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1 Introduction

Aconcept of a homogeneous honeycomb in Euclidean spacewas introduced by Som-
merville in 1929 in his book “An Introduction to the Geometry of n Dimensions” [33]
as an object consisting of polyhedral cells, all alike, such that each rotation that is a
symmetry operation of a cell is also a symmetry operation of the whole configura-
tion. This definition inspired Coxeter to name a map regular whenever its group of
automorphisms contains, for each of its faces, elements that cyclically permute edges
of that face, and also contains automorphisms that, for each of its vertices, cyclically
permute the edges meeting at the vertex. Coxeter distinguished two kinds of regular
maps: reflexible and irreflexible [9]; nowadays commonly referred to respectively
as regular and chiral maps (he called a regular map reflexible when the group of
automorphisms of the map contains an element that fixes an edge and the two faces
that contain that edge, but interchanges the two vertices of the edge, otherwise he
called the map irreflexible).

Earliest known examples of chiral maps were produced by Heffter in 1898 [18]
as a family of maps of Schläfli type {2k − 1, 2k − 1} for k > 2 (the first number
describes the size of the faces and the second the degrees of the vertices of the
map). In the 1940s Coxeter classified regular and chiral maps on the torus [7]. In
1966, Sherk [32], a Ph.D. student of Coxeter, looked for chiral maps of small genus
and constructed an infinite family of chiral maps of type {6, 6} (with the smallest
member of that family embeddable on a surface of genus 7). About the same time
Edmonds – a well-known and controversial Canadian combinatorist – re-discovered,
but never published, Heffter’s map of type {7, 7} (also on a surface of genus 7). In
1969, Garbe [15] enumerated all regular maps on orientable surfaces of genus 2, 3,
4, 5 and 6, and proved that there are no chiral maps among them. A number of papers
appeared thereafter dealing with chiral maps. A first systematic search for regular
and chiral maps of higher genus was conducted by Conder and Dobcsányi [3] and
resulted in the complete list of regular and chiral maps on surfaces of genus 2 to
15 in the orientable case and regular maps on surfaces of genus 3 to 30 in the non-
orientable case. Subsequently, Conder expanded this list several times to include
maps of increasingly higher genus. It now contains maps up to genus 301 in the
orientable case and up to genus 602 in the non-orientable case [5].

In 1970 [8], Coxeter extended the notion of a chiralmapby introducing the concept
of a twisted honeycomb, a finite abstract object or rank 4 derived from a honeycomb,
which is chiral in a sense that it inherits all the rotations of its cells but not its
reflections. Two similar examples of such structures, both with only one polyhedral
cell, were described earlier by Weber and Seifert in 1933 [36]. Coxeter produced a
number of non-trivial examples, which he constructed from3-dimensional euclidean,
spherical and hyperbolic tessellations with spherical facets and vertex-figures, by
looking at their Petrie polygons which naturally occur, in left- and right-handed
varieties (each such polygon has three, but not four, consecutive edges belonging
to a cell). Identifying vertices of each such, say left-handed Petrie polygon, that are
separated by a fixed number of edges he observed that the resulting object may be
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regular (or as he called it reflexible) or may have the vertices on its right-handed
Petrie polygons separated by a different number of edges in which case he called
such a rank 4 object twisted. Twisted honeycomb is not symmetrical by a “reflection”
in a sense that its automorphism group contains no involution that fixes, for example,
a rank 2 face of the object but interchanges the two cells sharing this rank 2 face. The
concept of twisted honeycomb inspired the modern definition of a chiral polytope,
an abstract object of any rank that is maximally symmetric by abstract rotations but
never by an abstract reflection (see Sect. 2).

The twisted honeycombs are finite structures resembling classical polytopes com-
binatorially in the sense that their facets and vertex-figures are spherical. In 1977
Coxeter suggested to the last author to derive finite twisted honeycombs from 3-
dimensional hyperbolic tessellations with horospherical facets and/or vertex-figures
producing therefore rank 4 objects with toroidal facets and/or vertex-figures. About
the same time Grünbaum [16] suggested to study abstract objects, which he called
polystroma, whose faces and vertex-figures are not necessarily spherical. Inspired by
the ideas of Coxeter and Grünbaum, in 1982 Schulte and Danzer [11] formalised and
began developing the theory of regular abstract polytopes (which they named inci-
dence polytopes). In 1984, Colbourn and Weiss [2] unaware of the work of Schulte
and Danzer, published a census of regular and chiral finite rank 4 polystroma derived
from hyperbolic tessellations by applying the “twisted honeycomb” method of Cox-
eter. Not all such objects satisfied amore restrictive condition of abstract polytopality
of [11].

By late 1980s a number of sporadic examples of chiral abstract polytopes in rank
3 and 4 were found. In 1991 Schulte and the last author of this paper developed
the basic structure theory of abstract chiral polytopes of any rank [29] and in par-
ticular characterised their automorphism groups. These objects are now quite well
understood and have been studied extensively over the past 30 years. Schulte, Mon-
son and Weiss developed various methods of constructing such polytopes in rank 4.
However, the classical approach to constructing higher rank polytopes inductively
from the lower rank ones proved to be impossible for chiral polytopes. Although
in 1995 [31] there was a universal extension method found leading to rank 5 chiral
polytopes with regular facets, no chiral finite polytopes were known to exist in rank
5 or higher. It was only in 2008 that Conder, Hubard and Pisanski produced the first
examples of finite higher rank chiral polytopes [4] and in 2010 Pellicer [28] gave a
construction for arbitrary rank.

In [17], Hartley, Hubard and Leemans constructed two atlases of chiral polytopes.
Firstly they sought them as quotients of regular polytopes arising from the Atlas of
Small Regular Polytopes (http://www.abstract-polytopes.com/atlas/); secondly, for
each almost simple group � such that S ≤ � ≤ Aut (S) where S is a simple group
of order less than 900,000 listed in the Atlas of Finite Groups, they gave, up to
isomorphism, the abstract chiral polytopes on which � acts regularly. Such an atlas
existed already in the regular case [21]. These atlases turned out to be very inspiring
to find patterns and get classification results (see [13, 19, 20] for instance).

An abstract regular or chiral polytope is an incidence geometry with a string
diagram. Recently, the authors have defined the notion of hypertope in [14] with the

http://www.abstract-polytopes.com/atlas/
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idea to allow more general diagrams than string diagrams. The present paper can be
viewed as the beginning of an ambitious project to construct rank 4 hypertopes from
their rank 3 residues. Among all hypertopes having some prescribed residues of rank
3, that are either spherical or toroidal maps or hypermaps, we consider whenever
possible, the universal one (that is the one covering all hypertopes of this kind). The
possible (non-string) diagrams for such hypertopes are listed in Fig. 1. In this paper
we only consider the first three diagrams (hence the “hexagonal extensions” in the
title) leaving other diagrams for future work.

The paper is organised as follows. In Sect. 2, we give the definitions and notation
needed to understand this paper. In Sect. 3, we explain what are rank four universal
locally toroidal hypertopes. In Sect. 4, we study locally toroidal regular and chiral
polytopes of type {6, 3, 6}. In Sect. 5, we study locally toroidal regular and chiral
polytopes of type {3, 6, 3}. In Sect. 6, we give examples of hexagonal extensions
of toroidal hypermaps of type (3, 3, 3). In Sect. 7, we give examples of nonlinear
hexagonal extensions of the tetrahedron and, among these examples, a new infinite
family of finite regular hypertopes arises. In Sect. 8, we give examples of 4-circuits
with hexagonal residues. Finally, we conclude the paper in Sect. 9 by stating some
conjectures and open problems.

As to notation for groups, we follow the Atlas of Finite Groups [6].

2 Preliminaries

2.1 Hypertopes

As in [1], an incidence system � := (X, ∗, t, I ) is a 4-tuple such that

• X is a set whose elements are called the elements of �;
• I is a set whose elements are called the types of �;
• t : X → I is a type function, associating to each element x ∈ X of � a type t (x) ∈

I ;
• ∗ is a binary relation on X called incidence, that is reflexive, symmetric and such
that for all x, y ∈ X , if x ∗ y and t (x) = t (y) then x = y.

The incidence graph of � is the graph whose vertex set is X and where two vertices
are joined provided the corresponding elements of � are incident. A flag is a set of
pairwise incident elements of �, i.e. a clique of its incidence graph. The type of a
flag F is {t (x) : x ∈ F}. A chamber is a flag of type I . An element x is incident
to a flag F , and we write x ∗ F for that, provided x is incident to all elements of
F . An incidence system � is a geometry or incidence geometry provided that every
flag of � is contained in a chamber (or in other words, every maximal clique of the
incidence graph is a chamber). The rank of � is the number of types of �, namely
the cardinality of I .
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Let � := (X, ∗, t, I ) be an incidence geometry and F a flag of �. The residue of
F in � is the incidence system �F := (XF , ∗F , tF , IF ) where

• XF := {x ∈ X : x ∗ F, x /∈ F};
• IF := I \ t (F);
• tF and ∗F are the restrictions of t and ∗ to XF and IF .

An incidence system � is connected if its incidence graph is connected. It is
residually connected when each residue of rank at least two of � has a connected
incidence graph. It is called thin (resp. firm) when every residue of rank one of �

contains exactly two (resp. at least two) elements.
An incidence system � := (X, ∗, t, I ) is chamber-connected when for each

pair of chambers C and C ′, there exists a sequence of successive chambers C =:
C0, C1, . . . ,Cn := C ′ such that |Ci ∩ Ci+1| = |I | − 1. An incidence system � :=
(X, ∗, t, I ) is strongly chamber-connected when all its residues of rank at least 2 of
� (including � itself) are chamber-connected.

Proposition 2.1 ([14, Proposition 2.1]) Let � be a firm incidence geometry. Then �

is residually connected if and only if � is strongly chamber-connected.

A hypertope is a thin incidence geometry which is strongly chamber connected or
equivalently residually connected.

2.2 Regular and Chiral Hypertopes as C+-Groups

Let � := (X, ∗, t, I ) be an incidence system. An automorphism of � is a mapping
α : (X, I ) → (X, I ) where

• α is a bijection on X ;
• for each x , y ∈ X , x ∗ y if and only if α(x) ∗ α(y);
• for each x , y ∈ X , t (x) = t (y) if and only if t (α(x)) = t (α(y)).

An automorphism α of � is called type preserving when for each x ∈ X , t (α(x)) =
t (x) (i.e. α maps each element on an element of the same type).

The set of type-preserving automorphisms of � is a group denoted by AutI (�).
The set of automorphisms of � is a group denoted by Aut (�). Elements of Aut (�) \
AutI (�) are called correlations.

An incidence system � is flag-transitive if AutI (�) is transitive on all flags of
a given type J for each type J ⊆ I . An incidence system � is chamber-transitive
if AutI (�) is transitive on all chambers of �. Observe that if � is a firm incidence
geometry, flag-transivity and chamber-transitivity are equivalent. Finally, an inci-
dence system � is regular if AutI (�) acts regularly on the chambers (i.e. the action
is semi-regular and transitive). A regular hypertope is a flag-transitive hypertope
(note that thinness implies that the action of AutI (�) is free).

Given an incidence system � and a chamber C of �, we may associate to the
pair (�,C) the pair consisting of the automorphism group G := AutI (�) and the set
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{Gi : i ∈ I } of subgroups of G where Gi is the stabiliser in G of the element of type
i in C .

In the case of a regular hypertope �, the subgroups ∩ j∈I\{i}G j are cyclic groups
of order 2 and we denote their generators ρi ’s. The set {ρi : i ∈ I } generates AutI (�)

(see [12]) and for that reason is called the set of distinguished generators of AutI (�).
The following proposition shows how to start from a group and some of its sub-

groups and construct an incidence system.

Proposition 2.2 ([34]) Let n be a positive integer and I := {1, . . . , n}. Let G be
a group together with a family of subgroups (Gi )i∈I , X the set consisting of all
cosets Gi g, g ∈ G, i ∈ I and t : X → I defined by t (Gig) = i . Define an incidence
relation ∗ on X × X by :

Gi g1 ∗ G jg2 iff Gi g1 ∩ G jg2 is non-empty in G.

Then the 4-tuple � := (X, ∗, t, I ) is an incidence system having a chamber. More-
over, the group G acts by right multiplication on � as a group of type preserving
automorphisms. Finally, the group G is transitive on the flags of rank less than 3.

When a geometry � is constructed using the proposition above, we denote it by
�(G; (Gi )i∈I ).

Consider a pair (G+, R) with G+ being a group and R := {α1, . . . , αr−1} a set
of generators of G+. Define α0 := 1G+ and αi j := α−1

i α j for all 0 ≤ i, j ≤ r − 1.
Observe that α j i = α−1

i j . Let G
+
J := 〈αi j | i, j ∈ J 〉 for J ⊆ {0, . . . , r − 1}. If the

pair (G+, R) satisfies condition (2.1) below called the intersection condition IC+,
we say that (G+, R) is a C+-group.

∀J, K ⊆ {0, . . . , r − 1}, wi th |J |, |K | ≥ 2,G+
J ∩ G+

K = G+
J∩K . (2.1)

Two chambers C and C ′ of an incidence geometry of rank r are called i -adjacent
if C and C ′ differ only in their i-elements. When the geometry is thin we denote
C ′ by Ci . Let �(X, ∗, t, I ) be a thin incidence geometry. We say that � is chiral if
AutI (�) has two orbits on the chambers of � such that any two adjacent chambers
lie in distinct orbits.

Given a chiral hypertope�(X, ∗, t, I ) (with I := {0, . . . , r − 1}) and its automor-
phism group G+ := AutI (�), pick a chamberC . For any pair i = j ∈ I , there exists
a unique automorphism αi j ∈ G+ that maps C to (Ci ) j . Also, Cαi i = (Ci )i = C
and α−1

i j = α j i . We define the distinguished generators of G+ with respect to a base
chamber C as follows:

α0 := 1G+ , αi := α0i (i = 1 . . . , r − 1). (2.2)

Define αi j := α−1
i α j for all 0 ≤ i, j ≤ r − 1. Let G+

J := 〈αi j | i, j ∈ J 〉 for J ⊆
{0, . . . , r − 1}.
Theorem 2.3 [14, Theorem7.1]Let I := {0, . . . , r − 1} and let� be a chiral hyper-
tope of rank r . Let C be a chamber of �. The pair (G+, R), where G+ = AutI (�)

and R is the set of distinguished generators of � with respect to C, is a C+-group.
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Regular and chiral hypertopes can be constructed from someC+-groups.We recall
how to construct a coset geometry from a group and an independent generating set
of this group.

Construction 2.1 [14,Construction8.1]LetG+ beagroupand R := {α1, . . . , αr−1}
be an independent generating set of G+. Define Gi := 〈α j | j = i〉 for i = 1, . . . ,
r − 1 and G0 := 〈α−1

1 α j | j ≥ 2〉. The coset geometry �(G+, R) := �(G+;
(Gi )i∈{0,...,r−1}) constructed using Proposition 2.2 is the geometry associated to the
pair (G+, R).

The coset geometry �(G+, R) gives an incidence system using Proposition 2.2.
This incidence system is not necessarily a thin geometry, nor is it necessarily resid-
ually connected. But if it is, then it is a hypertope and if its automorphism group has
at most two orbits on its flags, the following theorem gives a way to check whether
this geometry is chiral or regular.

Theorem 2.4 [14, Theorem8.2]Let (G+, R) be aC+-group. Let� := �(G+, R) be
the coset geometry associated to (G+, R) using Construction 2.1. If � is a hypertope
and G+ has two orbits on the set of chambers of�, then� is chiral if and only if there
is no automorphism of G+ that inverts all the elements of R. Otherwise, there exists
an automorphism σ ∈ Aut (G+) that inverts all the elements of R and the group G+
extended by σ is regular on �.

Later in the paper, when we will build hypertopes from their C+-groups given as
finitely presented groups, we will indeed check that the corresponding incidence sys-
tem is thin and residually connected. This check is most of the time easily performed
with Magma. We will list the hypertopes obtained in tables, not mentioning those
presentations giving a C+-group that does not yield a hypertope.

2.3 B-Diagrams

Let R := {α1, . . . , αr−1} and G+ = 〈R〉 be such that (G+, R) is a C+-group. It is
convenient to represent (G+, R) by the following complete graph with r vertices
which we will call the B-diagram (short for Buekenhout) of (G+, R) and denote by
B(G+, R). The vertex set of B is the set {α0, . . . , αr−1}. The edges {αi , α j } of this
graph are labelled by o(α−1

i α j ) = o(α−1
j αi ) = o(αiα

−1
j ). We take the convention of

dropping an edge if its label is 2 and of not writing the label if it is 3. Vertices of B
are represented by small circles in order to distinguish from the vertices of a Coxeter
diagram, which represent involutions. A regular or chiral polytope can be defined
as a regular or chiral hypertope with linear Coxeter diagram, or equivalently, with
linear B-diagram.

Rank four extensions of rank three toroidal polytopes of type {6, 3}(a,b) have
been studied by Schulte and Weiss [30], Nostrand and Schulte [26] and Monson and
Weiss [25]. The rotation subgroup of the automorphism group of a rank three toroidal
polytope P := {6, 3}(a,b) is the group G+ := Aut (P)+ defined as follows.
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G+ := 〈x, y|x6, y3, (x−1y)2, (y−1x−2)a(yx2)b〉. (2.3)

The B-diagram of (G+, {x, y}) is the following.

� � �

6

α1 := x α0 := 1G+ α2 := y

Recall that the polytope above is obtained by identifying opposite sides of a
parallelogram in the tessellation of the Euclidean plane by hexagons to obtain the
map {6, 3}(a,b).

The dual of P will be the polytope P∗ := {3, 6}(a,b) with rotation group H+ :=
Aut (P∗)+ defined as follows.

H+ := 〈x, y|x3, y6, (x−1y)2, (x−1y−2)a(xy2)b〉. (2.4)

Observe that presentation (2.4) is obtained by interchanging x and y in presenta-
tion (2.3). The B-diagram of (H+, {x, y}) is the following.

� � �

6

α1 := x α0 := 1H+ α2 := y

Indeed there is no distinction between the C+-groups of a polytope and its dual.
We make the distinction when we write the B-diagram (ranking the generators).

The rotation subgroup of the automorphismgroup of a rank three toroidal polytope
P := {4, 4}(a,b) is the group G+ := Aut (P)+ defined as follows.

G+ := 〈x, y|x4, y4, (x−1y)2, (xy)a(x−1y−1)b〉. (2.5)

The B-diagram of (G+, {x, y}) is the following.

� � �

4 4

α1 := x α0 := 1G+ α2 := y

Observe that the dualP∗ ofP is {4, 4}(a,−b) = {4, 4}(b,a) as the vectors (a,−b) and
(b, a) are orthogonal (the characterisation of dual polytopes it terms of the rotational
groups can be found for instance in [29]). The rotational group for P∗ is obtained by
interchanging x with y.

The rotation subgroup of the automorphism group of a rank three toroidal hyper-
map P := (3, 3, 3)(a,b) is the group G+ := Aut (P)+ defined as follows.

G+ := 〈x, y|x3, y3, (x−1y)3, (xy−1x)a(xy)b〉. (2.6)

The B-diagram of (G+, {x, y}) is the following.
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The elements corresponding to the three possible types in a hypermap are called
hypervertices, hyperedges and hyperfaces. The dual of a hypermap is obtained inter-
changing hypervertices with hyperfaces. The dual P∗ of P is (3, 3, 3)(b,a).

3 Rank 4 Universal Locally Toroidal Hypertopes

Spherical hypertopes (in the sense of Coxeter) of rank 3 are maps (polyhedra) on
the sphere while toroidal hypertopes of rank 3 are either maps or hypermaps on
the torus. The toroidal (regular or chiral) hypertopes of rank 3 are divided into
the following families: the toroidal maps {3, 6}(b,c), {6, 3}(b,c), {4, 4}(b,c), and the
hypermaps (3, 3, 3)(b,c) with (b, c) = (1, 1). Note that the hypermap (3, 3, 3)(b,c) is
obtained from the toroidalmap {6, 3}(b,c) by doubling the fundamental region. Indeed
as {6, 3}(b,c) is bipartite it is possible to take one monochromatic set of vertices to be
the hyperedges of the hypermap (3, 3, 3)(b,c) (see [35]). But in the case (b, c) = (1, 1)
the corresponding incidence graph is a complete tripartite graph and, therefore, the
geometry is not thin (see [14]). Indeed that is the unique highly symmetric (regular
or chiral) toroidal hypermap that is not an hypertope.

Similarly to the theory of abstract regular polytopes it is possible to construct
hypertopes inductively from hypertopes of lower rank. In the case of polytopes
{P1, P2} denotes a polytope having facets isomorphic to P1 and vertex-figures iso-
morphic to P2 (see [23]). More precisely, if the set of regular polytopes having facets
P1 and vertex-figures P2, denoted by 〈P1, P2〉, is nonempty, there exists a regular
polytope that covers every other element of the set 〈P1, P2〉, that is the universal
regular polytope {P1, P2}. In addition if the automorphism group of the universal
polytope {P1, P2} is the group 〈ρ0, . . . , ρn〉, the automorphism groups of P1 and P2
are 〈ρ0, . . . , ρn−1〉 and 〈ρ1, . . . , ρn〉, respectively.

In a similarway here,we construct rank 4 regular and chiral hypertopes thatwe call
universal when the relations corresponding to each rank 3 residue of the resulting
hypertope together with the relations implicit in the B-diagram of the hypertope
determine the group.

Here we consider universal locally toroidal hypertopes of rank 4, meaning that
all residues of rank 3 are either spherical or toroidal, with at least one being toroidal.
These hypertopes are finite whenever their automorphism group is finite.

The existence of regular universal locally toroidal polytopes of rank 4 is inves-
tigated in [23], (see also [22] and [24]), moreover the authors give an enumer-
ation of finite locally toroidal universal polytopes. For the universal polytopes
{{4, 4}(b,c), {4, 4}(e, f )} a nearly complete finiteness characterisation is given, for
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{{4, 4}(b,c), {4, 3}}, {{6, 3}(b,c), {3, p}} with p ∈ {3, 4, 5} and {{6, 3}(b,c), {3, 6}(e, f )}
the enumeration is complete, and for the polytopes {{3, 6}(b,c), {6, 3}(e, f )} partial
results are known.

In [14] we also list the known finite universal chiral polytopes {{6, 3}(b,c), {3, p}}
for p ∈ {3, 4, 5} and we conjecture that the list is complete. We give this list in
Table 1.

In Fig. 1, we list the diagrams of all possible finite universal locally toroidal
hypertopes of rank 4 having nonlinear diagram (where p ∈ {3, 4, 5, 6}).

The finite universal locally toroidal hypertopes with diagram (1), when p = 6,
have only one toroidal residue that is the hypermap (3, 3, 3)(b,c), all the remaining
residues are spherical. We denote this hypertope by (3, 3, 3; p)(b,c).

In [14] we proved that when p ∈ {3, 4, 5} and (b, c) = (1, 1), the regular hyper-
tope (3, 3, 3; p)(b,c) exists (is finite) if and only if the universal regular polytope
{{6, 3}(b,c), {3, p}} exists (is finite).

In Sect. 6we consider the diagram (1)with p = 6, thatwe callhexagonal extension
of the toroidal hypermaps (3, 3, 3)(b,c). In this case there are three toroidal residues,
that explains why the case p = 6 is substantially more complex than the cases p ∈
{3, 4, 5} studied in [14].

Table 1 Known finite polytopes of type {{6, 3}s, {3, p}} with p ∈ {3, 4, 5} (having g flags)

p s g Group Chiral/Regular

3 (2, 0) 240 S5 × C2 Regular

(3, 0) 1296 [1 1 2]3 � C2 Regular

(4, 0) 15,360 [1 1 2]4 � C2 Regular

(1, 2) 336 PGL2(7) Chiral

(1, 3) 2184 L2(13) × C2 Chiral

(1, 4) 8064 SL2(7) � A4 � C2 Chiral

(2, 2) 2880 S5 × S4 Regular

(2, 3) 6840 PGL2(19) Chiral

4 (1, 1) 288 S3 � [3, 4] Regular

(2, 0) 768 [3, 3, 4] × C2 Regular

(1, 2) 2016 PGL2(7) × S3 Chiral

5 (2, 0) 28,800 [3, 3, 5] × C2 Regular

Fig. 1 Possible nonlinear
diagrams of rank 4 universal
locally toroidal hypertopes,
where p ∈ {3, 4, 5, 6}
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In Sect. 7 we deal with the finite universal polytopes with diagram (2) and in
Sect. 8 with the universal hypertopes of diagram (3). The universal locally toroidal
regular hypertopes with diagram (4) can be obtaining from the regular universal
locally toroidal polytope of type {4, 4, 3}. Indeed each of them admits a correlation
τ as shown in the following figure.

◦ 4��
�

τ � ◦ ◦ ◦ 4 ◦ 4 ◦ ◦
◦ 4

���

In the case that the toroidal residue is the map {4, 4}(s,0) satisfying a relation
(ρ0ρ1ρ2ρ1)

s = 1 (the central vertex of the B-diagram being ρ1), adding the auto-
morphism τ , such that ρτ

2 = ρ0 (and fixing the remaining generators), we get the
automorphism group of {{4, 4}(s,s), {4, 3}} (generated by ρ0, ρ1 and τ ). Indeed apart
from the relations corresponding to the type {4, 4, 3} we get (ρ0ρ1ρ

τ
0ρ1)

s = 1. If
the toroidal residue is {4, 4}(s,s) satisfying a relation (ρ0ρ1ρ2)

2s = 1 then adding the
automorphism τ we obtain the group of {{4, 4}(2s,0), {4, 3}}. Thus all regular uni-
versal locally toroidal hypertopes of this type are determined by the correspondent
universal locally toroidal regular polytope of type {4, 4, 3}.

The universal locally toroidal regular hypertopes with diagram (5) also admit a
correlation.

◦
��

� ◦ 4��
�

τ � ◦
4 ���

4
��

� ◦ ◦ ◦
◦

��� ◦ 4
���

Computer experiments suggest that using this correlation, we get hypertopes. The
hypertopes with this diagram and toroidal residue {4, 4}(s,0) can be derived from the
universal locally toroidal hypertopes with diagram (4) and toroidal residue {4, 4}(s,s)
(indeed if ρ1 corresponds to the middle vertex of the toroidal residue, (ρ0ρ1ρ2ρ1)

s =
1, ρτ

0 = ρ2 and ρτ
1 = ρ1, conjugating (ρ0ρ1ρ2ρ1)

s = 1 by τ we get (ρ2ρ1τ)2s =
1). The hypertopes with diagram (5) and toroidal residue {4, 4}(s,s) can be derived
from the universal locally toroidal hypertopes with diagram (4) and toroidal residue
{4, 4}(2s,0). Again the regular universal locally toroidal hypertopes of these types are
determined.

The universal locally toroidal regular hypertopes with diagram being a tetrahe-
dron, as in (6), have four toroidal residues (hypermapsof type (3, 3, 3)) corresponding
to the four faces of the tetrahedron. The case with all toroidal residues being regular
hypermaps of type (3, 3, 3) is completely studied in [23], where this diagrams are
denoted by T4(q1, q2, q3, q4) with reflexion group G(q1, q2, q3, q4). The results are
summarised in the following theorems.

Theorem 3.1 [23, Theorem 9E14] G(s, s, q, q) is finite if and only if s = 2 and
q ∈ {2, 3, 4} (up to an interchange of s and q).
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Theorem 3.2 [23, Theorem 9E15] G(q1, q2, q3, q4) is infinite in at least the follow-
ing cases:

(1) p|q1, . . . , q4 for some p ≥ 3;
(2) p|q1 and 3p|q2, q3, q4 for some p ≥ 2.

Theorem 3.3 [23, Theorem 9E17] The group G(q1, q2, q3, q4) with (q1, q2) ∈
{(q1, 3), (3, q2), (4, 4), (4, 5), (5, 4)} and (q3, q4) ∈ {(q3, 3), (3, q4), (4, 4), (4, 5),
(5, 4)} is infinite except when (q1, q2, q3, q4) = (q1, 3, 3, 2) (up to an interchange of
the pairs (q1, q2) and (q3, q4)).

The remaining possibilities for a universal locally toroidal hypertopewith diagram
being a tetrahedron will be studied in future work, as well as the locally toroidal
polytopes with diagrams (7), (8), (9) and (10).

4 Locally Toroidal Regular and Chiral Polytopes of Type
{6, 3, 6}

Branko Grünbaum first posed the question of classifying regular locally toroidal
polystromas in 1977 (see [16]). About the same time Coxeter and Shephard inde-
pendently constructed in [10] such an object. Several attempts have been made at the
classification, including Colbourn and Weiss who produced a computer-generated
list of regular and chiral examples of all possible types (see [2]). In 2002 McMullen
and Schulte in [24] succeeded in classifying all finite regular locally toroidal univer-
sal polytopes with Schläfli symbol {6, 3, p} for p = 3, 4, 5 and 6 (see [22, 24], and
also Chap.11 of [23]). In [14], we present their classification and in addition provide
a list of chiral polytopes with p ≤ 5, for which we conjecture to be complete. Each
such regular polytope is associated with a honeycomb of the hyperbolic 3-space.
Since the horosphere is isomorphic to the euclidean plane, one can tesselate it by
regular hexagons, three meeting at a vertex, to obtain a regular polytope embedded in
a horosphere. The vertex figures of {6, 3, p} for p = 3, 4, 5 are spherical polyhedra
isomorphic to the tetrahedron, octahedron and icosahedron respectively. The size of
each of these polyhedra is determined by the dihedral angle which has to be 2π

p in
order that p facets fit around an edge without overlap. The facets of the hyperbolic
honeycombs are therefore horospherical honeycombs {6, 3} centered at the absolute.
All the vertices of the honeycomb are (finite) points of the hyperbolic space. When
p = 6, the vertices of the honeycomb {6, 3, 6} also belong to the absolute. Hence
there are no vertices of this honeycomb that belong to the hyperbolic space (but all
the edges are there).

McMullen and Schulte used twisting operations on quotients of certain Coxeter
groups that are associated with complex hermitian forms. Their results [23, Chap.11]
on existence of finite universal polytopes of type {6, 3, 6} are summarised in Table 2.
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Table 2 Finite regular polytopes of type {{6, 3}s, {3, 6}t}
s t g Group

(2, 0) (2, 0) 480 S5 × 22

(2, 0) (3, 0) 2592 D12 × S3 × S3 : S3
(2, 0) (4, 0) 30,720 21+6 : (S5 × 2)

(2, 0) (2, 2) 5760 S5 × 23 : S3
(s, 0) with s ≡ 0 mod 3 (1, 1) 72s2 S3 : [3, 6](s,0)
(s, s) with s ≥ 1 (1, 1) 216s2 S3 : [3, 6](s,s)

UsingMagma, we construct several new finite universal chiral polytopes of this
type and we present our results in Table 3. In fact, only the first two polytopes
appearing in this table were previously known.We conjecture this list to be complete.

Consider the Coxeter diagram with usual generators ρi (i = 0, . . . , 3) as follows.

� � � �

6 6

ρ0 ρ1 ρ2 ρ3

It gives the Coxeter group W := [3, 6, 6]. Its rotational subgroup W+ =
〈α1, α2, α3〉 with distinguished generators

α0 = 1W ; α1 = ρ1ρ0; α2 = ρ1ρ2; α3 = ρ1ρ3.

is a C+-group. We now write the B-diagram associated to (W+, {α1, α2, α3}) as
follows.

� � � �

6 6

α1 α0 = 1W α2 α3

Given the base flag C of the universal polytope {6, 3, 6} such that ρi (C) = Ci ,
(i = 0, . . . , 3), it follows that α1(C) = (C1)0, α2(C) = (C1)2 and α3(C) = (C1)3.

The automorphismgroups of the polytopes of Tables 2 and 3 are obtained using the
following presentation where x := α1, y := α2, z := α3, s = (a, b) and t = (c, d).

G+ := 〈x, y, z|x6, y3, z2, (x−1y)2, (y−1z)6, (zx)2, (y−1x−2)a(yx2)b, (y(zy)2)c(yzy−1z)d 〉

Note that, when the polytope is regular, the presentation above gives the rotational
subgroup of the full automorphism group.

Extending the methods that were developed in [14], in Sect. 6 we will look at
hypertopes with a nonlinear diagram, arising from these groups.
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Table 3 Known finite chiral polytopes of type {{6, 3}s, {3, 6}t}
s t g Group

(1, 2) (1, 2) 1344 2 · L2(7) : 2 : 2
(1, 2) (2, 1) 2060 2 · A7 : 2 : 2
(2, 0) (1, 2) 672 L2(7) : 2 × 2

(2, 0) (1, 3) 368 L2(13) × 2 × 2

(2, 0) (1, 4) 1628 Q8 · (L2(7) × 2) : S3
(2, 0) (2, 3) 1380 L2(19) : 2 × 2

5 Polytopes of Type {3, 6, 3}

As for the polytopes of the previous section, the polytopes of type {3, 6, 3} have also
been studied is several articles and in [23].We refer to [23, Sect. 11E] formore details.
We now consider the polytopes of type {{3, 6}(a,b), {6, 3}(c,d)}. We use the following
B-diagram, where x , y and y−1z are rotations generating the infinite Coxeter group
[3,6,3].

� � � �

6

zx 1W y

The type {3, 6} residues, given by the facets and vertex-figures, may be noniso-
morphic. Thus we need four parameters a, b, c, d giving two additional relations
in the following presentation for the rotation subgroup of the automorphism group
G. The automorphism groups of the polytopes of Table 4 are obtained using the
following presentation where s = (a, b) and t = (c, d).

G+(a, b, c, d) := 〈x, y, z|x3, y6, z2, (x−1z)2, (y−1z)3, (x−1y)2,

(x−1y−2)a(xy2)b, (zy3)c(y−1zy−2)d〉

We found several new universal hypertopes compared to Table1 of [2]. In the
regular case, lines 5 and 7 are not in [2], but they can be found in Table 11E1 of [23],
line 8 of Table 4 is new. In the chiral case, all but the last two are new.

6 Hexagonal Extensions of Toroidal Hypermap (3, 3, 3)

In this section, aswe did in [14], startingwith theCoxeter group [3, 6, 6]with diagram

� � � �

6 6

ρ0 ρ1 ρ2 ρ3
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Table 4 Known finite regular and chiral universal polytopes of type {{3, 6}s, {6, 3}t}
s t g Group

(2, 0) (2, 0) 240 A5 : 2 × 2 Regular

(2, 0) (6, 0) 720 S5 × S3 Regular

(3, 0) (3, 0) 2916 31+2 × 3 : S3 : S3 Regular

(3, 0) (4, 0) 241,920 Aut (L3(4)) Regular

(3, 0) (1, 1) 324 31+2 : 2 : S3 Regular

(3, 0) (2, 2) 41,472 21+6 : 32 : S3 : S3 Regular

(1, 1) (1, 1) 108 31+2 : 22 Regular

(2, 2) (2, 2) 13,271,040 25+6 : A5 × 3 : S3 : S3 Regular

(3, 0) (1, 3) 33,696 L3(3) : S3 Chiral

(4, 0) (1, 2) 12,096 U3(3) : 2 Chiral

(6, 0) (1, 2) 756,000 U3(5) : S3 Chiral

(1, 2) (3, 6) 2016 2 · L2(7) : S3 Chiral

(1, 2) (4, 4) 36,288 U3(3) : S3 Chiral

(1, 2) (6, 6) 2,268,000 3 ·U3(5) : S3 Chiral

(3, 5) (2, 1) 672 2 · L2(7) : 2 Chiral

(1, 4) (2, 1) 2016 2 · L2(7) : S3 Chiral

(1, 2) (1, 2) 672 2 · L2(7) : 2 Chiral

we double the fundamental region so that the resulting involutory generators give
us the following Coxeter group that is of index two in [3, 6, 6].

�

� �

�����

����

ρ
ρ0
1

ρ1

ρ2 ρ3

6

In the geometry constructed from this group, all rank three residues with con-
nected diagrams are either Euclidean tessellations of horospheres of type {3, 6} (up
to duality) or hypermaps of type (3, 3, 3). We denote by [(3, 3, 3), 6] the Coxeter
group having this diagram.

In order to construct a finite hypertopeHwhose residues could be chiral, we con-
sider the rotation subgroup W+ := [(3, 3, 3), 6]+ of the group W := [(3, 3, 3), 6].
The B-diagram of W+ is as follows, where x , y and z are rotations generating this
infinite group.

�

� �

�

����

����
6

y

x
1W z
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In H the two type {3, 6} residues may be nonisomorphic, and in that case they
cannot be obtained from the polytopes of type {{6, 3}s, {3, 6}t } as described before.
To describe all regular and chiral hypertopes with the B-diagram above we need six
parameters a, b, c, d, e, f giving three additional relations in the following presen-
tation for the rotation subgroup of G := Aut(H).

G+(a, b, c, d, e, f ) := 〈x, y, z|x3, y3, z6, (x−1z)2, (y−1z)2, (x−1y)3,

(yx−1y)a(yx)b, (y−1z−2)c(yz2)d , (x−1z−2)e(xz2) f 〉

where the subgroup 〈x, z〉 acts on a polytope of type {3, 6}(e, f ), 〈y, z〉 acts on a poly-
tope of type {3, 6}(c,d), and 〈x, y〉 acts of a hypermap of type (3, 3, 3)(a,b). We say
thatH has type {(3, 3, 3)s, 6}where s = (a, b). If there exists a correlation δ of order
two fixing z and interchanging x and y, the residues {3, 6}(e, f ) and {3, 6}(c,d) are iso-
morphic and therefore (c, d) = (e, f ). The automorphism groups of the hypertopes
of Table 5 are obtained using the presentation above.

Table 5 Known finite universal hypertopes of type {(3, 3, 3)s , 6}
(a, b) (c, d) (e, f ) g G Regular/Chiral

(2, 0) (2, 0) (2, 0) 240 S5 × 2 Regular

(2, 0) (3, 0) (3, 0) 1296 S3 × S3 × S3 : S3 Regular

(2, 0) (4, 0) (4, 0) 15,360 21+6 : (A5 : 2) Regular

(2, 0) (6, 0) (2, 2) 2880 S5 × 22 : S3 Regular

(3, 0) (2, 0) (2, 0) 1296 6 : S3 : S3 : S3 Regular

(3, 0) (2, 0) (3, 0) 13,824 21+6 : 3 : S3 : S3 Regular

(3, 0) (2, 0) (4, 0) 165,888 21+6 : 6 : S3 : S3 : S3 Regular

(3, 0) (2, 0) (5, 0) 2,592,000 2 · (A5 × (A5 × A5)) : 3 : 2 Regular

(3, 0) (2, 0) (2, 2) 3888 S3 × 3 : S3 : S3 : S3 Regular

(3, 0) (2, 0) (4, 4) 248,832 21+6 : (3 : S3 : S3 : 3) : S3 Regular

(3, 0) (3, 0) (1, 1) 972 31+2 : 6 : S3 Regular

(3, 0) (1, 1) (1, 1) 324 32 × S3 : S3 Regular

(3, 0) (1, 1) (3, 3) 2916 31+2 × 3 : S3 : S3 Regular

(3, 0) (2, 2) (2, 0) 3888 S3 × 3 : S3 : S3 : S3 Regular

(4, 0) (2, 0) (2, 0) 15,360 4 · (24 : A5) : 2 × 2 Regular

(2, 0) (1, 2) (2, 1) 336 L2(7) : 2 Chiral

(2, 0) (1, 3) (2, 5) 2184 L2(13) × 2 Chiral

(2, 0) (1, 4) (1, 2) 336 L2(7) : 2 Chiral

(2, 0) (1, 4) (3, 6) 8064 Q8 · L2(7) : S3 Chiral

(2, 0) (2, 3) (3, 2) 6840 L2(19) : 2 Chiral

(3, 0) (1, 2) (1, 2) 275,562 32+6 : 7 : 3 : 2 Chiral
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7 Nonlinear Hexagonal Extensions of the Tetrahedron

We now consider a hypertopeH with the following B-diagram, where x , y and z are
rotations generating the corresponding C+-group.

�

� �

�

����

����
6

y

x
1W z

In H the two type {3, 6} residues may be nonisomorphic. Thus we need four
parameters a, b, c, d giving two additional relations in the following presentation
for the the rotation subgroup of G := Aut(H).

G+(a, b, c, d) := 〈x, y, z|x3, y3, z6, (x−1z)2, (y−1z)2, (x−1y)2,

(y−1z−2)a(yz2)b, (x−1z−2)c(xz2)d〉.

The automorphism groups of the hypertopes of Table 6 are obtained using this pre-
sentation where s = (a, b) and t = (c, d).

There is an infinite family of regular locally toroidal hypertopeswith the following
Coxeter diagram having toroidal rank 3 residues {3, 6}(2,0) and {3, 6}(s,0) with s ≥ 3.

• •
6

•

•

Table 6 Known finite universal hypertopes of type (2) in Fig. 1, with s = (a, b) and t = (c, d)

s t g G

(2, 0) (2, 0) 384 21+4 × 2 : S3 Regular

(2, 0) (3, 0) 1296 S3 × S3 × S3 : S3 Regular

(2, 0) (4, 0) 3072 21+6 : 22 : S3 Regular

(2, 0) (5, 0) 6000 53 : 2 : 2 : 2 : S3 Regular

(2, 0) (6, 0) 10,368 23 : S3 : S3 : S3 : S3 Regular

(3, 0) (1, 1) 144 S3 × 22 : S3 Regular

(6, 0) (1, 1) 576 24 : S3 : S3 Regular

(3, 0) (1, 3) 58,968 L2(27) : 3 : 2 Chiral

(1, 2) (1, 2) 2688 26 : 7 : 3 : 2 Chiral

(1, 2) (2, 1) 1008 L2(7) × 3 : 2 Chiral

(1, 2) (3, 1) 58,968 L2(27) : 3 × 2 Chiral
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This family of hypertopes can be obtained from the cubic toroids {4, 3, 4}(s,s,0)
whose automorphism group G is the Coxeter group [4, 3, 4] = 〈ρ0, ρ1, ρ2, ρ3〉 fac-
torized by the single extra relation (ρ0ρ1ρ2ρ3ρ2)

2s (see p.168 of [23]). First consider
the hypertope that is obtain from {4, 3, 4}(s,s,0) using the Petrie operation defined
by the correspondence α0 �→ ρ0, α1 �→ ρ1, α2 �→ ρ2 and α3 �→ ρ1ρ3. We obtain a
C-group with the following diagram and the extra relations (α0α1α2α1α3α2)

2s and
(α1α2α3)

4 = 1.

◦ 6

4

◦

◦
4

◦

Now if we take the index 2 subgroup ofG, 〈αα0
1 , α1, α2, α3〉, we obtain a nonlinear

hexagonal extention of the tetrahedron, with residues {3, 6}(2,0) and {3, 6}(s,0) and
order 48s3. In summary, these hypertopes are constructed from {4, 3, 4}(s,s,0) using
a Petrie operation and then doubling the fundamental region of the Petrial.

It is interesting to see how we can obtain a permutation representation of the
group of these locally toroidal hypertopes combining the permutation representation
graphs of {3, 6}(2,0) and {3, 6}(s,0). For a better understanding about permutation
representation graphs of polytopes, called CPR graphs see [27]. Let us first consider
the case s even. We claim that the permutation representation graph of {3, 6}(s,0) is
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when s is even and s ≥ 4, where the number of alternating squares of the permutation
representation graph is s/2. Letα = ρ0ρ1ρ2ρ1ρ2ρ1. To show thatαs = 1 observe that
α acts as a translation on the vertices of the permutation representation graph such
that αs fixes all vertices of the permutation representation graph (see the following
figure where s = 6).
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The size of the automorphism group of {3, 6}(s,0) is 12s2. Let us prove that 12s2 is
also the size of 〈ρ0, ρ1, ρ2〉. Consider the first point x on the left of the permutation
representation graph above. The group generated by α, ρ0 and ρ2 is in the stabiliser
of x and has order 4s (as αρ0 = α−1, αρ2 = α and α0 commute with α2). The per-
mutation representation graph has 3s vertices and 〈ρ0, ρ1, ρ2〉 acts transitively on
it. Hence |〈ρ0, ρ1, ρ2〉| ≥ 4s · 3s = 12s2. Hence the graph above is a permutation
representation graph of the automorphism group of {3, 6}(s,0).

When s is odd it can be shown that the permutation representation graph of
{3, 6}(s,0) is as follows.
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The number of alternating squares of the permutation representation graph is s−1
2 .

The proof that this graph is a permutation representation graph of the automorphism
group of {3, 6}(s,0) when s is odd is similar to the proof in the case s even.

To obtain the permutation representation graph of the infinite family of locally
toroidal hypertopes with residues {3, 6}(2,0) and {3, 6}(s,0) we combine the respective
permutation representation graphs and we obtain the following graphs when s ≥ 3
accordingly as if s is even or odd.
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To prove that this is the group G generated by the permutations ρ0, ρ1, ρ2 and ρ3

and that this group has order 48s3, consider the vertex x on the left in each of the
permutation representation graphs. The stabilizer of x contains the group generated
by ρ0, ρ1 and ρ2, of size 12s2, and G is transitive on the 4s vertices of the graph.
Thus |G| ≥ 48s3.

Observe that lines 6 and 7 of Table 6 might suggest there could be a similar
infinite family of regular locally toroidal hypertopes with diagram having toroidal
rank 3 residues {3, 6}(1,1) and {3, 6}(s,0) with s ≡ 0 mod 3. A check with Magma
shows that the same groups appear in that case for s ≡ 0 mod 6 and for s ≡ 3
mod 6 with s < 100.
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8 4-Circuits with Hexagonal Residues

We now consider a hypertopeH with the following B-diagram, where x , y and z are
rotations generating the corresponding C+-group and p = 3, 4, 5, 6.

�

� �

�

6 p

x

y1W

z

InH the two type {3, 6} residues may be nonisomorphic. Thus when p = 3, 4 or
5, we need four parameters a, b, c, d giving two additional relations in the follow-
ing presentation for the the rotation subgroup of G := Aut(H). The automorphism
groups of the hypertopes of Table 7 are obtained using the following presentation
where s = (a, b) and t = (c, d).

G+(a, b, c, d) := 〈x, y, z|x6, y3, z2, (zx)3, (zy)p, (x−1y)2,

(y−1x−2)a(yx2)b, (zx3)c(x−1zx−2)d〉.

Observe that no chiral universal hypertope was found for p = 4 with s, t ∈
{{s, 0}, {s, s}, {s, t}|s, t ∈ {1, . . . , 6}}. Observe also that no universal hypertope
(either regular or chiral) was found for p = 5 with s, t ∈ {{s, 0}, {s, s}, {s, t}|s, t ∈
{1, . . . , 6}}.

When p = 6, we need eight parameters a, b, c, d, e, f, g, h giving four additional
relations in the following presentation for the the rotation subgroup ofG := Aut(H).
The automorphism groups of the hypertopes of Table 8 are obtained using the fol-
lowing presentation where s = (a, b), t = (c, d), u = (e, f ) and v = (g, h).

G+(a, b, c, d, e, f, g, h) := 〈x, y, z|x6, y3, z2, (zx)3, (zy)6, (x−1y)2,

(y−1x−2)a(yx2)b, (zx3)c(x−1zx−2)d , (x−1z(y−1z)2)e(zx(zy)2) f , (y(zy)2)g(y−1(yz)2)h〉.

Table 7 Knownfinite universal hypertopes of type (3) in Fig. 1with p = 3, 4, s = (a, b), t = (c, d)

p s t #G G

3 (3, 0) (1, 1) 360 A5 : S3 Regular

(6, 0) (1, 1) 23040 24 : A5 : 2 : 2 : S3 Regular

(1, 2) (1, 1) 1512 L2(8) : 3 Chiral

(1, 4) (1, 1) 90720 L2(8) × A5 : 3 Chiral

(2, 4) (1, 1) 774144 29 · L2(8) : 3 Chiral

4 (2, 0) (1, 1) 4320 A6 : 2 × S3 Regular

(1, 1) (1, 1) 3456 21+4 : 3 : S3 : S3 Regular
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Table 8 Known finite universal hypertopes of type (3) in Fig. 1 with p = 6, s = (a, b), t = (c, d),
u = (e, f ), v = (g, h)

s t u v #G G

(2, 0) (1, 1) (s, s) (2, 0) 1152s4 s4 : 21+4 : S3 : S3 Regular

(2, 0) (2, 0) (1, 1) (3, 0) 720 A5 × 2 : S3 Regular

(2, 0) (2, 0) (1, 1) (6, 0) 46,080 24 : A5 : 2 × 2 : 2 : S3 Regular

(2, 0) (1, 1) (4, 0) (3, 0) 165,888 21+6 : S3 : S3 : S3 : S3 Regular

(3, 0) (2, 0) (1, 1) (2, 0) 1296 S3 × S3 × S3 : S3 Regular

(3, 0) (2, 0) (1, 1) (3, 0) 13,824 21+6 : 3 : S3 : S3 Regular

(3, 0) (2, 0) (1, 1) (4, 0) 165,888 21+6 : S3 : S3 : S3 : S3 Regular

(3, 0) (2, 0) (1, 1) (5, 0) 5,184,000 2 · (A5 × (A5 × A5)) : 2 : S3 Regular

(2, 0) (1, 2) (1, 1) (6, 0) 15,120 3 × S7 Chiral

(2, 0) (1, 2) (1, 2) (2, 0) 352,800 L2(49) × 3 : 2 Chiral

(2, 0) (1, 2) (1, 1) (0, 3) 7,620,480 S7 × (L2(8) : 3) Chiral

We give several universal hypertopes with the help ofMagma. These let us conjec-
ture that two infinite families of finite locally toroidal hypertopes arise.

For each integer s ≥ 1, the quotient Ts of the Coxeter group [3, 3, 4, 3] with
diagram

� � � � �

4

ρ0 ρ1 ρ2 ρ3 ρ4

and additional relations
(ρ0ρ1(ρ2ρ3ρ4)

3)2s = 1W

is the automorphism group of the rank 5 toroid {3, 3, 4, 3}(s,0,0,0) (see [23, Sect. 6E]).
The subgroup of Ts generated by

τ0 := ρ1, τ1 := ρ2, τ2 := ρ1ρ3, τ3 := ρ0ρ4

is the automorphism group of the regular hypertope with diagram

�

� �

�

6 6

τ3

τ1τ0

τ2

In fact, ρ4 = (τ0τ3)
3 and therefore ρ0 = (τ0τ3)

2τ0 yielding that Ts = 〈τ0, τ1,
τ2, τ3〉. This suggests a correspondence between {3, 3, 4, 3}(s,0,0,0) and the infinite
family of finite hypertopes mentioned in the first line of Table 8.



168 M. E. Fernandes et al.

Lines 5 to 8 of Table 8 also suggest the existence of an infinite family of finite
hypertopes but we are unable to conjecture what will be the size of the automorphism
group and what will be its structure. This is Problem 9.2 included in the next section.

9 Future Work and Open Problems

The basic theory of highly symmetric hypertopes was recently established in [14]
but very few universal hypertopes were given. This paper, in a way, supplements it
with numerous particularly interesting universal hypertopes. In each case, given a
B-diagram and preassigned residues we establish the existence of the corresponding
universal hypertope by checking the conditions established in [14]. Extensions of
regular or chiral maps {4, 4}(b,c) will give a hypertope whose residues are not all
either spherical or toroidal. For instance, {{4, 4}(4,0), {4, 6}3} gives a finite group of
order 768. The {4, 6}3 is non-orientable of genus 4. We decide not to study this case
here but this case is definitely interesting for future research. Other similar hexagonal
extensions include [3, 6, 6] and a star diagram with labels (4, 4, 6).

We conclude this paper with some open problems and conjectures.

Problem 9.1 Can Theorem 2E17 of [23] be generalised to regular and chiral hyper-
topes?

Problem 9.2 Determine whether or not lines 5 to 8 of Table 8 are part of an infinite
family of hypertopes with (s, t,u, v) = ((3, 0), (2, 0), (1, 1), (s, 0)) with s ≥ 2 an
integer.

Conjecture 9.1 Table 3 gives a complete list of finite universal chiral polytopes of
type {6, 3, 6}.
Conjecture 9.2 There are no finite universal chiral hypertopes with the following
diagram.

�

� �

�

6 4

Conjecture 9.3 There is no finite universal regular or chiral hypertope with the
following diagram.

�

� �

�

6 5
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