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Abstract Maniplexes are combinatorial objects that generalize, simultaneously,
maps on surfaces and abstract polytopes. We are interested on studying highly sym-
metric maniplexes, particularly those having maximal ‘rotational’ symmetry. This
paper introduces an operation on polytopes and maniplexes which, in its simplest
form, can be interpreted as twisting the connection between facets. This is first
described in detail in dimension 4 and then generalized to higher dimensions. Since
the twist on a maniplex preserves all the orientation preserving symmetries of the
original maniplex, we apply the operation to reflexible maniplexes, to attack the
problem of finding chiral polytopes in higher dimensions.

Keywords Graph · Automorphism group · Symmetry · Polytope · Maniplex
Map · Flag · Transitivity · Rotary · Reflexible · Chiral

I. Douglas
17 E Pennington St, Tucson, AZ 85701, USA
e-mail: ifd2@nau.edu

I. Hubard
Instituto de Matemáticas, Universidad Nacional Autónoma de México
Circuito Exterior, C.U., Coyoacán, 04510 Mexico D.F., Mexico
e-mail: isahubard@im.unam.mx

D. Pellicer
Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México,
Antigua Carretera a Pátzcuaro 8701, Ex Hacienda de San José de la Huerta,
58089 Morelia, Michoacán, Mexico
e-mail: pellicer@matmor.unam.mx

S. Wilson (B)
Department of Mathematics and Statistics, Northern Arizona University,
Box 5717, Flagstaff, AZ 86011, USA
e-mail: stephen.wilson@nau.edu

© Springer International Publishing AG, part of Springer Nature 2018
M. D. E. Conder et al. (eds.), Discrete Geometry and Symmetry,
Springer Proceedings in Mathematics & Statistics 234,
https://doi.org/10.1007/978-3-319-78434-2_7

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78434-2_7&domain=pdf


128 I. Douglas et al.

1 Introduction

We have been struck by the beauty of the Platonic solids for thousands of years.
We saw them first when we asked this question: How can we make a polyhedron

in such a way that the faces are identical regular polygons and there are the same
number of them meeting at every vertex? In answer, a simple argument that the sum
of the angles around a vertex must be less than 360◦ shows that there are exactly 5
possibilities:

(1) triangles meeting three around a vertex (the tetrahedron);
(2) triangles meeting four around a vertex (the octahedron);
(3) triangles meeting five around a vertex (the icosahedron);
(4) squares meeting three around a vertex (the cube);
(5) pentagons meeting three around a vertex (the dodecahedron).

These are oftengiven thenameof their Schläfli symbol: {3, 3}, {3, 4}, {3, 5}, {4, 3},
and {5, 3}, respectively.

It is worth noting that these five objects, besides having the requested local nice-
ness, also have a global niceness, symmetry. They have rotational symmetry; we can
rotate any of these objects about any of their faces and about any of their vertices.
Moreover, they have reflectional symmetry; we can reflect about planes through
face-centers, through vertices, across edges and along edges.

The discovery and proof that there are five and only five regular convex polyhedra
was an interesting bit of reasoning. But it was over so soon, we hardly had a chance
to enjoy it. How can we work in a more general but similar field?

There are at least three viable generalizations:

1. by regarding the cube, for instance, not as a solid hewn from stone, but as an
assemblage of squares connected by hinges;

2. by regarding the cube as the convex hull of a finite set of points in 3-space;
3. by regarding the cube as having faces of many kinds: 2-faces (the squares),

1-faces (the edges) and 0-faces(the vertices);

The first of these viewpoints generalizes to maps on a surface and the second
generalizes to convex polytopes in higher dimensions. The third generalizes to the
idea of an abstract polytope. The first and third have maniplexes as their common
generalization. All of these we define in the next section.

Then in Sect. 3 we discuss symmetry of maniplexes, with emphasis on chirality,
meaning the property of having maximal rotational symmetry but no reflections. The
aim we pursue is to devise a technique to construct higher rank chiral maniplexes, a
task that has proved very difficult (see [15]).

2 Polyhedra, Maps, Maniplexes and Polytopes

A map is often defined as an embedding of a graph on a (compact, connected)
surface so that components of the complement of the embedding (called faces) are
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topologically open discs. In some contexts graphs are allowed to havemultiple edges,
loops and semi-edges. We can, for example, regard the cube as an embedding of the
graph Q3 on the sphere.

To look more closely at the structure of a map, we find the following subdivision
useful: choose a point in the interior of each face to be its center and a point in the
relative interior of each edge to be its midpoint. Draw dotted lines to connect each
face-center with each incidence of the surrounding vertices and edge-midpoints. The
original edges and these dotted lines divide the surface into triangles called flags.
Figure 1 shows the subdivision of the cube into flags.

Each flag corresponds to a mutual incidence of face, edge, and vertex, though
several different flags may correspond to the same triple. For instance, consider the
map shown in Fig. 2.

The map has one face A, an octagon, with opposite edges identified orientably.
As a result, it has exactly one vertex v as well. The dotted lines divide it into its 16
flags. Each of the four flags marked with a dot correspond to the same triple (vertex,
edge, face), namely, their vertex is v, their edge is 1 and their face is A.

Let � be the set of flags of a map M. Then let r0, r1, r2 be the permutations on
� which match each flag f with its three immediate neighbors, as in Fig. 3. Define
C to be the connection group, i.e., the group 〈r0, r1, r2〉.

In this paper, we will write elements of the connection group on the left: the image
of the flag f under the connection r2 is written r2 f .

Fig. 1 The cube divided into flags

Fig. 2 A map with one face
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Fig. 3 Flags in a map

In Fig. 3, we see that f and r0 f are adjacent along a face-center-to-edge-midpoint
line. Thus f and r0 f are incident to the same face and edge; they differ, if at all,
in their incidences to a vertex, a 0-dimensional face of M. We say these two flags
are r0-adjacent, or just 0-adjacent. Similarly, f and r1 f meet the same 2-face and
0-face, while f and r2 f meet the same 0-face and 1-face. Notice from Fig. 3 that the
flag r2-adjacent to r0 f is also r0-adjacent to r2 f . In other words, as permutations on
�, r0 and r2 commute.

We next take a slightly more abstract point of view by defining a mapM to be a
pair (�, [r0, r1, r2]) where � is a set of things called flags, the ri ’s are permutations
of order 2 on �, the connection group C(M) = 〈r0, r1, r2〉 is transitive on �, and r0
and r2 commute. This C(M) is often called the monodromy group of the map (see
for example [9], and for higher ranks see also [13]). We can then think of vertices
in M as orbits of 〈r1, r2〉 in �. Similarly, edges correspond to orbits of 〈r0, r2〉 and
faces to orbits of 〈r0, r1〉.

2.1 Maniplexes

This leads to the notion, introduced in [19], of a maniplex. An (n+1)-dimensional
maniplex M is a pair (�, [r0, r1, . . . , rn]), where � is a set of things called flags
and each ri is an involutory permutation on � such that (1) the connection group
C = 〈r0, r1, . . . , rn〉 acts transitively on �, and (2) for all 0 ≤ i < j − 1 < n − 1,
we have that (rir j )2 = I , where I is the identity in C . One can easily verify that
every map on a surface is a 3-maniplex with � being its set of (triangular) flags.
Furthermore, every 3-maniplex can be realised as amap on a surface.Whenwe desire
to avoid degeneracies, such as semi-edges or maps on a surface with boundary, we
often also require that (3) each ri and rir j are fixed-point-free, whenever i �= j .

The type of amaniplex is the sequence {p1, p2, . . . , pn}, where each pi is the order
of ri−1ri in C . The cube, then, is of type {4, 3}, the simplex is of type {3, 3, . . . , 3},
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and the 600-cell is of type {3, 3, 5} (see [1, Chap.VII]). Type is well-defined even
if not all faces have the same size. For example, the cuboctahedron, which is also
the medial map of the cube, has triangles and squares, two of each meeting at each
vertex. We say, then, that this map is of type {12, 4}.

Let Ci be the subgroup of C generated by all of the r j ’s except ri . Then an orbit
of flags under Ci is called an i-face. A 0-face is a vertex, a 1-face is an edge, a
2-face is a face, an n-face is a facet. A facet of a facet is a subfacet; this is an orbit
under 〈r0, r1, . . . , rn−2〉. The restriction to a subfacet of the permutation rn acts as
an isomorphism from that subfacet to some subfacet.

We wish to assign colors, red and white, to flags so that for any given two i-
adjacent flags, either one is colored red (and not white) and one is colored white (and
not red), or both flags are colored both red and white. Choose a root flag (sometimes
called also base flag) and call it I . Let R0 = {I }. Recursively let Wi be the set of
all flags adjacent to flags in Ri , and let Ri+1 be the set of all flags adjacent to flags
inWi . Finally, letR be the union of allRi ’s and similarly letW be the union of all
Wi ’s. We often say this another way: let C+ be the subgroup of C generated by all
products of the form rir j . ThenR is the orbit of I underC+ andW is the orbit of r0 I
under C+. Consider these as assignments of the colors red and white, respectively
to the flags. There are two possibilities for the result:

1. it could happen that R and W are disjoint; in this case we say that M is ori-
entable;

2. otherwise it must happen that R = W = �, and in this case we say that M is
non-orientable.

See [10] for more information about bi-colorings of flags.
The idea of having one flag designated as a ‘root’ flag helps us in several con-

structions and theorems. Henceforward, we will assume that any maniplex does have
a root flag chosen, and that isomorphisms and projections are required to send root
flag to root flag. Notice that the choice of root affects the colors of flags. In particular,
letM′ be the maniplex identical toM except that I ′ = r0 I is chosen as its root. We
will refer to M′ as the mirror-image of M. The red flags of M are the white flags
of M′ and vice versa.

If M = (�, [r0, r1, . . . , rn−1]) is any n-maniplex, we can make an (n + 1)-
maniplex, called the trivialmaniplex overM, by using � × Z2 as a flag set (though
we will write fi instead of ( f, i)), and connections [s0, s1, . . . , sn−1, sn], where
s j fi = (r j f )i for all j = 0, 1, 2, . . . , n − 1, f ∈ �, i ∈ Z2, and sn fi = f1−i . For
example, the trivial maniplex over an n-gon has only two n-gonal faces over the same
vertices and edges, and can be realised as a map on the sphere in such a way that the
n vertices and the n edges lie on the equator. Note that if a maniplex M has type
{p1, p2, . . . , pn−1}, then the trivial maniplex overM has type {p1, p2, . . . , pn−1, 2}.
In particular, the trivial maniplex over an n-gon has type {n, 2}.
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2.2 Polytopes

A convex polytope P is the convex hull of a finite set S of points in some Euclidean
space. A face in P is the intersection of P with some hyperplane which does not
separate S; it is an i-face if its affine hull has dimension i . The set of faces of
P (of all dimensions) is partially ordered by inclusion. This partial ordering has
certain properties, and these form the axiomatics for abstract polytopes. An abstract
polytope is a partially ordered set (P,≤) (whose elements are called faces) satisfying
the following axioms:

(1) P contains a unique maximal and a unique minimal element.
(2) All maximal chains (these are called f lags) have the same length. This allows

us to assign a “rank” or “dimension” to each face. The unique minimal face (usually
called “∅”) is given rank −1.

(3) If f < g < h are consecutive in some flag, then there exists exactly one g′ �= g
such that f < g′ < h. This axiom is usually called the diamond condition.

(4) For any f ≤ h, the section [ f, h] is the sub-poset consisting of all faces g such
that f ≤ g ≤ h. We require it to be true in any section that if Φ1 and Φ2 are any two
flags of the section, then there is a sequence of flags of the section, beginning at Φ1

and ending atΦ2, such that any two consecutive flags differ in exactly one rank. This
condition is called strong flag-connectivity.

See [2, 12, 16, 17] for illuminating work on polytopes and their symmetry.
In particular, if the rank of the maximal element is n, we call P an n-polytope.

If f is any flag, let fi be its face of rank i , let f ′
i be the unique face of rank i other

than fi such that fi−1 ≤ f ′
i ≤ fi+1, and let f i be the flag identical to f except that

the face of rank i is f ′
i . From a given n-polytope, we can form its flag graph in the

following way: the vertex set is �, the set of all flags (maximal chains) in P . It has
edges of colors 0, 1, 2, . . . , n − 1. The edges of color i are all { f, f i } for f ∈ �.
Thus, two vertices of the flag graph are joined (by an edge colored i) if they are flags
which are identical except at rank i . Let ri be the set of all edges colored i . Because
all flags have the same entry at rank −1 and at rank n, ri will be defined only for
i = 0, 1, . . . , n − 1.

Thus, for every abstract polytope P , the flag graph of P is a maniplex. The
converse does not hold. Briefly, and very loosely, the flag graphs of polytopes are
thosemaniplexes in which no contact between a facet and itself is permitted.We refer
the reader to [7] for examples of non-polytopal maniplexes, as well as for necessary
and sufficient conditions on a maniplex to be polytopal.

3 Symmetry

We define a symmetry of a maniplexM as a permutation of the flags which preserves
the connections. We write symmetries on the right, so that the image of the flag f
under the symmetry α is f α. We denote the group of symmetries ofM by Aut(M),



The Twist Operator on Maniplexes 133

and the notation gives the nice statement that for all i ∈ {0, 1, 2, . . . , n} and all
α ∈ Aut(M), we have that

(ri f )α = ri ( f α).

There are two levels of symmetry that are particularly interesting in maps and
maniplexes. First, we say thatM is rotary provided that Aut(M) acts transitively on
R, the set of red flags. Also,M is reflexible provided that Aut(M) acts transitively
on �. It follows trivially, then, that if M is rotary and non-orientable, then it is
reflexible. IfM is rotary but not reflexible, we say it is chiral. IfM is orientable, it
is often useful to consider Aut+(M); this is the group of all symmetries which send
R (the set of red flags) to itself (and so send W to itself).

A reflexible maniplex is nice in several ways. First, C = C(M) is isomorphic to
Aut(M) [19]. Further, each of these groups acts regularly on � and so has the same
cardinality as �. These correspondences allow us to label each flag with the element
g of C which sends the root flag I there. In short, “g” is the label of the flag gI .
Then, we claim, elements of C can act on the right as symmetries. For each h ∈ C ,
and for each pair of i-adjacent flags g and ri g, the element h sends them to gh and
ri gh, respectively, and these two are also i-adjacent. Thus h, acting on the right, acts
as a symmetry of M.

Consider, for instance, Fig. 4, and observe how multiplication on the right by r2
acts as a reflection about the horizontal edge, while multiplication on the right by r0
acts as a reflection about the vertical axis.

Thus when the maniplex is reflexible, we can use the same names for the elements
of C(M),� and Aut(M). We must, though, be aware that multiplication by, say,
r0 on the left is a different permutation of the group elements than multiplication on
the right.

When we have a reflexible maniplex M with C(M) and Aut(M) expressed as
permutations of some neutral set�, we can still talk about the symmetry correspond-
ing to an element of the connection set by referring to the root flag; specifically, we

Fig. 4 Connections as symmetries
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say that α is the symmetry corresponding to the connection x when x I is the same
as Iα. This is a one-to-one correspondance and is operation preserving, and this is
an isomorphism from C(M) to Aut(M).

A note on language: Map theorists, starting with Brahana, have used the word
regular to describe maps with rotational symmetries. Polytope theorists, though, use
the word ‘regular’ to describe polytopes that we would call reflexible. In this paper,
we remove the perhaps overusedword ‘regular’ and instead usewords thatmeanwhat
they say. Also, we recognize that the English word ‘chiral’ simply means ‘without
reflections’. In our context, where generally only rotary maniplexes and polytopes
are of interest, we will permit ourselves to use it to mean ‘rotary but not reflexible’.
And yes, we do recognize the contradictory flavors of these two preferences.

4 The Twist

We begin this section by presenting a very interesting maniplex which has only two
facets, but is chiral.

4.1 The Krughoff Cubes

Consider the cube shown on the left in Fig. 5. The edges have been colored in such a
way that each of the six possible circular orderings of the four colors appears exactly
once clockwise about some face. Notice that this coloring is chiral; i.e., every rotation
of the cube permutes the colors, while any reflection sends edges of any one fixed
color to edges of different colors.

It is not obvious but a careful examination of the cube on the right shows that,
ignoring the letter face-labels, the arrangement of colors is the same as on the left.
Then each face of the left cube matches a face of the right with orientation reversed;
these matching faces have the same letter. For instance face A-left has colors blue-
yellow-red-green in order clockwise, while face A-right has colors blue-yellow-red-
green in order counterclockwise. Thus, when we identify matching faces and colors,
the result is a chiral 4-maniplex K with two cubical facets and four edges, one for
each color. It was first discovered by Krughoff [11].

We introduce K in this paper because it can be formed from the trivial maniplex
over the cube in a simple but very interesting way: separate each pair of attached
squares and re-attach them after making a twist (locally) clockwise. The purpose of
this paper is to generalize and re-generalize this operation, investigating the resulting
chiral maniplexes.
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4.2 The Twist in 4 dimensions

LetM be any orientable 4-maniplex. Recall that this means that C = 〈r0, r1, r2, r3〉
is its connection group, that its facets are maps, that r3 connects a face of each facet
to some face (of the same size) in some facet, and that R and W are disjoint.

We construct the maniplex Tj (M) to be (�, [s0, s1, s2, s3]), where s0 = r0, s1 =
r1, s2 = r2 and

s3 f =
{

(r0r1) j r3 f if f ∈ R
(r1r0) j r3 f if f ∈ W

for all f ∈ �. The index j indicates how much twist is performed to the faces of
M, after being separated, before gluing them back. This construction first appeared
in [4].

Theorem 4.1 For any orientable 4-maniplex M and any integer j , Tj (M) is a
maniplex.

Proof We need to show that s3 is an involution and that it commutes with r0 and r1.
Suppose that f ∈ R. Then s23 f = s3(s3 f ) = s3((r0r1) j r3 f ). Since (r0r1) j r3 f ∈ W ,
this is equal to (r1r0) j r3(r0r1) j r3 f . Since r3 commutes with r0 and r1, and r0r1 is
the inverse of r1r0, this evaluates to f . Also, since f ∈ R, r0 f ∈ W and s3r0 f =
(r1r0) j r3r0 f = (r1r0) j−1r1r3 f = r0(r0r1) j r3 f = r0s3 f . Similar computations for
r1 and for f ∈ W show that the result holds. �

Theorem 4.2 If M is an orientable 4-maniplex and j is any integer, then every α

in Aut+(M) is also in Aut+(Tj (M)).

Fig. 5 Krughoff’s two-cube maniplex
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Proof Since the 0, 1, and 2-connections are the same in both maps, we only need
to show that α preserves the 3-connections. Consider any red flag f and its neigh-
bor s3 f = (r0r1) j r3 f . Then f α is also red, and its s3-neighbor is (r0r1) j r3( f α) =
((r0r1) j r3 f )α = (s3 f )α. Thus α preserves all connections, and so is a symmetry of
Tj (M). �

Because r0r1 is color-preserving, the bicoloring of flags which results from the
orientability of M shows that each Tj (M) is orientable as well. Thus we have:

Corollary 4.3 If a 4-maniplexM is orientable and rotary, then so is every Tj (M).

Corollary 4.4 If a 4-maniplexM is reflexible, then T− j (M) is the mirror image of
Tj (M).

There are examples of reflexible maniplexes for which some, all or none of the
Tj ’s result in chiralmaniplexes. It ismost common, though, that the result of the Twist
operation on a reflexible maniplex is chiral. For example, T1 of the 4-dimensional
cube is a chiral maniplex of type {4, 3, 8}, while the 4-cube itself has type {4, 3, 3}.
There are also examples of chiral maniplexes for which every Tj (M) is chiral.

Wewill address the question of the chirality or reflexibility of aTwist of a reflexible
maniplex after we have introduced a more general form of the definition.

4.3 The General Twist

Let M = (�, [r0, r1, . . . , rn]) be an orientable (n + 1)-maniplex of dimension at
least 4. Let B = 〈r0, r1, . . . , rn−2〉; this is the connection group of the root sub-
facet. Further, let B+ = 〈r0r1, r1r2, . . . , rn−3rn−2〉; this is the subgroup of B which
preservesR. Letw be an element of B+, such that for i = 0, 1, 2, . . . , n − 2we have
(wri )2 = I ; i.e., that the conjugate of w by ri is w−1. Call such a w sub-invertible
because it is invertible within the sub-facet group B. Define the twist Tw(M) ofM
to be (�, [s0, s1, . . . , sn]), where si = ri for i < n and

sn f =
{

wrn f if f ∈ R,

w−1rn f if f ∈ W,

for all f ∈ �. Note that, since rn commutes with all ri with i ≤ n − 2, rnw = wrn .
Imitating the proofs of Theorems 4.1 and 4.2 yields these results:

Theorem 4.5 For any orientable maniplexM and any sub-invertible w, Tw(M) is
a maniplex.

Note that if w ∈ B+ is not sub-invertible, then Tw(M) is not a maniplex, but is a
complex in the sense of [19] (or a combinatorial map in the sense of [18]). Moreover,
in this case, some Tw(M) could be a chiral hypertope, in the sense of [6].
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Theorem 4.6 IfM is an orientable maniplex and w is sub-invertible, then every α

in Aut+(M) is also in Aut+(Tw(M)).

Corollary 4.7 IfM is orientable and rotary, then so is every Tw(M)).

For a 4-maniplex, the subfacets are polygons, and so the only candidates for sub-
invertible elements are the powers of r0r1, and these are sub-invertible. For higher
dimensions, there are no obvious non-trivial candidates for w, and indeed, some
sub-facets have no such elements. We claim that the simplex is one such maniplex.
To see that, first notice that if w is sub-invertible, then w is central in B+. Thus if the
sub-facet of some maniplex M is a simplex of dimension n − 2 for n greater than
4, then B+ is An−1. This has a trivial center, and hence no viable w.

Contrast this with the cube of dimension n − 2. Here, when n is even, the central
inversion is orientation-preserving and is central and thus sub-invertible.

In a maniplex M of any rank, if its symmetry group has k orbits on flags, then:

1. If Aut(M) contains an orientation-reversing element then Tw(M) has either k
or 2k orbits on flags.

2. If Aut(M) does not contain an orientation-reversing element then Tw(M) has
either k or k

2 orbits on flags.

5 Chirality

In the paper [14], the third author demonstrated the existence of a series of chiral
polytopes of all dimensions. By using the twist operator, we hope to produce such
maniples in a simplerway. In this sectionwe address the following question:What are
the conditions on an orientable reflexible maniplex M and a sub-invertible element
w that would force Tw(M) to be reflexible?

So, suppose that M is an orientable and reflexible (n + 1)-maniplex; suppose
that w is sub-invertible in M; finally suppose that Tw(M) is reflexible. Since M
is reflexible, its set of flags is (or can be considered as) the group C(M), which
we will call G for convenience. Remember how nice this is: elements of G are the
flags, elements of G are the connections (acting by multiplication on the left), and
elements of G are symmetries (acting by multiplication on the right). Hence “r0r1”
is the name of a flag. It is 0-adjacent to the flag r1. It is the image of r0 under the
symmetry sending each flag g to the flag gr1.

Because M is orientable, its flags come in two colors, red and white, and the
identification gives us that R = C+, the subgroup consisting of products of even
lengths in the generators.

In Tw(M) = (G, [s0, s1, . . . , sn]), all of the connections are in G except perhaps
sn . Since Tw(M) is reflexible, it must have a symmetry α0 which sends the flag I to
the flag s0. This α0 is probably not in G. Let H = 〈r0, r1, . . . , rn−1〉. This group is
the stabilizer (in M and in Tw(M)) of the ‘central’ facet; i.e., the facet containing
the root flag I . Hence, on one hand, we can regard the elements of H as the flags of
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the central facet. On the other hand, we can think of the elements in H as paths of
the graph with colours in {0, 1, . . . , n − 1}. This means that if we have h ∈ H , for
every flag f , the flags f and h f are in the same facet (of both M and Tw(M)).

We will deduce the action of α0 first in the central facet and then in facets farther
and farther away.

Remembering that the identity I of G is assigned to the root flag I of �, we have
that for h ∈ H , i.e. for flags in the central facet, the action of α0 must be the same as
inM: thus, hα0 = (hI )α0 = h(Iα0) = h(r0 I ) = hr0.

Given h ∈ H, rnh is a flag in one of the facets adjacent to the central facet inM.
Since the twist operator preserves facets, and facet-adjacency, each flag rnh is in a
facet adjacent to the central facet in Tw(M) as well.

Let g = rnh be such a flag, for some h ∈ H , and suppose that g is red. Then it
is n-adjacent in Tw(M) to snrnh = wrnrnh = wh, which is a white flag in H since
Tw(M) is orientable, and so its image under α0 is whr0, a red flag. Thus the flag gα0

must be n-adjacent to that red flag and so must be wrnwhr0 = w2rnhr0. Similarly,
if g is white then gα0 = w−2rnhr0.

Now, every flag in a facet adjacent to the central facet is of the form g = h1rnh0,
where thehi ’s are from H . Then gα0 = (h1rnh0)α0 = h1(rnh0α0) = h1(w±2rnh0r0),
where the exponent is+2 if rnh0 is red (i.e., if a product of generators equalling rnh0
has even length) and −2 otherwise.

Thus, we know the effect of α0 on the central facet and on each facet adjacent to it.
Next, consider a flag g in the layer of facets two steps away from the central facet, but
n-adjacent to a flag in a facet adjacent to the central facet. Then g = rnh1rnh0, where
the hi ’s are from H . If g is red, then g is n-adjacent to wrnrnh1rnh0 = wh1rnh0, a
white flag. Then the image of this white flag under α0 is the red flag wh1w±2rnh0r0;
again, the exponent depends on the color of rnh0. Then gα0 is the flag n-adjacent to
this one, which is wrnwh1w±2rnh0r0 = w2rnh1w±2rnh0r0; similarly, if g is white,
then gα0 = w−2rnh1w±2rnh0r0.

In general, then, if g = hk+1(rnhk)(rnhk−1)(rnhk−2) . . . (rnh0), define

P(g) = hk+1(tkrnhk)(tk−1rnhk−1)(tk−2rnhk−2) . . . (t0rnh0),

where each t j is w2 if (rnh j ) . . . (rnh0) is red and w−2 if it is white. Then it must be
that gα0 = P(g)r0, and a similar argument shows that, if αi is the symmetry which
sends I to si , then

gαi =
{
P(g)ri if i = 0, 1, . . . , n − 1;
P(g)wri if i = n.

(1)

To recap: ifM is reflexible and orientable and ifweknow that Tw(M) is reflexible,
then we have that for i = 0, 1, . . . , n − 1, gαi = P(g)ri , and gαn = P(g)wrn . This
implies that P is well-defined. Well-definedness is an issue, for we see that P(g)
is defined in terms of a product p of generators which evaluates to g. The well-
definedness of P means that if p1, p2 are two products of generators which both
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equal g then P(p1) = P(p2). Moreover, this must hold even if the generator rn
appears in the words p1 and p2 with different multiplicity.

We claim that this is equivalent to saying that if some product p evaluates to I ,
then P(p) must also evaluate to I . To see that, one uses the following Lemma:

Lemma 5.1 For any word p let Q(p) be obtained from P(p) by replacing each ti
by t−1

i . Then:

1. If p2 is white, then P(p1 p2) = Q(p1)P(p2), while if p2 is red, P(p1 p2) =
P(p1)P(p2).

2. (P(p−1))−1 = P(p) if p is red and (P(p−1))−1 = Q(p) if p is white.

On the other hand, if P is well-defined, it is clear that the equations in (1) serve
as definitions for reflective symmetries, making Tw(M) reflexible.

At first glance, the process of checking, for a given M and w, that the set of
words which evaluate to I is closed under P may seem to be a daunting task. Our
hearts need not seize up in fear, however. When we consider a reflexible maniplex,
we are quite often given the generator-and-relator form of G. In this case, the only
products we need to check are the relators, since every other word evaluating to I is
a consequence of those.

Theorem 5.2 Suppose that M is an orientable reflexible n-maniplex for n at least
4, and C(M) has presentation C = 〈r0, r2, . . . , rn−1|I = W1,W2,W3, . . . ,Wk〉,
where each Wj is a word in the ri ’s. If w is a sub-invertible element then Tw(M) is
reflexible if and only if P(Wj ) evaluates to the identity in C for all j .

For example, consider the trivialmaniplex over the cube. Its generator-relator form
(abbreviating ‘ri ’ by just ‘i’) is G = 〈0, 1, 2, 3|I = 02 = 12 = 22 = 32 = (02)2 =
(30)2 = (31)2 = (01)4 = (12)3 = (32)2〉. We will use w = 01. Because w2 com-
mutes with 0 and 1, it is clear that P(3030) = I and P(3131) = I , and any g which
includes no 3 has P(g) = g. Thus the only word we need to check is (32)2.

Consider P(3232) = 0101 32 0101 32 = 0101 323 0101 2 = 0101 2
0101 2. This is a motion of the cube Q, and it can be seen as a 2-step rotation
about a face. It is certainly not the identity and so T01(Q) is not reflexible. Therefore
the Krughoff maniplex K = T01(Q) is chiral, as claimed.

Remark 5.3 Ifw is its own inverse, so thatw2 = I , then for all g we have P(g) = g,
and so P is well-defined and Tw(M) is reflexible.

6 The Maniplex 2̂M

In this section, we describe a construction of an (n + 1)-maniplex whose facets are
all isomorphic to a given n-maniplex. Our motivation is this: we will show that
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if M is an orientable n-maniplex such that C(M) contains an element w such
that (wri )2 = I for i = 0, 1, . . . , n − 1, then, applying this construction twice, the
constructedmaniplex is oneonwhichwecanperforma twist andget a chiralmaniplex
as a result.

Definition 6.1 Let M = (�, [r0, r1, . . . , rn−1]) be an n-maniplex which has
m ≥ 2 facets named F1, . . . , Fm . Define 2̂M to be the (n + 1)-maniplex (� × Z

m
2 ,

[s0, s1, . . . , sn−1, sn]), where, for f ∈ Fj , x ∈ Z
m
2 , we have

si ( f, x) =
{

(ri f, x) if i = 0, 1, . . . , n − 1;
( f, x j ) if i = n.

Here, x j stands for the bitstring which differs from x in the j-th place and there only.
If I is the root flag for M, let Î = (I, 000 . . . 0) be the root flag for 2̂M.

Notice that if M has only one facet, then the above construction only yields the
trivial maniplex over M. In general 2̂M is a 2m−1 fold cover of the trivial maniplex
overM. In what follows we are mainly interested in maniplexes with more than one
facet.

This construction very slightly generalizes one of Danzer (see [5]) and sets it in
maniplex form. Here 2̂M is the same as Danzer’s D(2D(M)), where D stands for the
usual dual of a polytope or maniplex.

Proposition 6.2 Let M be any n-maniplex with at least two facets. Then

1. 2̂M is an (n + 1)-maniplex,
2. all facets of 2̂M are isomorphic to M;
3. ifM has type {p1, . . . , pn−1} then 2̂M has type {p1, . . . , pn−1, 4}.
Proof For i = 0, 1, . . . , n − 1, si is an involution because ri is, and sn is an invo-
lution because (x j ) j = x . For i = 0, 1, . . . , n − 2, each f and ri f are in the
same Fj , and so si snsi sn( f, x) = si snsi ( f, x j ) = si sn(ri f, x j ) = si (ri f, (x j ) j ) =
si (ri f, x) = (riri f, x) = ( f, x). Thus, si and sn commute, and so 2̂M is a mani-
plex.

For a fixed x , the set of flags of the form ( f, x) for f ∈ � is a facet of 2̂M,
and every facet of 2̂M is of this kind. Then the function sending f to ( f, x) is an
isomorphism of M to that facet of 2̂M.

Finally, suppose that some flag f of M is in Fj and that rn−1 f is in Fk . Then
repeatedly applying sn and then sn−1 to ( f, x) yields:

( f, x) → ( f, x j ) → (rn−1 f, x
j ) → (rn−1 f, (x

j )k) → ( f, (x j )k)

= ( f, (xk) j ) → ( f, xk) → (rn−1 f, x
k) → (rn−1 f, x) → ( f, x).

This shows that (sn−1sn) has order 4, as claimed. �
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Let us now consider symmetries of 2̂M. First, suppose that σ is a symmetry of
M and that it acts on the facets ofM as a permutation also called σ ; i.e., that for all
i , we define σ(i) to be the index of Fiσ . Thus Fiσ = Fσ(i). And denote by σ(x) the
vector (xσ−1(1), xσ−1(2), . . . , xσ−1(m)). Then define σ̂ acting on 2̂M by

( f, x)σ̂ = ( f σ, σ (x)).

Noting thatσ(x j ) = [σ(x)]σ( j), it is easy to check that this is a symmetry of 2̂M fixing
the facet consisting of all flags of the form ( f, (0, 0, . . . , 0)). Thus, all of Aut(M)

appears in Aut(2̂M), with α̂i playing the role of αi for i = 0, 1, 2, . . . , n − 1.
For any y ∈ Z

m
2 , the function τy defined by ( f, x)τy = ( f, x + y) is clearly a

symmetry of 2̂M. Assuming the root flag is in F1, then the symmetry τ(1,0,0,...,0)

sends the root flag Î to sn Î , its n-adjacent flag.
This shows that

Proposition 6.3 Let M be a reflexible n-maniplex with at least two facets. Then
2̂M is reflexible. The stabilizer of the central facet is isomorphic to Aut(M), by an
isomorphism sending αi to α̂i .

Notice that even if M has no particular symmetry, the maniplex 2̂M has the
symmetry τ(1,0,0,...,0) = α̂n , which is a reflection. Hence, 2̂M can never be a chiral
maniplex. Moreover, since Aut(M) can be regarded as a subgroup of Aut(2̂M)

and for all y ∈ Z
m
2 , τy ∈ Aut(2̂M), if M is a k-orbit maniplex, then so is 2̂M. In

particular, if M is a 2-orbit maniplex in class 2J , J ⊂ {0, 1, 2, . . . , n − 1} (in the
sense of [3]), then 2̂M is a 2-orbit maniplex in class 2J∪{n}.

6.1 Color-Coded Extensions

Suppose that M = (�, [r0, r1, . . . , rn−1]) is an n-maniplex, and let C be a parti-
tion of its facets into k classes called ‘colors’. Define a new (n + 1)-maniplex called
2(M,C) = (� × Z

k
2, [s0, s1, . . . , sn]), where for i = 0, 1, . . . , n − 1, si ( f, x) =

(ri f, x), and sn( f, x) = ( f, x j ), where f is in a facet of color j and x j is the bitstring
which differs from x in place j and there only. This generalizes previous notions:

1. If each class in C contains just one facet, then 2(M,C) is exactly 2̂M.
2. If C consists of just one class containing all facets, then 2(M,C) is the trivial

maniplex over M.

Moreover, proofs similar to those about 2̂M show that ifM is an n-maniplex with
at least two facets then:

1. 2(M,C) is an (n + 1)-maniplex,
2. all facets of 2(M,C) are isomorphic toM;
3. ifM has type {p1, . . . , pn−1} then 2(M,C) has type {p1, . . . , pn−1, 4}.
4. IfM is reflexible and C is Aut(M)−invariant, then 2(M,C) is also reflexible.
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7 Example of Twist on Rank 5

7.1 The Map nM

We first give a general construction for covering of maps:

Definition 7.1 Let M = (�, [r0, r1, r2]) be a map, a 3-maniplex, which is ori-
entable, and let n be any integer greater than 2. Define nM to be the map
(� × Zn, [t0, t1, t2]), where for each flag ( f, i) of nM,

t0( f, i) = (r0 f, i),

t2( f, i) = (r2 f, i),

and

t1( f, i) =
{

(r1 f, i + 1) if f is red,

(r1 f, i − 1) if f is white.

It is easy to see that each ti is an involution and that t0 commutes with t2, so nM
is a map, whenever it is connected. Observe that nM is an n-fold cover of M, and
if M is of type {p, q}, then nM is of type {LCM(p, n), LCM(q, n)} whenever it
is a map.

The second entry i of a flag ( f, i) of nM is preserved by r0 and r2, but changed
by r1, according of the color of the flag f . We next define a function h that counts,
for a given word W on the elements r0, r1, r2, the difference between the number
of appearances of a factor r1 in odd and even places of W . If W is any word in
r0, r1, r2, and Ŵ is the corresponding word in t0, t1, t2, define h(W ) recursively by
using h(I ) = 0 and

h(riW ) =

⎧⎪⎨
⎪⎩
h(W ) + 1 if i = 1 and W has even length

h(W ) − 1 if i = 1 and W has odd length

h(W ) otherwise.

Then, for all f , Ŵ ( f, i) = (W f, j), where j =
{
i + h(W ) if f is red,

i − h(W ) if f is white
.

Note that this fact holds because W and Ŵ are considered as words in their
respective sets of generators.

If D is the greatest common divisor of n and all values of h(W ) for which W
evaluates to the identity in M, then nM has exactly D connected components.

If M is reflexible, and, as before, we denote by αi the symmetry exchanging
the root flag I with ri I , and by α̂i the symmetry exchanging Î with ti Î , then these
functions are the corresponding symmetries in nM:

( f, i)α̂0 = ( f α0,−i)
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( f, i)α̂1 = ( f α1, 1 − i)

( f, i)α̂2 = ( f α2,−i).

Thus, nM is reflexible as well. Among the symmetries of nM is the function
β, whichs sends each ( f, i) to ( f, i + 1); direct computation verifies that β is a
symmetry. Further, a simple computation will show that for each i = 0, 1, 2, the
relation (βα̂i )

2 = I holds.

7.2 A Series of 5-Maniplex Examples

We use this construction to produce a series of examples. Each starts with an ori-
entable map M of type {p, p}, with p odd, having a word W such that h(W ) is
relatively prime to p. We study the effect of the twist operation on the 5-maniplex
M′ = 2̂2̂

pM
.

Consider an orientable 3-maniplexMwith type {p, p} and some n ≥ 5. We then
construct the n-fold cover nM of M.

As long as the greatest common divisor D of p and all h(W ) for words evaluating
to the identity, is 1, the map is connected.

As an example, consider the great dodecahedronM = P0, a polyhedron and ori-
entable map of type {5, 5} with 12 vertices and 12 pentagonal faces, where every
vertex is surrounded by 5 faces. It can be constructed from the icosahedron by disre-
garding the triangles and considering as faces the 2-holes, that is, the convex polygons
(pentagons in this case) determined by the neighbours of some vertex. The triangles
of the icosahedron can be recovered as the 2-holes of the great dodecahedron (see
[1, Chap.VI]). The great dodecahedron is reflexible, and as before, we consider its
symmetry group, its connection group and its flag set to all be the same group G. Its
connection group satisfies the relation (r0r1r2r1)3 = I , since this indicates that the 2-
holes are triangles. Then h((r0r1r2r1)3) = 6 ≡ 1 modulo 5, and hence h((r0r1r2r1)3)
is relatively prime to 5. The polyhedral map 5P0 = (� × Z5, [t0, t1, t2]) is then con-
nected, has type {5, 5}, 60 vertices and 60 facets. This polyhedron is denoted by
{5, 5} ∗ 600 in the atlas of Hartley [8].

Naturally, the element w of C(5P0) corresponding to β ∈ Aut(5P0) has order 5.
Furthermore, because (βα̂i )

2 = I we have that (wti )2 = I for i ∈ {0, 1, 2}.
Now, the element (r0r1r2r1)3 acts trivially on �. Therefore (t0t1t2t1)3 sends (I, 0)

to (I, 1), and so it must be equal to w.
Let M′ be the 5-maniplex (5-polytope) 2̂2̂

5P0 of type {5, 5, 4, 4}. The subfacets
ofM′ are isomorphic to 5P0 and w satisfies the desired properties in Sect. 4, so we
can construct Tw(M′). In what follows we prove that Tw(M′) is chiral.

In C(M′) = 〈s0, s1, s2, s3, s4〉, the relation (s3s4)4 = I holds. Assuming that
Tw(M′) is reflexible we have that P((s3s4)4) also equals I . But P((s3s4)4) =
(s3w2s4)4, since all flags (s3s4)k are red. Conjugating by s4 we get



144 I. Douglas et al.

I = s4(s3w
2s4)

4s4 = (s4s3w
2)4.

Now, every flag in M′ is of the form ((( f, i), x), y), where f is a flag of P0,
i ∈ Z5, and x and y are bitstrings of the appropriate lengths. The connection s4
changes only y, and s3 changes only x .

Thus the image of (((I, 0), x), y) under s4s3w2 is (((I, 2), x ′), y′) for some x ′, y′.
Thus (((I, 0), x), y)(s4s3w2)4 = (((I, 8), x ′′), y′′) for some x ′′, y′′. Since 5 is odd,
P((s3s4)4) is not the identity and so Tw(M′) is chiral.

This example generalizes: IfM is any map of type {p, p} for some p ≥ 5 and has
a defining word W such that h(W ) is relatively prime to p, then it must have some
defining wordw such that h(w) = 1 and corresponds to β in pM. If, in addition, p is
odd, then inM′ = 2̂2̂

pM
, theword (s3s4)4 evaluates to the identity, and a computation

similar to the previous paragraph shows that P((s3s4)4) = (s3w2s4)4 sends any flag
((( f, i), x), y) to ((( f, i + 8), x ′′), y′′) for some x ′′, y′′ and since p is odd, this is not
the identity and so Tw(M′) is chiral.

Remark Now, the maniplex 2̂2̂
5P0 is huge: 5P0 is 5 times as large as the Great

Dodecahedron and so has 5 ∗ 120 = 600 flags in 60 facets of 10 flags each. The 4-
maniplex 2̂5P0 has 260 such facets. Then 2̂2̂

5P0 has 22
60
facets. Then 260 is an 19-digit

number and thus 22
60
is simply too large to contemplate.

We can reduce the scale of our constructions by using the color-coded extensions:
P0, the great dodecahedron, has a coloring in 6 colors, opposite faces having the
same colors. Then 5P0, as a covering of P0, inherits this same 6-coloring. Call that
coloring S. Then the 4-maniplex P1 = 2(5P0,S) has only 26 = 64 facets and has a
2-coloring B, and so the 5-maniplex P2 = 2(P1,B) has only 4 facets, for a total of
600 ∗ 64 ∗ 4 = 153,600 flags.

8 Open Questions

There are many interesting open questions regarding the twist operator on mani-
plexes. Here are just a few of them:

1. In general, if M is polytopal, what are the conditions on w for the maniplex
Tw(M) to be polytopal? Are there even any special cases in which this question
can be answered?

2. Our original intent was to use the twist construction to produce chiral maniplexes
and hopefully polytopes of all possible dimensions in an elegant way. Our main
difficulty is that we seem to have no examples of maniplexes of any rank above
fivewith sub-invertible elements that are not involutions, and thuswe can display
no k-maniplexes for k ≥ 6 for which the twist operator is defined. We are trying
not to conjecture that there are none.
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3. Is there a way to generalize the construction of the map nM from the map M
to apply to any maniplex P? If there were, then we could have examples of
maniplexes 2̂2̂

P
of all dimensions to which we could apply the Twist operation.

4. Given a chiral maniplex M, what are the criteria for M to be a twist of some
reflexible maniplex?

5. If Tw(M) is isomorphic to the mirror image ofM, is some Tw′(M) reflexible?
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