test. For five values of
ω0 taken in the interval [0, 0.1], the average number of control updates Nu obtained
over 60 different initial conditions is computed for several values of T in [0, 0.1].
Figure9.2 shows these simulations. One can first note that the maximal value of ω0,
for which a solution to the conditions of Theorem 9.2 can be found, depends on the
dwell-time parameter T .More precisely, increasing T reduces themaximal allowable
uncertainty range ω0. For T = 0.01, solutions to the conditions of Theorem 9.2 can
be found up toω0 = 0.1 while for T = 0.1, solutions can be found up toω0 = 0.025.

In addition, the decreasing trends shown in the figure reveal that the expected
control updates, suitably averaged over the 60 initial conditions, are a decreasing
function of the dwell-time parameter T .



194 S. Tarbouriech et al.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
T

100

200

300

400

500

600

700

800

N
u

w0=0
w0=0.025
w0=0.05
w0=0.075
w0=0.1

Fig. 9.2 Evolution of the average number of control updates Nu with respect to the dwell time
parameter T for several values of ω0

9.5 Conclusion

In this chapter, we have presented a method to provide efficient output-feedback
Event-Triggered controls for linear systems subject to norm-bounded uncertainties.
Based on an existing control law, which ensures, a priori, the stability of the associ-
ated continuous-time closed-loop system, the chapter presents several constructive
theorems providing an efficient Event-Triggered sampling algorithm dedicated to
the nominal and the uncertain cases. The conditions are expressed in terms of LMIs
where a guaranteed dwell-time appears as a tunable parameter. The method is then
evaluated on an example taken from the literature, which demonstrates the potential
of the proposed solutions.
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Chapter 10
Abstracted Models for Scheduling
of Event-Triggered Control Data Traffic

M. Mazo Jr., A. Sharifi-Kolarijani, D. Adzkiya and C. Hop

Abstract Event-Triggered control (ETC) implementations have been proposed to
overcome the inefficiencies of periodic (time-triggered) controller designs, namely
the over-exploitation of the computing and communication infrastructure. However,
the potential of aperiodic Event-Triggered techniques to reuse the freed bandwidth,
and to reduce energy consumption onwireless settings, has not yet been truly reached.
The main limitation to fully exploit ETC’s great traffic reductions lies on the diffi-
culty to predict the occurrence of controller updates, forcing the use of conservative
scheduling approaches in practice. Having a model of the timing behaviour of ETC
is of paramount importance to enable the construction of model-based schedulers for
such systems. Furthermore, on wireless control systems these schedulers allow to
tightly schedule listening times, thus reducing energy consumption. In this chapter
we describe an approach to model ETC traffic employing ideas from the symbolic
abstractions literature. The resulting models of traffic are timed-automata. We also
discuss briefly how thesemodels can be employed to automatically synthesize sched-
ulers.
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10.1 Introduction

A surge of Event-Triggered control (ETC) implementation strategies has appeared in
the last decade promising to alleviate the inefficiencies of periodic (time-triggered)
controller designs. Periodic controller implementations abuse the computing and
communication infrastructures employing periodic feedback independently of the
current state of the system. In ETC these inefficiencies are mitigated by letting
the sensors decide (employing their limited computation capabilities) whether a
measurement is worth transmitting for the computation of corrective actions. This
results in aperiodic transmissions of measurements and computation of corrective
actions. The amount of transmissions is often orders of magnitude smaller than the
amount required to achieve a similar performance with periodic control.

However, this potential of aperiodic Event-Triggered techniques, to release chan-
nel capacity and reduce energy consumption on wireless settings, has not yet been
truly reached. See e.g., [1] in which a tenfold traffic reduction resulted in barely a
57% energy consumption reduction of a wireless sensing infrastructure. The main
limitation to fully exploit ETC’s great traffic reductions lies on the difficulty to pre-
dict the occurrence of controller updates. Having a model of the timing behaviour
of ETC is therefore of paramount importance to enable the construction of model-
based schedulers for such systems, and to tightly schedule listening times onwireless
communications to reduce energy consumption.

Different from controller/scheduler co-design approaches, see e.g., [2–4], we sug-
gest to retain the separation of concerns between controller design and scheduling by
defining a proper interface between these two realms. We propose a formal approach
to derive models that capture the timing behaviour (of controller updates) of a family
of Event-Triggered strategies for Linear Time-Invariant systems [5]. The constructed
models provide an over-approximation of all the updates’ timing behaviours gener-
ated by the aperiodic ETC system. Then, techniques from games over timed automata
(TA) can be leveraged to synthesise schedulers [6].

Inspired by the state-dependent sampling proposed in [7], we employ a two-step
approach to compute sampling intervals associated to states: first, the state space
is partitioned (abstracted) into a finite number of convex polyhedral cones (pointed
at the origin); then, for each conic region the time interval in which events can be
originated is computed using a convex embedding approach [8] and Linear Matrix
Inequalities derived from Lyapunov conditions. In the resulting timing models, tran-
sitions among discrete states (associated to the conic regions) are derived through
reachability analysis over the sampling intervals computed earlier, see e.g., [9].

Furthermore, we show that the resulting models of traffic can be alternatively
encoded as TA [10]. This allows us to additionally address the problem of scheduling
the access to a shared resource bymultiple ETC systems by solving games over TA [6,
11]. To this end, we enrich the constructed models of ETC traffic with actions that
trade communication traffic for control performance. Then, a scheduler is synthesised
as a strategy providing actions (for one player) that prevents the set of ETC tasks and
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shared resource (the other player) from entering in a conflict situation. Useful classes
of games for such a synthesis are readily solvable in tools like UPPAAL-TIGA [12].

10.2 Mathematical Preliminaries

We start by introducing some common notation employed throughout the chapter,
and the basic theoretical notions of finite-state abstractions, timed automata, and
Event-Triggered control that support the remainder of the chapter.

10.2.1 Notation

We use R
n to denote the n-dimensional Euclidean space, R

+ and R
+
0 to denote

the positive and nonnegative reals, respectively, N is the set of positive integers,
and IR

+ is the set of all closed intervals [a, b] such that a, b ∈ R
+ and a � b.

For any set S, we denote by 2S the set of all subsets of S, i.e., the power set of
S. The sets of all m × n real-valued matrices and the set of all n × n real-valued
symmetric matrices are denoted byMm×n andMn , respectively. Given a matrix M ,
M � 0 (or M � 0) indicates that M is a negative (or positive) semidefinite matrix
and M ≺ 0 (or M � 0) denotes M is a negative (positive) definite matrix. For a
given matrix M , we denote by [M](i, j) its i-th row, j-th column entry. The largest
integer not greater than x ∈ R is denoted by �x� and |y| denotes the Euclidean norm
of a vector y ∈ R

n . Given two sets Za and Zb, every relation Q ⊆ Za × Zb admits
Q−1 = {(zb, za) ∈ Zb × Za|(za, zb) ∈ Q} as its inverse relation. For Q ⊆ Z × Z , an
equivalence relation on a set Z , [z] denotes the equivalence class of z ∈ Z and Z/Q
denotes the set of all equivalence classes. For a set A ⊆ R

n we denote its Lebesgue
measure by μ(A).

Given an ordinary differential equation of the form ξ̇ (t) = f (ξ(t)), admitting a
unique solution, we denote by ξx : R

+
0 → R

n the solution to the initial value problem
with ξx (0) = x . Finally, we also employ the notion of flow pipe:

Definition 10.1 (Flow Pipe [9]) The set of reachable states, or flow pipe, from an
initial set X0,s in the time interval [τ s, τ̄s] is denoted by:

X[τ s ,τ̄s ](X0,s) = ⋃

t∈[τ s ,τ̄s ]
Xt (X0,s) = ⋃

t∈[τ s ,τ̄s ]
{ξx0(t) | x0 ∈ X0,s}. (10.1)
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10.2.2 Symbolic Abstractions

We revise in the following the framework from [13] to relate different models of a
system.

Definition 10.2 (Generalized Transition System [13])
A system S is a tuple (X, X0,U,−→,Y, H) consisting of:

• a set of states X ;
• a set of initial states X0 ⊆ X ;
• a set of inputs U ;
• a transition relation −→⊆ X ×U × X ;
• a set of outputs Y ;
• an output map H : X → Y .

We say a system is finite-state (or infinite-state) when X is a finite (or infinite)
set, and that the system S is metric if the output set Y is a metric space (with some
appropriately defined metric).

Definition 10.3 (Approximate Simulation Relation [13]) Consider two metric sys-
tems Sa and Sb with Ya = Yb, and let ε ∈ R

+
0 . A relation R ⊆ Xa × Xb is an ε-

approximate simulation relation from Sa to Sb if the following three conditions are
satisfied:

1. ∀xa0 ∈ Xa0, ∃xb0 ∈ Xb0 such that (xa0, xb0) ∈ R;
2. ∀(xa, xb) ∈ R we have d(Ha(xa), Hb(xb)) � ε;
3. ∀(xa, xb) ∈ R for all (xa, ua, x ′

a) ∈−→
a

, ∃(xb, ub, x ′
b) ∈−→

b
satisfying (x ′

a, x
′
b) ∈

R.

Whenever an ε-approximate simulation relation from Sa to Sb exists we write Sa �ε

Sb, and say that Sb ε-approximately simulates Sa . Intuitively, under some technical
conditions, Sa �ε Sb implies that all possible output sequences that Sa can produce
are contained in the set of output sequences that Sb can generate.

Let us also introduce the following alternative notion of quotient system (see e.g.,
[13] for the traditional definition):

Definition 10.4 (Power Quotient System [5]) Let S = (X, X0,U,−→,Y, H) be a
system and R be an equivalence relation on X . The power quotient of S by R, denoted
by S/R , is the system (X/R, X/R,0,U/R,−→

/R
,Y/R, H/R) consisting of:

• X/R = X/R;
• X/R,0 = {x/R ∈ X/R|x/R ∩ X0 �= ∅};
• U/R = U ;
• (x/R, u, x ′

/R) ∈→
/R

if ∃(x, u, x ′) ∈→ in S with x ∈ x/R and x ′ ∈ x ′
/R ;

• Y/R ⊂ 2Y ;
• H/R(x/R) = ∪

x∈x/R

H(x).
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In the case considered in this chapter we rarely are able to compute such power
quotient systems. In particular, the transition relation and output maps in general
need to be over-approximated. We introduce the following relaxed version of the
previous definition, followed by a Lemma establishing the relation between such
quotient systems and the original concrete system.

Definition 10.5 (Approximate Power Quotient System [5])
Let S = (X, X0,U,−→,Y, H) be a system, R be an equivalence relation on X ,

and S/R = (X/R, X/R,0,U/R,−→
/R

,Y/R, H/R) be the power quotient of S by R.

An approximate power quotient of S by R, denoted by S̄/R , is a system
(X/R, X/R,0,U/R,−→̄

/R
, Ȳ/R, H̄/R) such that:

• →̄
/R

⊇→
/R
,

• Ȳ/R ⊇ Y/R , and

• H̄/R(x/R) ⊇ H/R(x/R), ∀x/R ∈ X/R .

Lemma 10.1 [5] Let S be a metric system, R be an equivalence relation on X, and
let the metric system S̄/R be the approximate power quotient system of S by R. For
any

ε � max
x∈x/R

x/R∈X/R

d(H(x), H̄/R(x/R)),

with d the Hausdorff distance over the set 2Y , S̄/R ε-approximately simulates S, i.e.,
S �ε

S S̄/R.

For any set Y , Y ∈ 2Y , which allows us to employ the Hausdorff distance [14] as a
common metric for output sets of the power quotient and the original system.

10.2.3 Timed Safety and Timed Game Automata

The abstraction methodology we propose results in models semantically equivalent
to Timed Safety Autamata (TSA) [15]. TSA are a simplified version of the classical
timed automata [10] (TA).While TA employBüchi-acceptance conditions to specify
progress properties, in TSA local invariant conditions are employed to this same end
(see [16, Sect. 2] for a detailed discussion).Here,we just recall briefly the definition of
TSA from [16]. LetΣ be a finite alphabet of actions, andC a set of finitelymany real-
valued variables employed to represent clocks. Consider ∼∈ {>,�,<,�}, a clock
constraint δ is a conjunctive formula of atomic constraints c1 ∼ k or c1 − c2 ∼ k
for c1, c2 ∈ C , and k ∈ N. We employ B(C ) to denote the set of all possible clock
constraints.
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Definition 10.6 (Timed Safety Automata [16]) A timed safety automata is a tuple
A = (L , L0,Σ,C , E, I ) where

• L is a finite set of locations (or discrete states);
• L0 ⊆ L is a set of start locations;
• Σ is the set of actions;
• C is the set of clocks;
• E ⊆ L × B(C ) × Σ × 2C × L is the set of transitions.
• I : L −→ B(C ) assigns invariants to locations.

The shorthand notation l
g,a,r� l ′ is used to denote (l, g, a, r, l ′) ∈ E , i.e., a transition

from state l to state l ′ under input symbol a, with r ⊆ C the set of clocks reset when
this transition is taken, and a clock constraint g over C as the guard enabling this
transition.

Definition 10.7 (Operational Semantics [16]) The semantics of a timed safety
automaton is a transition system (also known as timed transition system) where
states are pairs (l, u), with l ∈ L and u a clock valuation, and transitions are defined
by the rules:

• (l, u)
d� (l, u + d) if u |= I (l) and (u + d) ∈ I (l) for a scalar d ∈ R

+;
• (l, u)

a� (l ′, u′) if l g,a,r� l ′, u |= g, u′ = [r → 0]u and u′ |= I (l ′).

Remark 10.1 In a TSA, the guards and invariants assert necessary and sufficient
conditions respectively for transitions to take place. The sufficient conditions estab-
lished by invariants must not be violated by letting time advance. Therefore, invari-
ants establish upper bounds for the time to take the next transition [15].

Remark 10.2 Note that a timed automaton is a particular class of hybrid automata
in which the only allowed continuous dynamics are of the form ċ = 1, and in which
guard and invariant sets are in the form of clock constraints.

TSA evolve over uncountable state spaces, due to its clock variables. Nonetheless,
it has been shown that its reachability analysis is decidable [10]. This decidability
allows the development of powerful tools for verification and synthesis [10, 17],
which can be used to generate schedulers for real-time systems, whose timing is
modelled as TSAs [6].

Timed GameAutomata (TGA) are an extension of TSAwhere the set of actions is
partitioned into controllable actions (activated by the controller) and uncontrollable
actions (activated by the environment or an opponent).

Definition 10.8 (Timed Game Automaton [18]) A timed game automaton is a tuple
G = (L , L0,Σc,Σu,C , E, I ) where

• (L , L0,Σc ∪ Σu,C , E, I ) is a timed safety automaton;
• Σc is a set of controllable actions;
• Σu is a set of uncontrollable actions;
• Σc ∩ Σu = ∅.
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A feature of TGA is its modularity. Constructing a TGA for complex systems can
be done by constructing a TGA for each part and then combining (or composing)
them. The resulting object is denoted a Network of TGA (NTGA), and is constructed
through a synchronized parallel composition in which uncontrollable inputs of a
TGA are linked to outputs of another TGA. For a more detailed discussion of such
composition we refer the reader to [19].

10.2.4 Event-Triggered Control for LTI Systems

We describe next a basic framework for Event-Triggered control in the case of Linear
Time Invariant (LTI) control systems with state-feedback. The techniques we present
in the remainder of the paper only focus on this class of control systems. Many
extensions to this simple framework have been proposed, see for instance the rest of
the papers in Part 2 of this book and references therein. See the conclusion of the
chapter for a brief discussion on generalizing the current results.

Consider an LTI system without disturbances:

ξ̇ (t) = Aξ(t) + Bυ(t), ξ(t) ∈ R
n, υ(t) ∈ R

m (10.2)

and a linear state-feedback controller implemented in a sample-and-hold fashion:

υ(t) = υ(tk) = K ξ(tk), ∀t ∈ [tk, tk+1), k ∈ N. (10.3)

The following quadratic triggering mechanism:

tk+1 := inf{t > tk | |ξ(tk) − ξ(t)|2 � α|ξ(t)|2}, (10.4)

with α ∈ R
+ a design parameter properly selected, renders the closed-loop system

asymptotically stable [20]. Let us denote the inter-sample time associated to a state
by:

τ(x) := tk+1 − tk, with x = ξ(tk). (10.5)

For LTI systems, the solutions ξ in some time interval [tk, tk + σ ] can be easily
expressed in terms of the initial condition:

ξ(tk + σ) = Λ(σ)ξ(tk), (10.6)

Λ(σ) = [I + ∫ σ

0 eArdr(A + BK )]. (10.7)
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Thus, the state-dependent inter-sampling times can be rewritten as:

τ(x) = inf{σ > 0| xTΦ(σ)x � 0}, (10.8)

Φ(σ) = [I − ΛT (σ )][I − Λ(σ)] − αΛT (σ )Λ(σ). (10.9)

10.3 Timing Abstractions of Event-Triggered Control
Systems

We are interested in obtaining models capturing the evolution over time of the inter-
sample times generated by an ETC loop. Such dynamics are actually provided by
the following system:

S = (X, X0,U,−→,Y, H)

where

• X = R
n;

• X0 ⊆ R
n;

• U = ∅, i.e., the system is autonomous;
• −→∈ X ×U × X such that ∀x, x ′ ∈ X : (x, x ′) ∈−→ iff ξx(τ (x)) = x ′;
• Y ⊂ R

+;
• H : R

n → R
+ where H(x) = τ(x).

The system S generates as output sequences all possible sequences of inter-
sampling intervals that a given ETC loop can exhibit. However, S is an infinite-state
system and the map H (a copy of τ ) is not an explicit function.

Problem 10.1 We seek to construct finite-state systems capturing, up to some com-
putable precision, all the possible traffic patterns of an ETC system, i.e., all possible
sequences {τ(ξ(tk))}k∈N.

In order to solve this problem, we propose to abstract the system S by a power
quotient system S/R as follows:

S/R = (X/R, X0/R,U/R,−→
/R

,Y/R, H/R)

where

• X/R = R
n
/R := {R1, . . . ,Rq};

• X/R,0 = {Ri | X0 ∩ Ri �= ∅};
• U/R = ∅, i.e., the system is autonomous;
• (x/R, x ′

/R) ∈−→
/R

if ∃x ∈ x/R , ∃x ′ ∈ x ′
/R such that ξx (H(x)) = x ′;

• Y/R ⊂ 2Y ⊂ IR
+;

• H/R(x/R) = [ inf
x∈x/R

H(x), sup
x∈x/R

H(x)] := [τ x/R
, τ̄x/R ].
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In general, constructing such a power quotient system is not possible, thus we
focus on constructing an approximate power quotient system S̄/R .

Remark 10.3 By Lemma 10.1 we know that S �ε
S S̄/R . This can be interpreted

as the (approximate) power quotient system producing output sequences {Tk}k∈N,
Tk ∈ IR

+, such that τ(ξ(tk)) ∈ Tk . The fact that all the possible timing sequences
{tk+1 − tk}k∈N of the ETC system, i.e., output sequences of the infinite system S,
are captured by S̄/R allows us to employ these abstractions to synthesize schedulers,
cf. Sect. 10.4.

In the remaining of this section we describe how to select an appropriate equiv-
alence relation R, compute the intervals [τ x/R

, τ̄x/R ], and determine the transition
relation −→̄

/R
.

10.3.1 State Set

In the traditional construction of quotient systems, one bundles together states that
produce the same output. In our proposed construction of power quotient systems
this is no longer the case, but the precision ε achieved depends on how close are
the outputs of states bundled together, cf. Lemma 10.1. In the case of LTI Event-
Triggered systems one can easily characterize states that produce the same output,
i.e., states x, x ′ such that τ(x) = τ(x ′), see e.g., [7, 21]:

Proposition 10.1 States lying on the same ray crossing the origin have the same
inter-sample time, i.e., τ(x) = τ(λx), ∀λ �= 0, x �= 0.

Hence, to construct a quotient system of S, the abstract states need to be rays
in the state space at hand. But there is an infinite number of rays, thus, in order to
obtain a finite state abstraction, we suggest to take as abstract states unions of an
infinite number of such rays. In particular, polyhedral cones pointed at the origin are
a choice which makes the construction of finite state-space partitions relatively easy.
We denote such cones byRs where s ∈ {1, . . . , q} and⋃q

s=1 Rs = R
n (see Fig. 10.1

for an example in R
2).

In order to construct such a partition of the state-space, we use a so called isotropic
covering. Consider first the case of partitioning R

2 via cones pointed at the origin.
This is easily achieved by first splitting the interval Θ = [−π

2 , π
2 ) uniformly in a

number of sub-intervals Θs = [θ s, θ s). Then for each of those intervals one can
construct the corresponding cone as:

Rs = {x ∈ R
2 | xT Qsx � 0}, Qs = 1

2

[−2 sin θ s sin θ s sin (θ s + θ s)

sin (θ s + θ s) −2 cos θ s cos θ s

]

.

(10.10)
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Fig. 10.1 Example of a
state-space partitioning with
polyhedral cones in R

2 [5]

Remark 10.4 Note that even though it may look like we only partition in this form
half of the space (as we only ranged in the polar coordinates between [−π

2 , π
2 )

radians), in reality the other half space is covered by this same Rs sets. To see
this, just observe that a point defined in polar coordinates by the pair (r, θ), i.e.,
x1 = r cos θ, x2 = r sin θ , and the point (−r, θ) (or alternatively (r, θ + π)) belong
to the same setRs as xT Qsx = (−x)T Qs(−x). Furthermore, this poses no problem
in terms of the times associated to the set as τ(x) = τ(−x) from Proposition 10.1.

We can generalize this partitioning approach to cover arbitrary higher dimensions
as follows. Consider a point x = [x1, x2, . . . xn]T ∈ R

n , and define the projection of
that point on its i − j coordinates as (x)(i, j) = (xi , x j ). Now, let the sets defining
the partition of the state-space to be defined as:

R(s1,s2,...sn−1) =
{

x ∈ R
n |

n−1∧

i=1

(x)T(i,i+1)Qsi (x)(i,i+1) � 0

}

. (10.11)

By ranging over all possible indices s = (s1, s2, . . . sn−1) ∈ {1, 2, . . . ,m}n−1 the
whole state space can be covered. Here m denotes the number of intervals employed
to subdivide [−π

2 , π
2 ) in constructing the Qs matrices.

The equivalence relation R ⊆ R
n × R

n in Definition 10.5 is thus given by
(x, x ′) ∈ R ⇔ x, x ′ ∈ Rs , for some s.

10.3.2 Output Map

Constructing the output map H̄/R (and the associated output set Ȳ/R) boils down to
computing the time intervals [τ s, τ̄s] such that ∀x ∈ Rs : τ(x) ∈ [τ s, τ̄s]. In other
words, we need to compute lower and upper bounds on the inter-sample times that
can be observed for different states (among the infinite number) in a region Rs .
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Employing the state transition matrix in (10.9), one can express a necessary con-
dition for τ to be a lower bound of τ(x) as:

xTΦ(σ)x � 0,∀σ ∈ [0, τ ] ⇒ τ s � τ(x).

Note that this condition involves a matrix functional Φ(σ) and thus it cannot be
directly checked. To address this issue, we employ the approach from Hetel et al. [8]
to construct a convex polytope (in the space of matrices) containing Φ(σ). Then,
employing convexity, one can replace the condition involving an infinite number of
matrices Φ(σ) by a finite (and thus computable) set of inequalities involving only a
finite set of matrices Φκ , with κ ∈ K , i.e., :

(xTΦκ x � 0,∀κ ∈ K ) =⇒ (xTΦ(σ)x � 0,∀σ ∈ [0, τ s]). (10.12)

Assumption 10.1 Assume that a scalar σ̄ > 0 exists such that xTΦ(σ̄ )x � 0,∀x ∈
R

n .

Remark 10.5 This constant σ̄ is a global upper bound for the inter-sample times.
It can be computed through a line search until the matrix Φ(σ̄ ) becomes positive
definite. In general, such an upper-bound may not exist. Think e.g., of a stable real
eigenvector v of the open-loop system and a controller setting the control action
for u = Kv = 0, in this case the system may not trigger new controller updates. A
simple solution to this issue is to modify the triggering condition by fixing a certain
upper bound for the triggering times σ̄ :

τ(x) = min{σ̄ , σ > 0| xTΦ(σ)x � 0}. (10.13)

The following Lemma provides the construction of a finite number of LMIs to
numerically check condition (10.12). Consider a positive integer Nconv � 0 such that
Nconv + 1 is the number of vertices of the polytope employed to cover Φ(σ) in the
time interval [0, σ̄ ], and an integer number l � 1 for the number of intervals in which
to divide the cover, see Fig. 10.2 for an intuitive illustration.

Lemma 10.2 [5]Consider a timebound τ ∈ (0, σ̄ ]. If xTΦ(i, j),τ x � 0holds∀(i, j) ∈
Kτ = ({0, . . . , Nconv} × {0, . . . , � τ l

σ̄
�}), then:

xTΦ(σ)x � 0, ∀σ ∈ [0, τ ]

with Φ defined in (10.9) and

Φ(i, j),τ = Φ̂(i, j),τ + ν I,

Φ̂(i, j),τ =
{∑i

k=0 Lk, j (
σ̄
l )

k if j < � τ l
σ̄
�,

∑i
k=0 Lk, j (τ − j σ̄

l )k if j = � τ l
σ̄
�,
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Fig. 10.2 Polytopic
bounding of a (scalar)
exponential function, with
Nconv = 4 and l = 3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L0, j = I − Π1, j − ΠT
1, j + (1 − α)ΠT

1, jΠ1, j ,

L1, j = [(1 − α)ΠT
1, j − I ]Π2, j

+Π T
2, j [(1 − α)Π1, j − I ],

Lk�2, j = [(1 − α)ΠT
1, j − I ] Ak−1

k! Π2, j

+Π T
2, j

(Ak−1)T

k! [(1 − α)Π1, j − I ]
+(1 − α)Π T

2, j (
∑k−1

i=1
(Ai−1)T

i !
Ak−i−1

(k−i)! )Π2, j ,

(10.14)

{

Π1, j = I + Mj (A + BK ), Mj = ∫ j σ̄
l

0 eAsds,
Π2, j = N j (A + BK ), N j = AMj + I,

(10.15)

ν � max
σ ′∈[0, σ̄

l ]
r∈{0,...,l−1}

λmax(Φ(σ ′ + r σ̄
l ) − Φ̃Nconv,r (σ

′)),
(10.16)

Φ̃Nconv,r (σ ) = ∑Nconv
k=0 Lk,rσ

k . (10.17)

For a given state x we can now employ this result to compute a lower bound
on τ(x). In order to compute a lower bound τ s for the bundle of states defined by
a conic region Rs , one can leverage the S-procedure as in the following theorem.
Before stating the result, we need to define some new set of matrices Q̃(i, j)

s as:

Q̃(i, j)
s ∈ Mn, such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[Q̃(i, j)
s ](i,i) = [Qs](1,1)

[Q̃(i, j)
s ](i, j) = [Qs](1,2)

[Q̃(i, j)
s ]( j,i) = [Qs](2,1)

[Q̃(i, j)
s ]( j, j) = [Qs](2,2)

[Q̃(i, j)
s ](k,l) = 0 otherwise

(10.18)

where Qs ∈ M2 are as defined in (10.10).
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Theorem 10.2 (Regional Lower Bound Approximation) Consider a scalar τ s ∈
(0, σ̄ ] and matrices Φκ,τ s

, κ = (i, j) ∈ Kτ s
, defined as in Lemma 10.2. If there exist

scalars εκ,τ s
� 0 such that for all κ ∈ Kτ s

the following LMIs hold:

Φκ,τ s
+ ∑n−1

i=1 εκ,si Q̃
(i,i+1)
si � 0

the inter-sample time (10.4) of the system (10.2)–(10.3) is regionally bounded from
below by τ s, ∀x ∈ Rs .

Proof The proof is verbatim the proof on [5], replacing the linear representation of
conic partitions in dimensions higher than two, by the alternative quadratic repre-
sentation of (10.11).

Similarly, one can compute upper bounds τ̄s of the inter-sample time for a conic
region, employing Lemma 10.3 and Theorem 10.3.

Lemma 10.3 [5]Consider a timebound τ̄ ∈ [τ , σ̄ ]. If xT Φ̄(i, j),τ̄ x � 0holds∀(i, j) ∈
Kτ̄ = ({0, . . . , Nconv} × {� τ̄ l

σ̄
�, . . . , l − 1}), then:

xTΦ(σ)x � 0, ∀σ ∈ [τ̄ , σ̄ ]

with Φ defined in (10.9) and:

Φ̄(i, j),τ̄ = ¯̂
Φ(i, j),τ̄ + ν̄ I,

¯̂
Φ(i, j),τ̄ =

{∑i
k=0 Lk, j (

( j+1)σ̄
l − τ̄ )k if j = � τ̄ l

σ̄
�,

∑i
k=0 Lk, j (

σ̄
l )

k if j > � τ̄ l
σ̄
�,

ν̄ � max
σ ′∈[0, σ̄

l ]
r∈{0,...,l−1}

λmin(Φ(σ ′ + r σ̄
l ) − Φ̃Nconv,r (σ

′)),
(10.19)

where Lk, j and Φ̃Nconv,r are given by (10.14) and (10.17), respectively.

Theorem 10.3 (Regional Upper Bound Approximation) Consider a scalar τ̄s ∈
(0, σ̄ ] and matrices Φ̄κ,τ̄s , κ = (i, j) ∈ Kτ̄s , defined as in Lemma 10.2. If there exist
scalars ε̄κ,τ̄s � 0 such that for all κ ∈ Kτ̄s the following LMIs hold:

Φ̄κ,τ̄s + ∑n−1
i=1 ε̄κ,si Q̃

(i,i+1)
si � 0

the inter-sample time (10.4) of the system (10.2)–(10.3) is regionally bounded from
above by τ̄s, ∀x ∈ Rs .

Proof Analogous to the proof of Theorem 10.2.
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Remark 10.6 In order to employ Theorem 10.2 (Theorem 10.3) to compute lower
(upper) bounds for each of the regions, one needs to apply a line search over τ s ∈
[0, σ̄ ] (τ̄s ∈ [τ s, σ̄ ]). This requires checking the feasibility of the LMIs at each step
of the line search.

10.3.3 Transition Relation

Finally, the transition relation −→
/R

of the abstraction is given by:

(x/R, x ′
/R) ∈ −→

/R
⇔ μ(X[τ s ,τ̄s ](x/R) ∩ x ′

/R) > 0. (10.20)

Remark 10.7 Equation (10.20) explicitly enforces that the intersection between the
sets needs to be strictly larger than just the trivial coincidence in the origin, or one
facet of the sets, by requiring that such intersection has non-zero measure.

In other words, to construct the relation one needs to compute which sets Rs ′

are (non-trivially) intersected byX[τ s ,τ̄s ](Rs): the reachable set fromRs in the time
interval [τ s, τ̄s]. In practice, we can only compute approximations of this reachable
set. Nevertheless, in order to construct an approximate abstraction S̄/R it suffices
to compute the intersection with outer approximations i.e., X̂[τ s ,τ̄s ](Rs) such that

X[τ s ,τ̄s ](Rs) ⊆ X̂[τ s ,τ̄s ](Rs).

Remark 10.8 Employing anouter approximationof the reachable sets canpotentially
introduce spurious transitions, i.e., −→

/R
⊆ −→̄

/R
but as stated in Lemma 10.1 the

desired approximate simulation relation is retained.

Note that Rs are not compact sets (they are unbounded cones). However, all of
those cones share the origin which is an invariant point of the state space. Therefore,
it is sufficient to compute the reachable set ofRs := Rs ∩ Es for some affine hyper-
plane Es = {x |eT x + c � 0}with e ∈ R

n and c �= 0 ∈ R. Then from the convex hull
of this polytope in R

n−1 and the origin one can construct a non-empty convex subset
R̂s of Rs as follows:

R̂s = {λxe | λ ∈ [0, 1], xe ∈ Rs}. (10.21)

Now observe that, thanks to the linearity of (10.6) and the fact that all sets are
pointed at the origin, the condition (10.20) can be replaced by:

μ(X[τ s ,τ̄s ](Rs) ∩ Rs ′) > 0 ⇔ μ(X[τ s ,τ̄s ](R̂s) ∩ R̂s ′) > 0 (10.22)

There are many techniques available to compute polytopic outer approximations
of reachable sets of polytopes as the set X̂[τ s ,τ̄s ](Rs). In particular, we employ in our
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implementations the approach from [9]. Similarly, there are many tools that enable
the computation of intersection of polytopic sets and check that such sets have no
empty interior, e.g., [22, 23].

10.3.4 Increasing the Precision of the Abstractions

The precision of the abstractions obtained can be considered from both: the distance
of the output traces, i.e., ε in Lemma 10.1, and in terms of the amount of spurious
transitions introduced.

The conservatism introduced through the polytopic embedding, cf. Sect. 10.3.2
can be reduced by increasing Nconv and l in Lemmas 10.2 and 10.3. This results in
moreLMIconstraints, but in general leads to a smaller ε by reducing |τ̄s − τ s | for each
Rs . Having tighter bounds for the inter-sample times also reduces the conservatism
introduced in computing the reachable sets in Sect. 10.3.3, which in turn reduces the
amount of spurious transitions. Similarly, one can employ more precise or tight outer
approximations of the reachable sets to reduce spurious transitions.

Finally, one can also refine the conic regions of an abstraction S/R into more
regionsRs . As long as in the new abstraction S/R′ the equivalence classes are subsets
of the classes in the first abstraction S/R , the precision of the inter-sample bounds
cannot decrease, i.e., |τ̄s − τ s | cannot increase. Formally:

(∀(x, x ′) ∈ R′ ⇒ (x, x ′) ∈ R
) ⇒ ε′ � ε, (10.23)

where S �ε
S S̄/R , and S �ε′

S S̄/R′ . Note that this does not need to hold if the partition
defined by R′ is not a refinement of the original partition determined by R.

10.4 Timed Automata and Scheduling

In this section we briefly show that the abstractions S̄/R , whose construction is
described in the previous sections, are in fact semantically equivalent to TSA. Then,
we illustrate a few possibilities to enrich the obtained abstractions with controllable
actions, which may be employed to design schedulers for ETC systems on shared
resources.

Let us first interpret the semantics of the proposed abstractions S̄/R . Note that the
system S̄/R only captures discrete events. However, just like the concrete system S,
the connection with actual time is established through the outputs produced by these
models. The abstraction S̄/R is a finite-state dynamical system, but with an infinite
output set Ȳ/R capturing time intervals. When the last transmitted measurement x
satisfies x ∈ x/R , the output y/R = H̄(x/R) indicates that the original control system:

1. does not trigger updates during the interval [0, τ x/R
);

2. may trigger a controller update during the time interval [τ x/R
, τ̄x/R ); and

3. must trigger an update if τ̄x/R seconds have elapsed since the last transmission.
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In the model S̄/R a controller update of the ETC system (cf. Sect. 10.2.4) is captured
by a transition between states x/R → x ′

/R of the abstraction S̄/R . As described in
Sect. 10.2.3, one can capture the same type of semantics with a TSA. In particular,
the TSA S̄T SA = (L , L0,Σ,C , E, I ) has the same semantics as the abstraction S̄/R ,
where:

• the set of locations L := X/R = {l1, . . . , lq};
• the set of initial locations L0 := X/R,0;
• the set of actionsΣ = {∗} is an arbitrary labeling of discrete transitions (or edges);
• the clock set C = {c} contains a single clock;
• the set of edges E is such that (ls, g, a, r, ls ′) ∈ E iff ls /R

� ls ′ , g = {τ s � c � τ̄s},
a = ∗, and r = {c := 0};

• the invariant map I (ls) := {0 � c � τ̄s}, ∀s ∈ {1, . . . , q}.

10.4.1 Automatic Synthesis of Schedulers

One may think of a scheduler as a coordinating controller that prevents several
systems from entering into a conflict configuration.We consider a set of ETC systems
that share a common resource, e.g., a computing or communication platform, and
propose to use anNTGA-based approach to synthesize schedulers in this set-up.After
each update the shared resource is unavailable for some predefined time interval, and
to prevent a conflict (a control loop requesting access while the resource is being
used) the scheduler decides which control loop shall be updated next by selecting
an update mechanism for each control loop (see next paragraph). The process to
automatically synthesize schedulers consists of three steps: first, construct an NTGA
associated with the set of NCSs; then, define the set of bad states (representing
conflicts); and finally, employ a tool like UPPAAL-Tiga [12] to obtain a safe strategy
avoiding the bad states. The NTGA derived from the set of NCSs: G NCSs, is a parallel
synchronized composition of the TGA associated with the network: G net , and the
TGA associated with the control loops G cli for all i ∈ {1, . . . , N }.

In order to design schedulers, the models of the systems to schedule need to
expose variables enabling the control of their dynamics. More precisely, the TSA
S̄T SA needs to be enriched to contain more than one action in the set Σ , resulting in
the TGA G cli. Several update mechanisms, providing different controllable actions
for the scheduler can be considered:

• the update time is based on a triggering mechanism, where a triggering coefficient
is selected from the finite set {α1, . . . , αp}. In TGAG cli for each s ∈ {1, . . . , q}, we
introduce additional locations lα1

s , …, l
αp
s representing the choice of the triggering

coefficient α1, …, αp selected at state x/R = Rs . For each s ∈ {1, . . . , q}, the
edges from ls to lα1

s , …, l
αp
s are controllable enabling the scheduler to choose the

triggering coefficient.
• the update time is forced at a predefined time, which is earlier than the minimum
inter-sample time of the active triggering condition. In TGA G cli for each s ∈
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Fig. 10.3 TGA of a shared
resource

Idle InUse Bad

{1, . . . , q}, we introduce controllable edges originated from ls that represent earlier
controller updates.

• the update time is based on a triggering mechanism but delayed a predefined
amount of time to be selected from some set {τ d

1 , . . . , τ d
r }. Note that ETC naturally

tolerates a maximum amount of delay Δ̄ [20], thus one must select these delays
smaller than such Δ̄. In TGA G cli for each s ∈ {1, . . . , q}, we introduce locations
l
τ d
1

s , …, lτ
d
r
s that represent the sampled state is inRs and the chosen delay is τ d

1 , …,

τ d
r , respectively. Again, these new edges from ls to l

τ d
1

s , …, lτ
d
r
s are controllable for

the scheduler.

Each of these mechanisms can be employed on their own or combined to provide
more control handles to the scheduler. The status of the shared resource – available,
unavailable and conflict – and the possible transitions among them are modeled by
TGA G net depicted in Fig. 10.3. Thus, the bad states of the NTGA are defined as the
set of states such that the location of G net is Bad. For a more detailed treatment of
this procedure we refer the reader to the report [19].

10.5 Illustrative Examples

Inwhat follows,we illustrate the described abstraction construction on two examples.
First, we consider a simple academic two-dimensional LTI system:

ξ̇1(t) =
[−14 10

−24 17

]

ξ1(t) +
[
1
2

]

ν1(t),

ν1(t) = [9 − 6.5] ξ1(t).

(10.24)

We employ the following values for the abstraction parameters: the triggering coef-
ficient α = 0.05, the upper bound of the inter-sample interval σ̄ = 1s, the order of
polynomial approximation Nconv = 5, the number of polytopic subdivisions l = 100
and the total number of state space partitions q = 20.

The resulting abstractionof the closed-loop system (10.24) is provided inFig. 10.4,
depicting τ s and τ̄s ; τ s and τ̄s in a radial manner, and a representation of the dis-
crete transitions in the resulting TSA. The achieved precision of the abstraction
is ε = 0.284s. Figure10.5 illustrates the validity of the theoretical bounds that we
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Fig. 10.4 System (10.24) lower and upper bounds of inter-sample times depicted by solid and
dashed curves, respectively (left panel). Spider-web representation of times (note the symmetry)
(center panel). Graphic representation of the transition relation (right panel)

Fig. 10.5 System (10.24) states and input trajectories (left panel) and triggering times (right panel)
of a simulation of the ETC system. Time between triggering (asterisks), predicted lower bound
(solid line) and upper bound (dashed line)

found for τ s (solid line) and τ̄s (dashed line). The asterisks represent the inter-sample
times sequence during 5s simulation of the ETC system.

The second example is a somewhat more realistic system: an intelligent vehicle
headway controller [24]:

⎡

⎣
Ėr (t)
Ėv(t)
ȧ(t)

⎤

⎦ =
⎡

⎣
0 1 0
0 0 1
0 −1.43 −2.149

⎤

⎦

⎡

⎣
Er (t)
Ev(t)
a(t)

⎤

⎦ +
⎡

⎣
0
0

0.01077

⎤

⎦ u(t), (10.25)

u(t) = − [
40 55.78 24.45

] [Er (t) Ev(t) a(t)]T , (10.26)

where Er = Rh − R, Ev = V − Vp, with Rh and R the desired and actual headway,
Vp and V the preceding and host vehicle velocities, and a the host velocity acceler-
ation. The controller is implemented with a triggering coefficient α = 0.05. In the
abstraction we select m = 10, the number of subdivisions for each angular coor-
dinate in the interval [−π

2 , π
2 ), which results in q = 2 × m(n−1) = 2 × 102 = 200

states of the abstraction, i.e., regions in which the state space is divided. The rest of
the parameters are selected as σ̄ = 2 s, Nconv = 5, and l = 100.
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Fig. 10.6 System (10.25) lower and upper bounds of inter-sample times depicted by solid and
dashed curves, respectively (left panel). Graphic representation of the transition relation (right
panel)

Fig. 10.7 System (10.25) states and input trajectories (left panel) and triggering times (right panel)
of a simulation of the ETC system. Time between triggering (asterisks), predicted lower bound
(solid line) and upper bound (dashed line)

Figure10.6 shows the resulting abstraction of the closed-loop system (10.25).
Note that times for only half of the state space (100 regions) are plotted, as the
symmetric half of the state space results in identical bounds. The precision of the
constructed abstractions is ε = 1.3 s. The validity of the theoretical bounds that we
found on a simulation, with initial condition x0 = [3 − 2 5]T , is visualized in
Fig. 10.7.

10.6 Conclusion

We have presented a methodology to construct models describing the timing patterns
of updates in Event-Triggered control systems. The resulting models can be recast
as timed automata, for which a large body of literature and tools are available. In
particular, one can employ techniques from the literature on timed automata to auto-
matically synthesize schedulers arbitrating the access to shared resources between
ETC loops and possibly other (real-time) tasks.
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An apparent drawback of the proposed approach is the amount of computation
required to construct themodels. In the construction of each abstract state one needs to
solve several LMI feasibility problems to construct the output set. Then a reachability
analysis must be run for each of these states. Fortunately, this is a procedure that can
be easily parallelized and that is only run offline. However, the amount of abstract
states that is required (assuming a uniform partitioning) scales exponentially with
the dimensionality of the system. A couple of promising approaches to address the
challenge of scalability are the use of compositional ideas, as in e.g., [25], and the
use of model order reduction techniques, as in e.g., Chap.1 of this book.

The versatility of timed automata to model the traffic of model-based aperiodic
controllers has been also demonstrated in e.g., [26], or Chap.6 of this book. Exten-
sions to other types of event-based controller implementations, like periodic ETC
with dynamic controllers [27], or to the non-linear context [20] can be constructed
similarly, provided that: (i) the reachability of the considered systems is possible,
and (ii) one can construct computable triggering checks dependent solely on the
last sampled state. Many approaches are available for the reachability of non-linear
systems, see e.g., [28–30]. The second condition is closely related to the idea of Self-
Triggered control, for which large classes of non-linear systems have been studied
in e.g., [21, 31]

Future work shall investigate if other applications of these sort of abstractions can
be found in the real-time control context. An interesting possibility is the study of
security, where timed automata may serve to characterize resilient traffic flows (or
conversely attacker patterns) as in the context of Chap. 11 in this book.
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Chapter 11
Resilient Self-Triggered Network
Synchronization

D. Senejohnny, P. Tesi and C. De Persis

Abstract In this chapter, we investigate Self-Triggered synchronization of linear
oscillators in the presence of communication failures caused by denial-of-Service
(DoS). A general framework is considered in which network links can fail indepen-
dent of each other. A characterization of DoS frequency and duration to preserve
network synchronization is provided, along with an explicit characterization of the
effect of DoS on the time required to achieve synchronization. A numerical example
is given to substantiate the analysis.

11.1 Introduction

Cyber-physical systems (CPSs) exhibit a tight conjoining of computational and phys-
ical components. The fact that any breach in the cyberspace can have a tangible
effect on the physical world has recently triggered attention toward cybersecurity
also within the engineering community [1, 2]. In CPSs, attacks to the cyber-layer are
mainly categorized as either denial-of-service (DoS) attacks or deception attacks.
The latter affects the reliability of data by manipulating the transmitted packets over
network; see [3, 4]. On the other hand,DoS attacks are primarily intended to affect the
timeliness of the information exchange, i.e., to cause packet losses; see for instance
[5, 6] for an introduction to the topic. This chapter aims at considering the effect of
DoS attacks.
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In the literature, the issue of resilience against DoS has been mostly investigated
in centralized settings [7–14]. Very recently, [15, 16] explored this problem in a
distributed setting with emphasis on consensus-like networks. The main goal of this
chapter is to address the issue of resilience against DoS for network coordination
problems in which node dynamics are more general than simple integrators. Specif-
ically, we study synchronization networks of the same type as in [17]. Inspired by
[18] and [19], we consider a Self-Triggered coordination scheme, in which the avail-
able information to each agent is used to update local controls and to specify the
next update time. We consider Self-Triggered coordination schemes since they are
of major interest when synchronization has to be achieved in spite of possibly severe
communication constraints. In this respect, a remarkable feature of Self-Triggered
coordination lies in the possibility of ensuring coordination properties in the absence
of any global information on the graph topology and with no need to resort to syn-
chronous communication.

The primary step in the analysis of distributed coordination problems in the pres-
ence of DoS pertains to the modeling of DoS itself. In [12, 13], a general model
is considered that only constrains DoS patterns in terms of their average frequency
and duration. This makes it possible to describe a wide range of DoS-generating
signals, e.g., trivial, periodic, random, and protocol-aware jamming [5, 6, 20, 21].
The occurrence of DoS has a different effect on the communication, depending on
the network architecture. For networks operating through a single access point, in the
so-called “infrastructure” mode, DoS may cause all the network links to fail simul-
taneously [15]. In this chapter, we consider instead a more general scenario in which
the network links can fail independent of each other, thus extending the analysis to
“ad-hoc” (peer-to-peer) network architectures. In this respect, a main contribution of
this chapter is an explicit characterization of the frequency and duration of DoS at
the various network links under which coordination can be preserved. In addition to
extending the results of [19] to independent polling of neighbors, we also provide an
explicit characterization of the effects of DoS on the coordination time. A prelimi-
nary and incomplete account of this work without the relevant proofs has appeared
in [22].

The problem of network coordination under communication failures can be
viewed as a coordination problem in the presence of switching topologies. For
purely continuous-time systems, this problemhas been thoroughly investigated under
assumptions such as, point-wise, period-wise, and joint connectivity [23–25]. In
CPSs, however, due to the presence of a digital communication layer, the situation is
drastically different. In fact, the presence of a digital communication layer implies
that the time span between any two consecutive transmissions cannot be arbitrar-
ily small. As a consequence, the classic connectivity notions developed for purely
continuous-time systems are not directly applicable to a digital setting as the one con-
sidered here. In this respect, we introduce a notion of persistency-of-communication
(PoC), which requires graph (link) connectivity be be satisfied over periods of time
that are consistent with the constraints imposed by the communication medium
[15, 16].
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The remainder of this chapter is organized as follows. In Sect. 11.2, we formulate
the problem of interest and provide the results for Self-Triggered synchronization.
In Sect. 11.3, we describe the considered class of DoS patterns. The main results are
provided in Sect. 11.4. A numerical example is given in Sect. 11.5. Finally, Sect. 11.6
ends the chapter with concluding remarks.

Notation: The following notation is used throughout this chapter. The stacking of
N column vectors x1, x2, . . . , xn is denoted by x , i.e., x = [

x�
1 x�

2 . . . x�
n

]�
. The

N - dimensional identity matrix is denoted by IN . Vectors of all ones and zeros are
denoted by 1 and 0, respectively. The �th component of vector x is denoted by x� or,
interchangeably, by [x]�.

11.2 Self-Triggered Synchronization

11.2.1 System Definition

We consider a connected and undirected graph G = (I ,E ), whereI := {1, 2, · · · ,
N } is the set of nodes and E ⊆ I × I is the set of links (edges). Given a node
i ∈ I , we shall denote by Ni = { j ∈ I : (i, j) ∈ E } the set of its neighbors, i.e.,
the set of nodes that exchange information with node i , and by di = |Ni |, i.e., the
cardinality ofNi . Notice that the order of the elements i and j in (i, j) is irrelevant
since the graph is assumed undirected. Throughout the chapter, we shall refer to G as
the “nominal” network (the network configuration when communication is allowed
for every link).

We assume that each network node is a dynamical system consisting of a linear
oscillator with dynamics

ẋ i = Axi + Bui (11.1)

where (A, B) is a stabilizable pair and all eigenvalues of A lie on imaginary axis with
unitary geometricmultiplicity; xi , ui ∈ R

n represent node state and control variables.
The network nodes exchange information according to the configuration described
by the links of G . To achieve synchronization with constrained flow of information,
we employ a hybrid controller with state variables (x, η, ξ, θ) ∈ R

n×N × R
n×N ×

R
n×d × R

n×d , where d := ∑N
i=1 d

i . The controller also makes use of a quantization
function.

The specific quantizer of choice is signε : R → {−1, 0, 1}, which is given by

signε(z) :=
{
sign(z) if |z| ≥ ε

0 otherwise
(11.2)
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where ε > 0 is a sensitivity parameter, which is selected at the design stage to
trade-off between synchronization accuracy and communication frequency. The flow
dynamics are given by

η̇i = (A + BK )ηi +
∑

j∈N i

ξ i j (11.3a)

ξ̇ i j = Aξ i j (11.3b)

θ̇ i j = −1 (11.3c)

ui = Kηi , (11.3d)

where A + K B is Hurwitz; ηi ∈ R
n and ξ i j ∈ R

n are controller states, and θ i j ∈ R
n

is the local clock over the link (i, j) ∈ E , where θ i j (0) = 0. As it will become clear
in the sequel, the superscript “i j” appearing in ξ and θ indicates that these variables
are common to nodes i and j . The continuous evolution of the edge-based controller
dynamic holds as long as the set

S (θ, t) := {(i, j, �) ∈ I × I × L : θ
i j
� (t−) = 0} (11.4)

is nonempty, where s(t−) denotes the limit from below of a signal s(t), i.e.,
s(t−) = limτ↗t s(τ ), and where � ∈ L := {1, 2, . . . , n}. At these time instants, in
the “nominal” operating mode, a discrete transition (jump) occurs, which is given by

xi�(t) = xi�(t
−)

ηi
�(t) = ηi

�(t
−)

ξ
i j
� (t) =

⎧
⎪⎨

⎪⎩

[eAt signε(e
−AtD i j (η(t) − x(t)))]� if (i, j, �) ∈ S (θ, t)

ξ
i j
� (t−) otherwise

θ
i j
� (t) =

⎧
⎪⎨

⎪⎩

f i j� (t) if (i, j, �) ∈ S (θ, t)

θ
i j
� (t−) otherwise

(11.5)

for every i ∈ I , j ∈ Ni , and � ∈ L .
Here, D i j (α(t)) = α j (t) − αi (t) and f i j� : Rn → R>0 is given by

f i j� (x) = max

{∣
∣[e−AtD i j (η(t) − x(t))

]
�

∣
∣

2(di + d j )
,

ε

2(di + d j )

}

. (11.6)

Note that for all (i, j) ∈ E we have θ i j (t) = θ j i (t) and ξ i j (t) = −ξ j i (t) for all
t ∈ R�0. As such, (11.1)–(11.5) can be regarded as an edge-based synchronization
protocol. Here, the term “Self-Triggered”, first adopted in the context of real-time



11 Resilient Self-Triggered Network Synchronization 223

systems [26], expresses the property that the data exchange between nodes is driven
by local clocks, which avoids the need for a common global clock.

A few comments are in order.

Remark 11.1 (Controller structure) The controller emulates the node dynamics
(11.1), with an extra coupling term as done in [17]. The coupling is through the
variable ξ i j , which is updated at discrete times and emulates the open-loop behavior
of (11.1) during its the controller continuous evolution [19]. Slightly different from
[17], the coupling term ξ i j takes into account the discrepancy between node and
controller states. This choice of coupling is due to the use of the quantizer (11.2)
which triggers at discrete instances. �

Remark 11.2 (Clock variable θ
i j
� ) Each clock variable θ

i j
� plans ahead the update

time of component � of controller state ξ i j . Whenever θ
i j
� reaches zero, the �th

component of the controller state and clock variables is updated. In order to avoid
arbitrarily fast sampling (Zeno phenomena), we use the threshold ε in the update of
the function f i j in (11.6). In particular, this implies that for every edge (i, j) ∈ E

and for any time T , no more than n� 2(di+d j )T
ε

+ 1	 number of updates can occur
over an interval of length T . �

11.2.2 Practical Self-Triggered Synchronization

Inspired by [17], we analyze (11.1)–(11.5) using the change of coordinates

xi (t) = xi (t)

X i (t) = e−At (ηi (t) − xi (t))

U i j (t) = e−Atξ i j (t)

θ i j (t) = θ i j (t).

(11.7)

Accordingly, the network-state variables become (x,X ,U , θ) ∈ R
n×N × R

n×N ×
R

n×d × R
n×d with corresponding flow dynamics

ẋ i (t) = (A + BK )xi (t) + BKeAtX i (t) (11.8a)

Ẋ i (t) =
∑

j∈N i

U i j

U̇ i j (t) = 0 (11.8b)

θ̇ i j (t) = −1

and discrete transitions (jumps)
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xi�(t) = xi�(t
−) (11.9a)

X i
� (t) = X i

� (t−)

U i j
� (t) =

⎧
⎪⎨

⎪⎩

signε (D i j
� (X (t)) if (i, j, �) ∈ S (θ, t)

U i j
� (t−) otherwise

(11.9b)

θ
i j
� (t) =

⎧
⎪⎨

⎪⎩

gi j� (X (t)) if (i, j, �) ∈ S (θ, t)

θ
i j
� (t−) otherwise

where (i, j, �) ∈ I × I × L and

gi j� (X (t)) = max

⎧
⎨

⎩

∣∣∣D i j
� (X (t))

∣∣∣

2(di + d j )
,

ε

2(di + d j )

⎫
⎬

⎭
. (11.10)

Notice that the notion of local time in both coordinates is the same. The reason for
considering this change of coordinates is to transform the original synchronization
problem into a consensus problem that involves integrator variables X i .

The result which follows is the main result of this section.

Theorem 11.1 (Practical Synchronization) Let all the eigenvalues of A lie on the
imaginary axis with geometric multiplicity equal to one. Let (x,X ,U , θ) be the
solution to system (11.8) and (11.9). Then, there exist a finite time T such that X
converges within the time T to a point X∗ = [X 1∗

�
, . . . ,X N∗

�]� in the set

E :=
{
X ∈ R

nN : |D i j
� (X )| < δ ∀ (i, j, �) ∈ I × I × L

}
, (11.11)

where δ = ε(N − 1), andU (t) = 0 for all t ≥ T . Moreover, for any arbitrary small
εc ∈ R>0 there exist a time Tc(εc) � T such that

∣∣xi�(t) − x j
� (t)

∣∣ < 2εc + √
n δ ∀(i, j, �) ∈ I × I × L (11.12)

for all t � Tc(εc), where n is the dimension of the vector x.

Proof See the appendix. �

Equations (11.11) and (11.12) involve a notion of “practical” synchronization.
This amounts to saying that the solutions eventually synchronize up to an error,
which can be made as small as desired by reducing ε (at the expense of an increase
in the communication cost since, in view of (11.6), the minimum inter-transmission
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timedecreaseswith ε). Theorem11.1will be used as a reference frame for the analysis
of Sect. 11.4. The case of asymptotic synchronization can be pursued along the lines
of [18].

11.3 Network Denial-of-Service

We shall refer to denial-of-service (DoS, in short) as the phenomenon by which
communication between the network nodes is interrupted.We shall consider the very
general scenario in which the network communication links can fail independent of
each other. From the perspective of modeling, this amounts to considering multiple
DoS signals, one for each network communication link.

11.3.1 DoS Characterization

Let {hi jn }n∈Z≥0 with hi j0 ≥ 0 denote the sequence of DoS off/on transitions affecting
the link (i, j), namely the sequence of time instants at which the DoS status on
the link (i, j) exhibits a transition from zero (communication is possible) to one
(communication is interrupted). Then

Hi j
n := {hi jn } ∪ [

hi jn , hi jn + τ i j
n

[
(11.13)

represents the nth DoS time-interval, of a length τ
i j
n ∈ R�0, during which commu-

nication on the link (i, j) is not possible.
Given t, τ ∈ R≥0, with t ≥ τ , let

Ξ i j (τ, t) :=
⋃

n∈Z≥0

Hi j
n

⋂
[τ, t] (11.14)

and
Θ i j (τ, t) := [τ, t] \ Ξ i j (τ, t) (11.15)

where \ denotes relative complement. In words, for each interval [τ, t],Ξ i j (τ, t) and
Θ i j (τ, t) represent the sets of time instants where communication on the link (i, j)
is denied and allowed, respectively.

The first question to be addressed is that of determining a suitable modeling
framework forDoS. Following [13], we consider a generalmodel that only constrains
DoS attacks in terms of their average frequency and duration. Let ni j (τ, t) denote the
number of DoS off/on transitions on the link (i, j) occurring on the interval [τ, t].
Assumption 11.2 (DoS frequency) For each (i, j) ∈ E , there exist ηi j ∈ R≥0 and
τ
i j
f ∈ R>0 such that
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ni j (τ, t) ≤ ηi j + t − τ

τ
i j
f

(11.16)

for all t, τ ∈ R≥0 with t ≥ τ . �

Assumption 11.3 (DoS duration) For each (i, j) ∈ E , there exist κ i j ∈ R≥0 and
τ
i j
d ∈ R>1 such that

|Ξ i j (τ, t)| ≤ κ i j + t − τ

τ
i j
d

(11.17)

for all t, τ ∈ R≥0 with t ≥ τ . �

In Assumption11.2, the term “frequency” stems from the fact that τ i j
f provides a

measure of the “dwell time” between any two consecutive DoS intervals on the link
(i, j). The quantity ηi j is needed to render (11.16) self-consistent when t = τ = hi jn
for some n ∈ Z�0, in which case ni j (τ, t) = 1. Likewise, in Assumption11.3, the
term “duration” is motivated by the fact that τ

i j
d provides a measure of the fraction

of time (τ i j
d > 1) the link (i, j) is under DoS. Like ηi j , the constant κ i j plays the

role of a regularization term. It is needed because during a DoS interval, one has
|Ξ(hi jn , hi jn + τ

i j
n )| = τ

i j
n � τ

i j
n /τ

i j
d since τ

i j
d > 1, with τ

i j
n = τ

i j
n /τ

i j
d if and only if

τ
i j
n = 0. Hence, κ i j serves to make (11.17) self-consistent. Thanks to the quantities

ηi j and κ i j , DoS frequency and duration are both average quantities.

11.3.2 Discussion

The considered assumptions only pose limitations on the frequency of the DoS status
and its duration. As such, this characterization can capture many different scenarios,
including trivial, periodic, random and protocol-aware jamming [5, 6, 20, 21]. For
the sake of simplicity, we limit our discussion to the case of radio frequency (RF)
jammers, although similar considerations can be made with respect to spoofing-like
threats [27].

Consider for instance the case of constant jamming, which is one of the most
common threats that may occur in a wireless network [5, 28]. By continuously
emitting RF signals on the wireless medium, this type of jamming can lower the
packet send ratio (PSR) for transmitters employing carrier sensing as a medium
access policy as well as lower the packet delivery ratio (PDR) by corrupting packets
at the receiver. In general, the percentage of packet losses caused by this type of
jammer depends on the jamming-to-signal ratio and can be difficult to quantify as it
depends, among many things, on the type of anti-jamming devices, the possibility
to adapt the signal strength threshold for carrier sensing, and the interference signal
power, which may vary with time. In fact, there are several provisions that can be
taken in order to mitigate DoS attacks, including spreading techniques, high-pass
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filtering, and encoding [21, 29]. These provisions decrease the chance that a DoS
attack will be successful, and, as such, limit in practice the frequency and duration
of the time intervals over which communication is effectively denied. This is nicely
captured by the considered formulation.

As another example, consider the case of reactive jamming [5, 28]. By exploiting
the knowledge of the 802.1i MAC layer protocols, a jammer may restrict the RF
signal to the packet transmissions. The collision period need not be long since with
many CRC error checks a single-bit error can corrupt an entire frame. Accordingly,
jamming takes the form of a (high-power) burst of noise, whose duration is deter-
mined by the length of the symbols to corrupt [29, 30]. Also, this case can be nicely
accounted for via the considered assumptions.

11.4 Main Result

11.4.1 Resilient Self-Triggered Synchronization

When DoS disrupts link communications, the former controller state ξ
i j
� is not avail-

able any more. In order to compensate for the communication failures, the control
action is suitably modified as follows during the controller discrete updates,

xi�(t) = xi�(t
−)

X i
� (t) = X i

� (t−)

U i j
� (t) =

⎧
⎪⎪⎨

⎪⎪⎩

signε (D i j
� (X )) if (i, j, �) ∈ S (θ, t) ∧ t ∈ Θ i j (0, t)

0 if (i, j, �) ∈ S (θ, t) ∧ t ∈ Ξ i j (0, t)

U i j
� (t−) otherwise

θ
i j
� (t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

gi j� (t) if (i, j, �) ∈ S (θ, t) ∧ t ∈ Θ i j (0, t)
ε

2(di + d j )
if (i, j, �) ∈ S (θ, t) ∧ t ∈ Ξ i j (0, t)

θ
i j
� (t−) otherwise

(11.18)

In words, the control action U i j is reset to zero whenever the link (i, j) is in DoS
status.1 In addition toU , also the local clocks aremodified uponDoS, yielding a two-
mode sampling logic. Let {t i j�k

}�k∈Z≥0 denote the sequence of transmission attempts
for �th component of ξ i j over the link (i, j) ∈ E . Then, when a communication

1Notice that this requires that the nodes are able to detect the occurrence of DoS. This is the case, for
instance, with transmitters employing carrier sensing as medium access policy. Another example is
when transceivers use TCP-like protocols.
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attempt is successful t i j�k+1
= t i j�k

+ gi j� (t), and when it is unsuccessful t i j�k+1
= t i j�k

+ ε/

(2(di + d j )).
In order to characterize the overall network behavior in the presence of DoS. The

analysis is subdivided into two main steps: (i) we first prove that all the edge-based
controllers eventually stop updating their local controls; and (ii) we then provide con-
ditions on the DoS frequency and duration such that synchronization, in the sense
of (11.12), is preserved. This is achieved by resorting to a notion of persistency-of-
Communication (PoC), which naturally extends the PoE condition [25] to a digital
networked setting by requiring graph connectivity over periods of time that are con-
sistent with the constraints imposed by the communication medium.

As for (i), we have the following result.

Proposition 11.1 (Convergence of the solutions) Let (x,X ,U , θ) be the solutions
to (11.8) and (11.18). Then, there exists a finite time T∗ such that, for any (i, j) ∈ E ,
it holds that U i j

� (t) = 0 for all � ∈ L and for all t � T∗.

Proof See the appendix. �

The above result does not allow one to conclude anything about the final dis-
agreement vector in the sense that given a pair of nodes (i, j), the asymptotic value
of |X j

� (t) − X i
� (t)| and/or |x j

� (t) − xi�(t)| can be arbitrarily large. As an example,
if node i is never allowed to communicate then X i (t) = X i (0) and the oscillator
state xi (t) satisfies ẋ i (t) = Axi (t)with initial condition −X i (0) for all t ∈ R�0. In
order to recover the same conclusions as in Theorem11.1, bounds on DoS frequency
and duration have to be enforced. The result which follows provides one such char-
acterization. Let (i, j) ∈ E be a generic network link, and consider a DoS sequence
on (i, j), which satisfies Assumptions11.2 and 11.3. Define

αi j := 1

τ
i j
d

+ Δ
i j
∗

τ
i j
f

(11.19)

where

Δi j
∗ := ε

2(di + d j )
. (11.20)

As for (ii), we have the following result.

Proposition 11.2 (Persistency-of-communication (PoC)) Consider any link (i, j) ∈
E employing the transmission protocol (11.18). Also consider any DoS sequence on
(i, j), which satisfies Assumptions11.2 and 11.3 with ηi j and κ i j arbitrary, and τ

i j
d

and τ
i j
f such that αi j < 1. Let

Φ i j := κ i j + (ηi j + 1)Δi j
∗

1 − αi j
. (11.21)
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Then, for any given unsuccessful transmission attempt t i j�k
, at least one successful

transmission occurs over the link (i, j) within the interval [t i j�k
, t i j�k

+ Φ i j ].

Proof See the appendix. �

The following result extends the conclusions of Theorem11.1 to the presence of
DoS.

Theorem 11.4 Let (x,X ,U , θ) be the solution to (11.8) and (11.18). For each
(i, j) ∈ E , consider any DoS sequence that satisfies Assumptions11.2 and 11.3 with
ηi j and κ i j arbitrary, and τ

i j
d and τ

i j
f such that αi j < 1. Then, X converges in a

finite time T∗ to a point X ∗ in (11.11), and U (t) = 0 for all t ≥ T∗. Moreover, for
every εc ∈ R>0 there exists a time Tc(εc) � T∗ such that (11.12) is satisfied for all
t � Tc(εc).

Proof By Proposition11.1, all the local controls become zero in a finite time T∗. In
turn, Proposition11.2 excludes that this is due to the persistence of a DoS status.
Then the result follows along the same lines as in Theorem11.1. �

Remark 11.3 One main reason for considering DoS comes from studying network
coordination problems in the presence of possibly malicious attacks. In fact, the pro-
posed modeling framework allows to consider DoS patterns that need not follow a
given class of probability distribution, which is instead a common hypothesis when
dealing with “genuine” DoS phenomena such as network congestion or communica-
tion errors due to low-quality channels. In this respect, [16] discusses how genuine
DoS can be incorporated into this modeling framework. �

11.4.2 Effect of DoS on the Synchronization Time

By Theorem11.4, Ẋ becomes zero in a finite time T∗ after which the network states
x exponentially synchronize. Thus, it is of interest to characterize T∗, which amounts
to characterizing the effect of DoS on the time needed to achieve synchronization.

Lemma 11.1 (Bound on the convergence time) Consider the same assumptions as
in Theorem11.4. Then,

T∗ �
[
1

ε
+ dmax

εdmin
+ 4dmax

ε2
Φ

] ∑

i∈I

∑

�∈L
(ηi

�(0) − xi�(0))
2, (11.22)

where dmin := mini∈I di and Φ := max(i, j)∈E Φ i j .
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Proof Consider the same Lyapunov function V as in the proof of Theorem11.1.
Notice that, by construction of the control law and the scheduling policy, for
every successful transmission t i j�k

characterized by |D i j
� (X (t i j�k

)| � ε, the function
V decreases with rate not less than ε/2 for at least ε/(4dmax) units of time, in which
case V decreases by at least ε2/(8dmax) =: ε∗. Considering all the network links,
such transmissions are in total no more than �V (0)/ε∗	 since, otherwise, the func-
tion V would become negative. Hence, it only remains to compute the time needed
to have �V (0)/ε∗	 of such transmissions. In this respect, pick any t∗� � 0 such that
consensus has still not been reached on the �th component of X . Note that we can
haveU i j

� (t∗� ) = 0 for all (i, j) ∈ E . However, this condition can last only for a lim-
ited amount of time. In fact, if U i j

� (t∗� ) = 0 then the next transmission attempt, say
li j� , over the link (i, j) and component-� will necessarily occur at a time less than or
equal to t∗� + Δ

i j
∗ with Δ

i j
∗ � ε/(4dmin). Let Q := [t∗� , t∗� + Δ

i j
∗ ], and suppose that

over Q some of the controls U i j
� have remained equal to zero. This implies that

for some (i, j) ∈ E we necessarily have that li j� is unsuccessful. This is because if
U i j

� (t) = 0 for all (i, j) ∈ E and all t ∈ Q thenX i
� (t) = X i

� (t∗� ) for all i ∈ I and
all t ∈ Q. Hence, if all the li j� were successful, we should also have U i j

� (li j� ) �= 0
for some (i, j) ∈ E since, by hypothesis, consensus is not reached at time t∗� . Hence,
applying Proposition11.2 we conclude that at least one of the controls U i j

� will
become nonzero before li j� + Φ i j . As each vector component � has the same Δ

i j
∗ , at

least one of the control vectors U i j will become nonzero before the same amount
of time. Overall, this implies that at least one control will become nonzero before
ε/(4dmin) + Φ units of time have elapsed. Since t∗� is generic, we conclude that
V decreases by at least ε∗ every ε/(4dmax) + ε/(4dmin) + Φ units of time, which
implies that

T∗ �
[

ε

4dmax
+ ε

4dmin
+ Φ

]
V (0)

ε∗
. (11.23)

The thesis follows by recalling that V (0) can be rewritten as

V (0) = 1

2

∑

i∈I

∑

�∈L
(X i

� (0))2. (11.24)

�

11.5 A Numerical Example

We consider a random (connected) undirected graph with N = 6 nodes and with
di = 2 for all i ∈ I . Each node has harmonic oscillator dynamics of the form
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Table 11.1 DoS average duty cycle over links

Link (i, j) Duty cycle (%) Link (i, j) Duty cycle (%)

{1, 2} 56.07 % {1, 4} 55.12 %

{2, 3} 55.2 % {3, 6} 56.3 %

{4, 5} 66.06 % {5, 6} 59.72 %
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Fig. 11.1 Evolution of x , corresponding to the solution to (11.1)–(11.3) and (11.18) for a random
graph with N = 6 nodes in the presence of DoS

ẋ i (t) =
[
0 1

−1 0

]
xi (t) +

[
0
1

]
ui (t). (11.25)

The nodes initial values are randomly within interval [−2, 2] and (η(0), ξ(0), θ(0))
= (0, 0, 0).

In the simulations, we considered DoS attacks which affect each of the network
links independently. For each link, the corresponding DoS pattern takes the form of a
pulse-width-modulated signal with variable period and duty cycle (maximum period
of 0.4sec and maximum duty cycle equal to 55%), both generated randomly. These
patterns are reported in Table11.1 for each network link.

The evolution of x , corresponding to the solutions to (11.1)–(11.3) and (11.18)
with ε = 0.04 is depicted in Fig. 11.1. One sees that x exhibits a quite smooth
response. In fact, the impact of loss of information can be better appreciated by
looking at the controller dynamics, which are reported in Figs. 11.2 and 11.3. This
can be explained simply by noting that the controller state ξ is affected by DoS
directly while x is affected by DoS indirectly since ξ enters the node dynamics after
being filtered twice.
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Fig. 11.2 Evolution of the controller state η in the absence of DoS
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Fig. 11.3 Evolution of the controller state η in the presence of DoS
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Fig. 11.4 Locus of the
points 1/τd + Δ∗/τ i jf = 1 as
a function of (τd , τ f ) with
Δ∗ = 0.05 (blue solid line).
The horizontal axis
represents τd and the vertical
axis represents τ f . Notice

that Δ∗ = Δ
i j∗ for all

(i, j) ∈ E , so that the locus
of point does not vary with
(i, j). The various “∗”
represent the values of
(τ

i j
d , τ

i j
f ) for the network

links

1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

As afinal comment, note that for eachDoSpattern one can compute corresponding
values for (ηi j , κ i j , τ

i j
f , τ

i j
d ). They can be determined by computing ni j (τ, t) and

|Ξ i j (τ, t)| of each DoS pattern (cf. Assumptions11.2 and 11.3) over the considered
simulation horizon. Figure11.4 depicts the values obtained for τ

i j
f and τ

i j
d for each

(i, j) ∈ E . One sees that these values are consistent with the requirements imposed
by the PoC condition.

11.6 Conclusions

In this chapter, we have investigated Self-Triggered synchronization of group of
harmonic oscillators in presence of denial-of-service at communication links. In the
considered framework each of the network links fail independently, which is relevant
for peer-to-peer networks architectures. A characterization of DoS frequency and
duration is provided underwhich network synchronization is preserved, alongwith an
explicit estimate of the effect of DoS on the time required to achieve synchronization.

Appendix

Proof of Theorem11.1 As a first step, we analyze the consensus of subsystem
(X ,U , θ). Afterward, we will investigate the synchronization of the states xi

throughout the relation X i (t) = e−At (ηi (t) − xi (t)).
Consider theLyapunov functionV (X ) = 1

2X
�X , and let t i j�k

:= max{t i jl : t i jl �
t, l ∈ Z�0}. The derivative of V along the solutions to (11.8) satisfies
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V̇ (X (t)) =
N∑

i=1

X i�(t) Ẋ i (t)

= −
∑

(i, j)∈E
(X j (t) − X i (t))�U i j (t i j�k

)

= −
∑

(i, j)∈E

n∑

�=1

D i j
� (X (t)) signε(D

i j
� (X (t i j�k

))).

(11.26)

During the continuous evolution |Ḋ i j
� (X (t))| ≤ di + d j for t ∈ [t ik, t ik+1[, where

D i j (X (t)) = X j (t) − X i (t). Exploiting this fact and recalling the definition of
gi j� (X (t)) in (11.10), it holds that if |D i j

� (X (t i j�k
))| ≥ ε then

|D i j
� (X (t))| ≥ |D i j

� (X (t i j�k
))| − (di + d j )(t − t i j�k

)

≥ |D i j
� (X (t i j�k

))|
2

(11.27)

and

signε(D
i j
� (X (t))) = signε(D

i j
� (X (t i j�k

))). (11.28)

Using (11.27) and (11.28) we conclude that

V̇ (X (t)) ≤ −
∑

(i, j)∈E

∑

�∈L :
|D i j

� (X (t i j�k
))|≥ε

|D i j
� (X (t i j�k

))|
2

(11.29)

In view of (11.29), there must exist a finite time T such that, for every (i, j) ∈ E and
every k, � with t i j�k

� T , it holds that |D i j
� (X (t i j�k

))| < ε. This is because, otherwise,
V would become negative. The inequality in (11.11) follows by recalling that, in a
graph with N nodes the graph diameter is N − 1. This shows that X converges in
a finite time T to a point X∗ in the set E .

We now focus on x . In view of (11.2), U converges to zero in a finite time.
Moreover, in view of (11.7), we have that ηi (t) − xi (t) converges to eAtX i∗ and ξ

to 0 in a finite time. As for η, recall that ηi has flow and jump dynamics given by

η̇i (t) = (A + BK )ηi (t) +
∑

j∈N i

ξ i j (t)

ηi (t) = ηi (t−).

(11.30)

Hence, η converges exponentially to the origin since ξ converges to 0 is a finite time
and A + BK isHurwitz. Combining this factwith the property thatηi (t) − xi (t) con-
vergence asymptotically to eAtX i∗ , we have that xi (t) convergence asymptotically to
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−eAtX i∗ . This implies that for any node i ∈ I and any εc ∈ R>0, there exists a time
Tc(εc) after which ‖xi (t) + eAtX i∗ ‖ ≤ εc, where ‖·‖ stands for Euclidean norm.

Notice that, in general, X i∗ �= X j
∗ for i �= j in accordance with the practical

consensus property (11.11). Therefore, the solutions xi and x j for all (i, j) ∈ I ×
I will achieve practical consensus as well. In particular, an upper bound on their
disagreement level can be estimated as

‖xi (t) − x j (t)‖ ≤ ‖xi (t) + eAtX i
∗ ‖ + ‖x j (t) + eAtX i

∗ ‖
� ‖xi (t) + eAtX i

∗ ‖ + ‖x j (t) + eAtX j
∗ ‖ + ‖eAtX i

∗ − eAtX j
∗ ‖

≤ 2εc + ‖eAt (X j
∗ − X i

∗ )‖ (11.31)

≤ 2εc + √
n δ

where the last inequality is obtained from (11.11) and the fact that A has purely
imaginary eigenvalues by hypothesis. This concludes the proof. �

Proof of Proposition 1 Reasoning as in the proof of Theorem11.1, it is an easy
matter to see that in the presence of DoS (11.29) modifies into

V̇ (X (t)) ≤ −
∑

(i, j)∈E

∑

�∈L :
|D i j

� (X (t i j�k
))|≥ε ∧

t i j�k
∈Θ i j (0,t)

|D i j
� (X (t i j�k

))|
2

. (11.32)

In words, the derivative of V decreases whenever, for some (i, j) ∈ E , � ∈ L ,
two conditions are met: (i) |D i j

� (X (t i j�k
))| � ε, which means that i and j are not

component-wise ε-close; and (ii) communication on the link that connects i and j is
possible.

From (11.32) there must exist a finite time T∗ such that, for every {i, j, �} ∈
E × L and every k with t i j�k

� T∗, it holds that |D i j
� (X (t i j�k

))| < ε or t i j�k
∈ Ξ i j (0, t).

This is because, otherwise, V would become negative. The proof follows by recalling
that in both the cases |D i j

� (X (t i j�k
))| < ε and t i j�k

∈ Ξ i j (0, t) the controlU i j
� (t) is set

equal to zero. �

Proof of Proposition11.2 Consider any link (i, j) ∈ E , and suppose that a certain
transmission attempt t i j�k

is unsuccessful. We claim that a successful transmission

over the link (i, j) does always occur within [t i j�k
, t i j�k

+ Φ i j ]. We prove the claim
by contradiction. To this end, we first introduce a number of auxiliary quantities.
Denote by H̄ i j

n := {hi jn } ∪ [hi jn , hi jn + τ
i j
n + Δ

i j
∗ [the nth DoS interval over the link

(i, j) prolonged by Δ
i j
∗ units of time. Also, let

Ξ̄ i j (τ, t) :=
⋃

n∈Z≥0

H̄ i j
n

⋂
[τ, t] (11.33)

Θ̄ i j (τ, t) := [τ, t] \ Ξ̄ i j (τ, t). (11.34)
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Suppose then that the claim is false, and let t�� denote the last transmission attempt over
[t i j�k

, t i j�k
+ Φ i j ]. Notice that this necessarily implies |Θ̄ i j (t i j�k

, t�� )| = 0. To see this, first

note that, in accordancewith (11.18), the inter-sampling time over the interval [t i j�k
, t�� ]

is equal to ε/(2(di + d j )) = Δ
i j
∗ . Hence, we cannot have |Θ̄ i j (t i j�k

, t�� )| > 0 since this

would imply the existence of a DoS-free interval within [t i j�k
, t�� ] of length greater than

Δ
i j
∗ , which is not possible since, by hypothesis, no successful transmission attempt

occurs within [t i j�k
, t�� ]. Thus |Θ̄ i j (t i j�k

, t�� )| = 0. Moreover, since t�� is unsuccessful,

it must be contained in a DoS interval, say Hi j
q . This implies [t�� , t�� + Δ

i j
∗ [⊆ H̄ i j

q .
Hence, we have

|Θ̄ i j (t i j�k
, t�� + Δi j

∗ )| = |Θ̄ i j (t i j�k
, t�� )| + |Θ̄ i j (t�� , t

�
� + Δi j

∗ )|
= 0 (11.35)

However, condition |Θ̄(t i j�k
, t�� + Δ

i j
∗ )| = 0 is not possible. To see this, notice that

|Θ̄ i j (t i j�k
, t)| = t − t i j�k

− |Ξ̄ i j (t i j�k
, t)|

� t − t i j�k
− |Ξ i j (t i j�k

, t)| − (n(t i j�k
, t) + 1)Δi j

∗
� (t − t i j�k

)(1 − αi j ) − κ i j − (ηi j + 1)Δi j
∗ (11.36)

for all t � t i j�k
where the first inequality follows from the definition of the set Ξ̄ i j (τ, t)

while the second one follows fromAssumptions11.2 and 11.3. Hence, by (11.36), we
have |Θ̄ i j (t i j�k

, t)| > 0 for all t > t i j�k
+ (1 − αi j )−1(κ i j + (ηi j + 1)Δi j

∗ ) = t i j�k
+ Φ i j .

Accordingly, |Θ̄(t i j�k
, t�� + Δ

i j
∗ )| = 0 cannot occur because t�� + Δ

i j
∗ > t i j�k

+ Φ i j . In
fact, by hypothesis, t�� is defined as the last unsuccessful transmission attempt within
[t i j�k

, t i j�k
+ Φ i j ], and, by (11.18), the next transmission attempt after t�� occurs at time

t�� + Δ
i j
∗ . This concludes the proof. �
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Chapter 12
Distributed Hybrid Control Synthesis
for Multi-AgentSystems from High-Level
Specifications

M. Guo, D. Boskos, J. Tumova and D. V. Dimarogonas

Abstract Current control applications necessitate in many cases the consideration
of systemswithmultiple interconnected components. These components/agents may
need to fulfill high-level tasks at a discrete planning layer and also coupled constraints
at the continuous control layer. Toward this end, the need for combined decentralized
control at the continuous layer and planning at the discrete layer becomes apparent.
While there are approaches that handle the problem in a top-down centralized man-
ner, decentralized bottom-up approaches have not been pursued to the same extent.
We present here some of our results for the problem of combined, hybrid control and
task planning from high-level specifications for multi-agent systems in a bottom-up
manner. In the first part, we present some initial results on extending the neces-
sary notion of abstractions to multi-agent systems in a distributed fashion. We then
consider a setup where agents are assigned individual tasks in the form of linear tem-
poral logic (LTL) formulas and derive local task planning strategies for each agent.
In the last part, the problem of combined distributed task planning and control under
coupled continuous constraints is further considered.
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12.1 Introduction

We consider multi-agent systems that need to fulfill high-level tasks, e.g., to period-
ically reach a given subset of states, or to reach a certain set of states in a particular
order, and also undergo dynamically coupled constraints, e.g., to maintain connectiv-
ity, or avoid collisions. Toward this end, the need for combined decentralized control
at the continuous layer and planning at the discrete layer becomes apparent. While
there are approaches that handle the problem in a top-down centralized manner,
decentralized bottom-up approaches have not been pursued to the same extent. We
present here some of our results for the problem of hybrid control synthesis of multi-
agent systems under high-level specifications in a bottom-up manner. This approach
can enhance various system properties, such as reducing the computational complex-
ity induced by the number of agents, improving modularity in terms of new agents
entering the system, and incorporating fault tolerance, robustness, and adaptability
to changes in the workspace.

The next part focuses on distributed abstractions of the multi-agent system. We
assume that the agents’ dynamics consist of feedback interconnection terms, which
represent dynamically coupled constraints of the multi-agent system, and additional
bounded input terms, which we call free inputs and provide the ability for motion
planning under the coupled constraints. For the derivation of the symbolic models,
we quantify admissible space-time discretizations in order to capture reachability
properties of the original system. We provide sufficient conditions which establish
that the abstraction of our original system is well posed, in the sense that the finite
transition system which serves as an abstract model for the motion capabilities of
each agent has at least one outgoing transition for every discrete state. Each agent’s
abstract model is based on the knowledge of its neighbors’ discrete positions and
the transitions are performed through the selection of appropriate hybrid control
laws in place of the agent’s free input, which enables the manipulation of the cou-
pling terms and can drive the agent to its possible successor states. In addition, the
derived discretizations include parameters whose tuning enables multiple transitions
and provides quantifiable motion planning capabilities for the system. Finally, the
corresponding results are generalized by allowing for a varying degree of decentral-
ization i.e., by building each agent’s abstract model based on the knowledge of its
neighbors’ discrete positions up to a tunable distance in the communication graph.

In the next part, we deal with dependent temporal logic specifications at the dis-
crete planning level. Namely, the agents’ behaviors are limited by mutually indepen-
dent temporal logic constraints, allowing to express safety, surveillance, sequencing,
or reachability properties of their traces, and, at the same time, a part of the specifi-
cation expresses the agents’ tasks in terms of the services to be provided along the
trace. These may impose requests for the other agent’s collaborations. We propose a
two-phase solution based on automata-based model checking, in which the planning
procedure for the two types of specifications is systematically decoupled. While this
procedure significantly reduces the cost in the case of sparse dependencies, it meets
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the complexity the centralized solution at worst case. We introduce an additional
iterative limited horizon planning technique as a complementary technique.

We then tackle the multi-agent control problem under local temporal logic tasks
and continuous-time constraints. The local tasks are dependent due to collaborative
services, while at the same time the agents are subject to dynamic constraints with
their neighboring agents. Thus, integration of the continuous motion control with
the high-level discrete network structure control is essential. Particularly, the agents
are subject to relative-distance constraints which relate to the need of maintaining
connectivity of the overall network. The local tasks capture the temporal requirements
on the agent’s actions, while the relative-distance constraints impose requirements
on the collective motion of the whole team. Our approach to the problem involves
an offline and an online step. In the offline step, we synthesize a high-level plan in
the form of a sequence of services for each of the agents. In the online step, we
dynamically switch between the high-level plans through leader election and choose
the associated continuous controllers. The whole team then follows the leader toward
until its next service is provided and then a new leader is selected. It is guaranteed
that each agent’s local task will be accomplished and the communication network
remains connected at all time.

12.2 Decentralized Abstractions

12.2.1 Introduction

In this section,we focus onmulti-agent systemswith continuous dynamics consisting
of feedback terms, which induce coupling constraints, and bounded additive inputs,
which provide the agents’ control capabilities. The feedback interconnection between
the agents can represent internal dynamics of the system, or alternatively, a control
design guaranteeing certain system properties (e.g., network connectivity or collision
avoidance), which appears often in the multi-agent literature. The results are based
on our recent works [3] and [4], which provide sufficient conditions for the existence
of distributed discrete models for multi-agent systems with coupled dynamics. In
particular, our main goal is to obtain a partition of the workspace into cells and select
a transition time step, in order to derive for each agent an abstract discrete model with
at least one outgoing transition from each discrete state. Compositional approaches
for symbolic models of interconnected systems have been also studied in the recent
works [7, 17, 19, 20], and [21], and are primarily focused on the discrete time case.

12.2.2 Problem Formulation

We consider multi-agent systems of the form

ẋi = fi (xi , x j ) + vi , xi ∈ Rn, i ∈ N , (12.1)
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whereN := {1, . . . , N } stands for the agents’ set. Each agent is assumed to have a
fixed number Ni of neighbors j1, . . . , jNi . The dynamics in (12.1) are decentralized
and consist for each i ∈ N of a feedback term fi (·), which depends on i’s state
xi and the states of its neighbors, which are compactly denoted by x j (= x j (i)) :=
(x j1 , . . . , x jNi

), and an additional input term vi , which we call free input. We assume
that the feedback terms fi (·) are globally bounded, namely, there exists a constant
M > 0 such that

| fi (xi , x j )| � M,∀(xi , x j ) ∈ R(Ni+1)n (12.2)

and that they are globally Lipschitz. Thus, there exist constants L1, L2 > 0, such
that

| fi (xi , x j ) − fi (xi , y j )| � L1|(xi , x j ) − (xi , y j )|, (12.3)

| fi (xi , x j ) − fi (yi , x j )| � L2|(xi , x j ) − (yi , x j )|, (12.4)

for all xi , yi ∈ Rn , x j , y j ∈ RNi n and i ∈ N . Furthermore, we consider piecewise
continuous free inputs vi that satisfy the bound

|vi (t)| � vmax,∀t � 0, i ∈ N . (12.5)

The coupling terms fi (xi , x j ) are encountered in a large set of multi-agent proto-
cols [16], including consensus, connectivity maintenance, collision avoidance, and
formation control. In addition, (12.1) may represent internal dynamics of the system
as for instance in the case of smart buildings (see e.g., [1]). It is also assumed that
the maximum magnitude of the feedback terms is higher than that of the free inputs,
namely, that vmax < M . This assumption is in part motivated by the fact that we are
primarily interested in maintaining the property that the feedback is designed for,
and secondarily, in exploiting the free inputs in order to accomplish high-level tasks.
A class of multi-agent systems of the form (12.1) which justifies this assumption has
been studied in our companion work [5], which is focused on robust network connec-
tivity maintenance by means of bounded feedback laws. It is worthwhile mentioning
that all these assumptions are removed in [6], where the discrete models are built
online over a bounded time horizon, and require only forward completeness of the
system’s trajectories.

In what follows, we consider a cell decomposition S = {Sl}l∈I of the state space
Rn , which can be regarded as a partition of Rn , and a time step δt > 0. We will refer
to this selection as a space and time discretization. Given the indicesI of a decom-
position, we use the notation li = (li , l j1 , . . . , l jNi ) ∈ I Ni+1 to denote the indices of
the cells where agent i and its neighbors belong and call it the cell configuration of
i . Our goal is to build an individual transition system of each agent i with state set
the cells of the decomposition, actions determined through the possible cells of its
neighbors, and transition relation specified as follows. Given the initial cells of agent
i and its neighbors, it is possible for i to perform a transition to a final cell, if for all
states in its initial cell there exists a free input, such that its trajectory will reach the
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Fig. 12.1 Illustration of a non-well posed (A) and a well posed (B) discretization

final cell at time δt , for all possible initial states of its neighbors in their cells, and
their corresponding free inputs.

For the synthesis of high-level plans,we require the discretization to bewell posed,
in the sense that for each agent and any initial cell it is possible to perform a transition
to at least one final cell. In order to illustrate the concept of a well-posed space-time
discretization, consider the cell decompositions depicted in Fig. 12.1 and a time step
δt . For both decompositions in the figure we depict a cell configuration of agent i
and represent the endpoints of agent’s i trajectories at time δt through the tips of the
arrows. In the left decomposition, we select three distinct initial conditions of i and
observe that the corresponding reachable sets at δt lie in different cells. Thus, given
this cell configuration of i it is not possible to find a cell in the decompositionwhich is
reachable from every point in the initial cell, and we conclude that the discretization
is not well posed for the system. In the right figure, we observe however that for
the three distinct initial positions in cell Sli , it is possible to drive agent i to cell Sl ′i
at time δt . We assume that this is possible for all initial conditions in this cell and
irrespectively of the initial conditions of i’s neighbors in their cells and the inputs
they choose. By additionally assuming this property for all configurations of the
agents, we establish a well posed discretization for the system.

12.2.3 Derivation of Well-Posed Discretizations

In order to enable the desired transitions of each agent in the presence of the coupling
terms fi (·), we assign hybrid control laws to the free inputs vi . We next provide the
specific feedback laws that are utilized therefore. Consider first a cell decomposition
S = {Sl}l∈I of Rn and a time step δt . For each agent i ∈ N and cell configuration
li = (li , l j1 , . . . , l jNi ) of i select an Ni + 1-tuple of reference points (xi,G, x j,G) ∈
Sli × (Sl j1 × · · · × Sl jNi

) and define Fi,li (xi ) := fi (xi , x j,G), xi ∈ Rn . Also, let zi (·)
be the solution of the initial value problem żi = Fi,li (zi ), zi (0) = xi,G , which we
call the reference trajectory of i . This trajectory is obtained by “freezing” agent i’s
neighbors at their corresponding reference points through the feedback term
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ki,li ,1(t, xi , x j ) := fi (zi (t), x j,G) − fi (xi , x j ), (12.6)

in place of the agent’s free input vi . Also, by selecting a vector wi from the set

W := B(λvmax), λ ∈ (0, 1), (12.7)

(the ball with radius λvmax inRn) and assuming that we can superpose to the reference
trajectory the motion of i with constant speed wi , namely, move along the curve x̄i (·)
defined as x̄i (t) := zi (t) + twi , t � 0, we can reach the point x inside the depicted
ball in Fig. 12.2 at time δt from the reference point xi,G . The parameter λ in (12.7)
stands for the part of the free input that is used to increase the transition choices from
the given cell configuration. In a similar way, it is possible to reach any point inside
the ball by a different selection of wi . This ball has radius

r := λvmaxδt, (12.8)

namely, the distance that the agent can cross in time δt by exploiting the part of the
free input that is available for reachability purposes. For the abstraction, we require
the ability to perform a transition to each cell which has nonempty intersection with
B(zi (δt); r). These transitions are enabled via the feedback laws

ki,li (t, xi , x j ; xi0,wi ) := ki,li ,1(t, xi , x j ) + ki,li ,2(xi0) + ki,li ,3(wi ), (12.9)

parameterized by xi0 ∈ Sli , wi ∈ W , where ki,li ,1(·) is given in (12.6) and with

ki,li ,2(xi0) := 1

δt
(xi,G − xi0), ki,li ,3(wi ) := wi , xi0 ∈ Sli ,wi ∈ W. (12.10)

In order to perform for instance a transition to the cell where the point x in Fig. 12.2
belongs, we require that the feedback law ki,li (·) drives agent i to the endpoint of
the curve x̄i (·) from each initial condition in Sli . This is accomplished by exploiting
the extra terms ki,li ,2(·) and ki,li ,3(·). The derivation of well-posed discretizations is
additionally based on the choice of cell decompositions and associated time steps
δt which ensure that the magnitude of the feedback law apart from the term wi

in ki,li ,3(·) does not exceed (1 − λ)vmax. Thus, due to (12.7), which implies that
|wi | � λvmax, it follows that the total magnitude of the applied control law will be
consistent with assumption (12.5) on the free inputs’ bound. Notice also that due to
the assumption vmax < M , it is in principle not possible to cancel the interconnection
terms. Furthermore, the control laws ki,li (·) are decentralized, since they only use
information of agent i’s neighbors states and they depend on the cell configuration
li , through the reference points (xi,G, x j,G) which are involved in (12.6) and (12.10).

Based on the control laws in (12.9) and assuming given a space-time discretiza-
tion S − δt , we derive the transition system T Si := (Qi , Acti ,−→i ) of each agent,
where Qi is a set of states, Acti is a set of actions, and −→i is a transition rela-
tion with −→i⊂ Qi × Acti × Qi . In particular, T Si is given by Qi := I , i.e., the
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Fig. 12.2 Consider any point x inside the ball with center zi (δt). Then, the control law ki,li (·)
ensures that for each initial condition xi0 ∈ Sli , agent’s i trajectory xi (·) will reach x at time δt .
Thus, since x ∈ Sl ′i , we obtain a transition to Sl ′i

cells of the decomposition, Acti := I Ni+1 and the transition relation −→i defined
as follows: given li ∈ I , li = (li , l j1 , . . . , l jNi ) and l

′
i ∈ I , we enable the transition

(li , li , l ′i ) ∈−→i , if there exists a parameter wi , such that the control law ki,li (·) in
(12.9) guarantees that the agentwill reach cell Sl ′i at δt , from any initial condition in its
cell, based only on the fact that its neighbors belong to the corresponding cells in li . By
denoting Posti (li ; li ) := {l ′i ∈ I : (li , li , l ′i ) ∈−→i }, it follows that the discretization
is well posed iff for each agent i ∈ N and cell configuration li = (li , l j1 , . . . , l jNi )
it holds Posti (li ; li ) �= ∅. In particular we have the following result.

Theorem 12.1 Consider a cell decomposition S of Rn with diameter dmax, a time
step δt , the parameter λ ∈ (0, 1) and define L := max{3L2 + 4L1

√
Ni , i ∈ N },

with L1 and L2 as given in (12.3) and (12.4). We assume that dmax ∈
(
0, (1−λ)2v2max

4ML

]

and δt ∈
[

(1−λ)vmax−
√

(1−λ)2v2max−4MLdmax

2ML ,
(1−λ)vmax+

√
(1−λ)2v2max−4MLdmax

2ML

]
. Then, the space-

time discretization is well posed for (12.1). In particular, for each agent i ∈ N
and cell configuration li = (li , l j1 , . . . , l jNi ), it holds Posti (li ; li ) = {l ∈ I : Sl ∩
B(zi (δt); r) �= ∅}, with zi (·) denoting the corresponding reference trajectory of i
and r as in (12.8).

12.2.4 Abstractions of Varying Decentralization Degree

We next present a generalization of the previous approach, where each agent’s
abstract model has been based on the knowledge of the discrete positions of its
neighbors, by allowing the agent to have this information for all members of the
network up to a certain distance in the communication graph. The latter provides an
improved estimate of the potential evolution of its neighbors and allows for more
accurate discrete agent models, due to the reduction of the control magnitude which
is required for the manipulation of the coupling terms. Therefore we introduce also
some extra notation.Givenm � 1,we denote byN m

i the set of agents fromwhich i is
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Ag.1

Ag.2

Ag.5

Ag.3

Ag.6

Ag.4

Ag.7

Fig. 12.3 This figure illustrates 7 agents of a network. The sets N m
1 , ¯N m

1 of agent 1 up to
paths of length m = 3 are: ¯N 1

1 = {1, 5}, N 1
1 = {5}; ¯N 2

1 = {1, 2, 5, 6}, N 2
1 = {2, 6}; ¯N 3

1 =
{1, 2, 3, 5, 6, 7}, N 3

1 = {3, 7}

reachable through a path of lengthm and not by a shorter one, excluding also the pos-
sibility to reach itself through a cycle.We also define the set ¯N m

i := ⋃m
�=1 N

�
i ∪ {i},

namely, the set of all agents from which i is reachable by a path of length at most m,
including i , and call it the m-neighbor set of i (see Fig. 12.3).

The derivation of the discrete models is based as previously on the design of
appropriate hybrid feedback laws in place of the vi ’s, which enable the desired tran-
sitions.We, therefore, provide amodification of the control law (12.6) which is based
on a more accurate estimation for the evolution of agent i’s neighbors. In particular,
select an ordered tuple of indices li corresponding to the cells where the agents in i’s
m-neighbor set belong, and assume without any loss of generality that N m+1

i �= ∅.
Also, choose a reference point x�,G from the cell of each agent in ¯N m

i and consider
the initial value problem (IVP) ż�(t) = f�(z�(t), z j (�)1(t), . . . , z j (�)N�

(t)), t � 0,

� ∈ ¯N m−1
i , z�(0) = x�,G , for all � ∈ ¯N m−1

i , with the terms z�(·), � ∈ N m
i defined

as z�(t) := x�,G , for all t � 0, � ∈ N m
i . This IVP provides a solution of the unforced,

i.e., without free inputs subsystem formed by the m-neighbor set of agent i . In addi-
tion, the agents are initiated from their reference points in their cells and the neighbors
precisely m hops away are considered fixed at their corresponding reference points
for all times. In analogy to the previous section, we will call the i th component zi (·)
of the solution to the IVP the reference trajectory of i . We also compactly denote
as z j (·) := (z j1(·), . . . , z jNi (·)) the corresponding components of i’s neighbors. The
key part in this modification is that the latter provide a more accurate estimate of the
neighbors’ possible evolution over the time interval [0, δt]. Thus, by replacing the
feedback component in (12.6) by ki,li ,1(t, xi , x j ) := fi (zi (t), z j (t)) − fi (xi , x j ), t ∈
[0,∞), (xi , x j ) ∈ R(Ni+1)n , we can exploit the control law in (12.9) to obtain anal-
ogous transition capabilities as in the previous section. It is noted that this selection
reduces the control effort which is required to compensate for the evolution of i’s
neighbors and leads to improved discretizations. Sufficient conditions for the deriva-
tion of well posed discretizations along the lines of Theorem 12.1 can be found in
[4].
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12.3 Multi-agent Plan Synthesis

In this section, we focus on task and motion planning for a multi-agent system that
has already been abstracted as a discrete, finite, state-transition system using the
technique introduced in Sect. 12.2, or similar. In contrast to Sect. 12.4, the agents
here are dependent on each other in terms of their LTL specifications that capture
potentially collaborative tasks, whereas we assume that they can communicate in a
limited way and they are not subject to relative-distance constraints. Next to the task
specifications, each agent is subject to an independent motion specification, also
given in LTL. We tackle high-computational demands associated with centralized
planning via introducing a two-phase procedure that largely decouples task planning
and motion planning. Moreover, we discuss that the solution can benefit further from
utilizing receding horizon planning approach. This section, thus, overviews results
presented in [23] and [22] and introduces their integration into a single task and
motion planning technique. An interested reader is referred to [23] and [22] for full
technical details on task and motion planning decomposition and receding horizon
planning, respectively.

12.3.1 Problem Formulation

Similarly as in the previous sections,we consider a teamof N possibly heterogeneous,
autonomous agentswith unique identities (IDs) i ∈ N = {1, . . . , N }. However, here
the agent i’s capabilities are modeled through finite transition systems (TS)

Ti = (Si , sinit,i, Ai ,→i ,Πi , Li ,Σi ,Li , Synci ),

where the set of states Si of the TS represent discrete states of the agent i (e.g., the
location of the agent in the environment that is partitioned into a finite number of
cells), and sinit,i ∈ Si is the agent i’s initial state (e.g., its initial cell). The actions
Ai abstract the agent’s low-level controllers, and a transition s

α−→i s ′ from s ∈ Si to
s ′ ∈ Si correspond to the agent’s capability to execute the actionα ∈ Ai (e.g., tomove
between two cells of the environment). We note that a transition duration is arbitrary
and unknown prior its execution. Atomic propositions Πi together with the labeling
function Li : Si → 2Πi are used to mark interesting properties of the system states
(e.g., a cell is safe). Labeling function Li : Act → 2Σi ∪ Ei associates each action
α ∈ Ai with a set of services of interest σ ∈ 2Σi that are provided upon its execution
(e.g., an object pick-up), or with a special silent service set Ei = {εi }, εi /∈ Σi , indi-
cating that no service of interest is provided upon the execution of action α. Traces of
the transition system are infinite alternating sequences of states and actions that start
in the initial state and follow the transition function. Intuitively, they provide abstrac-
tions of the agent’s long-term behaviors (e.g., the agent’s trajectories in the environ-
ment). A trace τi = si,1αi,1si,2αi,2 . . . produces wordsw(τi ) = L(si,1)L(si,2) . . ., and
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ω(τi ) = L (αi,1)L (αi,2) . . . representing the sequences of state properties that hold
true, and services that are provided, respectively.

The agents can communicate, and in particular they all follow this synchronization
protocol: An agent i can send a synchronization request synci (I ) to a subset of agents
{i} ⊆ I ⊆ N notifying that it is ready to synchronize. Then, before proceeding with
execution of any action α ∈ Acti , it waits in its current state to receive synci ′(I )
from each i ′ ∈ I . Assuming lossless communication and instant synchronization
upon receiving the needed synchronization requests, the agents can this way enforce
waiting for each other and executing actions simultaneously. We denote by Synci =
{synci (I ) | {i} ⊆ I ⊆ N } the set of all synchronization requests of agent i .

Each agent i ∈ N is given a specification that consists of

• amotion specification φi , which is an LTL\X formula overΠi that captures require-
ments on the states the agent passes through, such as safety, reachability, persistent
surveillance, and their combination. The motion specification is interpreted over
the word w(τi ); and

• a task specification ψi , which is an LTL formula over Σ = ⋃
i ′∈N Σi ′ that cap-

tures requirements on services provided along the system execution. In contrast to
the motion specification, the task specification is collaborative and yields depen-
dencies between the agents. Each task specification is interpreted over the set of
all words ω(τ ′

i ), i
′ ∈ N . In particular, agent i decides whetherψi is satisfied from

its local point of view by looking at the subsequence of non-silent services, i.e.,
services of interest ofω(τi ) and the services provided by the remainder of the team
at the corresponding times.

Problem 12.1 Consider a set of agentsN = {1, . . . , N }, each of which is modeled
as a transition system Ti = (Si , sinit,i, Ai ,→i ,Πi , Li ,Σi ,Li , Synci ), and assigned
a task in the form of an LTL\X formula φi over Πi and ψi over Σ = ⋃

i ′∈N Σi ′ .
For each i ∈ N find a plan, i.e., (i) a trace τi = si,1αi,1si,2αi,2 . . . of Ti and (ii) a
synchronization sequence γi = ri,1ri,2 . . . over Synci with the property that the set of
induced behaviors is nonempty, and both φi and ψi are satisfied from the agent i’s
viewpoint.

As each LTL formula can be translated into a BA, from now on, we pose the prob-
lem equivalently with the motion specification of each agent i given as a BA Bφ

i =
(Qφ

i , q
φ
init,i, δ

φ

i , 2Πi , Fφ

i ), and the task one as a BA Bψ

i = (Qψ

i , qψ
init,i, δ

ψ

i , 2Σ, Fψ

i ).

12.3.2 Problem Solution

Even though the agents’ motion specifications are mutually independent, each of
them is dependent on the respective agent’s task specification, which is dependent
on the task specifications of the other agents.As a result, the procedure of synthesizing
the desired N strategies cannot be decentralized in an obvious way. However, one can



12 Distributed Hybrid Control Synthesis for Multi-Agent Systems … 251

quite easily obtain a centralized solution when viewing the problem as a synthesis
of a single team plan. A major drawback of the centralized solution is the state-
space explosion, which makes it practically intractable. We aim to decentralize the
solution as much as possible. Namely, we aim to separate the synthesis of service
plans yielding the local satisfaction of the task specifications from the syntheses
of traces that guarantee the motion specifications. Our approach is to precompute
possible traces and represent them efficiently, while abstracting away the features
that are not significant for the synthesis of action plans. This abstraction serves as a
guidance for the action and synchronization planning, which, by construction, allows
for finding a trace complying with both the synthesized action and synchronization
plans and the motion specification.

12.3.2.1 Preprocessing the Motion Specifications

Consider for now a single agent i ∈ N , and its motion specification BA Bφ

i . We
slightly modify the classical construction of a product automaton of Ti and Bφ

i to
obtain aBA that represents the traces of Ti accepted by B

φ

i , and furthermore explicitly
captures the services provided along the trace.

Definition 12.1 (Motion product) The motion product of a TS Ti , and a BA Bi is a
BA Pi = (Qi , qinit,i, δi , 2Σi ∪ 2E i , Fi ), where Qi = Si × Qφ

i ; qinit,i = (sinit,i, q
φ
init,i);

((s, q),Li (α), (s ′, q ′)) ∈ δi if and only if s,
α−→i s ′, and (q, Li (s), q ′) ∈ δ

φ

i ; and Fi =
{(s, q) | q ∈ Fφ

i }.
We introduce a way to reduce the size of themotion product by removing all states

and transitions that are insignificant with respect to the local satisfaction of the task
specification, and hence with respect to the collaboration with others. Specifically,
the significant states are only the ones that have an outgoing transition labeled with
Li (α) �= Ei .

First, we remove all insignificant non-accepting states and their incoming and
outgoing transitions andwe replace each statewith a set of transitions leading directly
from the state’s predecessors to its successors, i.e., we concatenate the incoming and
the outgoing transitions. The labels of the new transitions differ: if both labels of
the concatenated incoming and outgoing transition are Ei , then the new label will
stay Ei to indicate that the transition represents a sequence of actions that are not
interesting with respect to the local satisfaction of task specifications. On the other
hand, if the label σ of the incoming transition belongs to 2Σi , we use the action σ

as the label for the new transition. Each path between two significant states in Pi
then maps onto a path between the same states in the reduced motion product and
the sequences of non-silent services read on the labels of the transitions of the two
paths are equal; and vice versa. Second, we handle the insignificant accepting states
similarly to the non-accepting ones, however, we do not remove the states whose
predecessors include a significant state in order to preserve the accepting condition.
Moreover, we remove all states from which none of the accepting states is reachable,
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Fig. 12.4 An example of a part of a product automaton Pi (top), and the corresponding part of the
reduced product automaton P̈i (bottom)

and we can keep only one copy of duplicate states that have analogous incoming and
outgoing edges. An example of the reduction is given in Fig. 12.4.

There is a correspondence between the infinite runs of Pi and the infinite runs of
the reduced motion product, which we denote by P̈i : for each run of Pi there exists a
run of P̈i , such that the states of the latter one are a subsequence of the states of the
former one, the sequences of non-silent services read on the labels of the transitions
of the two runs are equal, and that the latter one is acceptable if and only if the former
one is accepting; and vice versa. This correspondence will allow us to reconstruct a
desired run of Pi from a run of P̈i , as we will discuss in Sect. 12.3.2.3.

12.3.2.2 Preprocessing the Task Specifications

The next two steps of the solution follow similar ideas as in Sect. 12.3.2.1: We build
a local task and motion product P̄i of the reduced motion product P̈i and the task
specification BA Bψ

i for each agent i separately, to capture the admissible traces
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of i that comply both with its motion and task specification. At this stage, the other
agents’ collaboration capabilities are not included, yet.We again remove insignificant
states, which are now ones that do not have an outgoing dependent transition, i.e.,
a transition labeled with a non-silent service σ ∈ Σ \ Σi . We thus reduce P̄i to P̂i .
Similarly as before, there is a correspondence between the infinite runs of P̄i and the
infinite runs of P̂i : for each run of P̄i there exists a run of P̂i , such that the states
of the latter one are a subsequence of the states of the former one, the sequences of
services read on the labels of the transitions leading from the significant states of the
two runs are equal, and that the latter one is acceptable if and only if the former one
is accepting; and vice versa.

Finally, we build the global product P of the reduced task and motion product
automata P̂1, . . . P̂N . Each accepting run of the global product P maps directly on the
accepting runs of the reduced task and motion product automata and vice versa, for
each collection of accepting runs of the reduced task and motion product automata,
there exists an accepting run of the global product P .

12.3.2.3 Plan Synthesis

The final step of our solution is the generation of the plan in P and its mapping onto
a trace τi of Ti and a synchronization sequence γi over Synci , for all i ∈ N . Using
standard graph algorithms (see, e.g., [2]), we find an accepting run q1q2 . . . over
a word σ1σ2 . . . in P , where q j = (q̂1, j , . . . , q̂N , j , k), for all j � 1. For each agent
i ∈ N , we can project this accepting run onto the states of P̂i , and then, due to the
above discussed correspondences between runs of the product automata, we can also
find sequences of the states in P̄i , P̈i , Pi , such that the projection from an accepting
run of Pi onto the states of Ti yield the desired trace τi (and also the desired sequence
of services σi,1σi,2 . . .). The synchronization sequence γi is constructed by setting
ri, j to be the set of agents that need to collaborate on executing the transition from
si, j to si, j+1 in order to provide the service σi, j .

12.3.2.4 Receding Horizon Approach

Althoughwe have reduced the size of each local product automaton before construct-
ing the global product P , an additional improvement can be achieved by decompos-
ing the infinite-horizon planning into an infinite sequence of finite-horizon planning
problem that can further significantly reduce the size of the global product P .

In particular, following the ideas from [22], we propose to (1) partition the agents
into classes based on their dependency observed in P̂1, . . . , P̂N within a horizon H ;
and then for each of the classes separately: (2) build a product automaton up to a
predefined horizon h and synthesize a plan that leads to progress in satisfaction of
the task specifications; (3) execute part of the plan till the first non-silent service is
provided and repeat steps (1), (2), (3).
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The benefit of the receding horizon approach reaches beyond tackling the tractabil-
ity of multi-agent plan synthesis. It builds on Event-Triggered synchronization, and
hence, it is especially useful in cases where the agents travel at different speeds than
originally assumed.

12.3.2.5 Complexity

In the worst case, our solution meets the complexity of the centralized solution.
However, this is often not the case. Since the size of the global product is highly
dependent on the number of dependent services available in the agents’ workspace,
our solution is particularly suitable for systems with complex motion capabilities,
sparsely distributed services of interest, and occasional needs for collaboration.

12.4 Decentralized Control Under Local Tasks and
Coupled Constraints

In this section, we tackle the multi-agent control problem under local LTL tasks from
the bottom-up perspective. We aim for a decentralized solution while taking into
account the constraints that the agents can exchange messages only if they are close
enough. Following the hierarchical approach to LTL planning, we first generate for
each agent a sequence of actions as a high-level plan that, if followed, guarantees the
accomplishment of the respective agent’s LTL task. Second,wemerge and implement
the synthesized plans in real time, upon the run of the system. Namely, we introduce
a distributed continuous controller for the leader–follower scheme, where the current
leader guides itself and the followers toward the satisfaction of the leader’s task.At the
same time, the connectivity of the multi-agent system is maintained. By a systematic
leader reelection, we ensure that each agent’s task will be met in long term. This
section is a brief summary of the results from the conference publication [11] and
an extended study of related problems can be found in [12].

12.4.1 Related Work

The consideration of relative-distance constraints is closely related to the connec-
tivity of the multi-agent network in robotic tasks [18]. As pointed out in [13, 24],
maintaining this connectivity is of great importance for the stability, safety, and
integrity of the overall team, for global objectives like rendezvous, formation, and
flocking. Very often the connectivity of underlying interaction graphs is imposed
by assumption rather than treated as an extra control objective. Here, the proposed
distributed motion controller guarantees global convergence and the satisfaction of
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relative-distance constraints for all time. Moreover, different from [8] where a sat-
isfying discrete plan is enough, the proposed initial plan synthesis algorithm here
minimizes a cost of a satisfying plan, along with the communication constraints.
Lastly, the same bottom-up planning problem from LTL specifications are consid-
ered in [23], where it is assumed that the agents are synchronized in their discrete
abstractions and the proposed solutions rely on construction of the synchronized
product system between the agents, or at least of its part. In contrast, in this work, we
avoid the product construction completely. Compared with [15], these coordination
policies are fully distributed and can be applied to agentswith limited communication
capabilities.

12.4.2 Problem Formulation

In mathematical terms, we consider a team of N autonomous agents with unique
identities (IDs) i ∈ N = {1, . . . , N }. They all satisfy the single-integrator dynamics
ẋi (t) = ui (t), where xi (t), ui (t) ∈ R2 are the respective state and the control input of
agent i at time t > 0. The agents are modeled as point masses without volume. Each
agent has a limited communication radius of r > 0.Namely, agent i can communicate
directly with agent j if ‖xi (t) − x j (t)‖ � r or indirectly via a chain of connected
robots. We assume that initially all agents are connected.

Each robot i ∈ N has a local task ϕi specified overΣi = {σih, h ∈ {1, · · · , Mi }},
which is a set of services that robot i can provide at different regionsRi = {Rig, g ∈
{1, · · · , Ki }}. Note that Rig = {y ∈ R2|‖y − cig‖ � rig} is a circular area with the
center cig and radius rig . Furthermore, some of the services in Σi can be provided
solely by the agent i , while others require cooperation with some other agents. A
service σih is provided if the agent’s relevant service-providing action πih and the
corresponding cooperating agents’ actions

∧
i ′∈Cih

�i ′ih are executed at the same
time, i.e., σih = πih ∧ ∧

i ′∈Cih
�i ′ih . Lastly, a LTL task ϕi is fulfilled if the sequence

of services provided by robot i satisfies ϕi . Thus, the problem is to synthesize the
control input ui , time sequence of executed actions T A

i and the associated sequence
of actions Ai for each robot i ∈ N .

12.4.3 Solution Outline

Our approach to the problem involves an offline and an online step. In the offline
step, we synthesize a high-level plan in the form of a sequence of services for each
of the agents. In the online step, we dynamically switch between the high-level plans
through leader election and choose the associated continuous controllers. The whole
team then follows the leader towards until its next service is provided and then a new
leader is selected.
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12.4.3.1 Offline Discrete Plan Synthesis

Given an agent i ∈ N , a set of services Σi , and an LTL formula ϕi over Σi , a
high-level plan for i can be computed via standard model-checking methods [2,
10]. Roughly, by translating ϕi into a equivalent Büchi automaton and by consecu-
tive analysis of the automaton, a sequence of services with the prefix–suffix format
Ωi = σi1 . . . σi pi (σi pi+1 . . . σisi )

ω, such that Ωi |= ϕi can be found, where σi1 can be
independent or dependent services for robot i ∈ N .

12.4.3.2 Dynamic Leader Selection

In this part, we describe how to elect a leader from the team in a repetitive online
procedure, such that each of the agents is elected as a leader infinitely often. Intu-
itively, each agent i ∈ N is assigned a value that represents the agent’s urge to
provide the next service in its high-level plan. Using ideas from bully leader election
algorithm [9], an agent with the strongest urge is always elected as a leader within
the connectivity graph.

Particularly, let i be a fixed agent, t the current time and σi1 . . . σik a prefix of
services of the high-level plan Ωi that have been provided till t . Moreover, let τiλ
denote the time, when the latest service, i.e., σiλ = σik was provided, or τiλ = 0 in
case no service prefix of Ωi has been provided, yet. Using τiλ, we could define agent
i’s urge at time t as a tuple Υi (t) = (t − τiλ, i). Furthermore, to compare the agents’
urges at time t , we use lexicographical ordering: Υi (t) > Υ j (t) if and only if (1)
t − τiλ > t − τ jλ, or (2) t − τiλ = t − τ jλ, and i > j . Note that i �= j implies that
Υi (t) �= Υ j (t), for all t � 0. As a result, the defined ordering is a linear ordering and
at any time t , there exists exactly one agent i maximizing its urge Υi (t). As a result,
there is always a single agent that has the highest urge withinN for any given time
t . The robot with the highest urge is selected as the leader, which has the opportunity
to execute its local plan Ωi . However, due to the relative-distance constraints and
the depended services, it can not simply move there without adopting a collaborative
motion controller described below.

12.4.3.3 Collaborative Controller Design

Let us first introduce the notion of agents’ connectivity graph that will allow us to
handle the constraints imposed on communication between the agents. Recall that
each agent has a limited communication radius r > 0. Moreover, let ε ∈ (0, r) be a
given constant, which plays an important role for the edge definition. In particular,
letG(t) = (N , E(t)) denote the undirected time-varying connectivity graph formed
by the agents, where E(t) ⊆ N × N is the edge set for t � 0. At time t = 0, we
set E(0) = {(i, j)|‖xi (0) − x j (0)‖ < r}.At time t > 0, (i, j) ∈ E(t) if and only if
one of the following conditions hold: (i) ‖xi (t) − x j (t)‖ � r − ε, or (ii) r − ε <

‖xi (t) − x j (t)‖ � r and (i, j) ∈ E(t−), where t− < t and |t − t−| → 0. Note that
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the condition (ii) in the above definition guarantees that a new edge will only be
added when the distance between two unconnected agents decreases below r − ε.

Now consider the following problem: given a leader � ∈ N at time t and a goal
region R�g ∈ R�, propose a decentralized continuous controller that (1)G(t ′) remains
connected for all t ′ ∈ [t, t]; (2) guarantees that all agents i ∈ N reach R�g at a finite
time t < ∞. Both objectives are critical to ensure sequential satisfaction of ϕi for
each i ∈ N .

Denote by xi j (t) = xi (t) − x j (t) the pairwise relative position between neighbor-

ing agents,∀(i, j) ∈ E(t). Thus‖xi j (t)‖2 = (
xi (t) − x j (t)

)T (
xi (t) − x j (t)

)
denotes

the corresponding distance. We propose the following continuous controller:

ui (t) = −bi
(
xi − cig

) −
∑

j∈N i (t)

2r2

(r2 − ‖xi j‖2)2 (xi − x j ), (12.11)

where bi ∈ {0, 1} indicates if agent i is the leader; cig ∈ R2 is the center of the next
goal region for agent i ; bi and cig are derived from the leader selection scheme earlier.
It can be seen that the above controller is fully distributed as it only depends xi and
x j , ∀ j ∈ Ni (t).

Given the controller (12.11), we can prove the following two important properties
of the complete system: Assume that G(t) is connected at t = T1 and agent � ∈ N
is the fixed leader for all t � T1. By applying the controller in (12.11), the following
two statements hold:

• The graph G(t) remains connected and E(T1) ⊆ E(t) for t � T1.
• There exist a finite time T1 � t < +∞, xi (t) ∈ R�g, ∀i ∈ N .

To briefly prove the above two statements, we consider the following potential
function of the complete system:

V (t) = 1

2

N∑
i=1

∑
j∈N i (t)

φ(‖xi j‖) + 1

2

N∑
i=1

bi (xi − cig)
T (xi − cig), (12.12)

where the potential function φ
(‖xi j‖

) = ‖xi j‖2
r2−‖xi j‖2 for ‖xi j‖ ∈ [0, r), and thus V (t) is

positive semidefinite. Assume thatG(t) remains invariant during [t1, t2) ⊆ [T1, ∞).
The time derivative of (12.12) during [t1, t2) is given by

V̇ (t) = −
N∑

i=1, i �=�

‖
∑

j∈N i (t)

∇xi φ(‖xi j‖)‖2

−‖(x� − c�g) +
∑

j∈N �(t)

∇x�
φ(‖x�j‖) ‖2 � 0. (12.13)

Thus V (t) � V (0) < +∞ for t ∈ [t1, t2). It means that during [t1, t2), no existing
edge can have a length close to r , i.e., no existing edge will be lost by the definition of
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an edge.On the other hand, assumeanew edge (p, q) is added to the graphG(t) at t =
t2, where p, q ∈ N . It holds that ‖xpq(t2)‖ � r − ε and φ(‖xpq(t2)‖) = r−ε

ε(2r−ε)
<

+∞ since 0 < ε < r .Denote the set of newly added edges at t = t2 as Ê ⊂ N × N .
Let V (t+2 ) and V (t−2 ) be the value of function from (12.12) before and after adding
the set of new edges to G(t) at t = t2. We get V (t+2 ) � V (t−2 ) + |Ê | r−ε

ε(2r−ε)
< +∞.

As a result, V (t) < +∞ for t ∈ [T1, ∞). Since one existing edge (i, j) ∈ E(t)
will be lost only if xi j (t) = r , it implies that φ(‖xi j‖) → +∞, i.e., V (t) → +∞
by (12.12). By contradiction, we can conclude that new edges will be added but no
existing edges will be lost. This proves the first statement above.

Regarding the second statement, we need to show that all agents converge to
the goal region of the leader in finite time. By (12.13), V̇ (t) � 0 for t � T1 and
V̇ (t) = 0 when the following conditions hold: (i) for i �= � and i ∈ N , it holds that∑

j∈N i (t)
hi j (xi − x j ) = 0; and (ii) for the leader � ∈ N , it holds that (x� − c�g) +∑

j∈N �(t)
hi j (x� − x j ) = 0, where hi j = 2r2

(r2−‖xi j‖2)2 , ∀(i, j) ∈ E(t). Then we can
combine the above two conditions into H ⊗ I2 · x + (x − c) = 0, where H is a N ×
N matrix satisfying H(i, i) = ∑

j∈N i
hi j and H(i, j) = −hi j , where i �= j ∈ N .

Note that H is positive-semidefinite with a single eigenvalue at the origin, of which
the corresponding eigenvector is the unit column vector of length N . Thus, the only
equilibrium is x = c, i.e., xi = c�g , ∀i ∈ N . By LaSalle’s Invariance principle [14],
there exists t < +∞ that xi (t) ∈ R�g , ∀i ∈ N .

12.4.3.4 Integrated System

The integrated system combines the leader selection scheme from Sect. 12.4.3.2 and
the continuous control scheme from Sect. 12.4.3.3, such that the discrete plan Ωi

synthesized in Sect. 12.4.3.1 can be executed. Particularly, via communicating and
comparing the urge function Υi among all robots, one robot with the highest urge
is selected as the leader, denoted by � ∈ N . Then robot � finds its next goal region
according to its plan Ωi as R�g . After that, all robots applies the control input
from (12.11) where the leader � sets b� = 1 while the rest sets bi = 0, ∀i ∈ N
and i �= �. Consequently, as proven in Sect. 12.4.3.3, there exists a finite time that
all robots are within the region R�g , where robot � can provide action π�hand its col-
laborating robots can provide the action ω�′�h , ∀�′ ∈ C�h . As a result, the service σ�h

is provided at region R�g . Afterward, the urge function of robot � is updated and a
new leader is selected for the team. This process repeats itself indefinitely such that
all robots can fulfill its local task. Detailed algorithms can be found in [11].

12.4.3.5 Simulation

We simulate a system of 4 robots (R1, R2, R3, R4) with regions of interested in
a 4 × 4m workspace as shown in Fig. 12.5. They initially start from positions
(0.0, 0.0), (1.0, 0.0), (2.0, 0.0), (3.0, 0.0) and they all have the communication
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Fig. 12.5 Left: trajectories of 4 robots that satisfy their local service tasks. Right: the relative
distances of initially connected neighboring robots

radius 1.5m. Furthermore, each robot is assigned a local service task. For instance,
the local task for robot 1 is to provide services sequentially in the circular region
(1.0, 1.0, 0.2) and the circular region (3.0, 1.0, 0.2), where the service at region
(3.0, 1.0, 0.2) requires collaboration from other robots. The tasks of other robots
are defined similarly. We apply the proposed control and coordination framework
as described above. The resulting trajectories of all robots are shown in Fig. 12.5,
which verify that all local tasks are satisfied.Moreover, the relative distances between
initially connected neighboring robots, i.e., (R1, R2), (R2, R3), (R3, R4), are also
shown in Fig. 12.5, all of which stay below the communication radius 1.5m at all
time. More numerical examples are given in [11].

12.4.4 Conclusion and Future Work

To summarize, in this sectionwepresent the decentralized control schemeof a teamof
agents that are assigned local tasks expressed as LTL formulas. The solution follows
the automata-theoretic approach to LTL model checking, however, it avoids the
computationally demanding construction of synchronized product system between
the agents. The decentralized coordination among the agents relies on a dynamic
leader–follower scheme, to guarantee the low-level connectivity maintenance at all
times and a progress toward the satisfaction of the leader’s task. By a systematic
leader switching, we ensure that each agent’s task will be accomplished.
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Starting Grant BUCOPHSYS.



260 M. Guo et al.

References

1. Andreasson, M., Dimarogonas, D.V., Sandberg, H., Johansson, K.H.: Distributed control of
networked dynamical systems: static feedback, integral action and consensus. IEEE Trans.
Autom. Control 59, 1750–1764 (2014)

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT press, Cambridge (2008)
3. Boskos, D., Dimarogonas, D.V.: Decentralized abstractions for feedback interconnected multi-

agent systems. In: IEEE Conference on Decision and Control (CDC), pp. 282–287 (2015)
4. Boskos, D., Dimarogonas, D.V.: Abstractions of varying decentralization degree for coupled

multi-agent systems. In: IEEE Conference on Decision and Control (CDC), pp. 81–86 (2016)
5. Boskos,D.,Dimarogonas,D.V.:Robustness and invariance of connectivitymaintenance control

for multi-agent systems. SIAM J. Control Optim. 55(3), 1887–1914 (2017)
6. Boskos, D., Dimarogonas, D.V.: Online abstractions for interconnected multi-agent con-

trol systems. In: Proceedings of the 20th IFAC World Congress, Toulouse, France. IFAC-
PapersOnLine, vol. 50, Iss. 1, pp. 15810–15815 (2017)

7. Dallal, E., Tabuada, P.: On compositional symbolic controller synthesis inspired by small-gain
theorems. In: IEEE Conference on Decision and Control (CDC), pp. 6133–6138 (2015)

8. Filippidis, I., Dimarogonas, D.V., Kyriakopoulos, K.J.: Decentralized multi-agent control from
local LTL specifications. In: IEEE Conference on Decision and Control (CDC), pp. 6235–6240
(2012)

9. Garcia-Molina, H.: Elections in a distributed computing system. IEEETrans. Comput.C-31(1),
48–59 (1982)

10. Guo, M., Dimarogonas, D.V.: Multi-agent plan reconfiguration under local LTL specifications.
Int. J. Robot. Res. 34(2), 218–235 (2015)

11. Guo, M., Tumova, J., Dimarogonas, D.V.: Cooperative decentralized multi-agent control under
local LTL tasks and connectivity constraints. In: IEEE Conference on Decision and Control
(CDC), pp. 75–80 (2014)

12. Guo,M., Tumova, J., Dimarogonas, D.V.: Communication-free multi-agent control under local
tasks and relative-distance constraints. IEEE Trans. Autom. Control 61(12), 3948–3962 (2016)

13. Guo, M., Zavlanos, M.M., Dimarogonas, D.V.: Controlling the relative agent motion in multi-
agent formation stabilization. IEEE Trans. Autom. Control 59(3), 820–826 (2014)

14. Khalil, H.K.: Nonlinear Systems. Prentice Hall, Upper Saddle River (2002)
15. Kloetzer, M., Ding, X.C., Belta, C.: Multi-robot deployment from LTL specifications with

reduced communication. In: IEEE Conference on Decision and Control and European Control
Conference (CDC-ECC), pp. 4867–4872 (2011)

16. Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods for Multiagent Networks. Princeton
University Press, Princeton (2010)

17. Meyer, P-J., Girard, A., Witrant, E.: Safety control with performance guarantees of cooperative
systems using compositional abstractions. In: Proceedings of the 5th IFAC Conference on
Analysis and Design of Hybrid Systems, pp. 317–322 (2015)

18. Ögren, P., Egerstedt, M., Hu, X.: A control lyapunov function approach to multi-agent coordi-
nation. In: IEEE Conference on Decision and Control (CDC), pp. 1150–1155 (2001)

19. Pola, G., Pepe, P., Di Benedetto, M.D.: Symbolic models for networks of control systems.
IEEE Trans. Autom. Control 61, 3663–3668 (2016)

20. Rungger, M., Zamani, M.: Compositional construction of approximate abstractions. In: Pro-
ceedings of the 18th International Conference on Hybrid Systems: Computation and Control,
pp. 68–77 (2015)

21. Tazaki, Y., Imura, J.: Bisimilar finite abstractions of interconnected systems. In: International
Workshop onHybrid Systems: Computation and Control, pp. 514–527. Springer, Berlin (2008)

22. Tumova, J., Dimarogonas,D.V.:Multi-agent planning under local LTL specifications and event-
based synchronization. Automatica 70(C), 239–248 (2016)

23. Tumova, J., Dimarogonas, D.V.: Decomposition of multi-agent planning under distributed
motion and task LTL specifications. In: IEEE Conference on Decision and Control (CDC), pp.
7448–7453 (2015)

24. Zavlanos, M.M., Egerstedt, M.B.: Graph-theoretic connectivity control of mobile robot net-
works. Proc. IEEE 99(9), 1525–1540 (2011)



Chapter 13
Modeling and Co-Design of Control
Tasks over Wireless Networking
Protocols

A. D’Innocenzo

Abstract In this chapter, we provide a brief overview of the state of the art on control
over wireless communication protocols and present some recent advances in the
co-design of controller and communication protocol configuration (i.e., scheduling
and routing) subject to stochastic packet drops.

13.1 Introduction

Wireless networked control systems (WNCS) are distributed control systems where
the communication between sensors, actuators, and computational units is supported
by awireless communication network.WNCSs have awide spectrumof applications,
ranging from smart grids to remote surgery, passing through industrial automation,
environment monitoring, intelligent transportation, and unmanned aerial vehicles, to
name few.

The use of WNCS in industrial automation results in flexible architectures and
generally reduces installation, debugging, diagnostic, and maintenance costs with
respect to wired networks (see e.g., [3, 33] and references therein). However mod-
eling, analysis, and co-design of WNCS are challenging open research problems
since they require to take into account the joint dynamics of physical systems,
communication protocols, and network infrastructures. Recently, a huge effort has
been made in scientific research on WNCSs, see e.g., [5, 8, 10, 19, 24, 28, 31, 40,
43, 68, 74, 78, 81, 84] and references therein for a general overview.

The challenges in analysis and co-design of WNCSs are best explained by
considering wireless industrial control protocols. In this chapter, we focus on a
networking protocol specifically developed for wireless industrial automation, i.e.,
WirelessHART, [35–37]. Indeed WirelessHART is not a niche technology, as many
high-impact technological companies, such as Siemens, ABB, Emerson, sent to the
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market devices and industrial automation solutions based on the WirelessHART
protocol. Due to its novelty, plenty of research activity on WirelessHART is still in
progress in order to analyze the real capabilities of the standard and the applica-
tion limits. In particular, the WirelessHART specification creates the opportunity for
designers to implement ad hoc algorithms to configure the network configuration:
we fill this gap by providing novel algorithms for co-designing controller and net-
work configuration from a control performance point of view, and in particular, we
investigate the design of redundancy when routing actuation data to a LTI system
connected to the controller via a wireless network. We show with an example that
the optimal co-design of controller gain and routing can strongly improve the control
performance [21].

Pursuing the objective described above, we first consider the modeling, stability
analysis, and controller design problems in a purely nondeterministic setting, when
the actuation signal is subject to switching propagation delays due to dynamic routing
[50]. We show how to model these systems as pure switching linear systems and
provide an algorithm for robust stability analysis. We show that the stability analysis
problem is NP-hard in general and provide an algorithm that computes in a finite
number of steps the look-ahead knowledge of the routing policy necessary to achieve
controllability and stabilizability.

We then consider, in a stochastic setting, the case when actuation packets can be
delivered from the controller to the actuator via multiple paths, each associated with
a delay and with time-varying packet loss probability. The packet dropouts have been
modeled in the WNCS literature either as stochastic or nondeterministic phenomena
[43]. The proposed nondeterministic models specify packet losses in terms of time
averages or in terms ofworst-case bounds on the number of consecutive dropouts (see
e.g., [40]). For what concerns stochastic models, a vast amount of research assumes
memoryless packet drops, so that dropouts are realizations of a Bernoulli process
[31, 68, 74]. Other works consider more general correlated (bursty) packet losses
and use a transition probability matrix of a finite-state (time-homogeneous) Markov
chain (see e.g., the finite-state Markov modeling of Rayleigh, Rician, and Nakagami
fading channels in [72] and references therein) to describe the stochastic process that
rules packet dropouts (see [30, 74]). In these works, WNCSwith missing packets are
modeled as time-homogeneousMarkov jump linear systems, which are an important
family of stochastic hybrid systems that we use to model packet losses. In particular,
it has been shown (e.g., in [21, 30, 74, 77]) that discrete-time Markov jump linear
systems (MJLS, [17]) represent a promising mathematical model to jointly take into
account the dynamics of a physical plant and nonidealities ofwireless communication
such as packet losses. A MJLS is, basically, a switching linear system where the
switching signal is a Markov chain. The transition probability matrix of the Markov
chain can be used to model the stochastic process that rules packet losses due to
wireless communication. However, in most real cases, such probabilities cannot be
computed exactly and are time-varying. We can take into account this aspect by
assuming that the Markov chain of a MJLS is time-inhomogeneous, i.e., a Markov
chain having its transition probability matrix varying over time, with variations that
are arbitrary within a polytopic set of stochastic matrices.
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Given such mathematical model, the first problem we address is providing nec-
essary and sufficient conditions for the stochastic notion of mean square stability
(MSS). Some recent works addressed the above problem: in [2], a sufficient condi-
tion for stochastic stability in terms of linear matrix inequality feasibility problem is
provided, while in [16] a sufficient condition for MSS of system with interval transi-
tion probability matrix, which in turn can be represented as a convex polytope [38],
is presented in relation to spectral radius; in general, only sufficient stability condi-
tions have been derived for MJLS with time-inhomogeneous Markov chains having
transition probability matrix arbitrarily varying within a polytopic set of stochastic
matrices. We derive necessary and sufficient conditions [60] for MSS of discrete-
time MJLS with time-inhomogeneous Markov chains. Having solved the stability
problem, we extend the framework of MJLSs replacing the time-inhomogeneous
Markov chain with a time-inhomogeneous Markov Decision Process and provide
the optimal solution of the finite time horizon LQR problem considering the issue
of joint minimization of costs of continuous and discrete control inputs for the worst
possible disturbance in transition probabilities [61].

In addition to the investigations described above, we also addressed the problem
of stabilizing a WNCS in presence of long- term link failures and malicious attacks.
More precisely, we addressed the co-design problem of controller and communica-
tion protocol, and in particular routing and scheduling, when the physical plant is a
MIMO LTI system and the communication nodes are subject to failures and/or mali-
cious attacks. We first characterize by means of necessary and sufficient conditions
the set of network configurations that invalidate controllability and observability of
the plant. Then, we investigate the problem of detecting and isolating communica-
tion nodes affected by failures and/or malicious attacks and provide necessary and
sufficient conditions for the solvability of this problem. This latter line of research is
not illustrated in this chapter for space limitations, and we refer the interested reader
to the papers [24–26].

This chapter is organized as follows. In Sect. 13.2, we provide a high-level descrip-
tion of the WirelessHART communication protocol. In Sect. 13.3, we first define
our mathematical framework (i.e., time-inhomogeneous MJSLSs), which takes into
account accuratemodels of packet dropouts; thenwe showwith amotivating example
that co-designing the controller and the routing strategy can lead to a strong improve-
ment of the control performance. In Sect. 13.4, we summarize and discuss our tech-
nical results on co-design of controller and network configuration. In Sect. 13.5 we
draw conclusions and directions for future work.

13.2 The WirelessHART Protocol

In this section, we introduce WirelessHART, one of the most relevant protocols cur-
rently used in industrial environments, emphasizing the features that will be analyzed
and addressed in our mathematical models and co-design algorithms for WNCS.
WirelessHART, [35–37] is one of the first wireless communication standards specif-
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ically designed for process automation applications. The standard has been finalized
in 2007, at the beginning of 2010 it has been ratified as an IEC standard, and is based
upon the physical layer of IEEE 802.15.4. When WirelessHART was developed,
many requirements deemed critical for the industrial environment were not defined
in IEEE 802.15.4, thus further specifications have been added in the data link layer
(DLL). This newMAC protocol combines frequency hopping with a TDMA scheme
utilizing a centralized a priori slot allocation mechanism. Indeed, it is commonly
thought that TDMA-based protocols offer good opportunities for energy-efficient
operation of sensor nodes, as they allow them to enter sleep mode when they are
not involved in any communications. Such allocation of the shared channel regular-
izes the dynamical behavior introduced by multi-hop transmission: indeed, TDMA
schemes avoid collisions and thus induce a periodic time-varying behavior, where
delays and transmission times are well predictable, which can be nicely analyzed by
considering sophisticated mathematical models like Markov Jump Linear Systems
or Markov Decision Processes. In the results, illustrated in this chapter, we concen-
trate on modeling the joint dynamics of a closed-loop dynamical system and the
WirelessHART data link and network layers.

About data link layer, the timing hierarchy of WirelessHART can be split in
three timescale layers, as depicted in Fig. 13.1. The lowest layer consists of individual
time slots: within each time slot, one data packet and the corresponding immediate
acknowledgment packet are exchanged. A time slot in WirelessHART has a fixed
length of 10 ms., and two types of time slots are available: dedicated time slots (slot
is allocated to one specific sender–receiver pair) and shared time slots (more than
one device may try to transmit a message).Within a dedicated time slot, transmission

Fig. 13.1 WirelessHART timing hierarchy
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of the source message starts at a specified time after the beginning of a slot. This
short time delay allows the source and destination to set their frequency channel
and allows the receiver to begin listening on the specified channel. Since there is a
tolerance on clocks, the receiver must start to listen before the ideal transmission start
time and continue listening after that ideal time. Once the transmission is complete,
the destination device indicates by transmitting an ACK whether it received the
source device data link packet successfully or not, indicating in this latter case a
specific class of detected errors. At the second layer, a contiguous group of time
slots of fixed length forms a superframe. At the third layer, a contiguous group of
superframes forms a network cycle. Within each cycle, each field device obtains at
least one time slot for data transmission, but certain devices may have more time
slots than others because they provide data with more important requirements or
have additional forwarding duties.

About network layer, in advanced applications point-to-point communications
are unreliable also because it is very difficult to place devices to maintain line of
sight all the time. The best architecture solution for wireless communication is a
mesh topology network, which can provide multipath redundancy. Nodes, in fact,
can multicast the same information to one or more of its neighbors with the goal
of mitigating the risk of unplanned outages and ensure continuity of operation by
instantly responding to and reducing the effects of a point of failure anywhere along
the critical data path. In order to guarantee timely and reliable data delivery, routing
topology and transmission schedule are centrally computed by a network manager
device (which has global knowledge of the network state) and then disseminated to
all devices in the network. WirelessHART allows two strategies to route packets:
graph routing and source routing.

In source routing, a single fixed route of devices is decided by the source node and
written in the header of the packet. Then, each device in the route forwards the packet
to the next specified device until the destination is reached. There are no alternate
routes in this mode, so if any device fails on a route, the whole route fails. Source
routing is mostly used for network diagnostics.

In graph routing, the network manager defines a set of routing graphs, consisting
of a set of acyclic directed graphs each connecting a source node to a destination node
through some relay nodes on the network, and communicates them to each device.
When a source node needs to send a packet, it writes a routing graph ID in the header
of the packet to be sent. As the packet arrives at each node, the node forwards (or
consumes, if it is the destination node) the packet according to the corresponding
routing graph. Each relay node can be configured with multiple neighbors to create
redundancy in the packet’s forwarding. Thanks to such redundancy, graph routing is
mostly used for sensing and actuation data communication.

As discussed above, the WirelessHART standard specifies the communication
stack as well as the interfaces and tasks for the devices comprising a WirelessHART
network. However it does not specify how these tasks should be accomplished, which
provides interesting opportunities to develop improved and optimized solutions. An
example is the exploitation of routing redundancy by jointly configuring the schedul-
ing at the data link layer and the routing graph at the network layer. WirelessHART
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does not specify the algorithms and performance metrics to be used for scheduling
and routing, and a designermust implement the best policies according to the specific
application: we will provide in the next sections methods for co-designing controller
and network from the control performance point of view.

13.3 Mathematical Framework and Motivating Example

In this section, we first introduce our reference mathematical framework and then
provide an example showing that the joint design of network communication policies
and control has a relevant impact on the control performance of a closed-loop system.

13.3.1 Time-Inhomogeneous Discrete-Time Markov Jump
(switched) Linear Systems

Linear systems subject to abrupt parameter changes due, for instance, to environ-
mental disturbances, component failures, changes in subsystems interconnections,
changes in the operation point for a nonlinear plant, etc., can be modeled by a set
of discrete-time linear systems with modal transition given by a discrete-time finite-
state Markov chain. This family of systems is known as discrete-time Markov(ian)
jump linear systems, often abbreviated as MJLSs.

The transition probabilities of a Markov chain are frequently time-varying and
unavailable to the modeler, and a large body of research has been devoted to deal
with these uncertainties and also to the identification of the Markov chain using
available observations (see [13] and references therein for an introduction to the topic
of estimation of such transition probabilities, which always introduces estimation
errors). In order to account for uncertainties and time-variance inherent to real-world
scenarios, the time-inhomogeneous polytopicmodel of transition probabilities is very
general and widely used in the literature.

In this section,we present a rigorousmathematicalmodel ofMJLSswith polytopic
uncertainties on transition probabilities and also the model of their natural extention,
i.e., Markov jump switched linear systems (MJSLSs).

A discrete-time Markov jump linear systems can be defined as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk+1 = Aθkxk+Bθkuk+Hθkvk,

yk = Fθkxk+Gθkwk,

zk = Cθkxk+Dθkuk,

x0 = x0, θ0 = ϑ0, p0 = p0,

(13.1)

where k∈T is a discrete-time instant, T is a discrete-time set, T=Z0, with Z0 indi-
cating the set of all nonnegative integers andZ the set of integers. Then, xk is a vector
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of nx either real or complex state variables of the Markov jump linear system, where
nx∈Z+ with Z+ the set of positive integers, and xk ∈F

nx with Fnx an nx-dimensional
linear space with entries in F. Note that F indicates the set of either real numbers R
or complex numbers C: in general, when studying MJLSs, it is a standard practice
to work with complex fields [17], but one can consider complex operators acting on
C

m,n as real (block) matrices acting on R
2m,2n [49].

For what concerns other system variables in the aforementioned state-space rep-
resentation of an MJLS, uk stands for a vector of nu control input variables, uk ∈F

nu ;
then, vk ∈F

nv and wk ∈F
nw are vectors of exogenous input variables, known as pro-

cess noise and observation noise, respectively; yk ∈F
ny represents a vector of mea-

sured state variables available to the controller; zk ∈F
nz denotes a vector of measured

system output variables. Clearly, nu, nv, nw, ny, nz∈Z+.
In the following, wewriteFm,n to denote a set ofmatrices withm rows, n columns,

and entries in F. Consequently, the elements of the systemmatrices Aθk , Bθk , etc., are
also defined on a field of either real or complex numbers F. The subscript θk indicates
that systemmatrices active in a time instant k are determined by the value of the jump
variable θk , which is a random variable having the setM�{i ∈Z+ : i≤N } as its state
space, where N ∈Z+ is the cardinality of the set, formally |M|=N . The set M is
generally referred to as the (index) set of operational modes of the Markov jump
linear system. We denote by θk as the identity function of the set of operational
modes, i.e., θk : M→M, and ∀i ∈M, we have that θk(i) = i .

For every operational mode, there is a correspondent system matrix, and the
collection of the systemmatrices of each type is generally represented by a sequence
of N matrices, which are not necessarily all distinct. Specifically, A�(Ai )

N
i=1∈

NF
nx,nx is a sequence of the so-called state matrices, each of which is associated to

an operational mode of the (switching) system. Noticeably, NFm,n indicates a linear
space made up of all N -sequences of m×n matrices with entries in F. Similarly,
B�(Bi )

N
i=1∈NF

nx,nu is an N -sequence of input matrices; C�(Ci )
N
i=1∈NF

nz,nx is a
sequence of output matrices; D�(Di )

N
i=1∈NF

nz,nu is a sequence of direct transition
(also known as feed-forward or feedthrough) matrices; F�(Fi )

N
i=1∈NF

ny,nx is a
sequence ofobservationmatrices;G�(Gi )

N
i=1∈NF

ny,nw is a sequence ofobservation
noise matrices; and H�(Hi )

N
i=1∈NF

nx,nv is a sequence of process noise matrices.
The transitions, or jumps, between operational modes of an MJLS are governed

by a discrete-time Markov chain θ , which is a collection of random variables θt
all taking values in the same state space, i.e., {θt : t ∈T}, and satisfying the Markov
property. The initial probability distribution of theMarkov chain is defined ∀i ∈M by
pi (0) � Pr(θ0= i), and the initial probability distribution of all the operationalmodes
is defined as the vector p0 � [p1(0) . . . pN (0)]′ ∈R

N ,1. The transition probability
between the operational modes i, j ∈M of a Markov jump linear system is formally
defined as

pi j (k) � Pr(θk+1= j | θk = i) , (13.2)

where ∀i ∈M and ∀k∈T,
∑N

j=1 pi j (k)=1. The corresponding transition probability
matrix is defined as
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P(k) �
[
pi j (k)

] ∈ R
N ,N . (13.3)

The initial conditions for aMarkov jump linear system consist of the initial state of
the dynamical systemx0 = x0∈F

nx , the initial state of theMarkov chain θ0 = ϑ0∈M

and the initial probability distribution of the states of the Markov Chain denoted by
p0 = p0∈R

N
0 s.t.

∥
∥ p0

∥
∥
1=1, with ‖ · ‖1 the standard 1−norm of a vector andRN

0 the
N -dimensional linear space with entries in the set of nonnegative real numbers R0.

Although in engineering problems the operation modes are not often available,
there are enough cases where the knowledge of random changes in system structure
is directly available to make these applications of great interest [9, 17]. The typical
examples include a ship steering autopilot, control of pH in a chemical reactor,
combustion control of a solar-powered boiler, fuel–air control in a car engine, and
flight control systems [17]. In this chapter, we focus on the fact that MJLSs’ model is
well suited also for theWNCS scenario, when a channel estimation is performed (see
e.g., [57] and the references therein), so the channel state information is known at each
time step. In fact, the knowledge of θk at each time instant k is a standard assumption
in the setting of MJLSs, and in this chapter we do the following assumption.

Assumption 13.1 At every time step k∈T, the jump variable θk is measurable and
available to a controller.

Depending on the considered problem, (some of) the system’s vector variables
xk , uk , yk , and zk may also be viewed as measurable.

We have previously discussed that in most real cases the transition probability
matrix P(k) introduced in (13.3) cannot be computed exactly and is time-varying,
and that there exists a considerable number of works on discrete-time Markov jump
systems (both linear and nonlinear) with polytopic uncertainties, which can be either
time-varying or time-invariant. From now on, we assume that P(k) is varying over
time, with variations that are arbitrary within a polytopic set of stochastic matrices.
In order to express this statement formally, let V∈Z+ be a number of vertices of
a convex polytope, and V be an index set of vertices of a convex polytope, i.e.,
V�{i ∈Z+ : i ≤V }. Then, the set of vertices of a convex polytope of transition
probability matrices is formally defined as

VP �
{
Pl ∈R

N ,N : l∈V
}
. (13.4)

Clearly, being a transition probability matrix, each vertex Pl satisfies (13.2) and
(13.3). These vertices are obtained from measurement on the real system or via
numerical reasoning, taking into account accuracy and precision of the measuring
instruments and/or numerical algorithms. They bound the possible values each tran-
sition probability can assume. Then, the polytopic time-inhomogeneous assumption
is stated as follows.

Assumption 13.2 The time-varying transition probabilitymatrix P(k) is polytopic,
that is, for all k∈T, one has that
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P(k) =
∑V

l=1
λl(k)Pl, λl(k) ≥ 0,

∑V

l=1
λl(k) = 1, (13.5)

where for each l∈V, Pl ∈VP⊂VR
N ,N , i.e., Pl are elements of a given finite set of

transition probabilitymatrices,which are the vertices of a convexpolytope;moreover,
λl(k) are unmeasurable.

Assumption13.2 plays an important role also in our model of Markov jump
switched linear system, which is a dynamical system having the same form as (13.1),
with the only difference being that the operationalmodes of the systemare determined
by the stochastic variable sk that represents a standard Markov Decision Process. A
Markov Decision Process is a quintuple (M,A,Pr, g, γ ), where

• M is a finite set of states of a process, with |M|=N .
• A is a finite (index) set of actions among which a decision maker (a.k.a. a discrete
controller or a supervisor) is able to chose, i.e., A�{i ∈Z+ : i≤M}. Typically,
only a subset of A is available in any given state of an MDP.1 We take this into
account by defining for each state i ∈M the related set Ai of actions α available
in that state. We write this statement symbolically as Ai ⊆A, α∈Ai .

• Pr is state- and action-dependent transition probability distribution. For any k∈T,
i, j ∈M, α∈Ai , the future transition probability distribution, conditioned on the
present state sk of theMDP and the action αk to be taken from that state, is denoted
by

pα
i j (k) � Pr{sk+1= j | sk = i, αk =α}. (13.6)

Being a probability distribution, pα
i j (k)∈R0 and satisfies ∀k∈T, i, j ∈M, and

α∈Ai ∑N

j=1
pα
i j (k) = 1. (13.7)

For any α /∈Ai , the action is not available in a given state of the MDP. Hence,
∀ j ∈M

pα
i j (k) � 0. (13.8)

In the following, we assume that the transition probability matrices constituting
Pr are varying over time, with variations that are arbitrary within a polytopic set
of stochastic matrices according to Assumption13.2.

• Selecting an (available) action in any given state of a Markov decision process
entails a (nonnegative) cost, which is seen as a function g : M×A→G, where
G⊆R0 is a set of immediate costs.

• γ is a discounting factor, which represents the difference in importance between
future costs and present costs; γ ∈R0, γ ≤1. Since taking the discount factor into

1For instance, in a decision problem of the optimal transmission power management in a wireless
communication, the possible actions available to a controller may be those of increasing or decreas-
ing of a transmission power: in a finite set of transmission power levels, it is impossible to increase
a power from a maximum level or decrease it from a minimum level.
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account does not affect any theoretical results or algorithms in the finite-horizon
case (but might affect the decision maker’s preference for policies) [71, p. 79], we
do not consider a discounting factor here.

In the sameway as done before for aMarkov jumpvariable,wemake the following
assumption.

Assumption 13.3 The state sk of the Markov decision process is measurable and
available for the discrete controller at each time step k∈T.

We are now ready to define a MJSLS as the following system of recursive equa-
tions, where the system’s variables and matrices are the same as above:

⎧
⎪⎨

⎪⎩

xk+1 = Askxk+Bskuk
zk = Cskxk+Dskuk,

x0 = x0, s0 = s0, p0 = p0.

(13.9)

13.3.2 Co-design of Controller and Routing Redundancy

As discussed in Sect. 13.2, routing and scheduling schemes in a WNCS where the
network is based on aWirelessHART-like protocol have a direct and relevant impact
on closed-loop performance and the aforementioned standards leave the possibility,
for the designers, to implement complex and time-varying routing and scheduling ad
hoc optimal policies. Indeed, tomake aWirelessHARTWNCS robust to transmission
nonidealities routing redundancy can be exploited by relaying data via multiple paths
and then appropriately recombining them, which is reminiscent of network coding.
Basically, if a communication path fails, another one can be available to maintain
the communication flow. As paths are characterized by different communication
properties, such as delays and packet losses, the routing designmust take into account
the effect on the control performance of the closed-loop system.

In this section, we illustrate a motivating example from [21], where we model
a WNCS implementing WirelessHART as a MJSLS and address the problem of
optimally co-designing controller and routing with respect to a control performance
index, e.g., the classical quadratic cost used in LQR.

Consider a state-feedback WNCS as in Fig. 13.2, where the communication
between the controller and the actuator can be performed via a set of r routing
paths {ρi }ri=1 in a wireless multi-hop communication network. Each path ρi is char-
acterized by a delay di ∈ N

+ and a packet loss probability pi ∈ [0, 1] that represents
the probability that the packet transmitted on that path will not reach the actuator
due to communication failure. Therefore let us define, for each path ρi , the stochas-
tic process σi (k) ∈ {0, 1}, with σi (k) = 0 if the packet expected to arrive via the
routing path ρi at time k suffered a packet drop and σi (k) = 1 if the packet is suc-
cessfully received at time k. For simplicity we assume that σi (k) is a sequence of
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Fig. 13.2 State-feedback control scheme

i.i.d. random variables, each characterized by a Bernoulli distribution with probabil-
ity measure P[σi (k) = 0] = pi . It is also assumed here that the events of occurrence
of packet losses in the different paths are i.i.d.: as a consequence the stochastic pro-
cess σ(k)

.= [σ1(k), . . . , σr (k)]′ is a vector of i.i.d. random variables, where σ(k)
can assume 2r values. The controller cannot measure the signal σ(k), i.e., it is not
possible to measure the occurrence of packet losses. It is assumed that, in general,
the controller can decide for each time instant k the set of paths where data will be
sent: i.e., the controller can decide to send data at time k on all paths, on a subset of
paths, on one path, or even not to send any data. To this aim let us define for each path
i the discrete control signal ai (k) ∈ {0, 1}, with ai (k) = 1 if the controller decides to
send a packet via the routing path i at time k, and ai (k) = 0 if no packet is sent via
path i at time k. Consequently, the discrete control signal a(k)

.= [a1(k), . . . , ar (k)]′,
where a(k) can be chosen among 2r different values.

Let the plant be a discrete-time LTI system described by the matrices AP ∈ R
	×	,

BP ∈ R
	×m and assume thatwe canmeasure the full system’s state, then the dynamics

of the networked system are as follows:
{
x(k + 1) = Aσ(k)x(k) + Ba(k)u(k)

y(k) = x(k)
(13.10)

with

Aσ(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

AP Λ1(σ (k)) Λ2(σ (k)) · · · Λr (σ (k))
0 Γ1 0 · · · 0
0 0 Γ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Γr

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
(	+ν(r)×	+ν(r)),
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Ba(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0
a1(k)Im ⊗ ed1 0 · · · 0

0 a2(k)Im ⊗ ed2 · · · 0
...

...
. . .

...

0 0 · · · ar (k)Im ⊗ edr

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
(	+ν(r)×mr),

with

Λi (σ (k))
.= σi (k)

[
BP 0 · · · 0] ∈ R

	×mdi ,

Γi
.=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 Im · · · 0 0
...

...
. . .

...
...

0 0 · · · Im 0
0 0 · · · 0 Im
0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
mdi×mdi ,

andwith ν(i)
.= m

i∑

j=1
d j , Im them-dimensional identitymatrix, ei a columnvector of

appropriate dimension with all zero entries except the i − th entry equal to 1, and ⊗
the Kronecker product. Note that in the feedback scheme presented, it is assumed that
the controller can measure the whole state x(k) = [xP(k)′xN (k)′]′ of (13.10), where
xP(k) ∈ R

	 is the state of the plant and xN (k) ∈ R
ν(r) are state variables modeling

the delay induced by each path. It is assumed that the controller can measure the state
xP(k) of the plant via sensors. Also, the controller is aware of the current and past
actuation signals u(k) that have been sent to the actuator, as well as of the current
and past signals a(k): as a consequence the controller has direct access to the state
of xN (k), which models the actuation commands that are expected to arrive at the
actuator, but is not aware of their actual arrival to the actuator since σ(k), which
models packet drops, is not measurable.

We consider in this example the simpler case when routing is designed a priori,
i.e., ∀k ≥ 0, a(k) = ak : note that with this assumption system (13.10) is a MJLS as
defined in (13.2). Let us now consider an instance of system (13.10) characterized
by a four-dimensional unstable randomly generated plant

AP =

⎡

⎢
⎢
⎣

1.1062 −1.0535 0.7944 −0.4543
0.0202 −0.0654 0.9697 −0.6888
0.1131 −0.5755 1.7434 −0.7174
0.0745 −0.2565 0.2999 0.7252

⎤

⎥
⎥
⎦ , BP =

⎡

⎢
⎢
⎣

−0.1880
0.0182
0.1223
0.2066

⎤

⎥
⎥
⎦ ,

and by a wireless network characterized by two paths: ρ1 with packet loss probability
p1 = 0.25 and delay d1 = 1 and ρ2 with packet loss probability p2 = 0 and delay
d2 = 5. We setup the following standard LQR optimization problem:
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Problem 13.1 Given System (13.10) and a routing sequence ak, k = 0, 1, . . . , N −
1, design for any k ∈ {0, . . . , N − 1} an optimal state-feedback control policy
u∗(k) = K ∗(θ(k), k)x(k) minimizing the following objective function:

J(θ0, x0) � min
u

∑T−1

k=0
E

(‖zk‖22
) + E

(
x∗
T ZθT xT

)
(13.11)

with θ and zk as in (13.1) and Z�(Zi )
N
i=1∈NF

nx,nx
0 a sequence of the terminal cost

weighting matrices.

We solve Problem13.1 using the optimal LQR solution for MJLS for comparing
the performance of three simple routing strategies: (1) using for all time instants
only path ρ1; (2) using for all time instants only path ρ2; using for all time instants
both paths simultaneously. Solution is computed for a time horizon T = 300. For
a detailed description of the weight matrices of the cost function (13.11) and the
initial conditions we refer the reader to [21]. For each routing strategy, 5K MC
simulations of the state trajectories are performed. Figure13.3 shows the trajectories
of the first component of the extended state vector when only path ρ1 is used. The
system can be stabilized, but clearly the variance of the trajectories is large. This
routing policy is clearly a bad choice. Figure13.4 shows the trajectories when only
pathρ2 is used (red) andwhen both pathsρ1 andρ2 are used (blue and green). Routing
data only to path ρ2 clearly generates always the same trajectory since p2 = 0. The
system trajectories are stable but the associated cost is quite large because of the
delay, as evidenced by the overshoot and the settling time performances. Figure13.4
evidences that routing data via both paths ρ1 and ρ2 the control performance strongly

Fig. 13.3 State trajectories routing only via path ρ1 (blue) and their average (red)
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Fig. 13.4 State trajectory routing only via path ρ2 (red dashed); state trajectories routing via both
paths ρ1 and ρ2 (blue) and their average (green)

Table 13.1 Cost averaged
over 5K MC simulations

Averaged cost

Via path ρ1 ∼ 900

Via path ρ2 ∼ 250

Via paths ρ1, ρ2 ∼ 100

improves: in particular, the trajectory of the system computed by averaging over all
MC simulations is characterized by much smaller overshoot and faster settling time.
The single trajectories generated routing data via both paths ρ1 and ρ2 clearly have
some variance due to the high packet loss probability p1: however, in the 5K MC
simulations, the performance of any of the single trajectories is much better than the
case when only path ρ2 is used. Table13.1 shows the tremendous improvement of the
controller performance obtained by exploiting both paths and co-designing optimal
control and routing redundancy.

13.4 Main Results

In the previous section, we have illustrated that time-inhomogeneous MJSLSs rep-
resent a mathematical model to jointly take into account the dynamics of a physical
plant and nonidealities of wireless communication such as packet losses, and that
their exploitation for optimal design of routing redundancy can strongly improve the
closed-loop control performance. In this section, we illustrate recent advances related
to the co-design of controller and communication protocol configuration subject to
stochastic packet drops.
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13.4.1 Stability Analysis of Linear Systems with Switching
Delays

In our research line, as a first approach to address the above problem, we considered
in [50] the case when routing is purely nondeterministic and packet losses are not
present. We will exploit the mathematical framework of switching linear systems,
which can be considered a special case of a time-inhomogeneous MJLS, where
the polytopic uncertainty set contains all stochastic transition probability matrices.
Because of the TDMA scheduling each path is characterized by a fixed delay in
forwarding the data (see [24] for details), as a consequence each actuation data is
delayed of a finite number of time steps according to the chosen routing and our
system is characterized by switching time-varying delays of the input signal.

Systems with time-varying delays have attracted increasing attention in recent
years (see e.g., [41, 44, 75] and references therein). In [46], it is assumed that the
time-varying delay is approximatively known and numerical methods are proposed
to exploit this partial information for adapting the control law in real time. The
LMI-based design procedures that have been developed for switching systems with
time-varying delays (see e.g., [45, 86]) do not take into account the specific structure
of the systems induced by the fact that the switching is restricted on the delay-part of
the dynamics. Our goal is to leverage this particular structure in order to improve our
theoretical understanding of the dynamics at stake in these systems. This enables us
to design tailored controllers, whose performance or guarantees are better than for
classical switching systems. Our modeling choice is close to the framework in [44].
However, our setting is more general and realistic in that, differently from [44], it
allows for several critical phenomena to happen: in our model, control commands
generated at different times can reach the actuator simultaneously, their arrival time
can be inverted, and it is even possible that at certain times no control commands
arrive at the actuator. An investigation similar to ours, applied to the different setting
of Lyapunov exponents of randomly switching systems, has been pursued in [76].

In our setting assume that, at each time t , the controller is aware of the propagation
delays of the actuation signals sent at times t, t + 1, . . . , t + N − 1. We assume that
N can be larger than 1, i.e., that the controller is aware of the current and N − 1 next
future routing path choices and keeps memory of the past delays: we define N the
look-ahead parameter and we call this situation the delay-dependent case.

The practically admissible values for N depend on the protocol used to route
data: indeed, note that in several practical situations, the networking protocol can be
designed to choose at any time t the future routing paths up to t + N − 1.

As a first contribution, we show that our particular networked systems can be
modeled bypure switching systems,where the switchingmatrices assumeaparticular
form.As a direct consequence, thewell-knownLMI stability conditions for switching
systems (see e.g., [70]) can be directly used to compute the worst rate of growth with
fixed and arbitrarily small conservativeness. Also, while it is well known that the
stability analysis problem is NP-hard for general switching systems [14], we prove
that it is NP-hard even in our particular case of switching delays.
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As a second contribution, we address the controller design problem. We first
consider the case when one can design the communication system such that we have
an arbitrarily large but finite look-ahead N . Of course, we are interested in requiring
the smallest N : to this aim, we first provide an algorithm for efficiently constructing
this controller, or deciding it does not exist. In case it exists, we prove a general upper
bound N ∗ on the needed look-ahead, depending only on the dimension of the plant
and the set of delays. This result has strong practical implications, since it implies
(if a system is controllable) that it is never necessary to have infinite look-ahead and
moreover a look-ahead equal to N ∗ is always sufficient. If N ≥ N ∗, stabilizability
is equivalent to controllability of a projection of the initial system (as is customary
for linear time-invariant systems). This implies that our techniques are also valid for
the stabilizability problem.

The results described above, presented in [50], provide necessary stability and
controllability conditions when extending our modeling framework to the stochastic
setting in order to address packet loss models, which is the main topic of the next
section.

13.4.2 Analysis and Design of Time-Inhomogeneous
Discrete-Time MJSLS

In this section, we first provide necessary and sufficient stability conditions for time-
inhomogeneous discrete-time MJLS ([60, 62]). Then we illustrate optimal solutions
for the LQR problem for time-inhomogeneous discrete-time MJSLS ([61]). In [59]
we recently addressed the optimal filtering problemandproved a separation principle.

The robust stability problem: Let us consider an autonomous discrete-timeMarkov
jump linear system described by the following state-space model:

{
xk+1 = Aθkxk+Hθkvk,

x0 = x0, θ0 = ϑ0.
(13.12)

Let us denote by E(·) the expected value of a random variable, and by ‖·‖ either any
vector norm or any matrix norm. Then, themean square stability of a system (13.12)
is defined as follows.

Definition 13.1 [17, p. 36–37] A Markov jump linear system (13.12) is mean
square stable if for any initial condition x0∈F

nx and θ0∈Θ0 there exist xe ∈F
nx

and Qe ∈F
nx,nx+ (independent from initial conditions x0 and θ0), such that

lim
k→∞

‖E(xk) − xe‖ = 0, (13.13a)

lim
k→∞

∥
∥E

(
xkx

∗
k

) − Qe

∥
∥ = 0. (13.13b)
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Remark 13.1 It is worth mentioning [17, p. 37, Remark 3.10] that in noiseless case,
i.e., when vk =0 in (13.12), the conditions (13.13) defining mean square stability
become

lim
k→∞E(xk) = 0, lim

k→∞E
(
xkx

∗
k

) = 0. (13.14)

There exist also other forms of stability for Markov jump linear systems without
process noise, notably exponential mean square stability (EMSS) and stochastic
stability (SS), that we define as follows.

Definition 13.2 [17] An MJLS (13.12) is exponentially mean square stable if for
some reals β ≥1, 0<ζ <1, we have for all initial conditions x0∈F

nx and θ0∈Θ0 that,
for every k∈T, if vk =0, then

E
(‖xk‖2

) ≤ βζ k ‖x0‖22 (13.15)

We observe that ‖·‖2 denotes the Euclidean norm, also known as L2-norm or simply
2-norm.

Definition 13.3 [17] A Markov jump linear system (13.12) is stochastically stable
if for all initial conditions x0∈F

nx and θ0∈Θ0, we have that, if vk =0 for every k∈T,
then ∑∞

k=0
E

(‖xk‖2
) ≤ ∞. (13.16)

In the time-homogeneous case, i.e., when the transition probability matrix defined
by (13.2) and (13.3), is such that P(k)= P for all k∈T, there is a condition based
on a value of a spectral radius of a matrix associated to the second moment of
xk that is necessary and sufficient for the mean square stability of system (13.12);
furthermore, in the noiseless setting, MSS, EMSS, and SS are equivalent [17, pp.
36–44]. Specifically, the matrix related to the second moment of xk that we have
mentioned above is

Λ �
(
PT ⊗ In2x

) (⊕N

i=1

(
Āi ⊗ Ai

)
,
)

(13.17)

where ⊗ denotes the Kronecker product, In2x is the identity matrix of size n2x, and the
direct sum⊕ of the manipulated elements of a sequence of state matrices A produces
a block diagonal matrix, having the matrices

(
Āi ⊗Ai

)
on the main diagonal blocks.

The necessary and sufficient condition for the mean square stability of time-
homogeneous Markov jump linear systems we have hinted at before is

ρ(Λ) < 1, (13.18)

where ρ(·) denotes the spectral radius of a matrix. This condition for mean square
stability does not hold in time-inhomogeneous case. The results of this section are
based on a noiseless version of (13.12), i.e., when vk =0 for every k∈T. They are
based on our first work on MJLSs [60].
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Let us consider a noiseless autonomous discrete-timeMarkov jump linear system
described by the following system of difference equations

{
xk+1 = Aθkxk,

x0 = x0, θ0 = ϑ0
(13.19)

where, as before, xk ∈F
nx is a system’s state vector, A�(Ai )

N
i=1∈NF

nx,nx is a
sequence of state matrices, each of which is associated to an operational mode;
while x0∈F

nx and θ0∈Θ0 are initial conditions. Let the transition probability matrix
P(k)=[pi j (k)] of the system (13.19) be polytopic time-inhomogeneous, i.e., satis-
fying Assumption13.2.

Theorem 13.4 [60] The discrete-time Markov jump linear system (13.19) with
unknown and time-varying transition probability matrix P(k)∈convVP is mean
square stable if and only if ρ̂(VΛ)<1.

In Theorem 13.4 convVP denotes the convex hull of the set of transition probability
matrix vertices as defined in (13.4) and ρ̂(·) denotes the joint spectral radius (JSR)2 of
the set ofmatrix verticesVΛobtainedby replacing in (13.17) the transitionprobability
matrix P with the vertices VP. While it is well known that the stability analysis
problem for general switching systems (that is, deciding whether the joint spectral
radius is smaller than 1) is NP-hard [14], we proved that it is NP-hard even in our
particular model.

Theorem 13.5 [60] Given a discrete-time Markov jump linear system (13.19) with
unknown time-varying transition probability matrix P(k)∈convVP, unless P=N P,
there is no polynomial-time algorithm that decides whether it is mean square stable.

Our last but not least important result on stability of autonomous noiseless Markov
jump linear systems as in (13.19) having polytopic time-inhomogeneous transition
probabilities has been presented in the following theorem.

Theorem 13.6 [60] The following assertions are equivalent.

1. The system (13.19) is mean square stable (MSS);
2. The system (13.19) is exponentially mean square stable (EMSS);
3. The system (13.19) is stochastically stable (SS).

We developed an extension of the above results in presence of bounded-energy
disturbance in [62].

The switched LQR problem. Using the approach inSect. 13.3.2 it is possible to com-
pute, for a finite set of predefined routing policies, the associated expected quadratic
cost and choose the optimal policy. To further improve the performance one can

2It is well known that the maximal rate of growth among all products of matrices from a bounded
set is given by its JSR ρ̂(·), which is the generalization of the notion of spectral radius to sets of
matrices. See [49] and references therein for a detailed treatment of the JSR theory.
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dynamically choose, for each time step and according to the plant state measure-
ment, the routing choice: we address this problem by considering the mathematical
framework of time-inhomogeneous MJSLS. In particular, we consider the problem
of joint cost minimization of continuous and discrete control inputs for the worst
possible disturbance of the transition probabilities. The provided solution has been
derived in [61] and consists of a finite set of recursive-coupled Riccati difference
equations. This result is an extension of state of the art which is nontrivial from
the technical point of view, since in the proof we needed to show that due to the
time-varying nature of perturbations, at generic time step k the vertex that attains
the maximum is unknown and state dependent. With respect to previous works on
MJLSs having exactly known transition probabilities, we also needed to define and
address the issue of explosion of the number of coupled Riccati difference equations.

Let us consider the discrete-time Markov jump switched linear system (13.9)
with the switching between operational modes of the system being governed by a
Markov decision process (M,A,Pr, g, γ ). Its transition probabilities associated to
each action available in an operational mode are polytopic time-inhomogeneous, as
by Assumption13.2. Also, all the operational modes of the system are considered to
be measurable (Assumptions13.3). We recall that the state-space representation of
the system (13.9) under consideration is

⎧
⎪⎨

⎪⎩

xk+1 = Askxk+Bskuk
zk = Cskxk+Dskuk,

x0 = x0, s0 = s0, p0 = p0

where the system variables and matrices are those of Sect. 13.3.1. Without loss of
generality [17, Remark 4.1, p. 74] we assume that for each i ∈M C∗

i Di = 0 and
D∗

i Di � 0.
For each k∈T, we denote byπk the hybrid control pair (αk, uk), whereαk ∈Ai and

uk are respectively a discrete and a continuous action at time instant k. The sequence
π of hybrid control pairs (πk)

T−1
k=0 is called hybrid control sequence. At each time

step (or decision epoch, in MDP terminology) k, a particular choice uk of uk is
called the continuous control law; similarly, αk is denominated discrete switching
control law. The pair (αk, uk) forms the hybrid control law π k , and the sequence of
hybrid control laws over the horizon T constitutes a finite horizon feedback policy,
π � (π k)

T−1
k=0 � (αk, uk)

T−1
k=0 . We also indicate by pα

s• �
(
pα
sk•(k)

)T−1

k=0
the sequence of

length T ∈T of the transition probability row vectors pα
i•(k), with k∈TT−1. Note that

the transition probability row vectors pα
i•(k) belong to a polytopic set of transition

probability row vectors induced by the tranisition probability matrix vertices Vα
P

similarly to Assumption13.2. For more details the reader is referred to [61].
We cast an optimal linear quadratic state-feedback control problem for Markov

jump switched linear systems with bounded perturbations of the transition proba-
bilities as a min-max problem of optimizing robust performance, i.e., finding the
minimum over the finite-horizon feedback policy of the maximum over the transition
probability disturbance obtained in correspondence of the chosen feedback policy.
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This problem can be cast from the game-theoretic point of view, where at each time
step k∈T the perturbation-player (environment and/or malicious adversary) tries to
maximize the cost while the controller tries to minimize the cost. The game-theoretic
formulation of the optimal robust control problem requires to make explicit the fol-
lowing assumption on the information structure for the controller and the adversary.

Assumption 13.7 The perturbation-player has no information on the choice of the
controller and vice versa.

The problem of designing the optimal mode-dependent state-feedback Markov
jump controller, which is robust to all possible polytopic perturbations in transition
probabilities, is formally defined as follows.

Problem 13.2 Given a discrete-time Markov jump switched linear system (13.9)
with unknown and time-varying transition probability row vectors pα

i•(k)∈Vα
P and

satisfying Assumption13.2, find the mode-dependent state feedback policy π that
achieves the following optimal cost of robust control.

J(s0, x0)�min
π

max
pα
s•

∑T−1

k=0
E

(‖zk‖22+g(sk, αk)
)+E

(
x∗
T ZsT xT

)
(13.20)

with Z�(Zi )
N
i=1∈NF

nx,nx
0 being a sequence of the terminal cost weighting matrices.

Our solution to Problem13.2 has been derived in [61] based on the dynamic program-
ming approach in Bellman’s optimization formulation [12], by backward induction.
Note that even if the cost g(sk, αk) of performing a discrete action αk in an opera-
tional mode sk here is treated as time-invariant, the result will obviously remain the
same in the case of the time-varying cost g(sk, αk, k), as long as the current value of
the cost is known by the decision maker.

Exploiting the optimal solution defined in Problem13.2 in the example of
Sect. 13.3.2 the dynamic routing choice results in an event-driven policy that depends
at each time step on the current state measurement. Note that the controller may also
decide not to send control data over the network. This approach is closely related
to the Event-Triggered control paradigm (see ([7, 39, 65] and references therein),
where a triggering condition based on current state measurements is continuously
monitored and control actuations are generated and applied when the plant state
deviates more than a certain threshold from a desired value.

13.5 Conclusions and Future Work

This chapter presents an overview of some recent results on co-design of controller
and network parameters of WNCS implementing communication protocols similar
to the WirelessHART standard.
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We leverage the class of discrete-time Markov jump linear systems, putting a
specific focus on dealing with abrupt and unpredictable dynamic perturbations of
transition probabilities between the operational modes of such systems and adding
to the model the possibility to make discrete decisions, i.e., defining the class of
time-inhomogeneous discrete-time Markov jump switching linear systems. In order
to account for uncertainties and time-variance inherent to real world scenarios, we
use the time-inhomogeneous polytopic model of transition probabilities, which is
very general and widely used. We illustrate that time-inhomogeneous MJSLS rep-
resent a mathematical model to jointly take into account the dynamics of a physical
plant and non-idealities of wireless communication such as packet losses, and that
their exploitation for optimal design of routing redundancy can strongly improve the
closed-loop control performance. We provide novel results in this setting addressing
the robust stability and the switched LQR problems.

Our interest in this particular class of systems is inspired by their application
as possible models for WNCS implementing communication protocols specifically
developed for automation applications: we believe that this topic is timely, especially
in view of the ongoing efforts made by academia and industry in developing a fifth
generation of mobile technology (5G), which also uses models based on Markov
chains and is expected to meet the requirements of ultra-reliable, low-latency com-
munications for factory automation and safety-critical internet of things. Based on
the research illustrated in this chapter we will attempt to improve our models of
the communication protocols and wireless communication non-idealities and our
analysis and design algorithms, with the aim of bringing substantial improvements
in wireless closed-loop automation systems of the next generation by optimally co-
designing the controller as well as the different layers of the communication protocol
stack.

Acknowledgements The authorwould like to acknowledge all co-authors of the papers constituting
the line of research illustrated in this chapter: Marika Di Benedetto, Gianni Di Girolamo, Raphaël
Jungers, Emmanuele Serra, Francesco Smarra, and Yuriy Zacchia Lun. This line of research has
been partially supported by EU FP6 NoE HYCON, EU FP7 NoE HYCON2, Cipe resolution n.135
INCIPICT, H2020-ECSEL-2015 SAFECOP and H2020-ECSEL-2016-1 AQUAS.

References

1. Abate,A.,D’Innocenzo,A.,DiBenedetto,M.D.:Approximate abstractions of stochastic hybrid
systems. IEEE Trans. Autom. Control 56(11), 2688–2694 (2011)

2. Aberkane, S.: Stochastic stabilization of a class of nonhomogeneous Markovian jump linear
systems. Syst. Control Lett. 60(3), 156–160 (2011)

3. Akyildiz, I.F., Kasimoglu, I.H.: Wireless sensor and actor networks: research challenges. Ad
Hoc Netw. 2(4), 351–367 (2004)

4. Alderisi, G., Girs, S., Lo Bello, L., Uhlemann, E., Bjorkman, M.: Probabilistic scheduling
and adaptive relaying for wirelesshart networks. In: 2015 IEEE 20th Conference on Emerging
Technologies Factory Automation (ETFA), pp. 1–4 (2015)



282 A. D’Innocenzo

5. Alur, R., D’Innocenzo, A., Johansson, K.H., Pappas, G.J., Weiss, G.: Compositional modeling
and analysis of multi-hop control networks. IEEE Trans. Autom. Control., Special Issue on
Wirel. Sens. Actuator Netw. 56(10), 2345–2357 (2011)

6. Alur, R., D’Innocenzo, A., Johansson, K.H., Pappas, G.J., Weiss, G.: Modeling and Analysis
of Multi-Hop Control Networks. In: Proceedings of the 15th IEEE Real-Time and Embedded
Technology and Applications Symposium, San Francisco, CA, United States, pp. 223–232.
13–16 April 2009

7. Antunes, D., Heemels, W.P.M.H.: Rollout event-triggered control: beyond periodic control
performance. IEEE Trans. Autom. Control 59(12), 3296–3311 (2014)

8. Årzén, K.-E., Bicchi, A., Hailes, S., Johansson, K.H., Lygeros, J.: On the design and control
of wireless networked embedded systems. In: Proceedings of the 2006 IEEE Conference on
Computer Aided Control Systems Design, Munich, Germany (2006)

9. Åström, K.J., Wittenmark, B.: Adaptive control. Dover Books on Electrical Engineering, 2nd
edn. Dover Publications (2008)

10. Aström, K., Wittenmark, B.: Computer-Controlled Systems: Theory and Design. Prentice Hall
(1997)

11. Beckert, B., Hähnle, R.: Reasoning and verification: state of the art and current trends. IEEE
Intell. Syst. 29(1), 20–29 (2014)

12. Bertsekas, D.P.: Dynamic Programming and Optimal Control, vols. I and II. Athena Scientific,
Belmont, MA (1995)

13. Bertuccelli, L.F., How, J.P.: Estimation of non-stationary Markov chain transition models. In:
2008 47th IEEE Conference on Decision and Control (CDC), IEEE, New York, pp. 55–60
(2008)

14. Blondel, V.D., Tsitsiklis, J.N.: The Lyapunov exponent and joint spectral radius of pairs of
matrices are hard - when not impossible - to compute and to approximate. Math. Control
Signals Syst. 10, 31–40 (1997)

15. Borrelli, F., Baotic, M., Bemporad, A., Morari, M.: Dynamic programming for constrained
optimal control of discrete-time linear hybrid systems. Automatica 41, 1709–1721 (2005)

16. Chitraganti, S., Aberkane, S., Aubrun, C.: Mean square stability of non-homogeneous Markov
jump linear systems using interval analysis. In: Proceedings of the European Control Confer-
ence, pp. 3724–3729 (2013)

17. Costa, O.L.V., Fragoso, M.D., Marques, R.P.: Discrete-Time Markov Jump Linear Systems.
Springer, London (2005)

18. De Guglielmo, D., Anastasi, G., Seghetti, A.: From IEEE 802.15.4 to IEEE 802.15.4e: A Step
Towards the Internet of Things. Springer International Publishing, Berlin (2014)

19. Di Benedetto, M.D., Bicchi, A., D’Innocenzo, A., Johansson, K.H., Robertsson, A., Santucci,
F., Tiberi, U., Tzes, A.: Networked control. In: Lunze, J., Lamnabhi, F. (eds.) Handbook of
Hybrid Systems Control: Theory, Tools, Applications, pp. 106–112, Cambridge University
Press (2009). ISBN:978-0-521-76505-3

20. Di Girolamo, G.D., D’Innocenzo, A., Di Benedetto, M.D.: Co-design of control, scheduling
and routing in awirelesshart network. Submitted to Conference on decision and control CDC17
(2017)

21. Di Girolamo, G.D., D’Innocenzo, A., Di Benedetto, M.D.: Co-design of controller and routing
redundancy over a wireless network. In: Proceedings of the 5th IFACWorkshop on Estimation
and Control of Networked Systems, 10–11 September 2015

22. Di Girolamo, G.D., D’Innocenzo, A., Di Benedetto, M.D.: Data-rate and network coding co-
designwith stability and capacity constraints. In: 20th IFACWorldCongress, Toulouse, France,
9–14 July 2017

23. Di Marco, P., Fischione, C., Santucci, F., Johansson, K.H.: Modeling ieee 802.15.4 networks
over fading channels. IEEE Trans. Wirel. Commun. 13(10), 5366–5381 (2014)

24. D’Innocenzo, A., Di Benedetto, M.D., Serra, E.: Fault tolerant control of multi-hop control
networks. IEEE Trans. Autom. Control 58(6), 1377–1389 (2013)

25. D’Innocenzo,A., Smarra, F.,DiBenedetto,M.D.: Further results on fault detection and isolation
ofmalicious nodes inmulti-hop control networks. In: Proceedings of the 14th EuropeanControl
Conference (ECC’15), Linz, Austria, 15–17 July 2015



13 Modeling and Co-Design of Control Tasks over … 283

26. D’Innocenzo, A., Smarra, F., Di Benedetto, M.D.: Resilient stabilization of multi-hop control
networks subject to malicious attacks. Automatica 71, 1–9 (2016)

27. D’Innocenzo, A., Weiss, G., Alur, R., Isaksson, A.J., Johansson, K.H., Pappas, G.J.: Scalable
scheduling algorithms for wireless networked control systems. In: Proceedings of the 5th IEEE
International Conference on Automation Science and Engineering, Bangalore, India, pp. 409-
414. 22–25 August 2009

28. Donkers, M.C.F., Heemels, W.P.M.H., Hetel, L., van de Wouw, N.: Stability analysis of net-
worked control systems using a switched linear systems approach. IEEETrans. Autom. Control
56(9), 2101–2115 (2011)

29. Gatsis, K., Ribeiro, A., Pappas, G.J.: Optimal power management in wireless control systems.
IEEE Trans. Autom. Control 59(6), 1495–1510 (2014)

30. Gonçalves, A.P.C., Fioravanti, A.R., Geromel, J.C.: Markov jump linear systems and filtering
through network transmitted measurements. Signal Process. 90(10), 2842–2850 (2010)

31. Gupta, V., Dana, A.F., Hespanha, J.P., Murray, R.M., Hassibi, B.: Data transmission over
networks for estimation and control. IEEE Trans. Autom. Control 54(8), 1807–1819 (2009)

32. Haesaert, S.,Abate,A.,Van denHof, P.M.J.: Correct-by-design output feedback ofLTI systems.
In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 6159–6164 (2015)

33. Han, S., Zhu, X., Mok, A.K., Nixon, M., Blevins, T., Chen, D.: Control over WirelessHART
network. In: Proceedings of the 36th Annual Conference of IEEE Industrial Electronics Society
(IECON), pp. 2114–2119 (2010)

34. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. FormalAsp. Comput.
6(5), 512–535 (1994)

35. HART Communication Foundation. Network management specification. In: HART Commu-
nication Protocol Specification (2008)

36. HARTCommunication Foundation. Tdma data link layer specification. HARTCommunication
Protocol Specification (2008)

37. HART Communication Foundation. Wirelesshart device specification. HART Communication
Protocol Specification (2008)

38. Hartfiel, D.J.: Markov Set-Chains. Lecture Notes in Mathematics, vol. 1695. Springer, Berlin
(1998)

39. Heemels, W.P.M.H., Johansson, K.H., Tabuada, P.: An introduction to event-triggered and self-
triggered control. In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp.
3270–3285 (2012)

40. Heemels, W.P.M.H., Teel, A.R., van de Wouw, N., Nesic, D.: Networked control systems with
communication constraints: tradeoffs between transmission intervals, delays and performance.
IEEE Trans. Autom. Control 55(8), 1781–1796 (2010)

41. Heemels, W.P.M.H., Teel, A.R., van de Wouw, N., Nesic, D.: Networked control systems with
communication constraints: tradeoffs between transmission intervals, delays and performance.
IEEE Trans. Autom. Control 55(8), 1781–1796 (2010)

42. Heemels, W.P.M.H., van De Wouw, N.: Stability and stabilization of networked control sys-
tems. In: Bemporad, A., Maurice, W.P., Heemels, H., Johansson, M. (eds), Networked Control
Systems. Lecture Notes in Control and Information Sciences, vol. 406, chapter 7, pp. 203–253.
Springer, London (2010)

43. Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked control
systems. Proc. IEEE 95(1), 138–162 (2007)

44. Hetel, L., Daafouz, J., Iung, C.: Stability analysis for discrete time switched systems with
temporary uncertain switching signal. In: Proceedings of the 46th IEEEConference onDecision
and Control (CDC2007), New Orleans, LA, USA, pp. 5623–5628. 12–14 December (2007)

45. Hetel, L., Daafouz, J., Iung, C.: Stabilization of arbitrary switched linear systemswith unknown
time-varying delays. IEEE Trans. Autom. Control 51(10), 1668–1674 (2006)

46. Hetel, L., Daafouz, J., Richard, J.-P., Jungers,M.: Delay-dependent sampled-data control based
on delay estimates. Syst. Control Lett. 60(2), 146–150 (2011)

47. Hwang, I., Kim, S., Kim, Y., Seah, C.E.: A survey of fault detection, isolation, and reconfigu-
ration methods. IEEE Trans. Control Syst. Technol. 18(3), 636–653 (2010)



284 A. D’Innocenzo

48. IEEE. 802.15 wpan task group 4 (2017)
49. Jungers, Raphaël: The joint spectral radius: theory and applications. Lecture Notes in Control

and Information Sciences, vol. 385. Springer, Berlin (2009)
50. Jungers, R.M., D’Innocenzo, A., Di Benedetto, M.D.: Controllability of linear systems with

switching delays. IEEE Trans. Autom. Control 61(4), 1117–1122 (2016)
51. Jungers, R.M., D’Innocenzo, A., Di Benedetto, M.D.: Feedback stabilization of dynamical

systems with switched delays. In: 51st IEEE Conference on Decision and Control, Maui,
Hawaii, 10–13 December 2012

52. Jungers, R.M., D’Innocenzo, A., Di Benedetto,M.D.: Further results on controllability of linear
systems with switching delays. In: 9th IFACWorld Congress, Cape Town, South Africa, 24–29
August 2014

53. Jungers, R.M., D’Innocenzo, A., Di Benedetto, M.D.: How to control Linear Systems with
switching delays. In: 13th European Control Conference (ECC14), Strasbourg, France, 24–27
June 2014

54. Kalman,R.E.:Contributions to the theoryof optimal control.Boletin de laSociedadMatematica
Mexicana 5, 102–119 (1960)

55. Khader, O., Willig, A., Wolisz, A.: Wirelesshart tdma protocol performance evaluation using
response surface methodology. In: 2011 International Conference on Broadband and Wireless
Computing, Communication and Applications, pp. 197–206 (2011)

56. Khader, O., Willig, A.: An energy consumption analysis of the wireless hart tdma protocol.
Comput. Commun. 36(7), 804–816 (2013)

57. Komninakis, C., Wesel, R.D.: Joint iterative channel estimation and decoding in flat correlated
Rayleigh fading. IEEE J. Sel. Areas Commun. 19(9), 1706–1717 (2001)

58. Lahijanian, M., Andersson, S.B.: Formal verification and synthesis for discrete-time stochastic
systems. IEEE Trans. Autom. Control 60(8), 2031–2045 (2015)

59. Lun, Y.Z., D’Innocenzo, A., Abate, A., Di Benedetto, M.D.: Optimal robust control and a
separation principle for polytopic time-inhomogeneous Markov jump linear systems. In: 2017
IEEE 56th Conference on Decision and Control (CDC) (2017)

60. Lun, Y.Z., D’Innocenzo, A., Di Benedetto, M.D.: On stability of time-inhomogeneous Markov
jump linear systems. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp.
5527–5532 (2016)

61. Lun,Y.Z.,D’Innocenzo,A.,DiBenedetto,M.D.:RobustLQRfor time-inhomogeneousMarkov
jump switched linear systems. In: The 20th World Congress of the International Federation of
Automatic Control (2017)

62. Lun, Y.Z., D’Innocenzo, A., Di Benedetto, M.D.: Robust stability of time-inhomogeneous
Markov jump linear systems. In: The 20th World Congress of the International Federation of
Automatic Control (2017)

63. Lun, Y.Z., D’Innocenzo, A., Malavolta, I., Di Benedetto, M.D.: Cyber-physical systems secu-
rity: a systematic mapping study. arXiv:1605.09641 (2016)

64. Matei, I., Martins, N.C., Baras, J.S.: Optimal linear quadratic regulator for markovian jump
linear systems, in the presence of one time-step delayed mode observations. IFAC Proc. 41(2),
8056–8061 (2008). (17th IFAC World Congress)

65. Mazo, M., Tabuada, P.: Decentralized event-triggered control over wireless sensor/actuator
networks. IEEE Trans. Autom. Control 56(10), 2456–2461 (2011)

66. Mesquita, A.R., Hespanha, J., Nair, G.N.: Redundant data transmission in control/estimation
over lossy networks. Automatica 48, 1020–1027 (2012)

67. Nobre, M., Silva, I., Guedes, L.A.: Routing and scheduling algorithms for wirelesshart net-
works: a survey. In: Sensors, pp. 9703–9740 (2015)

68. Pajic, M., Sundaram, S., Pappas, G.J., Mangharam, R.: The wireless control network: a new
approach for control over networks. IEEE Trans. Autom. Control 56(10), 2305–2318 (2011)

69. Peters, E.G.W., Quevedo, D.E., Fu, M.: In: 54th IEEE Conference on Decision and Control
(CDC), pp. 2459–2464 (2015)

70. Protasov, V.Y., Jungers, R.M., Blondel, V.D.: Joint spectral characteristics of matrices: a conic
programming approach. SIAM J. Matrix Anal. Appl. 31(4), 2146–2162 (2010)

http://arxiv.org/abs/1605.09641


13 Modeling and Co-Design of Control Tasks over … 285

71. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics, vol. 594. Wiley-Interscience, New Jersey (2005)

72. Sadeghi, P., Kennedy, R.A., Rapajic, P.B., Shams, R.: Finite-state Markov modeling of fading
channels - a survey of principles and applications. IEEE Signal Process. Mag. 25(5), 57–80
(2008)

73. Saifullah, A., Xu, Y., Lu, C., Chen, Y.: Real-time scheduling for wirelesshart networks. In: 31st
IEEE Real-Time Systems Symposium, pp. 150–159 (2010)

74. Schenato, L., Sinopoli, B., Franceschetti, M., Poolla, K., Sastry, S.S.: Foundations of control
and estimation over lossy networks. Proc. IEEE 95(1), 163–187 (2007)

75. Shao, H., Han, Q.-L.: New stability criteria for linear discrete-time systems with interval-like
time-varying delays. IEEE Trans. Autom. Control 56(3), 619–625 (2011)

76. Sinopoli, B., Schenato, L., Franceschetti,M., Poolla, K., Jordan,M., Sastry, S.: Kalman filtering
with intermittent observations. IEEE Trans. Autom. Control 49(9), 1453–1464 (2004)

77. Smarra, F., D’Innocenzo, A., Di Benedetto,M.D.: Approximationmethods for optimal network
coding in a multi-hop control network with packet losses. Control Conference (ECC). 2015
European, pp. 1962–1967. IEEE, Linz (2015)
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Chapter 14
Discontinuities, Generalized Solutions,
and (Dis)agreement in Opinion Dynamics

F. Ceragioli and P. Frasca

Abstract This chapter is devoted to the mathematical analysis of some continuous-
timedynamical systemsdefinedbyordinarydifferential equationswith discontinuous
right-hand side, which arise as models of opinion dynamics in social networks.
Discontinuities originate because of specific communication constraints, namely,
quantization or bounded confidence. Solutions of these systems may or may not
converge to a state of agreement, where all components of the state space are equal.
After presenting three models of interest, we elaborate on the properties of their
solutions in terms of existence, completeness, and convergence.

14.1 Discontinuous Consensus-Seeking Systems

This chapter studies some continuous-time dynamical systems defined by ordinary
differential equations with discontinuous right-hand side. The dynamics under con-
sideration have been proposed in the last 15 years in the context of “consensus-
seeking” systems, which describe coordination phenomena in engineering, biology,
and social sciences. Given this range of applications, the reader will not be surprised
that we are dealing with rather abstract representations of reality.

The most basic consensus-seeking system takes the following form. Let x be an
N -dimensional vector, where each component xi is associated to an individual i ∈
I = {1, . . . , N } and evolves in time according to the ordinary differential equation

ẋi (t) =
N∑

j=1

ai j
(
x j (t) − xi (t)

)
i ∈ I . (14.1)
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Since we assume that the interaction weights ai j are nonnegative, this dynamics
postulates that each individual is attracted by the other individuals with whom it
interacts. Under very mild assumptions on the interaction pattern, this dynamics
converges to a state of agreement where all components xi are equal.

Variations to this dynamics have been proposed in order to accommodate a host
of phenomena, including time- and state-dependent interactions ai j (t, x). An inter-
esting case of state-dependent interactions is the following, which is termed bounded
confidence in the literature. Two individuals are assumed to influence each other if
their states are closer than a certain threshold (that we choose to be 1 for simplicity):

ẋi (t) =
N∑

j=1

a(xi (t), x j (t))
(
x j (t) − xi (t)

)
i ∈ I (BC)

where a(y, z) =
{
1 if |y − z| < 1

0 if |y − z| � 1.

This model, which is a continuous-time counterpart of the opinion dynamics studied
by Hegselmann and Krause [34], has been proposed by [8] and further considered
in [14]. Very similar models have been considered in [19, 35, 40, 49, 51]. We will
see that (BC) does not produce agreement, but clustering of individuals into groups
characterized by agreement within each group and disagreement between groups.

Another relevant phenomenon is quantization, which occurs both in engineering
and in social systems. In engineering, it can represent communication constraints,
where the state variable is communicated between individuals via a digital channel
with finite data rate, and thus constrained to take on discrete values. For the sake of
this analysis, we shall define the quantization of a real number simply by rounding it
to the closest integer: q(s) = �s + 1

2�. In this context, an effective consensus-seeking
system is the following “quantized states” system studied in [17]:

ẋi (t) =
N∑

j=1

ai j
(
q(x j (t)) − q(xi (t))

)
i ∈ I . (QS)

Note that the right-hand side features the quantized values of both states x j and xi :
the presence of the quantized state q(xi ) is crucial to ensure the “good” properties
of this dynamics, which will be discussed below.

In social systems, quantization may originate because the state variable is “com-
municated” as the display of an action or behavior, which can take on discrete values
only: for instance, the purchase of certain products. In this context, we have recently
proposed [15, 16] to investigate the following “quantized behaviors” model:
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ẋi (t) =
N∑

j=1

ai j [q(x j (t)) − xi (t)] i ∈ I = {1, . . . , N }. (QB)

Note that, in contrast with (QS), the right-hand side features the quantized value of
x j , but not of xi , which leads to more complex dynamics than (QS).

The reader can notice that the right-hand sides of equations (BC), (QS), and (QB)
are discontinuous in the state variable. Since the study of these non-smooth systems
relies on relatively sophisticated instruments that might not always be accessible
to the nonspecialists, we have included in this chapter an extended review of the
necessary mathematical machinery, which we hope can be of independent interest.
Nevertheless, readers are advised to consult the literature specific to the topic, for
instance, the tutorial [21] and the books [4, 24], as well as more specific works about
stability [6] or generalized solutions [12]. Additional references are provided in the
following sections.

The rest of this chapter is organized as follows. Section14.2 defines some useful
notation and summarizes well-known results from graph theory together with their
consequences for the consensus dynamics (14.1). Section14.3 presents some notions
of solutions that are relevant in this context, namely, those of Carathéodory and
Krasovskii. The section also contains results on existence and completeness of these
solutions for a general class of piecewise affine systems and specifically for the three
dynamics at hand. Section14.4 deals with equilibria (again, declined according to
the relevant notions of solutions) and describes the sets of equilibria for our three
dynamics. Section14.5 deals with convergence of their trajectories. We provide two
kinds of results: on the one hand, sufficient conditions to reach agreement, and on
the other hand, general statements about convergence to the equilibria (or to their
proximity).

Owing to the survey purpose thatwe set us for this chapter,we have avoided report-
ing the details of some proofs that can be easily found in the literature. Furthermore,
we restrict our presentation to assume symmetric interactions, namely, such that
ai j = a ji for all i, j in I . We made this choice for simplicity of exposition, even
though most results can be extended to nonsymmetric interactions.

14.2 Preliminaries

Notation. Given a subset S of RN , we denote by S its topological closure, by ∂S its
border, and by coS its closed convex hull. We let 0 = (0, . . . , 0)�, 1 = (1, . . . , 1)�
and ei , i = {1, . . . , N }, the vectors of the canonical basis of RN . We call consen-
sus point a point of the form α1 with α ∈ R. The N -dimensional identity matrix
is denoted by I , and ‖ · ‖ denotes the Euclidean norm both for vectors and matri-
ces. Given the vector x ∈ R

N , we denote its average by xave = 1
N 1

�x = 1
N

∑N
i=1 xi .

When x = x(t) we shall write xave(t) = 1
N

∑N
i=1 xi (t). The notation q(x) with

x ∈ R
N will denote the vector whose i th component is q(xi ).
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Graph theory. Aweighted (undirected) graph G = (I ,E , A) consists of a node
set I = {1, . . . , N }, an edge set E ⊂ I × I , and a symmetric adjacency matrix
A ∈ R

N×N
+ such that ai j > 0 if (i, j) ∈ E , and ai j = 0 if ( j, i) /∈ E . We assume no

self-loops in the graph, that is aii = 0 for all i ∈ I . Nodes (vertices) are referred
to as agents or individuals, edges as links. Let di := ∑N

j=1 ai j be the degree of node
i ∈ I . Let D = diag(A1) be the diagonal matrix whose diagonal entries are the
degrees of each node. Let L = D − A be the Laplacian matrix of the graph G .
Note that by construction L1 = 0 and by symmetry 1�L = 0�. In case the graph is
state-dependent, we write G (x),E (x), A(x), D(x), L(x).

Given an edge (i, j), we shall refer to i and to j as the tail and the head of the
edge, respectively. A path is an ordered list of edges such that the head of each edge
is equal to the tail of the following one. The graph G is said to be connected if for any
i, j ∈ I there is a path from i to j inG . If the graph is connected, then the eigenvalue
0 of the Laplacian matrix L has algebraic multiplicity 1. The vector x − xave1 is the
projection of x on the subspace orthogonal to 1: consequently, if we denote by λ∗
the smallest nonzero eigenvalue of L , one has

(x − xave1)�L(x − xave1) � λ∗ ‖x − xave1‖2 ∀x ∈ R
N .

Convergence to agreement. Using the Laplacian matrix, dynamics (14.1) can be
compactly rewritten as

ẋ = −Lx . (14.2)

Its key properties, descending from the properties of the Laplacian that we recalled
above, are summarizedby the followingwell-known result and illustrated inFig. 14.1.

Theorem 14.1 (Real consensus) If the graph underlying (14.1) is connected and the
adjacency matrix A is symmetric, then for any solution x(t) of (14.1), the following
properties hold true:

1. (contractivity and boundedness) co{xi (t), i ∈ I } ⊆ co{xi (0), i ∈ I };
2. (average preservation) xave(0) = xave(t);
3. (equilibria) x∗ is an equilibrium point of (14.1) if and only if x∗ is a consensus

point;
4. (average consensus) limt→+∞ x(t) = xave(0)1.

14.3 Generalized Solutions and Basic Properties
of the Dynamics

In this section, we summarize some notions which are essential in order to deal with
systems whose right-hand side is discontinuous with respect to the state variable.

Let us consider the Cauchy problem
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Fig. 14.1 Evolution of a
solution of (14.1) from
random initial conditions on
a cycle graph on 25 nodes
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ẋ = f (x) x(0) = x0, (14.3)

where x0 ∈ R
N and f : RN → R

N is measurable and locally bounded. We will
denote byΔ f the subset ofRN where f is discontinuous.When facing system (14.3),
one should first of all choose which type of generalized solution is the most suitable
for the system of interest. We shall consider Carathéodory solutions and Krasovskii
solutions.

14.3.1 Carathéodory Solutions

The notion of solution nearest to the classical one is that of Carathéodory solution.

Definition 14.1 (Carathéodory solution) Let I ⊂ R be an interval with 0 ∈ I and let
x0 ∈ R

N . An absolutely continuous function ϕ : I → R
N is aCarathéodory solution

of equation (14.3) on I with initial condition x0 if ϕ(0) = x0 and if it satisfies (14.3)
for almost all t ∈ I or, equivalently, if it is a solution of the integral equation

ϕ(t) = x0 +
∫ t

0
f (ϕ(s))ds.

We say that a local Carathéodory solution corresponding to the initial condition
x0 ∈ R exists if there exist a neighborhood I (x0) of x0, an interval of the form [0, T ),
and an absolutely continuous function ϕ : [0, T ) → I (x0) such that ϕ(0) = x0 and
ϕ(t) is a Carathéodory solution of (14.3) on [0, T ).
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Note that in themodelswe are considering the setΔ f of discontinuity points of the
vector field f (x) has a particularly simple structure, as it can be locally represented
as the union of a finite number of hyperplanes. This observation is made rigorous by
the following assumption.

Assumption 14.1 (On the discontinuity set) For any x0 ∈ Δ f , there exists a neigh-
borhood I (x0) of x0 and m affine functions s1, . . . , sm : I (x0) → R

N defined by

s�(x) = p�
� x − c� � ∈ {1, . . . ,m}

with p� ∈ R
N and c� ∈ R, such that s�(x0) = 0 for all � ∈ {1, . . . ,m} and

Δ f ∩ I (x0) = {x ∈ I (x0) : s1(x) = 0} ∪ . . . ∪ {x ∈ I (x0) : sm(x) = 0}.
Under Assumption 14.1, the neighborhood I (x0) of x0 is partitioned in 2m sectors

Sb(x0) defined by the signs of the functions s1, . . . , sm , indexed by means of b ∈
{−1, 1}m , and defined in the following way1:

Sb(x0) = {x ∈ I (x0) : s�(x) < 0 if b� = −1 and s�(x) � 0 if b� = 1, � = 1, . . . ,m}.

Assumption 14.2 (On the discontinuous vector field) The parts Sb(x0) are defined
so that the vector field f (x) is continuous on Sb(x0) for all b ∈ {−1, 1}m .

Without Assumption 14.2, the choice of the representation of the discontinuity
hyperplanes by means of p� and c� would not be unique, since the orientation of
the normal vector is arbitrary. Assumption 14.2 makes sure that the choice of the
representation is consistent with the functions a(·, ·) and q(·) in Eqs. (BC), (QS), and
(QB).

Under Assumptions 14.1 and 14.2, the vector field f (x) has 2m limit values as
x → x0, namely,

f b(x0) = lim
x∈Sb,x→x0

f (x).

Example 14.1 (BC dynamics with three individuals) Consider dynamics (BC) with
N = 3 and x0 = (0, 1, 2)�. Clearly, point x0 lies at the intersection of the two planes
of discontinuity x2 − x1 − 1 = 0 and x3 − x2 − 1 = 0, namely, defined by the nor-
mal vectors p1 = (−1, 1, 0)� and p2 = (0,−1, 1)�. In the sectors S(1,1), S(−1,1),

S(1,−1), S(−1,−1), we, respectively, identify the four limit values of the vector field

1It would be more precise to write Sb(x0, I (x0)) instead of Sb(x0), as it depends on I (x0). Note
however that if I (x0) and I ′(x0) are two distinct neighborhoods of x0, then the sets Sb(x0, I (x0))
and Sb(x0, I ′(x0)) coincide on I (x0) ∩ I ′(x0). Hence, neglecting I (x0) from the notation brings
no ambiguity.
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Fig. 14.2 Representation of
the limit values of the vector
field at a discontinuity point
where two hyperplanes
intersect, namely,
dynamics (BC) at point
(0, 1, 2)�
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This situation is represented in Fig. 14.2.

Under Assumptions 14.1 and 14.2, the study of existence and completeness of
Carathéodory solutions can be relatively simple. Nevertheless, one cannot expect
to have local existence in general: the negative example is given by the following
proposition [13, 33], illustrated in the fourth diagram of Fig. 14.3.

Proposition 14.1 (Nonexistence of Carathéodory solutions) Let x0 ∈ Δ f and
assume m = 1 in Assumption 14.1. If p�

1 f (−1)(x0) > 0 and p�
1 f (1)(x0) < 0, then

there exists no Carathéodory solution of (14.3) with initial condition x0.

An example of this situation is given by dynamics (QS).

Example 14.2 (Nonexistence in QS dynamics) Consider dynamics (QS) over an
undirected path graph with N = 3 whose adjacency matrix A has all non-null entries
equal to 1 and the initial condition x̄0 = (1, 3/2, 2)�. The right-hand side of the
system is clearly discontinuous at x̄0. There exists a neighborhood I (x̄0) of x̄0 such
thatΔ f ∩ I (x̄0) = {x ∈ R

N : x2 − 3/2 = 0} andwe thus define s1(x) = x2 − 3/2 =
(0, 1, 0)x − 3/2. We get that f (−1)(x̄0) = (0, 1,−1)� and f (1)(x̄0) = (1,−1, 0)�,
then (0, 1, 0) f (1)(x̄0) = −1 < 0 and (0, 1, 0) f (−1)(x̄0) > 0. By applying Proposi-
tion 14.1 we conclude that there are no Carathéodory solutions issuing from x̄0.

Instead, the following result provides a sufficient condition for the existence of
local Carathéodory solutions. It is inspired by the concept of directional continuity
in [44] but it allows also for solutions lying on the discontinuity set: this case, which
can be particularly subtle to be treated, is simplified here by the discontinuity being
a union of hyperplanes. Informally, the sufficient condition requires that, for each
discontinuity point, at least one among the “pieces” of the vector field either pulls
away from the discontinuity surface in its own sector, or is parallel to a discontinuity
hyperplane.
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Fig. 14.3 Representations of the possible orientations of the vector fields in the neighborhood of
a discontinuity hyperplane

Theorem 14.2 (Sufficient condition for Carathéodory solutions) Assume that
Assumptions 14.1 and 14.2 hold. Assume that for any x0 ∈ Δ f , there exists b̃ ∈
{−1, 1}m such that

1. [p�
� f b̃(x0)] b̃� � 0 for all � ∈ {1, . . . ,m};

2. if there exists �̄ ∈ {1, . . . ,m} such that [p�
�̄
f b̃(x0)] b̃�̄ = 0, then there exists a

neighborhood J (x0) such that, for all x ∈ J (x0) ∩ ∂Sb̃, both [p�
�̄
f (x)] b̃�̄ = 0

and the restriction f |(J (x0)∩∂Sb̃)\{x0} is continuous.

Then, there exists a local Carathéodory solution issuing from x0.

Proof If p�
� f b̃(x0) b̃� > 0 for all � ∈ {1, . . . ,m}, then the vector field points into the

interior of Sb̃ and a local solution can be easily constructed as in [44]. In the case
of condition 2, i.e., when the vector field f (x) is parallel to one of the discontinuity
hyperplanes in a neighborhood of x0 except, possibly, in x0, one can still construct
a sequence of Euler polygonal chains that lie on the hyperplane and converge to a
Carathéodory solution. �

Condition 2 in Theorem 14.2 is a relaxation of [13, Assumption (H3)], which is
made possible by the fact that discontinuities are (locally) hyperplanes. A simple
application of Theorem 14.2 is the following.

Example 14.3 (BC dynamics with three individuals—continued) Consider again
dynamics (BC) with N = 3 and x0 = (0, 1, 2)�, as illustrated in Fig. 14.2. We
observe that in the four sectors around x0,
p�
1 f (1,1)(x0) (1) = 0 and p�

2 f (1,1)(x0) (1) = 0.
p�
1 f (−1,1)(x0) (−1) = (−2)(−1) > 0 and p�

2 f (−1,1)(x0) (1) = (1)(1) > 0.
p�
1 f (1,−1)(x0) (1) = (1)(1) > 0 and p�

2 f (1,−1)(x0) (−1) = (−2)(−1) > 0.
p�
1 f (−1,−1)(x0) (−1) = (−1)(−1) > 0 and p�

2 f (−1,−1)(x0) (−1) = (−1)(−1) > 0.
Then, Theorem 14.2 implies local existence. Actually, one can see that in this case,
four solutions originate from x0, one for each sector: they are shown in Fig. 14.4 as
functions of time.

More in general, we can prove the existence of Carathéodory solutions of (BC)
for any initial condition. Carathéodory solutions of (BC) were studied in [7] where
existence and uniqueness of solutions were proved for almost all initial conditions.
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Fig. 14.4 Evolutions of the four solutions of (BC) that originate from x0 = (0, 1, 2)�

Here, we prove2 the existence for all initial conditions and we remark that in gen-
eral, we do not have uniqueness. The proof is a verification of the assumptions of
Theorem 14.2, where we see that the sole strictly positive case suffices.

Corollary 14.1 (Existence for BC) For any initial condition, there exists a local
Carathéodory solution of (BC).

Proof We denote by f (x) the right-hand side of (BC) and observe that Δ f = {x ∈
R : ∃ i, j ∈ I such that xi − x j = 1}. We first consider x0 ∈ Δ f in the case x0i −
x0 j = 1 for only one pair of indices i, j ∈ I . In this casem = 1 in Assumption 14.1,
s1(x) = xi − x j − 1 = (ei − e j )�x − 1, and as b is either −1 or 1,

S(−1)(x0) = {x ∈ R
N : xi − x j − 1 < 0},

( f (−1)(x0))i = ∑
h �= j :|x0h−x0 i |<1(xh − xi ) − 1,

( f (−1)(x0)) j = ∑
h �=i :|x0 i−x0 j |<1(xh − x j ) + 1,

as well as
S(1)(x0) = {x ∈ R

N : xi − x j − 1 � 0},
( f (1)(x0))i = ∑

h �= j :|x0 i−x0 i |<1(xh − xi ),

2Even though the corollary is new, it could have been deduced by inspecting the proofs in [7].
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( f (1)(x0)) j = ∑
h �=i :|x0 i−x0 j |<1(xh − x j ).

We then get (ei − e j )� f (−1)(x0) = ∑
h �= j :|xh−xi |<1(xh − xi ) − ∑

h �=i :|xh−xi |<1(xh − xi ) −2
and (ei − e j )� f (1)(x0) = ∑

h �= j :|xh−xi |<1(xh − xi ) − ∑
h �=i :|xh−xi |<1(xh − xi ).

If
[∑

h �= j :|xh−xi |<1(xh − xi ) − ∑
h �=i :|xh−xi |<1(xh − xi )

]
> 0, then [(ei − e j )� f (1)

(x0)](1) > 0 and condition 1 of Theorem 14.2 is verified and a Carathéodory solution

entering S(1) exists. If
[∑

h �= j :|xh−xi |<1(xh − xi ) − ∑
h �=i :|xh−xi |<1(xh − xi )

]
� 0 then

[(ei − e j )� f (−1)(x0)] = [(ei − e j )� f (1)(x0)] − 2 < 0 and [(ei − e j )� f (−1)(x0)]
(−1) > 0, so that a Carathéodory solution issuing from x0 and entering S(−1) exists.

In case m > 1 in Assumption 14.1, i.e., x0i − x0 j = 1 for more than one pair
(i, j), one starts by considering the set S(1,1,...,1) and the vector f (1,1,...,1)(x0). If
[p�

� f (1,1,...,1)(x0)](1) > 0 for all � ∈ {1, . . . ,m} then condition 1 of Theorem 14.2 is
verified. Otherwise, there exists �̄ ∈ {1, . . . ,m} such that [p�

�̄
f (1,1,...,1)(x0)](1) � 0.

In this case,we consider the set S(1,...,−1,...,1) and the vector f (1,...,−1,...,1)(x0). From the
previous step, we know that for � = 1, . . . , �̄ − 1 one has [p�

� f (1,...,−1,...,1)(x0)](1) >

0 and [p�
�̄
f (1,...,−1,...,1)(x0)](−1) = [p�

�̄
f (1,1,...,1)(x0) − 2](−1) > 0. Now, if for � =

�̄ + 1, . . . ,m one has [p�
� f (1,...,−1,...,1)(x0)](1) > 0, then condition 1 is satisfied; oth-

erwise, one goes on with the same procedure. We remark that if [p�
�̄
f (1,1,...1)(x0)] �

0, then [p�
�̄
f b(x0)] � 0 for all b ∈ {−1, 1}m . The procedure stops after at most m

steps, having checked all the sectors, returning a certificate for condition 1. �

Regarding (QB), the following corollary of Theorem 14.2 is proved in [16]: in
this case, condition 2 of Theorem 14.2 needs to be applied.

Corollary 14.2 (Existence for QB) For any initial condition, there exists a local
Carathéodory solution of (QB).

We emphasize that Carathéodory solutions may not be unique, as shown in Exam-
ple 14.3. Another example of nonuniqueness is given by (QB).

Example 14.4 Consider the discrete behavior dynamics (QB) over the undirected
path graph with N = 2 whose adjacency matrix A has non-null entries equal to
1 and the initial condition x̄0 = (1/2, 1/2)�. The right-hand side of the system is
clearly discontinuous at x̄0. There are two solutions issuing from this point which
correspond to the limit values of f (x) when restricted to the two sets S(−1,1) =
{x ∈ R

2 : xi − 1
2 < 0, i = 1, 2} and S(1,1) = {x ∈ R

2 : xi − 1
2 � 0, i = 1, 2}. These

solutions converge to (0, 0)� and (1, 1)�, respectively. Their trajectories are the
line segments joining the initial condition with the points (0, 0)� and (1, 1)�, see
Fig. 14.5.
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Fig. 14.5 Lack of unicity in
dimension 2 for
dynamics (QB), see
Example 14.4
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14.3.2 Krasovskii Solutions

In order to cope with nonexistence of solutions, other generalized solutions have
been introduced in the literature. In the context described here, Krasovskii solutions
can be easily and successfully used.

Definition 14.2 (Krasovskii solutions) Let I ⊂ R be an interval with 0 ∈ I and let
x0 ∈ R

N . An absolutely continuous function ϕ : I → R
N is a Krasovskii solution

of (14.3) with initial condition x0 if ϕ(0) = x0 and if for almost all t ∈ I it satisfies
the differential inclusion

ϕ̇(t) ∈ K f (ϕ(t)), (14.4)

where
K f (x) =

⋂

δ>0

co{ f (y) : y such that ‖x − y‖ < δ}.

Wesay that a local Krasovskii solution corresponding to the initial condition x0 ∈ R
N

exists if there exists a neighborhood I (x0) of x0, an interval of the form [0, T ) and
an absolutely continuous function ϕ : [0, T ) → I (x0) such that ϕ(0) = x0 and ϕ(t)
is a Krasovskii solution of (14.3) on [0, T ).

The following existence theorem is an immediate consequence of [4, Theorem 3,
page 98], as the vector field f (x) is measurable and locally bounded.

Theorem 14.3 For any initial condition, x0 ∈ R
N there exists a local Krasovskii

solution of (14.3).

We underline that any Carathéodory solution is also a Krasovskii solution.
Another type of generalized solutions often adopted for discontinuous systems is
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Filippov solutions [24]. Under Assumptions 14.1 and 14.2, Krasovskii solutions
coincide with Filippov solutions (see [33]).

14.3.3 Completeness of Solutions

Besides local existence, we are interested in solutions that are defined on unbounded
intervals. The following condition is well known: its proof is included for complete-
ness and tutorial purposes.

Proposition 14.2 (Prolongation by boundedness) Let (14.3) be a system that admits
local Carathéodory (Krasovskii) solutions for every initial condition in R

N . Let ϕ :
[0, T ) → R

N be a Carathéodory (Krasovskii) solution of (14.3). If ϕ(t) is bounded
on [0, T ), then it can be continued over [0, T ′) with T ′ > T .

Proof Assume by contradiction that there exists an initial condition x0 whose corre-
sponding maximal Carathéodory (Krasovskii) right solution has domain [0, T ) with
T < +∞ and let {tn} be a sequence such that tn > 0 and lim tn = T . Since x(t) is
bounded also the sequence {x(tn)} is bounded, and thus, there exists a subsequence
x(tnk ) converging to a point x

∗. Since x(t) is continuous this implies that there exists
limt→T x(t) = x∗ ∈ R

N . One can then pose a new Cauchy problem with initial con-
dition x(T ) = x∗ and then continue the Carathéodory (Krasovskii) solution on an
interval [T, T ′). We then get to a contradiction as the interval [0, T ) is not max-
imal for the considered Carathéodory (Krasovskii) solution with initial condition
x(0) = x0. �

This fact is useful because boundedness is easily established in our examples.

Proposition 14.3 (Boundedness) Any Krasovskii solution of (BC), (QS), and (QB)
defined on an interval of the form [0, T ) is bounded.

Proof Let m be any index in I such that xm(t) = min{xi (t), i ∈ I } and M any
index such that xM(t) = max{xi (t), i ∈ I }. In the cases of (BC) and (QS), it
is straightforward to verify that xm(t) is a nondecreasing function of time and,
similarly, that xM(t) is nonincreasing. More delicate is the case of (QB), which
we verify in detail. Let qm(t) = q(xm(t)). We have to distinguish three cases. If
xm(t) ∈ (

qm(t) − 1
2 , qm(t)

]
, then ẋm(t) = ∑

j amj [q(x j (t)) − xm(t)] � 0, because
by definition xi (t) � xm(t) for i ∈ I . If xm(t) ∈ (

qm(t), qm(t) + 1
2

)
, then xm(t)

may be decreasing as there may be other indices i such that q(xi (t)) = qm(t). Nev-
ertheless, ẋm(t) � 0 when xm(t) = qm(t) and then xm(t) remains lower bounded by
min{xm(0), qm(0)} The remaining case when xm(t) = qm(t) − 1

2 is more delicate
and specific to Krasovskii solutions. Indeed, there can exist an index � such that
x�(t) = xm(t) but q(y) = qm(t) − 1 for some points y in the neighborhood of x�,
which makes the (set valued) right-hand side include negative values. In such a case,
xm(t)would be allowed to decrease, but this fact would in turn lead to the situation of
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the second case. In conclusion, xm(t) is lower bounded by qm(0) − 1 and similarly
xM(t) is upper bounded by qM(0) + 1. �

Combining the previous two results, we readily obtain the following.

Corollary 14.3 (Completeness) Any Carathéodory solution of (QB) or of (BC), as
well as any Krasovskii solution of (QB), (QS), or (BC) is defined on [0,+∞).

This completeness result justifies the analysis of the limit behavior for the dynamics
of interest, which we shall undergo in Sect. 14.5. Before that, however, we turn our
attention to the study of equilibria.

14.4 Equilibria: Agreement and Beyond

In this section, we recall the definitions of equilibria that are natural in our context,
we briefly discuss some counterintuitive facts about generalized equilibria, and then
we study the equilibria of systems (BC), (QB), and (QS).

Equilibria are points where a solution can remain indefinitely.3 In the context of
generalized solutions, this general definition leads to distinguish between Carathéo-
dory equilibria and Krasovskii equilibria.

Definition 14.3 (Equilibria) A point x∗ is a Carathéodory (Krasovskii) equilibrium
of (14.3) if the function ϕ(t) ≡ x∗, t � 0 is a Carathéodory (Krasovskii) solution
of (14.3).

Carathéodory equilibria are characterized by the equation f (x) = 0 while Kra-
sovskii equilibria are characterized by the inclusion 0 ∈ K f (x). Thanks to the
multiplicity of solutions, there are examples of non-constant solutions issuing from
an equilibrium point.

Example 14.5 (Escaping from equilibria) Consider the bounded confidence sys-
tem (BC) with N = 2 and the initial condition x0 = (−1/2, 1/2)�. Let us denote
by f (x) the vector field defined by the right-hand side of (BC). Clearly, x0 is
a discontinuity point as x02 − x01 − 1 = 0 and m = 1 in Assumption 14.1. Let
s1(x) = x2 − x1 − 1 = (−1, 1)x − 1. Note that f (x0) = 0, then x0 is a Carathé-
odory equilibrium point for the system. On the other hand, f (−1)(x0) = (1,−1) and
[(−1, 1) f (−1)(x0)](−1) = (−2)(−1) = 2 > 0. A Carathéodory solution starts from
x0, enters S(−1), and converges to (0, 0).

Being f (x) in (14.3) allowed to be discontinuous, there may be points which are
attractive forCarathéodory solutionswithout beingCarathéodory equilibria: actually,
these pathological points are Krasovskii equilibria.

3Note that this is a “weak” notion of equilibrium: in case of multiple solutions, we do not require
that all solutions remain at the equilibrium.
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Example 14.6 (Attractive non-Carathéodory equilibria) Let us consider the quan-
tized behavior system (QB) over an undirected 4-node path graph with adjacency
matrix

A =

⎛

⎜⎜⎝

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎞

⎟⎟⎠ .

The point x0 = (0, 1
2 ,

1
2 , 1)

� is attractive for Carathéodory solutions issuing from
points in the set {x ∈ R

4 : −1/2 � x1, x2 < 1/2, 1/2 � x3, x4 � 3/2)}. Point x0
cannot be a Carathéodory equilibrium, because q(x02) = 1 �= x01 = 0, even though
it is aKrasovskii equilibrium.ACarathéodory solution originating from x0 converges
to (1, 1, 1, 1)�.

The following propositions concern equilibria of the systems under consideration.
For the dynamics (BC) the sets of Carathéodory and Krasovskii equilibria coincide.
The equilibria are precisely those states where individuals either agree or are enough
apart not to influence each other, as specified in the following simple result already
available in [8].

Proposition 14.4 (Equilibria of BC) The set of Krasovskii equilibria of (BC) is

F = {x ∈ R
N : for every (i, j) ∈ I × I , either xi = x j or |xi − x j | � 1}.

In the case of the quantized states dynamics (QS), Carathéodory equilibria and
Krasovskii equilibria differ. Carathéodory equilibria are not necessarily consensus
points, but the quantizations of their states must agree. The following proposition
was proved in [17].

Proposition 14.5 (Equilibria of QS) The set of Carathéodory equilibria of (QS) is

D = {x ∈ R
N : ∃h ∈ Z such that h − 1

2
� xi < h + 1

2
, ∀ i ∈ I }.

The set of Krasovskii equilibria of (QS) is D .

In case of the quantized behaviors Eq. (QB), we do not have a characterization of
the set of equilibria. On the one hand, we observe that consensus points of the form
h1 with h ∈ Z are Carathéodory equilibria. On the other hand, there exist equilibria
that are far from consensus and are attractive for some Carathéodory solutions. An
example is provided in the next result.

Proposition 14.6 (Far-from-consensus equilibrium of QB) Consider (QB) with an
N-node path as underlying graph and all nonzero entries of the adjacency matrix A
equal to 1. Then, there exists a Krasovskii equilibrium x∗ such that

x∗
N − x∗

1 =
{

(N−2)2

4 i f N is even
(N−1)(N−3)

4 i f N is odd.
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Proof The equilibrium can be constructed as follows. We select k ∈ Z
N such that

k1 = 0 and

ki − ki−1 =
{
i − 2, 2 � i � N+2

2

N − i, N+2
2 < i � N

and then we set
x∗
1 = k2
x∗
i = ki−1+ki+1

2 , i = 2, . . . , N − 1
x∗
N = kN−1.

It can be easily verified (details in [16]) that x∗ is a Krasovskii equilibrium. �

14.5 Disagreement and Distance from Consensus

In the models (BC), (QS), and (QB), we cannot expect to have the same converge
properties as (14.1): in fact, they are interesting as they attempt to explain agreement
and disagreement at the same time. For these models, we point out the occurrence
of disagreement, we give estimates of distance from consensus, and, when possible,
we give sufficient conditions for convergence to consensus.

14.5.1 Bounded Confidence Dynamics

In general, the following is the strongest convergence result that has been given
about (BC). An example of evolution is in Fig. 14.6.

Theorem 14.4 (Asymptotic behavior [14]) Any Krasovskii solution of (BC) con-
verges to a point inF .

In the wake of this fact, much research (from [8] to [49]) has been devoted to under-
stand to which point in F a solution converges. Since the interaction topology is
encoded in the state x by the definition of function a(·, ·), conditions should be given
in terms of the initial condition x(0). For instance, one can immediately observe that
if G (x0) is a complete graph, then the dynamics converges to a consensus. More
general, though not necessary, conditions for consensus are stated in [51].

Theorem 14.5 (Sufficient condition for consensus) If x0 ∈ R
N is such that

1. G (x0) is connected and
2. for any edge (i, j) ∈ E (x0), the set {k ∈ I : (i, k) ∈ E (x0) and ( j, k) ∈ E (x0)}

has cardinality not smaller than N
2 − 2,

then Krasovskii solutions issuing from x0 converge to the consensus point xave(0)1.
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Fig. 14.6 Evolution of a
solution of (BC) from a
random initial condition on
25 nodes
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The previous conditions imply that initial values cannot be too much spread. For
example, in the case of 10 agents, the distance amongagents forG (x0) to be connected
can be as large as 9, but in order to satisfy the second condition of Theorem 14.5, it
can be at most 3. Other sufficient conditions for consensus may be found by applying
the methods in [47].

14.5.2 Quantized States Dynamics

Convergence to the set of equilibria can also be proved for dynamics (QS), an example
of which is given in Fig. 14.7.

Theorem 14.6 (Sufficient conditions for discrete consensus [17]) Any Krasovskii
solution ϕ(t) of (QS) is such that dist (ϕ(t),D) → 0 as t → +∞.

We remark that the set D is not formed by consensus points, but points in D are
such that q(xi ) = q(x j ) for all i, j ∈ I . Thus, the 2-norm distance of Krasovskii
solutions from consensus is, asymptotically, at most

√
N/2.

The assumptions that L be symmetric and the interaction graph be undirected can
be lifted: recently, [50] has proved the same convergence property for more general
functions q and weaker connectivity. Namely, q only needs to be nondecreasing and
the graph can be directed and only needs to have a globally reachable node.4

4We refer the reader to [[23], Chap.1] for the relevant definitions about directed graphs.
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Fig. 14.7 Evolution of a
solution of (QS) on a cycle
graph on 25 nodes from the
same initial conditions as in
Fig. 14.6
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14.5.3 Quantized Behavior Dynamics

For this system, a general proof of convergence to the equilibria is missing. However,
some properties of solutions for large times can be established and are confirmed by
simulations, see Fig. 14.8.

Theorem 14.7 (Distance from consensus) If ϕ(t) is any Krasovskii solution of (QB)
and

M =
{
x ∈ R

N : inf
α∈R

‖x − α1‖ � ||A||
λ∗

√
N

2

}
,

then dist(ϕ(t), M) → 0 as t → +∞.

Proof First of all, we observe that system (QB) can be written

ẋ = −Lx + A(q(x) − x). (14.5)

Let y(t) = x(t) − xave(t)1. Then ẏ(t) = ẋ(t) − ẋave(t)1. Consider the function
V (y) = 1

2 y
�y. We have that

∇V (y)� ẏ =y� ẏ

=(x − xave1)�[ẋ − ẋave1]
=(x − xave1)� ẋ − x� ẋave1 + xave1� ẋave1

=(x − xave1)� ẋ − ẋavex
�1 + ẋaveN xave

=(x − xave1)� ẋ − ẋaveN xave + ẋaveN xave

=(x − xave)
� ẋ .



304 F. Ceragioli and P. Frasca

As L1 = 0, we have

ẋ ∈ −L(x − xave1) + AK (q(x) − x) ⊆ −L(x − xave1) + A(K q(x) − x).

For any v ∈ K q(x) − x , it holds ‖v‖ �
√
N
2 . Then, if v ∈ K q(x) − x is such that

ẏ = −L(x − xave1) + Av, we have

∇V (y)� ẏ =(x − xave1)�[−L(x − xave1) + Av]
= − (x − xave1)�L(x − xave1) + (x − xave1)�Av

� − λ∗‖x − xave1‖2 + ‖x − xave1‖‖A‖
√
N

2

� ‖x − xave1‖
[
−λ∗‖x − xave1‖ + ‖A‖

√
N

2

]
.

We conclude that dist(x(t), M) → 0 as t → +∞, because otherwise V would
decrease unboundedly along solutions, which is forbidden by V being
nonnegative. �

We remark that this result is tight in the following sense: on some graphs, the
estimate on the limit set is asymptotically tight for large networks in the sense of the
Euclidean distance from the consensus. More precisely, if the graph is a path with
N nodes and weights are uniform, for all points in the attractor M it holds true that
1√
N

‖x − xave‖ = O(N 2) as N → ∞. At the same time, the equilibrium x∗ that was
constructed in the proof of Proposition 14.6 is such that (for odd N )

1√
N

‖x∗ − x∗
ave‖ = 1√

120
N 2 + o(N 2) as N → ∞.

Hence, the estimate of M cannot be improved in general in terms of distance from
consensus. Details of these computations can be found in [16].

Even though not guaranteed in general, the consensus is achieved on some topolo-
gies. An example of such result is the following.

Theorem 14.8 (Sufficient conditions for consensus) If the graph underlying sys-
tem (QB) is either complete or complete bipartite and its adjacency matrix A has
all non-null entries equal to 1, then all Krasovskii solutions of (QB) converge to a
consensus point.

The proof of this result, which can be found in [16], is based on showing that
maxi xi (t) − mini xi (t) is decreasing and converges to zero.
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Fig. 14.8 Evolution of a
solution of (QB), assuming
the same initial conditions
and graph as in Fig. 14.7
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14.6 Discussion: The Origins of Disagreement in Opinion
Dynamics

The dynamics analyzed in this chapter are meant to describe opinion dynamics in
social networks. In this context, the nodes of the graph are individuals, an edge
between two nodes means that they socially interact and the i th component of the
state represents the value of the i th individual’s opinion. This graph-based modeling
approach has a strong support in mathematical sociology [27, 43] as well as in
economics [36] and in the physics of complex systems [5, 11, 32].

The basic assumption in these models of opinion dynamics is that if an indi-
vidual communicates with another, then his/her opinion is attracted by the others.
If one translates this assumption into a set of differential equations, then one gets
system (14.1), as already proposed in [1]. This dynamics asymptotically leads to
consensus, i.e., agreement of the individuals on the same opinion, except in case
there are different groups of individuals which do not communicate with each other,
i.e., the communication graph has separated connected components. However, it has
been noted that agreement is rare in societies [28], even if individuals do commu-
nicate: for this reason, more complex models have been elaborated with the aim of
explaining agreement and disagreement at the same time.

In this chapter, we have focused on a group of models involving different kinds of
threshold phenomena leading to discontinuities. Before going back to discuss their
features, it is important to mention that these are not the only possible explanations
for disagreement. In [29], disagreement is explained as the effect of obstinacy that
is translated into the dependence of any individual’s opinion on its initial value.
Stubbornness as the source of disagreement is also considered in other models, such
as [39, 42], also in connection with the occurrence of randomized asynchronous
interactions [2, 25, 45]. Another explanation has been proposed to be the presence
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of contrarians [31] or of negative interactions, i.e., negative weights in the adja-
cency matrix [3]. Similar dynamics on “signed graphs” may also feature randomized
interactions [46] or bounded confidence [18].

Going back to themodels considered in this chapter,we now try to summarize their
features in the opinion dynamics context, beginning with (BC). Bounded confidence
dynamics allow for the existence of complete Carathéodory solutions for every initial
condition and all Krasovskii solutions are proved to converge to an equilibrium. The
structure of these equilibria is a set of separated clusters of individuals sharing the
same opinion. In [8, 14], it is proved that, due to robustness issues, one can expect
the opinion values of different clusters to be approximately twice the threshold apart.
The most recent results on this matter are probably those in [49]. Actually, a fine
understanding of how the final opinions depend on the initial ones is still missing.
In this chapter, we have reported a sufficient condition for consensus, which asks for
the initial opinions to be already quite close to each other. Other models that involve
assumptions of bounded confidence include [9, 22, 26, 38, 52].

Consensus dynamics with quantization have first been studied with engineering
motivations, while seeking controlled dynamics that could lead to (approximate)
consensus despite the constraint of quantization [10, 41]. Proposed in this context
by [17], the quantized states dynamics (QS) does not allow for global existence
of Carathéodory solutions and thus requires to consider Krasovskii solutions: all
Krasovskii solutions converge to equilibria such that the quantized opinions are equal.
This is not exactly consensus, as individuals’ opinions may slightly differ, but they
agree on their quantized values. Consistently with its history, dynamics (QS) better
fits engineering applications than social dynamics5: we believe that a better model
of quantized social interactions is given by the quantized behavior dynamics (QB),
whichwe proposed in [15, 16]. Thismodel allows for the existence of complete Cara-
théodory solutions for every initial conditions, but Krasovskii solutions are preferred
to avoid the pathology of solutions converging to nonequilibrium point. In general,
a result of convergence to equilibria is missing, but a tight result of convergence to
a set is available. Remarkably, there can be equilibria very far from consensus, in
which the difference among different opinions of individuals is proportional to N 2.

Beyond the specific dynamics considered in this chapter, we believe that dynami-
cal models that involve discontinuities can be useful in the study of social dynamics:
we thus hope that the tools collected here can also be useful in the analysis of new
and richer models.

5The discretization of the opinions in social systems has been observed by social scientists [30,
Chap.10] and addressed in several models including [20, 37, 48].
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Chapter 15
Information Constraints in Multiple
Agent Problems with I.I.D. States

S. Lasaulce and S. Tarbouriech

Abstract In this chapter, we describe several recent results on the problem of
coordination among agents when they have partial information about a state which
affects their utility, payoff, or reward function. The state is not controlled and rather
evolves according to an independent and identically distributed (i.i.d.) random pro-
cess. This random process might represent various phenomena. In control, it may
represent a perturbation or model uncertainty. In the context of smart grids, it may
represent a forecasting noise (Beaude et al., 6th IEEE international conference on
smart grid communications (SmartGridComm 2015), Miami, Florida, 2015, [3]). In
wireless communications, it may represent the state of the global communication
channel. The approach used is to exploit Shannon theory to characterize the achiev-
able long-term utility region. Two scenarios are described. In the first scenario, the
number of agents is arbitrary, and the agents have causal knowledge about the state. In
the second scenario, there are only two agents, and the agents have some knowledge
about the future of the state, making its knowledge noncausal.

Chapter Overview

This chapter concerns the problem of coordination among agents. Technically, the
problem is as follows.We consider a set of K � 2 agents. Agent k has a utility, payoff,
or reward function uk(x0, x1, . . . , xK )where xk , k � 1, is the action of Agent k while
x0 is the action of an agent called Nature. The Nature’s actions correspond to the
systemstate and are assumed to be noncontrolled;more precisely,Nature corresponds
to an independent and identically distributed (i.i.d.) random process. The problem
studied in this chapter is to characterize the long-term utility region under various
assumptions in terms of observation at the agents. By long-term utility for Agent k
we mean the following quantities:
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Uk(σ1, . . . , σK ) = lim
T→+∞

1

T
E

[
T∑
t=1

ui (X0(t), . . . , XK (t))

]
, (15.1)

where σk = (σk,t )t�1 is a sequence of functionswhich represent the strategy of Agent
k, xk(t) is the action chosen byAgent k at time or stage t � 1, t being the time or stage
index; concerning notation, as far as random variables are concerned, capital letters
will stand for random variables whereas, small letters will stand for realizations. Note
that, implicitly, we assume sufficient conditions (such as utility boundedness) under
which the above limit exists. The functions σk,t , k ∈ {1, . . . , K }, map the available
knowledge to the action of the considered agent. The available knowledge depends
on the information assumptions made (e.g., the knowledge of the state can be causal
or noncausal). We will distinguish between two scenarios. In the first scenario,
agents are assumed to have some causal knowledge (in the wide sense) about the
state whereas, in the second scenario noncausal knowledge (i.e., some knowledge
about the future) about the state is assumed. The second scenario is definitely the
most difficult one technically, which is why only two agents will be assumed.

Remarkably, the long-term utility region, whenever available, can be character-
ized in terms of elegant information constraints. For instance, in the scenario of
noncausal state information, determining the long-term utility region amounts to
solving a convex optimization problem whose nontrivial constraints are the derived
information-theoretic constraints.

15.1 Introduction

An important example, which illustrates well how the results reported in this chapter
can be used, is given by the problem of power control in wireless networks (see
Fig. 15.1). Each transmitter has to adapt its transmit power not only to the fluctuations
of the quality of the link (or channel gain) between itself and its respective receiver
but also to the transmit power levels of the other transmitters that use the same
radio resources (and therefore create interference). This problem is a multi-agent
problem where the agents are the transmitters, the actions of the agents are their
transmit power level, and the system state is given by the set of channel gains of
the various links in presence; channel gains are typically noncontrolled variables
(they do not depend on the transmit power levels) and evolve in a random manner;
in practice, each transmitter has a partial and imperfect knowledge of the system
state. Now, if the agents (namely, the transmitters in the considered example) have
a certain performance criterion, which will be referred to as a utility function for
the general setup considered in the chapter, the important problem of knowing the
best achievable utilities appears. For instance, a transmitter might be designed to
maximize its communication rate. The best data rate of a given transmitter would
be obtained if all the other transmitters would be silent (i.e., when they do not
transmit) and when the transmitter perfectly adapts its power to the channel gain



15 Information Constraints in Multiple Agent Problems … 313

Fig. 15.1 The problem of power control in wireless networks is a typical application for the results
provided in this chapter. The agents are the transmitters, the agents’ actions are given by the transmit
power level, and the agent utility function may be its communication rate with its intended receiver

fluctuations of the link between itself and its intended receiver. Obviously, in the real
life, several transmitterswill transmit at the same time, hence the need to coordinate as
well as possible, which leads to the problem of characterizing the best performance
possible in terms of coordination. This precisely corresponds to the problem of
characterizing the long-term utility region, i.e., the set of possible achievable points
(U1,U2, . . . ,UK ) for a given definition for the strategies. In Sects. 15.3 and 15.4, we
will consider two different definitions for the strategies, each of them corresponding
to a given observation structure that is, to some given information assumptions.

15.2 General Problem Formulation

This chapter aims at describing a few special instances of a general problem which
has been addressed in several recent works [2, 5–9, 11].

We consider K � 2 agents, where Agent k ∈ {1, . . . , K } produces time-t action
xk(t) ∈ Xk

1 for t ∈ {1, . . . , T }, T � 1, the set Xk representing the set of actions
for Agent k. Each agent has access to some observations associated with the chosen
actions and the realization of a random process {X0,t }Tt=1 = {X0,1, . . . , X0,T } ∈ X T

0 .
In the motivating example described in the introduction, the random process was
given by the global wireless channel state, i.e., the set of qualities of all the links in
presence. In a control problem, the random process may represent a noncontrolled

1Throughout the chapter, we assume that all the alphabets such as Xk are finite.
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perturbation or some uncertainty. All agents’ actions and the random process also
affect the agents’ individual stageor instantaneous utility functions u1, . . . , uK where
for all k ∈ {1, . . . , K } the function uk writes

uk : X0 × X1 × · · · × XK → R

(x0, x1, . . . , xK ) �→ uk(x0, x1, . . . , xK )
. (15.2)

One of the main goals of the chapter is to explain how to determine the set of feasible
expected long-term utilities:

U (T )
k = E

[
1

T

T∑
t=1

uk(X0,t , X1,t , . . . , XK ,t )

]
, (15.3)

that are reachable by some strategies for the agents. The set of feasible utilities is
fully characterized by the set of feasible averaged joint probability distributions on
the (K +1)−tuple {(X0,t , X1,t , . . . , XK ,t )}Tt=1. Indeed, denoting by PX0,t X1,t ...XK ,t the
joint probability distribution of the time (K + 1)−tuple (X0,t , X1,t , . . . , XK ,t ), we
have

U (T )
k = 1

T

T∑
t=1

E
[
uk(X0,t , X1,t , . . . , XK ,t )

]

= 1

T

T∑
t=1

∑
x0,...,xK

PX0,t X1,t ...XK ,t (x0, x1, . . . , xK )uk(x0, x1, . . . , xK )

=
∑

x0,...,xK

uk(x0, x1, . . . , xK )
1

T

T∑
t=1

PX0,t X1,t ...XK ,t (x0, x1, . . . , xK ).

Therefore, the problem of characterizing the long-term utility region amounts to
determining the set of averaged distributions

P (T )(x0, x1, . . . , xK ) = 1

T

T∑
t=1

PX0,t X1,t ...XK ,t (x0, x1, . . . , xK ) (15.4)

that can be induced by the agents’ strategies. For simplicity, and in order to obtain
closed-form expressions, we shall focus on the case where T → ∞ [4, 5].

We consider two types of scenarios with two different observation structures. In
the first scenario, referred to as the noncausal state information scenario, the agents
observe the system states noncausally. That means, at each stage t ∈ {1, . . . , T } they
have some knowledge about the entire state sequence XT

0 = (X0,1, . . . , X0,T ). In the
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second scenario, referred to as the causal state information scenario, the agents learn
the states only causally and therefore, at any stage t , the agents have some knowledge
about the sequence Xt

0 = (X0,1, . . . , X0,t ), where throughout the chapter, we use the
shorthand notation Am and am for the tuples (A1, . . . , Am) and (a1, . . . , am), when
m is a positive integer.

15.3 Coordination Among Agents Having Causal State
Information

15.3.1 Limiting Performance Characterization

First, we define the information structure under consideration. At every instant or
stage t , Agent k is assumed to have an image or a partial observation Sk,t ∈ Sk of
the nature state X0,t with respect to which all agents are coordinating. In the case
of the wireless power control example described in the introduction, this might be
the knowledge of local channel state information, e.g., a noisy estimate of the direct
channel between the transmitter and the associated receiver. The observations Sk,t are
assumed to be generated by a memoryless channel. By memoryless it is meant that
the joint conditional probability on sequences of realizations factorizes the product
of individual conditional probabilities. Denoting by �k the transition probability for
the observation structure of Agent k, the memoryless condition can be written as

P(sTK |xT0 ) =
T∏
t=1

�k(sk(t)|x0(t)). (15.5)

The strategy or the sequence of decision functions for Agent k, σk,t , is defined by

σk,t : S t
k −→ Xk (15.6)

(sk(1), sk(2), . . . , sk(t)) �−→ xk(t) (15.7)

where Sk is observation alphabet for Agent k.
As mentioned in Sect. 15.2, the problem of characterizing the long-term utility

region amounts to determining the achievable correlations measured in terms of joint
distribution, hence the notion of implementability for a distribution.

Definition 15.1 (Implementability) The probability distribution Q(x0, x1, . . . , xN )

is implementable if there exist strategies (σ1,t )t�1, . . . , σK ,t )t�1 such that as T →
+∞, we have for all x ∈ X ,

1

T

T∑
t=1

PX0,t ...XK ,t (x0, . . . , xK ) −→ Q(x0, . . . , xK ), (15.8)

where PX0,t ...XK ,t is the joint distribution induced by the strategies at stage t .
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The following theorem is precisely based on the notion of implementability and
characterizes the achievable long-term utilities that are implementable under the
information structure (15.6); for this, we first define the weighted utility function w
as a convex combination of the individual utilities uk :

w =
K∑

k=1

λkuk . (15.9)

Theorem 15.1 [7] Assume the random process X0,t to be i.i.d. following a proba-
bility distribution ρ and the available information to the transmitters Sk,t to be the
output of a discrete memoryless channel obtained by marginalizing the joint condi-
tional probability �. An expected payoff w is achievable in the limit T → ∞ if and
only if it can be written as

w =
∑

x0 ,x1 ,...xN ,

u,s1,...sN

ρ(x0)PU (u)�(s1, . . . , sK |x0 )×
(∏K

k=1 PXk |Sk ,U (xk |sk, u)
)
w(x0, x1, . . . , xK ),

(15.10)

where U is an auxiliary variable, which can be optimized, and PXk |Sk ,U (xk |sk, u) is
the probability that Agent k, chooses action xk after observing sk, u.

The auxiliary variable U is an external lottery known to the agents beforehand,
which can be used to achieve better coordination, e.g., in presence of individual
constraints or at equilibrium. Theorem 15.1 allows us to find all the achievable
utility vectors (U1, . . . ,UK ). Indeed, the long-term utility region being convex (this
readily follows from a time-sharing argument), its Pareto boundary can be found by
maximizing the weighted utility w. Of course, remains the problem of determining
the strategies allowing to operate at a given arbitrary point of the utility region.
Since this problem is nontrivial and there does not exist any methodology for this,
we provide an algorithm which allows one to find a suboptimal strategy. Indeed,
the associated multilinear optimization problem is too complex to be solved and to
overcome this we resort to an iterative technique which is much less complex but is
suboptimal.

15.3.2 An Algorithm to Determine Suboptimal Strategies

One of the merits of Theorem 15.1 is to provide the best performance achievable
in terms of long-term utilities when agents have an arbitrary observation structure.
However, Theorem 15.1 does not provide practical strategies which would allow a
given utility vector to be reached. Finding “optimal” strategies consists in finding
good sequences of functions as defined per (15.6), which is an open and promising
direction to be explored. More pragmatically, the authors of [2] proposed to restrict
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to stationary strategies which are merely functions of the form fk : Sk → Xk . This
choice ismotivated by practical considerations such as computational complexity and
it is also coherent with the current state of the literature. The water-filling solution is
a special instance of this class of strategies. To find good decision functions, the idea,
which is proposed in [2], is to exploit Theorem 15.1. This is precisely the purpose
of this section.

The first observation we make is that the best performance only depends on the
vector of conditional probabilities PX1|S1,U , . . . , PXK |SK ,U and the auxiliary variable
probability distribution PU , the other quantities being fixed. It is therefore relevant
to try to find an optimum vector of lotteries for every action possible and use it to
make decisions. Since this task is typically computationally demanding, a possible
and generally suboptimal approach consists in applying a distributed algorithm to
maximize the expected weighted utility. The procedure proposed in [2] is to use the
sequential best response dynamics (see, e.g., [10]). The idea is to fix all the vari-
ables (that are probability distributions here) expect one and maximize the expected
weighted utility with respect to the only possible degree of freedom. This operation
is then repeated by considering another variable. The key observation to be made is
then to see that when the distributions of the other agents are fixed, the best distribu-
tion for Agent k boils down to a function of sk , giving us a candidate for a decision
function which can be used in practice.

To describe the algorithm of [2] (see also Fig. 15.2), we first rewrite the expected
weighted utility in the following manner:

W =
∑

x0,x1,...xK ,u,s1,...sK

ρ(x0)PU (u)× (15.11)

Γ (s1, . . . , sK |x0, x1, . . . , xK )× (15.12)(
K∏

k=1

PXk |Sk ,U (xk |sk, u)

)
w(x0, x1, . . . , xK )

=
∑
ik , jk ,u

δik , jk ,u PXk |Sk ,U (xk |sk, u), (15.13)

where ik, jk, u are the respective indices of xk, sk, u and

δik , jk ,u =
⎡
⎣∑

i0

ρ(xi0)Γk(sk |xi0)
∑
i−k

uk(xi0 , xi1 , . . . xiK )×

∑
j−k

∏
k ′ �=k

Γk ′(s jk′ |x0)
∏
k ′ �=k

PXk |Sk ,U (xk |sk, u)

⎤
⎦ PU (u), (15.14)

where i−k, j−k are the indices which represent ik, jk being constant, while all
the other indices are summed over. To make the description of the algorithm
clearer, we have also assumed the independence of the observation channels as
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Fig. 15.2 Pseudo-code of the algorithm proposed in [2] to find suboptimal strategies

well as independence of the signal with the strategies chosen by the agents, i.e.,
Γ (s1, . . . , sK |x0, x1, . . . , xK ) = Γ1(s1|x0) × . . . × ΓK (sK |x0). Written under this
form, for every agent, optimizing the expected weighted utility in a distributed man-
ner implies giving a probability 1 for the optimal coefficient δik , jk ,u , and every player
does that turn by turn.

To conclude, note that the above algorithm always converges. This can be proved,
e.g., by induction or by calling for an exact potential game property (see, e.g., [10,
12]).

15.4 Coordination Between Two Agents Having Noncausal
State Information

15.4.1 Limiting Performance Characterization

As explained previously, the problem of characterizing the utility region in the case
where the state is known noncausally to the agents is much more involved techni-
cally. Even in the case of two agents, one may have to face with an open problem,
depending on the observation structure assumed for the agents. Here, we consider
an important case for which the problem can be solved, as shown in [7]. Therein,
the authors consider an asymmetric observation structure. In the case of noncausal
state information, agents’ strategies are sequences of functions that are defined as
follows. For Agent 1, the strategy is defined by
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σ1,t : S T
1 × Y t−1

1 −→ X1 (15.15)

(s1(1), . . . , sK (T ), y1(1), . . . , y1(t − 1)) �−→ x1(t) (15.16)

and for Agent 2, the strategy is defined by

σ2,t : S T
2 × Y t−1

2 −→ X2 (15.17)

(s2(1), . . . , s2(t), y2(1), . . . , y2(t − 1)) �−→ x2(t), (15.18)

where yk(t) ∈ Yk is the observation Agent k has about the triplet (x0(t), x1(t), x2(t))
whereas sk(t) ∈ Sk is the observation Agent k has about the state x0(t). Note that
distinguishing between the two observations sk and yk is instrumental. Indeed, it does
not make any sense physically speaking to assume that an agent might have some
future knowledge about the actions of the other agents, which is why the feedback
signal is strictly causal. On the other hand, assuming some knowledge about the
future of the noncontrolled state x0 perfectly makes sense, as motivated the chapter
abstract and the works quoted in the list of references.More precisely the observation
is assumed to be the output of a memoryless channel whose transition law is denoted
by Γ :

Pr
[
Y1(t) = y1(t), Y2(t) = y2(t)

∣∣X t
0 = st0, X

t
1 = xt1, X

t
2 = xt2,Y

t−1
1 = yt−1

1 ,Y t−1
2 = yt−1

2

]
= Γ (y1(t), y2(t)|sx0(t), x1(t), x2(t)).

(15.19)
We now provide the characterization of the set of implementable probability

distributions both for the considered noncausal strategies.

Theorem 15.2 [7] The distribution Q is implementable if and only if it satisfies the
following condition2

IQ(S1;U ) ≤ IQ(V ; Y2|U ) − IQ(V ; S1|U ). (15.20)

where U and V are auxiliary random variables and Q is any joint distribution that
factorizes as

Q(x0, s1, s2, u, v, x1, x2, y1, y2) =
ρ(x0)�(s1, s2|x0)PUV X1|S1(u, v, x1|s1)PX2|US2(x2|u, s2)Γ (y1, y2|x0, x1, x2).

(15.21)

In practice, to plot the utility region, one typically has to solve a convex optimiza-
tion problem. To be illustrative, we consider the special case of [5], namely,Y = X1.
Denoting by H the entropy function, the problem of finding the Pareto-frontier of
the utility region exactly corresponds to solving the following optimization problem:

2The notation IQ(A; B) indicates that the mutual information should be computed with respect to
the probability distribution Q.
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minimize −
∑

x0,x1,x2

Q(x0, x1, x2)w(x0, x1, x2)

subject to HQ(X0) + HQ(X2) − HQ(X0, X1, X2) ≤ 0
−Q(x0, x1, x2) ≤ 0

−1 +
∑

x0,x1,x2

Q(x0, x1, x2) = 0

−ρ(x0) +
∑
x1,x2

Q(x0, x1, x2) = 0

.

The above problemcan be shown to be convex (see [5]). In the next section,we exploit
this result to assess the performance gain brought by implementing coordination for
distributed power control in wireless networks.

15.4.2 Application to Distributed Power Control

Here, we apply the results of the previous section to the wireless power control
problem.

A flat-fading interference channel (IC) with two transmitter–receiver pairs is
considered. Transmissions are assumed to be time-slotted and synchronized; the
time-slot or stage index is denoted by t ∈ N

∗. For k ∈ {1, 2} and “� = −k”
(−k stands for the terminal other than k), the signal-to-noise plus interference
ratio (SINR) at Receiver k on a given stage writes as SINRk = gkk xk

σ 2+g�k x−k
where

xk ∈ X IC
i = {0, Pmax} is the power level chosen by Transmitter k, gk� represents the

channel gain of link k�, and σ 2 the noise variance. If Transmitter 1 is fully informed
of x0 = (g11, g12, g21, g22) for the next stage and Transmitter 2 has no transmit CSI
while both transmitters want to maximize the average of a common stage payoff
which is wIC(x0, x1, x2) = ∑2

k=1 f (SINRk(x0, x1, x2)), there may be an incentive
for Transmitter 1 to inform Transmitter 2 what to do for the next stage; a typical
choice for f is f (a) = log(1 + a). Since Transmitter 1 knows the optimal pair of
power levels to be chosen on the next stage, say (x∗

1 , x
∗
2 ) ∈ arg max

(x1,x2)
w(x0, x1, x2), a

simple coded power control (CPC) policy for Transmitter 1 consists in transmitting
on stage t at the level Transmitter 2 should transmit on stage t + 1. Therefore, if
Transmitter 2 is able to observe the actions of Transmitter 1, power levels will be
optimally tuned half of the time. Such a simple policy, which will be referred to as
semi-coordinated PC (SPC), may outperform (in terms of average payoff) pragmati-
cal PC policies such as the one for which the maximum power level is always chosen
by both Transmitters ((x1, x2) = (Pmax, Pmax) is the Nash equilibrium of the static
game whose individual utilities are uk = f (SINRk)).

The channel gain of the link between Transmitter k and Receiver � is assumed to
be Bernoulli distributed: gk� ∈ {gmin, gmax} is i.i.d. and Bernoulli distributed gk� ∼
B(pk�) with P(gk� = gmin) = pk�. The utility function is either f (a) = log(1+ a)

or f (a) = a. We define SNR[dB] = 10 log10
Pmax
σ 2 and set gmin = 0.1, gmax = 1.9,
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Fig. 15.3 Relative gain in terms of expected payoff (“CPC/FPC - 1” in [%]) vs. SNR[dB] obtained
with CPC (with and without communication cost) when the reference power control policy is to
transmit at full power (FPC)
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Fig. 15.4 The difference with Fig. 15.3 is that the reference power control policy is the semi-
coordinated power control policy (SPC), which is already a CPC policy. Additionally, the top curve
is obtained with f (a) = a
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σ 2 = 1. The low and high interference regimes (LIR for low interference regime,HIR
and for high interference regime) are, respectively, defined by (p11, p12, p21, p22) =
(0.5, 0.9, 0.9, 0.5) and (p11, p12, p21, p22) = (0.5, 0.1, 0.1, 0.5). At last, Y ≡
X1 and we define two reference PC policies: full power control (FPC) policy
xk = Pmax for every stage; the semi-coordinated PC (SPC) policy x2 = Pmax,
x†1 ∈ argmaxx1 w

IC(x0, x1, Pmax). Figures15.3 and 15.4 depict the relative gain in %
in terms of average payoff versus SNR[dB] which is obtained by costless optimal
coordination and information-constrained coordination. Compared to FPC, gains are
very significant whatever the interference regime and provided the SNR has realistic
values. Compared to SPC, the gain is of course less impressive since SPC is pre-
cisely a coordinated PC scheme but, in the HIR and when the communication cost is
negligible, gains as high as 25% can be obtained with f (a) = log(1 + a) and 45%
with f (a) = a.

15.5 Conclusion

In this chapter, we have described an information-theoretic framework to characterize
the limiting performance of a multiple agent problem. More precisely, the theoret-
ical performance analysis has been conducted in terms of long-term utility region.
We have seen that the problem amounts to finding the set of implementable joint
distribution over the system state and actions. Both in the scenarios of causal and
noncausal state information, auxiliary random variables appear in the characteriza-
tion of implementable joint distribution. To be able to assess numerically the limiting
performance for given utility functions, an optimization problem has to be solved. In
the causal state information scenario, the problem is multilinear and the challenge is
due to the dimension of the vectors involved. In the noncausal state information sce-
nario, the problem to be solved is a convex problem; more precisely, the information
constraint function which translates the agent capabilities in terms of coordination
is a convex function of the joint distribution. Note that although the state is not con-
trolled and evolves randomly, the general problem of characterizing the utility region
for any number of agents is not trivial. Of course, the problem is even more difficult
in the case of controlled states, which therefore constitutes one possible nontrivial
extension of the results reported in this chapter. Another interesting research direc-
tion would be to consider the case where the state and actions are continuous. A first
attempt to this has been made in [1]. Interestingly, the corresponding problem can
be shown to be strongly connected to the famous Witsenhausen problem [13, 14],
which is a typical decentralized control problem where control and communication
intervene in an intricate manner.
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Chapter 16
Networked Hybrid Dynamical Systems:
Models, Specifications, and Tools

R. G. Sanfelice

Abstract Models, specifications, and tools for networked hybrid dynamical systems
are presented. The proposed modeling framework allows the agent, the network, and
the algorithms to have hybrid dynamics. Notions that properly capture key spec-
ifications for networked systems, namely, formation, synchronization, safety, and
security, are provided. Tools for analysis of the closed-loop hybrid system and for
the design of distributed hybrid algorithms are presented.Applications of themethods
to estimation, consensus, and synchronization over complex networks are presented
throughout the chapter.

16.1 Introduction

The objective of this paper is to presentmathematical models, specifications, notions,
and tools for the design of algorithms for networked hybrid dynamical systems. A
network of such systems is defined as multiple agents running algorithms that are
allowed to share information over a network so as to fulfill a given design specifi-
cation. The mathematical models of the agents, the algorithms, and the network are
all given in terms of hybrid inclusions. In the autonomous case, a hybrid inclusion
is given by

ẋ ∈ F(x) x ∈ C

x+ ∈ G(x) x ∈ D,
(16.1)

where x is the state. This model allows the state to change continuously according
to the constrained differential inclusion in (16.1) during flows and, at jumps, change
discretely according to the constrained difference inclusion in (16.1). With such a
general model, the agents may have states that evolve continuously and discretely,
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the models of the algorithms can have logic statements and conditions under which
their response changes, and the models of the network may capture the conditions
triggering communication events for agents to exchange information over the net-
work. Due to the combination of heterogeneous continuous and discrete dynamics,
the analysis of the resulting system as well as the design of algorithms and system
parameters to satisfy a particular design specification cannot be carried out with tools
for purely continuous-time or discrete-time systems.

Several unique features of networked hybrid dynamical systems make their anal-
ysis and design challenging. These features include the unavoidable effect of the
network, which, in most cases, does not allow continuous exchange of information,
perturbations, and the inherently hybrid dynamics of the agents. More precisely:

1. Distributed agents with hybrid dynamics: the intervals of time over which the
state of the agents changes continuously may be different among agents. The
time instants at which the state of the agents change discretely may also not be
the same. In fact, the assumption that all of the agents flow and jump at the same
time might be too restrictive.

2. Asynchronous communication events at unknown times: the time instances at
which agents exchange information may not be synchronized, meaning that each
agent may receive information at different time instances. Furthermore, as in
the previous item, the amount of ordinary time elapsed between communication
events for each agent might be different; for instance, an agent can receive infor-
mation at a much faster rate than others. In addition, the exact times at which
information is exchanged may not be known a priori.

3. Lack of full information at the same time: The information about the states of the
neighboring agents may not be available at the same time. In fact, most realistic
models of networks would not provide information continuously, but rather, at
isolated time instances. To meet certain design specifications, such a constraint
may require algorithms that can cope with limited information, both in terms of
its value and the time information is received.

4. Perturbations in the dynamics, parameters, andmeasurements: the lack of knowl-
edgeof the actualmodels of each component of a networkof hybrid systemswould
prevent one from compensating for their effect at the design stage. Designs that
are robust to perturbations such as measurement noise, unmodeled dynamics, and
delay are mandatory.

Section16.2 of this paper pertains to modeling of networked hybrid dynamical
systems. A mathematical model of each of the agents is introduced first. Each agent
is modeled as a hybrid system, similar to (16.1). Such a model is general enough to
allow for nonlinear, nonautonomous, set-valued, and heterogeneous dynamics with
solutions that evolve continuously and, at times, jump. Hybrid dynamical models
capturing the mechanisms behind the networks connecting the agents are presented.
The hybrid dynamics in these models allows to capture the discrete nature of com-
munication events in digital networks. These models are also modular to permit their
use in the definition of interconnections between the agents in the network, where
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its topology is defined by a graph. Finally, a general model of hybrid algorithms for
the control of the agents is given in terms of hybrid inclusions as in (16.1) as well.

The interconnection between the agents, the networks, and the algorithms defines
a closed-loop system that, after appropriate design, is to meet certain given spec-
ifications. With such a model at hand, Sect. 16.3 introduces specifications that are
of typical interest in networked systems problems. These specifications are given in
terms of the dynamical properties of the resulting closed-loop system. The property
of all agents converging to a desired relative configuration, typically referred to as
formation, is introduced as the property that solutions converge (in the limit or in
finite time) to the set of points defining the formation. Synchronization is defined as
the property that all solutions (or some of its components) converge to each other,
property that we define as asymptotic synchronization, potentially with stability,
which we refer to as stable synchronization. In addition, specifications that capture
safety and security are also presented.

With the specifications introduced in Sect. 16.3, notions and tools that can be used
to satisfy the given specifications are introduced in Sect. 16.4. The notions include
asymptotic stability, finite time convergence, forward invariance, and robustness.
Due to space constraints, we provide pointers to the literature of hybrid dynamical
systems where formal statements and further applications of these notions and tools
can be found. These methods have been recently used to solve problems pertaining
to certain classes of networked hybrid dynamical systems, specifically, to solve state
estimation [28, 29], consensus [53], synchronization [48, 49, 51, 52], and security
[54] problems over networks. Section16.5 provides a summary of some of these
applications.

16.2 Networked Hybrid Dynamical Systems

In this section, we introduce a general model of N networked hybrid systems. A
graph defines the network structure, in particular, the nodes and the communication
links between them. Each node in the graph corresponds to an agent with general
hybrid dynamics. The exchange of information between the agents is alsomodeled as
a hybrid system, in particular, to capture the events at which communication events
occur. Each agent is controlled by an algorithm that may also be hybrid.

16.2.1 Agents

For each i ∈ V := {1, 2, . . . , N }, the i th agent is modeled as a hybrid system H a
i

with data (Ca
i , F

a
i , Da

i ,G
a
i , E

a
i , H

a
i ) and given by the hybrid inclusion with inputs

and outputs
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żi ∈ Fa
i (zi , ui ) (zi , ui ) ∈ Ca

i

z+
i ∈ Ga

i (zi , ui ) (zi , ui ) ∈ Da
i

yi ∈ Ha
i (zi , ui ) (zi , ui ) ∈ Ea

i ,

(16.2)

where zi ∈ R
nai is the state, ui ∈ R

ma
i the input, and yi ∈ R

pai the output of the i th
agent. The set-valued map Fa

i is the flow map capturing the continuous dynamics,
and Ca

i defines the flow set on which flows are allowed. The set-valued map Ga
i

defines the jump map and models the discrete behavior, and Da
i defines the jump

set, which is where jumps are allowed. The set Ea
i defines the output set. A solu-

tion1 to H a
i is given by a pair (φi , ui ) parametrized by (t, j) ∈ R�0 × N, where t

denotes ordinary time and j denotes jump time. The domain dom(φi , ui ) ⊂ R�0 × N

is a hybrid time domain if for every (T, J ) ∈ dom(φi , ui ), the set dom(φi , ui ) ∩
([0, T ] × {0, 1, . . . , J }) can be written as ∪J

j=0(I j × { j}), where I j := [t j , t j+1] for
a time sequence 0 = t0 � t1 � t2 � · · · � tJ � tJ+1. The t j ’s with j > 0 define the
time instants when the state of the hybrid system jumps and j counts the number
of jumps. The setSH a

i
contains all maximal solutions toH a

i , and the setSH a
i
(ξ)

contains all maximal solutions to H a
i with initial condition ξ .

Example 16.1 A widely studied problem in the literature of multi-agent systems
is the problem of controlling the state of point-mass systems over a network to
reach consensus. In such a case, the dynamics of the agents are simply żi = ui for
each i ∈ V , where zi , ui ∈ R

nai for some nai = ma
i . Certainly, such dynamics can be

modeled as shown in (16.2) by choosing Fa
i (zi , ui ) := ui ,Ga

i (zi , ui ) arbitrary,C
a
i =

R
nai × R

nai , and Da
i empty. The model in (16.2) also allows to include constraints

in the state and the input of each agent. For instance, if the input of the agent is
constrained to |ui | � u for someu > 0 then theflowset canbedefined asCa

i = R
nai ×{

ui ∈ R
ma

i : |ui | � u
}
. More interestingly, the model in (16.2) permits capturing

agents with point-mass hybrid dynamics, such as

żi = ui,1 =: Fa
i (zi , ui )

during flows and

z+
i = ui,2 =: Ga

i (zi , ui )

at jumps, where ui = (ui,1, ui,2). In such a model, the conditions on the state and
the input imposed by the flow and jump sets would determine when the input ui,1
affecting the flows is active, and when the input ui,2 assigning the state after jumps
is active. �

1A solution to H a
i is called maximal if it cannot be extended, i.e., it is not a (proper) truncated

version of another solution. It is called complete if its domain is unbounded. A solution is Zeno if it
is complete and its domain is bounded in the t direction. A solution is precompact if it is complete
and bounded.
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Example 16.2 Synchronization of the state of nonlinear continuous-time systems of
the form żi = fi (zi , ui ) emerges in many problems in science and engineering. Such
an agent model is captured by defining Fa

i (zi , ui ) := fi (zi , ui ), Ga
i (zi , ui ) arbitrary,

Ca
i = R

nai × R
ma

i , and Da
i empty. More interestingly, the model in (16.2) allows for

jumps in the state that can emerge due to hybrid dynamics in the agents themselves.
The mathematical models of impulse-coupled oscillators used in the literature to
capture the dynamics of populations of fireflies and neurons exhibit such dynamics;
see, e.g., [40]. For instance, one such a model consists of a scalar state zi of each
oscillator taking values in the compact set [0, T ], where T > 0 is a parameter, and
that, during flows, increases monotonically toward T . During this regime, the change
of zi is governed by the autonomous system żi = fi (zi ), and the state zi is constrained
to [0, T ]. Upon reaching a threshold T , the state zi self-resets to zero. Furthermore,
when agents that are neighbors to the i th agent self-reset their states to zero, they
trigger a reset of the state zi to a value that may depend on the state of the i th agent
and of its neighbors. Letting ui be the input to the i th agent, which is to be assigned
to a function of the state of the neighbors so as to externally reset zi as just described,
the change of zi at Self-Triggered jumps is z+

i = 0 and at externally triggered jumps
as z+

i = gi (zi , ui ) An agent model as in (16.2) is given by

żi = fi (zi ) =: Fa
i (zi , ui ) (zi , ui ) ∈ [0, T ] × R

ma
i =: Ca

i ,

z+
i ∈ Ga

i (zi , ui ) :=

⎧
⎪⎨

⎪⎩

0 if zi = T, ui /∈ De
i

gi (zi , ui ) if zi ∈ [0, T ), ui ∈ De
i

{0, gi (zi , ui )} if zi = T, ui ∈ De
i

(zi , ui ) ∈ ({T } × R
ma

i ) ∪ ([0, T ] × De
i ) =: Da

i ,

yi = zi =: Ha
i (zi , ui ) (zi , ui ) ∈ [0, T ] × R

ma
i =: Ea

i .

In this model, the events are triggered when zi = T or ui is equal to a value, or
more generally, belong to an appropriately defined set describing the conditions that
externally reset zi . The latter set is denoted as De

i in the model above. Note that when
both reset conditions occur simultaneously, the jump map of the agent is set valued,
meaning that either one of the two possible resets is possible. �

16.2.2 Networks

A directed graph (digraph) is defined as Γ = (V ,E ,G ). The set of nodes of the
digraph are indexed by the elements of V and the edges are pairs in the set E ⊂
V × V . Each edge directly links two different nodes, i.e., an edge from i to k, denoted
by (i, k), implies that agent i can send information to agent k. The adjacency matrix
of the digraph Γ is denoted by G ∈ R

N×N , whose entries gik take values on {0, 1}
according to the connectivity map: gik = 1 if (i, k) ∈ E , and gik = 0 otherwise. The



330 R. G. Sanfelice

set of indices corresponding to the neighbors that can send information to the i th
agent is denoted byN (i) := {k ∈ V : (k, i) ∈ E }. The in-degree and out-degree of
agent i are defined by d in

i = ∑N
k=1 gki and d out

i = ∑N
k=1 gik . The in-degree matrix

D is the diagonal matrix with entries Dii = d in
i for all i ∈ V . The Laplacian matrix

of the digraph Γ , denoted by L ∈ R
N×N , is defined as L = D − G . A digraph is

said to be

• weight balanced if, at each node i ∈ V , the out-degree and in-degree are equal;
i.e., for each i ∈ V , d out

i = d in
i ;

• completely connected if every pair of distinct vertices is connected by a unique
edge; that is, gik = 1 for each i, k ∈ V , i �= k;

• strongly connected if and only if any two different nodes of the digraph can be
connected via a path that traverses the directed edges of the digraph.

In most applications involving networks, the transfer of information between
neighboring agents is drivenbyevents. The events triggering communicationbetween
neighboring agents may depend on the state, the input, output information, or on a
local quantity. The following general hybrid system model, denoted H net

ik , is used
to trigger such events for each (i, k) ∈ E :

μ̇ik ∈ Fnet
ik (μik, ωik) (μik, ωik) ∈ Cnet

ik

μ+
ik ∈ Gnet

ik (μik, ωik) (μik, ωik) ∈ Dnet
ik

χik ∈ H net
ik (μik, ωik) (μik, ωik) ∈ Enet

ik ,

(16.3)

where μik ∈ R
n net
ik is a state variable associated to the communication of information

from agent i to agent k, ωik ∈ R
m net

ik is its input, which might be assigned to infor-
mation that agent i has to transmit to agent k as well as state variables in agent i that
determinewhetherμik should evolve continuously or discretely, andχik ∈ R

p net
ik is its

output, which includes the information that is transmitted from agent i to agent k. The
hybrid model H net

ik is general enough to capture most communication mechanisms
or protocols in the literature. The following sample-and-hold mechanism defines
perhaps the simplest version of a model to trigger communication of information
from agent i to agent k.

Example 16.3 (Periodic communication events with memory) The simplest event-
driven communication protocol is perhaps one that collects information and transmits
it periodically. Let T > 0 denote the period for the events. A model that, after the
first event, updates the information provided by the network after every T seconds
have elapsed can be modeled as (16.3) for each (i, k) ∈ E . Let τik denote a timer
state that triggers the communication events and let �ik be a memory state that stores
the information at those events. Then, defining the state of (16.3) as μik = (τik, �ik),
the following model captures the network described above:
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μ̇ik =
[
τ̇ik

�̇ik

]
=

[
1
0

]
when τik ∈ [0, T ]

μ+
ik =

[
τ+
ik

�+
ik

]
=

[
0

ωik

]
when τik = T,

(16.4)

where ωik is the input to the network, which has the information to communicate,
and the output is χik = �ik . Then, the data of H net

ik is given by

Fnet
ik (μik, ωik) :=

[
1

0

]

Cnet
ik := {(μik, ωik) : τik ∈ [0, T ]}

Gnet
ik (μik, ωik) :=

[
0

ωik

]

Dnet
ik := {(μik, ωik) : τik = T }

H net
ik (μik, ωik) := �ik

Enet
ik := {(μik, ωik) : τik ∈ [0, T ]} .

Anetworkmodel inwhich collection and transmission of information do not occur
simultaneously can be obtained by adding a timer and a memory state to the model
above. In such amodel, one of the timers, denoted as τik,1, triggers the events every T1
seconds, atwhich events the inputωik is stored in amemory state, denoted as �ik,1. The
other timer, denoted as τik,2, triggers the events everyT2 seconds updating thememory
state assigning the output, denoted �ik,2, to the recorded value ofωik in �ik,2. Amodel
as in (16.3) capturing such mechanism has state μik = (τik,1, �ik,1, τik,2, �ik,2) and
data

Fnet
ik (μik, ωik) := (1, 0, 1, 0)

Cnet
ik := {

(μik, ωik) : τik,1 ∈ [0, T1], τik,2 ∈ [0, T2]
}

Gnet
ik (μik, ωik) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(0, ωik, τik,2, �ik,2) if τik,1 = T1, τik,2 ∈ [0, T2),
(τik,1, �ik,1, 0, �ik,1) if τik,1 ∈ [0, T1), τik,2 = T2,{
(0, ωik, τik,2, �ik,2), (τik,1, �ik,1, 0, �ik,1)

}

if τik,1 = T1, τik,2 = T2,

Dnet
ik := {

(μik, ωik) : τik,1 = T1
} ∪ {

(μik, ωik) : τik,2 = T2
}

H net
ik (μik, ωik) := �ik

Enet
ik := {

(μik, ωik) : τik,1 ∈ [0, T1], τik,2 ∈ [0, T2]
}
.
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The jump set Dnet
ik of this hybrid system captures the two possible events, which

are when τik,1 = T1 or when τik,2 = T2, and the jump map Gnet
ik resets the state

variables according to which even has occurred. Note that when both events happen
simultaneously, the jump map is set valued. In general, the parameters T1 and T2 in
the models above may depend on each agent, in which case they will be denoted as
T i
1 and T i

2 . �

While themodels in Example16.3 capture the key property that information trans-
mitted over networks is typically only available at isolated time instances, they make
the assumption that transmissions occur periodically. The following model relaxes
that assumption by allowing consecutive communication events to occur within a
window of finite length. For simplicity, this extension is carried out for the model in
(16.4) and without a memory state. An extension for the case with memory states
and two timers follows similarly.

Example 16.4 (Aperiodic communication events) The first model in Example16.3
guarantees that every solution has a hybrid time domain defined by a sequence
t0 = 0 � t1 < t2 < t3 < . . . satisfying

t j+1 − t j = T

for all j > 0 such that (t, j) is in the domain of the solution. When the time in
between consecutive events is not constant, but rather known to occur no later than
T2 seconds and no sooner than T1 seconds after every event, the sequence of times
{t j } would satisfy

t j+1 − t j ∈ [T1, T2] (16.5)

for all j > 0 such that (t, j) is in the domain of the solution. The parameters T1 and
T2 are such that T2 � T1 > 0. In principle, the event times t j can be thought of being
determined by a random variable taking values in the interval [T1, T2]. The following
model generates solutions satisfying (16.5) by exploiting nondeterministic behavior
due to an overlap between the flow and jump sets:

τ̇ik = 1 τik ∈ [0, T2] (16.6a)

τ+
ik = 0 τik ∈ [T1, T2], (16.6b)

In fact, whenever the timer state τik is in [T1, T2), both flows and jumps are possible,
meaning that there exist solutions that jump or that flow when τik is equal to any
point in that set. A model as in (16.3) capturing such mechanism has state μik = τik ,
and flow and jump maps/sets given by

Fnet
ik (μik, ωik) := 1

Cnet
ik := {(μik, ωik) : τik ∈ [0, T2]}
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Gnet
ik (μik, ωik) := 0

Dnet
ik := {(μik, ωik) : τik ∈ [T1, T2]} .

An alternative model that generates solutions satisfying (16.5) but, instead,
through a set-valued jump map is given by

τ̇ik = −1 τik ∈ [0, T2] (16.7a)

τ+
ik ∈ [T1, T2] τik = 0. (16.7b)

In this model, the communication events are triggered by a timer τik that decreases
and upon reaching zero, it is reset to a point in [T1, T2]. The hybrid system (16.7)
can be captured by (16.3) by choosing the state as μik = τik , and flow and jump
maps/sets given by

Fnet
ik (μik, ωik) := −1

Cnet
ik := {(μik, ωik) : τik ∈ [0, T2]}

Gnet
ik (μik, ωik) := [T1, T2]

Dnet
ik := {(μik, ωik) : τik = 0} .

�
Network mechanisms and protocols that employ timers, memory states, and logic

can be fit in the network model (16.3), for instance, TCP/IP [7], wireless Ethernet,
and Bluetooth protocols [64] can be modeled with such a hybrid model.

16.2.3 Algorithms

For each i ∈ V , the algorithm associated to the i th agent is modeled as a hybrid sys-
temH K

i with data (CK
i , FK

i , DK
i ,GK

i , EK
i , HK

i ) and given by the hybrid inclusion
with inputs and outputs

η̇i ∈ FK
i (ηi , vi ) (ηi , vi ) ∈ CK

i

η+
i ∈ GK

i (ηi , vi ) (ηi , vi ) ∈ DK
i

ζi ∈ HK
i (ηi , vi ) (ηi , vi ) ∈ EK

i ,

(16.8)

where ηi ∈ R
nK
i is the state, vi ∈ R

mK
i the input, and ζi ∈ R

pK
i the output of the i th

agent. As for H a
i in (16.2), the set-valued map FK

i is the flow map capturing the
continuous dynamics and CK

i defines the flow set on which flows are allowed. The
set-valued map GK

i defines the jump map and models the discrete behavior, and DK
i
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defines the jump set which is where jumps are allowed. The set EK
i defines the output

set. A solution to the algorithm H K
i can also be defined, as done for H a

i .

Example 16.5 Algorithms that, at isolated time instants, measure the received data
and compute a feedback control law that is to be applied to the agent can be modeled
as the algorithm in (16.8). An algorithm with sampling events triggered when one of
its inputs reaches a particular value, at which event uses the information in another
of its inputs to compute the control law and stores it in a memory state that is to
be applied to the agent is given as follows. Let vi = (vi,1, vi,2) be the input to the
algorithm, where vi,1 is the input triggering the events and vi,2 is the input with
the information needed to compute the control law. Suppose that vi,1 reaching zero
triggers the computation events. Let �i be a state variable that, at the events, stores the
value of the feedback control law, which is given by the function κ , and in between
events remains constant. The discrete dynamics of the algorithm are

�+
i = κ(vi,2)

which are active when vi,1 = 0. The continuous dynamics of the algorithm are simply

�̇i = 0

which, in principle,2 are active when vi,1 > 0. In this way, the state �i operates as a
memory state. This algorithm is given by H K

i as in (16.8) with state ηi = �i , input
vi = (vi,1, vi,2), and data given by

FK
i (ηi , vi ) = 0

CK
i = {

(ηi , vi ) : vi,1 > 0
}

GK
i (ηi , vi ) = κ(vi,2)

DK
i = {

(ηi , vi ) : vi,1 = 0
}

HK
i (ηi , vi ) = �i

and EK
i the entire state and input space of H K

i .
The model forH K

i also allows to capture the dynamics behind an algorithm that
does not trigger computations synchronously with the arrival of information. The
computation events in such algorithm could be triggered by an internal state, at which
events the last piece of information received is used to compute the feedback law.
Such a mechanism can be modeled using a memory state that stores the information
received, a memory state that stores the computed feedback law, and a state that

2In Sect. 16.5.1, we present a model for which the continuous dynamics are active when vi,1 � 0
due to such input being connected to a strictly decreasing timer, in which case, flows with vi,1
identically zero are not possible. In such a case, the set CK

i is closed.
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triggers the events. Denote these state variables as �i,1, �i,2, and τi , respectively,
which define the state of the algorithm ηi = (�i,1, �i,2, τi ). As in the model with a
single memory state given above, the memory state �i,1 stores the information in vi,2
when the input vi,1 reaches zero. Let γ̃ be a function that, when zero, triggers the
computation of the feedback control law, which is denoted as κ . Then, the discrete
dynamics of τi are active when

γ̃ (ηi ) = 0.

At each jump, the discrete dynamics update τi according to

τ+
i = ρd

i (ηi ),

where ρd
i is a function to be defined, and �i,2 according to

�+
i,2 = κ(�i,1).

We assume that flows of τi are active when

γ̃ (ηi ) � 0

and that are governed by
τ̇i = ρc

i (ηi ).

The function ρc
i is assumed to not allow flows that remain in γ̃ (ηi ) = 0. The memory

state �i,2 remains constant during flows. This algorithm is given byH K
i as in (16.8)

with state ηi = (�i,1, �i,2, τi ), input vi = (vi,1, vi,2), and data given by

FK
i (ηi , vi ) = (0, 0, ρc

i (ηi ))

CK
i = {

(ηi , vi ) : vi,1 > 0, γ̃ (ηi ) � 0
}

GK
i (ηi , vi ) =

⎧
⎪⎨

⎪⎩

(vi,1, �i,2, τi ) if vi,2 = 0, γ̃ (ηi ) > 0

(�i,1, κ(�i,1), ρ
d
i (ηi )) if vi,1 > 0, γ̃ (ηi ) = 0

{(vi,2, �i,2, τi ), (�i,1, κ(�i,1), ρ
d
i (ηi ))} if vi,1 = 0, γ̃ (ηi ) = 0

DK
i = {

(ηi , vi ) : vi,1 = 0
} ∪ {(ηi , vi ) : γ̃ (ηi ) = 0}

HK
i (ηi , vi ) = �i,2

and EK
i the entire state and input space of H K

i . �

The model in H K
i is general enough to allow for multimode, Event-Triggered,

and predictive-based algorithms.
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16.2.4 Closed-Loop System

Given a digraph Γ , the interconnection between the agents, algorithms, and network
models results in a hybrid system. Assuming that, for each i ∈ V , the input ui of the
i th agent is assigned to the output ζi of the i th algorithm, that the input vi of the i th
algorithm is assigned to a function of yi and of the output of the networks connected
to it, namely, {χki }k∈N (i), and that, for each k ∈ N (i), the input ωik is assigned to
yi , the interconnection between these hybrid systems lead to an autonomous hybrid
system H of the form

ẋ ∈ F(x) x ∈ C

x+ ∈ G(x) x ∈ D,
(16.9)

where
x = (x1, x2, . . . , xN ) ∈ R

n

is the state with n = ∑
i∈V

(
nai + nK

i + d in
i n net

ki

)
, where xi collects the states com-

ponents of the agent, algorithm, and networks associated to the i th agent. The data
(C, F, D,G) is constructed using the data of the individual systems. In Sect. 16.5,
we provide numerous examples of such construction.

16.3 Design Specifications

In this section, we formulate specific properties of interest in the design of networked
systems. The network-specific properties introduced include the situation when the
states of the individual systems reach a particular set that depends on the local
variables, which we call formation, that the states of all systems converge to each
other, which is referred to as synchronization, that the entire interconnected hybrid
system is safe, called safety, and that exogenous signals injected at specific agents
are detectable, which we refer to as security. These properties are given in terms of
the variables and inputs of the individual agents.

16.3.1 Formation

Aproperty that is of interest in network system problems is when, for each i ∈ V , the
state xi converges to a particular relative configuration. For the closed-loop system
H , the set of interest is given as

A :=
⋂

i∈V
Ai , (16.10)
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where
Ai := {

x ∈ R
n : ρi (x) = 0

}

and, for each i ∈ {1, 2, . . . , N }, the functionρi defines the relative formation between
the agent i and the other agents. Convergence of solutions to this set can be interpreted
as the network reaching a formation, in particular, when components of xi are related
to physical quantities, such as position or angles. To formulate this property, denote
the distance from x to A as |x |A , namely,

|x |A = inf
x ′∈A

|x − x ′|.

Then, the goal is to design an algorithm such that every maximal solution φ to H
converges toA in finite time or asymptotically, that is, in the limit as “hybrid” time
gets large:

• For some (t∗, j∗) ∈ dom φ

lim
(t, j)∈dom φ, t+ j↘t∗+ j∗

|φ(t, j)|A = 0.

• If φ is complete, then

lim
(t, j)∈dom φ, t+ j→∞

|φ(t, j)|A = 0.

Note that while in some network systems problems converging to the setA might be
possible without exchanging information between agents, there are numerous prob-
lemswhere transmission of information between agents and algorithms ismandatory.
One such a case for N = 2 is when the algorithm that controls agent H a

1 is H K
2 ,

and the algorithm that controls agent H a
2 isH K

1 .
Certainly, the construction of the setA in (16.10) covers the situation when state

components of the algorithm for each agent are to converge to a common point, say
z∗. In such a case, the definition of the setsAi will include the condition zi = z∗ for
each i ∈ V . It also covers the setting when the algorithm reconstructs the state zi
frommeasurements of yi , namely, the algorithm includes an observer. In such a case,
the setAi will include a condition of the form zi = ẑi , where ẑi is the component of
ηi that provides an estimate of zi .

16.3.2 Synchronization

Another dynamical property of interest in many network systems problems is when
particular components of the solutions to each agent converge to each other, rather
than to a particular set or point. For the closed-loop systemH , this property is stated
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as follows. Let x = (x1, x2, . . . , xN ) be partitioned as xi = (pi , qi ). The closed-loop
system H is said to have

• stable synchronization with respect to p if for every ε > 0, there exists δ > 0 such
that every maximal solution φ = (φ1, φ2, . . . , φN ), where φi = (φi,p, φi,q), toH
such that

|φi (0, 0) − φk(0, 0)| � δ

for each i, k ∈ V implies

|φi,p(t, j) − φk,p(t, j)| � ε

for all i, k ∈ V and (t, j) ∈ dom φ.
• globally attractive synchronization with respect to p if every maximal solution is
complete, and for each i, k ∈ V

lim
(t, j)∈dom φ

t+ j→∞

|φi,p(t, j) − φk,p(t, j)| = 0.

• global asymptotic synchronization with respect to p if it has both stable synchro-
nization and global attractive synchronization with respect to p.

In general, this is a partial state synchronization notion, but if xi = pi for each i ∈ V ,
then this notion can be considered to be a full-state synchronization notion. Note that
stable synchronization with respect to p requires solutions φi for each i ∈ V to
start close to each other, while only the components φi,p, i ∈ V remain close to each
other over their domain of definition. Similarly, global attractive synchronizationwith
respect to p only requires that the Euclidean distance between each φi approaches
zero, while the other components are left unconstrained. Also, note that boundedness
of the solutions is not required.

16.3.3 Safety

Safety is a property of interest in the design ofmost algorithms for dynamical systems.
Safety is typically characterized by conditions on the system variables, called safety
conditions, that guarantee system operation within limits and away from undesired
configurations. A system is said to be safe when its solutions are such that they
remain within the set of points where the safety conditions are satisfied. For each
i ∈ V , let Ki denote the set of points defining the safety conditions for the variables
of the i th agent and the set

K := K1 × K2 × . . . × KN
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be the set that captures all safety conditions for the closed-loop system H . Then, a
particular safety goal is to design the algorithms and the networks such that every
solution φ toH with initial condition

φ(0, 0) ∈ K

is such that
φ(t, j) ∈ K ∀(t, j) ∈ dom φ.

Note that this property enforces all solutions that start from K to remain in K ,
even if they are not complete. At times, one might be interested in the property that
solutions starting from a potentially smaller set than K , stay in K . More precisely,
let K0 denote the set of allowed initial conditions. Then, such a safety property is
as follows: design the algorithms and the networks such that every solution φ toH
with initial condition

φ(0, 0) ∈ K0

is such that
φ(t, j) ∈ K ∀(t, j) ∈ dom φ,

where, in most cases, the set K0 would be strictly contained in the K .

16.3.4 Security

The general closed-loop system H allows to model the dynamics of the physical
components, such as sensors and actuators, the cyber components, which include
digital devices and computing, as well as their interfaces. These interfaces can be
exploited by adversaries to, for example, deny access or corrupt the information
transmitted among agents. The characterization of which attacks are detectable and
the design of algorithms to detect them are of great importance. Modeling the attacks
as exogenous signals wc and wd affecting the continuous and discrete dynamics of
H , respectively, the closed loop under the effect of attacks is given by

ẋ ∈ F(x + wc,1) + wc,2 x + wc,3 ∈ C

x+ ∈ G(x + wd,1) + wd,2 x + wd,3 ∈ D,

where wc = (wc,1,wc,2,wc,3) and wd = (wd,1,wd,2,wd,3). We refer to this closed-
loop system asHw. In this context, the security problem consists of detecting when
the exogenous signal w := (wc,wd) is nonzero. One way to accomplish that is to
design a function that,when evaluated along solutions only, is nonzero if the attacker’s
input w is nonzero. For instance, one would be interested in designing a function r
such that for every solution pair (φ,w) toHw
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∃(t, j) ∈ dom(φ,w) : |w(t, j)| > 0 ⇒ |r(φ(t, j))| > 0.

Note that when the input w is nonzero over an interval, it might suffice to have
a function r that becomes nonzero at some time over that interval, within some
reasonable amount of time since the attack started.

16.4 Notions and Design Tools

In this section, we present dynamical properties that are suitable to certify the
network-specific properties given in Sect. 16.3. These properties are stated for general
hybrid systems given asH in (16.9) and later, in Sect. 16.5, specialized to networked
systems problems. The presentation of these properties and related results is informal,
and pointers to the literature with formal statements are given.

16.4.1 Asymptotic Stability

Given a subset of the state space of a dynamical system, asymptotic stability captures
the property that solutions starting close to the set stay close to it, and that solutions
that are complete converge to it asymptotically. For a hybrid systemH as in (16.9)
with state space Rn , a closed set A ⊂ R

n is said to be

• stable forH if for each ε > 0 there exists δ > 0 such that each solution φ toH
with initial condition such that

|φ(0, 0)|A � δ

satisfies
|φ(t, j)|A � ε ∀(t, j) ∈ dom φ.

• globally asymptotically attractive for H if every maximal solution φ to H is
complete3 and satisfies

lim
(t, j)∈dom φ, t+ j→∞

|φ(t, j)|A = 0.

3This attractivity notion enforces that every maximal solution toH is complete, which is a property
that is not for free. Sufficient conditions guaranteeing that maximal solutions are complete are
given in [23, Propositions2.10 and 6.10]. An attractivity notion that does not require every maximal
solution to be complete is given in [23, Definitions3.6 and 7.1], which, to emphasize the potential
lack of completeness, has the prefix “pre.”
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• globally asymptotically stable for H if it is stable and globally asymptotically
attractive.

Algorithms H K
i for H a

i that, under the effect of the networks H net
ik , guaran-

tee asymptotic stability of the set A can be designed using the Lyapunov stability
analysis tools in [23, Chaps. 3 and 7]. In particular, asymptotic stability is of interest
to networked systems problems as it can be employed to guarantee formation and
synchronization. In fact, the problem of guaranteeing that the network H asymp-
totically reaches a formation can be solved by showing that the set A in (16.10)
is asymptotically attractive. The problem of designing algorithms H K

i that guar-
antee full-state asymptotic synchronization of H can be recast as the problem of
asymptotically stabilizing the closed set

A := {
x ∈ R

n : x1 = x2 = · · · = xN
}
.

Sufficient conditions for asymptotic stability in terms of Lyapunov functions can be
found in [23, Chaps. 3, 6, and 7]; see Sect. 16.5 for illustrations.

16.4.2 Finite Time Convergence

At times, convergence to the set of points of interest in finite time is desired. For
instance, in a network system, one might be interested in assuring that the state of
the individual systems converge to a particular formation, and after that, accomplish
a different task. For a hybrid systemH on Rn , given a closed setA ⊂ R

n , an open
neighborhood N of A , and a function T : N → [0,∞) called the settling-time
function, the closed set A is said to be

• finite time attractive for H if each solution φ to H with initial condition such
that

φ(0, 0) ∈ N

satisfies

sup
(t, j)∈dom φ

t + j � T (φ(0, 0)) (16.11)

and

lim
(t, j)∈dom φ:t+ j↗T (φ(0,0))

|φ(t, j)|A = 0. (16.12)

This property becomes global whenN can be picked such thatC ∪ D ⊂ N . Condi-
tion (16.11) assures that convergence occurs at a point in dom φ, in turn guaranteeing
that the solution actually converges to A .
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The design of networked systems with such finite time convergence properties
can be designed using the tools in [26], in particular, to guarantee network formation
in finite time.

16.4.3 Forward Invariance

A set K is said to be forward invariant for a dynamical system if every solution to
the system from K stays in K for all future time. Also referred in the literature as
flow-invariance and positively invariance, this property assures the key property of
interest in dynamical systems that solutions remain in a desired region of the state
space. For a hybrid systemH on R

n , a given set

K ⊂ C ∪ D

is said to be forward pre-invariant for H if for each x ∈ K , each solution φ to H
with initial condition φ(0, 0) = x is such that

φ(t, j) ∈ K ∀(t, j) ∈ dom φ.

The condition on K belonging toC ∪ D is so that a set being pre-invariant is such that
a solution exists from each point in it.4 The prefix “pre” indicates that the notion does
not enforce that maximal solutions are complete, and when every maximal solution
from K is complete, then the notion reduces to forward invariance as defined in [11]
– see therein also “weak” notions of forward invariance.

Sufficient conditions guaranteeing forward pre-invariance of sets are given in
[11–13] for general hybrid systems modeled as H in (16.9). In particular, these
conditions can be used as design tools to certify safety in a networked system.

16.4.4 Robustness

In real-world settings, networked systems are affected by a variety of perturbations
that may compromise the satisfaction of the properties that they were designed for.
Unmodeled dynamics in the models used for the agents H a

i leads to perturbations
of the data (Ca

i , F
a
i , Da

i ,G
a
i , E

a
i , H

a
i ). In particular, additive (in the general set-

valued sense) perturbations to the flow map Fa
i and the jump map Ga

i can be used to
capture terms thatwere omitted at themodeling stage, potentiallywith the intention of
providing a simplified agent model that would enable analysis and design. Deflations
and inflations of the sets Ca

i and Da
i can be defined to model perturbations in the

4The solutionmight be trivial though, in the sense that its domainmight be just one point – otherwise,
points that are neither in C nor in D would satisfy the invariance notion vacuously.
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conditions allowing flows and jumps. Similar perturbationsmay appear in themodels
of the networks and algorithms.When such perturbations are not known at the design
stage, one typically performs the design in nominal conditions, with the expectation
that when the perturbations are present and have small size, then the established
properties will hold, practically and semiglobally.

A semiglobal and practical (on the size of the perturbation) version of the asymp-
totic stability property of a set A defined in Sect. 16.4.1 would guarantee, for every
compact setM ⊂ R

n and every level of closeness ε > 0, the existence of a maximum
allowed perturbation size δ∗ > 0 such that every complete solution φ̃ to H under
perturbations with size smaller that δ∗ that has initial condition φ̃(0, 0) ∈ M is such
that, in the limit as t or j grow unbounded, the distance from φ̃ to A is less than or
equal to ε. When A is an asymptotically stable compact set for H , this property
is guaranteed to hold under mild conditions on the data of H . Such a result can be
found in Chap.7 of [23]; see Definition7.18, Lemma7.19, and Theorem7.21 therein.

The property outlined above can be formally written in terms of a K L bound.
First, whenH is nominally well posed and a compact setA is asymptotically stable,
then there exists a class-K L function β such that every solution φ toH satisfies

|φ(t, j)|A � β(|φ(0, 0)|A , t + j) ∀(t, j) ∈ dom φ. (16.13)

See [23, Theorem7.12]. Then, [23, Theorem7.21] implies that for each compact set
M ⊂ R

n and every level of closeness ε > 0, there exists δ∗ > 0 such that

|φ̃(t, j)|A � β(|φ(0, 0)|A , t + j) + ε ∀(t, j) ∈ dom φ̃ (16.14)

for every solution φ̃ that starts from M and that is under the effect of perturbations
with size smaller than δ∗. A similar result for the case of finite time convergence is
in Theorem4.1 in [26].

Another typical perturbation in networked systems is the presence of noise in
the quantities measured and transmitted by the network, and the values that finally
arrive to the agents. When such noise is small, a semiglobal property that is practical
on the size of the noise can be established using the tools mentioned above. When
the noise is large, one is typically interested in characterizing the effect of the noise
on the nominal asymptotic stability property, namely, on the distance to the set A .
The notion of input-to-state stability (ISS) is one way to characterize the effect of
large noise. Denote by H̃ as the hybrid system under the effect of an exogenous
disturbance d. The hybrid system H̃ is input-to-state stable with respect to A if
there exist β ∈ K L and κ ∈ K such that each solution φ̃ to H̃ with associated
disturbance d satisfies

|φ̃(t, j)|A � max{β(|φ(0, 0)|A , t + j), κ(‖d‖(t, j))} (16.15)
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for each5 (t, j) ∈ dom φ̃. Several characterizations and Lyapunov-based tools to
certify ISS in hybrid systems are given in [8]. The setK L is the set ofK L functions
and K is the set of K functions; see [23, Sect. 3.5].

A direct approach to design algorithms conferring robustness is to perform the
design task using a model that explicitly includes a model of the perturbations. Such
an approach allows for a variety of perturbations, as long as they can bemodeled and a
certificate guaranteeing the desired properties can be found.When robust asymptotic
stability is of interest, robust control Lyapunov functions for hybrid systems can be
employed to guarantee robust asymptotic stability of sets; see [56]. Forward invari-
ance of sets with robustness to perturbations can be certified for hybrid dynamical
systems when the model includes the perturbations. Tools for the design of algo-
rithms conferring robust forward invariance to general sets and, in particular, to sets
given by sublevel sets of Lyapunov functions are available in [13].

Delay is a perturbation that is of particular interest in networked systems as it is
unavoidable in real-world settings. Compared to the tools to deal with the sources
of perturbations mentioned above, design methods to guarantee robustness to delays
are much less developed. Works pertaining to systems with hybrid dynamics and
delays have focused on guaranteeing pre-asymptotic stability through the use of
Razumikhin functions [37, 67] and Lyapunov functionals for retarded functional
impulse differential equations [63]. Results for switched systemswith delays are also
available in [14, 33, 62, 66]. Results for linear reset systems with delays developed
using passivity appeared in [4, 5]. Tools for the study of delays in hybrid systems
modeled as in (16.9) have recently appeared in the sequence of articles [30–32, 34],
which provide tools to study the effects of general delays. Along a different vein, in
[2], we have recently proposed a way to exploit well posedness and aK L bound as
in (16.13) to handle the sole effect of delays on events in hybrid systems.

16.5 Applications

The models and tools presented in the previous sections have recently been used to
solve problems pertaining to certain classes of networked hybrid dynamical systems.
In [28, 29], a distributed hybrid observer to estimate the state of a linear time-invariant
system was designed to guarantee asymptotic stability of a set on which the state
estimation error is zero. In [53], a solution to the control problem of steering the state
of the agents with point-mass dynamics to the same value over a network that only
allows exchange of information at isolated, aperiodic time instances is proposed. The

5A pair (φ̃, d) defines a solution to H̃ if it satisfies its dynamics. Given a hybrid arc d, its sup norm
at (t, j) ∈ dom d is

‖d‖(t, j) := max

{

ess sup(s,k)∈dom d\Γ (d),s+k�t+ j |d(s, k)|, sup
(s,k)∈Γ (d),s+k�t+ j

|d(s, k)|
}

where Γ (d) denotes the set of all (t, j) ∈ dom d such that (t, j + 1) ∈ dom d.
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algorithm discretely updates the input to the point-mass system at communication
events and, in between events, changes continuously according to a linear differential
equation. A hybrid control algorithm for the synchronization of multiple systems
with general linear time-invariant dynamics over a similar communication network
appeared in [50, 51]. The remainder of this section presents a summary of these
results.

16.5.1 Distributed Estimation

State estimation in networked systems has seen increased attention recently. These
include continuous-time algorithms for distributed estimation of the state of a plant in
[27] with robustness guarantees and in [25, 65], both when information is exchanged
continuously. Algorithms for which information arrives at common discrete time
instances include the network of local observers proposed in [47] for linear time-
invariant plants and the optimal estimators in [68], for time-varying networked sys-
tems, both in discrete time and with information shared at each discrete time instant.
Approaches that keep the continuous dynamics of the plant and treat the commu-
nication events as impulsive events include the observer-based controller [42] for
network control systems modeled as time-varying hybrid systems, the observer-
protocol pair in [16] to asymptotically reconstruct the state of a linear time-invariant
plant using periodic measurements from multiple sensors, the distributed observer
in [19] designed by partitioning the dynamics into disjoint areas and attaching an
algorithm to each area that updates the estimates over time windows with common
length, and the robust continuous-time observer for estimation in network control
systems in [55] designed via an emulation-like approach and exploiting trajectory-
based and small-gain arguments. Other approaches that mix continuous and discrete
dynamics have appeared in the nonlinear and stochastic systems literature; see [1,
10, 15, 18, 20, 39, 43, 59, 60].

In this section, we consider the problem of estimating the state of a dynamical
system from intermittent measurements of functions of its output over a networkwith
N ′ nodes, each running a decentralized state estimator. The communication events
occur according to one of themodels in Example16.4. Under nominal conditions, the
model governing the dynamics of the system to estimate the state of is givenby a linear
time-invariant system. The algorithm we propose builds from the hybrid observer in
[22], which is shown to guarantee global exponential stability of the zero-estimation
error under sporadic measurements. Without loss of generality, following the model
in (16.2) and defining N = N ′ + 1, we assume that the first agent corresponds to this
dynamical system, while the dynamics of agents with i ∈ V ′ := {2, 3, . . . , N ′ + 1}
implement the decentralized state estimators. In this way, the dynamics of the first
agent are given by

ż1 = Az1, (16.16)
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where z1 ∈ R
na1 denotes its state and A ∈ R

na1×na1 is the system matrix. For each
i ∈ V ′, the i th agent running a state estimator receives the measurement

yi = Hi z1 (16.17)

and the outputs yk of its neighbors, that is, for each k ∈ N (i), at time instances t ij
satisfying

t ij+1 − t ij ∈ [T i
1 , T

i
2 ], j > 0, (16.18)

where Hi ∈ R
pai ×nai is the local output matrix of the i th agent and T i

2 � T i
1 > 0

are parameters that, as T2 and T1 in (16.5), determine the minimum and maximum
amount of time to elapse between communication events for the i th agent. Following
the network models proposed in Sect. 16.2.2, in particular, those in Example16.4,
we employ the model

τ̇i = 1 τi ∈ [0, T i
2 ] (16.19a)

τ+
i ∈ [T i

1 , T
i
2 ] τi = 0 (16.19b)

to trigger the events at which the i th agent receives yi and the yk’s. Since the infor-
mation from all neighbors to agent i arrives simultaneously, we can employ a single
state μi for each agent, rather than d in

i states μik for each agent, i ∈ V ′. A model as
in (16.3) can be derived following the construction in Example16.4, where the state
μi would be given by τi and the input ωi by the information to transmit, namely, yi
and the yk’s.

We propose a decentralized hybrid algorithm that, at each agent and by employing
information received from the neighbors over a communication graph, generates a
converging estimate of the state of the first agent. More precisely, at the i th agent,
i ∈ V ′, the hybrid algorithm has a state with a variable ẑi ∈ R

na1 storing the esti-
mate of the state z1 and an information fusion state variable, denoted �i , storing the
measurements received from its neighbors. These state variables are continuously
updated by differential equations

˙̂zi = Aẑi + �i (16.20a)

�̇i = hi�i (16.20b)

when no information is received, while when information is received, the states ẑi
and �i are updated according to

ẑ+
i = ẑi (16.21a)

�+
i =

∑

k∈N (i)

Gk
oi (ẑi , ẑk, yi , yk) (16.21b)
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with

Gk
oi (ẑi , ẑk, yi , yk) = 1

d ini
Kii y

e
i + Kik y

e
k + γ (ẑi − ẑk), (16.22)

where, for each i, k ∈ V ′, yei = Hi ẑi − yi is the output estimation error; the scalars
hi and γ , and the matrix Kik define the parameters of the algorithm. The constants
gik in (16.21) and din

i in (16.22) are associated with the communication graph, which
is assumed to be given. The map Gk

oi defines the impulsive update law when new
information is collected from the first agent and the kth neighbor for agent i . The
information fusion state �i is injected into the continuous dynamics of the local
estimate ẑi and, at communication events, injects new information impulsively – the
right-hand side of (16.21) is the “innovation term” of the proposed observer. The
specific update law in (16.22) is such that the second term in (16.22) uses the output
error of each kth agent that is a neighborhood of the i th agent, and the third term in
(16.22) uses the difference between the estimates ẑi and ẑk . These are the quantities
that are transmitted (instantaneously) at communication events only.

The continuous and discrete dynamics in (16.20) and (16.21) can be mod-
eled as a hybrid algorithm H K

i as in (16.8) with state ηi = (ẑi , �i ), input vi =
(yi , {(ẑk, yk)}k∈N (i), μi ), and data given by

FK
i (ηi , vi ) :=

[
Aẑi + �i

hi�i

]

CK
i := {(ηi , vi ) : μi ∈ [0, T2]}

GK
i (ηi , vi ) :=

[
ẑi

∑
k∈N (i)

1
d in
i
Kii (Hi ẑi − yi )+Kik(Hk ẑk − yk)+γ (ẑi − ẑk)

]

DK
i := {(ηi , vi ) : μi = 0}

HK
i (ηi , vi ) := ẑi

and EK
i the entire state and input space ofH K

i . Note that the input to the algorithm
includes the output μi = xi of the network model in (16.7). Due to μi triggering the
jumps in H K

i , for each i ∈ V ′, jumps of the network and the hybrid algorithm for
the i th agent occur simultaneously.

The goal of the algorithm is to guarantee that, for each i ∈ V ′, the estimate ẑi
converges to the state z1. When the estimates are equal to z1, the update law maps �i
to zero. Noting that the timers τi (= μi ) in the model of the network remain within
the set [0, T i

2 ], the goal of the algorithm is to render the set

A := {
x : z1 = ẑi , μi ∈ [0, T i

2 ], �i = 0 ∀i ∈ V
}

(16.23)

for the resulting closed-loop system with state x , which is given by the stack of the
state variables of the first agent (z1), each algorithm (ηi ’s), and each network (μi ’s).
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A result for the design of the parameters of the proposed hybrid algorithm can be
found in [29] to guarantee that the set A in (16.23) is globally exponentially stable
for the closed-loop hybrid system H . Given the network parameters 0 < T i

1 � T i
2

for each i ∈ V ′, it is assumed that the N ′ agents are connected via a digraph Γ =
(V ,E ,G ) that is such that there exist a constant δ > 0 and matrices Kg , P = P� >

0, Qi = Q�
i > 0 satisfying6

M (τ ) :=
[
He(Aθ , P) −P + Ã�

θ K
� Q̃(τ )

� −δ Q̃(τ ) − He(K̃ , Q̃(τ ))

]

< 0 ∀τ ∈ T , (16.24)

where τ = (τ2, τ3, . . . , τN ), T := [0, T 2
2 ] × [0, T 3

2 ] × · · · × [0, T N
2 ],

Aθ = IN ⊗ A + K

K = (KgHg) ∗ (IN + G ) + γL ⊗ In

Hg = diag(H2, H3, . . . , HN )

Ãθ = Aθ − H̃

K̃ = K − H̃

H̃ = diag(h2 In, h3 In, . . . , hN In)

Q̃(τ ) = diag
(
Q̃2(τ2), Q̃3(τ3), . . . , Q̃N (τN )

)

Q̃i (τi ) = exp(δτi )Qi .

These design conditions are obtained using sufficient conditions for asymptotic sta-
bility in [23] (specifically, Proposition3.29 therein), which for the current data turns
out to be exponential, and a convenient change of coordinates. The Lyapunov func-
tion used to show global exponential stability of the set A in (16.23) is given by

V (x) := e�Pe + θ� Q̃(τ )θ,

where e = (e2, e3, . . . , eN ), ei = ẑi − z1, τ = (τ2, τ3, . . . , τN ), θ = (θ2, θ3, . . . , θN ),
and

θi = Kii y
e
i +

∑

k∈N (i)

Kik y
e
k +γ

∑

k∈N (i)

(ẑi − ẑk) − �i (16.25)

for each i ∈ V ′, with P and Q̃ as defined above. Note that V (x) = 0 for each x ∈ A ,
while for any x /∈ A , V (x) is positive. More importantly, intuitively, regardless of

6Given matrices A and B, He(A, B) = A�B + B�A, A ⊗ B defines the Kronecker product, and
A ∗ B the Khatri–Rao product. The matrix In is the n × n identity matrix.
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which timer triggers a jump, this function satisfies the useful property that V (x+) −
V (x) is upper bounded by a nonpositive function of θi for all x in the jump set.
Such a property is possible due to the convenient choice of the update law of the
observer used at jumps, which, in the coordinates in (16.25), leads to e being mapped
by the identity and θi to zero. The injection of �i in the flows of the local estimate
in (16.20) and the continuous dynamics of �i further permit a decrease of V during
flows, which conveniently uses exponential functions in the definition of Q̃. These
properties are exploited to arrive to the result above. The interested reader is referred
to [29], where in addition to several other results pertaining to design, nominal and
ISS-type robustness of the above algorithm, several examples are provided.

16.5.2 Distributed Synchronization

Synchronization is a property of interest in many problems emerging in science
and engineering, such as spiking neurons [41, 48], formation control and flocking
[21, 44], distributed sensor networks [45], and satellite constellation formation [57],
among others. The literature about synchronization is quite rich, with numerous con-
tributions employing a variety of techniques, such as Lyapunov functions [6, 24],
convergence [46, 58], contraction theory [61], and incremental input-to-state stability
[3, 9]. Synchronization for continuous-time systems where communication coupling
occurs at discrete events is an emergent area of study. In [9], the authors study a case
of synchronizationwhere agents have nonlinear continuous-time dynamics with con-
tinuous coupling and impulsive perturbations. In [38], the authors use Lyapunov-like
analysis to derive sufficient conditions for the synchronization of continuously cou-
pled nonlinear systems with impulsive resets on the difference between neighboring
agents. In [36], a distributed Event-Triggered control strategy was developed to drive
the outputs of the agents in a network to synchronization. Using a sample-and-hold
Self-Triggered controller policy, a practical synchronization result was established
in [17] for the case of first-order integrator dynamics. On the other hand, methods for
the design of algorithms that guarantee synchronization of multi-agent systems with
information arriving at impulsive, asynchronous time instances are not available.

In this section, we consider the problem of synchronizing the state of N networked
agents from intermittent measurements of the state (or of a function of it) over a
digraph. Each agent runs a decentralized hybrid algorithm that uses information
received from its neighbors. The nominal model of the agents is given as follows:
for each i ∈ V ,

żi = Azi + Bui , (16.26)

where A is the nominal system matrix and B is the input matrix. The i th agent in the
network measures its local output, denoted yi , and the information received from its
neighbors, denoted yk , at the communication events, where
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yi = Hzi (16.27)

with H being the output matrix. Following the network models proposed in
Sect. 16.2.2, in particular, those in Example16.4, we employ the model in (16.7)
to trigger the events at which the i th agent receives the yk’s.

To globally synchronize the states of the N agents, we propose the following
decentralized hybrid algorithm for each i ∈ V : the algorithm has a memory state,
denoted �i , that when information arrives, is updated to the relative error between
the output of the i th agent and those received from its neighbors, namely,

�+
i = K

∑

k∈N (i)

(yi − yk) = K H
∑

k∈N (i)

(zi − zk), (16.28)

where K is a constant matrix to be designed, and in between communication events
is continuously updated according to

�̇i = M�i , (16.29)

whereM is a constant matrix to be designed. Following the construction of the hybrid
algorithms in Sect. 16.5.1, this algorithm can be modeled asH K

i in (16.8) with state
ηi = �i , input vi = (yi , {yk}k∈N (i), μi ), and data given by

FK
i (ηi , vi ) := M�i (16.30)

CK
i := {

(ηi , vi ) : μi ∈ [0, T i
2 ]

}
(16.31)

GK
i (ηi , vi ) := K H

∑

k∈N (i)

(zi − zk) (16.32)

DK
i = {(ηi , vi ) : μi = 0} (16.33)

HK
i (ηi , vi ) := �i (16.34)

and EK
i the entire state and input space of H K

i . Also, note that the input to the
algorithm includes the output μi of the network model in (16.7), leading to jumps of
the network and the hybrid algorithm for the i th agent occurring simultaneously.

The goal of the synchronization algorithm introduced above is to guarantee that,
for each i, k ∈ V , the error between zi and zk converges to zero, with stability.
These requirements correspond to the notions of stable and attractive synchronization
introduced in Sect. 16.3.2. When the estimates are equal to z1, the update law maps
�i to zero. Noting that when the states of all of the agents coincide we have that the
�i ’s are reset to zero and that the timers τi in the model of the network remain within
the set [0, T i

2 ], the goal of the algorithm is to render the set

A := {
x : zi = zk ∀i, k ∈ V , μi ∈ [0, T i

2 ], �i = 0 ∀i ∈ V
}

(16.35)
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globally asymptotically stable for the resulting closed-loop system H with state x ,
which is given by the stack of the state variables of each agent (zi ), each algorithm
(ηi ’s), and each network (μi ’s).

Results for the design of the parametersM and K of the proposed hybrid algorithm
can be found in [50] to guarantee that the setA in (16.35) is globally exponentially
stable forH , and hence, global exponential synchronization is achieved. Given the
network parameters 0 < T i

1 � T i
2 for each i ∈ V and a undirected graph Γ , the set

A in (16.35) is globally exponentially stable for the hybrid closed-loop system H
resulting from controlling the agents in (16.26) with hybrid algorithms as in (16.30)–
(16.34) over a network modeled as in (16.7) if there exist scalars σ > 0, ε ∈ (0, 1),
matrices K and M , and positive definite symmetric matrices Pi , Qi for each i ∈ V ′,
satisfying

M (ν) :=
[
He(P, Ā) −P B̄ + exp(σν)(K̄ Ā − M̄ K̄ )�Q

� He(exp(σν)Q, M̄ − K̄ B̄ − σ
2 I )

]

< 0 ∀ν ∈ [0, T ],
(16.36)

where Ā = I ⊗ A + Λ ⊗ BK H , B̄ = I ⊗ B, M̄ = I ⊗ M , K̄ = Λ ⊗ K H , Λ =
diag(λ2, λ3, . . . , λN ) where λi are the nonzero eigenvalues of L , and

(1 − ε)T − α2σT

β
> 0, (16.37)

where T := mini∈V T i
1 , T := maxi∈V T i

2 ,

β = − max
ν∈[0,T ]

λ̄(M (ν))

α2 = max{λ(P), λ(Q) exp(σT )}.

Moreover, every maximal solution φ to the closed-loop system satisfies

|φ(t, j)|A � κ exp (−r(t + j)) |φ(0, 0)|A ∀(t, j) ∈ dom φ, (16.38)

where κ =
√

α2
α1
exp

(
β(1−ε)T

2α2

)
and r = β

2α2N
min

{
εN , (1 − ε)T − α2σT

β

}
, and α1 =

min{λ(P), λ(Q)}.
To arrive at these design conditions, we employed the property that

θi = K H
∑

k∈N (i)

(zi − zk) − �i (16.39)

is reset to zero at jumps due to the timer τi expiring alone. It follows that the quantity
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V (x) =
[
z

θ

]�
Ψ̄ R(τ )Ψ̄ �

[
z

θ

]

, (16.40)

with7 Ψ̄ = diag(Ψ̃ ⊗ In, Ψ̃ ⊗ Ip), where Ψ̃ = (ψ2, ψ3, . . . , ψN ) ∈ R
N×N−1, ψi =

(ψi1, ψi2, . . . , ψi N ) being the orthonormal eigenvector corresponding to the nonzero
eigenvalue λi of L , i ∈ V (furthermore,

∑N
k=1 ψik = 0), R(τ ) = diag(P,

Q exp(σ τ̄ )), τ̄ = 1
N

∑N
i=1 τi , P = diag(P2, P3, . . . , PN ), and Q = diag(Q2, Q3,

. . . , QN ), decreases during flows due to (16.36), while at jumps, its potential growth
can be dominated by imposing (16.37); cf. the construction of the Lyapunov function
in Sect. 16.5.1, where such a Lyapunov function decreases during flows and has a
nonpositive change at jumps. To guarantee exponential stability of the synchroniza-
tion set, the result [23, Proposition3.29], which uses a balancing condition between
jumps and flows to guarantee that solutions converge to the desired set, exploited.

16.6 Final Remarks and Acknowledgments

Hybrid systems models, along with their associated notions and tools, lead to pow-
erful methods for the design of algorithms conferring desired dynamical properties
in complex networks. The methods summarized in this book chapter are suitable for
settings inwhich the combination of continuous and discrete behavior is unavoidable,
digital networks govern the exchange of information between the agents, informa-
tion is limited and with uncertainty, and the algorithms are distributed. The proposed
networked hybrid systems framework allows for hybrid models at the agent, net-
work, and algorithm level. The applications of the notions and tools to estimation,
consensus, and synchronization over networks are just examples of the power of the
hybrid systems framework, being the hope that they will inspire the formulation of
new notions and tools suitable for networked hybrid systems as well as the solution
to challenging applications.

I would like to acknowledge and thank my collaborators who have contributed
to the ideas presented in this book chapter. Part of the work presented here was
done in collaboration with my Ph.D. students Yuchun Li and Sean Phillips, who,
respectively, have lead our research on distributed estimation and distributed syn-
chronization using hybrid systems methods. The distributed estimation strategy and
thenondeterministic networkmodel using timerswere developedwithFrancescoFer-
rante, Frederic Gouaisbaut, and Sophie Tarbouriech. The formulation of the safety
notion was inspired by work with my Ph.D. student Jun Chai. The formulation of
the security notion follows our recent work with Sean Phillips, Alessandra Duz,
and Fabio Pasqualetti. Part of the work presented here has recently appeared in
conference venues and journal publications, and associated papers are available at

7A digraph is undirected if and only if the Laplacian is symmetric. The construction of Ψ̃ is inspired
by [35].
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Chapter 17
Stabilization of Linear Hyperbolic
Systems of Balance Laws with
Measurement Errors

A. Tanwani, C. Prieur and S. Tarbouriech

Abstract This chapter considers the feedback stabilization of partial differential
equations described by linear balance laws when the measurements are subjected to
disturbances. Compared to our previous work on robust stabilization of linear hyper-
bolic systems, the presence of source terms in the system description complicates
the analysis. We first consider the case of static controllers and provide conditions
on system data and feedback gain which result in stability of the closed-loop system,
and robustness with respect to measurement errors. Motivated by the applications
where it is of interest to bound the maximum norm of the state trajectory, we also
study feedback stabilization with dynamic controllers. Conditions in terms of matrix
inequalities are proposed which lead to robust stability of the closed-loop system in
the presence of measurement errors in the feedback. As an application, we study the
problem of quantized control, where the quantization error plays the role of distur-
bance in the measurements. The simulations for an academic example are reported
as an illustration of our theoretical results.

17.1 Introduction

Balance laws are used to describe the physical systemswith certain conservative prop-
erties, and hyperbolic partial differential equations (PDEs) provide the mathematical
framework to model systems governed by such laws. Stability and stabilization of
this class of systems are indeed relevant from several applications viewpoint, and
several tools are now available for analyzing such properties of hyperbolic systems.
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We encourage the reader to consult [1] for physical examples of hyperbolic PDEs,
and an overview of tools used for studying solutions and stability of this system class.

This chapter concerns the problem of feedback stabilization for a class of bound-
ary controlled hyperbolic systems, which model linear balance laws. We are par-
ticularly focused on studying a notion of robust stability when the measurements
used for feedback control are subjected to unknown disturbances. In the literature on
ordinary differential equations (ODEs), the property of input-to-state stability (ISS),
coined in [15], captures the desired robust behavior that we want to study here, while
regarding the disturbances as exogenous inputs in the closed-loop system. The Lya-
punov function-based techniques available for verifying ISS are thus generalized in
the context of hyperbolic PDEs in this chapter. Our previous work on robust stabi-
lization of hyperbolic PDEs [18, 19] only considers systems with conservation laws
and no source term in the dynamics. Whereas, in this chapter, we generalize our
results to linear balance laws by including a source term in the PDE. This results in
novel stability conditions and calculations.

One finds the Lyapunov stability criteria withL 2-norm and dissipative boundary
conditions in [2]. Lyapunov stability in H 2-norm for nonlinear systems is treated
in [3]. Thus, the construction of Lyapunov functions inH 2-norm for the hyperbolic
PDEs with static control laws can be found in the literature. In the literature, one
finds various instances where the ISS-related tools are used for stability analysis of
interconnected systems. For infinite-dimensional systems, the problem of ISS has
attracted attention recently but most of the existing works treat the problem with
respect to uncertainties in the dynamics. See, for example, [11], where a class of
linear and bilinear systems is studied. See also [4] where a linearization principle is
applied for a class of infinite-dimensional systems in a Banach space.When focusing
on parabolic partial differential equations, some works to compute ISS Lyapunov
functions have also appeared, such as [9, 10]. For time-varying hyperbolic PDEs,
construction of ISS Lyapunov functions has also been addressed in [13]. The recent
work reported in [6, 7] derives ISS bounds for 1-D parabolic systems in the presence
of boundary disturbances but without the use of Lyapunov-based techniques.

For systems of conservation laws, when seeking robust stabilization with mea-
surement errors, one could see that the results in [5] provide robust stability of X (·, t)
in L 2((0, 1);Rn) space by using static controllers. The use of dynamic controller
for stabilization of systems of conservation laws with ISS estimates in H 1-norm
and maximum norm is studied in our previous works [18] and [19], respectively.
Inspired by the applications of such notions in finite-dimensional systems [16, 17],
these works also discuss the applications of ISS notion in the context of sampled-data
and quantized control of hyperbolic systems, which require stability in a functional
space equipped with maximum norm. An intermediate exposition of such applica-
tions in finite and infinite dimensions appears in [14].

In this chapter, we build on our works [18, 19] dealing with input-to-state stabi-
lization in maximum norm and using dynamic feedbacks. The novelty here appears
due to the presence of source terms as we migrate from conservation laws to bal-
ance laws. The presence of source terms induces some changes in the criterion for
achieving ISS. The system class and the stability notions of our interest are discussed
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in Sect. 17.2. To clearly highlight the role of the source term, we first deal with the
static feedback case and ISS estimates in L 2-norm in Sect. 17.3. We then develop
ISS estimates in supremum norm in Sect. 17.4 and carry out the design of a dynamic
feedback to achieve that purpose. The applications of these notions in the context of
quantized control are discussed in Sect. 17.5. Section17.6 illustrates the main results
of the chapter through an academic example. Finally, some concluding remarks end
the chapter in Sect. 17.7.

17.2 System Class and Stability Notions

The problem of interest for us is to address feedback control for the class of linear
hyperbolic balance laws described by the equation

∂X

∂t
(z, t) + Λ

∂X

∂z
(z, t) = SX (z, t), (17.1a)

where z ∈ [0, 1], and t ∈ [0,∞). ThematrixΛ is assumed to be diagonal and positive
definite. The expression SX (z, t) in (17.1a) denotes the source terms. We call X :
[0, 1] × R+ → R

n the state trajectory, and the initial condition is defined as

X (z, 0) = X0(z), z ∈ (0, 1) (17.1b)

for some function X0 : (0, 1) → R
n . The value of the state X is controlled at the

boundary z = 0 through some input u : R+ → R
m so that

X (0, t) = HX (1, t) + Bu(t), (17.2)

where H ∈ R
n×n and B ∈ R

n×m are constant matrices. We consider the case when
only the measurement of the state X at the boundary point z = 1 is available for each
t � 0. We thus denote the output of the system by

y(t) = X (1, t) + d(t), (17.3)

where d ∈ L ∞([0,∞),Rn) is seen as the perturbation in the measurement of the
state trajectory at the boundary point.

We are interested in designing a control law u as a function of the output mea-
surement y, which stabilizes the system in some appropriate sense. In case there are
no perturbations, that is, d ≡ 0, one typically chooses u(t) = Ky(t). Following this
recipe with uncertain measurements, we obtain the closed-loop boundary condition

X (0, t) = (H + BK )X (1, t) + BKd(t), (17.4)
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where K is chosen such that (H + BK ) satisfies a certain dissipative condition. We
are interested in studying the stability of system (17.1)–(17.4) with respect to the
measurement disturbance d.

Definition 17.1 System (17.1)–(17.4) is said to be input-to-state stable inL 2-norm
(L 2-ISS) with respect to the disturbance d if there exist constants c, a > 0 and a
classK function γ such that

‖X (z, t)‖L 2((0,1);Rn) � c e−at‖X0‖L 2((0,1);Rn) + γ
(‖d[0,t]‖∞

)
. (17.5)

In Sect. 17.3, we treat this case and propose conditions for choosing feedback gain
K , which results in aforementioned stability estimate for the closed-loop systemwith
static control.

Stabilization inL 2-norm does not necessarily guarantee convergence of themax-
imum norm of X (·, t) over the spatial domain [0, 1]. To do that, we have to consider
the stability of X (·, t) inH 1-norm, which is defined as

‖X‖H 1((0,1);Rn) := (‖X‖2L 2((0,1);Rn) + ‖∂X‖2L 2((0,1);Rn))
1/2.

The following proposition, proved in [19], allows us to make the connection between
C 0-norm and H 1-norm.

Proposition 17.1 Given any function X : [0, 1] → R
n such that X ∈ C 0([0, 1];

R
n) ∩ H 1((0, 1);Rn). It holds that, for every z ∈ [0, 1],

max
z∈[0,1] |X (z)|2 � |X (0)|2 + ‖X‖2H 1((0,1);Rn). (17.6)

By definition, functionswith finiteH 1-normmust be differentiable Lebesgue almost
everywhere, and since d ∈ L ∞, we can no longer use static feedbacks. The use of
dynamic controller allows us to circumvent this problem, see [19] for details. The
dynamic controller driven by the output y thatwe choose for our purposes is described
by the following equations:

η̇(t) = −α(η(t) − y(t)) = −α η(t) + αX (1, t) + αd(t) (17.7a)

η(0) = η0 (17.7b)

u(t) = Kη(t), (17.7c)

where η0 ∈ R
n is the initial condition for the controller dynamics.

Definition 17.2 System (17.1), (17.2), and (17.7) is said to be input-to-state stable in
C 0-norm (C 0-ISS) with respect to the disturbance d if there exist constants c, a > 0
and a class K function γ such that

max
z∈[0,1] |X (z, t)| � c e−at MX0,η0 + γ

(‖d[0,t]‖∞
)
. (17.8)
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In (17.8),MX0,η0 is a constant that depends on somenormassociatedwith the function
X0 and the initial state η0 chosen for the dynamic compensator η. We are interested
in designing α, K such that the closed-loop system (17.1), (17.2), and (17.7) is stable
in the sense of Definition 17.2.

In terms of analysis, the addition of dynamic controller introduces a coupling of
ODEs and PDEs in the closed loop, which makes the analysis more challenging. The
derivations of the main results are also more involved compared to [19] due to the
presence of source terms. We use Lyapunov function-based analysis to synthesize
the controller and guarantee ISS with respect to the perturbation d. After designing
controllers which achieve the desired ISS estimates, we study an application of
these notions in the context of quantized control: We establish the practical stability
of the system and derive the ultimate bounds on the state trajectory in terms of
the quantization error. The problem of quantized control has mostly been studied
in finite-dimensional systems so far [8, 12, 14, 18], and this chapter extends this
problem setting to the case of hyperbolic balance laws.

17.3 Static Control and L 2-Estimates

We first address the problem of finding conditions for the system to be L 2-ISS
as formulated in Definition 17.1. In the following, Dn+ denotes the set of diagonal
positive definite matrices.

Theorem 17.1 If there exist scalars κ ∈ (0, 1), c < λmin(Λ), a matrix D ∈ Dn+, and
a matrix K ∈ R

m×n, such that

(H + BK )�ΛD(H + BK ) � κΛD (17.9a)

S�D + DS � c log

(
1

κ

)
D, (17.9b)

then system (17.1) and (17.2) with u = Ky is ISS with respect to the disturbance d.

Proof The proof is based on introducing aLyapunov function and analyzes its deriva-
tive with respect to time. As a candidate, we choose V : L 2((0, 1);Rn) → R+ given
by

V (X) :=
∫ 1

0
X�(z)DX (z)e−μz dz,

where D is a diagonal positive definite matrix satisfying (17.9). The constant μ > 0
is chosen such that

c

λmin(Λ)
log

(
1

κ

)
< μ < log

(
1

κ

)
, (17.10)

which is possible because c < λmin(Λ).
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Using an integrationbyparts, along the solutions to (17.1) and (17.2)withu = Ky,
the time derivative of V yields

V̇ =
∫ 1

0
(∂t X

�DX + X�D∂t X)e−μz dz

= −
∫ 1

0
(∂z X

�ΛDX + X�DΛ∂z X)e−μz dz +
∫ 1

0
X�(S�D + DS)Xe−μz dz

� −[X�ΛDXe−μz]10 − μ

∫ 1

0
X�DΛXe−μzdz + c log

(
1

κ

) ∫ 1

0
X�DXe−μzdz

� −e−μ X (1, t)�ΛDX (1, t) + X (0, t)�ΛDX (0, t) − σV,

where σ := (μλmin(Λ) − c log(1/κ)) > 0 due to the first inequality in (17.10). We
now substitute the expression for boundary control to get

X (0, t) = (H + BK )X (1, t) + BKd(t).

Using (17.9a), we get

V̇ (t) � −σV (t) − (e−μ − κ)X�(1, t)ΛDX (1, t) + d(t)�ΛDd(t)

� −σV (t) + χd(t)�d(t).

where χ = λmax(ΛD), and e−μ > κ due to the second inequality in (17.10). The
ISS estimate now follows from the last inequality. �

17.4 Dynamic Control and C 0-Estimates

In this section, we are interested in analyzing the closed-loop system (17.1), (17.2),
and (17.7). Since we are interested in computing estimates on the H 1-norm of the
state X , we need to look at the evolution of its derivative Xz . We recall that, for the
closed-loop system with dynamic controller, the state trajectory X satisfies

Xt (z, t) + ΛXz(z, t) = SX (z, t), (17.11a)

X (z, 0) = X0(z), ∀z ∈ [0, 1], (17.11b)

X (0, t) = HX (1, t) + BKη(t). (17.11c)

For what follows, we are also interested in analyzing the dynamics of Xz := ∂z X
which are derived as follows:

∂Xz

∂t
(z, t) + Λ

∂Xz

∂z
(z, t) = SXz(z, t). (17.12)
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To obtain the boundary condition for Xz , from (17.11c), we have

Xt (0, t) = HXt (1, t) + BK η̇(t).

Substituting Xt (z, t) = −ΛXz(z, t) + SX (z, t) for each z ∈ [0, 1], we get

ΛXz(0, t) = HΛXz(1, t) + (SH − HS)X (1, t) + SBKη(t) − BK η̇(t)

= HΛXz(1, t) + S(H + BK )X (1, t) + SBK (η(t) − X (1, t)) − HSX (1, t)

− BK (η̇(t) − Xt (1, t)) + BK (ΛXz(1, t) − SX (1, t))

= (H + BK )ΛXz(1, t) + [
S(H + BK ) − (H + BK )S

]
X (1, t)

+ SBK (η(t) − X (1, t)) − BK (η̇(t) − Xt (1, t))

= −(H + BK )Xt (1, t) − BK (η̇(t) − Xt (1, t)) + S(H + BK )X (1, t)

+ SBK (η(t) − X (1, t)), (17.13)

using (17.11a) for the last equality.We nowuse these equations as the system descrip-
tion and proceed to develop the next result.

17.4.1 Stability Result

The secondmain contribution of this chapter is to present conditions on the controller
dynamics (17.7) which result in stability of system (17.1) and (17.2), and robustness
with respect to the measurement disturbances d in the sense of Definition 17.2.
To state the result, we introduce some notation. For scalars μ > 0 and 0 < κ < 1,
let ρ := e−μ − κ; let F := BK , and Q := F�ΛDF for D ∈ Dn+; and finally, let
G := H�ΛDF . We introduce the matrices

Ω1 :=
⎡

⎣
ρβ1ΛD −β1(G + Q) 0

∗ 2αβ3 I − (β1 + α2β2)Q β3 I + αβ2G
∗ ∗ β2(ρΛD + Q + G + G�)

⎤

⎦

and with S̃ := S(H + F),

Ω2 := β2

⎡

⎣
−S̃�ΛDS̃ −S̃�ΛDSF H�ΛDS̃

∗ − F�(S�ΛDS + ΛDS + S�ΛD)F H�ΛDSF
∗ ∗ 0

⎤

⎦

in which α, β1, β2, β3 are some positive constants, and ∗ denotes the transposed
matrix block. It must be noted that the matrix Ω2 = 0 if there is no source term, that
is, S = 0. In the following statement, we denote the induced Euclidean norm of a
matrix M by ‖M‖2.



364 A. Tanwani et al.

Theorem 17.2 Assume that there exist scalars μ ∈ R+, κ ∈ (0, 1), a matrix D ∈
Dn+, the gain matrix K , and the positive constants α, β1, β2, β3 in the definitions of
Ω1 and Ω2 such that

(H + BK )�ΛD(H + BK ) � κΛD (17.14a)

S�D + DS < μλmin(Λ)D, (17.14b)

S�Λ2D + Λ2DS � μλmin(Λ)Λ2D, (17.14c)

Ω1 + Ω2 > 0. (17.14d)

Then, the closed-loop system satisfies the ISS estimate (17.8) with

MX0,η0 := ‖X0‖2H 1((0,1);Rn) + |η0 − X (1, 0)|2. (17.15)

Remark 17.2 Condition (17.14) provides a generalization of stability conditions that
were studied earlier in [18, 19] in the sense that (17.14a) and (17.14d) (withΩ2 = 0)
were already proposed there. Conditions (17.14b) and (17.14c) appear because of the
nonzero source term SX . If S is symmetric, then (17.14b) and (17.14c) are equivalent.

The proof of Theorem 17.2 is based on constructing a Lyapunov function for the
closed-loop system (17.1), (17.2), and (17.7).Within the remainder of this section,we
provide this construction, and the analysis involving the computation of the derivative
of this function. The required ISS estimate then follows from the condition (17.14)
and the bound on the derivative of the Lyapunov function constructed.

17.4.2 Construction of the Lyapunov Function

As a candidate, we choose V : H 1((0, 1);Rn) × R
n → R+ given by

V := V1 + V2 + V3, (17.16)

where V1 : H 1((0, 1);Rn) → R+ is defined as

V1(X) :=
∫ 1

0
X (z)�P1X (z)e−μz dz,

where we choose P1 := β1D, and β1, D satisfy (17.14). Similarly, V2 : H 1((0, 1);
R

n) → R+ is given by

V2(X) :=
∫ 1

0
∂X (z)�P2∂X (z)e−μz dz,
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with P2 = β2Λ
2D, and finally V3 : H 1((0, 1);Rn) × R

n → R+ is given by

V3(X, η) = (η − X (1))�P3(η − X (1)),

with P3 = β3 I . With this choice of V , we can now introduce the constants cP :=
e−μ mini=1,2,3{λmin(Pi )}, cP := maxi=1,2,3{λmax(Pi )} such that, for all η ∈ R

n , and
X ∈ H 1((0, 1);Rn),

cP(‖X‖2H 1((0,1);Rn) + |η − X (1)|2) � V (X, η) �
cP(‖X‖2H 1((0,1);Rn) + |η − X (1)|2). (17.17)

17.4.3 Lyapunov Dissipation Inequality

We now derive the bound on V̇ that was used in Sect. 17.4.2 to obtain the desired ISS
estimate. This is done by analyzing the time derivative of each of the three functions
in the definition of the Lyapunov function.

Analyzing V1:

Using an integration by parts and recalling that P1 = β1D is a diagonal positive
definite matrix, the time derivative of V1 yields

V̇1 = β1

∫ 1

0
(∂t X

�DX + X�D∂t X)e−μz dz

= −β1

∫ 1

0
(∂z X

�ΛDX + X�DΛ∂z X)e−μz dz + β1

∫ 1

0
X�(S�D + DS)Xe−μz dz

� −β1[X�ΛDXe−μz]10 − β1μ

∫ 1

0
X�ΛDXe−μzdz + β1ν

∫ 1

0
X�DXe−μzdz

� −β1e
−μ X (1, t)�DΛX (1, t) + β1X (0, t)�DΛX (0, t) − σ1V1, (17.18)

where ν < λmin(Λ) due to (17.14b) which results in σ1 := β1(μλmin(Λ) − ν) strictly
positive.We now impose the boundary conditions by substituting the value of control
u given in (17.11c) to get

X (0, t) = (H + BK )X (1, t) + BK (η − X (1, t))

which results in

V̇1 � −σ1V1 − β1e
−μX (1, t)�ΛDX (1, t)

+ β1X (1, t)�(H + BK )�ΛD(H + BK )X (1, t)

+ 2β1X (1, t)�(H + BK )�ΛDBK (η − X (1, t))

+ β1(η − X (1, t))�K�B�ΛDBK (η − X (1, t)).
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With (17.14a), we thus get

V̇1 � −σ1V1 − β1(e
−μ − κ)X (1, t)�ΛDX (1, t)

+ 2β1X (1, t)�(H + BK )�ΛDBK (η − X (1, t))

+ β1(η − X (1, t))�K�B�ΛDBK (η − X (1, t)). (17.19)

Analyzing V2:

Using (17.12) and repeating the same calculations as in the case of V̇1 when obtaining
(17.18), we get

V̇2 � −β2e
−μXz(1, t)

�Λ2DΛXz(1, t) + β2Xz(0, t)
�Λ2DΛXz(0, t) − σ2V2 ,

(17.20)

where σ2 := β2(μλmin(Λ) − ν) > 0 by our choice of ν. Substitute the value of
ΛXz(0, t) from (17.13) results in

V̇2 � −σ2V2 − β2e
−μXz(1, t)

�Λ2DΛXz(1, t) + β2(T1 + T2 + T3),

where

T1 := [(H + F)Xt (1, t) + F(η̇ − Xt (1, t))]�ΛD[(H + F)Xt (1, t) + F(η̇ − Xt (1, t))]
T2 := [S̃X (1, t) + SF(η(t) − X (1, t))]�ΛD[S̃X (1, t) + SF(η(t) − X (1, t))]
T3 := 2[−(H + F)Xt (1, t) − F(η̇ − Xt (1, t))]�ΛD[S̃X (1, t) + SF(η(t) − X (1, t))]

= −2[(H + F)Xt (1, t) + F(η̇ − Xt (1, t))]�ΛD[S̃X (1, t) + SF(η(t) − X (1, t))]

and we used the notation S̃ = S(H + F) and F = BK . The term T1 is already
analyzed in a manner similar to our paper [19], whereas the terms T2 and T3 appear
only because of the source term S, which is considered in this paper.After substituting
η-dynamics in (17.7a), straightforward calculations yield

T1 = Xt (1, t)
�[(H + F)�ΛD(H + F) − H�ΛDF − F�ΛDH − F�ΛDF]Xt (1, t)

+ α2(η(t) − X (1, t))�F�ΛDF(η(t) − X (1, t))

− 2 αXt (1, t)
�H�ΛDF(η − X (1, t)) − 2α2(η(t) − X (1, t))�F�ΛDFd(t)

+ 2 αXt (1, t)
�H�ΛDFd(t) + α2d�F�ΛDFd(t).

Similarly, for T2, we get

T2 = X (1, t)� S̃�ΛDS̃X (1, t) + 2X (1, t)� S̃�ΛDSF(η(t) − X (1, t))

+ (η(t) − X (1, t))�F�S�ΛDSF(η(t) − X (1, t)),
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and finally, T3 yields

T3 = 2α(η(t) − X (1, t))�F�ΛDSF(η(t) − X (1, t))

− 2 Xt (1, t)
�H�ΛDS̃X (1, t) − 2Xt (1, t)

�H�ΛDSF(η(t) − X (1, t))

+ 2α(η(t) − X (1, t))�F�ΛDS̃X (1, t)

− 2αX (1, t)� S̃�ΛDFd(t) + 2α(η(t) − X (1, t))�F�S�ΛDFd(t).

One can use the Young’s inequality to bound the terms with disturbances d, so that,
for every ζ > 0, the disturbance terms in β2T1 are bounded as

|2 α2β2(η − X (1, t))�F�ΛDFd(t)| � ζ

4
|η − X (1, t)|2 + 4(α2β2)

2 ‖F�ΛDF‖22
ζ

|d(t)|2

|2αβ2Xt (1, t)
�H�ΛDFd(t)| � ζ |Xt (1, t)|2 + (αβ2)

2 ‖H�ΛDF‖22
ζ

|d(t)|2

and the terms in β2T3 can be bounded as

|2αβ2X (1, t)� S̃�ΛDFd(t)| � ζ |X (1, t)|2 + (αβ2)
2 ‖S̃�ΛDF‖22

ζ
|d(t)|2,

|2αβ2(η(t) − X (1, t))�F�S�ΛDFd(t)| � ζ

4
|η − X (1, t)|2

+ 4(αβ2)
2 ‖F�S�ΛDF‖22

ζ
|d(t)|2 .

With (17.20), using (17.9a) and (17.13), we get

V̇2 � − σV2 − β2Xt (1, t)
�[

(e−μ − κ)ΛD + H�ΛDF + F�ΛDH + F�ΛDF
]
Xt (1, t)

+ β2(η(t) − X (1, t))�F�[
α2ΛD + S�ΛDS + ΛDS + S�ΛD

]
F(η(t) − X (1, t))

+ β2 X (1, t)� S̃�ΛDS̃X (1, t) − 2 β2 Xt (1, t)
�H�ΛDS̃X (1, t)

− 2 β2 Xt (1, t)
�[

α(H + F)�ΛDF + H�ΛDSF
]
(η − X (1, t))

+ 2 β2 X (1, t)�
[
S̃�ΛDSF + αF�ΛDS̃

]
(η(t) − X (1, t))

+ ζ |X (1, t)|2 + ζ |Xt (1, t)|2 + ζ

2
|η(t) − X (1, t)|2 + χ1|d(t)|2,
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where

χ1 := α2 ‖F�ΛDF‖22 + 4α4β2
2
‖F�ΛDF‖22

ζ
+ (αβ2)

2 ‖H�ΛDF‖22
ζ

+ 4(αβ2)
2 ‖F�S�ΛDF‖22

ζ
+ (αβ2)

2 ‖S̃�ΛDF‖22
ζ

. (17.21)

Analyzing V3:

Once again, substituting the dynamics of η from (17.7a) in the expression of V̇3 to
get

V̇3 = 2 β3(η(t) − X (1, t))�(η̇(t) − Xt (1, t))

= −2αβ3 |(η(t) − X (1, t))|2 − 2β3(η(t) − X (1, t))�Xt (1, t)

+ 2αβ3(η(t) − X (1, t))�d(t).

Once again, Young’s inequality is used to obtain, ∀ ζ > 0

2αβ3(η(t) − X (1, t))�d(t) � ζ

4
|η(t) − X (1, t)|2 + 4(αβ3)

2

ζ
|d(t)|2,

which further yields

V̇3 � −
(

2αβ3 + ζ

4

)

|(η(t) − X (1, t))|2 − 2β3(η(t) − X (1, t))�Xt (1, t)

+ ζ

2
|(η(t) − X (1, t))|2 + 4(αβ3)

2

ζ
|d(t)|2.

Combining V̇1, V̇2, V̇3:

By introducing the vector w as

w(t) := (X (1, t)�, (η(t) − X (1, t))�, X�
t (1, t))�,

one can manage the terms in the expressions for V̇i , i = 1, 2, 3 to get

V̇ � −σ1V1 − σ2V2 − ζ

4
V3 − w�(Ω1 + Ω2)w + ζw�w + χ |d(t)|2,

where the constant χ is given by

χ := χ1 + 2(αβ3)
2

ζ
. (17.22)
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From (17.14d), there exists ζ > 0 such that Ω1 + Ω2 > ζ I , and hence by choosing
ζ = ζ , we obtain

V̇ (X (t), η(t)) � −σV (X (t), η(t)) + χ |d(t)|2 (17.23)

with σ := min
{
σ1, σ2,

ζ

4

}
.

17.5 Quantized Control

We are interested in studying stabilization of the system (17.1), (17.2), and (17.7)
when the output X (1, ·) is quantized using a set of finite alphabets, and cannot be
transmitted to the control precisely. In this case, the role of disturbance d is played by
the quantization error. To define a quantizer, we first specify a set of finite alphabets
Q := {q1, q2, . . . , qN }. A quantizer with sensitivity Δq > 0, and range Mq > 0, is
then a function q : Rn → Q having the property that

|q(x) − x | � Δq if |x | � Mq (17.24)

and
|q(x)| � Mq − Δq if |x | > Mq . (17.25)

In other words, within the space Rn , where the measurements of X (1, ·) take values,
we take a ball of radius Mq and partition it into N regions. Each of these regions is
identified with a symbol qi from the setQ. If |X (1, t)| � Mq , the controller receives
a valid symbol and knows the variable X (1, t), modulo the error due to sensitivity of
the quantizer. When the measurements are out of the range of the quantizer, then the
quantizer just sends an out of bounds flag and no upper bound on the error between
X (1, t) and its quantized value can be obtained in that case. For this paper, we limit
ourselves to the case of static quantizers, that is, the parameters of the quantizer are
assumed to be fixed which introduces a bounded measurement error determined by
the sensitivity of the quantizer.

The ratio between the range and the sensitivity of the quantizerMq/Δq determines
the rate at which the information is communicated by the quantizer on average. The
basic idea of the quantized control in finite-dimensional systems is to show that
the state of the system converges to a certain ball around the origin if this rate is
sufficiently large (to dominate the most unstable mode) [12]. In the same spirit, we
derive a lower bound on the ratio Mq/Δq which is required to achieve practical
stability in the presence of quantization errors.

With quantized measurements, the controller (17.7) takes the form

η̇(t) = −α η(t) + α q(X (1, t)) (17.26a)

u(t) = Kη(t). (17.26b)
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By writing q(X (1, t)) = X (1, t) + q(X (1, t)) − X (1, t), and letting dq(t) :=
q(X (1, t)) − X (1, t), we are indeed in the same setup as earlier with y(t) =
q(X (1, t)). Here, dq is such that

|dq | �
√
n |dq |∞ �

√
n Δq , if |X (1, t)|∞ � Mq .

To state this result, we need the following lemma which relates |X (1, t)| with the
value of the Lyapunov function V considered in the previous section and defined in
(17.16).

Lemma 17.1 There exists a constant C > 0 such that

|X (1, t)|2 � C V (X (·, t), η(t)), ∀ t � 0, (17.27)

for the Lyapunov function V defined in (17.16).

The proof of Lemma 17.1 is omitted but we emphasize that the value of C in
(17.27) can be computed directly in terms of closed-loop system data, see [19] for
details.

Theorem 17.3 Consider system (17.1), (17.2), and (17.26), and assume that the
conditions of Theorem 17.2 hold, and the initial condition X0 and η0 satisfy

C V (X0, η0) � M2
q , (17.28)

where the constant C is obtained from (17.27). With the constants σ, χ appearing in
(17.23), if the quantizer is designed such that

M2
q

Δ2
q

>
Cnχ

σ
, (17.29)

then the following items hold:

• The output X (1, t) remains within the range of the quantizer for all t � 0, that is,

|X (1, t)| � Mq , ∀ t � 0.

• The state of the system remains ultimately bounded in H 1-norm, that is, there
exists T such that for all t � T

V (X (·, t), η(t)) � γq(Δq),

where γq(s) = n Cχ

σ
s2(1 + ε), for some sufficiently small ε > 0, is a class K

function.

We provide below a sketch of the proof of Theorem 17.3 and suggest the reader
to consult [19] for more details.
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In the light of condition (17.29), fix ε > 0 such that

nχ

σ
Δ2

q(1 + ε) �
M2

q

C
.

When the controller uses quantized measurements of X (1, t), the derivative of the
Lyapunov function in (17.23) satisfies, along the solutions to (17.1), (17.2), and
(17.26),

V̇ (X (t), η(t)) � −σV (X (t), η(t)) + χ |q(X (1, t)) − X (1, t)|2.

Thus, for the chosen ε > 0, if

nχ

σ
Δ2

q(1 + ε) � V (X (t), η(t)) �
M2

q

C

then, using (17.27), |X (1, t)| � Mq implying, with (17.24), that |q(X (1, t)) −
X (1, t)| � √

nΔq , and hence

V̇ (X (t), η(t)) � −εnχΔ2
q .

From the constraints imposed on the initial condition of the system, it readily follows
from the above inequality that

|X (1, t)|2 � CV (X (t), η(t)) � M2
q , ∀ t � 0,

and hence, the quantization error is always upper bounded by Δq . The uniform
decrease in the value of V also guarantees that

V (X (t), η(t)) � nχ

σ
Δ2

q(1 + ε)

for sufficiently large t , and for initial condition satisfying |X (1, 0)| � Mq . This
concludes the sketch of proof of Theorem 17.3.

17.6 Example

To illustrate the effectiveness of the controller (17.7), we provide simulation results
for the case of a 2 × 2 hyperbolic system. The system we simulate is of the form
(17.1) with

Λ :=
[
1 0
0 2

]
, S :=

[
0.01 0
0 0.03

]
,
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and the boundary condition (17.2) is described by

H =
[
0.25 −1
0 0.25

]
, B =

[
1 0
0 1

]
.

We first check conditions for Theorem 17.2. Selecting the matrix K =[
0 0.5

−0.25 −0.5

]
, it could be checked that the conditions of Theorem 17.2 are sat-

isfied with

μ = 0.1, κ = 0.2, D =
[
1 0
0 1

]
, α = 90, β1 = 1, β2 = 1, β3 = 75.

Thus, the ISS estimate (17.8) holds for (17.11a) and (17.26) with the closed-loop
boundary condition (17.11c). One can, for example, select the following initial con-
dition, which satisfies the first-order compatibility condition for the existence of
solutions in H 1((0, 1);Rn):

X1(z, 0) = cos(4π z) − 1 , X2(z, 0) = cos(2π z) − 1,

with z ∈ [0, 1].
Now to illustrate Theorem17.3, let us consider the quantizer centered at the origin,

and given by
q(x) = ��x + 0.5/�

with the parameter � = 5. The error due to quantization in this case isΔq = 1/�, and
for the sake of simplicity, we take a sufficiently large range Mq to bound the initial
condition.

The time evolution of the solutions for the first and second components of X ,
as well as the state of the dynamic controller η, is plotted in Figs. 17.1 and 17.2,
respectively. It could be seen that the solution to (17.11) converges to a neighborhood

(a) (b)

Fig. 17.1 Time and space evolution of state X : a X1; b X2
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(a) (b)

Fig. 17.2 Time evolution of controller state η and quantized measurements q(X (1, t)): a time
evolution of η. Black: η1, and red: η2; b time evolution of q(X (1, t)). Black: q(X1(1, t)), and red:
q(X2(1, t))

of the origin as the time increases. This simulation is thus in agreement with the result
reported in Theorem 17.3. Figure17.2b also gives the time evolution of the quantized
measurements.

17.7 Conclusion

In this chapter, the stabilization of partial differential equations described by lin-
ear balance laws when the measurements are subjected to disturbances has been
addressed via the use of a dynamic controller. This chapter can then be comple-
mentary to our previous work on robust stabilization of linear hyperbolic systems,
because the presence of source terms in the system description has been taken into
account. As a first step, the case of static controllers has been tacked allowing to pro-
vide conditions on stability of the closed-loop system and robustness with respect
to measurement errors. In a second step, the case of dynamic controllers is consid-
ered. Conditions in terms of matrix inequalities have been then proposed to bound
the maximum norm of the state trajectory, leading to robust stability of the closed-
loop system in the presence of measurement errors in the feedback. The case of the
quantized control, where the quantization error plays the role of disturbance in the
measurement, have been also considered.

This work opens the door for studying other problems. For example, it could be
interesting to study the design of a more general dynamical controller ensuring the
robustness properties of the closed loop.
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